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Plain Language Summary
In this bachelor thesis, we explore a problem related to turning a needle inside a very small space. We
start with some intuitive ideas, followed by a solution published by Abram Besicovitch in 1928. After
that, we take a deeper look at the kinds of shapes that we can turn this needle in, and their interesting
mathematical properties.

In particular, we take a look at its dimension, just like a line has one dimension, a square has two,
and a cube three. With specialized mathematical tools, we can give almost any shape a dimension. We
could even give the coastline of Britain a dimension. We give a proof that these shapes that allow us
to turn a needle, will always have dimension 2. This result is interesting since it shows some similarity
with a square, even though these shapes are in many ways very different.
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Abstract
This thesis explores the Kakeya conjecture for 𝑛 = 2, which states that every subset of ℝ𝑛 containing
a unit line segment in every direction has Minkowski dimension 𝑛. To tackle this problem we explore
what the Minkowski dimension is, and use the Kakeya maximal operator.

We start by stating the idea of a Kakeya needle set. We construct a sequence of these sets with
arbitrarily small measure, followed by looking at Kakeya sets, which can even have measure equal to
zero. We derive a proof of the Kakeya conjecture using the Kakeya maximal operator conjecture and
its dual form, where we also prove all necessary implications. Resulting in a complete proof for 𝑛 = 2
with respect to the Minkowski dimension.

v





Acknowledgements
I would like to thank everyone that helped me write this thesis. First off, a huge thanks to Emiel Lorist.
All the weekly meetings helped immensely with digesting and understanding these unfamiliar mathe-
matical concepts. Also a big thanks to my student friends, who helped give me sanity checks on my
explanations, and were there to keep me motivated. Lastly thanks to all the great teachers i have had
at TU Delft these past four years, as they all, in their own way, helped prepare me for this thesis.

vii





Contents

Plain Language Summary iii

Abstract v

Acknowledgements vii

1 A Needle Drenched in Ink 1
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Initial ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Besicovitch Construction 5
2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Pal’s joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Area calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Constant area increase at each step . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Normalizing to unit length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Preliminaries 11
3.1 Balls, spheres and tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Measure theory and 𝐿𝑝-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Minkowski dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Kakeya conjecture 17
4.1 Conjecture and status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Kakeya Maximal Operator Conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 The Kakeya Maximal Operator Conjecture Implies the Kakeya Conjecture . . . . . 19
4.2.2 Proving The Kakeya Maximal Operator Conjecture for n = 2. . . . . . . . . . . . . 20
4.2.3 Proving Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Outlook 29

Bibliography 31

ix





1
A Needle Drenched in Ink

In this chapter we will introduce a problem from the Japanese mathematician Sōichi Kakeya. We will
show some naive ideas, initial candidates for improvement, and hint at the best solution. In the following
chapters, we aim to use existing literature on the topic, breaking it down in such a way that this topic
becomes digestible for bachelor mathematics students in their final year.

1.1. The problem
In 1917 Sōichi Kakeya proposed a seemingly simple problem in geometry that has sparked areas of
mathematics active until present day. Including work of mathematicians Hong Wang and Joshua Zahl
[6], who recently released a preprint claiming to prove the Kakeya conjecture for 𝑛 = 3. Note that the
Kakeya conjecture is different from the problem that we discuss in this chapter. We formally introduce
the Kakeya conjecture in a later chapter.

The problem stated by Kakeya is as follows.

In the class of figures in which a segment of unit length can be turned around 360∘, while
always remaining within the figure, which one has the smallest area?

A fun way to think about this problem is to imagine an idealistic needle with unit length and 0 width.
Your task is to turn this needle a full 360 degrees. However, the needle is drenched in ink, and when you
turn it, any area the needle touches will be colored. Your goal is to find the movement which minimizes
this area. A set in which we can perform this rotation of 360 degrees is called a Kakeya needle set.

1.2. Initial ideas
If you are just playing with this needle, something you might try is to hold down one end. While holding
this end, you spin the other to make a semi circle. See Figure 1.1

Figure 1.1: The needle and the trace of ink it leaves behind at 3 points in time (circle has radius = 1).

1



2 1. A Needle Drenched in Ink

Now that the needle is pointing south, we have turned it 180 degrees. To turn the following 180
degrees, slide the needle back up and repeat the turn. Note that sliding the needle along a straight line
leaves no area behind, since the needle has 0 width. This fact will be important next chapter. Now that
we have turned the needle 360 degrees, we can calculate the area as half the area of a disc with unit
radius, being 𝜋

2 ≈ 1.57.
Our next idea will turn out to already be a lot better, even though it is a similar solution. If instead

of holding down the needle at one of its endpoints, we hold it in the middle, we get a disc with unit
diameter. See Figure 1.2. Again a simple calculation shows its area, this time being 𝜋

4 ≈ 0.79.

Figure 1.2: The needle and the trace of ink it leaves behind at 3 points in time (circle has radius = 1
2 )

The next Kakeya needle set we show is the equilateral triangle with height 1 and vertices 𝐴, 𝐵 and
𝐶. The needle starts as the line starting at 𝐶, perpendicular to 𝐴𝐵. We then turn it along a circular arc
until it hits the side 𝐵𝐶. Once the needle hits 𝐵𝐶, we slide it along that edge until it touches 𝐵. Now, in
a similar fashion, we turn it along a circular arc until it touches side 𝐴𝐵.

Now we slide it along that edge until it touches 𝐴. Once again we turn it along a circular arc until
it touches 𝐴𝐶, slide it along that edge until it touches 𝐶, and finally turn it until it is back in its original
position. We have now turned it 180 degrees, and we can simply repeat the process to turn it 180
further degrees to accomplish the desired 360 degree turn. See Figure 1.3.

Figure 1.3: Needle at starting position, and needle with corresponding ink trace after turning along the circular arc.

Now, since the height of this equilateral triangle is 1, we need some trigonometry to calculate its area.
Since sin(60∘) = 1

|𝐵𝐶| And |𝐴𝐵| = |𝐵𝐶|. This leads to an area of
1
2 ⋅

1
sin(60∘) =

√3
3 ≈ 0.58 (which is less

than 𝜋
4 ≈ 0.79).



1.2. Initial ideas 3

The final set that we will discuss is the hypocycloid. This set is obtained by choosing a fixed point
on a small circle and then tracing that point as the circle rolls along the inside of a larger circle. In our
case the small circle has diameter 12 and the large circle has diameter

3
2 . See Figure 1.4.

Figure 1.4: Three depictions of the hypocycloid, firstly without any needle, secondly with the needle in upright position, and lastly
with the needle after moving along about a third of the hypocycloid. The blue circle around the hypocycloid is the ’large’ circle
with diameter 32

Of course we are still left with determining the area of this hypocycloid. For this we note that the
diameter of the outer circle is 3

2 thus its radius is
3
4 . Then we use the formula for calculating the area of

a hypocycloid which is enclosed in a circle of diameter 𝑟: 29 ⋅ 𝜋 ⋅ 𝑟
2 [7, (15)] Plugging in 𝑟 = 3

4 we arrive
at an area of 𝜋8 ≈ 0.39. As compared to the equilateral triangle of ≈ 0.58. It was conjectured that this
hypocycloid was the set of smallest area.

We have now given a brief description of the problem and provided some initial ideas for how to
turn our needle. In the next chapter we make all of these ideas obsolete by introducing a construction
of sets that allows arbitrarily small areas to be achieved.





2
The Besicovitch Construction

In this chapter we will construct a sequence of sets with decreasing area, where we can make a Kakeya
needle set using (copies of) these sets at any point in the sequence. The construction comes from the
work of Abram Besicovitch with help from Julius Pal [1]. We describe this construction, and add some
nice visualizations.

2.1. Setup
We will start with a set that is even worse than all the ideas mentioned before. But it will turn out that,
with enough refinements, this will still result in a set of arbitrarily small area. So, let us start with a
square with side length 4.

Figure 2.1: Square with sidelength 4, with needle of length 2 (a). In the second figure the square is split up into four triangular
segments (b)

It should be apparent that the needle (this time of length 2) can definitely be turned 360 degrees in
this figure, since any of the figures shown in Chapter 1 can fit inside this square. For the construction
we will split up this square into four triangles. We will construct a sequence of sets, that starts as one
of these triangles. Every set in this sequence will allow a 90 degree rotation. Using four copies of
these sets we achieve the desired 360 degrees of rotation. Now let us start with the details of this
construction.

5



6 2. The Besicovitch Construction

2.2. Construction
The Besicovitch construction can be seen as a sequence of sets which have smaller and smaller area.
To understand its construction, we will show how to, given any set in the sequence, obtain the next set
in the sequence. Then we will show that this sequence indeed has the property of decreasing area that
we claim.

We denote elements in our sequence as Δ𝑘, where element 𝑘 in the sequence has height 𝑘. Now
let us start with the first set in this sequence (where we start at 𝑘 = 2), which is exactly the quarter of
the square we showed earlier. Note that this triangle is isosceles, has height 2 and base of length 4.

Figure 2.2: The first triangle in the Besicovitch construction, which is one quarter of the 4 by 4 square as shown earlier.

Now that we have shown our starting triangle (also referred to as Δ2), we want to know how to get the
next element of our sequence. We start by taking the 2 lines that meet at the top of our triangle, and
continuing them until the height of these lines is 1 higher than the current height. After this we construct
the line which bisects the base of our triangle, through the tip of the triangle. Parallel to this bisection,
we draw 2 lines connecting the base of our triangle to the extended line segments we just drew, as can
be seen in Figure 2.3.

(a) (b) (c)

Figure 2.3: (a) Extending the line segments which intersect at the top of the triangle. (b) Adding the line which bisects the base
of the triangle, for all triangles of height 2. (c) Parallel to this bisection, drawing lines that intersect the extension of the line
segments created in (a). Ending up with a figure from the Besicovitch construction of height 3.

Note that, by construction, the height of this figure is 1 more than that of Figure 2.2, so now we
have Δ3. Note that Δ3 can be seen as two overlapping, isosceles, right-angled triangles. Inside each
of these triangles, one can easily turn a needle from the hypotenuse onto a leg. This leaves us with
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the problem of ”transferring” our needle from one of these triangles to the other. We can achieve this
transfer if we are allowed to make parallel translations. In the next section we will explain that we can
do this in arbitrarily small area, with a detailed explanation for Figure 2.5. All in all, this means we can
turn a needle of length 3 in the set Δ3. For now, note the length of our needle has increased from 2
to 3, we will later address how to scale this back down to 1, since the original question is related to
a unit line segment. But first, let us provide one more illustration of this construction, showing how to
construct Δ4, see Figure 2.4.

(a) (b) (c)

Figure 2.4: (a) Extending the line segments which intersect at the top of the triangle. (b) Adding the line which bisects the base
of the triangle, for all triangles of height 3. (c) Parallel to this bisection, drawing lines that intersect the extension of the line
segments created in (a). Ending up with a figure from the Besicovitch construction of height 4.

All other sets in this sequence follow from the repeated application of this construction. Where the
bisecting of triangles shown in step (b) of the illustrations should be done for all triangles of height 𝑘−1
when constructing Δ𝑘.

2.3. Pal’s joins
As we have seen for 2.3, we would like a way of making parallel translations. That’s why we now
introduce Pal’s joins, created by Julius Pal [1].

Figure 2.5: Triangle ABC and DEF, overlapping eachother.

In Figure 2.5 we have two triangles, ABC and DEF. Now imagine a needle with the same length as
EF. This needle starts along DE, and with some sliding and turning, we can get it to be on top of EF.
Now we would like to shift it over to AB, so we can turn it onto BC. This however requires a parallel
translation, luckily J. Pal figured out a method to do this in arbitrarily small area.

Let 𝜖 > 0, we introduce the point G (sitting on line segment AF), such that |𝐴𝐺||𝐴𝐹| <
𝜖
8 . We then draw

a line from B through G, and we extend the existing line from E through F, until these two lines meet in
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point H. And draw the triangle HIJ such that it is congruent with AGB. This results in Figure 2.6.

Figure 2.6: Adding the lines BH and EH, and constructing the triangle HIJ.

Since moving along straight lines does not add any surface area to our figure, the only area of
interest is that of triangle HIJ. Since the area of a triangle only depends on the length of its base and
on its height, we have the inequality |△𝐴𝐵𝐺| < 𝜖

8 |△𝐴𝐵𝐶| (Since |𝐴𝐺| <
𝜖
8 |𝐴𝐹| and |𝐴𝐹| < |𝐴𝐶|).

Combining that with the fact that HIJ is congruent with ABG, which is the case by construction, we find
that |△𝐻𝐼𝐽| < 𝜖

8 |△𝐴𝐵𝐶|. So say we have two congruent triangles Δ1 ≅ Δ2, that we join together using
a Pal join, we have now shown this adds 𝜖

8 |Δ1| area. Now say for some 𝑛 we split up each quarter of
the square in Figure 2.1a, in 𝑛 different triangles. If we do this, each quarter of our square is equivalent
to Δ𝑘 of the Besicovitch construction. When we say equivalent, we mean they are the same, up to
horizontal translation of these 𝑛 triangles. This means we use a total of 4𝑛 triangles, and it would look
something like in Figure 2.7.

Figure 2.7: Square from Figure 2.1a split up further in triangles

Splitting a square in triangles does not increase its area, so the total area of triangles is 4. This
means that the total area added by all the Pál joins, is less than 𝜖

8 ⋅ 4 =
𝜖
2

Now we have described a way to make parallel translations in arbitrarily small area, so let us start
with the Besicovitch construction.
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2.4. Area calculation
2.4.1. Constant area increase at each step
Now that we have shown how the construction of these intriguing sets works, we shall discuss their
areas. First of all we claim that every step in this sequence adds the same amount of area, regardless
of 𝑘. To prove this, we will look at the set in this sequence which has height 𝑘, and we will isolate one
of its triangles which also has height 𝑘.

(a) (b)

Figure 2.8: (a) Triangle ABC with height k. (b) Next iteration of the Besicovitch construction, with the bisection as dotted line.

First of all, note that we now have in Figure 2.8b that E and D are at height 𝑘 + 1, and G and F
are at height 𝑘 − 1. Now note that, by parallel angles and opposite angles, we find the congruence
relationship △𝐶𝐸𝐺 ≅ △𝐶𝐹𝐷.

Secondly, let us look at the area of△𝐶𝐸𝐺, if we take EC as base, then the height of this triangle is the
length of 𝐹𝐺. So |△𝐶𝐸𝐺| = 1

2 |𝐶𝐸| ⋅ |𝐹𝐺|. Now since |𝐶𝐸| = |𝐶𝐹| = 1 we have that |△𝐶𝐸𝐺| = |△𝐶𝐹𝐺|.
Combining this with the congruence relationship we found we get the result |△𝐶𝐸𝐺| = |△𝐶𝐷𝐹| =
|△𝐶𝐹𝐺|.

Which means that for any triangle of height 𝑘, the area added by constructing the next layer of the
Besicovitch construction, is equal to 2 times the area enclosed by the triangle between height 𝑘 and
𝑘 − 1. In our case this is equal to 2 ⋅ |△𝐶𝐹𝐺|.

Now this is where the beauty happens. All of these triangles in the set combined can be placed
next to eachother (after parallel translation) to form 1 isosceles triangle of height 𝑘. And the area that
an isosceles triangle encloses between height 𝑘 and 𝑘 − 1, is that of and isosceles triangle of height 1
and base 2. This triangle is denoted by Δ1. This can be seen as the blue shaded area between height
1 and 2, in Figure 2.9 for 𝑘 = 3 and 𝑘 = 4.

So the total area added by increasing the set of height 𝑘 in the sequence to a set of height 𝑘 + 1 is
at most equal to 2 ⋅ |Δ1|. We write at most since the triangles akin to △𝐶𝐸𝐺 and △𝐶𝐷𝐹 might overlap
with other parts of the figure. The most important takeaway here is that 2 ⋅ |Δ1| is not dependent on 𝑘,
so the area added by the construction is not dependent on which step of the construction we are in.

To get more precise in the area of our Δ𝑘 for arbitrary k, we will need to get back to our premise of
a unit line segment.

2.4.2. Normalizing to unit length
We now want to be able to say something about the area of our figure, in relation to turning a unit length
line segment in it. For this we will need our Δ𝑘 to have a height of 1.

To achieve this we simply scale the whole set down by a factor 𝑘. You can imagine this by repeating
the construction up to Δ𝑘 from scratch, but instead start with an isosceles triangle of height 2𝑘 (akin to
Δ2), and at each following step the height of the set will increase by

1
𝑘 .

To now calculate the area of Δ𝑘, recall that we have just shown each step in our sequence adds at
most 2 ⋅ |Δ1| area. This means we only need to know the area of Δ1 and Δ2.

Both of these are isosceles triangles with height 1𝑘 and 2
𝑘 respectively. Where each of their bases
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(a) 𝑘 = 3 (b) 𝑘 = 4

Figure 2.9: Showcasing that the added area is at most equal to 2 ⋅ |Δ1|.

is double the length of their height. This leads us to the following equations.

|Δ1| =
1
2 ⋅

1
𝑘 ⋅

2
𝑘 =

1
𝑘2 .

|Δ2| =
1
2 ⋅

2
𝑘 ⋅

4
𝑘 =

4
𝑘2 .

|Δ𝑘| ≤ |Δ2| + (𝑘 − 2) ⋅ 2|Δ1| =
4
𝑘2 + (𝑘 − 2)

2
𝑘2 =

4
𝑘2 +

2𝑘
𝑘2 −

4
𝑘2 =

2
𝑘 .

Now recall we need 4 of these Δ𝑘 to turn our line segment the full 360 degrees. These 4 combined will
have area ≤ 8

𝑘 .
Now we would like 8

𝑘 <
𝜖
2 . We can achieve this by choosing 𝑘 > 16

𝜖 . Finally combining 4 of these
Δ𝑘, and the Pal joins we described in Section 2.3, we arrive at a set in which we can turn a line segment
of length 1, 360 degrees, with an area of less than 𝜖. This is what we wanted to show.



3
Preliminaries

For the following chapter we will need some heavier machinery to tackle the Kakeya conjecture. There-
fore we introduce the necessary techniques and definitions here.

3.1. Balls, spheres and tubes
Definition 3.1 (Unit Sphere). The unit sphere 𝑆𝑛−1 is defined as :

𝑆𝑛−1 ∶= {𝑥 ∈ ℝ𝑛 ∶ |𝑥| = 1}.

Definition 3.2 ((Unit) Ball). Let 𝑎 ∈ ℝ𝑛 , 𝛿 > 0. The closed ball 𝐵𝑛(𝑎, 𝛿) is defined as :

𝐵𝑛(𝑎, 𝛿) ∶= {𝑥 ∈ ℝ𝑛 ∶ |𝑥 − 𝑎| ≤ 𝛿}.

We will refer to 𝐵𝑛(0, 1) (also known as the unit ball) as simply 𝐵𝑛. We also often just write 𝐵(𝑎, 𝛿),
when it is clear what 𝑛 is.

Definition 3.3 (𝛿-tubes). Let 𝛿 > 0, then an example of an 𝑛-dimensional 𝛿-tube with length 1 is

{𝑥 ∈ ℝ𝑛 ∶ 𝑥21 + ... + 𝑥2𝑛−1 ≤ (
𝛿
2 )
2, 0 ≤ 𝑥𝑛 ≤ 1}.

All other 𝑛-dimensional 𝛿-tubes can be made from this one using translation and rotation.

Definition 3.4 (Sphere coefficients). Coefficients 𝛽𝑛 and 𝛾𝑛 are defined such that, for a 𝑛-dimensional
ball with radius 𝛿 :

𝛽𝑛 ⋅ 𝛿𝑛 ∶= |𝐵𝑛|,

and for a 𝑛-dimensional sphere with radius 𝛿

𝛾𝑛 ⋅ 𝛿𝑛 ∶= |𝑆𝑛−1|.

3.2. Measure theory and 𝐿𝑝-spaces
Definition 3.5 (Diameter of a set). Let 𝐴 ⊂ ℝ𝑛 non-empty, with the Euclidean metric 𝑑 ∶ 𝐴 × 𝐴 → ℝ.
Then the diameter of 𝐴 is defined as

𝑑(𝐴) ∶= sup{𝑑(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝐴}.

Definition 3.6 (𝛿-neighbourhood). Let 𝐸 ⊂ ℝ𝑛, with metric 𝑑 ∶ 𝐸 × 𝐸 → ℝ, let 𝛿 > 0. Then the
𝛿-neighbourhood 𝐸𝛿 is defined as

𝐸𝛿 ∶= {𝑥 ∈ ℝ𝑛 ∶ ∃𝑒 ∈ 𝐸 ∶ 𝑑(𝑒, 𝑥) < 𝛿}.

11



12 3. Preliminaries

Definition 3.7 (𝐿𝑝 norm). Let (Ω, Σ, 𝜇) be a measure space. The 𝐿𝑝 norm of the measurable function
𝑓 ∶ Ω → ℝ, is defined as:

‖𝑓‖𝐿𝑝(Ω) ∶= (∫Ω
|𝑓|𝑝 𝑑𝜇)

1
𝑝
.

In this thesis our set Ω will either be ℝ𝑛 or 𝑆𝑛−1, these sets require different measures for us to get
meaningful results. When we are integrating over ℝ𝑛 we will use the Lebesgue measure, and when
we are integrating over 𝑆𝑛−1 we will use the Hausdorff measure, see Definition 3.10. This choice of
measure holds for any integral we do in this thesis.
Definition 3.8 (𝐿1loc(ℝ𝑛)). If for every compact subset 𝐾 ⊂ ℝ𝑛

∫
𝐾
|𝑓|𝑑𝜇 < ∞,

then 𝑓 ∈ 𝐿1loc(ℝ𝑛).
Definition 3.9 (≲). The symbol ≲𝑎,𝑏,𝑐 will be used a lot throughout the next chapter. It is defined as
follows

𝑋 ≲𝑎,𝑏,𝑐 𝑌 ⟺ 𝑋 ≤ 𝐶(𝑎, 𝑏, 𝑐)𝑌
Where 0 < 𝐶 < ∞ So, X is less than Y, up to a constant, which is allowed to depend on anything in
the subscript of ≲. In the next chapter, the most important thing is usually that this constant does not
depend on 𝛿, but we will be as explicit as possible, naming the parameters the constant is allowed to
depend on. If there is nothing in the subscript, then the constant is not dependent on any parameters.
Definition 3.10 (Hausdorff measure). The 𝑛−1-dimensional Hausdorff measure on a set 𝐴 ⊂ ℝ𝑛 with
countable covering 𝐴 ⊂ ⋃𝑖∈ℕ𝑊𝑖, 𝛿 > 0, is defined as:

ℋ𝑛−1(𝐴) ∶= lim
𝛿↓0

inf {∑
𝑖
𝑑(𝑊𝑖)𝑛−1 ∶ 𝐴 ⊂⋃

𝑖∈ℕ
𝑊𝑖 , 𝑑(𝑊𝑖) ≤ 𝛿}

We won’t concern ourselves with this definition too much, but it is needed to define 𝐿𝑝 norm on 𝑆𝑛−1 in
a meaningful way. We will provide one example calculation which we will need later.
Example 3.11 (Hausdorff measure of 𝑆𝑛−1 ∩ 𝐵(𝑎, 𝛿)). Let 𝑎 ∈ 𝑆𝑛−1, 𝛿 > 0, then we have that under
the Hausdorff measure

|𝑆𝑛−1 ∩ 𝐵(𝑎, 𝛿)| ≲𝑛 𝛿𝑛−1

Proof. Before we start our proof a quick visual for 𝑛 = 2.

Figure 3.1: The shaded area is 𝐵(𝑎, 𝛿), the dotted line is 𝑆𝑛−1 ∩ 𝐵(𝑎, 𝛿)
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Here we find that the intersection, in the case of 𝑛 = 2, is a small arc length of the unit circle. We
will give a proof for this case. The higher dimensional case follows by a similar argument but more
cumbersome notation.

Without loss of generality. take 𝑎 = (0, 1). Now note any point 𝑥 ∈ 𝑆1 can bewritten as (cos 𝜃, sin𝜃).
We then find

𝑑(𝑥, 𝑎) = √cos(𝜃)2 + (sin(𝜃) − 1)2 = √2 − 2 sin𝜃.

Which means 𝑑(𝑥, 𝑎) ≤ 𝛿 ⟺ sin𝜃 ≥ 1 − 𝛿2
2 . This is the case if |𝜃| ≤ arcsin(1 − 𝛿2

2 ). Using a Taylor
expansion, on the sine around 0, we see this is equal to 𝛿 + 𝑂(𝛿3). Now we have shown that the arc
length is 2𝛿 + 𝑂(𝛿3). Now using the definition of Hausdorff measure (choosing 𝑑(𝑊𝑖) ≤ 𝜖, instead
of ≤ 𝛿 to avoid using the same letter twice) fix 0 < 𝜖 < 2𝛿. We can now cover |𝑆1 ∩ 𝐵(𝑎, 𝛿)| with
⌈2𝛿+𝑂(𝛿

3)
𝜖 ⌉ sets of diameter 𝜖. Since the definition takes the infimum over all coverings, and we have

just given a covering, we find that, taking 𝜖 ↓ 0, the 1-dimensional Hausdorff measure is smaller than

∑
𝑖
𝑑(𝑊𝑖)1 ≤∑

𝑖
𝜖 ≤ ⌈2𝛿 + 𝑂(𝛿

3)
𝜖 ⌉ ⋅ 𝜖 ≲𝑛 𝛿.

Theorem 3.12 (Interpolating between 𝐿𝑝 bounds). Let 𝜃 ∈ (0, 1), let 1 ≤ 𝑝0 < ∞, let 𝑝𝜃 =
𝑝0
1−𝜃 , let

𝑓 ∈ 𝐿𝑝0(Ω) ∩ 𝐿∞(Ω). Then
‖𝑓‖𝐿𝑝𝜃 (Ω) ≤ ‖𝑓‖

𝜃
𝐿∞(Ω) ⋅ ‖𝑓‖

1−𝜃
𝐿𝑝0 (Ω).

Proof.

‖𝑓‖𝐿𝑝𝜃 (Ω) = (∫Ω
|𝑓|𝑝𝜃𝑑𝜇)

1
𝑝𝜃 = (∫

Ω
|𝑓|𝑝0 ⋅ |𝑓|𝑝𝜃−𝑝0𝑑𝜇)

1
𝑝𝜃 ≤ (∫

Ω
|𝑓|𝑝0 ⋅ ‖𝑓‖𝑝𝜃−𝑝0𝐿∞(Ω)𝑑𝜇)

1
𝑝𝜃

≤ (‖𝑓‖𝑝𝜃−𝑝0𝐿∞(Ω) ∫Ω
|𝑓|𝑝0𝑑𝜇)

1
𝑝𝜃

≤ ‖𝑓‖
1− 𝑝0𝑝𝜃
𝐿∞(Ω) ⋅ ‖𝑓‖

𝑝0
𝑝𝜃
𝐿𝑝0 (Ω)

≤ ‖𝑓‖𝜃𝐿∞(Ω) ⋅ ‖𝑓‖
1−𝜃
𝐿𝑝0 (Ω)

Theorem 3.13 (Hölder’s inequality). Let (Ω, Σ, 𝜇) be a measure space, 𝑝, 𝑞 ∈ [1,∞] 𝑠.𝑡. 1𝑝 +
1
𝑞 = 1. Let

𝑓, 𝑔 ∈ 𝐿𝑝(Ω) ∩ 𝐿𝑞(Ω). Then
‖𝑓𝑔‖𝐿1(Ω) ≤ ‖𝑓‖𝐿𝑝(Ω)‖𝑓‖𝐿𝑞(Ω).

A proof can be found in [4].

Theorem 3.14 (Duality). Let 𝑝, 𝑞 ∈ (1,∞) s.t. 1𝑝 +
1
𝑞 = 1. Let 𝑎𝑘 ≥ 0 for 1 ≤ 𝑘 ≤ 𝑚. Then we have that

(
𝑚

∑
𝑘=1

𝑎𝑝𝑘)
1
𝑝
=max {

𝑚

∑
𝑘=1

𝑎𝑘𝑏𝑘 ; 𝑏𝑘 ≥ 0 and
𝑚

∑
𝑘=1

𝑏𝑞𝑘 = 1}.
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Proof. Let 𝑆 = {1, ..., 𝑚}, Σ = 𝑃(𝑆), and let 𝜇 the counting measure. Then we find by Hölder (Theorem
3.13) that

𝑚

∑
𝑘=1

𝑎𝑘𝑏𝑘 ≤ (
𝑚

∑
𝑘=1

𝑎𝑝𝑘)
1
𝑝 ⋅ (

𝑚

∑
𝑘=1

𝑏𝑞𝑘)
1
𝑞 = (

𝑚

∑
𝑘=1

𝑎𝑝𝑘)
1
𝑝 ,

where the equality is true since ∑𝑚𝑘=1 𝑏
𝑞
𝑘 = 1. To show ”≥” we have freedom over which 𝑏𝑘 we choose.

So, let us choose

𝑏𝑘 =
𝑎𝑝−1𝑘

(∑𝑚𝑗=1 𝑎
𝑝
𝑗 )

1
𝑞
.

Now let us verify ∑𝑚𝑘=1 𝑏
𝑞
𝑘 = 1, where we note that by assumption on 𝑝, 𝑞 we have (𝑝 − 1)𝑞 = 𝑝

𝑚

∑
𝑘=1

𝑏𝑘 =
𝑚

∑
𝑘=1

( 𝑎𝑝−1𝑘

(∑𝑚𝑗=1 𝑎
𝑝
𝑗 )

1
𝑞
)
𝑞

=
∑𝑚𝑘=1 𝑎

(𝑝−1)𝑞
𝑘

∑𝑚𝑗=1 𝑎
𝑝
𝑗

=
∑𝑚𝑘=1 𝑎

𝑝
𝑘

∑𝑚𝑘=1 𝑎
𝑝
𝑘
= 1.

Let us look at ∑𝑚𝑘=1 𝑎𝑘𝑏𝑘 for this chosen 𝑏𝑘
𝑚

∑
𝑘=1

𝑎𝑘𝑏𝑘 =
𝑚

∑
𝑘=1

𝑎𝑘 ⋅
𝑎𝑝−1𝑘

(∑𝑚𝑗=1 𝑎
𝑝
𝑗 )

1
𝑞
=

∑𝑚𝑘=1 𝑎
𝑝
𝑘

(∑𝑚𝑗=1 𝑎
𝑝
𝑗 )

1
𝑞
= (

𝑚

∑
𝑘=1

𝑎𝑝𝑘)
1− 1𝑞 .

Now since 1 − 1
𝑞 =

1
𝑝 we find for this choice of 𝑏𝑘

𝑚

∑
𝑘=1

𝑎𝑘𝑏𝑘 = (
𝑚

∑
𝑘=1

𝑎𝑘)
1
𝑝 .

So, when taking the maximum over 𝑏𝑘, we will find ≥ instead of equality.

3.3. Minkowski dimension
In this section we will elaborate on the Minkowski dimension. Since the main premise of this thesis is
to say something about the Minkowski dimension of Kakeya sets, it would be nice to have an idea of
how the Minkowski dimension works. First off let us state the definition.

Definition 3.15 (Upper Minkowski dimension). Let 𝐴 a non-empty, bounded subset of ℝ𝑛, for 𝜖 > 0 let
𝑁(𝐴, 𝜖) be the smallest amount of 𝜖-balls needed to cover 𝐴. Let 0 ≤ 𝐶 < ∞ Then the upper Minkowski
dimension dim𝑀(𝐴) is defined as:

dim𝑀(𝐴) ∶= inf {𝑠 ∶ limsup
𝜖↓0

𝑁(𝐴, 𝜖)𝜖𝑠 ≤ 𝐶}.

Here it is only important that 𝐶 is not infinite, any definition with 0 ≤ 𝐶 < ∞ is equivalent. The lower
Minkowkski dimension ( dim𝑀(𝐴)) is defined almost the same but limsup is replaced by lim inf. When
the lower and upper Minkowski dimension are equal, we call it the Minkowski dimension. We denote
this as dim𝑀(𝐴).

Example 3.16 (Minkowski dimension of a square). Let 𝐴 ∶= [0, 1]2 ⊂ ℝ2 To cover it in squares with
side length 𝜖 you would need at least 1

𝜖2 squares. So since a ball with diameter 𝜖 is smaller than a
square with sidelength 𝜖 we find 𝑁(𝐴, 𝜖) ≥ 1

𝜖2 . Using this we find

dim𝑀(𝐴) ≥ inf {𝑠 ∶ limsup
𝜖↓0

𝜖𝑠−2 = 0}.

In our case we find that limsup = lim inf = 0 for 𝑠 = 2 so we find dim𝑀(𝐴) ≥ 2 (≥ since we have only
shown a lower bound for 𝑁(𝐴, 𝜖), not shown that this bound can be attained). To confirm that indeed
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dim𝑀(𝐴) = 2, we should give a covering of 𝐴. For this we divide 𝐴 into an evenly spaced grid, of ⌈
2
𝜖2 +1⌉

by ⌈ 2𝜖2 + 1⌉ points. So the points have coordinates (
𝑖

⌈ 2𝜖2 +1⌉
, 𝑗
⌈ 2𝜖2 +1⌉

) for 𝑖, 𝑗 ∈ {0, 1, ..., ⌈ 2𝜖2 + 1⌉}. Then at
each point in this grid place a ball with diameter 𝜖. For 𝜖 = 1 this looks like this:

Figure 3.2: Covering of a square, with balls of diameter 1

Now we have shown that 𝑁(𝐴, 𝜖) ≤ ⌈ 2𝜖2 +1⌉ and if we apply the definition in a similar fashion as we
did for 1

𝜖2 we now confirm that dim𝑀(𝐶) = 2.

A nice property of the Minkowski dimension is that it is not limited to being an integer. To show this,
let us look at the next example.

Example 3.17. Let 𝐴 ∶= {0} ∪ { 1𝑘 , 𝑘 ∈ ℕ}. We will show that the Minkowski dimension is 1
2 . To show

this, it suffices to both show that we need at least 1
√𝜖

balls of diameter 𝜖 and also that we can actually
give a covering in ≲ 1

√𝜖
balls of the same size.

First off let us fix a 𝜖 > 0, and then choose 𝑛 ∈ ℕ such that 1
(𝑛+1)2 < 𝜖 ≤ 1

𝑛2 . We can cover the

interval [0, 1
𝑛+1 ] in 𝑛 + 1 balls of diameter 𝜖 since (𝑛 + 1)𝜖 >

1
𝑛+1 . We can cover [ 1𝑛 , 1] ∩ 𝐴 in 𝑛 balls,

since there are exactly 𝑛 points in [ 1𝑛 , 1] ∩ 𝐴. So we find a covering in 2𝑛 + 1 balls. Now observe that

𝜖 ≤ 1
𝑛2 ⟺ 2𝑛 + 1 ≤ 2𝜖−

1
2 + 1.

If one applies this in the definition of the Minkowski dimension, we find that the dimension is at most 12 .
If we take the same 𝜖, we observe that

1
𝑛 − 1 −

1
𝑛 =

1
𝑛(𝑛 − 1) >

1
𝑛2 .

So for all 𝑛 such that 𝜖 ≤ 1
𝑛2 , we find that each ball can not cover both

1
𝑛 and 1

𝑛−1 . So we truly need at

least 𝑛 𝜖-balls to cover [ 1𝑛 , 1], where by choice of 𝜖, 𝜖
− 12 − 1 < 𝑛. Now we find that we need at least

𝜖−
1
2 −1 balls with diameter 𝜖. Which is equivalent to the Minkowski dimension being at least 12 . So we

find that the Minkowski dimension of 𝐴 is 1
2 .





4
The Kakeya conjecture

In this chapter we will state the Kakeya conjecture, the Kakeya maximal operator conjecture, show that
the Kakeya maximal operator conjecture implies the Kakeya conjecture (with regards to Minkowski
dimension), and prove the Kakeya maximal operator conjecture for 𝑛 = 2. So in total, we will show the
Minkowski part of the Kakeya conjecture for 𝑛 = 2. First a graphic to show the structure of the proof
we give.

Kakeya set (Conjecture 4.2)

Kakeya maximal operator
(Conjecture 4.5)

Implication of Minkowski part
(Theorem 4.6)

Dual form of Kakeya
maximal operator
(Conjecture 4.8)

Proof for n = 2 (Theorem
4.10)

Implication  (Theorem 4.14)

Figure 4.1: Structure of proof

17
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4.1. Conjecture and status
We will start with stating the conjecture, but for that first we need to define what a Kakeya set is.

Definition 4.1 (Kakeya set). A Kakeya set, is a subset of ℝ𝑛 which contains a unit line segment in
every direction.

Conjecture 4.2 (The Kakeya conjecture). Every bounded Kakeya set in ℝ𝑛 has Minkowski and Haus-
dorff dimension 𝑛

Since we will not show anything about the conjecture with regards to its Hausdorff dimension we
omit its definition here. We will only show something about the Minkowski dimension, since proving it
for the Hausdorff dimension would require more definitions and work. Given the time constraints of this
thesis, we decided to focus on just the Minkowski dimension.

We will construct a proof of the conjecture (regarding Minkowski dimension) for 𝑛 = 2. For 𝑛 = 3
Hong Wang and Joshua Zahl [6] have recently published a preprint which, if correct, proves that case
(for Hausdorff dimension, and thus also for Minkowski dimension). For all greater 𝑛 the conjecture is
open.

4.2. Kakeya Maximal Operator Conjecture
To state the Kakeya maximal operator conjecture, we first need to define our Kakeya maximal operator.

Definition 4.3. (Kakeya maximal operator) For 𝛿 > 0, 𝜔 ∈ 𝑆𝑛−1, 𝑎 ∈ ℝ𝑛, let 𝑇𝜔𝛿 (𝑎) denote the tube in
ℝ𝑛, centred at 𝑎, oriented in the 𝜔 direction, of length 1, with cross-sectional radius 𝛿. For 𝑓 ∈ 𝐿1loc(ℝ𝑛),
the Kakeya maximal operator is defined as

𝑓∗𝛿 (𝜔) ∶= sup
𝑎∈ℝ𝑛

1
|𝑇𝜔𝛿 (𝑎)|

∫
𝑇𝜔𝛿
|𝑓|𝑑𝜇.

We will now start by proving a relatively simple statement using this definition

Example 4.4. Let 𝑛 > 1, 𝑓 ∈ 𝐿1loc(ℝ𝑛), 𝛿 > 0, then
‖𝑓∗𝛿 ‖𝐿∞(𝑆𝑛−1) ≤ 𝛽

−1
𝑛−1 ⋅ 𝛿−(𝑛−1) ⋅ ‖𝑓‖𝐿1(ℝ𝑛).

Proof. First let us plug in the definition of 𝐿∞ and 𝐿1 norm, and the definition of 𝑓∗𝛿 (𝜔). This gives us :

ess sup
𝜔∈𝑆𝑛−1

sup
𝑎∈ℝ𝑛

1
|𝑇𝜔𝛿 (𝑎)|

∫
𝑇𝜔𝛿 (𝑎)

|𝑓|𝑑𝜇 ≤ 1
𝛽𝑛−1 ⋅ 𝛿𝑛−1

∫
ℝ𝑛
|𝑓|𝑑𝜇

Since the volume of 𝑇𝜔𝛿 (𝑎) is independent of 𝜔 and 𝑎, we can take it out of both suprema. Then we
note that, by definition of 𝛽𝑛 we have:

1
|𝑇𝜔𝛿 (𝑎)|

= 1
𝛽𝑛−1 ⋅ 𝛿𝑛−1

Now since they are both positive we can divide them out of our inequality, giving us:

ess sup
𝜔∈𝑆𝑛−1

sup
𝑎∈ℝ𝑛

∫
𝑇𝜔𝛿 (𝑎)

|𝑓|𝑑𝜇 ≤ ∫
ℝ𝑛
|𝑓|𝑑𝜇

Now if we prove this inequality we have proven the original statement. Finally since 𝑇𝜔𝛿 (𝑎) ⊂ ℝ𝑛, we
find, by monotonicity with respect to the domain, that indeed the inequality holds, since the integrand
is the same in both integrals.

Now that we have shown this, let us get on to the actual Kakeya maximal operator conjecture.

Conjecture 4.5 (Kakeya Maximal Operator Conjecture). Let 𝑛 ≥ 2, 𝑓 ∈ 𝐿1𝑙𝑜𝑐(ℝ𝑛), 𝛿 > 0, 𝑎 ∈ ℝ𝑛 , 𝜔 ∈
𝑆𝑛−1, then for all 𝜖 > 0 and 𝑛 ≤ 𝑝 ≤ ∞

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆𝑛−1) ≲(𝑛,𝑝,𝜖) 𝛿
−𝜖‖𝑓‖𝐿𝑝(ℝ𝑛).

Why are we introducing this new conjecture? We will show that this maximal operator conjecture
implies the Kakeya set conjecture. We will also prove this maximal operator conjecture is true in the
case of 𝑛 = 2.
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4.2.1. The Kakeya Maximal Operator Conjecture Implies the Kakeya Conjecture
To show this implication holds, we will assume the Kakeya maximal operator conjecture is true, and
use this to show the Kakeya conjecture (at least with respect to Minkowski dimension) is true.

Theorem 4.6 (The Kakeya Maximal Operator Conjecture Implies the Kakeya Conjecture).
Let 𝛿 > 0, 𝑛 > 1, 𝑓 ∈ 𝐿1𝑙𝑜𝑐(ℝ𝑛), 𝑎 ∈ ℝ𝑛 , 𝜔 ∈ 𝑆𝑛−1.If for a 𝑝 with 𝑛 ≤ 𝑝 < ∞ we have that for all 𝜖 > 0

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆𝑛−1) ≲𝑛,𝑝,𝜖 𝛿
−𝜖‖𝑓‖𝐿𝑝(ℝ𝑛),

then any Kakeya set has Minkowski dimension 𝑛.

Proof. Consider any bounded Kakeya set 𝐵. We define 𝐵𝛿 as the 𝛿-neighbourhood of 𝐵. And as
function 𝑓 we take the indicator function 𝜒𝐵𝛿

𝑓𝛿 ∶= 𝜒𝐵𝛿(𝑥) = {
1, 𝑥 ∈ 𝐵𝛿
0, 𝑥 ∉ 𝐵𝛿

Recall the definition of a 𝛿-neighbourhood.
Definition (𝛿-neighbourhood). Let 𝐸 ⊂ ℝ𝑛, with metric 𝑑 ∶ 𝐸 × 𝐸 → ℝ, let 𝛿 > 0. Then the 𝛿-
neighbourhood 𝐸𝛿 is defined as

𝐸𝛿 ∶= {𝑥 ∈ ℝ𝑛 ∶ ∃𝑒 ∈ 𝐸 ∶ 𝑑(𝑒, 𝑥) < 𝛿}.

Now note that 𝑓∗𝛿 = 1 for all 𝜔 ∈ 𝑆𝑛−1. This is true since, by definition of the Kakeya set, it contains
a line segment in any direction, and since we defined 𝐵𝛿 as a 𝛿-neighbourhood around 𝐵, it will contain
the tube 𝑇𝜔𝛿 (𝑏) (for some 𝑏 ∈ ℝ𝑛). So when we then integrate the characteristic function over it, and
then divide by the volume of that tube, we get 1.

Next, let us think about ‖𝑓∗𝛿 ‖𝐿𝑝(𝑆(𝑛−1)) where we have

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆(𝑛−1)) = (∫
𝑆𝑛−1

|1|𝑝𝑑𝜇)
1
𝑝
.

This will always be some constant depending on 𝑛 and 𝑝. For example when 𝑛 = 𝑝 = 2 the domain is

the unit circle, and we take the square root of its circumference so √2𝜋. This constant is equal to 𝛾
1
𝑝
𝑛 .

Now let us look at

‖𝑓‖𝐿𝑝(ℝ𝑛), or equivalently (∫ℝ𝑛
|𝑓|𝑝𝑑𝜇)

1
𝑝
.

Since 𝑓 is an indicator function, raising it to the 𝑝-th power doesn’t change it. So we are integrating the
indicator function, which means we get the size of our domain, |𝐵𝛿|. Then we raise it to the power

1
𝑝

So we end up with.
‖𝑓‖𝐿𝑝(ℝ𝑛) = |𝐵𝛿|

1
𝑝 .

Now, using the Kakeya Maximal Operator Conjecture, we arrive at the following expression:

𝛾
1
𝑝
𝑛 ≤ 𝐶(𝑛, 𝜖) ⋅ 𝛿−𝜖|𝐵𝛿|

1
𝑝 .

After rearranging we get:

𝛾
1
𝑝
𝑛 ⋅ 𝛿𝜖
𝐶(𝑛, 𝜖) ≤ |𝐵𝛿|

1
𝑝 .

Now, to prove that 𝐵𝛿 has Minkowski dimension 𝑛, we will assume that it has Minkowski dimension 𝑑,
and then show that 𝑛 = 𝑑. Assuming 𝐵𝛿 has Minkowski dimension 𝑑 there must exist a covering using
≲𝑛 𝛿−𝑑 n-dimensional balls. This constant depending on 𝑛 can be included in the term 𝐶(𝑛, 𝜖). Each of
these balls has a volume of 𝛽𝑛 ⋅𝛿𝑛. Since these balls cover the set 𝐵𝛿, we know that the actual measure
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is upper bounded by the volume of this covering. So we choose to estimate |𝐵𝛿| by 𝛿−𝑑 ⋅ 𝛿𝑛 ⋅ 𝛽𝑛. This
results in :

𝛾
1
𝑝
𝑛 ⋅ 𝛿𝜖
𝐶(𝑛, 𝜖) ≤ (𝛿

𝑛−𝑑 ⋅ 𝛽𝑛)
1
𝑝 .

Now raising both sides to the power of 𝑝

(𝛾
1
𝑝
𝑛 )𝑝 ⋅ 𝛿𝜖𝑝
𝐶(𝑛, 𝜖)𝑝 ≤ 𝛿𝑛−𝑑 ⋅ 𝛽𝑛 .

Now we take the logarithm on both sides, and apply logarithm rules to obtain

𝑝(log 𝛾
1
𝑝
𝑛 + 𝜖 log 𝛿 − log𝐶(𝑛, 𝜖)) ≤ (𝑛 − 𝑑) log 𝛿 + log(𝛽𝑛).

When applying the definition of Minkowski dimension, we take the limit of 𝛿 to 0. We do this since for
any delta we find 𝐵 ⊂ 𝐵𝛿, thus any covering of 𝐵𝛿 is a covering of 𝐵, so the Minkowski dimension of 𝐵
is upper bounded by that of 𝐵𝛿. Thus let us consider 0 < 𝛿 < 1, which means that log 𝛿 < 0. Now we
will divide by log 𝛿, and since this is dividing by a negative number we must flip the inequality sign.

𝑝( log 𝛾
1
𝑝
𝑛

log 𝛿 + 𝜖 − log𝐶(𝑛, 𝜖)
log 𝛿 ) ≥ 𝑛 − 𝑑 + log𝛽𝑛

log 𝛿 .

Now as we take the limit of 𝛿 to 0, a lot of terms vanish and we end up with

𝑝𝜖 ≥ 𝑛 − 𝑑
𝑑 + 𝑝𝜖 ≥ 𝑛.

Since the assumed Maximal operator conjecture is valid for all 𝜖 > 0, we must have that 𝑑 ≥ 𝑛. Finally
to see that also 𝑑 ≤ 𝑛, it suffices to show that any bounded subset of ℝ𝑛 has dimension ≤ 𝑛. Note
that in Example 3.16 we covered a square in ≲𝑛 𝛿−𝑛 balls. We can do this in a similar fashion for any
bounded set. Thus we find 𝑑 = 𝑛.

Now that we have shown this implication from one conjecture to the next, we would like to prove
the maximal operator conjecture, which we will show for 𝑛 = 2.

4.2.2. Proving The Kakeya Maximal Operator Conjecture for n = 2
To prove this we will use a proof based on a master thesis by R. Stedman [5], who himself used results
from Córdoba. This was the first full proof of the Kakeya maximal operator conjecture for 𝑛 = 2.
Allthough Roy Davies gave a direct proof of the Kakeya conjecture (regarding Hausdorff dimension) in
1971 [2]. For our proof we will first introduce a dual form of the Kakeya maximal operator conjecture.
We will then prove that this dual form implies the Kakeya maximal operator conjecture.

For this dual form we first need one more definition.

Definition 4.7. A set of orientations Ω ⊂ 𝑆𝑛−1 is said to be 𝛿-separated if |𝜔 −𝜔′| > 𝛿 for all 𝜔,𝜔′ ∈ Ω

Conjecture 4.8 (Dual form of KakeyaMaximal Operator Conjecture). Let 𝛿 > 0, 𝑛 > 1, 𝕋 any collection
of n-dimensional tubes of length 1 and cross-sectional radius 𝛿 (𝛿-tubes for short) whose orientations
are 𝛿-separated. Then for 𝑛

𝑛−1 ≤ 𝑝 ≤ ∞ and 𝜖 > 0

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿𝑝(ℝ𝑛)

≲𝑛,𝑝,𝜖 𝛿
𝑛−1
𝑝 −𝜖(#𝕋)

1
𝑝 .

So loosely speaking, the conjecture is stating a relationship between the overlap of tubes (denoted

by the 𝐿𝑝 norm of the summation of tubes) and the size of the set 𝕋 ( denoted by (#𝕋)
1
𝑝 times the size

of the tubes (denoted by 𝛿
𝑛−1
𝑝 −𝜖).
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Lemma 4.9 (Proving the Dual form for 𝐿𝑝0(ℝ𝑛) and 𝐿∞(ℝ𝑛), implies the whole conjecture). Let 𝛿 > 0,
let 𝕋 be any collection of tubes of length 1 and cross-sectional radius 𝛿 (𝛿-tubes for short) whose
orientations are 𝛿-separated. Let 𝜖 > 0, let 𝑛 ≥ 2. If Conjecture 4.8 is true for 𝑝0 =

𝑛
𝑛−1 and for 𝑝 = ∞,

then for 𝑛
𝑛−1 ≤ 𝑝 ≤ ∞

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿𝑝(ℝ𝑛)

≲𝑛,𝑝,𝜖 𝛿
𝑛−1
𝑝 −𝜖(#𝕋)

1
𝑝 .

Proof. For ease of writing we will write ∑𝑇∈𝕋 𝜒𝑇 = 𝑓. Let 𝜃 ∈ (0, 1), let 𝑝𝜃 =
𝑛
𝑛−1
1−𝜃 . (This lets us achieve

any value between 𝑛
𝑛−1 and infinity by varying 𝜃.) Now using the assumption we immediately get

‖𝑓‖
𝐿

𝑛
𝑛−1

≲𝑛,𝑝,𝜖 𝛿
(𝑛−1)2
𝑛 −𝜖 ⋅ (#𝕋)

𝑛−1
𝑛

‖𝑓‖𝐿∞ ≲𝑛,𝑝,𝜖 𝛿
−𝜖 .

Now we use Theorem 3.12 which gives us

‖𝑓‖𝐿𝑝𝜃 ≤ ‖𝑓‖
1−𝜃
𝐿

𝑛
𝑛−1 ‖𝑓‖

𝜃
𝐿∞ ,

where
1
𝑝𝜃
= 1 − 𝜃

𝑛
𝑛−1

, 𝑝𝜃 =
𝑛
𝑛−1
1 − 𝜃 , 1 − 𝜃 =

𝑛
𝑛−1
𝑝𝜃
, 𝜃 = 1 −

𝑛
𝑛−1
𝑝𝜃
.

Using this we find

‖𝑓‖1−𝜃𝐿
𝑛
𝑛−1 ≲𝑛,𝑝,𝜖 𝛿

𝑛−1
𝑝𝜃

−𝜖(
𝑛
𝑛−1
𝑝𝜃

) ⋅ (#𝕋)
1
𝑝𝜃 (4.1)

‖𝑓‖𝜃𝐿∞ ≲𝑛,𝑝,𝜖 𝛿
−𝜖(1−

𝑛
𝑛−1
𝑝𝜃
). (4.2)

Now multiplying (4.1) and (4.2) gives us

‖𝑓‖𝐿𝑝𝜃 ≲𝑛,𝑝,𝜖 𝛿
𝑛−1
𝑝𝜃

−𝜖 ⋅ (#𝕋)
1
𝑝𝜃 .

Theorem 4.10 (The Kakeya Maximal Operator Conjecture is true for 𝑛 = 2). Let 𝑛 = 2, fix 𝜖 > 0 and
𝕋, then take 𝛿0 > 0 s.t. when 𝛿 < 𝛿0, we have #𝕋 ≲ 𝛿−𝜖 (where 𝕋 is a collection of 𝛿0-seperated
𝛿0-tubes). Then for

2
1 ≤ 𝑝 ≤ ∞, 0 < 𝛿 < 𝛿0

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿𝑝(ℝ2)

≲𝑝,𝜖 𝛿
1
𝑝−𝜖(#𝕋)

1
𝑝 .

Proof. According to Lemma 4.9 we need only prove the theorem for 𝑝 = 𝑛
𝑛−1 = 2 and for 𝑝 = ∞. We

will start with 𝑝 = 2 (which is the harder case). First note that we can write

#𝕋 = 1
2𝛿 ∑

𝑇∈𝕋
|𝑇|.

Using this we can rewrite Conjecture 4.8 (which is what we are trying to prove) as

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿2(ℝ2)

≲𝑝,𝜖 𝛿
1
2−𝜖( 12𝛿 ∑

𝑇∈𝕋
|𝑇|)

1
2 = √2

2 𝛿
−𝜖(∑

𝑇∈𝕋
|𝑇|)

1
2 . (4.3)
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In fact we will prove a stronger statement (note it is in fact a stronger statement since log(𝑥) < 𝑝(𝑥)
when 𝑥 tends to infinity for any power function 𝑝(𝑥) = 𝑥𝑘, where 𝑘 ∈ (0,∞)). We will show

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿2(ℝ2)

≲ (log 1𝛿 )
1
2 (∑

𝑇∈𝕋
|𝑇|)

1
2 .

Let us first examine the left hand side of this inequality, while squaring it

‖∑
𝑇∈𝕋

𝜒𝑇‖
2

𝐿2(ℝ𝑛)
= ∫(∑

𝑇∈𝕋
𝜒𝑇(𝑥))

2
𝑑𝑥

= ∫∑
𝑇∈𝕋

∑
𝑇′∈𝕋

𝜒𝑇(𝑥)𝜒𝑇′(𝑥)𝑑𝑥

= ∑
𝑇∈𝕋

∑
𝑇′∈𝕋

|𝑇 ∩ 𝑇′|.

Now since
∑
𝑇∈𝕋
(log 1𝛿 |𝑇|) = (log

1
𝛿 )∑

𝑇∈𝕋
|𝑇|,

we need only show that

∑
𝑇′∈𝕋

|𝑇 ∩ 𝑇′| ≲ (log 1𝛿 )|𝑇|. (4.4)

To get a bound on this overlap between 𝑇 and 𝑇′, suppose their orientations differ in angle 𝜃,
with 𝛿 ≤ 𝜃 ≤ 𝜋

2 . Now divide all possible 𝜃 in intervals of the form 𝐼𝑗 ∶= [2𝑗−1, 2𝑗), where 𝑗𝑚𝑖𝑛 ∶=
⌈ log 𝛿⌉, 𝑗𝑚𝑎𝑥 ∶= ⌈ log

𝜋
2 ⌉ and 𝑗𝑚𝑖𝑛 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥. Now note that every 𝜃 is in an 𝐼𝑗 for some 𝑗. If we now

take a look at 2 of these tubes their overlap might look something like in Figure 4.2

(a) Tubes T and T’ and their overlap (b) Tubes T and T’ with a larger angle difference

Figure 4.2: Examples of overlap between T and T’

As can be seen in the figure above, 𝑇 ∩ 𝑇′ is in the shape of a parallelogram with height 𝛿 and
width dependent on 𝜃. Consider a right angled triangle with base length 𝐿, height 𝛿 and angle 𝜃 (this
represents half of the parallelogram). Then we get the relationship sin(𝜃) = 𝛿

𝐿 . For small 𝛿 we can

use that sin(𝜃) ≈ 𝜃 Resulting in 𝐿 ≈ 𝛿
𝜃 . And, since for any 𝜃 there is a 𝑗 such that 𝜃 < 2

𝑗 (we choose
the smallest such 𝑗), we have

|𝑇 ∩ 𝑇′| ≲ 2𝑗𝛿|𝑇|.
Now we need to sum over all possible angles to get the total overlap that we want ( ∑𝑇′∈𝕋 |𝑇 ∩ 𝑇′|).
We write this as

∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

∑
𝑇′∈𝕋, 𝜃∈𝐼𝑗

2𝑗𝛿|𝑇|.
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Now using that |𝑇| does not depend on 𝑗, we can take it out of the sum, and we just want to show the
rest of the sum ≲ (log 1

𝛿 ). Now since the set of tubes is 𝛿-separated, we have that for each 𝑗 there are
O(2

−𝑗

𝛿 ) tubes whose orientations are within O(2
−𝑗) of tube 𝑇. So the value of the inner sum is O(1). In

the outer sum we add this 𝑂(log 1
𝛿 ) times (this how many 𝑗 we need since log 𝜋

2 − log 𝛿 ≲ log( 1𝛿 )). So
we find

∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

∑
𝑇′∈𝕋, 𝜃∈𝐼𝑗

2𝑗𝛿 ≲ log(1𝛿 ).

This proves (4.4) which was sufficient for the case of 𝑝 = 2.
Now we still have to prove Conjecture 4.8 for 𝑝 = ∞. So we have to prove that

‖∑
𝑇∈𝕋

𝜒𝑇‖
𝐿∞
≲𝑛,𝜖 𝛿−𝜖

Note that the 𝐿∞ norm is the essential supremum (supremum which ignores sets of measure zero) the
largest this could be is if all tubes overlap in one area, then the norm would be #𝕋. So it suffices to
show:

#𝕋 ≲𝑛,𝜖 𝛿−𝜖

We chose our 𝛿 to be small enough for this to hold. Thus the conjecture holds for 𝑝 = 2 and for
𝑝 = ∞.

4.2.3. Proving Duality
To prove the Kakeya maximal operator conjecture, we proved the dual form of this conjecture. So to
properly complete our proof of the Kakeya set conjecture for 𝑛 = 2, we are still left with showing this is
in fact the dual. Or at least showing that this dual form implies the Kakeya maximal operator conjecture.
The proofs provided here are based on the notes from Itamar Oliveira [3]. Before we dive straight into
the proof, we need some additional building blocks. First of, a more specific type of 𝛿-separated set, a
maximal 𝛿-separated set.
Definition 4.11 (Maximal 𝛿-separated). A set of orientations Ω is said to be a maximal 𝛿-separated set
if in addition to being 𝛿-separated we have that, for any 𝜔 ∈ 𝑆𝑛−1 there exist a 𝜔′ ∈ Ω 𝑠.𝑡. |𝜔 −𝜔′| < 𝛿.
Lemma 4.12. Let 0 < 𝛿 < 1, let 𝑓 ∈ 𝐿1𝑙𝑜𝑐(ℝ𝑛). If 𝜔,𝜔′ ∈ 𝑆𝑛−1 and |𝜔 − 𝜔′| ≤ 𝛿, then

𝑓∗𝛿 (𝜔) ≲𝑛 𝑓∗𝛿 (𝜔′).

Proof. Let 𝑎 ∈ ℝ𝑛 be arbitrary, and fix 𝑥 on one of the far ends of the tube (for our tube in Example 3.3
this would mean fixing 𝑥𝑛 ∈ {0, 1}). Let 𝑏 be the projection of 𝑥 onto the main axis of 𝑇𝜔𝛿 (𝑎) and 𝑏′ the
projection of 𝑥 onto the main axis of 𝑇𝜔′𝛿 (𝑎). Let 𝜉 be the angle ∠𝑏𝑎𝑏′. Now note sin(𝜉) < 𝜉 ≤ 𝛿 (𝜉 ≤ 𝛿
by our assumption |𝜔 − 𝜔′| ≤ 𝛿).

(a) Sketch of the situation (b) Showcasing the angle 𝜉 (c) Zoom on the triangle inequality

Basic trigonometry on the triangle △𝑏′𝑎𝑏 says that sin(𝜉) = sin(∠𝑏𝑏′𝑎) |𝑏−𝑏
′|

|𝑎−𝑏| . (Here it is important
to note that for small 𝛿 even when ∠𝑏𝑏′𝑎 is not exactly 90 degrees, it will be close to 90, which means
sin(∠𝑏𝑏′𝑎) can be replaced by a constant.) So we find that

|𝑏 − 𝑏′| = |𝑎 − 𝑏| sin(𝜉) ≲ 𝛿.
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We also have by the triangle inequality that

|𝑥 − 𝑏′| ≤ |𝑥 − 𝑏| + |𝑏 − 𝑏′| ≲ 2𝛿,

so 𝑥 ∈ 𝑇𝜔′𝑀𝛿. Here𝑀 is a constant due to the fact that ∠𝑏𝑏′𝑎 is not exactly 90 degrees. Since both tubes
are convex sets, we have that by proving the boundary of the tube is a subset of 𝑇𝜔′𝑀𝛿 that the whole
tube is a subset. Thus we find 𝑇𝜔𝛿 (𝑎) ⊂ 𝑇𝜔

′
𝑀𝛿(𝑎). Now note we can cover 𝑇𝜔′𝑀𝛿(𝑎) with 𝐶(𝑛) tubes of the

form 𝑇𝜔′𝛿 (𝑦𝑘) with 𝑦𝑘 ∈ ℝ𝑛 and 𝐶(𝑛) ≤ 5𝑛.Since the tubes have the same orientation, it is equivalent
to covering a (n-1)-dimensional ball with (n-1)-dimensional smaller balls, which is somewhat similar to
Example 3.16. Finally we get the following inequalities,

1
|𝑇𝜔𝛿 (𝑎)|

∫
𝑇𝜔𝛿 (𝑎)

|𝑓(𝑥)|𝑑𝑥 ≤ 1
|𝑇𝜔′𝛿 (𝑎)|

∫
𝑇𝜔′𝑀𝛿(𝑎)

|𝑓(𝑥)|𝑑𝑥

≤
𝐶(𝑛)

∑
𝑘=1

1
|𝑇𝜔′𝛿 (𝑦𝑘)|

∫
𝑇𝜔′𝛿 (𝑦𝑘)

|𝑓(𝑥)|𝑑𝑥

≤ 𝐶(𝑛)𝑓∗𝛿 (𝜔′),

where the first inequality is due to monotonicity of the integral with respect to domain since 𝑇𝜔𝛿 (𝑎) ⊂
𝑇𝜔′𝑀𝛿(𝑎). The second inequality uses linearity of the integral using that the union of 𝑇𝜔

′
𝛿 (𝑦𝑘) is a covering

of 𝑇𝜔′𝑀𝛿(𝑎). The last inequality is a direct result of the definition of the Kakeya maximal operator.
Finally to get the required result of this lemma, we need only take the supremum over 𝑎 on the left

hand side of the inequality.

We will now prove a lemma which does most of the heavy lifting for the proof of duality. The proof
of duality comes down to showing that we are able to use the assumption in the following lemma.

Lemma 4.13. Let 1 < 𝑝 < ∞, 𝑞 = 𝑝
𝑝−1 , 0 < 𝛿 < 1 and 0 < 𝑀 < ∞. Suppose that

‖
𝑚

∑
𝑘=1

𝑡𝑘𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≤ 𝑀

for all 𝕋 ∶= {𝑇1, ..., 𝑇𝑚} where 𝕋 is a 𝛿-separated set of 𝛿-tubes, then for all 𝑡1, ...𝑡𝑚 positive numbers
such that

𝑚

∑
𝑘=1

𝑡𝑞𝑘 ≤ 𝛿1−𝑛 .

This implies

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆𝑛−1) ≤ 𝐶(𝑛)𝑀‖𝑓‖𝐿𝑝(ℝ𝑛).

Proof. LetΩ ∶= {𝜔1, ..., 𝜔𝑚} be amaximal 𝛿-separated subset of 𝑆𝑛−1. First of we claim that⋃𝑚𝑘=1{𝑆𝑛−1 ∩
𝐵(𝜔𝑘 , 𝛿)} covers 𝑆𝑛−1. To see why this is true imagine an orientation 𝜔𝑗 which is not covered by this
union of balls, this would mean that for any 𝜔𝑘 ∈ Ω, |𝜔𝑗 −𝜔𝑘| > 𝛿 (Since it is not covered by the union
of balls). This however contradicts maximality of the set Ω.

Now let 𝜔 ∈ 𝑆𝑛−1 ⊂ ⋃𝑚𝑘=1{𝑆𝑛−1 ∩ 𝐵(𝜔𝑘 , 𝛿)} arbitrary. We have by Lemma 4.12 that for some
1 ≤ 𝑘 ≤ 𝑚

𝑓∗𝛿 (𝜔) ≤ 𝐶(𝑛)𝑓∗𝛿 (𝜔𝑘).
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Using this we build up an estimate on ‖𝑓∗𝛿 ‖𝐿𝑝(𝑆
𝑛−1).

‖𝑓∗𝛿 ‖
𝑝
𝐿𝑝(𝑆𝑛−1) ≤

𝑚

∑
𝑘=1

∫
𝑆𝑛−1∩𝐵(𝜔𝑘 ,𝛿)

|𝑓∗𝛿 (𝜔)|𝑝𝑑𝜇

≤
𝑚

∑
𝑘=1

𝐶(𝑛)𝑝∫
𝑆𝑛−1∩𝐵(𝜔𝑘 ,𝛿)

|𝑓∗𝛿 (𝜔𝑘)|𝑝𝑑𝜇

≤
𝑚

∑
𝑘=1

𝐶(𝑛)𝑝|𝑓∗𝛿 (𝜔𝑘)|𝑝|𝑆𝑛−1 ∩ 𝐵(𝜔𝑘 , 𝛿)|

≲𝑛
𝑚

∑
𝑘=1
(|𝑓∗𝛿 (𝜔𝑘)|𝛿

𝑛−1
𝑝 )𝑝.

Here the final inequality (≲) uses the fact that each sphere cap (intersection between 𝑆𝑛−1 and 𝐵(𝜔𝑘 , 𝛿))
has Hausdorff measure approximately 𝛿𝑛−1. (An idea as to why this is true is given in Example 3.11.)

Next up we use Theorem 3.14, where we let 𝑏𝑘 s.t.

(
𝑚

∑
𝑘=1
(|𝑓∗𝛿 (𝜔𝑘)|𝛿

𝑛−1
𝑝 )𝑝)

1
𝑝 =

𝑚

∑
𝑘=1
(|𝑓∗𝛿 (𝜔𝑘)|𝛿

𝑛−1
𝑝 )𝑏𝑘 ; 𝑏𝑘 ≥ 0 and

𝑚

∑
𝑘=1

𝑏𝑞𝑘 = 1,

this gives us

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆𝑛−1) ≲𝑛
𝑚

∑
𝑘=1

|𝑓∗𝛿 (𝜔𝑘)|𝛿
𝑛−1
𝑝 𝑏𝑘 .

Now we choose 𝑡𝑘 = 𝛿
1−𝑛
𝑞 𝑏𝑘. Next let us take a look at how we can rewrite 𝑛−1

𝑝

𝑛 − 1
𝑝 = 𝑛 − 1 + (1 − 𝑛) + 𝑛 − 1𝑝

= 𝑛 − 1 + (1 − 𝑛)(1 − 1𝑝)

= 𝑛 − 1 + (1 − 𝑛)(1𝑞 )

⟺

𝛿
𝑛−1
𝑝 𝑏𝑘 = 𝛿𝑛−1 ⋅ 𝛿

1−𝑛
𝑞 𝑏𝑘 = 𝛿𝑛−1𝑡𝑘 .

This results in
𝑚

∑
𝑘=1

|𝑓∗𝛿 (𝜔𝑘)|𝛿
𝑛−1
𝑝 𝑏𝑘 = 𝛿𝑛−1

𝑚

∑
𝑘=1

|𝑓∗𝛿 (𝜔𝑘)|𝑡𝑘 .

We also find that

𝛿𝑛−1
𝑚

∑
𝑘=1

𝑡𝑞𝑘 = 𝛿𝑛−1
𝑛

∑
𝑘=1
(𝛿

1−𝑛
𝑞 𝑏𝑘)𝑞 =

𝑚

∑
𝑘=1

𝑏𝑘 = 1.

This satisfies the condition we posed on 𝑡𝑘.
Now let 𝜖 > 0 small. Then there exists 𝑎𝑘 ∈ ℝ𝑛 such that

|𝑓∗𝛿 (𝜔𝑘)| − 𝜖 ≤
1

|𝑇𝜔𝑘𝛿 (𝑎𝑘)|
∫
𝑇𝜔𝑘𝛿 (𝑎𝑘)

|𝑓(𝑥)|𝑑𝑥.
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Using this we find

‖𝑓∗𝛿 ‖𝐿𝑝(𝑆𝑛−1) ≲𝑛 𝛿
𝑛−1

𝑚

∑
𝑘=1
(|𝑓∗𝛿 (𝜔𝑘)| − 𝜖 + 𝜖)𝑡𝑘

≤ 𝛿𝑛−1
𝑚

∑
𝑘=1

( 1
|𝑇𝜔𝑘𝛿 (𝑎𝑘)|

∫
𝑇𝜔𝑘𝛿 (𝑎𝑘)

|𝑓(𝑥)|𝑑𝑥)𝑡𝑘 + 𝜖

≲𝑛
𝑚

∑
𝑘=1

𝑡𝑘∫
𝑇𝜔𝑘𝛿 (𝑎𝑘)

|𝑓(𝑥)|𝑑𝑥 + 𝜖

= ∫
ℝ𝑛
(
𝑚

∑
𝑘=1

𝑡𝑘𝜒𝑇𝜔𝑘𝛿 (𝑎𝑘))|𝑓(𝑥)|𝑑𝑥 + 𝜖

≤ ‖
𝑚

∑
𝑘=1

𝑡𝑘𝜒𝜔𝑘𝑇𝛿 (𝑎𝑘)‖
𝐿𝑞(ℝ𝑛)

‖𝑓‖𝐿𝑝(ℝ𝑛) + 𝜖

≤ 𝑀‖𝑓‖𝐿𝑝(ℝ𝑛) + 𝜖.

Note on the second line we write + 𝜖 and not + 𝑡𝑘𝜖, this is allowed since 𝑡𝑘𝜖 ≤ 𝜖. For the third line we
use that the volume of a tube of length 1 with cross-sectional diameter 𝛿 is approximately 𝛿𝑛−1. The
fifth line is just applying Hölder’s inequality (Theorem 3.13). To get the final inequality we directly use
our assumption. The desired result is then obtained by letting 𝜖 ↓ 0.

Theorem 4.14 (Proof of duality). Let 1 < 𝑝 < ∞, 𝑞 = 𝑝
𝑝−1 , 1 ≤ 𝑀 < ∞ and 0 < 𝛿 < 1. Then

‖𝑓∗𝛿 ‖𝐿𝑞(𝑆𝑛−1) ≲𝑛,𝑝,𝜖 𝑀𝛿
−𝜖‖𝑓‖𝐿𝑝(ℝ

𝑛), (4.5)

for all 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and 𝜖 > 0 if and only if

‖
𝑚

∑
𝑘=1

𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≲𝑛,𝑞,𝜖 𝑀𝛿
𝑛−1
𝑞 −𝜖(#𝕋)

1
𝑞 , (4.6)

for all 𝜖 > 0 and all 𝛿-separated tubes {𝑇1, ..., 𝑇𝑚} = 𝕋.

Proof. We will only prove (4.6) ⟹ (4.5) since this is all we need for our proof of the Kakeya set
conjecture to be valid. The converse is proven in [3]. We assume (4.6), and let {𝑇1, ..., 𝑇𝑚} = 𝕋 a set of
𝛿-separated 𝛿-tubes and let 𝑡1, ...𝑡𝑚 > 0 such that 𝛿𝑛−1 ∑

𝑚
𝑘=1 𝑡

𝑞
𝑘 ≤ 1. By Lemma 4.13 it suffices to show

‖
𝑚

∑
𝑘=1

𝑡𝑘𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≲𝑛,𝑞,𝜖 𝑀𝛿−𝜖 .

First of we note that #𝕋 ⋅ 𝛿𝑛−1 ≲𝑛 1 (𝑆𝑛−1 can be covered using ≲𝑛 𝛿1−𝑛 𝛿−balls, since the measure
of 𝑆𝑛−1 ≲𝑛 1 and the measure of a (n-1) dimensional 𝛿-ball ≲𝑛 𝛿𝑛−1 and

1
𝛿𝑛−1 = 𝛿

1−𝑛, so we can have
at most ≲𝑛 𝛿1−𝑛 𝛿-seperated tubes). Using this while multiplying (4.6) by 𝛿𝑛−1 and choosing an 𝜖0 ≤ 1
resulting in 𝛿𝑛−1−𝜖0 < 1. We find that

‖
𝑚

∑
𝑘=1

𝛿𝑛−1𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≲𝑛,𝑞,𝜖 𝛿𝑛−1𝑀𝛿−𝜖0(𝛿𝑛−1 ⋅ (#𝕋))
1
𝑞

≲𝑛,𝑝,𝜖 𝛿𝑛−1−𝜖0𝑀 ⋅ 1
1
𝑞

≤ 𝐶.
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Here 0 < 𝐶 < ∞ is a constant that does not depend on 𝛿. Another key observation will be that 𝑡𝑘 ≤ 𝛿
1−𝑛
𝑞

for all 1 ≤ 𝑘 ≤ 𝑚. To see why this is true, note that by our assumption on 𝑡𝑘 we get ∑𝑚𝑘=1 𝑡
𝑞
𝑘 ≤ 𝛿1−𝑛

.Thus 𝑡𝑞𝑘 ≤ 𝛿1−𝑛 ⟺ 𝑡𝑘 ≤ 𝛿
1−𝑛
𝑞 .

We have just shown that if in the place of 𝑡𝑘 we have 𝛿𝑛−1 the norm is less than 𝐶. So we just need to
prove the inequality for the 𝑡𝑘 ≥ 𝛿𝑛−1. Thus, we are interested in 𝛿𝑛−1 ≤ 𝑡𝑘 ≤ 𝛿

1−𝑛
𝑞 . We will divide this

interval into intervals of the form 𝐼𝑗 = {𝑘 ∶ 2𝑗−1 ≤ 𝑡𝑘 < 2𝑗}, with 𝑗𝑚𝑖𝑛 ∶= ⌈ log 𝛿𝑛−1⌉, 𝑗𝑚𝑎𝑥 ∶= ⌈ log 𝛿
1−𝑛
𝑞 ⌉

and 𝑗𝑚𝑖𝑛 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥. For this we need 𝑂(log 1
𝛿 ) intervals (| log 𝛿𝑛−1 − log 𝛿𝐶| ≲𝑛 log( 1𝛿 ) for any

constant C). Let 𝑚𝑗 denote the amount of 𝑘 in 𝐼𝑗. (This also means there are 𝑚𝑗 tubes associated with
𝐼𝑗.) Observe also that for any 𝐼𝑗, 2𝑗𝑞 ≤ (2𝑡𝑘)𝑞 (since 2𝑗 ≤ 2𝑡𝑘). Using this we find

𝑚𝑗2𝑗𝑞 ≤ ∑
𝑘∈𝐼𝑗

(2𝑡𝑘)𝑞 ≤
𝑚

∑
𝑘=1
(2𝑡𝑘)𝑞 ≤ 2𝑞𝛿1−𝑛 . (4.7)

Finally we have everything we need to make our final claim.

‖
𝑚

∑
𝑘=1

𝑡𝑘𝜒𝑇𝑘‖ ≤ ∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

‖∑
𝑘∈𝐼𝑗

𝑡𝑘𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≤ ∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

‖∑
𝑘∈𝐼𝑗

2𝑗𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

= ∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

2𝑗‖∑
𝑘∈𝐼𝑗

𝜒𝑇𝑘‖
𝐿𝑞(ℝ𝑛)

≲𝑛,𝑞,𝜖 ∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

2𝑗𝑀𝛿
−𝜖
2 (𝑚𝑗𝛿𝑛−1)

1
𝑞

≲ 𝑀𝛿
−𝜖
2 ∑
𝑗𝑚𝑖𝑛≤𝑗≤𝑗𝑚𝑎𝑥

1

≲𝑛,𝑞 𝑀 log(1𝛿 )𝛿
−𝜖
2

≲𝜖 𝑀𝛿−𝜖 .

Firstly just using the triangle inequality and that 𝑡𝑘 < 2𝑗 by definition of 𝐼𝑗. In the first ≲𝑛,𝑞,𝜖 we
are simply applying our assumption (4.6) using 𝜖

2 . The next ≲ uses (after pulling 2𝑗 into the parenthe-
ses) (4.7) directly. Finally we use that there are 𝑂(log 1

𝛿 ) intervals, and that log( 1𝛿 ) ≲𝜖 𝛿
−𝜖. (This is

equivalent to the observation that log(x) < p(x) when x tends to infinity for any power function p(x).)





5
Outlook

This section explores some results related to the Kakeya conjecture that were not shown in this thesis,
but are known. We will also highlight which parts of this problem are still open.

As mentioned previously in this thesis, we ignored the case of the Hausdorff dimension. For 𝑛 = 2,
the Kakeya conjecture has been proven for the Hausdorff dimension. An example of a proof can be
seen in the notes by Itamar Oliveira [3]. This proof also uses the Kakeya maximal operator conjecture.
More recent is the work by Hong Wang and Joshua Zahl [6], with a proposed proof for 𝑛 = 3 (for
both Hausdorff and Minkowski dimension). Their proof only covers the Kakeya set conjecture, so the
Kakeya maximal operator conjecture is still open for 𝑛 = 3. Another related conjecture, which implies
the Kakeya maximal operator conjecture, is the restriction conjecture. This conjecture is related to
Fourier transforms, and a more detailed exploration of the topic can be found in the thesis by Richard
Steadman [5]. We cited this thesis before when we gave a proof of Kakeya for 𝑛 = 2, but it also goes
more in depth on the restriction conjecture.
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