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Abstract—Sparse Matrix Vector Multiplication (SpMV) is a
key kernel in various domains, that is known to be difficult
to parallelize efficiently due to the low spatial locality of data.
This is problematic for computing large-scale SpMV due to
limited cache sizes but also in achieving speedups through parallel
execution. To address these issues, we present 1) sparstition,
a novel partitioning scheme that enables computing SpMV
without the need to do any major post-processing steps, and
2) a corresponding HLS-based hardware design that is able to
perform large-scale SpMV efficiently. The design is pipelined so
the matrix size is limited only by the size of the off-chip memory
(DRAM) and not by the available on-chip memory (BRAMs).
Our experimental results, performed on a ZedBoard, show that
we achieve a computational throughput of up to 300 MFLOPS
in single-precision and 108 MFLOPS in double-precision, an
improvement of 2.6X on average compared to current state-of-
the-art HLS results. Finally, we predict that sparstition can boost
the computational throughput of HLS-based SpMV kernel to
over 10 GFLOPS when using High Bandwidth Memories.

Index Terms—SpMV, SMVM, High-Level Synthesis, FPGA,
accelerator, partitioning

I. INTRODUCTION

The Sparse Matrix Vector Multiplication (SpMV) kernel is

found in iterative applications across a variety of domains,

such as in sparse linear system solvers, PageRank [1], and

machine learning [2]. The kernel is typically the bottleneck

due to low data locality arising from the random access to

either the operand or result vector. Furthermore, there is no

reuse of the matrix data which makes the kernel memory-

bound and thus dependent on bandwidth for performance.

A lot of effort has been consequently devoted to accelerating

SpMV. However, such acceleration attempts faced the addi-

tional issue that large-scale matrices do not fit in the caches of

the accelerators, motivating the need to perform partitioning.

Due to the aforementioned low spatial locality property, the

partitioned computation produces intermediate result vectors

that need to be added together [3], [4]. This additional post-

processing stage is either expensive in terms of hardware or not

scalable. Furthermore, it limits the parallelism of the design

which may lead to performance degradation. Therefore, it

can be desirable to shift some of the complexity to the pre-

processing stage and design the hardware accordingly [5].

In order to preserve the parallelism when partitioning is per-

formed and to simultaneously avoid the extra post-processing

step, we present sparstition. This novel and scalable parti-

tioning algorithm divides the matrix into groups of adjacent

rows and compresses each partition via column-shuffling. The

resulting partitions are completely disjoint which enables the

parallel computation of the result vector. With the sparstition,

we perform SpMV on matrices that require vectors which

are up to 9X larger than the available BRAM storage, and

the only limitation is the available DRAM on the ZedBoard.

The sparstition does incur a pre-processing cost, but we show

that this cost is near negligible when it is applied in iterative

solvers. Such solvers execute SpMV tens or hundreds of times,

or even more frequently, and the sparstition typically takes

2-3 iterations before speedup is achieved when using High

Bandwidth Memories (HBM) with multiple streams.

Subsequently, a corresponding architecture in Vivado HLS

(High-Level Synthesis) is developed to compute partitioned

SpMV products efficiently by pipelining memory transfers

with the computation. HLS allows for rapid development of

hardware architectures but the performance in the literature

is currently significantly inferior to custom architectural so-

lutions. We show that by optimizing the bandwidth delivered

to the kernel, our kernel design outperforms the state-of-the-

art HLS by an average of 2.6X. We also estimate that up to

10 GFLOPS is achievable with our HLS design when using

HBMs.

The paper makes the following contributions:

• Sparstition, a novel partitioning algorithm that eliminates

the need to create and merge intermediate result vectors.

The algorithm works optimally with banded matrices.

• SpMV HLS-based design that maximizes the available

bandwidth of the ZYNQ platform and pipelines memory-

transfers with the computation. Furthermore, the effi-

ciency of the kernel is evaluated.

• A mathematical model that computes the iteration thresh-

old above which sparstition can be safely applied.

• Experimental results showing a 2.6x speedup over state-

of-the-art HLS implementations and a potential 10

GFLOPS when using HBMs.

The rest of the paper is organized as follows: Sec. II gives a

brief overview of SpMV and the problems encountered when

it is partitioned. It also describes the current state of Vivado

HLS and the source of inefficiency with respect to the SpMV
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kernel. Sec. III summarizes the related work with regards

to the existing work for SpMV in HLS and partitioning of

sparse matrices. Sec. IV describes sparstition using a concrete

example. Sec. V details the hardware design used to process

the streams generated by sparstition. Sec. VI reports and

analyzes the experimental results. Finally, Sec. VII concludes

the paper and highlights future work.

II. BACKGROUND

Many applications in a wide variety of domains across,

among others, physics, mathematics, and computer science,

use matrices that contain many more zeroes than non-zero

values. Most commonly, such Sparse Matrices are used to

represent graphs or networks or to solve differential equations.

Due to their high number of zero values, it is more memory-

efficient to keep a dedicated array for the pointers to the non-

zero values, instead of storing these matrices in their entirety.

A great selection of matrix encoding formats exist [6] which

are usually tweaked to exploit some property of a sparsity

pattern or even to correspond with the FPGA architecture [5].

In this work, we use CSR (Compressed Sparse Row),

a generic and widely used format depicted in Fig. 1. The

advantage of CSR is that once the vector has been stored in

cache, the matrix data can be streamed in while the result

vector is streamed out. This enables a hardware design which

is simple to generate with HLS. Furthermore, there is no risk of

write conflicts to the result vector since a Processing Element

processes an entire row at a time.

Fig. 1: SpMV with the CSR encoding.

Another common and generic encoding is the CSC (Com-

pressed Sparse Column). The fundamental difference from

CSR is that it maintains a list of the row index of the non-

zero value, instead of the column index. This means that in

a SpMV in the CSC format, the intermediate result vector is

randomly accessed instead of �x.

The lack of data reuse of the matrix data, i.e. low temporal

locality, is the reason the kernel is memory-bound. On the

other hand, it means that only �x needs to be stored in cache,

while the matrix data can be streamed into the accelerator.

However, it becomes difficult in large-scale problems to effi-

ciently manage the �x in cache due to each row of the matrix

having non-zero values in random columns, and thus requiring

random accesses to �x. This motivates partitioning the matrix

in such a way that the range of the random accesses to �x does

not result in cache misses.

The most straight-forward partitioning scheme is to split

the columns of the matrix vertically, thereby splitting �x ac-

cordingly as shown in Fig. 2. However, this scheme produces

intermediate result vectors �yp, each with the N number of

values, which need to be added together in order to obtain

the final result vector �y. The more partitions created this way,

the more intermediate vectors need to be added together. The

other option is to split the matrix horizontally by partitioning

it row-wise. However, each partition then requires the entire

�x in cache so this does not address the size constraint at all.

Fig. 2: The example in Fig. 1 partitioned vertically. The result

vector �y is obtained by adding together �y0 and �y1.

III. RELATED WORKS

A. Partitioning SpMV

Solutions that deal with partitioning SpMV focus on large

scale problems and typically make use of column-wise parti-

tioning in a combination with row-wise partitioning to form

blocks [4], [7]. The advantage is that the additional pre-

processing required is minimal, however, as we discussed

previously, as many intermediate result vectors as there are

partitions must be added together. In other words, the post-

processing typically requires O(P ×N) additions where P is

the number of partitions and N is the size of the result vector.

One notable solution that does not explicitly partition the

SpMV is CASK [3]. A block of rows is vertically split

into multiple streams which are then processed with parallel

pipelines in a CSC-esque fashion. Due to this property, the

size is limited by the off-chip memory and high performance

is achieved as the architecture exploits parallelism within rows

which has been a major performance hurdle [5]. However,

due to the CSC style processing, each pipeline produces

intermediate results which complicates the post-processing

stage.

B. SpMV in HLS

HLS designs that map the CSR-design directly to hardware

are scarce and published results achieve performance of a

single MIOPS (Mega Integer Operations per Second) [8]. In
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order to construct an instruction-level pipeline, it is necessary

for the current version of Vivado HLS to schedule every

operation in synthesis-time. In other words, the scheduling of

operation is static and it poses a problem because each row

contains a random number of non-zeros.

There is plenty of research devoted into making HLS

scheduling dynamic [9], [10]. In [11] the focus is on SpMV

but the performance is still far from the GFLOPS [3], [5], [12]

achieved by architectural solutions, achieving only between

10 and 24 MFLOPS in simulation. The second issue of

transforming the SpMV algorithm directly to hardware is to

exploit the parallelism exhibited within each row.

IV. THE SPARSTITION ALGORITHM

We propose the sparstition algorithm which splits SpMV

into partitions and subsequently compresses each one in order

to fit the corresponding vector in cache. This is fundamentally

a row-wise partitioning scheme with the additional step of

shuffling columns in the order in which they appear. The

novelty of this algorithm is that it avoids the production of

intermediate results. A high-level perspective of the algorithm

is illustrated in Fig. 3.

The first step is to form the Ap partitions by grouping

together adjacent rows via recursively partitioning the matrix

into halves of equal number of rows (±1 depending if the

number of rows is odd). This may naturally lead to an

unbalanced number of non-zeros across partitions for which

sophisticated solutions based on graph theory exist [13], [14].

As explained in Sec. V, each row has effectively the same

number of non-zeros as the hardware may insert ”NOPs”

into the pipeline to suit the static scheduling of Vivado HLS.

Therefore the imbalance in number of non-zeros is not a

concern with our design.

The second step is to compress the resulting Ap partitions to

produce A′p partitions, where the apostrophe is used to denote

the post-sparstition partitions. The compression is achieved by

means of shuffling the columns in the order they appear in the

col_ptrs array from Fig. 1. If a column index is not present

in a particular Ap, then the column is not created in A′p. We

must also take care of shuffling �x accordingly each time we

perform SpMV in iterative algorithms.

Fig. 3: The IMs are used to build the smaller �xp which are

multiplied with the corresponding A′p. The latter two steps are

performed multiple times in iterative algorithms.

It is undesirable to perform the compression step multiple

times especially since SpMV appears in a variety of iterative

algorithms [7]. We therefore cache the mappings from Ap

indices to A′p indices with an Index Map (IM). Each IM

has an entry for every Ap column index and is consequently

of size N. If a column is empty for a particular Ap, such as

column 3 or 4 in A0, then the corresponding entry is populated

with -1.

Listing 1 is a representation of the algorithm in pseudo-

code.

Listing 1: Pseudo-code of the column shuffling part of sparsti-
tion.

1 /*
2 *invoke: sparstition(
3 * nnzp, &col_ptrs[pre_cols], index_map)
4 *where pre_cols is the first column pointer
5 * belonging to partition, and index_map has
6 * been initialized.
7 *input: nnzp - number of non-zeros in the
8 * partition
9 *col_ptrs: the array of column pointers

10 * (from CSR)
11 *returns: shuffled col_ptrs array and
12 * populated index_map
13 */
14 void sparstition(int nnzp, int* col_ptrs,

int* index_map){
15 for(int nz = 0; nz < nnzp; nz++){
16 int index = col_ptrs[nz];
17 if(!index_map[index] == -1){
18 //size of �xp is the no. of non-empty columns.
19 index’ = x_p_size++;
20 index_map[index] = index’;
21 } else {
22 index’ = index_map[index];
23 }
24 //shuffle the columns:
25 col_ptrs[nz] = index’;
26 }
27 }

The pseudo-code above represents the computationally

heaviest component of the sparstition so the complexity is

roughly O(NNZ), where NNZ is the amount of non-zero

values in the sparse matrix. The function is applied to each

partition and since there is no dependence between them,

speedup may be achieved by applying sparstition to all of

them concurrently.

An optimization technique is to compress the IMs as empty

columns tend to appear in groups. In the case of banded

matrices, such as epb1, each IM will consist of close to

N/NP consecutive -1 entries, where N is the number of

columns and NP is the number of partitions. In order to save

memory and to speed up the building of �xp, we count the

number of adjacent -1’s in the new compressed IM (CIM),

and replace empty entries with the negative number of the

resulting count as shown in Fig. 4.

There are three configurations of the algorithm currently

available, each of which has different parameters to satisfy.
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Fig. 4: IM Compression

a) the number of partitions (NP ): The algorithm divides

the sparse matrix evenly into groups of adjacent rows and

performs sparstition on each group.
b) The cache size of target accelerator: The sizes of �xp

become apparent in the column-shuffling of sparstition so NP

is dynamically determined.
c) Both constraints: First NP partitions are computed,

then if some are too large, either only those are partitioned,

or all of them (for load-balancing the number of rows).
Only the first configuration is within the scope of this work,

while the others are subjects for future works.
An interesting characteristic of sparstition is that the output

is entirely implementation agnostic, that is each partition is a

stream which computes a segment of the SpMV product. It is

therefore theoretically possible to compute the product with a

variety of FPGA architectures or even GPUs. Fig. 5 illustrates

this concept.

Fig. 5: The SpMV partitions can be computed using different

types of accelerators.

Consequently, sparstition works above any existing SpMV

architecture and is capable of splitting the problem and dis-

tributing it. The question now arises, whether speedup can be

achieved by parallel processing once the pre-processing has

been factored in.
Limitations: The sparstition algorithm works optimally if

the Ap contains a low number of non-empty columns. There-

fore the entire algorithm may run inefficiently for a matrix that

contains a dense row. Another limitation is in the occurrence

of a column index across multiple Ap partitions, which results

in the replication of the corresponding �x. However, the repli-

cation may be minimized by carefully choosing which rows

are grouped together, but that is beyond the scope of this work.
Matrices that are not impacted by these limitations, and

are thus currently most suitable for the algorithm, are banded

matrices commonly found in e.g. Computational Fluid Dy-

namics.

V. HLS ARCHITECTURE

The architecture is developed on a ZedBoard which contains

a ZYNQ 7000 System-on-Chip (SoC). This SoC consists of

two parts, processing system (PS) and programmable logic

(PL) which are connected via an interconnect. More specif-

ically, the PS is ARM Cortex-A9 microprocessor running at

667 MHz and the PL is a Xilinx Artix-7 FPGA.
The PS and PL are interfaced via an interconnect that

consists of various types of ports. The ones to our interest are

the four High-Performance (HP) ports, configurable to deliver

either 32- or 64-bits per cycle. At 100MHz, this amounts to

400MB/s and 800MB/s respectively. The resulting theoretical

bandwidth supplied to the kernel’s pipeline is 2GB/s, viz. the

combination of rows, values and column streams as seen in

the design in Fig. 6.

BRAM 1 (WRITE)

x_stream val_stream

reg BRAM 2 (READ)

mult

reg

mult

add

add

reg

y(j)

64

32 32

0 0

col_stream

zero?

row_stream

LA
R
G
E
S
T
_R

O
W

32

64

32
32

64

32

32

32

Caching
module

Computational
moduleHLS Kernel

Fig. 6: A high level representation of the RTL generated,

including the two modules. The two BRAMs make up the

ping-pong buffer and each stores an �xp.

The RTL is divided into two modules and includes a ping-

pong buffer in order to pipeline caching with computation. The

two modules access opposite halves of the ping-pong buffer

at any given time, i.e. when one half is being written to, the

other one is being read from for the computation. The design

uses T2P (True Dual-Ports) BRAMs and is therefore capable

of reading/writing two SP-floats each cycle with no risk of a

read conflict [15].
The computation module is a simple binary tree with two

leaves. Due to the static scheduling of operations in Vivado

HLS, the number of products that make up the sum must be

defined during synthesis-time, referred to as LARGEST_ROW.

The most straight-forward approach, and the one opted for in

the implementation, is to read from the stream until the row

is completed. If the row is smaller than LARGEST_ROW, then

the reading ceases for LARGEST_ROW-ROW_SIZE cycles and
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zeros, which act as NOP (No Operation), are inserted into

the pipeline instead. The largest row is found during pre-

processing, and this number is hard-coded into the design.

This implies that a collection of bitstreams may need to be

generated for multiple benchmarks.

Another limitation is that the bandwidth must be a multiple

of the number of leaves (i.e. 2), and is solved by zero-

padding each row to have an even number of non-zeroes. This

issue has been addressed in manual hardware design [16], but

corresponding attempts in HLS made by the authors, where

a cycle delivered part of two rows, resulted in more than a

tripled clock period.

Each stream is delivered through a port, which is connected

to a dedicated DMA. This architecture resembles the one

presented in [17].

Fig. 7: High level block design as a 3-stage process. The DMA

channels are configured to either 32 or 64 bits.

The computation is divided into the three following stages,

which are illustrated in Fig. 7.

• Prologue: The initial �xp is streamed and cached in one

half of the ping-pong buffer. Concurrently, two parame-

ters are streamed as lists, which are the number of rows

in each partition and the �xp sizes.

• Execution: The matrix data is streamed to the kernel and

the result is computed with the �xp from the previous

iteration.

• Epilogue: The last �xp is cached so traffic through this

port ceases. The computation continues for one more

iteration and then the �y is complete.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The workstation runs with an Intel I7-8550U processor

with a base frequency of 1.8GHz and 16GBs of RAM. The

ZedBoard encases the ZYNQ-7020 chip that is made up of

an ARM Cortex-A9 microprocessor that has the frequency

667MHz and Xilinx Series 7 FPGA fabric, which is configured

to 100MHz for our experiments. The timing includes the

transfer of data between ARM and the kernel, building of the

�xp segments, the SpMV computation and finally sparstition
including all additional costs such as zero-padding and the

compression of Index Maps (IM). It excludes the pre-

processing time of the matrix to CSR format, and the data

transfer from the workstation to the ZedBoard.

The benchmarks are mostly obtained from the SuiteSparse

Matrix Collection [18] and are found in a wide variety of

domains. The choice of benchmarks used to evaluate the

sparstition algorithm was based on the sparsity pattern of

the matrix. For these reasons, there is unfortunately not much

overlap with the benchmark collection commonly used. The

following formula is used to compute the performance in

FLOPS: 2×NNZ/t, where t is the time in seconds. Matrices

marked with an asterisk (*) are too large for the vector to

fit in cache. The last column NI∗ refers to iterations until

convergence with the Bi-CGSTAB solver and ILU(0) pre-

conditioner. The solver solved for A�x = �b where A is the

benchmark matrix, �b is a vector of ones, and the initial guess

for �x is the zero vector. The solver was considered converged

when the norm of the residue was less then 10−8. The largest

benchmark, Hamrle3, contains zero-values on the diagonal that

make them ineligible for the chosen pre-conditioner.

TABLE I: Benchmarks used to verify the sparstition algorithm

and the HLS kernel.

Matrix N NNZ Max/Avg NNZ per Row NI∗

Hummocky 12,380 120,058 11 / 9.8 105
epb1 14,734 95,053 7 / 6.45 90

wathen100 30,401 471,601 21 / 15.51 8
dixmaanl 60,000 299,998 6 / 3.0 9

epb3* 84,617 463,625 6 / 5.48 125
NORNE* 133,293 2,776,851 57 / 20.83 172

Lin* 256,000 1,766,400 7 / 6.90 12
parabolic fem* 525,825 3,674,625 7 / 6.99 133

Hamrle3* 1,447,360 5,514,242 6 / 3.81 N/A

B. Standalone Performance of the HLS kernel

The results presented in Tab. II are grouped into two, divided

by the horizontal line between epb3 and NORNE, depending

on whether its �x (whose size corresponds with N) fits in the

cache of the ZYNQ FPGA. The performance for the group

below the line is estimated by partitioning the matrix using

sparstition to the largest possible size so that each partition fits

in the cache. Then the result is computed using the pipelined

design, wherein the partitions are computed one after the other.

The SpMV product was computed in software on ZYNQ’s

ARM microprocessor and used for verification.

TABLE II: Performance and efficiency of the HLS kernel as

well as speedup compared to ARM.

Matrix Performance
(SP-MFLOPS)

PMAX

(SP-MFLOPS)
Speedup Efficiency

ARM
Hummocky 287.09 475.48 119.64 0.60

EPB1 273.61 464.04 117.56 0.59
wathen100 266.06 484.39 109.83 0.55
dixmaanl 281.2 454.55 135.82 0.62

epb3 309.7 458.19 150.51 0.68
NORNE 143.04 488.28 54.52 0.29

Lin 338.14 466.22 142.90 0.73
parabolic fem 344.08 466.61 148.54 0.74

Hamrle3 252.78 441.99 98.44 0.57

There is a tremendous speedup relative to the ARM micro-

processor when compared to the obtained HLS performance.

In order to calculate the efficiency of the kernel, we relate

the performance to the theoretical maximum performance,

PMAX , which is obtained by using Eq. 1. This performance

would be achieved if the 2 GB/s of bandwidth delivered to the

computational module were fully utilized.
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PMAX =
Total FLOP

Total bytes transferred
×BW

= 2×NNZ
size(float)×NNZ+size(int)×(NNZ+N) × 2

(1)

Since the performance also takes into account the starting

of the kernel and the prologue phase, the maximum observed

efficiency is at most 0.74. We then observe that the efficiency

coefficient corresponds to the statistics of each benchmark as it

indicates the amount of ”NOP” insertions in the computational

module. For example, LIN and parabolic_fem are closest

to having rows of equal NNZ and result in the highest

efficiency. On the other hand, NORNE exhibits the average

NNZ per row that is the furthest from the maximum and

consequently is processed least efficiently.

C. Speedup Threshold

In order to predict whether a benchmark benefits from the

sparstition , we first present the assumptions made in the

following experiments.

The first assumption is that the partition that takes the
longest to compute is the total execution time of the
application. This is because all partitions are assumed to run

in parallel and the total time of the cluster therefore depends

on the accelerator that finishes last. The computation time

includes both the building of �xp and the SpMV execution

itself.

The second assumption is that �x arrives at each accelera-
tor at exactly the same time. This requires the host to have

high bandwidth in order to stream the vector simultaneously

to a number of nodes, and becomes more unrealistic with an

increasing number of partitions.

The third assumption is that there is no overhead in the
iterative algorithms to commence parallel SpMV. We make

this assumption because the overhead cost is minimized if

there is efficient pipelining between the steps of the solver

algorithm.

We define a new metric, under the name Number of Iter-
ations for Speedup (NI ), in order to more readily determine

if an iterative algorithm benefits from the sparstition for the

chosen benchmarks. This number tells us how many iterations

it takes for the pre-processing ”debt” to be paid up, given

that each partition is computed in parallel. It is computed as

follows:

TSp ×NI = TS + TP ×NI

NI =
Ts

TSp − TP

(2)

The variables of Eq. 2 and their relationships are illustrated

in Fig. 8. There are two possibilities we explore once the data

has been loaded into memory and the SpMV product is ready

to be computed. The first possibility is to compute the SpMV

without any partitioning, which will take time TSp. The other

one performs the sparstition algorithm at the time-cost TS and

computes the partitioned SpMV in time TP . TP includes the

Fig. 8: Illustration of the computation on whether sparstition
is beneficial.

building of xp and the partitioned SpMV, and is taken to be

the longest execution time of a partition.

For the following calculations, the time it takes to read the

matrix file and generate the CSR-format is excluded from the

pre-processing cost. All other steps, such as zero-padding and

sparstition are included.

Fig. 9 illustrates the NI for every benchmark. There is more

speedup to be gained moving from 2 partitions to 4 partitions,

but the speedup levels out thereafter and then the NI increases

linearly.

In order to explain this eventual rise, the sparstition algo-

rithm can be broken into two significant stages when consid-

ering the computational cost: the initialization and the actual

partitioning. The initialization stage consists of initializing the

IMs in order to keep track of whether a mapping is new. Each

partition requires an IM, thus this stage is dependent on the

number of partitions (NP ). The next stage is the functional

aspect of the algorithm. This stage is independent of NP ,

because as NP grows, each partition in turn becomes smaller.

Therefore, as NP rises, the more IMs need to be initialized

which causes the rise in NI . This effect would be alleviated

by parallelising the initialization stage, which is not currently

exploited. Furthermore, it is unreasonable to expect there

would be more than 26 accelerators available.

Fig. 9: The number of iterations until speedup is achieved with

the assumption that the partitions are computed in parallel.

From the rightmost column in Table I we see that NI∗ is at
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least 8 and even exceeds 100 iterations for almost half of the

benchmarks. Since NI is 3 or less for every benchmark with

26 partitions, speedup is expected for every benchmark. The

expected speedup is formulated as follows.

speedup =
TSp ×NI∗

TS + TP ×NI∗
(3)

The numerator of Eq. 3 reflects the total time of running

SpMV unpartitioned, and the denominator that when sparsti-
tion is applied. Notice that if it takes less time to compute

SpMV without sparstition then speedup < 1, as expected.

From Fig. 10 we deduce that the speedup is first and foremost

dependent on how large NI∗ is, but also the size of the

benchmark and efficiency.

Fig. 10: The expected speedup (unpartitioned vs. sparstitioned)

when performing NI∗ iterations of SpMV

Each benchmark contains a sweet-spot when the overhead

of initializing an increasing number of IMs outweighs the

speedup gained from further paralellising. However, the paral-

lelism in initializing the IMs is currently not being exploited,

and therefore a linear increase in speedup is feasible.

D. Performance of Sparstitioned SpMV

Tab. IV summarizes the results from executing all the

partitions on the HLS kernel. In the left-most column is

the time it took for the non-partitioned SpMV product to

compute. We otherwise see that TS predictably rises as the NP

increases, while TP decreases. Notice that the lowest possible

TS is 0.03ms, but at this point each partition is just a couple of

rows. The time measured in these cases is the communication

overhead with the kernel.

Fig. 11 shows the estimated performance up to 64 partitions

when using High Bandwidth Memories (HBM).

The predicted results when multiple kernels are executing

in parallel exceeds 10 GFLOPS which is unprecedented for

simple SpMV kernels in HLS.

E. Comparison with State-of-the-Art

The comparison is split in two parts, one that evaluates

the performance to the state-of-the-art architectures developed

Fig. 11: The estimated performance using TP of benchmarks

up to 26 partitions with HBM, assuming that each kernel is

supplied with a bandwidth of 2GB/s.

with an HDL (Hardware-Description Language) and the ad-

vanced architectural Dataflow language solution CASK. The

other part compares against the best performing HLS compiler

solutions.
1) HDL and Advanced HLS Solution: When comparing our

HLS kernel to the current state-of-the-art [3], [12], [19], it

quickly becomes clear that there is still a long way to go. The

HLS kernel achieves performance at around 300 MFLOPS

using single-precision with a bandwidth of 2GB/s. In order

to compete with the best results, it should be able to achieve

double-precision performance in the range of 2-14 GFLOPS.

The relatively low bandwidth of the ZYNQ system is

certainly a factor. Once sparstition comes into play and given

that it is distributed efficiently to the computing elements of a

cluster-like systems, then multiple instances of the HLS kernel

may boost the performance considerably.
2) HLS Compiler: There is not a lot of work done on

SpMV kernels developed with HLS. [8] presents a HLS survey

with SpMV as a case study, but the algorithm is synthesized

directly without any attempt to achieve any (near-)optimal

implementation with good performance. The presented result

only achieves a couple of MIOPS.

TABLE III: Comparison of this work with [11] for their

benchmarks in double precision.

Matrix Execution Time
(ms)

Name Max NNZ per Row [11] This work Bandwidth
(GB/s) Speedup

bcsstm25 6 2.8 2.15 0.29 1.3
dw8192 8 3.5 0.77 1.02 4.6
bcsstk12 27 1.0 0.46 0.68 2.2

ex7 75 3.0 1.29 0.70 2.3
poli3 336 5.5 N/A N/A N/A

The current state-of-the-art SpMV work that used an HLS

compiler to directly map the algorithm to hardware is pre-

sented in [11]. To achieve an accurate comparison, we will

configure the kernel to compute in double-precision which
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TABLE IV: Table summarizing the sparstition cost (TS) and the execution time of the slowest partition (TP ). All times are in

milliseconds.

Benchmark
No. of Partitions 1 2 4 8 16 32 64 128 256 512 1024

TSp TS TP TS TP TS TP TS TP TS TP TS TP TS TP TS TP TS TP TS TP

Hummocky 0.84 0.90 0.46 0.95 0.27 1.03 0.17 1.07 0.10 1.21 0.06 1.44 0.05 1.77 0.04 2.45 0.03 3.85 0.03 6.95 0.03

epb1 0.69 0.66 0.39 0.68 0.21 0.71 0.12 0.78 0.08 0.90 0.06 1.11 0.05 1.48 0.04 2.10 0.03 3.44 0.03 6.48 0.03

wathen100 3.54 3.11 1.82 3.19 0.93 3.15 0.48 3.33 0.26 3.72 0.15 4.29 0.09 5.22 0.07 7.39 0.06 11.05 0.05 18.97 0.05

dixmaanl 2.13 3.11 1.39 3.19 0.83 3.15 0.44 3.33 0.24 3.72 0.14 4.29 0.09 5.22 0.07 7.39 0.06 11.05 0.05 18.97 0.05

epb3 2.99 4.40 0.83 4.63 0.43 5.02 0.24 5.85 0.14 7.27 0.09 10.25 0.06 16.51 0.05 29.71 0.05 83.49 0.04

NORNE 38.83 25.87 2.65 27.92 1.37 29.36 0.71 32.86 0.37 38.87 0.20 54.62 0.13 90.70 0.10

Lin 10.45 25.41 0.91 23.80 0.59 26.92 0.33 34.50 0.18 47.95 0.13 78.72 0.06 141.54 0.05

parabolic fem 21.36 73.74 0.49 98.91 0.28 146.54 0.16 250.00 0.08

Hamrle3 43.80 495.94 0.33 900.71 0.24

implies that the ports specified in the design in Fig. 6 deliver

a single value per cycle. The results are presented in Tab. III.

It is important to note that the results in [11] are obtained

from simulation. It was unfortunately infeasible for us to

synthesize a pipeline large enough to compute the largest

row of poli3 due to the enormous amount of routing

and scheduling required. For all other benchmarks, however,

speedup is achieved.

The solution in [11] may be more efficient as it aims to

mitigate the need for the aggressive ”NOP” insertion of our

design. However ours uses as much bandwidth as possible

which is critical for memory-bound applications. The two

solutions would work well together.

VII. CONCLUSION & FUTURE WORK

We introduced in this paper the sparstition algorithm,

which enables the parallel processing of SpMV without the

production of intermediate results. We tested our solution on

ZYNQ, where matrices as large as 9× the available cache

were computed. A corresponding architecture developed with

Vivado HLS, which pipelines and overlaps memory transfer

and computation was also presented. The results obtained from

our kernel outperforms other similar solutions as we exploited

as much bandwidth as possible, a critical aspect when dealing

with memory-bound functions. We also presented our per-

formance estimations when using High Bandwidth Memory,

which would boost the performance to GFLOPS.

Future Work: There is work planned to extend the sparsti-
tion algorithm in the future. 1) Currently, sparstition is being

integrated with a manually implemented iterative solver. This

may enable the solving of matrices much larger than the avail-

able cache of the accelerator. 2) Validate the work in this paper

with High Bandwidth Memories (HBM) (when available to us)

to compute the partitions in parallel. 3) To demonstrate the

implementation-agnostic attribute and to demonstrate speedup

in iterative algorithms when using HBMs.
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