
LLM of Babel: Evaluation of LLMs on code for non-English
use-cases

Yongcheng Huang
EEMCS, Delft University of Technology, The Netherlands

Supervisors: Prof. Dr. Arie van Deursen , Assistant Prof. Dr. Maliheh Izadi , ir. Jonathan Katzy

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Yongcheng Huang
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen , Assistant Prof. Dr. Maliheh Izadi, Assistant Prof. Dr. Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

LLM of Babel: Evaluation of LLMs on code for non-English
use-cases

Yongcheng Huang
Delft University of Technology

Delft, The Netherlands

Abstract
After the emergence of BERT, Large Language Models (LLMs) have
demonstrated remarkable multilingual capabilities and have seen
widespread adoption globally, particularly in the field of program-
ming. However, current evaluations and benchmarks of LLMs on
code primarily focus on English use cases. In this study, we as-
sess the performance of LLMs in generating Chinese Java code
comments through open coding. Our experiments highlight the
prevalence of model-specific and semantic errors in generating
Chinese code comments using LLMs, while also revealing a relative
absence of grammatical issues due to the unique characteristics of
the Chinese language. Additionally, we validated the potential for
quantitatively analyzing semantic errors, especially Hallucinations,
by examining the cosine similarity of word embeddings. Our find-
ings propose an Error Taxonomy for evaluating LLMs on code in
non-English scenarios and demonstrate the possibilities of using
cosine similarity of word embeddings to judge the quality of code
comment generation.

Keywords
Large Language Model, Multilingual Code, Natural Language Pro-
cessing, Code Inference, Non-English Programming, Code Com-
ments, Error Taxonomy, Model Evaluation, AI in Software Devel-
opment, Computational Linguistics, Cosine Similarity

1 Introduction
LLMs are increasingly showing their vast capabilities in multiple
areas in recent years, driven by advancements in universal models
and the proliferation of user-friendly online platforms offered by
various providers, including OpenAI ChatGPT series. The integra-
tion of LLMs into programming has proven beneficial across several
domains. Research highlights include enhanced productivity among
programmers [1], an improvement in the knowledge base across
all levels of expertise [2], and the facilitation of programming ed-
ucation for novices [3]. These developments reflect a substantial
shift in how programming skills are acquired and applied in the
industry, as evidenced by their use in major corporations such as
Alibaba Group [4]. This underscores the crucial impact of LLMs in
contemporary software development.

Despite the promising capabilities of LLMs, significant perfor-
mance discrepancies exist when these models are utilized with
different natural languages [5]. A study conducted by Microsoft
highlights a significant gap [6], with approximately 1.2 billion peo-
ple and over 6000 languages underserved by current LLM tech-
nologies. Even among widely spoken languages, discrepancies in
model performance persist, underscoring an uneven technological
reach. Recent scholarly work, including studies on the multilingual

capabilities of LLMs [7] and explorations of the safety challenges
presented in multilingual contexts [8], indicating growing recogni-
tion of these issues. The majority of available LLMs are trained on
datasets from online repositories such as GitHub, which are cost-
effective and easily accessible. However, this data is predominantly
in English, and the models are evaluated using English-based code
benchmarks such as CodeXGlue [9] and HumanEvalX [10].

While models like BERT [11] has demonstrated their efficacy in
multilingual tasks, the focus on non-English language performance,
particularly in programming contexts, remains inadequately ad-
dressed. This presents a major issue: Although programming with
LLMs is very common in non-English environments, especially Chi-
nese, we do not have a systematic analysis of its performance. Con-
sequently, the performance of these models in generating Chinese
comments remains highly uncertain and potentially inadequate
[12]. Since the gap in research and application highlights a critical
area for further investigation and development, we derive our first
research question.

In this study, our first research question is: What mistakes
do LLMs make when generating Chinese Java code com-
ments? To answer this question, we implement a detailed anal-
ysis and annotation of inference outcomes to construct an er-
ror taxonomy. This enables us to implement a comprehensive
quantitative and qualitative analysis to the inference result from
StabilityAI/stable-code-3b [13].

Furthermore, we aim to address the second research question
in this paper: Can semantic errors be analyzed through the
examination of cosine similarities of word embeddings? By
applying cosine similarity [14], we want to identify semantic dis-
crepancies at the level of word embeddings. Our approach involves
analyzing the similarity between the original comment and the
reference comment, and comparing it with the similarity between
the original comment and the comment containing semantic errors.

This study reveals that large language models have a large num-
ber of semantic and model-specific problems in the problem of
Chinese Java code comment generation. However, due to the par-
ticularity of the Chinese language, the grammatical problems that
were frequently found in our other studies are not common. At the
same time, we verified the possibility of using cosine similarity to
compare word embeddings to detect semantic errors by comparing
cosine similarity.

Through this research, we hope to build the Babel Tower for
LLMs in different language code comment generation scenarios.
We also hope to extend our research results to other non-English
languages and establish a multilingual evaluation standard in the
LLM4Code field. At the same time, since we have verified the feasibil-
ity of using cosine similarity to detect semantic errors, automated
analysis has also become possible through this fact.

1

Conference’17, July 2017, Washington, DC, USA Yongcheng Huang

2 Related Work
The use of LLMs is a prominent topic in deep learning, and numer-
ous studies have explored the potential errors that can arise when
deploying these models. This problem is even more serious in the
application scenario of LLMs in non-English languages. Widely
used metrics such as BLEU [15] and ROUGE [16] have significant
deficiencies in this regard. These metrics, focused on n-gram over-
lap, are limited in capturing fine-grained grammatical and semantic
errors in code generation.

In previous research on evaluating the quality of code comments,
the innovative combination of machine translation metrics and
open coding has yielded impressive results [17]. This approach has
proven particularly effective in handling the intricacies of seman-
tic evaluation, demonstrating its potential in addressing complex
linguistic tasks. The success of these methodologies has provided
valuable insights and a strong foundation for further exploration in
the field. It has particularly inspired our current research to delve
deeper into understanding the specific types of errors LLMs make,
especially in the context of generating Chinese Java code comments.
This evaluation aims to build on existing knowledge while address-
ing the unique challenges presented by Chinese applications.

To understand why these errors occur, we can look at research
on LLMs that highlights limitations associated with standard like-
lihood maximization in Natural Language Generation (NLG) [18].
Early studies like Grid Beam Search (GBS) [19] and neural text gen-
eration [20] noted that maximizing likelihood can lead to degenera-
tion, described as hallucination [21]. Moreover, LLMs struggle with
semantic accuracy, requiring significant manual work to develop
rule-based NLP systems or training corpora. Semantic spaces [22]
were proposed to capture meaning in natural language representa-
tions, but semantic issues remain prevalent.

Epistemic and aleatoric uncertainties have been used to assess
the reliability of LLM outputs, demonstrating the need for skepti-
cism towards LLM-generated content [23]. While many optimiza-
tions have been made for English, there’s a lack of systematic anal-
ysis for Chinese generation, particularly in tasks like Chinese in-
ference for Java code comments.

Due to the reliance of large language models on word embed-
dings , Cosine similarity, a common metric in information retrieval,
has been effective in studying semantics and generation quality [14]
[24] [25]. Recent studies have shown improvements in quantifying
semantic similarity using cosine similarity in deep learning [26].

In a recent study, SemScore, which utilizes semantic textual sim-
ilarity (STS) to evaluate the quality of model outputs, demonstrated
the feasibility of assessing large models based on semantic similar-
ity [27]. This approach provides a promising alternative for rapidly
determining the desirability of model outputs. The insights gained
from SemScore have inspired our second research question, guiding
us to explore the application of semantic similarity metrics in the
evaluation of LLM-generated content with semantic errors.

3 Methodology
In evaluating the performance of large language models (LLMs)
in multilingual programming environments, we employ several
key approaches: Data Preprocessing, Inference Pipeline, Open Cod-
ing, Cosine Similarity and Principle Component Analysis, Visual

(a) Distribution of the file lengths in the initial dataset.

(b) Distribution of the file lengths in the new dataset.

Figure 1: Distribution of file lengths.

Data Annotation, and Ernie 1.0. These methodologies allow us to
thoroughly evaluate the capabilities of LLMs and identify specific
challenges in generating accurate and semantically meaningful
outputs across different languages.

3.1 Data Preparation
For this research, we created a Chinese Java code dataset by search-
ing for the 2500 most frequent Chinese words on GitHub, based
on the study "Most Common Words by Language" [28]. We used
Regular Expression (REGEX) to identify and categorize comments
within the retrieved code files. To ensure consistency and reliabil-
ity across models and datasets, we set the Maximum File Length
(Token) and Word Inclusion Parameters as hyperparameters. Given
that the codegemma-7b model [29] supports up to 8192 tokens, we
set this as the upper limit for file length. To ensure the generated
comments are in the same language as the original, we retain two
characters for Chinese in line comments and three characters for
block comments.

We preprocessed our dataset based on file length, content, and
language [30] and made it available as open-source on Hugging
Face [31]. For this research, we used the 95th percentile as the
threshold for maximum comment length, accounting for frequent
outliers. Figure 1 shows the distribution of file lengths in both
datasets. The original dataset consists of 34,300 files, while the
new dataset contains 9,285 files. The red dashed lines in the tables

2

LLM of Babel: Evaluation of LLMs on code for non-English use-cases Conference’17, July 2017, Washington, DC, USA

indicate the 95th percentile of comment length, which is 199 tokens
in the processed dataset.

3.2 Inference Pipeline
To answer our first research question, we designed an inference
pipeline for handling datasets from Hugging Face, outputting re-
sults compatible with our data visualizer outlined in Section 3.5.

The pipeline processes masked data by replacing Fill In Middle
(FIM) placeholders with the <fim_middle> tag used during the
training of Stable-code-3b. Using FIM models allows us to generate
higher quality, more accurate, and contextually relevant comments
[32], avoiding biases and limitations of prompt-based models. After
processing, the data is input into the model for inference, with the
output automatically uploaded to HF for future work and open-
source sharing. Additionally, we have implemented a universal
pipeline to evaluate datasets in other languages, minimizing non-
human errors and maintaining consistency.

3.3 Open Coding
This project aims to bridge the language gap in non-English pro-
gramming environments by analyzing the performance of LLMs. To
achieve this, we have adopted a robust qualitative analysis method
known as Open Coding [33], integral to Grounded Theory [34], to
dissect and understand the subtleties of multilingual LLM output.
Open Coding involves breaking down data into discrete compo-
nents that can be examined and compared. In our project, this trans-
lates to analyzing code comments and the corresponding outputs
from LLMs when tasked with non-English commenting challenges.
Each piece of comment, along with its output, is meticulously exam-
ined to identify distinct errors such as Linguistic Errors, Semantic-
specific nuances, and Model-specific Problems in output. These are
labeled with descriptive names that encapsulate their essence, thus
building a library of identifiable phenomena that are critical for our
analysis.

Open Coding allows us to create specific labels and categories
that make the qualitative data comprehensible at a granular level.
For instance, if an LLM generates incorrect syntax or language
constructs due to language differences, these are tagged and cate-
gorized under specific error types like "Model-specific, Too specific,
M-TS" or "Linguistic, Usage of incorrect synonym, L-IS." Through
the iterative process of Open Coding, we develop a taxonomy of
common failures and limitations observed in LLMs when dealing
with non-English code. This taxonomy is pivotal in understanding
the breadth and depth of challenges faced by LLMs across different
languages, thus directing future improvements.

Our research team comprises five researchers working across
four different languages. In each round, we manually label 200 com-
ments produced by different models in a specific language. This
process is repeated for three rounds, resulting in a comprehensive
examination of the LLM outputs. From the errors identified in dif-
ferent languages, we derive an error taxonomy, which has been
refined through 11 versions. This systematic approach ensures a
thorough and nuanced understanding of the challenges and capa-
bilities of LLMs in non-English programming contexts. In this way,
we can clearly determine the types of errors generated by large

models and generate error taxonomy to evaluate the performance
of other large models.

3.4 Cosine Similarity and Principal component
analysis

Cosine similarity is crucial in data analysis for assessing the simi-
larity between two non-zero vectors by computing the cosine of
the angle between them. This metric captures the orientation of
vectors, making it ideal for comparing data embeddings based on di-
rectionality alone. It is advantageous in natural language processing
(NLP) and machine learning, where text or items are converted into
high-dimensional embeddings that encapsulate semantic features.

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑥,𝑦) = 𝑥 · 𝑦
|𝑥 | |𝑦 |

In this experiment, we will use cosine similarity to analyze "Too
General" (SE-TG) and "Hallucination" (SE-HA) errors. By comparing
the cosine similarity between overly broad and specific reference
annotations, we want to find the relationship between semantics
and cosine similarity. The dataset comprises 50 sets of comments di-
vided into line and block types, each with standard and "too general"
versions. To ensure the reliability of our semantic similarity met-
rics, control groups were established. In the line comment analysis,
one control group used a single-sentence Chinese comment, "This
is a function that calculates addition", and compared it
against its reverse string. This juxtaposition aimed to demonstrate
how semantic structures are disrupted when the sequence of the
characters is inverted. The second control group employed the orig-
inal sentence as both a normal and a broad comment to establish a
baseline, ensuring that identical items achieved a cosine similarity
score of 1. This approach helps validate the reliability of our simi-
larity metrics by confirming that identical texts are recognized as
such, achieving perfect similarity.

This study also investigates the use of cosine similarities to de-
tect two types of hallucinations—Out of Context Hallucinations and
Educated Guesses—using a dataset of 52 hallucinated examples. We
compared cosine similarities between a reference code comment
and both a normal and a hallucinated comment, labeled Group1
and Group2, respectively. The hallucinated comments were gener-
ated by stable-code-3b. Additionally, Principal Component Analysis
(PCA) was employed on word embeddings to further validate the
correlation between cosine similarity and semantic discrepancies.

3.5 Visual data annotation
For this research, we developed a data visualization tool using
Streamlit [35] to enhance the analysis and validation of outputs
from LLMs as visualized in Figure 2. This application processes
output data encapsulated in an Excel file, which contains both the
original comments and the model-generated inferences, enabling
real-time, interactive evaluation and categorization of errors di-
rectly within the visualization interface.

Functionalitywithin the Streamlit app includes a sidebar-controlled
pagination system allowing detailed, entry-by-entry review. For
each data entry, the app displays metadata such as the repository
name, file path, and the length of tokens, alongside the content of
both the original and predicted comments. This setup facilitates

3

Conference’17, July 2017, Washington, DC, USA Yongcheng Huang

Figure 2: Data Visualizer Example.

an immediate and clear comparison between expected and actual
model outputs, essential for assessing the model’s performance.

3.6 Ernie 1.0
During the research of the first research question, we utilized the
stable-code-3b model, which is a decoder-only system. For the study
for research question 2, it is essential to employ a model with en-
coder capabilities, specifically an open-source encoder, to enable
the translation from Chinese inference results to embeddings. The
stable-code-3b model lacks this feature. Therefore, we have decided
to transition to Ernie 1.0 [36], which supports both encoding and de-
coding functionalities and is explicitly trained on Chinese datasets.
This model not only meets our requirements for an open-source
encoder but also provides robust support for Chinese language
inference and tokenization, making it ideal for our needs.

4 Results
In this section, we present our results in the following two areas: :
a comprehensive qualitative analysis using an error taxonomy, and
a quantitative analysis based on cosine similarity measurements.

4.1 Qualitative Analysis
As a result of the open coding process, we developed a Hierarchical
Error Taxonomy, illustrated in Table 1. This taxonomy categorizes
the various errors identified during our analysis and includes the
counts for each error type: Linguistic Error, Semantic Error, and
Model Specific Error. Each of these categories is further subdivided
to capture more specific error types. For instance, Linguistic Er-
rors include issues like Grammar, Incorrect Synonyms, and Wrong
Language Usage, while Semantic Errors encompass Incomplete De-
scriptions and Overly General Statements. Model Specific Errors
range from Memorization to Random Words and even No Gener-
ation, reflecting the unique challenges encountered with specific
model behaviors.

To illustrate the error distribution more clearly, Figure 3 is a
bar chart showing the error frequency of the labeling result. From
a map of where our model, stable-code-3b, fails in Chinese code

Table 1: Taxonomy of failure categories

Failure category plus label ID Count

Model Specific Errors
(MS-RW) Random Words
(MS-CC) Copy Context
(MS-ME) Memorization Level

(MS-ME1) Personally identifiable
information (PII)
(MS-ME2) Contains URL
(MS-ME3) Training set memoriza-
tion

(MS-ES) Early Stop
(MS-LS) Late Stop
(MS-NG) No generation
(MS-RE) Repetition

(MS-RE1) Pattern repetition
(MS-RE2) Verbatim repetition

(MS-TS) Too Specific

134
5
23
27
8

4
15

4
24
31
16
14
2
4

Linguistic Errors
(LG-GR) Grammar

(LG-GR1) Plurality
(LG-GR2) Conjugation
(LG-GR3) Gendering
(LG-GR4) Language Syntax
(LG-GR5) Capitalization
(LG-GR6) Cohesion

(LG-IS) Usage of incorrect synonym
(LG-WL) Wrong language

(LG-WL1) Undesired Translations
(LG-WL2) Incorrect Language

0
0
0
0
0
0
0
0
0
0
0
0

Semantic Errors
(SE-TG) Missing Details
(SE-HA) Hallucination

(SE-HA1) Misplaced Facts
(SE-HA2) Out of Context Halluci-
nation
(SE-HA3) Educated Guess

(SE-CS) Completion includes code
snippet

(SE-CS1) Commented out code
(SE-CS2) Code intended to run

197
21
113
9
74

30
63

5
58

Syntax Errors
(ST-IF) Incorrect comment format

(ST-IF1) Comment Style Inconsis-
tency
(ST-IF2) Omitted Identifier

27
27
10

17
(E) Excluded 14
(M) Misc 7

commenting tasks, we can find a high incidence of semantic errors,

4

LLM of Babel: Evaluation of LLMs on code for non-English use-cases Conference’17, July 2017, Washington, DC, USA

Figure 3: Error frequency of the labeling result.

particularly hallucinations. Among the 300 comments labeled in
the final round of open coding, we marked a total of 379 labels, and
the Semantic Error (SE) class accounted for 197 of them. Model-
specific errors are the second most serious problem, accounting for
134 errors, mainly concentrated in Memorization (MS-ME) and No
Generation (MS-NG) problems. Syntax error, which represents the
problem of generating incorrectly formatted comments, only ac-
counts for about 7% of the error labels, indicating that this problem
is not prominent in the Chinese inference result.

However, there is no Grammar Error labeled during the analysis
process, which is due to the peculiarity of Chinese language. For
this study, we specifically investigate comments in the Chinese
language, which exhibits a number of challenges unique to this
linguistic context.

The categories of Excluded (E) and Miscellaneous (M) errors
represent less prevalent errors. These labels either involve improper
and unrelated comments with code or contain errors unrelated to
the model’s inference. All unrelated or unnecessary data will not
be included in this research to ensure that the study focuses on the
core errors of the large language model during inference.

For those common errors identified during the manual review of
comment inferences, we will provide some examples to illustrate
them more clearly. All comments are originally in Chinese and
there is an English translation added only for reading. Figure 4a
illustrates a case where the model inadvertently included person-
ally identifiable information in the generated comment, which did
not exist in the original prompt, raising concerns about privacy
and data integrity. In Figure 4b, the model exhibits an issue of re-
dundancy by regenerating content that has already been produced,
which can lead to inefficiencies and decreased user trust. Figure
4c showcases a comment where the model introduces hallucinated
information about a hypothetical class named ’wine’, which was
not present in the original input, highlighting the model’s tendency
to fabricate irrelevant details. To ensure a rigorous standard for
categorizing hallucination problems, we refer to the investigation
[25]on hallucination detection and mitigation, where the author
provides valuable insights into the various categories of halluci-
nations. Lastly, Figure 4d presents an example where the model
generates a code snippet outside of the expected comment context,

(a) ErrorMS-ME1 example (Personally identifiable information included
in the generated comment)

(b) Error MS-RE example (Model generates and repeats what it has
already said it in some capacity).

(c) Error SE-HA2 example (Out of Context Hallucination).

(d) Error SE-CS example (Model generates actual code outside of com-
ment).

Figure 4: Examples of common errors.

illustrating its capability to produce complex outputs but also the
potential for generating out-of-context information.

4.2 Quantitative Analysis
In our previous research, we identified that deriving an Error Tax-
onomy through manual labeling is prohibitively expensive. Our
qualitative analysis revealed a higher error rate in semantic aspects
of the model. Consequently, we want to focus further on semantic

5

Conference’17, July 2017, Washington, DC, USA Yongcheng Huang

Figure 5: Cosine similarities between two groups of embed-
dings.

errors, bridging the gap between qualitative and quantitative anal-
ysis by exploring the relationship between semantic errors and the
cosine similarity of comment word embeddings.

4.2.1 Detecting hallucination with cosine similarity
From figure 3, it is evident that hallucination is the second most

significant issue identified during the labeling process. Although
research on hallucinations [37] provides a classification and un-
derstanding of their causes, it also highlights the lack of a robust
quantitative method to accurately detect hallucinations. In this sec-
tion, we aim to explore the relationship between hallucinations
and their cosine similarities, and propose a potential method for
detecting hallucinations by calculating cosine similarity.

The results are shown in Figure 5, which illustrates the differ-
ences in embeddings. Ref vs Nor represents the cosine similarity
between the reference comment snippet and the normal comment
snippet, while Ref vs Hal represents the cosine similarity between
the reference comment snippet and the hallucinated comment snip-
pet. A clear difference can be observed: the median similarity for
Group1 is approximately 0.95, indicating a higher central tendency
compared to Group2, which has a median of about 0.92. Further-
more, the interquartile range (IQR) is narrower for Group1, illus-
trating a more concentrated distribution of data points. In contrast,
Group2 shows a wider IQR and extended lower whisker, highlight-
ing a greater dispersion among data points. This phenomenon can
be observed even when only one word in the comment changes
to convey a hallucinatory meaning, while the rest of the comment
and the code itself remain unchanged, as illustrated in Figure 6.

To substantiate the validity of our findings, we conducted Prin-
cipal Component Analysis (PCA) on subsets of data that exhibited
the largest and smallest cosine similarity discrepancies between
the two groups in question. The outcomes are illustrated in Figure
7. For the data with the minimal cosine similarity, the dominant
principal component (PC) was PC2, with negligible variation in PC1.
Conversely, in the data with the maximal difference, the principal
components for the Nor2 and Ref2 data points closely align, whereas
the Hal2 data points distinctly manifest higher values along PC2.

Figure 6: Example of original comment compared with hal-
lucinatory predicted comment.

Figure 7: PCA results for two data examples.

This analysis corroborates the hypothesized relationship between
semantic content and word embedding dimensions.

4.2.2 Using cosine similarities to differentiate between overly broad
and normal comments

Figure 8 presents the box plot results for cosine similarity analy-
ses, distinguishing between line comments 8a and block comments
8b.

The results depicted in Figure 8a demonstrate that the cosine
similarities are tightly clustered around a median value of approxi-
mately 0.935, with the values tightly clustered around this median.
The interquartile range (IQR) indicates that most values fall be-
tween about 0.932 and 0.938, suggesting a high degree of semantic
similarity with the reference comments analyzed. This indicates
that while the differences between overly broad comments and spe-
cific reference comments are subtle, they are statistically significant
when compared to the perfect similarity score of 1.0 observed for
identical comments and the baseline for semantic destroyed com-
ments. This distinction is critical as it highlights the measurable
semantic disparity even in cases where differences may initially
appear minimal. Moreover, similar patterns were observed in the
analysis of block comments, as presented in Figure 8b.

This consistent difference across different types of comments
underscores the point that even seemingly minor deviations in text
can lead to significant changes in semantic interpretation. Because
of this difference, it is feasible to use cosine similarity to distinguish

6

LLM of Babel: Evaluation of LLMs on code for non-English use-cases Conference’17, July 2017, Washington, DC, USA

(a) Box plot of line comment cosine similarity analysis.

(b) Box plot of block comment cosine similarity analysis.

Figure 8: Box plot result for cosine similarity analysis.

overly broad content from normal content when embeddings can be
generated correctly, which answers our second research question.

5 Discussion
This study set out to investigate two key questions related to the
performance and reliability of LLMs in generating Chinese infer-
ences for Java code comments. First, we examined the types of
errors that LLMs commonly make in this context. Second, we ex-
plored the potential of using cosine similarity as a quantitative
method for analyzing semantic errors in generated comments. he
following sections discuss our findings in detail, highlighting their
significance and implications for future research.

5.1 Errors Made by LLMs in Chinese Inference
on Java Code Comments

In our study, we identified several types of errors that large language
models (LLMs) make when generating Chinese inferences for Java
code comments. These errors can be broadly categorized into Model
Specific Errors, Linguistic Errors, Semantic Errors, Syntax Errors,
and Miscellaneous Errors. From the previous qualitative analysis,
we can find that the large language model, here stable-code-3b,
has obvious concentration in the types of errors when generating
Chinese comments. In our study, the most common errors were
semantic errors, followed by model specific errors, and then some
syntax errors, while grammar errors were not manually detected
during our labeling process. Such error distribution reflects that
when the model deals with code comment generation problems in

non-English languages, in this case Chinese, the error distribution
generated has common errors in all non-English languages, and also
generates language-specific errors according to different languages.

As for the lack of grammatical errors in the research process, we
can attribute it partially to the particularity of the Chinese language
we studied. Unlike most Western Germanic languages, the Classical
Chinese [38] currently in use, is characterized by its lack of inflec-
tion, meaning that most words maintain a single grammatical form.
Consequently, this linguistic feature leads to an absence of tense in
Chinese [39]. Furthermore, the distinctive nature of Chinese charac-
ters greatly reduces the likelihood of erroneous language detection
during inference processes. Additionally, Chinese functions as a
mono-morphemic language, where each character represents an
entire word equivalent to English, thus eliminating common er-
rors found in other languages, such as extraneous letters following
correct characters. These unique attributes provide an explanation
for the absence of entries under the Linguistic Errors section in
our taxonomy result for Chinese, whereas this category frequently
encapsulates numerous errors in other language analyses.

From a linguistic perspective, the presence of semantically triv-
ial errors and the absence of grammatical errors in the labeling
process become explainable due to the high complexity [40] and
low grammatical sensitivity of Chinese. From the perspective of
the model, stable-code-3b is a large language model with only three
billion parameters, and its implementation is based on decoder-only.
Also, Chinese is not supported natively during the original training
process. Therefore, we have reason to speculate that more problems
will arise at the model level.

One of the main results of this study is the proposal of a complete
Error Taxonomy for Evaluation of LLMs on code for Chinese use-
cases. Through multiple rounds of optimization by multiple people
in the open coding process, this taxonomy has gradually been
able to cover most of the problems that may arise in generating
annotations for large models in a multi-language environment. In
the current field of evaluating the multilingual performance of large
models, there is no similar work to evaluate the performance of
large language models in generating code comments in non-English
environments. Therefore, the significance of this work lies in that
we propose a new error taxonomy that can play a guiding role in
this field.

Existing LLM performance benchmarks usually focus on evalu-
ating the performance of models on general tasks, such as natural
language processing tasks, translation, or summary generation, etc.
These benchmarks lack in-depth analysis of domain-specific appli-
cations, especially in the highly specialized task of code comment
generation. Moreover, most of these evaluation criteria are based
on English usage scenarios to evaluate performance, which does
not meet our expectations for improving the performance of large
language models in non-English usage scenarios. By building an
error classification system specifically for Chinese code comments,
we are able to more accurately identify the weaknesses and lim-
itations of the model in this specific task. This not only helps to
understand the shortcomings of existing models, but also provides
a clear direction for future model improvements. For example, by
analyzing common semantic errors and model-specific errors, we
can develop more effective training strategies and data augmen-
tation methods to improve the practical application effect of the

7

Conference’17, July 2017, Washington, DC, USA Yongcheng Huang

model. As we said at the beginning, the significance of this study is
to bridge the gap between non-English use cases and LLM for code
comment generation.

5.2 Analyzing Semantic Errors via Cosine
Similarities of Word Embeddings

For the second research question, through our previous quantitative
analysis, we have verified the possibility of analyzing semantic
errors by cosine similarity.

When conducting this research, several types of semantic errors
were identified, with "Too General" being one of the most preva-
lent. This category denotes results that are vague and unclear. By
conducting cosine similarity analyses on the embedding vectors
of overly broad annotations compared to specific reference anno-
tations, we can quantitatively assess their semantic similarities
and differences [41]. This analysis aids in pinpointing which broad
annotations are semantically aligned with the specific reference
annotations and which ones are markedly divergent. The overly
broad comments, which lack specificity and detail, were hypoth-
esized to exhibit different cosine similarity patterns compared to
more precise and contextually appropriate comments. Our results
indicated that overly broad comments tend to have a lower cosine
similarity to a wide range of reference comments. Although they
are more general, these comments are not helpful for understanding
the code. In contrast, normal comments, which are more tailored
and specific, showed higher cosine similarity to the exact refer-
ence comment. This differentiation suggests that cosine similarity
can serve as a tool for assessing the specificity and relevance of
generated comments.

Our research also explored the feasibility of detecting halluci-
nations in LLM-generated comments using cosine similarity. By
comparing the cosine similarities between reference comments and
both normal and hallucinated comments, we found a significant
distinction. Hallucinated comments show lower cosine similarity
to the reference comments compared to normal comments written
by senior programmer. This suggests that cosine similarity is a
viable metric for identifying hallucinations, as the lower similarity
scores reflect a divergence from the intended meaning or content of
the reference, which is also verified by our PCA experiment. This
method provides a quantitative approach to hallucination detection,
which has been a challenge in the field due to the subjective nature
of evaluating generated content. The ability to measure halluci-
nations quantitatively offers a promising direction for improving
the reliability of LLMs in generating accurate and relevant code
comments.

By establishing the relationship between the cosine similarity
of word embeddings and semantic errors, we can describe seman-
tic errors in a quantitative way. This not only establishes clearer
standards for error analysis, butt also reduces human bias. At the
same time, verifying the relationship between the two also proves
the possibility of automating this judgment process. Promoting
such a method can greatly reduce the time required to improve
the Error Taxonomy, thereby improving the predictability of LLM
performance.

6 Future work
In this project, our initial success with the Chinese dataset has
been a springboard for a broader, more comprehensive approach to
analyzing comment generation and error taxonomy across multi-
ple languages. We have developed a robust methodology that not
only yields insights into Chinese language performance but is also
adaptable for assessing other languages. Currently, we are applying
this refined analysis technique to Dutch, Polish, and Greek datasets,
with the expectation of achieving similar success.

This strategic expansion allows us to explore the unique chal-
lenges posed by each language, enriching our understanding of
linguistic nuances and model performance across diverse linguis-
tic settings. By standardizing our analytical approach, we ensure
consistent quality and comparability in our findings, which is cru-
cial for developing better multilingual natural language processing
tools. Our work continues to focus on refining these methods to
further enhance the accuracy and relevance of our models, thereby
supporting a broader application and better performance across
various languages.

7 Conclusion
In this study, we aimed to investigate two key questions regard-
ing the evaluation of LLMs on code for Chinese use-cases. Firstly,
we identified the common types of errors LLMs make, leading
to the development of a detailed error taxonomy. This taxonomy
revealed that semantic errors, particularly hallucinations, are preva-
lent, while linguistic errors are less common due to the unique
characteristics of the Chinese language.

Second, we validate the feasibility of using cosine similarity
of word embeddings to analyze semantic errors. Code comments
with semantic errors usually have lower word embedding cosine
similarity than regular comments, explaining their larger deviation
in semantics. The significance of this study lies not only in finding
the connection between semantic errors and cosine similarity, but
more importantly, it proposes a possible direction for automatically
analyzing the performance of large language models.

These findings have significant implications for the development
and improvement of LLMs, particularly in generating accurate and
relevant code comments in Chinese. By providing a detailed error
taxonomy and demonstrating the utility of cosine similarity in
detecting hallucinations and evaluating comment specificity, this
study contributes valuable insights to the field.

However, our research has certain limitations, including the spe-
cific focus on code comments and the reliance on cosine similarity
as the primary metric. Future research should explore additional
languages and alternative metrics to build on our findings. More-
over, expanding the dataset and labeling more comments could
further enhance the universality of our error taxonomy.

In conclusion, this study provides a thorough analysis of the
errors made by LLMs in Chinese code commenting and introduces
innovative methods for improving the analyzation of semantic
errors in generated comments. These contributions lay the ground-
work for future advancements in applying LLMs to multilingual
code annotation tasks, ultimately enhancing their practical utility
and reliability.

8

LLM of Babel: Evaluation of LLMs on code for non-English use-cases Conference’17, July 2017, Washington, DC, USA

8 Ethics and Responsible Research
For the completion of our research, we utilized two advanced mod-
els: stable-code-3b and Ernie 1.0. These models are governed
by the Stability AI Non-Commercial Research Community License
and the Apache-2.0 license, respectively. These licensing terms al-
low for the application of these models in academic and scientific
research, ensuring compliance with legal and ethical standards.

To gather the necessary data for our dataset, we sourced informa-
tion exclusively from open-source repositories available on GitHub.
This approach ensures transparency and accessibility of our data
sources, enabling other researchers to verify and build upon our
work. Utilizing open-source repositories not only aligns with ethi-
cal standards but also Spromotes the integrity of ourSSS research
by providing a clear and accessible trail for data verification.

Ensuring the reproducibility of our research findings is crucial.
To this end, we have established a public GitHub repository, which
can be accessed at GitHub Repository. In this repository, we have
disclosed the repositories from which we collected data, the raw
results of our tertiary study, and all the code utilized in our analyses.
The repository also includes detailed documentation to guide other
researchers through our processes and methodologies, ensuring
they can replicate our study accurately.

Furthermore, we have uploaded the dataset, which includes the
leading comments, to a publicly accessible repository at Hugging
Face. This enables other researchers and practitioners in the field
to access our dataset readily, facilitating further research and ap-
plication in related fields. By making both the data and the code
publicly available, we encourage transparency and foster trust in
our findings, as every aspect of our research can be scrutinized and
validated by the scientific community.

We also took careful measures to ensure the integrity of our
data and the ethical considerations involved in its use. All data
collection processes adhered to the guidelines for ethical research,
respecting the licenses and usage terms of the sources. By using
only open-source data, we avoided potential legal and ethical issues
related to proprietary or sensitive information.

In addition to these technical and ethical measures, we conducted
a thorough reflection on the challenges of reproducibility and in-
tegrity in our research. We recognize that reproducibility is not
just about making data and code available; it involves ensuring that
other researchers can understand and implement our methodolo-
gies. To this end, we provided comprehensive documentation and
detailed explanations of our experimental setup, data processing
steps, and analysis techniques. This level of detail helps mitigate
common reproducibility challenges, such as unclear methodologies
or missing information, which can hinder other researchers from
successfully replicating studies.

By taking these steps, we aim to foster an environment of open
scientific communication and collaboration, allowing the commu-
nity to benefit from our findings while adhering to the highest
standards of research integrity and reproducibility. Our commit-
ment to these principles not only enhances the credibility of our
research but also contributes to the advancement of knowledge in
the field, providing a solid foundation for future studies to build
upon.

Acknowledgments
Finally, I have the chance to write down my feelings for the past
three years. For this universe, we are just travellers staying shorter
than a blink. For ourselves, the world is everything, occupying our
whole lifetime. It’s my great honor to study in Delft University
of Technology, one of the best technical universities in the world.
I always believe the theory of "No pain, No gain", and I’d like to
say for all the pain I suffered during my study, it worth. I hope
this paper could be useful to the rest of the world, contributing my
value, but not just creating a 1MB file in the database.

There’s lots of people I’d like to share my acknowledgement
with. First, I have to show my respect to myself. Surviving from one
of the hardest Bachelor education system is my lifelong honor and
medal. Then, I’d like to gratitude my parents, especially my mother
Dan Gao. She can always be my strongest back shield and help me
get out of difficulties. Moreover, I want to thank all my tutors that
helped me reach the place I have today, especially my supervisor
for this paper ir. Jonathan Katzy and Assistant Prof. Dr. Maliheh
Izadi. Without their help, I cannot grow up from an infant to an
engineer. Finally, I have to give special acknowledgement to my
friends. I have discovered lots of truly marvellous stories among us,
which this margin is too narrow to contain. Therefore, I decide to
put a name list here: Chen Yiming, Cui Minghui, Gu Shengfei, Han
Xingyu, Hu Chen, Huang Chengcheng, Sun Xiaoxi, Tang Shenyi,
Wang Tingyue, Yang Renyi, Zhang Yechen

References
[1] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Alice

Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian. Productivity assessment
of neural code completion, 2022.

[2] Steven I. Ross, FernandoMartinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. The programmer’s assistant: Conversational interaction with a large
language model for software development. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, IUI ’23. ACM, March 2023.

[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. Programming is hard – or at least it used to
be: Educational opportunities and challenges of ai code generation, 2022.

[4] Alibaba Cloud. Alibaba cloud pilots ai coding assistant to help employees write
code, 2023. Accessed: 2024-05-26.

[5] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual
BERT? In Anna Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages
4996–5001, Florence, Italy, July 2019. Association for Computational Linguistics.

[6] Microsoft. Microsoft research project helps languages survive and
thrive. https://news.microsoft.com/source/asia/features/microsoft-research-
project-helps-languages-survive-and-thrive/#:~:text=This%20means%2088%
20percent%20of,to%20navigate%20the%20digital%20world, 2024. [Online;
accessed 8-June-2024].

[7] Xiang Zhang, Senyu Li, Bradley Hauer, Ning Shi, and Grzegorz Kondrak. Don’t
trust chatgpt when your question is not in english: A study of multilingual
abilities and types of llms, 2023.

[8] Lingfeng Shen, Weiting Tan, Sihao Chen, Yunmo Chen, Jingyu Zhang, Haoran
Xu, Boyuan Zheng, Philipp Koehn, and Daniel Khashabi. The language barrier:
Dissecting safety challenges of llms in multilingual contexts, 2024.

[9] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. Codexglue:
A machine learning benchmark dataset for code understanding and generation.
CoRR, abs/2102.04664, 2021.

[10] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zi-
han Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang.
Codegeex: A pre-trained model for code generation with multilingual evaluations
on humaneval-x, 2023.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[12] Timo Pawelka and Elmar Juergens. Is this code written in english? a study

9

https://news.microsoft.com/source/asia/features/microsoft-research-project-helps-languages-survive-and-thrive/#:~:text=This%20means%2088%20percent%20of,to%20navigate%20the%20digital%20world
https://news.microsoft.com/source/asia/features/microsoft-research-project-helps-languages-survive-and-thrive/#:~:text=This%20means%2088%20percent%20of,to%20navigate%20the%20digital%20world
https://news.microsoft.com/source/asia/features/microsoft-research-project-helps-languages-survive-and-thrive/#:~:text=This%20means%2088%20percent%20of,to%20navigate%20the%20digital%20world

Conference’17, July 2017, Washington, DC, USA Yongcheng Huang

of the natural language of comments and identifiers in practice. In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages
401–410, 2015.

[13] Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James
Baicoianu, and Nathan Cooper. Stable code 3b.

[14] Faisal Rahutomo, Teruaki Kitasuka, Masayoshi Aritsugi, et al. Semantic cosine
similarity. In The 7th international student conference on advanced science and
technology ICAST, volume 4, page 1. University of Seoul South Korea, 2012.

[15] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, page 311–318,
USA, 2002. Association for Computational Linguistics.

[16] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

[17] Junayed Mahmud, Fahim Faisal, Raihan Islam Arnob, Antonios Anastasopoulos,
and Kevin Moran. Code to comment translation: A comparative study on model
effectiveness & errors. In Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Gligoric,
Junyi Jessy Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsar-
faty, editors, Proceedings of the 1st Workshop on Natural Language Processing for
Programming (NLP4Prog 2021), pages 1–16, Online, August 2021. Association for
Computational Linguistics.

[18] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in
natural language generation. ACM Comput. Surv., 55(12), mar 2023.

[19] Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence gener-
ation using grid beam search. arXiv preprint arXiv:1704.07138, 2017.

[20] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and
Jason Weston. Neural text generation with unlikelihood training. arXiv preprint
arXiv:1908.04319, 2019.

[21] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faith-
fulness and factuality in abstractive summarization, 2020.

[22] Will Lowe. Towards a theory of semantic space. In Proceedings of the annual
meeting of the cognitive science society, volume 23, 2001.

[23] Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, and Csaba Szepesvári. To
believe or not to believe your llm, 2024.

[24] Peipei Xia, Li Zhang, and Fanzhang Li. Learning similarity with cosine similarity
ensemble. Information Sciences, 307:39–52, 2015.

[25] Junliang Luo, Tianyu Li, Di Wu, Michael Jenkin, Steve Liu, and Gregory Dudek.
Hallucination detection and hallucination mitigation: An investigation, 2024.

[26] Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. Is cosine-similarity of
embeddings really about similarity? In Companion Proceedings of the ACM on
Web Conference 2024, pages 887–890, 2024.

[27] Ansar Aynetdinov and Alan Akbik. Semscore: Automated evaluation of
instruction-tuned llms based on semantic textual similarity, 2024.

[28] oprogramador. Most common words by language, 2024. Accessed: 2024-05-26.
[29] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhu-

patiraju, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya
Tafti, and et al. Gemma. 2024.

[30] AISE-TUDelft. LLMof Babel ZH2. https://huggingface.co/datasets/AISE-TUDelft/
LLM-of-Babel-ZH2, 2023.

[31] D4vidHuang. Llm of babel zh2 rndselection new. https://huggingface.co/datasets/
D4vidHuang/LLM_Of_Babel_ZH2_RNDSelection_new, 2024. Accessed: 2024-06-
02.

[32] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. Efficient training of language models
to fill in the middle, 2022.

[33] Shahedul Huq Khandkar. Open coding. University of Calgary, 23(2009):2009,
2009.

[34] Julianne S Oktay. Grounded theory. Oxford University Press, 2012.
[35] Streamlit. https://github.com/streamlit/streamlit. Accessed: 2023-06-03.
[36] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin

Tian, Danxiang Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation
through knowledge integration. arXiv preprint arXiv:1904.09223, 2019.

[37] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. A survey on hallucination in large language models: Principles, taxonomy,
challenges, and open questions, 2023.

[38] Edwin George Pulleyblank. Outline of classical Chinese grammar. Ubc Press,
1995.

[39] Jo-Wang Lin. Time in a language without tense: The case of chinese. Journal of
semantics, 23(1):1–53, 2006.

[40] Haitao Liu. The complexity of chinese syntactic dependency networks. Physica
A: Statistical Mechanics and its Applications, 387(12):3048–3058, 2008.

[41] Jonathan Katzy, Maliheh Izadi, and Arie van Deursen. On the impact of language
selection for training and evaluating programming language models. In 2023 IEEE
23rd International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 271–276. IEEE, 2023.

A Complete PCA diagram

Figure 9: Complete PCA diagram for all data.

B Complete cosine similarity bar chart

Figure 10: Complete cosine similarity bar chart for all data.

The reason we leave data No.19 and No.52 blank is because the
senior programmer thinks no comments are needed here.

C Use of Large Language Models in the
Research Project

In the construction of this research paper, AI tools are utilized,
specifically LLMs like ChatGPT, to assist in refining the grammar
and checking of the spelling. This application was limited to gram-
matical corrections and enhancing the readability of the paper with-
out altering the conceptual content or analytical insights derived
from my research.

10

https://huggingface.co/datasets/AISE-TUDelft/LLM-of-Babel-ZH2
https://huggingface.co/datasets/AISE-TUDelft/LLM-of-Babel-ZH2
https://huggingface.co/datasets/D4vidHuang/LLM_Of_Babel_ZH2_RNDSelection_new
https://huggingface.co/datasets/D4vidHuang/LLM_Of_Babel_ZH2_RNDSelection_new
https://github.com/streamlit/streamlit

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Preparation
	3.2 Inference Pipeline
	3.3 Open Coding
	3.4 Cosine Similarity and Principal component analysis
	3.5 Visual data annotation
	3.6 Ernie 1.0

	4 Results
	4.1 Qualitative Analysis
	4.2 Quantitative Analysis

	5 Discussion
	5.1 Errors Made by LLMs in Chinese Inference on Java Code Comments
	5.2 Analyzing Semantic Errors via Cosine Similarities of Word Embeddings

	6 Future work
	7 Conclusion
	8 Ethics and Responsible Research
	Acknowledgments
	References
	A Complete PCA diagram
	B Complete cosine similarity bar chart
	C Use of Large Language Models in the Research Project

