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Abstract

The definition of the CubeSat is already nearly two decades old. This results in the trend that a
large fraction of CubeSat missions are leaving the domain of (educational) technology demon-
stration and entering that of commercial applications. Therefore a larger focus is put on the
reliability and compatibility of commercial of the shelf systems and the spacecraft containing
them.

One subsystem that is more or less fixed since the first CubeSat missions is the serial data bus.
This internal network is essential for interconnecting subsystems. However, recent investiga-
tions have shown that the industry standard I2Cmust be re-evaluated due to performance and
reliability restrictions. The research contained in this thesis sets off to evaluate these charac-
teristics of other data bus standards to propose a possible future-proof data bus architecture.

By splitting up the analysis cases into two parts, the choice and design of both parts can be
optimised. The Telemetry and Command (TC) bus carries essential commands and house-
keeping data between systems, while the Payload (PL) bus is dedicated to high speed bulk
data transfers. An initial requirement-based selection of bus standards reduced the selection
of standards to several options for both bus cases; for the TC bus, I2C, CAN and RS485 were
selected. For the PL bus, CAN, RS485, SPI and USB were selected.

The selected standards were all implemented in a data bus testing suite, comprising of up to
nine simulated subsystems providing pseudo data to be communicated over the bus. Mea-
surements were conducted of the buses’ power consumption and data rates in several realistic
test cases. Furthermore, the complexity and ability to withstand noise and voltage transients
were evaluated. Ultimately, this resulted in a recommendation of using RS485 in future TC
bus configurations and SPI in the PL bus configurations. However, this conclusion must be
regarded a recommended direction of future research for several reasons. Firstly, more in-
vestigations are needed in the ability of these buses to work when subjected to large amounts
of noise and other extreme environments. Secondly, the performed trade-off does not ap-
ply weighting to its criteria, as these can and will vary wildly for different missions. Finally,
the test setup was limited in terms of processor ability for the PL bus case. These specific
tests should therefore be redeveloped with more powerful equipment, allowing an even more
realistic simulation of future CubeSat subsystems.
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1
Introduction

“Everything went great right up to the explosion.”
— Andy Weir, The Martian

“Loading new software into new computers and using it for the
first time was like playing Russian roulette. It demanded and got
a lot of respect.”
— Gene Kranz, Failure is not an Option: Mission Control From

Mercury to Apollo 13 and Beyond

S lowly but steadily, satellites based on the CubeSat standard are leaving the area of
experimental technology demonstration and entering the domain of commercial, fully
operational missions based on the developed technology. This transition calls for a

review of current CubeSat de facto technology standards and common design choices.

CubeSats have been around since the early 2000s [1], with the first launch of this spacecraft
class in June 2003 [2]. The most unique aspect of the standard is that the spacecraft consist of
multiples of 10x10x10 cm3 units. This form factor has been derived taking into account several
aspects, such as the size of already available Commercial Of The Shelf (COTS) technology,
launch vehicle restrictions and specific safety standards [1]. Apart from requiring a large drive
in miniaturisation of existing technology to enable CubeSat missions, other aspects are also
limited due to these dimensions. For example, the restricted size highly impacts the amount
of electrical power able to be generated and stored by the spacecraft.

The strict constraints imposed on CubeSats have triggered many different parties to develop
novel components and subsystems specifically to be compatible with CubeSats. This tech-
nology is generally well optimized to the limited power and spatial requirements. The resulting
availability of many different COTS subsystemsmakes the standard very attractive for technol-
ogy demonstration purposes and educational missions, although the use in commercial and
scientific Earth observation missions is also growing [3]. Furthermore, the relatively low cost
of the design, production and operations parts of the missions means these nanosatellites are

1
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of interest for use in constellations. A well-known example of such a system under develop-
ment is the Planet Labs ’Flock’ constellation [4], which is aimed to create a frequently-updated
service providing Earth imagery in the visual spectrum.

The increasing (commercial) reliance on CubeSats calls for an improvement in reliability of
the individual spacecraft, as previously flight-proven technology is often required to reliably
function in missions with a longer lifetime than the first generation of CubeSats. Furthermore,
with the increasing number of separate subsystems being included in the same amount of
on-board space, it may be expected that the amount of generated data and number of data
interfaces will increase as well. This adds significant pressure to the essential backbone of the
spacecraft keeping these systems together electronically: the data bus. The Inter-Integrated
Circuit (I2C) [5] standard may be regarded as the current go-to data bus standard in CubeSats
due to its relative simplicity and wide support in third party subsystems and components [6].
However, there are concerns regarding its reliability [7]. Moreover, many other data bus stan-
dards are also capable of delivering much higher data rates, although often at the cost of
increased power consumption [8].

Hence, there exists a need for a data bus architectural design which is able to support the
higher required performance of CubeSats missions in the near future, while also increasing the
reliability but minimising the power consumption of the bus. A full validation of the architecture
will result in CubeSat developers to be able to better substantiate their choices for specific
data bus standards and designs.

1.1. The Data Bus
Serial data buses are used in most, if not all satellites for communication and commanding
between subsystems within the main satellite bus. Despite their small size, CubeSats are no
exception. The I2C serial bus standard is currently the most used bus in CubeSat missions [6],
mainly due to its low complexity and wide support in third party commercial subsystems. More-
over and perhaps even more importantly, I2C requires only a very small amount of power to
operate, making it ideal for use in the highly constrained environment of a CubeSat [6][7].
However, the CubeSat industry is slowly outgrowing this bus standard.

Firstly, it has been shown that there are risks to the mission related to the use of this bus. Both
CubeSats in the Delft University of Technology’s Delfi satellite program, Delfi-C3 andDelfi-n3Xt
(Figure 1.1), which were successfully launched several years ago, have experienced serious
issues such as locked subsystems and fully locked buses [9]. These problems are reflected
in experiences from other missions and is often thought to originate in external influences
affecting the addressing of I2C [10]. Although these issues are generally recoverable after
(sometimes significant) effort by ground operators, they do delay mission operations and may
even cause catastrophic failures in certain specific cases [10].

Similarly, the increasing amount of announced satellite constellations partly or fully based on
CubeSats [3] means that the reliability and fault tolerance of individual units will become of
further importance. For example: in interlinking communication constellations, an unexpected
sudden failure of one or more CubeSats might have severe consequences for the instanta-
neous coverage. The same holds for the first CubeSats planned the relative safety of low
Earth orbit [12].

Thirdly and finally, the instruments and experiments carried on board CubeSats are also
steadily increasing in complexity and generated data load. On the other end of the data han-
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(a) Delfi-C3 (b) Delfi-n3Xt

Figure 1.1: The Delfi satellites (image courtesy: [11])

dling chain, high speed space-to-ground downlinks have also been demonstrated [13]. Con-
sequently, future CubeSat missions will require data buses with higher data rates to handle
the large amounts of generated information reliably and consistently.

Thus, there is clearly a need for a new data bus architecture design which is both more reli-
able and allows for a better performance, while still practical when being applied in a CubeSat
environment. To stay within the CubeSat mentality of using as many COTS components as
possible, it is preferable to use widely available standards to maximise compatibility with exist-
ing hardware and minimise the amount of effort going into applying the technology. A related
investigation performed by a several US based institutions have partly recognised this need
and have proposed a modernised standard bus for US-government-owned CubeSats [14]. Al-
though this proposal additionally encompasses the structural bus and subsystem form factors,
it also includes the suggestion to use the Controller Area Network (CAN) bus to tackle the reli-
ability issues. CAN mainly originates from the automobile industry and has been implemented
sporadically in CubeSat missions [6]. Just like I2C, it is one of only several widely available
bus standards supporting a linear bus topology. Although completely designed with reliability
in mind, a frequently-heard argument is the increased power consumption and increased com-
plexity versus I2C. Yet hardly any research has been done in validating CubeSat data buses
and cross-comparing the results [15], hence it is difficult to assess whether a choice for CAN,
or any other bus standard for that matter, is a large impact to a design compared to current
implementations of I2C. It is possible that this lack of information influences choices of bus
standard in current satellite design cycles.

In conclusion, a modernised data bus architecture is required to be developed for CubeSat
missions in the near-future. There is a need for a data bus with higher reliability and higher
performance than is possible with the currently implemented architecture based on I2C. An
architecture consisting of a main command bus and a payload bus has been proposed pre-
viously. This idea has its foundations in bus standards chosen for several previous CubeSat
missions. Nevertheless, there is next to no documentation available on the integration of CAN
(or other data buses) in CubeSats, and how well the performance and reliability of the buses
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were found. Thus, research is required to validate the use of CAN and possibly the combina-
tion with Universal Serial Bus (USB) in a CubeSat data bus and to thoroughly document the
design and results.

1.2. Thesis Objective
The applied method within this thesis research is to perform a complete reselection of existing
data bus standards from the ground up, mainly disregarding the results from earlier trade-offs
so that the current state of the data bus technology can be evaluated for use in upcoming
nano- and picosatellite missions.

This in turn is done by investigating the compatibility and practicality of implementing one of
several serial data bus standards in a representative CubeSat environment. Furthermore, the
performance and reliability of the data bus standards will be compared to the I2C standard
in various representative practical setups. This is aimed to lead to a recommendation of an
optimal data bus standard and a recommended bus architecture.

A secondary objective is to provide well documented results on the implementation and inte-
gration of subsystems using the proposed data bus architectures. The design must be well
supported and its limits explored. Furthermore, the integration process must also be evalu-
ated. It is believed that this information will benefit designers of future CubeSats and provide
a better foundation for the choice of data bus and the knowledge of its characteristics and
behaviour.

A minor tertiary objective is to support the development of the new and even smaller Pock-
etQube standard at the department of Space System Engineering of the Delft University of
Technology. This is done by creating documentation for the data bus design and operation,
and by creating tools for working with the Texas Instruments (TI) MSP432 microcontroller.
Previous analyses and work have been performed with the older TI MSP430 series, but the
current aim is to use the new series as its ‘go-to’ microcontroller in future satellites.

Thus, the main research question to be explored and answered is:

Is there an optimal data bus or combination of data buses to be used in future
CubeSat missions?

This question is to be answered by this thesis project through experimental comparisons be-
tween selected data bus formats. Therefore, the following sub-question is relevant:

How do the proposed bus standards compare to I2C in performance, reliability,
power consumption and practical implementation?

It is quite possible there are practical or theoretical limits in some kind of way preventing the
use of a specific data bus in certain situations. It is important to identify these:

What are the practical limitations of the proposed bus architecture?

The main underlying goal of the thesis is to answer the main questions and the corresponding
sub questions.
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1.3. Thesis Outline
The goal of this thesis is thus to compare different data bus standards to each other to try and
reach a conclusion on an optimal configuration for use in future CubeSat missions.

To kick off this process, first chapter 2 defines terminology, conventions and concepts used
further up in the report. The next chapter presents the selection of data buses to be considered
and tested experimentally. This is necessary because a virtually limitless amount of standards
exists. It is of course impossible to test them all, hence a well considered selection must be
made. With this selection made, the test metrics and test setup are described in chapter 4
and chapter 5. Chapters 6 through 10 then look at the actual implementation of all the buses,
including descriptions of the software and the hardware, and provides the measurement re-
sults and initial conclusions for each bus. All these results are then combined in chapter 11.
By using a small, generic trade-off process, a general discussion of the results are made. The
report’s conclusions and recommendations are then given and summarised in chapter 12.





2
Data Bus Design

T he basis of all the data buses discussed within this document are the concepts of se-
rial data transfer. To provide a context in which such a system operates, this chapter
explores several basic concepts from information theory and electrical engineering.

Starting from the lowest levels of digital communication and continuing to upper-level parts
such as network topologies, many conventions and assumptions will be stated to avoid pos-
sible ambiguities later on in the paper.

2.1. Digital Information
Virtually every electronic circuit consists of a combination of many electronic components. In
many cases within modern electronics, a central processor, or in smaller and more lightweight
systems, a microcontroller, provides the central node of a certain subsystem. A microcon-
troller is usually required to perform many different roles or functions. For example, the mi-
crocontroller reads out data from connected components such as sensors, performs low-level
calculations with these values and then acts by providing output. At the same time, the micro-
controller is often supported by other secondary microcontrollers, requiring communication to
coordinate between the two stations.

All communication must be reliable and efficient for a microcontroller to function properly.
Therefore the vast majority of communications in modern electronic is performed digitally,
which means the information being shared between components and systems comprises of
binary data. This document follows the following conventional structure of binary data:

1. Bit: a single binary digit. This digit is either true (1) or false (0), or HIGH (1) or LOW (0).

2. Byte: a sequence of eight bits, together forming a number or part of a number (if used as
part of a combination of bytes). This document assumes bytes are ordered Most Signif-
icant Bit (MSB) first, e.g. 00010001bin equals 17dec. Furthermore, bytes are considered
to be unsigned: e.g. 10001000bin equals 136dec.

3. Kilobyte, megabyte, ...: two common standards commonly apply to SI prefixes of bits or
bytes: either a kilobyte equals 1000 bytes, or it equals 1024 bytes. This thesis assumes
the former, mainly to simplify computations. This further implies that one megabyte (MB)
equals 1000 kB.

7
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Figure 2.1: Parallel communication (top) versus serial communication (bottom)

Communication of binary data can be performed in one of two ways: parallel or serial [16].
Examples of both are shown in Figure 2.1, where both methods communicate the same byte.
With parallel communications, the data is transferred over a large set of lines (one line for each
bit). Usually, a separate clock line signals to the client when to read the individual lines. A
serial connection uses a single line to transfer all the data in a sequential stream of bits. As will
be seen in the following sections, there are different ways of providing the clock information
with the line.

Parallel communication will often be faster than serial communication, since multiple data-
carrying lines will always be capable of transferring more data per unit of time than an identical
single line. However, the apparent major drawback of parallel communication is the high
number of separate lines required to transfer the information. To transfer a single byte at a
time, eight lines plus one clock line are needed. Apart from the resulting complexity in the
design of such networks, this also means an equal amount of General Purpose Input and
Output (GPIO) pins on a microcontroller are required to drive the lines. Since the amount of
available pins is often very limited on a microcontroller, the use of parallel communication is
simply impossible.

Due to these restrictions, parallel buses are hardly ever used when the information must be
carried off a Printed Circuit Board (PCB). Serial communication is used in these cases.

2.2. Open System Interconnect (OSI) Layers
To standardise the different parts of an interface, theOpen System Interconnect (OSI) standard
layers were introduced by a work group part of the International Organisation for Standardisa-
tion (ISO) [17]. The model defines seven different layers describing how nodes on a network
communicate to each other. The hierarchy is defined in a very system-engineering-like form.
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The OSI layers are as follows (from highest to lowest):

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Each layer will be discussed concisely below. To help illustrate the concepts, the different
layers will be explained using the architecture of the Internet, to which it is expected that many
readers will be accustomed.

2.2.1. Layer 1: Physical Layer

The lowest layer, the physical layer, defines the electrical characteristics and the physical
medium through which all signals pass. For the internet, this typically describes Ethernet when
used in a person’s home or workplace, but also the various glass fiber and copper connection
connecting the different Internet endpoints to an Internet Service Provider.

2.2.2. Layer 2: Data Link Layer

The data link layer describes how binary data is moved between nodes on a network. This
handles parts such as the (local) addressing and basic access control. The Medium Access
Control (MAC) address, which is unique to each Internet-enabled device, is used for this by
routers and switches handling relatively small network segments [17].

2.2.3. Layer 3: Network Layer

The network layer is responsible for establishing, maintaining and closing off connections to
other nodes on the network. This is the layer in which the Internet Protocol (IP) and IP-address
system works [17].

2.2.4. Layer 4: Transport Layer

The transport layer describes how packets are handled between nodes. For example, if pack-
ets are lost, then the technology in this layer ensures retransmission of the packet. The Trans-
mission Control Protocol (TCP) performs this task within the Internet [17].

2.2.5. Layer 5 through 7: Session, Presentation and Application Layers

The upper three levels describe how the information is handled by the applications running
websites and those reading them on the user side. For the internet, this includes the web
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Figure 2.2: A point-to-point/daisy-chained bus topology

servers handling user requests and the web browser used by those user to display the trans-
mitted information such as websites.

2.2.6. Scope of this Research

This research will mainly focus on the first two layers: how to get basic binary data from one
point to another over a specific bus. The layers above these two are typically more application-
dependent and might therefore vary between different satellite missions. For an example of
related research to higher OSI layers at the TU Delft, the reader is referred to [18].

2.3. Bus Topologies
The architecture of how a serial data bus connects nodes together is called the network topol-
ogy, and can vary wildly. In the most basic forms, three different main topologies can be
identified: the ‘straight’ point-to-point topology (also known as daisy-chaining), the star topol-
ogy and finally a linear topology [19].

The straight point-to-point topology is the most basic topology, where the bus will only connect
up to two nodes together. Additional nodes must be added in series. This is called daisy-
chaining. Figure 2.2 shows a simple implementation connecting seven nodes. An apparent
drawback is the additional work added to each individual mode: a message sent from the first
node to the last node must be passed on by each node in between. This also means that
individual nodes must remain active, as the network is blocked once a node switches off. A
ring topology can be made by connecting node 7 to node 1, but this increases the complexity
of the node design due to the extra direction in which data can travel.

A different manner of using point-to-point buses is through a star topology as shown in Fig-
ure 2.3. The same nodes as in the previous case are connected to a single central node, here
shown as a hub. Of course, the hub can be any node on the network. However in practice,
the central node/hub must be capable of handling the routing of traffic over the entire bus. The
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Figure 2.3: A star bus topology

star topology solves the problem where nodes must stay on all the time, at the cost of requiring
a dedicated node for routing.

The aforementioned two topologies are the most common topologies connecting the internet,
although that network is a highly complex combination of the two. However, a third topology
commonly used within electronic systems for small scale networks: the linear bus topology.

An example of the linear bus topology is shown in Figure 2.4. The figure shows the same
seven nodes as before, but now connected through a single communication channel. This
design is useful in that nodes can be switched off without directly influencing the bus. It also
allows amore equal distribution of work load per node. Moreover, two nodes can communicate
together without disrupting the operation of the other nodes. The main drawback is the added
complexity and overhead to the software protocol: in most cases node addressing is required
to ensure correct routing.

As will be seen in the coming chapters, the linear bus is preferred as its benefits outweigh the
drawbacks in practice, mainly affecting their power consumption.

Figure 2.4: A linear bus topology
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Data Bus Selection

(Note: the process and results of the trade-off included in this chapter have partly been pre-
sented at the 14th Reinventing Space Conference (2016) organised by the Royal Interplane-
tary Society in London, UK [20]. See also Appendix D).

T o provide a solid basis for a practical experiment and to avoid having to test a very large
number of bus standard and designs, a selection of ‘data buses of interest’ is performed
using purely theoretical analyses. The goal of the selection process is not to result in

a single recommended bus architecture, but rather in a ‘shortlist’ with several bus options.
These options are analysed in more detail to yield a prediction of the various strengths and
weaknesses between the different options. Practical implementation of the bus hardware and
software as well as measurements of the main bus characteristics will provide a secondary
independent review. Final conclusions and recommendations on future CubeSat data bus
design will hence take into account both individual evaluations.

Due to the limited availability of both electrical power and physical space in most CubeSats [6],
a straightforward choice for the data bus would be a single linear bus which connects all
subsystems over a single communication channel. Indeed, the majority of CubeSats are im-
plemented with such a (simple) architecture [21]. A similar data bus design was applied in
Delfi-n3Xt, the second CubeSat launched by the TU Delft. Figure 3.1 shows a histogram con-
taining the sizes of transactions versus the amount of these transactions during a single 2 s
cycle of the Delfi-n3Xt On-Board Computer (OBC) polling for subsystem statuses and other
housekeeping data. The figure shows a clear group of transactions with sizes of up to only
several bytes, and furthermore a small amount of significant peaks at larger transaction sizes
of several hundred bytes. The large gap between the two categories is due to different types
of housekeeping data requests: because Delfi-n3Xt was a technology demonstration mission,
the elaborate housekeeping data contained in the large transactions may be considered to be
payload data.

Although Delfi-n3Xt does not contain a purely scientific or otherwise large-data-generating
payload, it may be assumed that other CubeSats show similar data size distributions. More-
over, it is expected that the size of the gap between the small and large will increase when
payloads are included which do create large amounts of data. To account for this effect and to
allow for optimisation of the data bus, it is decided to perform the trade-off and experimental
tests with two separate bus cases:

13
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Figure 3.1: The distribution of transaction size versus amount of transactions of the Delfi-n3Xt satellite

1. The Telemetry and Control (TC) bus: all small commands and housekeeping polling is
performed over this bus. This bus is used to connect all subsystems to the OBC for basic
operation.

2. The Payload (PL) bus: this bus is meant to transport large sets of bulk data (e.g. payload
data) between two data points, for example a payload and mass memory unit.

Separating the PL bus from the TC bus gives several benefits. First, buses which allow the
interconnection of many nodes often do not feature relatively high data rates (as will be seen in
section 3.3), thus a separate bus can bemore optimised in terms of data throughput. Secondly,
when a large amount of data is transferred over the PL bus, it does not block the critical
operation of the TC bus by occupying the bus. Thirdly and finally, since the PL bus is typically
not necessary in many critical system modes, it can simply be turned of when in one of these
modes.

The system-level requirements will be defined and subsequent selection of the TC bus and
PL bus will be performed in the next sections, but first several general top-level requirements
are defined to ensure a clear objective of the trade-off process.

3.1. General Data Bus Requirements
As discussed in the introduction, the data bus is normally included in an electronic system
when there exists a need to transfer information or data between multiple stations or nodes.
This is no different in CubeSats, where many different components such as microcontrollers
and sensors need to share information. This research will focus on the former: the main
internal bus required to connect the various independent subsystems to one and other. The
information shared between the system is, like in any digital system, in the form of binary data.
This initial and main need can be described in the form of a top-level requirement:

REQ-01 - The data bus shall provide the means to communicate binary data

Binary information can be transferred through either parallel communication or through serial
communication. Although the former is perhaps an intuitive method of communication, parallel
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data transfer brings along several issues when implemented with bus lines longer than found
on a single PCB, not including the added complexity caused by the large number of communi-
cation channels [16] (at least 9 when communicating with single bytes: 8 bits plus clock). Fur-
thermore, cross-talk between the communication lines and typically higher power consumption
are reasons for preferring serial communication over parallel communication over longer rel-
atively longer distances (i.e. between PCBs) [22]. Therefore, the communication is expected
to be in serial form:

REQ-02 - The data bus shall use a form of serial communication

The fact that there is a very limited amount of electrical power available in CubeSats must be
taken into account as well:

REQ-03 - The data bus shall keep its electrical power consumption to a minimum

What these minima mentioned in REQ-03 exactly mean will be explained and defined in the
next chapters.

Apart from only acting as a medium for information, the data bus must also ensure reliable
transmissions. Especially in the hostile environment of space where electromagnetic radiation
effects, partice radiation effects and extreme temperature effects are all much more frequent
than in terrestrial applications. Thus:

REQ-04 - The data bus shall minimise the amount of errors in the data caused
during transmission of the data

One of the basic ideas behind CubeSat design is the creating and making use of the large
amount of COTS components [1]. One must also take into account that CubeSats are still
often tools used for educational purposes, scientific projects and commercial, non-military
entities. This leads to a requirement describing the public availability of components and
general technology, as well as a separate requirement for the relevant documentation and
licensing:

REQ-05 - Components used in the data bus shall be readily available as COTS
REQ-06 - Documentation and licensing of a bus standard shall be readily available
at no significant financial costs

Somewhat related to the point of availability is the cost in terms of complexity with regards to
the implementation of a bus. This highly subjective aspect is related to the amount of hardware
and software that must be designed to get a specific bus to work.

REQ-07 - The complexity of implementing a data bus shall be kept at a minimum

Again, the exact definition of this requirement will be defined per bus case (TC or PL).

Apart from the limited power requirements in a CubeSat, the relatively small form factor means
that physical space is also severely limited. Apart from a highly constrained intra-board spac-
ing, meaning a low amount of room for connectors and wiring, the space on PCBs is also
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severely limited [21]. Therefore the number of physical wires used to operate a bus must be
low to allow for inclusion of the bus without major space issues. Because the number of wires
was an essential (but not the only) reason to disregard parallel buses, these are used as a
reference. As an upper limit, the requirement is stated that the number of separate bus lines
must not exceed the number of bus lines for a parallel communicating bus:

REQ-08 - The number of data lines shall be less than a parallel communicating
alternative

Finally, to ensure maximum compatibility between subsystems, it must be possible to imple-
ment the chosen data bus(es) in a universal manner: regardless of chosen microcontroller or
bus node hardware.

REQ-09 - The data bus shall be universally compatible with typical microcon-
trollers

Having defined the top-level requirements, the following sections will take these main require-
ments to define specific system requirements. In turn, the system requirements are then used
to select the shortlist of bus options to be tested experimentally.

3.2. TC Bus Requirements
To recap, the TC bus is used to communicate commands and essential housekeeping data
between subsystems. This section will define the system requirements of the TC bus based
on the top-level requirements defined in section 3.1. Moreover, the layout and characteristics
of the network used in an analytic case (for the trade-off) and the practical case are worked
out.

The system-level requirements which will be defined in this section act as the absolute mini-
mum criteria each bus option has to meet, and does not necessarily describe the optimal or
favoured bus design.

The system requirements are defined to describe the reference case as shown in Figure 3.2.
The figure shows nine nodes including the OBC as central bus node. All subsystems are thus
at least able to communicate with the OBC. Although it is not necessary to communicate in be-
tween, this might theoretically be possible depending on the specific bus standard. However,
this functionality will not be taken into account any further: a single-master bus is assumed in
all cases.

The first requirement derives from REQ-01 and REQ-02: to ensure continuous and fluent
transmission of the data, a minimum data rate must be defined. However, this is the point
where one enters a very grey area with a variety of ambiguous definitions. For example, I2C
Fast Mode is defined with a ‘bit rate’ of 400 kbit/s. However, protocol overhead in the data
link layer of I2C means that the actual rate of information is less than 400 kbit/s. In a similar
case, CAN of course also contains overhead within the protocol. However, this overhead is
defined to, for example, contain message priority information and a marker indicating whether
(more) information is requested from a bus node. Hence, the use or uselessness of parts of
the protocol overhead will vary between different bus standards and even different ways of
implementing the standards.
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Figure 3.2: The TC bus reference case. Note that the indicated subsystems are examples only. The arrows
indicate that data can travel in all directions.

To still be able to compare the different bus standards, the baud rate is used, which is defined
as the number of signal events per second [16]. In other words, the baud rate is the base clock
speed (in Hz) at which the bus operates at (e.g. 400 kHz for I2C). As a minimum, a bus type
must at least meet the value for I2C’s Fast Mode [5]. The choice for this mode and not the
Fast Mode+ with a 1MHz baud rate is the fact that the baud rate on a bus will always default
to that of the device with the lowest baud rate [23]. As the (slightly) older Fast Mode is more
widely supported, this is taken as a baseline.

TC-01 - The baud rate shall be at least 400 kHz

The power consumption, as mentioned by REQ-03, must be kept to a minimum. This is espe-
cially necessary as the data bus is usually only seen as a subsystem supporting other subsys-
tems. As the available power in a CubeSat is typically only on the order of several Watts [6],
a (slightly arbitrary) peak power consumption of 1.0W is chosen for the entire bus comprising
of the reference case with nine nodes as shown in Figure 3.2:

TC-02 - The peak power consumption of the data bus according to the TC reference
bus shall not exceed 1.0W

The next requirements are related to REQ-04, which requires reliable transmission of data
over the data bus. Especially for the TC bus, which requires a high confidence that com-
mands actually reach their target subsystems, this is a critical aspect. Although the effect of
typical measures assuring this will be discussed in more detail later on in this paper, two basic
requirements are already defined:

TC-03 - The data bus shall contain a watchdog mechanism
TC-04 - The protocol shall contain a way of detecting bit errors
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TC-03 requires as a bare minimum the usage of a watchdog. Such a mechanism monitors
the activity of a bus and the connected nodes, and resets (typically through power cycling) the
bus hardware when activity drops unexpectedly. TC-04 is added to ensure the detection of
transmission problems. However, every bus able to transmit data already meets this require-
ment, as simply adding a Cyclic Redundancy Check (CRC) checksums to the data link layer
is sufficient.

Complexity (REQ-07) is, due to its subjectivity, difficult to quantify. Nevertheless, an attempt
is made here by describing the complexity in terms of the number of (dedicated) components
required per bus node to connect it to the bus, not including the PCBs on which the compo-
nents are added. An assumption is made here that the amount of effort needed to design
the hardware and software drivers to run the bus scales proportionally with the number of
components.

TC-05 - The data bus shall require less than 10 dedicated components per node

Finally, to make REQ-08 regarding the number of data lines more exact, TC-06 is introduced.

TC-06 - The data bus shall not have more than 7 main data lines

The requirements defined in this section, together with the top-level requirements defined in
section 3.1, will be used to find the bus options to be used in the practical experiment.

3.3. TC Bus Selection
A large amount of different serial data bus standards have been gathered in Table 3.1 as
originally collected in [8]. Even though a list such as this one will never be fully exhaustive, it
does take into account as many standards as possible. To avoid having to add an near-infinite
amount of options to the initial list, only bus options as defined per their official definitions are
taken into account, describing their physical layer. Hence, this excludes all possible variations
of bus options with regarding to differing resistor values, bus voltages and data link layers.
Table 3.1 acts as a base for the next couple of sections where several bus types (included
the eventually selected options) are analysed in more detail, mainly focusing on the power
consumption requirements.

3.3.1. Controller Area Network (CAN)

CAN is regularly disregarded for use in a CubeSat due to its high expected power consump-
tion [6]. Nevertheless, its roots within the automotive industry and its design with reliability in
mind means it meets all requirements regarding this preliminary bus selection.

For a first order analysis of the power consumption of the CAN bus, each node is assumed to
be comprised of an MCP2515 CAN controller [29] and an SN65HVD23319 [30] transceiver.
The base (idle) current draw on one node then equals 16 mA. As CAN is essentially a half-
duplex multi-master system, at most a single node will always be transmitting at the same
time. Thus, when this is the case, this adds another maximum of 50mA to the total current
according to the datasheets of the two main components. For the 3.3V bus consisting of nine
nodes, this results in 640mW. This value is compliant with TC-02.
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Table 3.1: Overview of TC bus options and whether each option is rejected for the experiment or not. Options
which are not rejected have been highlighted for clarity

Bus Standard Rejected Relevant Req. Notes
CAN No See subsection 3.3.1

CAN FD Yes REQ-05 Officially not released yet at time of writing.
Low availability of components

Ethernet Yes TC-02 Power consumption exceeds 1.0W (See subsection 3.3.2)

Firewire Yes REQ-09 Not able to interface with microcontrollers
(only through e.g. PCI/PCIe)

FlexRay Yes REQ-05 Low COTS availability: possibly discontinued

I2C No See subsection 3.3.3
Infiniband Yes REQ-09 Not compatible with embedded systems
LIN Yes TC-01 Baud rate (20 kHz) too low [24]
MIL-STD-1553 Yes REQ-05 Military standard: non-trivial availability
OneWire Yes TC-01 Baud rate (~15 kHz) too low [25]
RapidIO Yes REQ-05 Low COTS availability: possibly discontinued
RS232 Yes TC-01 Baud rate (~110 kHz) too low [26]
RS422/RS485 No See subsection 3.3.4

SpaceWire Yes Low availability of components
for microcontrollers [27]

SPI Yes TC-06 Number of CS lines becomes very large [28]
Thunderbolt Yes REQ-06 High licensing cost

USB (2.0) Yes TC-02 Power consumption (with hub) exceeds 1.0W
(See subsection 3.3.5)

USB (3.0 / 3.1) Yes REQ-05 Host controller ICs are unavailable
(See subsection 3.3.5)

3.3.2. Ethernet

Ethernet, the basic transmission system behind the Internet, is mainly design for use in in-
dustrial and consumer electronics. Nevertheless, several ICs acting as Ethernet-to-parallel
controllers are available on the market. As a baseline, the Wiznet W5100 is assumed [31].
This IC, supports several basic Ethernet modes. However, the maximum power consumption
for a single W5100 already equals 183mA (604mW at 3.3V), which implies a total power con-
sumption of approximately 5.5W for the full nine node reference case, roughly equalling the
total power output of a typical CubeSat [6]. Therefore, Ethernet is rejected for not meeting
TC-02.

3.3.3. I2C

As the main requirements have all been based on the performance and abilities of I2C, it more
or less automatically meets these requirements. It must be noted that although I2C supports
higher speed modes, these often require additional Input-Output (IO) buffers [28]. Therefore,
in this analysis, only Fast Mode (with a baud rate of 400 kHz is used.
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To estimate the power consumption of an implementation of this bus in the nine node TC bus
case, several assumption have to be made. First of all, it is assumed that every node has one
PCA9514 I2C isolator/buffer[32]. A buffer or isolator is often necessary in I2C networks consist-
ing of many nodes to reduce the total bus capacitance, which is limited to 400 pF. Moreover,
the isolator function of these components makes it possible to safely remove a subsystem
from the bus (i.e. powering down redundant systems) without affecting the main bus [33]. The
worst case power consumption is assumed where the bus is continuously in a logic LOW state.
This means all bus lines are completing a circuit and thus consuming power through its pull-up
resistors. All separate Clock (SCL) and Data (SDA) lines require their own pull-up resistors,
meaning that when assuming typical pull-up values of 4.7 kΩ (at 3.3V), each individual line
consumes 2.3mW. Nine nodes plus the main bus lines give a total of 46mW. Adding up the
expected power consumption of the bus buffers (approximately 3.5mA = 11.55mW) gives a
total of 150mW. This value is easily compliant to TC-02, as expected.

3.3.4. RS422/RS485

Recommended Standard 485 (RS485), a half-duplex version of the simplex (but otherwise
identical) Recommended Standard 422 (RS422), is actually only a definition of the physical
layer [26]. Nevertheless, it is normally implemented using the built-in Universal Asynchronous
Receiver/Transmitter (UART) of microcontrollers and acts as a medium for the UARTs to com-
municate. The lack of predefined data link layer and other protocols means that the function-
ality dictated by the REQ and TC requirements has to be achieved through software. Never-
theless, no limits are known which might cause non-compliance to the requirements.

During the design of Delfi-n3Xt, it was mistakenly assumed by the engineering team that
RS485 is not able to operate in a linear bus architecture. Therefore, this bus was not included
in the main data bus trade-offs performed at the time. It must be stressed that although RS422
is not able to operate linearly, RS485 is.

Concerning the power consumption of RS485, a typical configuration is assumed: the built-
in UART of the microcontroller driving the node provides the data to a dedicated driver/-
transceiver. This driver then electrically drives the data onto the differential bus lines. In
this case, the ST348517 [34] is used as the reference component. Similar to CAN, only one
node will always be transmitting at the same time. Therefore, the power consumption of a
single transmitting node equals the overall bus power consumption. For the chosen TC bus
reference case, it is assumed that the output of the driver is continuously equal to its default
state value of 1.5V [34]. Further assuming a standard termination load of 60Ω (two 120Ω
resistors in parallel), the total power lost over the bus lines becomes 37.5mW. Added to this
is the passive current draw by all other nodes: 1.3mA, adding another 38.6mW to the total
figure. Thus, for the full TC bus, a total of 76.1mW is found.

3.3.5. USB (2.0 and 3.0/3.1)

The Universal Serial Bus (USB) is well-known as the industry-standard peripheral bus used
in consumer electronics connecting to a variety of systems, especially personal computers.
Its popularity results in a high availability of ICs enabling connectivity between embedded
systems and other USB devices. However, to enable straightforward implementation of USB
on a peripheral device, the standard has been made very host-centric. In other words, the
bulk of the bus’ responsibilities is for the dedicated host controller [35].
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To have a functional USB connection a separate host controller is therefore necessary on the
bus. These are available for the older 2.0 standard, however the relatively new 3.0 and 3.1
versions of the standard do not have any host controllers available in the form of a COTS IC.
This automatically causes the versions 3.0 and 3.1 to be rejected from the test.

Still, USB 2.0 is not yet rejected, as the required components are readily available. However,
one must note that since USB is a point-to-point protocol, a hub or switch is required to connect
more than two nodes to a single bus. Unfortunately a typical hub uses approximately 1W just
by itself when fully active [8]. Therefore version 2.0 is also rejected following TC-02.

3.3.6. TC Bus Result

Thus, the list of buses has been reduced from 19 options to just three:

1. CAN

2. I2C

3. RS485

These options will be the buses considered in more detail with the practical experiment.

3.4. PL Bus Requirements
The PL bus is meant to carry bulk data from the point of origin, most notably as generated
by on-board payloads or other types of instruments, to a second point handling the data: for
example a high speed radio downlink or mass memory unit. The reference case as shown in
Figure 3.3 is used for all theoretical analyses.

Mass Memory Payload

Figure 3.3: The PL bus reference case as used for the analysis and reduction of bus options. Note that the
indicated subsystems are examples only. The arrow shows the typical direction of data flow.

For the PL bus, the approach to reducing the number of buses to consider is identical as the
one used for reducing the number of TC buses. Naturally, the general top-level requirements
as defined in section 3.1 remain the same and valid. This section will define the lower-level
system requirements. Even so, as the basic functionality of the PL bus is the same as for the
TC bus, all of the requirements apart from one as defined in section 3.2 also remain the same.

The only two system requirements that has changed is PL-01. For the former: instead of a
minimum baud rate of 400 kHz, a minimum baud rate of 1MHz is now required:

PL-01 - The baud rate shall be at least 1MHz

The higher baud rate is required to provide a high data throughput for the bulk data.

All other system requirements are kept the same (but renumbered for the PL bus) and listed
below:
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PL-02 - The peak power consumption of the data bus shall not exceed 1.0W
PL-03 - The data bus shall contain a watch dog mechanism
PL-04 - The protocol shall contain a way of detecting bit errors
PL-05 - The data bus shall require less than 10 dedicated components per node
PL-06 - The data bus shall not have more than 7 main data lines

These requirements can now be used to repeat the analysis as also performed on the TC
buses.

3.5. PL Bus Selection

Table 3.2: Overview of PL bus options and whether each option is rejected for the experiment or not. Options
which are not rejected have been highlighted for clarity

Bus Standard Rejected Relevant Req. Notes
CAN No See subsection 3.3.1

CAN FD Yes REQ-05 Officially not released yet at time of writing.
Low availability of components

Ethernet Yes PL-02 Power consumption exceeds 1.0W (See subsection 3.5.1)

Firewire Yes REQ-09 Not able to interface with microcontrollers
(only through e.g. PCI/PCIe)

FlexRay Yes REQ-05 Low COTS availability: possibly discontinued

I2C Yes (Typical) Baud rate (400 kHz) too low [5]
Infiniband Yes REQ-09 Not compatible with embedded systems
LIN Yes PL-01 Baud rate (20 kHz) too low [24]
MIL-STD-1553 Yes REQ-05 Military standard: non-trivial availability
OneWire Yes PL-01 Baud rate (~15 kHz) too low [25]
RapidIO Yes REQ-05 Low COTS availability: possibly discontinued
RS232 Yes PL-01 Baud rate (~110 kHz) too low [26]
RS422/RS485 No See subsection 3.5.3

SpaceWire Yes Low availability of components
for microcontrollers [27]

SPI No See subsection 3.5.4
Thunderbolt Yes REQ-06 High licensing cost
USB (2.0) No See subsection 3.5.5

USB (3.0 / 3.1) Yes REQ-05 Host controller ICs are unavailable
(See subsection 3.3.5)

3.5.1. Ethernet

As previously found in subsection 3.3.2, the minimum power consumption of a single Ethernet
node equals 604mW [31]. Hence, for the two nodes in the PL bus reference case, the total
power consumption will still exceed the maximum allowed value of 1W (PL-02).
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3.5.2. Controller Area Network (CAN)

Apart from the apparent suitability of CAN as a TC bus option, it also meets all basic re-
quirements for the PL bus. Using the values from subsection 3.3.1, it can be concluded that
implementing the (linear) CAN bus according to the PL bus reference case will result in a
maximum power consumption of 271mW.

As other bus characteristics of the bus design such as the number of bus lines does not
change, CAN still complies to all the other requirements.

A more detailed discussion of CAN including component selection and the measurement re-
sults can be found in chapter 7.

3.5.3. RS485

Just like CAN, RS485 also meets all requirements of both the TC bus and the PL bus. The
expected power consumption is, using the earlier derived values, equal to 46.1mW, which is
still very low compared to requirement PL-02.

A more detailed discussion of RS485 and the measurement results can be found in chapter 8.

3.5.4. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) was not considered before for the TC bus due to its high
number of data lines. When implemented as a bus between two nodes, SPI consists of five
lines [28]:

1. Chip Select (CS)

2. Clock (SCLK)

3. Master-Out-Slave-In (MOSI)

4. Master-In-Slave-Out (MISO)

The design of SPI allows sharing of the SCLK, MOSI and MISO lines, but CS lines need to be
routes to each bus node. Thus, for a TC bus SPI requires eight CS lines to be able to select
each subsystem. This drawback is negated when SPI is applied in a PL bus, where it only
requires one CS or even none at all.

The expected power consumption of SPI is negligibly small: as there are no external compo-
nents required to drive SPI apart from the wiring, all power is consumed by the microcontrollers
on each bus node.

Chapter 9 will elaborate on the SPI implementation.

3.5.5. Universal Serial Bus (USB)

Because no additional bus hub is required to connect only two USB nodes, the power con-
sumption becomes considerably less. The MAX3421E [36] (see chapter 10) is assumed for
the electrical power calculations for the two node bus. This IC is capable of acting as both a
USB peripheral (slave) and host.
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The MAX3421E’s datasheet [36] states a maximum power consumption of 150mW when ac-
tively transmitting. It does not state a figure for when it is running idly as is assumed to be case
when it is only receiving data, so it is assumed that that value is half the value of when it is
transmitting. This gives a final approximation of 225mW, significantly less than 1W (PL-02).

As with the other selected bus options, the implementation and tests of USB will be discussed
in more detail in chapter 10.

3.5.6. Result

This section has selected the PL bus options in the same way as for the TC bus. The resulting
options are:

1. CAN

2. SPI

3. RS485

4. USB 2.0

These options will be tested together with the bus options as found in section 3.3.

3.6. Conclusion
This chapter has provided an initial set of data bus standards to be used in the creation of the
data bus experimental suite. The next steps will be the definition of two parts: the aspects to
measure and compare between the various options, and the definition of the subsystems.

Although there are many serial data bus standards available on the market (both open and
proprietary), it is clear that when several basic requirements are stated to limit compatibility to
CubeSats and other nanosatellites, the number of options drops drastically. Still, splitting up
the main bus architecture into the TC bus and the PL bus allowed seriously consideration of
point-to-point bus standards for the latter. This allows for optimization of both buses in terms
of power consumption, data throughput and selection of secondary bus features.

The practical experiments with the buses will verify whether there are any major differences
between the selected options and validate their analyses.



4
Experimental Comparison

A s mentioned in the introduction to this paper, an experimental setup is used to test and
compare the different buses in two different architectures. This chapter will go into
detail in which tests are performed under what circumstances. The results from the

tests will be presented and discussed in chapters 6 through 10, which will be used to populate
a final trade-off matrix.

All metrics are designed in such a way that they are measurable on all bus types and architec-
tures. Thus, the main tests will be performed on the following bus architectures, as selected
in chapter 3.

For the Telemetry and Control (TC) buses:

• Inter-Integrated Circuit (I2C): a basic I2C bus similar as used in the previous Delfi mis-
sions and to be used on the Delfi PocketQube (Delfi-PQ), performing command and
payload data handling (chapter 6).

• Controller Area Network (CAN): a bus originating from the automotive industry, mainly
built around providing maximum reliability (chapter 7).

• Recommended Standard 485 (RS485): the oldest standard of all, only defining a physi-
cal layer. The data link layer is provided by the microcontrollers’ Universal Asynchronous
Receiver/Transmitter (UART) (chapter 8).

Regarding the Payload (PL) buses:

• CAN: a similar implementation as for the TC bus (chapter 7).

• Serial Peripheral Interface (SPI): this is available on most if not all microcontrollers, just
like I2C. The big difference is the significantly simpler data link layer, full duplex operation
and higher data rates (chapter 9).

• RS485: implemented in point-to-point, more or lessmaking it equal to RS422 (chapter 8).

• Universal Serial Bus (USB): a bus well-known to consumers (chapter 10).

25
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Each chapter mentioned in the lists above describes the exact implementation of each bus.
Moreover, in some cases slight variations on the physical and data link layers from the defined
standards will be evaluated on their effectiveness in the respective chapters. These include:

• Differential I2C: an implementation of I2C with differential signalling.

• RS485 without termination resistors: termination resistors are necessary in RS485
to avoid bus reflections. However, the relatively short bus lines in nanosatellites should
not necessarily require them.

The following sections will look into the tests and corresponding metrics.

4.1. Tests and Metrics
To quantify the performance of a bus network, several metrics must be defined. These metrics
are also used as the criteria in the final trade-off. The chosen metrics are as follows:

• Bit Error Ratio (BER) (for the PL bus only)

• Packet Error Ratio (PER) (for the TC bus only)

• Data Throughput

• Power Consumption

• Noise Immunity

• Complexity

The following sections will discuss the individual metrics in more detail.

4.2. Bit Error Ratio
The most common metric for the reliability of a bus is the Bit Error Ratio (BER). Measuring
the BER requires transmitting a data set of a certain predefined size and verifying the number
of bit errors in the data after the transmission. A test like this can be performed by the PL
bus, as its purpose is transmitting a large amount of data in one direction only. For the TC
bus however, this is problematic as it will operate in a packet-based manner. Therefore, the
Packet Error Ratio (PER) is used for this case and will be described in section 4.3. The current
section will describe the basic mathematical theory behind the BER which is required for the
PL bus test and for developing a PER test.

The BER’s definition is relatively simple, however it is difficult to determine the value for a spe-
cific communication link. It is hard to determine whether a ground-based test is representative
for typical in space-based communications, as electronics have to operate in a multitude of
highly varying electromagnetic and thermal environments, it may be difficult to determine a
reliable value for the BER.

When transmitting a certain given bit, the outcomes as shown in Table 4.1 are possible, similar
to the conventional Type I/Type II errors in hypothesis testing [37].
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Table 4.1: Possible error types when transmitting a single bit

Transmit ’1’ Transmit ’0’

Receive ’0’ Error (Type I) Correct
Receive ’1’ Correct Error (Type II)

The BER is defined as the ratio of the number of wrong bits 𝑁ᑖᑣᑣ over the total number of
transmitted bits 𝑁ᑓᑚᑥᑤ [38], [39], as shown in Equation 4.1:

BER = 𝑁ᐼᑣᑣ
𝑁ᐹᑚᑥᑤ

(4.1)

This equation presents the main problem for determining the BER: the value can only be found
as 𝑁ᐹᑚᑥᑤ → ∞ [38].

Fortunately, basic statistical methods exist to estimate the value for the BER. Analysing the
different outcomes in Table 4.1, one might note the probability of each outcome may and
probably will vary wildly in practice. For example, the occurrence of an error (Type I or Type II)
may be due to a bit flip caused by some kind of energetic radiation interference event having
an equal probability to yield both errors. When extending this example to one with I2C, where
the default state of the bus is HIGH (1), a Type II error might occur due to the transmitter not
pulling the line LOW (0) correctly when required. Thus, in this example case the probability of
getting a Type II error will be higher than a Type I error, as the sum of the probabilities to get
a Type II (𝑃ᑀᑀ) is greater than the sum of those for a Type I (𝑃ᑀ).

When each transmission of a bit is viewed as an experiment where the outcome is either an
error or a correct bit, then the corresponding probabilities are 𝑃ᑖᑣᑣ = 𝑃ᑀ+𝑃ᑀᑀ and 𝑃ᐺᑠᑣᑣ = 1−𝑃ᑖᑣᑣ.
This statistical system is a classic example of a binomial process [37], [38]:

(𝑃ᑖᑣᑣ)ᐹᑚᑟᑠᑞᑚᑒᑝ (𝑁ᑖᑣᑣ, 𝑁ᑓᑚᑥᑤ,BER) =
𝑁ᑓᑚᑥᑤ!

(𝑁ᑓᑚᑥᑤ − 𝑁ᑖᑣᑣ) !
⋅ BERᑅᑓᑚᑥᑤ ⋅ (1 − BER)ᑅᑓᑚᑥᑤᎽᑅᑖᑣᑣ

which can be approximated using a Poisson distribution as long as 𝑁ᑖᑣᑣ ≪ 1 and
𝑁ᑓᑚᑥᑤ is very large [38]:

(𝑃ᑖᑣᑣ)ᑇᑠᑚᑤᑤᑠᑟ (𝑁ᑖᑣᑣ, 𝜆) =
𝜆ᑅᑖᑣᑣ ⋅ 𝑒Ꮍᒐ
𝑁ᑖᑣᑣ!

(4.2)

where 𝜆 = BER ⋅ 𝑁ᑓᑚᑥᑤ. To compute the actual BER from the known quantities 𝑁ᑖᑣᑣ and 𝑁ᑓᑚᑥᑤ,
𝜆 may be approximated as equal to 𝑁ᑖᑣᑣ [38]. Together with the corresponding Probability
Density Function (PDF) of the Poisson distribution, an approximation of the BER can be found,
which contains a certain error with respect to the actual BER. Figure 4.1 shows several plots
of the PDF for various values of 𝜆.

Unfortunately, the absolute value of the BER approximation’s error can not be determined
exactly. This reduces the overall confidence in the resulting value. However, knowing the
probability distribution allows one to find the confidence levels associated with an approxi-
mated BER.

One may observe the Poisson PDF is able to give the probability of any arbitrary combination
of 𝑁ᑓᑚᑥᑤ and 𝑁ᑖᑣᑣ to occur. For example, if 5 × 10Ꮈ bits are transmitted resulting in a single
bit error, then the ’measured’ BER simply equals 2 × 10ᎽᎹ. If it is of interest to know whether
the actual statistical BER is under 1 × 10ᎽᎸ, then Equation 4.2 can be used to determine the
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Figure 4.1: Poisson Probability Density Functions corresponding to various values of ᎘. Although the distributions
are discrete, they are shown as continuous lines in this plot for clarity.

probability of having a single bit error in 5×10Ꮈ bits. Since the Poisson distribution is a discrete
distribution, its Cumulative Distribution Function (CDF) equals the sum of the PDF from 0 to
the given index (in this case 𝑁ᑖᑣᑣ) [37]. Hence, in this case [38]:

(𝑃ᑖᑣᑣ)ᑇᑠᑚᑤᑤᑠᑟ (𝑁ᑖᑣᑣ = 0, 𝜆 = 5) + (𝑃ᑖᑣᑣ)ᑇᑠᑚᑤᑤᑠᑟ (𝑁ᑖᑣᑣ = 1, 𝜆 = 5) =
= 0.0067 + 0.0337 = 0.0404

Therefore, the probability of having a BER in this case of one error in 5 × 10Ꮈ of less than
1 × 10ᎽᎸ equals 1 − 0.0404 = 0.9596 ≈ 96%.

Generalising, the upper bound of the 95% confidence interval can be found by solving the
CDF in Equation 4.3 for 𝜆 [38]:

ᑅᑖᑣᑣ
∑
Ꮂ
(𝑃ᑖᑣᑣ)ᑇᑠᑚᑤᑤᑠᑟ(𝑁ᑖᑣᑣ, 𝜆) = (1 − 0.95) (4.3)

And similarly for the lower bound:

ᑅᑖᑣᑣ
∑
Ꮂ
(𝑃ᑖᑣᑣ)ᑇᑠᑚᑤᑤᑠᑟ(𝑁ᑖᑣᑣ, 𝜆) = 0.95 (4.4)

Both equations can be solved numerically.

It is important to note that the result of Equation 4.3 is tied to transmitting a set of bits while not
exceeding a certain level of bit errors. Equation 4.4 contrastingly requires at least a certain
number of bit errors in the given set of bits. The required number of bits to transmit is then
simply found by dividing 𝜆 by the target BER [38], bringing the method back full circle:

𝑁ᑓᑚᑥᑤ =
𝜆
𝐵𝐸𝑅 (4.5)

To conclude, the methodology presented in this section provides a powerful tool to approx-
imate the BER while reducing the number of total bits to transmit. Furthermore, it allows a
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Table 4.2: Computed values for number of tested bits versus number of measured bit errors following the Poisson
distribution. Unless otherwise noted, within this project, the ‘scaling exponent’ ፬ ዆ ዀ. Table adapted from [38].

95% confidence interval
BER >10Ꮍᑤ

95% confidence interval
BER <10Ꮍᑤ

Minimum number
of errors

Maximum number
of bits (×10ᑤ)

Maximum number
of errors

Minimum number
of bits (×10ᑤ)

1 0.05129 0 2.996
2 0.3554 1 4.744
3 0.8117 2 6.296
4 1.366 3 7.754
5 1.970 4 9.154
6 2.613 5 10.51
7 3.285 6 11.84

determination of the minimum number of bits to transmit over a bus to allow reliable conclu-
sions on the reliability and performance of the bus. Although the critical values can only be
determined through numerically solving the resultant equations, Table 4.2 shows some com-
mon values for reference, as a function of a ‘scaling exponent’ 𝑠. In practice, the test can be
designed to make use of these values.

The BER test will transmit the computed number of bits over the bus to estimate the BER of
the bus standard in question.

An important cut-off point in the BER is when it exceeds 10ᎽᎸ, as this equals themaximumBER
in Delfi-n3Xt [40], taken here as a benchmark value. Using the theory derived in this section
and the values in Table 4.2, one may find that to determine (with a 95% confidence interval)
whether the BER is less than 1 × 10ᎽᎸ, at least 2.996 × 10Ꮈ bits must be transmitted without
an error. This value scales in the same way as the BER, hence for a BER of 1×10ᎽᎺ, 2.996×
10Ꮊ bits must be transmitted. Since the bus standard with the lowest baud rate (400 kbit/s
for I2C) only requires just over seven seconds to transmit the 2.996 × 10Ꮈ bits of data, the
experiment’s approach is simply to transmit this full data set. Although practical issues and
various overheads will most like reduce the actual achievable baud rate, it still shows that
overall running time is significantly reduced over ‘traditional’, brute-force BER testing.

To keep the running time of the test practical, the BER test is ran to show that each bus is able
to meet a minimum required value of 10ᎽᎸ for the BER, based on Delfi-n3Xt.

4.3. Packet Error Ratio
The Packet Error Ratio (PER) is quite similar to the BER and checks for missing packets. As
the TC bus splits up all the transmitted data over multiple subsystems in packets, determining
the BER becomes highly complex in design. A second factor is the fail-safe design of many
bus’ driving components: these often include automatic error detection for the payload part of
a received message and automatically solve these problems by requesting a retransmission of
the message. It is found that getting notified when a retransmission happens is not possible for
every bus. For these reasons, it is chosen to compare the PER of the TC buses, as completely
dropped packets are easier to detect and are often not handled by peripheral hardware.
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How the packets are built-up vary per bus and will be discussed in each respective chapter.
Nonetheless, the payload of each packet is assumed to be the same, and is presented in
section 5.4.

The packets should not be influenced by a bit error in the message itself. However, serial
communication protocols contain much more than just the data: parts like addressing and
other meta data are critical for the correct nodes to receive the correct packets. For example,
a bit flip in the address segment of a CAN or I2C message can cause the wrong bus node
to ACK a given message, potentially causing the loss of data and functionality. Therefore,
measuring the PER takes into account many other factors.

The mathematics behind the PER are assumed to be identical to those of the BER described
in section 4.2, thus resulting in certain confidence levels. Again, a 95% confidence level is
assumed.

A slightly conservative figure for the PER is found when assuming that a single bit error in a
packet will cause a packet error (this will be enforced in the test software). Noting the total
amount of data that is transmitted (section 4.2) equals 748 bytes, or 5984 bits per polling
cycle divided over 18 packets. Assuming a BER of 10ᎽᎸ, this means that one error would be
expected in every 167 cycles, or one in every 167 × 18 ≈ 3000 packets. Hence, to ensure
a 95% confidence of having an approximate BER of 10ᎽᎸ according to the Poisson ratio,
2.996 × 3000 ≈ 9000, which is rounded up to 10000 = 10Ꮆ. In other words, the PER must be
below 10ᎽᎶ to be equivalent to a BER of 10ᎽᎸ.

To keep track of which packets are dropped or not, a quasi-unique identifier is necessary.
Since the packets will be filled with pseudo-data anyway, the first byte in the packet will be
set to contain a simple incrementing (unsigned) integer. Hence, a missing frame will create
a gap when transmitted between two subsequent correctly received frames. This is relatively
straightforward to be checked by any bus node.

4.4. Data Throughput
The initial selection of the data bus standards looked at the theoretical maximum data rate,
here defined as the baud rate. This value is typically specified by the bus standards. Mea-
suring the value experimentally does not add new information: the clock speed of the bus will
always follow the prescribed value: if not, then the bus is not implemented correctly.

Even though the baud rate is the maximum rate at which all information will transmit over the
bus, the rate at which the ‘usable’ information is transmitted will differ. The rate at which this
data is transmitted will be referred to as the data throughput. The difference between the baud
rate and the data throughput is because protocol overhead increases the actual amount of data
transmitted over the bus. Furthermore, latencies caused, for example, by nodes waiting for
each other or by additional buffering of data will also lower the effective throughput.

To investigate how large these effects are, the data throughput will be measured for the bus
options in the TC bus case and the PL bus. For the former, the number of packets in a certain
amount of time will be counted, from which it is straightforward to deduce the amount of data
transmitted. For the latter, the data is not transmitted in packets, hence the data throughput
can be measured directly.

It is expected that the data throughput for TC bus cases will be lower than for each PL bus,
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Figure 4.2: The Agilent 33210A signal generator

even if it concerns the same bus in both cases. This is because in the former case the focus
of the bus keeps switching between subsystems, while for the latter this focus remains with
the same system(s).

4.5. Power Consumption
Measuring the electrical power consumption is a relatively simple test, mainly due to the choice
for using the Texas Instruments (TI) Launchpad. Having a separate single power source
makes it straightforward to accurately measure the power consumption of a single node or
of the entire system (see section 5.1) [41]. Since the controllers and other components pow-
ering the bus are powered through the Launchpad, it is possible to compare the different
consumptions when using varying bus architectures.

The power consumption is traditionally a critical point of comparison between I2C and CAN,
as it is usually states as one of the main reasons to continue using I2C [6]. It is therefore of
interest to see the differences in power consumption between the two standards as well as
the other selected buses in a controlled but realistic environment.

The measurements will be compared versus their expected values to determine the accuracy
of the theoretical analyses.

4.6. Noise Immunity
By injecting noise into the main bus lines, it is investigated whether the use of differential
data lines, such as used by CAN and USB, does result in significant gains in noise immunity
compared to a I2C, which uses a single bus lines. The (white) noise is to be generated by the
Agilent 33210A signal generator, which has a 10MHz bandwidth [42]. The maximum output of
the generator’s white noise signal equals 2V Root-Mean-Square (RMS) or 20V peak-to-peak.

The generated noise is connected to the main bus lines, thereby simulating noise caused by
Electro-Magnetic Interference (EMI). The exact connection varies per bus type and will be
discussed in more detail in each bus types’ respective chapter.

A related test is to see the effects of transient effects on the bus lines. In real spacecraft, these
are typically caused by the power switching of secondary subsystems, similar to connecting
an audio-jack to an audio amplifier which is already turned on. The tests are performed by
introducing transient peaks of two bit times length into the lines using the signal generator at
increasing peak-to-peak voltage. Both positive and negative peak are tested.

The metric’s value is the voltage level at which the PER of the tested architecture reaches
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the threshold value of 1 × 10ᎽᎶ. In these tests, the actual measured PER will be used and
compared to the requirement value.

A secondary test is by using the signal generator to generate ‘transients’, i.e. voltage pulses,
on the bus lines. Transients are common in an environment where electrical systems vary a lot
in their power consumption [43]. The on/off switching of subsystems/components and highly
varying currents under different system loads mean that since the Electrical Power System
(EPS) can not respond with different loads instantly, the transients occur. For the test, these
(positive) transients are set to be generated with a frequency of 100Hz with a duty cycle such
that their length equals approximately two bit times. Hence, the length of the transients varies
for each bus standard. The eventual metric is similar as for the white noise: the peak-to-peak
voltage at which the PER exceeds 1 × 10ᎽᎶ.

4.7. Complexity
The ’complexity’ mainly describes how difficult a specific bus standard or architecture is to set
up and integrate. This metric can not be assessed in a fully objective way. Thus, the different
cases being compared will be ranked and the resultant scores normalised for use in the final
trade-off.

4.8. Conclusion
This chapter has defined the main measurements and tests to be performed on each bus
standard. The test setup as defined in the next chapter will be used to perform these tests,
comparing the different buses on a level playing field.
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Generalised CubeSat Data Bus

Simulator

T he main part of this thesis is to experimentally test the proposed bus architecture, log the
results and draw conclusions regarding its implementation (chapter 4). Thus, the main
purpose of the experiment is to test and validate the proposed data bus set up, and

to provide conclusions on the practical implementation of the set up. A second purpose is to
provide insight into applying the bus into the spacecraft design process and actual hardware.
This is achieved by creating a realistic hardware-in-the-loop simulation of the data bus.

Several data bus architecture cases are compared. This includes the proposed architecture,
but also a ’control case’ based on I2C. By measuring specific metrics (chapter 4), a pre-defined
trade-off table will be populated to provide an objective comparison between the cases.

As an important baseline, multiple realistic subsystems must be simulated. It is impractical
and unnecessary to use actual (legacy) subsystems from the Delfi program, as this shifts
the focus of hardware development within the thesis project away from the data bus. The
actual pseudo-subsystems are described in detail in section 5.4 and simply consist of identical
microcontrollers acting as data sinks and sources. A practical benefit of this choice for the data
bus test suite causes the set up to be as modular as possible.

Lessons learnt from Delfi-C3 show that using different microcontrollers for different subsys-
tems means the most suitable microcontroller can be chosen for each specific job. However,
bus standards are often implemented slightly different between various manufacturers or even
component versions. These differences cause much of the development time of a bus being
put into the fixing of bugs and other issues, rather than into optimisation of the bus perfor-
mance. Selecting the same microcontrollers in the test suite thus avoid this problem and
provides an equal comparison between the buses without focusing too much on effects intro-
duced due to small incompatibilities between systems.

5.1. Bus Node Hardware
As noted in the introduction, the experiment consists of multiple connected subsystems. Each
subsystem is identical to others, being based on the same hardware.

33
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Figure 5.1: The MSPEXP432P401R Launchpad evaluation board. (image courtesy: Texas Instruments)

The cornerstone of the pseudo-subsystems is the TI MSP432 microcontroller, selected as
the standard microcontroller in the Delfi-PQ program. Because this microcontroller is still rel-
atively new at time of writing, only the MSP432P401R and MSP432P401M [41] are avail-
able. The main difference between the two is a lower amount of flash and Random Access
Memory (RAM) memory in the 401R version. In the rest of this document and project, the
MSP432P401R is assumed. This microcontroller is the follow-up product of the MSP430 fam-
ily of low-power microcontrollers. The MSP430 has previously been the main microcontroller
used on the Delfi-CᎵ and Delfi-n3Xt CubeSats, as well as used in several other CubeSat mis-
sions or products [44], [45]. The MSP432 is based on the ARM 32-bit architecture and boasts
an increased maximum clock frequency of 48MHz over 25MHz for the MSP430 [46] as well
as increased flash memory and RAM space.

To reduce the complexity of the design, use ismade of the Launchpad standard. TheMSP432’s
Launchpad evaluation board, the MSPEXP432P401R, as shown in Figure 5.1, is available at
low cost. Using the Launchpad omits the need for the development of a separate dedicated
computer ’board’. It also comes with a built-in emulator used to program and debug the micro-
controller’s software. Internally, the emulator is connected to the microcontroller via a JTAG
interface [41]. Finally, the emulator is also able to measure voltage and current use of the
board, which is to be used during the tests to measure relative power consumption of the
various subsystem boards.

All custom hardware driving the various buses is placed on a Printed Circuit Board (PCB),
which in turn is connected to the fanout of the MSP432 Launchpad. There are several of these
’daughterboards’ designed for various bus standards. The Launchpad’s pinout connecting the
daughterboard to the MSP432 is standardised by TI and branded the BoosterPack [47] [47].
The pinout (shown in Figure 5.2) features several serial connections to the microcontroller
itself such as I2C and SPI, but also clock outputs and General Purpose Input and Output
(GPIO) pins. To simplify the test setup, the custom hardware is designed in such a way to be
compatible with the pinout and the mechanical specifications.

Included on each daughterboard PCB is an Insulation-Displacement Contact (IDC) header for
a ribbon cable connecting the subsystem board to a central bus. The ribbon cable can be
extended or shortened if necessary. Moreover, as may be seen in Figure 5.3, the connecting
wires for each respective bus are placed alongside each other for realistic implementation.
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Figure 5.2: The BoosterPack standard pinout. Note that most pins are reconfigurable in software. (image courtesy:
[47])

5.2. Physical Configuration
To have the physical set up closely resemble an actual CubeSat, the subsystems are stacked.
The spacers used to achieve this add approximately 3 cm of spacing between the boards. Al-
though double the minimum spacing in the PC/104 standard [48], this amount of room enables
switching out the different daughter boards without disassembling the entire stack.

Although all boards can be power through their USB connectors, it is found to be highly imprac-
tical. Furthermore, measurement of the entire bus’ power consumption becomes complicated
and inaccurate. Therefore, the Launchpads were slightly modified to add a connector to the
boards’ internal 5V and grounding rails, as can be seen in the circled area in Figure 5.4.

The overall test setup is shown in Figure 5.5.

5.2.1. Electrical Power Measurement

One of the metrics is the overall bus power consumption.

The electrical power measurements are performed using the Keysight Technologies 34401a

Figure 5.3: An example of the IDC pinout of the daughterboard featuring I2C, CAN and USB hardware. The ten
wires included in the ribbon allow enough room for grounding wires and the pairs carrying the data.
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Figure 5.4: Photos showing the physical configuration of the Launchpad, including the stacking components and
electrical harnessing. The rainbow harness is the interconnecting ribbon cable.

Figure 5.5: The experimental setup on the workbench. On the left are (from top to bottom) the oscilloscope, signal
generator and power supply. On the absolute right hand side is the main computer. The data bus stack is in the
centre.
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Digital Multimeter [49]. Themultimeter is placed in series in themain power supplying line to all
the Launchpads, allowing accurate measurement of the overall power consumption of the bus.
In an attempt to isolate the power consumption of each individual bus from the consumption
of the Launchpad, ‘null measurements’ are performed of only the Launchpads without any
attached daughterboards. The power consumption of a bus is then defined as the difference
between the total power consumption with and without the attached bus daughterboards.

The MSP432 uses an Low-Dropout Regulator (LDO) regulator to convert from 5V to 3.3V.
Therefore, to compute the power consumption of the bus, the measured current is simply
multiplied with 3.3V according to Equation 5.1 [26]:

𝑃 = 𝑈 ⋅ 𝐼 (5.1)

The power measurements will be performed five times for each bus in ten second intervals.
This gives a statistical base for the measurements providing both an average value and a
indication of the spread.

5.3. Central Controlling Computer
For logging and control purposes, a central computer is added to the simulator network. A
UART serial connection is established between the bus master (a simulated on-board com-
puter) and the controlling computer. To reduce delays due to the bus waiting for the UART, a
slot is given for the transmission to take place. The transmission will then contain short reports
of the status or changes to the status since the last transmitted report. This way the main bus
drivers are not influenced by the diagnostic interface.

5.4. Simulated Subsystems
The basis of the test suite is a realistic representation of subsystems typically found in Cube-
Sats. This is especially of importance in testing the TC bus, where data streams are usually
not fully continuous as for the PL bus.

The selection of the subsystems for the TC bus case is based on Delfi-n3Xt, as a detailed
description of its Housekeeping (HK) polling cycle is still available. The base composition
consists of nine nodes:

1. On-Board Computer (OBC): the OBC is the central node of the network. Its function
in the simulator is essentially running the test: it requests HK data in a predefined cycle
from the various subsystems, counts data errors and handles the serial communication
to the central computer monitoring the tests. In all cases, the OBC is the central node in
the bus architecture.

2. TC Radio: similar to having two separate data buses, it is assumed that a low-speed,
highly reliable TC radio is included for basic communication between the spacecraft and
the ground segment and a high-speed radio for payload (bulk) data.

3. EPS: in an actual satellite the EPS is responsible for switching the power supplied to
subsystems. Although this functionality is not possible in the current setup, it is still
included as a source of HK data.
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4. Attitude Determination and Control System (ADCS): the ADCS is usually a system
demanding a lot from its connections to the various sensors and actuators present in
the spacecraft. In this case, it is assumed that the ADCS uses a separate bus from the
main bus, although using the same bus standard. The ADCS node is thus only providing
basic telemetry.

5. Payload: although the payload data is not transported by the TC bus, it still requires
separate commanding and housekeeping requests via the TC bus.

6. Global Positioning System (GPS): used as a basic but accurate solution for Guidance,
Navigation and Control (GNC), it is assumed the GPS provides near-continuous location
and orbit data to the OBC.

7. Propulsion: as Delfi-n3Xt included an experimental propulsion system [50] and one is
also targeted to be included in the Delfi-PQ, a propulsion system is added to the bus.

8. PL Radio: complementing the TC radio, this system downlinks bulk data over a high
speed link. For example, an S-band or X-band link in place of a Very High Frequency
(VHF) link may be used to enable a higher bandwidth.

9. Mass Memory (MM): a MM systems is added to the bus, representing a system used
to store payload data until it can be downlinked to the ground segment.

The order of the list shown above is according to their importance and likelihood of inclusion.
Thus, when a test is performed on a spacecraft consisting of five nodes, the first five subsys-
tems (OBC, TC radio, EPS, ADCS and Payload) in the list are included in the bus.

Note that similar systems to the Propulsion and PL Radio nodes are used for the PL bus
simulations, as will be discussed in section 5.7.

Each subsystem is not simulated in a comprehensive way, but rather only as a source and
sink of data. To enable the data transmissions, two types of transactions are defined: the
data request and the data transfer. The centralised architecture of the TC bus means the
bus transactions are coordinated by the OBC. A data request involves a 2 byte command
packet transmitted by the OBC to the subsystem in question readying it. The subsystem then
responds with the correct number of bytes. For a data transfer, the OBC simply transmits the
data.

The ordering, size and direction (as based on the Delfi-n3Xt housekeeping poll cycle) of the
different data transactions is presented in the list below. One must note that the majority of
transactions consist of a 2 byte command and a larger response assumed to contain (pseudo)
HK data. Only the last two transaction are simple data transfers.

• OBC→ EPS: 2 byte command
• OBC← EPS: 30 byte data package
• OBC→ ADCS: 2 byte command
• OBC← ADCS: 120 byte data package
• OBC→ GPS: 2 byte command
• OBC← GPS: 30 byte data package
• OBC→ Propulsion: 2 byte command
• OBC← Propulsion: 10 byte data package
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• OBC→ TC Radio: 2 byte command
• OBC← TC Radio: 10 byte data package
• OBC→ Payload: 2 byte command
• OBC← Payload: 10 byte data package (note: this is only HK data)
• OBC→ MM: 2 byte command
• OBC← MM: 10 byte data package
• OBC→ PL Radio: 2 byte command
• OBC← PL Radio: 10 byte data package
• OBC→ MM: 250 byte data frame
• OBC→ TC Radio: 250 byte data frame

The total amount of data transmitted during each cycle when all nine nodes are included equals
748 bytes, or 5984 bits. Each transmission as shown above is defined as a packet.

The data as used in the test suite is a simple array defined in Read Only Memory (ROM)
containing 250 random pre-generated bytes. How each driver transmits this data between the
nodes is up to the driver itself. Thus, the transaction sizes mentioned above do not include
any additional overhead data such as checksums and addressing.

5.4.1. Bus Duty Cycles

Three different duty cycle modes will be defined:

1. Idle: all bus hardware is powered and all drivers initialised, but no data is communicated
over the bus

2. Once-per-second: the once-per-second case performs a full housekeeping cycle once
per second

3. Continuous: the housekeeping cycle is repeated continuously

The way these cycles are implemented in software will be discussed in the subsequent sec-
tions. Regarding the metrics for the tests, the maximum data throughput will be measured
using the continuous case, which attempts to come as close as possible to a 100% duty cycle.
For the power consumption, all three cases are considered.

5.5. OBC Software Architecture (TC Bus)
Having defined which subsystems are included in the test suite, a more detailed description of
the software is given in the following sections. Starting with theOBC, this system is significantly
more complex than the other subsystems due to its importance within the bus architecture.

The OBC has several main tasks. Firstly, the OBC coordinates the flow of information over
the bus, requesting and transferring data to and from each subsystem. Its second task is
counting the errors and other types of failure during each test to provide an overview of a test
containing specifically selected telemetry. The third and final task is providing an interface for
the test operator to start or stop a test and view its results, in this case achieved through a
serial monitor.
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Figure 5.6: The top-level OBC architecture. Note that the ’Perform Test’ block is described in subsection 5.5.1
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Figure 5.7: The serial-based menu showing the different available test options and a boot counter

The top-level architecture of the OBC’s software is shown in Figure 5.6. See Appendix B
for a brief description of the flowchart’s symbols. After booting the OBC, it first initialises the
hardware shared by all buses (the necessary pins and peripherals), all variables and finally
all the data sets. At this point, no bus drivers are yet initialised. One important part that is
initialised is the serial monitor.

The menu offered to the user over the serial connection is extremely basic. An example of
the main menu is shown in Figure 5.7. The MSP432’s Enhanced Universal Serial Commu-
nication Interface (eUSCI) peripheral provides a UART, of which the output can be routed to
the Launchpad’s USB connection. The user or operator is able to select different tests by
simply entering a single character representing each menu option. Once a test commences,
the menu is disabled to prevent the user from interfering with the test by keeping the UART
active.

To keep the system in a deterministic state at all times, use of the MSP432’s low power modes
are avoided. Therefore, the main part of the OBC’s software is a simple loop continuously
checking whether one of the tests has been requested, and running the test when that is the
case. Once a test has been started, a check is performed whether the driver for the respective
bus has been initialised previously. This makes it possible to have only a single bus driver
ready at any time to give more accurate power consumption values.

Having confirmed the bus driver has been initialised, the actual test is performed. After finish-
ing the test, the serial connection is re-enabled and a short report is transmitted to the serial
monitor. This report, as shown in Figure 5.8, includes information on the number of packets
transmitted, the amount of errors encountered and the time it took to perform the test. Nat-
urally, this report is completely generated and transmitted after the test to avoid interference
with the measurements.
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Figure 5.8: An example of the report shown after finishing a bus test

5.5.1. Performing the Tests

Figure 5.9 shows the loop that runs each test on demand. Once the OBC enters the test, it
is known which bus the test needs to be performed on. Furthermore, this bus is also already
initialised. The test parameters for the test are derived from the test demanded by the user,
and describe how long the test must run and/or how much data is transmitted over the bus.
The main loop then runs the polling cycle as defined in section 5.4 while counting errors. At
the end of each cycle, it checks whether the final criteria describing when the test must end
are met. If so, then the OBC finishes the test. Three different tests are defined for each bus,

Start Test
Determine Test 

Parameters

Send/Request 
Packets to/from 

Subsystems
Count Packet Errors

Meeting Final 
Criteria

No

Return to Main 
Loop

Yes

Figure 5.9: The OBC’s test loop

all of which define different test parameters. Each test is essentially based on the same polling
cycle, but how frequent this cycle is performed varies per test case.

The first case simply runs the polling cycle without intermittent delays until a set number of
packets has been transmitted. This case is typically only used for verifying correct functioning
of the bus, as it provides a short test of the bus.

The second case is similar: a 32 bit timer is set to trigger an interrupt. Until this happens,
the test will run continuously. In most cases, the timer was set to trigger after 30 s to provide
enough time to perform power consumption measurements and to provide a large enough
interval to accurately average out the data throughput.

The third and final case does not run the polling cycle continuously, but rather when a 16 bit
timer triggers. This timer is set to a 1 s interval. As a single polling cycle takes significantly
less than this, the entire bus is polled reliably and accurately every second. This is the most
realistic case as it comes closest to the actual operation of Delfi-n3Xt.

As the polling cycles may run in quick succession with identical (but random) packets, a check
must be added to rule out the case where the OBC receives a packet in one cycle which was
intended for a previous cycle. For this, the first byte in the data set used in each polling cycle is
incremented each cycle. This effectively transmits a semi-unique identifier to each subsystem.
The subsystem must read this byte, and transmit the response containing the same byte. The
OBC verifies whether the byte in the response equals the current value of the identifier. If not,
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Figure 5.10: The subsystems’ initialisation procedure

then it is marked as a packet error.

The drivers can also mark packets as a packet error. How this is done varies for each driver
and is therefore described in each respective chapter. The same holds for how the drivers
handle the transmission of the data packets.

5.6. Subsystem Software Architecture (TC Bus)
In most aspects each subsystem is simply a less complex version of the OBC, as it does not
have to provide a user interface or timing mechanisms. However, a problem arises concerning
the initialisation of only a single bus at a time. As initialising all buses is unwanted and causes
problems due to missing hardware, each subsystem must be somehow signalled of which
bus to initialise. As it is highly impractical to have a serial connection between the central
monitoring computer and each subsystem, use is made of the two buttons which are added
by default to the MSP432 Launchpad. The procedure describing how these are used is shown
in Figure 5.10. One may note that each subsystem will by default initialise the I2C driver. This
choice was made to handle a bug in the MSP432 hardware which arised during testing and is
described in chapter 6.

After initialising the requested driver, the subsystem simply waits until interrupts signal that a
packet has arrived.

Once a message does arrive, the subsystem enters the process as shown in Figure 5.11.
The respective bus driver is responsible for receiving the data and passing it on the the main



44 5. Generalised CubeSat Data Bus Simulator

Enter  Wait for 
Data 

Receive Data

Error in Data Do Nothing

Length = 2

Length = 250

No

Yes

No

Send Predefined 
Number of Bytes

TC Radio, MM or 
ADCS

Yes

Yes

No

Send 
Acknowledgement

Yes

No

Read cycle ID and 
update local value

Figure 5.11: The subsystem handling an incoming packet

program. Once this is done, the local value of the polling cycle ’identifier’ is updated to the
received value (the first byte in the message, not including any overhead). If the bus driver re-
ports some kind of error with the packet, such as a checksum error, then no packet is returned.
The absence of a response will trigger a packet error in the OBC.

If there is no packet error, then the program starts analysing the message. Because no actual
commands have been defined, the length of the message is verified. Each subsystem expects
a 2 byte message from the OBC, indicating a data request. The MM and TC radio have an
extra trigger: if the length equals 250 bytes, the transaction is a one-way data transfer from
the OBC. Either way, a look-up table is used by the subsystem to find the amount of data it
needs to reply to the OBC. In the case of a data transfer, a simple acknowledgement is sent
to the OBC. How this is done varies for each driver.

5.7. OBC Software Architecture (PL Bus)
The previous sections have looked at the software architecture regarding the TC bus. How-
ever, the different setup in the PL bus case requires different software to run the tests. The
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main difference between the two cases is that the former requires the data to be transmitted
in packets with addressing overhead. The PL bus case, since it only consists of data moving
in one direction, does not require either to function. All data is assumed to be transmitted in
bulk, meaning that the BER can be measured directly according to section 4.2.

Similar to the TC bus case, a multitude of subsystems is defined. Nonetheless, as the PL bus
consists of only two bus nodes, only two need to be defined. The first node is the OBC, which
also runs the test in this case, requesting data from the second ’payload’ node. However, the
OBC in the test setup does not necessarily represent the actual OBC, but rather a subsystem
such as amassmemory or payload data link. Still, the naming is chosen simply for consistency.

The data transmitted over each PL bus is an array of random bytes defined in the ROM of
both the OBC and the payload. When the OBC requests data, a dedicated line is pulled low
signalling the payload node to start transmitting as noted in Figure 5.12. Of course, in an
actual spacecraft this signal would most likely be passed through the TC bus. The high pullup
resistance of the MSP432 (30 kΩ [41]) only consumes at most 363μA based on the default
3.3V, thus its contribution is not significant to the overall power consumption.

Once data is received from the payload node, the data is first verified against the internal copy
of the same data. Thus, no checksum or other similar indirect methods are employed to check
the integrity of the data. The main benefit here is that the exact amount of bit errors can be
counted during the entire test.

5.8. Subsystem Software Architecture (PL Bus)
The simplicity of the PL bus bus test is also reflected in the design of the payload node transmit-
ting the data. As can be seen in Figure 5.13, the only task being performed by the subsystem
is simply waiting until the data request line is pulled low. The microcontroller simply keeps on
transmitting data until the line is pulled back high.

5.9. Conclusion
This chapter has looked at the hardware comprising the test setup and the software running
the tests. What has been described here are the parts shared by all buses and bus drivers.
However, the way binary data is transmitted between nodes and the necessary additional
hardware varies wildly between the different buses. The next several chapters will define
these parts and present the results from the performed tests.
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6
Inter-Integrated Circuit (I2C)

F or the first bus analysis, the Inter-Integrated Circuit (I2C) standard is chosen. As I2C is
the most common choice for data buses in CubeSats, this standard essentially acts as
a control group for the experiment, providing a minimum reference to which the other

bus standards are to be compared.

This chapter will first give an introduction into the I2C protocol, followed by selection of the
required bus hardware and a description of the novel driver developed for the Delfi-PQ: DWire.

6.1. Introduction
The synchronous I2C protocol was developed in the early 80s with its main purpose the inter-
connection of Integrated Circuit (IC) on PCBs [28]. Although started by Philips Semiconductor
(now known as NXP Semiconductors), the standard is now available under a “fair open policy”.

The original specification defined a baud rate of 100 kHz, but the Fast Mode introduced later
on already increased it to 400 kHz. Even newer versions of the standard even improved the
baud rate to over 1MHz, however these speeds are not yet widely supported [5].

I2C has only two distinct transmission lines in its physical layer, where it is possible to operate
the bus in a linear topology. The Clock (SCL) line provides clock information and the Data
(SDA) line carries the shifted out binary data. Both lines are pulled up to the reference voltage
(Vcc) when the bus is inactive. Bits and clock ticks can then be transmitted by pulling the
line(s) low, as may be seen in Figure 6.1. The designated bus master is responsible for all the
bus timing and control. A bus slave is only able to transmit information on request and must
shift out the serial data following the clock information provided by the master.

Regarding the data link layer of I2C, a simple example is shown in Figure 6.2. Both lines start
in a high state due to the connected pullups. The master starts a transaction by pulling SDA
low, signalling the so-called START condition [5]. After a certain amount of time, the master
will start providing clock ticks and shifting out data. The transaction is ended when a STOP
condition is signalled, which is simply the opposite of the START condition and returning both
bus lines to high.

To provide for address handling and defining the direction of flow of data, a basic protocol

47
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Figure 6.1: A basic schematic of driving the I2C lines

has been defined. This protocol is summarised in Table 6.1. By default, a 7 bit address is
transmitted after the START to activate the correct bus node (although this can be increased
to 10 bits in case more than 127 node addresses are required). Following the address, an
additional bit (R/W) is transmitted telling the node whether the bus master will be writing data
to or requesting data from the node. This is followed up by an Acknowledge (ACK) from the
node, or not if something is wrong. This ACK requires the transmitting node to release the
SDA line. The other node must then pull the line low, signalling the ACK. If this does not
happen, it is defined as a No-Acknowledge (NAK). If the bus slave does indeed ACK, the data
is sent in multiples of 8 bits plus an additional ACK from the receiving node (either the master
or slave). Finally, the STOP finishes the transaction.

Table 6.1: The I2C protocol

Function START Address R/W ACK Data + ACK STOP
No. of Bits 1 7 8 9 𝑁 × 9 1

Several special cases exist within the protocol, adding extra features to the bus. First of all,
when a bus node cannot keep up with the data flow, it can pull the SCL line low after a clock
tick. This so-called clock-stretching allows a bus node to temporarily halt the bus to prevent
it from missing data. The second added feature is the repeated start: by sending a START
instead of a STOP condition, the bus can be reset. This is useful when first a bus master
writes data to a node and then wants to request data from the same node, reducing the total
duration of the transaction.

The oscilloscope capture in Figure 6.3 shows an example of an actual I2C data transfer. The

SDA

SCL

START Read ReadChange

Figure 6.2: A basic I2C data transmission, starting with the START condition and the shifting out of two bits
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Figure 6.3: Oscilloscope capture of I2C signals. The top measurement shows SCL, the bottom curve shows SDA,
synchronised to SCL.

SCL line can be identified from the highly consistent signal at the top of the plot. The SDA
signal is changing much more irregularly. Cross-talk can be identified in SDA: the small peaks
and troughs seen when the signal is high are perfectly synchronised to the rising and dropping
of the SCL signal. Care must be taken in the design of a wiring harness or other signalling
medium to reduce the amount of cross-talk between different communication wires.

6.2. I2C Daughterboard
The MSP432 microcontroller is able to drive three serial bus protocols through its built-in eU-
SCI modules: SPI, I2C and the UART. Thus theoretically, no external hardware is required
to drive the bus. Nevertheless, experience from the previous Delfi missions has shown the
need for I2C buffers [33], [51]. The buffer effectively removes loading effects in case of bus
power-down or power-up events [16]. The buffer isolates a subsystem from the main bus, sig-
nificantly reducing the amount of capacitance added to the overall bus: only the capacitance
of the outbound side of the buffer is added. This results in increasing the possible number of
bus nodes added to the network in regards to the electronic capacity. However, using buffers
does of course not remove the limitation in number of addresses (127) available on the net-
work, although it is not very likely CubeSats will reach this limit. Furthermore, when a bus
node is power down, it is isolated from the rest of the bus. This avoids a blocked bus due to
bus lines accidentally pulled to ground.

As the physical IC, the PCA9514A [32] manufactured by NXP Semiconductors is chosen. This
component has previously been chosen for the Delfi-PQ and is relatively basic. Nevertheless,
apart from normal I2C buffer behaviour it also supports hot swapping. Although actual physical
hot swapping will never be necessary in a spacecraft due to the typical inaccessibility of the
systems, it does mean that the bus is most likely more capable of handling sudden halts,
reboots and power ups of bus nodes.
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Figure 6.4: The pinout of the PCA9514A.

Figure 6.5 shows the I2C mounted on top of an MSP432 Launchpad.

Figure 6.5: The I2C daughter board shown on top of an MSP432 Launchpad

6.3. Differential I2C
Apart from the standard, completely ‘on-spec’ implementation of I2C, an additional test is per-
formed using differential I2C (dI2C). Although the protocol and the basic functioning of the bus
driver are the same as with ‘regular’ I2C, themain SCL and SDA are transmitted in a differential
form of larger distances (i.e. between PCBs).

No official standards exist for this type of implementation, but as a basis the NXPPCA9615 [52]
is used as a driver. Figure 6.6 shows how two PCA9615s are connected. Even as the image
shows a direct connection between the two nodes, dI2C can be applied in a linear topology
just like regular I2C. The other characteristics of the PCA9614 are more or less identical to the
(regular I2C) PCA9514A

A differential signal is defined as the signal resulting from the difference between two opposite
signals, as shown in Figure 6.7. The figure shows a positively biased signals (A), a negatively
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Figure 6.6: The basic architecture of the PCA9615 differential I2C drivers

biased component (B) and the resulting signal. This has several benefits [16]: firstly, assuming
that the wires carrying the two components are close together, any external noise or EMI will
be cancelled out. Secondly, as the total voltage swing of the two components should equal
the voltage swing of the main signal, that of the former will be smaller. This may lower power
consumption and increase the maximum baud rate by shortening the signal’s rise time.

An important addition to differential bus lines is the termination resistance. When the rise time
of a signal comes close to the time it takes for the signal to travel from one end of the bus to
the other, reflections start to occur [26]. Termination resistors reduce the effects significantly,
especially when the resistors match the impedance of the bus lines. For regular I2C, the pull-up
resistors act as bus termination. As these are not in place with dI2C, additional resistors must
be added to the bus lines. Following CAN and RS485 standards [53], two 120Ω resistors, one
at each end of the main bus lines, are used as termination. Thus, the effective bus impedance
is then equal to 60Ω.

All tests performed on I2C will also be performed on dI2C.

6.4. Bus Schematics
To connect the signal generator necessary for quantifying noise effects to the dI2C bus, the
generator’s output is connected through a very low-capacitance capacitor (1 μF)to a single bus
line. The noise signal is still able to reach the other line of each pair through the termination
resistors, simulating the coupled noise which is expected in a real spacecraft environment. A

A

B

Signal

Figure 6.7: Differential signalling: A is the positively biased line, B is the negatively biased line. The difference
between the two signals gives the actual signal
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Figure 6.8: Schematic of a single node connected to the I2C bus with power source and pullups. Note the two sets
of two pullups: one between the microcontroller and the bus buffer, and a second set to run the master bus lines.

slightly different design had to be applied to the regular I2C bus, because the bus is biased to
3.3V by default. Applying a capacitance-coupled noise to this bus would result in a current flow
to the signal generator when both the bus and the signal generator are idle. Therefore, a 3.3V
bias was introduced to the signal generator’s output and used as a power source for the bus,
as can be seen in Figure 6.8. When the noise function is switched off, the signal generator will
still enable normal functionality of the bus. This does limit the (relative) peak-to-peak voltage
of the white noise to approximately 5V.

Note that the 4.7 kΩ pullup resistors were used in the regular I2C case and 600Ω resistors in
the dI2C case.

6.5. Bus Software: DWire
Before starting the main development on the I2C bus for the main experiment, an initial ex-
ploration of using I2C for the Delfi-PQ was performed. One goal of making the project more
accessible to students of the faculty of Aerospace Engineering is making the software of the
Delfi-PQ using Arduino projects. Energia [54] is an Arduino port for TI microcontrollers and is
thus used for this purpose.

Like Arduino, Energia has a built-in I2C library, called Wire, to provide basic communication
over an I2C bus. A simple example of using this library is shown below. The code snippet
initialises the Wire library, starts a transmission to the node with address 4, sends five bytes of
data in total, including the value of a predefined variable x, and finally ends the transmission.
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Figure 6.9: Schematic of the dI2C bus showing the additional number of pullup resistors required. Nodes are
shown as blocks, but have a highly similar architecture as shown in Figure 6.8.

Wire . begin ( ) ; / / i n i t i a l i s e Wire
Wire . beginTransmission ( 4 ) ; / / t r ansm i t to device #4
Wire . w r i t e ( ” x i s ” ) ; / / sends f i v e bytes
Wire . w r i t e ( x ) ; / / sends one byte
Wire . endTransmission ( ) ; / / s top t r a n sm i t t i n g

Unfortunately, the high simplicity of the Wire library means it is not customisable in use: even
though the MSP432 has two eUSCI modules capable of driving I2C, Wire uses neither but
rather performs the protocol through software. This results in the library using an arbitrary
baud rate of approximately 250 kHz instead of the standard 400 kHz. Furthermore, a node
can only function as a bus master, regardless of the availability of slave-related functions in
the library. There is also no way of connecting a single node to multiple I2C buses.

To address these shortcomings and optimise the performance, the DWire (Delft-Wire) library [55]
was developed. An important requirement of DWire is to provide backward compatibility with
Wire. Furthermore, the library can be used in both Energia and as a normal stand-alone C++
library for use with for example TI’s Code Composer Studio. Hence, the code snippet above
will function identically when Wire is swapped with DWire. The extended functionality may
be seen in the following code snippet:

DWire . begin ( EUSCI_B0_BASE ) ; / / i n i t i a l i s e DWire w i th
/ / custom eUSCI module

DWire . beginTransmission ( 4 ) ; / / t r ansm i t to device #4
DWire . w r i t e ( ” x i s ” ) ; / / sends f i v e bytes
DWire . w r i t e ( x ) ; / / sends one byte
DWire . endTransmission ( true ) ; / / end the t ransmiss ion wi th a

/ / STOP cond i t i on . Passing f a l s e
/ / would a l low a repeated START

The simplicity of the original library’s interface is kept while also offering optional customisation.
Other parts of the library enable interrupts to have a node function as a slave, and add accurate
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customisation of the bus’ baud rate as bus master. As may be seen in the code snippet,
repeated starts are now also supported.

A small scale test was performed to help in the development of DWire using several I2C-based
sensors and to verify reliable functionality of the software. Eventually, the bus was able to run
without lock-ups or bit flips for exactly two months before it was shutdown.

6.5.1. Issues Encountered During DWire Development

During the approximately five weeks required to develop the bulk of the code that would be-
come DWire, many minor and several major issues were encountered. Some issues were
due to the library on which DWire is built, the DriverLib developed by TI, was still being ported
to the MSP432 platform. Hence, on more than one occasion, the available documentation did
not match the actual Application Programming Interface (API). However, these issues were
usually solved through analysis of the underlying code.

Larger issues were caused by the double buffer used internally by the eUSCI. A double buffer is
usually implemented to avoid corruption of data: when the first byte of a data set is written to the
buffer, it is immediately copied to the second buffer. The hardware performing the transmission
(flushing) of the data uses the data from the second buffer. The software driver is then able to
load in the second byte of data into the first buffer without disturbing the transmission of the first
byte. However, the design of the MSP432 is designed slightly differently. The double buffer in
the MSP432 is not automatically flushed when transmitting bytes, but only commences once
the first buffer is filled. This more or less means the double buffer acts as a single buffered
system with a delay of the duration it takes to transmit one byte. This also adds a secondary
problem, as it is not possible to transmit only one single byte: this byte would become ‘stuck’
in the secondary buffer until a second dummy byte is written to the buffer.

A matter which complicates the double buffer problem is that when a STOP (or START in a
repeated START) is requested, this is handled after the current byte has been fully transmitted,
regardless of whether the first buffer is full. This requires careful timing when setting the STOP
condition to avoid cutting of a transaction prematurely.

The double buffering issue proved to be a source for many different problems and inefficien-
cies in the library. At several points one problem would be solved when communicating with
an MSP432 slave connected to the bus, but unfortunately breaking the ability to communicate
with sensors (which do not have a double buffering system). In the end, tweaking the reac-
tion speed of interrupts and adding a ‘smart’ delay (which is able to wait for a single bit-time
regardless of clock speed) made the library functional.

6.6. DWire in the Test Suite
Having established a suitable library for running I2C, it must be implemented within the TC
bus test suite as defined in chapter 4. As the test suite software is responsible for creating the
correct packets and data, DWire is only necessary to actually carrying the binary data between
bus nodes.

One requirement of a realistically implemented databus is to be able to verify the integrity of
the transmitted data. As noted in Table 6.1, I2C does not have a built-in mechanism to check
for bit errors. Therefore, a 16 bit (two bytes) CRC (CRC-16) checksum is added to each
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transmission. The reason for the choice for CRC-16 is that it can be computed by default
using the Cyclic Redundancy Check (CRC) peripheral onboard the MSP432. Moreover, an
8 bit CRC only has 2Ꮊ = 256 combinations, while CRC-16 has 2ᎳᎸ = 65536 combinations.
Thus, CRC-16 significantly decreases the probability of missing a bit error due to colliding
CRC checksums.

6.6.1. Handling Data Transfers

As mentioned in chapter 4, two transaction types can be identified: data transfers and data
requests. The former is a straightforward transfer of data from the OBC a second subsystem.
A data request is a data transfer in the opposite direction. The master-centric nature of I2C
means that both types are completely handled by the OBC.

Figure 6.11 contains the process flow of the OBC during a data transfer. As an input, the
data from the testing software is received. The first step is to compute the CRC-16 of the
given data and combine this into a packet with the data itself. Using the standard DWire
beginTransmission and write functions, the data is transmitted directly to the targeted
subsystem node with an address obtained from a lookup table. If an error occurred during
transmission, such as a locked bus line or no ACK after the address segment of I2C, then an
error is returned. After transmitting the data, an ACK is requested from the subsystem to verify
the transaction result. Note that this ACK is separate from the ACK already present in the I2C
protocol. If this ACK is not received correctly, then the transaction is marked as a packet error.

The workflow of the subsystem handling a data transfer is shown in Figure 6.11 and can be
viewed as the opposite of the workflow of the OBC. The data is received by DWire and passed
on to the higher driver layer. The packet is read, the CRC-16 is verified and an ACK is made
ready to be transmitted to the OBC if the data was received correctly. This is the point where
in a real data bus, if a packet error is detected, the failure would be handled. In most cases,
this would imply a simple retransmission of the packet, although the exact way of handling can
be different depending on the context.

6.6.2. Handling Data Requests

For a data request, most of the workflow of the OBC and the subsystem are identical to that
of handling a data transfer, and is thus not described in detail through flowcharts. The main
difference between the processes of the data transfer and request is that in the latter case,
the OBC performs an I2C read action of a known amount of bytes plus two bytes for the CRC.
If an I2C error occurs or a bit error is detected in the packet, then the packet is marked as a
packet error immediately. Because all actions are performed on the OBC side: there is no
need for a separate ACK.

6.7. Results
The various metrics as described in chapter 4 have been tested on both the regular I2C bus
and the dI2C bus. The results will be discussed in this section.
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6.7.1. Data Throughput

Perhaps the most basic test is the data throughput test. For I2C, the maximum throughput was
measured to be 250.4 kbit/s± 0.008 (3σ). For dI2C, it wasmeasured to be 256.9 kbit/s± 0.007
(3σ). These values mean a 62.6% efficiency and 64.2% efficiency respectively. The difference
is most likely due to the lower overall voltage swing of I2C, slightly reducing the length of delays
between transactions and bytes on both the SCL and SDA channels. Note that this would not
reduce the bit time, as this is coupled to the clock frequency of the microcontrollers.

6.7.2. Packet Error Ratio and Noise Immunity

In a normal ambient environment, the PER of both I2Cand dI2Chas been determined to be less
than 10ᎽᎶ with 95% confidence according to the method described in section 4.3, compliant
to the predefined threshold value.

It was expected that the behaviour of the PER would be linear compared to the white noise
RMS voltage. However, a very clear ‘cliff’ is apparent in the noise measurements. I2C did
not show any persistent bit errors happening at realistic RMS voltages. At no particular point
did the PER of I2C exceed the minimum of one error in 10 000 packets to say that the BER
is less than the required 10ᎽᎶ. It is suspected that each single bus line, with its specific bus
capacitance and pull-up resistors, acts as a band-pass filter.

Exposing I2C to positive transient peaks into both bus lines, no packet errors were detected.
With negative transients however (pulling the lines to ground, to which the I2C is expected to
be more susceptible), 3.62% of the packets failed to be transmitted successfully, starting at
2V peak-to-peak (with 24750 tested packets).

Regarding dI2C, this bus did not show any packet errors with injected white noise until 0.8V
RMS, where the bus completely locked up on each try. However, with this noise level, the
peaks of the signal already reach around 10V, exceeding the maximum allowed voltage on
the PCA9615 by at least 4V. Applying the transient peaks to the dI2C bus gave similar results:
no errors until the bus completely locked up at 5V peak-to-peak.

The lock-ups experienced with the dI2C bus were found to be quite difficult to fix: the lock-ups
were found to be the MSP432 actually entering a hard fault mode. This implies that these tests
exposed a bug in either the MSP432’s firmware or hardware. Solving such a lock-up situation
in a satellite would only be possible by power-cycling the respective board, either by detecting
the hard fault or through a watchdog mechanism. The board’s design means a power cycle
also resets the I2C/dI2C buffer, possibly resolving it from a locked state.

The microcontroller’s hard fault is the reason why each subsystem board automatically boots
into I2C mode: when a hard fault is detected, the board is completely rebooted. As these hard
faults were only found with I2C, it was sufficient to have the subsystems simply boot into I2C.

One possible explanation for the difference between I2C and dI2C with the noise effect tests is
the design of the rise time accelerator included with the PCA9514 (regular I2C): according to
its datasheet [32]: ”the rise time accelerator will clamp the [excessive] voltage to the positive
supply rail.” In other words, the rise time accelerator is able to counter sudden spikes in the
driver’s inputs. The PCA9615 on the other hand, does not have a rise-time accelerator/regu-
lator mentioned by its datasheet [52].

Even though the significance of the results of these noise effect experiments are debatable
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Figure 6.12: Plots of the I2C and dI2C power consumption for two, five and nine nodes. Note that the connecting
lines are included to show trends and are not meant for interpolation

due to the extreme voltages until failures occurred, it has been found that they are extremely
beneficial to the development of the software drivers. Early experiments exposed flaws in the
software which were not found during the two month continuous test of the DWire library. In
nearly all cases, problems arose due to loops polling certain register values or interrupt flags
becoming stuck. Adding the extreme transients also proved to be a useful tool to find effective
time-out strategies. As mentioned above, the only bugs left were in the lowest levels of the
MSP432: bugs which most likely would not have been found otherwise.

6.7.3. Power Consumption

The measured power consumption for the entire I2C bus and dI2C bus are shown in Fig-
ure 6.12. Error bars have not been included in the plots, as the maximum 3σ error equals
0.6mW and would simply not be visible.

The general trend of both buses is the same: fairly linear behaviour of the power once more
nodes are added to the bus. Because nodes are completely disconnected from the bus when
not included in the test, adding them to the bus noticeable increases the bus capacitance. In
turn, an increased capacitance will decrease the rise time of the bus lines, meaning the mean
power of the signal decreases somewhat. This is visible in the slight downward trend for both
I2C and dI2C. The effect is stronger for dI2C due to the lack of a rise time regulator.

Preliminary conclusions that can be made from this plot is that for relatively low duty cycles,
dI2C would be the preferred choice, although I2C’s power consumption is slightly more stable
for varying bus duty cycles.
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6.7.4. Complexity

The complexity of I2C is difficult to assess, as one hand the physical layer of both I2C and
dI2C are straightforward to implement. Furthermore, since I2C is supported by most micro-
controllers, basic software can be developed relatively quickly. However, the first problems
will arise once multiple systems developed by different manufacturers must communicate to-
gether. The double buffering issue of the MSP432 as experienced during the development
of DWire is an excellent example of this phenomenon. Moreover, previous experiences [51]
have shown that it is difficult to implement reliable fault detection (watchdog) mechanisms.

6.8. Conclusion
This chapter has discussed the design and implementation of the DWire library, the bus hard-
ware used and the results of the experiments.

It is clear that the use of a rise time regulator which clamps input voltage has a beneficial effect
on the bus reliability. The noise and transients applied to the I2C and dI2Cwere therefore found
to have a much larger impact on the functioning of the latter bus than the former.

Especially the use of transients at a relatively high frequency has proved to be useful to develop
and debug software for operating a data bus. Even though the applied values during this
experiment were quite extreme, it provides ample opportunities for finding bugs in the drivers,
and testing failure detection and handling.

Including a rise time regulator in an I2C is found to be beneficial to both the susceptibility of the
driver and bus to noise and transients, and has probably stabilised the power consumption at
varying bus duty cycles.

The power consumption of dI2C is found to be less at low bus occupancy. However, once
the bus approaches a full duty cycle the roles switch around. Together with the additional
hardware and ‘off-spec’ hardware drivers required for dI2C, it might provide reason to choose
I2C over dI2C. However, other similar implementations of dI2C may prove otherwise.

Benefits of differential signalling were already seen, especially when comparing I2C and dI2C:
it is superior in terms of cross-talk behaviour and also theoretically reduces in other external
EMI. However, when specifically applying dI2C, the weak link remains the standard I2C bus
between the node’s microcontroller and the bus driver. Moreover, no formal standard for dI2C
exists, making a guarantee of compatibility between systems developed by different parties
difficult.



7
Controller Area Network (CAN)

T his chapter will look at the Controller Area Network (CAN) bus, the implementation de-
tails and results from the analyses. It will start with a brief introduction on the bus
standard and implementation (its physical and data link layers) and a description of the

custom software drivers, followed by a presentation and discussion of the results.

7.1. Introduction
In the eighties and early nineties, the steady increase in the number of microcontrollers in-
cluded in new cars lead to problems: the differences in wirings between unique subsystems
and simply the absolute amount of wires began to grow out of control [56]. Furthermore, the
time-criticality of several systems, such as engine controls and control of a vehicle’s dynamics,
means that a reliable interconnecting bus is necessary. Several bus standards were devel-
oped, from which CAN emerged as the industry standard [56].

The main reasons for CAN’s popularity are its flexibility and low costs, resulting in a large vari-
ety of manufacturers offering compatible electronics. CAN features two main speed modes: a
low speed mode (up to 125 kbit/s) which supports time-triggered applications: messages can
be transmitted at highly regular intervals. An example is the speedometer of a car, requiring
a steady rate of updated measurements. The second mode is the the ‘High Speed’ mode (up
to 1Mbit/s) for applications with a larger bandwidth.

The popularity of CAN has led to a large variety of industries adapting the bus. It has also been
used in CubeSats and larger spacecraft [6], but results and reflections of the implementation
are lacking.

7.1.1. Physical Layer

The physical layer of CAN is based on differential signalling (a basic description of differential
signalling is found in section 6.3). CAN requires the same number of wires as I2C: the two
differential lines do not require an additional clock line. Two different voltage states are defined
by the CAN bus: the ‘dominant’ state and the ‘recessive’ state [57]. The former is where the
positively biased signal CAN-High (CANH) is driven high and the negatively biased signal
CAN-Low (CANL) is pulled low. This state equals a logical 0. The recessive case is were both
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0 0 0 0 0 0 0 01 11

Figure 7.1: A schematic view of CAN’s signalling, showing the dominant (0) and recessive (1) states. The high-
lighted bit is a stuffed bit ensuring correct synchronisation between nodes

CANH and CANL are left idle, essentially staying at the same voltage. The required timing
information is included in the signal itself.

The different nodes on a CAN bus network are synchronised to the edges of each bit. However,
the Non-Return to Zero (NRZ) scheme employed by CAN, where the bus does not return to
an opposite state between identical bits, means nodes might lose synchronisation if the same
bit is transmitted in series for too long. As is shown in Figure 7.1, so-called bit stuffing is used
to force shifting of the signal to re-synchronise the bus nodes by adding an extra bit opposite
in value. A stuff bit is required after every five identical bits [57], and should be removed from
the data stream before interpreting it.

A CAN bus can be operated in a linear topology, where the bus lines must be terminated
with (typically) two 120Ω resistors. Each separate node requires a CAN controller to handle
the signal generation and receiving. To drive the bus, a separate transceiver is required. The
transceiver takes the generated signal from the CAN controller and converts it into a differential
signal and vice versa. Furthermore, the transceiver acts as a buffer, electrically isolating a CAN
controller from the main network. This is highly similar to the function of buffers in an I2C bus.

7.1.2. Data Link Layer

The protocol of CAN is based on relatively short messages contained within frames [57]. The
contents of one frame is summarised in Table 7.1. The first bit is the synchronisation bit
and is used to prime and synchronise the timing of all bus nodes. The next block of bits
is the arbitration block. As CAN is a multi-master bus, the arbitration block is used, as the
name implies, to arbitrate the bus. When two frames start transmission at the same time, the
frame which first reaches a recessive bit wins the arbitration. Apart from the inherent message
priority given in the arbitration block, it is also used as the message identifier. Within this
thesis research, the message identifier is treated as the address of the recipient. However,
the designer might choose to enable broadcasting of the message to multiple recipients, in
which case the identifier would tell bus nodes the contents of the message. By default, the
message identifier is 12 bits in length, but it can be switched to an ‘extended’ 32 bits if more
values are required.

The control block following the arbitration block contains more information on the type of mes-
sage [57]. Firstly, it contains two ‘reserved’ bits used by the controller internals, followed by a
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Table 7.1: Summary of the protocol used by CAN, excluding bit stuffing

Function Sync Arbitration Control Data CRC ACK End-of-Frame

No. of Bits 1 12 (standard)
32 (extended) 6 0 - 64 16 2 7

bit flag indicating whether the message identifier is of the 32 bit or 12 bit type. Thirdly, a bit
flag indicates whether the frame is a so-called remote frame or not. The former type is used
when a node requests information from another node. The last two bits indicate the number
of data bytes in the message, which must be zero when it concerns a remote frame.

After the control block follows the actual message data if applicable. The maximum size of a
data frame in CAN is 64 bits, or eight bytes. Thus, larger messages must be split into smaller
parts. A CRC checksum of entire frame until the CRC block itself, to be verified by the recipient.
The CRC is followed by an ACK, given by the recipient. Finally, the End-Of-Frame (EOF) ends
the transmission. The EOF provides a guaranteed idling time between frames, and does not
carry any additional information [57].

7.2. Error Handling
One of the main advantages of CAN is the error handling. The error detection and handling
consists of several segments: error detection, error handling and fault isolation. The au-
tonomous operation of these segments is one main reason for the CAN bus’ reliability.

7.2.1. Error Detection

A CAN controller can detect errors in frames and data using several direct and more implicit
methods [56]:

• CRC error: a non-matching CRC is a very direct way of detecting bit errors in the trans-
mitted data and can indicate a bit error in the data, but also, for example, an incorrect
message identifier.

• Stuff error: when more than five bytes are detected in sequence without stuff bits, a bit
error must have occurred.

• Form error: incorrect placement of blocks within a frame can be detected.

• Bit error: although the naming is very generic, this implies that a transmitting node (which
also listens in to its own transmission) detects a different bit value than it transmitted.

• ACK error: a frame has not been ACK’ed.

7.2.2. Error Handling

When an error has been detected by a node, it transmits a predefined error frame [56]. This
error frame tells every node on the bus to reject the current frame. The frame in question is
then retransmitted automatically.
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Table 7.2: The two stand-alone CAN controllers under consideration.

Product Supplier CAN Speed TX Buffers # RX Buffers Input Bus Power (operating) Min-Max Temp

MCP2515 MicroChip 1Mbit/s 3 2 SPI 25mW -40 to 125 ∘C
SJA1000 NXP 1Mbit/s 1 1 Parallel 75mW -40 to 125 ∘C

Table 7.3: The CAN transceivers under consideration.

Product Supplier CAN Speed Power Min-Max Temp Remarks

TJA1051 NXP 2Mbit/s (CAN FD) 250mW -40 to 150 ∘C 5V supply and logic level
TJA1050 NXP 1Mbit/s 250mW -40 to 150 ∘C 5V supply and logic level
MCP2551 Microchip 1Mbit/s unknown -40 to 125 ∘C 5V supply and logic level
MAX3051 Maxim 1Mbit/s 175mW -40 to 85 ∘C 3.3V supply
SN65HVD23x TI 1Mbit/s 33mW -40 to 85 ∘C 3.3V supply
MCP2561/2 Microchip 1Mbit/s 225mW -40 to 150 ∘C 5V supply and logic level
PCA82C251 Disregarded: for 24V systems
TJA1145 Disregarded: for 12V/24V systems

7.2.3. Fault Isolation

Once the error frame has been transmitted, each node affected by the error increments an
error counter. Once the counter exceeds a certain predefined amount, a node will enter the
error-passivemode [56]. In this mode, it will only continue counting errors in its own transmitted
frames. If the error counter then exceeds a secondary, higher threshold, the node will enter
the bus-off mode, in which the CAN controller will completely cut off from the rest of the bus.
In this case, the node can only rejoin the bus after some form of reset performed by the node’s
microcontroller.

7.3. CAN Controller and Transceiver
A survey of some common standalone CAN controllers and transceivers was performed. Ta-
ble 7.2 contains the resulting controllers, while Table 7.3 contains a list of CAN transceivers.
Both tables have been populated using values taken from each corresponding publicly avail-
able datasheet.

It is clear that there are many more transceivers available than controllers. This is most
likely because there are several commercially available microcontrollers with built-in CAN con-
trollers. Although these could be considered here separately, one is reminded here that the
goal of the design is to provide a bus which is independent from the chosen microcontrollers.
It is expected that the added complexity and additional development time by selecting a dedi-
cated microcontroller will outweigh any benefits.

Regarding the two CAN controllers in Table 7.2, the MCP2515 is viewed as better perform-
ing on nearly every chosen criterion: it contains more Transmit (TX) buffers, more Receive
(RX) buffers than the SJA1000 and consumes less power. Finally, using a (serial) SPI inter-
face requires less pins than using a dedicated parallel interface, with no real expected loss in
performance. Therefore, the MCP2515 is the most straightforward choice.

The second task is to select a CAN transceiver from the list in Table 7.3. The PCA82C251
and TJA1145 are both designed for use with a 12V or 24V power supply, which is a stan-
dard voltages commonly found in cars and trucks, derived from the operating voltages of car
batteries. This relatively high voltage is impractical in nanosatellites. Several other options
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Figure 7.2: The CAN controller and transceiver as placed on the combined CAN/USB daughter board

require a 5V supply. This voltage is already much more practical and can be supplied through
the TI Launchpad. However, since the MCP2515 and MSP432 both have 3.3V logic voltage
levels, a level translator is necessary to drive these transceivers. Since the addition of the
extra IC will only increase the power consumption, which is already higher than the two other
3.3V transceivers, the 5V transceivers are removed.

A special mention must be made of the TJA1051, which supports Controller Area Network
Flexible Datarate (CAN FD). Although this is not yet supported by the CAN controllers them-
selves, it is expected that CAN FD will increase in popularity once it will be fully adopted by
the automotive industry.

The last two transceiver options left, the MAX3051 and SN6565HVD23 series, both consume
considerably less power than the other options, at the cost of a lower maximum operating tem-
perature. This difference is not considered to be a problem for this databus test, but might be a
killer requirement when used in actual spacecraft. According to its datasheet, the SN65HVD23
has a lower typical power consumption, leading to the choice of the SN65HVD23 transceiver
to be used in the bus hardware.

7.4. Bus Schematics
The schematic in Figure 7.3 shows the architecture of the CAN bus. This same architecture
is used for the TC bus case as well as the PL bus case.

Noise and transients are again injected into a single bus line, as the electrical context is iden-
tical to that of the dI2C test case.

7.5. Software Driver Architecture
The MCP2515 features an SPI driven interface used to configure the controller. This interface
provides access to the register system used by the CAN controller, and is complemented with
several dedicated commands for retrieving status and result codes. The SPI clock speed is
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Figure 7.3: Simplified schematic of the CAN bus showing two nodes (with microcontroller, CAN controller and CAN
transceiver), a connected signal generator and termination resistors

set to the maximum supported speed of 10MHz, to reduce the effect the SPI connection has
on the overall data rate of the bus.

The high level of fault and error detection included in the default physical and data link layers
of CAN and the large amount of autonomy shown by a controller following the CAN standards
means once a basic driver has been developed for the MCP2515, it is fairly straightforward
to send messages. Furthermore, the built-in error detection omits the need for including addi-
tional CRC checksums to the messages.

The only complexity of the CAN bus not shared with the other analysed bus standards is
the maximum size of 64 bits of the data segment within a frame. This limit means that any
message larger than eight bytes has to be split up in multiple parts.

The functional breakdown of the CAN driver transmitting a single packet over either the TC bus
or PL bus is included in Figure 7.4. An important thing to notice is the CAN frame containing
the length of the total packet. This value is used on the receiving side to reconstruct the packet,
as seen in Figure 7.5.

The transmit and receive errors in both flowcharts are retrieved from the MCP2515’s buffer
status bytes and error codes. If for example no subsystem responds to a certain system, even
after several tries, then the transmission will time-out.

Each bus node has a filter configured within the CAN controller to only acknowledge and read
frames directed to a single unique address via the message identifier. When such a packet is
fully received by a bus node, then the received data is analysed in the same way as with the
I2C driver: if the length of the packet equals 250 bytes, then the packet is a data transfer. This
data transfer is concluded by sending back an ACK. If the length of the packet is equal to two
bytes, then it concerns a command from the OBC requesting data, which is passed on to the
overhead test program. The reply is sent in a similar manner by the subsystem as described
in Figure 7.4.
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Figure 7.6: Timing of a single CAN bit (not to scale)

Most of the functional breakdown is very similar to that of I2C.

7.5.1. Bit Timing

The bit timing of CAN is highly configurable to suit different wire lengths and microcontroller
clock speeds. The basis of the configuration is the Time Quantum (TQ). For the MSP2515,
the minimum length of the TQ is two ticks of the reference oscillator [29]. As may be seen in
the electrical diagram included in Appendix A, a 20MHz reference oscillator is used. Thus,
the minimum TQ length (in time) is 100 ns. Still, this value is configurable through a simple
clock divider.

A single CAN bit consists of several segments, each in turn consisting of a multiple of TQ:

1. The synchronisation segment (SyncSeg): used to allow time for synchronisation, fixed
to one TQ in length

2. The propagation segment (PropSeg): used to account for the propagation of the signal
over the bus. This is at least one TQ in length.

3. The first phase segment (PS1) and

4. The second phase segment (PS2) are used to set the location of the sample point. Both
must be at least one TQ in length.

The sample point of the bit in between the two phase segments, as shown in Figure 7.6.

To achieve a certain bit rate (baud rate), the sum of the lengths of the different segments must
equal the targeted bit time. The MCP2515 used in this thesis is configured to achieve a baud
rate of 1MHz, the maximum supported by the CAN standard. This baud rate implies a required
bit time of 1 μs, equalling ten TQ in length. The exact segment configuration is then set to:

• SyncSeg: 1 TQ

• PropSeg: 2 TQ

• PS1: 3 TQ

• PS2: 4 TQ

Although there are many different configurations possible, this configuration is thought to pro-
vide enough margin on both sides of each bit to account for rise time of the signal.
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7.6. Results
This section presents the results from the experiments performed using the CAN bus, both
using the TC bus case in two, five and nine-node configurations, and the PL bus case in a
two-node configuration.

7.6.1. Data Throughput

The data throughput was measured fivefold in each bus reference case to obtain average
values. For the TC bus case, the average measured throughput is equal to 136.6 kbit/s ±
0.007 (3σ). For the PL bus, the average value is 158.8 kbit/s ± 0.015 (3σ).

These values are deemed extremely low: much lower than expected. Assuming the 1MHz
baud rate, the data efficiencies of the TC bus and the PL bus cases are only 13.7% and 15.9%
respectively.

7.6.2. Packet Error Ratio and Noise Immunity

The ‘cliff’ behaviour as seen with the I2C tests was again very apparent during the CAN white
noise tests. No significant issues were detected until 0.5V RMS, at which point more and
more error frames were being transmitted until all nodes on the bus entered the bus-off fault
isolation state. Because the test suite does not feature an actual EPS capable of resetting the
microcontrollers, this state was unavoidable. Nevertheless, it does indicate that the (packet)
error rate was of a sufficient level to make communication practically impossible.

For the tests using the transients, the bus was able to recover more readily, only entering a bus-
off state at 10V peak-to-peak, which is significantly more than the maximum allowed voltage
of 4.3V [29]. Nevertheless, at 2V peak-to-peak, the PER already exceeded 5.3 × 10Ꮍ3, for
both positive and negative transients.

7.6.3. Power Consumption

The power consumption of the CAN bus was determined for both the TC bus case and the PL
bus case. Figure 7.7 shows the of the former. The maximum confidence in this figure equals
0.8mW (3σ).

One may note that the idle power consumption and the power consumption of the case where
the polling cycle is repeated once per second are extremely close together. The power con-
sumption of the continuous polling test case does appear to be much higher, as one would
expect.

For the PL bus case, no plots weremade as there is only a single data point (alsomeasured five
times), namely with the two node case. The power consumption in idle state was measured to
be 41.91mW, and in the active state it was measured to be 91.5mW. Both values correspond
very well to the two-node values in the TC bus case, which is to be expected for an actively
driven bus. It should not matter much whether one node is transmitting or another: the amount
of effort distributed between the nodes is fairly equal, in contrast to the very master-centric I2C.
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Figure 7.7: Power consumption measurements of the CAN TC bus. Note that the idle power consumption and the
‘once-per-second’ power consumption nearly completely overlap.

7.6.4. Complexity

To implement CAN, many microcontrollers include an internal CAN controller as an included
peripheral. Because this is similar to how, for example, the eUSCI is included in the MSP432 to
support I2C and SPI, it is suspected that this sort of implementation is of a similar complexity as
those on the MSP432. Especially as CAN contains a fairly extensive protocol, many standard
tasks to perform on a bus, such as transferring or requesting data, are quite easy to perform.

Unfortunately, because the MSP432 does not include an internal CAN controller, an external
controller must be used. The MCP2515 selected for this experiment is quite popular amongst
developers, ensuring widely available programming examples and support. The extra (SPI)
interface required to communicate to the CAN controller did prove to add a significant amount
of effort to the development of the CAN driver: the extra layer made debugging and testing
the software relatively difficult.

On the other hand, the bus hardware was relatively straightforward to implement, with only
two wires and nine components to have a functional bus (including passive electronic compo-
nents).

7.7. Conclusion
This chapter has looked at how the CAN bus was included in the experiments and how it
performed. The lack of an integrated CAN controller in the MSP432 meant that an external
controller had to be chosen: the MCP2515. This is in line with the target of evaluating buses
which can be implemented universally.

The data throughput of CAN was found to be significantly lower than expected. Although the
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large amount of overhead in the CAN’s data link layer partially explains this discrepancy, it is
impossible it is the only one. It is thought that a very large part of the lower throughput is due
to the additional SPI interface between the MCP2515 and the MSP432 and the second layer
of protocol overhead that it brings to a single CAN transmission. Furthermore, the additional
delays caused by the extra physical layer also lower the overall data rates.

The tolerance to white noise is quite disappointing. It was expected that the differential sig-
nalling would cancel out the majority of the noise, but this does not appear to be the case.
This is probably due to the excessive voltage levels generated by the signal generator: at
0.5V RMS, the peak voltages already approached 10V, probably causing low-level hardware
issues due to the voltage spikes rather than real interference to the signal. It is possible to
have the SN65HVD23 include a rise time regulator, although this was not included on the
actual component used in the test. It is though that these excessive spikes can be clamped
down when one is used.

A major obstacle during the tests with CAN is that the CAN controllers quickly entered bus-off
states, following the CAN standard. Although the CAN bus is fault tolerant in design, the inci-
dents of the bus-off state must be handled quickly and effectively to ensure correct operation
of the bus. As the handling of this is very limited within the data bus test suite, the problems
occurred. It is important to incorporate these fault handling mechanisms into the software
design from an early stage of the development.
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RS422 / RS485

T his chapter will look at the Recommended Standard 485 (RS485), a basic bus standard
based on a microcontroller’s UART. First a description of the physical layer is given,
together with a definition of the protocol used by the different bus nodes. As in the

previous cases, the chapter will end with the results obtained from the practical tests with
RS485.

8.1. Introduction
RS485 is somewhat of a different case than the other bus standards treated within this thesis.
First, it is an asynchronous serial standard instead of a synchronous standard. Instead of
including clock and timing information, either in the signal or as a separate signal, all bus
nodes must be synchronised beforehand. Nodes can fine tune the synchronisation through
detecting bit changes, although there is no guaranteed level shifting through bit stuffing as is
the case with CAN. Secondly, RS485 only defines a physical layer, no data link layer. Thus,
how data is transferred over the bus is completely up to the bus designer.

RS485 and its ‘sister standard’ Recommended Standard 422 (RS422) are the logical succes-
sors to Recommended Standard 232 (RS232), the serial standard often used to communicate
between computers and embedded equipment [26]. However, it supports significantly higher
baud rates (the default is defined to be 1MHz, but is often applied at higher levels [26]). RS422
is To enable the transfer of information over longer distances and in more aggressive (indus-
trial) environments, RS422 and RS485 describe the use of differential signalling (for a brief
introduction, see section 6.3). The only difference between RS422 and RS485 are that the lat-
ter is designed with implementation in linear bus topologies in mind. However, as the RS485
is also tested in the PL bus case in a point-to-point topology, it is technically RS422. Yet,
pedantics aside, this chapter will refer to both as RS485 for clarity and since it is the more
universal case.

The physical layer is fairly simple, with only a single driver required for each individual bus
node. The design of an RS485 driver allows for half duplex communication. Hence, the driver
must feature a dedicated pin to switch the direction of communication. This pin is not present
in RS422, thus practically resulting in it being a simplex communication format. Although the
standard does not otherwise define the source of the signal [26], the internal UART included
in most, if not all microcontroller is used.
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Figure 8.1: Schematic of the RS485 test setup including the noise generator (GEN)

The maximum number of nodes connected to a standard RS485 bus is at least 32 [58]. Nev-
ertheless, by carefully selecting the RS485 drivers according to their specific Unit Load, which
is defined as the equivalent resistance of a single node normalised to that of 32 nodes, the
number of bus nodes can be increased to at least 256 [58].

The details given in this section are more or less the full definition of the RS485 standard.
Therefore, following the hardware selection in the next section, a simple protocol will be pre-
sented fulfilling basic communication.

8.2. Physical Layer Design
The popularity of RS485 in industrial applications means that there are a lot of different driv-
ing components available. For this test, a fairly generic low-power driver is chosen: the
ST3485 [59].

Figure 8.1 shows the bus architecture of the RS485 bus used in the experiments. Included are
pullup/pulldown resistors to keep the bus lines in a defined state when the bus is idle, similar
to those seen for dI2C. Furthermore, two 120Ω termination resistors are included.

8.2.1. Analysis of the Bus Termination

As mentioned in section 6.3, termination of a differential bus is required to remove signals from
reflecting on the bus. However, on a short transmission line, the probability of these reflections
influencing the signal are small. One of the main reasons is that since the signal travels at
approximately the speed of light, the signal delay is roughly 3.3ns/m assuming the speed of
light to equal 3Ꮊm/s. As a 1MHz signal has a 1μs bit time, the signal’s travel time over the
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bus is two orders of magnitude smaller. Therefore, even if reflection would occur, they would
hardly interfere with the main signal as long as the line length stays in the order of a couple of
meters or less.

To investigate the effect of removing the bus termination, the RS485 experiment is also per-
formed on the same bus without the resistors. To see that removing the termination resistors,
an analysis of the circuits is required when they are either active or idle (the two states with
differential signalling).

The schematic drawing of the case where the bus is idle is shown in Figure 8.2. The pullup and
pulldown resistors make sure the transmission lines stay in a deterministic state. As there are
two 120Ω termination resistors, the equivalent resistance between the two transmission lines
equals 60Ω. Furthermore, because all bus drivers are in a high impedance state following
the RS485 standard [26], the A and B lines effectively do not affect the overall circuit. The
equivalent circuit that remains is given on the right of the figure, with three resistors in series.
Assuming the default 3.3V, the overall power consumed by the bus in the idle case equals
approximately 9mW. The voltages of the main bus lines A and B can be shown to be 1.73V
and 1.57V respectively.
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Figure 8.2: A schematic of the idle RS485 circuit: transmitting a logic low

When the bus is in an active state (transmitting a logic high), the case as in Figure 8.3 holds.
Because the positively biased A line is now driven to the source voltage Vcc and the negatively
biased B line pulled to ground, the two 600Ω do not experience a voltage change across the
resistor anymore. Therefore, the only resistor still consuming power is the effective termination
resistance of 60Ω. In this case, the bus power consumption equals 182mW.

Assuming an equal distribution between the high and low states in the data stream, the mean
power consumption would be the average of the two power figures: 96mW.

As seen in both the active and idle cases, when the bus termination is removed, the effective
resistance between the A and B lines becomes infinite, reducing the bus’ power consumption to
zero. Because removing the termination will make the bus more sensitive to noise altogether,
a middle ground must be found for the value of the termination, which is application specific.

The oscilloscope captures in Figure 8.4 show the differences between terminated bus lines
and unterminated bus lines in the actual RS485 test setup. In Figure 8.4a, the bus lines are
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Figure 8.3: A schematic of the RS485 circuit in active mode: transmitting a logic high

terminated. The idle state of the bus lines (roughly the first half of the plot’s x-axis) shows the
signals at their computed voltages (1.73V and 1.57V) before starting the actual transmission,
in this case the packet preamble byte. In Figure 8.4b, the idle state shows the A and B lines
pulled to Vcc or ground respectively. This is because the lack of termination resistor means
no path over the bus lines exists between Vcc and ground.

Because the idle state of the unterminated differential bus lines results in a logical high signal,
this might be problematic in some bus configurations as it could be read as part of a message.
Fortunately in the case of RS485, the selection of the start and stop bits (see section 8.3) are
such that this is not an issue.

One may observe that the signal seems to overshoot the target voltage in both Figure 8.4a
and Figure 8.4b. This is actually the reflection of the signal returning over the bus lines. Fur-
thermore, the reflection peaks are significantly larger on the unterminated bus lines than the
termination ones, whereas the in the former the reflections even show up in the resultant sig-
nal. Although these reflections are not found to be problematic, it shows the measurable effect
the terminations has, even at these relatively short bus lines.

8.3. Data Link Layer
As mentioned in the introduction to RS485, there is no data link layer defined for RS485. Thus,
one must be designed.

First and foremost, the function of the UART must be clear. This component, part of the
eUSCI in the MSP432, is similar to a shift register, simply taking a parallel bus signal and
serialising it. The only major addition added by the UART are the start and stop bits: a 1 and
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(a) With bus termination (b) No bus termination

Figure 8.4: Oscilloscope captures of an RS485 bus with and without termination. Both images show the two main
bus lines (top two) and the resulting computed differential signal (bottom). Note that the ‘decoded’ signal is actually
the inverse of the signal as interpreted by the UART. The data transmitted is clearly identified as the defined packet
preamble (ኺኻኺኻኺኻኺኻbin).

a 0 respectively [60]. Thus, to transfer a single byte, ten bits are required.

To transfer a data set, some additional (custom written) message overhead is required to be
defined for the RS485 data frames to arrive correctly at their correct location. The frame
format is shown in Table 8.1, with the basic functional breakdown to transmit a frame included
in Figure 8.5.

The preamble is used to signal a new frame. Because this byte can be set to any arbitrary
value, the value 01010101bin (55 in hexadecimal) is used. The next byte indicates the size of
the frame. As its maximum value equals 255, the maximum frame size is also 255. Of course,
this value can be increased if necessary. Fortunately, the longest packet to be transmitted
during the test (chapter 4) is 250 bytes in length, hence it can be contained in a frame with a
single ‘size’ byte. The size byte is followed by the address byte indicating the recipient of the
frame, in turn followed by the data bytes. The last two bytes of the message are a CRC-16
checksum to be verified by the recipient. If everything goes well on the recipient side, including
a correct CRC checksum, then the recipient ACKs the message by responding with a single
byte containing its address.

One must note that the ordering of these parts of the frame is completely arbitrary, as RS485’s
design causes each node on the bus to receive each frame, therefore shifting the decoding of
the message to the node’s software.

In the PL bus version of RS485, the address and size are omitted, as these are both set to
fixed values due to its point-to-point architecture.

As can be seen in Figure 8.5, the transmitter more or less blindly transmits the generated

Table 8.1: The RS485 data frame. Note that the start and stop bits, inherent to the UART, are omitted in the bit
count.

Function Preamble Size Address Data CRC ACK
No. of Bits 8 8 8 0 - 2040 16 8



78 8. RS422 / RS485

Start  Transmit 
Packet 

Compute CRC-16 
Checksum

Packet Data

Pull TX Line Low

Transmit Preamble 
Byte

Transmit Size Byte

Transmit Address 
Byte

Transmit Data Bytes

Transmit CRC-16 
(two bytes)

End

Figure 8.5: Functional breakdown of the RS485 driver transmitting a packet
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frame and waits for the ACK. As the UART in the MSP432 passes on the data byte-wise to
the microcontroller, more logic is required on the recipient side to reconstruct the original data
frame. This logic is shown in Figure 8.6. When the driver receives the first byte of a frame (the
preamble), it first verifies whether it has received an actual preamble byte. If this is the case,
a boolean variable is set to notify the next instance that a frame has started. It then continues
into the frame, first receiving the size of the frame, then the number of data bytes. Using this
information, the original data set can be reconstructed. This dataset’s CRC-16 checksum is
then verified to the one which it has received. After a full frame has been received, the boolean
variable indicating ‘preamble received’ is cleared.

This simple architecture including the preamble solves several failure modes. In case a recip-
ient node misses the preamble, it will ignore the entire frame, which can be retransmitted after
the transmitter does not receive an ACK. Even if the data set contains the preamble byte in
the rest of the frame somewhere (like the pre-generated dataset does), it will receive gibber-
ish, failing the CRC check and not sending the ACK. At this point, in a real environment, the
message would be retransmitted by the transmitting node.

8.3.1. Use of an Address Bit

The driver architecture presented here possesses one elemental flaw: each separate byte has
to be read by the main program through the use of interrupt routines. Hence, every message
is effectively transmitted to every node on the bus, where only the intended recipient of the
message responds to the transmitter. Especially when the bus has a large amount of traffic,
it can interfere with the operations of all the nodes on the bus, which have to keep up with all
the messages.

Although this was not direct a problem in the testing quite used in this thesis project, a solution
is needed to prevent serious problems from occurring within actual spacecraft. One common
way is the addition of an extra ‘address’ bit accompanying each byte output by the UART.
When the byte in question contains the address, the address bit is set to 1. Otherwise, the
value is always 0. This makes it possible to have a separate interrupt trigger in every node
when an address byte is transmitted. The node for which the frame is intended can then
enable the mechanism to receive all following bytes, while other nodes simply keep it off. This
also omits the need for a preamble byte, possibly adding extra robustness to the protocol.

Unfortunately, this was not implemented in the test suite, but it is deemed absolutely necessary
in any real implementation of the bus.

8.4. Results
This section will look into the results obtained from the experiment using RS485 as a TC bus
(with two, five or nine nodes), both with and without termination resistors, and in the PL bus
test case.

8.4.1. Data Throughput

For the TC bus case, the measured data throughput was 603.6 kbit/s ± 0.016 (3σ), resulting
in a 60.3% efficiency with the configured (standard) 1MHz baud rate. This value is the same
for the bus without termination resistors.
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Figure 8.6: Functional breakdown of the RS485 driver receiving a single byte
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Figure 8.7: Plot of the RS485 effective data throughput versus baud rate

For the PL bus case, an analysis was performed by varying the baud rate to see the resultant
behaviour of the throughput. It was tested up to a baud rate of 1.5MHz, where timing problems
in the software caused the test to become unreliable. These problems are however not linked
to the data bus itself. The resulting relationship, plotted in Figure 8.7, appears to be perfectly
linear between the three measured data points. The highest 3σ value equals 0.3017 kbit/s.
The value at where the baud rate equals the standard value of 1MHz, the effective throughput
is found to be 792.2 kbit/s ± 0.1095 (3σ), considerably higher than the TC bus test. This
is most likely not due the lower amount of overhead in the frames, as its size is negligible
compared to the large data frames. Rather, it is probably due to the lower amount of logic on
the recipient (OBC) side to receive a full data frame.

8.4.2. Packet Error Rate and Noise Immunity

In contrast to the CAN bus setup and dI2C driver, the chosen RS485 driver does feature a rise
time regulator. This was clear in the results of both the white noise testing and the transients.

For the white noise testing of the RS485 bus with termination resistors, no packet errors were
detected until 0.8V RMS, where the measured PER equalled 9.8 × 10ᎽᎴ based on 20 530
measured packets. Figure 8.8 shows an example of the injected noise on an oscilloscope
capture and the ability of the differential lines to filter out the coupled noise. It is also apparent
that the effects of noise are much less once a signal is driven over the bus. This is probably
due to the significant change in overall bus impedance when an RS485 driver leaves the high-
impedance state to be able to transmit.

For the injected transients, the first point where the PER exceeds the maximum allowed value
of 10ᎽᎶ is at 8V peak-to-peak, grossly exceeding realistic voltage levels. Here, a PER of
7.2 × 10ᎽᎴ is measured, based on 25 380 packets.
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Figure 8.8: Example of the induced white noise into the RS485 bus lines (with termination) (top two curves). Note
the nearly complete disappearance of the noise signal in the resultant signal (bottom)

Interestingly, the RS485 bus without termination resistors performed significantly better than
the one with resistors, reaching 1.0V RMS with the white noise testing until the PER reached
8.06×10ᎽᎶ with 59 490 packets. For the transients, it managed to withstand 10V peak-to-peak
until it reached a PER of 2.6 × 10ᎽᎴ at 20V peak-to-peak.

8.4.3. Power Consumption

The power consumption of the RS485 in the TC bus case is shown in Figure 8.9. Themaximum
measured 3σ value is 0.45mW.

First of all, it must be noted that the measurements of the ’once per second’ test cases appear
lower than the idle state of the bus. As the duty cycle of the former is still extremely low
compared to a continuously occupied bus, it would be expected that the curves would more or
less follow the same line. It is thought that this is due to inefficiencies in the software program
of the test suite: as the power consumption of the RS485 bus components (including the
drivers) is very low, this inconsistency has become apparent.

The measurements shown in the figure correspond fairly well with the simple model discussed
in subsection 8.2.1: the difference between the measurements of the idle states of both with
andwithout termination is approximately 9mW, as predicted. The difference between themea-
surements of the continuous states is larger: about 120mW versus the predicted 96mW. This
is most likely due to the increased activity of the rise time regulators in the bus drivers, which
have to drive larger currents onto the bus to achieve consistently stable rise times. Moreover,
the additional activity of the microcontrollers themselves adds to the power consumption.

For the PL bus, the measured values for the power consumption for different baud rates are
shown in Figure 8.10. Note that despite trebling of the baud rate, the power consumption
stay relatively flat. This is to be expected, because as found in subsection 8.2.1, the mean
power consumption of a bus continuously switching will not vary with different baud rates.
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Figure 8.9: Measured values of the power consumption of RS485 in the TC bus
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Figure 8.10: Power measurements of the RS485 PL bus as a function of baud rate

Furthermore, despite the increasing data rate, the bus occupancy remains the same (79%
as measured with the data throughput). Thus, the mean power consumption should remain
stable.

8.4.4. Complexity

The RS485 bus was perhaps one of the least complex buses to implement, despite the in-
creased effort in designing a simple protocol. However, it is suspected that once subsystems
acting as bus nodes begin to feature more time-critical functions and external interrupts, prob-
lems will start to occur. Overcoming these issues might be very difficult.

The standard placement of a UART in virtually all microcontrollers and the simple design of
the bus’ physical layer results in a very straightforward implementation of the bus in any sub-
system.

8.5. Conclusion
The implementation of RS485 has proved to be very simple and durable. The fact that the
standard does not define a protocol means that the developer has a lot of freedom in his or her
design. However, this is a double edged blade: on one hand, it makes it possible to customise
the data link layer to a high degree, omitting any unnecessary message overhead. On the
other hand, the messages can become too simple, possibly decreasing the robustness of the
standard dramatically. Moreover, lacking a protocol means that even though the standard is
easy to implement for many commercial parties, complete incompatibility between systems is
still a real possibility.

The fact that most of the protocol must be handled in the main software program might cause
problems in systems once real-time applications and dependencies are added. Although
adding an extra address bit reduces this problem, it still requires every subsystem to tem-
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porarily interrupt what it’s doing to handle the single address byte for each message. This
address bit also adds one-tenth the overhead to the protocol, which could especially have
significant effects to systems transmitting large data sets. Another way to handle these timing
effects more gracefully would be through the use of an Real-Time Operating System (RTOS),
although this does not necessarily increase the performance of a system, while it does in-
crease the complexity of a system.

Removing the termination resistors from the bus proved to radically decrease the power con-
sumption of the overall bus, while also increasing the robustness of the system to the injected
noise and induced transients. This unexpected result regarding the latter is possibly explained
by the test setup and the way the noise is induced into the bus. Because the two differential
lines are not connected in any way in the unterminated case, the two wires have independent
behaviour (disregarding capacitance and inductance effects). Furthermore, as the 33210A
signal generator has a 50Ω load impedance [42], the wire connected to the signal generator
will experience a higher line impedance. This reduces the amplitude of the signal and the
injected noise compared to the second, unaltered line. Because the unaffected signal has
thus a larger voltage swing, the signal is stronger on this side and will simply overpower the
negative effects of the noise on the other line. In the terminated bus case, the noise and load
impedance affects both lines through the termination resistors, reducing the overall (differen-
tial) signal strength. Thus, no conclusions can be made regarding the noise immunity using
this particular experiment.

Onemust note however that in realistic scenarios, where the noise over the bus lines is thought
to be highly coupled, the use of termination resistors is still necessary. Furthermore, the rela-
tively short bus lines mean that the effective resistance could be increased to several hundred
or even thousands of ohms, although the exact value needs to be determined in each appli-
cation.

Although the ST3485 RS485 driver used in this test was very suitable for the job and proved
to be low in its power consumption, the power consumption can be even more optimised by
selecting a driver with a more suitable rise time regulator. There are multiple manufacturers
on the market which carry drivers optimised for baud rates from several 10s of kbit/s a couple
of Mbit/s. Choosing the correct and optimised driver for the application can reduce the overall
power consumption even further. Still, it is recommended a standard (set of) baud rate(s) to
be defined to enable cross compatibility between third party systems and components.





9
Serial Peripheral Interface (SPI)

T he Serial Peripheral Interface (SPI) bus is discussed in this chapter. As it was only tested
in the PL bus case, the amount of results might be considered to be limited compared
to the preceding chapters. Nevertheless, this chapter will introduce the bus standard,

describe the physical and data link layers and present the measurements.

9.1. Introduction
The SPI interface was briefly discussed in chapter 7, regarding the interface used to commu-
nicate to the MCP2515 CAN controller.

SPI was introduced with the Motorola 68xx series of microcontrollers in the early 1980s [28],
and was defined to be used as the main bus to connect to external peripherals. No formal
standard exists for the bus, hence the datasheets of microcontrollers are usually the ‘official’
reference for developers.

As is the case with RS485, no data link layer is defined. Therefore, this must be defined
separately again.

Note that the noise and transients will not be tested for the SPI, as will be explained in chap-
ter 11.

9.2. Physical Layer
The basic physical layer is shown in Figure 9.1. A unique feature of SPI is the Chip Select
(CS) line. The CS functions as the addressing system: the bus master simply activates the
line (active low in this case) to signal the corresponding subsystem that it must receive or
transmit data. This architecture makes the bus master-centric, similar to I2C.

The need for the CS is also the reason why SPI was not considered for use in a TC bus
configuration. As the OBC would require at least eight individual CS lines to be able to talk to
all subsystems. In the extreme case where the TC bus would be extended into a multi-master
configuration in the future, the number of chip select lines 𝑁ᑝᑚᑟᑖᑤ would increase following

87



88 9. Serial Peripheral Interface (SPI)

MSP432 MSP432

SCLK

MOSI

MISO

CS

1
0
K

4
K
7

3
V
3

3
V
3

Figure 9.1: A schematic of the SPI architecture as used for the PL bus test

Equation 9.1:

𝑁ᑝᑚᑟᑖᑤ =
ᑅᎽᎴ

∑
ᑟᎾᎳ

𝑛 (9.1)

Where 𝑁 is the number of nodes on a bus. For the case 𝑁 = 9, 𝑁ᑝᑚᑟᑖᑤ = 28.

The MSP432 contains a built-in SPI peripheral as part of the eUSCI, thus no external drivers
or other ICs are required to operate the bus.

The two main data lines, Master-Out-Slave-In (MOSI) and Master-In-Slave-Out (MISO), carry
the data in the direction stated in their names. The use of the two lines makes SPI the only
full-duplex bus analysed within this thesis project. Both lines are active high, non-differential
data lines. Data driven out on these lines is synchronised to the clock signal on the Clock
(SCLK) line, making SPI a fully synchronous standard.

Two pullup resistors are necessary: one for the CS line, and a secondary resistor pulling up
the MISO line. To understand why a pullup is required on the MISO line and not on the MOSI
line, one must understand how the lines are driven in SPI. The input/outputs of the nodes
connected to the SCLK, MOSI and MISO lines can take on three states: high, low and high-
impedance [16]. Because the bus master controls the first two, it can simply keep the lines in a
defined state when idle. However, because the MISO line is an input for the master, it can not
control its state. When no other bus node is active (idle bus), the MISO will be left floating, as
all nodes keep their MISO input at high-impedance. Thus, a weak pullup is required to avoid
this situation, which can be overpowered when a node starts communicating.

No default baud rate is defined for SPI, although it has been shown that it may function at
speeds over 10MHz [28].

9.3. Data Link Layer
SPI modules are designed to be triggered by either the rising or falling edge of the clock
ticks on SCLK. Which one is used is entirely up to the developer of the system, although it is
important to have each bus node configured the same way. Often, components or peripherals
supporting SPI are preconfigured in one mode, limiting the SPI mode selection to just one
option. Whichever option is chosen, it should not influence the performance of the bus.
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Figure 9.2: Functional breakdown of the OBC requesting data from the payload

The master-centric architecture results in most of the work being done by the master node,
in this case the OBC. Nevertheless, the functionality is very straightforward, as seen in Fig-
ure 9.2.

The OBC, which acts as bus master, starts by pulling the CS low. This signals the slave (the
payload) to prepare the data for transmission. The OBC transmits a zero, keeping the MOSI
line low, but providing eight clock ticks on the SCLK line. A the same time, the payload drives
out the actual data synchronous to the clock ticks over the MISO line. This continues until the
OBC has received all the data (or has filled up some kind of buffer), and releases the CS line.

The corresponding functions performed by the payload (slave) may be seen in Figure 9.3. The
order is extremely simple: if the CS is pulled low and the TX buffer is available, the next byte
is loaded into the buffer. The logic is all based on interrupts.

As the size of the data set is assumed to be known beforehand on the PL bus, and only a single
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Figure 9.3: Functional breakdown of the OBC requesting data from the payload

node is connected to the master, no additional message protocol is required to accompany
the payload data. The single node also means the bus could run without the CS, although in
this case it was assumed to be necessary to prepare the transaction on the payload node’s
side. As the node needs to provide payload data immediately once the OBC start transmitting
itself, this small extra margin provided time to fill the TX buffer. Nevertheless, the 4.7 kΩ pullup
resistor means it only uses 2.3mW when pulled low, based on 3.3V.

9.4. Results
As mentioned previously, the SPI bus has only been tested in the PL bus configuration. This
section will go through the results.

9.4.1. Data Throughput

The measured throughput values are shown in Figure 9.4, plotted versus varying baud rates.
Themaximum 3σ error was 0.090 kbit/s. A similar straight line is apparent as seen with RS485.
However, in this case the slope decreases slightly at higher baud rates. This is most likely due
to the fact that the delays in between bytes do not reduce with increasing baud rates. Hence,
even as the speed of bytes being clocked out is increasing linearly, the overall data throughput
is not.

The baud rate in Figure 9.4 is tested up to and including 2.0MHz. Above this value the bus
started dropping a significant amount of packets, which is possibly due to timing problems
similar to the problems encountered with RS485. Nevertheless, the figure gives a good indi-
cation of the behaviour of SPI, and more dedicated software development of the SPI drivers
will ensure higher achievable baud rates.

9.4.2. Bit Error Rate

As mentioned in the introduction and to be discussed in chapter 11, no noise tests were per-
formed. However, the bit error rate was confirmed to be lower (better) than 10ᎽᎸ with 95%
confidence using the method as described in section 4.2 transmitting 3 × 106 bits without any
detected bit errors.
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Figure 9.4: Plot of the SPI data throughput versus baud rate
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Figure 9.5: Plot of the SPI power consumption as a function of baud rate
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9.4.3. Power Consumption

The idle power consumption of the SPI bus was found to be equal to approximately 0.5mW
for all different baud rates.

As one can see in Figure 9.5, the power consumption of the SPI bus when active is extremely
low, reaching only several milliwatts in magnitude. The maximum 3σ error of these measure-
ments were 0.18mW. This is most likely due to the integrated SPI peripheral in the MSP432
and no need for other components such as buffers.

The downwards trend of the curve can be explained using the same reasoning as for the data
throughput. Because the delay between the bytes does not decrease, but the time it takes to
transmit a single byte does, the bus spends a larger relative amount of time in the idle state.
As the bus uses more power when active, the mean power consumption goes up.

9.4.4. Complexity

As is apparent from the description of both the physical layer and data link layer of the SPI
bus, the SPI bus is very simple to implement. Although SPI suffers from the same problem as
RS485 where every byte must be handled in the main software loop, this is considered less
of a problem in the PL bus.

9.5. Conclusion
SPI has proven to be straightforward in both hardware implementation and software devel-
opment. As SPI is also implemented in nearly every microcontroller, compatibility between
systems is not an issue.

One of the possible major drawbacks, like RS485, no full protocol is defined. However, as it
is also highly impractical to implement a SPI-based TC bus, no real necessity exists for this.
The versatile CS line enables most required functionality, including addressing.

The reducing slope of the data throughput as seen in Figure 9.4 combined with the reducing
amount of power as seen in Figure 9.5 indicate some kind of optimum must exist, where the
largest amount of data is transferred for the least amount of power. More tests and research
might be necessary to find this point. Furthermore, this point is most likely dependent on the
microcontrollers used.
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Universal Serial Bus (USB)

T he Universal Serial Bus (USB) is most likely well known to all readers, as it is the in-
dustry standard data bus for personal computer peripherals. Just as in the preceding
chapters, this chapter will start with an introduction to the bus and its implementation,

followed by an overview of the measurement results.

10.1. Introduction
As the development of the personal computer continued rapidly through the 1980s and 90s,
hardware developers stuck to the older ‘tried-and-proven’ data buses such as RS232, amongst
others to maximise the compatibility with existing systems. However, the computers and pe-
ripherals started to outperform the maximum capabilities of the bus standards. To increase
performance and to homogenise the peripheral buses, USB was developed [35]. The first full
version of USB, USB 1.0, was released in 1996, and was made part of Microsoft Windows 95.
Although containing a lot of stability issues in its first issue, including it in Windows 98 saw a
lot of positive changes. This paved the way for USB becoming the de-facto industry standard
it is today.

As briefly discussed in chapter 3, USB versions 3.0 and 3.1 have been released relatively
recently. This version features bus speeds up to 5Gbit/s [35]. However, the low availability of
USB 3.0/3.1 components able to interface to generic microcontrollers is means it is impossible
to test it at the current time. Nevertheless, the previous and probably most common version,
version 2.0, is widely supported for embedded applications and deemed to have sufficient data
rates for a representative test.

USB is well known due to the large amount of consumer products supporting this standard.
Apart from a basic physical layer description and protocol definition, the USB standards also
define standardised connectors and component layouts. This ensures a high level of hardware
compatibility between peripherals, also allowing hot plugging of devices. However, these ca-
pabilities are of high concern for consumer electronics, but not necessarily when developing
systems running in spacecraft. What parts of the physical layer are implemented, and how
this is done, will be explained in the next section.
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Figure 10.1: A variety of USB connectors. Note the clear presence of the four pins in all connectors: two differential
signalling pins, one +5.0V pin and one ground pin. (Image courtesy: [61])

10.2. Physical Layer
The architecture of USB is based on a central master (the host controller), with direct point-
to-point connections to other nodes. To create a network, hubs are required to act as an
intermediate host between different segments [35].

The physical layer of USB is very similar to that of CAN: data is transferred through differential
signalling over two dedicated channels. The positively biased line is dubbed the D+, and its
complement the D- connection. The bits themselves are transferred as NRZ with additional
bit stuffing ensuring correct timing synchronisation. However, one major difference between
USB and CAN is how the logic level are defined [35]: a differential 0 means the ’logical’ bit
(the bit representing data) is equal to the preceding bit. A differential 1 means the logic bit has
changed states. This means that when the first logic bit is a 0 and a differential 1 is received,
the next logic bit is a 1. If a differential 0 is received next, the subsequent logic bit will also be
1. This encoding ensures better timing synchronisation and less overhead (stuffing bits) [35].

Other extra modes of the differential lines are also defined: when both D+ and D- are pulled
to ground, a so-called Single-ended 0 state is signalled (see Figure 10.2). This is for example
used to signal an End-Of-Packet (EOP), a node disconnect or a bus reset [35]. The opposite
state, where D+ and D- are pulled to Vcc (high), is undefined and often used in error/fault
detection.

Apart from the two differential lines, USB 2.0 connectors contain a +5.0V power line and a
ground connection, as may be seen in Figure 10.1. This is included in the standard to provide
power to otherwise unpowered bus devices. A common example of such a device is a USB

D+

D-

SE0 SE1

Figure 10.2: USB Single-Ended 0 and Single-Ended 1 states. For SE0, both differential lines are pulled to ground.
For SE1, both lines are pulled to Vcc.
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Table 10.1: The available USB host controllers.

Product Supplier USB Version(s) # USB Ports Board Interface Power (operating) Min-Max Temp

VNC1L FTDI 2.0 2 UART, SPI, Parallel 82.5 mW -40 to 85 ∘C
FT313H FTDI 2.0 1 Direct SRAM, NOR Flash, General Multiplex 115.5 mW -40 to 85 ∘C
MAX3421E Maxim 2.0 1 SPI 148.5 mW -40 to 85 ∘C
USB3300-EZK Microchip 2.0 1 UTMI+ 95.7 mW -40 to 85 ∘C
VNC2-32L1B FTDI 2.0 2 UART, (2x) SPI, Parallel 82.5 mW -40 to 85 ∘C
EZ-Host Cypress 1.0 4 SPI 246 mW -40 to 85 ∘C

memory stick. Naturally, these lines are ignored within the test suite, as nodes are powered
separately.

10.2.1. USB Controller Selections

As the MSP432 contains neither a USB peripheral controller nor a host controller, an external
IC must be selected which is compatible with this microcontroller. The point-to-point nature
of USB combined with its major implementation as a peripheral bus means it is usually imple-
mented in systems as a USB slave, used to communicate to a personal computer. However,
since there is no external host available in a closed satellite, a USB host controller must be
added to the bus.

Table 10.1 contains the possible USB Host controllers. The EZ-Host by Cypress Semiconduc-
tors is discarded immediately due to its relatively high power consumption and no support for
USB 2.0 or higher. Furthermore, the FT313H by FTDI and the USB3300-EZK by MicroChip
are discarded due to requiring specialist interfaces, which are not supported by th MSP432 by
default. The only options left are the VNC1L “Vinculum 1”, the VNC2-32L1B “Vinculum 2” by
FTDI and the MAX3421E by Maxim Integrated. Although the former two are outperforming the
last mentioned one in terms of power and features, the availability was deemed unacceptable
due to an unavailable and a generally unsupported Integrated Development Environment (IDE)
and corresponding compilers. Therefore, it was necessary to use the only remaining option in
the table: the MAX3421E by Maxim Integrated.

TheMAX3421E host controller is a ‘Full Speed’ controller, supporting a baud rate up to 12MHz.
It has an SPI interface similar to the MCP2515 CAN controller. However, the SPI clock speed
can be configured to go up to 26MHz.

10.3. Data Link Layer
The flexibility of USB is partially ensured by the vast protocol defined by the official standards.
Several different types of packets are defined, all with their own specific purposes [35].

10.3.1. Setup, IN, OUT

The basis of the USB data link layer are the Setup, IN and OUT packets, their structure shown
in Table 10.2. The Setup packets are used to configure nodes, assigning parameters such

Table 10.2: Structure of USB Setup, IN and OUT packets

Function SYNC PID Address Endpoint CRC
No. of Bits 8 8 8 4 5
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Figure 10.3: The USB controller as placed on the combined CAN/USB daughter board

Table 10.3: Structure of the frame markers

Function SYNC PID Frame Number
No. of Bits 8 8 11

as the node’s address. This is mainly important during the ‘enumeration’ stage: this is the
point where the host controller detects the presence of a (new) node on the bus, and starts
interrogating it to determine what type of device it is. Moreover, the supported USB modes are
discovered. The related IN and OUT packets are used to signal a node to transmit or receive
data respectively.

The first segment of the packet is the SYNC field, used to synchronise the bus nodes and
acts as a delimiter for the start of the packet. The Packet Identifier (PID) describes the type
of packet. The first four bits (out of eight) define the actual PID, the subsequent four bits are
the complement of the first four, used in error checking. Several default PIDs are defined for
common operations, such as querying the state of a peripheral or assigning an address. It
also allows a fairly large number of ‘free’ PIDs for use by developers. The eight-bit address
is designates the recipient of the message. This is mainly used to transport a packet across
multiple nodes and hubs. The endpoint designates the target endpoint of the packet. The
endpoints act as a multitude of buffers. Endpoint 0 is a required endpoint, used for Setup
packets. The MAX3421e has four endpoints, including Endpoint 0. One is used for IN data,
one for OUT data, and the final endpoint is used for overflowing data. Finally, a packet is
closed with a five-bit CRC checksum.

10.3.2. Frame Markers

Additional features of USB apart from ‘simple’ data transfer include time-triggered messaging
and interrupt packets. To enable this functionality, accurate real-time chronology is required.
To do this, frame markers (Table 10.3) are transmitted every millisecond containing an 11-
bit counter. Because this type of real-time messaging is not used within this project, this
functionality is not analysed any further. However, the frame marker must still be transmitted
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Table 10.4: Structure of the data packets

Function SYNC PID Data CRC
No. of Bits 8 8 0 - 8192 16

reliably according to the standards [35].

10.3.3. Data Packets

Once the host has transmitted an IN or OUT packet, the node (peripheral or host, dependent
on the request) will start transmitting data. The structure of the individual data packets are
similar to those of the Setup packets, but contain the data (up to 1024 bytes, although the
MAX3421e has a 64 byte First In, First Out (FIFO) buffer) and a 16 bit CRC checksum.

Although the structure of the data packet is always the same, two PIDs are used: DATA0 and
DATA1. The purpose of the two PIDs is to provide a toggle: the value is switched between the
values for each transmitted data packet. If a packet is missed, the recipient will receive either
DATA0 or DATA1 two times in a row, triggering a request to resend the data.

Other errors can be detected through the use of the CRC checksums. When errors are found
through this, the USB controller must request a retransmit of the data. This is fully handled by
the USB hardware without requiring external help from the node’s microcontroller.

10.3.4. Additional Functionality

USB contains several built-in mechanisms which complement the packets defined within the
protocol. The Single-Ended 0 state on the differential lines can be used to initiate a bus reset:
a node connected to the bus must fully reset when this is requested. As this state is detected
by hardware, it is thought to be more reliable than other protocols requesting resets through
software.

The host controller must provide a weak pull-down voltage to the bus lines (typically with
15 kΩ) [35]. When a device is first connected, it must pull-up either D+ or D- to 3.3V using
a 1.5 kΩ resistor to notify the host it connected to the bus. Which line depends on the speed
mode of the device: a full-speed device pulls up D+. A ‘High Speed’ device pulls up D- [35].
The host will also detect the disconnect of a device when the pull-up is lost in idle.

These additional mechanisms provide means for knowing the exact state of the bus and the
peripheral device at any point in time.

10.4. MAX3421E Driver
The implementation of the software driver of the MAX3421E is fully according to the official
programming guides [62][63], using the MSP432 SPI interface. In the test suite, the payload
node is designated as the peripheral, and the OBC is denoted the USB host. Both nodes use
the same MAX3421E IC, as it can take on both the host and peripheral roles.

As seen in the previous sections, the flexibility of USBmeans the standard protocol is relatively
complicated. Fortunately, because the USB nodes are not required to connect to any external
USB connector (although this could be a future option), the complexity of the driver can be
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reduced by ignoring parts.

The initial data querying needed to be performed by a USB host is the enumeration stage.
Amongst others, it must assign an address to the peripheral device and query the newly-
connected device for meta-information. Information that is normally requested includes the
vendor ID [64]. This vendor ID identifies themanufacturer of a system and is used to determine
the correct driver software to use. Such a licensemust be obtained through the official registrar
for a fee.

Since the (USB) test suite will always feature the same hardware, the enumeration stage is
limited to just two parts:

1. Address assign: assigning an address, its value arbitrary, means a functional data link
is created between the host and the peripheral/slave

2. Check Endpoint 2 status: this endpoint is used for IN data transfers (from the peripheral
to the host). If the status is returned as available, it is clear that the bus is ready to be
used

This simple enumeration procedure is thus mainly used to verify the availability and function-
ality of the attached peripheral. If the verification of endpoint 2 is unsuccessful, this either
means that the address assignment failed, or the node is misconfigured/failed. The host then
issues a bus reset and tries again.

The data transfers, being in one direction only, are straightforward in implementation. As-
suming a successful enumeration phase, the actual bus tests can begin. The OBC, acting
as host, will start by sending an IN packet to the payload. This signals the payload to start
transmitting data in packets 64 bytes in size. Virtually all parts of the transfer are handled by
the MAX3421E, leaving the OBC microcontroller to simply receive and check the incoming
data.

10.5. Results
This section will present the results from the practical test of a USB bus. Note that the USB
test bus is only implemented in the PL bus case.

10.5.1. Data Throughput

The MAX3421E can only be operated in USB Full Speed mode, so the bus’ baud rate is fixed
to 12MHz. Therefore, the number of tests for both the data throughput and power consump-
tion are limited to a single measuring point with the default baud rate. The measured average
data throughput over five 10 s tests is 999.50 kbit/s ± 0.077 (3σ). Although this is the highest
data rate seen during the tests, it is still only an 8% efficiency. Similar to the tests with CAN,
this is most likely due to the additional bottleneck caused by the SPI interface and protocol.
Furthermore, at high speeds, a large TX/RX buffer is necessary to fully achieve high perfor-
mance. The 64 byte buffer in the MAX3421e is simply too small to reach the full capacity of
the protocol.
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10.5.2. Bit Error Rate

The BER was verified to be lower than 10ᎽᎸ with 95% confidence by transmitting 3 × 106 bits
without bit errors, following section 4.2.

Regarding noise injection, this was not performed on this PL bus. The choice for this is dis-
cussed in chapter 11.

10.5.3. Power Consumption

During the tests, the idle power consumption was found to be equal to 83.16mW with a 3σ
value much smaller than 1mW. This value describes the overall power consumption, includ-
ing both the OBC and payload. Furthermore, the MSP432’s measured idle power has been
excluded. For a fully active bus, where the payload is transferring bulk data to the OBC, the
measured power consumption is 104.87mW ± 0.18mW (3σ).

10.5.4. Complexity

The rationale of USB’s design is to allow for a very universal and flexible data bus. Unfortu-
nately, this comes at a cost of additional complexity due to all the features. Yet, many of these
features can simply be ignored, especially considering the fact that the bus nodes will not be
used to connect to other third party USB devices. This makes enumeration, a common critical
and perhaps problematic point in the USB protocol, much more straightforward.

Once devices are connected and enumerated, ‘normal’ data transfers are very straightfor-
ward to start and operate. The USB defines a lot of error checking to be performed by the
Commercial Of The Shelf (COTS) components.

10.6. Conclusion
The USB has found to be fairly equivalent to CAN in terms of built-in reliability features within
both the hardware and software. By making the assumption that the host and peripheral
nodes are both known, a reduced enumeration stage can be performed, decreasing the overall
complexity of the software.

Regarding the performance of the USB, this analysis case is thought to be similar to the CAN
analysis. As the MAX3421E is an external IC operated through an SPI interface, the data
throughput does not come close to the maximum theoretical value of 12Mbit/s, only reaching
approximately 1/12th of that. To efficiently implement a USB host controller, a controller imple-
mented as a microcontroller-peripheral must be chosen. An example of such functionality is
found in the PIC24FJ64GB004 [65]. Unfortunately, this removes the possibility of implement-
ing the bus on any arbitrary microcontroller.

Data bus designers might still choose to deviate from a truly universal bus, as a PL bus will
only consist of a very small number of nodes. Therefore, it could be possible to specially select
microcontrollers with built-in USB controllers or with other interfaces (e.g. USB 2.0 Transceiver
Macrocell Interface (UTMI) [66]) to communicate with other types of USB controllers. Further-
more, it is necessary to select USB with larger built-in (double-buffered) TX/RX buffer, which
is thought to be a significant data throughput bottle neck in the USB design utilised in this data
bus test suite.





11
Data Bus Comparison

I n this chapter the performed measurements will be discussed, leading to recommended
data bus configurations and architectures to specific reference cases. Focus will be kept
on comparing the different data bus standards to each other.

The preceding chapters have presented and discussed the results from the experimental tests
on individual data bus standards and configurations. This chapter will bring all the results
together, taking into account the criteria as defined in chapter 4.

11.1. Overview
Based on the measurements performed during this thesis research, a qualitative overview
can be made. For the TC bus and PL bus, Table 11.1 and Table 11.2 contain these trade-offs
respectively. All bus options have been assigned a score ranging from ‘- -’ to ‘++’, equalling -2
to +2. Rationale to the different scores will be given in the next several sections, but the basis
is comparing the different bus options to each other.

Summing the scores results in the total scores shown in the tables. For the TC bus case,
RS485 is found to have the highest score. For the PL bus case, SPI is found to be the winner.

Although the results are presented in the form of a trade-off table, limitations do exist to the
conclusions that can be made from these tables. These will be discussed in section 11.6. The
keen observer will have noticed that the criterion ‘immunity to noise and transients’ has not
been included in the final trade-off. The reasoning behind this will be discussed in section 11.5.

Table 11.1: Trade-off table showing the main findings for the TC bus

Bus Data Throughput Power Consumption Complexity Total

I2C 0 + ++ +3
CAN - - - 0 -3
RS485 ++ ++ + +5

101
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Table 11.2: Trade-off table showing the main findings for the PL bus

Bus Data Throughput Power Consumption Complexity Total

CAN - - - 0 -3
RS485 ++ 0 + +3
SPI + ++ ++ +5
USB ++ + 0 +3

11.2. Data Throughput
Table 11.3 shows the different values of the measured data throughput for the nine-node bus
cases, as previously discussed in each respective chapter. All data buses were implemented
according to standard baud rate settings. In the case a range was defined, the maximum baud
range was selected.

Comparing these values, it is clear that RS485 shows the highest effective data throughput,
at 604 kbit/s.

For the PL buses, the measured values are shown in Table 11.4.

The trade-off scores in Table 11.1 and Table 11.2 have been determined directly using these
results. For the TC bus, a clear difference between the different data buses exists. CAN
scores the lowest, followed by I2C. RS485 reaches an effective data throughput roughly three
times higher than I2C. Therefore, RS485 is assigned the highest score, with I2C scoring a
neutral 0. As CAN reaches just over half I2C, it is given a single ‘-’. No single option is given
the lowest option, simply because each one was capable of performing the realistic test case
of one HK cycle per second without problems.

For the PL bus trade-off, a similar methodology is used. RS485 and USB reach approximately
the same data throughput around 800 kbit/s and are therefore assigned the highest score
(‘++’). Although the third option, SPI, can be operated at higher baud rates (just like RS485),
the 1MHz baud rate is selected to compare the different options. The lower efficiency of SPI
(54.3% versus RS485’s 79.2%) is here the reason to assign only a single ‘+’ to SPI. Finally
CAN, showing the lowest bus efficiency, is given ‘- -’ due to the relatively (and disappointingly)
low performance.

Table 11.3: Average maximum data throughput of TC bus tests and their resultant efficiencies with respect to the
standard baud rates

Bus Data Throughput (kbit/s) Baud Rate (kHz) Efficiency (%)

I2C 250.38 400 62.6
CAN 136.59 1000 13.7
RS485 603.55 1000 60.4

dI2C 256.88 400 64.2
RS485 (no termination) 603.55 1000 60.4
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Table 11.4: Average maximum data throughput of PL bus tests and their resultant efficiencies with respect to the
standard baud rates

Bus Data Throughput (kbit/s) Baud Rate (MHz) Efficiency (%)

CAN 158.8 1.0 15.9
RS485 792.1 1.0 79.2
SPI 543.2 1.0 54.3
USB 883.7 12 7.4

11.3. Power Consumption
The second criterion evaluated in the trade-off tables is the power consumption.

A comparison of the power consumption of the various data buses is shown in Figure 11.1, all
as a function of the number of nodes on the bus. These plots are simply a superposition of
the plots seen earlier in the bus’ respective chapters. For the raw values, see Appendix C.

A problem with these straightforward plots is that they do not take into account the different
data throughput values. For example, CAN is found to use less power than RS485 in a two-
node bus configuration in the ‘continuous’ test case (Figure 11.1). However, CAN is only able
to provide one sixth the data throughput of RS485 at that samemeasurement point. Therefore,
a different approach must be taken to fairly compare the different buses.

Figure 11.2 shows a plot of each TC bus’ power consumption, normalised to the measured
throughput in the continuous test state. This results in an absolute energy spent per bit, a
common measure in (wireless) communication [16]. A clear hierarchy is visible between the
three options.

A similar figure can be created for the PL buses. The result is shown in Figure 11.3. The figure
also shows a clear, but also equally distributed spread between the buses with the highest and
lowest energy-per-bit ratings. Again, CAN uses up the most electrical energy per bit, using up
nearly three times that of RS485, the second highest. USB and especially SPI are significantly
more efficient.

These two figures are used to determine the trade-off scores shown in Table 11.1 and Ta-
ble 11.2.

For the TC bus: as expected, CAN results in the lowest power efficiency with nearly 2.0mJ/bit.
On the other end, RS485 requires approximately 0.3mJ/bit and I2C uses slightly more. Thus,
RS485 is assigned ‘++’, I2C a ‘+’ and CAN the score ‘- -’.

For the PL bus, SPI clearly has a very low power consumption, with the bar hardly visible in
Figure 11.3. Therefore, SPI is given the highest score (‘++’). Next, as can be observed in

Table 11.5: Comparison of PL bus power consumption

Bus Idle Power (mW) Active Power (mW) Baud Rate (MHz)

CAN 41.91 91.476 1
RS485 16.2 181.5 1
SPI 1.7 4.6 1
USB 83.2 104.9 12
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Figure 11.1: Plots comparing the three different test cases showing the behaviour of the different TC data buses
with increasing number of nodes. All raw data may also be found in Appendix C.
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Figure 11.2: Normalised power consumption (mJ/bit) of the TC bus options.

Table 11.5, USB shows consistent behaviour: its idle power consumption does not vary much
from its peak power consumption. This results in a fairly high idle power consumption, but a
relatively low energy-per-bit value. It is assumed that in an actual spacecraft, the high speed
bus would simply be switched off when not active, thus the high idle power is not deemed
critical here. Therefore, a final score of ‘+’ is given to USB. Finally, RS485 and CAN are given
scores of ‘0’ and ‘-’ respectively reflecting their relative differences in energy-per-bit figures.

11.4. Complexity
The data throughput and power consumption are both criteria which can be assessed quanti-
tatively. The complexity however, is something that can only be described qualitatively. The
scores assigned to the different options in Table 11.1 and Table 11.2 are therefore derived from
the experience gained during this research project and represent the amount of work expected
to be required to implement the systems in different CubeSat missions.

CAN and USB were implemented using the MCP2515 and MAX3421E respectively, ICs ex-
ternal to the microcontroller. This additional layer of communication makes implementation
and software development significantly more complex, although major parts of the protocol
are fully handled by the IC. Thus, as the external IC adds both benefits and drawbacks, a
neutral score of 0 is assigned to both CAN (both TC and PL) and USB.

Because SPI and RS485 are both part of most (if not all) microcontrollers, it is not deemed to
be very difficult to implement in arbitrary CubeSats. However, SPI is given a higher score (‘++’)
than RS485 (‘+’), because RS485 has the problem that every node on the bus has to receive
every packet completely. This problem requires additional software engineering to solve or
reduce the effect it has on the overall system.

The final option, I2C, is similar to SPI and RS485 that it is implemented within the microcon-
troller. As it does provide an internal addressing system in contrast to RS485, it is assigned
the highest score (‘++’).
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Figure 11.3: Normalised power consumption (mJ/bit) of the PL bus options.

11.5. Noise and Transient Effects
As mentioned in the introduction, the noise susceptibility and resultant BER/PER tests were
not included in Table 11.1 and Table 11.2. This is because the results from these tests are not
deemed to be representative for a real space environment.

As the generator is practically limited in both output voltage and frequency, the PDF will not
equal an ideal Gaussian distribution. Therefore, its signal is measured to quantify its charac-
teristics. Figure 11.4 shows two images (with the same scales) obtained from an oscilloscope
connected directly to the signal generator. The signal is purely generated over the 50Ω inter-
nal impedance of the generator. The left-hand image is of an 0.5V RMS white noise signal,
and the right-hand signal of a signal with 1.0V RMS. As may be seen with the associated
measurement values on the right hand side of each image, the peak-to-peak voltage is ap-
proximately 12 times larger than the RMS value. As most noise-induced problems started
occurring between these two values, the peak-to-peak values equal roughly the maximum
voltages for which the respective electrical components were designed. It was very appar-
ent from the white noise tests using drivers/buffers featuring rise time regulators that these
performed significantly better. This is mostly because the regulators act as a voltage clamp,
effectively filtering out the problematic peaks. The injected transients, varying up to 10V peak-
to-peak result in a similar situation.

A second problem with the direct injection of the noise is the fact that the internal impedance
of the generator changes the overall (system) impedance of the bus. This was most apparent
when injecting noise in the unterminated bus lines during the RS485 tests. This resulted in
the result that the unterminated bus performed better with induced noise than the terminated
one, even though realistically the opposite is to be expected. The impedance of the gener-
ator reduced the signal’s amplitude on the line with the noise, causing the unaffected line to
overpower the noisy signal (see subsection 8.4.2). Realistically, (EMI) noise will be injected
as coupled between the two differential bus lines, then cancelled out by the differential opera-
tion. Moreover, bus termination would increase the minimum energy needed by an interfering
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(a) 0.5V RMS (b) 1.0V RMS

Figure 11.4: Oscilloscope image of the voltage signal of two different white noise amplitudes, averaged over a
two-second interval. Although the RMS values seem relatively small, the peak-to-peak voltages are more than ten
times larger

signal to actually interfere [16].

Finally, the base BER/PER in a normal terrestrial environment. For all buses, it was determined
that the BER and PER were less than their maximum values of 10ᎽᎸ and 10ᎽᎶ respectively1
with 95% confidence.

Hence, because the results from the noise tests are therefore not deemed to be representative
of realistic EMI or single event upsets, they are therefore omitted from the final ‘trade-off’.

A different and more realistic way of assessing the susceptibility of the data buses to noise
and other external influences is by injecting the noise and transients into the bus in the form
of actual EMI by using radio transmitters and other (background) systems acting as sources.
This makes it possible to assess the effects of choosing differential wiring over non-differential
wiring as well as testing the various fault detection and isolation schemes used by the different
bus components.

11.6. Discussion of Results
The tables given in section 11.1 give indications for recommended bus standards to use in a
TC bus-like implementation and a PL bus case. For the former, RS485 is clearly regarded the
preferred option. For the PL bus, the SPI comes forward as an optimum using these test con-
ditions. However, these results are more intended to be as an indication of the direction future
research into this subject must take rather than an absolute recommendation for a standard.

Firstly, this is due to having to omit the critical criterion of noise and transient effects from the
final trade-off. It is still thought that this is the area CAN would excel at, as it is designed
according to strict standard to operate in harsh environments. Also, other differential bus
standards should theoretically provide sufficient benefits in this area.

Secondly, all data buses evaluated in the trade-off are implemented completely on-spec. As

1Note: the real values are definitely much better than these values, as the respective tests were performed many
times during the software development, effectively increasing the size of the data set. Although it was not tracked
by how much it increased.
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was seen with the tests with dI2C and removing the termination resistors from RS485, many
variations exist on the exact implementations possibly increasing the performance of the sys-
tem in one or more areas without significant drawbacks. Although, for example, the tweaking
of the value of termination resistors is highly dependent on the actual application it is going
to be used in, recommendations may be made regarding the process. One must also note
that CAN and USB were implemented using external ICs. Significantly different results will
probably be achieved if these are tested in the form of microcontroller peripherals.

Thirdly, the trade-off criteria are unweighted. The choice to do this was mainly because the
trade-off tables were used to summarise the main findings of the research. Very few real-world
applications will need to assume equal weighting to all criteria. To illustrate this, one can think
of three cases: an educational 1U CubeSat in Low Earth Orbit (LEO), a 6U imaging CubeSat
in LEO and another 6U CubeSat in lunar orbit.

For the 1U CubeSat, most likely the most important criterion will be power consumption. The
maximum mass of a 1U CubeSat is 1.33 kg [67], hence the available electrical power is be-
tween one and two watts, based on historic average power per unit mass figures [6]. Further-
more, 1U CubeSats generally do not contain subsystems generating large amounts of data
and a large amount of bus nodes. Therefore, developers of such a CubeSat would most likely
find power consumption more important than data throughput and noise susceptibility.

Increasing the scale of the spacecraft, the 6U imaging spacecraft in LEO would require a high
data rate, possibly over a separate PL bus. while having relatively more power available due
to its larger surface area. Therefore, the data rate would possibly be of higher importance than
power consumption.

Finally, the 6U CubeSat in lunar orbit will probably only have a low speed communication link
to Earth due to the large distance, requiring large amounts of power. In this case, low power
is more necessary over high data rate. Furthermore, the harsher radiation environment will
cause larger importance for the noise effects.

To conclude, it is clear that it is hard to standardise one data bus architecture for use in multiple
missions using only the information found in this research. Nevertheless, this thesis has looked
at a universally implementable data bus regardless of the chosen microcontroller, and RS485
SPI are found to be the preferred choice in the general case, where a bus consists out of
current-generation microcontrollers.

A specific discussion is required for the PL bus results. RS485 was the only bus able to exceed
a data throughput of 1Mbit/s. This result is perhaps disappointing, especially considering the
fact that one of the original objectives of this thesis was to investigate data buses for future
CubeSats, where high speed communications (already data rates up to 100Mbit/s are being
reached [68]) and large data sets are more common. Several different aspects come into play
causing the low reported speeds.

Firstly, the clock frequency of 48MHz of the chosen MSP432 microcontroller is simply too low
to test very high bus speeds: a rule of thumb is that the bus clock (baud rate) must be at
least ten times smaller than the microcontroller clock for reliable communication [69], limiting
the maximum test speed to only 4.8Mbit/s. Although this rule possibly becomes less strict
at high speed point-to-point buses, it is still something to take into account. A possible future
test might comprise of testing buses using high speed processors (not microcontrollers), or
for a more realistic implementation, a test setup based on a chosen Field Programmable Gate
Array (FPGA). Note that COTS CubeSat-specific FPGAs can already reach clock speeds up
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to nearly 700MHz [70].

Secondly, as a PL bus implementation is highly specific, it is often worthwhile to invest in mi-
crocontrollers (or FPGAs) capable of handling high speeds. This might include peripherals in
the microcontroller that are able to handle specific buses such as USB. As both CAN and USB
were tested using external ICs, the number of possible communication bottle necks increased.
Especially in the case of USB, which has a minimum baud rate of 12MHz, it is thought that
the major limiting factor is the SPI interface.

Therefore, the PL bus tests are possibly representative for CubeSats developed in the last
ten years, but not necessarily for all future CubeSats. However, starting of by splitting the TC
bus and PL bus does give a lot of room for optimisation of both cases, with more research
required for the latter to give insight into actual high speed performance. For example, the
current ‘winner’ from the PL bus trade-off, SPI, has a single, non-differential signalling scheme.
It is therefore possible that implementation at higher baud rates (i.e. more than 20MHz) will
become very difficult due to the larger effect of (increased) bus capacitance, something which
is difficult to test with the current setup.

As a side note to the selection of SPI, one must consider that SPI is a non-differential standard,
whereas many more recent standards optimised for speed (e.g. USB and Ethernet) are differ-
ential buses. Furthermore, the electrical characteristics of these buses are often constrained
or prescribed in some way to maximise performance. Therefore, it is expected that SPI will
hit a certain limit in terms of raw baud rate and data throughput due to its loosely defined
physical layer. At this point, higher speed buses must take over at the cost of a higher power
consumption and complexity.





12
Conclusions and Recommendations

R esults obtained from during this thesis research are briefly summarised in this chapter,
with the main conclusions split up between the TC bus and the PL bus. A final section
will discuss the main general conclusions from this research, answering the research

questions stated in the introduction.

12.1. TC Buses
Based on the measurements and analyses performed within this thesis, the optimally perform-
ing TC bus is found to be RS485. Its power consumption is generally on the same level as
I2C, while yielding much higher data throughput.

It is found that the power consumption of RS485, and any other differential bus standard
for that matter, can be lowered through the customisation of the bus termination resistors.
Increasing the overall bus impedance results in less current and hence a lower mean power
consumption. However, care must be taken that the bus’ susceptibility to EMI noise does not
increase to critical levels, requiring a trade-off between it and power consumption.

The tested TC buses were selected for their ability to be implemented universally: I2C and
RS485 were possible to be used with the dedicated internal peripherals in the MSP432 mi-
crocontroller. In this case, CAN was the only TC bus that required an external IC. It was
notable that CAN was also the worst performing bus in terms of both power and data ‘effi-
ciency’. Therefore, it is recommended to perform the CAN test again using a microcontroller
that contains an internal CAN peripheral.

One useful bit of knowledge gained from the performed noise and transient tests is that they
were very useful in detecting and isolating software bugs which would otherwise have not been
found operating in a normal terrestrial environment. This is mainly due to the extreme voltages
to which the components were subjected, causing indeterministic behaviour of the electronics.
It is therefore recommended to subject any new bus software to such a test, avoiding possible
bus lockups or loss of subsystems in space, as experienced with Delfi-C3 and Delfi-n3Xt.
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Figure 12.1: A schematic drawing of the proposal for more realistic EMI testing

12.2. PL Buses
From the measurements performed on several PL buses, it is found that SPI provides the
optimum solution based on the selected microcontroller(s), mainly due to the low power con-
sumption while still providing relatively high data throughput. It is however unclear how close
the tested SPI was to the practical limits of the bus.

Despite aiming for high data rates, RS485 was the only tested PL bus able to reach and go over
a data throughput of 1.0Mbit/s during testing. Although both SPI and RS485 feature customis-
able baud rates over 1.0MHz, significant timing issues and other software related problems
occurred above the tested baud rates. This is mainly thought to be due to the MSP432’s clock
rate, which, although relatively high for a microcontroller, still is not high enough to provide the
high data rates to test a realistic PL bus. A future test might be performed using an FPGA or
even a microprocessor to provide the high data rates. Therefore, the result found in this thesis
must be regarded as preliminary and as an indication for future research.

12.3. Recommended EMI Testing
It has been mentioned several times that the ‘noise and transient effects’ testing performed in
this research was, although giving drastic results, not realistic. The resultant large, unrealistic
voltage spikes and the fact that the signal generator influences the electronic characteristics
of the bus invalidates the necessary comparisons between the different bus standards.

Therefore, a different testing methodology is proposed to circumvent these issues. To realisti-
cally inject the (coupled) noise into the bus lines, an actual Radio Frequency (RF) transmitter
is required, as seen in Figure 12.1. To avoid the EMI from interfering with the bus nodes’
operation, these need to be shielded in separate electromagnetic shields.

An actual test would need to vary two pairs of two parameters. On the bus testing hardware
side, the number of nodes and the length of the bus lines must be varied, similar to the test per-
formed in the current research. On the transmitter’s side, the frequency and signal amplitude
must be simulated.

One must take into account that there are essentially two main types of (continuous) EMI: the
low-intensity interference from other electronic systems, and EMI caused by the transmission
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Figure 12.2: Schematic view of the recommended transient testing. The capacitor and inductors signify the induced
coupling between the wires and are therefore not physical components

of external electromagnetic signals. It is expected that both types can be simulated using
the same RF transmitter by choosing the correct frequencies and intensities. For example,
VHF (30MHz to 300MHz [16]) or similar frequencies transmitted at several watts simulate a
typical CubeSat data link, while slightly lower frequencies (10MHz to 20MHz) transmitted at
low intensities can simulate EMI caused by systems operating on typical crystal oscillators.

A simple test setup as described, together with a well-defined range of frequencies and signal
intensities, should be able to simulate the EMI effects more realistically. However, this test
setup needs to be altered slightly when considering transients effects.

As these transients are typically caused by other subsystems within the satellite, and not actual
transients driven onto the bus lines, a realistic coupling between the bus wires and some kind
of power line must be simulated. Therefore, it is recommended to replace the RF transmitter
in the test setup in Figure 12.1 with wires carrying significant transients running parallel to the
bus wire(s). The resultant situation would become something like that shown in Figure 12.2,
with two electrically coupled wires carrying different signals.

In the end, a reliable noise and transient test, together with the power and throughput mea-
surements performed in this study, should result in additional information to help find a suitable
bus architecture for future CubeSat and picosatellite missions.

12.4. General Conclusions and Recommendations
This thesis started off with the following question:

Is there an optimal data bus or combination of data buses to be used in future
CubeSat missions?

and the first subquestion:

How do the proposed bus standards compare to I2C in performance, reliability,
power consumption and practical implementation?

Based on a bus architecture optimised by taking into account data throughput, power con-
sumption and complexity, the main TC bus segment is recommended to be based on RS485.
If a certain system, representing similar data rates and nodes as tested with the PL bus test
suite requires a high speed bus, the SPI bus is recommended.

RS485 provides both higher data throughput and lower power consumption than I2C when
implemented as a TC bus, while the basic architecture of the standard based on the micro-
controller’s UART provides straightforward implementation of the bus. Furthermore, the use of



114 12. Conclusions and Recommendations

differential signalling theoretically provides higher robustness to line cross-talk and externally
induced EMI.

SPI is actually very similar to RS485, but can reduce power consumption even further and
omit the need for a (full) protocol through its point-to-point design and the use of a separate
CS line. This also simplifies software design compared to other buses, although it was found
SPI is more susceptible to timing issues.

The keyword in the main question is ‘optimal’: the trade-off performed in section 11.6 is per-
haps too generic: focusing on a specific mission and its requirements will likely produce a
different result. This is not due to the selected bus standards, but more down to the large
variety of missions that are possible. It is unfortunate that no bus standard exists that will
provide the ‘safety’ of CAN, the flexibility of I2C and the speed of RS485, therefore trade-offs
will probably still be necessary for specific cases.

One way of finding out which data bus would be the baseline for future designs is to perform
a trade-off using criteria which are assigned a weighting according to input from the CubeSat
community. If done correctly, this should result in a data bus standard architecture which is
suitable for the majority of missions, making more COTS hardware and software compatible
with new missions.

The final subquestion is as follows:

What are the practical limitations of the proposed bus architecture?

The chosen bus for the TC bus, RS485, has one major drawback: all messages sent over
the bus must be handled in software by every node on the bus. This means that the bus has
two different factors defining its capacity: the first one is the data throughput of the bus, while
the second one is the maximum data throughput the bus may have before it starts slowing
down time-critical processes on the bus. Therefore, follow-up research is necessary in this
area. First, the effect this has on time-critical systems must be quantified. Secondly, if this is
indeed deemed a problem, and it is assumed so, then possibilities for reducing or removing
this effect must be explored. One possibility is the use of address bits, although this might not
be supported by all microcontrollers and other electronics.

A final general recommendation is to always use electronic components with rise time regula-
tors/accelerators in space applications, as they come with several benefits. First: by reducing
the amount of time the signal stays active, the power consumption of a signal can be lowered.
However, this must be balanced with the added power consumption of the regulator itself.
A rise time accelerator tuned to the selected baud rate is therefore essential. Secondly, the
regulators are able to clamp the inputs either up or down, effectively filtering out large spikes.
This could increase the tolerance of systems versus single-event upsets without increasing
the amount of effort required to implement the bus.

Ultimately, this thesis report has provided an initial recommendation for future CubeSat and
picosatellite missions, but more research in the data bus robustness and performance in high
speed applications is required. Nevertheless, this research’s legacy is a fully functional data
bus testing suite which is straightforward to be extended in the proposed future tests, and
provides a well-defined test bed and reference for the development of new data bus technolo-
gies.
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A
Electrical Diagrams

The following pages contain electrical diagrams of the daughterboards used in the bus tests:

• The diagram for the I2C/CAN/USB main daughterboard: page 122.

• The diagram for the I2C daughterboard (both generic and differential): page 123.

• The diagram for the RS485 daughterboard: page 124.
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B
Flowchart Conventions

The flowcharts presented and used within this thesis follow common, but not necessarily stan-
dardised symbols. These symbols are shown in Figure B.1, with short explanations below.

Start Process Decision

SubprocessEnd
Input 

(parameters 
or data)

Figure B.1: Symbol definitions as used in the flowcharts included in this thesis paper

• Start: the start or entry point of a flowchart.

• End: the end point of a flowchart

• Process: a process, action or task performed. This usually takes specific inputs and
results in outputs.

• Subprocess: similar to a standard process, but a subprocess refers to an external dia-
gram detailing the actions. This is usually included in a secondary figure.

• Decision: similar to an if -statement available in most programming languages: a logical
statement is checked, resulting in a choice between two or more options based on the
statement.
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• Input: this block describes some kind of (critical) input, such as parameters or data



C
Power Measurement Results

Table C.1: The measured power consumption of all TC buses in the various defined duty cycles

Bus Idle Power (mW) Once Per Second (mW) Continuous (mW)
2 Nodes 5 Nodes 9 Nodes 2 Nodes 5 Nodes 9 Nodes 2 Nodes 5 Nodes 9 Nodes

I2C 29.4 54.8 81.5 35.8 58.8 89.0 45.9 80.9 125.5
CAN 36.3 89.4 207.9 37.3 88.7 209.2 83.5 158.4 256.6
RS485 16.8 32.7 54.5 15.2 27.8 53.4 142.6 165.8 189.4
dI2C 22.4 34.0 44.6 21.8 36.2 48.4 79.1 114.0 135.8
RS485 (no R) 7.6 25.1 47.2 6.4 19.3 44.8 21.1 45.7 70.7

Table C.2: Overview of PL bus power consumption

Bus Idle Power (mW) Active Power (mW) Baud Rate (MHz)

CAN 41.91 91.476 1
RS485 16.2 181.5 1
SPI 1.7 4.6 1
USB 83.2 104.9 12
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D
Reinventing Space Paper

As the Reinventing Space conference lacks a public index of the published papers and rather
relies on direct linking, the paper submitted to the conference is included in this appendix
starting on the next page.

The paper [20], titled Design and Validation of an Innovative Data Bus Architecture for Cube-
Sats, and presented at the conference by the author of this thesis, describes the initial research
into the data bus simulator and preliminary conclusions.
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ABSTRACT 

Since the first successful CubeSat missions in the early 2000s, payloads for this form factor have emerged and have 

increased in technical performance level. This trend is likely to continue in the near future. However, despite the 

subsequent increase in data load and the increasing modularity of components, there are no clear trends for a new 

electro-mechanical interface standard. The only widely adopted data bus in CubeSats, I2C, is limited in terms of data 

rate and reliability. Custom solutions overcoming these limitations are generally not well documented, and especially 

implementation results in CubeSats are lacking. Therefore, there exists a need to increase the performance and 

reliability of the CubeSat bus platform. This paper proposes an innovative CubeSat data bus architecture, including 

performance and reliability tests.  

The first need is to increase the feasible data rates to be compatible with future large-data payloads. Secondly, the 

system’s reliability must be increased compared to the current I2C standard, as many launched CubeSats using this 

data bus experience severe problems such as bus lockups and even a few catastrophic failures. 

The concept proposed in this paper is to separate the main bus used for telemetry and command from the data bus used 

for payload data, which provides room for optimising the performance of both buses. The selected bus technology 

standards used to drive the hardware were found through a survey and subsequent trade-off of available serial bus 

standards. For the main bus, this trade-off results in either a CAN bus or RS485 bus to both increase the robustness of 

the internal network and potential data throughput. For the payload bus, a USB-based bus is selected to provide a high 

data rate with increased reliability compared to often-used standards. The combination of both options optimises 

performance while keeping electrical power consumption at a minimum. Making use of the common modular designs 

of CubeSats and recent developments in the respective data bus technologies, a flexible, robust and high performance 

data bus architecture is devised. A practical setup simulating a CubeSat with multiple realistic subsystems generating 

pseudo data is used to validate the operations of such a data bus. To find the maximum capacity of the network, 

multiple subsystems are connected with varying high and low data rates, thereby simulating current typical CubeSat 

subsystems and potential future payloads requiring high capacity data networks. Furthermore, methodologies are 

developed for implementation and qualification of the proposed bus in future CubeSat missions. 

KEYWORDS: CUBESAT, DATA BUS, CAN, I2C, USB, RS485

INTRODUCTION 

Ever since the introduction of the CubeSat standard in 

20001, it has been proven to be a versatile platform 

suitable for many different types of missions. Starting 

as primarily an educational standard, it has seen a 

growth in commercial applications as well as use in 

scientific missions, mainly starting in the late 2000s. 

However, despite the large growth in both complexity 

and scientific data output from both technology 

demonstration missions and operation scientific 

missions2, development in Cubesats’ on-board data 

handling has been limited. Especially the number of 

changes to the serial data bus, the electronics carrying 

commands, telemetry and data internally between 

subsystems, has been low. Bouwmeester and Guo3 

Copyright © 2016 by S.P. van der Linden. Published by the British Interplanetary Society, with permission. 
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have found that the Inter-Integrated Circuit (I2C) bus 

standard has especially been used as the main data bus 

on the majority of CubeSat missions to date. 

I2C, originally developed by Philips and now 

maintained by NXP Semiconductors4, has been noted 

for its simplicity and high level of support in both 

integrated circuits (ICs) and microcontrollers. 

Moreover, the power consumption of I2C is typically 

assumed to be much lower than other bus types3. 

Nevertheless, the simplicity of I2C also means that no 

failure tolerance or error detection is built into the 

lowest Open Systems Interconnect (OSI) model layers 

of the protocol5. This has resulted in at least one 

catastrophic system failure and it is hypothesized that 

several other Cubesats have failed due to issues with 

this data bus5,6. To enable the creation of large 

CubeSat-based constellations or even more 

demanding scientific missions such as interplanetary 

CubeSats, the data bus must be reliable. Also the 

emergence of highly distributed subsystem 

architectures7,8 puts severe strain and importance on 

the data bus due to multi-master configurations 

becoming more common. 

Furthermore, the relatively low data rate of I2C (100 

kbit/s for standard mode and 400 kbit/s for fast mode) 

means that the payload data rates are also severely 

limited. Already, missions are omitting or 

complementing I2C in favour of other higher speed 

buses due to the limits simply being too low9. It may 

be expected that the required data rate by CubeSat 

payloads will only increase. Moreover, there are 

technology demonstration missions being performed 

with high speed downlinks up to 100 Mbit/s7. 

Hence, the CubeSat data bus must be re-evaluated to 

ensure compatibility with the next generation of 

CubeSats, both in terms of reliability and performance. 

This paper, consisting of two main parts, investigates 

a novel data bus based on other data bus standards: the 

Controller Area Network (CAN) bus, the RS485 bus 

(Recommended Standard 485) and the Universal 

Serial Bus (USB). The former two provide a bus to 

ensure command and control of subsystems (denoted 

as the command and telemetry bus or TC bus), while 

the last option is used as a high performance bus to 

transfer payload data (denoted as the payload bus or 

PL bus). The first part of this paper explains the 

underlying trade-off explaining the selection of CAN, 

RS485 and USB. The second part presents a small-

scale practical realisation of the two buses in a 

simulated CubeSat to validate the selection and 

describe ways of implementing the data buses in actual 

missions. 

SELECTION CRITERIA 

The process of selecting the data bus standard for a 

generic future CubeSat case revolves around a central 

trade-off. This trade-off takes a large set of data bus 

standards and aids in finding the optimal architecture. 

Before these criteria are outlined, a couple of reference 

cases are first defined to help in the analysis of the 

different options. 

Reference Cases 

Figure 1 shows the distribution of transaction sizes 

during a single 2 s cycle of the Delfi-n3Xt On Board 

Computer (OBC) polling various subsystems for 

housekeeping data. 

 

Figure 1. A histogram showing sizes of transactions 

in bytes during a normal housekeeping information 

polling cycle of Delfi-n3Xt. 

It may be seen that the majority of transactions are 

only several bytes in size. Nevertheless, a small 

amount of transactions consist of a relatively large 

amount of bytes, going up to 205 bytes. Thus, a clear 

distinction can be found between small command 

transactions and larger, data-filled requests. Although 

Delfi-n3Xt did not contain payloads with an 

exceptionally high data load, it is expected that many 

in-orbit demonstration CubeSats will exhibit a similar 

data size distribution. 

The gap between transaction sizes provides the 

reasoning to split up the overall data bus architecture 

into two main branches: one bus for telemetry and 

command (TC) and a second bus for any payload (PL) 

producing a significant amount of data. 

The TC bus case (Figure 2) is defined to consist of five 

different subsystems, including a main OBC. To take 

into account an increased modularity of the 

subsystems, it is assumed that the bus does not feature 

a single central node, but rather operates in a multi-

master setup. 
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The PL bus (Figure 3) is much simpler in setup than 

the TC bus, as it consists of only two nodes. Its 

objective is simply to take the data from a subsystem 

generating a relatively large data load, such as an 

imaging payload, and transmit it to a second subsystem 

handling the data. For example, the second subsystems 

could be a high speed radio or mass data storage. To 

investigate the differences between the two bus types, 

two trade-offs are performed: one for each bus 

reference case.  

 

Figure 2. The TC bus reference case. Note that 

secondary buses connecting sensors and 

instruments (dashed) are not assumed to be part of 

the TC bus 

 

 

Figure 3. The PL bus reference case. As with the 

TC bus, the secondary nodes (dashed) are not part 

of the bus layout 

To perform the trade-off process, requirements must 

be specified as a reference target for the trade-off 

process. 

Several high level requirements can be stated, 

describing the criteria taken into account by the trade-

off. The criteria are as follows. 

Baud Rate 

In terms of performance, the bus must be able to 

transmit both payload data and command or house-

keeping data rapidly. For the former, this is naturally 

required due to the expected increase in the amount of 

data generation. For the latter, a higher data rate may 

be beneficial in a highly distributed bus layout. To 

compare the different trade-off options, the expected 

baud rate is selected and not the raw data rate. The 

baud rate is defined here as the maximum amount of 

signals per second and should equal the raw data rate 

without taking into account any protocol-layer 

overhead and other latencies. To emphasize the 

difference between the baud rate and the data rate, the 

baud rate is expressed as a frequency. When referring 

to an (effective) data rate, the units for data per unit 

time (e.g. kbit/s) will be used. The reason to choose the 

baud rate over the data rate is because the protocol-

layer overhead can, in some cases, be used to transfer 

information (such as commands) itself. Hence, the 

difference between true ‘useless’ overhead and 

‘useful’ overhead would become a very grey area. 

I2C is able to provide a baud rate of 400 kHz, which 

proved to be enough for Delfi-n3Xt. However, to 

provide a large enough margin for large new 

developments, a higher (and slightly arbitrary) 

minimum baud rate requirement of 800 kHz is chosen, 

providing double the value of I2C. For the higher speed 

PL bus case, a minimum value of 1 MHz is chosen to 

signify the larger amount of data passing through the 

bus. 

Power Consumption 

A second measure of the bus performance is the power 

consumption to operate. This value comprises of an 

estimate of the electrical power used to power all bus 

hardware, with the exception of the microcontrollers 

of the bus nodes themselves. Both bus reference cases 

(TC and PL) will be analysed in separate trade-offs. 

The total available electrical power is severely limited 

in a CubeSat: typically in the order of only several 

Watts3. Accounting for this limitation, an upper limit 

of 1 W is set to the bus’ required electrical power. 

Reliability 

In contrast to I2C, the bus must have one or more built-

in mechanisms to ensure reliable transmission of the 

data. This is especially important when considering 

CubeSats with longer lifetimes or higher altitudes, 

where single event upsets (SEUs) and other externally 

sourced effects are significantly more common. 

However, the added complexity and effort going into 

designing such as bus may not be worth it when other 

bus standards are able to provide more robust 

measures. 

The bus’ reliability can be assured, for example, by 

providing protection against physical effects through 

differential signalling and through active error or fault 

detection. 
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Availability 

Staying with the original philosophy of CubeSats1, the 

commercial availability and low cost are key 

requirements. This means the necessary hardware (and 

potentially software) must be available Commercially 

of the Shelf (COTS) and not limited under expensive 

licensing costs.  

In a related note, relevant documentation must be 

publicly available at low or no cost to aid in the 

implementation and development of the bus. 

Complexity 

Since CubeSats are often implemented in the form of 

educational tools or as a supporting platform for small 

scale scientific projects, the complexity of the bus 

hardware and software is of importance. It is generally 

difficult to specify a metric for something as subjective 

as the complexity. Nevertheless, within this trade-off 

the amount of additional electronic components is 

used. When a system contains more components, it 

becomes more difficult to populate boards and 

integrate a satellite. Furthermore, it may be assumed 

that the amount of programming code increases with 

more components to control, especially when a data 

bus requires several relatively complex ICs. 

Number of Data Lines 

Finally, taking into account the low amount of space 

available inside CubeSat buses for wiring harnesses, 

the amount of (data) lines required by the standard is 

taken into account. 

Trade-off Rubric 

The seven criteria defined in the previous section are 

reflected in the selection of the trade-off criteria as 

shown in Table 1. Moreover, this table also defines the 

trade-off’s rubric: the rules governing which score to 

assign to which characteristic of a bus. The values in 

the rubric have been set and fixed before the actual 

trade-off to prevent biasing of the values. Predefining 

this rubric avoids the need of defining weights for each 

criterion, which would introduce possible biasing. The 

rubric inherently includes the weighting in its design. 

It must be noted that Table 1 contains a ‘reject’ row.  

If a certain data bus option meets one or more of the 

characteristics of this row, then the option is removed 

from the trade-off. 

TRADE-OFF 

It is impractical and mostly unnecessary to create an 

exhaustive list of all possible serial data bus standards. 

Therefore, this trade-off is limited to data bus formats 

and architectures as defined by their official standards 

and excludes off-standard modifications and 

configurations. 

To keep the trade-off concise, the majority of data bus 

standards are evaluated in terms of the ‘reject’ criteria 

from the trade-off rubric. 

Initial Reduction of Options 

Table 2 lists a selection of serial bus standards from a 

multitude of sources, several of which have previously 

Score Base Baud 

Rate 

Power Reliability Availability Complexity Data Lines 

Reject Less than 400 
kHz (TC bus) 

 

Less than 1 MHz 
(PL bus) 

The maximum 
total bus power is  

more than 

1000 mW 

No safety 
mechanisms 

possible 

Components / 
documentation 

not available 

Not possible to 
interface to 

(typical) 

microcontrollers 

More than 7 

1 400 kHz - 800 

kHz (inclusive)  

(TC bus) 

 

1 MHz - 10 MHz 

(inclusive)  
(PL bus) 

The maximum 

total bus power is   

500 mW to 

1000 mW 

(inclusive) 

Simple 

mechanisms 

(watchdogs) 

possible through 

modification 

Components and 

documentation 

only available 

through highly 

dedicated 

suppliers 

Large amount of 

additional 

electronic 

components 

necessary (more 

than 10 per node) 

5 - 7 lines 

required 

2 800 kHz - 5 MHz 

(inclusive) 
(TC bus) 

 

10 MHz - 100 
MHz (inclusive) 

(PL bus) 

The maximum 

total bus power is   
100 mW to 

500 mW 

(inclusive) 

Differential 

signalling and/or 
simple error 

detection 

Components and 

documentation 
easily/widely 

available 

Additional 

electronic 
components 

required for 

operation (less 
than 10 per node) 

3 - 4 lines 

required 

3 More than 5 MHz 

(TC bus) 
 

More than 100 

MHz (PL bus) 

The maximum 

total bus power is   
0 mW to 100 mW 

(inclusive) 

Differential 

signalling, error 
and fault 

detection/correct-

ion 

Typically built-in 

feature of 
microcontrollers 

No additional 

components 
required 

2 lines or less 

required 

Table 1: The reference rubric used for the trade-off. Note the different values regarding the baud rate for 

the TC and PL buses. 
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been implemented in CubeSats, but also many have 

not. It shows which buses have been rejected for not 

meeting the minimum acceptable requirements and for 

what reason. 

From Table 2 it may be noted that for the TC bus case, 

only I2C, RS485 and CAN are left. For the PL bus, 

RS485, SPI, CAN, USB 2.0 remain. These remaining 

options are compared in more detail in the following 

sections. 

Telemetry & Command (TC) Bus 

To compare RS485 and CAN, the predefined rubric in 

Table 1 is used. The results are shown in Table 3. 

With regards to the baud rate of I2C (the generally well 

supported fast mode) equals 400 kHz, equalling 1 

point in the trade-off. For RS485, this is officially 

defined at 1 MHz, although it can be increased to a 

multiple of that value when the bus lines are kept 

short10. A similar situation is found for CAN: the 

official standard is limited to 1 MHz, although it may 

be increased for short wire lengths. However, it is 

expected that the resultant increase will be less than 

with RS485. Nevertheless, this means a score of 2 for 

both options. 

Table 2: A list of bus standards and reasons for 

rejection from the trade-off. 

Bus 

Standard 

Rejected for TC 

Bus 

Rejected for PL 

Bus 

I2C (Fast 

Mode) 

No Baud rate (400 kHz) 

too low4 

RS232 Baud rate (≈110 kHz10) too low 

RS422 Simplex version of RS485, so assumed 
identical to RS485 

RS485 No No 

SPI Large amount of chip 

select lines required 
for multi-master 

No 

CAN No No 

USB (2.0) Power consumption 

with hub exceeds 
1 W 

No 

USB (3.0/3.1) Necessary COTS USB 3.x Host controller not 

yet available 

Firewire Not able to interface with microcontrollers 
(e.g. PCI/PCIe) 

Spacewire Low availability of COTS components, large 

amount of lines (8)11 

MIL-STD-

1553 

Very low COTS availability 

Ethernet Power consumption exceeds 1 W for TC and 

PL bus (using the WIZnet W510012) 

RapidIO Very low COTS availability 

Infiniband Not compatible with embedded systems 

Thunderbolt Very low COTS availability (high licensing 

costs) 

FlexRay Very low COTS availability 

Local 

Interconnect 

Network 

Baud rate (20 kHz) too low13 

OneWire Baud rate (≈15 kHz) too low14 

To analyse the maximum power consumption of I2C, 

several assumption have to be made. First of all, it is 

assumed that every node has one PCA9514 I2C 

isolator/buffer15. A buffer or isolator is often necessary 

in I2C networks consisting of many nodes to reduce the 

total bus capacitance, which is limited to 400 pF4. 

Moreover, the isolator function of these components 

makes it possible to safely remove a subsystem from 

the bus (i.e. powering down redundant systems) 

without affecting the main bus16. The worst case power 

consumption is assumed where the bus is continuously 

in a logic LOW state. This means all bus lines are 

completing a circuit and thus consuming power 

through its pull-up resistors. All separate SCL and 

SDA lines require their own pull-up resistors, meaning 

that when assuming typical pull-up values of 4.7 kΩ 

(at 3.3 V), each individual line consumes 2.3 mW. Five 

nodes plus the main bus lines give a total of 27.6 mW. 

Adding up the expected power consumption of the bus 

buffers, this makes a total of 85.4 mW. 

Concerning RS485, a typical configuration is 

assumed: the built-in UART of a microcontroller 

provides the data to a driver/transceiver. This driver 

then drives the data onto the bus lines. In this case, the 

ST348517 is used as a reference, where it is assumed 

that its results are typical for other drivers. Since only 

one node will always be transmitting at the same time, 

the power consumption of a single transmitting node 

equals the overall bus power consumption. For the 

chosen TC reference case, it is assumed that the output 

of the driver is continuously equal to its default state 

value of 1.5 V17. Further assuming a standard 

termination load of 60 Ω (two 120 Ω resistors in 

parallel), the total power lost over the bus lines 

becomes 37.5 mW. Added to this is the passive current 

draw by all other nodes: 1.3 mA, adding another 21.5 

mW to the total. Thus, for the full TC bus, a total of 

59 mW is found. 

For the CAN bus, each node is assumed to be 

comprised of an MCP2515 CAN controller18 and an 

SN65HVD23319 transceiver. The base current draw on 

one node then equals 16 mA. When a single node is 

transmitting, this adds another maximum of 50 mA to 

the total current. For the 3.3 V five node bus this 

results in 429 mW. These figures translate to scores of 

3 and 2 for RS485 and CAN respectively. 

One of the main reasons for this trade-off is the 

observed unreliability of I2C which is also reflected 

here: only 1 point can be assigned due to its physical 

layer. Conversely, CAN is well-known for its 

reliability: it defines a physical layer with differential 

signalling and several fault tolerant measures. 

Furthermore, the CAN standard defines a protocol 

layer with features like built-in error detection. 

Although RS485 comes with differential signalling, 
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the lack of other pre-described safety mechanisms 

means it scores 2 points versus 3 for CAN. 

RS485 and CAN both score the same for availability, 

complexity and the number of bus lines: the bus 

protocols both need external drivers or transceivers to 

function, and they both use two differential data lines 

to communicate. I2C scores high for the availability as 

it is built-in in nearly every microcontroller. It also 

scores 2 points for complexity, because bus 

buffers/isolators are practically always required to 

have a functional bus. 

Thus, in the end, I2C scores 13 points, and both RS485 

and CAN score 14 points. This draw is remarkable and 

underpins the similarity between the two standards. 

Payload (PL) Bus 

The PL bus is evaluated in a similar manner as the TC 

bus, taking the rubric table as a basis for the 

comparison. RS485 and CAN are again assessed as 

options together with SPI (Serial Peripheral Interface) 

and USB 2.0. 

For both CAN and RS485, the configurations are 

assumed to be identical as in the TC case. Hence the 

baud rate remains the same. For SPI, there is no 

maximum data rate specified. However, applications 

are typically able to reach at least 10 MHz20. In turn, 

even though the baud rate of USB 2.0 has been 

standardised to 480 MHz21, it is only found possible to 

interface to standard microcontrollers with ‘Full 

Speed’ devices, capable of providing a baud rate of 

12 MHz21. 

With regards to power consumption, it is assumed that 

RS485 and CAN are applied in the same configuration 

as in the TC bus case. This results in the same value as 

in the aforementioned analysis minus the power for 

three subsystems, giving 46.1 mW for the former and 

271 mW for the latter. The next option, SPI, is 

somewhat of a special option: it is supported by the 

vast majority of microcontrollers20 and hence does not 

require any external ICs to operate. Thus, all power is 

consumed by internal microcontroller operations. A 

very low power consumption can therefore be assumed 

for this option. For the final option, USB 2.0, it must 

be noted that at least one host controller is required in 

the bus and one so-called peripheral (slave) controller. 

To be able to have a microcontroller fulfil both roles, 

the MAX3421E22 is selected. This integrated circuit is 

able to act as either a host or peripheral in a USB 

connection. From the datasheet, it is found that the 

maximum expected power consumption of a 

transmitting node equals approximately 150 mW. No 

data is given for a listening node, but it is expected that 

it will be around half the value for a transmitting node, 

resulting in approximately 225 mW for the total bus. 

Because RS485 and CAN are in the same 

configuration as for the TC case, the scores for all 

other criteria are deemed the same. For SPI, the 

reliability is set to low, as there are no built-in safety 

mechanisms, putting it on the same level as I2C. The 

availability is very good however, as it is a standard 

interface for most microcontrollers. This also implies 

a high score for complexity. However, the large 

amount of lines required (SCLK, MISO, SOMI, CS) 

means it scores low on the final criterion: the number 

of bus lines. USB scores slightly lower on availability 

and complexity for similar reasons as RS485 and 

CAN. It scores well on reliability however as the 

protocol is designed around hot plugging peripherals 

which requires robust communications. Disregarding 

the two additional power lines (which are not 

necessary to transfer data), USB 2.0 requires only two 

data lines. 

To finalise, USB 2.0 shows a higher score (14 points) 

than the other standards (all 13 points) when applied 

in the PL bus case. 

 Baud Rate Power Reliability Availability Complexity Harness 

Lines 

Total 

I2C 1 3 1 3 2 3 13 

RS485 2 3 2 2 2 3 14 

CAN 2 2 3 2 2 3 14 

 Baud Rate Power Reliability Availability Complexity Harness 

Lines 

Total 

RS485 1 3 2 2 2 3 13 

CAN 1 2 3 2 2 3 13 

SPI 1 3 1 3 3 2 13 

USB  

(2.0, Full Speed) 2 2 3 2 2 3 14 

Table 4: The PL bus case trade-off. A higher score is better. 

Table 3: The TC bus case trade-off. A higher score is better. 
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VALIDATION: DATA BUS SIMULATOR 

As a small-scale proof of concept and to compare the 

estimated characteristics of the trade-off options, a 

data bus ‘simulator’ is developed. The simulator, one 

example configuration of which is shown in Figure 4, 

is setup in a similar way as a CubeSat with multiple 

subsystems, including an (OBC). Each subsystem 

consists of a Texas Instruments (TI) MSP432 low 

power microcontroller ‘Launchpad’ (MSP432P401R). 

The MSP432 has been chosen as the standard 

microcontroller for all new subsystems and satellites 

within the Delfi program23. Its ‘Launchpad’ 

configuration features an emulator/debugger and a 

breakout of a large collection of microcontroller pins, 

including pins used for I2C, SPI and Universal 

Asynchronous Receiver/Transmitter (UART) 

communication. As the choice for microcontroller is 

considered to be fixed, all data bus-related components 

must be able to interface directly with the MSP432, 

resulting in a universally applicable bus. 

Electronically, each considered bus is implemented 

using the components mentioned earlier during the 

trade-off. 

 

Figure 4. An example of the data bus testing setup 

showing four connected nodes over CAN, I2C and 

USB (RS485 is on separate but similar boards). 

Firstly, the I2C bus is directly controlled by each 

microcontroller itself, as it is a standard serial output 

supported by the MSP432. To limit the total bus 

capacitance as required by the standard, bus buffers 

(PCA9514A) are added. The bus lines between the 

microcontroller and the buffer are powered by the 

local microcontroller. The main bus lines are powered 

by the single OBC. 

Secondly, the CAN bus is implemented using the 

MCP2515 CAN controller with SPI interface. 

Additionally a bus transceiver is required to drive and 

buffer the differential bus. For this, the TI 

SN65HVD233 is used, because it supports 3.3 V 

operation. The MCP2515 is configured and controlled 

by the MSP432 through its SPI interface. 

Thirdly, for USB the MAX3421E is used, which also 

has an SPI interface and a multi-role option: it can act 

as either the bus host (master) or peripheral (slave). It 

is impossible to communicate over USB without a host 

controller, thus the MAX3421E solves this problem. 

Finally, although RS485 is essentially direct UART 

output, it requires a driver to drive the differential data 

lines and handle the inverse. For this purpose, the 

ST3485 driver is used. 

The power of each individual bus was measured at idle 

to be able to isolate irrelevant power drains. These 

values are shown in Table 5 and will be used together 

with the values discussed in the next section to model 

the full buses. Note that the minimum and maximum 

adjusted values are assumed to be the absolute 

minimums or maximums, e.g. the minimum adjusted 

power consumption is the minimum measured 

consumption of each bus minus the maximum 

measured power consumption of the MSP432. 

Table 5: Power consumption per unit of one bus 

node measured at idle (no bus traffic), and adjusted 

for the power consumption of the MSP432 

Launchpad 

Microcontroller Base Power Consumption [mW] 

System Minimum Mean Maximum 

MSP432 11.6 14.0 17.0 

Power used by each bus when idle, adjusted for MSP432 

consumption 

System Minimum Mean Maximum 

I2C 5.2 9.1 12.3 

CAN 14.1 19.5 24.5 

USB 33.0 38.0 42.7 

RS485 -0.4* 3.3 9.4 

Measurements 

This paper will look at two different metrics of each 

bus option: 

1. The actual power consumption of each bus when 

nearing the maximum capacity 

2. An estimate of the effective data throughput of 

each bus 

* The negative value is due to summing noise extremes with 
the power adjustment. 
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For the power consumption, the TI EnergyTrace tool 

is used. This tool connects to the onboard emulator and 

is able to measure the current consumption with 

approximately 5% relative accuracy24. 

The effective throughput is measured in two ways, 

depending on whether the bus in question is being 

applied as a representation of the TC bus or of the PL 

bus. When the former is the case, the system 

designated as OBC sends special command packets: 8 

bytes containing a command byte, the origin node, the 

target node, three parameters (default 0) and finally a 

CRC-16 of the preceding 6 bytes. When a subsystem 

receives such a packet, it first checks the CRC: if 

correct, it replies with an 8 byte ‘ACK’ command 

packet or a ‘NAK’ command packet if incorrect. 

During each TC bus test, the OBC will simply send a 

‘ping’ command packet and wait for a reply. This will 

then be repeated without any artificial delays in 

between. All messages transmitted by the OBC and 

subsystems are generated dynamically to ensure 

realistic response times and processor activity. For the 

PL bus case, a simpler test case is considered: static 

but pseudo-random data is transmitted by the OBC to 

the other connected subsystem in one direction only to 

maximize the data rate. 

Each individual test is only 15 s long, but repeated at 

least ten times to verify the values. The first 5 s is a 

delay where all hardware and software is initialized, 

but not actively transmitting or receiving. The 

following 10 s the data throughput test is performed. 

Using the EnergyTrace tool, the power consumption 

of the board is measured during both stages to estimate 

the power actually required by the bus activity. 

Furthermore, by counting the number of packets 

transmitted, the effective number of bytes may be 

computed in the TC bus tests. For PL bus tests, the 

transmitted bytes are counted directly. 

Results: Telemetry & Command Bus 

The first bus case being tested is the I2C bus, which is 

considered only for the TC bus case. Figure 5 shows 

the power consumption of the OBC performing the 

ping requests and the generic subsystem responding to 

those requests. The plot shows a large difference 

between the OBC (blue) and the subsystem (orange) 

when active, but highly similar values when idle.  

The minimum, maximum and mean values of both the 

idle state and active states of both subsystems have 

been computed and are shown in Table 7. Taking the 

mean values and applying it to the bus architecture of 

the TC case, a total power consumption of 121.5 mW 

is found, approximately 40 mW more than calculated 

in the simplified analysis for use in the trade-off. The 

average measured bit rate (Table 6) is approximately 

200 kbit/s: about half the maximum capacity (baud 

rate) of the bus (400 kHz).  

Table 6: Average measured effective bit rates 

excluding overhead over the 10 s intervals of the 

different tests with 95% confidence interval. 

Bus Average Measured Bit 

Rate (TC Bus) [kbit/s] 

Average Measured Bit 

Rate (PL Bus) [kbit/s] 

I2C 200.64 ± 0.0025 N/A 

RS485 607.17 ± 0.017 781.25 ± 0 

CAN 94.90 ± 0 N/A 

USB N/A 999.50 ± 0.050 

 

 

Figure 5. The raw measured power consumption of 

both the OBC and the generic subsystem when 

using I2C, including MSP432 and other supporting 

systems. 

 

 

Figure 6. The power consumption of both the OBC 

and the generic subsystem when using RS485. The 

bus termination resistors are 2 x 120 Ω. 
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Figure 7. The power consumption of both the OBC 

and generic subsystem when using CAN. The bus 

termination resistors are 2 x 120 Ω. 

For RS485, of which the power consumption during 

the TC tests is shown in Figure 6, shows highly similar 

values between the OBC and subsystem over the entire 

test cycle. However, this is to be expected because 

RS485 is implemented as a purely serial output in the 

bus simulator: both systems are performing the same 

amount of work by repeatedly sending a single 

command packet back and forth. This is different in 

for example I2C, where the bus master (OBC) has more 

responsibilities with arbitrating the bus, causing a 

difference in amount of activity between the OBC and 

subsystem. This behaviour of RS485 is mirrored in 

Table 7, where the mean power consumption of the 

OBC and subsystem are within 1 mW of each other. 

This must also be kept in mind when determining the 

power consumption of a full five-node TC bus: simply 

multiplying the computed values with five will result 

in a highly exaggerated overall bus consumption. 

Instead, one must note that the sum of the two mean 

power consumptions equals a 100% bus duty cycle. 

Thus, the overall bus power with more nodes will be 

the same, but including the idle power for three more 

bus nodes: approximately 151 mW. This value is much 

higher than the predicted value of 59 mW. It is thought 

that the majority of this power is used by the bus 

termination resistors: two (parallel) 120 Ω resistors10. 

To test this hypothesis, a small test was performed 

using two 2 kΩ resistors, which resulted in a reduction 

of 51 mW of the OBC’s mean power consumption. 

The effective data rate of RS485, its baud rate 

configured as the standard value of 1 MHz10, equals 

just over 600 kbit/s as shown in Table 6. 

Regarding CAN, the power consumption in Figure 7 

shows much more noise than for the other bus types. 

This is most likely due to the SPI switching between 

active states and waiting for any actions. Surprisingly, 

the approximated power consumption of CAN (also 

included in Table 7) is significantly lower than for 

RS485 using the same termination resistors: sitting 

approximately in the middle between I2C and RS485. 

For the total TC system, between 86.2 mW and 

290.3 mW with a mean of 214.6 mW is required. 

Unfortunately, the relatively low power consumption 

is probably caused by the low effective data rate seen 

during the tests: only 94.9 kbit/s. It is suspected that 

the combination of using an external CAN controller 

requiring the overhead of its SPI interface plus the 

overhead of the CAN protocol layer itself causes a 

large reduction of the maximum data rate. Therefore, 

it is expected that selecting a CAN controller which is 

included in a microcontroller will significantly 

increase the data rate. As the minimum overhead of 

CAN is approximately 42%25 of an eight byte packet, 

the maximum achievable effective data rate would be 

around 580 kbit/s. The amount of extra power 

consumed caused by the higher data rate could 

potentially be reduced in the same way as with RS485 

by increasing the value of the termination resistors. A 

test run with two 2 kΩ resistors showed that the power 

consumption dropped by about 20 mW per bus node 

without loss in data rate, putting it on similar levels as 

I2C. 

Bus State Power TC OBC Power TC Subsystem 

 
Power PL OBC PL Subsystem 

  Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

I2C Difference 22.1 26.7 30.5 7.8 12.3 20.2 
N/A 

 Total 27.3 35.9 42.8 13.0 21.4 32.5 

RS485 Difference 66.4 72.5 76.0 66.1 73.1 75.8 148.7 160.9 165.1 5.4 7.2 9.1 

 Total 66.0 75.8 85.4 65.7 76.4 85.2 148.3 164.2 174.5 5.0 10.5 18.5 

CAN Difference 17.3 34.7 43.8 -0.4 20.6 31.0 
N/A 

 Total 31.4 54.2 68.3 13.7 40.1 55.5 

USB Difference 
N/A 

6.3 15.9 30.5 7.9 15.6 21.2 

 Total 39.3 53.9 73.2 40.9 53.6 63.9 

Table 7: The computed minimum, maximum and mean differences between idle and active states, and total 

derived power consumption by summing the difference with the fully idle power consumptions included 

in Table 5. All units are in milliWatts. 
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Results: Payload Bus 

The payload bus test was performed separately with 

both RS485 and USB.  Similar to the TC tests, Figure 

8 and Figure 9 show the accumulated measurements of 

the power consumption of the RS485 tests and USB 

tests respectively. Moreover, Table 6 presents 

measured data rates and Table 7 includes minimum, 

maximum and calculated mean power values for both 

PL test cases. 

With regards to power consumption, RS485 shows 

slightly higher values as per its TC bus test: mean 

values of 174.7 mW versus 152.2 mW (two nodes), 

which corresponds to the slightly higher data rate of 

781.25 kbit/s versus 607.17 kbit/s. Again, this 

confirms the hypothesis that a large contribution of the 

bus power is the loss in the termination resistors, as the 

only major difference between the TC and PL 

applications is a higher duty cycle of the bus.  

 

Figure 8. The power consumption of the OBC and 

generic subsystem when performing a large data 

transfer from the OBC to the subsystem over 

RS485. 

USB, which is only tested in PL configuration, 

consumes 107.5 mW for the total two-node bus, 

providing nearly exactly 1 Mbit/s of effective data rate 

of the theoretical maximum of 12 Mbit/s. Similarly to 

CAN, it is thought that the use of an external SPI-

driven USB controller is the cause for the relatively 

low effective data rate of the bus. 

The differences in power consumption between the 

theoretical analysis for the trade-off and the actual 

measured values are summarised in Table 8. 

 

 

Figure 9. The power consumption of the OBC and 

generic subsystem when performing a large data 

transfer from the OBC to the subsystem over USB. 

Note the extra (peak) power required for 

enumeration, required once to establish the 

connection. 

 

Table 8: A summary of the expected power 

consumptions of the TC and PL buses, the values 

based on the measurements and their differences. 

Bus Expected 

Power 

Consumption 

Measured 

Power 

Consumption 

Difference 

I2C 85.4 mW 121.5 mW 36.1 mW 

CAN 429 mW 290 mW -139 mW 

RS485 

(TC) 

59.0 mW 160 mW 101 mW 

RS485 

(PL) 

46.1 mW 174.7 mW 128.6 mW 

USB 225 mW 107.5 mW -117.5 mW 

 

CONCLUSIONS AND RECOMMENDATIONS 

This paper has investigated a new serial data bus 

architecture for use in CubeSats and other nano-

satellites of similar size. First a theoretical analysis 

was performed, after which a validation was 

performed of the results. 

A trade-off was performed, reducing a list of potential 

bus standards to only a handful of options to be fully 

analysed. The detailed analyses were performed with 

the assumption of splitting up the main bus into two 

separate buses: the telemetry and command bus and 

the high speed payload bus. This trade-off results in a 

novel and optimised data bus architecture. 

Using the theoretical trade-off for the TC bus, both 

CAN and RS485 are equally recommended. The exact 

choice will be dependent on the exact mission and will 

most likely be between two factors: if reliability is of 

primary concern, then CAN is the most likely choice. 

If on the other hand low power consumption and high 
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data throughput is of high importance, then RS485 is 

the better choice. 

For subsystems requiring dedicated and high speed bus 

connections, the separate PL bus is added. USB is 

given as the theoretical optimal choice, as it provides 

several fault detection methodologies as well as 

providing a high data throughput. It must be noted 

however that USB cannot be implemented in a linear 

bus topology, but only in a point to point style design. 

Careful design of the bus and subsystem layout is 

therefore required to omit the need for extra high speed 

bus nodes. 

The data bus simulator was developed to provide a 

platform to implement the different selected data bus 

options resulting from the trade-off and to validate 

their performances. Although many of the main 

features of the trade-off options are well defined in 

datasheets and general descriptions of the technology, 

two essential networking characteristics, the power 

consumption and data throughput, are difficult to 

estimate and assess. For I2C and RS485 in the TC bus, 

the measured power consumption was higher than 

initially expected. For CAN, the opposite is the case, 

as it only consumes approximately half of what was 

expected. Still, when implementing all subsystems 

according to their standards, CAN still consumes 

approximately double that of I2C. However, by 

increasing the value of the termination resistors, the 

power consumptions of CAN and RS485 will reduce 

to roughly the same values as I2C. 

The effective data rate also featured differences, where 

all tested buses showed significant deviations from the 

ideal. Especially CAN, which was implemented 

through an external integrated circuit, showed 

relatively low data rates: managing only half of the 

effective data rate of I2C. This shows that to efficiently 

implement CAN at higher speeds (up to 580 kbits/s), 

microcontrollers with built-in CAN controllers must 

be selected. Such a controller is unfortunately not part 

of the MSP432. Therefore, for a truly universal and 

microcontroller-independent TC bus, RS485 would be 

the preferred choice. 

In the PL bus analyses, USB consumed only 

approximately half the amount of power of what was 

expected while also providing a higher effective data 

rate than RS485 in the same test. The latter also used 

more power. However, again in this case, tweaking the 

termination resistors could prove positive for the 

performance of RS485. 

As RS485 does not define any protocol (part of the 

OSI link and network layers), hence no software-based 

safety mechanisms are built in by default. Further 

research might investigate which standard protocols 

(e.g. KISS, Modbus) could add robustness to the 

standard. The relatively low power consumption, high 

achievable data rate and simplicity in combination 

with a reliable protocol could make it the clear 

preferred option over CAN and USB. Since it is also a 

decent contender for use as PL bus, RS485 could still 

be an option for the next single universal data bus. 

FURTHER WORK 

The data bus simulator as described in this article is 

still under development. The goal is to provide a 

realistic CubeSat-networking testing platform which 

shall be capable of performing more in depth analyses 

of the various data bus options such as: 

 Reliability analysis, amongst which bit error rate, 

and electro-magnetic interference and radiation 

effects. 

 Performance characterisation, with full 

simulations of CubeSat systems and their 

behaviour. This potentially includes differences 

between external (CAN) bus controllers and 

equivalents built into microcontrollers. 

 Ratings of the complexity of software and the 

necessary drivers. 

Using the information gained from these simulations, 

the trade-off will be revisited with more accurate 

estimates for the bus characteristics. The main 

objective is to look at the results from slightly 

deviating from the established bus standards for 

further optimisation. For example, increasing the 

termination resistors’ values on the CAN and RS485 

bus tests showed a sharp decrease in the amount of 

power used to run the buses. Furthermore, the 

relatively short bus line lengths in CubeSats might 

allow overclocking of those same buses. In the end, a 

small and limited spectrum of bus architectures should 

be designed, each with a corresponding performance 

envelope. Ensuring clear definitions of these bus 

architectures allows simplified design and optimal 

performance of future CubeSat data buses. 
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