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The wind-driven ocean circulation at midlatitudes is susceptible to several types of instabilities. One
of the simplest models of these flows is the quasigeostrophic barotropic potential vorticity equation
in an idealized ocean basin. In this model, the route to complex spatio/temporal flows is through
successive bifurcations. The aim of this study is to describe the physics of the destabilization
process of a periodic wind-driven flow associated with a secondary bifurcation. Although
bifurcation theory has proven to be a valuable tool to determine the physical mechanisms of
destabilization of fluid flows, the analysis of the stability of time-dependent~for example, periodic!
flows, using this methodology, is computationally unpractical, due to the large number of
degrees-of-freedom involved. The approach followed here is to construct a low-order model using
numerical Galerkin projection of the full model equations onto the dynamically active eigenmodes.
The resulting reduced model is shown to capture the local dynamics of the full model. The physical
mechanism of the destabilization of the periodic wind-driven flow is deduced from the reduced
model. While there are several stabilizing processes, notably rectification, the destabilization occurs
due to time-dependent increase of the background horizontal shear in the flow. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1503804#
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I. INTRODUCTION

The midlatitude, mainly wind-driven, surface circulatio
in the ocean is characterized by gyre-type circulations wh
are closed by strong western boundary currents. For
ample, the Gulf Stream is the western boundary curren
the North-Atlantic and is part of a system of two gyres, t
subtropical and subpolar gyre. The intensification of
flows at the western boundaries of ocean basins is a clas
problem in dynamical oceanography, of which the basics
understood for a long time.1,2 The internal variability of these
boundary currents has recently been recognized as one
sible source of low-frequency variability~i.e., on time scales
of years to decades! in the climate system.3

Western boundary currents are highly nonlinear a
hence instabilities of such flows occur on several space
time scales. Eddy-resolving ocean models are a freque
used tool to study the internal temporal variability of t
midlatitude wind-driven ocean circulation.4 With the possi-
bility to perform numerical simulations on long time inte
vals and at high horizontal resolution, this low-frequen
variability has been extensively studied and was shown to
associated with the occurrence of low- and high-kinetic

a!Electronic mail: dijkstra@phys.uu.nl
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ergy states.5,6 The dynamical and physical origin of this typ
of variability is a subject of intense study.7–9

Much progress has been made through bifurcation s
ies which uncovered the structure of steady states and la
scale instabilities in idealized models.10–12 Usually, only the
first couple of Hopf bifurcations are determined and the
riodic solution arising from the first Hopf bifurcation is fol
lowed. It was shown that the first Hopf bifurcations intr
duce intermonthly and interannual variability into th
barotropic flows. Already this information has provided
interpretational framework for high resolution simulation6

in the relatively high~lateral! friction range. Recent work on
a more complete structure of Hopf bifurcations for a tw
layer shallow-water model, combined with the computati
of many trajectories, has indicated that the low-frequen
variability associated with the high- and low-energy sta
can be described within a finite-dimensional framewo
Only a small number of dynamical modes seems to be
volved to cause this type of behavior.9

However, what is still lacking is the precise dynamic
behavior far from critical conditions, the latter defined by t
location of the first Hopf bifurcation. Transient flow compu
tations are inadequate in resolving the full bifurcation stru
ture because unstable steady states and periodic orbits ca
be determined. This is a more general problem in hydro
1 © 2002 American Institute of Physics
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namic stability theory.13,14 For systems of partial differentia
equations, computation of periodic orbits in parameter sp
and their subsequent stability analysis~Floquet theory! is not
yet practical, because of the large number of degrees of f
dom involved. Hence, the reduction of the governing eq
tions of motion to systems of ordinary differential equatio
provides a way to make progress in understanding the r
to complexity and corresponding physical mechanisms
transition within these flows.

There are many examples in the fluid physics literat
of model reduction which can be summarized as~Galerkin-
type! projections of the full equations on a set of ba
functions.15 In many cases, the reduced model consists o
set of amplitude equations~e.g., Refs. 16 and 17!. For the
basis functions, one can take~i! eigenfunctions of a particu
lar linear operator,18 ~ii ! statistically determined basis func
tions such as empirical orthogonal functions or~iii ! orthogo-
nal polynomials~as in spectral methods!. Many problems are
known with these types of low-order models and the m
frustration is the noncorrespondence in dynamical beha
between the reduced model and the full model when
order of truncation of the former is changed. An enormou
rich behavior may be found in many reduced models, wh
sometimes has fascinated researchers so much that criti
examining the relation between the full and reduced mod
is omitted. An example hereof is the famous Lorenz mode19

where the dynamics bear little resemblance to that of
underlying full model of Rayleigh–Be´nard convection.20

With these problems in mind, and accepting that it m
be very difficult to find a low-order model which can captu
the dynamics of a full model over a reasonable range
parameter space, our approach here is less ambitious.
main aim of this paper is to construct a low-order model t
allows one to determine the physical mechanism of the
stabilization of a limit cycle, which arises through a Ho
bifurcation of the steady wind-driven barotropic quasige
strophic~QG! double gyre flow.12 We tackle this problem by
using ~i! continuation techniques to determine steady sta
and Hopf bifurcations within the full model,~ii ! transient
flow computations at several locations in parameter sp
and~iii ! locally reduced models to determine the stability
the periodic orbits by means of Floquet analysis. In the la
models, nonorthogonal basis functions are used which h
an immediate physical interpretation. Representation iss
of the low-order model are evaluated by comparing the
sults directly with those of the full model. The limit cycl
destabilizes through a Neimark–Sacker bifurcation and
physics of the destabilization process is described with h
of the reduced model.

The setup of the paper is as follows. In Sec. II the Q
model will be described, followed by a description of th
numerical continuation techniques. The general derivation
the low-order model is then presented in Sec. II C. The
scription of the dynamics of the full QG model in Sec. III
followed by the construction and analysis of the locally
duced model in Sec. IV. The physical mechanism associ
with the Neimark–Sacker bifurcation is presented in Sec
A summary and discussion of the main results conclude
paper.
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II. METHODOLOGY

We consider ocean flows with constant density~r! in a
rectangular basin of horizontal dimensionsL andB and with
constant depthD, which is situated on a midlatitudeb plane
with Coriolis parameterf 5 f 01b0y. The ocean circulation
in the basin is forced at the surface through a wind-str
vectort5t0(tx(x,y),ty(x,y)).

A. The quasigeostrophic model

In a quasigeostrophic approximation, the flow can
modelled by the well-known barotropic potential vortici
equation~Pedlosky, 1987! for the geostrophic stream func
tion c. This equation is nondimensionalized by using ho
zontal and vertical length scalesL and D, a characteristic
horizontal velocity scaleU, a time scaleL/U, and the maxi-
mum amplitude of the wind stresst0 . With introduction of
the horizontal velocitiesu andv and the relative vorticityz,
the dimensionless model can be written as

F ]

]t
1u

]

]x
1v

]

]yG~z2Fc1by!

5
1

R
¹2z1atS ]ty

]x
2

]tx

]y D , ~1a!

z5¹2c, ~1b!

u52
]c

]y
, v5

]c

]x
. ~1c!

These equations have been used many times to study
nomena in geophysical flows~e.g., Refs. 21 and 22!. On the
lateral zonal boundariesx50,1, no-slip conditions are pre
scribed whereas at the meridional boundaries (y50,A), we
apply slip conditions

x50,1, c50,
]c

]x
50, ~2a!

y50,A, c50, z50. ~2b!

Besides the aspect ratioA5B/L, several other param
eters appear, i.e., the Reynolds numberR, the strength of the
planetary vorticity gradientb, the wind-stress forcing
strengthat and the homogeneous Froude numberF. The
parameters are defined as

R5
UL

AH
, b5

b0L2

U
, at5

t0L

rDU2 , F5
f 0

2L2

gD
, ~3!

whereAH is the lateral friction coefficient andg the gravity
acceleration.

The characteristic velocityU is chosen such thatat

5b to give Sverdrup flow over the main part of the bas
The wind stress considered is

tx~y!52
1

2p F ~12a!cosS 2py

A D2a sinS 2py

A D G , ty50,

~4!

where the parametera controls the asymmetry of the wind
stress field with respect to the midaxis of the basin. T
unforced system of equations and boundary conditions
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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mits a reflection symmetry through the midaxis (y5A/2) of
the basin. This reflectionR has a representation

R~c~x,A2y!!52c~x,y!. ~5!

For a50, the applied wind stress admits a similar symme
and this puts constraints on the bifurcations, i.e., symm
breaking bifurcations will be of pitchfork type.23

B. Steady states and their stability

The equations are discretized using central differen
on an equidistantN3M grid. After discretization, a system
of nonlinear differential equations with algebraic constrai
results, which can be written as

M df

dt
1F~f,l!50. ~6!

Here f is the d-dimensional state vector (d523N3M ),
consisting of the unknowns at each grid point,l can be any
of the parameters (R,b,A,F,a), F is a nonlinear mapping
from Rd3R→Rd and the mass-matrixM is a linear opera-
tor.

Stationary solutionsF satisfy the equation

F~F,l!50 ~7!

which is a system ofd nonlinear algebraic equations. T
compute a branch of stationary solutions in one of the c
trol parameters, a pseudoarclength continuation method24 is
used. The branches of stationary solutions (F(s),l(s)) are
parametrized by an arclength parameters. Since this intro-
duces an extra unknown, an additional equation is nee
and the tangent is normalized along the branch, i.e.,

Ḟ0
T~F2F0!1l̇0

T~l2l0!2Ds50, ~8!

whereDs is the step length and a dot indicates differentiat
to s. (F0 ,l0) indicates the solution at the previous step. T
Newton–Raphson method is used to converge to the bra
of stationary solutions. This method finds isolated steady
lutions, regardless of their stability. The linear systems
solved with a preconditioned conjugate gradient method.25

When a steady state has been determined, the linear
bility of the solution is considered and transitions that ma
qualitative changes such as transitions to multiple equilib
~pitchfork bifurcations or limit points! or periodic behavior
~Hopf bifurcations! can be detected. The linear stabili
analysis amounts to solving a generalized eigenvalue p
lem of the form

gJf̃5kMf̃, ~9!

whereJ is the Jacobian matrix of~7!. The matricesJ and
M are in general nonsymmetric matrices, withM being
singular, andg andk complex numbers. The problem~9! is
solved using the QZ method.26 In casegÞ0 in ~9!, we will
use the notations5s r1 is i5k/g to indicate the eigen-
value. Hopf bifurcation points are detected by monitoring
eigenvalues along a branch of steady solutions. Ifs r changes
sign whiles iÞ0 at some value of the control parameterl, a
secant method is used to determine the value ofl at Hopf
bifurcation wheres r50.
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C. Locally reduced models

The discretized system of equations, as described ab
will be referred to below as the full model. Suppose that
some value of the control parameter, say atR5RH , a Hopf
bifurcation has been detected within this full model using
methods described above. From general theory, it is kno
that locally a limit cycle exists which may be stable~super-
critical Hopf! or unstable~subcritical Hopf!.27 When the di-
mension of the discretized systemd is very large, it becomes
computationally expensive to determine these limit cyc
directly from the~discretized! partial differential equations
although general methodology exists.28 The idea pursued
here is to construct~numerically! a low-order amplitude
equation model, locally near the Hopf bifurcation, which
capable to represent the dynamics of the full model bey
the weakly nonlinear regime.

The set of discretized nonlinear differential equations~6!
is rewritten in the general form

M df

dt
1Lf1N~f,f!5F, ~10!

where the nonlinear operatorF has been replaced by

F5Lf1N~f,f!2F
to explicitly show the linear operatorL, the nonlinear opera-
tor N and the forcingF. Let F be the solution to the stead
problem, i.e.,

LF1N~F,F!5F. ~11!

The solution to~10! is now decomposed into this steady sta
and a time-dependent part,

f5F1f̃. ~12!

After substitution into~10!, the linearized flowf̃ is governed
by

M df̃

dt
1Jf̃50, ~13a!

where the total JacobianJ is defined as

J[L1N~F,• !1N~•,F!. ~13b!

The linear operatorJ has an eigenvector decomposition,

LHJR5S, LHMR5I . ~14!

HereR andL denote the right- and left-hand eigenspaces
the linear operatorJ, I is the identity and the diagonal matri
S contains the corresponding eigenvalues, i.e.,

R5~r1 r2 ¯ r r !, ~15a!

L5~ l1 l2 ¯ lr !, ~15b!

S5diag~s1 s2 ¯ s r !, ~15c!

where r 5rank(S)5(M22)3(N22),d; the latter in-
equality is due to the singular nature ofM. Relation ~14!
states thatL and R are a bi-orthogonal set of eigenvecto
~i.e., l j M r k5d jk) and this property will be used in th
Galerkin projection below.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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With the use of this eigenbasis, the perturbationf̃ is
expanded inn right-hand eigenvectors,

f̃5Rna5(
j 51

n

r jaj~ t !. ~16!

The matrixRn denotes then-dimensional subspace ofR of
suitably chosen right-hand vectors, andLn is its adjoint sub-
space.

Substitution of~12! into ~10! and using~11! yields

MRn

da

dt
1JRna1N~Rna,Rna!50. ~17!

Projection onto the left-hand eigenbasisLn and the use of the
bi-orthogonality relation~14!, results in the set of couple
amplitude equations,

da

dt
2Sa1n~a,a!50. ~18a!

The operators in the projected system are defined as

S5Ln
HJRn , ~18b!

n~a,a!5Ln
HN~Rna,Rna!. ~18c!

In terms of the individual components, the evolution of a
plitude aj (t) is governed by

daj

dt
2 (

k51

n

bjkajk1 (
k51

n

(
l 51

n

cjklakal50, j 51,...,n.

~19a!

The coefficients in the projected system are defined as

bjk5 l j
HJr k , ~19b!

cjkl5 l j
HN~r k ,r l !. ~19c!

While this approach is fairly standard, the domain
parameter space where a close correspondence exist
tween the dynamical behavior contained in~19!, for a chosen
value of n, and the full model~9! is a priori unclear. The
selection of the appropriate eigenmodes turns out to
highly problem dependent. For the study of the QG dyna
ics of the wind-driven circulation, the choice of the basis w
be discussed in Sec. IV A.

III. DYNAMICS OF THE FULL MODEL

As is usual in studies of dynamical systems with seve
parameters, a set of standard parameter values is ch
These values~of the dimensional and nondimensional qua
tities! are shown in Table I and are representative of a ba

TABLE I. Dimensional and nondimensional parameter values.

L5106 m F50
b051.6310211 m21 s21 A51
f 051.031024 s21 b5103

r51.0023103 kg m23 at5103

t050.128 kg m21 s22 a50.2
D5500 m
U51.631022 m s21
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of size 100031000 km on a midlatitudeb-plane centered
around 45 °N. In this study, only the Reynolds numberR is
used as control parameter, while the other parameter va
will remain fixed at their standard values. The resoluti
used isN536, M536, which was shown to be sufficient t
capture all bifurcation points accurately.12 All results pre-
sented below have been obtained by applying an asymm
windstress forcing witha50.2 in ~4!.

In Fig. 1~a!, part of the bifurcation diagram is shown a

FIG. 1. ~a! Part of the bifurcation diagram of the full model. The branch
~un!stable steady state solutions has been indicated by a solid~dashed! line.
At the primary Hopf bifurcation, nearR582, indicated by a filled triangle,
a branch of periodic solutions is spawned from the steady state, with fi
~open! circles indicating~in!stability. The Neimark–Sacker bifurcation oc
curs nearR5105 ~open triangle!. ~b! Pattern of the steady state streamfun
tion at R582, close to the first Hopf-bifurcation point~maximum
amplitude51.783).
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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a plot of the mean kinetic energyEkin , defined by

Ekin5
1

2 E ~u21v2!d2x ~20!

versusR. The solid~stable! and dashed~unstable! curves in
Fig. 1~a! have been computed with the continuation meth
and each point represents a steady state. The steady
becomes unstable through a Hopf bifurcation atR581.5, the
location which is marked with a triangle in Fig. 1~a!. The
steady geostrophic stream functionc @Fig. 1~b!# at R581.5
shows a typical asymmetric double gyre flow, with a stron
subpolar gyre. The unstable steady state continues to
over the computational domain@the dashed curve in Fig
1~a!# and a second Hopf bifurcation occurs atR5108 ~again
labeled with a triangle!.

The complete spectrum of the JacobianJ at R582 ~Fig.
2! shows that there are high-frequency modes, which h
oscillation periods in the order of months~2 months corre-
sponds tos i575), low frequency modes with typical per
ods of years~1 year corresponds tos i513) and stationary
modes. The real and imaginary parts of the first three eig
solutions are shown in Fig. 3. The pattern, corresponding
the eigenvalue pair in Fig. 2 which just has crossed
imaginary axis, is a well-known Rossby basin mode@Figs.
3~a! and 3~b!#, with an oscillation period of two months.12

The second@Figs. 3~c! and 3~d!# and third @Figs. 3~e! and
3~f!# pair of modes are so-called gyre modes and charac
ized by their relatively low frequencies.29 In the pattern of
the real part of these eigenmodes@Figs. 3~c! and 3~e!#, the
maximum positive stream function perturbation is loca
near (x,y)5(0.2,0.55), which is just in the region of max
mum velocities of the eastward jet of the basic state@Fig.

FIG. 2. Spectrum of the linearized operator of the full model atR582,
slightly beyond the first Hopf bifurcation. A value ofs i512.6 corresponds
to 1 year period of the oscillation. The modes of interest have been den
by circles: the Rossby basin modes (s i5673) and the low frequency gyre
modes.
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1~b!#. The patterns of both gyre modes hardly differ; in t
second gyre mode, there is a secondary positive maximum
the recirculation region of the basic state@near (x,y)
5(0.6,0.4) in Fig. 3~e!#. The physics of propagation an
growth of both the~destabilized! Rossby basin modes12 as
well as the gyre modes is now understood.29 As its name
indicates, the propagation mechanism of the Rossby b
mode is potential vorticity conservation on theb plane~mid-
latitude Rossby-wave dynamics!. Here the Rossby basin
mode is excited, as it taps into the relative vorticity near
western boundary available through the presence of the
fluence of the double gyre flow. However, the propagat
mechanism of the gyre modes is independent ofb-plane dy-
namics and is related to symmetry breaking/restoring tend
cies, as will be explained in more detail below. Both mod
become more unstable, when the horizontal shear of
background gyre flow is large enough.

ed

FIG. 3. Stream-function patterns of the leading eigenmodes at the prim
Hopf bifurcation.~a! and ~b! Real and imaginary part of unstable Rossb
basin mode, with frequencys i573 ~'6 cycles per year!. ~c! and ~d! Real
and imaginary part of the first gyre mode, with frequencys i59.8, corre-
sponding to'0.8 cycles per year.~e! and~f! Real and imaginary part of the
second gyre mode. Its frequency,s i56.2, corresponds to'0.5 cycles per
year.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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The branch of periodic solutions arising from the fir
Hopf bifurcation atR582 in Fig. 1~a! has been determine
from the computation of the time-dependent flows using
Crank–Nicholson time discretization and a timestep of 1 d
The solid curve represents stable periodic solutions and
values ofR for which actual flows are computed are label
by dots. For each solution, the time-averaged value of
kinetic energy is plotted in Fig. 1~a!. The time series of the
kinetic energy of the stable periodic flow, obtained forR
587 is plotted in Fig. 4~a! together with its Fourier spectrum
~of the last 10 years of output! in Fig. 4~b!. The period of this
orbit is about 2 months and the secondary peak in the s
trum is a harmonic of the dominant frequency. The amplitu
of this limit cycle increases with increasingR @Fig. 1~a!#, but
the frequency is nearly independent ofR and corresponds
closely to that of the Rossby basin mode at the primary H
bifurcation in Figs. 3~a! and 3~b!.

Three subsequent time series of the flow are shown
Figs. 5 and 6, atR5110,R5120, andR5140, respectively,
of which the mean kinetic energy is plotted as open circle
Fig. 1~a!. The time-dependent behavior is quasiperiodic
R5110, as a second, lower frequency appears in the t
series@Figs. 5~a! and 5~b!#. This second frequency is abou
one year and corresponds well with that of the gyre mode
Figs. 3~c! and 3~d!. Hence, there is a transition from a stab
periodic orbit to quasiperiodic behavior somewhere betw
R5105 andR5110. This new frequency is incommensura
with that of the periodic orbit. In other words, it is not
rational multiple of the original~fundamental! frequency. In
dynamical systems theory, a transition with these charac
istics is usually associated with a secondary Hopf-
Neimark–Sacker bifurcation.23,27

FIG. 4. ~a! Time evolution of the basin integrated kinetic energy forR
587. ~b! Power spectrum of the last 10 years of the time series shown in~a!
with the frequency in cycles per year.
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
a
y.
he

e

c-
e

f

in

n
t
e

in

n

r-
r

From a Fourier transform of the full model streamfun
tion fields, the spatial pattern associated with this sec
frequencys i513.5 ~about 11 months!, is plotted in Figs.
5~c! and 5~d!. This pattern shows quite a good resemblan
with that of the first gyre mode@Figs. 3~c! and 3~d!#, which
strongly suggests that the gyre mode causes the destab
tion of the periodic orbit.

The flow remains quasiperiodic atR5120 @Figs. 6~a!
and 6~b!# while the amplitude variation of the kinetic energ
becomes larger. A comparison of the spectral characteris
in Fig. 6~b! with those in Fig. 5~b! shows that the harmonic
of the gyre mode become more energetic. ForR5140, the
time series of the kinetic energy@Fig. 6~c!# displays irregular
variability of large amplitude, with low-frequency oscilla
tions between high- and low-energy states. Correspondin
the power spectrum is broad banded, although high ene
levels can still be recognized at the Rossby basin mode
quency@6 cycles per year~cpy!# and, to a lesser extent, a
gyre mode frequencies@,1 cpy, Fig. 6~d!#.

From these results of the full model the basic quest
dealt with in this paper can be specified. Can one show
the high-frequency limit cycle indeed destabilizes throug
Neimark–Sacker bifurcation, as suggested from the res
above? Once this has been accomplished, can one deter
the physical mechanism of destabilization of the limit cycl
To investigate the destabilization of the periodic orbit, o
needs to study the linear stability properties of the flow l
earized along the proper periodic solution, but this is unf
sible on the original system of partial differential equation
In the following section, the locally reduced model, as d
rived in Sec. II C, will be used to accomplish this.

IV. ANALYSIS OF THE LOW ORDER MODEL

To understand the sequence of transitions found in
time-dependent behavior above in more detail, a locally
duced model is constructed. Its capabilities to represent
dynamics of the full model are presented in Sec. IV A.
Sec. IV B, bifurcation analysis is performed on the reduc
model.

A. Construction of the low order model

In terms of representing the dynamics of the full mod
with a minimal number of degrees of freedom, an orthogo
basis would be preferable, in terms of gaining informati
with the addition of each new degree of freedom. For a
tonomous~dynamical! systems, techniques for constructin
such a basis based on the statistical properties of the un
lying system are available, usually referred to as empiri
orthogonal functions~EOF!, proper orthogonal decompos
tion ~POD! or Karhúnen Loève decomposition~see Ref. 15
for an overview!. However, projection on these types of pa
terns, for example, EOF’s, does not provide information
which modes will become unstable, when varying cont
parameters. The latter complication may be circumvented
adding noise to the system to detect weakly damped mo
but for the computation of both the attractor and its lo
frequency variability, exceedingly long time integrations a
needed.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 5. ~a! Time evolution of the basin
integrated kinetic energy forR5110.
~b! Power spectrum of the last 20
years of the time series shown in~a!.
~c! and~d! Two phases of the unstable
mode for R5110 at frequency f
51.05 cpy in ~b!, obtained from an
FFT of the stream-function field of the
full model.
s
o

e

e
is
a

n

peri-
ced
en-

le
ced
y

We choose a basis for projection that is spanned by
lected modes from the eigenspectrum of the linearized
erator near the primary~Hopf! bifurcation, which are explic-
itly available from the analysis of the full model. This choic
is motivated by the appearance of patterns in the flow@Figs.
5~c! and 5~d!# that have a close resemblance to these eig
modes, even far beyond criticality. As for the use of th
eigenbasis, the major drawback is that the eigenmodes
not orthogonal, but only satisfy the bi-orthogonal relatio
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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ship ~14!. The difficulties that arise from working with a
nonorthogonal eigenbasis are addressed in a set of ex
ments, in which the convergence of a solution of the redu
model is investigated as a function of the number of eig
modes.

At R587, in a regime where the full model has a stab
limit cycle spanned by the Rossby basin mode, the redu
model is constructed~as in Sec. II C! using the basic stead
state~at R587) and eigenbasis obtained atR582. Each set
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 6. ~a! Time evolution of the basin integrated kinetic energy forR5120.~b! Power spectrum of the last 20 years of the time series shown in~a!. ~c! Time
evolution of basin integrated kinetic energy forR5140. ~d! Power spectrum of the last 70 years of the time series shown in~c!.
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of modes includes the unstable eigenmode, whose ampli
is designated bya1 , and subsequent modes are indicated
aj , j 52,...,n. For each truncationn, a time integration of the
reduced model~19! is performed with initial conditions
given by a1(0)5a2* (0)5100 andaj (0)50, j 53,...n. For
the equilibrium periodic state, a measure for the amplitude
the dynamical modes, i.e.,

Aj[
1

T E
t0

t01T

uaj udt ~21!

is shown in Table II. In all experiments the attractor
reached in (t05) 50 years and forT520 years, theAj have
converged to their mean values.

When only the unstable Rossby-basin mode and
leading gyre modes~amplitudesa1 , a3 , and a5 , respec-
tively! as shown in Fig. 3 are included, no finite amplitu
solution is found. Such a finite amplitude solution is fir
found when the stationary mode with amplitudea19 is in-
cluded. The amplitude of all the modes is shown in the fi
column of Table II, which indicates that the oscillato
modes 1, 3, and 5 plus the stationary mode 19 can giv
stable periodic orbit. The remainder of the modes~between 6
and 19! has only relatively small amplitude. When the latt
modes are not taken into account, also a periodic orbi
found with slightly changed amplitudes of the modes~sec-
ond column in Table II!. Hence, the smallest reduced mod
with the same periodic behavior as the full model has 7
grees of freedom~amplitudesa1 , a3 , anda5 , and their com-
plex conjugatesa2 , a4 , and a6 , with the stationary mode
a19).

One can understand why the stationary modea19 is im-
portant to be included in the reduced model. It accou
largely for the rectification that arises from the se
interaction of the unstable Rossby basin mode (r1). If we
denote this self-interaction byg0 , i.e.,

g05N~r1* ,r1!1N~r1 ,r1* !, ~22!

then, in the weakly nonlinear regime, the rectification patt
is given by

f052J21g05 (
n51

r ln
Hg0

sn
rn . ~23!

TABLE II. Frequency~first row! and amplitudes of selected modes~rows!
in three experiments~columns! to test the convergence behavior of the lo
order model,R587. In all experiments the final state is a limit cycle, as
the full model for this parameter value.A,19 represent the remainder of th
modes between 6 and 19.

1 2 3

v 73 73 72
A1 604.5 606.8 785.5
A3 77.7 61.1
A5 37.7 43.7

A,19 ,40
A19 147.5 160.0 292.2
A94 1271.7
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For the latter expression, the eigenvector representatio
the linear operatorJ is used, as given by~14!. In Fig. 7~a!,
the stream function of the rectificationf0 is shown, together
with the leading stationary mode, residing at position 19
the eigenspectrum forR582 @r19, in Fig. 7~b!#. This mode
provides the dominant contribution to the eigenmode exp
sion in ~23!.

We want to emphasize here that it is not our aim
derive a low-order model which is able to capture the co
plete dynamical behavior of the full model. Instead, we on
want a local low-order model, which is able to capture t
flow transition from periodic to quasiperiodic nearR5105.
Convergence within a reduced model, based on nonortho
nal eigenmodes is unlikely to be accomplished. Expand
the system with additional stationary modes, for instan
moder94, gives worse results in terms of convergence of
projection amplitudes~third column of Table II!. This mode
provides an additional contribution to the rectification p
tern, but it also projects into directions that are dynamica
not important. These must in turn be compensated by o
nonorthogonal modes, residing deeper in the spectrum.

B. Bifurcation analysis of the reduced model

The reduced seven-mode model as constructed abo
subjected to a bifurcation analysis by varying the cont
parameterR, similar to the full model. Periodic solutions t
the set of autonomous equations~18a!, with unknown period
T, are computed by continuation. In~18a!, the periodT in-
troduces an additional degree of freedom30 to the system
associated with the freedom of phase@if a(t) is a solution,
then for arbitraryt0 , a(t1t0) is also a solution#. To remove
this degree of freedom, we have chosen to constrain the
part of one of the systems components (aq1aq* ) at timet0 to
a fixed valueQ. It has been verified that solutions do n
depend on the choice of botht0 and Q. Periodic boundary
conditions in time are applied and the resulting system
ordinary differential equations becomes

da

dt
2Sa1n~a,a!50, ~24a!

a~0!5a~T!, ~24b!

FIG. 7. Comparison of the stream-function patterns of~a! the rectification in
the full model~time mean minus basic state! at R5110 and~b! the leading
stationary eigenmode, residing at position 19 in the spectrum atR582. Both
patterns have been scaled by their maximum values.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 8. ~a! Frequency of the limit
cycle as a function ofR, obtained with
the seven-mode reduced model~drawn
line! and the full model~stars/dotted
line!. ~b! Amplitude of the eigenmodes
in the reduced model as a function o
R.
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aq~ t0!1aq* ~ t0!5Q. ~24c!

Using a Crank–Nicholson scheme,~24! is discretized in time
and a Newton–Raphson method is applied to solve the
sulting set of nonlinear algebraic equations. For the ac
numerical computation, it is convenient to rescale time w
T, resulting in~24! being defined on the@0, 1# interval for all
values ofT. The Newton iteration is initiated from a weakl
nonlinear approximation to the solution or from a soluti
obtained by time integration of the reduced model. Onc
periodic solution is found, it can be followed as a function
the system parameters through continuation.28 The use of 40
grid points in the time domain suffices, since doubling t
temporal resolution to 80 grid points resulted in changes
amplitudes, and the frequency of the limit cycle of less th
1%.

The frequency of the limit cycle found within the re
duced model versusR is plotted in Fig. 8~a!, together with
the amplitude of the modes in Fig. 8~b!. In Fig. 8~a!, also the
dominant frequencies determined from the time integrati
of the full model are marked, demonstrating the capabilit
of the reduced model to describe the periodic orbit. W
increasingR, the amplitudes of all modes increase. The mo
with amplitudeA19 is quite large over the whole paramet
range, indicating that rectification process generated by s
interaction of the Rossby basin mode are fairly strong.

To compute the stability of the limit cycle, the reduce
model equations are linearized along the periodic orbitA(t),
obtained from solving~24!, i.e.,

ât2~S1n~A,.!1n~ .,A!!â50. ~25!

Information about the linear stability of the periodic orbit
contained in the eigenvalues of the monodromy matrix,30 the
so-called Floquet multipliers,rm . This monodromy matrix is
defined as the fundamental solution to~25! evaluated att
5T and is computed by integrating all possible initial co
ditions, conveniently represented by the identity matrix, o
one cycle of oscillation of the periodic orbit. If one or mo
Floquet multipliers lie outside the unit circle in the compl
plane, the periodic solution is an unstable limit cycle. If,
the other hand, all multipliers lie inside the unit circle, t
limit cycle is stable. For autonomous systems like~24!, one
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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Floquet multiplier associated with the periodic solutionA(t)
always equals unity. This implies that perturbations alon
direction tangent to the periodic orbit neither grow nor dec
This property also provides an important and necess
check on the numerical computation of the stability of t
periodic orbit.

The full temporal and spatial structure of the Floqu
modes is given byVm(x,t)egmt, whereVm(x,t) is the mth
Floquet eigenvector andgm5 log(rm)/T is the associated Flo
quet exponent. The temporal structure of eigenmodeVm is
obtained by integrating~25! over one cycle, starting from the
eigenvector of the monodromy matrix associated with
Floquet multiplierrm . There are three distinct scenarios a
sociated with the loss of stability of the periodic orbit as
control parameter is varied. A Floquet multiplier leaving t
unit circle at11, results in either a transcritical, a symmetr
breaking or a cyclic fold bifurcation. This is analogous to t
bifurcations of time-independent flows~see, for instance
Ref. 27!. When a multiplier leaves through21, a period
doubling or flip bifurcation takes place. Finally, when tw
complex conjugate eigenvalues exit the unit circle aw
from the real axis, a Neimark–Sacker bifurcation occu
This introduces a new, possibly incommensurate, freque
into the system, similar to the primary Hopf bifurcation.

The Floquet multipliers and exponents are plotted
Figs. 9~a! and 9~b! and near 0.760.71i @in Fig. 9~a!# a pair of
Floquet multipliers leaves the unit circle. This indicates th
a Neimark–Sacker bifurcation occurs atR5110.1. This
value is slightly above that guessed from the full model. T
limit cycle is shown~anomalies with respect to the unstab
steady state atR5110.1) for two phases in Figs. 9~c! and
9~d! and again the Rossby basin mode character of the s
tion is apparent. The dimensionless frequency, associ
with the unstable Floquet vector, is 9.01~corresponding to
about 16 months!, to be compared with 13.8~11 months! in
the full model. The Floquet vector is shown in Figs. 9~e! and
9~f! and its spatial structure and frequency is strongly rela
to the leading gyre modes in Figs. 3~c!–3~f!.

In Figs. 9~a! and 9~b! the gyre modes~indicated by GM1
and GM2, respectively! nearly merge for increasing value
of the control parameterR, as can be witnessed from the fa
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 9. Linear stability of the limit cycle in the low
order model.~a! Floquet multipliers,rm , as a function
of R. The unit circle in the complex plane is indicate
by the dotted line and separates a stable (urmu,1) from
an unstable (urmu.1) limit cycles. ~b! Floquet expo-
nents,gm5 log(rm)/T, as a function ofR. Floquet expo-
nents in the left~right! half-plane indicate~un!stable
eigenvectors. Small dark~large light! dots correspond
to low ~high! Reynolds numbers@RP(82.0,120.0)#.
GM1 denotes the position of the first gyre mode, GM
of the second gyre mode and BM1 that of the leadi
Rossby basin mode.~c! and ~d! Spatial pattern of the
limit cycle atR5110.1, with respect to the steady sta
at R5110.1 att50 andt5T/4. ~e! and~f! Spatial pat-
tern of two phases of the leading Floquet vector.
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that their eigenvalues become almost identical. This sugg
that both gyre modes are indispensable in setting up the
tial pattern of the unstable mode at the Neimark–Sacker
furcation. This is confirmed by experiments where either o
of the gyre modes has been omitted from the basis of
reduced model. In both cases no bifurcations occur be
R5160 and no gyre mode becomes unstable.

Although the correspondence of the reduced and
model up to the Neimark–Sacker bifurcation is good,
reduced model turns out to be capable of representing fl
at higher values ofR. ForR5120, the projection coefficient
of the trajectory of the full model onto the modes of t
reduced model are shown in Fig. 10. This indicates that
limit cycle is represented byr1 , its rectification byr19 and
that the low-frequency signal is represented both byr3 and
r5 . Having established the correspondence of the dynam
of the reduced and the full model, we will use both the p
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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riodic state and the Floquet vectors of the reduced mode
the description of the physical mechanism associated w
the Neimark–Sacker bifurcation in the next section.

V. PHYSICAL MECHANISM OF THE SECONDARY
INSTABILITY

To describe the physical mechanism of the destabili
tion of the ~Rossby basin mode! limit cycle by the ~gyre!
Floquet mode, it is necessary to recapitulate the esse
physics of the destabilization of the gyre mode on the ste
state flow.

The oscillatory behavior of the gyre mode is charact
ized by an almost standing wave pattern which propaga
perpendicularly to the direction of the eastward jet@Figs.
3~c!–3~f!#. In the barotropic quasigeostrophic model of t
double gyre flow, with an antisymmetric wind-stress patte
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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@a50 in ~4!#, this mode arises through merging of tw
nonoscillatory modes.29 The first one, called aP mode, con-
sists of a tripole which is symmetric with respect to t
midaxis of the basin; its effect is to increase the shear of
eastward jet. In the casea50, this mode was shown to b
related to the appearance of multiple steady states throu
symmetry-breaking pitchfork bifurcation. The spatial patte
of the second stationary mode, calledL-mode and related to
the occurrence of limit points, is antisymmetric and dipo
and its effect is to strengthen or weaken both gyres. Th
two real modes tend to deform on the asymmetric branc
of solutions in such a way that they merge to become os
latory: a gyre mode results from this marriage. The grow
and decay of the energy of the gyre mode in the differ
stages of the oscillation is determined by a pure shear me
nism. The combined effect of this shear, the asymmetry
the steady flow and the symmetry-breaking mechani
which induces temporal constraints between the symme
and antisymmetric components of the perturbations, ca
the low-frequency oscillation. Once the steady state beco
more asymmetric, the gyre mode becomes more unstable
cause it can feed on the increased horizontal shear.

The physical mechanism of the destabilization of t
limit cycle is analyzed within the reduced model, since F
quet vectors and the limit cycle are available near critical
As the asymmetry in the strength of both the gyres is
pected to play a major role in the destabilization of the lim
cycle, a measure of this asymmetrySa was chosen as th
difference between the maximum stream function values
the subtropical (cst) and subpolar gyre (csp), i.e., Sa5cst

2csp. To monitor the interaction between the perturbati
~i.e., the Floquet vector! and the limit cycle, changes in th
perturbation kinetic energy were calculated. The energy
ance of the perturbation can be written as

dekin

dt
5Ĩ2R21D̃, ~26!

whereĨ is the Reynold’s stress energy production andD̃ is
the dissipation. The latter depends only on the perturba
structure, whereas the energy production both depends o
periodic background state as well as the perturbations.

For three cases near critical conditions,R5102.8, R
5110.1, andR5117.2, the total kinetic energy of the lim
cycle is plotted versusSa in Figs. 11~a!–11~c!, respectively.

FIG. 10. Evolution of the projection coefficients of the eigenmodes in
full model at R5120: Rossby basin mode~r1 , solid line!, leading gyre
modes~r3 , dashed, andr5 , dashed–dotted line! and the first real mode
~r19 , dotted line!.
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The labelsA–G indicate specific stages along the limit cyc
and simultaneously indicate the path taken through
phase-plane picture. For each case, the asymmetry in
limit cycle increases fromH→C and decreases fromC
→H. While the range of asymmetries do not change w
increasingR, the overall kinetic energy increases. The ma
change with increasingR is that the phase in which th
asymmetry decreases is associated with higher kinetic en
of the total flow.

The frequency of the Floquet mode is lower than that
the periodic orbit. To monitor the growth of this mode, w
plot the perturbation kinetic energy (ekin) versus its tendency
(dekin /dt) in Figs. 11~d!–11~f! again for R5102.8, R
5110.1, andR5117.2. Only the evolution of these quant
ties over one period of oscillation of the limit cycle is show
During the phase of high (B→D) asymmetry of the limit
cycle, the Floquet mode grows. Also in the phase of l
asymmetry (F→H), there is growth of the Floquet mode
although substantially weaker than during the high asymm
try phase. As can be seen, the total growth increases witR,
mainly due to an increase in growth rates in the hig
asymmetry phase (B→D). The growth of the Floquet mode
appears closely associated with the destabilization me
nisms of the gyre mode in the steady state. Hence, this
motivation to obtainP- andL-mode signatures in the Floque
vector.

The P-mode signature of the Floquet vector is co
structed at criticality (R5110.2) by looking at the time se
ries of this mode at the point@marked by an asterisk in Fig
12~a!# where the background gyre flow~at the Neimark–
Sacker bifurcation! has its maximum. This time series is co
related with time series at all other points and the correlat
coefficients are plotted in Fig. 12~a!. In the same way, the
L-mode part of the Floquet vector is determined by looki
at the time series of the difference between the maxima
both gyres@marked by the two asterisks in Fig. 12~b!# and
correlating this time series with those over the rest of
domain. The correlation coefficients give the pattern in F
12~b!. The effect of theP mode on the mean flow is to
increase/decrease the shear between the gyres, whereasL
mode tends to strengthen/weaken the gyres, just as in
more idealized (a50) double gyre problem.29 The P-mode
andL-mode amplitudes are plotted versus time in Fig. 12~c!.
This shows that theP andL mode are nearly in quadratur
and they clearly control the low frequency behavior of t
flow. Their interaction with the background limit cycl
causes growth, with the larger~smaller! peak corresponding
to B→D (F→H) in Fig. 11~e!. However, it is difficult to
establish a mechanistic picture of the way this growth
coupled to the amplitudes of theP andL mode individually.

When the stability of the time-mean state of the lim
cycle is computed, a Hopf bifurcation associated with t
destabilization of the first gyre mode is found atR5142.2,
significantly beyond the value found in both the full mod
and in the Floquet analysis of the low-order model. Th
shows that the rectification associated with the Rossby b
mode prevents the destabilization of the gyre mode, a

e
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FIG. 11. Phase space diagram of the limit cycle for~a! subcritical conditions (R5102.8),~b! critical conditions (R5110.1), and~c! supercritical conditions
at R5117.2. The abscissa shows a measure for the asymmetry of the flow,Sa , versus the integrated kinetic energyEkin . Phase space views on the evolutio
of the leading Floquet-vector over one oscillation cycle of the periodic orbit,~d! subcritical conditions,~e! critical conditions, and~f! supercritical conditions.
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tends to reduce the asymmetry between the subpolar an
subtropical gyre@Fig. 5~c!#. The temporal changes in th
limit cycle are important for the destabilization process.
the absence of gyre modes, the rectification due to the
interaction of the Rossby basin modes stabilizes the m
flow. On the other hand, it is the time-dependent characte
the Rossby basin mode which enhances the contrast~and
thus the shear! between the gyres with each passing, th
counteracts the stabilizing effect due to rectification and r
ders the gyre mode~s! unstable.

VI. SUMMARY AND DISCUSSION

In the analysis of the transition to complex tim
dependent wind-driven ocean flows, one additional step
been taken by determining the physical mechanism of
transition of a high-frequency oscillating flow to a quasipe
odic flow, having both a high- and low-frequency comp
nent. The steady wind-driven double-gyre flow becomes
stable through a Hopf bifurcation at relatively low values
the Reynolds numberR. The physical mechanism of propa
gation of the critical mode is the same as that of a barotro
Rossby basin mode and its growth is related to the horizo
shear of the background flow field.12 It is this barotropic
instability, which gives a time-dependent periodic gyre flo
which a dominant frequency in the order of months. W
increasing values ofR, this periodic orbit destabilizes
through a Neimark–Sacker bifurcation. While this destab
zation could be anticipated from the time-dependent flo
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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computed with the full model, the exact details of the des
bilization process were captured using a~numerically con-
structed! low-order model. It is now possible to exploit th
versatility of the low-order model and to pinpoint the esse
tial physical modes that govern the variability, as observed
the full model.

The application of the locally reduced model appears
have a large application potential, although one has to rea
that its results have to be verified with those of a full mod
Ideally one would like to work with a locally reduced mod
that shows convergence to the full model dynamics as
number of modes is increased. The results summarize
Table II indicate that this property is difficult to satisfy whe
~nonorthogonal! eigenmodes are used. However, the eig
modes have the attractive property that they have a di
physical interpretation.

With the current state of continuation methods, alrea
large dimensional dynamical systems can be analyzed~up to
106 degrees of freedom, see Ref. 31!. There are specific ei-
genvalue solvers which can locate a specific number of r
and left eigenvectors, making a numerical construction
such locally reduced models possible for a large class
applications.32 With such models, realizing their limitations
one can analyze one step further into the complexity
flows, by allowing the determination of local periodic orbi
and their linear stability. In addition, questions related to
effects of noise on the dynamics can be tackled. While i
very difficult to determine probability density functions fo
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 12. Regression maps of the~a! L mode and~b! P mode, obtained from the leading Floquet vector atR5110, CI is 0.2. The solid line marks the positio
of the basic state jet.~c! Time series of the indices of theP mode@dashed line, taken at jet axis at the position marked by* in ~a!# and theL mode@solid line,
constructed from the difference of the stream-function values of the Floquet mode at the positions marked by* in ~b!#.
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systems of partial differential equations, this can be done
small dimensional systems.

From the reduced model developed here it is shown
the ~gyre! Floquet mode can extract energy from the Ross
mode periodic orbit through the changes in the horizon
shear of the background state. The propagation mecha
of the Floquet mode is shown to be the same as that of
gyre mode.29 The change in amplitude of aP-mode and
L-mode pattern controls the low-frequency signal of the F
quet mode. With each passing of the Rossby-basin mode
asymmetry of the flow is enhanced and induces a coup
with the amplitudes of theP andL modes which control the
growth of the perturbation associated with the Floquet m
~Fig. 12!. While this physical mechanism may appear a
detail within a model of very limited applicability, its de
scription is of utmost importance. Work within a hiearchy
models of the ocean circulation has indicated that the g
mode is a very robust feature which is not limited to pu
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barotropic quasigeostrophic models in square basins.31 Since
its dynamics are related purely to the shear of the ba
ground western boundary current, and is not related
Rossby wave propagation, its time scale inherently has
frequency. Hence, the results here contribute to the phy
of the low-frequency variability of more general ocean flow
and eventually to that of the climate system.
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