

Delft University of Technology

Solving clustered low-rank semidefinite programs arising from polynomial optimization

Leijenhorst, Nando; de Laat, David

DOI
10.1007/s12532-024-00264-w
Publication date
2024
Document Version
Final published version
Published in
Mathematical Programming Computation

Citation (APA)
Leijenhorst, N., & de Laat, D. (2024). Solving clustered low-rank semidefinite programs arising from
polynomial optimization. Mathematical Programming Computation, 16(3), 503-534.
https://doi.org/10.1007/s12532-024-00264-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s12532-024-00264-w
https://doi.org/10.1007/s12532-024-00264-w

Mathematical Programming Computation (2024) 16:503–534
https://doi.org/10.1007/s12532-024-00264-w

FULL LENGTH PAPER

Solving clustered low-rank semidefinite programs arising
from polynomial optimization

Nando Leijenhorst1 · David de Laat1

Received: 31 March 2023 / Accepted: 21 August 2024 / Published online: 6 September 2024
© The Author(s) 2024

Abstract
We study a primal-dual interior point method specialized to clustered low-rank
semidefinite programs requiring high precision numerics, which arise from certain
multivariate polynomial (matrix) programs through sums-of-squares characterizations
and sampling. We consider the interplay of sampling and symmetry reduction as well
as a greedy method to obtain numerically good bases and sample points. We apply this
to the computation of three-point bounds for the kissing number problem, for which
we show a significant speedup. This allows for the computation of improved kissing
number bounds in dimensions 11 through 23. The approach performs well for prob-
lems with bad numerical conditioning, which we show through new computations for
the binary sphere packing problem.

Keywords Semidefinite programming · Primal-dual interior point method · Low-rank
constraints · Symmetry reduction · Packing problems · Sum-of-squares polynomials

Mathematics Subject Classification 90C22 · 90C23 · 52C17 · 90-04

1 Introduction

In discrete geometry, many of the best-known bounds on the optimal cardinality of
spherical codes [1–5], optimal sphere packing densities [6, 7], optimal densities for
packings with nonspherical shapes [8], and optimal ground state energies [9–11] are
obtained using linear programming and semidefinite programming bounds. Similar
approaches are used in analytic number theory [12] and the conformal bootstrap [13].

These bounds are derived using constraints on k-point correlations for small k,
which leads to conic optimization problems involving positive semidefinite matrix
variables as well as polynomial inequality constraints in amodest number of variables.

B Nando Leijenhorst
n.m.leijenhorst@tudelft.nl

David de Laat
d.delaat@tudelft.nl

1 Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-024-00264-w&domain=pdf

504 N. Leijenhorst, D. de Laat

Such problems are then solved using semidefinite programming via sums-of-squares
characterizations for the polynomial constraints.

For applications in discrete geometry, we often need solutions of rather high
precision, so we need to use second-order interior point methods, which have lin-
ear convergence. Moreover, due to the orthogonal bases in the formulations of the
problems, the problems have seemingly unavoidable bad numerical conditioning. In
practice, computations are therefore performed using the general purpose semidefinite
programming solvers SDPA-QD and SDPA-GMP [14], which both use high-precision
numerics, and computations regularly take weeks to complete (see, e.g., [5]).

When the constraint matrices defining a semidefinite program are of low rank,
this can be exploited in the interior-point method [15, 16], which has been used in
the solvers [13, 17, 18]. As observed by Parrilo and Löfberg [15] rank 1 constraints
naturally appear from sum-of-squares characterizations when sampling is used as
opposed to coefficient matching.

In [13, 19] Simmons-Duffin develops a high-precision solver that uses this rank
1 structure. The solver exploits clustering in the constraints, supports parallelization,
and works very well in practice. The implementation however has been designed for
problems in the conformal bootstrap and only supports a specific form of semidefinite
programs that arise from univariate polynomial optimization problems. Inspired by
this success, the goal of this paper is to explore the use of low-rank constraints for
solving optimization problems such as those arising in discrete geometry.

That low-rank constraints can be exploited is not obvious, since problems in dis-
crete geometry often have large symmetry groups, and symmetry reduction leads to
constraints on the positive semidefinite matrix variables which may be of large rank
and which are no longer sparse due to the sampling approach. Moreover, it also leads
to multivariate polynomial inequality constraints which are invariant under certain
group actions, and exploiting this leads to constraints matrices of rank greater than
one.

Our first contribution is the implementation of a high-precision, primal-dual,
interior-point solver that can exploit more general low-rank structures for the con-
straint matrices than only rank 1 constraints.1 The solver is written in the high-level
language Julia [20], and is implemented in such a way that fast matrix-matrix multi-
plication can be exploited (using Arb [21]). It comes with a user-friendly interface for
modeling problems involving both low-rank semidefinite constraints, as well as low-
rank polynomial constraints, and it can automatically convert between these. Similar
to [13] the solver can exploit clustering of the constraints (where clusters of positive
semidefinite matrix blocks are linked through free variables), and the solver has a
custom parallelization approach tailored to problems where we have fewer clusters,
but many samples per cluster. Note that many of the features of our implementation
are already present in an existing solver, but none of the existing solvers implements
all of them at the same time.

Secondly, we study the interplay of sampling and symmetry reduction, which has
not been done before. We give necessary and sufficient conditions on the sample set in
the presence of symmetry. We furthermore show empirically that a greedy approach

1 See github.com/nanleij/ClusteredLowRankSolver.jl for source code and documentation.

123

https://github.com/nanleij/ClusteredLowRankSolver.jl

Solving clustered low-rank semidefinite programs arising… 505

to finding good samples, and transforming the bases to be orthogonal with respect to
these samples, works well in this setting. We also investigate an approach where we
remove dense constraint matrices by parameterizing them by free variables, which
allows for more clustering; see Sect. 6.1.

Our third contribution is to emperically show the speed and stability of the approach
described in the previous paragraphs by considering two applications from discrete
geometry. First, we consider the three-point bound for the kissing number problem
[3]. We consider this problem because it involves invariant, multivariate polynomial
inequality constraints and because it has additional positive semidefinite matrix vari-
ables forwhich the clustering approachwe use plays a role.Moreover, it is an important
problem in discrete geometry for which extensive computations have already been per-
formed.We show a significant speedup compared to previous computations performed
with SDPA-GMP, by a factor 28 for the most extensive computations previously per-
formed. This allows us to perform computations using polynomials of degree 40
as opposed to degree 32 (for which extrapolation shows this approach would have
been faster by a factor 40), which also results in improved kissing number bounds in
dimension 11-23.

Then we consider the adaptation of the Cohn-Elkies bound for the binary sphere
packing problem [7]. We show this bound can be written using matrix polynomial
inequality constraints, and we use this to perform new computations which highlight
the numerical stability of the solver. These computations show the bounds are not
necessarily convex, can beat Florian’s bound in dimensions 2, and may converge to
the optimal density in dimensions 8 and 24 as the ratio of the radii goes to 0.

These two representative examples show that exploiting low-rank constraints can
be very beneficial for the k-point bounds arising in discrete geometry. We expect this
will not just speed up existing computations, but will also allow for tackling more
difficult problems which were previously out of reach.

2 A specialized interior point method

In this section we give an exposition of the primal-dual interior-point method for
semidefinite programming as used by SDPB [13], which in turn builds on SDPA [14].
We generalize the method to a very general low-rank structure (see (2) and (3)), and
we show how this can be exploited in the computation of the Schur complement matrix
in a way that fast matrix-matrix multiplication can be employed (which is especially
beneficial because we use high-precision arithmetic). Because our applications consist
of problems in extremal geometry,which typically have fewclusters and a largenumber
of constraints within a cluster, our parallelization strategy is different from SDPB. The
interior point method uses the X Z search direction [22–24], the predictor-corrector
step due to Mehrotra [25], and the Lanczos algorithm for computing step lengths [26].

When translating polynomial constraints into semidefinite constraints (see Sect. 3),
one obtains for each polynomial constraint a number of semidefinite constraints which
use the same positive semidefinite matrix variables. By using sampling it is possible
to keep the rank of the constraint matrices low [15]. Together, this leads to a clustered
low-rank semidefinite program, with clusters of constraints using the same positive

123

506 N. Leijenhorst, D. de Laat

semidefinite variables, and low-rank constraint matrices. We assume these clusters are
connected only through free scalar variables.

We therefore consider semidefinite programs with J clusters of the form

maximize
J∑

j=1

〈C j ,Y j 〉 + 〈c, y〉

subject to
〈
A j∗,Y j 〉 + B j y= b j , j = 1, . . . , J

Y j� 0, j = 1, . . . , J , (1)

where we optimize over the vector of free variables y and the positive semidefi-
nite block matrices Y j = diag(Y j,1, . . . , Y j,L j). Here 〈c, y〉 is the Euclidean inner
product, and we use the notation

〈A j∗,Y j 〉 = (〈A j
t ,Y

j 〉)t∈Tj
,

where 〈A j
t ,Y

j 〉 is the trace inner product.
The semidefinite program is defined by the symmetric matrices C j and A j

t , the
matrices B j , and the vectors c ∈ R

N and b j ∈ R
Tj . We assume the matrix A j

t is of
the form

A j
t =

L j⊕

l=1

R j (l)∑

r ,s=1

A j,l
t (r , s) ⊗ E

Rj (l)
r ,s , (2)

with A j,l
t (r , s) a matrix of low rank and A j,l

t (r , s)T = A j,l
t (s, r). Here En

r ,s is the
n × n matrix with a one at position (r , s) and zeros otherwise.

Internally, we represent the blocks A j,l
t (r , s) in the form

∑

i

λiviw
T
i , (3)

where we do not require the rank 1 terms to be symmetric (even if the block A j,l
t (r , s)

itself is symmetric). Allowing for nonsymmetric matrices in the rank 1 decomposition
is more general than what is done in [13, 17, 18], and as explained in Sect. 6.1 this can
be important for performance.

We interpret (1) as the dual of the semidefinite program

minimize
J∑

j=1

〈b j , x j 〉

subject to
J∑

j=1

(B j)Tx j= c

123

Solving clustered low-rank semidefinite programs arising… 507

X j =
∑

t∈Tj

x j
t A

j
t − C j� 0, j = 1, . . . , J , (4)

where we optimize over the vectors of free variables x j and the positive semidefinite
block matrices X j = diag(X j,1, . . . , X j,L j).

Using the notation X for the block matrix diag(X1, . . . , X J) and Y for the block
matrix diag(Y 1, . . . ,Y J), the duality gap for primal feasible (x, X) and dual feasible
(y,Y) is given by

bTx − 〈C,Y 〉 − cT y = 〈X ,Y 〉.

Weassume strong duality holds, so that if (x, X) and (y,Y) are optimal, then 〈X ,Y 〉 =
0, and hence XY = 0.

The primal-dual algorithm starts with infeasible solutions (x, X) and (y,Y), where
X and Y are positive definite. At each iteration, a Newton direction (dx, dX , dy, dY)

is computed for the system of primal and dual linear constraints and the centering
condition XY = βμI . Here μ is the surrogate duality gap 〈X ,Y 〉 divided by the size
of the matrices, and β is a solver parameter between 0 and 1. Then (x, X , y,Y) is
replaced by (x+sdx, X+sdX , y+sdy,Y +sdY) for some step size s that ensures the
matrices stay positive definite. Here we only discuss the process of finding the search
direction since exploiting the special form (2) happens in this part of the algorithm.
See [13] for more details on the remaining parts of the algorithm.

To compute the Newton search direction we replace the variables (x, X , y,Y) by
(x + dx, X + dX , y + dy,Y + dY) in the primal and dual constraints, which gives

X j + dX j =
∑

t∈Tj

(x j
t + dx j

t)A j
t − C j , (5)

J∑

j=1

(B j)T(x j + dx j) = c, (6)

〈
A j∗,Y j + dY j 〉 + B j (y + dy) = b j . (7)

Then we apply the same substitution in the centering condition and linearize to get

X jY j + X jdY j + dX jY j = μI . (8)

Substituting the expression for dX j from (5) into (8) and then the expression for dY j

from (8) into (7) gives

〈
A j∗,Y j + (X j)−1

(
μI − X jY j −

(∑

t∈Tj

(x j
t + dx j

t)A j
t − C j − X j

)
Y j

)〉

+ B j (y + dy) = b j .

123

508 N. Leijenhorst, D. de Laat

Together with constraint (6) (which is responsible for the last row in the system) this
can be written as the following linear system in dx and dy:

⎛

⎜⎜⎜⎜⎜⎝

S1 0 · · · 0 −B1

0 S2 · · · 0 −B2

...
...

. . .
...

...

0 0 . . . SJ −BJ

(B1)T (B2)T . . . (BJ)T 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

dx1

dx2

...

dx J

dy

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

−b1 − 〈A1∗, Z1 − Y 1〉 + B1y
−b2 − 〈A2∗, Z2 − Y 2〉 + B2y

...

−bJ − 〈AJ∗ , Z J − Y J 〉 + BJ y
c − ∑J

j=1(B
j)Tx j

⎞

⎟⎟⎟⎟⎟⎠
,

Here Z j = (X j)−1
((∑

t x
j
t A

j
t −C j

)
Y j −μI

)
and the blocks S j that form the Schur

complement matrix S = diag(S1, . . . , SJ) have entries

S j
ab = 〈

A j
a, (X

j)−1A j
bY

j 〉.

The above system can be solved to obtain dx and dy. From this dX and dY can be
computed, where instead of computing dY as X−1(μI − XY − dXY) we set

dY = X−1(μI − XY − dXY) + (X−1(μI − XY − dXY))T

2

so that Y stays symmetric.
In general, the computation of the Schur complement matrix S and solving the

above linear system are the main computational steps.
Due to the clusters, thematrix S is block-diagonal, so that theCholesky factorization

S = LLT can be computed blockwise. By using the decomposition

(
S −B
BT 0

)
=

(
L 0

BTL−T I

)(
I 0
0 BTL−TL−1B

)(
LT −L−1B
0 I

)
,

we can solve the system by solving several triangular systems. The inner matrix
BTL−TL−1B is positive definite, so we can again use a Cholesky decomposition.

Due to the low-rank constraint matrices, we can compute the blocks S j more
efficiently. Suppose for simplicity the constraint matrices are of the form

A j,l
t =

η
j,l
t∑

r=1

λ
j,l
t,r v

j,l
t,r (w

j,l
t,r)

T,

where η
j,l
t is the rank of the matrix A j,l

t . Then we can write

123

Solving clustered low-rank semidefinite programs arising… 509

S j
ab =

L j∑

l=1

〈A j,l
a , (X j,l)−1A j,l

b Y j,l〉

=
L j∑

l=1

η
j,l
a∑

r1=1

η
j,l
b∑

r2=1

λ
j,l
a,r1λ

j,l
b,r2

〈
v
j,l
a,r1(w

j,l
a,r1)

T, (X j,l)−1v
j,l
b,r2

(w
j,l
b,r2

)TY j,l
〉

=
L j∑

l=1

η
j,l
a∑

r1=1

η
j,l
b∑

r2=1

λ
j,l
a,r1λ

j,l
b,r2

(
(w

j,l
a,r1)

T(X j,l)−1v
j,l
b,r2

)(
(w

j,l
b,r2

)TY j,lv
j,l
a,r1

)
,

which shows we can compute S j
ab efficiently by precomputing the bilinear pairings

(w
j,l
a,r1)

T(X j,l)−1v
j,l
b,r2

and (w
j,l
b,r2

)TY j,lv
j,l
a,r1 .

In the implementation, we use similar techniques for the more general constraint
matrices of the form (2). Since we use high-precision arithmetic, it is beneficial to use
matrix-matrix multiplication with subcubic complexity, and therefore we compute the
above pairings efficiently by first creating thematrices V j,l andW j,l with the columns
v
j,l
a,r andw

j,l
a,r , respectively, and then performing fast matrix multiplication to compute

(W j,l)T(X j,l)−1V j,l and (W j,l)TY j,l V j,l .

Due to the block structures, the algorithm is relatively easy to parallelize. The
best way to parallelize, however, depends on both the problem characteristics and the
type of computing system used. The SDPB solver specializes in problems with large
amounts of clusters with similar-sized blocks, which can be distributed over different
nodes in a multi-node system in which there is communication latency between the
nodes [13, 19].

Problems in discrete geometry typically consist of few clusters, and have a large
variation in both the number of blocks per cluster and in the size of the blocks; see for
example Sect. 6.1. The majority of the workload can be due to a single cluster, hence
distributing clusters over nodes in a multi-node system is not a good parallelization
strategy in this case. Instead, we focus on distributing the workload overmultiple cores
in a single-node shared-memory system.

Most of the matrix operations can be done block-wise. We distribute the blocks
over the cores such that the workload for each core is about equal. Since the matrices
in the products (W j,l)T(X j,l)−1V j,l and (W j,l)TY j,l V j,l can be very large, we split
these multiplications into several parts which we distribute over the cores.

3 Polynomial matrix programs

For univariate and multivariate problems, sums-of-squares characterizations, and in
particular Putinar’s characterization [27], are commonly used to model polynomial

123

510 N. Leijenhorst, D. de Laat

constraints as semidefinite constraints. Parrilo and Löfberg [15] show that by using
sampling as opposed to coefficient matching we get a semidefinite programming for-
mulation with low-rank constraint matrices. There has also been research into writing
polynomial matrix constraints as semidefinite constraints [28, 29]. In this expository
section, we consider the combination ofmultivariate polynomialmatrix programswith
the sampling approach and show precisely what kind of low-rank constraints appear
when reducing these to semidefinite programs.

Let

S(G) =
{
x ∈ R

n : g(x) ≥ 0 for all g ∈ G
}

be the semialgebraic set generated by a finite set of polynomials G ⊆ R[x] in n
variables. Fix m ∈ N and define the quadratic module

M(G) = cone
{
gpT p : g ∈ G ∪ {1}, p ∈ R[x]m×m

}
.

We say M(G) is Archimedean if for every p ∈ R[x]m×m there is a c ∈ N such that
cI − pT p ∈ M(G). As shown in [29], this is equivalent to the condition that there
is a c ∈ N such that (c − ∑

i x
2
i)I ∈ M(G). Intuitively, M(G) being Archimedean

gives an algebraic certificate for the compactness of S(G). A polynomial matrix f ∈
R[x]m×m is said to be positive (semi)definite on D ⊆ R

n if the matrix f (x) is positive
(semi)definite for every x ∈ D. This is denoted by f � 0 (f � 0) on D.

A polynomial matrix program is an optimization problem of the form

maximize 〈b, y〉

subject to P j
0 (x) +

N∑

i=1

yi P
j
i (x)� 0 on S(G j), j = 1, . . . , J , (9)

where we optimize over the vector y ∈ R
N . The problem is defined by the sets

G1, . . . ,GJ (where each of these setsmay consist of polynomials in a different number
of variables), the matrix polynomials P j

i , and the vector b. In [13] the special case
with n = 1 and G j = {x} is considered.

For them = 1 case, positivity constraints on a setS(G) aremodeled usingweighted
sums-of-squares polynomials. Such polynomials are trivially nonnegative on S(G),
and by a theorem of Putinar [27] one can prove convergence when increasing the max-
imum degree of the sum-of-squares polynomials, assuming M(G) is Archimedean.
A similar approach can be used for polynomial matrix programs. For this, we need a
generalization of Putinar’s theorem for matrix polynomials by Hol and Scherer [28]
(with a different proof given by Klep and Schweighofer in [29]).

Theorem 1 [28, 29] Let f ∈ R[x]m×m and G ⊆ R[x] finite. Suppose M(G) is
Archimedean. If f � 0 on S(G), then f ∈ M(G).

123

Solving clustered low-rank semidefinite programs arising… 511

Similar to the non-matrix case, the requirement f � 0 can be weakened to f � 0
when considering the univariate case where S(G) is R, R≥a , or [a, b]. In addition,
M(G) is not required to be Archimedean in that case.

To state the relaxed problem, we consider the truncated quadratic module generated
by G:

Md(G) = cone
{
gpT p : g ∈ G ∪ {1}, p ∈ R[x]m×m, deg(gpT p) ≤ d

}
.

This gives

maximize 〈b, y〉

subject to P j
0 +

N∑

i=1

yi P
j
i ∈ Md(G j), j = 1, . . . , J . (10)

Let p∗ and p∗
d denote the optimal values of problem (9) and (10), respectively. For

all d we have p∗
d ≤ p∗

d+1 ≤ p∗ and the following corollary whose proof is standard
shows convergence under mild conditions.

Corollary 1 Suppose (9) is strictly feasible and M(G j) is Archimedean for every j .
Then p∗

d → p∗ as d → ∞.

It follows from the next lemma that we can model the elements in Md(G) using
positive semidefinite matrices. Let bd(x) be a vector whose elements form a basis for
the polynomials of degree at most d.

Lemma 1 For f ∈ R[x]m×m with deg(f) = 2d we have f = pT p for some p ∈
R[x]t×m if and only if

f = (bd(x) ⊗ Im)TY (bd(x) ⊗ Im)

for some positive semidefinite matrix Y .

Proof Let δ be the length of bd(x). Then p = Z(bd(x) ⊗ Im) for some Z ∈ R
t×mδ ,

and hence pT p = (b(x) ⊗ Im)TZTZ(b(x) ⊗ Im). Now note that Y = ZTZ is positive
semidefinite and any positive semidefinite matrix admits such a decomposition. ��

The above lemma shows the elements of Md(G j) are of the form

∑

g∈G j∪{1}
g(x)(bd−�deg(g)/2�(x) ⊗ Im j)

TY j
g (bd−�deg(g)/2�(x) ⊗ Im j),

for positive semidefinite matrices Y j
g . The entry on row r and column s is equal to

∑

g∈G j∪{1}
g(x)

〈
(bd−�deg(g)/2�(x) ⊗ Im j)

TY j
g (bd−�deg(g)/2�(x) ⊗ Im j), E

m j
r ,s

〉

123

512 N. Leijenhorst, D. de Laat

=
∑

g∈G j∪{1}
g(x)

〈
Y j
g , bd−�deg(g)/2�(x)bd−�deg(g)/2�(x)T ⊗ E

m j
r ,s

〉

where E
m j
r ,s = er eTs is the standard basis of Rm j×m j .

This leads to the optimization problem

maximize 〈b, y〉

subject to P j
0 (x)r ,s +

N∑

i=1

yi P
j
i (x)r ,s=

〈
M j (x)r ,s,Y

j 〉, j ∈ [J], r , s ∈ [m j]

Y j� 0, j ∈ [J],

where

M j (x)r ,s =
⊕

g∈G j∪{1}
g(x)bd−�deg(g)/2�(x)bd−�deg(g)/2�(x)T ⊗ E

m j
r ,s .

In applications, the formulation (9) can be extended to a more general problem,
where the polynomial matrices depend linearly on positive semidefinite matrix vari-
ables in addition to the free variables and where there are linear equality constraints
on the free variables and the additional positive semidefinite matrix variables. We,
therefore, use the following general form for a sums-of-squares problem:

maximize
J∑

j=1

〈C j ,Y j 〉 + 〈b, y〉

subject to
〈
A j∗(x),Y j 〉 + B j (x)y= c j (x), j = 1, . . . , J

Y j� 0, j = 1, . . . , J . (11)

Here we use the notation

〈A j∗(x),Y j 〉 = (〈A j
q(x),Y

j 〉)q=1,...,Q j
,

where

A j
q(x) =

L j⊕

l=1

R j (l)∑

r ,s=1

A j,l
q (r , s)(x) ⊗ E

Rj (l)
r ,s ,

andwhere thematrices A j,l
q (r , s) are of low rank.Here Q j is the number of polynomial

constraints in the j-th cluster, where different clusters are only linked via the free
variables but not via the positive semidefinite matrix variables. Moreover, L j specifies

the number of blocks on the diagonal of A j
q(x), where the l-th block is a R j (l)× R j (l)

block matrix.

123

Solving clustered low-rank semidefinite programs arising… 513

In (11) we optimize over the free variables y and the positive semidefinite block-
diagonal matrices Y j . Here, the blocks Y j

l do not all have to correspond to sum-of-
squares polynomial matrices, and not all constraints have to be polynomial constraints
(that is, some constraint can use degree 0 polynomials). See the examples in Sect. 6.

The usual approach for converting a problem of the form (11) to a semidefinite
program is to equate the coefficients of the polynomials in a common basis. This
potentially gives sparsity but destroys the low-rank structure of the matrices. Instead,
we use the sampling approach as introduced by Löfberg and Parrilo in [15] and used by
Simmons-Duffin in [13]. For each 1 ≤ j ≤ J and 1 ≤ q ≤ Q j we define a unisolvent

set of points M j
q for the polynomial subspace spanned by the entries of A j

q(x), the
entries in the q-th row of B j (x), and the q-th entry of c j (x). This is a set of points
such that any polynomial in this space which is zero on M j

q is identically zero. Then
we consider the linear constraints

〈
A j
q(x

′),Y j 〉 + (B j (x ′)y)q = c jq(x
′)

for x ′ ∈ M j
q . That is, when going from (11) to (1), we set

Tj = {(q, x ′) : q = 1, . . . , Q j , x
′ ∈ M j

q }.

4 Combining symmetry reduction and sampling

In this section, we investigate the combination of symmetry reductionwith sampling as
opposed to coefficient matching. For this, we first give an exposition of the symmetry
reduction approach for polynomial optimization byGatermann and Parrilo [30], where
we give more details for the constructions important in this paper. For notational
simplicity we consider only polynomial programs as opposed to matrix polynomial
programs.

Suppose the polynomials P0, . . . , PN and the setS(G) are invariant under the action
of a finite group Γ , and assume the polynomials in G are chosen to be Γ -invariant
(which is in fact always possible if S(G) is invariant under Γ ; see “Appendix A”).
Then the sums-of-squares characterization for a constraint of the form

P0 +
N∑

i=1

yi Pi ≥ 0 on S(G)

can be written more efficiently.
Let Γ be a finite group with a linear action on C

n , and define the representation
L : Γ → GL(C[x]) by L(γ)p(x) = p(γ −1x). Here GL(C[x]) is the automorphism
group of the vector space C[x]. Let Γ̂ be a complete set of irredicible representations
(π, Vπ) of Γ . By Maschke’s theorem, we get the decomposition

C[x] =
⊕

π∈Γ̂

⊕

i

Hπ,i ,

123

514 N. Leijenhorst, D. de Laat

where Hπ,i is equivalent to Vπ . Since the space of homogeneous polynomials of
degree k is invariant under the action of Γ , we may assume that Hπ,i is spanned by
homogeneous polynomials of the same degree.

Since Γ is finite we can choose a basis eπ,1, . . . , eπ,dπ of Vπ in which the linear
operators π(γ) are unitary matrices.We want to define bases eπ,i,1, . . ., eπ,i,dπ of Hπ,i

which are symmetry adapted in the sense that the restriction of L(γ) to the invariant
subspace Hπ,i in this basis is exactly π(γ).

Such a basis exists since Hπ,i is equivalent to Vπ , so there are Γ -equivariant iso-
morphisms Tπ,i : Vπ → Hπ,i and we can define eπ,i, j = Tπ,i eπ, j . Then it follows that
L(γ)eπ,i, j = ∑

k π(γ)k, j eπ,i,k . As described in [31, Section 2.7] a symmetry-adapted
basis can be constructed by defining the operators

pπ
j, j ′ = dπ

|Γ |
∑

γ∈Γ

π(γ −1) j ′, j L(γ), (12)

and then choosing bases {eπ,i,1}i of Im(pπ
1,1) and setting eπ,i, j = pπ

j,1eπ,i,1. Then,

L(γ̃)eπ,i, j = dπ

|Γ |
∑

γ∈Γ

π(γ −1)1, j L(γ̃ γ)eπ,i,1 = dπ

|Γ |
∑

γ∈Γ

π(γ −1γ̃)1, j L(γ)eπ,i,1

= dπ

|Γ |
∑

γ∈Γ

dπ∑

k=1

π(γ −1)1,kπ(γ̃)k, j L(γ)eπ,i,1 =
dπ∑

k=1

π(γ̃)k, j eπ,i,k .

If the irreducible representations occurring in the decomposition of C[x] are of
real type, then we can choose bases so that the matrices π(γ) are orthogonal. If
moreover R[x] is Γ -invariant, then the above explicit construction shows we can take
the symmetry adapted basis to be real: Since (12) is a real operator, we can choose a
real basis {eπ,i,1}i of the image of pπ

1,1 and eπ,i, j = pπ
j,1eπ,i,1 will be real as well.

For each π we define the matrix polynomial Eπ by

Eπ (x)i,i ′ = 1

dπ

dπ∑

j=1

eπ,i, j (x)eπ,i ′, j (x)

That the matrices Eπ (x) are Γ -invariant follows from the alternative definition

Eπ (x)i,i ′ = 1

|Γ |
∑

γ∈Γ

eπ,i, j (γ
−1x)eπ,i ′, j (γ −1x)

(for any 1 ≤ j ≤ dπ), which follows from

1

|Γ |
∑

γ∈Γ

eπ,i, j (γ
−1x)eπ,i ′, j (γ −1x)

123

Solving clustered low-rank semidefinite programs arising… 515

= 1

|Γ |
∑

γ∈Γ

dπ∑

l=1

π(γ −1)l, j eπ,i,l(x)
dπ∑

k=1

π(γ −1)k, j eπ,i ′,k(x)

=
dπ∑

l,k=1

eπ,i,l(x)eπ,i ′,k(x)
1

|Γ |
∑

γ∈Γ

π(γ −1)l, jπ(γ −1)k, j

=
dπ∑

l,k=1

eπ,i,l(x)eπ,i ′,k(x)
δkl

dπ

,

where we use the Schur orthogonality relations (see, e.g., [31, Section 2.2]) in the last
equality.

Ford ∈ N,wedefine Ed
π (x) as the submatrix of Eπ (x) indexedby rows and columns

for which deg eπ,i, j (x) ≤ d. The following proposition shows how these matrices can
be used to parametrize Hermitian sum-of-squares polynomials by Hermitian positive
semidefinite matrices. If the symmetry-adapted basis is real, then the matrices Ed

π

are symmetric and we can parametrize real sum-of-squares polynomials by positive
semidefinite matrices.

Proposition 1 If p ∈ C[x]≤2d is aΓ -invariant Hermitian sum-of-squares polynomial,
then there are Hermitian positive semidefinite matrices Cπ such that

p(x) =
∑

π

〈
Cπ , Ed

π (x)
〉
.

Proof Define the column vector b(x) = (eπ,i, j (x))π,i, j with deg eπ,i, j (x) ≤ d. Since
p is a Hermitian sum-of-squares polynomial it can be written as

p(x) =
∑

i

(c∗
i b(x))

∗(c∗
i b(x)),

so there exists a Hermitian positive semidefinite matrix A such that

p(x) = b(x)∗Ab(x).

Let ρ(γ) be the matrix obtained by expressing the restriction of L(γ) to C[x]≤2d in
the symmetry adapted basis, so that

ρ(γ) =
⊕

π

Imπ ⊗ π(γ) (13)

and ρ(γ)b(x) = b(γ −1x) for all x and γ . Define

B = 1

|Γ |
∑

γ∈Γ

ρ(γ)∗Aρ(γ).

123

516 N. Leijenhorst, D. de Laat

Then ρ(γ)∗Bρ(γ) = B for all γ ∈ Γ and

p(x) = 1

|Γ |
∑

γ∈Γ

b(γ −1x)∗Ab(γ −1x) = b(x)∗Bb(x).

By writing B in the block form B = (B(π,i),(π ′,i ′)) and using (13) we get

π(γ)B(π,i),(π ′,i ′) = B(π,i),(π ′,i ′)π
′(γ)

for all γ ∈ Γ . By Schur’s lemma B(π,i),(π ′,i ′) is a multiple of the identity if π = π ′
and zero otherwise (see, e.g., [31, Section 2.2]). This shows B = ⊕

π
1
dπ
Cπ ⊗ Idπ for

positive semidefinite matrices Cπ . We then have

p(x) = 〈B, b(x)b(x)∗〉

=
〈
⊕

π

1

dπ

Cπ ⊗ Idπ , b(x)b(x)∗
〉

=
∑

π

dπ∑

j=1

mπ∑

i,i ′=1

1

dπ

(Cπ)i,i ′eπ,i, j (x)eπ,i ′, j (x)
∗

=
∑

π

〈
Cπ , Ed

π (x)
〉
,

which completes the proof. ��
In applications, the symmetry groups often are reflection groups (see, e.g., [8] and

Sect. 6.1), and as described in [30] for these groups we can choose the symmetry
adapted basis in such a way that the matrices Eπ (x) have a tensor structure. By, e.g.,
[32, Section 3.6], C[x] is a free module over the invariant ring C[x]Γ of rank |Γ |.
Moreover, the span of any C[x]Γ module basis of C[x] is equivalent to the regular
representation of Γ . This means we have the decomposition

C[x] = C[x]Γ
⊕

π

dπ⊕

i=1

Vπ,i ,

where Vπ,i ⊆ C[x] is equivalent to Vπ . As before, wemay assume that Vπ,i is spanned
by homogeneous polynomials of the same degree.

Let { fπ,i, j } be a symmetry adapted basis of

⊕

π

dπ⊕

i=1

Vπ,i .

Then we can choose the symmetry-adapted basis of C[x] to be of the form

eπ,(i,k), j (x) = fπ,i, j (x) wk(x),

123

Solving clustered low-rank semidefinite programs arising… 517

where wk(x) is a basis of C[x]Γ . The matrix Eπ (x) can therefore be written as

Eπ (x)(i,k),(i ′,k′) =
dπ∑

j=1

fπ,i, j (x)wk(x) fπ,i ′, j (x)wk′(x),

i.e.,

Eπ (x) = Ππ(x) ⊗ w(x)w(x)∗,

where Ππ(x) is the matrix given by Ππ(x)i,i ′ = ∑dπ

j=1 fπ,i, j (x) fπ,i ′, j (x).
From now on we assume that we can and do choose the symmetry-adapted basis

to be real so that the matrices Eπ (x) are symmetric. We then replace the constraint

P0 +
N∑

i=1

yi Pi ≥ 0 on S(G)

by the condition that there are positive semidefinite matrices Yg,π for which

P0(x) +
N∑

i=1

yi Pi (x) =
∑

g∈G∪{1}
g(x)

∑

π

〈
Yg,π , Ed−�deg(g)/2�

π (x)
〉
. (14)

As in Sect. 3 we want to model constraint (14) by the linear constraints obtained
from evaluating it at a unisolvent set of points. Since Pi , g, and Eπ are all Γ -invariant,
it is sufficient to consider a unisolvent set for the subspace of Γ -invariant polynomials
of degree at most 2d. A unisolvent set is said to be minimal if any strict subset is
not unisolvent. In the following proposition we show that the constraints arising from
evaluating (14) at a minimal unisolvent set are linearly independent, which is essential
for the solver.

Proposition 2 Evaluating (14) at a minimal unisolvent set M for the subspace of Γ -
invariant polynomials of degree at most 2d yields |M | linearly independent constraints
in the variables of the optimization problem.

Proof By the proof of Proposition 1, we can express any polynomial as a linear com-
bination of the entries of the matrix ⊕π Ed

π , which means that these entries span the
space of Γ -invariant polynomials of degree at most 2d.

In particular, there is a subset {b j (x)} j of the entries of ⊕π Ed
π which forms a

basis for the invariant polynomials. Since the unisolvent set M is minimal, the vectors
(b j (x ′)) j are linearly independent for x ′ ∈ M . This implies the matrices ⊕π Ed

π (x ′)
are linearly independent, and hence the linear combinations

∑

π

〈
Y1,π , Ed

π (x ′)
〉
,

123

518 N. Leijenhorst, D. de Laat

for x ′ ∈ M , are linearly independent. This shows that evaluating (14) on M yields |M |
linearly independent constraints. ��

A symmetric polynomial optimization problem often arises as the symmetrization
of a non-symmetric problem. For this reason, we want to know when and how a
minimal unisolvent set for the non-symmetric problem gives a minimal unisolvent set
for the symmetrized problem. The following lemma gives a sufficient condition for
this to be the case.

Lemma 2 Suppose M is a Γ -invariant, minimal unisolvent set for R[x]≤2d . Then any
set of representatives R for the orbits in M is minimal unisolvent for R[x]Γ≤2d .

Proof Suppose p ∈ R[x]Γ≤2d satisfies p(r) = 0 for every r ∈ R. Then for every
x ∈ M there are r ∈ R and γ ∈ Γ with x = γ r , so p(x) = p(γ r) = p(r) = 0.
Hence p = 0 by unisolvence of M . So R is unisolvent for R[x]Γ≤2d .

Consider the projection operator P : R[x]≤2d → R[x]≤2d defined by

P p(x) = 1

|Γ |
∑

γ∈Γ

p(γ −1x).

Let b(x) be a column vector where the first entries form a basis for the eigenspace with
eigenvalue 1 of P and the remaining entries form a basis for the kernel of P . Consider
the Vandermonde matrix V = (b(x))x∈M , where M indexes the columns. By minimal
unisolvence of M , the matrix V is square and nonsingular. We can perform invertible
column operations to transform the first |R| columns into |Γ r |−1 ∑

x∈Γ r b(x), where
Γ r is the orbit represented by r ∈ R. Now note that the first dimR[x]Γ≤2d entries in
each column stay the same and the other entries in the first |R| columns become 0.
That is, after performing these column operations the matrix is of the form

V ′ =
(
V11 V12
0 V22

)
.

Note that V11 must be square: R is unisolvent, so the number of columns |R| is at least
the number of rows dimR[x]Γ≤2d , and V ′ is nonsingular. Hence |R| = dimR[x]Γ≤2d ,
i.e., R is minimal unisolvent. ��

There are group actions for which aΓ -invariant, minimal unisolvent setM does not
exist. Since Γ is a finite group, there are a finite number of orbit sizes oi . Suppose M
and R are as in Lemma 2. Then M can be decomposed into orbits such that there are
ki orbits with orbit size oi . This directly means that

∑
i ki oi = |M | = dimR[x]≤2d

becauseM is minimal unisolvent. Furthermore, theminimial unisolvence of R implies
that

∑
i ki = |R| = dimR[x]Γ≤2d . When this system of equations does not have a

nonnegative integer solution, there does not exist a Γ -invariant, minimal unisolvent
set.Moreover, even if the systemdoes have a nonnegative integer solution, it is possible
that there does not exist an invariant, minimal unisolvent set M . Such an example can
be found in “Appendix B”.

123

Solving clustered low-rank semidefinite programs arising… 519

In the following lemma we show that for a group action permuting n + 1 affinely
independent vectors (which includes the important case of permuting coordinates),
an invariant, minimal unisolvent set exists. For this we use a geometric criterion of
minimal unisolvence by Chung and Yao [33]: a set M of size dimR[x]≤d is minimal
unisolvent for R[x]≤d if for every x ∈ M there are hyperplanes Hx,1, . . . , Hx,d such
that

M ∩
(

d⋃

l=1

Hx,l

)
= M \ {x}.

Lemma 3 Let Sn+1 be the symmetric group on n + 1 elements. Suppose Γ ⊆ Sn+1
acts on Rn by permuting n + 1 affinely independent vectors v1, . . . , vn+1. Then there
is a Γ -invariant, minimal unisolvent set M for R[x]≤d .

Proof Without loss of generality we can take Γ = Sn+1. For each x ∈ R
n there are

unique coefficients αx
1 , . . . , αx

n+1 such that
∑

i α
x
i = 1 and x = ∑

i α
x
i vi . Let M be

the set of points x for which

αx
1 , . . . , αx

n+1 ∈
{
k

d
: k = 0, . . . , d

}
.

Note that M is invariant under the action of Γ .
For each x ∈ M we define the hyperplanes

Hx,(j,k) = {
y ∈ R

n : dα
y
j = k

}

for 1 ≤ j ≤ n + 1 and 0 ≤ k < dαx
j . Here Hx,(j,k) is a hyperplane because

Hx,(j,k) − k/dv j is the affine hull of the vectors (1 − k/d)vi with i �= j . Note that
this gives

∑
j dαx

j = d hyperplanes for each x .
Since k < dαx

j we have x /∈ Hx,(j,k). Moreover, for any y ∈ M \ {x} there is an i

such that αy
i < αx

i , i.e., y ∈ Hx,(i,dα
y
i). So the geometric characterization is satisfied,

hence M is minimal unisolvent. ��

5 Computing good sample points and bases

To model the constraints of the form (14) using sampling we need to find a minimal
unisolvent set for the space of Γ -invariant polynomials of degree at most 2d (where
Γ is the trivial group if there is no symmetry). In Sect. 4 we explain when such a
set can be derived from a minimal unisolvent set for R[x]≤d . For the interior point
method, however, we do not just want the set to be minimal unisolvent, but also to
have good numerical conditioning. Moreover, as explained in Sect. 4, if the group is a
reflection group (which is often the case in practice), then the matrix Ed

π (x) in (14) is
a submatrix of

Ππ(x) ⊗ w(x)w(x)T,

123

520 N. Leijenhorst, D. de Laat

where for w we can choose any vector whose entries form a basis for the Γ -invariant
polynomials of degree at most d. Note that in the case of no symmetry, Ππ(x) is just
the 1 × 1 identity matrix.

In [34] Sommariva and Vianello discuss a greedy method for finding a good sample
set and a good basis for quadrature problems. In this section we adapt this to find a
good minimal unisolvent set of sample points as well as a good basis for the entries
of w(x).

The space of polynomials corresponding to a constraint in the polynomial matrix
program (9) is given by

W = R[x]Γ j
≤2d .

Let v be a vector whose entries form a basis of W such that deg(vk) is nondecreasing
in k. Let M be a set containing m distinct points x1, . . . , xm from the semialgebraic
set S(G), where m is at least dim(W). Here the idea is that we take m much larger
than dim(W) and later select a subset of good points. The Vandermonde matrix V
with respect to v and M is defined by Vlk = vk(xl), for l = 1, . . . ,m and k =
1, . . . , dim(W). The set M is unisolvent forW if and only if the kernel of V is trivial,
and minimal unisolvent if additionally V is square.

The Fekete points for a compact domain and a polynomial space are defined as
the points in the domain that maximize the determinant of the Vandermonde matrix
in absolute value. Because a basis change multiplies the determinant by a constant
not depending on the samples, the Fekete points do not depend on the basis. Instead
of computing the Fekete points, which is hard to do in general [35], Sommariva and
Vianello select a subset of a set of candidate points which approximately maximizes
the determinant, the approximate Fekete points. This can be done greedily by a QR
factorization of V T with column pivoting; the points corresponding to the first dim(W)

pivots approximately maximize the determinant. We now let M ′ be the subset of M
corresponding to the first dim(W) many pivots, and let V ′ be the square submatrix of
V by selecting the corresponding rows. If the original set M was unisolvent, then the
determinant of V will be nonzero.

Because we use sample points to express the sums-of-squares constraints as
semidefinite constraints, it is desirable for the numerical conditioning that the entries
of w are orthogonal with respect to the chosen sample set M ′. Such a basis can be
obtained by a QR factorization of the Vandermonde matrix V ′, as also mentioned by
Löfberg and Parrilo [15]. Here the columns of Q represent a new basis of W , where
each basis element defines a polynomial by its evaluations on the sample set M ′. For
the polynomials wi we now choose the polynomials in this basis which have degree
at most d.

Note that for the implementation it is not necessary to recover the coefficients of the
polynomials wi in the monomial basis since we only ever use the evaluations of (14)
on the points inM ′. Thismeanswe can directly use the columns of Q (which are in fact
the coefficients with respect to the Lagrange basis for the set M ′). In fact, we extend
the computer algebra system AbstractAlgebra.jl [36] we use in the interface
to our solver with a new type called SampledMPolyElem, which is a polynomial
defined only by its evaluations on a given set. This is very useful for modeling for

123

Solving clustered low-rank semidefinite programs arising… 521

instance the right-hand side of (14), where we have a mixture of polynomials (the
weights g(x) and the entries of the matrices Ππ(x)) and sampled polynomials (the
entries of w(x)).

∗ ∗ ∗
Since the matrices to which the linear algebra routines described above need to be

applied are much larger than the matrices considered in the solver, we want to perform
the operations in machine precision as much as possible (otherwise the preprocessing
may become more expensive than solving the semidefinite program). Here we have
to be careful that after performing the QR factorization of V ′, the degrees of the
polynomials corresponding to the columns in Q are still nondecreasing in the column
index, because we need the first columns to correspond to a basis of the polynomials in
W of degree atmost d.We, therefore, have to adapt [34,Algorithm2] to our setting; this
adaptation is also implemented in the package ClusteredLowRankSolver.jl.

First, we improve the basis by computing the QR factorization of V in machine
precision. We then compute the matrix V R−1 using high-precision arithmetic and
replace V with it. By using high-precision arithmetic we ensure that the degrees of
the polynomials corresponding to the columns of V will still be nonincreasing in the
column index. Although the columns of the new V will not be orthogonal (due to
numerical issues in the QR factorization), they will be more orthogonal than before.
We can optionally repeat this process a few times.

We then compute a pivoted QR factorization of V T in machine precision, and as
described above use it to select a suitable set of samples and define V ′ by selecting
the corresponding rows of V .

To find a basis that is orthogonal with respect to this sample set we compute the
QR factorization of V ′ in machine precision and compute V ′R−1 in high-precision
arithmetic. Since the numerical conditioning of V ′ should now be relatively good, the
columns of V ′R−1 will indeed be near orthogonal.We then select appropriate columns
to use as basis polynomials for the entries of w, where as described above we do not
need to compute the coefficients in the monomial basis.

6 Applications

In this section we consider two applications from discrete geometry: the kissing num-
ber problem and the binary sphere packing problem. The first application showcases
the speed of the solution approach for a symmetric multivariate polynomial optimiza-
tion problem. The second application showcases the stability of the sampling approach
for a univariate polynomial matrix problem.

6.1 Kissing number problem

A subset C of the unit sphere Sn−1 = {v ∈ R
n : 〈v, v〉 = 1} is a spherical θ -code if

〈v, v′〉 ≤ cos(θ) for all distinct v, v′ ∈ C . In discrete geometry we are interested in
the maximum size A(n, θ) of such a set. For cos θ = 1/2 this is the kissing number

123

522 N. Leijenhorst, D. de Laat

problem, where we ask for the maximum number of unit spheres that can simultane-
ously touch a central unit sphere. The kissing number problem has a rich history; see
[37] for background information.

In [3], Bachoc and Vallentin introduce a three-point semidefinite programming
bound that gives many of the best-known upper bounds on A(n, θ). Here we give the
formulation of this bound leaving out an ad-hoc 2×2matrix which does not contribute
numerically [38].

Define the matrices Yn
k (u, v, t) by

Yn
k (u, v, t)i j = uiv j (1 − u2)k/2(1 − v2)k/2Pn−1

k

(
t − uv√

(1 − u2)(1 − v2)

)
,

where Pn
k is the k-th degree Gegenbauer polynomial with parameter n/2 − 1,

normalized such that Pn
k (1) = 1. Define the matrices Ȳ n

k (u, v, t) by

Ȳ n
k (u, v, t) = 1

6

∑

σ∈S3
σYn

k (u, v, t),

where σ ∈ S3 acts on Yn
k by permuting its arguments. With these matrices the three-

point bound is the problem

minimize 1 +
2d∑

k=0

ak + 〈
Ȳ n
0 (1, 1, 1), F0

〉

subject to
2d∑

k=0

ak P
n
k (u) + 3

d∑

k=0

〈
Ȳ n
k (u, u, 1), Fk

〉≤ −1, u ∈ [−1, cos θ]

d∑

k=0

〈
Ȳ n
k (u, v, t), Fk

〉≤ 0, (u, v, t) ∈ S(G)

a0, . . . , a2d ≥ 0, F0, . . . , Fd � 0,

where

S(G) = {
(u, v, t) : −1 ≤ u, v, t ≤ cos θ, 1 + 2uvt − u2 − v2 − t2 ≥ 0

}
.

Note that the multivariate constraints are symmetric under the action of the symmetric
group S3 on three elements, so that we use the techniques from Sects. 4 and 5.

We can view the above problem as being an extension of (9) with the additional
positive semidefinite matrix variables ak of size 1 and Fk of size d − k + 1. Using the
approach from Sect. 3 we then obtain a problem in the form (11) and after sampling a
semidefinite program of the form (1). We consider two ways of doing this.

In the first approach we view the problem as an extension of (9) without free
variables, but where the polynomial constraints depend linearly on ak and Fk . After
converting to (11), the semidefinite program has positive semidefinite matrix variables

123

Solving clustered low-rank semidefinite programs arising… 523

ak , Fk , and variables corresponding to the sum-of-square polynomials. When going
from (11) to (1) we have to evaluate the polynomials Pn

k , the polynomial matrices
Ȳ n
k , and the matrices arising from the sum-of-squares polynomials at the samples.

Here it is beneficial to factor Ȳ n
k symbolically before evaluating it at the samples.

The matrices Ȳ n
k (u, v, t) have rank at most 3 after evaluation at a point (u, v, t). It

is however not clear whether we can write Ȳ n
k (u, v, t) as a sum of three symmetric

rank 1 matrix polynomials of the form λ(x)v(x)v(x)T. We, therefore, decompose
Ȳ n
k (u, v, t) as a sum of nonsymmetric rank 1 matrix polynomials and we use the fact

that our semidefinite programming solver supports nonsymmetric rank 1 factors in the
symmetric constraint matrices. For large d this will be the fastest approach.

For intermediate d we consider the alternative approachwhere we use free variables
for the entries of ak and Fk , write the polynomial constraints in terms of these free
variables, and use additional rank 1 linear constraints to link the free variables to
newly introduced positive semidefinite matrices a′

k and F ′
k . This approach can be

faster for small and intermediate d and uses less memory, which can be important for
practical computations. For the computations discussed below (where d is at most 20)
we use this approach. For more complicated problems, with for instance polynomial
inequality constraints on unions of basic semialgebraic sets, this approach may be
very useful since it allows more fine-grained clustering of the positive semidefinite
matrices which the solver can exploit.

Initial computations for the three-point bound were performed by Bachoc and Val-
lentin usingCSDP [39], but since this is amachine precision solver itwas not possible to
go beyond d = 10 [3].Mittelman andVallentin [4] then used the high precision solvers
SDPA-QD and SDPA-GMP to perform computations up to d = 14. Later Machado
and Oliviera [5] applied symmetry reduction and used SDPA-GMP to compute bounds
up to degree d = 16.

For d = 16 and using the same symmetry reduction, our solver gives a speedup by
a factor of 28 over the approach using SDPA-GMP using 8 cores, and a speedup by a
factor of 9.6 using 1 core. Here we use the same hardware and the default settings of
SDPA-GMP, except that we use 256 bits of floating point precision for all three-point
bound computations.

It would be interesting to compare this to timings one would obtain using direct
optimization over sum-of-squares polynomials, as developed by Skajaa, Ye, Papp, and
Yıldız [40–42]. However, for this their approach would first have to be extended to
semidefinite programs with polynomial constraints, and a high-precision solver would
have to be implemented.

As can be seen in Figs. 1 and 2 the factor by which our solver is faster than the
approach with SDPA-GMP increases with d. For the approach using SDPA-GMP the
computation time theoretically scales as d12 when sparsity is not exploited; in practice
we see that it scales as d10.1. With our approach the computation time theoretically
scales as d9, and in practice we observe a scaling of d8.55. The discrepancy between
theory and practice for our approach can in part be explained by the fact that matrix
multiplication in Arb is faster than cubic [43].

Because of the speedup of our approach we can perform computations up to d = 20
within a reasonable time frame (extrapolating Fig. 2 shows that the approach using

123

524 N. Leijenhorst, D. de Laat

Fig. 1 The time needed to compute the three-point bound for the kissing number in dimension n = 4 for
several degrees d on a linear scale, using SDPA-GMP and ClusteredLowRankSolver

Fig. 2 The time needed to compute the three-point bound for the kissing number in dimension n = 4 for
several degrees d on a log-log scale, using SDPA-GMP and ClusteredLowRankSolver

SDPA-GMP would have been slower by a factor 40 for d = 20). In Table 1 we show
the kissing number bounds for d = 16, . . . , 20 for dimensions up to 24. Dimension 2,
8, and 24 are omitted since the linear programming bound is sharp in these dimensions.
After rounding down to the nearest integer, this improves the best known upper bounds
in dimensions 11 through 23.

Rigorous verification of these bounds can be done using standard interval-arithmetic
techniques (see, e.g., [5, 7]), the only caveat being that we first need to apply the reverse
basis transformation obtained in Sect. 5 to the obtained solution. We did not perform

123

Solving clustered low-rank semidefinite programs arising… 525

Table 1 Three-point bounds for the kissing number problem in dimensions 3-23

n Lower bound d Upper bound n Lower bound d Upper bound

3 12 16 12.368580 14 1606 16 3177.7812

17 12.364503 17 3176.4354

18 12.360782 18 3175.3519

19 12.357869 19 3174.7746

20 12.353979 20 3174.1890

4 24 16 24.056877 15 2564 16 4858.1937

17 24.053495 17 4856.4186

18 24.051431 18 4855.1064

19 24.048769 19 4854.3872

20 24.047205 20 4853.7561

5 40 16 44.981014 16 4320 16 7332.7695

17 44.976437 17 7329.8545

18 44.973846 18 7325.5713

19 44.971353 19 7322.5461

20 44.970252 20 7320.1068

6 72 16 78.187644 17 5346 16 11014.169

17 78.173268 17 11004.299

18 78.163358 18 10994.873

19 78.151981 19 10984.895

20 78.143569 20 10978.622

7 126 16 134.26988 18 7398 16 16469.091

17 134.21522 17 16445.457

18 134.17305 18 16431.764

19 134.13115 19 16418.296

20 134.10709 20 16406.358

9 306 16 363.67296 19 10668 16 24575.872

17 363.59590 17 24516.534

18 363.50742 18 24463.542

19 363.41738 19 24443.476

20 363.34567 20 24417.472

10 500 16 553.82278 20 17400 16 36402.676

17 553.57125 17 36296.753

18 553.38179 18 36250.908

19 553.21188 19 36218.806

20 553.05527 20 36195.348

11 582 16 869.23401 21 27720 16 53878.723

17 868.82650 17 53724.682

18 868.45366 18 53647.201

19 868.15131 19 53567.621

20 868.01070 20 53524.085

123

526 N. Leijenhorst, D. de Laat

Table 1 continued

n Lower bound d Upper bound n Lower bound d Upper bound

12 840 16 1356.5778 22 49896 16 81376.460

17 1356.1536 17 81085.186

18 1355.8837 18 80962.164

19 1355.4776 19 80860.092

20 1355.2976 20 80810.158

13 1154 16 2066.3465 23 93150 16 123328.40

17 2065.5348 17 122796.10

18 2064.9493 18 122657.49

19 2064.4859 19 122481.07

20 2064.0029 20 122351.67

Dimension 8 is omitted since there the linear programming bound is sharp. New records after rounding
down to the nearest integer are bolded. Lower bounds are taken from [5]

this verification procedure since our main goal here is to showcase the speed of our
approach for this type of problems. Note that the bounds we report for d = 16 are
slightly different from the bounds reported in [5] since their verification procedure
increases the bounds by a configurable parameter ε > 0.

6.2 Binary sphere packing

The m-sphere packing problem asks for the optimal sphere packing density in
Euclidean space using spheres of m prescribed sizes. For m = 1 this is the well-
known sphere packing problem, for which the linear programming bound by Cohn
and Elkies has been used to prove the optimality of the E8 root lattice in R

8 and the
Leech lattice in R

24 [6, 44, 45]. In [7], de Laat, Oliveira, and Vallentin generalize
this bound to the m-sphere packing problem, and they use this to compute bounds
for the binary sphere packing problem in dimensions 2, . . . , 5 with radii (r/1000, 1),
r = 200, . . . , 1000. For smaller r and dimensions higher than 5 computations were
prevented by numerical instabilities. Here we show this bound can be modeled as a
univariate polynomial matrix program usingmatrices of sizem.We use this to perform
computations for a larger range of radii and higher dimensions, which allows us to
make new qualitative observations about the behavior of these bounds.

Before stating the bound, we recall some definitions. A function f : Rn → R

is a Schwarz function if it is infinitely differentiable, and if any derivative of f (v)

multiplied with any monomial in v1, . . . , vn is a bounded function. If f : Rn → R

is a radial function, then for t ≥ 0 we write f (t) for the common value of f on
vectors v of norm t . A matrix-valued Schwartz function f : Rn → R

m×m is a matrix-
valued functions whose every component function is a Schwartz function. We define
the Fourier transform of such functions entrywise:

f̂ (v)rs =
∫

f (w)rse
−2π i〈v,w〉 dw.

123

Solving clustered low-rank semidefinite programs arising… 527

Theorem 2 [7, Theorem 5.1] Let R1, . . . , Rm > 0. Suppose f : Rn → R
m×m is a

radial, matrix-valued Schwartz function that satisfies the following:

1. The matrix f̂ (0) − W is positive semidefinite, where

Wrs = (vol B(Rr))
1/2(vol B(Rs))

1/2

and B(R) is the ball of radius R.
2. The matrix f̂ (t) is positive semidefinite for every t > 0.
3. frs(t) ≤ 0 whenever t ≥ Rr + Rs, for r , s = 1, . . . ,m.

Then the density of any sphere packing of spheres of radii R1, . . . , Rm in the Euclidean
space Rn is at most max{ frr (0) : r = 1, . . . ,m}.

Following [7] we parametrize f̂ as

f̂ (t) =
d∑

k=0

A(k)t2ke−π t2 ,

for some symmetric matrices A(0), . . . , A(d). By [7, Lemma 5.2] we then have

f (t) =
d∑

k=0

A(k) k!
πk

Ln/2−1
k (π t2)e−π t2 ,

where Ln/2−1
k is the degree k Laguerre polynomial with parameter n/2 − 1. Because

positive factors do not influence the positivity, the Gaussians can be ignored, resulting
in the following polynomial matrix program (where some of the constraints use only
degree 0 polynomials):

minimize M

subjectto −W + A(0)� 0
d∑

k=0

A(k)xk� 0 on R+

−
d∑

k=0

A(k)
rs

k!
πk

Ln/2−1
k (πx)≥ 0 on S(Grs), for 1 ≤ r ≤ s ≤ m

M −
d∑

k=0

A(k)
rr

k!
πk

Ln/2−1
k (0)≥ 0, for 1 ≤ r ≤ m,

where we used the transformation x = t2, and define Grs = {x − (Rr + Rs)
2}.

The plots in [7] suggest that the binary sphere packing bounds become very bad as
the ratio of the radii r tends to 0. Using the extra data we collect, we see the bounds
are not convex in r and in fact the bounds seem to become very good as r tends to

123

528 N. Leijenhorst, D. de Laat

Fig. 3 The binary sphere packing bound in dimension 24. The dotted line is the maximum density of single
sphere packings and the dashed line the optimal density when r tends to 0

Fig. 4 The binary sphere packing bound in 23 dimensions. The horizontal axis represents the ratio between
the radii of the small and the large sphere, and the vertical axis the bound

0. For dimension 24, the plot in Fig. 3 seems to suggest that as the ratio of the radii
r tends to zero the binary sphere packing bound converges to Δ + (1 − Δ)Δ, where
Δ denotes the optimal sphere packing density. By [45, 46] this is the optimal limiting
binary sphere packing density. As the computations for dimension 23 suggest (see
Fig. 4), the bound more generally may go to δ + δ(1− δ), where δ is the optimal value
of the Cohn-Elkies linear programming bound.

In dimension 2, the best known upper bound for the binary sphere packing problem
is due to Florian [47]. In [7], the binary sphere packing bound was calculated for
r ≥ 0.2, and in this regime, the bound is worse than Florian’s bound. We compute
the bound for r ≥ 0.035, which is enough to show the bound improves on Florian’s
bound for small r ; see Fig. 5.

123

Solving clustered low-rank semidefinite programs arising… 529

Fig. 5 The binary sphere packing bound in dimension n = 2 and Florian’s bound

Fig. 6 Binary sphere packing upper bounds in dimension n = 8

Since the binary sphere packing density only depends on the ratio r = R1/R2
of the radii of the spheres, we may scale both radii by a constant factor s > 0 for
the calculations. We observed that using scaled radii instead of (r , 1) can lead to
better numerical conditioning of the problem and to better bounds. The difference
can be especially large for small r , and decreases when increasing r . For example,
in dimension 2 with radii (1/10, 1), the bound for degree d = 31 is 1.155 without
scaling and 0.9697 with scaling factor s = 1.35.

In dimensions 8 and 24, we could compute the bound for r ≥ 0.15 respectively
r ≥ 0.3, see Figs. 6 and 3. This required degrees 71; for small r we computed the
bounds with degree d = 91 to make sure that increasing the degree would not change
the plot visibly. We scaled the radii with s = 19/10. In Fig. 3, we added a dotted
line indicating the optimal sphere packing density Δ24 = π12/12! [45], and a dashed
line indicating the optimal limiting density. In dimensions 2 and 8 we omitted these
lines since the curve of the bound is less clear in those dimensions; in dimension 2

123

530 N. Leijenhorst, D. de Laat

the bound is still convex, and in dimension 8 it is unclear how fast the bound flattens
(Fig. 4).

Acknowledgements We thank Henry Cohn and Fernando Oliveira for their helpful comments. We also
thank the anonymous reviewers whose suggestions helped improve the paper.

Funding The authors declare that no funds, grants, or other support were received during the preparation
of this manuscript.

Data availability The data used to generate the table and the figures is available in the arXiv version of this
paper.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Symmetric description of a symmetric semialgebraic set

In this appendix we generalize the argument from [5, Lemma 3.1] to arbitrary finite
groups, to show that an invariant semialgebraic set is the semialgebraic set of invariant
polynomials.

Let Γ be a finite group with a linear action on R
n and consider the linear action

on R[x] by γ p(x) = p(γ −1x). Let G be a finite set of polynomials such that the
semialgebraic set S(G) = {

x ∈ R
n : g(x) ≥ 0 for g ∈ G

}
is Γ -invariant. We

will show S(G) is the semialgebraic set of finitely many invariant polynomials. Since
S(G) = ⋂

g∈G S(Γ g), it is sufficient to show this for S(Γ g).
For g ∈ G we define the Γ -invariant polynomials

gk(x) =
∑

Γ ′⊆Γ
|Γ ′|=k

∏

γ∈Γ ′
γ g(x)

for k = 1, . . . , |Γ |. Then,

S(Γ g) ⊆ S({g1, . . . , g|Γ |})

since γ g(x) ≥ 0 for all γ ∈ Γ implies gk(x) ≥ 0 for all k.
For the reverse inclusionwe supposewe have a point x with g(x) < 0 and gk(x) ≥ 0

for k ≥ 2. We will argue that g1(x) < 0.

123

http://creativecommons.org/licenses/by/4.0/

Solving clustered low-rank semidefinite programs arising… 531

Define

Tk =
∑

Γ ′⊆Γ
|Γ ′|=k
e/∈Γ ′

∏

γ∈Γ ′
γ g(x),

where we denote the identity element of Γ by e. Then Tk ≤ 0 for k = |Γ |, since there
are no subsets of Γ of size |Γ | not containing the identity. If Tk ≤ 0 for k ≥ 2, then
gk(x) = g(x)Tk−1+Tk ≥ 0 implies g(x)Tk−1 ≥ 0 and hence Tk−1 ≤ 0. By induction
we then have T1 ≤ 0. Hence,

g1(x) =
∑

γ∈Γ

γ g(x) = g(x) + T1 ≤ g(x) < 0.

So S(Γ g) = S({g1, . . . , g|Γ |}).

B Nonexistence of an invariant minimal unisolvent set

In this appendix we give an example in which an invariant minimal unisolvent set does
not exist even though this is not apparent from the dimensions of the spaces and the
orbit sizes.

Let Γ = D4 be the dihedral group 〈s, d : d4 = s2 = e, ds = sd−1〉 with the
action on R

2 defined by

θ(s)(x, y) = (y, x), θ(d)(x, y) = (−y, x).

The invariant ring R[x, y]Γ is generated by φ1 = x2 + y2 and φ2 = x2y2. Take
2d = 6. Then dimR[x, y]Γ≤2d = 6, and dimR[x, y]≤2d = (2+6

2

) = 28.
Let M be an invariant set of points with |M | = dimR[x, y]≤2d = 28, and suppose

M is unisolvent. We will show that this leads to a contradiction. By Lemma 2, the set
R of representatives of the orbits is minimal unisolvent for R[x, y]Γ≤2d , and thus has

size dimR[x, y]Γ≤2d = 6.
The orbits of Γ acting on R

2 have size 1 (the origin (0, 0)), size 4 (generated
by points (x, y) with |x | = |y|, x = 0, or y = 0) and size 8 (generated by points
(x, y) with |x | �= |y| and x, y �= 0). Since there is only one orbit of odd size, and
|M | = dimR[x, y]≤2d is even, all orbits of M have even size. From the equations

4k + 8l = |S| = 28 and k + l = |R| = 6

we know that there are k = 5 points in R corresponding to orbits of size 4, and l = 1
point corresponding to an orbit of size 8.

Let r be the norm of a point corresponding to the orbit of size 8. Note that
‖(x, y)‖2 = φ1(x, y) is invariant under the action of Γ , hence all points in an orbit

123

532 N. Leijenhorst, D. de Laat

have the same norm. Define the polynomial

p(x, y) = xy(x + y)(x − y)(x2 + y2 − r2).

Then p(x, y) = 0 for all (x, y) ∈ M , and deg p = 6 = 2d so p ∈ R[x, y]≤2d , but
p �= 0. Hence M is not unisolvent.

References

1. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363–388
(1977). https://doi.org/10.1007/BF03187604

2. Musin, O.R.: The kissing number in four dimensions. Ann. Math. (2) 168(1), 1–32 (2008). https://doi.
org/10.4007/annals.2008.168.1

3. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J.
Am. Math. Soc. 21(3), 909–924 (2008). https://doi.org/10.1090/S0894-0347-07-00589-9

4. Mittelmann, H.D., Vallentin, F.: High accuracy semidefinite programming bounds for kissing
numbers. Exp. Math. 19(2), 175–179 (2010). https://doi.org/10.1080/10586458.2010.10129070.
arXiv:0902.1105

5. Machado, F.C., de Oliveira Filho, F.M.: Improving the semidefinite programming bound for the kissing
number by exploiting polynomial symmetry. Exp. Math. 27(3), 362–369 (2018). https://doi.org/10.
1080/10586458.2017.1286273

6. Cohn, H., Elkies, N.: New upper bounds on sphere packings. I. Ann.Math. (2) 157(2), 689–714 (2003).
https://doi.org/10.4007/annals.2003.157.689

7. de Laat, D., de Oliveira Filho, F.M., Vallentin, F.: Upper bounds for packings of spheres of several
radii. Forum Math. Sigma 2, e23 (2014). https://doi.org/10.1017/fms.2014.24

8. Dostert, M., Guzmán, C., de Oliveira Filho, F.M., Vallentin, F.: New upper bounds for the density of
translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput.
Geom. 58(2), 449–481 (2017). https://doi.org/10.1007/s00454-017-9882-y

9. Yudin, V.A.: Minimum potential energy of a point system of charges. Diskret. Mat. 4(2), 115–121
(1992). https://doi.org/10.1515/dma.1993.3.1.75

10. Cohn, H., Woo, J.: Three-point bounds for energy minimization. J. Am. Math. Soc. 25(4), 929–958
(2012). https://doi.org/10.1090/S0894-0347-2012-00737-1

11. de Laat, D.: Moment methods in energy minimization: New bounds for Riesz minimal energy
problems. Trans. Am. Math. Soc. 373(2), 1407–1453 (2019). https://doi.org/10.1090/tran/7976.
arXiv:1610.04905

12. Chirre, A., Gonçalves, F., de Laat, D.: Pair correlation estimates for the zeros of the zeta function
via semidefinite programming. Adv. Math. 361, 106926 (2020). https://doi.org/10.1016/j.aim.2019.
106926

13. Simmons-Duffin, D.: A semidefinite program solver for the conformal bootstrap. J. High Energy Phys.
2015(6), 174 (2015). https://doi.org/10.1007/JHEP06(2015)174

14. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A
high-performance software package for semidefinite programs: SDPA 7. Research Report B-460,
Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan
(2010)

15. Lofberg, J., Parrilo, P.: From coefficients to samples: a new approach to SOS optimization. In: 2004
43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp. 3154–3159.
IEEE, Nassau (2004). https://doi.org/10.1109/CDC.2004.1428957

16. Liu, Z., Vandenberghe, L.: Low-rank structure in semidefinite programs derived from the KYP lemma.
In: 2007 46th IEEE Conference on Decision and Control, pp. 5652–5659. IEEE, New Orleans, LA,
USA (2007). https://doi.org/10.1109/CDC.2007.4434343

17. Benson, S.J.: DSDP5: software for semidefinite programming. ACM Trans. Math. Softw. 21 (2005)
18. Toh,K.C., Todd,M.J., Tütüncü, R.H.:On the implementation and usage of SDPT3—AMatlab software

package for semidefinite-quadratic-linear programming, version 4.0. In: Anjos, M.F., Lasserre, J.B.

123

https://doi.org/10.1007/BF03187604
https://doi.org/10.4007/annals.2008.168.1
https://doi.org/10.4007/annals.2008.168.1
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1080/10586458.2010.10129070
http://arxiv.org/abs/0902.1105
https://doi.org/10.1080/10586458.2017.1286273
https://doi.org/10.1080/10586458.2017.1286273
https://doi.org/10.4007/annals.2003.157.689
https://doi.org/10.1017/fms.2014.24
https://doi.org/10.1007/s00454-017-9882-y
https://doi.org/10.1515/dma.1993.3.1.75
https://doi.org/10.1090/S0894-0347-2012-00737-1
https://doi.org/10.1090/tran/7976
http://arxiv.org/abs/1610.04905
https://doi.org/10.1016/j.aim.2019.106926
https://doi.org/10.1016/j.aim.2019.106926
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1109/CDC.2004.1428957
https://doi.org/10.1109/CDC.2007.4434343

Solving clustered low-rank semidefinite programs arising… 533

(eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, vol. 166, pp. 715–754. Springer
US, Boston (2012). https://doi.org/10.1007/978-1-4614-0769-0_25

19. Landry, W., Simmons-Duffin, D.: Scaling the semidefinite program solver SDPB. arXiv:1909.09745
[hep-th] (2019)

20. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

21. Johansson, F.: Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans.
Comput. 66(8), 1281–1292 (2017). https://doi.org/10.1109/TC.2017.2690633

22. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite
programming. SIAM J. Optim. 6(2), 342–361 (1996). https://doi.org/10.1137/0806020

23. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear com-
plementarity problem in symmetric matrices. SIAM J. Optim. 7(1), 86–125 (1997). https://doi.org/10.
1137/S1052623494269035

24. Monteiro, R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J.
Optim. 7(3), 663–678 (1997). https://doi.org/10.1137/S1052623495293056

25. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),
575–601 (1992). https://doi.org/10.1137/0802028

26. Toh, K.C.: A note on the calculation of step-lengths in interior-point methods for semidefinite pro-
gramming. Comput. Optim. Appl. 21(3), 301–310 (2002). https://doi.org/10.1023/A:1013777203597

27. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–
984 (1993)

28. Scherer, C.W.,Hol, C.W.J.:Matrix sum-of-squares relaxations for robust semi-definite programs.Math.
Program. 107(1), 189–211 (2006). https://doi.org/10.1007/s10107-005-0684-2

29. Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of Hermitian
squares. Indiana Univ. Math. J. 59(3), 857–874 (2010). https://doi.org/10.1512/iumj.2010.59.4107.
arXiv:0907.2260

30. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure
Appl. Algebra 192(1), 95–128 (2004). https://doi.org/10.1016/j.jpaa.2003.12.011

31. Serre, J.P.: Linear Representations of Finite Groups, corr. 5th print edn. No. 42 in Graduate Texts in
Mathematics. Springer, New York (1996)

32. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge
(1990). https://doi.org/10.1017/cbo9780511623646

33. Chung, K.C., Yao, T.H.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal.
14(4), 735–743 (1977). https://doi.org/10.1137/0714050

34. Sommariva, A., Vianello, M.: Computing approximate Fekete points by QR factorizations of Van-
dermonde matrices. Comput. Math. Appl. 57(8), 1324–1336 (2009). https://doi.org/10.1016/j.camwa.
2008.11.011

35. Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the triangle.
SIAM J. Numer. Anal. 38(5), 1707–1720 (2000). https://doi.org/10.1137/S0036142998337247

36. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/hecke: Computer algebra and number theory
packages for the julia programming language. In: Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pp. 157–164. ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3087604.3087611

37. Pfender, F., Ziegler, G.M.: Kissing numbers, sphere packings, and some unexpected proofs. Not. Am.
Math. Soc. 51(8), 873–883 (2004)

38. Dostert, M., de Laat, D., Moustrou, P.: Exact semidefinite programming bounds for packing problems.
SIAM J. Optim. 31(2), 1433–1458 (2021). https://doi.org/10.1137/20M1351692

39. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1–4),
613–623 (1999). https://doi.org/10.1080/10556789908805765

40. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic
optimization. Math. Program. 150(2), 391–422 (2015). https://doi.org/10.1007/s10107-014-0773-1

41. Papp, D., Yıldız, S.: On “A Homogeneous Interior-Point Algorithm for Non-Symmetric Convex Conic
Optimization”. arXiv:1712.00492 [math] (2018)

42. Papp, D., Yıldız, S.: Sum-of-squares optimization without semidefinite programming.
arXiv:1712.01792 [math] (2018)

43. Johansson, F.: Faster arbitrary-precision dot product and matrix multiplication. arXiv:1901.04289 [cs]
(2019)

123

https://doi.org/10.1007/978-1-4614-0769-0_25
http://arxiv.org/abs/1909.09745
https://doi.org/10.1137/141000671
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1137/0806020
https://doi.org/10.1137/S1052623494269035
https://doi.org/10.1137/S1052623494269035
https://doi.org/10.1137/S1052623495293056
https://doi.org/10.1137/0802028
https://doi.org/10.1023/A:1013777203597
https://doi.org/10.1007/s10107-005-0684-2
https://doi.org/10.1512/iumj.2010.59.4107
http://arxiv.org/abs/0907.2260
https://doi.org/10.1016/j.jpaa.2003.12.011
https://doi.org/10.1017/cbo9780511623646
https://doi.org/10.1137/0714050
https://doi.org/10.1016/j.camwa.2008.11.011
https://doi.org/10.1016/j.camwa.2008.11.011
https://doi.org/10.1137/S0036142998337247
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1137/20M1351692
https://doi.org/10.1080/10556789908805765
https://doi.org/10.1007/s10107-014-0773-1
http://arxiv.org/abs/1712.00492
http://arxiv.org/abs/1712.01792
http://arxiv.org/abs/1901.04289

534 N. Leijenhorst, D. de Laat

44. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017).
https://doi.org/10.4007/annals.2017.185.3.7

45. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in
dimension 24. Ann. Math. 185(3), 1017–1033 (2017). https://doi.org/10.4007/annals.2017.185.3.8.
arXiv:1603.06518

46. de Laat, D.: Optimal densities of packings consisting of highly unequal objects. arXiv:1603.01094
[math] (2016)

47. Florian, A.: Ausfüllung der Ebene durch Kreise. Rendiconti del Circolo Matematico di Palermo 9(3),
300–312 (1960). https://doi.org/10.1007/BF02851249

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4007/annals.2017.185.3.7
https://doi.org/10.4007/annals.2017.185.3.8
http://arxiv.org/abs/1603.06518
http://arxiv.org/abs/1603.01094
https://doi.org/10.1007/BF02851249

	Solving clustered low-rank semidefinite programs arising from polynomial optimization
	Abstract
	1 Introduction
	2 A specialized interior point method
	3 Polynomial matrix programs
	4 Combining symmetry reduction and sampling
	5 Computing good sample points and bases
	6 Applications
	6.1 Kissing number problem
	6.2 Binary sphere packing

	Acknowledgements
	A Symmetric description of a symmetric semialgebraic set
	B Nonexistence of an invariant minimal unisolvent set
	References

