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Abstract

Line-of-Sight (LoS) navigation is an optical navigation technique that exploits the direction to visible celestial bodies, obtained from
an onboard imaging system, to estimate the position and velocity of a spacecraft. The directions are fed to an estimation filter, where they
are matched with the actual position of the observed bodies, retrieved from onboard stored ephemerides. As LoS navigation represents a
really promising option for the next-generation deep-space spacecraft, the objective of this work is to provide new insights into the per-
formance. First, the information matrix is analyzed to show the influence of the geometry between the spacecraft and the observed planet
(s). Then, a Monte Carlo approach is used to investigate the influence of measurement error (ranging from 0.1 to 100 arcsec), and track-
ing frequency (ranging from four observations per day to one observation every two days). The effect on navigation performance is quan-
tified by two indicators. The first is the 3D position and velocity Root-Mean-Square-Errors, computed once the estimation is considered
to be steady-state. The second is the convergence time, which quantifies the required time for the estimation to reach the steady-state
behaviour. The simulation is based on a set of four planets, which do not follow the common heliocentric dynamics but rotate around
the Sun with the same (distance-independent) angular velocity of the spacecraft. This approach allows the separation of scenario-
dependent behaviours from navigation intrinsic properties, as the same relative geometry between observer and observed objects is main-
tained during the whole simulation. The results provide a useful guide for the next-generation autonomous navigation system, for both
the definition of hardware requirements and the design of an appropriate navigation strategy. Considerations are then applied to Near-
Earth Asteroid fly-by mission scenarios for the definition of the navigation strategy and hardware requirements. It is shown the impor-
tance of relative angles between the spacecraft and the planets. In the single-planet observation scenario, when the angle between the
position vectors of the spacecraft and planet approaches a null value, the estimation error decreases. In the double-planets observation
scenario, when the separation angle between the two LoS directions gets close to 90°, the estimation error decreases. The main influence
on the performance is driven by the measurement error, which with current technologies is shown to be able to provide a position error in
the order of a few hundred kilometers, while with a lower measurement error (0.1 arcsec) it would be possible to have a position error
below 100 km. Finally, it is demonstrated that tracking frequency plays a secondary role in the performance, and only influences tangibly
the convergence time.
© 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Nowadays demand for space exploration is increasing,
both for scientific and commercial purposes. Sustainable
use of space is gaining popularity, and, because of that,
a higher autonomy level of spacecraft is particularly
desirable, as it can cut down the cost associated with
the space mission, but also decrease the need for the
ground segment. Moreover, from a more general per-
spective, the exploitation of autonomous techniques can
be also linked to a reduction of onboard instrumentation
need, which is translated into a lower-mass payload for
the launcher, or eventually to larger volume and mass
allocated for scientific instrumentation (Casini et al.,
2021).

Concerning autonomous navigation, several techniques
have been proposed through the years (Turan et al.,
2022a). Depending on the mission scenario, distinctions
can be highlighted between relative navigation techniques,
as around a planet (Enright et al., 2018), the Moon
(Franzese et al., 2018) or a small body (Frauenholz et al.,
2008; Pellacani et al., 2019), or absolute navigation, as
around Lagrangian points in cislunar space (Turan et al.,
2022b) or during a deep-space cruise around the Sun. This
paper focuses on a particular type of optical navigation,
namely LoS (Line-of-Sight) navigation, which is particu-
larly suitable for deep-space cruising applications. The
technique is based on the observation of directions to visi-
ble celestial bodies, that are obtained onboard using optical
instrumentation, either cameras or star-trackers. Indeed,
this technique appears to be a viable option for autono-
mous deep-space CubeSats, as cameras and star trackers,
usually carried onboard, can be exploited for navigation,
without increasing mass and volume. Moreover, the combi-
nation of CubeSat and autonomous navigation can have
an impact on Near-Earth Asteroids (NEAs) missions, as
the exploration of a large number of targets can benefit
from a cost reduction per mission, and an increased level
of autonomy.

As of today, no space mission has exploited only LoS
navigation to estimate the state of an interplanetary cruis-
ing spacecraft, although SMART-1 carried onboard an
experiment (Marini et al., 2002). Moreover, it is currently
gaining popularity for miniaturized spacecraft, in-fact the
stand-alone CubeSat M-ARGO is expected to carry
onboard an experiment to test its applicability (Franzese
et al., 2021). From a theoretical perspective, the technique
has been proposed using a batch estimation technique in
Vasile et al. (2002), where the exploitation of a general
CCD image acquisition system is mentioned. In Mortari
and Conway (2017) a least squares and a weighted least
squares method were presented to estimate the Cartesian
state of an interplanetary spacecraft, generating an initial
orbit determination guess, and mentioning for the first
time the applicability of star-trackers. In Karimi and
Mortari (2015), the first orbit determination solution is
used to initiate a sequential filtering approach. In
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Franzese and Topputo (2019) and Machuca et al.
(2019), LoS navigation is finally proposed for deep-
space CubeSat applications, while the same authors in
Franzese and Topputo (2020) propose an analytical
approach to select the best pair of visible planets to be
observed. In Andreis et al. (2022), an onboard algorithm
is developed and tested with a Raspberry Pi. Moreover, in
Dahir et al. (2019), the observation of Jupiter and its
moons is used both to estimate the state and to recon-
struct the onboard timing knowledge.

To complete the set of feasibility assessments available
in the literature, it is necessary to expand the set of analyses
aimed to characterize the intrinsic LoS navigation proper-
ties. In particular, there is still a need to investigate the
impact on the navigation performance of two design
parameters, namely LoS measurement errors and tracking
frequency. Despite their importance for mission design, in
literature, their influence is not sufficiently treated. They
are necessary to derive hardware requirements for compo-
nent selection and to define a suitable navigation strategy.
For these reasons, this paper is aimed to investigate this
technique, through an analysis of factors impacting its per-
formance. However, this is done using a novel approach. In
previous works, realistic scenarios were simulated, based
on the actual positions of some selected planets during a
specific time interval, which in combination with a specific
spacecraft orbit, do not provide completely general conclu-
sions. To overcome the dependency on the scenario, a set
of four planets is simulated, with different dynamical char-
acteristics from the actual Solar system planets. With this
set of planets, a sensitivity analysis on the geometry and
on characterizing parameters (LoS measurement error
and tracking frequency) is carried out. The results define
the expected performance ranges, also as a function of geo-
metric parameters, which are useful both for understanding
the general principles of LoS navigation, and for the defini-
tion of optimal navigation solutions in realistic mission
scenarios.

This work is then intended to serve as a driver for the
design of the next-generation autonomous LoS navigation
systems, both for the hardware selection and for the navi-
gation strategy plan. Two NEAs fly-by test cases are then
defined to show how the derived general considerations
apply to realistic mission scenarios.

The paper is organized as follows: in Section 2, the anal-
ysis framework is presented. First, LoS navigation is briefly
introduced together with the Kalman filter formulation
used for this study, and then the simulation approach
and the parameters under investigation are presented; in
Section 3, a semi-analytical approach is exploited to inves-
tigate the influence of the geometry on the navigation per-
formance; in Section 4, the results of the Monte Carlo
analysis are shown. In Section 5, two realistic test cases
are analyzed in connection with the results reported in Sec-
tions 3 and 4. Finally, conclusions are drawn, highlighting
what is required to improve and use this technique for
space exploration.
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2. Analysis framework

The next subsections explain the various items related to
the analysis. First LoS navigation is introduced. Then, the
simulation approach is described, highlighting the dynam-
ics characteristics. Later, the Extended Kalman Filter
(EKF) formulation is presented, followed by the definition
of the performance indicators and the analyzed
parameters.

2.1. Line-of-sight navigation

LoS navigation is a technique based on the observation
of one or more visible celestial bodies (either planets,
moons, or small bodies). Directions to bodies are obtained
with an onboard camera (or star-tracker) and are fed to the
navigation filter, where they are processed together with
the ephemerides of the observed objects (stored onboard).
The filter processes this information together with the
spacecraft dynamics, and estimates the state (e.g. position
and velocity in a heliocentric frame) of the spacecraft. Both
observation and estimation phases can be performed
autonomously onboard.

The problem’s geometry is sketched in Fig. 1. The de-
phasing angle o is defined as the angular separation
between the position vector of the spacecraft 7 and the
position vector of the observed planet 7, ,. The separation
angle f is identified as the angular separation between the
two LoS vectors 7, and 7, centred in the spacecraft
position.

The observation of multiple bodies can occur simultane-
ously if multiple imagers are available onboard, or asyn-
chronously, either if only one camera can collect the
image, or if slew manoeuvres are required to centre the tar-
get in the FoV (Field-of-View). For the following analysis,
simultaneous imaging will be considered.

2.2. Simulation approach

This work aims to provide the reader with new insights
into the influence of some parameters on LoS navigation
performance. The following analysis is based on a new sim-

Fig. 1. Two-dimensional sketch of the geometry.
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ulation approach, to generalize as much as possible the
conclusions. Since LoS navigation is strongly reliant on
the geometry (and geometry variation) of the problem,
the simulation of realistic mission scenarios, characterized
by the observation of specific planets, in a specific time
frame, from a specific spacecraft orbit, does not allow to
dive easily into the intrinsic characteristics of this technique
but only allows to assess the applicability to a particular
test case. To draw general conclusions, a large set of realis-
tic scenarios should be simulated, adding both complexities
due to the various parameters that play a role, and signif-
icantly increasing the computation time. Besides this, a
clear definition of the steady-state behaviour of the estima-
tion would not be clear, as the geometry variation through
the simulation time frame always generates oscillation in
the solution. To overcome these problems, the approach
consists in simulating a set of four planets, that, despite
their actual position in space, maintain the same angular
separation with the spacecraft throughout the whole simu-
lation. This is done by forcing their orbital speed to be
equal to the spacecraft one. The results of this approach
can then be interpreted as the asymptotic behaviour of
the solution for a given geometry. The attention is focused
on the actual parameters under analysis, as all the others
(including geometry) are fixed. This would not be possible
for a realistic scenario simulation, as the constantly chang-
ing relative geometry would impact the results. Moreover,
as it is shown in Section 3, this approach allows a very sim-
plified definition of the information matrix, that is analyzed
to draw conclusions on the geometry.

Four planets have been simulated, all of them orbiting
around the Sun in a circular orbit in the Ecliptical plane.
Their heliocentric radii are respectively 0.4, 0.8, 1.8, and
5.2 AU. These values have been selected to cover four dif-
ferent ranges of planetary distances, which are connected
to NEAs region missions. In this paper, the four planets
will be referred to as P1 (0.4 AU), P2 (0.8 AU), P3 (1.8
AU), and P4 (5.2 AU).

For the analysis, the spacecraft’s orbit is assumed circu-
lar and heliocentric, in the Ecliptical plane, with a radius of
1 AU. Again, this has been chosen to simulate a possible
NEAs region mission. The selection of a circular orbit is
useful to have a symmetric simulation for the analysis of
the results, but it is not a limitation of the applicability
of the technique to only circular orbits. Actual interplane-
tary cruise trajectories are not necessarily circular, how-
ever, the impact of the trajectory’s eccentricity on the
navigation performance is currently not investigated, leav-
ing space for further analysis.

With these orbits (spacecraft and planets), the 3D prob-
lem becomes 2D. However, this is still compliant with
actual mission scenarios, where the relative inclination of
the orbits is small (close to 0°), as NEAs are usually
encountered in the proximity of their ascending or descend-
ing nodal passages to avoid expensive change-of-plane
manoeuvres. Fig. 2 shows a 3D representation of the orbit
of each object.
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Fig. 2. Visual representation of the spacecraft orbit (blue), and planets
orbit in a heliocentric frame.

The angular separation choice between the planets
involved in the simulation is presented in Section 4, after
the geometry analysis, to justify the selection.

The length of a simulation has been set to 730 days,
because it corresponds to two full revolutions of the space-
craft around the Sun, and because a large number of ballis-
tic transfers to NEAs have a shorter Time-of-Flight (ToF).

For the semi-analytical approach and for the sensitivity

analysis a 2-body problem dynamics has been
implemented:
- 7
r= _:uSunrij, (1)

where 7 is the heliocentric position vector of the spacecraft
and pg,, 1s the solar gravitational parameter. For the semi-
analytical approach, it will be shown how the 2-body prob-
lem dynamics, in combination with the circularity of the
orbits, will lead to a simplified analytical formulation.
Moreover, in the sensitivity analysis, the simulation model
will allow again to focus attention on the intrinsic
characteristics.

On the other hand, the propagation of the trajectories in
Section 5 for the realistic scenarios, is based on a higher-
fidelity model, composed of the 2-body problem model
with the addition of planetary gravitational disturbances
(until Saturn), and the Solar Radiation Pressure (SRP),
which can be expressed as:

= 6 = 6 -

}_; = —Hsun 13 + Z:uk r%k - Z:uk r_l’; + ZiSRP (2)
= R =

where p, are the gravitational parameters of the planets, 7,

are the vectors pointing from the spacecraft to the planets,

7, are the heliocentric position vector of the planets, and

the SRP is modelled as cannonball (Jean et al., 2019):

2Pgpp
2 (3)

where dggp 1s the SRP acceleration aligned with the space-
craft position vector, Pgp is the pressure exerted on the

—

asgp = r
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spacecraft by the solar radiation, and B is the mass-to-
area ratio of the spacecraft. Respectively they can be com-
puted as:

Py

R\ 2
PSRP:_<_O>
c \r

(4)
(5)

where P, is the solar flux at 1 AU (1367 W/m?), ¢ the speed
of light (2.998¢08 m/s), Ry is the Sun-Earth mean distance,
r is the spacecraft-Sun distance, m is the spacecraft mass,
and A is the spacecraft surface exposed to the SRP, assum-
ing a unitary reflectivity coefficient.

Concerning the simulation, a Monte Carlo approach
has been chosen. Each scenario is simulated 200 times,
and then the results are presented as the mean value of cer-
tain performance indicators (Section 2.5). Each Monte
Carlo trial is characterized by a different state initial guess
and a different set of observations. Both are computed by
adding Gaussian noise (with a certain standard deviation)
respectively on top of the actual initial state and the simu-
lated measurements.

2.3. Navigation filter

For this application and analysis, a sequential estima-
tion technique has been preferred over a batch approach.
During the cruise, real-time operations are not necessary,
so a batch approach would be possible. However, as this
analysis is carried out bearing in mind its applicability to
autonomous deep-space CubeSat, the use of a sequential
algorithm is preferred, as a smaller amount of data needs
to be stored on-board, and because a constant update of
the state estimation allows eventual manoeuvres and
operations.

An Extended Kalman Filter formulation has been
derived for the problem (Tapley et al., 2004). The state to
be estimated is the spacecraft six-dimensional Cartesian
state expressed in a heliocentric frame:

X

y
z

Sl

Ux

Uy

U |

The measurements fed to the EKF are the directions to one
or more planets, expressed in terms of azimuth 6 and eleva-
tion ¢ with respect to the observer (e.g. the spacecraft):

an

Directions to planets are expressed in the same heliocentric
frame as:

(7)
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- = xlos,k
" Vy —r
=00 = . 8
r[’k | Fk _ 7 | ylu,s,k ( )
Zlos k

where 7 is the heliocentric planet position vector. The
spacecraft attitude is considered known (in Section 4.1 it
is taken into account to define the LoS measurement error
range). General EKF equations for the state dynamics and
the observation can be expressed as:

¥ = £, ) ®)
¥ = h(F(0).5(1) = [armén%w (1)
arcsin(zjosx)

where ii is the control vector (not implemented in this anal-

ysis, as ballistic trajectories are considered). Vector X con-
tains the time-derivatives of the state vector, and it is
expressed as a function f of both state and control vectors,
which in the Monte Carlo analysis is based on Eq. (1),
while later in the realistic mission scenario analysis is based

on a reduced version of Eq. (2). Y is the computed mea-
surements vector (for each observed body), and it is
expressed as a function / of both state and control vectors.

Bold characters in the next equations indicate matrices.
The state is propagated within the filter by solving the dif-
ferential Eq. (1), while the covariance matrix is propagated
as:

P, = (I)T(tk, tk—l)f)k—lq)(tkatk—l) +Q (11)

where ®(#,, ;) is the state transition matrix and Q is the
process noise matrix:

r107'2 0 0 0 0 0

0 1072 0 0 0 0
|0 0 1077 0 0 0
Q= 0 0 0 107 o 0

0 0 0 0 10710 0

L0 0 0 0 0 107

(12)

whose diagonal values have been preliminarily tuned con-
sidering a high-fidelity propagator for the trajectory, and
a 2-body problem propagator in the EKF. While the posi-
tion elements can be kept small without influencing signif-
icantly the performance, the velocity entries require some
additional attention. Analysing various 1 AU orbits in dif-
ferent time epochs suggested that a value between 10~ and
107" allows the estimation error to be kept within the 3¢
boundaries. So for the following analyses, it has been
rounded down to 107", considering that the dynamics is
perfectly modelled in the filter. Similarly, for the realistic
mission scenarios of Section 5, the largest disturbances
are modelled in the EKF propagator, so small values are
appropriate. Accurate tuning of the Q matrix depends on
the time propagation interval: the larger the time interval,
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the larger the elements of the matrix. In this paper, various
tracking frequencies are analyzed, but the Q is kept con-
stant because formal tuning is not performed and it is left
for further analysis. Nevertheless, the results are not signif-
icantly impacted. Furthermore, following the approach
reported in Carpenter and D’Souza (2018), the elements
of Q relative to two tracking frequencies of this analysis
would differ by less than an order of magnitude.

The state transition matrix is computed at each time
interval by integrating:

(1) = FO(z) (13)

where F is the Jacobian of the state, and in the 2-body
problem formulation can be expressed as:

ro 0 0 1 0 07
0 0 0 010
0 0 0 0 0 1
F=|——7%" 35 3u % 000
3pus ——— 3u;% 0 0 0

_ A .
L 30,5 3p%s ——= 0 0 0]

(14)

The state vector and covariance matrix update can be then
expressed as:

X :Yk+Kk(?k—?k) (15)

P, = (I — KyHy )Py (16)

where X is the propagated state vector, X is the updated
state vector, Y, is the measurements vector, Y, is the com-
puted measurements vector, Py is the propagated covari-

ance matrix, f’k is the updated covariance matrix.
Respectively, the observation matrix Hy and the Kalman
gain matrix Ky can be expressed as:

I Vios, Xlos,
éos 1 _ éos 1 O 0 0 0
¥
los,1 los,1
2 2
Xlos,1Zlos,1 Yios,1Zlos,1 los,1 " los,1
2 2 2 000
3 “los,1 3 los,1 3 “los,1
st 172 Tosin | 172 TosiA [ 1o
los,1 los,1 los,1
Hk = Vios2 Xlos,2
et —2 0 0 0 O
’105.2 ’105.2
2 2
Xlos,2Z10s.2 Vios,2%los,2 los2 " los.2 0O 0 O
2 2 2
3 1— los,2 r3 1— los,2 r3 1— los,2
Tlos2 2 los,2 ) T0s,2 2
L los,2 los2 los,2 i
(17)
Ky = P.H' (H,P,H! + R,) ™ 18
x = Py (B Py + Ry (18)

where Ry is the observation covariance matrix, assumed
constant in this analysis:
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Giml 0 0 0
0 o, 0 0
Rk — los1 R ( 1 9)
0 0 00 0
0 0 0 070

The observation matrix defined in Eq. (17) corresponds to
the double-planets observation scenario, while for the
single-planet observation case the matrix reduces the first
two rows.

In realistic applications, light-time delay and velocity
aberration corrections are needed. The first refers to the
fact that light needs a certain amount of time to travel from
the body under observation to the spacecraft. This amount
of time, namely light-time delay, has to be computed
onboard to access the ephemerides at the correct time,
which can be also influenced by the onboard timing knowl-
edge. The second is an aberration effect dependent on the
relative tangential velocity of the observer (e.g. the space-
craft) with respect to the observed object (e.g. the planet).
This effect produces a shift in the position of the object
observed by the camera/star-tracker. Both can be easily
taken into account within the EKF. Light-time delay can
be corrected by iterating the ephemerides access time, as
a function of the computed distance observer-body. Veloc-
ity aberration can be corrected by estimating algebraically
the angular shift (Mortari and Conway, 2017). In this
paper, they are taken into account only for the realistic sce-
nario simulations (Section 5), as for the artificial planets
approach they would just add complexity to the general
case, without bringing interesting insights.

2.4. Performance indicators

Two indicators of the performance of this navigation
technique are used within this work. One is the 3D Root-
Mean-Square-Error (3D-RMSE, or simply RMSE) of both
position and velocity computed over the last half year,
when, as it will be shown later, the steady-state has been
reached. The other quantifies the amount of time needed
to reach a steady-state behaviour of the filter, and it is
referred to as convergence time. There is no unique way
of defining it, so, in this work, we define a custom criterion
to quantify whether the solution has reached steady-state
behaviour or not. For each scenario, the mean position
3D-RMSE previously defined is set as the threshold. Then,
the average position error evolution is computed, and when
the error goes below the threshold, the solution is consid-
ered to be steady-state, and the convergence time is
recorded. Fig. 3 provides an insight into the behaviour of
the position RMSE for a test case (the same conclusions
can be drawn for other test cases). As can be noticed, after
an initial large RMSE, the curves tend to flatten when the
steady-state is approaching. Moreover, the definition of
this convergence time criterion is particularly suitable for
this sensitivity analysis. Since a variable error in the mea-
surements results in a variable steady-state RMSE (as it
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Fig. 3. Position RMSE computed over a time interval of half year, as a
function of the initial date of the considered time interval. The scenario is
a single tracking planet (P3), with a de-phasing angle equal to 0°. The
observation error is 1 arcsec. Tracking frequency is 1 obs/day, and initial
position and velocity errors are respectively 10° km and 0.1 km/s.

will be shown later), the definition of a unique threshold
quantifying whether the error has converged or not is
reductive. With this approach, each test case has its relative
threshold for the definition of steady-state achievement.

2.5. Parameters under analysis

The purpose of this work is to show the influence of two
design parameters on navigation performance.

The first is the LoS measurement error. It represents the
angular error of the measured direction to the observed
body, that is fed to the filter. This value in practical appli-
cations especially depends on the attitude determination
performance (driven by the star trackers characteristics),
on the image processing to compute the centre of the
observed body, and on the observation scenario (e.g.
observed body, illumination condition, distance from the
observer). Then, in addition to those, systematic errors,
such as mounting offset, can be considered. For the simula-
tion, Gaussian noise is added on top of the computed azi-
muth and elevation. The noise standard deviation o,
ranges across four orders of magnitude, exponentially from
0.1 arcsec up to 100 arcsec. Current commercial-off-the-
shelf star trackers for small satellites offer an attitude
knowledge from a few arcsec up to some tens of arcsec
(Casini et al., 2021). However, usually, these values are dri-
ven by onboard algorithms that have to ensure low estima-
tion error and at the same time sufficient speed for real-
time applications (e.g. pointing, data transmission, de-
tumbling etc.). In deep-space cruising applications, speed
performance can be partially sacrificed to reach lower error
in the estimation. For this reason, a 0.1 arcsec error is also
investigated, as it is desirable for the near future.

The second important parameter, whose influence is
explored in this work, is the so-called tracking frequency.
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It quantifies the time interval between two subsequent
observations fed to the filter. This parameter is tunable
according to the navigation strategy, in compliance with
the operations and power requirements. It is important to
define whether a higher frequency of observations determi-
nes an improvement in the solution both in a global and in
a local perspective. Respectively, four tracking frequencies
have been selected: one observation every two days, one
per day, two per day, and four per day.

3. Semi-analytical geometry analysis

This technique is highly dependent on the geometrical
conditions, especially the de-phasing and separation angles,
and the distances between the objects. To quantify the
effect on the performance of these two parameters it is pos-
sible to analyze the information matrix, defined as:

n
A= 07 (1, 10)Hy WHL (4, 1o) (20)

=1

where Hy, is the previously defined observation matrix com-
puted at time ¢, ®(#, ) is the state-transition matrix, and
W is the weight matrix, inverse of R. The inverse of A is the
covariance matrix P, whose eigenvalues roots represent the
axis of the error ellipsoid in its principal frame, and are
used in this analysis to compare the performance of differ-
ent geometries.

Since in this problem W is a constant diagonal matrix
(whose elements are assumed to have the same value), it
can be taken out of the sum, and the matrix that will be
computed and inverted for the analysis is:
A= 07 (t, 10 H{H® (1, 1) (21)

=1

which is based exclusively on the geometry of the problem.
This matrix can be computed for the whole simulation
length (assuming a tracking frequency of one observation
per day), and then the eigenvalues of its inverse can be cal-
culated. As already remarked, the problem in a realistic
application is almost 2D, so it will be further assumed in
this analysis, leading to a four-components state vector.
For a circular 2D orbital problem, the state transition
matrix can be expressed as:

cos(nAt) 0 —Si“(;'A” 0
sin(nAr)
D1, 1) = 0 . cos(nAt) 0 ==
—nsin(nAt) 0 cos(nAt) 0
0 —nsin(nAt) 0 cos(nAt)

(22)

where n is the mean motion of the spacecraft and
At =t — ty. As the problem is 2D, the elevation angle is
null, so the only observable is the azimuth. Then, as the
separation angle among the objects is forced to be constant
through the simulation, the observation matrix can be
expressed as:
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ry sin(a +nAt)—rsin(nAt) r1 cos(oy +nAt)—rcos(nAt)
2 2
r s
1 1

ry sin(ap+nAt)—rsin(nAt)

0 0

H, =

3 cos(op +nAt)—rcos(nAt)
- > 0 0

L

P2

(23)

where o; and o, are the de-phasing angles with planets 1
and 2, r; and r, are the planets heliocentric radii, r is the
spacecraft heliocentric radius, and r, and r, are the
spacecraft-planets distances. This matrix holds for the
two-bodies observation scenario, while it reduces to the
only first row in case of single-planet tracking case.

The inversion of A is the core of this analysis, however,
as it has been shown in Ma et al. (2016), the single-planet
tracking case is not fully observable. This leads to instabil-

ities when it comes to invert A, so it has been defined:

J= (24)

trace (/~\UL)

which is lower than the trace of P (or the sum of its eigen-
values) (Ma et al., 2016), but can still be used to quantify
when a geometry is more favourable than another. In par-
ticular, this analysis is performed on the 2x2 upper-left par-
tition of 1~\, here defined 1~\UL, to focus on the position
estimation (although similar conclusions can be drawn
for the velocity). In Fig. 4, J is reported as a function of
the observed planet’s semi-major axis and the de-phasing
angle with the observer spacecraft. The lower its value,
the most favourable the geometry to exploit line-of-sight
navigation. As expected, the best tracking conditions for
the single-planet tracking scenario are for planets whose
position vector is aligned to the position vector of the
spacecraft, and that are as close as possible to the observer
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Fig. 4. Logl0(J) as a function of the planet semi-major axis and the de-
phasing angle for the single planet tracking scenario.
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(in this case orbiting on a 1AU semi-major axis). This opti-
mal observation scenario is however very difficult to
achieve in real missions, as objects with a lower semi-
major axis than the spacecraft cannot be observed at low
de-phasing angles due to the Sun illumination.

Moreover, the results show how, for a 1AU orbit, the
observation of planets with a lower semi-major axis pro-
duces better estimates, despite the fixed relative geometry.
So, in realistic scenarios, where the geometry is not fixed,
the better estimate derived from the observation of inner
planets is not only linked to a quicker measurement
change, which is usually beneficial for EKF, but it is also
connected to this intrinsic property of the technique.

On the other hand, the double-planets tracking case is
fully observable, the inverse of A can be easily computed,
and then the sum of the eigenvalues of Py, denoted as
Ap, can be used to quantify the impact on the geometry.
Differently from the single-planet tracking scenario, this
case is characterized by four varying parameters: the two
semi-major axes and the two de-phasing angles. Then, to
show results, two parameters need to be fixed, showing
the influence of the other two. For this reason, three cases
have been considered: observation of P1-P2, P2-P3, and
P3-P4. Figs. 5-7 show respectively the results for the three
cases. The larger error (represented by a high value in the
plots) corresponds to separation angles close to either 0°
or 180°, for all the scenarios. In the plots, it can be noticed
how there are wide regions in which LoS navigation can
provide good performance, while only in a restricted num-
ber of scenarios the geometry is not favourable to achieve
low estimation error.
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Fig. 5. Logl0O(4p) as a function of the de-phasing angles of P1 and P2.
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4. Sensitivity analysis

The next subsections are devoted to the results of the
sensitivity analysis on the LoS measurement error and
tracking frequency. First, the focus is given to the RMSE,
then the convergence time is analyzed.

LoS measurement error analysis is intended to show the
effect of different noise levels in the measurements. The
tracking frequency is kept constant to one observation
per hour, while the initial error on the state is sampled
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respectively with a standard deviation of 10° km for the
position and 0.1 km/s for the velocity. The initial position
dispersion is chosen as large for two main reasons: first, it
allows showing the potential of LoS navigation to reduce
the error even with poor initial conditions; secondly, as it
is shown later in the manuscript, in only one test case the
position RMSE is larger than 10° km, so it allows a fair
comparison between test cases. The initial velocity disper-
sion is chosen to maintain approximately the same ratio
between the order of magnitude of position and velocity
for a 1 AU orbit.

The tracking frequency analysis is aimed to investigate
the impact of the number of observations per given time
interval. For that, the LoS measurement error is kept con-
stant at 1 arcsec, while the initial position and velocity dis-
persion is assumed again respectively 10° km for the
position and 0.1 km/s for the velocity.

4.1. Position and velocity RMSE

First, the analysis is performed for the single-planet sce-
nario. Following the considerations reported in Section 3,
each planet tracking is simulated both for a de-phasing
angle o = 0°, and for « = 90°. The first corresponds usually
to a lower error scenario in terms of RMSE, while the sec-
ond represents a larger error scenario.

The results are reported in Figs. 8 and 9. Plots show how
the steady state RMSE, both for position and velocity,
scales up with the LoS measurement error. For the lower
615, the RMSE ranges respectively from ~70 km to
~3199 km for the position, and from ~0.03 m/s to
~0.62 m/s for the velocity. On the other hand, for the lar-
ger oy, the position RMSE ranges from ~2231 km to
~246110 km, while the velocity RMSE from ~0.44 m/s
to ~47.9 m/s.

For the two planets observation scenario, eight combi-
nations of planets, de-phasing angle, and separation angle
are considered. As it is shown in Section 3, the optimal con-
dition is for a de-phasing angle close to 0° and a separation
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Fig. 8. 3D position steady state RMSE as a function of the LoS standard
deviation. Angles in the legend refer to the de-phasing angle.
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Fig. 9. 3D velocity steady state RMSE as a function of the LoS standard
deviation. Angles in the legend refer to the de-phasing angle.

angle close to 90°, but for inner planets, it is not always
possible to achieve it. For all combinations, the pair’s inner
planet is placed in an orbit with de-phasing angle 0°. Then
the pair P1-P2 is considered with separation angle 50°,
which is almost the maximum permitted by the geometry.
For comparison, the other two pairs, P1-P3 and PI1-P4,
are considered with the same separation angle. For the
remaining five combinations, the separation angle is set
to 90°.

Similar conclusions to the single-planet tracking sce-
nario can be drawn. The impact on the RMSE is presented
in Tables 1 and 2, where respectively the mean RMSE of
position and velocity are reported for each scenario,
together with the standard deviation. Again, there is a quite
significant influence on the performance of the observation
error, resulting in a position RMSE in the range ~25-
90 km in the lower error scenario, and in the range
~2000-7000 km in the larger error case. For the velocity
RMSE, the ranges are respectively ~0.026-0.41 m/s and
~0.4-1.3 m/s. Despite the apparent large difference
between the position and velocity RMSE (highlighted also
in the single-planet observation case), these results are in
line with the order of magnitude of the problem, since
the position vector components are in the order of
~10® km, while the velocity ones are in the order of some
tens of km/s.

Moreover, it is noteworthy to highlight how the tracking
of two planets, rather than one only, produces a systematic
and notable performance increase. This can be noticed
especially comparing the single-planet case P4 — 90° with
the double-planets case P2,P4 —90°, as the position
RMSE of the former with an observation error of 0.1 arc-
sec (~3199 km) is larger than the position RMSE of the lat-
ter with an observation error of 100 arcsec (~2508 km).

4.2. Convergence time

This subsection is intended to show the results in terms
of convergence time. The goal is to show how quickly the
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Table 1

Position mean and standard deviation RMSE [km] per scenario (two planets observation).

Scenario 0.1 arcsec 1 arcsec 10 arcsec 100 arcsec

P1,P2 - 50° 25.87 (2.60) 142.26 (21.04) 664.45 (133.23) 3548.90 (1017.52)
P1,P3 - 50° 37.28 (4.18) 215.27 (40.57) 1020.27 (228.39) 4664.17 (1596.13)
P1,P4 - 50° 90.98 (19.28) 309.321 (45.09) 1078.14 (234.51) 5389.70 (1497.96)
P1,P3 - 90° 39.81 (5.56) 234.75 (42.47) 1068.23 (235.51) 5000.60(1593.57)
P1,P4 - 90° 84.95 (16.19) 311.44 (48.98) 1102.91 (232.68) 5420.52 (1515.73)
P2,P3 - 90° 33.99 (4.54) 180.00 (34.80) 555.01 (106.15) 2437.18 (599.17)
P2,P4 - 90° 78.53 (16.16) 191.83 (31.51) 574.71 (106.74) 2508.57 (709.41)
P3,P4 - 90° 89.40 (17.77) 362.67 (61.17) 1329.94 (311.21) 6931.25 (1923.71)
Table 2

Velocity mean and standard deviation RMSE [m/s] per scenario (two planets observation).

Scenario 0.1 arcsec 1 arcsec 10 arcsec 100 arcsec
P1,P2 - 50° 0.026 (0.002) 0.049 (0.006) 0.143 (0.031) 0.659 (0.175)
P1,P3 - 50° 0.029 (0.002) 0.066 (0.014) 0.221 (0.050) 0.867 (0.303)
P1,P4 - 50° 0.040 (0.005) 0.089 (0.013) 0.224 (0.049) 0.980 (0.277)
P1,P3 - 90° 0.030 (0.002) 0.071 (0.013) 0.232 (0.050) 0.914 (0.283)
P1,P4 - 90° 0.039 (0.005) 0.091 (0.015) 0.241 (0.054) 0.100 (0.317)
P2,P3 - 90° 0.026 (0.002) 0.062 (0.010) 0.147 (0.0266) 0.459 (0.100)
P2,P4 - 90° 0.035 (0.005) 0.064 (0.010) 0.139 (0.027) 0.468 (0.119)
P3,P4 - 90° 0.041 (0.005) 0.101 (0.019) 0.271 (0.062) 1.345 (0.368)

estimation error decreases. However, before diving into the
results, some clarifications are needed. While the definition
of the steady-state for the fixed-geometry scenario is suffi-
ciently straightforward, and with it the definition of con-
vergence time, in a realistic scenario the definition of
such is not unique. Fig. 10 reports the comparison between
the ideal P2-P3 case, with the observation of Mars-Venus
in three different time intervals. As the plot shows, the
fixed-geometry case represents the asymptotic solution also
in terms of convergence time. In fact, the best observation
condition evolution (separation angle = 90°) lays below
the other three position error evolutions, that present an
oscillatory behaviour as the observation condition varies
through time. The observation condition also influences
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Fig. 10. Position error comparison between P2-P3 case, with # = 90°, and
the observation of the pair Mars-Venus in three time intervals. o, = 1
arcsec.
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the convergence time, as better measurements produce a
quicker error decrease.

LoS measurement error has a significant influence on
the convergence time, as reported in Table 3 for the
single-planet case. For all the scenarios, it can be noticed
a relevant increase in the convergence time with the
increase of the error on the observations. As can be noticed
in Fig. 8, the 3D-RMSE for the scenario P4 — 90° is in the
same order of magnitude as the initial guess error, when
a1, = 100 arcsec. So for this scenario, the computation of
the convergence time is not applicable.

For the double-planets case, the convergence time
results are shown in Table 4, where the same trend high-
lighted in the single-planet tracking scenario can be
deduced. However, the observation of two planets gener-
ates a quicker convergence with respect to the single-
planet tracking case.

The convergence time is also influenced by the tracking
frequency. The results of the single-planet tracking scenario
are reported in Table 5. For some cases, the drop in the
convergence time with an increase in the tracking fre-
quency is more evident, while in others the decrease in con-

Table 3

Convergence time [days] per scenario (one planet observation).
Scenario 0.1 arcsec 1 arcsec 10 arcsec 100 arcsec
P1 - 0° 162 185 283 521
P1 - 90° 154 235 375 636
P2 - 0° 174 197 243 418
P2 - 90° 160 217 405 539
P3 - 0° 163 198 370 551
P3 - 90° 228 281 477 617
P4 - 0° 188 283 521 628
P4 - 90° 447 532 638 N/A
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Table 4

Convergence time [days] per scenario (two planets observation).
Scenario 0.1 arcsec 1 arcsec 10 arcsec 100 arcsec
P1,P2 - 50° 31 89 271 457
P1,P3 - 50° 50 121 314 491
P1,P4 - 50° 44 196 321 566
P1,P3 - 90° 39 102 300 604
P1,P4 - 90° 44 168 295 562
P2,P3 - 90° 44 104 213 434
P2,P4 - 90° 95 144 233 428
P3,P4 - 90° 69 191 343 553
Table 5

Convergence time [days] per scenario (one planet observation).
Scenario 0.5/day 1/day 2/day 4/day
P1 - 0° 202 185 175 141
PI - 90° 244 235 170 167
P2 - 0° 198 197 176 133
P2 - 90° 276 217 186 175
P3-0° 230 198 167 142
P3 - 90° 346 281 245 216
P4 - 0° 376 283 221 191
P4 - 90° 588 532 478 444

vergence time is more modest. This shows that in general
the geometry of the problem affects the convergence time,
however, the general trend is that an increase in the track-
ing frequency generates a faster convergence to the steady-
state. Moreover, it is important to highlight that in many
scenarios doubling the tracking frequency results in a con-
vergence time decreased by some tens of days. This is
already an important result, as this information can drive
the navigation strategy depending on the mission
requirements.

Results for the double-planets observation scenario are
reported in Table 6. First, the convergence to the steady-
state is achieved more quickly, even with the lower tracking
frequency, for which there is a convergence time lower than
230 days, while in the single-planet case it is often higher.
The convergence time decreases by some tens of days when
the tracking frequency is doubled, generating quicker con-
vergence in all the test cases.

5. NEAs fly-by mission examples

This section is aimed to show the influence of a non-
fixed geometry scenario, which has been briefly discussed

Table 6

Convergence time [days] per scenario (two planets observation).
Scenario 0.5/day 1/day 2/day 4/day
P1,P2 - 50° 144 89 71 63
P1,P3 - 50° 168 121 75 59
P1,P4 - 50° 214 196 128 88
P1,P3 - 90° 188 102 91 61
P1,P4 - 90° 190 168 152 58
P2,P3 - 90° 132 104 57 50
P2,P4 - 90° 172 144 129 106
P3,P4 - 90° 226 191 147 96
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in the introduction of the previous section. The test cases
are two NEAs fly-by missions. The test cases have been
defined with the help of the JPL Small-Body Mission-
Design Tool (Roa et al., 2018), which allows the user to
access a large dataset and to design missions towards
NEA targets. A high-thrust (ballistic) scenario is consid-
ered. The tool solves Lambert’s problem and provides the
departure and arrival dates for ballistic transfer from the
Earth to a certain NEA. However, it does not generate
the trajectory, providing only the module of the excess
velocity at departure, without directional information.
So, the trajectory is here generated separately. The analysis
is performed in an ECLIPJ2000 reference frame, centred in
the Sun. Earth’s heliocentric position is retrieved from
Spice Toolkit (Acton, 1996; Acton et al., 2018) at the sug-
gested departure date. The position of the target NEA at
the arrival date is retrieved from the ephemerides generator
of JPL Horizon (NASA-JPL, Accessed on 29th March
2022). Then, the ballistic trajectory is computed solving
separately the Lambert’s problem (Izzo, 2014). Once the
departure velocity has been computed, the initial condition
of the spacecraft is assumed to coincide with Earth’s posi-
tion at the departure time and with the computed velocity
from Lambert’s problem solution. The two asteroids that
have been considered are 2008 UA202 and 2006 RH120,
respectively the one with the lowest excess velocity and
the one with the lowest relative velocity at the encounter,
computed by the JPL Small-Body Mission-Design Tool.
The analysis presented in Section 4 is based on the
strong assumption that planets are visible through the
whole simulation time frame. This has been assumed to
investigate the intrinsic properties of the method, but when
realistic scenarios are analyzed, the planet’s visibility needs
to be considered. The planet is usually non-observable
when the angle between the direction to it and the direction
to the Sun, measured both from the spacecraft, is smaller
than the Sun exclusion angle. Each hardware (camera or
star-trackers), depending on its characteristics (especially
depending on the baffle), has its Sun exclusion angle, and
when the angle is lower, the instrument needs to be turned
off because the sunlight can blind the sensor. For this anal-
ysis, a Sun exclusion angle of 30° has been chosen, accord-
ing to star-trackers characteristics for CubeSat (Casini
et al., 2021). This problem, as it is shown in the following
test cases, especially refers to the observation of inner plan-
ets, which are also the best option for tracking to achieve
lower error. So, a smart tracking strategy exploits the
observation of inner bodies when possible, and switches
to outer bodies when the former are not visible. This
approach is used within the next test cases to define what
planets to observe at each time epoch. Earth’s observation
is neglected in the next examples because the initial condi-
tion is considered coincident with the Earth’s position, so
the LoS direction measured in the first portion of the sim-
ulation is not completely realistic. In a more detailed mis-
sion scenario, the initial condition should be coincident
with the exit from Earth’s sphere-of-influence, but this is
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far from the goal of this paper. In addition to that, the
observability of the Earth in the first mission phases shall
be analyzed according to hardware characteristics, as the
planet disk may not fit the camera field-of-view, or may
be too bright for the camera sensor (similar to the Sun).
Moreover, as mentioned in Section 2, the trajectory gener-
ation is based on a higher-fidelity model. On the other
hand, the filter’s propagator is based on a 2-body dynam-
ics, with the addition of planetary disturbances when their
module overcomes a certain threshold. This leads to an
extension of the previously defined F matrix. For each
planetary disturbance, the following matrix needs to be
added to the lower-left 3 x 3 partition of F:
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The higher fidelity model used for the trajectory generation
assumes a cannonball SRP model, whose general parame-
ters have been defined in Section 2. For these test cases, a
3U CubeSat is considered, with m = 4 kg, and A
= 0.03 m” (assuming the large side of the CubeSat is com-
pletely facing the Sun).

As remarked in Section 2.3, both light-time delay and
velocity aberration are taken into account, following the
procedure described in Mortari and Conway (2017).

Differently from the benchmark used in Section 4, the
definition of steady-state behaviour is more complicated
for a realistic mission scenario, as the changing geometry
of the problem influences the behaviour of the estimation.
In the next subsections, when the EKF provides low esti-
mation error, it will be referred to as a ‘pseudo’ steady-
state, meaning that the best estimation has been reached,
but it is still subjected to small changes due to variations
of the geometry. Alternatively, this can be interpreted as
reaching a local steady-state solution for the given instant
geometry.

Results of the Monte Carlo simulation are presented as
the evolution through time of the average position error,
for a fixed LoS error (g,0s = 1 arcsec), and initial position
and velocity error sampled respectively within 10° km and
0.1 km/s.

5.1. Test-case 1-2008 UA202

The trajectory generated by solving Lambert’s problem
is shown in Fig. 11. The departure and arrival dates are
respectively 22-07-2028 and 20-10-2029, so the ToF corre-

3005

Advances in Space Research 72 (2023) 2994-3008

Ballistic Trajectory
Initial Earth Position
Final NEA Position

*
*

s RSN

/ < \
| )

/

// / 15
x108 05 1
S 0 i %108
05

Y[km] 48 X[km]

Fig. 11. Ballistic trajectory towards 2008 UA202.

sponds to 455 days. A full revolution around the Sun is
needed to reach the target.

As already remarked, not all the planets are visible
through the whole simulation time frame, because a certain
Sun exclusion angle has to be guaranteed. Fig. 12 shows
that only Mars is constantly visible through the whole sim-
ulation, so following the inner planet tracking strategy,
before simulation date 110 and after 360 the observed pair
is Venus-Mars, while in the middle is Mars-Jupiter.

The results of the simulation are reported in Fig. 13,
where, for a fixed LoS error, the evolution of the position
error is shown as a function of the simulation date for three
tracking frequencies. On the other hand, the purple curve
shows the evolution of the separation angle between the
two observed planets. Discontinuities in the separation
angle are due to changes in the observed pair of planets.
The evolution of the position error can be described with
the help of the results presented in Sections 3 and 4. Con-
cerning geometry, small separation angles produce larger
errors. This can be noticed in the proximity of simulation
date 50. In the simulation interval between dates 270 and
360, an error increase can again be noticed. However, the
error peak is not reached at the minimum separation angle.
This is because this simulation interval is also characterized
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Fig. 12. Angular separation planet LoS and Sun direction in the
simulation timeframe.
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Fig. 13. 3D position error evolution in the simulation time-frame for three
tracking frequencies, and the separation angle evolution.

by larger gravitational disturbances, that decrease around
date 340. So the error around date 350 seems comparable
to the error around date 300, despite a different separation
angle. This test case is then useful also to highlight that the
estimation error does not rely exclusively on the hardware
characteristics, or observation strategy and geometry, but
depends also on the actual dynamics and on the technique
to account for gravitational disturbances in the navigation
filter.

Moreover, it can be noticed that the observation of the
pair Venus-Mars produces lower position error than the
pair Mars-Jupiter, as predicted in Sections 3 and 4, and
as it is evident in the error decrease after the simulation
date 360. As already mentioned, it is difficult to define
the steady-state behaviour for a geometry-changing simula-
tion, however, it is evident how a higher tracking frequency
let the position error decrease quicker (with a delay in the
order of tens of days), however, when a pseudo steady-state
solution is reached, the tracking frequency does not impact
significantly the error, as remarked in Section 4, and as it
can be noticed at the end of the simulation. Finally, the
position error at the end of the simulation (so at the
NEA approach), is ~200 km, as expected from Section 4,
where for the case P2-P3, with separation angle 90°, the
RMSE was 180 km. Case P2-P3 is really similar to the
observation Venus-Mars, and the larger error is due to a
smaller separation angle. The error in the final phase of
the simulation can be considered pseudo steady-state, and
this is because the medium-large ToF gives sufficient time
to the EKF to produce an accurate estimation of the state.

5.2. Test-case 2-2006 RH120

The trajectory to reach the NEA target is shown in
Fig. 14. The departure and arrival dates are respectively
26-05-2028 and 04-11-2028, with ToF = 162 days. This
trajectory is shorter in time than the previous one, and a
full revolution around the Sun is not achieved.
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Fig. 14. Ballistic trajectory towards 2006 RH120.

Fig. 15 shows the angular separation of the planets, so
following the same strategy, before simulation date 30 the
observed pair is Jupiter-Saturn, after 30 and before 66
the observed pair is Mars-Jupiter, and then for the rest of
the simulation, it is Venus-Mars. Similarly to the previous
section, the results are presented in Fig. 16, where the posi-
tion error evolution for different tracking frequencies can
be observed.
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Fig. 15. Angular separation planet LoS and Sun direction in the
simulation time frame.
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Fig. 16. 3D position error evolution in the simulation time-frame for three
tracking frequencies, and the separation angle evolution.
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Analogous conclusions on the separation angle can be
highlighted. However, differently from the previous case,
the effect of a higher tracking frequency on the position
error is in the order of some hundreds of km, because for
this shorter ToF the EKF does not reach a pseudo
steady-state behaviour. This is also remarked by the error
at the end of the simulation which oscillates between 500
and 1000 km (depending on the tracking frequency), which
is larger than the error in the previous case, despite the
same pair of planets being observed, even with a larger sep-
aration angle. This again shows how a higher tracking fre-
quency is important to converge quickly to a better
estimate, especially when the ToF is not sufficient to reach
a pseudo steady-state behaviour. So, depending on the mis-
sion positioning requirements, it may be necessary either to
increase the tracking frequency, or to improve the LoS
measurement, either at software or hardware level.

6. Conclusions and remarks

The paper presents an analysis of the line-of-sight navi-
gation technique for the state estimation of a deep-space
cruising spacecraft. This work investigates the impact of
both a hardware-driven parameter (LoS measurement
error) and a navigation strategy parameter (tracking fre-
quency) on both position/velocity RMSE and convergence
time. At the same time, geometrical considerations are
derived in a semi-analytical framework. The analysis is
based on a set of planets, that rotate around the Sun with
the same orbital speed as the simulated spacecraft. With
this approach, the intrinsic impact of the relative geometry
can be highlighted, having a simulation which is not
scenario-dependent (specific spacecraft orbit, planets orbit,
time-frame, etc.). The general results highlighted with this
approach are then exploited in the description of two real-
istic NEA fly-by scenarios, showing how the considerations
derived in a general framework relate to specific mission
cases.

Concerning the geometry, the de-phasing angle analysis
has shown a significant impact on the performance of the
method. Tracking a planet that lies on the same radial vec-
tor as the spacecraft is beneficial to the performance. For
the double-planets tracking case, also the separation angle
plays an important role, as when it approaches 90°, the
estimation error decreases.

Regarding the LoS measurement error, it largely influ-
ences both the performance of the method in terms of
RMSE and convergence time. The RMSE does not scale
down with the same factor as the observation error (which
scales with a factor of 10 in this analysis), but still exponen-
tially. The convergence time decrease is evident with more
accurate observations, going below 100 days for the major-
ity of the scenarios with ¢,,, = 0.1 arcsec. Moreover, com-
paring the results of the single planet and the two planets
tracking, it is evident that both position and velocity
RMSE, and convergence time improve significantly with
the observation of two planets rather than one. So again,
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an autonomous LoS navigation system properly designed
should always maximize the visibility window of at least
two planets.

Convergence time is influenced by the tracking fre-
quency, in fact, increasing the tracking frequency from
one observation every two days to four observations per
day produces a decrease in the convergence time of at least
50 days in most scenarios. Convergence times in the order
of hundreds of days suggest that to achieve a small estima-
tion error at the end of the cruise, LoS navigation should
be performed during a large portion of the transfer, even-
tually increasing the tracking frequency when the space-
craft is approaching the target.

As shown in Section 5, considering the estimation error
at the end of the trajectory, larger ToF allows for relax-
ation of requirements on LoS measurement error and
tracking frequency, as the technique has ‘sufficient time’
to provide an accurate estimation, while for a smaller
ToF a higher tracking frequency or a lower LoS measure-
ment error are suggested to reduce the error.

These results demonstrate numerically that the current
state-of-the-art for CubeSat technology is sufficiently accu-
rate and precise to ensure the applicability of LoS naviga-
tion to deep-space cruising, as for o, in the range 10-100
arcsec, the position RMSE spans from some hundreds of
km to few thousands of km in most scenarios, with an evi-
dent performance improvement in the two planets tracking
case. These values are acceptable for many mission scenar-
i0s involving CubeSat cruising in deep-space, as these posi-
tion errors allow trajectory correction manoeuvres
achievable with micro-propulsion system technology
(Casini et al., 2021; Walker et al., 2021). Moreover, the
achievable navigation error is comparable to that of the
CubeSat INSPIRE, whose estimated navigation error is
~500 km relatively close to the Earth, and ~1000—
2000 km further away, using the Iris X-band transponder
(Klesh et al., 2013).

However, if the space application requires lower error,
achieving o,,, = 0.1 arcsec would be particularly interesting
to reduce drastically the RMSE, having an accurate auton-
omous navigation system in deep-space, but also to give
more flexibility to the navigation strategy design, as it
would allow quicker convergence. Increasing the tracking
frequency allows quicker convergence, but needs to comply
with operations and power requirements.

LoS navigation is viable for deep-space applications
requiring higher autonomy, and it is exploitable by the
next-generation deep-space CubeSat, whose navigation
strategy design can be driven by the results presented in this
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