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Summary 
 
An Algebraic Dynamic Multilevel (ADM) method for simulations of multiphase flow in heterogeneous porous 
media with an adaptive enriched multiscale formulation for saturation unknowns is presented. ADM maps the 
fine-scale fully-implicit (FIM) discrete system of equations to a dynamic multilevel system, the resolution of 
which is defined based on the location of the fluid fronts. The map between the dynamic multilevel resolutions 
is performed algebraically by sequences of restriction and prolongation operators. While finite-volume 
restriction operators are necessary to ensure mass conservation at all levels, different interpolation strategies can 
be considered for each main unknown (e.g., pressure and saturation). For pressure, the multiscale basis functions 
are used to accurately capture the effect of fine-scale heterogeneities at all levels. In previous works, all other 
unknowns (e.g., saturation) were interpolated with piece-wise constant functions. Hence, the multiscale nature 
of saturation equation was not fully exploited. Here, an adaptive interpolation strategy, thus a multiscale 
transport formulation, is employed for the saturation unknowns that allows to preserve most details of the fine-
scale saturation distribution even in regions where a coarser resolution is employed. In regions where the ratio 
between the coarse and the fine-scale saturation updates is detected to be constant throughout the time-
dependent simulation, such ratio is stored and employed as interpolator for subsequent time-steps in which a 
coarser resolution is employed.  Numerical results are presented to study the accuracy and efficiency of the 
method and the advantages of such interpolation strategy for test cases including challenging non-linear physics, 
i.e.  gravitational and capillary effects. 
 
 



Introduction

Simulation of multiphase flow in natural formations requires to deal with many difficulties deriving from
the multi-scale (both in time and space) nature of the process. In fact, geological formations have very
large length scales compared to those at which most physical and chemical interactions occur. Addition-
ally, even at the so called Darcy scale, natural porous media have highly heterogeneous properties (e.g,
permeability). To accurately capture the physics of interest and to honour the heterogeneous properties,
very high resolution grids are required. However, the size of the domains and the necessity to run a large
number of simulations to deal with the uncertainty of the parameters make high resolution simulations
impractical for field-scale applications.

Traditionally, upscaling techniques have been used to reduce the computational cost by mapping rock
and fluid properties to a much coarser resolution. However, in presence of more complex physics, ex-
cessive upscaling may result in non-satisfactory results; and, therefore, advanced algorithms and solvers
have to be used to allow for higher resolution grids to be employed (Cusini et al., 2018b). For exam-
ple, due to the local nature of transport processes, a variety of dynamic local grid refinement (DLGR)
techniques (Bell and Shubin, 1983; Berger and Oliger, 1984; Heinemann et al., 1983; Edwards and
Christie, 1993) have been proposed in the literature for both finite-element (FE) (Mostaghimi et al.,
2015) and finite-volume (FV) (Edwards, 1996; van Batenburg et al., 2011; Pau et al., 2012; Faigle et al.,
2014a; Hoteit and a. Chawathé, 2014; Faigle et al., 2014b) schemes and for both sequential and fully-
coupled approaches. In these methods, the computational cost is reduced by adapting the grid resolution
throughout the time-dependent simulation so that the high resolution grid is only employed at the ad-
vancing front. However, such techniques are not easily employed in heterogeneous media, as mapping
geological properties throughout different resolutions is challenging.

The Algebraic Dynamic Multilevel (ADM) method (Cusini et al., 2016) was introduced to allow to
employ a dynamically defined grid resolution to highly heterogeneous domains. The system of equa-
tions is discretized on a high-resolution grid (referred to as fine-scale) and then mapped to coarser grid
resolutions in those regions where a high-resolution is not required. The appropriate grid resolution is
chosen based on the contrast of relevant fluid properties and the presence of specific features (e.g., wells).
Mapping the unknowns across different resolutions is performed through sequences of restriction and
prolongation (interpolation) operators. While the choice of finite-volume restriction operators (Jenny
et al., 2003; Wang et al., 2014) is dictated by the need of honouring mass conservation at all scales,
different options can be considered for the interpolation strategy. In previous works it was shown that
multiscale basis functions (Cusini et al., 2016, 2018a) are an effective choice as pressure interpolators
as they contain information of the underlying heterogeneities. All other variables (i.e., saturations and
mass/mole fractions), instead, were always interpolated using piece-wise constant functions.

In this work an adaptive multilevel prolongation operator for saturation unknowns is considered. Based
on the saturation change over simulation time, the sub-regions at which the saturation values slowly
change are first detected. Then, following Zhou et al. (2011), the ratio between fine and coarse satura-
tion changes over time are assumed to be constant for these sub-regions. The value of this constant ratio
is found dynamically throughout the time-dependent simulation (Lee et al., 2009). The grid is coarsened
wherever the time derivative (in discrete form, the change over a time step) of the ratio between fine and
coarse scale saturations is below a user-defined tolerance. The ratio between coarse and fine-scale satu-
ration is then stored and employed as the saturation basis-functions for subsequent time-steps. Such an
approach allows for a better reconstruction of the saturation distribution behind the fast-moving fronts,
i.e., where the saturation changes are slow. Several numerical examples are presented to investigate
the advantages of including this enhanced saturation prolongation for ADM, compared to the originally
proposed piece-wise constant interpolation.

The paper is organised as follows. First the governing equations and the fine-scale solution strategy are
briefly reviewed in the next section. Then, the original ADM method is briefly presented in section 3.
Sections 4 and 5 illustrate the proposed saturation interpolation strategy and coarsening criterion. Some
numerical experiments are presented in section 6. Finally, the paper is concluded in section 7.
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Governing equations and fine-scale solution strategy

Mass conservation equations describing the flow of a wetting (w) and a non-wetting (nw) phase in a
porous medium, in presence of capillary and gravitational forces, read

∂

∂ t
(φραSα)−∇ ·

(
ραλαK ·

(
∇pα −ραg∇z

))
= ραqα , α = {w, nw}. (1)

Here, t is the time, φ the porosity of the porous medium, pα , ρα and Sα are the pressure, the density and
the saturation of phase α . The term λα =

krα

µα
is the phase mobility and krα

and µα are the phase relative
permeability and viscosity. Also, K is the permeability tensor, g the gravitational acceleration and ∇z a
unit vector pointing in the direction of gravity. Finally, qα is the sink/source term (i.e., wells) of phase
α . The two phase pressures are related through capillary pressure, i.e.

pc = pnw− pw. (2)

The capillary pressure pc is a non linear function of the wetting phase saturation and of the rock proper-
ties, i.e.

pc(Sw) = σ cos(θ)

√
φ

K
J(Sw) (3)

(4)

where

J(Sw) = A

(
1−Swirr

Sw−Swirr

)B

. (5)

Here, σ is the surface tension and θ is the contact angle. Moreover J is defined Leverett’s function and
the constants A and B are characterise the fluid and the geological formation. Eq. (1) along with the
capillary relations and with the constraint Sw + Snw = 1 form a well-posed problem that can be solve
for two primary unknowns. Here, the non-wetting pressure pnw and the wetting phase saturation Sw are
chosen as primary unknowns.

The governing equations are discretized in space and time using the finite-volume method and a back-
ward Euler scheme. A two-point flux approximation (tpfa) is employed to approximate the convective
fluxes. Wells fluxes are computed following Peacemann’s well model (Peaceman, 1978). The non-
linear discrete system of equations is solved using a Newton-Raphson method. Thus, at each non-linear
iteration ν the following linear system has to be solved,[

Jν
wp

Jν
wS

Jν
nwp

Jν
nwS

]
︸ ︷︷ ︸

J0
ν

[
δ pν+1‘
δSν+1

]
︸ ︷︷ ︸

δxν+1
0

=−
[

rν
w

rν
nw

]
︸ ︷︷ ︸

rν
0

. (6)

Here, rw and rnw are the residual of the mass conservation equations of the wetting and non-wetting
phases respectively. Moreover, δx = [δ p, δS]T is the vector of Newton’s updates and J0

ν is the Ja-
cobian (derivatives) matrix. Each block Jαx of the Jacobian matrix contains the derivative of the mass
conservation equation relative to phase α with respect to the primary unknown x, i.e. Jαx =

∂ rα

∂x .

ADM method

The solution of the linear system of Eq. (6) represents the most computationally intensive part of field
scale simulations and limits the maximum resolutions that can be employed for such applications. The
Algebraic Dynamic Multilevel method (Cusini et al., 2016) was developed to reduce the computational
cost associated with this step without having to define upscaled quantities. ADM employs a hierarchy
of nested grid at different resolutions, defined at the beginning of the simulation. At each time-step, the
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proper grid resolution is defined for each area of the domain. Thus, the fine-scale Jacobian system of
Eq. (6) is mapped to the dynamically defined grid resolution by the means of sequences of restriction
(R̂) and prolongation (P̂) operators. Considering lmax resolution levels, at each Newton’s iteration the
following restricted system has to be solved

lmax

∏
l=1

R̂l
l−1 Jν

0

lmax

∏
l=1

P̂l−1
l δxν+1

lmax
=−

lmax

∏
l=1

R̂l
l−1rν

0 . (7)

Once the system of Eq. (7) is solved, the solution is prolonged (interpolated) to the original fine-scale
resolution, i.e.

δxν+1
0 ≈

lmax

∏
l=1

P̂l−1
l δxν+1

lmax
. (8)

The restriction and prolongation operators are block matrices of the form

R̂l
l−1 =

[
R̂l

l−1
R̂l

l−1

]
, P̂l−1

l =

[
(P̂l−1

l )p

(P̂l−1
l )S

]
. (9)

Here, all blocks of the restriction opeartor are identical and correspond to a finite-volume restriction
operator (Jenny et al., 2003; Wang et al., 2014) so that mass conservation is ensured. On the other
hand, the columns of the blocks (P̂l−1

l )p and (P̂l−1
l )S contain the basis functions employed to interpolate

pressure and saturation unknowns, respectively. Multiscale basis functions (Hou and Wu, 1997; Jenny
et al., 2003; Wang et al., 2014) are employed as pressure interpolator as it was shown that they provide an
accurate pressure approximation for heterogeneous problems. In all previous works piece-wise constant
basis functions were used for saturation unknowns.

The adaptive multilevel saturation prolongation operator for ADM, inspired by the work of Zhou et al.
(2011), is described in the next section.

Adaptive saturation interpolator

Let us consider, for the sake of simplicity, a case where only a coarse and a fine resolution level are
present. These can represent any adjacent pair of resolution levels I = l (coarser) and J = (l−1) (finer).
The discrete mass balance equation at iteration ν for a cell i belonging to the finer scale (J) reads

φVi

∆t

(
(ρi Si)

ν − (ρi Si)
n
)
+

nnb

∑
j=1

Fν
i j = ρ

ν
i qν

i ∀ i ∈Ω
J, (10)

where Vi is the volume of cell i, Fi j is the discrete flux exchanged between cells i and its neighbours j
and nnb is the number of cells neighbouring cell i. Let us consider a coarse block h, containing cell i,
belonging to the coarse level I. The coarse scale saturation can be defined as

Sν
h =

cf
∑

i=1
Viρ

ν
i Sν

i

Vh ρν
h

, (11)

where

Vhρ
ν
h =

cf

∑
i=1

ρ
ν
i Vi. (12)

Here, cf is the coarsening factor and indicates the number of fine cells i contained in a coarse block h.
Thus, by applying the FV restriction operator to Eq. (10) the coarse system of equations reads

φ

∆t

( cf

∑
i=1

Vi (ρi Si)
ν −

cf

∑
i=1

Vi (ρi Si)
n
)
+

cf

∑
i=1

( nnb

∑
j=1

Fi j

)ν

=
cf

∑
i=1

ρ
ν
i qν

i . (13)
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By substituting Eq. (11) the following coarse scale mass-balance equation is obtained,

φVh

∆t

(
(ρh Sh)

ν − (ρh Sh)
n
)
+

cf

∑
i=1

( nnb

∑
j=1

Fi j

)ν

=
cf

∑
i=1

ρ
ν
i qν

i ∀h ∈Ω
I. (14)

Let us define ψn
i as the ratio between the fine and coarse saturation of a fine-scale cell i contained in

coarse cell h, i.e.

ψ
n
i =

∆Sn
i

∆Sn
h

(15)

where
∆Sn

i = Sn
i −Sn−1

i and ∆Sn
h = Sn

h−Sn−1
h . (16)

The fine-scale saturation update at iteration ν +1 is approximated as

δSν+1
i ≈ ψ

n
i δSν+1

h if i is in cell h. (17)

Remark, that the originally proposed ADM method (Cusini et al., 2016) would consider ψ = 1 and
assign the average saturation to each coarse block.

Coarsening criterion

Equation (17) states that the fine-scale saturation change is approximated by a constant fraction of the
coarse-scale saturation. Consequently, such an approximation will be accurate whenever the ratio ψi
defined in Eq. (15) is actually close to be constant, i.e.

∂ψi

∂ t
≈ 0. (18)

Thus, it is natural to choose to coarsen the grid whenever such condition is verified. At a given time-step
n, a cell j belonging to level l, with l > 0, is refined whenever the following condition is met:∣∣ψn

i −ψ
n−1
i

∣∣
∞

∆t
> tol where cell i is contained in j. (19)

Additionally, in order to detect an incoming saturation front, cell j is also refined whenever the following
conditions occur (

∆Sn−1
j < tol2∧∆Sn

j > tol2

)
(20)

or
max(∆Sn

i ) ·min(∆Sn
i )< 0 where cell i is contained in j. (21)

Three numerical experiments comparing the original ADM method and the proposed improvements are
presented in the following section.

Numerical examples

In this section numerical examples are presented as proof of concept. Results obtained with the proposed
adaptive saturation interpolation strategy and coarsening criterion are compared against those obtained
with the piece-wise constant saturation basis functions and a coarsening criterion based on the saturation
difference between neighbouring cells.

In all the presented test cases, two immiscible incompressible phases, water (w) and oil (o), are con-
sidered. The phase viscosities and densities are µw = 10−3 Pa s, ρw = 1000 kg

m3 for the water and µo =

1.5 ·10−3 Pa s, ρo = 800 kg
m3 , for the oil. The initial water saturation is uniform and equal to 0.1, quadratic

relative permeability functions are considered and capillary forces are neglected.
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Sat. basis functions Coarsening criterion Tolerances
Run 1 piece-wise constant ∆S tol = 0.05
Run 2 adaptive ∂ψ

∂ t tol = tol2 = 10−3

Table 1 ADM settings for all runs.

The ADM settings employed for all test cases are shown in Table 1. The following error measure is
employed for the variable x (i.e., pressure and saturation),

errorx =
||x− xfs||2
||xfs||2

(22)

Here, the subscript fs indicates a fine-scale simulation which is used as a reference. The average error is
computed by averaging over all time-steps.

Test case 1: 1D homogeneous reservoir

A 99m×10m×10m homogeneous reservoir with permeability K = 1e−15m2 and porosity φ = 0.2 is
considered on which a 297×1×1 grid is imposed. A rate constrained injection well injects pure water
in the first cell at 0.001 pv

day whereas a pressure constrained producer perforates cell 99 with a bottom
hole pressure of 100bar. The initial water saturation is uniform and equal to 0.1 and quadratic relative
permeabilities are considered. The simulation is run until 2 pore volumes are injected in the reservoir.

Figure 1 shows a comparison of the saturation profile at three different time-steps obtained by employing
ADM with piece-wise constant saturation basis functions and the adaptive prolongation operator pre-
sented in the previous section. Note that when employing piece-wise constant interpolation the coarse
scale saturation is assigned to all fine-cells belonging to a coarse cell whereas, the adaptive saturation
interpolator allows to preserve most fine-scale details of the saturation distribution.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
t

Grid cell

S

Piece-wise constant

Adaptive sat prolongation

Figure 1 Case 1: saturation distribution at three different time-steps obtained using a 3-level ADM
method employing piece-wise constant saturation interpolation (blue curves) and the adaptive satura-
tion prolongation (red dotted curves).

Figure 2 shows the adaptive grid employed by the two ADM simulations. In both cases ADM employs
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3 coarse levels (4 levels in total). Note that, since the coarsening criteria are also different the grid
resolutions also differ.

The evolution of the number of grid cells employed in each ADM simulation is shown in the left graph
of Fig. 3. The right graph of Fig. 3, instead, illustrates the average pressure and saturation errors. The
errors of the two ADM simulations are similar although employing the adaptive saturation prolongation
operator reduces the saturation error. This is related to the higher quality of the interpolation of the
saturation field behind the front and probably to the different choice of ADM grid resolution.

Piece-wise constant sat basis functions Adaptive saturation interpolator

Figure 2 Case 1: saturation map and ADM grid at the three different time-steps for which the solution
is shown in Fig. 1.

0 50 100 150 200
0

20

40

60

Time-step

N
A

D
M

N
fs

%

Piece-wise constant

Adaptive sat prolongation

Pressure Saturation
0

0.5

1

1.5

2

·10−2

Property

||x
−

x f
s||

2
||x

fs
|| 2

Piece-wise constant

Adaptive sat prolongation

Figure 3 Case 1: number of grid-cells employed in ADM simulations expressed as a percentage of the
fine-cells grids (left) and average pressure and saturation errors (right) for ADM employing piece-wise
constant saturation basis functions (blue) and the adaptive saturation interpolation (red).

Test case 2: 2D homogeneous reservoir

A 99m× 99m× 10m homogeneous reservoir with permeability K = 1e− 15m2 and porosity φ = 0.2
is considered. A 99× 99× 1 cartesian grid is imposed on the domain. Two wells are present in cells
(1,1) and (99,99); the first one is injecting water a constant rate of 0.001 pv

day whereas the one has a
constrained BHP = 100 bar. The simulation is run until 2 pore volumes are injected in the reservoir.
Simulations are run with the ADM method employing 2 levels of coarsening with both the adaptive
saturation prolongation and piece-wise constant saturation basis functions.

Figure 4 shows a comparison of the saturation map and the ADM grid resolution for the two different
settings of the ADM method. Remark the differences in the grids employed in the two ADM simu-
lations. At early times (column 1) the saturation gradient based criterion (top row) concentrates most
fine-scale grid-cells around the front and seems to have a more efficient distribution of the fine-cells
grids. However, at later times (columns 2 and 3) regions where stationary or quasi-stationary satura-
tion gradients are present are kept refined whereas the newly proposed criterion allows for coarsening
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in these regions and the fine-scale details of the saturation distribution are recovered by the saturation
interpolation strategy.

Figure 4 Case 2: saturation map and ADM grid at three different time-steps (columns) for ADM simula-
tions employing piece-wise constant basis functions (first row) and the adaptive saturation prolongation
operator (second row).

The evolution of the number of grid cells employed in each ADM simulation is shown in the left graph
of Fig. 5. The right graph of Fig. 5, instead, illustrates the average pressure and saturation errors, which,
as for the previous test cases, are reduced by employing the adaptive saturation interpolation.

0 50 100 150 200
0

20

40

60

Time-step

N
A

D
M

N
fs

%

Piece-wise constant

Adaptive sat prolongation

Pressure Saturation
0

1

2

3

·10−2

Property

||x
−

x f
s||

2
||x

fs
|| 2

Piece-wise constant

Adaptive sat prolongation

Figure 5 Case 2: number of grid-cells employed in ADM simulations expressed as a percentage of
the fine-scale grid cells (left) and average pressure and saturation errors (right) for ADM employing
piece-wise constant saturation basis functions (blue) and the adaptive saturation interpolation (red).
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Test case 3: 2D homogeneous reservoir with barriers

Here, two low permeability barriers are added to the reservoir presented in the previous test case as
shown in Fig. 6. Boundary conditions and wells are the same as those of the previous test case.

Figure 6 Permeability field for test case 3.

Figure 7 shows the saturation map and the ADM solution grid at three different time-steps for simula-
tions run employing piece-wise constant (top-row) and adaptive (bottom row) saturation basis functions.
Remark how the newly proposed coarsening criterion and the adaptive saturation interpolator allow for
much more aggressive coarsening at the interface between high and low permeability regions. Such
differences are highlighted in yellow in Fig. 7. The newly proposed criterion identifies regions where no
dynamics are present despite the existence of a high saturation gradients. Here, the fine-scale saturation
distribution can be effectively reconstructed by employing the adaptive saturation interpolation strategy.

The evolution of the number of grid cells employed in each ADM simulation is shown in the left graph of
Fig. 5. Remark the considerable difference in the number of grid-cells employed by the newly proposed
ADM method compared to the original one. The average pressure and saturation errors are instead
shown in the right graph of Fig. 5. In spite of the much smaller number of cells employed with the
adaptive saturation prolongation compared to the original ADM method, pressure and saturation errors
are only slightly higher and still in the same order of magnitude.

Conclusions

In this work, an adaptive saturation prolongation operator for the ADM method was presented along with
an alternative grid selection criterion. The adaptive saturation interpolator enables to capture the details
of the rarefaction saturation wave even though the region behind the front is coarsened. Additionally, the
newly proposed interpolation strategy and coarsening criterion allow for a more aggressive coarsening
in regions with high fluid-property gradients that do not evolve with time. Such situations may occur in
presence of large permeability contrast. The fine-scale details of the saturation distribution are preserved
by employing adaptive saturation basis functions.

Three numerical examples were shown to illustrate the differences between the original ADM method
and the improved one proposed in this work. Employing the adaptive saturation interpolator has evident
advantages compared to employing piece-wise constant basis functions, especially in presence of high
permeability contrast that generate stagnant zones. The proposed improvements to the original ADM
method seem a promising way of reducing the number of grid cells employed without excessive loss of
accuracy.

Ongoing research activities involve testing the proposed ADM method on highly heterogeneous prob-
lems with strong capillary forces.
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Figure 7 Case 3: saturation map and ADM grid at three different time-steps (columns) for ADM simula-
tions employing piece-wise constant basis functions (first row) and the adaptive saturation prolongation
operator (second row).

0 50 100 150 200
0

20

40
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Figure 8 Case 3: number of grid-cells employed in ADM simulations expressed as a percentage of
the fine-scale grid cells (left) and average pressure and saturation errors (right) for ADM employing
piece-wise constant saturation basis functions (blue) and the adaptive saturation interpolation (red).
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