
Delft University of Technology
Master of Science Thesis in Embedded Systems

Schedulability analysis of
limited-preemptive moldable gang tasks

Joan Marcè i Igual

Supervisor: Dr. ir. Geoffrey Nelissen
Co-supervisor: Dr. Mitra Nasri

Embedded
Networked
Systems

Schedulability analysis of limited-preemptive
moldable gang tasks

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Joan Marcè i Igual

23rd of August, 2020

mailto:J.MarceIgual@student.tudelft.nl
mailto:j.marce.igual@gmail.com

Author
Joan Marcè i Igual

Title
Schedulability analysis of limited-preemptive moldable gang tasks

MSc Presentation Date
27th of August, 2020

Graduation Committee
Prof. dr. ir. Koen Langendoen (chairman) Delft University of Technology
Dr. Mitra Nasri (co-supervisor) Delft University of Technology
Dr. ir. Geoffrey Nelissen (supervisor) Eindhoven University of Technology

The work presented in this thesis has lead to a paper which ahs been submitted
to the 2020 Real-Time Systems Symposium (RTSS) for publication, pending
peer-review.

Abstract

Gang scheduling, has long been adopted by the high-performance computing
community as a way to reduce the synchronization overhead between related
threads. Gang schedulling allows for several threads to execute in lock steps
without suffering from long busy-wait periods or be penalised by large context-
switch overheads. If several threads use the same data, it also reduces the
number of memory transactions by allowing the program to load those data
only once for all threads rather than once per thread. To avoid reloading large
amount of data after each preemption and hence incur large execution-time
overheads, in this work, we assume that the tasks adhere to a limited-preemptive
execution model. We further assume that each gang task is moldable, that is, it
has a minimum and a maximum number of cores on which it may be executed.
The actual execution time of a job depends then on the number of cores allocated
by the scheduler at run-tiem. In this work, we consider the case for which tasks
are scheduled according to a global job-level fixed priority scheduling algorithm,
and present a worst-case response time analysis for limited-preemptive moldable
gang tasks. Additionally, we propose a new scheduling policy to improve the
schedulability of moldable gang tasks.

iv

“Blessed are those who find wisdom, those who gain understanding, for she is
more profitable than silver and yields better returns than gold.” —

Proverbs 3:13–14

vi

Preface

First, I would like to thank my direct supervisor Dr. ir. Geoffrey Nelissen from
TU/e. His professional advice and technical knowledge helped me walk through
all the steps of this thesis, he also reviewed my work and patiently answered all
my questions, sometimes even late during the night. I would also like to thank
my co-supervisor Dr. Mitra Nasri from TU/e, who reviewed all my findings and
pointed me in the right direction when I was lost. I must express express my very
profound gratitude to my family for providing me with support and continuous
encouragement through my years of study and through the process of writing
this thesis. Finally I would like to thank God for making me a curious being
and providing me with this opportunity.

Joan Marcè i Igual

Delft, The Netherlands
23rd of August, 2020

vii

viii

Contents

Preface vii

1 Introduction 1
1.1 Limitations of the state-of-the-art 3
1.2 Research questions and our approach 3
1.3 Organisation . 4

2 State-of-the-art 5
2.1 Gang in high-performance computing 5
2.2 Real-time rigid gang . 6
2.3 Real-time moldable and malleable gang 6
2.4 Bundle scheduling . 6
2.5 Schedule-abstraction analyses . 7

3 System model 9
3.1 Platform and task model . 9
3.2 Scheduler Model . 10
3.3 Particular cases . 11

4 Non-preemptive Worst-Case Response-Time analysis 13
4.1 Schedule Abstraction . 13
4.2 System state representation . 14
4.3 Building the schedule-abstraction graph 16
4.4 Expansion phase . 17

4.4.1 Dispatch condition . 17
4.4.2 Job finish times . 20
4.4.3 Building new system states 21

4.5 Merge phase . 23
4.6 Proof of correctness . 23

5 Limited-preemptive analysis extension 25
5.1 System state representation . 25
5.2 Expansion phase . 26

5.2.1 Ready jobs . 26
5.2.2 Dispatch condition . 27
5.2.3 Building a new system state 32

5.3 Merge phase . 32

ix

6 A non-work conserving scheduling policy 33
6.1 Limitations of the job-level fixed-priority

scheduling policy . 33
6.1.1 Work-conserving policy 33
6.1.2 Cores assigned to moldable gang tasks 34

6.2 Reservation-based non-work conserving
scheduling policy . 35
6.2.1 Basic idea . 35
6.2.2 Scheduler model . 37
6.2.3 Moldable gang cores assignment 39

7 Experimental evaluation 41
7.1 Non-preemptive analysis . 41

7.1.1 Experiments on synthetic task sets 42
7.1.2 Schedulability results . 43

7.2 Limited-preemptive analysis . 45
7.2.1 Experiments on synthetic task sets 46
7.2.2 Schedulability results . 46

7.3 ResG compared with JLFP . 47

8 Conclusions and future work 49
8.1 Conclusions . 49
8.2 Future work . 49

Notation 51

Acronyms 53

Bibliography 55

A Proofs for non-preemptive analysis 59

B Proofs for limited-preemptive analysis 65

x

Chapter 1

Introduction

Nowadays, many safety-critical real-time systems found in the aviation, railway
or automotive industry are controlled by the use of computers. The safety of
such real-time systems depends not only on the logical or functional correctness
but also on temporal correctness, i.e., the ability to satisfy all timing require-
ments, which are typically described by deadlines, of the tasks in the system
during the system’s lifetime. [1].

As finding an optimal schedule of such tasks has been shown to be compu-
tationally intractable [1]. Multiple scheduling policies have been proposed in
order to find simpler solutions to the scheduling problem. The job-level fixed-
priority (JLFP) scheduling policy allows to define a different priority to every
job that a task can release. This policy can model other scheduling policies such
as earliest-deadline first (EDF) or deadline monotonic (DM).

In the last decade, multi-core processors have been gaining a lot of attention
in real-time systems since they deliver more computing power with lower power
consumption. There are three main execution models to run a parallel real-time
application on a multi-core platform [2, 3]: thread-based, gang scheduling and
federated scheduling models. The later two models are special cases of thread-
based execution. In the gang model, multiple parallel threads are grouped and
executed together as a “gang”. That is, when a gang task is executed, a given
set of cores is reserved exclusively to execute the task hence allowing multiple
threads to execute simultaneously. Federated scheduling is a particular case
of gang scheduling where the cores are dedicated to the threads during the
system’s lifetime, an example of the different models can be seen in Figure 1.1.
While thread-based execution and federated scheduling have their use cases,
thread-based execution can have a lot of variability in the execution time when
precedence constraints are involved and federated scheduling can underuse the
platform due to its constraint of reserving cores forever. That is why in this
thesis, we will focus on the gang scheduling model.

Gang scheduling was initially adopted by the high-performance computing
(HPC) community in the early 80s [2]. The idea was to reduce the overhead
caused by the synchronisation of multiple related threads and to optimise the
access to shared data in data-intensive computations [4]. As all the threads start

1

(a) (b) (c)

Figure 1.1: Different thread-based execution models. Four threads
have been scheduled among other threads in the system (in grey),
threads 1 to 3 have to finish before thread 4 can start. (a) shows
the system scheduled with a plain thread-based model, (b) shows the
same system scheduled under a gang task and (c) shows it scheduled
under a federated scheduling model.

running simultaneously, it avoids long-busy wait periods while waiting for other
threads. Furthermore, the number of memory transactions can be reduced by
allowing the application to load the data once for all the threads instead of once
per thread. This is really useful as gang tasks usually process large amounts
of data. The number of memory transactions can be further reduced by using
a non-preemptive1 execution model. This property results in smaller execution
times as it avoids reloading data into and from memory after each preemption.

Gang scheduling can be classified depending on when the number of cores
allocated to the execution of a gang task is determined [5]. With Rigid gang
scheduling, each task requires a fixed number of cores that is defined at design
time. This means that a job of a rigid gang task cannot start until at least
the number of required cores is available. Moldable gang scheduling is a model
where each task has a minimum and a maximum number of cores on which it
may execute. Thus, the scheduler decides the number of cores that is being
allocated to a job when it dispatches it for execution. The number of cores
allocated by the scheduler must be within the minimum and maximum number
of cores defined for the task. So, the actual execution time of the job will depend
on the number of cores allocated by the scheduler when dispatching that job.
Note that rigid gang is a particular case of moldable gang where the minimum
and maximum number of cores on which the job may execute are exactly the
same. Finally, the malleable gang model is an extension of the moldable model
but where the number of cores can also change during the execution of a job.
However this model in practice is hard to implement due to the difficulty of
dynamically changing the number of cores allocated to an application.

Currently, we can find examples of the rigid and malleable gang scheduling
model in the scheduling of graphics processor units (GPUs) [6] where each kernel
thread-block needs a fixed number of cores before execution may start. Another
application can be found in the scheduling of (hardware) tasks on field program-
mable gate arrays (FPGAs) [7]. FPGAs are divided into multiple regions and
a task can request a certain number of regions in order to execute.

1Preemptive execution allows the scheduler to suspend some workload and restore it later.

2

1.1 Limitations of the state-of-the-art

Gang tasks where introduced by Ousterhout et al. [2] in 1982 with high-per-
formance computing in mind. However, it wasn’t until 2008 that the first work
in real-time scheduling theory was proposed [8]. Since then multiple tests have
been proposed for preemptive scheduling. For rigid gang, two schedulability
tests [5, 9] and one optimal scheduling policy [10] have been introduced; for
moldable gang, there’s a schedulability test [11, 12] and a scheduling policy [13],
and for malleable gang there’s a feasibility utilization bound proposed by Col-
lette et al. [8]. Additionally, the bundled scheduling model [14] has been intro-
duced as a way to model precedence constraints between rigid gang tasks under
a preemptive execution.

Regarding the non-preemptive execution model, Dong et al. [15] introduced a
utilization-based test for rigid gang tasks, while this test is fast it is pessimistic
in nature. This is the closest to our work as it considers a non-preemptive gang
model.

To the best of our knowledge, no analysis has been designed to obtain a safe
upper bound on the worst-case response time (WCRT) of moldable gang tasks
under non-preemptive or limited-preemptive scheduling, where in the latter a
job of a gang task may be preempted only at well-defined preemption points.
However, a recent introduced technique is the schedule-abstraction graph (SAG)
proposed by Nasri and Brandenburg [16]. It provides a relatively fast and ac-
curate response-time analysis for for global scheduling under a JLFP scheduling
policy with precedence constraints [17] but it doesn’t have support yet for gang
tasks.

1.2 Research questions and our approach

Our main research focus in this work is in limited-preemptive moldable gang
tasks. We want to answer the following questions:

1. To which extend can we improve the accuracy of schedulability analysis
for gang tasks compared to the current state-of-the-art?

2. How does the moldable property of gang tasks affect schedulability of the
JLFP scheduling policy?

3. Can a non-work-conserving scheduling policy improve schedulability of
moldable gang tasks? If so, to what extent?

To do so, in this project we propose an extension of the notion of SAG pro-
posed by [16] in order to derive the best-case response time (BCRT) and WCRT
from a set of rigid/moldable gang tasks scheduled by a limited-preemptive JLFP
scheduling policy. Moreover, we propose a new scheduling policy in order to
evaluate how the schedulability of moldable gang tasks can be improved.

3

1.3 Organisation

The rest of this document is organised as follows: we explain the different ap-
proaches and limitations of other solutions to our problem in Chapter 2. Then,
we specify our problem by detailing and defining the system model in Chapter 3.
Afterwards we explain the extensions and changes that have to be made in the
SAG in order to add support for limited-preemptive moldable gang tasks. The
changes are divided in two steps. We start by explaining the changes for the non-
preemptive execution model in Chapter 4 and we further extend it in Chapter 5
by adding support for the limited-preemptive execution model. Additionally, a
new non-work conserving policy is presented in Chapter 6. Finally, an empirical
evaluation of the proposed analysis and the new scheduling policy is detailed in
Chapter 7. We conclude in Chapter 8.

4

Chapter 2

State-of-the-art

This chapter presents the current state-of-the-art regarding limited-preemptive
moldable gang scheduling. The introduction of gang scheduling for HPC is ex-
plained in Section 2.1. Then regarding real-time theory the current work on rigid
gang is shown in Section 2.2 and on moldable and malleable in Section 2.3. To
show the differences with the limited-preemptive definition used in this project,
the bundled scheduling model is presented in Section 2.4. Finally, Section 2.5
explains how SAG has already been extended.

2.1 Gang in high-performance computing

As previously mentioned, gang tasks, also called “coscheduled threads”, were
introduced by Ousterhout et al. [2] in 1982. Moreover, since the late 80s, the
optimal scheduling of non-preemptive gang tasks has been know to be a NP-
complete problem, as it is equivalent to solve the bin packing problem [18].
The concept was refined by comparing it against other thread synchronization
mechanisms [4] and showing that it has an overall better system utilization [19].

Further research focused on improving the average-case response time [20].
Moreover, fragmentation can occur if there are not enough idle cores to start
executing a ready job so Feitelson et al. [21] designed some packing schemes to
tackle this problem. Additionally, Wiseman et al. [22] paired tasks that used
different types of resources and scheduled them together to improve schedula-
bility of compatible tasks. However, none of these methods contemplated the
restrictions needed for real-time scheduling.

5

2.2 Real-time rigid gang

Regarding preemptive real-time rigid gang tasks, Goossens et al. [5] show that
scheduling gang under a JLFP scheduling policy is not sustainable [23] w.r.t.
execution time variation. They also propose an exact schedulability test for
the task-level fixed-priority (TLFP) scheduler. Moreover, another utilization-
based test has been introduced by Dong et al. [9] for gang tasks under the
EDF scheduler. Finally a new optimal scheduling policy has been introduced
by Goossens et al. [10] but it requires a high number of preemptions.

For the non-preemptive model, only one utilization-based test has been pro-
posed by Dong et al. [15] designed for sporadic rigid gang tasks. This analysis is
the closest to our work but, unfortunately, as it is designed for rigid gang tasks
it is difficult to compare it to the scheduling of moldable gang tasks.

2.3 Real-time moldable and malleable gang

As previously said, moldable gang tasks can have a minimum and a maximum
number of cores on which they may execute. Thus, the scheduling policy has
to decide how many cores are actually given to the task at dispatch time. Kato
et al. [11] and Richard et al. [12] proposed sufficient schedulability tests for
preemptive moldable gang tasks under global EDF. Moreover, Berten et al. [13]
have introduced a greedy scheduling algorithm that decides the number of cores
assigned to a job based on whether the job will be able to meet the deadline
with such assignment.

For malleable tasks, where a job may change its level of parallelism during its
execution, Collette et al. [8] have presented a feasibility test together with an
optimal scheduling policy, in terms of number of cores. They also show that the
EDF scheduler is not optimal in terms of number of cores for malleable gang
tasks. However, all these results are also for preemptive tasks and cannot be
adapted to non-preemptive scheduling.

2.4 Bundle scheduling

As a way to improve schedulability of gang tasks and reduce some core idle time,
Wasly et al. [14] have proposed the bundled task model (BTM), that extends
the rigid gang task model. They also provide a sufficient schedulability test. It
models tasks as a succession of “bundles” with precedence constraints between
them. Then, each bundle is scheduled following a preemptive rigid gang model.
Each bundle can request a different number of cores than the other bundles, thus
allowing the task to have different levels of parallelism during the execution that
can be changed at certain points. Nonetheless, the tests for the BTM model are
designed for preemptive execution and cannot be used in the non-preemptive
case.

The limited-preemptive definition of this project is an extension of the BTM
model where each task can have precedence constraints with other tasks. The

6

Figure 2.1: Example of SAG, each node is a different system state
and each edge connecting two nodes is a different scheduling decision
leading to new multiple states. Every possible path from the first
node to the last represents a possible execution scenario.

difference comes with the fact that they are moldable gang tasks, rather than
rigid, and are scheduled non-preemptively instead. This effectively is a non-
preemptive model but that allows preemptions at certain specified points in the
task, just between two bundles.

2.5 Schedule-abstraction analyses

The response-time analysis of this project is based on the concept of schedule-
abstraction (SA). This is a new type of analysis that provides relatively fast but
highly accurate schedulability results [24]. An SA-based analysis derives the
WCRT and BCRT of task by building a schedule-abstraction graph that contains
all possible schedules generated by the scheduling policy of a provided job set
in an observation window such as the hyperperiod of the tasks. Additionally, it
is able to combine similar schedules in order to reduce the size of the SAG. An
example of SAG expansion can be seen in Figure 2.1.

It was first introduced in 2017 by Nasri and Brandenburg [16] and since
then, it has been extended to various response-time analysis problems for non-
preemptive tasks on single-core platforms [16]. On multi-core platforms, it has
been extended for global JLFP policies [25] and for tasks with precedence con-
straints [17].

7

8

Chapter 3

System model

3.1 Platform and task model

The platform assumed in this project is made of m identical cores on which
we execute a set of n limited-preemptive moldable gang tasks. To model the
limited-preemptive execution aspect, each task τk (1 ≤ k ≤ m) is modelled by a
directed acyclic graph (DAG), Gk = 〈Vk, Ek〉 such that Vk is a set of execution
segments and Ek is a set of precedence constraints between the segments in Vk.

For each arrival of a task τk, each execution segment of Vk releases a job. Each
job released by an execution segment behaves like a non-preemptive moldable
gang job. That is, a job Ji is defined by a minimum (mmin

i) and a maximum
(mmax

i) number of cores on which it may be executed. The actual number of
cores allocated to job Ji is determined by the scheduler at runtime according
to the scheduling policy described in Section 3.2. For each possible number of
cores p (mmin

i ≤ p ≤ mmax
i) that may be allocated to Ji, we assume that Ji will

execute for a minimum of Cmin
i (p) and a maximum of Cmax

i (p) time units before
completing its execution. Because Ji was released by a task τk whose structure
is defined by the DAG Gk, we defined pred(Ji) as the set of predecessors of
Ji. That is, pred(Ji) contains all the jobs released by execution segments that
are predecessors of Ji in the DAG Gk. Since Gk models precedence constraints
between execution segments, Ji may start to execute only if all jobs in pred(Ji)
completed their executions.

Since it is assumed that tasks release jobs according to a known arrival pat-
tern, their schedulability analysis is equivalent to analysing the schedulability
of a finite set of jobs J released in an observation window whose length can be
computed beforehand [16]. For instance, for periodic tasks with synchronous
releases, and constrained deadlines the observation window length is equal to
the hyper-period of the system (i.e., the least common multiple of all tasks’
periods) [10].

In sum, each job Ji ∈ J is defined by the tuple ([rmin
i , rmax

i], [mmin
i ,mmax

i],

C
min
i , C

max
i , di) where rmin

i and rmax
i are the earliest and latest release times

of Ji respectively; mmin
i and mmax

i are the minimum and maximum number of

9

cores on which Ji may execute; Cmin
i and C

max
i are vectors such that each entry

Cmin
i (p) and Cmax

i (p) contain the best-case execution time (BCET) and worst-
case execution time (WCET) of Ji on p (for mmin

i ≤ p ≤ mmax
i), respectively;

and di is the deadline by which Ji must complete its execution.
Without any loss of generality we assume that mmin

i ≥ 1 and mmax
i ≤ m.

That is, Ji cannot execute on less than one core and cannot request more cores
than the number of cores in the platform.

Note that moldable gang is more generic than rigid gang. Hence, if a job Ji
has its minimum and maximum number of cores equal (i.e., mmin

i = mmax
i) then

the job is said to be rigid. If all jobs released by a task are rigid, then the task
is rigid.

3.2 Scheduler Model

Jobs are scheduled non-preemptively using a work-conserving job-level fixed-
priority (JLFP) algorithm that is assumed to follow the following set of rules:
Rule 1: A job Ji is considered ready at time t if and only if it is released at or

before t, it is not yet completed at t, it is not already executing at t,
and all predecessors of Ji completed their execution by t.

Rule 2: A job Ji is considered eligible to be dispatched at time t if and only if
it is ready at time t and there are at least mmin

i cores available at time
t.

Rule 3: The scheduler is invoked whenever a job is released or a job completes
Rule 4: At every invocation of the scheduler, the highest priority eligible job is

chosen to be dispatched.
Rule 5: The dispatched job is assigned a number of cores that is the minimum

between mmax
i and the number of free cores at the time at which is

dispatched (i.e., it always executes on as many cores as possible so as
to maximize its parallelism).

Rule 6: The number of cores allocated to a job cannot change during its exe-
cution.

Rule 7: The execution of a job cannot be preempted once it started.
Rule 8: No core may remain idle as long as there are eligible jobs to be dis-

patched.
Since we assume a JLFP scheduling algorithm, we use the notations hpi and

lpi to refer to the set of higher and lower priority jobs of Ji respectively.

10

3.3 Particular cases

The system model presented in Sections 3.1 and 3.2 covers a broad set of applic-
ation models. In order to illustrate its generality, we point out a few particular
cases that may be modelled and hence analysed with the results presented in
Chapter 7.

1. Limited-preemptive DAG tasks: If all execution segments have a parallel-
ism requirement mmin

i = mmax
i = 1, then the task model reduces to the

usual DAG task model.
2. Non-preemptive moldable gang tasks: If all tasks are composed of a single

execution segment then tasks are non-preemptive tasks.
3. Limited-preemptive sequential tasks: If each execution segment has at most

one predecessor and at most one successor in the DAG of each tasks, then
each task is composed of a sequence of non-preemptive regions as in the
fixed-preemption point limited-preemptive model.

4. Rigid gang: If a job has its minimum and maximum number of cores equal
(i.e., ∀Ji,mmin

i = mmax
i) then the job is said to be rigid gang. If all jobs

released by a task are rigid, then the task is rigid.
Any combination of the above is also covered by the model assumed in this
work.

11

12

Chapter 4

Non-preemptive
Worst-Case Response-Time
analysis

To check the schedulability of a non-preemptive task set, we compute the worst-
case response time that may be experienced by any job released by each task.
If the WCRT of every job released in the observation window is smaller than or
equal to its deadline, then the task set is deemed schedulable.

In this chapter we start defining the analysis for the non-preemptive execution
model. We do so in order to show a more step-by-step thought process that it
is later extended on Chapter 5 to handle a limited-preemptive execution model.
We thus simplify the assumptions made in this chapter such that for all tasks,
the DAG Gk contains a single execution segment, i.e., |Vk| = 1. Note that due
to space constraints, we provide the proof of Lemmas 1 to 8, Corollaries 1 to 4,
and Theorems 1 and 2 in Appendix A.

4.1 Schedule Abstraction

In this work, we use the concept of schedule abstraction introduced by Nasri
and Brandenburg[16] to compute the WCRT of every job in a job set J .

The idea of schedule abstraction consists in encoding all possible schedules
of a job set J with a directed acyclic graph G = 〈V,E〉 where V is the set of
vertices (referred to as nodes) and E is the set of edges connecting any two
nodes in V . A path in the graph G represents a possible order of scheduling
decisions taken by the scheduler, and each node v ∈ V represents the set of all
possible system states that may result from the scheduling decisions encoded on
the paths that reach to V .

A direct edge connecting a node v to a node v′ in G represents a scheduling
decision taken by the scheduler that brings the set of system states represented
by v to a subset of the system states represented by v′. In the context of

13

this work, this scheduling decision consists in (1) the selection of the job that
must be dispatched next on the platform, and (2) the number of cores allocated
to that job. Since we schedule jobs non-preemptively, the best- and worst-
case completion time of a job Ji, can be calculated at the same time as it is
dispatched. This information is thus also recorded in the edge of the graph
representing the dispatch of Ji. Note that because of the potential uncertainty
on the actual release time and execution time of each job, the scheduling decision
involving a job Ji may appear in different places in the schedule abstraction
graph (i.e., after different sequences of scheduling decisions). Therefore, the
worst-case response time of a job is given by the largest completion time recorded
on all edges referencing that job in the schedule abstraction graph.

According to the semantic of the schedule abstraction graph G given above,
one may conclude that, in the very particular case of a fully deterministic sys-
tem (i.e., with known job arrival times, no release jitter, no execution time
variation, deterministic scheduler), there is only a single possible schedule for
the task set. Thus, the scheduler may take only a single sequence of scheduling
decision. Therefore, the schedule abstraction graph G will be made of a single
path recording those decisions. Hence, building the graph becomes equivalent
to making a time simulation of the schedule within the observation window.
However, if any system property exhibits some level of uncertainty (e.g., vary-
ing execution times or release jitter), then the number of possible schedules
becomes rapidly intractable, and so would the number of paths and nodes in G.
Thus, the main challenges associated to designing a good schedule abstraction-
based analysis is to find the right level of abstraction to represent system states,
and to find techniques to efficiently prune branches of the graph, merge nodes
together and encode a set of system states in a single node V . We cover those
different aspects of the analysis in the rest of this document.

4.2 System state representation

Two of the clear differences between this work and previous works on the sched-
ule abstraction is that (1) jobs may need more than one core to start executing,
hence cores may remain idle even when there is pending workload, and (2) a
single job may release more than one core simultaneously. Those two particu-
larities imply that the time at which different cores become available to execute
new workload is somewhat synchronised. Thus, we must be able to encode and
keep track of such synchronization in the system state abstraction.

Therefore, we develop a new abstraction that encodes a system state using
three pieces of information:

i) The set S of all jobs that have already been dispatched to reach the system
state represented by node v.

ii) The set of all possible instants at which cores may become available to
execute new workload.

iii) How many cores may be freed at the exact same time and when (remem-
ber, a job executes on p parallel cores and thus releases p cores when it
completes).

14

Figure 4.1: Example of two possible execution scenarios for J3 and their
resulting system states. (a) initial state, (b) J3 scheduled with p = 1,
(c) J3 scheduled with p = 2

To encode (ii), we use m intervals. Each interval Ak(v) = [Amin
k (v), Amax

k (v)]
(with 1 ≤ k ≤ m) encloses all the time instants at which k cores may become
available to execute new workload after the scheduling decisions that led to node
v in G. That is, Amin

k (v) is the time until which there are certainly less than k
cores available, and Amax

k (v) is the time by which at least k cores are certainly
available to execute new jobs. We call Amin

k (v) and Amax
k (v) the earliest and

latest availability time of k cores for system state v, and we call Ak(v) the
availability interval of k cores in state v. In the following, when there is no
ambiguity, we do not explicitly write the system state v when referring to Ak,
Amin

k and Amax
k .

To encode (iii) and thus know how many cores may be freed simultaneously
by a single job and at what time, we store a set of pairs of values F ={
〈f1(v),M1(v)〉, 〈f2(v),M2(v)〉, . . .

}
such that each pair Fl(v) = 〈fl(v),Ml(v)〉

has the following meaning: at least Ml(v) cores will be freed by a single job no
earlier than time fl(v). By definition, we have that the total number of cores
that may be freed is equal to m, i.e.,

∑
l>0 Ml(v) = m, and the earliest time

fl(v) at which a group of cores may be freed must also correspond to the earliest
time at which some core may become available, i.e., ∀l, ∃k s.t. fl(v) = Amin

k (v).
Example 4.1. Figure (4.1a) shows a system with m = 4 cores where two jobs
have been scheduled: J1 on one cores must finish within the interval [5, 10], and
J2 on three cores must finish within [10, 15]. In this system, one core becomes
possibly available at time 5 and three additional cores become possibly available
simultaneously at time 10. Similarly, one core is certainly available at time
15. Thus F = {〈5, 1〉, 〈10, 3〉} and A1 = [5, 10], A2 = [10, 15], A3 = [10, 15],
A4 = [10, 15].

Now, assume that a job J3 is released at time 1 with mmin
3 = 1, mmax

3 = 2,

15

Algorithm 1: Algorithm to generate a schedule abstraction graph.
input : Job set J
output : Bounds on the BCRT and WCRT of every job in J

1 ∀Ji ∈ J , BCRTi ←∞,WCRTi ← 0;
2 initialize G with a root node v1 with S(v1) = ∅, Ak(v1) = [0, 0], ∀1 ≤ k ≤ m,

and F(v1) = {(0,m)};
3 while ∃ a leaf node v s.t. S(v) 6= J do
4 P ← the shortest path from v1 to a leaf node v;
5 v ← the leaf vertex of P ;
6 for each job Ji ∈ {J \ S(v)} do
7 for ∀p | mmin

i ≤ p ≤ mmax
i do

8 if Ji may be dispatched next on p cores then
9 Compute the earliest and latest finish time EFT p

i (v) and
LFT p

i (v) of Ji on p cores;
10 BCRTi ← min{EFT p

i (v)− rmin
i , BCRTi};

11 WCRTi ← max{LFT p
i (v)− rmin

i ,WCRTi};
12 Build the next states using Alg. 2;
13 Try to merge the new system states with other nodes in G

(Sec. 4.5);
14 end
15 end
16 end
17 end

C
min
3 = {10, 7} and C

max
3 = {11, 8}. Two execution scenarios are possible, hence

two new system states are created.
If J1 finishes before J2 then one core will be freed and J3 will be scheduled

with p = 1. This means that J3 starts executing at the earliest at time 5 and
at the latest at time 10. For p = 1 we know that the BCET and WCET of J3
is 10 and 11, respectively. Therefore, the finish time interval of J3 is [15, 21].
Then, as shown in Figure (4.1b), three cores become possibly available at time
10 and one additional core becomes possibly available at time 15. Therefore, we
have F = {〈10, 3〉, 〈15, 1〉}, and the availability intervals become A1 = [10, 15],
A2 = [10, 15], A3 = [10, 15], and A4 = [15, 20].

However, in another execution scenario where J1 and J2 finish at the same
time, J3 will be dispatched on p = 2 cores. This can only happen at time 10. For
p = 2 the execution time interval of J3 is [7, 8], leading to the finish time interval
[17, 18]. Thus, the new availability intervals are A1 = [10, 15], A2 = [10, 15],
A3 = [17, 18], and A4 = [17, 18] and F = {〈10, 2〉, 〈17, 2〉}.

4.3 Building the schedule-abstraction graph

The SAG for a job set J is built according to Algorithm 1.
The algorithm starts (Line 2) by building an initial node v1 representing

the state of the system when no job has started to execute yet. Therefore,
v1 is initialized with an empty set of scheduled jobs (Sv1 = ∅), with all cores

16

potentially and certainly available at time 0 (i.e., Ak(v1) = [0, 0] ∀k|1 ≤ k ≤
m) and with all m cores being freed simultaneously at time 0 (i.e., F(v1) =
{〈0,m〉}).

Then, for each node in the graph that has not been analysed yet (Line 3), the
algorithm checks which jobs that have not been scheduled yet may be dispatched
next by the scheduler and on how many cores they may be executed (Lines 6
to 16). For each such job Ji and number of cores p, the earliest and latest
completion times of the job are computed (Line 9). If the computed completion
times result in larger (smaller, respectively) worst-case (best-case, respectively)
response times for Ji than those computed on other paths of the graph (i.e.,
for other sequences of scheduling decisions), then it updates the recorded values
for their WCRT and/or BCRT (Lines 10 and 11). Finally, Algorithm 1 uses
Algorithm 2 presented in Section 4.4.3 to build all system states that may result
from scheduling Ji on p cores in state v (Line 12) and hence expand the graph.

To defer the potential state explosion as long as possible, Algorithm 1 tries
to merge the newly created nodes with existing nodes and hence reduce the
number of branches in the graph (Line 13).

The algorithm stops when all nodes in the schedule-abstraction graph have
been visited and all leaf nodes correspond to system states in which all jobs
have been scheduled (i.e., S(v) = J).

4.4 Expansion phase

The expansion phase is divided in the following steps:
1. For each job Ji that was not dispatched yet (i.e., Ji /∈ S(v)) and for each

possible number of cores p ∈ [mmin
i ,mmax

i] check whether Ji may be the
next job dispatched by the scheduler on exactly p cores in state v.

2. If Ji may be dispatched next, compute the earliest and latest finish times
of Ji.

3. Finally, build the new system states resulting from the scheduler dispatch-
ing Ji on p cores in state v. We discuss each of those steps in Sections 4.4.1
to 4.4.3.

4.4.1 Dispatch condition

To check whether Ji may be the next job dispatched by the scheduler on p cores
in system state v, we first compute the earliest time EST p

i (v) at which that job
would be starting to execute on p cores if it was the only job left to execute.
Then, we compute the latest time LST p

i (v) at which it must have started in
order to be the first job dispatched by the scheduler considering all the other
pending jobs in the system. If LST p

i (v) is larger than or equal to EST p
i (v), then

there exists an execution scenario in which Ji may be the next job dispatched
on p by the scheduler. Otherwise, if LST p

i (v) < EST p
i (v), then either Ji cannot

be dispatched on p or there will always be another job dispatched before Ji.

17

4.4.1.1 Earliest Start Time

The earliest start time EST p
i (v) of Ji on p cores (mmin

i lep ≤ mmax
i) can be

computed the following properties:
i) By rule 1, Ji cannot start before it is released (i.e., EST p

i (v) ≥ rmin
i).

ii) By rule 2, there must be at least p available to start to execute Ji on p
(i.e., EST p

i (v) ≥ Amin
p (v)).

iii) By rule 5, if p < mmax
i , no more than p may be available when Ji is

dispatched (Otherwise, by rule 5, it would be dispatched on more than p
cores).

In order to encode property (iii) we define Aexact
p (v) as the earliest time at

which exactly p cores may become available. Note that Aexact
p (v) is different

from Amin
p (v) in the sense that Amin

p (v) gives the time at which at least (but
not at most) p cores are available while Aexact

p (v) denotes the time at which
exactly p cores become available. We explain how to compute Aexact

p (v) later
in Section 4.4.1.2. Then properties (ii) and (iii) are encoded through tpgang(v)
defined in Lemma 1.
Lemma 1. Job Ji cannot start executing with p cores before tpgang(v) defined as

tpgang(v) =

{
Amin

p (v) if p = mmin
i ,

Aexact
p (v) otherwise

(4.1)

Corollary 1. A job Ji cannot start executing on exactly p cores before time
EST p

i (v), defined as

EST p
i (v) = max{rmin

i , tpgang(v)} (4.2)

4.4.1.2 Computing Aexact
p (v)

The earliest time Aexact
p (v) at which exactly p cores may become available can

be computed from the information available in F(v). Specifically, we must find
a subset F ′ ⊆ F(v) such that

∑
Fl∈F ′ Ml = p and for which the time at which

the latest core is freed (i.e., the time given by maxFl∈F ′{fl}) is minimum.
The earliest time Aexact

p (v) at which exactly p cores may become available is
then equal to the time at which the last core in F ′ is freed, i.e., Aexact

p (v) =
maxFl∈F ′{fl}.

If there is no subset F ′ ⊆ F(v) such that
∑

Fl∈F ′ Ml = p, then there is no
possibility for exactly p cores to become simultaneously available in system state
v, i.e., there will always be more cores or less cores available at any time. Hence
Aexact

p (v) = +∞.
Note that to avoid computing all combinations of values in F(v), one can

use text-book solutions for solving the subset-sum problem that have at most a
quadratic complexity with respect to the number of cores m[26]1.

1Dynamic programming allows to solve the subset-sum problem with a complexity O(sN)
where s is the maximum sum to find and N the number of elements in the set F . In our case,
both s and the size of F are upper-bounded by the number of cores m

18

4.4.1.3 Latest Start Time

The latest start time LST p
i (v) at which job Ji may start to execute on p cores

assuming that it is the next job that is dispatched by the scheduler depends on
three factors:

i) The time tpavail(v) at which more than p become available, since the sched-
uler would then dispatch Ji on more than p cores if mmax

i > p.
ii) The time twc(v) by which another job than Ji certainly becomes eligible

for execution, since the scheduler will then dispatch another job before Ji
if Ji did not start by then.

iii) The time tphigh(v) by which a higher priority job may become eligible, since
the scheduler will then dispatch that other job instead of Ji.

We discuss how to compute bounds on the three time instants tpavail(v), twc(v),
and tphigh(v) next.

First, according to rule 5, if Ji starts to execute on p cores at time LST p
i (v),

then either p is the maximum number of cores on which Ji may execute, i.e.,
p = mmax

i , or there are no more than p cores available at time LST p
i (v), since

Amax
p+1(v) denotes the time by which p+ 1 cores will certainly become available,

we have that
LST p

i (v) ≤ tpavail(v) (4.3)

where

tpavail(v) =

{
Amax

p+1(v)− 1 if p < mmax
i ,

+∞ otherwise
(4.4)

Second, if Ji is the first job dispatched by the scheduler until time LST p
i (v),

then according to rules 3 and 8 there must be no other job that was eligible to
be dispatched before LST p

i (v). Since by rule 2 a generic job Jj is eligible only
if it is ready and there are at least mmin

j cores available, we must have

LST p
i (v) ≤ twc(v) (4.5)

with
twc(v) = min

Jj /∈S(v)

{
max

{
rmax
j , Amax

mmin
j

(v)
}}

(4.6)

where rmax
j is the latest time at which a job Jj that was not scheduled yet

(i.e., Jj /∈ S(v)) may be released, and Amax
mmin

j
(v) is the latest time by which the

minimum number of cores mmin
j requested by Jj will be available to execute Jj .

Third, according to rule 4, if job Ji is dispatched at time LST p
i (v) and it is

the first job dispatched by the scheduler in any system state v, then Ji must be
the highest priority eligible job until time LST p

i (v). That is,

LST p
i (v) < tphigh(v) (4.7)

where tphigh(v) is computed as in Lemma 2.
Lemma 2. Ji will not be the first job dispatched in the system state v or will
not be dispatched on exactly p cores if it did not start to execute before time

19

tphigh(v) defined as2

tphigh(v) =
∞

min
Jj∈{hpi ∩{J\S(v)}}

{
tph(Ji, Jj)

}
(4.8)

where

tph(Ji, Jj) =

{
rmax
j if mmin

j ≤ p

max{rmax
j , Amax

mmin
j

} otherwise (4.9)

Corollary 2. Job Ji cannot be dispatched on p cores and be the first job dis-
patched in state v later than

LST p
i (v) = min{tpavail(v), twc(v), t

p
high(v)− 1} (4.10)

4.4.1.4 Dispatch Condition

A job Ji may be dispatched on p cores (with mmin
i ≤ p ≤ mmax

i) and may be
the first job dispatched by the scheduler in a system state v only if the earliest
time at which it may be dispatched on p cores is no later than the latest time
at which it may be the first job to be dispatched. That is, it must respect the
following inequality:

EST p
i (v) ≤ LST p

i (v) (4.11)

Theorem 1. A job Ji may be dispatched on p cores and be the first job dispatched
by the scheduler in system state v only if EST p

i (v) < ∞ and inequality 4.11 is
respected.

4.4.2 Job finish times

The earliest time at which a job Ji may complete its execution when dispatched
on p cores is when it starts at the earliest (i.e., at EST p

i (v)) and executes for
its best-case execution time on p cores (i.e., for Cmin

i (p)). That is,

EFT p
i (v) = EST p

i (v) + Cmin
i (p) (4.12)

Similarly, the latest time at which a job Ji may complete its execution when
it is the next job dispatched and it is dispatched on p cores is when it starts as
late as possible (i.e., at LST p

i (v)) and it runs for its WCET on p cores (i.e., for
Cmax

i (p)). That is,
LFT p

i (v) = LST p
i (v) + Cmax

i (p) (4.13)
2min∞

x∈S{x} = +∞ if S = ∅. Otherwise, min∞
x∈S{x} = minx∈S{x}

20

4.4.3 Building new system states

If job Ji passes the dispatch condition for p cores in state v, then there are
different execution scenarios in which the scheduler may dispatch Ji on p in
system state v. For each such scenario, we build a new node v′ representing
the system state resulting from scheduling Ji on p cores. Apart from adding
Ji to the set of scheduled jobs Sv′ , there are two data structures that must be
updated. The set of availability intervals, and the set of earliest simultaneous
cores releases F(v′). We discuss both in the following sub-sections.

4.4.3.1 New set of earliest simultaneous core releases F(v′)

We divide this discussion in two parts. We first cover the case where the number
of cores p assigned to Ji is smaller than its maximum parallelism mmax

i , and
then cover the case where p = mmax

i .

Case p < mmax
i If p < mmax

i , then exactly p cores must be available when
Ji starts to execute (rule 5). Yet, any combination of simultaneously released
cores that sum to p and are possibly released between the earliest and latest
start time of Ji may be used to execute Ji. Because there may be more than
one such combination, we first identify every subset F=p

k of elements in F(v)
such that

∑
Fl∈F=p

k
Ml(v) = p and ∀Fl ∈ F=p

k , fl(v) ≤ LST p
i (v). Then for each

subset F=p
k ⊆ F(v) that meets those conditions, we create a new node v′k in

the graph that represents the system state resulting from dispatching Ji on the
specific p cores contained in F=p

k . The new set of earliest simultaneous core
releases F(v′k) in the new state v′k is then built according to Lemma 3.
Lemma 3. Let node v′k results from executing Ji on the p cores in F=p

k , then
the set of earliest simultaneous core releases is

Fv′
k
=

{
〈EFT p

i (v), p〉
}
∪
{
F(v) \ F=p

k

}
(4.14)

Case p = mmax
i In the particular case where the number of cores p as-

signed to Ji is equal to its maximum parallelism mmax
i , there must be at

least p but also potentially more than p available when Ji starts to execute.
Thus, differently from the case covered above, we identify every subset F≥p

k

of F(v) whose elements sum up to at least p. That is,
∑

Fl∈F≥p
k

Ml(v) ≥ p

and ∀Fl ∈ F≥p
k , fl(v) ≤ LST p

i (v). As before, for each subset F≥p
k , we create a

new node v′k whose set of earliest simultaneous core releases Fv′
k

is computed
according to Lemmas 4 and 5.
Lemma 4. If all the cores in F≥p

k are released when Ji starts to execute, then
Ji starts no earlier than tk = max

Fl∈F≥p
k

{fl(v)}.

Lemma 5. Let node v′k result from executing Ji on p of the cores in F≥p
k , then

the set of earliest simultaneous core releases is

Fv′
k
=

{
〈EFT p

i (v), p〉
}
∪
{
〈tk, (s− p)〉

}
∪
{
F(v) \ F≥p

k

}
(4.15)

21

Algorithm 2: Build all system states resulting from dispatching Ji on
p cores in v.

1 for ∀Fp
k ⊆ F(v) s.t. conditions of Section 4.4.3.1 are respected do

2 Add a node v′k to the schedule-abstraction graph G;
3 Sv′

k
← S(v) ∪ {Ji};

4 Compute PA and CA according to Lemmas 6 and 7;
5 Sort PA and CA in non-decreasing order ;
6 ∀x | 1 ≤ x ≤ m, A

v′
k

k = [PAx, CAx];
7 Compute Fv′

k
according to Lemmas 3 and 5;

8 Connect v to v′k with an edge;
9 end

where s is the number of cores in F≥p
k , i.e., s =

∑
Fl∈F≥p

k
Ml(v).

4.4.3.2 New availability intervals

To construct the availability intervals Ax(v
′
k) (1 ≤ x ≤ m) of a system state v′k

reachable from v, we build the set PA of all instants at which each core may
potentially be available, and the set CA of the latest possible times at which
each core will certainly become available after dispatching Ji on p cores in F=p

k

or F≥p
k (depending on whether p < mmax

i or p = mmax
i as discussed above). We

do so using Lemmas 6 and 7.
Lemma 6. A set of lower bounds on the time instants at which each core may
potentially become available to execute new workload in v′k is given by

PA =
{
p× {EFT p

i (v)}
}
∪
{

max{Amin
x (v), tk}

∣∣p < x ≤ m
}

(4.16)

Corollary 3. A lower bound on the time at which x cores are potentially
available to execute new workload in v′k (i.e., Amin

x (v)) is given by the xth

element in the non-decreasingly ordered set PA.

Lemma 7. A set of upper bounds on the time instants at which each core will
certainly become available to execute new workload in v′k is given by

CA =
{
p× {LFT p

i (v)}
}
∪
{

max{Amax
x (v), tk}

∣∣p < x ≤ m
}

(4.17)

Corollary 4. An upper bound on the time at which x cores are certainly available
to execute new workload in v′k (i.e., Amax

x (v)) is given by the xth element in the
non-decreasingly ordered set CA.

The complete procedure presented in this section to build the system states
resulting from dispatching Ji on p cores in state v is summarized in Algorithm 2.

22

4.5 Merge phase

To slow down the growth of the SAG and defer a potential state space explosion
when building the graph of all possible scheduling decisions, Algorithm 1 tries
to merge as many nodes as possible. Two system states vk and vq are merged
in a new system state vz according to the following rule:
Rule 9: If vk and vq are two nodes such that Svk = Svq and ∀x, 1 ≤ x ≤

m, Avk
x ∩A

vq
x 6= ∅, then vk and vq are merged into a single state vz.

The availability intervals of the merged state vz are then computed so that
they enclose the availability intervals of both states vk and vq. That is, ∀x, 1 ≤
x ≤ m:

Avz
x =

[
min{Amin

x (vk), A
min
x (vq)},max{Amax

x (vk), Amax
x (vq)}

]
(4.18)

This way, all possible combinations of instants at which cores become available
in either state vk or vq is also possible in vz.

The set of earliest simultaneous core releases F(vz) of the merged state is
computed using Algorithm 3 which performs the following procedure. For both
initial states vk and vq, it sorts the groups of cores that are simultaneously
released in a non-decreasing order with respect to the time at which they are
released. It then breaks the groups of simultaneously released cores in smal-
ler ones so that the size of the groups match in both states (Lines 3 to 10),
i.e., after the transformation we have |F ′(vk)| = |F ′(vq)| and ∀x | 1 ≤ x ≤
|F ′(vk)|, |M ′(vk)| = |M ′(vq)|. It then keeps the groups of cores that are re-
leased the earliest and assigns them to F(vz) (Lines 12 to 16), i.e., |F(vz)| =
|F ′(vk)| = |F ′(vq)| and ∀x | 1 ≤ x ≤ |F ′(vk)|, Mx(vz) = M ′

x(vk) = M ′
x(vq) and

fx(vz) = min{f ′
x(vk), f

′
x(vq)}.

We now prove that all simultaneous core release patterns that are possible in
one of the two initial states vk or vq is also possible in the new merged state vz.
Lemma 8. If exactly p cores may be available at time t in either vk or vq, then
exactly p cores may be available at time t in vz.

4.6 Proof of correctness

After the algorithm to build the SAG has been presented, we prove that the
analysis covers all possible execution scenarios and hence returns safe bounds
on the BCRT and WCRT of each job in the analysed job set J .
Theorem 2. For any possible execution scenario such that Ji executes on p
cores and finishes at t, there is a path 〈v1, . . . , vk〉 in the schedule-abstraction
graph such that Ji passes the dispatch condition on p cores in vk and t ∈
[EFT p

i (vk), LFT p
i (vk)].

23

Algorithm 3: Merge of F(vk) and F(vq) into F(vz)

input : F(vk) and F(vq)
output : F(vz)

1 F ′(vk) = F ′(vq) = ∅;
2 while F(vk) 6= ∅ ∧ F(vq) 6= ∅ do
3 Extract the pair 〈fK ,MK〉 such that fK is the minimum value in F(vk)

and, in case of tie, MK is the minimum among the tying values. For
F(vq) extract 〈fQ,MQ〉 using the same rule;

4 Mnew ← min {MK ,MQ};
5 Add 〈fK ,Mnew〉 to F ′(vk);
6 Add 〈fQ,Mnew〉 to F ′(vq);
7 MK ←MK −Mnew;
8 MQ ←MQ −Mnew;
9 Add 〈fK ,MK〉 to F(vk) if MK > 0 ;

10 Add 〈fQ,MQ〉 to F(vq) if MQ > 0 ;
11 end
12 forall 1 ≤ x ≤ |F ′(vk)| do
13 fx(vz) = min{f ′

x(vk), f
′
x(vq)};

14 Mx(vz) = M ′
x(vk);

15 Add 〈fx(vz),Mx(vz)〉 to F(vz);
16 end
17 If either F(vk) or F(vq) is not empty, add the remaining values to F(vz).
18 return F(vz);

24

Chapter 5

Limited-preemptive
analysis extension

The limited-preemptive execution model analysis is an extension of the non-
preemptive analysis detailed in Chapter 4. Some changes and additions are
required to handle the precedence constraints between jobs. In Section 5.1
we explain the additional information required in the system state to track
precedence constraints. Then, in Section 5.2, we show the changes needed in
the dispatch condition and how to build the new system state. Finally, there
are also some additions in the merge phase, explained in Section 5.3. Note that
due to space constraints, we provide the proof of Lemmas 9 to 16, Lemma 2-bis,
Corollaries 5 and 6, and Corollary 1-bis in Appendix B.

5.1 System state representation

The system state representation needed for the limited-preemptive model is an
extension of the one introduced in Section 4.2. By rule 1, a job cannot be
considered ready if there’s a predecessor that has not completed its execution
yet. While at first, it would seem possible to know this information by checking
whether all the predecessors of a job Ji are in the set of dispatched jobs S(v) (i.e.,
pred(Ji) ⊆ S(v)) this does not account for the event where all the predecessors
of a job have been dispatched but some of them have not finished their execution
yet.

Therefore, we need to keep track of running jobs to prevent their successors
from being dispatched while they are still running. We do so by encoding the
set X (v) of jobs for which we are certain that they are still running. Note that
it is a subset of the jobs that have already been dispatched until reaching state
v, that is X (v) ⊆ S(v). For each job Jx ∈ X (v), three bounds are saved in the
system state v:

• A lower-bound EFTx(v) on the earliest finish time of Jx
• An upper-bound LFTx(v) on the latest finish time of Jx

25

• A lower-bound px(v) on the number of cores on which Jx is running. Re-
member, that each job is moldable and its execution may be parallelised on
a variable number of cores depending on the scheduler’s decisions encoded
in different paths leading to v.

5.2 Expansion phase

The changes required for the expansion phase are focused in adding some new
equations to the dispatch condition of a job Ji.

5.2.1 Ready jobs

Previously the ready time of a job Ji was defined by its release time interval
[rmin

i , rmax
i]. However, as a job cannot be ready until all of its predecessors have

completed their execution, this is no longer the case.
So, similar to [17], we define the set R(v) of jobs that are potentially ready

to be scheduled next in the system state v as the set of jobs that have not been
dispatched yet and have had all their predecessors already dispatched, i.e.,

R(v) =
{
Ji|Ji ∈ {J \ S(v)} ∧ pred(Ji) ⊆ S(v)

}
(5.1)

Furthermore, according to rule 1 a job is ready to execute if and only if:
i) It is released.
ii) It was not yet dispatched.
iii) All its predecessors have completed.

Therefore, we define the earliest time Rmin
i (v) at which a job Ji ∈ R(v) may

be potentially ready as the maximum of rmin
i and the earliest time at which all

predecessors of Ji have possibly completed, i.e.

Rmin
i (v) = max

{
rmin
i ,max

0
{EFT ∗

x (v)|Jx ∈ pred(Ji)}
}

(5.2)

where EFT ∗
x (v) is a safe lower bound (defined next) on the earliest finish time

of Jx for all execution scenarios that lead to the system states encoded in node
v.

Similarly, the latest time Rmax
i (v) at which Ji ∈ R(v) is certainly ready is

defined as the maximum of rmax
i and the time at which all predecessors of Ji

have certainly completed, i.e.,

Rmax
i (v) = max

{
rmax
i ,max

0
{LFT ∗

x (v)|Jx ∈ pred(Ji)}
}

(5.3)

where LFT ∗(v) is a safe upper bound on the latest finish time of Jx in state v.
To compute safe bounds on the earliest and latest finish time of a job Jx ∈

pred(Ji) until reaching a given system state v, we consider two different cases
depending on whether Jx is in the set of certainly running jobs X (v) at v or
not:

26

(a) System state

Ji Priority pred(Ji)
Case A Case B

J3 High {J1} {J2}
J4 Low ∅ ∅

(b) Jobs’ specification

Figure 5.1: Representation of system state and jobs of Example 5.1.
Two jobs can be scheduled now, where J3 has a higher priority and a
predecessor. We analyze two cases.

1. For the predecessors of Ji that are certainly running in system state v,
i.e., any job Jx ∈ {pred(i) ∩ X (v)}, the bounds EFT ∗

x (v) and LFT ∗
x (v)

can safely assume the values EFTx(v) and LFTx(v) saved for that job in
state v as explained in Section 5.1.

2. For predecessors of Ji that are not certainly running in state v, i.e., any
job Jx ∈ pred(Ji) that is not in X (v), there is no bound on EFTx(v) and
LFTx(v) saved in v. Note that the decision of not saving those values in
each node in the graph is an intentional optimization to limit the amount of
memory required by the algorithm. Therefore, we instead use the current
values of BCRTx and WCRTx computed so far by Algorithm 1 as they
are safe bounds on the EFT and LFT of Jx for all system states explored
until reaching this point of the schedule-abstraction graph, which then
also includes v.

5.2.2 Dispatch condition

When updating the analysis to support the limited-preemptive execution model,
some changes have to be done in the way the EST p

i (v) and LST p
i (v) of a job

Ji are computed.

5.2.2.1 Minimum start time with higher-priority jobs

There is one extra condition that needs to be accounted for when we compute
the EST p

i (v) of a job Ji under the limited-preemptive execution model. If a
lower-priority job Ji is ready to be dispatched at time t but every allocation
of cores for Ji will use cores just freed by the certainly running predecessors of
a higher-priority job Jk then this higher-priority job can also be eligible to be
dispatched instead of Ji if there are at least mmin

k cores available.
In the non-preemptive analysis, it may seem that tphigh(v), in Equation (4.8),

already encodes this condition but that is not the case as it does not account for
possible allocations of cores that ensure that the predecessors of a higher-priority
job have finished their execution. An example of the limitations of tphigh(v) can
be seen in Example 5.1.
Example 5.1. Let’s suppose that we have a system such that m = 2 with two
jobs that have been scheduled already, (shown in Figure 5.1a) where J1 and J2

27

have the finish time intervals [10, 15] and [5, 20] respectively. There are two jobs
ready: J3 and J4, J3 has the highest priority and J4 the lowest. We further
assume that J3 has a single predecessor whilst J4 does not have any. We analyze
two different cases where we evaluate the possibility of dispatching J4 depending
on which job is the predecessor of J3:
Case A The predecessor of J3 is J1. In this case J4 can start at the earliest

at time 5 right after J2 finishes its execution. As J3 has to wait for its
predecessor (J1) to finish its execution, J4 can start at the latest right before
J3 certainly does, which happens at time 15. So we have EST p

4 (v) = 5
and LST p

4 (v) = 14.
Case B The predecessor of J3 is J2. Now in this case, it would seem possible

that J4 can start at the earliest at time 5. However, that is not the
case because, if J4 were to start at time 5, this would imply that J2 has
finished its execution and thus J3 can be dispatched. We can see how the
earliest time at which J4 can be dispatched is at time 10 after J1 finishes
its execution; and the latest time is at time 15 where due to rule 8 the
scheduler is certain to dispatch J4, thus obtaining EST p

4 (v) = 10 and
LST p

4 (v) = 15.

So, we need to compute the earliest time tpredi (v) such that we are certain
that if Ji can be dispatched, there’s no other higher-priority job that has also
become eligible at the same time. Note that even if we perform the analysis
without the lower bound provided by tpredi (v) the analysis is still valid but more
pessimistic as we end up exploring impossible execution scenarios.

To compute this lower bound we have to check whether dispatching Ji at time
tpredi (v) would certainly use cores freed by predecessors of a released higher-
priority job that was just waiting for them. If that is the case, the current
tpredi (v) is not valid and we have to find another one. This means that computing
tpredi (v) is an iterative process where we have to check the times at which Ji
could possibly start. These are all the possible times at which the scheduler
could be invoked as defined by rule 3. We define our solution step by step.
Lemma 9. The set of certainly running predecessors X pred

x (v) of a job Jx in
state v is defined as

X pred
x (v) = {pred(x) ∩ X (v)} (5.4)

Lemma 10. The number of cores possibly available at a time t in state v can
be computed as

qmin(v, t) = max
1≤k≤m

{
k|t ≥ Amin

k (v)} (5.5)

Lemma 11. At time t in state v, the set of waiting jobs Jk ∈ Qi(v, t) that have
to be checked because Ji being dispatched could mean that the predecessors of Jk
have finished their execution is defined as

Qi(v, t) =

{
Jk

∣∣∣∣ can_start (Jk, v, t)︸ ︷︷ ︸
Jk can start at time t

∧ X pred
k (v) 6= ∅︸ ︷︷ ︸

Has a certainly
running predecessor

∧ Jk ∈ hpi

}
(5.6)

28

where

can_start (Jx, v, t) =
(
t ≥ max

{
rmax
x , Amin

mmin
x

(v)
})

∧
(
pred(Jx) ⊆ S(v)

)
(5.7)

Jobs Jk ∈ Qi(v, t) are higher-priority jobs with a certainly running prede-
cessor that can start if Ji does but, since they have precedence constraints, these
constraints may prevent Jk from starting. Thus, we have to check whether Ji
being dispatched at time t means that these constraints are certainly fulfilled in
which case, job Jk is dispatched instead of Ji. To do so, we check whether the
scheduler will allocate the cores that were previously being used by the prede-
cessors of a higher-priority job Jk ∈ Qi(v, t) to job Ji. If (i) that’s the case, (ii)
cores from all the certainly running predecessors of job Jk ∈ Qi(v, t) are needed
and (iii) no other allocation is possible, Jk will certainly be able to start at time
t if Ji does.
Lemma 12. If job Ji can start at time t in state v a higher-priority job Jk ∈
Qi(v, t) will also certainly be able to start if all possible allocations of cores for
Ji require for each of the certainly running predecessors Jj ∈ X pred

k (v) at least
one core of the cores previously being used by Jj.

Now, in order to check whether Ji uses at least one core from each of the
cores freed by the certainly running predecessors of a job Jk we know that Ji
can use the possibly available cores qmin(v, t) minus the number of cores that
would ensure that Ji is using cores from all the predecessors.
Lemma 13. The minimum number of cores ppredk (v) that ensures that all pos-
sible allocations of cores for Ji certainly use at least one core from each of the
cores freed by certainly running predecessors of a job Jk ∈ Qi(v, t) is

ppredk (v) = min
Jj∈Xpred

k (v)
pj (5.8)

Corollary 5. The job Jpred
k (v) ∈ X pred

k (v) from the certainly running prede-
cessors of a higher-priority job Jk ∈ Qi(v, t) that has the minimum number of
simultaneously freed cores where Ji cannot be scheduled is

Jpred
k (v) = arg min

Jj∈Xpred
k (v)

pj (5.9)

Lemma 14. The set of jobs Qpred
i (v, t) whose number of cores cannot be used

by Ji is defined as

Qpred
i (v, t) =

{
Jpred
k (v)

∣∣∣Jk ∈ Qi(v, t)
}

(5.10)

Corollary 6. The total number of cores that cannot be used by Ji if it can be
scheduled at the earliest at time t is

qpredi (v, t) =
∑

Jj∈Qpred
i (v,t)

pj (5.11)

29

Algorithm 4: Computation of lower bound for tpredi (v)

input : State v and job Ji

output : tpredi (v)

1 tpredi (v) := Rmin
i (v);

2 foreach Amin
k (v) ∈ {Amin

p (v), . . . , Amin
m (v)} do

3 tpredi (v) := max{tpredi (v), Amin
k (v)};

4 if inequality 5.12 holds with t = tpredi (v) then
5 return tpredi (v);
6 end
7 end
8 return +∞;

Lemma 15. Ji may be scheduled at time t at the earliest on p cores if it matches
the following condition:

qmin(v, t)− qpredi (v, t) ≥ p (5.12)

Finally in order to compute the lower bound for tpredi (v) we use Algorithm 4
that checks all the times at which Ji can be possibly dispatched. If none of the
evaluated times matches the condition then the algorithm returns +∞ as this
means that Ji will not be dispatched in system state v.

5.2.2.2 Earliest Start Time

So now, the earliest time at which job Ji may start to execute on p cores depends
on the following factors:

i) The time Rmin
i (v) at which the job can possibly start and all its prede-

cessors may have finished. This effectively replaces rmin
i in the previous

Equation (4.2).
ii) The time tpgang(v) at which we know that executing Ji on p cores is pos-

sible.
iii) The time tpredi (v) by which we are certain that Ji can start but other

released higher-priority jobs are still waiting for their predecessors to finish
their execution.

Corollary 1-bis. A job Ji in a limited-preemptive execution model cannot start
on exactly p cores before time EST p

i (v), defined as

EST p
i (v) = max{Rmin

i (v), tpgang(v), t
pred
i (v)} (5.13)

30

5.2.2.3 Latest Start Time

The LST p
i (v) of a limited-preemptive job Ji is computed in a similar way as

previously explained in Section 4.4.1.3. However, we must update the defini-
tions of twc(v) and tphigh(v) in order to handle jobs with precedence constraints
(tpavail(v) does not get affected and can be used as before).

As previously explained, if Ji is the first job dispatched by the scheduler until
LST p

i (v), then according to rules 3 and 8 there must be no other job that was
eligible to be dispatched before LST p

i (v). Since by rule 2 a generic job Jj is
eligible only if it is ready and, by rule rule 1, it is only ready if all its predecessors
have completed execution (i.e., after Rmax

i (v)) we must have

LST p
i (v) ≤ twc(v) (5.14)

where
twc(v) = min

Jj∈R(v)

{
max

{
Rmax

j (v), Amax
mmin

j
(v)

}}
(5.15)

where Rmax
j (v) is the latest time at which Jj ∈ R(v) may be ready, and Amax

mmax
j

is
the latest time by which mmax

j cores may be available to execute new workload
in all system states covered by v.

Similarly, we update tphigh(v) to account for cases where the higher priority
jobs are still waiting for their predecessors to finish execution. Thus we redefine
Lemma 2 in Lemma 2-bis.
Lemma 2-bis. Ji will not be the first job dispatched in the system state v or
will not be dispatched on exactly p cores if it did not start to execute before time
tphigh(v) defined as

tphigh(v) =
∞

min
Jj∈{hpi ∩{J\S(v)}}

{
max

{
tph(Ji, Jj), th,pred(Ji, Jj)

}}
(5.16)

where

tph(Ji, Jj) =

{
rmax
j if mmin

j ≤ p

max{rmax
j , Amax

mmin
j

} otherwise (5.17)

and
th,pred(Ji, Jj) =

0max{LFT ∗
y (v)|Jy ∈ pred(Jj) \ pred(Ji)} (5.18)

Finally after these changes, LST p
i (v) can be computed as previously stated

in Equation (4.10) of Corollary 2:

LST p
i (v) = min{tpavail(v), twc(v), t

p
high(v)− 1} (5.19)

31

5.2.2.4 Dispatch condition

Now that we have updated the definitions of EST p
i (v) and LST p

i (v) we can use
the same dispatch condition as stated in Section 4.4.1.4, i.e., making sure that
Ji respects inequality 4.11.

5.2.3 Building a new system state

As explained in Section 4.4.3, after dispatching Ji we generate multiple new
states v′k. Now, as we are analysing the limited-preemptive execution model,
we also have to update the set of certainly running jobs X (v′k) to represent the
jobs that are certainly running in the new state v′k. We update this set using a
similar method as the one used by Nasri et. al. in [17].
Lemma 16. The set of certainly running jobs X (v′k) of the new state v′k is
comprised of

X (v′k) =
{
Ji

}
∪
{
Jj |Jj ∈ X (v) ∧ EFTj(v) > LST p

i (v)
}

(5.20)

5.3 Merge phase

Finally the last part of the analysis that needs to be updated in order to account
for a limited-preemptive execution model is the merge phase. As we explained
in Section 4.5, two system states vk and vq can be merged in a new system state
vz. We can use the same method as previously used but we also must merge
the two sets of certainly running jobs X (vk) and X (vq) into X (vz).

To do so, we extend the method described in section 4.6 in [17] where the set
of certainly running jobs was updated as

X (vz) =
{
Jx

∣∣∣Jx ∈ X (vk) ∩ X (vq)
}

(5.21)

Additionally, we update the number of cores px on which each job Jx is certainly
running in the resulting state vz. We consider the bounds that were previously
defined for all execution scenarios leading to either vk or vq, and hence also to
the merged state vz. Therefore we have that

px(vz) = min
{
px(vk), px(vq)

}
(5.22)

32

Chapter 6

A non-work conserving
scheduling policy

As explained in Section 1.2 we want to evaluate whether a new scheduling
policy can improve the schedulability ratio of moldable gang tasks. We do so,
by proposing a new non-work scheduling policy that can solve the limitations of
the JLFP scheduler. Moreover, we also propose an extension to our scheduling
policy that can do a better assignment of cores when multiple jobs are dispatched
at the same time.

6.1 Limitations of the job-level fixed-priority
scheduling policy

Even if the JLFP scheduling policy performs reasonably well, there are still
some limitations that appear when dealing with moldable gang tasks. We ex-
plore a limitation caused by the work-conserving property (rule 8) and another
limitation caused by how the number of cores are assigned to a job, defined in
rule 5.

6.1.1 Work-conserving policy

By rule 8 the JLFP scheduler uses a work-conserving policy. However, this may
cause some priority inversion issues when scheduling gang tasks. Example 6.1
shows a case with rigid gang jobs where this happens and it is caused by a job
requiring more cores than the ones that are available at that moment, causing
a deadline miss later on.
Example 6.1. Figure 6.1c defines some jobs that have to be scheduled in a
system with m = 4 cores. J1 is the one with the highest priority and J4 is the
one with the lowest, additionally J2 has a deadline at time 15.

The result of scheduling this system with a JLFP scheduling policy can be
seen in Figure 6.1a. With such policy, J1 is dispatched first at time 0 but J2

33

(a) Job set scheduled under JLFP (b) Job set with no deadline misses

Ji Priority Cores Execution time Deadline
J1 High 2 10 +∞
J2 Mid-high 3 5 15
J3 Mid-low 1 20 +∞
J4 Low 1 15 +∞

(c) Jobs’ specification

Figure 6.1: Example of priority inversion that can happen with gang
jobs. (a) shows the result of scheduling the jobs with the JLFP
scheduling policy and (b) shows a possible solution without deadline
misses.

cannot be dispatched at time 0 as at this moment there are only 2 cores free
and J2 requires 3 cores to execute. This allows both J3 and J4 to be dispatched
and thus retarding the execution of J2 until time 15 where it causes a deadline
miss. However, this job set could have been scheduled without deadline misses
as shown in Figure 6.1b by leaving one core idle that would have allowed J2 to
start running at time 10.

6.1.2 Cores assigned to moldable gang tasks

Additionally, as defined in rule 5, the number of cores allocated to a job Ji is
the minimum between mmax

i and the number of free cores at the time at which
is dispatched. This means that if there are multiple jobs dispatched at the same
time, there can be an unbalance between the number of cores assigned.
Example 6.2. Figure 6.2c defines some jobs that have to be scheduled in a
system with m = 4 cores. The result of scheduling these jobs under the JLFP
scheduler can be seen in Figure 6.2a. The deadline miss is caused by the fact
that J1 is assigned 3 cores and thus J2 is not eligible to be scheduled as there
are not enough cores to dispatch it at time 0. However, we know that if we had
a better scheduling policy, the job set is actually schedulable as it can be seen in
Figure 6.2b.

So as it can be seen in Example 6.2 it would be possible to reduce the num-
ber of deadline misses by having a scheduling policy that performs a better
assignment of the number of cores allocated to a job.

34

(a) Job set scheduled under JLFP (b) Job set with no deadline misses

Ji Priority Cores min Cores max Execution time Deadline
J1 High 2 3 10 +∞
J2 Low 2 2 5 15

(c) Jobs’ specification

Figure 6.2: Example of deadline miss caused by the scheduler allocating
too many cores to the highest-priority job. (a) shows the result of
scheduling the jobs under the JLFP scheduling policy and (b) shows
a possibly solution without deadline misses.

6.2 Reservation-based non-work conserving
scheduling policy

In order to prevent priority inversions and deadline misses explained in Sec-
tion 6.1 we introduce a new reservation-based non-work conserving scheduling
policy that attempts to solve these issues. This new policy is based on the JLFP
scheduler so it still uses priorities assigned to jobs, we call it the reservation-
based gang (ResG) scheduling policy.

6.2.1 Basic idea

One of the limitations shown in previous sections is that the work-conserving
property allows lower-priority jobs to be dispatched before higher-priority jobs
if there are not enough cores for the higher-priority jobs to become eligible. This
in turn can further delay the dispatch time of the higher-priority job.

In order to solve this, we allow a higher-priority job Ji, to reserve the minimum
number of cores that they need in order to be eligible (i.e., mmin

i). Once these
cores are reserved, we make sure that dispatching a new job in the system does
not increase the availability times of the number of cores reserved. By doing
this, a lower-priority job is allowed to start before a higher-priority job with
reservations if the lower-priority job is guaranteed to finish before the availability
time of the cores required by the higher-priority job. Note that, to compute the
availability times, we only use the WCET of the job (i.e., Cmax

i (pi)).
Example 6.3. If we take the job set previously defined in Figure 6.1c and we
apply this new rule we can see the result in Figure 6.3. This result was achieved
with the following steps:

35

Figure 6.3: System of Figure 6.1c scheduled under the ResG scheduler

1. At time 0, J1 has the highest priority, so it is scheduled first with p = 2
cores.

2. Then, J2 has mmin
2 = 3 but only 2 cores are free at this moment, so it

reserves the 3 cores leaving only 1 virtually free core where other jobs can
be scheduled. The availability times are A = {0, 0, 10, 10} since 1 core is
available at time 0, 2 cores are available at time 0, 3 cores are available
at time 10 and 4 cores are available at time 10.

3. As J3 has mmin
3 = 1 and can start without increasing the availability of 3

cores (i.e., A3 = 10) so it is also dispatched at time 0. The availability
times are A = {0, 10, 10, 20}.

4. J4 has mmin
4 = 1 but dispatching it at time 0 would increase the availability

time of 3 cores from time 10 to time 20 so J4 is not dispatched and instead
reserves the remaining core that could be reserved at time 0.

5. At time 10, after J1 finishes its execution, the scheduler is called again.
There are now 3 cores free and none of them are reserved at time 10, so
J2 is dispatched.

6. Finally, at time 15, J4 gets dispatched.
What happened here is that J1, as it had the highest priority, was scheduled

with p = 2 cores leaving two cores idle. Then J2 required 3 cores to be eligible
but as only 2 cores were free it reserved 3 cores (2 cores from already running
jobs and 1 core leaving it idle).

Deciding the number of cores that will be assigned to a job is divided in
two steps. The first step happens when deciding if a job will be dispatched or
not and we always use the minimum number of cores p such that we are sure
that the deadline is always met and p falls within the bounds of the job (i.e.,
mmin

i ≤ p ≤ mmax
i), which can be expressed as

min
mmin

i ≤p≤mmax
i

t+ Cmax
i (p) ≤ di (6.1)

In the second step, once we know all the jobs that will be dispatched at a
specific time t, we decide to assign more cores to jobs that can still use more
(i.e., pi < mmax

i). How we decide which jobs get more cores and how many
cores is detailed in Section 6.2.3.

36

6.2.2 Scheduler model

We propose the following set of rules to model the ResG scheduling policy:
Rule 1: A job Ji is considered ready at time t if and only if it is released at or

before t, it is not yet completed at t, it is not already executing at t,
and all predecessors of Ji completed their execution by t.

Rule 2: A job Ji is considered eligible to be dispatched at time t if and only if
it is ready at time t and it belongs to the eligible set of jobs J eligible.

Rule 3: The scheduler is invoked whenever a job is released or a job completes.
Rule 4: At every invocation of the scheduler, the sets J eligible and Meligible

are computed with Algorithm 5 and Mmoldable is computed with Al-
gorithm 6.

Rule 5: The dispatched job Ji is assigned pi ∈ Mmoldable cores. That is, the
number of cores defined in the set Mmoldable for job Ji.

Rule 6: The number of cores allocated to a job cannot change during its exe-
cution.

Rule 7: The execution of a job cannot be preempted once it started.
Algorithm 5 computes both the set J eligible of jobs that are eligible and

will be dispatched, and also the set Meligible of cores assigned to each job in
J eligible. Each job Ji is checked in order of priority, then at Line 7 the minimum
number of cores needed to meet the deadline is selected (this can be computed
with Equation (6.1) as previously explained). Then Line 8 checks if enough free
cores are available to dispatch Ji. There are multiple options that can happen:

• There are enough cores (i.e., pi ≤ (m−mbusy)). Then, Line 9 tempor-
arily computes the new availability times of dispatching Ji with pi cores.
Line 10 checks if dispatching Ji will delay the availability times of any of
the values of the reserved cores, this condition allows lower-priority jobs
to use these cores if they are guaranteed to finish before the number of
reserved cores becomes available and thus, allowing a more efficient use
of resources. If the condition is met, Lines 11 to 14 add the job to the
eligible set with its respective cores and update the availability times to
reflect the future dispatch of the job.

• There are not enough cores but cores can still be reserved (i.e.,
pi > (m − mbusy) ∧ pi ≤ (m −

∑
q∈Mreserved q)). In this case, pi +∑

q∈Mreserved q cores are reserved in Line 18. We use this value instead of
pi because otherwise we would be blocking valid executions when multiple
jobs reserve cores.

• There are not enough cores and cores cannot be reserved. In this
case, we stop looking for more jobs to schedule as if we continued trying
to dispatch jobs we could have a priority-inversion issue (Line 20).

37

Algorithm 5: ResG eligible jobs selection algorithm.
input : Set R of ready jobs
output : Set J eligible of eligible jobs, set Meligible of minimum number of

cores assigned to jobs requried to meet the deadline and Mreserved

of reserved cores.
1 m := total cores in the system;
2 mbusy := number of cores executing jobs already;
3 Mreserved := ∅ ; // Set of number of cores already reserved

4 J eligible := ∅;
5 Sort jobs in R by highest priority first;
6 foreach Ji ∈ R do
7 pi = minimum cores to meet the deadline;
8 if pi ≤ (m−mbusy) then
9 Atemp := availability adding Ji execution with pi cores to A;

10 if checkAvailability(Atemp, A, Mreserved) then
/* Enough cores are free and adding Ji with pi cores will not

increase the availability times of the number of reserved
cores */

11 J eligible := J eligible ∪ {Ji};
12 Meligible :=Meligible ∪ {pi};
13 mbusy := mbusy + pi;
14 continue;
15 end
16 end

// Reached only if Ji has not been selected in the previous step
17 if pi > (m−mbusy) ∧ (p ≤ (m−

∑
q∈Mreserved q)) then

// Too many cores are busy but there's space to reserve more
18 Mreserved :=Mreserved ∪ {pi +

∑
q∈Mreserved q};

19 else
/* This jobs cannot be scheduled right now and we cannot even

reserve p cores so we stop trying to mark more jobs as
eligible. */

20 break;
21 end
22 end
23 Function checkAvailability(Atemp, A, Mreserved)
24 foreach q ∈Mreserved do
25 if Atemp

q > Aq then return false ;
26 end
27 return true
28 end

38

6.2.3 Moldable gang cores assignment

Because we are using moldable gang tasks, this means that we can decide how
many cores the scheduler assigns to a job. In Section 6.2.2 Algorithm 5 computes
the jobs that are eligible to be dispatched and also the minimum number of cores
that each job needs in order to meet the deadline. However, now we can decide
to assign more cores that will heavily benefit of using these extra cores.

For every free core, we select the best candidate job to have it assigned. We
make sure that adding one more core to the selected job does not make the
availability times of the reserved cores worse. We first search the job such that
giving it one more core would make the availability times of the reserved cores
better. If no job is found, we then give it to the job such that adding one more
core would reduce the execution time defined as

Cmax
i (p+ 1)− Cmax

i (p) (6.2)

So, we select the job that has the highest value when using Equation (6.2).
Algorithm 6 shows the algorithm used to compute the set Mmoldable of cores
assigned to the jobs before being dispatched.

Algorithm 6: Assignment of cores of the ResG scheduling policy
input : Set J eligible of eligible jobs, Meligible of cores assigned to the

eligible jobs and Mreserved of reserved cores.
output : Set Mmoldable of cores assigned to the eligible jobs.

1 m := total cores in the system;
2 mfree := m−mbusy −

∑
q∈Meligible q;

3 Mmoldable =Meligible;

4 while mfree > 0 do
5 Ji := getBestCandidate(Mreserved, J eligible, A);
6 if Ji = ∅ then
7 break;
8 end
9 Extract pi from Mmoldable and insert back pi = pi + 1;

10 mfree = mfree − 1;
11 end
12 Function getBestCandidate(Mreserved, J eligible, A)
13 foreach Ji ∈ J eligible do
14 if giving one extra core to Ji improves any Aq, q ∈Mreserved then
15 return Ji;
16 end
17 end
18 Sort jobs in J eligible by value of Equation (6.2);
19 foreach Ji ∈ J eligible do
20 if Ji does not worsen Aq, ∀q ∈Mreserved then
21 return Ji;
22 end
23 end
24 return ∅;
25 end

39

40

Chapter 7

Experimental evaluation

We performed an experimental evaluation to test whether the proposed test
improves the accuracy of the schedulability analysis and also to see if the new
ResG proposed scheduling policy increases the schedulability ratio when com-
pared against JLFP. We show the results obtained for the non-preemptive ana-
lysis in Section 7.1, then we show the results for the limited-preemptive analysis
in Section 7.2 and finally we compare the two scheduling policies in Section 7.3.

7.1 Non-preemptive analysis

When performing the evaluation of the non-preemptive analysis we wanted to
test:

i) Whether the proposed test improves the accuracy of the schedulability
analysis in comparison to the related work.

ii) Understand the influence of mmin
i and mmax

i on the schedulability of mold-
able gang tasks.

iii) Check whether the run-time of the analysis is practical.
The experiments were done by applying Algorithm 1 to the analysis of ri-

gid and moldable gang tasks under a non-preemptive JLFP scheduling policy.
We compared our results to the only other schedulability analysis for non-
preemptive gang (NPGang) [15].

We implemented Algorithm 1 as a C++ program and performed the analysis
on a cluster of the Clouding.io cloud computing service company. Each machine
is equipped with 32GiB of RAM and AMD EPYC 7502 32-Core processors
clocked at 2.5GHz. We report the CPU time as the run-time of the analysis.

41

Experiment m n mmin
i mmax

i maxUi

a-seq-random

8 20
1 [1,m]

1a-seq-divisor {1, 2, 4, 8}
a-gang-random [1,m] [1,m]

m× Ua-gang-divisor {1, 2, 4, 8} {1, 2, 4, 8}

b 8 20 mmin
i = mmax

i with
{1, 2, 4, 6, 8} m× U

c 4 10 1 {1, 2, 3, 4} 1
d 8 20 1 {1, 2, 3, 4, 6, 8} 1
e 16 32 1 {4, 8, 16} 1
f 8 8–24 1 {1, 2, 3, 4, 6, 8} 1

Table 7.1: Specification of experiments performed

7.1.1 Experiments on synthetic task sets

We generated task sets using the same established method used in prior stud-
ies [10, 25, 17]. We randomly generated n utilization values with a total sum
of m× U by using Stafford’s RandFixSum algorithm [27] where the utilization
Ui of each task falls in the interval [0.001,mmin

i]. To avoid cases where the
hyperperiod is impractically large due to incompatible task periods, we chose
the period values with a log-uniform distribution in the interval [10000, 100000]
with a granularity of 5000 (as in [25]). Additionally, we discarded every task set
that contains more than 100,000 jobs in its hyperperiod.

To evaluate the impact of mmin
i and mmax

i on the system schedulability, we
assigned mmin

i and mmax
i differently for different experiments as detailed in

Table 7.1. Experiments (a-seq-random) and (a-gang-random) pick their values
randomly from the interval [1,m]. On the other hand, experiments (a-seq-
divisor) and (a-gang-divisor) randomly pick their values from the set {1, 2, 4, 8}
composed of divisor of the number of cores m = 8. Note that we always ensure
that mmin

i < mmax
i when picking random values. Experiment (b) assumes a

rigid gang model, so mmin
i = mmax

i for all tasks. Finally, in experiments (c),
(d), (e), and (f) all tasks share the same mmin

i and mmax
i values, where mmin

i = 1
and mmax

i is varied from 1 to 16.
For each data point in the plots of Figure 7.1, we generated 450 task sets

and report the schedulability ratio (i.e., the percentage of task sets deemed
schedulable by the analysis). Additionally, we report the run-time of the sche-
dulability analysis for each task set tested in experiments (c), (d), and (e) as a
function of the number of jobs in their hyperperiod.

42

7.1.2 Schedulability results

Figure 7.1b shows the schedulability ratio of rigid gang tasks as a function of
the total system utilization and with different upper bounds on the maximum
parallelism mmax

i of each task. We compare the test of Dong and Liu[15] to the
non-preemptive SAG analysis of Chapter 4. The SAG analysis clearly outper-
forms Dong and Liu’s test for any value of mmax

i . For instance, Dong and Liu’s
test does not detect any schedulable task set at U = 40% while our analysis still
detects between 95 and 100% of them depending on the value of the maximum
task parallelism. Thus, the SAG analysis is clearly more accurate as it allows
to explore all possible sequence of scheduler decisions whilst the test of [15] is
only a utilization-based test.

To investigate how the task parallelism configuration affects the schedulabi-
lity of moldable tasks, we compared four different scenarios in Figure 7.1a (see
experimental setup). Task sets with mmin

i set to 1 for all tasks ((a-seq-random)
and (a-seq-divisor)) have a higher schedulability ratio because tasks can be
dispatched as soon as one or more cores become free. If mmin

i ≥ 1, however
((a-gang-random) and (a-gang-divisor)) jobs may experience longer blocking
(waiting for their minimum number of cores to be freed) and frequent priority
inversions with lower-priority jobs “stealing” available cores from higher prior-
ity ones. Additionally, we compared the difference between choosing mmax

i as a
random value between 1 and the number of cores m, or when ensuring that it
is a divisor of the number of cores (i.e., equal to 1, 2, 4, or 8). In the later case
((a-seq-divisor) and (a-gang-divisor)), the schedulability ratio slightly improves
in comparison to the former. This slight improvement is caused by having a
few less scenarios where cores are left idle with pending workload. However, the
impact remains rather small.

Figure 7.1f shows the effect of the number of moldable gang tasks when the
total system utilization U is set to 70%. When mmax

i = 1, the results are
identical to non-preemptive global scheduling. Also, when mmax

i = 8, the sched-
uler described in Section 3.2 will execute all jobs on p = 8 cores, which is equi-
valent to single core scheduling. Thus, as the number of tasks increases, the
execution time of the tasks decreases and the results become closer to those of
single core preemptive gang scheduling. Similarly, when mmax

i is set to 2 or
4 for all tasks, then the scheduler of Section 3.2 behaves identically toa non-
preemptive global scheduler on 4 and 2 cores respectively, hence explaining the
typical tendency witnessed for such systems. This experiment thus gives the
impression that larger maximum task parallelism is beneficial for the schedula-
bility.

We further explore this property in Figures 7.1c to 7.1e where we compare task
sets with mmin

i = 1 and a common mmax value for all tasks. It is interesting to
see in Figure 7.1c that, in a system with four processors, configuring mmax to 3
causes a significant lower schedulability ratio than with other values. Also, with
eight cores (Figure 7.1d), setting mmax to 3 or 6 also yields lower schedulability
ratios (the same is true for mmax = 5 and mmax = 7, even though we do not
show the results to avoid clutter). This shows the effect of all tasks sharing a
value of mmax that is a divisor of the number of cores. When this is the case,
all the jobs in the task set will always be scheduled with p = mmax because, as

43

(a) (b)

(c) (c-runtime)

(d) (d-runtime)

(e) (e-runtime)

44

(f) (f-runtime)

Figure 7.1: Experimental results. (a) moldable gang tasks with m = 8,
(b) rigid gang tasks with m = 8, (f) moldable gang tasks with m = 8,
U = 0.7 and mmin

i = 1, (c) moldable gang tasks with m = 4 and mmin
i = 1,

(d) moldable gang tasks with m = 8 and mmin
i = 1, (e) moldable gang

tasks with m = 16 and mmin
i = 1. Runtime information for (c), (d),

(e), and (f) is given by (c-runtime), (d-runtime), (e-runtime), and
(f-runtime), respectively.

soon as a job finishes, it will free exactly the same amount of cores as the next
job needs to execute with mmax cores. This eliminates the problem of some
cores being available but not being used as they are not enough for any pending
job to start to execute. However, when mmax is not a divisor of m, some jobs
may be executing with mmax

i cores while other may execute with smaller values
of p, this causes an imbalance in execution times that leads to more frequent
deadline misses.

Figure 7.1 also shows that the run-time of the SAG analysis remains accept-
able even for large job sets scheduled on platforms with a large number of cores.
The runtime remains well bellow 1,000s in the vast majority of the cases and
the average runtime remains below 500s.

7.2 Limited-preemptive analysis

When performing the evaluation of the limited-preemptive model we wanted
to see whether the proposed test gives meaningful results and we wanted to
understand the influence of the number of segments that each task has.

We performed experiments with the limited-preemptive execution model in a
similar way as the one used in Section 7.1, using the same platform but applying
Algorithm 1 to the analysis of moldable gang tasks under a limited-preemptive
JLFP scheduling policy instead.

45

7.2.1 Experiments on synthetic task sets

We generated synthetic task sets using the same method explained in the pre-
vious section. As we wanted to evaluate the impact of the number of segments
in a system, experiment (a) varies the number of segments assigned to each
task. The task set has n = 4 tasks with a total system utilization U of 70% and
m = 4 cores. Each task also has mmin

i = 1 and mmax
i is set the same for all the

tasks, then we compare four different values of mmax
i (1, 2, 3, and 4). Then,

the number of segments evaluated are 1, 2, 3, 4, 5, 7, 10, 15, 20, and 25. We
tried to obtain the same results with m = 8 cores and n = 8 but the memory
requirements and runtime of the analysis became too large to complete.

Additionally, we performed another experiment by varying the system utiliz-
ation instead of the number of segments. In this experiment, the total number
of tasks is also n = 4 but we set the number of segments of each task to 5. The
system utilization is varied between 10% and 100%.

7.2.2 Schedulability results

Figure 7.2a shows the schedulability ratio of limited-preemptive moldable gang
tasks as a function of the number of segments of each task with upper bounds
in the maximum parallelism of each task (mmax

i). It can be seen how there’s a
clearly difference between mmax

i = 4 and other values.
When the maximum parallelism is allowed, the execution becomes equivalent

to a single core execution model. If this is the case, the case the set of cer-
tainly running predecessors (X pred

i (v)) always contains the previous scheduled
job, except if there’s a merge, and thus tpredi (v) can be computed accurately.
However, when the maximum parallelism is lower, it is possible that the set
X pred

i (v) is not totally accurate due to a previous merge and thus there’s not
enough information to give a more accurate tpredi (v) value.

Figure 7.2b shows the schedulability ratio for limited-preemptive moldable
gang tasks when varying the total system utilization. Again, it can be seen
how reducing the maximum level of parallelism has a negative effect regarding
schedulability due to pessimism in the analysis. Additionally by looking at the
runtime of the analysis in Figure 7.2(b)-runtime it can be seen how some task
sets reached the time limit (10000 seconds) when performing the evaluation.
This increased runtime is caused by the increased number of segments in the
system and more conditions that have to be checked when evaluating precedence
constraints.

46

(a) (a-runtime)

(b) (b-runtime)

Figure 7.2: Experimental results for the limited-preemptive execution
model. (a) moldable gang tasks varying number of segments with
m = 4, U = 0.7, mmin

i = 1 and n = 4, (b) moldable gang tasks varying
utilization with m = 4, mmin

i = 1, n = 4 and 5 segments per task.
Runtime information for (a) is given by (a-runtime).

7.3 ResG compared with JLFP

We decided to evaluate the new ResG scheduling policy when compared with
the JLFP scheduler. We did so by implementing the scheduling rules of JLFP
(Section 3.2) and the rules of ResG (Section 6.2.2) in a simulator written in
C++. It tests whether a task set will have a deadline miss or not by using the
WCET (Cmax

i) of the jobs. While this is not as accurate as the SAG analysis,
due to the schedulability of gang tasks not being sustainable, it still provides
us with useful information that helped us to quickly test and develop new ideas
that could improve the schedulability of moldable gang tasks.

We evaluated three different schedulers:
JLFP the job-level fixed-priority scheduler as defined in Section 3.2.
ResG-eligible The ResG scheduler but assigning a p value defined in Meligible,

this is the minimum number of cores that ensures that a deadline miss will
not happen.

47

(a) (b)

(c) (d)

Figure 7.3: Comparison of JLFP scheduling policy with two variants
of ResG. The task sets used are the ones of Section 7.1 experiment
(a). Task sets of (a) are (a-seq-random), of (b) are (a-seq-divisor), of
(c) are (a-gang-random), and of (d) are (a-gang-divisor).

ResG-moldable The ResG scheduler assigning a p value defined in Mmoldable,
these are the cores such that all free cores have been assigned to a job.

Figure 7.3 shows the schedulability ratio of the JLFP, ResG-eligible, and
ResG-moldable schedulers with four different types of task sets when evaluating
them through the simulator that we created. We use the task sets defined in
Section 7.1 experiment (a). It can be seen how there’s a significant improvement
in terms of schedulability ratio when comparing any of the ResG variants with
JLFP. In Figure 7.3a the total schedulable task sets by ResG-moldable is a
17.2% higher than the ones schedulable by JLFP, in Figure 7.3b is a 13.8%
higher, in Figure 7.3c is a 14.1% higher and in Figure 7.3d is a 9.1% higher.

It can be seen how there’s a significative improvement just by using the non-
work-conserving property of ResG when compared to JLFP. However, the ef-
fect of using Meligible or Mmoldable is not very significative (green and orange
curves). This is caused because the non-work-conserving property already al-
locates much of the cores and already ensures that enough cores are allocated
such that deadlines are not missed.

48

Chapter 8

Conclusions and future
work

8.1 Conclusions

As a conclusion of this project we evaluate our initial research questions. We
can say that we have significantly improved the accuracy of the schedulability
analysis of gang tasks when compared to the current state-of-the-art. Moreover,
we also extended the analysis for limited-preemptive moldable gang tasks which
is a more generic model than the non-preemptive rigid model used by the state-
of-the-art.

Additionally, by doing the analysis we were able to evaluate the impact of
the moldable property of gang tasks, specially the impact of a good selection
of the minimum and maximum parallelism assigned to each task in the system.
We concluded that assigning the same mmin

i value to all tasks yields the best
performance, specially when these values are a divisor of the total number of
cores in the system.

Finally, we show that a non-work-conserving policy can significantly improve
the schedulability ratio of the task sets when compared against the job-level
fixed-priority scheduling policy. Moreover, this effect is also combined with a
good selection of number of cores so deadlines are always met.

8.2 Future work

We plan on improving our analysis with precedence constraints in order to in-
crease the accuracy when multiple jobs run simultaneously by storing additional
information in the system state that would allow us to properly track potentially
running jobs, required to do a proper pruning of branches when lower priority
jobs are evaluated for a possible dispatch.

Moreover, we would like to improve the ResG scheduling policy by testing
more ways of assigning the number of cores allocated to a job. We would like

49

to see if focusing on other objectives when assigning the number of cores, would
lead a better schedulability ratio for different types of task sets.

50

Notation

We provide the following list of common notation used during the thesis.

Description Symbol

. Decimal separator

, Thousands separator

vi State i

m Cores in the system

n Total tasks in the system

τi Task i

Ji Job i

J Job set

S(v) Set of dispatched jobs in state v

R(v) Set of ready jobs in state v

mmin
i Minimum cores of job Ji

mmax
i Maximum cores of job Ji

pi Cores assigned to job Ji

Cmin
i (p) Best-case execution time of job Ji when executed

with p cores

Cmax
i (p) Worst-case execution time of job Ji when ex-

ecuted with p cores

rmin
i Earliest release time of job Ji

rmax
i Latest release time of job Ji

Rmin
i (v) Earliest release time of job Ji with precedence

constraints at state v

Rmax
i (v) Latest release time of job Ji with precedence con-

straints at state v

di Deadline of job Ji

51

hpi Set of jobs with higher priority than job Ji

lpi Set of jobs with lower priority than job Ji

pred(Ji) Set of predecessors of job Ji

X (v) Set of certainly running jobs at state v

X pred
i (v) Set of certainly running predecessors of Ji at state

v

Amin
k (v) Possibly available times of k cores at state v

Amax
k (v) Certainly available times of k cores at state v

Aexact
k (v) Possibly available times of exactly k cores at state

v

F(v) Set of simultaneous core releases at state v

Fi(v) Element i-th in set of simultaneous core releases
F(v) of state v

fi(v) Earliest availability time of group of cores repres-
ented by element Fi(v)

Mi(v) Number of cores in group of cores represented by
element Fi(v)

EST p
i (v) Earliest start time of Ji with p cores in state v

LST p
i (v) Latest start time of Ji with p cores in state v

EFT p
i (v) Earliest finish time of Ji with p cores in state v

LFT p
i (v) Latest finish time of Ji with p cores in state v

52

Acronyms

BCET Best-Case Execution Time 10, 16, 51
BCRT Best-Case Response Time 3, 7, 23
BTM Bundled Task Model 6

DAG Directed Acyclic Graph 9, 11, 13
DM Deadline Monotonic 1

EDF Earliest-Deadline First 1, 6

FPGA Field Programmable Gate Array 2

GPU Graphics Processor Unit 2

HPC High-Performance Computing 1, 5

JLFP Job-Level Fixed-Priority 1, 3, 6, 7, 10, 33–35, 41, 45, 47–49

NPGang Non-Preemptive Gang 41

ResG Reservation-Based Gang 35–39, 41, 47–49

SA Schedule-Abstraction 7
SAG Schedule-Abstraction Graph ix, 3–5, 7, 16, 17, 22, 23, 27, 43, 45, 47, 63

TLFP Task-Level Fixed-Priority 6

WCET Worst-Case Execution Time 10, 16, 20, 35, 47, 51
WCRT Worst-Case Response Time 3, 7, 13, 23

53

54

Bibliography

[1] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Real-Time Systems Series. Sprin-
ger US, 2010. isbn: 9781441935786.

[2] John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In
3rd International Conference on Distributed Computing Systems (ICDCS),
pages 22–30, 1982.

[3] Jing Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill and A. Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In 26th Eur-
omicro Conference on Real-Time Systems (ECRTS), pages 85–96, 2014.

[4] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance be-
nefits for fine-grain synchronization. Journal of Parallel and Distributed
Computing, 16(4):306–318, 1992. issn: 07437315. doi: 10.1016/0743-
7315(92)90014-E.

[5] Joël Goossens and Vandy Berten. Gang FTP scheduling of periodic and
parallel rigid real-time tasks. In 18th International Conference on Real-
Time and Network Systems (RTNS), pages 189–196, 2010. arXiv: 1006.
2617.

[6] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson and
F. Donelson Smith. GPU Scheduling on the NVIDIA TX2: Hidden De-
tails Revealed. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 104–115, 2017. isbn: 9781538614143. doi: 10.1109/RTSS.2017.
00017.

[7] Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro
Marinoni and Giorgio Buttazzo. A Framework for Supporting Real-Time
Applications on Dynamic Reconfigurable FPGAs. In 2016 IEEE Real-
Time Systems Symposium (RTSS), pages 1–12, 2016.

[8] Sébastien Collette, Liliana Cucu and Joël Goossens. Integrating job par-
allelism in real-time scheduling theory. Information Processing Letters,
106(5):180–187, 2008. issn: 00200190. doi: 10.1016/j.ipl.2007.11.014.

[9] Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-
time sporadic gang task systems. Real-Time Systems, 55(3):641–666, 2019.
issn: 15731383. doi: 10.1007/s11241-018-9318-7.

[10] Joël Goossens, Emmanuel Grolleau and Liliana Cucu-Grosjean. Period-
icity of real-time schedules for dependent periodic tasks on identical mul-
tiprocessor platforms. Real-Time Systems, 52(6):808–832, 2016.

55

https://doi.org/10.1016/0743-7315(92)90014-E
https://doi.org/10.1016/0743-7315(92)90014-E
https://arxiv.org/abs/1006.2617
https://arxiv.org/abs/1006.2617
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1016/j.ipl.2007.11.014
https://doi.org/10.1007/s11241-018-9318-7

[11] Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task
systems. In 2009 IEEE Real-Time Systems Symposium (RTSS), pages 459–
468. IEEE, 2009. isbn: 9780769538754. doi: 10.1109/RTSS.2009.42.

[12] Pascal Richard, Joël Goossens and Shinpei Kato. Comments on “Gang
EDF Schedulability Analysis”, 2017. arXiv: 1705.05798.

[13] Vandy Berten, Pierre Courbin and Joël Goossens. Gang fixed priority sche-
duling of periodic moldable real-time tasks. In 19th International Confer-
ence on Real-Time and Network Systems (RTNS), pages 9–12, 2011.

[14] Saud Wasly and Rodolfo Pellizzoni. Bundled scheduling of parallel real-
time tasks. In 25th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), volume 2019-April, pages 130–142. IEEE,
2019. isbn: 978-1-728-10678-6. doi: 10.1109/RTAS.2019.00019.

[15] Zheng Dong and Cong Liu. Work-in-progress: Non-preemptive schedu-
ling of sporadic gang tasks on multiprocessors. In 2019 IEEE Real-Time
Systems Symposium (RTSS), volume 2019-Decem, pages 512–515. IEEE,
2019. isbn: 9781728144030. doi: 10.1109/RTSS46320.2019.00052.

[16] Mitra Nasri and Björn B. Brandenburg. An exact and sustainable analysis
of non-preemptive scheduling. In 2017 IEEE Real-Time Systems Sym-
posium (RTSS), pages 1–12, 2017.

[17] Mitra Nasri, Nelissen Geoffrey and Björn B. Brandenburg. Response-Time
Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Sche-
duling. In 31st Euromicro Conference on Real-Time Systems (ECRTS),
volume 133 of Leibniz International Proceedings in Informatics (LIPIcs),
21:1–21:23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. isbn:
978-3-95977-110-8. doi: 10.4230/LIPIcs.ECRTS.2019.21.

[18] Jacek Blazewicz, Mieczyslaw Drabowski and Jan Weglarz. Scheduling
Multiprocessor Tasks to Minimize Schedule Length. IEEE Transactions
on Computers, c-35(5):389–393, 1986.

[19] Dror G. Feitelson and Morris A. Jettee. Improved utilization and respons-
iveness with gang scheduling. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, pages 238–261,
Berlin, Heidelberg. Springer Berlin Heidelberg, 1997. isbn: 978-3-540-
69599-8.

[20] Yanyong Zhang, H. Franke, J. Moreira and A. Sivasubramaniam. An integ-
rated approach to parallel scheduling using gang-scheduling, backfilling,
and migration. IEEE Transactions on Parallel and Distributed Systems,
14(3):236–247, 2003.

[21] Dror G. Feitelson. Packing schemes for gang scheduling. In Lecture Notes
in Computer Science. Job Scheduling Strategies for Parallel Processing,
volume 1162, pages 89–110, 1996. isbn: 978-3-540-70710-3. doi: 10.1007/
bfb0022289.

[22] Yair Wiseman and Dror G. Feitelson. Paired gang scheduling. IEEE Trans-
actions on Parallel and Distributed Systems, 14(6):581–592, 2003. issn:
10459219. doi: 10.1109/TPDS.2003.1206505.

56

https://doi.org/10.1109/RTSS.2009.42
https://arxiv.org/abs/1705.05798
https://doi.org/10.1109/RTAS.2019.00019
https://doi.org/10.1109/RTSS46320.2019.00052
https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://doi.org/10.1007/bfb0022289
https://doi.org/10.1007/bfb0022289
https://doi.org/10.1109/TPDS.2003.1206505

[23] Felipe Cerqueira, Geoffrey Nelissen and Björn B Brandenburg. On strong
and weak sustainability, with an application to self-suspending real-time
tasks. In Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-
Time Systems (ECRTS), 26:1–26:21. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018. isbn: 978-3-95977-075-0. doi: 10.4230/LIPIcs.
ECRTS.2018.26.

[24] Beyazit Yalcinkaya, Mitra Nasri and Björn B. Brandenburg. An exact
schedulability test for non-preemptive self-suspending real-time tasks. In
IEEE/ACM Design, Automation and Test in Europe (DATE), pages 1222–
1227, 2019.

[25] Mitra Nasri, Geoffrey Nelissen and Björn B. Brandenburg. A Response-
Time Analysis for Non-Preemptive Job Sets under Global Scheduling. In
30th Euromicro Conference on Real-Time Systems (ECRTS), 9:1–9:23,
2018.

[26] Konstantinos Koiliaris and Chao Xu. Faster Pseudopolynomial Time Al-
gorithms for Subset Sum. ACM Transactions on Algorithms, 15(3):1062–
1072, 2019. issn: 15496333. doi: 10.1145/3329863.

[27] Roger Stafford. Random vectors with fixed sum. Technical Report, Univer-
sity of Oxford, 2006. url: http://www.mathworks.com/matlabcentral/
fileexchange/9700.

57

https://doi.org/10.4230/LIPIcs.ECRTS.2018.26
https://doi.org/10.4230/LIPIcs.ECRTS.2018.26
https://doi.org/10.1145/3329863
http://www.mathworks.com/matlabcentral/fileexchange/9700
http://www.mathworks.com/matlabcentral/fileexchange/9700

58

Appendix A

Proofs for non-preemptive
analysis

Lemma 1. Job Ji cannot start executing with p cores before tpgang(v) defined as

tpgang(v) =

{
Amin

p (v) if p = mmin
i ,

Aexact
p (v) otherwise

(4.1)

Proof of Lemma 1. We analyse two cases:
• If p = mmax

i , job Ji cannot start until at least p are available. By definition
of availability this happens at Amin

p (v). Thus, proving the claim for the
case p = mmax

i in Equation (4.1).
• If p < mmax

i , job Ji cannot start executing on p cores until exactly p are
available (i.e., at Aexact

p (v)) since by rule 5 it would be dispatched on
less, respectively more, than p if there are less, respectively more, than p
available. Thus proving the claim for the case p < mmax

i .
�

Corollary 1. A job Ji cannot start executing on exactly p cores before time
EST p

i (v), defined as

EST p
i (v) = max{rmin

i , tpgang(v)} (4.2)

Proof of Corollary 1. Job Ji cannot start before being released (i.e., before rmin
i)

and cannot start executing with p cores before tpgang(v) as proved in Lemma 1.
Thus, Ji cannot start before max{rmin

i , tpgang(v)}, thus proving the claim. �

Lemma 2. Ji will not be the first job dispatched in the system state v or will
not be dispatched on exactly p cores if it did not start to execute before time

59

tphigh(v) defined as1

tphigh(v) =
∞

min
Jj∈{hpi ∩{J\S(v)}}

{
tph(Ji, Jj)

}
(4.8)

where

tph(Ji, Jj) =

{
rmax
j if mmin

j ≤ p

max{rmax
j , Amax

mmin
j

} otherwise (4.9)

Proof of Lemma 2. We prove that a not-yet-scheduled higher-priority job Jj
(i.e., Jj ∈ {hpi ∩{J \ S(v)}}) will be dispatched before Ji if Ji did not start
to execute before tph(Ji, Jj). It then directly follows that a not-yet-scheduled
higher-priority job will be dispatched before Ji if Ji did not start to execute
before tphigh(v) = min∞

Jj∈{hpi ∩{J\S(v)}}
{
tph(Ji, Jj)

}
hence proving the lemma.

We consider two cases:
1. If mmin

j ≤ p, then the higher priority job Jj requires fewer cores than the
number of cores requested by job Ji. Thus, if job Jj is released when Ji
becomes eligible, then according to rule 2, Jj is also eligible, and because
Jj has a higher priority than Ji, the scheduler will dispatch Jj instead of
Ji (rule 4). Therefore, Ji cannot be scheduled before Jj on p cores if it did
not start to execute before rmax

j . This proves that Jj will be dispatched
before Ji if Ji did not start to execute before tph(Ji, Jj).

2. If mmin
j > p, then, according to rule rule 2, the higher priority job Jj will

become eligible when it is released and when mmin
j cores are available.

This happens at the latest at time max{rmax
j , Amax

mmin
j

(v)}. Then, because
Jj has a higher priority than Ji, the scheduler will dispatch Jj first if Ji
did not start to execute before max{rmax

j , Amax
mmin

j
(v)} (rule 4). Therefore,

we proved that Jj will be dispatched before Ji if Ji did not start to execute
before tph(Ji, Jj).

�

Corollary 2. Job Ji cannot be dispatched on p cores and be the first job dis-
patched in state v later than

LST p
i (v) = min{tpavail(v), twc(v), t

p
high(v)− 1} (4.10)

Proof of Corollary 2. It directly follows from the combination of Equations (4.3),
(4.5) and (4.7). �

Theorem 1. A job Ji may be dispatched on p cores and be the first job dispatched
by the scheduler in system state v only if EST p

i (v) < ∞ and inequality 4.11 is
respected.

Proof of Theorem 1. It is obvious that the earliest start time EST p
i (v) of Ji

must be smaller than ∞ to ensure that Ji may start to execute in system state
v. Hence, we focus on inequality 4.11. By contradiction, assume that:

1min∞
x∈S{x} = +∞ if S = ∅. Otherwise, min∞

x∈S{x} = minx∈S{x}

60

i) A job Ji, is the first job dispatched by the scheduler in system state v.
ii) That, Ji is assigned p cores by the scheduler
iii) That, Ji does not respect inequality 4.11.

Let ts be the time at which Ji starts executing. By Corollary 1, we have that
ts ≥ estipv. Thus, by assumption (iii) and the definition of LST p

i (v) given in
Corollary 2, we have ts > tpavail(v) or ts > twc(v) or ts ≥ tphigh(v). We analyse
each case independently.

• ts > tpavail(v). Since by Equation (4.4) tpavail(v) ≥ Amax
p (v), at least p+ 1

cores are available at time ts. Therefore, by rule 5, Ji is dispatched on at
least p+1 cores. This contradicts the assumption (ii) that Ji is dispatched
on p cores.

• ts > twc(v). By definition of twc(v), a job certainly becomes eligible to be
dispatched by time twc(v). Therefore, a job must have been dispatched
by the scheduler at or before twc(v). This contradicts the assumption (i)
that Ji is the first job dispatched by the scheduler and Ji is dispatched at
time ts.

• ts ≥ tphigh(v). By Lemma 2, Ji is not the highest eligible priority job at
time ts. Thus, by rule 4 it is not the first job dispatched by the scheduler,
hence contradicting the assumption (i).

This proves the claim. �

Lemma 3. Let node v′k results from executing Ji on the p cores in F=p
k , then

the set of earliest simultaneous core releases is

Fv′
k
=

{
〈EFT p

i (v), p〉
}
∪
{
F(v) \ F=p

k

}
(4.14)

Proof of Lemma 3. Since v′k considers a system state that result from dispatch-
ing job Ji on p cores, p cores will be released simultaneously by Ji when it finishes
its execution. This happens no earlier than the earliest finish time EFT p

i (v) of
Ji. Therefore, Fv′

k
⊇

{
F(v) \ F=p

k

}
.

Furthermore, because by assumption Ji executes on the cores in F=p
k , the time

at which the cores in F(v) \ F=p
k are released is not impacted by the execution

of Ji. Thus, Fv′
k
⊇

{
F(v) \ F=p

k

}
. �

Lemma 4. If all the cores in F≥p
k are released when Ji starts to execute, then

Ji starts no earlier than tk = max
Fl∈F≥p

k
{fl(v)}.

Proof of Lemma 4. By definition of Fl, the Ml(v) cores modelled by Fl are all
released at the earliest at time fl(v). Thus, all the cores in F≥p

k are available
no earlier than max

Fl∈F≥p
k

{fl(v)}. Since Ji starts when all cores in F≥p
k are

available, this proves the claim. �

Lemma 5. Let node v′k result from executing Ji on p of the cores in F≥p
k , then

the set of earliest simultaneous core releases is

Fv′
k
=

{
〈EFT p

i (v), p〉
}
∪
{
〈tk, (s− p)〉

}
∪
{
F(v) \ F≥p

k

}
(4.15)

61

where s is the number of cores in F≥p
k , i.e., s =

∑
Fl∈F≥p

k
Ml(v).

Proof of Lemma 5. Since v′k considers a system state that results from dispatch-
ing job Ji on p cores, p cores will be released simultaneously by Ji when it finishes
its execution. This happens no earlier than the earliest finish time EFT p

i (v) of
Ji. Therefore, Fv′

k
⊇

{
〈EFT p

i (v), p〉
}

.

Furthermore, by assumption, all cores in F≥p
k are free when Ji starts to

execute. Therefore, all (s − p) cores in F≥p
k on which Ji does not execute are

free from Ji’s start time onward. By Lemma 4, Ji starts no earlier than tk.
Hence, Fv′

k
⊇

{
〈tk, (s− p)〉

}
.

Finally, because Ji executes on the cores in F≥p
k , the time at which the

cores in F(v) \ F≥p
k are released is not impacted by the execution of Ji. Thus,

Fv′
k
⊇

{
F(v) \ F≥p

k

}
. �

Lemma 6. A set of lower bounds on the time instants at which each core may
potentially become available to execute new workload in v′k is given by

PA =
{
p× {EFT p

i (v)}
}
∪
{

max{Amin
x (v), tk}

∣∣p < x ≤ m
}

(4.16)

Proof of Lemma 6. First, since v′k considers a system state that result form
dispatching job Ji on p cores, at least p cores will become available no earlier
than the earliest finish time EFT p

i (v) of Ji. Therefore PA must contain p times
EFT p

i (v).
Second, by rule 8, Ji will always be dispatched on the p first cores that become

available. Therefore, the earliest time at which the (m−p) remaining cores may
become available is given by the earliest time at which the (m− p) latest cores
could become available before dispatching Ji. By definition of the availability
intervals, those times are given by {Amin

x (v)|p < x ≤ m}.
Finally, since job Ji is the first job dispatched by the scheduler in state v, and

because by Lemma 4 tk is the earliest time at which Ji is dispatched, cores can
start to execute new workload no earlier than tk in v′k.

Combining the three facts above, we prove the claim. �

Corollary 3. A lower bound on the time at which x cores are potentially
available to execute new workload in v′k (i.e., Amin

x (v)) is given by the xth

element in the non-decreasingly ordered set PA.

Proof of Corollary 3. Since PA contains a lower bound on the availability time
of every core in system state v′k, the xth element in the ordered set is a lower
bound on the availability time of x cores. �

Lemma 7. A set of upper bounds on the time instants at which each core will
certainly become available to execute new workload in v′k is given by

CA =
{
p× {LFT p

i (v)}
}
∪
{

max{Amax
x (v), tk}

∣∣p < x ≤ m
}

(4.17)

62

Proof of Lemma 7. Since v′k represents a system state resulting from dispatch-
ing job Ji on p cores, there must be at least p cores that will become available
to execute new workload no later than the latest finish time of Ji. That is, there
must be p values no smaller than LFT p

i (v) in CA, i.e., CA ⊇
{
p× LFT p

i (v)
}

.
Furthermore, all (m−p) cores that do not execute Ji will be freed no later than

the certain availability time of the (m− p) latest cores that become available in
the initial system state v (i.e., the system state before dispatching Ji). Those
times are given by

{
Amax

x (v)|p < x ≤ m
}

.
Finally, since job Ji is the first job dispatched by the scheduler in v, and

because tk is the earliest time at which Ji is dispatched (Lemma 4), cores can
start to execute new workload no earlier than tk in v′k.

Combining all the above, we prove the lemma. �

Corollary 4. An upper bound on the time at which x cores are certainly available
to execute new workload in v′k (i.e., Amax

x (v)) is given by the xth element in the
non-decreasingly ordered set CA.

Proof of Corollary 4. Same proof as Corollary 3, replacing PA with CA. �

Lemma 8. If exactly p cores may be available at time t in either vk or vq, then
exactly p cores may be available at time t in vz.

Proof of Lemma 8. Assume that v refers to either vk or vq. Each group of cores
Fl(v) ∈ F(v) is subdivided in one or several smaller groups of cores in F(vz)
(Lines 3 to 10 in Algorithm 3), that is ∃F ′ ⊆ F(vz),

∑
Fx(vz)∈F ′ Mx(vz) =

Ml(v). Furthermore, each of the group of cores in the subset F ′ has an earliest
release time that is earlier than or at the same time as that of Fl (Lines 12 to 16
in Algorithm 3), i.e., ∀Fx(vz) ∈ F ′, fx(vz) ≤ fl(v).

Since for every group of cores that can be simultaneously released at a given
time t in v there is a set F ′ in vz composed of the same number of cores, each
with an earliest release time no later than t, it then holds that the cores in F ′

can also be simultaneously released at t. This proves the lemma. �

Theorem 2. For any possible execution scenario such that Ji executes on p
cores and finishes at t, there is a path 〈v1, . . . , vk〉 in the schedule-abstraction
graph such that Ji passes the dispatch condition on p cores in vk and t ∈
[EFT p

i (vk), LFT p
i (vk)].

Proof of Theorem 2. Assume that the availability intervals and the set of earli-
est simultaneous core releases F(vk) of state vk safely model the actual availab-
ility times and simultaneous releases of the m cores resulting from the sequence
of scheduling decisions encoded in the path 〈v1, . . . , vk〉.

We prove that t ∈ [EFT p
i (vk), LFT p

i (vk)], that Ji passes the dispatch condi-
tion in vk and that each state v′k created by Algorithm 2 because of executing Ji
on p cores in vk, correctly models the actual availability times and simultaneous
releases of the cores after executing Ji on p cores.

63

Under the inductive assumption stated above, Corollaries 1 and 2 prove
that EST p

i (vk) prove that EST p
i (vk) and LST p

i (vk) are safe lower- and upper-
bounds on the start time of Ji on p cores in vk, respectively. Furthermore,
since gang jobs are non-preemptive,Equations (4.12) and (4.13) are safe lower-
and upper-bounds on t (i.e., t ∈ [EFT p

i (vk), LFT p
i (vk)]). Moreover, since

t ∈ [EFT p
i (vk), LFT p

i (vk)], it must hold that EFT p
i (vk) ≤ LFT p

i (vk), and thus
the condition of inequality 4.11 is respected. Then, Lemmas 3 and 5 and Corol-
laries 3 and 4 prove that the simultaneous releases of cores and their availability
is correctly modelled in each newly created state v′k resulting from scheduling
Ji on p cores. Therefore, the inductive assumption is respected for v′k. Also,
according to Lemma 8, potentially merging v′k with another node in Algorithm 1
maintains the validity of the inductive assumption.

Finally, since all cores are assumed to be free in the initial system state, the
inductive assumption (i.e., correct availability intervals and simultaneous core
releases) obviously holds for v1 and thus follows by induction on all the states
created by Algorithm 1. �

64

Appendix B

Proofs for
limited-preemptive analysis

Lemma 9. The set of certainly running predecessors X pred
x (v) of a job Jx in

state v is defined as
X pred

x (v) = {pred(x) ∩ X (v)} (5.4)

Proof of Lemma 9. By definition of pred(Jx) and X (v) these are the jobs that
are predecessors of Jx and that are also certainly running at state v. �

Lemma 10. The number of cores possibly available at a time t in state v can
be computed as

qmin(v, t) = max
1≤k≤m

{
k|t ≥ Amin

k (v)} (5.5)

Proof of Lemma 10. By definition of availability the number of possibly avail-
able cores at time t is the maximum value k such that k cores have possibly
become available at time t, i.e., t ≥ Amin

k (v). �

Lemma 11. At time t in state v, the set of waiting jobs Jk ∈ Qi(v, t) that have
to be checked because Ji being dispatched could mean that the predecessors of Jk
have finished their execution is defined as

Qi(v, t) =

{
Jk

∣∣∣∣ can_start (Jk, v, t)︸ ︷︷ ︸
Jk can start at time t

∧ X pred
k (v) 6= ∅︸ ︷︷ ︸

Has a certainly
running predecessor

∧ Jk ∈ hpi

}
(5.6)

where

can_start (Jx, v, t) =
(
t ≥ max

{
rmax
x , Amin

mmin
x

(v)
})

∧
(
pred(Jx) ⊆ S(v)

)
(5.7)

Proof of Lemma 11. Jobs Jk ∈ Qi(v, t) are jobs that have a higher priority
than Ji and that are waiting for their predecessors to finish execution. Thus,

65

depending on the conditions, Ji being dispatched at time t would mean that they
should have been dispatched instead as that would imply that their predecessors
have finished execution. Then, the properties of these jobs Jk ∈ Qi(v, t) are:

• If Ji can start, so does Jk. This means that Jk has been released, at
least mmin

k cores are available and all the predecessors of Jk have been
dispatched already.

• Jk has certainly running predecessors. This means that Jk is only waiting
for its predecessors to finish execution.

• Jk has a higher priority than Ji. If that weren’t the case, every possible
dispatch scenario of Ji would be possible and would never imply that Jk
should have been dispatched instead.

Combining the three conditions above that have to be met by a Jk ∈ Qi(v, t)
we prove the lemma. �

Lemma 12. If job Ji can start at time t in state v a higher-priority job Jk ∈
Qi(v, t) will also certainly be able to start if all possible allocations of cores for
Ji require for each of the certainly running predecessors Jj ∈ X pred

k (v) at least
one core of the cores previously being used by Jj.

Proof of Lemma 12. By contradiction, let’s assume that Ji is dispatched at time
t in state v, and in order to do so, all possible core allocations require for each
of the certainly running predecessors Jj ∈ X pred

k (v) of Jk ∈ Qi(v, t) at least one
core previously being used for each of the Jj . If that is the case, this means
that all the certainly running predecessors Jj ∈ X pred

k (v) have finished their
execution and thus, by rule 1, Jk is ready. Moreover, since Jk belongs to the
set {pred(i)∩X (v)} of higher-priority jobs with a certainly running predecessor
that can start if Ji can start this means that, by rule 2, Jk is also eligible and,
by rule 4, Jk is dispatched before Ji. This contradicts the assumption that Ji
is scheduled at t and thus proves the claim. �

Lemma 13. The minimum number of cores ppredk (v) that ensures that all pos-
sible allocations of cores for Ji certainly use at least one core from each of the
cores freed by certainly running predecessors of a job Jk ∈ Qi(v, t) is

ppredk (v) = min
Jj∈Xpred

k (v)
pj (5.8)

Proof of Lemma 13. By contradiction, let’s assume that ppredk (v) is not the
minimum among all the certainly running predecessors X pred

k (v) of Jk. This
means that Ji cannot be scheduled with more than qmin(v, t) − ppredk (v) cores
without using cores from all the certainly running predecessors of Jk. As we
assumed that ppredk (v) is not the minimum among all the jobs Jj that are cer-
tainly running predecessors of Jk, this means that there’s a job Jx such that
px < ppredk (v) ∧ Jx ∈ X pred

k (v). This means that it is actually possible to
scheduled Ji using ppredk (v)− px without using cores from the group of cores of
Jx. This contradicts the assumption that ppredk (v) is not the minimum among
the number of cores of groups of cores freed by certainly running predecessors
Jj ∈ X pred

k (v) of job Jk ∈ Qi(v, t) and thus proves our claim. �

66

Corollary 5. The job Jpred
k (v) ∈ X pred

k (v) from the certainly running prede-
cessors of a higher-priority job Jk ∈ Qi(v, t) that has the minimum number of
simultaneously freed cores where Ji cannot be scheduled is

Jpred
k (v) = arg min

Jj∈Xpred
k (v)

pj (5.9)

Proof of Corollary 5. The proof is the same as in Lemma 13 but now we take
the argument of the minimum instead of the minimum itself. �

Lemma 14. The set of jobs Qpred
i (v, t) whose number of cores cannot be used

by Ji is defined as

Qpred
i (v, t) =

{
Jpred
k (v)

∣∣∣Jk ∈ Qi(v, t)
}

(5.10)

Proof of Lemma 14. This proof follows from Corollary 5. As there are multiple
higher-priority jobs Jk each of them has a job Jpred

k (v) with a minimum number
of cores that cannot be used by the lower priority job Ji. Note that Qpred

i (v, t)
is a set (i.e., no repetitions) so if multiple Jk ∈ Qi(v, t) have the same minimum
predecessor the condition is not counted twice. �

Corollary 6. The total number of cores that cannot be used by Ji if it can be
scheduled at the earliest at time t is

qpredi (v, t) =
∑

Jj∈Qpred
i (v,t)

pj (5.11)

Proof of Corollary 6. By definition of Qpred
i (v, t), each job Ji ∈ Qpred

i (v, t) con-
tains a number of cores that cannot be used when allocating cores for Ji. These
are non-overlapping cores as they belong to different jobs. So, Ji cannot use
any of the cores that are being used by Ji ∈ Qpred

i (v, t). �

Lemma 15. Ji may be scheduled at time t at the earliest on p cores if it matches
the following condition:

qmin(v, t)− qpredi (v, t) ≥ p (5.12)

Proof of Lemma 15. By combining the number of available cores at time t minus
the cores that cannot be used by Ji at time t from Corollary 6 we can see how
in order for Ji to be scheduled on p cores, the inequality must hold. �

Corollary 1-bis. A job Ji in a limited-preemptive execution model cannot start
on exactly p cores before time EST p

i (v), defined as

EST p
i (v) = max{Rmin

i (v), tpgang(v), t
pred
i (v)} (5.13)

67

Proof of Corollary 1-bis. Similarly to the proof of Corollary 1, job Ji cannot
start executing before being released and before all its predecessors have com-
pleted (i.e., before Rmin

i (v)). It also cannot start executing with exactly p cores
before tpgang(v) as already proved in Lemma 1. Finally, according to Lemma 15,
the earliest time at which it can start has to be greater or equal than the time
at which we know that dispatching Ji will mean that a waiting higher-priority
job should have been dispatched instead as its predecessors just finished at the
same time as Ji has been dispatched (i.e., EST p

i (v) ≥ tpredi (v)). Thus, Ji cannot
start before max{Rmin

i (v), tpgang(v), t
pred
i (v)}, thus proving the claim. �

Lemma 2-bis. Ji will not be the first job dispatched in the system state v or
will not be dispatched on exactly p cores if it did not start to execute before time
tphigh(v) defined as

tphigh(v) =
∞

min
Jj∈{hpi ∩{J\S(v)}}

{
max

{
tph(Ji, Jj), th,pred(Ji, Jj)

}}
(5.16)

where

tph(Ji, Jj) =

{
rmax
j if mmin

j ≤ p

max{rmax
j , Amax

mmin
j

} otherwise (5.17)

and
th,pred(Ji, Jj) =

0max{LFT ∗
y (v)|Jy ∈ pred(Jj) \ pred(Ji)} (5.18)

Proof of Lemma 2-bis. We prove that a not-yet-scheduled higher-priority job Jj
(i.e., Jj ∈ {hpi ∩{J \ S(v)}}) will be dispatched before Ji if Ji did not start to
execute before tphigh(v). We use the fact that tph(Ji, Jj) was already previously
proven in Lemma 2 by showing how a lower priority job has to start before a
higher priority job is released and has enough cores to become eligible.
th,pred(Ji, Jj) shows the latest time at which a higher-priority job waiting

for its predecessors can be ready. As Jj is waiting for its predecessors we
have to look for the latest finish time of all of the predecessors of Jj (i.e.
max0{LFT ∗

y (v)|Jy ∈ pred(Jj)}). Moreover, since we are evaluating the time
at which Ji is dispatched, the predecessors of Ji have finished their execu-
tion. Thus, we have to check the finish time of the predecessors of Jj that
haven’t finished their execution, these are pred(Jj) \ pred(Ji). Thus we obtain
th,pred(Ji, Jj) = max0{LFT ∗

y (v)|Jy ∈ pred(Jj) \ pred(Ji)}
Then, if Ji has not started to execute before tphigh(v) this means that the

predecessors of Jj have finished (i.e, thigh ≥ th,pred(Ji, Jj)) and that Jj has
enough cores and has been released (i.e., tphigh(v) ≥ tph(Ji, Jj)). Combining
both facts we obtain max{tph(Ji, Jj), th,pred(Ji, Jj)} thus proving our claim. �

Lemma 16. The set of certainly running jobs X (v′k) of the new state v′k is
comprised of

X (v′k) =
{
Ji

}
∪
{
Jj |Jj ∈ X (v) ∧ EFTj(v) > LST p

i (v)
}

(5.20)

68

Proof of Lemma 16. Since the system state v′k results from dispatching Ji, job
Ji is certainly running in system state v′k. Hence X (v′k) ⊇ {Ji}.

Furthermore, all jobs that were certainly running just before dispatching Ji,
i.e., those in X (v), and that complete their execution at the earliest after the
time at which job Ji starts at the latest (i.e., after time LST p

i (v)) are certainly
running concurrently to Ji in every system state resulting from dispatching
Ji. That is, X (v) ⊇ {Jj |Jj ∈ X (v) ∧ EFTj(v) > LST p

i (v)}. This proves our
claim. �

69

	Preface
	Contents
	1 Introduction
	1.1 Limitations of the state-of-the-art
	1.2 Research questions and our approach
	1.3 Organisation

	2 State-of-the-art
	2.1 Gang in high-performance computing
	2.2 Real-time rigid gang
	2.3 Real-time moldable and malleable gang
	2.4 Bundle scheduling
	2.5 Schedule-abstraction analyses

	3 System model
	3.1 Platform and task model
	3.2 Scheduler Model
	3.3 Particular cases

	4 Non-preemptive Worst-Case Response-Time analysis
	4.1 Schedule Abstraction
	4.2 System state representation
	4.3 Building the SAG
	4.4 Expansion phase
	4.4.1 Dispatch condition
	4.4.2 Job finish times
	4.4.3 Building new system states

	4.5 Merge phase
	4.6 Proof of correctness

	5 Limited-preemptive analysis extension
	5.1 System state representation
	5.2 Expansion phase
	5.2.1 Ready jobs
	5.2.2 Dispatch condition
	5.2.3 Building a new system state

	5.3 Merge phase

	6 A non-work conserving scheduling policy
	6.1 Limitations of the job-level fixed-priority scheduling policy
	6.1.1 Work-conserving policy
	6.1.2 Cores assigned to moldable gang tasks

	6.2 Reservation-based non-work conserving scheduling policy
	6.2.1 Basic idea
	6.2.2 Scheduler model
	6.2.3 Moldable gang cores assignment

	7 Experimental evaluation
	7.1 Non-preemptive analysis
	7.1.1 Experiments on synthetic task sets
	7.1.2 Schedulability results

	7.2 Limited-preemptive analysis
	7.2.1 Experiments on synthetic task sets
	7.2.2 Schedulability results

	7.3 ResG compared with JLFP

	8 Conclusions and future work
	8.1 Conclusions
	8.2 Future work

	Notation
	Acronyms
	Bibliography
	A Proofs for non-preemptive analysis
	B Proofs for limited-preemptive analysis

