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1
Introduction

Vehicles have played a pivotal role in the development and progress of the human civilization over several

centuries and the one common link among the usage of all types of vehicles has been the role of humans

in controlling them. Human control of vehicles has been a burning question for decades and understanding

how humans control vehicles can help improve safety and vehicle design [1]. This study of human-vehicle

control has now evolved into a mature field of study called manual control. As stated by Mulder et al.,

“Manual control cybernetics aims to understand and describe how humans control vehicles and devices

using mathematical models of human control dynamics” [2]; with Weiner describing cybernetics as the

main system-theoretical, model-based approach to understand how humans control vehicles and devices

[3]. As a result, manual control research has led to many important insights in the field of aerospace

engineering. A prime example of this is the famous crossover model proposed by McRuer and Jex in their

seminal work [4], which is a mathematical model that describes how the human operator adapts to the

vehicle dynamics for tracking tasks using a compensatory display.

In aviation, Loss of Control-inflight (LOC-I) has long been one of the top causes of fatal accidents [5];

such LOC-I situations can also arise, for example, in the case of Stability Augmentation System (SAS)

failures and manual control can help develop insights into (adaptive)human behaviour and consequently

increase safety. Humans are known to have adaptive behavioural strategies that they use when a change

is detected in the dynamics of the element that they are trying to control, i.e., in our case, the vehicle/aircraft.

In manual control, the vehicle/aircraft is termed a controlled element (CE) which makes the pilot the human

operator/controller (HO). While manual control research and studies are available for pilot behaviour

in varied scenarios, they are majorly focused on Linear Time-Invariant (LTI) systems with only a few

experiments conducted for pilot model identification in time-variant cases.

With the present understanding of adaptive pilot behaviour and most of this research being focused on the

development of complex mathematical models to describe time-varying behaviour and not on understanding

these time-varying parameters, we lack valuable insight into how a pilot adapts to time-varying CE dynamics

[6]. There is a clear gap in understanding how well the adaptive behaviour of the human pilot can handle

the time-varying vehicle dynamics. Accordingly, this study aims to understand and analyse the stability

of the resultant system obtained as the output of the adaptive pilot changing their control behaviour to

time-varying aircraft dynamics to better understand the adaptive nature of the pilot. This is also backed by

Mulder et al. in [3] which states that the temporal scales of human adaptation and learning in changing

situations should be addressed using open-loop techniques to assess the combined dynamic stability in

time. Therefore, the main research objective of this thesis is:

Utilize open-loop techniques to analytically and experimentally investigate how adaptive

human controllers employ the changes in combined pilot-aircraft dynamic stability to

detect changes in controlled element dynamics during manual tracking tasks.

Research Objective

In the context of our specific research inquiry, which is:

3



4 Chapter 1. Introduction

How does the human operator use the reduced stability/complete instability of the open-

loop system to detect the change in controlled element dynamics?

Research Question

To help answer the main research question, the following sub-questions have been formulated:

1. What time-domain signals, in and near the region of reduced stability or instability, are used by the

human controller to detect the change in controlled element dynamics?

2. What are the specific characteristics and numerical values of the relevant signal(s)?

3. How does the rate of change in controlled element dynamics affect the detection of this change?

4. How does the type of display (compensatory/pursuit) affect the human operator’s detection of change

in controlled element dynamics?

The chapters of this literature report are structured such that Chapter 2 encompasses the background

study required for this thesis and explores various facets of multiple researches in the domain of manual

control followed by Chapter 3 that details the initial simulations and their results to back the proposed

research methodology.



2
Literature Review

This chapter thoroughly examines the existing body of knowledge in the field of manual control, with a

focus on time-varying controlled element dynamics. By articulating and analysing existing literature, this

chapter will lay a solid foundation for the research question and the subsequent research efforts to prove

the presented hypotheses.

The sections of this chapter, namely, section 2.1, section 2.2 and section 2.3 elaborate on the concepts of

manual control, existing research in this field and conclusion, respectively. This is followed by chapter 3

that shows preliminary simulations with procedure and results, conducted using MATLAB that will be used

as a basis to conduct further analytical and experimental research.

2.1. Concepts of Manual Control
This section bases itself on the foundations of simulations and experiments carried out in the field of

manual control and the main variables they utilize. As mentioned by McRuer and Jex, the human pilot has

the capability of adjusting or equalizing his behaviour so that the closed-loop characteristics fulfil the basic

conditions required of any good feedback control system [7], which are:

• Provides some desired command-response (ft → y) relationship

• Suppress unwanted inputs and disturbances(fd)

• Reduces the effects of variations and uncertainties in the components of the control loop

• Provides adequate closed-loop stability margins.

To understand these further a compensatory tracking task as seen in Figure 2.1 will be used as a reference

in this section. Here, the different blocks and their details are explained in the subsections that follow.

+++- Hp(s) HCE(s)
fₜ e

n

u y

y

Pilot

++

fd

Figure 2.1: Compensatory tracking task

Thus, this chapter serves as an introduction to the important concepts of manual control highly relevant to

the thesis and is divided into four sections with each articulating a different facet.
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6 Chapter 2. Literature Review

2.1.1. Forcing functions
In a manual tracking task, the pilot, whose linear part is represented in the above figure by Hp(s) and
the non-linear part by the remnant n controls the aircraft/vehicle represented by HCE(s) given the forcing
function ft. This forcing function depicts the actual task at hand, for example, changing the altitude of
the aircraft, making a coordinated turn or maintaining a wings-level flight during turbulence. In system

identification tasks, these forcing function signals are used to excite the pilot’s control behaviour [8] and are

kept to be fairly representative of the task at hand. Moreover, forcing function signals are kept unpredictable

for the human and difficult enough to prevent boredom in order to obtain high levels of control behaviour

linearity and limit subject variability [4, 9]. There are a number of characteristics that need to be considered

when designing a forcing function that are mentioned below as obtained from [4, 9, 10, 11, 12],

• The forcing function must be random-appearing, to prevent the human from detecting patterns in the

signal. When the human controller can anticipate the forcing function, his behaviour can no longer

be modelled by a feedback system but should include a feedforward path as well.

• The forcing function must be sufficiently exciting, to get the human engaged in the proper way and

maximize the accuracy of the describing function.

• The forcing function must have a high signal-to-noise ratio at frequencies of interest, to maximize the

accuracy of identification.

• The forcing function must have a Gaussian magnitude distribution, to obtain describing functions that

resemble real-life control behaviour as closely as possible.

• The number of sinusoids is limited such that the signal power does not get diluted over too many

frequencies.

• Preferably an equally spaced separation on a logarithmic scale of the integer frequencies over

approximately two decades is applied in order to identify the describing function.

These characteristics of the quasi-random multisine signals force compensatory control behaviour and

also facilitate the frequency domain describing functions of the human pilot in compensatory tracking tasks.

A standard set of forcing functions generally used to compare spectrums are the ones used in McRuer’s

work [4] where he used three spectrums, namely, 6:4, 7:3 and 8:2 which signifies the low-frequency high

power to high-frequency low power ratio of the number of sinusoids used, which resulted in them having a

bandwidth of 1.5rad/s, 2.5rad/s and 4.0rad/s, respectively.

2.1.2. Pilot Model
The forcing functions discussed above are used to excite the pilot control behaviour. The human pilot is a

multimode, adaptive, learning controller capable of exhibiting an enormous variety of behaviour [7]. As

seen in Figure 2.1, the pilot model consists of a linear part, i.e., Hp(s) and a non-linear part n. There have
been multiple attempts at mathematical modelling of the human pilot but the most prominent model, which

is also the one used in this study, is the precision model proposed by Mcruer et al. in [4]. Equation 2.1

shows the model with the difference that it omits the indifference threshold describing function.

Hp(jω) =

equalization︷ ︸︸ ︷
Kp

(
TLjω + 1

TIjω + 1

) low-freq. lag-lead︷ ︸︸ ︷(
TKjω + 1

T ′
Kjω + 1

) delay︷ ︸︸ ︷
e−jωτ

neuromuscular dynamics, Hnm︷ ︸︸ ︷ 1

(TN jω + 1)

([
jω

ωnm

]2
+ 2ζnmjω

ωnm
+ 1

)
 (2.1)

In this equation, the equalization term represents the main adaptation of the pilot to the CE dynamics

with TL and TI being the lead and lag time constants respectively. This use of lead and/or lag depends

on the type of CE dynamics controlled by the pilot. The second term, i.e., the low-frequency lead-lag

term is included to capture the low-frequency phase equalization but is frequently omitted based on the

frequencies in the experiment. The third term is the time-delay term where τ (alternatively written as τe)
accounts for the effective time-delay followed by the last term representing the neuromuscular system

(NMS) dynamics. This equation has been simplified to take the form shown in Equation 2.2 with the NMS

dynamics simplified to be that of the second order and with the low-frequency term being omitted.
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Hp(jω) = Kp

(
TLjω + 1

TIjω + 1

)
e−jωτe

[
ω2
nm

s2 + 2ζnmωnm + ω2
nm

]
(2.2)

As seen in Figure 2.1, n is added to the pilot model. This is the non-linear part of the pilot model, i.e.,

remnant is defined as the portion of the pilot’s control output power which is not linearly correlated with the

system input. The remnant accounts for all the non-linearities and is often omitted while modelling the pilot

or during system identification studies, like in the case of McRuer’s quasi-linear model described above.

As humans are inherently non-linear, and to make the simulations have high fidelity, the n, which can also
be seen as a noise term is obtained by multiplying zero-mean Gaussian white noise W with the remnant

transfer function Hn(s) as seen in Figure 2.2.

Figure 2.2: Remnant signal

Here, while there have been multiple attempts at modelling the remnant signal, there is still no consensus

on how to model the remnant transfer function Hn(s). Studies conducted [6, 7, 13] suggest that the

remnant transfer function should have the structure given by [14], which defines the structure to be that of

Equation 2.3 with m = 1. This model structure has also been verified based on the ratio of remnant signal
power to control signal power in [15].

Hn(s, t) =
Kn

(Tns+ 1)m
(2.3)

With, Kn being the remnant gain and Tn the time constant. In order to decide on the order of the remnant

transfer function, van Grootheest et. al in [16] conducted Monte-Carlo simulations. The paper decided

on the selection of Hn(s) by analyzing the performance of different Hn(s) orders on a set of benchmark
functions. Based on the results, they found that the second-orderHn(s) provided the best trade-off between
accuracy and complexity. Furthermore, they observed that higher-order Hn can lead to overfitting, while

lower-order Hn(s) can result in underfitting. Therefore, they concluded that the second-order Hn(s) is
the most suitable choice for practical applications. Hence, Equation 2.2 with the addition of Equation 2.3

of the second order gives the entire pilot model. This precision model developed by McRuer only works

for compensatory tracking tasks and does not describe the adaptive control behaviour of the human pilot

but rather only caters to fixed dynamics of the controlled element. Later on, Section 2.2 talks about the

adaptive control behaviour.

2.1.3. Controlled Element
The controlled element (CE) fits after the pilot’s block in Figure 2.1 and represents the inherent dynamics

of the vehicle, i.e., the aircraft in our case. Ever since the pioneering work of Tustin [17] and Elkind [18]

in the field of manual control, many types of CE transfer function HCE(s) have been used in simulations
and experiments; these range from pure gain, single integrator and double-integrator to transfer functions

which act single integrator-like, double integrator-like, etc. These controlled elements are linked to typical

aircraft control tasks; Table 2.1 taken from [7] shows relevant vehicle control tasks and their representative

CE dynamics.

2.1.4. Display types
The term “display” pertains to the visual rendering of available information sources. The interpretation

of this information by the human controller (HC) depends on the manner in which it is displayed. In

manual control tasks, three types of displays are used, namely, compensatory, pursuit and preview. As

preview display is beyond the scope of this project, it will not be discussed. Figure 2.3 shows both, the

compensatory and the pursuit displays.
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Table 2.1: Typical aircraft control tasks and related simple controlled element [7]

Controlled

Element

Related Vehicle Control Situation

Yc = Kc Aircraft load factor control (at high speeds) by elevator

Yc =
Kc

s Aircraft pitch angle control by elevator / Attitude control of

vehicles with augmented damping / Automobile heading control

by steering wheel

Yc =
Kc

s2 Space vehicle attitude control by control jets / Rocket booster

control (at launch) by thrust deflection / Aircraft heading control by

ailerons

Yc =
Kc

s(s+1/T ) Aircraft roll angle control by ailerons / V/STOL thrust translation

control (at hover) by thrust deflection

Yc =
Kc

(s−1/T ) Pitch angle control of a statically unstable aircraft by elevator

Yc =
1

s(s−1/T ) Unstable rocket booster control (at high dynamic pressure) by

thrust deflection

e(t)

reference follower

controlled
element
output reference target

x(t)

e(t)

ft(t)

(a) Compensatory Display (b) Pursuit Display

Figure 2.3: Compensatory and Pursuit displays

In compensatory (C) displays, only the error signal, i.e., the difference between the system response x(t)
and target signal ft(t) is shown. By doing so the human controller tries to minimize the error by giving
input via a manipulator and keeping the follower (ideally) on the reference mark in the centre of the display.

In the case of pursuit (P) displays, the system response x(t), the target signal ft(t) and the error e(t), all
three are shown. It is to be noted that the error signal is shown as the difference between the response

and the target (e(t) = ft(t)− x(t)). As a result, the pursuit tracking task takes a different form of control

structure which is shown in Figure 2.4.
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+++- Hpe(s) HCE(s)
ft e
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u y

y

Pilot

Hpt(s)

- ++

ft

Hpx(s)

Pilot

Figure 2.4: Pursuit tracking task

While compensatory control behaviour, where the operator controls based only on feedback of a “tracking

error” shown on the display, is reasonably well understood and a number of highly useful models for human

operator’s compensatory control dynamics are available [7, 19], the modelling of HC behaviour in pursuit

tracking tasks has received meagre attention. The main reason is that the multi-loop control behaviour

in pursuit makes its modelling significantly more complicated. As seen above, a pursuit configuration

yields three different describing functions, as a result, HCs may choose to mechanize feedforward and/or

feedback control responses driven by the e(t), ft(t) and x(t) signals, however, as e(t) = ft(t)− x(t), only
two of the three possible HC responses are independent, resulting in an inherently over-determined model

structure [2]. Hence, for pursuit tasks various model structures have been proposed and applied [20].

2.1.5. Crossover model
The culmination of Section 2.1.1, Section 2.1.2, Section 2.1.3 and Section 2.1.4 is the manual tracking

task. One of the most important models of this setup is McRuer’s crossover model [4] which pertains

to a compensatory target-tracking task and explains the pilot’s adaptation to CE dynamics as seen in

Equation 2.4. This finding states that the pilot adapts his/her control behaviour to the CE dynamics such

that the open-loop response of the combined pilot-vehicle system near the crossover frequency ωc (i.e.,

where |YOL(jω)|ω=ωc
= 1) behaves like a single-integrator.

YOL = Yp(jω)Yc(jω) =
ωc

jω
e−jωτe (2.4)

That is, the pilot adjusts their behaviour such that the slope of the magnitude of open-loop dynamics is

−20dB/decade in and around the crossover region. It can be seen from Equation 2.4 that this model

takes only the linear part of the pilot as it uses a simplified precision model that accounts for the effective

time delay but does not take into consideration, the NMS transfer function. As this model is used as a

reference for pilot modelling to date, the study carried out in this thesis will also use this model to obtain

initial simulations with the addition of the NMS and the non-linear time-varying part of the pilot by including

the remnant. Lastly, the use of the crossover model in this study will be in obtaining the phase margins as

a function of time of the time-varying open-loop (OL) dynamics; as a result, it becomes important to define

and understand the concept of phase margins, denoted by φm.

Phase margin is a critical concept in control theory, particularly when analyzing and designing control

systems. Mathematically, φm is defined as the difference between the phase φ of the system and −180◦ at
the gain crossover frequency (ωcg), i.e., the frequency at which the gain of the system is equal to 1 (0dB).
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φm = φ− (−180◦) (2.5)

Typically in control systems, the phase lag varies with frequency and progressively deteriorates to eventually

become and/or cross −180◦ where the output of the system becomes inverted, i.e
o/p
i/p = −1, at this point

using Equation 2.5, the phase margin becomes ≤ 0 and the system is said to be unstable. In other words,

having a positive phase margin is a measure of the system’s stability. An example of the positive phase

margin of an arbitrary system is shown in Figure 2.5 to represent how the phase margin is calculated in

this study using bode plots.
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Figure 2.5: Capturing the phase margin (φm)

Consequently, if the system is changing with time, then at each time step, the above process can be

carried out to capture the phase margin of the system to obtain phase margin as a function of time. This

will be seen later on in Section 3.0.2.

Now, having a global picture of manual control tasks and their components, the next section discusses

relevant research carried out in this field with an emphasis on time-varying control tasks followed by their

findings.
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2.2. Review of Past Research
Quoting McRuer and Jex [7]: “The human pilot is a multimode, adaptive, learning controller capable of

exhibiting an enormous variety of behaviour”. The ability of the human controller (HC) to adapt to – and

learn from interactions with – the environment is phenomenal and makes the study of HC behaviour

a fundamental challenge. One of the first reported experiments on adaptive human behaviour was

conducted by Young et al. [21]; Young conducted an experimental investigation using changes in gains

and polarity of the controlled element (CE) with position control (pure gain control) to determine lower

bounds on the adaptation process and employed C as well as P displays. In this experiment, the tracking

error and time histories of HO response were used to determine pilot-model structure. They concluded that

the adaptation process should be considered to have three phases, namely, detection, which deals with the

recognition that the CE dynamics have changed; identification, which indicates an occurrence of change is

a response and; lastly, adjustment, which encompasses reduction of error following the identification phase.

Here, adaptation encompasses both, the detection and identification phases of the human controller.

Sadoff’s study (1962) emphasizes the requirement of these experiments, stating that aircrafts should be

designed so that when the Stability Augmentation System (SAS) is inoperative or has failed, the vehicle

dynamics should still be acceptable by the pilot [22]. This study was one of the first to state that pilot

rating boundaries had only been established for time-invariant CE dynamics. Hence, the focus had to be

shifted to sudden changes in CE dynamics, like SAS failures. Subsequently, many studies took place for

time-varying CE dynamics.

One such paper that resonates with McRuer and Jex’s review paper [7] is McDonnell’s paper that in-

vestigated the change in pilot behaviour given a sudden change in the CE dynamics [23]. In his paper,

McDonnell carried out an experiment using compensatory displays for a single-axis lateral movement

(roll) tracking task where the CE dynamics switched from CE1 to CE2 using a step function, which is

representative of augmenter failures and control power changes as a result of surface actuator failure.

The forcing function was a multi-sine consisting of a sum of four sinusoids of equal amplitude with random

phases and different frequencies. They hypothesized that after the CE dynamics had changed, one of the

two conditions would prevail, i.e.:

1. The new closed-loop system would be stable

2. The new closed-loop system would be unstable until some operator adjustment was made

The study states that the use of McRuer’s crossover model may be considered an average description

of the pilot’s behaviour but fails to describe the operator’s output at every instant of time, however, it still

allows for stability to be assessed. One unique trait of this experiment was the availability of a button

on the control stick that the operator would press when they recognized a change in the CE dynamics

that they were trying to control. As a result, a time difference (Recognition time tr) between when the CE
actually changed and when the pilot recognized this change could be obtained and used for post-analysis

and had a direct implication of the operator’s ability to detect a change and take corrective action, for

example, disengaging a failed augmentation system. In all these studies mentioned above, the display type

being used was a compensatory display; Wasicko et al.(1966) in their study, titled, “Human Pilot Dynamic

Response in Single-loop Systems with Compensatory and Pursuit Displays” compared the pilot’s response

to time-invariant CE dynamics when using different displays for single axis (roll) tracking tasks [24]. The CE

dynamics that they tested were: Kc,Kc/s,Kc/s
2,Kc/s(s− λ)(λ = variable pole) and Kc(s+0.25)/(s+5)2

with the forcing function made up of a rectangular signal spectrum. The outcome of this experiment gave a

clear comparison of the pilot’s performance and error using the two displays. Table 2.2 lists the important

results of this study while the following list details the important implications mentioned in the paper.

• “It is important to recognize that presentation of the signals does not necessarily imply pilot action

thereon; for instance, in a pursuit display the operator may act only on the error, thereby performing

a compensatory fashion despite the presence of the forcing function and output.”

• “Conversely, under certain conditions with a compensatory display (e.g., a predictable forcing function)

the operator can mentally separate input from output in the displayed error signal. Then by using a

reasonable facsimile of the system forcing function and the error as information inputs the operator

may function in a pursuit fashion.”

• “The usual way of inducing compensatory or pursuit behaviour is using a display and random-

appearing inputs.”
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• A key feature of the experimental program reported here is that comparisons were also made in terms

of the effective open-loop describing function, yβ , which reveals the dynamic effects of the pilot’s
system organization and is given below where, subscripts i, e and m represent the three pursuit

display describing functions of input, error and output as seen in Figure 2.4:

Yβ =
Φim

Φie
=

Yc (Ypi
+ Ype

)

1− Yc (Ypm + Ypi)

• “For pursuit display tracking, the actual block diagram structure adopted by the operator, i.e., the

system parameters used to generate his output, is not known, nor is there any knowledge that the

same block diagram structure exists for all inputs and controlled elements.”

Controlled

Element

Result

Yc = Kc P is better than C for low bandwidth inputs and performance

becomes the same for high bandwidth input

Yc =
Kc

s C is slightly better at low and high bandwidth inputs with

essentially no difference for moderate bandwidth inputs

Yc =
Kc

s2 P is increasingly better than C

Yc =
Kc

s(s−λ) P is increasingly better than C as λ increases.

Yc =
Kc(s+0.25)

(s+5)2 For the bandwidths tested there is no significant difference

between displays

Table 2.2: Results of better performance based on CE and type of display [24]

In 1969, Phatak and Bekey proposed a model for compensatory tracking tasks such that it captured the

adaptive behaviour of the pilot called the ‘Supervisory Control Model’ [25]. This model was based on the

knowledge that the human operator detects change based on a large differential change in the error and

error rate. This model is considered to be a promising framework and was found to be limited due to the

lack of standardized limits independent of the CE dynamics being used as found by Van Ham et al. at the

Department of Control and Simulation, TU Delft [26].

The research of Johnson et al. had a very clear and specific aim to understand the effects of time-varying

CE dynamics as the pilot adapts to these dynamics where, they found that their hypothesis of graceful

degradation was true, i.e., a flight control system design that gives less change in the effective CE dynamics

post failure results in better tracking performance. Here, the SAS/Flight Control System(FCS) failure

is the representation of why the CE dynamics change [27]. It is to be noted that, this literature study

deliberately limits itself to the explorations and discussions of manual control in single-loop tasks and

avoids detailed explanations other than vital insights from multi-loop tasks because it is a known fact that

model identification and model validation become complex and intricate in multi-loop situations [28].

One such study was carried out by Hess in which he ran multiple simulations using both, a multi-loop

(pursuit-like) pilot identification procedure for single and two axes tracking tasks. In his tracking task loop,

the inner loop was set to be a rate control loop which was considered to be the primary adaptation loop

while the outer loop was hypothesized to provide a vernier adjustment to improve the pilot’s tracking

performance. The CE dynamics used were varied gradually as well as suddenly to capture fast and slow

adaptations of the pilot in these simulations. The conclusion of this study suggested a pilot model can be

structured to have two loops in case of pursuit tasks and that the obtained model provides a framework

that could help study pilot control behaviour in cases of sudden CE-dynamic changes [29]. Following

this, Hess conducted another study in 2011 to provide a preliminary understanding of the dynamics of

human pilots controlling systems with time-varying dynamics. In this study, he used a single subject and

a pursuit tracking task with changing CE dynamics and discussed a procedure for creating a real-time,

pilot-in-the-loop simulation environment using Simulink [30]. As seen in Figure 2.6, the gains of the CE

dynamics were varied linearly to represent a tilt-rotor aircraft and rotorcraft with variable speed rotors as

examples of systems with time-varying dynamics.
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Figure 2.6: Time varying gains, Hess [30]

Identifying the pilot model is a crucial aspect of manual control. Numerous experiments are conducted to

comprehend the less prominent time-invariant and generally seen time-variant behaviour of the human

pilot. These experiments aim to obtain novel and more effective methods to develop complex mathematical

models that describe time-varying behaviour and estimate time-varying frequency responses or time-

varying model parameters. These papers use methods like ARX, Kalman filtering, wavelet transforms, etc

to obtain a good parameter estimation for these models. In one such paper, Zaal and Sweet [31] proposed

a Windowed Maximum Likelihood Estimation (MLE) to be used as a parameter estimation technique. The

details of this experiment are as seen below in Table 2.3.

Experiment

description

Estimate the parameters of a pilot model with time-dependent sigmoid

functions to characterize time-varying human control behaviour.

Task Multi-axis (pitch and roll) tracking task

Display Compensatory

CE dynamics 90
s(s+6) to

30
s(s+0.2) using a sigmoid function with G = 0.5 and 100s−1

Task time T = 90s and Tmeasured = 81.92s

Forcing

functions

Multi-sine forcing function with 10 sinusoids

Participants 9 general aviation pilots, all male. The average age was 24.3 years old. All of

the pilots were right-handed. Only one had prior experience with the type of

control task in question.

Table 2.3: Experiment overview, Zaal et al. [6]

The NMS transfer function used was the same as mentioned previously in Equation 2.2 with ζnm = 0.20
and ωnm = 10rad/s with the effective time delay kept constant at τe = 0.20s. A very similar paper was

published by the same authors which serves as a justification for using MLE instead of wavelet transform

(inspired by the use of this method as used in [32] and [33]) in [31]. In this paper published by Zaal

and Sweet, simulations were used, which gave an insight that the pilot’s frequency response and model

parameters were less affected by remnant if MLE was used, however, more studies would be required to

understand the effect of time-window length on these estimation results [6].

A study conducted at TU Delft by Pool et al. is also an example of various methods being proposed for

pilot model identification. In this paper [34], a successful approach to modelling the non-linear portion

of the human pilot has been discussed. This paper uses MLE and utilizes Genetic Algorithm (GA) for

the identification of the non-linear terms. The method was applied to vestibular motion thresholds for

previously obtained tracking data. Many such papers on pilot modelling and identification, both in time and

frequency domain exist [35, 36, 37, 38, 39, 40, 41, 42, 43]. As the research question deals with identifying

stability regions, the modelling and identification of pilot models is used as an inspiration for experiments

and simulations with the literature study restricted on its details.

Furthermore, Zaal et al. in a study involving a multi-axis tracking task looked into the influence of motion
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gains on tracking performance. The experiment details are shown in Table 2.4.

Experiment

description

To understand the effect of motion gains on pilot tracking performance

Task Multi-axis (pitch and roll) tracking task

Display Compensatory

CE dynamics 30
s(s+0.2) for both axes; using a sigmoid function to change motion filter gain

Task time T = 90s and Tmeasured = 81.92s

Forcing

functions

Multi-sine forcing function with 10 sinusoids

Participants 8 subjects. Students and staff at TU Delft with extensive experience in manual

tracking tasks.

Table 2.4: Experiment overview, Zaal et al. [44]

The study concluded that pilots modified their equalisation dynamics in the same axis when the roll or

pitch motion filter gains were increased, improving tracking performance. Pilots adjusted their equalisation

dynamics in the opposite direction when motion filter gains were reduced, which reduced tracking perfor-

mance. These modifications in tracking behaviour were discovered to be comparable to those seen in

single-axis tracking tasks with various gains from static motion cues. Indicators of minor cross-coupling

between the pitch and roll axes were also discovered by the study [44]. This paper also gives insights into

choosing relevant forcing functions such that they cover the complete frequency range of human control

with regular intervals on a logarithmic scale; the forcing functions used here have also been used in a

number of other experiments proving their quality [6, 31, 45, 46, 47]. Here, four sets of phases were chosen

for the target and disturbance signals in the pitch and roll axes, yielding signals with an approximately

Gaussian distribution and an average crest factor, as well as an average crest factor for the signal’s first

and second derivatives.

In 2014, based on simulations, Hess proposed an adaptive pilot model for pursuit tracking tasks for

time-varying CE dynamics, representing loss of control events, which was able to capture similar behaviour

as expected near the crossover frequency as detailed by McRuer (mentioned in Section 2.1.5) and was

able to recreate Pilot Induced Oscillations (PIOs) which is typical of LOC-I events. The NMS transfer

function used the parameter values of ζnm = 0.707 and ωnm = 10rad/s [36]. This paper was later used
in Hess’s study of further simulations depicting real-world scenarios, namely, a single-axis control task,

a rotorcraft control task, a multiaxis GTM (vehicle model) control task, PIO simulation, aircraft departure

from controlled flight (GTM model) and a rudder reversal PIO scenario. The adaptive model was able to

capture both, gradual failure and sudden failures of the aircraft. It successfully captures multiaxis control

task behaviours as well as PIOs leading to a conclusion that the model could be used for an assessment of

adaptive or robust flight control systems with time-varying (TV) CE dynamics and to model pilot behaviour

in LOC-I events [37]. Similarly, a model for preview tracking tasks based on empirical results has also

been proposed by van der El et al. at TU Delft [42].

Mulder et al. in their review paper summarizing the fundamental limitations in current manual control

and cybernetics provide a road map for the required shift from LTI models to linear parameter-varying

systems. In this paper, the primary limitation of using the assumption of time-invariance is stated as the

inability induced by this assumption to model the ability of human controllers to adapt. Moreover, this paper

limits the discussion to single-axis control tasks with displays, which is also the main interest of this thesis.

While mentioning the limitations of compensatory tasks, the review talks about the requirement of keeping

forcing functions quasi-random so as to avoid any non-linear behaviour that the pilot may display in case

of predictability or anticipation; the same problem is faced for the case of remnants where humans have to

be trained before experiments to obtain linear operator behaviours given the current inability for a widely

accepted remnant model. Mulder et al. also detail the limitations of pursuit task modelling problems given

its over-determined structure and the ability of the pilot to use six possible strategies. A proposal is then

made to apply novel closed-loop identification techniques for Linear Parameter-Varying (LPV) systems so

as to identify time-varying (TV) manual control models, for which, they mention, “A possible approach

would be to systematically change the main task variables (P and T), use extensive computer
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simulations to explore how the HC may adapt, assuming optimality, and validate these findings

through experiments.” where P and T are the forcing function and CE dynamics respectively [3]. This

statement resonates strongly with the research question proposed in this thesis.

Zaal, in yet another study, studies manual control adaptation in multi-axis tasks with time-varying (TV)

CE dynamics. Using the same set of subjects from before, i.e., [6]. In this study (details mentioned in

Table 2.5), he checks for cross-coupling between the two axes and how changing CE dynamics in a

specific axis affected the other axis performance and the overall performance [48].

Experiment

description

To study manual control adaptation to changing controlled element dynamics

in roll-pitch control tasks.

Task Multi-axis (pitch and roll) tracking task

Display Compensatory

CE dynamics 90
s(s+6) to

30
s(s+0.2) using a sigmoid function with G = 0.5 and 100s−1

Task time T = 90s and Tmeasured = 81.92s

Forcing

functions

Multi-sine forcing function with 10 sinusoids, same as used in [31]

Participants 9 general aviation pilots, all male. The average age was 24.3 years old. All of

the pilots were right-handed. Only one had prior experience with the type of

control task in question.

Table 2.5: Experiment overview, Zaal [48]

The transition function used in this case, is the same as before, i.e., the sigmoid function. This paper based

the transition function’s selection on the assumption that the parameter function used for time-varying pilot

model parameters was equivalent to the parameter function used to vary the CE dynamics in time. The

change in CE dynamics was explained as changing conditions like flight mode transitions and adaptive fly-

by-wire control laws. The pilot model was extracted using a time-domain parameter estimation technique,

MLE. The results obtained based on the hypotheses of this study are summarized below:

• Both roll and pitch axis tracking performance were affected by changing CE dynamics and by the

rate of change of these dynamics, i.e., G value. Though more change was seen in the axis that

experienced the CE change, cross-coupling effects were also observed.

• As obtained theoretically from VAR, as the CE transitioned from single integrator-like to double

integrator-like, the pilot gains decreased and the visual lead increased.

• Pilot performance was better and control activity was lower in the pitch axis even though equivalent

dynamics were used for both axes.

In recent years, efforts of pilot identification, system analysis and pilot modelling have continued. M. Jirgl

et al. carried out an experiment to study human adaptability in Man-Machine Systems (MMS) using a flight

simulator running the X-PLANE 10 software with a simulated step-change in the aircraft models’ altitude

[49]. A comparison of pilot model parameters was made based on experiments conducted using the same

subjects 6 months apart with the result indicating that the average reaction delay had decreased indicating

a positive change. This study used MATLAB’s System Identification Toolbox for parameter estimations

and statistical tests like mean, variance, standard deviation, coefficient of variation, skewness and kurtosis

to comment on the comparison made. Similarly, for pilot model identification, van Grootheest et al. (2019)

used recursive ARX models for compensatory tracking tasks [16]. The details of this analytical study are

shown in Table 2.6.

As this was a simulation-based study the pilot models were developed for CE1 and CE2 based on the

Verbal Adjustment Rules (VAR). The resultant pilot models along with open-loop(OL) crossover frequency

and phase margin were obtained as seen in Table 2.7.

The outcome of this study showed that ARX models were successfully able to model the human pilot given

a good tuning of the forgetting factor and adjustment of the remnant intensity levels. It was concluded that

this model identification method could also be used for HC monitoring and adaptive support systems.
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Experiment

description

To use ARX models to identify adaptations of a simulated time-varying pilot

model.

Task Single axis ∵ simulations used single-axis time-varying (TV) CE

Display Compensatory

CE dynamics 90
s(s+6) to

30
s(s+0.2) using a sigmoid function with G = 0.5 and 100s−1

Task time T = 90s and Tmeasured = 81.92s with total recording time Tr = 8Tmeasured

Forcing

functions

Multi-sine forcing function with 10 sinusoids, same as used in [31, 48]

Table 2.6: Experiment overview, van Grootheest et al. [16]

State

CE HO HO× CE

Kc

[−]

ωb

[rad/s]

Ke

[−]

TL

[s]

Kė

[s]

τe

[s]

ωnm

[rad/s]

ζnm

[−]

ωc

[rad/s]

φm

[◦]

1 90 6 0.09 0.4 0.036 0.28 11.25 0.35 1.5 77.0

2 30 0.2 0.07 1.2 0.084 0.28 11.25 0.35 2.8 22.7

Table 2.7: Pilot model details van Grootheest et al. [16]

Mulder et al. in their detailed study of pursuit display [20] build on the statements of their preceding papers:

[2] and [3], which mentioned the limitations of the crossover model given its time-invariant characteristics

and the limited applicability covering only compensatory displays. This study is taken as a reference for the

details of the pursuit tracking task given the variety of strategies it offers based on the explicit presentation

of both, the target signal and the system output. Given that previously mentioned research supports pursuit

displays, as they have proved to be better for double integrator-like CE dynamics when compared to

compensatory displays, Mulder et al. argue for the requirement of time-varying (TV) systems as skilled

operators can learn to characterize the probabilistic nature of tracking tasks which inherently makes them

non-linear controllers making their behaviour beyond the scope of current LTI models. That is, because

the forcing function ft is shown separately in pursuit displays, the HC may learn its properties and use it to

predict its behaviour; with simpler signals like the single integrator this becomes easier to do [50, 51]. It is

presented that as the output of the system x is also explicitly visible, the HC may be able to see the first ẋ
and sometimes the second derivative ẍ making it easier for difficult CE dynamics to be controlled.

As stated in [24], the HC has three inputs in a pursuit display, namely, ft, e and x, with the relation of
e = ft − x, which enables the HC to choose either a feedforward or a feedback control strategy with

the drawback of the model being its over-determined structure. It is further argued that the HC is sure

to understand these characteristics of the forcing function and to use them to improve their tracking

performance. To explore this idea, a normally distributed forcing function is taken into consideration and

given that in tracking tasks, the ft signal does not leave the screen, a probabilistic perspective on the HC’s
behaviour is developed. The summarized argument is that given the characteristics of the forcing function

when the ft is at the right end of the screen, the HC will control the system output x knowing that ft won’t
go more to the right but rather towards the centre and vice versa. The HC will use this knowledge in their

control behaviour, making it time-varying and non-linear. Figure 2.7 shows this probabilistic view.
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Figure 2.7: Probabilistic view of HC behaviour in pursuit tracking [20]

In 2019, Plaetinck et al. in their endeavour of pilot identification in situations of sudden loss of stability used

a very similar approach as Grootheest et al. [16] of ARX models. Specifically, a low-order recursive ARX

identification with two detection methods - Time-Invariant Condition Average (TICA) and Moving Average

(MA) [35]. The details of this experiment are shown in Table 2.8.

Experiment

description

To use low-order recursive ARX identification method to identify pilot models in

sudden loss of stability events.

Task Single axis (pitch control)

Display Compensatory

CE dynamics time-varying: Hc(s, t) =
kc(t)

s(s+ωb(t))
using a sigmoid function with G = 0.5 and

100s−1

Task time Tmeasured = 81.92s with preceding run-in time varied between 5s, 10s and 15s

Forcing

functions

Multi-sine forcing function with 10 sinusoids, same as used in [31, 48, 16]

Participants 8 skilled participants

Table 2.8: Experiment overview, Plaetinck et al. [35]

The study found that using the pilot error response gain Kė was the most reliable parameter for adaptation

detection. Moreover, the TICA method, which is based on comparing pilot behaviour with existing data of

non-adaptive pilot behaviour was a better method than MA, which uses the moving average of past Kė

trace itself.

Adding to studies conducted lately, Terenzi et al. at TU Delft used amodel-based adaptive control technique,

Model Reference Adaptive Control (MRAC) in their experiment to describe the adaptive behaviour of

the HC in pursuit tracking tasks [52]. Model Reference Adaptive Control (MRAC) is an adaptive control

technique that employs an internal model to facilitate controller adaptation in response to changing task

conditions. It functions by contrasting the anticipated output of the internal model with the observed

output and subsequently adjusting the controller parameters based on the disparities between them.

The adaptation of the controller parameters is instigated by the mismatch between the predicted and

observed outputs. MRAC encompasses both a feedforward and a feedback controller, along with an

internal reference model. The internal model is employed to establish the ideal control policy independently

of the controlled dynamics. By continuously updating the control gains and internal model parameters,

MRAC can emulate human adaptation in pursuit tracking tasks when there is a modification in the dynamics

of the controlled system. The experimental details can be seen below.

It was found that the current MRACmodel can approximate human adaptation in pursuit tracking tasks when

there is a change in the dynamics of the controlled system that requires significant feedback controller

adaptation. However, the MRAC model’s accuracy in predicting human control adaptation is limited,

particularly for transitions from double to single integrator dynamics. The study also found that using
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Experiment

description

To evaluate the effectiveness of a model-based adaptive control technique,

Model Reference Adaptive Control (MRAC), for the adaptive controller.

Task Single axis (pitch control)

Display Pursuit

CE dynamics time-varying: Hc(s, t) =
kc(t)

s(s+ωb(t))
using a sigmoid function with G = 100

Task time Tmeasured = 90s

Forcing

functions

Multi-sine forcing function with 10 sinusoids

Participants 10 participants. Wherein, 7 were male and 3 were females. No prior tracking

experience except for 2 subjects.

Table 2.9: Experiment overview, Terenzi et al. [52]

transition-specific learning rates improved the adaptation of the MRAC model’s control gains for different

types of transitions.

In 2022, Mulder et al. considered a probabilistic perspective for manual control by investigating probability

densities of tracking error signal e [53]. The inspiration behind this study was to obtain the ability to

differentiate control behaviour based on the type of tracking task, namely, compensatory, pursuit and

preview because current models average out the time domain signals and hence lose out on task-specific

behaviours. This paper used Van der El et al. [54] experimental data and the probabilistic view presented

in Mulder et al. [20] and proved that HCs indeed use such strategies, especially for pursuit displays and that

these effects became stronger for higher target signal bandwidths. The error signal densities plotted for all

three tracking tasks showed an increase in tracking performance moving in the order of compensatory →
pursuit → preview.

Furthermore, Jakimovska et. al very recently in 2023 presented an analysis and validation effort for the

Hess Adaptive Pilot Model (HAPM), which aimed to model human operator’s control adaptations in pursuit

tracking tasks. The Hess Adaptive Pilot Model includes a mathematical framework to predict when pilots

may trigger an adaptation of their control behaviour and to predict realistic adaptations of pilot control gains.

The authors replicated the simulation results reported by Hess to verify the model implementation and then

made adjustments to the model, such as adding a human operator delay, to fit it to the experiment data.

The experiment data used in the study were obtained from a previous experiment conducted at TU Delft,

where participants performed a pursuit tracking task with transitions in controlled element dynamics. The

results show that the model accurately describes the measured steady-state tracking behaviour for the

participants in the data set. It was also able to capture the transient control behaviour during transitions in

controlled element dynamics. However, some modifications and simplifications were required to achieve

an accurate fit to the data, such as adding a human operator delay and re-tuning the adaptive logic’s

low-pass filters.

2.3. Conclusions
The main conclusion drawn from existing state-of-the-art research in the field of manual control is the need

to better understand and explore the detection phase of the adaptive human controller. Multiple attempts

to model the human pilot were studied throughout the literature [1, 4, 14, 19, 21, 24, 25, 36, 38, 39, 40, 42]

and many others to estimate as well as identify human control behaviour in both, cases of time-invariant

conditions and in time-variant condition using a plethora of techniques [6, 9, 16, 22, 23, 26, 27, 28, 29, 30,

31, 32, 34, 35, 37, 43, 44, 48, 52, 55, 56, 57, 58]. Throughout these attempts, many forcing functions ft,
pilot dynamics Hp, remnant models Hr, controlled element dynamics HCE and displays (compensatory,

pursuit and preview) were utilized and scrutinized to better understand human role in manual control

tasks. Having done so, the field of manual control can be seen to have matured rapidly with time and

to be ever-developing. However, this study finds a gap in the knowledge of adaptive pilot behaviour to

be concerning; as consistently emphasized by [2, 3] attempts to develop an understanding given the

sharpened tools of this field, i.e., between adaptive pilot modelling attempts and identification pursuits,

the understanding of this adaptive behaviour in time-varying scenarios needs to be improved equally.



2.3. Conclusions 19

Real-world scenarios in which human controllers (HCs) are compelled to adjust their control behaviours

include instances of time-varying alterations in the dynamics of the controlled system, sudden changes in

task constraints, loss of control events, and transitions from automatic to manual control modes. These

adaptations by HCs to time-varying conditions are inherently marked by high variability, non-linearity, short

duration, and strong task-specific dependencies, rendering them significantly more complex to grasp than

linear time-invariant (LTI) HC behaviour [2].

Siting this gap of knowledge, a study will be undertaken, which will utilize current models and tracking task

knowledge to analyse how the adaptive behaviour of the human controller shapes the open-loop dynamics

for time-varying conditions. An intensive study will be done for time-varying vehicle dynamics to see if the

combined dynamics have temporal instability when the pilot adapts to the changing CE dynamics. These

regions of instability will be further analysed to check if the pilot uses their existence to detect the change

in CE dynamics which will shed light on the detection phase of the adaptive control behaviour. This will

eventually help develop pilot training procedures; personalised support systems and improve Stability

Augmentation Systems (SAS). Consequently, Chapter 3 details the research methodology used and the

preliminary simulations developed to identify these regions of open-loop instability.





3
Preliminary Simulations

This chapter deals with an initial set of simulations that serve as a foundation for the first research phase

that deals with extensive simulations encompassing multiple parameters. A set of preliminary simulations

are presented to show the adaptive behaviour of the pilot for time-varying controlled element dynamics.

The focus of these simulations lies in compensatory tracking tasks as a universally accepted model for

this task exists [4]. Simulations were conducted in MATLAB and Simulink wherein all the parameters and

variables of a compensatory tracking task seen in Figure 2.1 are selected/derived as elaborated below.

3.0.1. Simulation setup
Forcing function

A typical selection/design of forcing functions is by the use of multisine signals given their quasi-random

behaviour that helps with linear pilot behaviour as well as in frequency domain identification techniques

[8]. A multisine forcing function ft, which is a sum of sine waves is used in the simulations. Equation 3.1

shows the general structure of these forcing functions.

ft =

10∑
n=1

At[n] sin (ωt[n]t+ φt[n]) (3.1)

Where At[n] is the amplitude of the nth sinusoid with ωt[n] the frequency and φt[n] the phase of that

sinusoid. In the current simulations, 10 sine waves have been used (n = 10) as shown in Table 3.1. This
set of 10 sine waves used in our simulations are the same as used by Terenzi et al.[52]; the reason behind

using this set is to have homogeneity and a reference for comparison of implementation if required. It

is to be noted that multiple runs and forcing functions(based on phase shift) can be simulated but for

simplicity, both, the number of runs and the forcing function realizations have been kept to be unitary in

the simulations.

k[−] nt[−] ωt[rad/sec] At[rad] φt[rad]

1 2 0.419 2.905 · 10−2 2.841

2 5 1.047 1.916 · 10−2 3.319

3 9 1.885 1.020 · 10−2 0.718

4 13 2.723 6.032 · 10−3 0.768

5 19 3.979 3.356 · 10−3 2.925

6 27 5.655 1.983 · 10−3 5.145

7 39 8.168 1.230 · 10−3 2.085

8 51 10.681 9.331 · 10−4 0.383

9 67 14.032 7.541 · 10−4 0.763

10 83 17.383 6.674 · 10−4 3.247

Table 3.1: Parameters of the ten sine waves used to make the forcing function

21
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Here, the fundamental frequency is defined as ωm = 2π
Tm

with Tm being the measurement time. This

parameter is also kept to be in line with Terenzi’s experiment and has a value of Tm = 30s. While the

total simulation duration is 200 seconds, the measurement time is selected to be 30s as the frequency
of all sine waves must be an integer multiple nt of the fundamental frequency to avoid spectral leakage.

Consequently, ωm is calculated to be 0.209rad/sec.

Lastly, note that the bandwidth used for calculations is ωi = 2.723rad/sec, which is the frequency of the
fourth sinusoid of the forcing function. The selection is based on the fact that post this sinusoid, the

amplitude drops considerably.

CE dynamics and transition function

The dynamics of the controlled element, while positioned downstream within the control loop of a tracking

task, are fundamentally responsible for determining the control behaviour exhibited by the pilot. Hence,

here, the CE dynamics HCE are discussed first. As the forcing function was in line with [52], the CE

dynamics are also inspired by the same paper in terms of its structure as seen in Equation 3.2.

HCE(s, t) =
Kc(t)

s(s+ ωb(t))
(3.2)

WhereKc is the CE gain and ωb is the break frequency. As the study focuses on the time-varying dynamics

of the CE, a parameter function is required to simulate this time-varying behaviour. There are many

mathematical functions used to simulate time transitions out of which, the sigmoid function is prominent

given its rate and the moment of maximum rate can be selected as required. Equation 3.3 shows the

structure of the sigmoid function, where P1 and P2 are the initial and final values; G is the rate of transition,

i.e., it defines how quickly the transition happens and; M is the moment of maximum rate of transition, i.e.,

it shows where the sigmoid is centred. Figure 3.1 represents the sigmoid function with varying G values

(0.08, 0.3, 100) all centred at the same M = 100s to show the function’s behaviour.

P (t) = P1 +
P2 − P1

1 + e−G(t−M)
(3.3)
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Figure 3.1: Varying Sigmoid function behaviour

Now, having defined the transition function, the CE dynamics have to be selected. In general, by varying

the values of Kc and ωb, the CE can be made to have the desired behaviour, with our focus being single

integrator-like(SI) or double integrator-like(DI) dynamics. In the simulations, the CE dynamics chosen have

their values selected such that the time and frequency domain outputs which will be seen in Section 3.0.2

have prominent effects for easier understanding. Essentially, the break frequency ωb can be varied from a

high value to depict a single integrator-like to a low value representing a double integrator-like dynamics.
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Lastly, the reason behind choosing ωb to be differing by a factor of 100 is to have the respective CE

behaviours approximate a pure-SI and pure-DI. Table 3.2 shows the values of the CE parameters chosen

for these simulations.

CE dynamics kc ωb[rad/sec]

Single integrator-like(SI) 90 20

Double integrator-like(DI) 30 0.2

Table 3.2: Parameters of the CE dynamics

Pilot Model and calculations

As the pilot aims to control the CE dynamics and adjusts his control behaviour based on the task-specific

requirements; the CE dynamics are used to obtain the pilot model parameters using the Verbal adjustment

Rules (VAR). The following pilot model is used to define the HC, which is a simplification over Equation 2.1:

Hp(s, t) = Kp(t)(τL(t)s+ 1)e−sτe(t)
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(3.4)

In Equation 3.4,Kp is the pilot gain, τL the lead time generated by the pilot (as an optimal pilot is considered

in the simulations, the lead time τL of the pilot equals the lag of the CE, i.e., the CE time constant τCE = 1
ωb
),

τe the effective time delay, ωnm the neuromuscular frequency and ζnm the neuromuscular damping ratio.

Here, the NMS parameters are kept constant and are chosen to be ωnm = 15rad/sec and ζnm = 0.7. The
lead and lag terms, the latter being removed from Equation 3.4 as SI and DI CE dynamics don’t need the

lag term, are adjusted by the pilot to achieve the −20dB/decade slope near the crossover region while
the gain is adjusted to place the crossover frequency ωc as required. The gain and effective time delay

are the primary means by which the pilot adjusts the closed-loop stability. As McRuer didn’t account for

the NMS transfer function in his crossover model, minor adjustments have to be made to the parameter

values obtained from the VARs. Given that the second-order NMS term induces a certain time delay to the

open-loop system, this has to be accounted for such that the crossover frequency is reduced to maintain

the phase margin obtained from the VARs, this is done by changing the gain, which is, adjusting the gain

value to accommodate the NMS. Table 3.3 shows the values obtained for the pilot model for both, the SI

dynamics and the DI dynamics. The sigmoid function is then used to transition between these pilot models.

Pilot dynamics kp τL[sec] τe[sec] ωnm [rad/sec] ζnm

Hp1 for SI 0.7057 0.05 0.183 15 0.7

Hp2 for DI 0.0062 5 0.323 15 0.7

Table 3.3: Parameters of the Pilot

To this existing pilot model, another term needs to be added that represents the non-linear part of the human

controller, the remnant. McRuer’s pilot model was quasi-linear and hence there were no non-linearities

included in that model but, as humans are inherently non-linear, a remnant term needs to be added to

increase the fidelity of the simulations. As mentioned in Section 2.1.2, there exists no consensus on

remnant modelling and hence as mentioned by [16], a second-order remnant structure will be taken of

the form of Equation 2.3 where the time constant does not vary with time but the remnant gain Kn does.

Hence, to obtain the remnant gain values for SI and DI CE dynamics, an analytical solution where the ratio

of the power in control input due to noise to power in control input was taken to be 0.2 [15]. Solving this

equation for Kn resulted in Equation 3.5. The gain values obtained from this equation are mentioned in

Table 3.4.

kn =
1

2
·

√√√√√√
πσ2

u2
ft∫∞

0

∣∣∣ 1
1+Hp(ω)Hc(ω)Hdel (ω)

∣∣∣2∣∣∣∣ 1
Tn(jω)s+1)2

∣∣∣∣2 W (ω)dω

(3.5)
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CE dynamics kn[-] Tn[sec]

Remnant for SI 0.0011 0.06

Remnant for DI 0.00059 0.06

Table 3.4: Parameters of the CE dynamics

Where Hdel(ω) represents the effective time-delay of the pilot.

Thus, having the forcing function ft, the pilot model Hp and the CE dynamics HCE and using the sigmoid

function for the latter two, a time-varying target tracking task was simulated. A MATLAB script was used to

obtain the frequency domain results while a simulink model (shown in Figure 3.2, Figure 3.3, Figure 3.4 and

Figure 3.5) was developed to obtain the time-domain results that are discussed briefly in the next section.

An obvious characteristic of the simulations should be that the instability will occur in the transient phase of

the OL and not when the combined dynamics are at a steady state, i.e., when SI-like CE dynamics are

handled by Hp1 and DI-like CE dynamics by Hp2. In these cases, the crossover frequency ωc and phase

margin φm will be the same obtained by the VARs. Table 3.5 shows the respective values for both CE

conditions.

CE dynamics ωc[rad/sec] φm[
◦ ]

OL for SI dynamics 3.17 39.14

OL for DI dynamics 2.80 22.82

Table 3.5: Crossover frequency ωc and phase margin φm for the open-loop dynamics
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Figure 3.2: Tracking task simulink model

Figure 3.3: Pilot simulink model
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Figure 3.4: Remnant simulink model

Figure 3.5: CE simulink model

3.0.2. Simulation Results
The culmination of the designed setup is a simulation environment capable of giving high-fidelity frequency-

domain and time-domain data that can be used to assess the pilot’s control behaviour. The stability of a

system cannot be inferred directly from time-domain signals of the tracking task but can be studied in-depth

in the frequency domain using open-loop frequency domain techniques. The structure of this research

can be explained in a succinct form that frequency domain techniques will be used to identify regions

of instability as the pilot adapts to changing CE dynamics and then these regions will be used to obtain

time-windows to assess various signals and their characteristic trends. Here, a constant non-adaptive pilot

is also taken to compare results and better understand the adaptive behaviour of the pilot.

Firstly, several details need to be known to understand and interpret the results that are presented below.

These details are:

• The time duration of all simulations is 200seconds; Measurement time Tm, which is not a relevant

factor for simulations but required for future experiments can be taken to be a multiple of 30s.

• The time-step dt = 0.01seconds for time-domain simulations and 0.1seconds for frequency-domain
simulations.

• The adaptive pilot is considered both, optimal and delayed, i.e., MCE = Mpilot and MCE < Mpilot,

respectively. The former represents a simplified and hypothetical case while in real-world scenarios,

an adaptive pilot has a time lag for when they identify the change in the CE dynamics as seen in [59]

and taken care of by the latter case.
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• The moment of maximum rate of change is taken to be the mean of the time duration, i.e., M =
100seconds for the optimal pilot and 101seconds for the delayed, realistic pilot.

• The rate of change of the sigmoid function for both, the CE and the pilot is then taken to be G =
100sec−1 which is a step-change and represents a sudden change in the CE dynamics, for example,

structural damage on aircraft or sudden mode change/SAS failure.

Keeping these in mind, the results of the simulations are as presented below after the compensatory

tracking task and a time-trace of the forcing function, which are shown for ease of reference.

Figure 3.6: Compensatory tracking task for reference
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Figure 3.7: Forcing function in time-domain

In the frequency domain, a direct method exists to study the behaviour of an open-loop system, bode plots,

i.e., the magnitude and phase plots. The magnitude plot shows the amplitude of the system’s response at

different frequencies and the the phase plots show the phase shift introduced by the system at different

frequencies. Now, a gain crossover frequency ωcg is defined as the frequency at which a system crosses

the 0dB line in the magnitude plot; at this frequency ωcg, if the phase of the system φ(ω=ωcg) is checked

then a phase margin φm can be defined as φm = 180◦ − φ(ω=ωcg). This phase margin is the amount

by which the phase of the open-loop transfer function can be increased (in degrees) before the system

becomes unstable; a control system is considered stable if its phase margin is positive and a larger phase

margin indicates greater stability. Hence, using this concept, if the phase margin φm is calculated at each

time-step of the duration of the simulation of the time-varying OL dynamics (CE×HC), then the stability of
the system can be checked for as a function of time. As a result, if the φm becomes ≤ 0, then the system

can be called unstable.
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In the simulations carried out, the phase margins were obtained for the open-loop dynamics of both, the

constant pilot and the optimal adaptive and delayed pilot as shown below. It is noted that two figures have

been shown for each case with the second showing a magnified view of the regions of instability(φm ≤ 0)
for the delayed pilot. The optimal adaptive pilot results are a purely theoretical case, which shows that

there are analytical cases where the open loop system is always stable.
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Figure 3.8: φm of the constant pilot+CE OL dynamics
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Figure 3.9: Magnified φm of the constant pilot+CE OL dynamics
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Figure 3.10: φm of the optimal adaptive pilot+CE OL dynamics
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Figure 3.11: Magnified φm of the optimal adaptive pilot+CE OL dynamics
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Figure 3.12: Magnified φm of the delayed adaptive pilot+CE OL dynamics

It can be seen in Figure 3.9, that with the pilot not adapting to the changing CE dynamics, as the weight of

the DI tends to become more than SI, the phase margin reduces and consequently the system becomes

unstable never to recover as the pilot model that caters to SI dynamics cannot handle DI dynamics.

Contrastingly, as the pilot is optimal in Figure 3.11 the phase margin never becomes ≤ 0 and the system
remains stable throughout the time duration. Lastly, as seen in Figure 3.12 even though the pilot is adaptive

and changes their behaviour with the CE dynamics, the stability of the OL is compromised around M as

regions of instability can be seen owing to the delay of the optimal pilot in detecting and hence, adapting

to the changing CE dynamics. These regions, though they last only for milliseconds, show the inherent

instability of the OL after which the pilot recovers the OL stability.

Having identified regions of instability, time-domain data of the pilot’s control output y, control input u and

error signals e, have been captured by the Simulink models shown above. The following figures show
these time traces for both, constant, and delayed adaptive pilots. The case of optimal adaptive pilot is not

considered in time as it is completely theoretical.
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Figure 3.13: Control output and input for the case of constant pilot
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Figure 3.14: Error signals for the case of constant pilot
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Figure 3.15: Control output and input for the case of adaptive pilot
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Figure 3.16: Error signals for the case of adaptive pilot

In Figure 3.13 and Figure 3.14, these time-domain signals have been shown till just before the signals

diverge and go to unreal-magnitudes. The reason behind showing these signals is to show how in the

time-domain the constant pilot’s control input as well as the system output look for inherently unstable

systems. For the case of the delayed adaptive pilot, Figure 3.15 and Figure 3.16 give valuable insights. At

the point where the DI becomes more prominent, i.e., just after Mpilot, the control input of the pilot can

be seen peak given their delayed detection and followed by a drastic decrease (red signals) compared

to pre-transition conditions to maintain the same system control output. This shows how the pilot adapts

to DI-like dynamics by decreasing his gain as seen by the control input signals. Also, the error signals

become more prominent post M showing the comparative difficulty of controlling DI over SI.

These frequency and time-domain data will be scrutinized further in research phase 1, where the time-

duration of instability will be calculated from phase margin φm plots and corresponding time-domain signals

will then be extracted. A statistical analysis will be run on these time-domain signals to identify characteristic

properties. These tests will be exhaustively explored and the regions will also be varied to analyse, for

example, the start of instability regions or the trends that occur just before and similarly for the ends of

these instability regions.

The successful execution of this analysis has the potential to enhance pilot training through the online

application of the derived methodology. Furthermore, it aids in the identification of controlled element (CE)

dynamics that should be avoided when engaging or disengaging Stability Augmentation Systems (SAS).

These simulations will also be extended to encompass human-in-the-loop experiments, facilitating the

implementation and scrutiny of real-world scenarios.



4
Research Methodology

This chapter deals with the research methodology to be used throughout the duration of this project and

elaborates on the relevant progress required to answer the research question proposed in Chapter 1. The

structure of this research is such that post the literature study and preliminary set of simulations, the main

research is divided into two phases, namely, research phase 1 and research phase 2.

4.1. Research Phase 1
Given the preliminary simulations showing the phase margins as a function of time and the corresponding

time-domain signals, namely, control input u, system output y and error e, this phase is planned to deal
with a detailed simulation study on the basis of the former results.

The goal of this research phase is to obtain answers to sub-questions 1,2 and 3 mentioned in Chapter 1.

In order to do so, the following steps will be followed:

• Use Matlab and Simulink to make a simulator that gives phase margins of resultant open-loop

dynamics of the time-varying CE dynamics and the adaptive human controller. Using this simulator,

the time stamps of reduced stability/ complete instability will be obtained for the corresponding CE-HO

combinations. These simulations will primarily focus on a delayed pilot to increase the fidelity of the

simulation along with two G values, namely G1 and G2. Where, G1 will represent a sudden change

of CE dynamics using a higher value, for example, a sudden instability caused by an SAS failure;

while G2 will be shown for slower CE changes using lower values, for example, a change in the

aircraft’s altitude.

• The use of two different G values from the first step of simulations will help to answer sub-question 3

eventually.

• The obtained CE-HO parameters from the simulator will be used to run the Simulink model shown in

Chapter 3 which acts as a manual tracking task simulator giving the time-domain signals u, e and y
as the output. Then after, the time stamps from the previous simulator will be used to extract these

signals for the specific duration. By doing so, the time-domain trends will be obtained for the regions

of reduced stability/ complete instability.

• The resultant time periods of the signals will be statistically analysed based on the mean, variance

and standard deviation. The first derivatives of these signals will also undergo the same statistical

tests. As a result, relevant signals and their rates will be compared with the pre-transition duration of

the simulation, which includes a steady-state CE-HO combination. The aim here is to obtain definite

trends using one or multiple signals.

• Monte-Carlo simulations will be run for the process detailed above to successfully generalize the

results of the time signals, for both, slow (G2) and fast (G1) CE changes.

It is noted that the CE changes will only include single-integrator-like (SI) to double-integrator-like (DI)

given that a transition from easy-to-difficult dynamics is prone to result in instability which is the focus of

this study. Moreover, the simulation used to obtain phase margin vs time (φm − t) plots uses Equation 2.2
as the pilot model and does not include the remnant transfer function as it is independent of phase margins,

which are completely a function of the system’s dynamics, i.e., Hp(s) andHCE(s). Consequently, research
phase 1 will help answer sub-questions 1,2 and 3 that deal with signals, their characteristics and the effect

of rate of change on the detection of change in CE dynamics.
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4.2. Research Phase 2
The results and the answers from research phase 1 will be used to then form hypotheses which will be

proved/disproved in research phase 2. This research phase focuses on the experimental implementation of

the simulations to generate validations of the model that is created to understand the detection mechanism

of the adaptive pilot.

In this phase (research phase 2), the Human-Machine Interaction Laboratory (HMI Lab) simulator of

the Faculty of Aerospace Engineering at Delft University of Technology will be used to conduct manual

tracking task experiments, with compensatory and pursuit displays. Here, even though the simulations are

mathematically restricted to replicate compensatory tracking tasks, the same results will also be used for

pursuit tracking tasks. The details of the second phase are as mentioned below:

• An experimental setup will be designed to conduct within-participants experiments using pursuit and

compensatory displays with each display having two G values, G1 and G2 for a transition SI → DI
CE transition.

• A Maximum Likelihood Estimation (MLE) algorithm will be used that utilizes the magnitude and phase

data obtained from the experimental setup for the pilot’s parameter estimation.

• Subsequently, the simulators used in research phase 1 will be used along with the relevant signal’s

characteristics to verify the answers obtained from the simulations.

• Ultimately, all four sub-questions will be answered resulting in an answer to the research question

and fulfilling the research objective.

At its culmination, this study will aim to equip the research community with a method to better understand

how the adaptive pilot detects the changes in controlled element dynamics in manual tracking tasks.
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Pilot’s Detection of Change in Aircraft Dynamics: An Open-Loop
Stability Model For Varying Display Types and Transition Rates

Devashish Patel ∗

Control and Simulation Section, Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands

The human operators’ manual control behaviour under time-invariant conditions has been
successfully modelled. However, significant gaps remain in understanding and modelling
adaptive manual control behaviour under time-varying conditions. One such less-understood
aspect is the pilot’s ability to detect changes in time-varying controlled element dynamics. This
study aims to develop a mathematical model that investigates open-loop stability as a criterion in
compensatory and pursuit tracking tasks to model the pilot’s detection of change in controlled
element dynamics across different transition rates, particularly for transitions from stable to
less-stable vehicle dynamics. The model operates under the assumption that trained human
operators track statistical properties of tracking task signals within periods of compromised
open-loop stability to trigger their detection of change in dynamics. The model identifies regions
of reduced stability and simulates the tracking task signals through time-varying computer
simulations. Subsequently, human-in-the-loop experiments are conducted to validate the model.
The validated model demonstrates a combined accuracy of 88.54% for the compensatory task
and 80.62% for the pursuit task. Notably, in the experiments, the error signal consistently
outperforms the error rate signal across all transition rates, diverging from the results of
the computer simulations. Overall, the proposed model’s ability to successfully predict pilot
detection across a spectrum of transition rates marks an advancement towards developing more
human-like automation.

Nomenclature
¤𝑒(𝑡) = Error rate signal (°/𝑠)
¤𝑢(𝑡) = Control input rate signal (°/𝑠)
¤𝑦(𝑡) = Control output rate signal (°/𝑠)
𝜔𝑏 = CE break frequency (𝑟𝑎𝑑/𝑠)
𝜔𝑐 = Crossover frequency (𝑟𝑎𝑑/𝑠)
𝜔𝑖 = Bandwidth of forcing function (𝑟𝑎𝑑/𝑠)
𝜔𝑚 = Fundamental frequency (𝑟𝑎𝑑/𝑠)
𝜔𝑡 [𝑖] = Frequency of the 𝑖𝑡ℎ sinusoid (𝑟𝑎𝑑/𝑠)
𝜔𝑛𝑚 = Natural frequency of the neuromuscular system (𝑟𝑎𝑑/𝑠)
𝜙 = Phase (𝑟𝑎𝑑)
𝜙𝑚 = Phase margin (°)
𝜙𝑡 [𝑖] = Phase shift of the 𝑖𝑡ℎ sinusoid (𝑟𝑎𝑑)
𝜌 = Pearson correlation coefficient (-)
𝜎 = Standard deviation (-)
𝜎2
𝑢 = Total power in control input (𝑟𝑎𝑑2)
𝜎2
𝑢 𝑓𝑡

= Variance/Power of forcing function in control input (𝑟𝑎𝑑2)
𝜎2
𝑢𝑛 = Variance/Power of noise in control input (𝑟𝑎𝑑2)
𝜏𝑒 = Effective time delay (𝑠)
𝜏𝑛 = Remnant time constant (𝑠)
𝜁𝑛𝑚 = Damping ratio of the neuromuscular system (-)
𝐴𝑡 [𝑖] = Amplitude of the 𝑖𝑡ℎ sinusoid (𝑟𝑎𝑑)
𝑒(𝑡) = Error signal (°)
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𝑓𝑡 (𝑡) = Forcing function (°)
𝐹𝑁 = False negative (-)
𝐹𝑃 = False positive (-)
𝐺 = Rate of transition (𝑠−1)
𝐻𝑛 (𝑠, 𝑡) = Remnant transfer function (-)
𝐻𝑝 (𝑠, 𝑡) = Pilot transfer function (-)
𝐻𝐶𝐸 (𝑠, 𝑡) = Controlled Element (CE) transfer function (-)
𝑘 = Multiple of base frequency (-)
𝐾𝑐 = CE gain (-)
𝐾𝑛 = Remnant gain (-)
𝐾𝑝 = Pilot gain (-)
𝑀 = Moment of maximum rate of transition (𝑠)
𝑛(𝑡) = Noise signal (°)
𝑃1 = Initial parameter value (-)
𝑃2 = Final parameter value (-)
𝑃𝑛 = Specific power ratio (-)
𝑅𝑀𝑆𝐸 = Root mean square error (°)
𝑡 = Time (𝑠)
𝑇𝐿 = Lead time (𝑠)
𝑇𝑚 = Measurement time (𝑠)
𝑇𝜙𝑚≤15° = Time of the first instance of phase margin ≤ 15°
𝑇𝑀𝑝𝑖𝑙𝑜𝑡

= Time value of centre (𝑀) of pilot-sigmoid (𝑠)
𝑇𝑡𝑟 = Time taken to transition from 5% to 95% of final value (𝑠)
𝑇𝑁 = True negative (-)
𝑇𝑃 = True positive (-)
𝑢(𝑡) = Control input signal (°)
𝑊 = Intensity of white noise (-)
𝑤(𝑡) = Gaussian white noise (-)
𝑦(𝑡) = Control output signal (°)

I. Introduction
Loss of Control-Inflight (LOC-I) has long been one of the leading causes of fatal aviation accidents [1], which can

arise in situations like Stability Augmentation System (SAS) failure. In such conditions, the pilot has to take control of
the aircraft immediately i.e., shift from supervisory control to manual control. Analysis of such safety-critical manual
control tasks can help develop insights into adaptive human behaviour and increase safety. In the present context, as
a result of McRuer’s crossover model [2], we have a thorough understanding of pilot-vehicle systems in steady-state
(time-invariant) conditions but lack valuable insight into conditions of time-varying controlled element dynamics [3],
which has made it vital to understand adaptive human control behaviour better. Moreover, with the development of
new flight control systems, the current models of human control behaviour have fallen behind [4]. Hence, this study
addresses the pressing need for mathematical models that adequately describe adaptive human control behaviour. The
importance of this research lies in its potential applications; gaining insight into the limitations of human operators can
significantly contribute to the advancement of man-machine systems. Furthermore, at a time when there is a growing
emphasis on reducing human intervention, understanding human adaptability can enhance the design of human-like
automated control systems that can address the phenomena highlighted in the automation paradox.

In the pursuit of modelling adaptive human behaviour, Young et al. [5] identified adaptive behaviour to occur in
three stages, namely, detection, where the human operator detects that a change in Controlled Element (CE) dynamics
has occurred; identification, where the human operator adapts to the new CE dynamics and; adjustment, which involves
reducing the error following the change in strategy. It can be argued that the latter two stages occur simultaneously
while the first phase is distinct. Amongst all the three phases, the detection phase is of prime interest to this study.
The ability to mathematically model the pilot’s detection phase is essential, as such a model can be utilised for pilot
training and the development of more efficient automatic control systems. For instance, this could involve enhancing
the detection process artificially or designing systems that produce changes in dynamics that are easier for pilots to
detect. The significance of detection is highlighted in Sadoff’s study [6], which emphasises the necessity for the aircraft
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to be engineered in a manner that ensures acceptable aircraft dynamics in the event of inoperative or failed Stability
Augmentation Systems (SAS). This directly illustrates the practical application of having a model for the Human
Operator’s (HO) detection of changes in CE dynamics.

Numerous studies have explored various approaches to modelling adaptive human behaviour [5, 7–19]. Among
these, the research conducted by Hess [18][19] stands out. Hess’s study involved the use of time-varying CE dynamics,
incorporating both slow and fast changes, to investigate human adaptation in pursuit and compensatory tracking tasks,
including single and two-axis tasks. In his findings, the detection phase was identified based on the system’s error rate
crossing a threshold value derived from a multiple of the steady-state (pre-transition) standard deviation. Subsequently,
several models, particularly for compensatory tracking tasks where CE dynamics transition from more stable to less
stable states, have been proposed. These models utilise a similar threshold, either on the tracking error or error rate [10]
[20][21]. The underlying premise of these findings is that well-trained human operators keep track of the statistical
properties of signals and can detect changes by identifying abnormalities in them. Notably, the findings regarding the
graceful degradation of Flight Control Systems (FCS), leading to improved tracking performance (reduced RMSE) [22],
suggest that the rate of change of CE dynamics also influences adaptive control behaviour.

To date, the aforementioned research has primarily concentrated on identifying the signals employed by human
operators to detect changes in controlled element (CE) dynamics. However, a crucial aspect that remains inadequately
addressed is understanding the rationale behind the utilization of these signals during the time interval preceding
detection, with a specific focus on how varying rates of change in CE dynamics influence their usage. With current
literature [3, 23–26] limited in the rates of transition examined, with the majority focused on 100𝑠−1 (very fast) and/or
0.5𝑠−1 (very slow), the knowledge gap suggests an incomplete understanding of the detection phase in human adaptive
control behaviour. In essence, a fast transition makes the change obvious while a slow transition makes it difficult for
the adaptive pilot to detect the change. Moreover, it also raises a question regarding the impact of display types on the
detection process for varying transition rates. This question highlights a lack of understanding of the role of visual
feedback and interface design in adaptive manual control behaviour.

In practical applications, different types of displays are used, with compensatory and pursuit displays being the
primary choices in aviation. While in the former, the only information provided to the HO is the error 𝑒 between the
system output 𝑦 and target signal 𝑓𝑡 , the latter provides explicit visibility of the target signal and the system output,
which also leads to the visibility of the error (𝑒 = 𝑓𝑡 − 𝑦). The display types and their associated control diagrams are
shown in Figure 1 and Figure 2. Here, the compensatory display, which only includes the error signal, allows for the
adoption of a single strategy (𝐻𝑝 (𝑠, 𝑡)) for the tracking task while the pursuit display offers multiple strategies that
the pilot can utilise, namely, 𝐻𝑝𝑒 (𝑠, 𝑡), 𝐻𝑝𝑡 (𝑠, 𝑡), and 𝐻𝑝𝑥 (𝑠, 𝑡). As the precision model and the crossover model are
limited to compensatory displays, the simulations conducted in this study pertain to compensatory displays. However,
the experiments also include the pursuit display to evaluate the model’s applicability and performance comprehensively.

Furthermore, the universally accepted precision model by McRuer and Jex [7], defines the pilot’s behaviour towards
Time-Invariant (TI) CE dynamics for compensatory displays. Based on this model, it can be argued that the stability
of the Open-Loop (OL) system during the CE transition from stable to less-stable dynamics will decrease or will be
completely lost when the pilot does not adapt. Notably, the adapting pilot adapts to the changed CE dynamics but
with a delay; there exists a certain delay between the actual moment of change in CE dynamics and the moment of the
pilot’s detection of change. Consequently, the pilot’s delayed adjustment of control behaviour, may result in transitional
instability/reduced stability of the open-loop system. The study aims to use this phenomenon to model the pilot’s
detection of changes in CE dynamics. To achieve the objective, time-varying compensatory tracking task simulations
are conducted to obtain two outputs, namely, the crossover model parameters and time domain signals. While the
former helps determine the time duration (region) of compromised OL stability the latter provides the time signals of
the tracking task. Both these sets of results are then examined using Monte Carlo simulations followed by experiments
that address the effect of different display types. This approach gives an insight into how varying rates of change affect
the HO’s use of tracking task signals to detect the change in CE dynamics as a function of the provided display.

Notably, in this study, the CE dynamics always transition from stable (Single-Integrator (SI)) dynamics, indicating a
responsive vehicle, to unstable (Double-Integrator (DI)) dynamics characterized by sluggishness and reduced stability
margins. This characteristic feature aims to make the change in CE dynamics easily noticeable to the pilot and visible in
the OL phase margins.

The structure of this paper is as follows: first, a comprehensive explanation of the design, methodology, and
outcomes of the computer simulations is provided in section II, followed by the resulting hypotheses. Thenafter, the
details of the experiment’s design and data analysis methodology are outlined in section III, while section IV presents
the results of the experiments. Lastly, section V comments on the findings of the study with section VI consisting of the
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conclusions.

II. Methodology
The initial phase of the study deals with Matlab simulations that are categorised into two parts, based on required

outputs:
• Crossover model calculations denoted as frequency-domain ( 𝑓 -domain) outputs
• Time signal calculations denoted as Time-domain (𝑡-domain) outputs
Here, the 𝑓 -domain outputs help analyse the system’s behaviour in the frequency domain and comprise the required

crossover model parameters, namely, the crossover frequency (𝜔𝑐) and phase margin (𝜙𝑚) to quantify the stability of the
open-loop (OL) system as a function of time for Time-Varying (TV) CE dynamics. These results are interpreted as the
duration of compromised stability margins. The 𝑡-domain results are obtained using a Simulink model that replicates
the control diagram of a compensatory tracking task depicted in Figure 1. This generates six time signals, namely, error
𝑒(𝑡), control input 𝑢(𝑡), system output 𝑦(𝑡), and their derivatives ¤𝑒(𝑡), ¤𝑢(𝑡), and ¤𝑦(𝑡). Thus, the computer simulations
help identify how the regions of reduced open loop stability manifest in the 𝑡-domain signals, and use this insight to
model the human controller’s detection of change in CE dynamics.

This section first details the common design setup of the computer simulation required to obtain both outputs in
subsection II.A, followed by the output-specific design steps in subsection II.B and subsection II.C.
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n(t)

u(t) y(t)
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Fig. 1 Compensatory display and the corresponding tracking task control diagram
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Fig. 2 Pursuit display and the corresponding tracking task control diagram
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A. Common Simulation Setup
The common design steps for both sets of output include the design of the Controlled Element (CE) and the pilot

model. While for the 𝑓 -domain output, the CE-pilot system is treated only for the open-loop system they constitute (as
illustrated in Figure 3), the 𝑡-domain outputs require using the entire closed-loop compensatory tracking task control
loop. The simulations feature the TV CE dynamics that transition from dynamics 1 (DYN1) (single-integrator-like
dynamics) to dynamics 2 (DYN2) (double-integrator-like dynamics) denoted as DYN12 and modelled using a sigmoid
function.

Following McRuer’s Verbal Adjustment Rules (VAR), a distinct pilot model is derived corresponding to DYN1 and
DYN2 of the CE [13][18][27]. It is essential to note that this method of obtaining the pilot employs a time-invariant
approach, and the resulting pilot model can only accommodate the specific CE dynamics from which it is derived. The
step-by-step modelling process is detailed below:

HCE(s,t)Hp(s)
e(t) u(t) y(t)

Hp(s,t)

Fig. 3 Open-loop of the Compensatory Tracking Task

1. Controlled Element (CE) Dynamics:
The first step in designing the simulation involves defining a set of initial and final dynamics of the Controlled

Element (CE). The transfer function of the TV CE, denoted as 𝐻𝐶𝐸 (𝑠, 𝑡), is structured according to Eq.(1), where 𝐾𝑐 (𝑡)
represents the TV CE gain, and 𝜔𝑏 (𝑡) denotes the TV break frequency in rad/s. The rationale behind this structure is
elaborated in Appendix A.

𝐻𝐶𝐸 (𝑠, 𝑡) =
𝐾𝑐 (𝑡)

𝑠(𝑠 + 𝜔𝑏 (𝑡))
(1)

The VAR dictate that the CE dynamics determine the pilot parameter values, therefore, the CE dynamics are required
to be modelled carefully. The values of 𝐾𝑐 (𝑡), which only affect the scaling, are chosen based on typical values used in
manual control tasks, with 𝐾𝑐1 (𝑡) = 90 and 𝐾𝑐2 (𝑡) = 30. On the other hand, 𝜔𝑏 (𝑡) is a crucial parameter selected to
change the behaviour of CE dynamics from single-integrator-like to double-integrator-like within the HO’s range of
perception. As the pilot can perceive changes within the range of 0.1 − 10 rad/s, the break frequencies are selected to be
𝜔𝑏1 (𝑡) = 20 rad/s for DYN1 and 𝜔𝑏2 (𝑡) = 0.2 rad/s for DYN2. This configuration ensures that DYN1 possesses a pole
beyond the pilot’s range of perception, effectively rendering the CE a single-integrator. Conversely, DYN2 features a
pole before the start of the HO’s perception range, causing it to behave like a double-integrator. The selected values
for the CE dynamics align with existing literature [25–27], as they meet the requirement of 𝜔𝑏 >> 1 rad/s to exhibit
single-integrator-like behaviour and 𝜔𝑏 << 1 rad/s for double-integrator-like behaviour.

2. Parameter Function:
The next step, before obtaining the pilot models, involves selecting a parameter function to simulate the time-varying

nature of the CE. The transition function selected in this study is the sigmoid function because of its ability to let
the user select two essential parameters, namely, the rate of transition 𝐺 [𝑠−1] and the moment of maximum rate of
transition 𝑀 [𝑠], which is also the centre of the sigmoid. The transition is then defined for each required parameter 𝑃1
to parameter 𝑃2 that marks the start and end values. The equation of the sigmoid function is given below.

𝑃(𝑡) = 𝑃1 +
𝑃2 − 𝑃1

1 + 𝑒−𝐺 (𝑡−𝑀 ) (2)

Since the rate of transition (𝐺) significantly impacts the adaptive pilot’s detection, five distinct values of 𝐺 are
selected for the simulations: 0.5, 2.94, 5.88, 50 and 100𝑠−1. These values span a very slow change, like a change in
aircraft’s altitude, to a rapid change like a Stability Augmentation System (SAS) failure. The difference in the behaviour
of the sigmoid function for different 𝐺 values centred around the time duration (which is 90s for both simulations) at
𝑀 = 45s, is depicted in Figure 4 using the slowest and fastest 𝐺 values. This diagram accurately represents how all
the required parameters vary with time. As the rate of transition 𝐺 varies across different simulation scenarios, their
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selection was based on the time required, in seconds, to transition from 5% to 95% of the final value, denoted as 𝑇𝑡𝑟 . For
instance, in Figure 4 for 𝐺 = 0.5𝑠−1, 𝑇𝑡𝑟 corresponds to the time duration between the two dashed lines. Consequently,
the values of 𝑇𝑡𝑟 were determined to be ≈ 10, 2, 1, 0.10 and 0.05s, respectively. Lastly, in the simulations, the delay in
the pilot’s detection of change in CE dynamics is simulated by shifting the HO’s sigmoid in time. That is, by keeping
the centre of the pilot’s sigmoid (𝑀𝑃𝑖𝑙𝑜𝑡 ) beyond 𝑀𝐶𝐸 .
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Fig. 4 Sigmoid function with varying rates of transition

3. Pilot Model:
The next essential step involves calculating the pilot models. The TV pilot transfer function 𝐻𝑝 (𝑠, 𝑡) employed in

the simulations is based on the simplified precision model proposed by McRuer and Jex [7] with the addition of the
neuromuscular system (NMS) as seen in Eq.(3). Here, 𝐾𝑝 (𝑡) represents the TV pilot gain; 𝜏𝐿 (𝑡) signifies the TV lead
time in seconds; 𝜏𝑒 (𝑡) denotes the TV effective time delay in seconds; 𝜔𝑛𝑚 is the natural frequency of the neuromuscular
system in rad/s and 𝜁𝑛𝑚 the damping ratio of the neuromuscular system.

For both conditions of DYN1 and DYN2, the parameters of the neuromuscular system are kept constant, with
𝜔𝑛𝑚 = 15 rad/s and 𝜁𝑛𝑚 = 0.7.

𝐻𝑝 (𝑠, 𝑡) = 𝐾𝑝 (𝑡) (𝜏𝐿 (𝑡)𝑠 + 1)𝑒−𝑠𝜏𝑒 (𝑡 ) 𝜔2
𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2
𝑛𝑚

(3)

The values of pilot model parameters 𝐾𝑝 (𝑡), 𝜏𝐿 (𝑡), and 𝜏𝑒 (𝑡) are determined separately for DYN1 and DYN2 using
the Verbal Adjustment Rules (VAR) prior to applying the parameter function. The VAR used for these calculations are
specified in Eq.(4), with the bandwidth 𝜔𝑖 of the forcing function 𝑓𝑡 (𝑡) taken as 𝜔𝑖 = 2.72 rad/s. The motivation behind
selecting this bandwidth is explained in subsubsection II.C.1. The numerical values of the CE and the obtained pilot
model parameters for DYN1 and DYN2 are mentioned in Table 1.

𝜔𝑐 = 𝜔𝑐0 (𝐻𝐶𝐸) + 0.18𝜔𝑖

𝜏𝑒 = 𝜏0 (𝐻𝐶𝐸) − Δ𝜏 (𝐻𝐶𝐸) 𝜔𝑖

𝜏𝐿 =
1
𝜔𝑏

𝜙𝑚 =
𝜋

2
− 𝜔𝑐𝜏𝑒

(4)

With 𝐾𝑝 obtained using:
|𝑌𝑂𝐿 ( 𝑗𝜔) |𝜔=𝜔𝑐

= 1.0 (5)
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B. Simulation Setup - Crossover Model Calcuations
This subsection provides details of the required setup to obtain the 𝑓 -domain results. Upon obtaining the CE and

pilot models, Matlab’s Symbolic Math Toolbox is utilised to generate a symbolic state-space (𝑠𝑠) representation of
both the CE and pilot model such that, the elements of this symbolic state-space system can be updated with new values
at each time step.

In the case of the state-space representation, each element of all four system matrices (𝐴, 𝐵, 𝐶 and 𝐷) is required to
transition using the sigmoid function. As illustrated in Eq.(3), as the effective time delay (𝜏𝑒) is an exponential term,
a second-order pade approximation is necessary to accommodate this parameter in the 𝑠𝑠. Moreover, a state-space
representation of the system is preferred because it was found that transfer functions transitioned using the scheduled
parameter function (sigmoid) exhibited divergence from the required transition behaviour; the details of which are
detailed in Appendix A.

Subsequently, the simulation is run to obtain the open-loop system at each time step using the updated state-space
matrices (𝐻𝑂𝐿 (𝑠) = 𝐻𝑃 (𝑠) × 𝐻𝐶𝐸 (𝑠)). With the open-loop system calculated, the crossover frequency 𝜔𝑐, the
corresponding phase 𝜙, and the phase margin 𝜙𝑚 are calculated from the frequency response of the 𝐻𝑂𝐿 (𝑠). Table 1
also states the crossover frequency and phase margin obtained for DYN 1 and DYN 2, the time-invariant conditions
used as the start and end dynamics. The process thus yields the 𝜙𝑚 of the TV OL system, which can be further utilised
to identify the Region Of Interest (ROI). The objective is to identify regions of instability/ reduced stability based on
specific criteria - instability is characterised by a complete loss of phase margin 𝜙𝑚 i.e., the region (time duration) where
the phase margin as a function of time 𝜙𝑚 (𝑡) drops below 0°. On the other hand, for reduced stability, the criteria are set
to contain the region where 𝜙𝑚 ≤ 15°. Therefore, the ROI starts when the time-varying simulation exhibits 𝜙𝑚 ≤ 15°,
extending up to the moment of pilot detection (𝑇𝑀𝑝𝑖𝑙𝑜𝑡

) indicated by the location of the centre of the pilot sigmoid.

Table 1 CE and Pilot parameters for DYN1 and DYN2

Condition 𝐾𝑐 [-] 𝜔𝑏 [𝑟𝑎𝑑/𝑠] 𝐾𝑝 [-] 𝜏𝐿[𝑠] 𝜏𝑒[𝑠] 𝜔𝑛𝑚 [𝑟𝑎𝑑/𝑠] 𝜁𝑛𝑚 [-] 𝜔𝑐 [𝑟𝑎𝑑/𝑠] 𝜙𝑚 [°]
DYN1 90 20 0.7057 0.05 0.183 15 0.7 3.17 39.14
DYN2 30 0.2 0.0062 5 0.323 15 0.7 2.80 22.82

The selection of the ROI to start when 𝜙𝑚 (𝑡) ≤ 15° is based on the fact that an ideal (theoretical) pilot would adapt
to the above simulation setup such that the phase margin goes from 39.14° to 22.82° as a sigmoid, while for a real-world
scenario, there will be a decrease in 𝜙𝑚 (𝑡) (see Figure 5) beyond the minimum value, obtained for DYN2.

C. Simulation Setup - Time Signal Calculations
The second set of results that deal with the 𝑡-domain, employ Simulink to simulate a compensatory tracking task.

The control diagrams of the developed Simulink model are provided in Appendix B.
While the 𝑡-domain outputs utilize the same 𝑠𝑠 representation as their 𝑓 -domain counterparts for the sigmoidal

transitions of the CE and the pilot, additional modelling steps are required to obtain the time signals of the tracking task
that include the incorporation of the forcing function ( 𝑓𝑡 (𝑡)) and the remnant transfer function (𝐻𝑛 (𝑠, 𝑡)).

1. Forcing Function ( 𝑓𝑡 (𝑡)):
Table 2 lists the parameters of the sinusoids used to make the multisine forcing function 𝑓𝑡 (𝑡) that follows the

structure of Eq.(6). These sinusoids are identical to those employed by Terenzi et al. [26] in manual tracking experiments
conducted at the Faculty of Aerospace Engineering, Delft University of Technology. This is done to ensure the
availability of a reference for comparison in the event of implementing the signals for the experiment phase of this study.

𝑓𝑡 =

10∑︁
𝑛=1

𝐴𝑡 [𝑛] sin (𝜔𝑡 [𝑛]𝑡 + 𝜙𝑡 [𝑛]) (6)

Here, 𝐴𝑡 [𝑛] is the amplitude, 𝜔𝑡 [𝑛] the frequency and 𝜙𝑡 [𝑛] the phase shift of the 𝑛𝑡ℎ sine wave. The summation
goes up to ten as there are a total of ten sinusoids that make the forcing function. The fundamental frequency, denoted as
𝜔𝑚, is defined as 𝜔𝑚 = 2𝜋

𝑇𝑚
, where 𝑇𝑚 represents the measurement time. This parameter is maintained consistent with

Terenzi’s experiment [26] and Barragan’s report [28], with a value of 𝑇𝑚 = 30s. Although the total simulation duration
for the time domain is 120s, the period of the forcing function is designed to be 30s. Therefore, 𝜔𝑚 = 0.209 rad/s.
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Despite the simulation running for 120s, only the final 90s are utilized for signal analysis to derive the steady-state
standard deviation for the single-integrator phase. Thus, the initial 30s serves as the run-in time. Consequently, 𝑀𝐶𝐸 is
positioned at 75s for the Simulink model but can be interpreted to be at 45s given the reduced duration of the utilised
signal.

Moreover, the bandwidth is selected to correspond to the frequency of the 4𝑡ℎ sinusoid, as the amplitudes of the
subsequent sinusoids drop considerably [28].

Table 2 Parameters of the ten sinusoids that make the forcing function

k[−] 𝑛𝑡 [−] 𝜔𝑡 [𝑟𝑎𝑑/𝑠] 𝐴𝑡 [𝑟𝑎𝑑] 𝜙𝑡 [𝑟𝑎𝑑]
1 2 0.419 2.905 · 10−2 2.841
2 5 1.047 1.916 · 10−2 3.319
3 9 1.885 1.020 · 10−2 0.718
4 13 2.723 6.032 · 10−3 0.768
5 19 3.979 3.356 · 10−3 2.925
6 27 5.655 1.983 · 10−3 5.145
7 39 8.168 1.230 · 10−3 2.085
8 51 10.681 9.331 · 10−4 0.383
9 67 14.032 7.541 · 10−4 0.763
10 83 17.383 6.674 · 10−4 3.247

2. Remnant Transfer Function (𝐻𝑛 (𝑠, 𝑡)):
Humans are inherently non-linear [3]. In contrast to the crossover calculations, the time signals are influenced by

the noise arising from the non-linear part of the pilot characterized by the remnant signal 𝑛(𝑡). The source of this
non-linearity can be pure noise injection, non-linear operations and non-steady pilot behaviour in increasing order of
impact [22]. Consequently, meticulous modelling of the remnant transfer function 𝐻𝑛 (𝑠, 𝑡), which exhibits the structure
given below, is imperative.

𝐻𝑛 (𝑠, 𝑡) =
𝐾𝑛 (𝑡)

(𝜏𝑛𝑠 + 1)𝑚 (7)

In the above equation, 𝐾𝑛 (𝑡) represents the TV remnant gain, while 𝜏𝑛 denotes the time-invariant remnant time
constant maintained at a constant value of 0.06s [24][29]. Moreover, based on the findings of Van Grootheest et al.,
[24], a second-order (𝑚 = 2) remnant transfer function is considered. Here, the value of the remnant gain relies on the
required power ratio 𝑃𝑛 (as seen in Eq.(8), which is defined as the ratio of power in the control input 𝑢(𝑡) attributed to
the remnant (𝜎2

𝑢𝑛) to the total power in the control input (𝜎2
𝑢), where 𝜎2

𝑢 = 𝜎2
𝑢𝑛 + 𝜎2

𝑢 𝑓𝑡
. Given the varying nature of this

ratio in real-world scenarios, different values of 𝑃𝑛 are used in the simulations. The derivation of Eq.(8) can be found in
Appendix C, which illustrates the stochastic nature of 𝑛(𝑡). It should be noted that𝑊 signifies the intensity of the white
noise and is associated with the zero-mean Gaussian white noise input 𝑤(𝑡) to the remnant transfer function 𝐻𝑛 (𝑠, 𝑡) as
seen in Figure 1. Notably, 𝑤(𝑡) is modelled using unit intensity (𝑊 = 1).

𝐾𝑛 =

√√√
𝑃𝑛

1 − 𝑃𝑛

×
𝜋𝜎2

𝑢 𝑓𝑡∫ ∞
0 | 1

(𝜏𝑛 𝑗𝜔+1)2 |2 | 1
(1+𝐻𝑝 ( 𝑗𝜔)𝐻𝐶𝐸 ( 𝑗𝜔) ) |2𝑊𝑑𝜔

(8)

In the above equation, to determine 𝐾𝑛 (𝑡), a set of noise-free simulations with 𝑤(𝑡) = 0 are conducted to obtain
𝜎2
𝑢 𝑓𝑡

that describes the power in the control input due to the forcing function. Meanwhile, the required value of 𝑃𝑛 is
predefined in the simulation. 𝑃𝑛 is set to vary; a range of percentage contribution of noise to the total power in the
control input, with values of 5%, 10%, 15% and 20% are used for the Monte Carlo simulations. Finally, utilizing the
same sigmoid function employed for the pilot model, the calculated remnant gain 𝐾𝑛 (𝑡) is transitioned from DYN1 to
DYN2.

Once the system is fully modelled, the Simulink model provides the primary signal values for the simulation
duration of 𝑇𝑚 = 90s. Subsequently, Matlab is employed to obtain the derivatives of these signals via backward finite
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difference, yielding the remaining three candidate signals, namely, ¤𝑒(𝑡), ¤𝑢(𝑡), and ¤𝑦(𝑡). This marks the end of the design
methodology required to carry out the computer simulations.

The simulation setup and methodology described above were employed for Monte Carlo simulations to evaluate
various parameters, with a primary focus on those significantly impacting the pilot’s adaptive behaviour. These
simulations encompassed a broad range of variations, including the CE rate of transition (𝐺𝐶𝐸), pilot rate of transition
(𝐺𝑃𝑖𝑙𝑜𝑡 ), pilot gain multiplier (𝐾𝑝×) to account for a range of lazy to aggressive HO, and time delay of adaptation Δ𝑀

(Δ𝑀 = 𝑀𝑝𝑖𝑙𝑜𝑡 − 𝑀𝐶𝐸) for the 𝑓 -domain outputs. Subsequent 𝑡-domain outputs required three additional parameters:
the power ratio (𝑃𝑛), the number of forcing function realizations ( 𝑓𝑡 ) each with a unique set of phase shifts, and the
number of runs per forcing function realization (𝑛 𝑓𝑡 ) to account for varying pilot noise. This set of seven varying
parameters yields a comprehensive dataset of simulation results. These results were subsequently subjected to statistical
analysis to address the research question posed.

The values of a total of five varying parameters excluding the 𝑓𝑡 realizations and number of runs per realization
are mentioned in Table 3. The phase shifts of the ten 𝑓𝑡 realizations having an average crest factor are mentioned in
Table 4 while the number of runs per realization is set to ten. Here, ten realizations are used to avoid gradient effects on
detection.

Table 3 Varying parameter values for the Monte Carlo simulations

𝐺𝐶𝐸 [𝑠−1] 𝐺 𝑝𝑖𝑙𝑜𝑡 [𝑠−1] 𝐾𝑝× [-] Δ𝑀 [𝑠] 𝑃𝑛 [%]
0.5 0.5 0.25 0 5
2.94 2.94 0.50 3 10
5.88 5.88 0.75 6 15
50 50 1.0 - 20
100 100 - - -

Table 4 Phase data for the forcing function ( 𝑓𝑡 ) realizations used in the Monte Carlo simulations

Phase Shift Forcing Function Realization
[𝑟𝑎𝑑] 1 2 3 4 5 6 7 8 9 10
𝜙1 2.8410 2.3929 5.3762 6.2487 3.7558 3.2671 3.5350 1.4183 1.4442 0.3979
𝜙2 3.3190 4.9697 0.6727 5.8687 1.9471 0.2482 2.1641 2.7251 2.9430 6.2707
𝜙3 0.7180 5.3091 3.6048 4.9400 6.0459 0.9665 1.6746 2.0221 0.4288 1.8341
𝜙4 0.7680 1.4863 3.4004 0.0782 0.5257 4.4574 4.6014 5.6634 1.4298 0.2662
𝜙5 2.9250 3.0193 4.8348 6.0933 2.3904 3.8226 6.2706 5.7495 1.4750 4.5566
𝜙6 5.1450 6.2722 3.9841 4.9810 3.0183 3.6774 4.5094 5.8329 2.0309 2.7780
𝜙7 2.0850 3.6813 1.8678 5.4697 4.2311 5.1564 4.9301 1.1731 5.9036 4.4601
𝜙8 0.3830 3.7568 4.9385 1.8165 1.8488 3.8601 3.1668 3.1755 2.1584 4.6433
𝜙9 0.7630 0.3674 4.5615 5.2240 2.1321 4.8711 5.3231 4.6184 5.1776 2.9237
𝜙10 3.2470 1.0865 0.2399 6.0067 4.3586 2.9775 5.9006 6.1829 2.5699 6.2330

D. Simulation Results
The Monte Carlo simulations resulted in 300 and 120, 000 unique cases of 𝑓 -domain and 𝑡-domain results,

respectively. This section provides a comprehensive overview of the methodology employed for post-processing the
results, aimed at determining two crucial parameters: the candidate signals for the model and the corresponding
threshold values to obtain a high-accuracy model.

The 𝑡-domain signals superimposed with the ROI are depicted in Figure 6. This figure presents all six tracking
task signals after removing the initial 30s run-in period with the ROI shown as the red-shaded region derived from
plot(a) of Figure 5. This plot represents a typical output of the 𝑓 -domain, which reveals the compromised OL stability.
The specific case depicted on the left, and consequently within the time-signals, uses the following parameter values:
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𝐺𝐶𝐸 = 0.5𝑠−1; 𝐺𝑃𝑖𝑙𝑜𝑡 = 0.5𝑠−1; 𝐾𝑝× = 0.5; 𝐷𝑒𝑙𝑎𝑦 (𝑀𝑝𝑖𝑙𝑜𝑡 − 𝑀𝐶𝐸) = 6s; 𝑃𝑛 = 20%; 𝑓𝑡 realization #1 and run #1.
Similarly, plot(b) in Figure 5 is representative of a variation in the rate of pilot adaptation, with 𝐺𝑃𝑖𝑙𝑜𝑡 = 100𝑠−1, to
demonstrate how the rate of pilot adaptation affects the stability of the OL system. It can be observed that while the ROI
remains unchanged, the recovery of OL stability is notably quicker, as evidenced by a deeper trough followed by a higher
peak in 𝜙𝑚 (𝑡). Also note that the start and end values of 𝜙𝑚 are higher than calculated in Table 1, which is a result of
the reduced pilot gain that manifests itself in a reduced crossover frequency and hence, an increased phase margin.

1. Candidate Signals:
Like the example shown below, all ROIs are superimposed onto corresponding time signals. This approach leads to

a single ROI corresponding to 400 cases of resultant tracking task signals because of the increased number of varying
parameters in the 𝑡-domain. The combined results obtained are analysed to select the candidate signal of choice for the
model. In a compensatory tracking task, the display only provides the HO with the error signal, while the effect of the
control input on the error signal is the only other signal that the HO can experience. Therefore, the system output 𝑦(𝑡)
and its derivative ¤𝑦(𝑡) were removed from consideration. From the four remaining signals, 𝑢(𝑡) and ¤𝑢(𝑡), were observed
to show significant variation as a function of HO’s control behaviour (aggressiveness: 𝐾𝑝×) and the non-linearity from
the remnant, for the same CE dynamics. Consequently, 𝑢(𝑡) and ¤𝑢(𝑡) were also removed from consideration. This effect
is illustrated in Figure 7 which uses the theoretical case of an ideal pilot (no adaptation delay i.e., Δ𝑀 = 0).

(a) 𝜙𝑚 (𝑡) with 𝐺pilot = 0.5𝑠−1 (b) 𝜙𝑚 (𝑡) with 𝐺pilot = 100𝑠−1

Fig. 5 Example result of the 𝑓 -domain output with the Region Of Interest (ROI) in red. The ROI starts when
𝜙𝑚 (𝑡) ≤ 15° and ends at the moment of HO’s detection (𝑀𝑃𝑖𝑙𝑜𝑡 )
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Fig. 6 Example result of the 𝑡-domain output with the time signals superimposed with ROI

Fig. 7 Variation in control input signal 𝑢(𝑡) as a result of varying 𝐾𝑝× values for the theoretical case of an ideal
pilot (Δ𝑀 = 0)

Therefore, the error signal 𝑒(𝑡) and the error rate signal ¤𝑒(𝑡) were identified as the two candidate signals of choice.
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Notably, these signals were also previously selected as candidate signals in [10][20][28].

2. Model Accuracy and Threshold Values:
With the candidate signals obtained, their threshold values are obtained to accurately predict the pilot’s detection of

change in CE dynamics. To achieve this, the following methodology is employed: An optimal model that successfully
predicts the pilot’s detection of change in CE dynamics should have a threshold value such that it can account for
naturally occurring variations in candidate signals during pre-transition conditions while also identifying unusual
variations in these signals, within the ROI.

To implement this method, the steady-state DYN1 standard deviation 𝜎 is used as the statistical characteristic of
the candidate signals, 𝑒(𝑡) and ¤𝑒(𝑡). The standard deviation serves as a metric for assessing the variation of the signal
within the Region of Interest (ROI) relative to its behaviour under steady-state conditions. Consequently, the variation of
the signal is expressed as a multiple of the steady-state standard deviation, denoted by 𝑛𝜎, where 𝑛 represents a positive
value. Subsequently, it can be posited that there exists a specific value of 𝑛 that maximizes the accuracy of the proposed
model, where accuracy is defined as:

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (9)

In this context, 𝑇𝑃 (True Positive) denotes a correct trigger within the ROI, accurately predicting the pilot’s detection
of changes in CE dynamics (for the DYN12 condition). Conversely, 𝑇𝑁 (True Negative) contributes to the model’s
accuracy by remaining un-triggered in cases of no transition (i.e., for the DYN1 condition). On the contrary, 𝐹𝑃 (False
Positive) and 𝐹𝑁 (False Negative) reduce the accuracy of the model. 𝐹𝑃 represents triggered detection occurring either
before the ROI starts in cases of transition (DYN12 condition) or at any point throughout the runtime in the absence of
transition (DYN1 condition), while 𝐹𝑁 indicates the absence of a trigger despite the presence of a transition (DYN12
condition).

As illustrated in Figure 8a and Figure 8b, these categories can be represented as segments within time signals,
where 𝑝, 𝑞, 𝑟, and 𝑚 are coefficients of 𝜎 representing unique choices of 𝑛. It is important to note that a run under
consideration is categorized at the moment of the first crossing; once the threshold is crossed, i.e., at the instance of a
certain trigger, the case is immediately categorized, and the model ceases further analysis of that signal. Additionally,
the steady-state standard deviation required for determining threshold values (triggers for the model) is calculated using
the 30s-60s window depicted in these figures to capture the steady-state. This requirement supports the addition of a
run-in time of 30s for the time signals. Consequently, the average steady-state standard deviation values were found to
be 0.87° for 𝑒(𝑡) and 2.08° for ¤𝑒(𝑡) in the simulations.

30s 60s

MCE Mpilot

90s

120s time
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75s φₘ(t)≤15°

TPFP

(FP triggered)

(TP triggered)

Run-in time
(FN triggered)
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rσ

(FP triggered)pσ

(TP triggered)qσ

(FN triggered)rσ

(a) DYN12 condition: Definition of TP, FP and FN

For example, in Figure 8a, the crossing of the 𝑝𝜎 threshold by the candidate signal within the blue region,
representing the pre-transition condition, results in the classification of the case as a 𝐹𝑃. Conversely, when the signal
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Fig. 8 Definition of accuracy parameters

crosses the threshold 𝑞𝜎 for the first time, as seen in the red region, it corresponds to a 𝑇𝑃. However, if the signal fails
to cross the trigger throughout the run, as observed for 𝑟𝜎, the case would be classified as a 𝐹𝑁 . This principle is also
applicable to Figure 8b, which illustrates a run corresponding to the absence of transition, i.e., DYN1 condition. Here,
crossing the threshold 𝑚𝜎 at any point results in classification as a 𝐹𝑃, whereas the absence of a crossing leads to a 𝑇𝑁
classification.

Furthermore, the method of categorizing all signals involves an additional loop to iterate over a range of multiples of
the steady-state standard deviation 𝑛𝜎, spanning from 2𝜎 to 8𝜎 with an increment of 0.1, for both the error signal 𝑒(𝑡)
and the error rate signal ¤𝑒(𝑡). This iterative process aids in identifying a threshold that results in the highest accuracy.

3. Results:
All cases obtained from the simulations (120,000) undergo the process explained above. Specifically, for each

increment of the trigger value, the signals are examined from the first data point until they are successfully categorized,
employing a step size of 0.01, consistent with the fixed step size used in Simulink. Subsequently, the simulation cases
are categorized based on their 𝐺𝐶𝐸 values, to obtain an understanding of the model’s performance for varying transition
rates. The resultant percentage accuracy and trigger values are presented as a boxplot in Plot (a) and Plot (b) of Figure 9
to illustrate the spread of the results while Table 5 shows the mean accuracy and associated trigger values of these
boxplots, denoted using circular black markers.

Analysis of the figures revealed several key observations. First, it was noted that the error signal outperforms the
error rate signal as the rate of CE transition increases, resulting in higher accuracy. Conversely, the error rate signal
gave higher accuracy for the slowest rate of transition and an approximately equal accuracy for 2.94𝑠−1 as the error
signal. The error rate signal performing better for slower transitions can also be seen by the increasing mean trigger
values of the error rate signal going from left to right in plot(b) of Figure 9 which indicates that with faster transitions,
the magnitude of the error rate signal in the ROI increases considerably. This is an intuitive result given that with a
sudden change in CE dynamics, the loss in OL stability will be instant and hence the rate of change in error will be
greater than the error signal.

Moreover, due to the large spread of percentage accuracy for the slowest transition rate of 𝐺𝐶𝐸 = 0.5𝑠−1, it
was also decided to analyse the trigger values that resulted in the highest average accuracy per 𝐺𝐶𝐸 value. It was
found that for the error signal, the highest average accuracy values of 63.85%, 87.84%, 92.37%, 94.19% and 94.38%
were obtained at 3.3𝜎, 3.3𝜎, 3.3𝜎, 3.5𝜎 and 3.5𝜎 respectively, going from the slowest to the fastest rate of transition.
Similarly, for the error rate signal, these values were found to be 67.32%, 89.05%, 92.71%, 81.47% and 70.89% for
3.7𝜎, 3.7𝜎, 3.9𝜎, 7.5𝜎 and 8.0𝜎 respectively.
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Fig. 9 Percentage accuracy and correlated trigger values of the model based on error 𝑒(𝑡) and error rate ¤𝑒(𝑡)
signals

Table 5 Model performance for varying rates of transition

Signal Parameter 𝐺𝐶𝐸 [𝑠−1]
0.5 2.94 5.88 50 100

Error 𝑒(𝑡) % Accuracy 67.25 96.99 98.16 98.25 93.88
Trigger Value(𝑛) 2.93 3.26 3.25 3.29 3.31

Error Rate ¤𝑒(𝑡) % Accuracy 72.14 95.32 97.63 82.80 63.57
Trigger Value(𝑛) 3.27 4.55 4.53 7.14 5.57

From these values, the first observation was that the model consistently obtains a lower accuracy for the slowest
transition, which can be explained as follows: the slower transition in CE dynamics combined with the pilot model,
even when the pilot model has an inherent delay, the simulated shifted change in the pilot model (depicting adaptation
before detection), helps with maintaining the OL stability and as a result, the tracking error does not increase enough
to cross the threshold value of the model. In other words, the slow change in CE dynamics causes the adaptive pilot
to inherently and slowly adapt to the change, before detection, causing a gradual change in the system error which is
then seen as a steady-state-like signal trend in the ROI. This behaviour can be observed in Figure 10, which shows the
selected candidate signals of the same case as shown in Figure 6; here, the oscillations in the ROI are seen to be similar
to the steady-state DYN1 part of the run only increasing considerably post the pilot’s detection when the adapting pilot
is in the identification and adjustment phase. Second, the error rate signal exhausts the range of 𝑛𝜎 values for the fast
transition cases of 𝐺𝐶𝐸 = 50 and 100𝑠−1 implying that the oscillations obtained for cases of larger delay like 6s have
very high magnitudes which lead to a decrease in accuracy as a result of increase in 𝐹𝑁 .

Hence, based on the boxplots and the trigger values associated with the highest average accuracy, the thresholds
(trigger values) for predicting the pilot’s detection were selected as 3.3𝜎 for the error signal 𝑒(𝑡) and 3.7𝜎 for the error
rate signal ¤𝑒(𝑡). Notably, these values are comparable to the threshold values proposed in [21][28]. The application of
the selected values on simulated signals is depicted in Figure 11. Here, it can be observed that the signals cross the
respective trigger value within the ROI before the pilot’s detection (𝑀𝑝𝑖𝑙𝑜𝑡 ), thus resulting in the successful prediction of
the pilot’s detection of changes in CE dynamics. This figure represents, the final outcome of the computer simulations.

From the above observations, the following points were considered noteworthy before proceeding with the
experimental phase:

1) The simulations indicate an increasing reliance on the error rate signal by the Human Operator (HO) to detect
slow changes in CE dynamics. In contrast, the error signal is preferred for fast changes.

2) The percentage accuracy achieved at the selected trigger values suggests that the error signal consistently yields
higher average accuracy calculated across all rates of transitions.
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Fig. 10 Example case of slow CE transition, 𝐺𝐶𝐸 = 0.5𝑠−1

3) In addition to the compensatory display, it is of interest to consider the effect of the pursuit display on the HO’s
detection. Unlike the compensatory display, which solely presents the error, the pursuit display introduces
additional strategies by displaying more information. Given that the model leverages both the error and error rate
signals to predict the HO’s detection of change in CE dynamics, it is anticipated that the model would exhibit
superior performance for the compensatory display compared to the pursuit display.

4) On the contrary, given the increased strategies made available to the HO by the pursuit display, it can be argued
that the detection of change in CE dynamics will be enhanced, leading to reduced detection lags.

5) The value of 𝐺𝐶𝐸 = 50𝑠−1 yielded very similar results to those observed for 𝐺𝐶𝐸 = 100𝑠−1, providing no
additional insight. Therefore, 𝐺𝐶𝐸 = 50𝑠−1 should be excluded from the experiment.

Fig. 11 Candidate signals 𝑒(𝑡) and ¤𝑒(𝑡) superimposed with the ROI and the selected threshold values that form
the model to predict the pilot’s detection of change in CE dynamics
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The results of the computer simulations thus lead to the following hypotheses for the experiment:

E. Hypotheses
• Hypothesis 1 - In the probabilistic period of reduced open-loop (OL) stability, for fast rates of transition (5.88𝑠−1

and 100𝑠−1), the error signal 𝑒(𝑡) will result in higher accuracy of the proposed model i.e., the human operator
will rely more on the error signal to detect a fast change in CE dynamics.

• Hypothesis 2 - In the probabilistic period of reduced open-loop (OL) stability, for slow rates of transition (0.5𝑠−1

and 2.94𝑠−1), the error rate signal ¤𝑒(𝑡) will result in higher accuracy of the proposed model i.e., the human
operator will rely more on the rate of change of the error signal to detect a slow change in CE dynamics.

• Hypothesis 3 - The error signal 𝑒(𝑡) will have higher average accuracy calculated over the entire range of transition
rates under consideration (0.05s to 10s).

• Hypothesis 4 - For a model that is based on error and error rate signals, the accuracy will be higher for the
compensatory display than for the pursuit display.

• Hypothesis 5 - The use of the pursuit display will lead to reduced detection times when compared to the
compensatory display.

These hypotheses will be referred to as H(n), where 𝑛 = 1, 2, 3, 4 and 5.

III. Experiment Setup
This section presents the design and data analysis methodology employed in the second phase of the research, in

which a human-in-the-loop experiment was conducted to validate the developed model and hypotheses. The structure of
this section is as follows: The control task required to be performed by the human operator is outlined in subsection III.A.
Subsequently, subsection III.B details the apparatus utilized in the experiment. Following this, the independent variables
and experiment conditions are explained in subsection III.C. Lastly, subsection III.D provides insights into the subjects
and provided instructions while subsection III.E details the method developed for data analysis.

A. Experiment Design
The control task performed in this experiment is a single-axis (𝑟𝑜𝑙𝑙) tracking task using both, compensatory and

pursuit displays; Figure 12 shows the displays as seen in the experiment. In the case of the pursuit display, the target
signal (forcing function) was shown using the white square and the system output using the green square. This means
that the participants controlled the green square, using a joystick on their right hand, with the primary objective being to
minimize the error i.e., to keep the green square as close as possible (ideally inside) to the white square. Thus, the
size of the white square is kept bigger than the green square. Similarly, in the compensatory display, the white square
remains fixed at the centre of the display with the green square showing the error 𝑒 between the target signal and system
output. The objective of the task remained consistent, with the error approaching zero when the green square overlapped
with the white square.

Additionally, participants were provided with a second joystick on their left hand. This additional joystick allowed
participants to indicate when they detected a change in controlled element dynamics by pressing the red push button.
The decision to use a separate joystick for this purpose was based on the findings of a previous experiment [21], which
suggested that reaction times for detecting transitions could increase if both the primary task (minimizing the error)
and the secondary task (pressing the button) were performed with the same hand. In the context of data analysis, the
addition of this joystick helps mark the end of the region of interest (similar to the vertical 𝑀𝑃𝑖𝑙𝑜𝑡 line in the computer
simulations) and obtain a measurement of subjective detection times.

Each run spanned a duration of 55s to 65s, during which the initial 5𝑠 /10𝑠 /15s (variable) constituted the run-in
time. Following this, the actual measurement period of 50s took place, thereby resulting in approximately two complete
periods of the forcing function (𝑇𝑚 = 50s). The reason for having a variable run-in time is to counter the adaptive
behaviour of HOs wherein with enough practice, they can use mental models to predict when the transition from DYN1
to DYN2 will take place. Furthermore, the centre 𝑀 of the CE sigmoid (𝑀𝐶𝐸 in the simulations) is positioned at
35s post the run-in time, resulting in a short-lived duration of 15s for the double-integrator condition (DYN2). This
configuration allows for a full 30s measurement period for the single-integrator case spanning a complete period of the
forcing function. The rationale behind shortening DYN2 is twofold: first, the model focuses on the pilot’s detection of
change in CE dynamics, which is independent of the pilot’s performance post-detection; and second, the shortened
runtime helps mitigate HO fatigue and reduces the overall duration of the experiment.
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Fig. 12 Compensatory display(left) and pursuit display(right) as seen in the experiment setup (the dotted lines
are for reference and are not a part of the actual display)

B. Apparatus
The experiment was conducted in a fixed-base simulator in the Human-Machine-Interaction Laboratory at the

Faculty of Aerospace Engineering, TU Delft (Figure 13). Participants were seated on the right and utilized a side-stick
located on their right hand to give control inputs. The movement of this side-stick was limited to the left and right
(𝑟𝑜𝑙𝑙 − 𝑎𝑥𝑖𝑠) during the experiment. The maximum stick deflection was ±15° with the centre of the stick located
9cm above the axis of rotation. It had a stiffness of 3.54Nm/rad, a damping coefficient of 0.22Nms/rad, an inertia of
0.01𝑘𝑔𝑚2, and a breakout moment of 0Nm. Lastly, the additional left-hand joystick with a push-button (in red) is shown
as image (b) in Figure 13.

(a) Display and right-hand joystick (b) Left-hand joystick with red push
button

Fig. 13 Fixed base flight simulator at the HMI Laboratory of the Faculty of Aerospace Engineering, TU Delft

C. Independent Variables
The experiment consists of two independent variables: (1) display type and (2) rate of transition (𝐺𝐶𝐸). While the

former is used to understand the effect of display type on the pilot and model’s detection performance, the latter is
varied to investigate different cases of TV CE dynamics.

The use of five forcing function ( 𝑓𝑡 ) realizations per 𝐺𝐶𝐸 case serves to prevent participants from memorizing and
anticipating the target signal, thereby improving the generalization of the model [21]. As such, the 𝑓𝑡 realizations are
not considered an independent variable in this experiment. Table 6 gives the phases of these realizations. Notably,
realization #6 was only used for the training runs and is hence marked by "T". The verification of the experimental
implementation of the simulated 𝑓𝑡 realizations is provided in Appendix D.
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Table 6 Phase data of the forcing function ( 𝑓𝑡 ) realizations used in the experiment

Phase shift Forcing Function Realization
[𝑟𝑎𝑑] 1 2 3 4 5 6 (T)
𝜙1 2.8410 0.7139 4.5118 5.7206 0.1654 5.9672
𝜙2 3.3190 3.2003 3.4325 2.9644 5.9872 0.1799
𝜙3 0.7180 1.5536 5.1605 0.4830 2.9338 3.9664
𝜙4 0.7680 3.7235 0.8211 3.4292 4.2986 3.8851
𝜙5 2.9250 1.4086 2.2409 0.6900 2.3155 6.1022
𝜙6 5.1450 4.6871 3.7935 1.6630 1.5733 4.5394
𝜙7 2.0850 1.8420 2.6510 4.7891 0.3204 2.8688
𝜙8 0.3830 0.8073 1.3646 0.1654 4.2230 0.5136
𝜙9 0.7630 0.5509 2.1103 1.8372 4.6754 0.5194
𝜙10 3.2470 5.1815 6.2505 4.4607 5.7880 5.4870

Based on the independent variables, the tracking task is structured to contain two conditions divided further as five
cases per display type, each consisting of five 𝑓𝑡 realizations.

For the compensatory display, the experimental conditions are divided into two as follows:
• DYN1, representing a time-invariant, single-integrator-like condition, referred to as case 𝐶1.
• DYN12 comprises four cases characterized by varying rates of transitions in CE dynamics such that, 𝐶12𝑆1

features the slowest transition using 𝐺𝐶𝐸 = 0.5𝑠−1; 𝐶12𝑆2 with a moderately slow transition, specified by
𝐺𝐶𝐸 = 2.94𝑠−1; 𝐶12𝐹1 with a moderately fast transition, specified by 𝐺𝐶𝐸 = 5.88𝑠−1 and 𝐶12𝐹2 with the
fastest transition using 𝐺𝐶𝐸 = 100𝑠−1.

Similarly, for the pursuit display, the cases are named 𝑃1, 𝑃12𝑆1, 𝑃12𝑆2, 𝑃12𝐹1 and 𝑃12𝐹2. The inclusion of
the DYN1 condition aims to mitigate the subjects’ anticipation and readiness for a transition in every run, thereby
preserving the unpredictability of the experiment. Therefore, this condition is repeated four times (as illustrated by
"(×4)" in Table 7), to have an equal quantity of transition and no-transition runs. The resultant setup thus contains a
total of 80 runs per participant excluding the training runs.

Table 7 Experiment conditions with parameter values of the CE and sigmoid

Condition Case 𝐾𝑐1 [-] 𝜔𝑏1 [𝑟𝑎𝑑/𝑠] 𝐾𝑐2 [-] 𝜔𝑏2 [𝑟𝑎𝑑/𝑠] 𝐺 [𝑠−1] 𝑇𝑡𝑟 [𝑠] 𝑀 [𝑠]
DYN1 C1 (×4) 15 20 - - - - -
DYN12 C12S1 15 20 2 0.2 0.5 ≈ 10 35
DYN12 C12S2 15 20 2 0.2 2.94 ≈ 2 35
DYN12 C12F1 15 20 2 0.2 5.88 ≈ 1 35
DYN12 C12F2 15 20 2 0.2 100 ≈ 0.05 35
DYN1 P1 (×4) 15 20 - - - - -
DYN12 P12S1 15 20 2 0.2 0.5 ≈ 10 35
DYN12 P12S2 15 20 2 0.2 2.94 ≈ 2 35
DYN12 P12F1 15 20 2 0.2 5.88 ≈ 1 35
DYN12 P12F2 15 20 2 0.2 100 ≈ 0.05 35

Furthermore, the experimental conditions stated above show the initial and final values of the controlled element
(CE) dynamics. Notably, these conditions maintain consistency with the simulations, with a difference seen in the
CE gain values while the poles remain the same. This difference only changes the scaling while ensuring that the
fundamental behaviour of the CE, whether single-integrator-like or double-integrator-like is preserved. Subsequently,
the dependent variables are the RMSE, pilot model parameters, variance of the error and error rate signals, subjective
detection lags and the HO’s accuracy. This approach enables a direct comparison between the human operator’s control
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behaviour in the experiment and the theoretical results obtained from the simulations.

D. Subjects and Instructions
A total of twelve participants took part in the experiment with a within participant experiment design preferred

for this study. The participants were all students and staff of the Faculty of Aerospace Engineering, TU Delft as they
have satisfactory technical knowledge to perform the tracking tasks. Before commencing the experiment, participants
received a comprehensive briefing on the experiment procedure with emphasis on the directive that their primary focus
throughout the experiment should be the minimization of tracking error, with the button push serving as a secondary
task. However, in the event of detecting a change in CE dynamics, the button push task could temporarily be treated as
their primary objective.

The experiment consisted of two phases, a “training phase” and a “measurement phase”. Before conducting the
actual experiment in the measurement phase, several training runs were performed until a stable level of tracking
performance was achieved. Except during the training runs, participants were not provided with feedback on their
performance other than the root-mean-square error (RMSE) score displayed on the top-left of the screen at the end
of every run. Post the training runs, data from five repetitions per experimental case was measured using different 𝑓𝑡
realizations. The participants were made to follow the conditions as per a randomized order of 40 runs per display (20
runs of DYN1 and 20 of DYN12), which ensured that the different runs were evenly distributed across the subjects.
Moreover, half the participants started with the compensatory display first while the other half started with the pursuit
display first; these measures ensured that the statistical data analysis was not influenced by order effects or HO fatigue.
The run tables used in the experiment can be found in Appendix H.

This experiment was reviewed and approved by the Human Research Ethics Committee (HREC) at TU Delft under
application number 3866. The experiment briefing and consent form provided to the participants before starting the
experiment are provided in Appendix I.

E. Data Analysis
The computer simulations assume that the pilot model uses the same transition function as the CE to adapt to the

changing CE dynamics i.e., a sigmoidal change of their control behaviour. While this is a viable assumption to design
time-varying mathematical models, the same cannot be assumed for human operators. Therefore, as the time-varying
pilot model cannot be obtained as before, the start of the ROI, which is based on the onset of reduced open-loop stability
(from 𝜙𝑚 (𝑡) ≤ 15° in the simulations), cannot be calculated for experimental data. Consequently, the methodology used
to implement the model on experimental data is as follows: it is argued that a time duration of probable compromise in
OL stability will exist only on/after the onset of the designed sigmoidal transition of CE dynamics and the definition of
the start of ROI is restructured based on this probability. Hence, the ROI for experimental analysis starts when the
CE dynamics have transitioned to 50% of their final (DYN2) steady-state parameter value. Here, the selection of
50% transition is deemed suitable to cover all scenarios of probable OL instability safely based on a post hoc analysis of
the experiment data, conducted to verify the validity and sensitivity of this selection, provided in Appendix G. Another
advantage of using this value is the fact that all sigmoids, irrespective of their 𝐺 value, attain 50% transition at the
same moment in time i.e., 50% transition corresponds to 𝑀 , the centre of the sigmoid placed at 35s in the experiment.
In contrast, for all other percentage transition values, the moment in time to attain the required percentage will vary
based on the 𝐺 value, making the comparison of parameters like the detection lag as a function of 𝐺 value, difficult
to interpret. For example, the moment of 5% transition for 𝐺 = 0.5𝑠−1 occurs at 𝑡 = 29.14s while for 𝐺 = 100𝑠−1

this value shifts to 𝑡 = 34.99s leading to a difference of 5.8s. It is noted that the moment of end of ROI retains its
definition from the simulations - at the moment of the pilot’s detection of change in CE dynamics which, for
experiments, is obtained from the time-stamp of the button press.

The next step is to analyse human error that affects the four parameters (𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁) that decide the
accuracy of the proposed model. In the results of the computer simulations, the 𝐹𝑃 and 𝐹𝑁 parameters are defined
based on incorrect classification by the model. However, in the experiments, the human operator is prone to three types
of errors: an early (before the transition begins) button press in a run having a DYN12 condition, classified as 𝐹𝑃; a
button press in a run having a DYN1 condition, also classified as 𝐹𝑃; and failure to detect the change in CE dynamics
i.e., no button press in a run featuring a DYN12 condition leading to a 𝐹𝑁 classification. These human errors result in
the absence of a pre-defined duration used as the ROI and hence need to be corrected. The corrections made for the
human errors are mentioned in Table 8, which results in the model processing the experiment data that now adheres to
the required signal conditions of Figure 8a and Figure 8b.
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Table 8 ROI Corrections for human error

Experiment Condition Human error Correction
DYN12 𝐹𝑃 ROI start: at 50% transition; ROI end: extended to end of run
DYN1 𝐹𝑃 ROI removed
DYN12 𝐹𝑁 ROI start: at 50% transition; ROI end: extended to end of run

The result of pre-processing the data is shown in Figure 14 where a HO’s 𝑇𝑃 case is shown for a 𝐶12𝑆1 experiment
condition with the ROI, and the 5% and 95% sigmoid values that define 𝑇𝑡𝑟 . In this figure, the initial 30s of the plot
represents the steady-state DYN1 condition, followed by the CE transition centred at 𝑀𝐶𝐸 at 35s, and finally, 15s of
DYN2 condition from 35 − 50s. Lastly, the sigmoid (in pink) depicting the CE transition is shown to scale with respect
to the X-axis.

Fig. 14 Example of measured error signal 𝑒(𝑡) after pre-processing, 𝐺𝐶𝐸 = 0.5𝑠−1

IV. Experiment Results
This section analyses the subject and model’s performance using experimental data. Initially, this section discusses

the pre-transition metrics of Root Mean Square Error (RMSE), crossover frequency (𝜔𝑐) and phase margin (𝜙𝑚)
followed by in-transition (ROI) metrics like the variance of signals (𝜎2

𝑒 and 𝜎2
¤𝑒 ) and detection lags providing insights

into the quality of the experimental data and the impact of the independent variables on the HO’s performance. The
focus is then shifted to the model’s accuracy and performance for the gathered experimental data.

A. Pre-transition Metrics
The RMSE scores discussed in this section are related to the DYN1 part i.e., the first 30s of all runs performed by

each subject irrespective of the condition (DYN1/DYN12) of the run, thus they are independent of the 𝐺𝐶𝐸 values. The
RMSE helps analyse a subject’s performance w.r.t the other subjects in the experiment and draw a comparison between
the performance achieved in compensatory and pursuit displays. Figure 15 shows the boxplot of RMSE scores with the
global mean values per display as colour-coded horizontal lines in plot(a) and black circular markers in plot(b). It can
be seen that the pursuit display helps all subjects have a lower error as compared to the compensatory display, which
can be explained by the explicit availability of the control output 𝑦(𝑡) and target signal 𝑓𝑡 (𝑡) in addition to the system
error signal. Moreover, as seen in plot(a), there is an evident difference in tracking performance between different
participants. However, it is typical to anticipate different skill levels from different subjects in any experiment, and the
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variation in the dataset is not large enough to warrant the identification of specific participants or groups thereof as
outliers or unskilled. This is backed by the fact that there are no outliers in plot(b) which has twelve data points per
boxplot corresponding to the mean RMSE score of the twelve subjects. Therefore, these results suggest that the quality
of the experiment data is good, and all participants can be considered skilled HOs. Moreover, the RMSE values show a
clear difference in global mean values with the compensatory display (red) having a mean value of 0.77° and 0.66° for
the pursuit display (blue); this shows that the two mean values are significantly different, 𝑡 (11) = 5.676, 𝑝 < 0.001,
consistent with the fact that the pursuit display helps achieve better performance (lower error) in tracking tasks [30].
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Fig. 15 RMSE values per subject (left) and per display type (right) in pre-transition (DYN1) phase

Moreover, to characterize the participants in the experiments, the pilot model parameters are identified using a
Maximum Likelihood Estimation (MLE) process, which uses the same pilot model structure shown in Eq.(3). The
detailed results of this process are provided in Appendix E; the use of MLE becomes possible because of the 30s DYN1
part of all runs. Utilizing the derived pilot model in combination with the CE dynamics, the crossover frequency (𝜔𝑐)
and phase margin (𝜙𝑚) are obtained using OL bode-plot data.

The obtained average crossover frequency (𝜔𝑐) and phase margin (𝜙𝑚) for all subjects per display type are shown in
Figure 16 with a mean value of 2.73 rad/s and 64.19° for the compensatory display and 2.81 rad/s and 60.61° for the
pursuit display. The paired T-test statistically validates the visual observation that the display types do not affect these
metrics; with 𝑡 (11) = 0.349, 𝑝 = 0.734 for the crossover frequency and 𝑡 (11) = 1.637, 𝑝 = 0.130 for the phase margin.
Notably, the mean crossover frequency has approximately the same value as that of the 𝑓𝑡 bandwidth which suggests
that the HOs actively tried to keep the tracking error at the minimum i.e., the pilot adjusted their gain to place the 𝜔𝑐 at
𝜔𝑖 to address the entire band of frequencies (the HO acts as a low-pass filter) while maintaining good stability margins.
This also highlights the relationship between performance and stability (𝜔𝑐 ∝ 1

𝜙𝑚
).

While the mean values align with 𝜔𝑐 = 2.77 rad/s and 𝜙𝑚 = 55.6° obtained for the pursuit display in Barragan’s
report [28]. The mean value of the crossover frequency is found to be higher than found in [21] and [26] with the
probable reason being the selected CE dynamics, which by the virtue of the poles selected, behaves more like a
pure-single integrator than used in the mentioned studies. The values for both these metrics further indicate that the
quality of the experimental data is good. Lastly, the relationship between RMSE and crossover frequency can be seen to
be consistent in that subjects with lower RMSE scores generally had higher crossover frequencies with the Pearson
correlation coefficient found to be high [31] for the compensatory display, 𝜌 = −0.812, 𝑝 < 0.001 as well as for the
pursuit display with 𝜌 = −0.979, 𝑝 < 0.001.
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Fig. 16 Crossover frequency and phase margin per display type in pre-transition (DYN1) phase

B. In-transition (ROI) Metrics
The performance metrics discussed above are characteristic to the DYN1 part of the experiment. Given the study’s

focus on time-varying conditions, the subsequent metric under consideration is the variance of candidate signals 𝑒(𝑡)
(𝜎2

𝑒 ) and ¤𝑒(𝑡) (𝜎2
¤𝑒 ) within the ROI. The variance aims to explain the impact of different 𝐺𝐶𝐸 values on the signals and

consequently, on the HO’s performance during the transition. For reference, the value of 𝜎2
𝑒 and 𝜎2

¤𝑒 in the steady-state
DYN1 condition of the experiment is found to have a global average (averaged across all runs for all participants) of
0.58𝑑𝑒𝑔2 and 5.97𝑑𝑒𝑔2 in the compensatory display and 0.44𝑑𝑒𝑔2 and 4.84𝑑𝑒𝑔2 for the pursuit display, respectively.
In comparison, for the computer simulations, the values of 𝜎2

𝑒 and 𝜎2
¤𝑒 were 0.75𝑑𝑒𝑔2 and 4.33𝑑𝑒𝑔2 respectively, which

are similar and thus lend support to the fidelity of the computer simulations.
Plot(a) and plot(b) of Figure 17 show the variance in ROI for the error signal and the error rate signal, respectively

with the coloured horizontal lines depicting the global DYN1 average values mentioned above. Wherein in plot(a),
the mean values of the error signal for the compensatory display are found to be 1.03, 2.31, 2.96, and 3.18𝑑𝑒𝑔2 and;
0.69, 1.28, 1.91, and 1.98𝑑𝑒𝑔2 for the pursuit display. Similarly, in plot(b), for the error rate signal the mean values are
9.17, 14.27, 17.83, and 19.15𝑑𝑒𝑔2 for the compensatory display and; 6.48, 8.82, 13.05, and 13.09𝑑𝑒𝑔2 for the pursuit
display. Given that these values are from within the ROI, it is important to note that they are related to runs that belong
to the DYN12 condition.
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Fig. 17 Variance of error signal 𝑒(𝑡) (left) and error rate signal ¤𝑒(𝑡) in ROI per 𝐺𝐶𝐸 value for both display
types (the colour-coded horizontal lines correspond to the global DYN1 (pre-transition) average values)
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Several observations emerge from this analysis. First, it is anticipated that the error rate signal, being the derivative
of the error signal, will exhibit larger magnitudes. Second, both the signals notably demonstrate higher magnitudes
within the region of interest (ROI) compared to the steady state, particularly evident in conditions with high 𝐺𝐶𝐸

values, where the step-like change in CE dynamics induces increased error and error rate. Additionally, the lower
variance observed in slower transitions is likely associated with longer detection times, a concept discussed later. Third,
the reduced variance in the pursuit display suggests enhanced tracking performance, which may also be supported by
reduced detection lags. Based on these observations, the variance values in the ROI encourage further exploration into
detection lags and their statistical correlation.

Thus, the next step in evaluating performance is to analyze the detection lag of the subjects deriving further insight
into the transition phase of the runs. This metric is related to how quickly subjects detect the change in CE dynamics.
It will be demonstrated that detection lags vary, based on both the display type and the 𝐺𝐶𝐸 value, highlighting the
relationship between these variables. The boxplots shown below in Figure 18 display the detection lags per 𝐺𝐶𝐸 value
(using only the 𝑇𝑃 category of the DYN12 runs) for the compensatory display (in red) and the pursuit display (in blue).
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Fig. 18 Temporal scale of subject’s detection lag per 𝐺𝐶𝐸 value for both display types

As mentioned in subsection III.E, the reference time to quantify detection lag is defined as the point when the CE
dynamics have transitioned to 50% of their final DYN2 value (see Figure 14), i.e., the origin of the Y-axis in the above
plot corresponds to 𝑡 = 35s of the experiment. Consequently, as only 𝑇𝑃 cases can be considered to obtain the detection
lag; in the case of the compensatory display, this led to the exclusion of 15 𝐹𝑃 and 4 𝐹𝑁 from a total of 240 DYN12
runs and 2 𝐹𝑃 and 6 𝐹𝑁 for the pursuit display.

For the above figure, two important observations were made: (1) for the boxplot of 𝐺𝐶𝐸 = 2.94𝑠−1 for the
compensatory display, a value for subject 2 (P2) was missing because they had no 𝑇𝑃 detections for this 𝐺𝐶𝐸 value and
(2) the mean detection lags in the pursuit display tend to be lower across all 𝐺𝐶𝐸 values compared to the compensatory
display (like the variance values). Here, for the compensatory display, the mean detection lags are found to be 8.37, 4.03,
3.01, and 2.98s for 𝐺𝐶𝐸 = 0.5, 2.94, 5.88, and 100𝑠−1 respectively. For the pursuit display, the mean values are 7.48,
2.50, 2.11, and 1.83s, respectively. The lower detection lags observed for the pursuit display show that the choice of
display type significantly affects the HO’s detection process with 𝐹 (1, 11) = 18.588, 𝑝 = .001, partial 𝜂2 = 0.628. The
observed consistent decrease in detection lag with an increase in transition rate is also validated with repeated measures
ANOVA, here, Mauchly’s test indicated that the assumption of sphericity had been violated, 𝜒2 (5) = 19.344, 𝑝 = 0.002
and therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (𝜖 = 0.474) resulting
in 𝐹 (1.421, 15.634) = 348.264, 𝑝 < 0.001, partial 𝜂2 = 0.969. In contrast, given the relative decrease in detection
lag by using the pursuit display remains approximately the same across all 𝐺𝐶𝐸 values, it can be concluded that
the interaction effects of both these independent variables are not significant, 𝐹 (3, 33) = 1.091, 𝑝 = 0.367, partial
𝜂2 = 0.090.

Comparing these findings to previous experiments, it is notable that the detection lags for 𝐺𝐶𝐸 = 100𝑠−1 are
considerably lower than those found in studies utilizing a compensatory display by Van Ham [21] and Plaetinck
[25], the median detection lags were reported to be 6.6s and 5.2s respectively. On the contrary, the detection lag for
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𝐺𝐶𝐸 = 100𝑠−1 in the pursuit display matches the detection lag value of 1.82s found in Barragan’s report [28].
This disparity in detection lag for 𝐺𝐶𝐸 = 100𝑠−1 in [21][25] is likely due to 𝜔𝑏1 which was kept to be 6 rad/s

in those experiments while this study utilizes 20 rad/s (same as [28]) making the system respond more like a pure
single-integrator, and hence makes the difference between single-integrator and double-integrator more distinct and
easier to detect. Furthermore, the phenomenon of slower rates of transitions corresponding to higher detection lags
can be correlated to the findings of the computer simulations in that the slow changes lead to fewer changes in signal
magnitudes in the ROI and hence the time taken by the adaptive HO to detect the change in CE dynamics increases. This
phenomenon can be extrapolated such that we can expect the model to have lesser accuracy for such slower transitions
in line with the computer results (subsection II.D).

Lastly, the variance of the signals in ROI and the detection-lag can be seen to have a negative correlation, with a
Pearson correlation coefficient of 𝜌 = −0.461, 𝑝 < 0.01 for the 𝜎2

𝑒 - detection lag and 𝜌 = −0.457, 𝑝 < 0.01 for 𝜎2
¤𝑒 -

detection lag.

C. Model Accuracy
In Figure 19, the model’s accuracy is depicted independently for the compensatory and pursuit displays across all

experimental conditions. Each boxplot comprises 12 data points representing the mean accuracy of the model for the
twelve subjects. Given that the DYN1 condition (pink region) constitutes 50% of all experimental runs, the mean value
per subject is derived from 20 runs. Conversely, for DYN12 conditions (blue region), each data point is a mean value per
subject derived from 5 runs. In the figure, the red boxplots represent the model’s accuracy using the error signal 𝑒(𝑡),
while the blue boxplots correspond to the model’s accuracy using the error rate signal ¤𝑒(𝑡). Lastly, the black boxplots
show the model’s combined accuracy i.e., using both, the error and error rate signals.

Here, Table 9 gives the associated numerical values (black circular markers in the plots) while Appendix F provides
categorical (𝑇𝑃/𝑇𝑁/𝐹𝑃/𝐹𝑁) values for this data. The model demonstrates high accuracy for the DYN1 condition,
with combined model accuracy values of 96.25% and 98.33% for the compensatory and pursuit displays, respectively.
Interestingly, this is the only condition where the model exhibits a higher percentage accuracy for the pursuit display. In
contrast, for the DYN12 condition, the combined model gives an average accuracy of 88.33% for the compensatory
display and 81.04% for the pursuit display, which is relevant to H(4). For the study’s focus on varying rates of transition,
and given that the model demonstrates higher accuracy for the compensatory display, this phenomenon can be explained
as: in the pursuit display, additional signals are available, providing the human operator with more strategies to detect
changes in CE dynamics. However, the model developed in this study relies solely on the error signal and its derivative,
which are explicitly available in the compensatory display. Consequently, the human operator relies more on these
signals to detect changes in CE dynamics.

(a) Model accuracy for compensatory display (b) Model accuracy for pursuit display

Fig. 19 Model’s accuracy on experimental data using the error signal, error rate signal and both signals
combined. Shown for DYN1 condition and DYN12 conditions

For the compensatory display, from a total of 480 runs (designed as 240 𝑇𝑃 and 240 𝑇𝑁) conducted throughout
the experiment, the combined model categorized 194 runs as 𝑇𝑃, 231 as 𝑇𝑁 , 27 as 𝐹𝑃 and 28 as 𝐹𝑁 with the lowest
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accuracy of 70.00% related to the slowest rate of transition as expected, and the highest accuracy of 90.00% for the fastest
rate of transition. The same trend persists when the model explicitly uses the error signal and error rate signals. While
H(1) was supported by high model accuracy, H(2) lacked support from the model’s findings. A probable explanation for
the lack of higher accuracy using error rate signal for slower rates of transition can be that the HO uses some filtered
form of 𝑒(𝑡) to detect the changes in CE dynamics or the ¤𝑒(𝑡) is used only as a secondary identifier by the HO. The
latter explanation is backed by all blue boxplots (for DYN12) extending downwards to 0% accuracy for a subject either
as a whisker or within their Inter Quartile Range (IQR). For reference, Table 9 also gives the subject’s average accuracy
for all cases.

Table 9 Subject and Model’s accuracy for experiment data

Condition Case Subject’s Accuracy % Accuracy based on Signal Used
𝑒(𝑡) ¤𝑒(𝑡) Combined

DYN1 C1 93.75 77.08 94.58 96.25
DYN12 C12S1 88.33 63.33 30.00 70.00
DYN12 C12S2 90 71.67 40.00 78.33
DYN12 C12F1 95 78.33 46.67 85.00
DYN12 C12F2 95 86.67 53.33 90.00
DYN1 P1 98.75 83.33 95.83 98.33
DYN12 P12S1 88.33 38.33 6.67 40.00
DYN12 P12S2 100 56.67 18.33 63.33
DYN12 P12F1 98.33 73.33 21.67 73.33
DYN12 P12F2 100 70.00 21.67 75.00

Furthermore, the fact that 𝐺𝐶𝐸 = 0.5𝑠−1 runs had the lowest accuracy amongst subjects and the model for both
displays suggests that the continuous adaptation by the HO to slow-changing CE dynamics makes the transition more
difficult to detect. While the combined model can be used increasingly for faster rates of transition in the compensatory
display, the model’s low accuracy in the pursuit display, suggests that the HO relies more on either control input 𝑢(𝑡) or
system output 𝑦(𝑡) or a combination of the available signals. For the pursuit display, the model categorized 151 runs
as 𝑇𝑃, 236 as 𝑇𝑁 , 30 as 𝐹𝑃 and 63 as 𝐹𝑁 . Here, the twofold increase in 𝐹𝑁 also indicates the improved tracking
performance (lower RMSE → 𝑒(𝑡)/ ¤𝑒(𝑡) not crossing the selected 𝑛𝜎 trigger value) for the pursuit display, leading the
model to categorize DYN12 runs as DYN1.

It is further observed that for the compensatory display, for the DYN12 condition, using the error-signal-based
model leads to a higher average accuracy of 76.35% than using the error rate-signal-based model which has an average
accuracy of 66.15% supporting H(3). Therefore, it can be concluded that the accuracy of the model is affected by the
display type, 𝐹 (1, 11) = 7.942, 𝑝 = 0.017, partial 𝜂2 = 0.419. Similarly, the observation that increasing transition rates
lead to increased model accuracy helps conclude that the rate of transition significantly affects the model’s performance,
𝐹 (3, 33) = 15.589, 𝑝 < 0.001, partial 𝜂2 = 0.586. However, the interaction effects of display type and rate of transition
on the model’s accuracy are not significant, 𝐹 (3, 33) = 0.094, 𝑝 = 0.963, partial 𝜂2 = 0.008.

When Figure 19 is compared to Figure 9 of the computer simulations. It is observed that (in line with the findings
of the simulations) with increasing transition rates, going from left to right in the plots, the accuracy of the model
increases for the error signal i.e., the skilled HO relies more on the error signal for faster rates of transition. However,
the simulation’s trend of the error rate signals is not validated by the experiments. Lastly, for the temporal scale of the
model’s performance, which is crucial for the model’s accuracy, Figure 20 shows the spread of moment in time when
the model is triggered for varying rates of transition. The mean values of these boxplots are 7.98, 2.65, 1.84 and 1.63s
for the compensatory display and 5.92, 1.68, 1.53 and 1.02s for the pursuit display going from left to right, respectively.
When these values are compared with subjective detection lags mentioned in subsection IV.B it is observed that the time
difference between the HO’s detection and the model trigger has a mean value of 1.97, 1.30, 1.08 and 1.62s for the
compensatory display and 2.07, 0.83, 0.62 and 0.81s for the pursuit display corresponding to 𝐺𝐶𝐸 = 0.5, 2.94, 5.88
and 100𝑠−1 respectively. These values suggest that the mean values of the model’s detection lag are not significantly
different, 𝑡 (3) = 2.965, 𝑝 = 0.081 for the two displays. Moreover, these values are notably higher than human reaction
times [32] implying that there are additional factors other than human reaction time contributing to the detection process.
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These findings conclude that the combined model, based on 𝑒(𝑡) and ¤𝑒(𝑡) can be effectively used for a range of rates
of transition considered in this study. Moreover, this model is more suitable for the compensatory display.

V. Discussion
The objective of this research was to investigate how adaptive pilots utilize the compromised stability of the

open-loop system to detect the change in controlled element dynamics. To achieve this goal, Monte Carlo simulations
were conducted using the principles of the crossover model with added time delay. The simulation results yielded a
high-accuracy model based on the error signal 𝑒(𝑡) and error-rate signal ¤𝑒(𝑡), with threshold values of 3.3𝜎 and 3.7𝜎,
respectively.

To validate the simulation findings, a human-in-the-loop experiment was conducted, wherein the subjects performed
a primary tracking task with a secondary task of pressing a button whenever they detected a change in CE dynamics.
Twelve subjects participated in this experiment and tested both, compensatory and pursuit displays. Each display had
twenty DYN1 runs and twenty DYN12 runs with five runs each for a different rate of change (𝐺𝐶𝐸). The results
indicated that the error signal 𝑒(𝑡), similar to the simulations, exhibited high accuracy in predicting the HO’s detection
of change in CE dynamics. However, the model’s performance using the error rate signal ¤𝑒(𝑡) showed considerably
lower accuracy compared to the simulations, with an average difference of 39% for the compensatory display, suggesting
potential support-like use of this signal.

The experiment yielded good-quality data (subsection IV.A and subsection IV.B), with participants achieving an
average accuracy of 92.08% for the compensatory display and 96.67% for the pursuit display. Regarding subjective
detection lags, the mean values for the slowest (𝐺𝐶𝐸 = 0.5𝑠−1) and fastest (𝐺𝐶𝐸 = 100𝑠−1) rates of transition were
8.37s and 2.98s for the compensatory display, and 7.48s and 1.83s for the pursuit display, respectively. These values are
consistent with those reported in Barragan’s report [28] that used the pursuit display but lower than reported in [21][25]
that used the compensatory display type. Moreover, the mean values of crossover frequency and phase margin in the
DYN1 phase were very similar for the compensatory (2.73 rad/s and 64.19°) and pursuit display (2.81 rad/s and 60.61°)
types. In a similar experiment conducted previously [26], the mean crossover frequency was reported to be 0.97 rad/s, a
value not representative of skilled human operator behaviour [7]. Therefore, it is likely that the findings of the current
study are more applicable to skilled human operator behaviour, which is the primary target audience for the applications
of this model, which is in line with [28].

The first hypothesis, H(1), predicted that 𝑒(𝑡) would have higher accuracy in predicting the HO’s detection of change
in CE dynamics for faster rates of transition i.e., for 𝐺𝐶𝐸 = 5.88 and 100𝑠−1. The accuracy of the model using 𝑒(𝑡)
presented in Table 9 shows that the error signal consistently had higher accuracy (compensatory display: 78.83% and
86.67%; pursuit display: 73.33% and 70.00%) than the error rate signal (compensatory display: 46.67% and 53.33%;
pursuit display: 21.67% and 21.67%) for these 𝐺𝐶𝐸 values. Therefore, H(1) is accepted.

The second hypothesis, H(2), predicted that ¤𝑒(𝑡) would have higher accuracy for slower rates of CE transition
(𝐺𝐶𝐸 = 0.5 and 2.94𝑠−1). This hypothesis, based on computer simulations, suggested that skilled HOs continuously
adapt to gradual changes in CE dynamics, resulting in a less significant increase in tracking error. Consequently, it
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would be the increase in the error rate signal that would help detect the change. However, the experimental findings
contradict this hypothesis; ¤𝑒(𝑡) did not contribute to high accuracy for slower transitions. The likely explanation is that
the skilled HO uses some filtered version of 𝑒(𝑡) or the delay observed between control input and system output which
is characteristic of double-integrator dynamics to detect the change in CE dynamics. Consequently, H(2) is rejected.
Notably, this leads to a future interest in adjusting the trigger value (currently set at 3.7𝜎) of the error rate signal to
validate the findings.

The next hypothesis, H(3) was based on simulation findings that the error signal had a higher mean accuracy across
all DYN12 conditions, despite different 𝐺𝐶𝐸 values exhibiting varying preferences between 𝑒(𝑡) and ¤𝑒(𝑡). Based on
the experimental findings that support H(1) and reject H(2), the fact that 𝑒(𝑡) consistently has higher accuracy for the
entire range (0.5𝑠−1 to 100𝑠−1) of DYN12 transitions makes it implicitly have higher average accuracy. Thus, H(3) is
accepted. Moreover, this aligns with previous research indicating that a model with a threshold based on 𝑒(𝑡) performs
well in detecting the DYN12 transition [10][20][21].

Moreover, H(4) predicted that the model, utilizing both error and error rate signals, would be more suitable for the
compensatory display when compared with the pursuit display. This hypothesis was based on the premise that the HO
has more information ( 𝑓𝑡 (𝑡) and 𝑦(𝑡)) in the pursuit display and hence is not restricted to 𝑒(𝑡) and ¤𝑒(𝑡). Table 9 supports
this hypothesis and hence, H(4) is accepted. The inclusion of this hypothesis was crucial due to the availability of both
error and error rate signals to the HO in a pursuit display and because prior studies have indicated that adaptive pilots
often demonstrate compensatory tracking behaviour in pursuit tracking tasks [8].

Lastly, H(5), predicted that the use of the pursuit display would lead to reduced detection lags when compared to the
compensatory display. This hypothesis is supported by Figure 18 and was found to be statistically significant as well.
Therefore, H(5) is accepted.

To improve the implementation of the model in real-life applications, a crucial next step would be to obtain the pilot
model for the transitory part of the run i.e., in and around the centre of the CE’s sigmoid. This can be achieved by
implementing online identification models like recursive low-order ARX identification developed in [25] or algorithms
like Box-Jenkins models [33] that can be used either offline or online so that the TV pilot model can be obtained. The
obtained pilot model can then be utilized to adjust the pilot model parameters as a function of time similar to the
computer simulations, thereby obtaining an accurate open-loop system. Subsequently, this process would facilitate a
precise estimation of the region of interest. Implementing such a methodology will significantly contribute to further
validating the model.

Moreover, a limitation of this model for the compensatory display lies in its inability to achieve high accuracy
for gradual transitions, such as when the transition time is approximately 10s, despite the error being the only signal
available to the human operator. This suggests the potential use of control input 𝑢(𝑡) which may become more prominent
during slow transitions (as mentioned earlier, when the dynamics shift from DYN1 to DYN2, the delay between input
and output becomes more noticeable) as the effect of control input is the only other signal available to the HO in
compensatory displays. This limitation could also extend to the pursuit display, where the model’s performance indicates
the utilization of other strategies involving 𝑢(𝑡) and 𝑦(𝑡) by the HO. Therefore, it is recommended to incorporate
𝑢(𝑡) into the model to address this limitation effectively. The correct implementation will be evident when the model
consistently achieves similar accuracy across all 𝐺𝐶𝐸 values. In essence, the model should demonstrate consistently
high and very similar accuracy for DYN12 conditions, regardless of the rate of transition. An added approach is to
conduct simulations and experiments for a range of 𝐺𝐶𝐸 with closely spaced transition times (like 1𝑠, 2𝑠, 3s, etc) to
obtain a range of time that marks the onset of decreased model accuracy and hence, increased dependency on 𝑢(𝑡). This
can help further optimise the model by adding an increased weight to 𝑢(𝑡) as a function of decreasing rate of transition.

In addition to the current findings, further efforts should be directed towards investigating DYN21 transitions to
assess whether the approach utilizing open-loop stability can be extended to dynamics that become more stable. This
extension could involve redefining the ROI as a function of increased stability and adjusting threshold values such that a
𝑇𝑃 would be derived for no-trigger conditions, as demonstrated in [28].

Moreover, it is imperative to evaluate the model’s applicability across a spectrum of different start and end CE
dynamics to ascertain that the findings are not confined to the specific gain and pole values utilized in this study.
This broader exploration would provide insights into generalising the proposed model. Furthermore, it is crucial to
acknowledge that the threshold values employed in this study were derived from computer simulations and may not be
optimized for experimental data. Therefore, optimizing these threshold values to better suit the experimental data can
enhance the accuracy and reliability of the model’s predictions when applied to real-world scenarios.

Lastly, it should be noted that there is a difference in subject and model detection times. The current difference
(≈ 1.5s in the compensatory display and ≈ 1s in the pursuit display) suggests that the model is triggered earlier than the
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actual moment of HO’s detection.
Overall, this study introduces a high-accuracy model that explains why and how the HO uses certain signals in a time

duration preceding the detection of change in CE dynamics. The study thoroughly demonstrates the effect of display
type and rate of transition on the human operator’s detection process as well as on the model’s accuracy. Thus, this study
successfully models the pilot’s detection of change in controlled element dynamics with proposed recommendations to
increase the effectiveness of the model in order to develop more human-like automation.

VI. Conclusion
This study investigated the modelling of human operator’s detection of change in controlled element dynamics

using open-loop stability approach. It addressed a range of transition rates and considered two prominent display types
used in aviation: compensatory and pursuit displays. The findings revealed that human operators predominantly rely
on the error signal, demonstrating higher accuracy for both display types, during periods of compromised open-loop
stability. This was in contrast to the simulation’s findings that suggested the use of both, the error and error rate signals.
Threshold values for these signals were established at 3.3𝜎 and 3.7𝜎 respectively. The pursuit display helped the human
operator to have better performance and lower detection lags. The combined model utilizing both signals exhibited
superior accuracy for the compensatory display (88.54%) compared to the pursuit display (80.62%). Overall, the study
underscores the adaptive nature of human pilots, who effectively utilize the decrease in open-loop stability to detect
changes in controlled element dynamics.
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A
State-Space Modelling

The modelling and representation of systems are generally done using either of the two methods: transfer

functions tf and state-space ss representation. While the former is unique to a system, the latter is not

unique, i.e. a system can have two different state-space representations. While a transfer function is a

mathematical representation that relates the system’s output to its input, a state-space representation is a

mathematical model used to describe the behaviour of a dynamic system over time. Generally, a system

can be represented in either format based on the requirements. For the research carried out in this study,

it is a common practice to have a tf representation of the CE and the pilot model given that they are SISO

systems and are simpler systems not requiring explicit representation of their state variables. Moreover,

the behaviour and reasoning of all the parameters present in the CE and pilot model are easier to interpret

using transfer functions. As a result, the formal definitions of these systems throughout the study are done

using transfer functions. These transfer functions are shown below in Equation A.1 and Equation A.2 for

CE and pilot model respectively. As seen in Equation A.1, two equivalent forms of representation are

available for CE dynamics.

HCE(s, t) =
Kc(t)

s(s+ ωb(t))
⇔ Kc(t)τc(t)

s(τc(t)s+ 1)
(A.1)

Hp(s, t) = Kp(t)(τL(t)s+ 1)e−sτe(t)
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(A.2)

Here τc(t) is the CE time constant (τc =
1
ωb
). In initial simulations, the latter structure was used for CE

dynamics, i.e. using the time constant. While this was reasonable, it was found that the product of two

sigmoids did not result in a required sigmoid. This anomaly occurred in the second structure’s numerator

where Kc(t) and τc(t) are multiplied. Figure A.1 shows the sigmoidal behaviour of the parameters of the
selected CE structure from DYN1 to DYN2 for the entire duration of the simulation with G = 0.5[sec−1] and
the resultant non-sigmoidal behaviour obtained from the multiplication of the two parameters to achieve

the numerator of the second structure.

Subsequently, the pilot will then adapt to the TV CE dynamics by varying required parameters, namely,

Kp(t), τL(t) and τe(t). These parameters in the theoretical case of an ideal pilot without delay, should
exhibit the same behaviour as that of individual sigmoidal transition as seen in for CE parameters in

Figure A.1. Similar to the case of CE, given the structure of the pilot model, it can be seen that these

parameters are not independent in transition, but rather in combination, therefore, the multiplication ofKp(t)
and τL(t), will exhibit the same divergence from sigmoidal behaviour like the numerator of the second CE

structure. This is shown in Figure A.2. It is to be noted that, in the figure, Kedot is the required form of

transition. It is observed that even though the sigmoids seem to overlap, the non-sigmoidal behaviour can

be seen in the zoomed-in version of the same plot focusing on the behaviour around the centre of the

sigmoid M .
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Figure A.1: Non-sigmoidal behaviour of the TV CE tf

0 5 10 15 20 25 30 35 40 45 50

Time [sec]

0

0.1

0.2

0.3

0.4

0.5

0.6

P
a

ra
m

e
te

r 
V

a
lu

e

Transition of Pilot parameters

Kp*T
L

Kedot

M

(a) Problem of using tf for the pilot

24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8

Time [sec]

0.24

0.26

0.28

0.3

0.32

0.34

P
a

ra
m

e
te

r 
V

a
lu

e

Transition of Pilot parameters

Kp*T
L

Kedot

M

(b) Maximized view

Figure A.2: Non-sigmoidal behaviour of the TV pilot tf

Figure A.3 shows the normality-normality plot of Kedot to represent how divergent the noon-sigmoidal

behaviour is from a sigmoidal behaviour, which is the diagonal reference line. The non-sigmoidal behaviour

of the pilot transfer function parameters will continue to diverge when the effective time delay term is

added. Given the problems caused by using tf , it was concluded that this form leads to the violation of the

crossover model for time-varying simulations that are fundamental to manual tracking tasks.

As a result, an alternative approach, which proved to be successful and was henceforth used in the

simulations conducted in this study, was the use of ss representation of the CE and pilot systems. The

symbolic ss obtained for CE and pilot are mentioned in Equation A.3 and Equation A.4 respectively.

Lastly, it is essential to note that the transfer function representation of the CE that uses ωb will not show

non-sigmoidal behaviour as the two parameters, namely, Kc and ωb do not form a combined unit during

calculations; the eventual use of ss for the CE is done to have all systems represented using the same

format. The proof that both CE parameters act individually can also be seen in its ss representation.
Eq.(A.3) and Eq.(A.4) give the ss representation of the CE and pilot respectively.
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Figure A.3: Normality-normality plot of Kedot

ACE =

[
−ωb 0

1 0

]

BCE =

[
1

0

]

CCE =
[
1 Kc

]
DCE = 0

(A.3)

ACE =


−(D2+2·D1·ωnm·ζnm)

D1

−(D1·ω2
nm+2·D2·ζnm·ωnm+D3)

D1

−(D2·ω2
nm+2·D3·ωnm·ζnm)

D1

−(D3·ω2
nm)

D1

1 0 0 0

0 1 0 0

0 0 1 0



BCE =


1

0

0

0



CCE =
[

(N1·K̇e·ω2
nm)

D1

(N2·K̇e·ω2
nm+N1·Kp·ω2

nm)
D1

(N3·K̇e·ω2
nm+N2·Kp·ω2

nm)
D1

(N3·Kp·ω2
nm)

D1

]
DCE = 0

(A.4)

Where Nx (x = 1, 2, 3) represents the numerator terms and Dx the denominator terms of the 2nd

order pade approximation of the exponential time delay e−sτe term of the pilot model. This is done to be

able to represent the ss of the pilot using Matlab’s Symbolic Math Toolbox along with the tf2ss function
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that cannot take exponential terms in its argument. Eq(A.5) shows the structure of the 2nd order pade
approximation. Here, s2 is included in N1 and D1; s in N2 and D2 and N3 and D3 are constants.

pade(e−sτe) =
N1 +N2 +N3

D1 +D2 +D3
(A.5)

It is vital to note that all the elements of the different ss matrices are then transitioned as a sigmoid
to achieve the required time-varying nature of the simulations. Hence, the ss representation of systems
under consideration solves the identified pitfalls of the tf representation for the paper’s primary aim of

time-varying manual control task simulations.



B
Simulink Modelling

This section shows the final simulink model used for t-domain simulations.

Figure B.1: Simulink model of the compensatory tracking task

Figure B.2: Simulink model - pilot
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Figure B.3: Simulink model - CE

Figure B.4: Simulink model - Remnant

Here, the state-space matrix function block in Figure B.2 and Figure B.3 are Matlab function blocks

which restructure the inputs into matrices required for the ss.



C
Calculating the Remnant Gain

This appendix outlines the derivation of the relation utilized in the computer simulations to account for the

non-linear part of the human operator, specifically the remnant filter. The objective is to determine the

remnant gain Kn needed to achieve the desired power of the noise signal in the control input, based on

the power ratio Pn.

To establish the relation for the time-varying remnant gain, it is essential to define the covariance

function (C) of two zero-mean stochastic variables: x̄(t) and ȳ(t).

Cx̄ȳ(τ) = E{x̄(t)ȳ(t+ τ)} = lim
T→∞

(
1

2T

∫ T

−T

x̄(t)ȳ(t+ τ)dt

)
(C.1)

With this covariance function defined, the next step involves obtaining the power spectral density (PSD)

function by taking the Fourier transform (F):

Sx̄ȳ(ω) = F {Cx̄ȳ(τ)} =

∫ ∞

−∞
Cx̄ȳ(τ)e

−jωτdτ (C.2)

Here, since two different stochastic processes are considered, the PSD is a cross-PSD (Sx̄ȳ(ω)). If it
were taken for the same stochastic process, it would be the auto-PSD (Sx̄x̄(ω)). The definitions of these
PSDs are given below:

Sx̄ȳ(ω) = lim
T→∞

(
1

2T
Ȳ (ω)X̄(−ω)

)
, Sx̄x̄(ω) = lim

T→∞

(
1

2T
X̄(ω)X̄(−ω)

)
= lim

T→∞

(
1

2T
|X̄(ω)|2

)
(C.3)

Furthermore, the variance (σ2
x̄x̄) of a stochastic variable can be calculated by integrating the auto-PSD

function:

σ2
x̄x̄ = Cx̄x̄(τ = 0) =

1

2π

∫ ∞

−∞
Sx̄x̄(ω)dω (C.4)

Now, using Figure 3.5 as reference, it is observed that ū(t) = ūe(t) + n̄(t), where ūe(t) is the output
signal from HP (s). Thus, taking the Fourier transform of these signals gives:

Ū(ω) = Ūe(ω) + N̄(ω) (C.5)

However, as the forcing function and the noise signal are assumed to be uncorrelated, Sf̄tn̄ = Sn̄f̄t = 0.
The auto-PSD of ū(t) in Equation C.5 can be obtained as follows:
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Ū(ω)Ū(−ω) =
(
Ūe(ω) + N̄(ω)

)
·
(
Ūe(−ω) + N̄(−ω)

)
∴ Ū(ω)Ū(−ω) =

(
HP (ω)

1 +HP (ω)HCE(ω)
F̄ (ω) +

Hn(ω)

1 +HP (ω)HCE(ω)
N̄(ω)

)
.(

HP (−ω)

1 +HP (−ω)HCE(−ω)
F̄ (−ω) +

Hn(−ω)

1 +HP (−ω)HCE(−ω)
N̄(−ω)

)
Taking the expectation, E{·}:

Sūū(ω) =

∣∣∣∣ HP (ω)

1 +HP (ω)HCE(ω)

∣∣∣∣2 Sf̄tf̄t(ω) +

∣∣∣∣ Hn(ω)

1 +HP (ω)HCE(ω)

∣∣∣∣2 Sn̄n̄(ω)

→ Sūū(ω) = Sūft ūft
(ω) + Sūnūn

(ω)

Where, Hn(ω) = K2
n · 1

(τnjω+1)2 = K2
n ·H ′

n(ω)

Given the relation defined in Equation C.4 and the definition of Pn given by Equation C.6, substituting

the relevant terms obtained above yields the following relation:

Pn =
σ2
ūnūn

σ2
ūū

=
σ2
ūnūn

σ2
ūnūn

+ σ2
ūft ūft

(C.6)

∴ Pn =

1
2π ·

∫∞
−∞ | Hn(ω)

1+HP (ω)HCE(ω) |
2 · Sn̄n̄dt

1
2π ·

∫∞
−∞ | Hn(ω)

1+HP (ω)HCE(ω) |2 · Sn̄n̄dt+
1
2π ·

∫∞
−∞ | HP (ω)

1+HP (ω)HCE(ω) |2 · Sf̄tf̄tdt
(C.7)

Now let,

a =
1

2π
·
∫ ∞

−∞
| H ′

n(ω)

1 +HP (ω)HCE(ω)
|2 · Sn̄n̄dt

b =
1

2π
·
∫ ∞

−∞
| HP (ω)

1 +HP (ω)HCE(ω)
|2 · Sf̄tf̄tdt

∴ Pn =
K2

na

K2
na+ b

(∵ Hn(ω) = K2
n ·H ′

n(ω))

→ Kn =

√
Pn

1− Pn
× b

a

And, rearranging b as:

b =
1

2π
·
∫ ∞

−∞
| HP (ω)

1 +HP (ω)HCE(ω)
|2 · Sf̄tf̄tdt

∴ b =
1

π
·
∫ ∞

0

| HP (ω)

1 +HP (ω)HCE(ω)
|2 · Sf̄tf̄tdt

→ b = πσ2
ūft

Lastly, substituting the value of Sn̄n̄ = Intensity of white noise (W ) = 1 by design. We obtain the following

relation:

Kn =

√√√√ Pn

1− Pn
×

πσ2
uft∫∞

0
| 1
(τnjω+1)2 |2|

1
(1+Hp(jω)HCE(jω)) |2Wdω

(C.8)

Thus, the above relation can now be used to calculate the remnant gain for a given set of dynamics

and pre-defined power ratio.



D
Validating ft Realizations

Implementing the forcing function realizations used in the experiment needs to be validated to ensure

that the ft does not undergo any unforeseen change because, the process of implementation in DUECA
(middleware), utilizes the forcing function parameters and not the time-signal as is. Thus, first, the simulated

ft realizations are implemented on the hardware. Second, the realizations are run for their entire period
Tm and a log file is obtained that gives time-signal data at each time step. This data is now tested against

the simulated ft.

The verification of the ft implemented in the experiment in comparison to the simulated ones is given
in Figure D.1, which shows a round-off error pattern for one complete period of all six realizations obtained

by subtracting the experimental realizations from their simulated counterpart. The magnitude of error was

found to be of the order of 10−7◦. This error results from the rounding-off of the decimal place integers

which changes based on the hardware used.
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Figure D.1: Comparison of theoretical (designed) and experimentally implemented forcing function (ft)
realizations

Moreover, Figure D.2 shows a comparison of theoretical and experimental power spectral density

(PSD) of the ft, which shows that both the forcing functions have power at the desired frequencies;

peaks occurring at integer multiples of the fundamental frequency kωm. Here, the difference observed for
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extremely low powers (depth of Y-axis) is a result of the difference in the number of decimal place integers

considered.
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Figure D.2: Comparison of theoretical and experimental Power Spectral Density of the forcing function (ft)



E
Pilot Model Parameters

The pilot model parameters are derived using Maximum Likelihood Estimation (MLE) from the time signal

data collected during the 30-second pre-transition period corresponding to the DYN1 part of all runs.

The MLE algorithm operates by employing common estimates (provided by the user) as initial guesses

for the pilot parameters, to find the optimal match between the simulated control input signal (obtained

from e(t) as input to the initial guess-based pilot model) and the experimental record of the control input
signal. The algorithm is iterated 100 times per run. Here, during any of these iterations, the algorithm stops

further iterations if the best fit surpasses a predefined minimum threshold (10−6) for the difference between

the current and previous step’s fits. The corresponding percentage variance accounted for (%V AF ) is
also noted to check for the quality of the fit obtained.

Even though all runs were iterated over with 2 sets of initial guesses, the figures shown below give

the spread of mean parameter value per run per participant. Thus, each boxplot contains 40 data points.

Moreover, it is noted that all parameters obtained from the MLE are presented here, namely, pilot gain Kp,

lead time τL, effective time delay τe, natural frequency of the neuromuscular system ωnms, damping ratio

of the neuromuscular system ζnms and the variance accounted for %V AF .

The corresponding global mean values (red horizontal line) of these parameters are found to be Kp =
2.96, τL = 0.20s, τe = 0.24s, ωnms = 12.37rad/s, ζnms = 0.36 and %V AF = 75.85% for the compensatory

display and Kp3.31, τL = 0.15s, τe = 0.23s, ωnms = 12.24rad/s, ζnms = 0.28 and %V AF = 80.93% for the

pursuit display.
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Figure E.1: Pilot Gain (Kp)
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Figure E.2: Lead Time (τL)
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Figure E.3: Effective Time Delay (τe)
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Figure E.4: Natural Frequency of the Neuromuscular System (ωnms)
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Figure E.5: Damping Ratio of the Neuromuscular System (ζnms)
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Figure E.6: Variance Accounted For (%V AF )





F
Categorical Data of Accuracy

This appendix provides the categorical data of both, the subject’s and the combined model’s root cause

of accuracy. That is the quantification of the TP, TN, FP and FN . The first two figures, Figure F.1 and

Figure F.2, give the subject and combined model’s categorical data respectively, for the DYN1 condition,

which covers half of the total runs per display type. This is followed by the data for the DYN12 condition in

Figure F.3 and Figure F.4 where each row in the subplots corresponds to a GCE value.

It can be seen from these figures that each GCE has five runs related to the five ft realizations, which
make a total of 20 DYN12 runs. Notably, the values in each segment of the stacked bar graphs correspond

to the quantity in that segment (category).

Furthermore, for the figures that correspond to the combined model’s accuracy, the legend entry

”FN/P ” implies that the error signal-based model and error rate signal-baed model categorized a run
in two different false categories i.e., if e(t) category for a specific run was FP then the same run was

categorized as a FN by ė(t) and vice versa.
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Figure F.1: Subject’s accuracy for DYN1 condition. The left subplot corresponds to the compensatory

display while the right corresponds to the pursuit display
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Figure F.2: Combined model’s accuracy for DYN1 condition. The left subplot corresponds to the

compensatory display while the right corresponds to the pursuit display
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Figure F.3: Subject’s accuracy for DYN12 condition. The left subplots correspond to the compensatory

display while the right corresponds to the pursuit display
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Figure F.4: Combined model’s accuracy for DYN12 condition. The left subplots correspond to the

compensatory display while the right corresponds to the pursuit display





G
Sensitivity Analysis of ROI

The degradation of Open-Loop (OL) stability occurs when the Human Operator (HO) has yet to detect the

change in Controlled Element (CE) dynamics. Once the detection occurs, the identification and adjustment

phases take place wherein they adapt to the changed dynamics and adjust for the errors. In this study,

a critical parameter was redefined to apply the proposed model to the experimental data: the start of

the Region Of Interest (ROI). As outlined in the data analysis methodology, due to the unavailability of

time-varying pilot model parameters for the experiments, the ROI starts when the CE dynamics have

transitioned to 50% of their final value. This moment in time is consistent for all sigmoids, regardless of their

G value, as 50% transition represents the centre of the sigmoid M , while achieving all other percentage

values is contingent upon the G value used. This appendix provides details of a post hoc analysis of this

selection, to check for its validity and sensitivity.

Given that the loss of OL stability over time (φm(t)) triggers the HO’s detection, the analysis evaluates
the percentage transition value of the CE dynamics at which the operator typically detects the change.

This method works as a litmus test for the selected start of ROI. Although the detection lags mentioned in

the experiment results show that the detection happens much later in the transition, the figures provided

below offer quantitative evidence to support this observation. Importantly, the percentage value represents

the proportion of transition completed by the CE, using the sigmoid function to transition from DYN1 to

DYN2. This can be interpreted as the sigmoid’s percentage transition from P1 to P2.

Figure G.1 and Figure G.2 give the HO’s detection values per GCE value for the compensatory and

pursuit display, respectively.The global mean (indicated by the red horizontal line) is 94.02%, 98.26%,

99.99%, and 100% for the compensatory display and 94.85%, 99.65%, 99.99%, and 100% for the pursuit

display, corresponding to GCE = 0.5, 2.94, 5.88, and 100s−1, respectively. Notably, the maximum number

of data points that a boxplot can have is five if the HO has all five correct True Positive (TP ) detections.

As observed, detection increasingly occurs near or after the completion of the CE dynamics transition

as the transition rate increases (higher G). Particularly noteworthy is the lowest percentage value of HO
detection, observed for participant P2 in the compensatory display at 6.64% for GCE = 0.5s−1. This value

may indicate either an early-stage loss of OL stability triggering the HO’s detection or a False Positive

(FP ) detection. Here, the former is considered to be correct as detection is highly subjective and because
the subject did not add any comments indicating a FP post the completion of this run.
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Figure G.1: % of CE transition completed at the moment of HO’s detection of change in CE dynamics for

the compensatory display
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Figure G.2: % of CE transition completed at the moment of HO’s detection of change in CE dynamics for

the pursuit display

Given below are the figures for the model’s detection with Figure G.3 and Figure G.4 corresponding to

the compensatory and pursuit displays for when the model uses the error signal e(t) and Figure G.5 and
Figure G.6 for when the model uses the error rate signal ė(t).
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Figure G.3: % of CE transition completed at the moment of model trigger for e(t) in the compensatory
display
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Figure G.4: % of CE transition completed at the moment of model trigger for e(t) in the pursuit display
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Figure G.5: % of CE transition completed at the moment of model trigger for ė(t) in the compensatory
display
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Figure G.6: % of CE transition completed at the moment of model trigger for ė(t) in the pursuit display

In the case of the e(t) in the compensatory display, the global mean values are found to be 95.02%,

99.60%, 97.58% and 100% for increasing values of the rate of transition. Similarly, for the pursuit display

the values are 87.73%, 98.42%, 99.80% and 100%. While, for ė(t), the values are found to be 93.83%,

99.77%, 99.58% and 100% and; 92.29%, 99.53%, 99.80% and 100% for the compensatory and pursuit

display respectively.

Notably, the lowest transition value corresponding to the model’s trigger is 5.22% for e(t) in the

compensatory display for GCE = 5.88s−1 for participant P9. Furthermore, for ė(t), many boxplots are
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absent due to its low accuracy combined with only True Positive (TP ) cases considered in this analysis.

Considering these values, if all HO detections and model triggers were required to be contained within

the ROI, the percentage transition value of selection would be 5%. However, this approach may present

drawbacks as metrics such as detection lag, variance, and model accuracy would become challenging to

compare between different GCE values. Nonetheless, this analysis explores a wide range of transition

values to assess the effect of the selected value on model performance (trigger time and accuracy).

Consequently, Figure G.7 and Figure G.8 illustrate the variation in trigger time for e(t) and ė(t), while
Figure G.9 and Figure G.10 present their respective accuracy. Each subplot in these figures contains

percentage transition values of 5%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97% and 98%, arranged from

left to right.

It is crucial to note that for all percentage values other than 50% (highlighted in green in the plots), the

origin of the Y-axis for trigger times varies over time. For instance, the moment of 5% transition for G = 0.5,
2.94, 5.88, and 100s−1 for a sigmoid centered at 35 seconds corresponds to 29.13s, 34.01s, 34.51s, and
34.99s, respectively.
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Figure G.7: Variation in trigger time for model using e(t) for both, compensatory (red) and pursuit (blue)
display

Figure G.8: Variation in trigger time for model using ė(t) for both, compensatory (red) and pursuit (blue)
display
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Figure G.9: Variation in model accuracy using e(t) for both, compensatory (red) and pursuit (blue) display

Figure G.10: Variation in model accuracy using ė(t) for both, compensatory (red) and pursuit (blue)
display

From the above figures, several observations can be made. First, the variation in trigger time becomes

less distinct as the rate of transition increases. Secondly, for very fast transitions, such as G = 100s−1,

where the transition time from 5% to 95% is only 0.05s, both the HO and the model are likely to detect the

transition only after its completion, thus not significantly affecting accuracy. Third, the decrease in accuracy

from 5% transition to 50% transition is not substantial for either display. In the case of e(t), the maximum
percentage accuracy difference is observed for the slowest rate of transition, resulting in a decrease of

1.67% (approximately 3 True Positives) and 3.34% (approximately 5 True Positives). This minor decrease
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in accuracy is outweighed by the advantage of having a common time instance for comparing all G values

for various performance metrics.

Notably, further reduction in the length of the Region Of Interest (ROI) significantly impacts the model’s

accuracy, as evidenced by decreasing trends in Figure G.9 and Figure G.10. These findings, particularly

the lowest percentage values observed for the subjects and the model, indicate that initiating the ROI at

the moment of 50% transition of CE dynamics, as done in the experiments, is satisfactory.



H
Experiment Run Tables

Below are the experiment run tables for all twelve subjects categorized by display type. It is important to

note that this format serves solely to present the run order, which does not follow a Latin square design

but instead is entirely randomized.

The run order given below uses the following terminology for ease of interpretation: “GCE /ft realization”
where GCE = 0 denotes the DYN1 condition, representing no transition runs.

It is noted that participants identified by odd numbers (P1, P3, P5, P7, P9 and P11) started the

experiment using the pursuit display first while the participants identified by even numbers (P2, P4, P6, P8,

P10 and P12) used the compensatory display first.
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Table H.1: Run order for the compensatory display

Participants

Run No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1 100/4 0/3 2.94/2 0/1 0.5/2 100/1 100/5 100/5 0/2 2.94/2 100/1 100/2

2 100/5 0/2 5.88/2 0.5/3 5.88/3 100/5 2.94/5 100/4 5.88/5 5.88/1 0/3 5.88/1

3 2.94/3 0/2 0/2 0/1 0.5/1 0/2 5.88/5 0/5 5.88/3 100/3 5.88/1 0/5

4 0/5 5.88/5 2.94/4 0/4 100/2 5.88/3 0/4 0/5 0/1 0/2 0/1 100/5

5 0/5 100/4 0.5/1 5.88/4 2.94/5 0/1 100/1 5.88/5 5.88/2 0/2 0/3 0/3

6 2.94/1 100/2 2.94/1 0.5/4 5.88/2 0/3 0.5/1 100/3 0/2 0/4 0/1 2.94/4

7 0/1 0/5 100/2 100/5 100/5 0/4 0.5/5 0/3 2.94/3 0.5/3 0/5 0/4

8 100/2 0.5/3 0/4 2.94/2 0/1 0/5 5.88/1 0.5/5 0/2 5.88/3 0/4 2.94/3

9 0/2 0/4 100/3 0/2 0.5/5 100/3 0/3 0/4 0/3 2.94/3 0/2 0/4

10 2.94/4 0/5 0/2 0/4 0/3 0/4 100/3 0/2 5.88/4 0/1 0/1 0/2

11 0/5 0/4 0/1 0/1 0/4 0.5/5 0/4 2.94/4 0.5/1 0.5/5 0.5/1 0/3

12 5.88/1 2.94/1 2.94/3 2.94/5 0/2 0/2 2.94/2 0.5/2 0.5/4 0/1 2.94/2 100/3

13 2.94/5 5.88/3 0/5 0/4 5.88/4 0/3 100/2 0/2 5.88/1 0/1 0/2 5.88/3

14 0/4 0/3 0/2 0/3 0/3 0.5/2 0/2 0/1 100/1 2.94/5 0.5/2 0/4

15 0/3 0/1 0/4 0/3 0/3 0/1 0/2 2.94/1 0/4 0/5 0/5 0/5

16 2.94/2 0/2 0/1 0/2 0/1 2.94/3 0.5/4 0/4 0/3 0/4 0/4 0/4

17 100/1 100/5 0/1 5.88/1 2.94/1 0/4 0/5 0/1 2.94/5 0.5/4 0/3 0/1

18 0.5/1 5.88/4 0/5 5.88/2 100/1 0.5/4 2.94/3 5.88/2 0/5 0/1 5.88/5 0.5/2

19 0.5/4 0/3 0/5 0/5 0.5/4 0/1 0/5 2.94/5 0/1 100/5 2.94/3 100/4

20 0.5/3 100/3 0/3 0.5/2 0/4 5.88/4 5.88/4 0/5 2.94/1 0/3 0/4 0.5/3

21 0/4 0.5/2 0/5 0/2 0/2 0/4 0.5/3 0.5/3 0/3 100/1 0/1 0.5/1

22 0.5/5 0.5/5 0.5/5 100/1 0/3 0/2 0/2 5.88/4 0/5 0/4 0.5/3 0/1

23 5.88/4 0/1 2.94/5 100/2 5.88/1 0/3 0/3 5.88/3 0/4 0/3 5.88/2 0/1

24 0/4 0/2 0.5/3 100/4 0/5 0/1 0/1 2.94/2 0.5/2 0/5 0/2 0.5/5

25 0/4 0/3 0/2 0/3 0/4 0/3 2.94/4 0/5 0/4 100/4 100/4 0/2

26 0/3 0/1 0/4 0/4 0/2 0/5 0/4 0/4 0/4 5.88/5 0/3 2.94/2

27 5.88/2 0/4 0/3 5.88/5 0/2 5.88/1 100/4 100/1 0/1 5.88/2 0.5/5 0/3

28 0/1 0/4 0/3 0/5 0/5 0/2 0/1 0/3 0.5/3 0/5 5.88/4 0/2

29 0/5 0.5/4 0/4 2.94/4 0/5 2.94/5 0/2 0.5/1 100/3 100/2 0/5 0/2

30 5.88/3 2.94/4 0/3 2.94/1 0/5 0/5 5.88/2 0.5/4 0/5 0/2 100/5 2.94/5

31 0/1 100/1 5.88/3 0/5 100/4 5.88/5 0/1 0/2 0/3 0.5/1 0/2 0/5

32 0/1 5.88/1 100/4 100/3 100/3 0.5/1 2.94/1 5.88/1 0/1 0/3 100/3 0/5

33 0/3 2.94/2 0.5/4 0/1 0/1 2.94/1 0/5 0/1 100/4 0/3 2.94/5 5.88/2

34 100/3 2.94/3 0/1 2.94/3 0/1 5.88/2 0.5/2 0/4 2.94/4 0.5/2 0/4 0/1

35 5.88/5 0/5 100/5 0.5/5 2.94/3 0.5/3 0/3 100/2 0/5 0/4 2.94/1 0.5/4

36 0.5/2 0/1 5.88/5 0/5 0/4 2.94/2 0/3 0/3 100/5 5.88/4 100/2 5.88/5

37 0/2 0/5 0.5/2 5.88/3 0.5/3 2.94/4 5.88/3 2.94/3 100/2 2.94/4 2.94/4 5.88/4

38 0/3 0.5/1 5.88/4 0.5/1 2.94/4 100/4 0/4 0/1 0/2 2.94/1 0.5/4 2.94/1

39 0/2 5.88/2 5.88/1 0/2 2.94/2 0/5 0/1 0/2 2.94/2 0/5 0/5 100/1

40 0/2 2.94/5 100/1 0/3 5.88/5 100/2 0/5 0/3 0.5/5 0/2 5.88/3 0/3
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Table H.2: Run order for the pursuit display

Participants

Run No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1 5.88/2 0/1 0/4 2.94/2 0/5 0/2 0/5 0/2 100/4 5.88/3 0/3 5.88/4

2 0/4 100/4 0/5 0/1 0/1 100/1 0/4 0/5 0/2 0/4 0/4 0/1

3 0.5/4 0/4 0/3 5.88/3 2.94/4 0/3 0/2 0/4 0/4 100/1 0/5 100/1

4 2.94/2 5.88/1 100/3 0.5/3 100/2 0/5 0/2 0/5 5.88/3 0/3 0.5/5 2.94/4

5 0.5/1 0/1 100/2 100/3 0/2 100/3 2.94/3 100/5 100/1 0.5/5 2.94/3 100/3

6 0.5/5 100/5 0/2 5.88/5 5.88/5 0.5/3 0/2 100/2 0/3 0/3 2.94/4 0/1

7 0/3 0/4 0/5 0/4 100/5 0/5 100/5 5.88/3 0/4 5.88/4 0.5/3 0/3

8 0/5 100/2 0/3 100/5 0.5/1 0/4 0/4 2.94/2 0/2 0/5 0/5 0/2

9 2.94/5 0/3 0/3 2.94/4 0.5/2 0/1 100/3 2.94/5 0.5/3 100/4 0/1 0/5

10 100/4 5.88/2 2.94/2 100/2 0/3 0.5/4 5.88/5 0/3 0/1 0/3 2.94/2 0/5

11 2.94/3 0.5/2 0.5/4 0/2 0.5/3 0/1 0.5/5 0.5/2 0/3 0.5/2 2.94/1 0/1

12 2.94/4 0.5/4 100/4 0/2 0/5 5.88/4 0.5/3 0/1 0/4 0/2 0/4 5.88/3

13 0/2 0/4 0.5/5 0.5/5 100/3 0/5 2.94/4 0/3 0/1 0/4 0/3 0/4

14 0/3 2.94/4 0/2 0/5 2.94/3 0/3 0/1 0/5 0.5/2 0/1 100/1 100/2

15 0/5 0/2 0.5/3 0/3 2.94/5 0/4 0/3 100/4 2.94/3 100/2 5.88/5 0/3

16 0/1 2.94/2 2.94/5 0/1 0/4 0.5/1 100/4 0.5/1 0.5/5 5.88/2 0/2 0/4

17 0/1 0.5/5 0.5/1 5.88/2 2.94/1 0/2 0/1 2.94/3 2.94/4 0/5 0.5/4 0.5/3

18 5.88/1 5.88/3 0/1 0/1 0/2 2.94/2 2.94/5 0/2 5.88/1 5.88/1 0/2 0/2

19 100/5 5.88/5 2.94/4 0/3 0/3 5.88/5 0/5 0/4 0/2 0.5/1 0.5/1 100/4

20 2.94/1 100/1 5.88/5 100/4 0.5/5 5.88/2 0/4 0/4 100/5 0/1 0/1 0/3

21 100/2 0/4 5.88/3 0/4 2.94/2 0.5/2 0/1 100/3 100/2 2.94/1 2.94/5 5.88/1

22 5.88/3 5.88/4 0/3 0/2 5.88/1 0/3 100/2 0/1 5.88/5 0/1 0/4 5.88/5

23 0/4 0/2 0/4 2.94/1 5.88/2 5.88/3 0/3 0/4 2.94/1 0/5 5.88/1 2.94/3

24 0/3 0/5 0.5/2 5.88/1 0/1 2.94/5 0.5/2 0.5/3 2.94/5 0/5 100/3 0.5/4

25 5.88/5 0/5 100/5 0/5 0/3 0/5 2.94/2 5.88/4 5.88/4 2.94/3 0/4 2.94/2

26 100/1 100/3 0/1 5.88/4 0.5/4 0/2 5.88/3 5.88/2 0/1 0.5/4 0/3 0/1

27 0.5/2 0/3 100/1 2.94/3 0/3 0/4 0.5/1 2.94/1 100/3 0/2 0/2 0.5/1

28 0/2 0/3 0/2 0/3 0/5 100/5 0/3 5.88/5 0.5/1 0/3 5.88/3 0/3

29 100/3 2.94/3 5.88/4 0.5/4 5.88/3 0/1 0/5 0/3 0.5/4 2.94/4 5.88/4 0/4

30 0/2 0/1 0/5 0/1 0/2 5.88/1 0.5/4 0/1 0/4 0/1 0/5 0/4

31 0.5/3 0/2 0/2 0/5 0/1 0.5/5 0/2 0.5/5 0/2 5.88/5 100/2 0/2

32 0/2 0.5/1 0/1 0/2 0/4 2.94/3 0/5 0/2 5.88/2 0/4 0/2 0.5/5

33 0/1 0.5/3 0/5 0/4 0/5 0/4 5.88/4 5.88/1 0/5 0.5/3 100/5 5.88/2

34 0/1 2.94/1 0/1 0/4 0/4 100/4 0/3 0.5/4 0/5 2.94/5 0/1 2.94/1

35 0/5 0/3 5.88/2 2.94/5 0/2 100/2 0/4 0/3 0/5 100/3 0/5 100/5

36 5.88/4 2.94/5 5.88/1 100/1 100/4 2.94/1 0/1 0/5 2.94/2 2.94/2 5.88/2 2.94/5

37 0/4 0/5 0/4 0.5/2 0/1 0/3 2.94/1 0/1 0/5 0/4 100/4 0/2

38 0/5 0/2 2.94/3 0.5/1 5.88/4 0/1 5.88/2 2.94/4 0/3 100/5 0/3 0/5

39 0/4 0/5 2.94/1 0/5 100/1 0/2 5.88/1 100/1 0/3 0/2 0.5/2 0/5

40 0/3 0/1 0/4 0/3 0/4 2.94/4 100/1 0/2 0/1 0/2 0/1 0.5/2





I
Documents - Human Research Ethics

Committee

Attached on the next page is the consent form followed by the experiment briefing submitted to the Human

Research Ethics Committee (HREC) under application number 3866. Both these forms were provided to

the subjects before starting the experiment.
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Experiment Consent Form 

Measuring Human Controllers’ Detection of Changes in Aircraft Dynamics 

 
I hereby confirm, by ticking the box, that: 

1. I volunteer to participate in the experiment conducted by the researcher (Devashish Patel), 
under supervision of Dr. ir. Daan Pool, from the Faculty of Aerospace Engineering of TU 
Delft. I understand that my participation in this experiment is voluntary and that I may 
withdraw (“opt-out”) from the study at any time, for any reason. I understand that I have 
the right to withdraw the collected data from further analysis within 2 weeks from 
conducting the experiment. 

 

2. I have read the briefing document and I understand the experiment instructions, and have 
had all remaining questions answered to my satisfaction. 

 

3. I understand that my participation involves performing manual tracking tasks in the fixed-
base HMI-Lab simulator at TU Delft. I understand that only the pseudonymized recorded 
time traces of the tracking tasks are saved and used for data analysis. 

 

4. I confirm that the researcher has provided me with detailed safety and operational 
instructions for the HMI-Lab simulator (simulator setup, electro-hydraulic side stick, 
emergency procedures) used in the experiment. Furthermore, I understand the 
researcher’s instructions for guaranteeing the experiment’s compliance with current 
COVID-19 guidelines, and that this experiment shall at all times follow these guidelines. 

 

5. I understand that the researcher will not identify me by name in any reports or publications 
that will result from this experiment, and that my confidentiality as a participant in this 
study will remain secure. Specifically, I understand that any demographic information I 
provide (gender, age range, see next page) will only be used for reference and always 
presented in aggregated form in scientific publications. 

 

6. I understand that this research study has been reviewed and approved by the TU Delft 
Human Research Ethics Committee (HREC). To report any problems regarding my 
participation in the experiment, I know I can contact the researchers using the contact 
information below. 

 

 
 
 

  

My Signature  Date 

 

 

  

My Printed Name  Signature of researcher 

 

  



 

 

Participant Demographic Information 

Measuring Human Controllers’ Detection of Changes in Aircraft Dynamics 

 

Age range:  

o 18 – 19 

o 20 – 24 

o 25 – 29 

o 30 – 34 

o 35 – 39 

o 40 – 44 

o 45 – 49 

o 50 – 55 

o 55+ 

 

Gender:  __________ 

 

Participant number:  __________ 
(Filled out by the researcher) 

 

 



Experiment Briefing 
Measuring Human Controller’s Detection of  Changes in Aircraft Dynamics 

 

First of all, thank you for your participation! This experiment is part of an MSc thesis research project that aims to understand 

and model how a human operator (you) detects that the controlled element dynamics have changed. The experiment consists 

of a simple tracking task and will be performed in the Human-Machine Interaction Laboratory (HMI-Lab) at TU Delft’s Faculty 

of Aerospace Engineering. This briefing will give an overview of the experiment and explains what is expected from you as a 

participant. Please read this document carefully. Should any questions or comments remain, always feel free to discuss these 

with the researcher conducting the experiment. 

Experiment Objective 
The goal of this experiment is to investigate how human operators detect changes in the controlled element dynamics. Data 

from this experiment will be used to develop and validate a model that can predict the moment a human operator detects a 

change in controlled element dynamics and consequently can be used in future models on adaptive manual control behavior.  

Experiment Set-up 
The experiment will take place in the HMI-Lab (Fig. 1), a fixed-base simulator set-up at TU Delft’s Faculty of Aerospace 

Engineering. The task you will be carrying out is a tracking task with a compensatory and a pursuit display as shown in Fig. 2. 

This compensatory display shows a fixed reference marker (White Square) and a moving “follower” marker (Green Square), 

whose lateral displacement indicates the error signal that you will need to correct for while the pursuit display has the 

reference marker (White Square) to be moving as well with your task remaining the same. Please take a seat on the chair on 

the right and use the side-stick on your right-hand side to control the system by moving the side-stick to the left and right. 

There is another side-stick on your left-hand side. The purpose of this side-stick will be explained in the next section.  

 

 

 

 

Figure 2: Compensatory display (left) and Pursuit display (right) 

Figure 1: Illustration of HMI-Lab. The participant will be sitting on the 
right (blue) seat and controls the side-stick. 



Experiment procedure 

Before starting the data collection, some training runs will be performed so that you can familiarize yourself with the different 

scenarios and controlled element dynamics. In the experiment, you will control dynamics that respond like a single integrator 

(rate control) and transitions between single integrator and double integrator (acceleration control) dynamics. Once your 

performance is stable, the data collection phase will begin. There is no pre-defined number of tracking runs that are required 

for collecting the data: the experimenter will simply notify you when sufficient data has been collected. All individual tracking 

runs last approximately 60 seconds.  

It is important that you continue to focus on keeping the error (the distance between the reference and the moving signal) 

as low as possible during the entire run by continuously controlling the system with the side-stick on your right. At the end 

of each run, the researcher will communicate your score to you. During the runs, the controlled element dynamics may 

change. If you detect a change in the controlled element dynamics, please immediately indicate this by pressing the button 

on the side-stick to your left. Please note that only some of the runs will contain a change in the controlled element dynamics, 

so it is possible to go through an entire run without needing to press the button.  

Short breaks can be taken between runs to alleviate any discomfort that might occur due to fatigue, controlling the side-stick, 

or sitting in a fixed position for a prolonged period. A longer break of approximately 10 minutes will be taken after the first 

hour. The experiment will last approximately 1.5 hours. Should more breaks be required, you can request them at any 

moment.  

For each subsequent trial, the following procedure will be applied: 

1. The researcher applies the settings for the next run. 

2. The researcher checks that the participant is ready to proceed and initiates the run after a countdown from 3 ( i.e. 

“3-2-1-go”). 

3. The participant performs the tracking task. 

4. The participant will be notified of their performance in the run in terms of the error score that will appear on the 

display after completing the run. 

Your Rights & Consent 
Experiment participation is voluntary. Should you feel uncomfortable, you can decide to stop your participation at any time. 

By participating in the experiment, you agree that the collected data may be published. You can ask for this data to be 

withdrawn within 2 weeks of participating in the experiment. Your personal data will remain confidential and anonymous, 

only the researcher can link the collected data to a specific participant. To ensure you understand and comply with the 

conditions of the experiment, you will be asked to sign an informed consent form. 
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Analysis of Caffeine Requirement

In the total 32 weeks and 3 weekdays, which is the duration of this study, the primary brain food apart

from the O2, H2O and food necessary to survive life has been coffee, or rather, the caffeine that makes
coffee the great capitalist drug that it is. This appendix provides a rudimentary analysis of the amount of

caffeine consumed (read as: “required”) to deliver this undertaking in my conquest to obtain an MSc in

Aerospace Engineering.

Assumptions of analysis:

• The coffee beans used, throughout this thesis, to make the coffee are homogeneous.

• A single dosage of espresso is ≈ 30g and contains 63.6mg rounded off to 64mg of caffeine.

• On weekdays, the average number of espressos consumed are 7. This includes the variations like a
lungo. (In honesty, the number should be 8, but a conservative estimate is considered best)

• On weekends [I did work on all weekends :(...], the average number of espressos consumed are 2
(Again, a conservative estimate)

Basis these assumptions, the amount of coffee cups consumed is obtained as:

Weekdays:

(32(weeks)× 5(weekdays)) + 3(weekdays) = 163 days

163(days)× 7(cups)× 64(mg) = 73, 024mg

Weekends:

(32(weeks)× 2(weekends)) = 64 days

64(days)× 2(cups)× 64(mg) = 8, 192mg

Resulting in a total of 81, 216mg of caffeine. For reference, it takes ≈ 5, 000mg (Source: Link) for a
human to die of an overdose. Therefore, it required a total of 16.24 deaths for me to successfully complete
(again an assumption, as I have not yet graduated when writing this) my thesis.

So, one may ask, if all those (coffee-)deaths (16 of those; a conservative estimate), excluding the

near-death experiences when a code failed or results were found to be unhinged, were worth it. The

answer to this question is simple my friend: “YES! Because an unhealthy obsession with coffee has

never failed to make me happy.”

Coffee will save the world

- Devashish, 2024
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https://ccesuffolk.org/resources/pure-caffeine-powder-what-you-need-to-know

	List of Figures
	List of Tables
	I Literature Review & Research Definition
	Introduction
	Literature Review
	Concepts of Manual Control
	Review of Past Research
	Conclusions

	Preliminary Simulations
	Research Methodology
	Research Phase 1
	Research Phase 2

	References

	II Scientific Article
	III Appendices
	State-Space Modelling
	Simulink Modelling
	Calculating the Remnant Gain 
	Validating Forcing Function Realizations
	Pilot Model Parameters
	Categorical Data of Accuracy
	Sensitivity Analysis of ROI
	Experiment Run Tables
	Documents - Human Research Ethics Committee
	Analysis of Caffeine Requirement


