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The wind-driven ocean circulation at midlatitudes is susceptible to several types of instabilities. One
of the simplest models of these flows is the quasigeostrophic barotropic potential vorticity equation
in an idealized ocean basin. In this model, the route to complex spatio/temporal flows is through
successive bifurcations. The aim of this study is to describe the physics of the destabilization
process of a periodic wind-driven flow associated with a secondary bifurcation. Although
bifurcation theory has proven to be a valuable tool to determine the physical mechanisms of
destabilization of fluid flows, the analysis of the stability of time-dependfentexample, periodic

flows, using this methodology, is computationally unpractical, due to the large number of
degrees-of-freedom involved. The approach followed here is to construct a low-order model using
numerical Galerkin projection of the full model equations onto the dynamically active eigenmodes.
The resulting reduced model is shown to capture the local dynamics of the full model. The physical
mechanism of the destabilization of the periodic wind-driven flow is deduced from the reduced
model. While there are several stabilizing processes, notably rectification, the destabilization occurs
due to time-dependent increase of the background horizontal shear in the flo200®American
Institute of Physics.[DOI: 10.1063/1.1503804

I. INTRODUCTION ergy states:® The dynamical and physical origin of this type
o _ _ _ _ ~ of variability is a subject of intense study’

The midlatitude, mainly wind-driven, surface circulation Much progress has been made through bifurcation stud-
in the ocean is characterized by gyre-type circulations whickeg \which uncovered the structure of steady states and large-
are closed by strong western boundary currents. FOr eXscaje instabilities in idealized modéfs:*2Usually, only the
ample, the Gulf Stream is the western boundary current ifirst couple of Hopf bifurcations are determined and the pe-
the North-Atlantic and is part of a system of two gyres, theyisgic solution arising from the first Hopf bifurcation is fol-

subtropical and subpolar gyre. The intensification of thegyeq. |t was shown that the first Hopf bifurcations intro-
flows at the western boundaries of ocean basins is a classicallJCe intermonthly and interannual variability into the

problem in dynamical gcignogrgphy, of which the basics arggtropic flows. Already this information has provided an
understood for a long time= The internal variability of these e rpretational framework for high resolution simulatibns

boundary currents has recently been recognized as one pQf-ihe relatively highllatera) friction range. Recent work on
sible source of low-frequency variability.e., on time scales 5 mare complete structure of Hopf bifurcations for a two-
of years to decadgdn the climate syster. layer shallow-water model, combined with the computation

Western boundary currents are highly nonlinear antyt many trajectories, has indicated that the low-frequency

hence instabilities of such flows occur on several space anghiapility associated with the high- and low-energy states
time scales. Eddy-resolving ocean models are a frequentlgan be described within a finite-dimensional framework.

used tool to study the internal temporal variability of the Only a small number of dynamical modes seems to be in-
midlatitude wind-driven ocean circulatidriwith the possi- volved to cause this type of behavfor.

bility to perform numgrical simulatiqns on _Iong time inter- However, what is still lacking is the precise dynamical
vals and at high horizontal resolution, this low-frequencypenayior far from critical conditions, the latter defined by the
variability has been extensively studied and was shown 10 bR,c4tion of the first Hopf bifurcation. Transient flow compu-
associated with the occurrence of low- and high-kinetic eNy4iions are inadequate in resolving the full bifurcation struc-
ture because unstable steady states and periodic orbits cannot
dElectronic mail: dijkstra@phys.uu.nl be determined. This is a more general problem in hydrody-
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namic stability theory®!4 For systems of partial differential 1. METHODOLOGY
equations, computation of periodic orbits in parameter space
and their subsequent stability analydfi$oquet theoryis not rectangular basin of horizontal dimensidngendB and with
yet practical, because of the large number of degrees of fre%’onstant deptiD, which is situated on a midlatitude plane
dom involved. Hence, the reduction of the governing equay i, coriolis pa'rametelf:f0+/5’oy. The ocean circulation

tions of motion to systems of ordinary differential equationsin the basin is forced at the surface through a wind-stress
provides a way to make progress in understanding the route, ~tor 7= 7o(7(X,Y), 7Y(X,Y))

to complexity and corresponding physical mechanisms of
transition within these flows. _ _ o A. The quasigeostrophic model

There are many examples in the fluid physics literature
of model reduction which can be summarized(@slerkin- In a quasigeostrophic approximation, the flow can be
type) projections of the full equations on a set of basismodelled by the well-known barotropic potential vorticity
functions'® In many cases, the reduced model consists of £quation(Pedlosky, 198) for the geostrophic stream func-
set of amplitude equation®.g., Refs. 16 and 17For the tion ¢. This equation is nondimensionalized by using hori-
basis functions, one can taki¢ eigenfunctions of a particu- zontal and vertical length scalésand D, a characteristic
lar linear operatof® (ii) statistically determined basis func- horizontal velocity scaléJ, a time scald./U, and the maxi-
tions such as empirical orthogonal functions(if) orthogo- ~ Mum amplitude of the wind stress. With introduction of
nal polynomials(as in spectral methogisMany problems are the horizontal velocitiesi andv and the relative vorticity,
known with these types of low-order models and the mairfhe dimensionless model can be written as

We consider ocean flows with constant dengjiyin a

frustration is the noncorrespondence in dynamical behavior 4 J
between the reduced model and the full model when t%ﬁﬂja_xﬂ)a_ ({—Fy+By)
. : y
order of truncation of the former is changed. An enormousl
rich behavior may be found in many reduced models, which 1_, ar 9"
sometimes has fascinated researchers so much that critically — ﬁV et aT(ﬁ_X_ ay (1a)
examining the relation between the full and reduced models
is omitted. An example hereof is the famous Lorenz md@el, {=V?#, (1b)
where the dynamics bear little resemblance to that of the o o
underlying full model of Rayleigh—Berd convectior® u=— ' T (10)

With these problems in mind, and accepting that it may
be very difficult to find a low-order model which can capture These equations have been used many times to study phe-
the dynamics of a full model over a reasonable range imomena in geophysical flow®.g., Refs. 21 and 220n the
parameter space, our approach here is less ambitious. Theteral zonal boundaries=0,1, no-slip conditions are pre-
main aim of this paper is to construct a low-order model thatscribed whereas at the meridional boundarigs Q,A), we
allows one to determine the physical mechanism of the deapply slip conditions
stabilization of a limit cycle, which arises through a Hopf

bifurcation of the steady wind-driven barotropic quasigeo-  yx—q 1, Y=0, ‘9_"1’:0, (2a)
strophic(QG) double gyre flowt? We tackle this problem by X
using (i) continuation techniques to determine steady states y=0A, ¢=0, ¢=0. (2b)

and Hopf bifurcations within the full modelji) transient
flow computations at several locations in parameter space, Besides the aspect ratd=B/L, several other param-
and (i) locally reduced models to determine the stability of eters appear, i.e., the Reynolds numBethe strength of the
the periodic orbits by means of Floquet analysis. In the lattePlanetary vorticity gradientg, the wind-stress forcing
models, nonorthogonal basis functions are used which hawrengthe, and the homogeneous Froude numbBerThe
an immediate physical interpretation. Representation issudi@rameters are defined as

of the I_ow—order model are evaluated by compa_rin_g the re- UL BoL2 7ol fSLZ

sults directly with those of the full model. The limit cycle R=—, B= , A=, =—, 3
destabilizes through a Neimark—Sacker bifurcation and the An U pDU gb

physics of the destabilization process is described with helgvhere A, is the lateral friction coefficient and the gravity

of the reduced model. acceleration.

The setup of the paper is as follows. In Sec. Il the QG  The characteristic velocity) is chosen such that.,
model will be described, followed by a description of the =3 to give Sverdrup flow over the main part of the basin.
numerical continuation techniques. The general derivation oThe wind stress considered is
the low-order model is then presented in Sec. IIC. The de-

scription of the dynamics of the full QG model in Sec. lll is *(y)= — i (1_a)co5<2iy —asin ﬂ) . =0,
followed by the construction and analysis of the locally re- 2m A A
duced model in Sec. IV. The physical mechanism associated (4)

with the Neimark—Sacker bifurcation is presented in Sec. Vwhere the parametex controls the asymmetry of the wind-
A summary and discussion of the main results conclude thistress field with respect to the midaxis of the basin. The
paper. unforced system of equations and boundary conditions ad-
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mits a reflection symmetry through the midaxis<(A/2) of  C. Locally reduced models

the basin. This refiectio has a representation The discretized system of equations, as described above,

R(P(X,A=Yy))=—(X,y). (5)  will be referred to below as the full model. Suppose that at
. . . . some value of the control parameter, sayRatR,,, a Hopf
Fora:_O, the applied yvmd stress a_dm|ts a S|m_|lar SYmMelYyis rcation has been detected within this full model using the
and th's pL.JtS constram?s on the_b|furcat|ons, I.8., SymMeY,athods described above. From general theory, it is known
breaking bifurcations will be of pitchfork type. that locally a limit cycle exists which may be staliiper-
critical Hopf) or unstable(subcritical Hopf.2” When the di-
mension of the discretized systahis very large, it becomes
The equations are discretized using central differencesomputationally expensive to determine these limit cycles
on an equidistanNxX M grid. After discretization, a system directly from the(discretizedl partial differential equations,
of nonlinear differential equations with algebraic constraintsalthough general methodology exiéfsThe idea pursued

B. Steady states and their stability

results, which can be written as here is to constructnumerically a low-order amplitude
equation model, locally near the Hopf bifurcation, which is
d¢ .
M——+F(¢p,\)=0. (6)  capable to represent the dynamics of the full model beyond
dt the weakly nonlinear regime.
Here ¢ is the d-dimensional state vectord&2xNx M), The set of discretized nonlinear differential equati¢®)s
consisting of the unknowns at each grid pointzan be any IS rewritten in the general form
of the parametersR,3,A,F,a), F is a nonlinear mapping do
from RYX R—RY and the mass-matri\ is a linear opera- ME+£¢+N(¢'¢):}—’ (10)
tor.
Stationary solutionsb satisfy the equation where the nonlinear operatérhas been replaced by
F(®,\)=0 (7) F=Lo+ Mo, ¢)—F

which is a system ofd nonlinear algebraic equations. To to explicitly show the linear operatat, the nonlinear opera-
compute a branch of stationary solutions in one of the contor A and the forcingF. Let ® be the solution to the steady
trol parameters, a pseudoarclength continuation méfHsd problem, i.e.,

used. The branches of stationary solutiody$),\(s)) are

parametrized by an arclength parameteSince this intro- LO+NMP,D)=F. (1)
duces an extra unknown, an additional equation is needetihe solution ta10) is now decomposed into this steady state
and the tangent is normalized along the branch, i.e., and a time-dependent part,

D (®—Dg)+ N (A —\g)—As=0, ®) b=+ . (12)

whereAs is the step length and a dot indicates differentiationafier substitution inta(10), the linearized flow is governed
tos. (®g,\) indicates the solution at the previous step. They,

Newton—Raphson method is used to converge to the branch
of stationary solutions. This method finds isolated steady so- dé -
lutions, regardless of their stability. The linear systems are Mah%:o’ (133
solved with a preconditioned conjugate gradient metfiod. o ]
When a steady state has been determined, the linear st¢here the total Jacobiad is defined as
bility of the solution is considered and transitions that mark 7= r 4 A(®,. )+ A (-, ®). (13b
qualitative changes such as transitions to multiple equilibria
(pitchfork bifurcations or limit pointsor periodic behavior ~The linear operator/ has an eigenvector decomposition,

(Hopf bifurcation$ can be detected. The linear stability LH/R=S. LHMR=I. (14)

analysis amounts to solving a generalized eigenvalue prob-

lem of the form HereR andL denote the right- and left-hand eigenspaces of

_ _ the linear operatoy, | is the identity and the diagonal matrix

YJp=kMe, (99 = contains the corresponding eigenvalues, i.e.,

where 7 is the Jacobian matrix of7). The matrices7 and R=(ry ry === 1), (159

M are in general nonsymmetric matrices, witd being

singular, andy and x complex numbers. The proble(8) is L=y Iz -+ 1), (15b)

solved using the QZ methdd.In casey#0 in (9), we will e
use the notationv=o,+io;=«/vy to indicate the eigen- >=diagoy oz o o), (159
value. Hopf bifurcation points are detected by monitoring thewhere r=rank@)=(M—2)xX(N—-2)<d; the latter in-
eigenvalues along a branch of steady solutions; IEhanges equality is due to the singular nature #fl. Relation(14)
sign whileg;# 0 at some value of the control parameXela  states that. and R are a bi-orthogonal set of eigenvectors
secant method is used to determine the valua at Hopf  (i.e., I; Mr,=4j) and this property will be used in the
bifurcation whereo,=0. Galerkin projection below.
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TABLE I. Dimensional and nondimensional parameter values. 1.
a
L=:|.06 m F=0
Bo=1.6x10" 1 m1lgt A=1 1.
fo=1.0x10 *s* B=10°
p=1.002<10° kg m~3 a,=10°
70=0.128 kg nils 2 a=0.2 1.
D=500m
U=1.6x102ms? 8 1
o
o
31
With the use of this eigenbasis, the perturbatipnis o
expanded im right-hand eigenvectors,
. 1.
¢>=Rna=j21 ra(t). (16)
The matrixR, denotes ther-dimensional subspace & of
suitably chosen right-hand vectors, dnglis its adjoint sub- 1.
space. 8 90 100 110 120 130 140
Substitution 0f(12) into (10) and using(11) yields R
da
MRnaJrjRnaJr/\/(Rna,Rna):O. (17 10

Projection onto the left-hand eigenbakisand the use of the b
bi-orthogonality relation(14), results in the set of coupled

amplitude equations, 0.8 T
da
T Sa+n(a,a)=0. (1839
0.6 1
The operators in the projected system are defined as -
S=LIJR,, (18b)
H 0.4 ]
n(a,a) =L, MR,a,R,a). (180
In terms of the individual components, the evolution of am-
plitude a;(t) is governed by 02 i
da.‘ n n n '
j .
W_kzl bjkajk“‘kzl Zl Cjk|aka|:0, jzl,n I
(]_ga) O0oL o + v 1w by
. . . . 0.0 0.2 0.4 0.6 0.8 1.0
The coefficients in the projected system are defined as X
H
bjk: Ij jrk’ (19b) FIG. 1. (a) Part of the bifurcation diagram of the full model. The branch of
H (un)stable steady state solutions has been indicated by a(saléthed line.
Cik = Ij -/\/(rk ,I’|). (190) At the primary Hopf bifurcation, neaR= 82, indicated by a filled triangle,

. . . . . ._abranch of periodic solutions is spawned from the steady state, with filled
While this approach IS famy standard, the domain In(oper) circles indicating(in)stability. The Neimark—Sacker bifurcation oc-

parameter space where a close correspondence exists kers neaiR= 105 (open triangle (b) Pattern of the steady state streamfunc-
tween the dynamica| behavior contained19), for a chosen tion at R=82, close to the first Hopf-bifurcation pointmaximum
value ofn, and the full modek9) is a priori unclear. The amplitude=1.783).

selection of the appropriate eigenmodes turns out to be

highly problem dependent. For the study of the QG dynam- | L
ics of the wind-driven circulation, the choice of the basis will ©f Siz€ 1000<1000 km on a midlatitudeg-plane centered
be discussed in Sec. IVA. around 45 °N. In this study, only the Reynolds numBeis

used as control parameter, while the other parameter values
will remain fixed at their standard values. The resolution
used isN=36, M =36, which was shown to be sufficient to
As is usual in studies of dynamical systems with severatapture all bifurcation points accuratéfyAll results pre-
parameters, a set of standard parameter values is choseaented below have been obtained by applying an asymmetric
These valuesof the dimensional and nondimensional quan-windstress forcing witte=0.2 in (4).
tities) are shown in Table | and are representative of a basin  In Fig. 1(a), part of the bifurcation diagram is shown as

IIl. DYNAMICS OF THE FULL MODEL
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FIG. 2. Spectrum of the linearized operator of the full modeRat82, 0.0 ; '4 ! ola o 00 ' '4 0’6 0‘8 .
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to 1 year period of the oscillation. The modes of interest have been denotec
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0.2
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versusR. The solid(stable¢ and dashedunstable curves in - :
Fig. 1(a) have been computed with the continuation method ©.0 T ool
and each point represents a steady state. The steady flow °° ¢2 04 06 08 1.0 00 02 04 065 08 1.0
becomes unstable through a Hopf bifurcatiofRat81.5, the  FIG. 3. Stream-function patterns of the leading eigenmodes at the primary
location which is marked with a triangle in Fig(al. The Hopf bifurcation.(a) and (b) Real and imaginary part of unstable Rossby
steady geostrophic stream functigrFig. 1(b)] at R=81.5 basin mode, with frequency;=73 (=6 cycles per year (c) and(d) Real

and imaginary part of the first gyre mode, with frequengy-9.8, corre-

shows a typical asymmetric double gyre flow, with a Strc'ngersponding to~0.8 cycles per yeate) and(f) Real and imaginary part of the

Subpolar gyre. The unstable Steady state continues to exiﬁcond gyre mode. lts frequeney,= 6.2, corresponds te-0.5 cycles per
over the computational domairthe dashed curve in Fig. year.

1(a)] and a second Hopf bifurcation occursRat 108 (again
labeled with a triangle

The complete spectrum of the Jacobjdmat R=82 (Fig. 1(b)]. The patterns of both gyre modes hardly differ; in the
2) shows that there are high-frequency modes, which haveecond gyre mode, there is a secondary positive maximum in
oscillation periods in the order of montl{2 months corre- the recirculation region of the basic stafeear ,y)
sponds too;=75), low frequency modes with typical peri- =(0.6,0.4) in Fig. 8)]. The physics of propagation and
ods of yearg1 year corresponds to;=13) and stationary growth of both the(destabilizedl Rossby basin mod&sas
modes. The real and imaginary parts of the first three eigerwell as the gyre modes is now understdddhs its name
solutions are shown in Fig. 3. The pattern, corresponding tindicates, the propagation mechanism of the Rossby basin
the eigenvalue pair in Fig. 2 which just has crossed thenode is potential vorticity conservation on tBelane(mid-
imaginary axis, is a well-known Rossby basin mdfégs. latitude Rossby-wave dynamicsHere the Rossby basin
3(a) and 3b)], with an oscillation period of two montH8.  mode is excited, as it taps into the relative vorticity near the
The secondFigs. 3c) and 3d)] and third[Figs. 3e) and  western boundary available through the presence of the con-
3(f)] pair of modes are so-called gyre modes and charactefluence of the double gyre flow. However, the propagation
ized by their relatively low frequenciéS.In the pattern of mechanism of the gyre modes is independeng-plane dy-
the real part of these eigenmodésgs. 3c) and 3e)], the  namics and is related to symmetry breaking/restoring tenden-
maximum positive stream function perturbation is locatedcies, as will be explained in more detail below. Both modes
near ,y)=(0.2,0.55), which is just in the region of maxi- become more unstable, when the horizontal shear of the
mum velocities of the eastward jet of the basic sf{dtgy.  background gyre flow is large enough.
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Re = 87 ' ' From a Fourier transform of the full model streamfunc-

G 24f 3 tion fields, the spatial pattern associated with this second

22F 3 frequencyo;=13.5 (about 11 months is plotted in Figs.
o 20F E 5(c) and 8d). This pattern shows quite a good resemblance
S 1sf E with that of the first gyre modgFigs. 3c) and 3d)], which
S i6E E strongly suggests that the gyre mode causes the destabiliza-
S e 1 tion of the periodic orbit.

125_ i The flow remains quasiperiodic &=120 [Figs. Ga)

1:05 . 1 g and Gb)] while the amplitude variation of the kinetic energy

0 10

20 30 40 becomes larger. A comparison of the spectral characteristics
tr) in Fig. 6(b) with those in Fig. Bo) shows that the harmonics
of the gyre mode become more energetic. Rer140, the
time series of the kinetic enerdifig. 6(c)] displays irregular
variability of large amplitude, with low-frequency oscilla-
tions between high- and low-energy states. Correspondingly,
the power spectrum is broad banded, although high energy
levels can still be recognized at the Rossby basin mode fre-
guency[6 cycles per yeatcpy)] and, to a lesser extent, at
gyre mode frequencigs<l cpy, Fig. &d)].
. ‘ 1 From these results of the full model the basic question
A 1.0 10.0 dealt with in this paper can be specified. Can one show that
fepy) the high-frequency limit cycle indeed destabilizes through a
FIG. 4. (a) Time evolution of the basin integrated kinetic energy Rr Neimark—Sacker bifurcation, as suggested from the results
=87.(b) Power spectrum of the last 10 years of the time series shoa in above? Once this has been accomplished, can one determine
with the frequency in cycles per year. the physical mechanism of destabilization of the limit cycle?
To investigate the destabilization of the periodic orbit, one
needs to study the linear stability properties of the flow lin-
The branch of periodic solutions arising from the first earized along the proper periodic solution, but this is unfea-
Hopf bifurcation atR=82 in Fig. 1a) has been determined sible on the original system of partial differential equations.
from the computation of the time-dependent flows using dn the following section, the locally reduced model, as de-
Crank—Nicholson time discretization and a timestep of 1 dayrived in Sec. Il C, will be used to accomplish this.
The solid curve represents stable periodic solutions and the
values ofR for which actual flows are computed are labeled|v. ANALYSIS OF THE LOW ORDER MODEL
by dots. For each solution, the time-averaged value of the
kinetic energy is plotted in Fig.(4). The time series of the
kinetic energy of the stable periodic flow, obtained fr
=87 is plotted in Fig. 4a) together with its Fourier spectrum
(of the last 10 years of outpuin Fig. 4(b). The period of this
orbit is about 2 months and the secondary peak in the sp
trum is a harmonic of the dominant frequency. The amplitudémdel'
of this limit cycle increases with increasify[Fig. 1(a)], but
the frequency is nearly independent Rfand corresponds
closely to that of the Rossby basin mode at the primary Hopf  In terms of representing the dynamics of the full model
bifurcation in Figs. 8a) and 3b). with a minimal number of degrees of freedom, an orthogonal
Three subsequent time series of the flow are shown ibasis would be preferable, in terms of gaining information
Figs. 5 and 6, aR=110,R=120, andR= 140, respectively, with the addition of each new degree of freedom. For au-
of which the mean kinetic energy is plotted as open circles ifonomous(dynamical systems, techniques for constructing
Fig. 1(a). The time-dependent behavior is quasiperiodic atsuch a basis based on the statistical properties of the under-
R=110, as a second, lower frequency appears in the timlying system are available, usually referred to as empirical
series[Figs. 5a) and §b)]. This second frequency is about orthogonal function§EOF), proper orthogonal decomposi-
one year and corresponds well with that of the gyre mode irtion (POD) or Karhinen Loeve decompositiorisee Ref. 15
Figs. 3c) and 3d). Hence, there is a transition from a stable for an overview. However, projection on these types of pat-
periodic orbit to quasiperiodic behavior somewhere betweeterns, for example, EOF’s, does not provide information on
R=105 andR=110. This new frequency is incommensuratewhich modes will become unstable, when varying control
with that of the periodic orbit. In other words, it is not a parameters. The latter complication may be circumvented by
rational multiple of the original{fundamental frequency. In  adding noise to the system to detect weakly damped modes,
dynamical systems theory, a transition with these charactebut for the computation of both the attractor and its low
istics is usually associated with a secondary Hopf- orfrequency variability, exceedingly long time integrations are
Neimark—Sacker bifurcatiof?:?’ needed.

O_‘I‘l'l'l‘l'?_

To understand the sequence of transitions found in the
time-dependent behavior above in more detail, a locally re-
duced model is constructed. Its capabilities to represent the
dynamics of the full model are presented in Sec. IVA. In

eec. IVB, bifurcation analysis is performed on the reduced

A. Construction of the low order model
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FIG. 5. (a) Time evolution of the basin
integrated kinetic energy foR=110.
(b) Power spectrum of the last 20
years of the time series shown (a).
(c) and(d) Two phases of the unstable
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=1.05cpy in (b), obtained from an
FFT of the stream-function field of the
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We choose a basis for projection that is spanned by seship (14). The difficulties that arise from working with a
lected modes from the eigenspectrum of the linearized opronorthogonal eigenbasis are addressed in a set of experi-
erator near the primar§Hopf) bifurcation, which are explic- ments, in which the convergence of a solution of the reduced
itly available from the analysis of the full model. This choice model is investigated as a function of the number of eigen-
is motivated by the appearance of patterns in the flbigs. = modes.

5(c) and Jd)] that have a close resemblance to these eigen- At R=87, in a regime where the full model has a stable
modes, even far beyond criticality. As for the use of thislimit cycle spanned by the Rossby basin mode, the reduced
eigenbasis, the major drawback is that the eigenmodes areodel is constructedas in Sec. Il § using the basic steady
not orthogonal, but only satisfy the bi-orthogonal relation-state(at R=87) and eigenbasis obtainedR& 82. Each set
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FIG. 6. (a) Time evolution of the basin integrated kinetic energyfoer 120.(b) Power spectrum of the last 20 years of the time series showa.ifc) Time
evolution of basin integrated kinetic energy f@r=140. (d) Power spectrum of the last 70 years of the time series showt).in
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TABLE II. Frequency(first row) and amplitudes of selected modgsws)

in three experiment&columng to test the convergence behavior of the low 1.0
order modelR=87. In all experiments the final state is a limit cycle, as in
the full model for this parameter valuA. ;4 represent the remainder of the
modes between 6 and 19.

0.6F
1 2 3
0.4F
[9) 73 73 72
A, 604.5 606.8 785.5 0.2t
As 77.7 61.1 ; g
As 37.7 43.7 0.0 e 0.0 . . . L
A_1g <40 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Ao 147.5 160.0 292.2
Agy 1271.7 FIG. 7. Comparison of the stream-function patterngapthe rectification in

the full model(time mean minus basic statat R=110 and(b) the leading
stationary eigenmode, residing at position 19 in the spectruR+a82. Both
patterns have been scaled by their maximum values.

of modes includes the unstable eigenmode, whose amplitude

is designated bwy,, and subsequent modes are indicated by . . .
) . L : For the latter expression, the eigenvector representation of
aj, j=2,...n. For each truncation, a time integration of the

reduced model(19) is performed with initial conditions :Ez 2322;10% iﬁglr?:)sf t’s:%g;g;;;&gg%&nﬁ% 7;?3}&
given by a;(0)=aj3(0)=100 anda;(0)=0, j=3,..n. For » 199

the equilibrium periodic state, a measure for the amplitude o ith the leading stationary mode, residing at position 19 in
q ump i ' P he eigenspectrum fdR=82[rq, in Fig. 7(b)]. This mode
the dynamical modes, i.e.,

provides the dominant contribution to the eigenmode expan-
1 [to+T sion in (23).
i Tf |ay|dt (21 We want to emphasize here that it is not our aim to
derive a low-order model which is able to capture the com-
s blete dynamical behavior of the full model. Instead, we only
reached in {,=) 50 years and folf =20 years, the\; have want a Io<_:<'_il low-order _mo_del, WhiCh is _abl_e to capture the
converged to their mean values. flow transition fr_om periodic to quasiperiodic neldr=105.
When only the unstable Rossby-basin mode and thg:onv.ergence W|th|n a reduced model, basz_ad on nonorthqgo-
leading gyre modesamplitudesa;, as, and as, respec- nal e|genmodgs is ur}I!ker to bg accomplished. E)gpandlng
tively) as shown in Fig. 3 are included, no finite amplitudethe system_ with additional sFannary modes, for instance
solution is found. Such a finite amplitude solution is first M0U€r o4, gives worse results in terms of convergence of the
found when the stationary mode with amplitudlg, is in-  Projection amplitudesthird column of Table I). This mode
cluded. The amplitude of all the modes is shown in the firsProVides an additional contribution to the rectification pat-
column of Table II, which indicates that the oscillatory ternZ but it also projects mtq directions that are dynamically
modes 1, 3, and 5 plus the stationary mode 19 can give got important. These must_ in turn be cqmpensated by other
stable periodic orbit. The remainder of the modastween 6 nonorthogonal modes, residing deeper in the spectrum.
and 19 has only relatively small amplitude. When the latter
modes are not taken into account, also a periodic orbit i
found with slightly changed amplitudes of the modssc- The reduced seven-mode model as constructed above is
ond column in Table )L Hence, the smallest reduced model subjected to a bifurcation analysis by varying the control
with the same periodic behavior as the full model has 7 deparameteR, similar to the full model. Periodic solutions to
grees of freedontamplitudesa, , az, andas, and their com-  the set of autonomous equatiofi$a, with unknown period
plex conjugatesa,, a,, andag, with the stationary mode T, are computed by continuation. (483, the periodT in-
ajg). troduces an additional degree of freed8rip the system
One can understand why the stationary maglgis im-  associated with the freedom of phdsiea(t) is a solution,
portant to be included in the reduced model. It accountshen for arbitraryt,, a(t+ty) is also a solutioh To remove
largely for the rectification that arises from the self- this degree of freedom, we have chosen to constrain the real
interaction of the unstable Rossby basin modg).(If we  part of one of the systems componerag -t aq) attimet, to

is shown in Table Il. In all experiments the attractor i

8. Bifurcation analysis of the reduced model

denote this self-interaction by, i.e., a fixed valueQ. It has been verified that solutions do not
. . depend on the choice of botly and Q. Periodic boundary
Go=Mr7 1)+ Mry,r1), (220 conditions in time are applied and the resulting system of
then, in the weakly nonlinear regime, the rectification patternOrdlnary differential equations becomes
is given by da
——Satn(aa) =0, (243
r |Hgo dt
— 14 — n
=— = M- 23
Po= =T M%0= 2, 7, 7 3 a(0)=a(T), (24b)
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ay(to) +a§(t0)=Q. (240 Floguet multiplier associated with the periodic solutid(t)

always equals unity. This implies that perturbations along a

Using a Crank—Nicholson scheni{@4) is discretized in time L . o
! . direction tangent to the periodic orbit neither grow nor decay.
and a Newton—Raphson method is applied to solve the rez, . . .
his property also provides an important and necessary

sulting set of nonlinear algebraic equations. For the actua ; ) .
numerical computation, it is convenient to rescale time withChe.Cl:j.On tg.f numerical computation of the stability of the
T, resulting in(24) being defined on thgd, 1] interval for all periodic orbit.

values ofT. The Newton iteration is initiated from a weakly dThe_ fuII_ temEoraI a?d ysm pt)atlarl] strg/cturet O.f t:\he Flthuet
nonlinear approximation to the solution or from a solution modes is given bym(x,t)e’™, whereVi(x,t) is them

obtained by time integration of the reduced model. Once gloquet eigenvector angh, =10g(py)/T is the as;ouated '.:IO_
periodic solution is found, it can be followed as a function quuet_ expone_nt. The_ temporal structure of e|g_enm\7!q,e|s
the system parameters through continuatfihe use of 40 ©oPtained by integrating®) over one cycle, starting from the
grid points in the time domain suffices, since doubling the€igenvector of the monodromy matrix associated with the
temporal resolution to 80 grid points resulted in changes of l0quet multiplierp,, . There are three distinct scenarios as-

amplitudes, and the frequency of the limit cycle of less tharsociated with the loss of stability of the periodic orbit as a
1%. control parameter is varied. A Floquet multiplier leaving the

The frequency of the limit cycle found within the re- Unitcircle at+1, results in either a transcritical, a symmetry-
duced model versuR is plotted in Fig. §a), together witn ~ breaking or a cyclic fold bifurcation. This is analogous to the
the amplitude of the modes in Fig(t8. In Fig. 8a), also the ~ bifurcations of time-independent flowsee, for instance,
dominant frequencies determined from the time integration&ef- 27. When a multiplier leaves through 1, a period
of the full model are marked, demonstrating the capabilitieloubling or flip bifurcation takes place. Finally, when two
of the reduced model to describe the periodic orbit. WithCOmMplex conjugate eigenvalues exit the unit circle away
increasingr, the amplitudes of all modes increase. The moddom the real axis, a Neimark—Sacker bifurcation occurs.
with amplitudeA,q is quite large over the whole parameter This introduces a new, possibly incommensurate, frequency
range, indicating that rectification process generated by self0to the system, similar to the primary Hopf bifurcation.

interaction of the Rossby basin mode are fairly strong. The Floquet multipliers and exponents are plotted in
To compute the stability of the limit cycle, the reduced Figs. 98 and 9b) and near 0.Z0.71i [in Fig. Xa)] a pair of

model equations are linearized a|0ng the periodic dkbm' Floquet multipliers leaves the unit circle. This indicates that

obtained from solvind24), i.e., a Neimark—Sacker bifurcation occurs B=110.1. This

~ R value is slightly above that guessed from the full model. The
&= (Stn(A,)+n(.,A))a=0. (29) limit cycle is shown(anomalies with respect to the unstable

Information about the linear stability of the periodic orbit is steady state aR=110.1) for two phases in Figs(® and

contained in the eigenvalues of the monodromy maftike ~ 9(d) and again the Rossby basin mode character of the solu-

so-called Floquet multipliergy,,. This monodromy matrix is tion is apparent. The dimensionless frequency, associated

defined as the fundamental solution (@6) evaluated at with the unstable Floquet vector, is 9.0dorresponding to

=T and is computed by integrating all possible initial con-about 16 months to be compared with 13.8l1 month$ in

ditions, conveniently represented by the identity matrix, ovetthe full model. The Flogquet vector is shown in Figée)%and

one cycle of oscillation of the periodic orbit. If one or more 9(f) and its spatial structure and frequency is strongly related

Floquet multipliers lie outside the unit circle in the complex to the leading gyre modes in Figs.cB—3(f).

plane, the periodic solution is an unstable limit cycle. If, on In Figs. 9a) and 9b) the gyre modegindicated by GM1

the other hand, all multipliers lie inside the unit circle, the and GM2, respective)ynearly merge for increasing values

limit cycle is stable. For autonomous systems liRd), one  of the control parametdR, as can be witnessed from the fact
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FIG. 9. Linear stability of the limit cycle in the low
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that their eigenvalues become almost identical. This suggest®dic state and the Floquet vectors of the reduced model for
that both gyre modes are indispensable in setting up the sp#he description of the physical mechanism associated with
tial pattern of the unstable mode at the Neimark—Sacker bithe Neimark—Sacker bifurcation in the next section.
furcation. This is confirmed by experiments where either one

of the gyre modes has been omﬂte_d from the basis of th?/. PHYSICAL MECHANISM OF THE SECONDARY
reduced model. In both cases no bifurcations occur beforﬁ\lSTABlLlTY

R=160 and no gyre mode becomes unstable.

Although the correspondence of the reduced and full  To describe the physical mechanism of the destabiliza-
model up to the Neimark—Sacker bifurcation is good, thetion of the (Rossby basin moddimit cycle by the (gyre)
reduced model turns out to be capable of representing flowBloquet mode, it is necessary to recapitulate the essential
at higher values oR. ForR=120, the projection coefficients physics of the destabilization of the gyre mode on the steady
of the trajectory of the full model onto the modes of the state flow.
reduced model are shown in Fig. 10. This indicates that the The oscillatory behavior of the gyre mode is character-
limit cycle is represented by, its rectification byr,g and ized by an almost standing wave pattern which propagates
that the low-frequency signal is represented bothrpand  perpendicularly to the direction of the eastward [[Eigs.
rs. Having established the correspondence of the dynamic3(c)—3(f)]. In the barotropic quasigeostrophic model of the
of the reduced and the full model, we will use both the pe-double gyre flow, with an antisymmetric wind-stress pattern
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The labelsA—G indicate specific stages along the limit cycle
and simultaneously indicate the path taken through this
phase-plane picture. For each case, the asymmetry in the
limit cycle increases fromH—C and decreases fror@
—H. While the range of asymmetries do not change with
increasingR, the overall kinetic energy increases. The main
. ‘ . : change with increasingr is that the phase in which the
0 200 . (do‘;gg) 600 asymmetry decreases is associated with higher kinetic energy

of the total flow.
FIG. 10. Evolution of the projection coefficients of the eigenmodes in the ~ The frequency of the Floquet mode is lower than that of
full model at R=120: Rossby basin mode,, solid line, leading gyre  the periodic orbit. To monitor the growth of this mode, we
modes(rj, d_ashed, andg, dashed-dotted lineand the first real mode plot the perturbation kinetic energyslg ) versus its tendency
(rig, dotted line. . . n

(deg,/dt) in Figs. 11d)-11(f) again for R=102.8, R

=110.1, andR=117.2. Only the evolution of these quanti-
[a=0 in (4)], this mode arises through merging of two ties over one period of oscillation of the limit cycle is shown.
nonoscillatory mode®’ The first one, called & mode, con- During the phase of highB—D) asymmetry of the limit
sists of a tripole which is symmetric with respect to thecycle, the Floquet mode grows. Also in the phase of low
midaxis of the basin; its effect is to increase the shear of th@symmetry E—H), there is growth of the Floquet mode,
eastward jet. In the case=0, this mode was shown to be although substantially weaker than during the high asymme-
related to the appearance of multiple steady states throughtey phase. As can be seen, the total growth increasesRyith
symmetry-breaking pitchfork bifurcation. The spatial patternmainly due to an increase in growth rates in the high-
of the second stationary mode, callednode and related to asymmetry phaseB— D). The growth of the Floquet mode
the occurrence of limit points, is antisymmetric and dipolarappears closely associated with the destabilization mecha-
and its effect is to strengthen or weaken both gyres. Thesgisms of the gyre mode in the steady state. Hence, this is a
two real modes tend to deform on the asymmetric branchegotivation to obtairP- andL-mode signatures in the Floquet
of solutions in such a way that they merge to become oscilygctor.
latory: a gyre mode results from this marriage. The growth The P-mode signature of the Floguet vector is con-
and decay of the energy of the gyre mode in the differentcreq at criticality R=110.2) by looking at the time se-
stages of the oscillation is determined by a pure shear mechﬁés of this mode at the poiitnarked by an asterisk in Fig.

nism. The combined effect of this shear, the asymmetry OFLZ(a)] where the background gyre flovat the Neimark—

the steady flow and the symmetry-breaking meChamSmSacker bifurcationhas its maximum. This time series is cor-

which induces temporal constraints between the SymmetrlFelated with time series at all other points and the correlation

and antisymmetric components of the perturbations, CaUSE | eiciants are plotted in Fig. 1. In the same way, the
the low-frequency oscillation. Once the steady state becomq_s_mOde part of the Floguet ve.ctor.is determined by I’ooking
more asymmetric, the gyre mode becomes more unstable be-

cause it can feed on the increased horizontal shear. at the time series of the difference petwgen_the maxima of
The physical mechanism of the destabilization of thePCth gyresimarked by the two asterisks in Fig. (b2] and
limit cycle is analyzed within the reduced model, since Flo-Corelating this time series with those over the rest of the
quet vectors and the limit cycle are available near criticality,domain. The correlation coefficients give the pattern in Fig.
As the asymmetry in the strength of both the gyres is ex12(b). The effect of theP mode on the mean flow is to
pected to play a major role in the destabilization of the limitincrease/decrease the shear between the gyres, wherdas the
cycle, a measure of this asymmetsy was chosen as the mode tends to strengthen/weaken the gyres, just as in the
difference between the maximum stream function values offore idealized §=0) double gyre problerfi’ The P-mode
the subtropical ) and subpolar gyreisy), i.e., Sa= g anq L-mode amplitudes are plotted versus time in Figcl2
—iJp. To monitor the interaction between the perturbationThis shows that th@ andL mode are nearly in quadrature
(i.e., the Floquet vectorand the limit cycle, changes in the and they clearly control the low frequency behavior of the
perturbation kinetic energy were calculated. The energy balflow. Their interaction with the background limit cycle

ance of the perturbation can be written as causes growth, with the largésmalley peak corresponding
deg to B—D (F—H) in Fig. 11(e). However, it is difficult to
D_7-R 1D, (26) establish a mechanistic picture of the way this growth is
dt coupled to the amplitudes of tieandL mode individually.
where7 is the Reynold’s stress energy production dnds When the stability of the time-mean state of the limit

the dissipation. The latter depends only on the perturbatiofycle is computed, a Hopf bifurcation associated with the
structure, whereas the energy production both depends on tiéstabilization of the first gyre mode is foundRt=142.2,
periodic background state as well as the perturbations. significantly beyond the value found in both the full model
For three cases near critical conditioi®=102.8, R and in the Floquet analysis of the low-order model. This
=110.1, andR=117.2, the total kinetic energy of the limit shows that the rectification associated with the Rossby basin
cycle is plotted versu$, in Figs. 11a)—11(c), respectively. mode prevents the destabilization of the gyre mode, as it
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FIG. 11. Phase space diagram of the limit cycle (®rsubcritical conditions R=102.8), (b) critical conditions R=110.1), andc) supercritical conditions
atR=117.2. The abscissa shows a measure for the asymmetry of theSflowersus the integrated kinetic enery,, . Phase space views on the evolution
of the leading Floguet-vector over one oscillation cycle of the periodic ddbisubcritical conditions(e) critical conditions, andf) supercritical conditions.

tends to reduce the asymmetry between the subpolar and tkemputed with the full model, the exact details of the desta-
subtropical gyre[Fig. 5(c)]. The temporal changes in the bilization process were captured usingraumerically con-
limit cycle are important for the destabilization process. Instructed low-order model. It is now possible to exploit the
the absence of gyre modes, the rectification due to the selfersatility of the low-order model and to pinpoint the essen-
interaction of the Rossby basin modes stabilizes the meaial physical modes that govern the variability, as observed in
flow. On the other hand, it is the time-dependent character ofe full model.

the Rossby basin mode which enhances the conteast The application of the locally reduced model appears to
thus the shearbetween the gyres with each passing, thathaye a large application potential, although one has to realize
counteracts the stabilizing effect due to rectification and rengy 4t its results have to be verified with those of a full model.

ders the gyre mods) unstable. Ideally one would like to work with a locally reduced model
that shows convergence to the full model dynamics as the
VI. SUMMARY AND DISCUSSION number of modes is increased. The results summarized in

Table Il indicate that this property is difficult to satisfy when

dependent wind-driven ocean flows, one additional step ha@onorthogonal e|genmo_des are used. However, the elgen-
been taken by determining the physical mechanism of thgnodes have the attractive property that they have a direct

transition of a high-frequency oscillating flow to a quasiperi-phys'(fal interpretation. ) )

odic flow, having both a high- and low-frequency compo- Wlth the _current statg of continuation methods, already
nent. The steady wind-driven double-gyre flow becomes unla7g€ dimensional dynamical systems can be analyapdo
stable through a Hopf bifurcation at relatively low values of 10° degrees of freedom, see Ref.)3There are specific ei-
the Reynolds numbeR. The physical mechanism of propa- genvalue solvers which can locate a specific number of right
gation of the critical mode is the same as that of a barotropi@nd left eigenvectors, making a numerical construction of
Rossby basin mode and its growth is related to the horizontgiuch locally reduced models possible for a large class of
shear of the background flow field.It is this barotropic applications’* With such models, realizing their limitations,
instability, which gives a time-dependent periodic gyre flowone can analyze one step further into the complexity of
which a dominant frequency in the order of months. Withflows, by allowing the determination of local periodic orbits
increasing values ofR, this periodic orbit destabilizes and their linear stability. In addition, questions related to the
through a Neimark—Sacker bifurcation. While this destabili-effects of noise on the dynamics can be tackled. While it is
zation could be anticipated from the time-dependent flowsvery difficult to determine probability density functions for

In the analysis of the transition to complex time-

Downloaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



3614 Phys. Fluids, Vol. 14, No. 10, October 2002 van der Vaart et al.

P — mode
—————

1.0

2: T T T T T T 3
b C .
v = .
E' O:_ ................................................................................................................................. _g
) = -
C = n
SE
—2E 1 | L 1 N I 1 3

0 50 100 150 200 250 300

t

FIG. 12. Regression maps of tk® L mode andb) P mode, obtained from the leading Floquet vectoRat110, Cl is 0.2. The solid line marks the position
of the basic state jefc) Time series of the indices of tfe mode[dashed line, taken at jet axis at the position marked by(a)] and theL mode[solid line,
constructed from the difference of the stream-function values of the Floquet mode at the positions markad by

systems of partial differential equations, this can be done fobarotropic quasigeostrophic models in square baSiBince

small dimensional systems. its dynamics are related purely to the shear of the back-
From the reduced model developed here it is shown thaground western boundary current, and is not related to

the (gyre) Floquet mode can extract energy from the RossbyRossby wave propagation, its time scale inherently has low

mode periodic orbit through the changes in the horizontafrequency. Hence, the results here contribute to the physics

shear of the background state. The propagation mechanisof the low-frequency variability of more general ocean flows

of the Floguet mode is shown to be the same as that of thand eventually to that of the climate system.

gyre modeé®® The change in amplitude of B-mode and

L-mode pattern controls the low-frequency signal of the Flo-
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