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A B S T R A C T

Integrated community energy systems (ICESs) are a modern development of local energy systems by integrating
distributed energy resources and local communities. Cost allocation is one of the key issues affecting the success
of ICESs. Costs should be allocated to those who cause them, and benefits to those who make the investments. A
well-designed cost allocation approach will therefore contribute to a successful implementation and sustainable
development of ICESs. This paper presents a general framework for designing cost allocation schemes in ICESs.
Various cost allocation methods are proposed to compute the energy bills for local community members in
an ICES. In addition, the cost reflectiveness of different cost allocation methods has been computed based on
a case study of an ICES to gain insights into how well the costs are allocated. Next to this, the same is also
done for the cost predictability to investigate how the energy costs would change in the long term. The results
showed that methods with a single energy charging component perform the best in terms of the two criteria.
Our assessment can facilitate local community members in selecting a method that satisfies their requirements.
Overall, this research contributes to a successful implementation of cost allocation in an ICES.
1. Introduction

1.1. Background and motivation

Integrated community energy systems (ICESs) emerge in the devel-
opment of local energy systems by integrating local distributed energy
resources (DERs) and local communities [1,2]. ICESs utilize the techni-
cal values of community microgrids and the social and economic values
of integrated energy systems to create systems that are robust, reliable,
and secure [1]. ICESs emphasize the engagement of local community
members to participate in the decision-making process, on such matters
as making investments in community DERs and selecting a socially
acceptable cost allocation method, so that they take full control of the
energy system [3]. Individual households are the basic units of local
communities; they can choose whether or not to invest in an individual
DER. In doing so they are changing their role from being consumers
to prosumers thanks to local generation, demand response, and energy
efficiency measures. They are interconnected and can also consume
or share energy within an ICES, once they agree to join. Similar to
any local energy system, an ICES can work in both grid-connected
and off-grid mode [4]. Off-grid ICESs aim to achieve self-sufficiency
by reducing dependence on the grid, exchanging energy with it only
when necessary. This is the future trend [5]. Compared to a large
number of individual grid-connected DERs, ICESs reduce the effects
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on the distribution grid through collective generation, consumption,
purchasing, and local energy management [3]. ICESs have a significant
role to play in the transition to future energy systems.

One of the novel aspects of ICESs lies in their ability to enable com-
munity control of energy generation and consumption, which is a big
step forward in social innovation in the management of energy systems.
Various actors can involve themselves in ICESs, with different interests.
Local community members can generate and consume affordable and
green energy. They are also offered the opportunity to become investors
and have the right to make decisions. External investors can invest
in community DERs, too, to pursue profits. Energy service companies
make profits by providing related services, such as energy efficiency im-
provement, system operation, and the management of local generation
and delivery. A strong sense of community is essential for an ICES, since
local community members are involved in the planning, development,
and administration of the energy system as well as the allocation of its
costs and benefits [6,7].

Earlier studies on ICESs have mostly concentrated on technical
aspects, such as hierarchical management [8], optimal scheduling and
dispatching with the objective of minimizing operational costs [9–11].
The available tools for optimization planning and analysis of ICESs are
comprehensively reviewed in [1]. The study in [12] presents an assess-
ment framework for the value of ICESs in terms of costs and benefits for
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Nomenclature

𝐵𝑒 Charging and discharging efficiency of stor-
age

𝐶1𝑖,𝑗 Annual cost for user 𝑖 under method 𝑗 in
year 1 (€)

𝐶2𝑖,𝑗 Annual cost for user 𝑖 under method 𝑗 in
year 2 (€)

𝐶 Energy cost per customer (€/customer)
𝐶𝑏𝑎𝑠𝑒 Costs in off-peak hours (€)
𝐶𝑖,𝐷𝐸𝑅 Annual cost for user 𝑖 for its individual

energy system (€)
𝐶𝑖,𝑗 Annual cost for user 𝑖 under method 𝑗 (€)
𝐶𝑖(𝑡) Energy cost at hour 𝑡 for user 𝑖 (€)
𝐶𝑝𝑒𝑎𝑘 Costs in peak hours (€)
𝐶𝑃𝐼𝑖,𝑗 Cost predictability index for user 𝑖 under

method 𝑗
𝐶𝑅𝐼𝑖,𝑗 Cost reflectiveness index for user 𝑖 under

method 𝑗
𝐶𝑆𝑖 Subscribed capacity of DERs by household 𝑖

(kW)
𝐷(𝑡) Total energy consumption for all users at

hour 𝑡 (kWh)
𝐷𝑖(𝑡) Energy consumption for user 𝑖 at hour 𝑡

(kWh)
𝐸(𝑡) Total energy consumption at hour 𝑡 (kWh)
𝐸𝑎𝑣𝑒(𝑡) Energy consumption below the threshold

(kWh)
𝐸𝐵_𝑚𝑎𝑥 Maximal energy state of storage (kWh)
𝐸𝐵_𝑚𝑖𝑛 Minimal energy state of storage (kWh)
𝐸𝑏𝑎𝑠𝑒(𝑡) Energy consumption in off-peak hours

(kWh)
𝐸𝐵(𝑡) Energy state of storage at hour 𝑡
𝐸𝐵(𝑡 + 1) Energy state of storage at hour 𝑡 + 1
𝐸𝑑𝑖𝑓 (𝑡) Energy difference between generation and

demand at hour 𝑡 (kWh)
𝐸𝑒𝑥_𝑔𝑟𝑖𝑑 (𝑡) Energy exchange with the grid at hour 𝑡

(kWh)
𝐸𝑒𝑥𝑐 (𝑡) Energy consumption exceeds the threshold

(kWh)
𝐸𝑖(𝑡) Energy consumption at hour 𝑡 of user 𝑖

(kWh)
𝐸𝑝𝑒𝑎𝑘(𝑡) Energy consumption in peak hours (kWh)
𝐸𝑅𝐸𝑆 (𝑡) Energy generation from RESs at hour 𝑡

(kWh)
𝐸𝑡ℎ Threshold value (kWh)
𝑓 Allocation coefficient
𝑓1,𝑖 The first allocation factor for user 𝑖
𝑓2,𝑖 The second allocation factor for user 𝑖
𝐼𝐶𝑃𝑉 Installed capacity of PV (kW)
𝐼𝐶𝑊 𝑇 Installed capacity of wind turbine (kW)
𝑙𝑓 Load factor
𝑁 Number of customers
𝑃𝑎𝑣𝑒,𝑖 Average demand of user 𝑖 (kW)
𝑃𝑎𝑣𝑒 Energy price for consumption below the

threshold (€/kWh)
𝑃𝑏𝑎𝑠𝑒 Energy price in off-peak hours (€/kWh)

local communities. Another assessment framework is presented in [4],
to evaluate the value of ICESs in terms of total energy costs and CO2
missions in grid-connected and off-grid operation modes. These works
2

𝑃𝐶𝑃 ,𝑖 Coincident peak demand of user 𝑖 (kW)
𝑃𝐶𝑃 Coincident peak capacity price (€/kW)
𝑃𝐶𝑃 Coincident peak price (€/kW)
𝑃𝐶𝑆 Subscribed capacity price (€/kW)
𝑃𝐶 Capacity price (€/kW)
𝑃𝑒𝑥𝑐,𝑖 Excess demand of user 𝑖 (kW)
𝑃𝑒𝑥𝑐 Energy price for consumption exceeds the

threshold (€/kWh)
𝑃𝐸 Average energy price (€/kWh)
𝑃𝑓 Flat energy price (€/kWh)
𝑃𝑁𝐶𝑃 ,𝑖 Non-coincident peak demand of user 𝑖 (kW)
𝑃𝑁𝐶𝑃 Non-coincident peak capacity price (€/kW)
𝑃𝑁 Customer service price (€/customer/year)
𝑃𝑝𝑒𝑎𝑘,𝑖 Peak demand of user 𝑖 (kW)
𝑃𝑝𝑒𝑎𝑘 Energy price in peak hours (€/kWh)
𝑃𝑃𝑉 (𝑡) PV generation per capacity at hour 𝑡

(kWh/kW)
𝑃𝑊 𝑇 (𝑡) Wind turbine generation per capacity at

hour 𝑡 (kWh/kW)
𝑇𝑎𝑣𝑒 Hours for consumption below the threshold

(h)
𝑇𝑏𝑎𝑠𝑒 Off-peak hours (h)
𝑇𝑒𝑥𝑐 Hours for consumption exceeds the thresh-

old (h)
𝑇𝑝𝑒𝑎𝑘 Peak hours (h)
𝑇𝐶 Total costs (€)
𝑇𝐶𝐶 Costs allocated to capacity component (€)
𝑇𝐶𝐸+𝐶 Costs allocated to energy and capacity

components (€)
𝑇𝐶𝐸 Costs allocated to energy component (€)
𝑇𝐶𝑆 Costs allocated to customer service compo-

nent (€)
𝑇𝐶𝑇 Total costs in time period 𝑇 (€)
DERs Distributed energy systems
EMS Energy management system
ICESs Integrated community energy systems
RESs Renewable energy sources
ToU Time of use

thus focus on technical optimization problems driven by economic
incentives to reduce operation and energy costs, and on environmental
concerns with a view to reducing CO2 emissions.

The review in [3] provides a good overview of the key issues and
trends shaping the development of ICESs. One of those key issues that
requires further study is the fair allocation of costs and benefits among
local stakeholders. Costs should be allocated to those who cause them
and benefits should accrue to those who make the investments. Fair
cost allocation is the main factor that affects the success of an ICES [2].
It helps to avoid free-rider behavior, contributes to the cooperation of
local community members, and promotes social acceptance of the cost
allocation results [5]. However, the work associated with cost alloca-
tion in the application of ICESs has not been studied in the existing
research. It will therefore be of great value to investigate this aspect
in depth in order to facilitate the successful implementation of ICESs
in the short-term, as well as to ensure their long-term development.
Cost allocation for an energy system is often discussed in another field
of study, namely tariff design in large power systems; it shows how
the costs in those systems are allocated to the end-users. The study in
this paper focuses on cost allocation methods and their performance
assessment. To this end, the tariff design framework and widely used
cost allocation methods are reviewed in the next section.
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1.2. Review of tariff design

Tariff is the interface between a utility grid and its end-users under
regulation [13]. It is used to charge customers for the electricity service
they receive. Tariffs are basically a group of charges, with each charge
serving a particular component of the tariff. The electricity tariff con-
sists of: distribution network charges, transmission network charges,
energy prices, and regulated taxes [14,15]. In a liberalized electricity
market, energy prices are determined by the competitive market, while
distribution and transmission network charges remain regulated [16].

Tariffs need to achieve two main objectives: the first is to recover
the total allowed costs, while the second is to send economic signals
to consumers to ensure that the system is used in the most efficient
way [13,17]. Tariffs are designed to follow regulatory principles, which
are frequently in conflict with each other. These principles are often
used to coordinate the relationship between the energy sector and
its customers, and in general they are categorized into three groups,
namely system sustainability principles (which include cost recovery
and additivity) [18,19], economic efficiency principles (which include
cost causality, productive efficiency, and allocative efficiency) [20–22],
and customer protection principles (which include non-discrimination,
transparency, predictability, and simplicity) [23–25]. Detailed expla-
nations of these principles can be found in [26,27]. In practice, tariff
design should consider the practical situation, to ensure its successful
implementation, should prioritize some of the above principles over
others.

Generally, tariff design is divided into two steps [13,26]. The first
is to define the allowed revenues that need to be recovered in each
activity. The second is to allocate these costs to each activity, based on
cost allocation methods. The final tariffs are computed by adding all
those individual ones calculated for each activity. Cost allocation is a
very important procedure in tariff design, since it conveys information
about how the costs are allocated. The cost allocation methods in tariff
design are usually applied to the utility grid and used in transmission
and distribution networks. Most of the network costs are fixed; they are
mainly capital, and operation and maintenance (O&M) costs, represent-
ing investment in electricity transmission infrastructures. The capacity
of the network should be large enough to satisfy load demand in peak
hours.

Tariffs may be fixed or variable. According to [27], they are clas-
sified into fixed, capacity usage-based, and energy usage-based tariffs.
Many methods can be adopted to allocate distribution network costs
to the end users; those most widely used methods and their appli-
cability to ICESs are reviewed and discussed comprehensively in [5].
Power flow-based methods, such as contract path [28,29], distance-
based-MW-mile [30], and power-flow-based-MW-mile methods [31,
32], allocate costs based on the distance and the magnitude of power
flow. They are not applicable in the context of cost allocation in
ICESs, since ICESs are low voltage and include no transmission and
distribution networks. The costs in ICESs are almost fixed and are capex
intensive, that capital being used to invest in renewable energy sources
(RESs). The marginal cost for RESs is almost zero [33,34]. In addition,
in the case of a grid-connected ICES, the investment in DERs accounts
for the majority of costs, while energy exchange cost with the grid
represents a portion so small that it can be disregarded. For this reason,
the marginal cost pricing method is not applicable in the context of
cost allocation in ICESs. The Ramsey method is based on marginal cost
pricing [35,36], so it cannot be used for allocating costs in ICESs, either.
According to the analysis in [5], however, some methods, such as flat
energy pricing [37], time-of-use (ToU) [38], and the like, can be used
to allocate cost in ICESs. Overall, the cost allocation methods adopted
in large power systems provide some possible options to allocate costs
in ICESs. Ideally, however, new tailored methods should be developed
in order to fit their specific context.
3

1.3. Scope and research objectives

The ICESs considered in this study are at a community level. The
power generated by local DERs is fed to the local members directly,
without using a transmission or distribution network, and all the cus-
tomers are at the same voltage level. The system configuration is thus
different from that of large power systems. Currently, there are no
guidelines or statutory regulations on how to allocate costs in ICESs.
Our first objective, therefore, is to develop a systematic framework
in order to ensure the successful implementation of cost allocation in
ICESs.

Our literature review shows that some methods adopted in network
cost allocation can be applied in ICESs, and some cannot. However, no
detailed information about how they are implemented in the context
of ICESs is presented. For instance, what data is required and how
it is calculated. In addition, there is no one-size-fits-all solution; new
methods will thus have to be developed in order to provide more
options. Consequently, the second objective of this study is to derive
cost allocation methods from those used in tariff and to develop more
options to allocate costs in ICESs.

Many possible cost allocation methods can be used in ICESs. Each
has its own characteristics and may perform differently, and there is no
consensus on which is the best. Therefore, the third objective of this pa-
per is to evaluate their performance in order to draw clear distinctions
among them all. Thus, it can better assist the local community members
in selecting a satisfying cost allocation method.

1.4. Contributions of this paper

The main contributions made by this paper are as follows.

• A cost allocation design framework specifically for ICESs is devel-
oped. Furthermore, that framework can also be used both in any
local energy system with characteristic similar to an ICES.

• Tailored cost allocation methods are derived and formulated,
based on the methods applied for tariff design in large power
systems.

• The performance of the proposed cost allocation methods is as-
sessed quantitatively, using two essential criteria: cost reflective-
ness and cost predictability.

• The impact of abnormal conditions (sudden changes in generation
and consumption) on the performance of cost allocation methods
in terms of cost reflectiveness and predictability is presented to
show the consequences brought by these changes.

• A sensitivity analysis is presented to assess the impact of the
size of the community on the performance of the proposed cost
allocation methods in terms of the two criteria. And the impact
of different number of prosumers in the community is analyzed
to see how well the methods handle this variable in respect of the
two criteria.

1.5. Structure of this paper

The remainder of this paper is organized as: Section 2 illustrates
cost allocation framework in ICESs. Section 3 presents cost allocation
methods. A model of an ICES is presented in Section 4. Section 5
conceptualizes cost reflectiveness and predictability which are used
to assess the performance of the proposed cost allocation methods.
Section 6 presents a case study and results analysis with a discussion.
Finally, a conclusion as well as future work recommendations are

illustrated in Section 7.
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Fig. 1. Framework for cost allocation in ICESs.

2. Framework for cost allocation in integrated community energy
systems

A clear and concise framework is required to ensure successful cost
allocation in ICESs, since they are different from general power systems.
Fig. 1 shows the cost allocation framework in ICESs. This comprises
several layers: the physical, the economic, and the supporting mech-
anism. Each of these layers focuses on different aspects of the design
and provides essential inputs to the cost allocation model. They are
therefore described in turn in the following sections.

2.1. Physical layer

The physical layer presents how the energy system works: specif-
ically, how power and information flow among the different actors
in the system. A basic framework of the physical system of the ICES
under consideration is shown in Fig. 2. Community generation (solar
panels and wind turbines) produces energy and supplies it to local
community members (consumers and prosumers). Community storage
is used to dispatch energy within the community, being charged from
surplus generation and discharged when generation is not sufficient.
Local community members can invest in DERs (storage, solar panels or
both) to become prosumers. The local community forms a cooperative
to exchange energy with the grid. In addition, even though the ICES
considered in this paper is grid-connected, the objective of the commu-
nity is to be self-sufficient. Therefore, energy exchange with the grid is
very limited. The whole energy system is controlled by a community
energy management system (EMS). The outputs of this physical layer
are energy consumption and exchange data, collected at the individual
and community levels. This data is necessary information for allocating
costs in an ICES. Furthermore, these outputs are considered as the
inputs of cost allocation.

2.2. Economic layer

The economic layer includes the various costs that are used to
purchase infrastructures and cover management fees. These costs plus
the energy exchange costs with the grid are the total costs required to
be recovered from cost allocation. Principally, they comprise capital,
O&M, and other costs. Capital costs are the investment in purchasing
and installing DERs. O&M costs are mainly expenses for infrastructure
maintenance. These two kinds of costs vary with the overall capacity
of the DERs. Other costs are mainly customer management expenses,
such as metering, grid connection, and energy billing.
4

Fig. 2. A physical ICES system.

2.3. Supporting mechanism layer

The supporting mechanism layer comprises the arrangements needed
to ensure successful energy exchange within an ICES and with the grid.
Such a mechanism can be regarded as the rules that local community
members should follow once they agree to join an ICES. Specifically,
these mechanisms are defined as follows.

1. Prosumers are required to pay for their own investments in
individual DERs. This cost is incurred through personal action, and so is
not considered part of the cost of the system as a whole. The objective
of an ICES is to satisfy local demand from local generation by building a
local energy system. The costs requiring allocation are common costs of
providing electricity to local community members, which includes costs
of community DERs and the community energy management system,
energy purchases and other related costs.

2. Consumers and prosumers are required to consume energy within
the community. Moreover, prosumers are required to sell surplus en-
ergy to the community in order to achieve efficient utilization of local
generation. The ICES in this study acts as an aggregator, purchasing
energy from and selling it to the grid on behalf of the whole community
as a collective.

3. The feed-in price for prosumers is determined by the mech-
anism adopted; for instance, periodic compensation, net energy ex-
change [39], full peer-to-peer (P2P) energy trading, and community-
based P2P energy trading [40,41]. Each trading mechanism has its
advantages and disadvantages; which is selected depends on the local
situation and the practical complexity of implementation. This study
takes community-based P2P energy trading as the energy exchange
mechanism used. In order to ensure benefits for local community
members and provide incentives for them to stay in the ICES in the
long-term, the supporting mechanism of energy exchange must satisfy
the following criteria: (1) from the prosumer perspective, the energy
selling price to the community is at least equal to the feed-in price to the
grid; and (2) from the consumer perspective, the energy selling price is
no higher than the price of purchasing energy directly from the grid.

3. Cost allocation methods

This section presents methods that can be used to allocate costs
in ICESs. Some of these methods have already been adopted in tariff
design, but the implementation mechanism may not be the same due
to the differences between large power systems and ICESs. Each method
is explained in detail to show how its concepts are translated from tariff
design and how it is derived from underlying principles. The methods
are also formulated mathematically, to show how they are implemented
and what data are required.
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3.1. M1: cost allocation based on number of users

In this method, costs are allocated based on the number of users in
the community. It is the method adopted in [42], where it is considered
the simplest method to allocate the total costs evenly to each building.
Every local member pays exactly the same. It is formulated as:

𝐶 = 𝑇𝐶
𝑁

(1)

where 𝐶 (€/customer) is the cost allocated to each customer in the
community, 𝑇𝐶 (€) is total costs, and 𝑁 is the number of house-
holds. The only two required data items are the total cost of the ICES
and the number of community members. This approach can thus be
implemented without requiring any kind of measuring equipment. It
is straightforward to understand and simple to compute. The biggest
disadvantage is that it does not take actual consumption into account
so that, especially in cases where some households consume a lot of
energy and other very little, it is unfair on the latter because they
pay the same as everyone else. Nevertheless, it still makes sense if all
the households involved have similar energy consumption behavior.
Technically speaking, it is easy to implement this method in any energy
system.

3.2. M2: flat energy pricing

In this approach, the cost is allocated based on total energy con-
sumption within a predefined time period, such as one month or one
year. The energy price is fixed during that specific period [43,44].
Consumers pay for their electricity at a flat rate per kWh [45]. The
energy price 𝑃𝑓 (€/kWh) is calculated as:

𝑃𝑓 =
𝑇𝐶𝑇

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝐸𝑖(𝑡)

(2)

where 𝑇𝐶𝑇 (€) is the total costs during the time period 𝑇 , and 𝐸𝑖(𝑡)
(kWh) is the hourly energy consumption of household 𝑖. The required
data items are total costs and hourly energy consumption, which can
be measured by smart meters. The energy price is time-independent;
local community members are all charged the same rate during the
predefined time period.

3.3. M3: time of use energy pricing

Time of use (ToU) energy pricing is aimed at differentiating energy
prices between peak and off-peak hours [18,46]. The price in each
time period is fixed, and is higher in peak hours and lower in off-peak
hours [38]. According to [47], the rules for cost allocation are that costs
of satisfying base demand are allocated to the two periods and the costs
of satisfying peak demand are allocated to peak hours only. In large
power systems, generators are dispatched according to load demand
at different times. It is therefore easy to calculate the costs incurred in
different time periods from the actual operational situation. In an ICES,
however, it is not easy to differentiate costs during the two periods,
because energy generation by RESs is non-dispatchable. In this paper,
it is proposed that the costs be allocated to the two periods by taking
into account load factor and peak and off-peak time blocks. The two
resulting prices (€/kWh) are formulated as:

𝑃𝑏𝑎𝑠𝑒 =
𝐶𝑏𝑎𝑠𝑒

∑𝑇𝑏𝑎𝑠𝑒
𝑡=1 𝐸𝑏𝑎𝑠𝑒(𝑡)

(3)

𝑝𝑒𝑎𝑘 =
𝐶𝑝𝑒𝑎𝑘

∑𝑇𝑝𝑒𝑎𝑘
𝑡=1 𝐸𝑝𝑒𝑎𝑘(𝑡)

(4)

𝐶𝑏𝑎𝑠𝑒 = 𝑇𝐶𝑇 × 𝑙𝑓 ×
𝑇𝑏𝑎𝑠𝑒
𝑇

(5)

𝐶𝑝𝑒𝑎𝑘 = 𝑇𝐶𝑇 × 𝑙𝑓 × (1 −
𝑇𝑏𝑎𝑠𝑒
𝑇

) + 𝑇𝐶𝑇 × (1 − 𝑙𝑓 ) (6)

𝑇𝐶𝑇 = 𝐶𝑏𝑎𝑠𝑒 + 𝐶𝑝𝑒𝑎𝑘 (7)
5

where 𝑃𝑏𝑎𝑠𝑒 and 𝑃𝑝𝑒𝑎𝑘 (€/kWh) are the energy prices in off-peak and
peak hours respectively, 𝐶𝑏𝑎𝑠𝑒 and 𝐶𝑝𝑒𝑎𝑘 (€) are the costs in off-peak
and peak hours during time period 𝑇 , 𝑇𝑏𝑎𝑠𝑒 and 𝑇𝑝𝑒𝑎𝑘 (hours) are the
total off-peak and peak hours during time period 𝑇 , and 𝐸𝑏𝑎𝑠𝑒(𝑡) and
𝐸𝑝𝑒𝑎𝑘(𝑡) (kWh) are energy consumption in the ICES in off-peak and peak
hours. 𝑙𝑓 is the load factor, defined as the ratio between average energy
consumption and peak demand [48]:

𝑙𝑓 =
1
𝑇
∑𝑇

𝑡=1 𝐸(𝑡)

𝑃𝑝𝑒𝑎𝑘
(8)

where 𝐸(𝑡) (kWh) and 𝑃𝑝𝑒𝑎𝑘 (kW) are the hourly energy consumption
and peak demand in the ICES during time period 𝑇 . The hourly energy
cost 𝐶𝑖(𝑡) (€) for customer 𝑖 is:

𝐶𝑖(𝑡) =
{

𝑃𝑏𝑎𝑠𝑒 × 𝐸𝑖(𝑡) 𝑡 ∈ 𝑇𝑏𝑎𝑠𝑒 (a)
𝑃𝑝𝑒𝑎𝑘 × 𝐸𝑖(𝑡) 𝑡 ∈ 𝑇𝑝𝑒𝑎𝑘 (b) (9)

The data required for this method, so as to calculate total energy
consumption in peak and off-peak hours, includes total costs, off-
peak hours, peak hours, hourly energy consumption. Smart meters are
required to gather the hourly energy consumption data. This pricing
mechanism incentivizes users to reduce energy consumption in peak
hours or to shift it to off-peak hours by charging a higher price during
peak hours. From a technical perspective, the energy prices can be
provided ex ante by using historical data or ex post (for instance, at
the end of the month) by using real data. This depends on the strategy
adopted by the local community, although the pricing mechanism used
should always be clear to its members.

3.4. M4: capacity subscription

The idea behind this method is that each consumer subscribes to a
certain amount of DER capacity according to their consumption levels.
The total generation from the DERs is determined by the capacity
installed. This installed capacity is calculated by the simple rule that an-
nual generation equals annual energy consumption [49]. The capacity
price 𝑃𝐶𝑆 (€/kW) is formulated as:

𝑃𝐶𝑆 = 𝑇𝐶
∑𝑁

𝑖=1 𝐶𝑆𝑖
(10)

where 𝐶𝑆𝑖 (kW) is the capacity of DERs subscribed by household 𝑖, 𝑃𝐶𝑆
s the subscribed capacity price (€/kW). The two required data items
re total costs and the DER capacity subscribed to by each household,
hich can be estimated at the beginning of the project by means
f historical consumption data. This method simplifies the process of
llocating costs and is easy to implement in practice.

.5. M5: coincident peak pricing

In this approach, the costs are allocated based on the peak demand
ontribution of each household to the total system peak demand within
he predefined time period, such as one month, one season or one
ear [47,50]. The capacity price 𝑃𝐶𝑃 (€/kW) is formulated as:

𝐶𝑃 =
𝑇𝐶𝑇

∑𝑁
𝑖=1 𝑃𝐶𝑃 , 𝑖

(11)

where 𝑃𝐶𝑃 , 𝑖 (kW) is the peak demand by household 𝑖, which is coin-
cident with the system peak demand in time period 𝑇 . The required
data items are total costs and the peak demand of each household that
happened at the system peak time. It is possible to obtain individual
peak demand data using smart meters. The pricing signal indicates
how consumers’ peak demand affects their energy bills and incentivizes
them to reduce peak demand.
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3.6. M6: non-coincident peak pricing

The principle underlying non-coincident peak pricing is to allocate
costs based on individual peak demand [51,52]. The difference between
this method and the coincident peak pricing is that individual peak
demand may not coincide with system peak demand. The capacity
charge 𝑃𝑁𝐶𝑃 (€/kW) is formulated as:

𝑁𝐶𝑃 =
𝑇𝐶𝑇

∑𝑁
𝑖=1 𝑃𝑁𝐶𝑃 , 𝑖

(12)

here 𝑃𝑁𝐶𝑃 , 𝑖 (kW) is the individual peak demand by household 𝑖.
he required data items are total costs and individual household peak
emand. The pricing signal indicates how consumers’ peak demand
nfluences their energy bills. This is an effective way to incentivize
onsumers to reduce their individual peak demand, no matter when
ystem peak demand occurs.

.7. M7: segmented energy pricing

The idea of segmented energy pricing is that electricity is sold at
ifferent prices for different consumption levels [53]. Consumers are
harged at the base price when their consumption level is below a
efined threshold, and at another price for any consumption exceeding
hat. The excess component is the difference between individual peak
nd average energy consumption (or demand). The threshold is deter-
ined using the hourly average energy consumption by households.
he total costs in time period 𝑇 are classified based on load factor.
egmented energy pricing is formulated as:

𝑎𝑣𝑒 =
𝑇𝐶𝑇 × 𝑙𝑓

∑𝑁
𝑖=1

∑𝑇𝑎𝑣𝑒
𝑡=1 𝐸𝑎𝑣𝑒(𝑡)

(13)

𝑃𝑒𝑥𝑐 =
𝑇𝐶𝑇 × (1 − 𝑙𝑓 )

∑𝑁
𝑖=1

∑𝑇𝑒𝑥𝑐
𝑡=1 𝐸𝑒𝑥𝑐 (𝑡)

(14)

𝑇 = 𝑇𝑎𝑣𝑒 + 𝑇𝑒𝑥𝑐 (15)

where 𝑃𝑎𝑣𝑒 (€/kWh) is the energy price when consumption is below
the base threshold, 𝑃𝑒𝑥𝑐 (€/kWh) is the energy price for the component
of energy consumption exceeding that threshold, 𝑇𝑎𝑣𝑒 and 𝑇𝑒𝑥𝑐 (hours)
are the hours of consumption below and exceeding the threshold,
respectively, and 𝐸𝑎𝑣𝑒(𝑡) and 𝐸𝑒𝑥𝑐 (𝑡) (kWh) are consumption below and
exceeding the threshold.

The hourly energy bill structure for user 𝑖 is:

𝑖(𝑡) =
{

𝑃𝑎𝑣𝑒 × 𝐸𝑖(𝑡) 𝐸𝑖(𝑡) ≤ 𝐸𝑡ℎ (a)
𝑃𝑎𝑣𝑒 × 𝐸𝑡ℎ + 𝑃𝑒𝑥𝑐 × (𝐸𝑖(𝑡) − 𝐸𝑡ℎ) 𝐸𝑖(𝑡) > 𝐸𝑡ℎ (b) (16)

here 𝐸𝑖(𝑡) (kWh) is the hourly energy consumption by household 𝑖,
nd 𝐸𝑡ℎ (kWh) is the threshold value. The required data items for this
ethod are total costs, hourly energy consumption by each household,
hich are easy to obtain using smart meters. This method focuses on

onsumption level, regardless of the time of consumption. Customers
re incentivized to pay attention to their energy consumption all the
ime and try to keep this below the threshold in order to minimize its
ost. It thus provides a good incentive to adjust consumption behavior.
imilar to the ToU energy pricing method, the price signal can be
rovided either ex ante or ex post, according the strategy adopted by
he local community.

.8. M8: average and excess pricing

The underlying principle of the average and excess method is to
llocate costs directly to users by means of two factors [47,51]. The
irst of these presents average consumption by each customer in re-
ation to the average for the entire system. The second shows excess
nergy consumption by each customer in relation to excess energy
onsumption in the system as a whole (which equals peak demand
6

a

inus average energy consumption). The two factors and the energy
ills are formulated as:

1, 𝑖 =
𝑃𝑎𝑣𝑒, 𝑖

∑𝑁
𝑖=1 𝑃𝑎𝑣𝑒, 𝑖

× 𝑙𝑓 (17)

𝑓2, 𝑖 =
𝑃𝑒𝑥𝑐, 𝑖

∑𝑁
𝑖=1 𝑃𝑒𝑥𝑐, 𝑖

× (1 − 𝑙𝑓 ) (18)

𝑃𝑒𝑥𝑐, 𝑖 = 𝑃𝑝𝑒𝑎𝑘, 𝑖 − 𝑃𝑎𝑣𝑒, 𝑖 (19)

𝐶𝑖 = (𝑓1, 𝑖 + 𝑓2, 𝑖) × 𝑇𝐶𝑇 (20)

where 𝑓1, 𝑖 and 𝑓2, 𝑖 are the two-part allocation factors for customer
𝑖, 𝑃𝑎𝑣𝑒, 𝑖 (kW) , 𝑃𝑒𝑥𝑐, 𝑖 (kW) and 𝑃𝑝𝑒𝑎𝑘, 𝑖 (kW) are the average demand,
excess demand, and peak demand by user 𝑖, respectively. The required
data items are total costs and the hourly energy consumption by each
household. The two factors indicate to consumers how their consump-
tion levels affect their energy bills. The primary focus should be on the
second factor, as it reflects the gap between peak and average demand.
The smaller the second factor, the better: that indicates that customers
are contributing less to the system’s peak demand. The pricing signal
provided by this method is that it is better for consumers to avoid
high peak demand and instead to maintain flat and stable energy
consumption.

3.9. M9: two-part pricing

The two-part tariff is first proposed in [54]. The first part of the
price is linked to marginal cost, the remainder to fixed cost. That is
used to recover those costs the marginal-cost-based price is unable.
As many studies have shown [34,55], however, the marginal cost for
RESs is almost zero. The ICES considered in this paper is a grid-
independent energy system that only exchanges energy with the grid
when necessary, and therefore the costs thereof are just a small portion
of the total, so we do not take its marginal cost into consideration in
the context of this research. Costs in an ICES are mostly fixed, and do
not vary with energy generation. In this method, the fixed costs are
translated into variable ones using a coefficient. It classifies the total
costs as either energy-related or capacity-related costs. They are then
allocated to the end-users based on two charges: an energy charge and
a capacity charge. This approach is formulated as:

𝑃𝐸 =
𝑇𝐶𝐸

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝐸𝑖(𝑡)

(21)

𝑃𝐶 =
𝑇𝐶𝐶

∑𝑁
𝑖=1 𝑃𝐶𝑃 , 𝑖

(22)

𝑇𝐶 = 𝑇𝐶𝐸 + 𝑇𝐶𝐶 (23)

𝐶𝐸 = 𝑇𝐶 × 𝑓 (24)

𝐶𝐶 = 𝑇𝐶 × (1 − 𝑓 ) (25)

here 𝑃𝐸 (€/kWh) is average energy price, 𝑃𝐶 (€/kW) is coincident
eak price, 𝑇𝐶𝐸 (€) is the cost allocated to energy component, 𝑇𝐶𝐶
€) is the cost allocated to capacity component, and 𝑓 is the coefficient
hat divides the total costs between energy-related and capacity-related
osts. The required data items are total costs, hourly energy consump-
ion and peak demand by each household, and a coefficient. The energy
ills of end-users are determined by their energy consumption and peak
emand. The principle underlying this method is to translate fixed costs
nto variable ones by using a coefficient. These costs are then allocated
ccording to the two cost drivers, energy and capacity, which reflect
ost-causality.

.10. M10: multi-part pricing

This method is derived from cost allocation based on the cost-
ausality principle. Its name refers to the fact that the system costs are

llocated to the agents or elements (also referred to as cost drivers) that
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Fig. 3. Inputs and outputs of mathematical model of the ICES.

cause them, thus giving a highly efficient signal [17,56]. According to
the study reported in [57–59], the most commonly used cost drivers are
energy (kWh), capacity (kW), and customer service (customer number).
In this approach, the first step is to classify customer service-related
costs, which are generated by metering, meter reading, billing, bill
collection, and other related activities. The remaining cost is then
classified by using a coefficient, which is similar to that used in two-part
pricing. The method is formulated as:

𝑃𝐸 =
𝑇𝐶𝐸

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝐸𝑖(𝑡)

(26)

𝑃𝐶 =
𝑇𝐶𝐶

∑𝑁
𝑖=1 𝑃𝐶𝑃 , 𝑖

(27)

𝑃𝑁 =
𝑇𝐶𝑆
𝑁

(28)

𝑇𝐶𝐸+𝐶 = 𝑇𝐶𝑇 − 𝑇𝐶𝑆 (29)

𝑇𝐶𝐸 = 𝑇𝐶𝐸+𝐶 × 𝑓 (30)

𝑇𝐶𝐶 = 𝑇𝐶𝐸+𝐶 × (1 − 𝑓 ) (31)

Where 𝑃𝑁 (€/household/year) is the customer service price, 𝑇𝐶𝐸+𝐶
(€) is the sum of energy-related and capacity-related costs, and 𝑇𝐶𝑆
(€) is the cost of customer service. The required data items are total
costs, customer service costs, peak demand, hourly energy consump-
tion, number of households, and allocating coefficient. This approach
emphasizes allocating costs to the drivers that cause them, in order to
link cost and causality. The costs drivers are reflected in the structure of
the final energy bill. This method is easy to implement with the help of
smart meters and the pricing strategy is similar to ToU energy pricing
either, ex ante or ex post.

4. Models of the integrated community energy system

4.1. Problem formulation

A model of the ICES is required in order to implement cost alloca-
tion. Energy, peak demand, and DER costs are the essential parameters
used to allocate the costs to the local community members. For this
paper, two such models have been designed: a mathematical and an
economic one. The former provides data necessary for cost allocation
in the latter, as elaborated below.

4.2. Mathematical model of the integrated community energy system

The objectives of the mathematical model are: (1) to ensure the
balance of energy supply and demand in the ICES; and (2) to cal-
culate the energy data required by the economic model. The inputs
and outputs for the mathematical model are shown in Fig. 3. This
model incorporates energy generation, storage, and consumption at the
community and the individual household levels.
7

4.2.1. Load profile of households
Individual households are the fundamental components of an ICES.

In our research, the community consists of several households. These
can also become prosumers by investing in DERs. The hourly energy
demand of each household is denoted as 𝐷𝑖(𝑡) (kWh). A positive value
indicates that energy is required from the community, for which the
household needs to pay. A negative value indicates that surplus energy
is delivered to the community, and from which the household can
benefit. The total hourly energy demand by households 𝐷(𝑡) (kWh) is:

𝐷(𝑡) =
𝑁
∑

𝑖=1
𝐷𝑖(𝑡) (32)

4.2.2. Energy generation from renewable energy sources
Energy generation from RESs depends on the installed capacity. The

installed photovoltaic (PV) and wind turbine capacities are 𝐼𝐶𝑃𝑉 and
𝐼𝐶𝑊 𝑇 (kW), respectively. The hourly generated power per capacity
from PV and wind turbine is 𝑃𝑃𝑉 (𝑡) and 𝑃𝑊 𝑇 (𝑡) (kWh/kW), respec-
tively. Therefore, the hourly energy generation from RESs 𝐸𝑅𝐸𝑆 (𝑡)
(kWh) is calculated as follows:

𝐸𝑅𝐸𝑆 (𝑡) = 𝐼𝐶𝑃𝑉 × 𝑃𝑃𝑉 (𝑡) + 𝐼𝐶𝑊 𝑇 × 𝑃𝑊 𝑇 (𝑡) (33)

Calculating the optimum installed capacity in order to minimize the
total costs is usually an optimization problem but not an energy system
planning problem, which puts it beyond the scope of this research. Our
objective is to allocate costs to customers once the energy system is in
place. In this paper we use the following rule to calculate the installed
capacity: the yearly energy generation from RESs equals the yearly
energy demand. In practice, however, energy generation from RESs
may not be enough to meet demand at all times. And there are also
periods when energy generation exceeds demand. The hourly energy
difference 𝐸𝑑𝑖𝑓 (𝑡) (kWh) is calculated as:

𝐸𝑑𝑖𝑓 (𝑡) = 𝐸𝑅𝐸𝑆 (𝑡) −𝐷(𝑡) (34)

4.2.3. Energy storage
Energy storage is used to retain surplus energy from generation for

later supply to households when there is a shortage from generation.
Energy generated by RESs is first delivered to households, then the
surplus generation is transferred to storage. Once the storage system
is full, any further surplus is sold to the grid to earn revenue. When
generation by RESs falls short of current demand, stored energy is used
first to make up the shortfall. When that runs out, the community
energy system purchases the extra energy it needs from the grid. The
energy state of the battery always satisfies the following formula:

𝐸𝐵 (𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝐵𝑚𝑎𝑥 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡) × 𝐵𝑒 ≥ 𝐸𝐵𝑚𝑎𝑥 (a)
𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡) × 𝐵𝑒 𝐸𝐵𝑚𝑖𝑛 < 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡) × 𝐵𝑒 < 𝐸𝐵𝑚𝑎𝑥 (b)
𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡)∕𝐵𝑒 𝐸𝐵𝑚𝑖𝑛 < 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡)∕𝐵𝑒 < 𝐸𝐵𝑚𝑎𝑥 (c)
𝐸𝐵𝑚𝑖𝑛 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡)∕𝐵𝑒 ≤ 𝐸𝐵𝑚𝑖𝑛 (d)

(35)

where 𝐸𝐵(𝑡 + 1) and 𝐸𝐵(𝑡) (kWh) is the energy state of the storage
system at hours 𝑡 + 1 and 𝑡, respectively, 𝐸𝐵𝑚𝑎𝑥 and 𝐸𝐵𝑚𝑖𝑛 (kWh) are
its maximal and minimal energy state, and 𝐵𝑒 is its charging and
discharging efficiency.

Following the energy system operation rule, it is easy to calculate
the energy exchange with the grid for the whole community. The
hourly energy exchange with grid 𝐸𝑒𝑥_𝑔𝑟𝑖𝑑 (𝑡) (kWh) is as follows:

𝐸𝑒𝑥_𝑔𝑟𝑖𝑑 (𝑡)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑑𝑖𝑓 (𝑡) − (𝐸𝐵𝑚𝑎𝑥 − 𝐸𝐵 (𝑡))∕𝐵𝑒 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡) × 𝐵𝑒 ≥ 𝐸𝐵𝑚𝑎𝑥 (a)
0 𝐸𝐵𝑚𝑖𝑛 < 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡) × 𝐵𝑒 < 𝐸𝐵𝑚𝑎𝑥 (b)
0 𝐸𝐵𝑚𝑖𝑛 < 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡)∕𝐵𝑒 < 𝐸𝐵𝑚𝑎𝑥 (c)
𝐸𝑑𝑖𝑓 (𝑡) + (𝐸𝐵 (𝑡) − 𝐸𝑚𝑖𝑛) × 𝐵𝑒 𝐸𝐵 (𝑡) + 𝐸𝑑𝑖𝑓 (𝑡)∕𝐵𝑒 ≤ 𝐸𝐵𝑚𝑖𝑛 (d)
(36)
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Fig. 4. Inputs and outputs of economic model of the ICES.

4.3. Economic model of the integrated community energy system

The economic model aims to calculate the annualized energy cost
for the whole community, in order to facilitate cost allocation during
the next step. The inputs and outputs of the economic model are pre-
sented in Fig. 4. The annual energy costs at the community level include
the annualized cost of DERs, which consist of capital costs, O&M costs,
and other costs caused mainly by providing customer services. These
costs are typically fixed. Energy exchange prices between the ICES and
the grid determine the energy exchange costs, which generally vary
with the amount of energy exchange. The annualized costs are then
allocated according to the method selected by the local stakeholders.

5. Assessment of cost allocation methods in the integrated com-
munity energy system

5.1. Cost reflectiveness

No matter what energy system is used, the ultimate goal of cost
allocation is cost reflectiveness. This topic has been addressed in many
studies [24,39]. A cost-reflective allocation mirrors the contribution
made by consumers to the energy system and incentivizes them to
utilize energy in a cost-efficient manner. In order to evaluate how close
the energy bills actually paid by local community members in the ICES
are to the amounts they should be paying, the cost of investing in
DERs by the individual is used as the benchmark to indicate whether
the specific cost allocation method is cost-reflective. To provide a
quantitative method to measure cost reflectiveness, in this paper, it is
defined as the ratio of the difference between the cost local community
members pay in the ICES and the cost of their own investments in DERs,
divided by that latter investment cost. Cost reflectiveness is expressed
as follows:

𝐶𝑅𝐼 𝑖,𝑗 =
𝐶𝑖,𝑗 − 𝐶𝑖,𝐷𝐸𝑅

𝐶𝑖,𝐷𝐸𝑅
(37)

where 𝐶𝑅𝐼𝑖,𝑗 is the cost reflectiveness index for household 𝑖 under
method 𝑗, 𝐶𝑖,𝑗 (€) is the annual cost to household 𝑖 under method 𝑗,
and 𝐶𝑖,𝐷𝐸𝑅 (€) is the annual energy costs to household 𝑖 of its individual
energy system, including investments in DERs and the costs of energy
exchange with the grid. If the result is positive, that indicates that the
household is paying more than it should. Zero means that it is paying
exactly the right amount and a negative result indicates it is paying
less and so saving on its energy bills by being part of the ICES. It
also indicates that the household benefits from its ICES participation,
compared to investing individually in DERSs.

5.2. Cost predictability

A sustained commitment by local community members is an essen-
tial factor that affects the long-term development of ICESs, and that
8

Table 1
Techno-economic parameters.

Capital costs(€/kW) O&M costs(€/kW/year) Lifetime(years) Source

PV 1100 5.5 25 [62]
Battery 200 2 10 [63]

commitment is greatly influenced by the way their energy bills evolve.
Customers will leave the energy system if their energy costs increase a
lot year on year, and that is likely to trigger a vicious circle of ever-
higher bills forcing out more and more customers. Which, eventually,
will lead to a complete collapse of the energy system. As for investors,
their objective is to ensure cost recovery. Cost predictability helps them
evaluate the extent to which they can do this. For this reason, it is
necessary to compare the long-term differences in energy bills.

Cost predictability is all about changes in energy bills [24]. Local
community members can evaluate if the selected method provides a
long-term incentive by comparing their energy costs in two consecutive
years. If the change is small or close zero, it indicates that the selected
method provides a strong long-term incentive. It is thus a good indi-
cator that local members will remain in the ICES in the long-term. It
also contributes to the stable development of the energy system. In this
paper, cost predictability is defined as the difference between costs in
two consecutive years, formulated as:

𝐶𝑃𝐼𝑖,𝑗 =
𝐶2𝑖,𝑗 − 𝐶1𝑖,𝑗

𝐶1𝑖,𝑗
(38)

where 𝐶𝑃𝐼𝑖,𝑗 is the cost predictability index for household 𝑖 under
method 𝑗 , and 𝐶1𝑖,𝑗 and 𝐶2𝑖,𝑗 (€) are its energy costs in years 1 and
2 under method 𝑗, respectively. A positive result indicates that the
household pays more in the second year, zero that it pays the same
in both years, and a negative value that it pays less in the second year.
Ideally, any difference should be minimized so that the amount of the
household’s annual energy bill does not change much over the lifetime
of the energy system. That attracts customers to stay in the ICES in the
long-term.

6. Case study and results analysis

6.1. Case study set up

This case study investigates the performance of cost allocation
methods in respect of cost reflectiveness and predictability for a group
of 100 households. This section explains the background of the input
data.

6.1.1. Hourly energy demand
The case study makes use of household electricity consumption data

from the UK Power Networks project (half-hourly measurements over
two years in 2012 and 2013) [60].

6.1.2. Hourly PV power generation
For this case study, the only RESs taken into consideration are PV

panels in the local community. The hourly metered data for RES gener-
ation is obtained from the open data platform Renewables.ninja [61].

6.1.3. Techno-economic parameters
Table 1 presents the techno-economic parameters used in the case

study. They include capital costs, O&M costs, and the lifetimes of the PV
panels and battery. Table 2 shows the energy exchange prices between
the different parties: from the grid to the ICES, from the ICES to the
grid, and from households to the ICES.
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Table 2
Energy exchange prices.

From the grid to ICES From ICES to the grid Households to ICES

EnergyL exchange price (€/kWh) 0.21 0.10 0.10
Table 3
Descriptive statistics for cost reflectiveness under different cost allocation methods.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Median −0.183 −0.165 −0.171 −0.165 −0.391 −0.212 −0.206 −0.206 −0.199 −0.194
Variance 0.075 0.007 0.010 0.007 0.508 0.110 0.035 0.047 0.037 0.029
5th percentile −0.500 −0.340 −0.350 −0.340 −0.910 −0.590 −0.550 −0.460 −0.440 −0.390
95th percentile 0.470 −0.050 0.000 −0.050 1.120 0.360 0.130 0.190 0.150 0.110
Table 4
Descriptive statistics for cost predictability under different cost allocation methods.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Median – 0.027 0.029 0.027 0.056 0.017 0.035 0.022 0.034 0.031
Variance – 0.032 0.033 0.032 14.104 0.216 0.055 0.073 0.058 0.036
5th percentile – −0.260 −0.280 −0.260 −0.910 −0.370 −0.320 −0.270 −0.250 −0.220
95th percentile – 0.220 0.230 0.220 2.000 0.580 0.350 0.380 0.360 0.300
6.2. Results analysis

6.2.1. Analysis of cost reflectiveness
The results of the calculations of cost reflectiveness for the ten

cost allocation methods are shown below. Fig. 5 shows the probability
density of the distribution of cost reflectiveness under the ten cost
allocation methods for a group of 100 households consuming elec-
tricity in an ICES. These distributions indicate how cost-reflective a
cost allocation method is. For each sub-figure, a higher peak around
zero indicates more consumers with perfect cost reflectiveness, while
a thinner tail near the horizontal axis indicates that fewer consumers
are paying more or less than they should be. These are desirable
characteristics for the cost allocation methods. In order to gain more
insight into the results, the median, the variance, and the 5th and 95th
percentile values of the distribution are also calculated, these are listed
in Table 3.

From Table 3 and Fig. 5, a number of conclusions can be drawn.
First of all, the ten cost allocation methods all have a median value
less than zero, which implies that the majority of the consumers pay
less in the ICES than if they were to invest individually. Secondly,
methods 2 and 4 have the lowest variance (equal in this case), and
both the 5th and 95th percentile values are closest to zero. This implies
that these two methods are the most cost reflective of the ten cost
allocation methods. Methods 2 and 4 have the same performance
because the subscribed capacity in method 4 is calculated by dividing
annual energy consumption by annual generation per capacity. This
means that energy bills are determined by the volume of electricity
consumption, which is the same strategy as used in method 2. Method
3’s performance is comparable to that of method 2 (or 4); they have
the same pricing mechanism, with energy for the charging component,
although method 3 also considers time differences. Method 5 shows the
poorest cost reflectiveness since it has the highest variance: about 5% of
consumers are paying 91% less than what is considered cost-reflective
and about 5% of are paying 112% more. The reason for this bad
performance is that coincident peak pricing allocates costs based on the
peak demand contribution by each consumer to the total system peak
demand, even though these two peaks do not always coincide. Method
10 performs similarly to method 9, but slightly better. It subdivides
total costs into three components - those related to energy, capacity,
and customer services, respectively. Whereas method 9 is confined to
two-part pricing, with only energy and capacity components.

6.2.2. Analysis of cost predictability
Cost predictability is another essential factor that affects the per-
9

formance of cost allocation methods. Local community members can
predict the extent to which their energy bills change year on year. And
investors can predict the extent to which they are likely to recover
their investment. As with cost reflectiveness above, Fig. 6 shows the
probability density of the distribution of cost predictability under the
ten cost allocation methods for a group of 100 households consuming
electricity in an ICES in two consecutive years. Moreover, the median,
the variance, and the 5th and 95th percentile values of the distribution
are also calculated; these are shown in Table 4. Method 1, allocating
costs based on the number of users, is omitted as its predictability is
perfect. The reason for this is that the annual costs to be recovered
consist of two parts: fixed costs for DERs, which are the same each year,
and variable costs for energy exchange with the grid and the household.
The variable costs are determined by the volume of energy exchanged
and the energy exchange price. In this case study, the ICES is grid-
connected, but for the most part independent of the grid, since the great
majority of the energy consumed comes from community generation.
The energy exchange costs in years 1 and 2 are € 13442 and € 14148,
respectively. In other words, there is almost no change in costs and so
the cost predictability of method 1 is assumed to be perfect.

From Table 4 and Fig. 6, we can draw the following conclusions.
The differences between the ten methods are apparent. They can be
classified into two categories. In the first of these, methods 5 and 6
have a lower peak around zero and a fatter tail, which indicates that
a substantial year-on-year change in energy bills is more likely. This
can also be seen from the percentile values in Table 4. In the second
category are the remaining methods, all with a high peak around
zero, indicating that their cost allocations in the two consecutive years
remain constant for many customers in the local community. This high
predictability also shows up in Table 4 for these methods: their median
and variance values are close to zero. Methods 2 and 4 produce the
same performance, for the same reason as they do with cost reflective-
ness. Methods 2, 3, 4, and 10 all have a similar, better performances,
with a lower variance, the median near zero, and both their 5th and
their 95th percentile values closest to zero. Methods 7, 8, and 9 display
performances comparable to methods 2, 3, 4 and 10. A method includes
an energy charging component shows a better performance with respect
to cost predictability.

6.2.3. Abnormal conditions analysis
In the cases above, community energy generation and consumption

in the second year do not change significantly. It is easy to conclude
that each method has a similar performance in different years in the
lifetime of the energy system, since the common costs of community

DERs are fixed and energy exchange costs accounts for a small portion
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Fig. 5. Probability density of the distribution of cost reflectiveness under the ten cost allocation methods for households.
Fig. 6. Probability density of the distribution of cost predictability under the ten cost allocation methods for households.
of total common costs. The cases analyzed above are in an ideal and
normal situation, however, it is also interesting to see how cost re-
flectiveness and predictability might change following a sudden change
in energy generation and consumption. A comprehensive analysis has
10
therefore been carried out to do just that. For this, it is assumed that
both energy generation from solar panels and household consumption
either increase or decrease by one-third in the second year, in this
case study, that is the year 2013 - thus producing four scenarios for
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Fig. 7. Probability density of the distribution of cost reflectiveness under the ten cost allocation methods for households in abnormal conditions.
the analysis of each indicator. The corresponding results in terms of
the probability density of the distribution of cost reflectiveness and
of cost predictability for the ten methods are shown in Figs. 7 and 8,
respectively.

From these two figures, it is apparent that both cost reflectiveness
and predictability decline in abnormal conditions, no matter which
method is applied. The effect of energy generation increasing and
energy consumption decreasing shows a similar performance, which
is the same for the case of energy generation decreasing and energy
consumption increasing. Furthermore, local communities pay less in
the case that energy generation increasing and consumption decreasing.
This can be explained by the fact that when energy generation increases
or consumption decreases, there is a surplus generation in the energy
system. The ICES and the local community members then benefit from
selling surplus energy to the grid and the ICES. However, local com-
munity members pay more in the case of energy generation decreasing
and consumption increasing, compared to when energy generation
increases and consumption decreases. In this case study, the majority of
local community members pay less compared to the costs they should
pay or their energy bills in the year before.

From the analysis in Section 6.2.1, Section 6.2.2 and this section, it
can be concluded that cost reflectiveness and predictability only retain
their merits if changes are minor; these merits evaporate in the event
of significant sudden changes in generation and consumption. For this
reason, the cost allocation results should remain more or less the same
in the short-term and only gradually change in the long-term.

6.2.4. Sensitivity analysis
It is also essential to see how cost allocation would perform in terms

of the two criteria, cost reflectiveness and predictability, in the event
of a change in the number of consumers taking part in the ICES. A
sensitivity analysis for the ten cost allocation methods in that scenario
has therefore been conducted. Figs. 9 and 10 show the probability
density of the distribution of cost reflectiveness and predictability for
11
the ten cost allocation methods with 20, 50, and 80 consumers in the
ICES. From the results in this regard, it can be concluded that there
is almost no change in the distribution profile of the two criteria.
This implies that the number of consumers has little or no influence
on the performance of the ten cost allocation methods in terms of
cost reflectiveness and predictability. In other words, this sensitivity
analysis demonstrates that the performance of a cost allocation method
is not dependent on the size of the community.

6.2.5. Cost allocation with different number of prosumers
Another essential aspect to look at is how well the cost alloca-

tion methods would handle changes in the roles of local community
members. With a higher percentage of prosumers in the ICES, energy
consumption changes and energy sharing by those prosumers increases.
An effective cost allocation method should retain its merits, cost reflec-
tiveness and predictability, under such changing condition. To gain an
insight into how cost reflectiveness and predictability change, the ten
cost allocation methods have been assessed with 30%, 60%, and 100%
penetration of prosumers in the ICES. In this model, the 100 households
are randomly assigned to be prosumers. The installed capacity of
DERs follows the same rule that annual generation from DERs equals
annual consumption. The resulting cost reflectiveness with different
percentages of prosumers for the ten methods is shown in the form of
probability densities in Fig. 11 and the relevant statistics are provided
in Table 5.

From Fig. 11, it is clear that cost reflectiveness increases in line with
the rise in the percentage of prosumers. Cost reflectiveness increases
a little or remains more or less the same when the penetration of
prosumers rises from 30% to 60%, but there is a significant increase
when that figure rises from 60% to 100%. This is easy to explain, since
prosumers pay for their own investment in DERs. Methods 1, 5 and 6
have by far the lowest reflectiveness, which can be explained by their
special pricing mechanisms. The common costs (annual community

energy costs) are allocated evenly in method 1 and based on coincident
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Fig. 8. Probability density of the distribution of cost predictability under the ten cost allocation methods for households in abnormal conditions.
Fig. 9. Probability density of the distribution of cost reflectiveness under the ten cost allocation methods with different numbers of consumers.
and non-coincident peak demand in methods 5 and 6, meaning that
prosumers may pay for costs they have not actually incurred. In case
of methods 2, 3, 4, and 7, the peak of the reflectiveness distribution
12
increases substantially with the increasing penetration of prosumers,
an outcome consistent with the statistics shown in Table 5.
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Fig. 10. Probability density of the distribution of cost predictability under the ten cost allocation methods with different numbers of consumers.
Fig. 11. Probability density of the distribution of cost reflectiveness under the ten cost allocation methods with different percentages of prosumers in the ICES.
The same analysis has also been done for cost predictability. The
results for the ten cost allocation methods with different percentage of
prosumers are shown in Fig. 12, and relevant statistics can be found
13
in Table 6. From the figure, it can be seen that cost predictability
when using methods 2, 3, 4, and 7 remains more or less the same
as prosumer penetration increases. This can be explained by the fact
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Table 5
Descriptive statistics of cost reflectiveness under the ten cost allocation methods with different percentages of prosumers.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

30% prosumers

Median −0.053 −0.106 −0.121 −0.106 −0.200 −0.113 −0.141 −0.143 −0.112 −0.109
Variance 0.111 0.008 0.011 0.008 0.302 0.114 0.028 0.080 0.046 0.041
5th percentile −0.550 −0.260 −0.270 −0.260 −0.900 −0.590 −0.430 −0.520 −0.410 −0.390
95th percentile 0.620 0.060 0.110 0.060 1.070 0.480 0.160 0.410 0.280 0.260

60% prosumers

Median −0.037 −0.122 −0.108 −0.122 −0.146 −0.089 −0.123 −0.072 −0.077 −0.085
Variance 0.115 0.008 0.015 0.008 0.206 0.102 0.020 0.084 0.048 0.045
5th percentile −0.600 −0.170 −0.250 −0.170 −0.780 −0.580 −0.350 −0.560 −0.420 −0.420
95th percentile 0.620 0.120 0.180 0.120 0.850 0.500 0.210 0.460 0.320 0.330

100% prosumers

Median −0.037 −0.122 −0.108 −0.122 −0.146 −0.089 −0.123 −0.072 −0.077 −0.085
Variance 0.046 0.000 0.006 0.000 0.088 0.037 0.002 0.032 0.023 0.019
5th percentile −0.330 −0.060 −0.200 −0.060 −0.470 −0.300 −0.130 −0.270 −0.240 −0.240
95th percentile 0.440 −0.030 0.080 −0.030 0.610 0.270 0.020 0.240 0.200 0.200
Table 6
Descriptive statistics of cost predictability under the ten cost allocation methods with different percentages of prosumers.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

30% prosumers

Median – 0.031 0.034 0.031 0.077 0.020 0.032 0.018 0.019 0.022
Variance – 0.032 0.033 0.032 10.931 0.069 0.049 0.040 0.033 0.023
5th percentile – −0.260 −0.290 −0.260 −0.810 −0.340 −0.330 −0.280 −0.250 −0.220
95th percentile – 0.220 0.230 0.220 2.000 0.460 0.300 0.350 0.350 0.300

60% prosumers

Median – 0.035 0.037 0.035 0.076 0.036 0.043 0.038 0.041 0.037
Variance – 0.028 0.031 0.028 0.622 0.048 0.039 0.033 0.027 0.019
5th percentile – −0.250 −0.260 −0.250 −0.730 −0.290 −0.290 −0.250 −0.220 −0.190
95th percentile – 0.240 0.270 0.240 1.650 0.400 0.300 0.330 0.310 0.250

100% prosumers

Median – 0.041 0.040 0.041 0.070 0.048 0.044 0.047 0.045 0.041
Variance – 0.031 0.034 0.031 0.252 0.023 0.035 0.019 0.018 0.011
5th percentile – −0.240 −0.270 −0.240 −0.490 −0.160 −0.260 −0.140 −0.140 −0.110
95th percentile – 0.270 0.300 0.270 1.200 0.290 0.300 0.270 0.260 0.210
that charging with these four methods is based on a single pricing
component, namely, energy. Furthermore, the annual costs to be re-
covered do not change much since the prior assumption is that the
annual costs of community DERs are the same throughout the life-
time of the energy system and the only variable costs are for energy
exchange. The costs allocated to local community members will thus
not change much, even though their energy consumption increases. For
the remaining methods, the peak of the predictability distribution rises
with the increase in prosumer penetration. This can be explained by
the fact that the prosumers pay for their own individual investments
in DERs. Moreover, these methods have either a capacity component
only or a combination of energy and capacity components. From these
findings we can conclude that the increasing prosumer penetration has
a positive effect on cost predictability, which also indicates that the
possibility of cost recovery is improved.

6.3. Discussion

The cost allocation methods described in this paper all have their
own characteristics. They have different charging components (energy,
capacity, or the number of users), and they take different factors into
account (time and consumption level differences, and so on). And they
show different performances with regard to different criteria. It is not
easy to satisfy all the requirements at the same time. The case study
presented in this paper has assessed the performance of the ten methods
in terms of cost reflectiveness and predictability. From the analysis of
the results, we can conclude that methods with energy as their single
charging component perform better than either those with capacity as
their sole component or those allocating costs based on the number
14
of users in terms of cost reflectiveness and predictability. Cost reflec-
tiveness increases with the increasing number of prosumers, while cost
predictability remains more or less the same. Methods with energy and
capacity-based charging components show comparable performance to
the methods with solely energy-based charging component. It is easy
to explain that methods with just energy components are a measure
of average demand and that the installed capacity of DERs is based
on their generation capacity. Peak demand, meanwhile, is dependent
on a single moment in the year and differs year on year. Therefore,
peak demand-based methods show a lower cost reflectiveness and
predictability.

From the consumer perspective, cost reflectiveness is far more
important as the costs allocated to them should be in line with the
amount of energy they consume. For investors, however, cost pre-
dictability is more important, to help ensure that they recover their
costs. According to the analysis above, methods with a single energy
charging component are the most desirable if both of these metrics are
to be satisfied. Moreover, those methods with both energy and capacity
charging components are the second-most desirable. The different en-
ergy charging component-based methods display similar performances,
but each emphasizes different aspects. For this reason, it is not easy to
provide a definitive solution regarding the ideal cost allocation method
to select based on the quantitative analysis in this paper. The opinions
of local community members play an essential role in that process, and
they inevitably have different educational backgrounds and, may well
hold different points of view regarding the various methods. Some,
for instance, may prefer to choose a method with a single charging

component over a more complex one with more or less the same
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Fig. 12. Probability density of the distribution of cost predictability under the ten cost allocation methods with different percentages of prosumers in the ICES.
performance. Moreover, this paper focuses only on the analysis of cost
reflectiveness and cost predictability, while other criteria such as cost
causality (revealing cost drivers) and time difference will also affect
local community members’ opinions. In practice, it is therefore critical
that those opinions be taken into account and that a method be selected
that is socially acceptable to the local community.

According to the abnormal condition analysis, furthermore, the
methods addressed here are unable to deal well with sudden changes
in energy generation and consumption. Their metrics in terms of cost
reflectiveness and predictability are rendered useless in those circum-
stances. However, the results do still show that the majority of local
community members still benefit from joining an ICES, even under
such abnormal conditions: they pay less compared to investing in
DERs themselves. In normal conditions, meanwhile, the cost alloca-
tion methods we present display stable performance in terms of cost
reflectiveness and predictability. In this study, the community under
consideration is small in scale. According to the sensitivity analysis,
however, the methods retain their performance even when the size of
the community changes - a desirable characteristic. Furthermore, the
ten cost allocation methods can well handle the changes in the roles
of local community members from consumers to prosumers in terms of
the two criteria. Overall, then, the analyses carried out in this paper
help us understand the performance of cost allocation methods.

7. Conclusion and future work

7.1. Conclusion

Cost allocation for local community energy systems with local DERs,
as covered by the current study, is often missing. This study, therefore,
proposes a systematic framework and a number of methods applicable
in the context of cost allocation in an ICES. Reflectiveness and pre-
dictability in cost allocation are favored merits, no matter what the
energy system is. The performance in terms of the two criteria for the
methods considered here has been assessed based on a case study. The
15
results show that methods with an energy component perform better,
they reflect the costs the users should pay. Moreover, their energy
bills are stable and predictable when there are only gradual changes
in energy generation and consumption. Furthermore, methods with an
energy charging component retain their merits in respect of the two
criteria in the event of changes in the number of local community mem-
bers and prosumers. The comprehensive analysis in this paper provides
a better understanding of the performance of cost allocation methods.
Since local communities are not subjected to statutory regulation, their
members need to agree on the method used to allocate costs in the
ICES. For this reason, their opinions should be considered carefully
before selecting a method that is socially acceptable to them. The study
presented in this paper provides multiple choices for cost allocation
and can help local communities in selecting one that delivers good
performance and also satisfies their other requirements, too.

7.2. Future work

In this study, the chosen allocating coefficient - for methods with
two or more charging components is load factor. Further research
is recommended to reveal the impact of flexible coefficients on the
results of cost allocation in ICESs and to see if these can improve cost
reflectiveness and predictability when compared to the methods with
one single charging component. Moreover, the ICES considered here
is grid-connected but remain independent of the grid since community
generation is able to satisfy the bulk of demand. The costs of exchang-
ing energy with the grid therefore accounts for only a tiny portion of the
total costs - one so small that it can be disregarded. This factor thus has
very little influence on our results. In the future, it is worth considering
the impacts on the results of cost allocation of a grid-dependent ICES or
of a considerable year-on-year increase in energy consumption by the
local community members.
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