
EXPLOITING NOISY AND INCOMPLETE BIOLOGICAL
DATA FOR PREDICTION AND KNOWLEDGE

DISCOVERY

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 7 oktober 2010 om 12.30 uur
door

Yunlei LI

elektrotechnisch ingenieur
geboren te Sichuan, China



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. M.J.T. Reinders

Copromotor:
Dr. ir. D. de Ridder

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. M.J.T. Reinders, Technische Universiteit Delft, promotor
Dr. ir. D. de Ridder, Technische Universiteit Delft, copromotor
Prof. dr. ir. J.J. Heijnen, Technische Universiteit Delft
Prof. dr. A. van Kampen, Universiteit van Amsterdam
Prof. dr. M.A. Huynen, Radboud Universiteit Nijmegen
Prof. dr. J. Heringa, Vrije Universiteit Amsterdam
Prof. dr. A.P.J.M. Siebes, Universiteit Utrecht
Prof. dr. ir. A.P. de Vries, Technische Universiteit Delft, reserve lid

This work was part of the BioRange program of the Netherlands Bioin-
formatics Center (NBIC), which is supported by a BSIK grant through the
Netherlands Genomics Initiative (NGI).

ISBN 978-94-90818-03-6
Published by TU Delft Mediamatica
Printed by Universal Press - NL

Copyright c⃝ 2010 by Yunlei Li
All rights reserved. No part of this thesis may be reproduced, transmitted,
or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system,
without prior written permission of the copyright owner.



TO MY FAMILY





CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Computational methods to handle noisy data . . . . . . 2
1.1.2 Computational methods to handle incomplete data . . . 2

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Classification in the presence of class noise . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Lawrence and Schölkopf model . . . . . . . . . . . . . . . . 11

2.2.1 Modifications to the Lawrence and Schölkopf model . . 12
2.3 Probabilistic Kernel Fisher and Probabilistic Fisher . . . . . . . . 13

2.3.1 Kernel Fisher discriminant . . . . . . . . . . . . . . . . . 14
2.3.2 Probabilistic Kernel Fisher . . . . . . . . . . . . . . . . . . 15
2.3.3 Probabilistic Fisher . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Simulated data sets . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 CGH data set . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Results on the simulated data sets . . . . . . . . . . . . . 19
2.4.4 Results on the CGH data set . . . . . . . . . . . . . . . . . 20

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Classification using prior knowledge on measurement noise . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Integrative Kernel Method . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Transformation model . . . . . . . . . . . . . . . . . . . . 27

3.3 Elliptical kernel methods . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Protein complex prediction . . . . . . . . . . . . . . . . . 30
3.4.2 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Prior knowledge on measurement noise . . . . . . . . . . 31

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



vi CONTENTS

4. M-Pal: Aligning metabolic pathways between species . . . . . . . . 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Reaction retrieval . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Building block alignment . . . . . . . . . . . . . . . . . . 43
4.2.3 Pathway assembly . . . . . . . . . . . . . . . . . . . . . . 44
4.2.4 Scoring function . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. M-PAS: Measuring metabolic pathway similarities . . . . . . . . . . 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Reaction representation . . . . . . . . . . . . . . . . . . . 56
5.2.2 Reaction alignment . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Scoring function . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Pathway construction . . . . . . . . . . . . . . . . . . . . 61

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 The scoring function can address different biological

questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Comparing results of different queries can help infer ad-

ditional details . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Combining the component scores makes sense . . . . . . 65
5.3.4 The conserved part of two aligned networks is scale-free 66
5.3.5 Short pathways lead to interpretable results . . . . . . . 66
5.3.6 M-PAS reveals pathway diversity and alternatives . . . . 67
5.3.7 New links between different parts of metabolism are

found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.8 Primary metabolism is highly conserved . . . . . . . . . 70

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. RM-PAS: Aligning regulatory-metabolic pathways . . . . . . . . . . 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Regulatory-metabolic building blocks . . . . . . . . . . . 75
6.2.2 Pathway assembly . . . . . . . . . . . . . . . . . . . . . . 77
6.2.3 Scoring function . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . 79

6.4.1 Identifying conserved regulatory-metabolic network el-
ements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.2 Using one level to infer missing information at another
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.3 Revealing the differences between two levels . . . . . . . 83
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6 Appendix A: Permutation test . . . . . . . . . . . . . . . . . . . . 84



CONTENTS vii

6.7 Appendix B: Commentary . . . . . . . . . . . . . . . . . . . . . . 85
6.7.1 Experiments & results . . . . . . . . . . . . . . . . . . . . 85
6.7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Curriculum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





1

INTRODUCTION

1.1 Background

Molecular biology aims to globally and systematically characterize the basic
properties of gene products and their interactions under certain biological
conditions, so that we can gain a comprehensive understanding of the ba-
sic mechanisms underlying cellular behavior. New measurement techniques
have revolutionized molecular biology over the last decade. Various high-
throughput (HT) technologies simultaneously quantify thousands of interde-
pendent biological variables of complex biomolecular systems at various lev-
els, from the level of a cell to that of the whole organism [104, 130]. The avail-
able techniques enable us, among others, to measure genome-wide transcrip-
tion levels [155], protein abundance [41], protein-protein interactions [145],
protein-DNA interactions [121], subcellular localizations of proteins [79], gene
deletion phenotypes [154], DNA copy number variations [76], etc. However,
experimental data are often noisy and incomplete, which poses problems for
data interpretation, model construction and prediction generation.

By noise we mean any deviation of the measurements from the true values.
These measures can be about class labels or attribute features, and can be
discrete or continuous. Noise generates variation in the measurement val-
ues. When the measurement is corrupted by systematic noise, a measurement
bias is introduced. Each technology used has a different type and degree of
noise [59]. For example, gene expression data obtained from microarrays suf-
fer from noise related to hybridization and readout steps [144], while protein-
protein interaction and protein-DNA interaction screens contain a large num-
ber of false positives and false negatives [21, 149].

Incompleteness is caused by the fact that not everything is or can be measured.
Although these new technologies provide massive amounts of data, there may
be levels of cellular activities that remain unknown. Even for the known lev-
els, we still miss a lot of information. For example, many metabolites and
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enzymes have not been identified [73, 104]. As another example, von Mering
et al. estimate that less than one-third of the complete set of protein-protein
interactions has been discovered for Saccharomyces cerevisiae [149]. Even se-
quence homology-based methods fail to assign functions to a considerable
fraction (30-80%) of genes in completely sequenced genomes [61], and have
been known to produce incomplete or imprecise annotations [23, 62].

The tremendous amount of noisy and incomplete biological data formulates a
formidable task for bioinformatics to develop computational strategies and
frameworks that filter, organize, and interpret data into models which de-
scribe cellular functions. Such models can be used to systematically gener-
ate hypotheses [75, 110] and direct biological knowledge discovery. Many of
these computational techniques utilize methods developed in statistical learn-
ing, data mining, and artificial intelligence [63].

1.1.1 Computational methods to handle noisy data

When multiple data sets contaminated by noise are available, simply taking
their average (for continuous values) or intersection (for categorical values)
does not remove random noise completely, and in the mean time sacrifices
either sensitivity or specificity [102, 149]. Therefore, many studies try to in-
tegrate these data probabilistically by giving them different weights depend-
ing on their noise levels, using Bayesian approaches [65], kernel-based meth-
ods [69, 82], and other integration methods such as Fisher’s χ2 [59].

1.1.2 Computational methods to handle incomplete data

Given a variety of data sources, a properly designed integration approach
is expected to not only reduce noise, but also reduce incompleteness of the
combined data [4, 59, 64]. This is because different experiments provide
complementary perspectives of the biological system. Thus, their integration
offers a more detailed and comprehensive picture. In particular, two tech-
niques have proved to be successful in integrating incomplete data, namely
an evolution-based approach and a network-based approach.

Evolution-based approach

Based on similarities across species, we can generate hypotheses to recover
missing information in relatively poorly characterized species [130]. This ap-
proach has been used to identify candidate enzymes for certain functions [47],
predict transcription factor binding sites [80], and infer metabolic path-
ways [18, 68, 129]. Evolutionary conservation can also serve as a powerful
criterion to distinguish signals from random noise, because noise is unlikely
to reproduce in multiple species. For instance, observing coregulation of
a pair of genes over large evolutionary distances implies that it confers a
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selective advantage during evolution and that the genes therefore are likely
functionally related [137].

Network-based approach

Cells function due to the interactions between the myriad of biomolecules
they produce. To understand any biological function, we therefore not only
need the information of individual molecules, but also the information about
their relationships [5, 106]. This information can be gathered from various
experiments, and be represented by networks, e.g. protein-protein interac-
tion, regulatory and metabolic networks. Computational methods using
networks place the individual molecule in a context (i.e. relationship with
other molecules), and as such enable improved functional annotation [10, 73],
visualization, systematic analysis of the network properties [43], operon
prediction [143, 162, 163], and phenotype prediction [111, 132]. Furthermore,
comparison and integration can be done at the network level, for different
species, conditions, time points [130], or interaction types [27, 71, 159].

Evolution & network-based approach

Often, the evolution-based approach can also be applied at a network level.
That is, networks can be compared by aligning them across multiple species,
so as to evaluate various hypotheses concerning evolution, and to predict un-
known functions or interactions from the results [131]. Numerous studies ex-
ploit network similarities between different species for detecting conserva-
tion [116], drug target identification [48, 134], predicting novel networks or
parts of networks [34, 83, 96, 115], biotechnological application design [19],
and phylogenetic tree reconstruction [13, 32, 33, 53].

1.2 Scope

In this thesis, we try to exploit noisy and incomplete biological data to
improve classification (prediction) and knowledge discovery via different
computational approaches. The thesis is divided into two parts. Part I focuses
on the noise problem in a classification setting, in order to improve the class
label prediction of the biological instances themselves or of the relation-
ships between them. In Part II, we study the noisy and incomplete data
of biomolecules and their interactions within a network and evolutionary
context, to facilitate knowledge discovery. Fig. 1.1 depicts the two situations.

Part I

In the first part we pursue a theoretical investigation to build noise-tolerant
two-class classifiers. Noise is normally categorized into two types, namely



4 INTRODUCTION

Figure 1.1: Illustration of the computational approaches in this thesis. a) Part I. Here
nodes represent tumor samples (in the class noise problem) or protein pairs
(in the measurement noise problem). A classifier is inferred given the train-
ing data to predict the class label of the test data, indicated by a question
mark. b) Part II. There are four types of nodes, representing transcription
factors, enzyme-coding genes, enzymes, and metabolites. Solid lines con-
necting nodes represent interactions/relationships, e.g. transcriptional reg-
ulation or metabolic reaction. Dotted lines represent similarities between
nodes. By placing the nodes in a network context across species, we aim to
predict the information indicated by a question mark, and discover knowl-
edge about the similarities highlighted by an exclamation mark.

class noise and attribute noise [156]. Class noise occurs when the training sam-
ples are incorrectly labelled. If attribute noise is introduced by inaccurate mea-
surements, we call it measurement noise, which can be further divided into sys-
tematic and random measurement noise [103]. We address both random class
noise and random measurement noise in this part.

Noise-contaminated training data undoubtedly deteriorates the accuracy of
the classifiers built upon. Techniques handling noisy data can be grouped
into data cleaning (i.e. detect and eliminate noisy training samples prior to
classifier construction) [49, 117, 167] and noise-tolerant classifier construc-
tion [81, 100, 148]. Our research falls into the latter category, which avoids
the potential risk of removing precious good samples while keeping the bad
ones.

We aim to build classifiers that are robust when the number of samples is small
compared to the number of features. This is often the case in high-throughput
experiments, which offer genome-wide measurements as features, but for
which samples are scarce or expensive to acquire (e.g. tumor samples). This
so called small sample size problem forms a major challenge [25, 119]. Since
only a few samples are given, it becomes impossible for the classifiers to esti-
mate a large number of parameters characterizing the high-dimensional data
distribution, introducing over-fitting to the training data and resulting in poor
generalization performance.
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For the class noise problem, we adopt the model of Lawrence and
Schölkopf [81], which casts the class noise generation process probabilistically.
That means, whether each sample belongs to a certain class is expressed by a
probability. The goal is to calculate these probabilities for all samples, so that
we can recover the underlying real distribution of each class and build a more
accurate classifier.

We contribute by extending their model in three ways. First, the distribution
assumption previously made, i.e. that class conditional variances should be
equal, is relaxed. Second, we present a novel incorporation of the noise model
in the Kernel Fisher discriminant and standard Fisher discriminant, which of-
fer improved performance in some scenarios. Third, our algorithms achieve
a large performance gain on non-Gaussian data sets and data sets with rela-
tively large numbers of features compared to their sample sizes.

In the measurement noise problem, the measured (observed) value randomly
deviates from the true value. It may be due to the sample being measured
(variability of the sample), the type of measurement technique (precision of
the technique), or the measured feature value itself (e.g. high protein abun-
dance is generally more precisely measured [112]). Using training data cor-
rupted by measurement noise directly to build classifier is inaccurate, because
the data distribution is simply distorted. To address this problem, most cur-
rent statistical pattern recognition methods assume independent and identi-
cally distributed measurement noise, treating all samples, features, and fea-
ture values equally. Only a few studies address the reliabilities of different
experimental techniques [59]. Therefore, our goal was to design a classifier
which can incorporate the diverse noise levels for different instances.

Our main contribution to this problem is that we have explicitly specified
the manner of incorporating prior knowledge on measurement noise, for
individual samples, features, and feature values, in kernel-density based
classifiers. We chose this type of classifier because of its interpretability and
ability to incorporate the noise level easily. We show that including prior
knowledge is especially beneficial in a relatively under-sampled data set
when compared to the number of features.

Part II

In this part, we pursue a practical study to integrate noisy and incomplete
data of biomolecules and their interactions within a network and evolution-
ary context. We are interested in metabolic reactions (consisting of metabolites
and enzymes) and the underlying transcriptional regulation of these enzymes.
These interactions are not isolated, but are intertwined with others to form
pathways (series of connected interactions) and networks (collections of path-
ways), such as regulatory networks and metabolic networks. Our knowledge
about these networks is still developing, as some information is still missing
or unreliable, e.g. information about the regulatory binding and presence of
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enzymes or reactions.

Our goal is to exploit the available partial information, using an evolutionary
network approach. That is, we integrate networks at different levels (tran-
scriptional regulatory and metabolic) and compare the integrated networks
across species. Figure 1.1b gives an illustration. By doing so, we aim to not
only provide a more comprehensive view of the cellular system, but also to
generate more reliable information and hypotheses [55, 130]. This is because
when an interaction or a series of interactions are observed at multiple levels
and/or across multiple species, we can be more confident about the reliability
of the observations.

Our approach is one of the first attempts to conduct a systematic alignment
of the full metabolic networks of multiple species, rather than parts of con-
ventional networks (e.g. KEGG pathways). The core contributions lie in our
novel alignment and scoring frameworks. That is, we align all reactions in
entire metabolic networks of two species and assemble them into pathways,
taking mismatches (different reactions with similar or dissimilar enzymes),
gaps (different numbers of reactions in two species) and crossovers (differ-
ent sequential order of the transformations) into account. To prioritize the
resulting pathways, we have developed a comprehensive and flexible scoring
function for pathway similarity that combines all relevant and uncorrelated
information sources. Together, this allows us to make predictions although
the information is only partially available.

1.3 Outline

Part I

Chapter 2 presents three noise-tolerant classifiers for training data contam-
inated with class noise, i.e. Probabilistic Kernel Fisher (PKF), Probabilistic
Fisher (PF), and Component-based Probabilistic Algorithm (CPA). They are
based on a probabilistic model proposed by Lawrence and Schölkopf [81], in
which class labels are represented by probabilities and optimized. We ap-
ply this general idea to the Bayes classifier, Fisher discriminant, and Kernel
Fisher discriminant. We test the algorithms on several simulated noisy data
sets with different distributions, sizes and noise levels, and on a comparative
genomic hybridization (CGH) data set. The results show that the proposed
approaches substantially improve standard classifiers in noisy data sets, and
achieve larger performance gain in non-Gaussian data sets and small sample
size data sets.

This chapter was published in Pattern Recognition, 2007 [88].

In Chapter 3, we investigate the benefit of incorporating prior knowledge
about measurement noise into classifier construction. A new kernel density
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based classifier, called the Integrative Kernel Method, is proposed. Instead of
using an identical spherical kernel for each sample, we use the prior knowl-
edge to set a distinct kernel and weight for each sample, distinguishing be-
tween different levels of measurement precision and sample importance. The
integration procedure is straightforward and easy to interpret. We show how
to estimate the diverse measurement noise levels in a protein complex predic-
tion data set. Compared to standard methods, the new kernel density classi-
fier can yield a significantly better classification performance, particularly for
data sets suffering from the small sample size problem.

This chapter was published in Pattern Recognition, 2008 [87].

Part II

Chapter 4 presents a comparative analysis of metabolic reaction networks be-
tween different species. Our method, Metabolic Pathway ALignment (M-Pal),
systematically investigates full metabolic networks of S. cerevisiae and E. coli
at the same time, with the goal of identifying highly similar yet non-identical
pathways which perform the same metabolic function, i.e. the transformation
of a specific substrate into a certain end product via similar reactions. To this
end, we first align two to four similar reactions in two species into so called
building blocks, and then assemble these into pathways of a desired length. In
each building block, a specific substrate is transformed into a specific product
via similar but not necessarily identical reactions in the two species. We also
propose a scoring scheme which prioritizes the results according to functional
and sequence similarity of the enzymes involved. The analysis helps to gain
insight in the biological differences between species and provides comprehen-
sive information on diversity in pathways between species and alternative
pathways within species, which is potentially useful for pharmaceutical and
industrial bioengineering targets.

This chapter was published in the Series on Advances in Bioinformatics &
Computational Biology, 2008 [86].

In Chapter 5, Metabolic Pathway Alignment and Scoring (M-PAS) extends our
work in Chapter 4. We propose a novel scoring method to quantify the level of
conservation in a comprehensive and flexible manner, such that we can focus
on different pathways given different biological motivations. This similarity
measure compares all components of two pathways by measuring similarities
between substrate sets, product sets, enzyme functions, enzyme sequences,
and alignment topology. These individual similarity measures are integrated
into a single score. It has a hierarchical and generic form, and is capable of
measuring pathway similarity given different biological emphases.

This chapter was published in BMC Systems Biology, 2008 [85].
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In Chapter 6, the alignment framework introduced in Chapter 4 and the scor-
ing function proposed in Chapter 5 are further enhanced. Here we present
a more comprehensive method, RM-PAS, that searches for network elements
that are conserved in evolution at both the regulatory and metabolic level, and
measures the extent of this conservation. RM-PAS extends the building block
construction and the scoring function to include transcriptional regulation in-
formation. That is, for each enzyme in a reaction, we add the transcription
factors that regulate the enzyme-coding genes. We demonstrate how RM-PAS
can be applied to identify conserved regulatory-metabolic network elements,
infer missing reactions, prioritize and corroborate TF-gene binding hypothe-
ses, and reveal diverse regulation in pathways that are conserved at metabolic
level.

This chapter was published in Proceedings of the 8th Annual International Con-
ference on Computational Systems Bioinformatics, Stanford, USA, 2009 [84].
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CLASSIFICATION IN THE
PRESENCE OF CLASS NOISE

In machine learning, class noise (i.e. noise in the labelling of objects) occurs
frequently and deteriorates classifiers derived from noisy data sets. This chap-
ter presents three promising classifiers for this problem based on a proba-
bilistic model proposed by Lawrence and Schölkopf [81]. The proposed algo-
rithms are able to tolerate class noise, and extend the earlier work of Lawrence
and Schölkopf. First, we present a novel incorporation of their probabilistic
noise model in the standard Fisher discriminant and the Kernel Fisher dis-
criminant. Second, the distribution assumption previously made is relaxed in
our work. The methods were evaluated on diverse simulated noisy data sets
and a real world comparative genomic hybridization (CGH) data set. The re-
sults show that the proposed approaches substantially improve performance
of standard classifiers on noisy data sets, and achieve larger performance gain
on non-Gaussian data sets and small size data sets.

This chapter was published in Pattern Recognition, 2007 [88].
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2.1 Introduction

In inductive machine learning, it is quite frequent for noise to be introduced into a data
set. Due to the fact that the noise is unlikely to be completely excluded, the inferences
derived from the data set may become less reliable. The study of effective noise han-
dling is therefore of great importance. Generally, there are two types of noise, namely
attribute noise and class noise [156]. Class noise usually means the erroneous labelling
of the training examples. As summarized by Brodley [8], class noise can occur for sev-
eral reasons including subjectivity, data-entry error, or inadequacy of the information
used to label each object. This chapter focuses on the class noise problem.

There are a large number of possible solutions to deal with the existence of class
noise. Data cleaning, detection, and elimination of mislabelled training examples prior
to classifier induction may increase the classification accuracy [117]. The early ap-
proaches tried to remove the instances misclassified by some form of nearest neigh-
bor algorithm [20, 38, 152]. Brodley and Freidl [8] cast this problem into a filtering
framework and employed an ensemble of classifiers that served as both filter and fi-
nal classifier. Different criteria were proposed to identify the mislabelled samples. For
example, Guyon et al. [49] removed the noisy instances with high information gain
and checked them further by a human expert. While the saturation filter [36] assessed
the CLCH (complexity of the least complex correct hypothesis) value reduction. In
other methods, potential noisy data were pruned either by C4.5 [67, 167] or by neural
network [161].

Due to the potential risk of data cleaning when noisy examples are retained while
good examples are removed, in which cases the reduced training set can be much less
accurate than the full training set, efforts have been taken to construct noise tolerant
classifiers directly. Mingers [100] used rule truncation and tree pruning to reduce the
chance of over-fitting to noise. A boosting algorithm [118, 125] avoided the noise in-
fluence on constructing the classifier via combining a set of classifiers’ predictions by
voting. To improve the decision-tree approach, some noise-tolerant Occam algorithms
were applied [123]. Later on, the decision tree was enhanced to process the training
sets with labels specified by belief functions [148].

Among the numerous solutions, the algorithm introduced by Lawrence and
Schölkopf [81] has a sound theoretical foundation and elegantly includes the class
noise in a generative model. However, it remains unclear how to apply the proposed
probabilistic model in more complicated data sets, which cannot be characterized by
one Gaussian distribution for each class. Furthermore, their method constrains the
class conditional variances to be equal. Here we propose a new method, probabilistic
Kernel Fisher (PKF), which extends the previous work to non- Gaussian data sets by
providing an explicit implementation of the probabilistic model to Kernel Fisher dis-
criminant (KFD) in a projected space. In addition, we present a simpler version of PKF,
probabilistic Fisher (PF), which enables the standard Fisher discriminant to tolerate
class noise in linearly separable data sets. We evaluate all these approaches on diverse
data sets of different distributions and sizes.

The remainder of this chapter is organized as follows. In section 2.2, we briefly review
the probabilistic model proposed by Lawrence and Schölkopf [81]. Then we introduce
a modified method, CPA. In section 2.3, we describe the new methods, PKF and PF,
in detail. The experimental evaluation is carried out in section 2.4. Finally, section 2.5
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Figure 2.1: Illustration of the classification noise process. a) Conditional distribution
P(ŷ|y) with flipping rates γ0 and γ1. b) Conditional distribution P(y|ŷ)
with flipping rates γ̂0 and γ̂1.

concludes the results with a discussion.

2.2 The Lawrence and Schölkopf model

Following Lawrence and Schölkopf [81], we now describe their method briefly. The
class noise is assumed to have been generated by a classification noise process [3]. In this
kind of noise process, the input feature distribution remains the same but their labels
are independently and randomly reversed with probabilities γ0 and γ1, the flipping
rates for the two classes, respectively. Let x denote the input feature vector, y ∈ {0, 1}
be the corresponding true class label, and ŷ be the observed noisy class label. The noise
introducing process can then be specified as:

P(ŷ = 1|y = 0) = γ0 , P(ŷ = 0|y = 1) = γ1 . (2.1)

In practice, however, we only have access to the observed noisy class labels. Therefore
it is necessary to express:

P(y = 1|ŷ = 0) = γ̂0 , P(y = 0|ŷ = 1) = γ̂1 . (2.2)

Eqs. 2.1 and 2.2 are illustrated in Fig. 2.1.

Lawrence and Schölkopf [81] provide a general form that describes the data-generative
process probabilistically. In this model, a data point is represented by the joint distribu-
tion of its feature vector x, true class label y, and noisy observed class label ŷ. The joint
distribution may be factorized into a class conditional distribution and a probability of
the label being flipped:

P(x, y, ŷ) = P(y|ŷ)p(x|y)P(ŷ). (2.3)

Now if we can determine the three terms in Eq. 2.3, the true underlying distribution
can be obtained to infer an appropriate classifier. Firstly, P(ŷ) is typically estimated
as the proportion of the data in each class. Secondly, making use of the noise model
Eq. 2.2, P(y|ŷ) can be expressed by the flipping rates γ̂0 and γ̂1. The last term to be
estimated is the class conditional distribution. To simplify the model at this moment,
it can be assumed to have a multidimensional Gaussian distribution of random vector
x with mean my and covariance matrix Σy . That is, p(x|y) = N(x|my , Σy).
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Summarizing, four parameters have to be estimated: the flipping rates γ̂0, γ̂1 and the
Gaussian parameters my , Σy. Lawrence and Schölkopf showed that these parameters
can be computed by optimizing a modified form of the log-likelihood via an EM algo-
rithm. More precisely, in the “Expectation-step”, the posterior distribution of the true
class label y is computed as follows:

P(y|x, ŷ, Θ) =
p(x, y|ŷ, Θ)

p(x|ŷ, Θ)
, where Θ = {my , Σy} (2.4)

In the “Maximization-step”, the optimization of the modified log-likelihood is
achieved by the following update equations:

my =
1
νy

N

∑
n=1

P(y|xn , ŷn , Θ)xn , (2.5)

Σy =
1
νy

N

∑
n=1

P(y|xn , ŷn , Θ)(xn − my)(xn − my)
T, (2.6)

γ̂0 =
1
νy

N

∑
n=1

P(y|xn , ŷn , Θ)(1 − y)ŷn , (2.7)

γ̂1 =
1
νy

N

∑
n=1

P(y|xn , ŷn , Θ)(1 − ŷn)y, (2.8)

where N is the total number of samples in the data set, and νy = ∑N
n=1 P(y|xn , ŷn , Θ)

is the expected number of samples in class y. To implement the above EM algorithm,
Θ can be initialized as the means and covariances of the observed data set, and γ̂0
and γ̂1 may be set to any positive number. After the convergence of the EM steps, the
underlying distribution may be recovered, and the priors P(y) can also be calculated
to derive a Bayes classifier.

2.2.1 Modifications to the Lawrence and Schölkopf model

We made two modifications to the model of Lawrence and Schölkopf [81]. The first
concerns the update equations for γ̂0 and γ̂1, since the original equations 2.7 and 2.8
do not comply with the definition in Eq. 2.2. The new update equations are:

γ̂0 =
1

Nŷ

N

∑
n=1

P(y|xn , ŷn , Θ)(1 − ŷn)y, (2.9)

γ̂1 =
1

Nŷ

N

∑
n=1

P(y|xn , ŷn , Θ)(1 − y)ŷn , (2.10)

where Nŷ is the number of samples in class ŷ.

Secondly, we introduced a mixture-of-Gaussians model – instead of the single Gaus-
sian in the Lawrence and Schölkopf model – to be flexible with respect to non-Gaussian
class conditional densities. First, a clustering algorithm is applied to find the mixture
components in the overall data set. This is possible because the generative class noise
model does not alter the distribution of features. More specifically, the optimal num-
ber of components K is found when the clustering captures the data structure with
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the highest total log-likelihood. Since the likelihood of the complete data set will un-
doubtedly rise with increasing K, the data set is first divided into a mutually exclusive
training and test data set. For each K, we cluster the training set using a mixture-of-
Gaussians and assess the corresponding total log-likelihood on the test set. By doing
so, we aim to avoid overfitting the training data. The optimal number of mixtures is
determined as that value of K, which produces the highest total log-likelihood on the
test set. Again, to avoid sampling effects, the likelihood is calculated by averaging the
values over a number of different training and test-set samplings.

After associating each component with the observed noisy class label, the class con-
ditional mixture density serves as the initialization of the probabilistic model. Each
of the components is then optimized via the EM scheme by applying Eqs. 2.4 - 2.6,
2.9, and 2.10. By doing so, the underlying true class conditional distribution may be
recovered as labelled mixture components. We denote this modified Lawrence and
Schölkopf model the component-based probabilistic algorithm (CPA). The sequential
steps of CPA are summarized below:

1. Estimate the number of mixture components K and the mixture density param-
eters.

2. Map mixture components to classes.

3. Apply Eqs. 2.4 - 2.6, 2.9, and 2.10 to optimize the mixture density parameters.

4. Map updated mixture components to classes.

5. Create a Bayes classifier.

2.3 Probabilistic Kernel Fisher and Probabilistic
Fisher

In this section, the generalization of the class conditional distribution is handled by
kernel-based methods to achieve a nonlinear classifier in the input feature space with-
out modelling the input distribution explicitly. Here we first nonlinearly transform
x into a higher-dimensional space F by Φ, then seek to construct a Fisher discrimi-
nant [30] in F. In this case, the discriminant function has the form:

g(x) = wTΦ(x) + ω0 , (2.11)

where w is the weight vector in F, Φ(x) is the mapping of the input vector x in F, and
ω0 is a constant threshold. The decision rule assigns x to y = 0 if g(x) > 0, and y = 1
otherwise.

In the following the KFD proposed by Mika et al. [99] is introduced first. Then, we
show how the KFD can be extended to the PKF method to tolerate class noise.
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2.3.1 Kernel Fisher discriminant

After the nonlinear mapping Φ to the new feature space F, we seek to find a direction
w ∈ F maximizing the Rayleigh quotient:

J(w) =
wTSΦ

B w
wTSΦ

W w
, (2.12)

with
SΦ

B = (mΦ
0 − mΦ

1 )(m
Φ
0 − mΦ

1 )
T, (2.13)

SΦ
W = ∑

y=0,1
∑

x∈Xy

(Φ(x)− mΦ
y )(Φ(x)− mΦ

y )
T, (2.14)

mΦ
y =

1
Ny

∑
x∈Xy

Φ(x), (2.15)

where Xy = {x1 , ..., xNy} denotes the samples from class y.

The solution relies only on scalar products between the transformed feature vectors,
which can be replaced by some kernel function:

k(xi , xj) = ΦT(xi)Φ(xj), with i, j ∈ N (2.16)

provided that the kernel can be written as an inner product, which means it must sat-
isfy Mercer’s condition [16]. By using the kernel, we are able to compute the Fisher
discriminant g(x) (Eq. 2.11) in F efficiently without mapping to F explicitly. This
advantage could be remarkable when the dimension of the feature space F is high
or even infinite. Some commonly used kernels include Gaussian kernels k(xi , xj) =

exp(−|xi − xj|2/c2) and polynomial kernels k(xi , xj) = (1 + xT
i xj)

d for some positive
constants c and d, respectively.

Now we show how the Rayleigh quotient (Eq. 2.12) can be expressed in terms of scalar
products in F, so as to be replaced by some form of kernel. Since w lies in the space
determined by the mapping of all training samples, it can be expanded as

w =
N

∑
n=1

αnΦ(xn). (2.17)

From this expansion and the definition in Eq. 2.15, we obtain

wTmΦ
y =

1
Ny

N

∑
n=1

Ny

∑
j=1

αnΦT(xn)Φ(xj) =
1

Ny

N

∑
n=1

Ny

∑
j=1

αnk(xn , xj) = αTMy (2.18)

with

(My)n =
1

Ny

Ny

∑
j=1

k(xn , xj). (2.19)

Let M = (M0 − M1)(M0 − M1)
T, so the numerator of Eq. 2.12 becomes

wTSΦ
B w = αTMα. (2.20)
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Let Ky denote the kernel matrix for class y. It is an N × Ny matrix with the (n, j)th

entry: k(xn , xj). Then the denominator of Eq. 2.12 can be expressed as

wTSΦ
W w = αTNα, (2.21)

where
N = ∑

y=0,1
Ky(I − 1Ny )K

T
y . (2.22)

Here I is the identity matrix, and 1Ny is the matrix with all entries 1/Ny. Hence the
Rayleigh quotient becomes

J(w) =
αTMα

αTNα
. (2.23)

The maximum of J can be found for α = N−1(M0 − M1). Consequently the projection
of the input x onto w is

z = wTΦ(x) =
N

∑
n=1

αnk(xn , x). (2.24)

In this way, we obtain the projected data z in a one-dimensional space directly with-
out mapping to F. The final discriminant Eq. 2.11 can be constructed based on z by
determining ω0 in a similar way as in the Fisher discriminant.

2.3.2 Probabilistic Kernel Fisher

In the presence of class noise, Lawrence and Schölkopf [81] proposed that by assum-
ing the class conditional densities to be Gaussian distributions with equal covariances
in the mapped space, a Fisher discriminant may be computed through some EM pro-
cedure incorporating the posterior probability P(y|x, ŷ). However, the paper did not
shed light on the detailed implementation, including how to compute the posterior
probability and how to optimize the Fisher discriminant in the mapped space, which
is only implicitly defined by kernels. Here we answer the above questions, and provide
an actual realization of incorporating the probabilistic model into KFD.

First, we show how the projection direction w can be optimized in KFD when the data
contains class noise. From Eqs. 2.13 - 2.15, it can be seen that to estimate SΦ

B and SΦ
W

correctly, the key issue is to assign the data sample xn to the correct class y. In the
presence of class noise, the noisy labels are certainly not reliable enough to be used
directly. Instead, we can use some posterior probability P(yn|xn , ŷn) to attach a class
membership weight to each sample. The probabilistically weighted form of Eqs. 2.14
and 2.15 then becomes

SΦ
W = ∑

y=0,1

N

∑
n=1

P(yn|xn , ŷn)(Φ(xn)− mΦ
y )(Φ(xn)− mΦ

y )
T, (2.25)

mΦ
y =

1
νy

N

∑
n=1

P(yn|xn , ŷn)Φ(xn) (2.26)

with ν denoting the expected number of samples in class y: νy = ∑N
n=1 P(yn|xn , ŷn).
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In KFD, the mapping is done implicitly by using kernels, in which case we do not
compute Φ(x) explicitly. Still, the posterior weighting can be performed by applying
‘the kernel trick’. That is, the kernel matrix Ky becomes an N × N matrix with the
(n, j)th entry

(Ky)n,j = P(yj|xj , ŷj)k(xn , xj), (2.27)

and Eqs. 2.19 and 2.22 become

(My)n =
1
νy

N

∑
j=1

P(yj|xj , ŷj)k(xn , xj), (2.28)

N = ∑
y=0,1

Ky(I − 1νy )K
T
y . (2.29)

Thus we achieve, given P(yn|xn , ŷn), the probabilistic expression for the kernelized
Rayleigh quotient in Eq. 2.23, from which we can optimize w and compute the projec-
tion on w as in Eq. 2.24.

Now consider how to obtain the required posterior probability P(yn|xn , ŷn). Recall that
the EM algorithm in Lawrence and Schölkopf [81] estimates the posterior probability
in the input space by assuming Gaussian class conditional distributions. In KFD, this
is not possible, since we do not have access to the mapped space, F. However, if we
assume that the noisy labels are correct for the moment, we can apply KFD to compute
a projection direction, w, and project the data to z. Then we can model z with Gaussian
distributions, and apply the EM algorithm on z to obtain the posterior label probabil-
ities in the one-dimensional projected space. It is assumed that the distribution in the
final projected space approximates the structure in the mapped space, and the poste-
rior probability which maximizes the likelihood1 of z also maximizes the likelihood of
Φ(x), and eventually the likelihood of x. That is, if the two classes are well separated
on w, they are also well separated in F and the original space.

Unlike Lawrence and Schölkopf [81], here no distribution assumption is made in F.
After estimating P(yn|xn , ŷn), it is incorporated in the process of finding w to maximize
the kernelized Rayleigh quotient as shown above in Eqs. 2.27 - 2.29. These two steps
are repeated so that the w is adjusted to best separate the two classes. After that,
the threshold ω0 is computed by a Bayes classifier using the optimized distribution
parameters in the projected space. Finally, the discriminant is determined according to
Eqs. 2.11 and 2.24. The complete procedure of PKF is summarized below:

1. Initialization: apply KFD on the noisy data set directly to compute w and the
projection z.

2. Apply Eqs. 2.4 - 2.6, 2.9, and 2.10 on z to estimate the posterior probability
P(yn|xn , ŷn), log-likelihood L, and the flipping rates γ̂0 and γ̂1.

3. Incorporate the probabilities Eqs. 2.27 - 2.29, find the new w and project again.

4. Repeat Step 2 and Step 3 until convergence in L, γ̂0 and γ̂1.

5. Apply Eqs. 2.4 - 2.6, 2.9, and 2.10 on the final z to estimate the density parameters
and priors for each class in the projected space.

6. Determine the threshold ω0.

7. Create the discriminant function.
1The modified form of log-likelihood as in Lawrence and Schölkopf [81].
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2.3.3 Probabilistic Fisher

Similarly, the procedure of PKF above can be applied to Fisher’s Linear discriminant
to tolerate class noise. In this case, the posterior probability is estimated by employing
the EM algorithm Eqs. 2.4 - 2.6, 2.9, and 2.10 in the projected space z = wTx, which
is a linear transformation of the input space according to the Fisher’s criterion. The
computation of the projection direction w incorporates that posterior probability as
stated in Eqs. 2.25 and 2.26 with Φ(x) replaced by x, and is iteratively optimized. We
call it the PF algorithm.

2.4 Experiments

Extensive experiments have been carried out to evaluate the classification performance
of the PKF method using a Gaussian kernel 2 and the PF method in noisy data sets,
compared with the modified model of Lawrence and Schölkopf (CPA) and the corre-
sponding standard classifiers which do not model the class noise explicitly. The com-
parison is performed for different types of data sets, and for different noise levels. This
section first describes the experiment using simulated data sets, followed by the intro-
duction of a real world medical data set used for the evaluation. Finally, we report and
discuss the experimental results.

2.4.1 Simulated data sets

Three simulated data sets were created to represent different types of distributions. The
analysis of the performances of the classifiers in these data sets will shed light on their
properties in the presence of noise. The noiseless data sets are illustrated in Fig. 2.2. In
particular, G-ellipse is analogous to the toy data set in Lawrence and Schölkopf [81].
The class labels were randomly flipped at certain rates 3: (1) γ0 = γ1 = 0.25; (2)
γ0 = γ1 = 0.45; (3) γ0 = 0.25, γ1 = 0; (4) γ0 = 0.45, γ1 = 0; (5) γ0 = 0.75, γ1 =
0. Classifiers were trained on the same noisy data sets and the classifiers’ accuracies
were tested on independent large noiseless data sets with the same distributions as
the corresponding training sets. By comparing the error rates of classifiers with and
without modelling noise, the capability of tolerating class noise can be assessed for the
proposed approaches.

Four standard classifiers which do not explicitly model the class noise were tested
on the simulated data sets: quadratic Bayes normal classifier (QDC), k-nearest neigh-
bor classifier (k-NN), Fisher’s linear discriminant (Fisher), and the Kernel Fisher dis-
criminant using a Gaussian kernel (KFD, [99]). These classifiers were chosen as repre-
sentatives of linear and nonlinear, parametric and non-parametric approaches. Since
PKF and PF are essentially noise-tolerant extensions of KFD and Fisher, respectively,
the comparison between their performances may provide evidence on how the noise-
modelled classifiers correct for the noisy labelling effect.

2Polynomial kernels with degree two were also investigated, which performed similar to or
worse than the Gaussian kernel in the simulated data sets.

3A noise rate of x% means that for a randomly chosen subset of x% of the training samples,
the class labels are flipped to the other class.
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Figure 2.2: Illustration of the noiseless simulated data sets: a) G-easy; b) G-ellipse; c)
Triangle. The black “+” sign represents a positive class sample, while the
grey “*” sign represents a negative class sample.

As to the data set size, the training set size was set to be 100× 2 (100 samples and 2 fea-
tures) and 300× 2 for all data sets, and 100× 10 for Triangle data set. The independent
test sets were produced five times as large as their training counterparts.

The EM algorithm of the probabilistic model was initialized with flipping rates γ̂0 =
γ̂1 = 0.3 (as chosen in [81]). Actually, the model is insensitive to this initial setting.
The optimization was considered to have converged when both the log-likelihood and
the parameters changed by less than 10−2. In k-NN, the number of neighbors, k, was
chosen automatically by optimizing the leave-one-out error in the training set. For
CPA, we estimate the number of mixture components K as follows. We split the data
50 times randomly into a training set (80%) and a test set (20%). For each split and each
K = 2, . . . , 10, we apply the EM algorithm and calculate the maximum log-likelihood
over 100 random initializations, to avoid local maxima. We select the K which gives the
maximum average log-likelihood over these 50 splits. Moreover, the Gaussian kernel
width in KFD and PKF, c, was set as the average distance between the training samples.
This is done not only for comparison purposes, but also because c cannot be optimized
using noisy labels. Finally, each experiment was repeated 30 times.

2.4.2 CGH data set

BRCA1 mutation carriers usually have a high risk of developing breast cancer. Re-
cently, an approach has been developed to identify potential BRCA1 mutation carri-
ers within a group of sporadic breast carcinomas based on comparative genomic hy-
bridization (CGH) profiles [146, 151]. The data set, collected at the Netherlands Cancer
Institute, includes 34 proven BRCA1 mutation carriers (class ‘B1’) and 32 sporadic tu-
mors (class ‘C’) 4. This data set is a special case because we have prior knowledge that
only the positive class (‘B1’) can be flipped into the negative class (‘C’). That is, a sam-
ple is labelled as negative unless there is definitive proof that it is a positive one. PKF is
assessed on both a hold-out test and the complete data set. In the former case, the test
samples were excluded in the training procedure, and their estimated labels were veri-
fied with the true labels. In the latter case, the classifiers were trained and tested on the
entire data set, and each sample’s estimated posterior probability of class membership
P(yn|xn , ŷn) was analyzed.

4See Wessels et al. [151] for detailed data preparation and description.
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Figure 2.3: Average error rates of the seven classifiers. a) G-easy 300 × 2. The baseline
error (indicated by a dashed line) is taken to be QDC’s error rate in the
noiseless data set. b) G-ellipse 300 × 2. The baseline error is taken to be
QDC’s error rate in the noiseless data set. c) Triangle 300 × 2. The baseline
error is taken to be KFD’s error rate in the noiseless data set. d) Triangle
100 × 10. The baseline error is taken to be KFD’s error rate in the noiseless
data set.

In particular, two samples (namely ‘1A’ and ‘1B’) that were initially labelled as sporadic
were later confirmed to be BRCA1 carriers. This real situation offers an opportunity to
test our noise-model algorithms on these two samples. The same two genomic features
as in Wessels et al. [151] were employed in our experiment. In addition, the EM algo-
rithm was initialized as γ̂0 = 0, γ̂1 = 0.3 to exploit the prior knowledge about possible
flipping rates.

2.4.3 Results on the simulated data sets

Fig. 2.3 presents the average error rates of the seven classifiers in the simulated data
sets as box plots. The baseline error is also plotted as a dashed line in each figure. As
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expected, the noise-model classifiers generally perform better when the ratio of sample
size to dimensionality increases, i.e. 300 × 2 data sets in our experiment. In this more
favorable scenario, we can better investigate their capabilities of tolerating the class
noise.

The results indicate that the noise models (i.e. CPA, PKF, and PF) improve on the
standard classifiers (i.e. QDC, KFD, and Fisher) in most cases. The exceptions occur
when the classifier itself is not suitable for the data set. For example, Fisher is not
suitable for the linearly inseparable Triangle data set, so neither is PF. Not surprisingly,
higher noise levels can be tolerated when only one class is flipped.

In particular, PKF distinctly outperforms the others in the non-Gaussian data set (Tri-
angle 300 × 2), and reaches the baseline error when γ0 = γ1 = 0.25 and γ0 =
0.75, γ1 = 0. Compared to the application of the modified Lawrence and Schölkopf’s
model in the original feature space (i.e. CPA), PKF exemplifies the advantage of the
kernel-based method in classifying nonlinearly separable data sets with more compli-
cated distributions, as well as the capability of PKF to address class noise. The im-
provement of PKF over CPA becomes more obvious when the number of features in-
creases compared to the number of samples, as we can see from the Triangle data set
of size 100 × 10 (Fig. 2.3d). Furthermore, PKF estimates the flipping rates very well
(results not shown). When only the positive class was flipped into the negative class,
γ1 = 0 was always correctly estimated regardless of the initialization. In addition, the
non-parametric classifier, k-NN, shows performance similar to the more complicated
classifier KFD.

2.4.4 Results on the CGH data set

The two wrongly labelled BRCA1 samples have been successfully detected. In the
hold-out test, PKF was trained on the data set excluding ‘1A’ and ‘1B’, and then the
two samples were classified. As shown in Fig. 2.4a, PKF assigned both ‘1A’ and ‘1B’ to
BRCA1.

In the other experiment, PKF was trained on the entire noisy CGH data set. Fig. 2.4b
depicts the difference of the posterior probabilities, in which we see ‘1A’ and ‘1B’ are
far more likely to be class ‘B1’ instead of their current labels ‘C’. Interestingly, from the
result we also found some other sporadic samples that seem to be potential BRCA1
tumors. In-depth evaluation on these samples is suggested.

2.5 Conclusions

In this chapter we analyzed the class noise problem, presented and investigated two
noise-tolerant classifiers, which are applications of the probabilistic noise model pro-
posed by Lawrence and Schölkopf [81]. More specifically, PF and PKF aim to optimize
the projection direction in noisy data, yielding linear and non-linear classifiers in the
original space, respectively. Explicit distribution assumptions in the input space are
circumvented. Furthermore, we modified the probabilistic model of Lawrence and
Schökopf in the original feature space, and extended it to a component-based proba-
bilistic algorithm (CPA) to handle non-Gaussian data sets.
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Figure 2.4: Classification results of PKF in the CGH experiment. a) Hold-out test.
Projected test data values and the threshold ω0 computed by PKF. The
data points above the decision threshold (horizontal dashed line) indi-
cate they are classified as BRCA1. b) Posterior probability difference
P(B1|xn , ŷn) − P(C|xn , ŷn) estimated by PKF. The data points above the
threshold (horizontal dashed line) indicate possible BRCA1 carriers.

The experimental results are promising. On the whole, the proposed noise models
improve the standard classifiers when properly applied. PKF exhibited significant ad-
vantages on non-Gaussian data sets and on data sets with relatively large numbers
of features compared to the sample size. When applied to the BRCA1 data set, PKF
correctly detected the wrongly labelled samples.

Having been pointed out by Lawrence and Schölkopf [81], the computational problem
in large data sets is a major handicap of kernel-based methods. More specifically, the
kernelization algorithm increases the complexity to O(N3). For this reason, we did not
implement the experiment on larger data set with more iterations.

It should be noted that this study has addressed only random class noise in a two-class
problem. The remaining issues to be studied include how to handle other types of
class noise (e.g. not random or not independent) as well as multiclass problems. How
to distinguish noisy labelled samples from outliers is still a challenging subject [135].
In addition, when only one class is flipped, it resembles the situation of the one-class
classification problem [140]. Then the one-class classifier techniques may be adopted
to handle class noise.





3

CLASSIFICATION USING
PRIOR KNOWLEDGE ON
MEASUREMENT NOISE

Samples can be measured with different precisions and reliabilities in different exper-
iments, or even within the same experiment. These varying levels of measurement
noise may deteriorate the performance of a pattern recognition system, if not treated
with care. Here we investigate the benefit of using prior knowledge about measure-
ment noise during system construction. We propose a kernel density classifier which
integrates such prior knowledge. Instead of using an identical kernel for each sample,
we transform the prior knowledge into a distinct kernel for each sample. The integra-
tion procedure is straightforward and easy to interpret. In addition, we show how to
estimate the diverse measurement noise levels in a real world data set. Compared to
basic methods, the new kernel density classifier can give a significantly better classifi-
cation performance. As expected, this improvement is more obvious for data sets with
small sample sizes and large numbers of features.

This chapter was published in Pattern Recognition, 2008 [87].
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3.1 Introduction

In practice, prior knowledge about the problem domain at hand is usually beneficial
or even essential for solving a pattern recognition problem. Prior knowledge can take
various forms, ranging from knowledge about the importance of a class, the informa-
tiveness of features, the quality of samples, to the dependency of variables. If prop-
erly exploited, prior knowledge can substantially improve a pattern recognition sys-
tem’s performance at all stages, including domain understanding, data preparation,
data selection, feature selection, model design, result interpretation, and performance
evaluation. As the simplest example, Bayesian approaches use prior probabilities of
class occurrences as one form of encoding prior knowledge [9]. In image classification,
transformation invariance and locality information can be incorporated in designing
Support Vector Kernels [126]. In other cases, expert knowledge can be utilized to spec-
ify the topology of a Bayesian network, which circumvents learning the structure from
possibly insufficient data [128].

Despite the broad application of prior knowledge, the use of knowledge about the
measurement devices used to measure features, such as their noise levels, is hardly
addressed. By measurement noise we mean the deviation of the measured (observed)
value from the true value. It can depend on the type of feature (measurement tech-
nique), the object being measured, or the measured feature value itself. Unfortunately,
most current statistical pattern recognition methods assume independent, identically
distributed measurement noise, which might result in less reliable models. For in-
stance, the noisy training samples, especially those close to the decision boundary, will
distort the boundary if they are treated equally. Although some work addresses the
reliabilities of different experimental technologies [59], the diverse measurement noise
levels of different samples in the same experiment are ignored.

To address this problem, this chapter proposes a new methodology of utilizing prior
knowledge about measurement noise to construct a kernel density classifier. The ker-
nel density classifier is well-studied and has been successfully used in many appli-
cations [31, 113, 122]. We now interpret the concept of the kernel from the view of
measurement noise. When measurements are corrupted by random variations, each
observed sample can be characterized by a kernel centered at its true measurement
value. In this sense, a kernel actually indicates how precisely the sample is measured,
and how trustworthy the sample is as a representation of the true value. Therefore,
to approximate the original data distribution from the observed samples, we can sum
these characteristic kernels. This idea is used in the kernel density classifier.

There are three aspects that may hinder the basic kernel method’s performance. First,
all training samples in a class have the same kernel with the same shape and weight,
which implies they are equally well measured and trusted. Second, common solutions
to estimate the kernel are solely based on the measured data itself, without any knowl-
edge of measurement noise. Finally, as a density-based classifier, the kernel method
needs many samples to achieve a reasonably good performance.

The new approach presented here, the Integrative Kernel Method, aims to incorporate
the prior knowledge about measurement noise and consequently improve the per-
formance of the kernel density classifier. The main contribution is that we explicitly
specify the manner of transforming the measurement noise knowledge into a distinct
kernel for each sample. Moreover, we clearly quantify the prior knowledge about mea-
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surement noise in a biological data set, and successfully demonstrate the benefit of
our proposed method. Experimental results show classification improvements of the
new method over three more basic kernel methods at various sample sizes and feature
sizes. This means we need fewer training samples to reach the same performance after
the integration of prior knowledge, and eventually the time and the cost for collecting
samples can be reduced.

Section 3.2 first introduces the new Integrative Kernel Method, which transforms prior
knowledge into distinct kernels. Besides the basic kernel method using spherical ker-
nels, two other kernel methods using elliptical kernels are briefly mentioned in section
3.3. Section 3.4 describes a yeast co-expression data set and how to represent the prior
knowledge in this data set. Section 3.5 presents the experimental results comparing the
new method and the basic methods, followed by conclusions in section 3.6.

3.2 Integrative Kernel Method

As explained in the introduction, each sample is measured with different uncertainty,
and this information can be integrated into the kernel density classifier by applying
different kernels. Although some research has been done to estimate the kernel width
sample-wise [7, 90], those solutions were proposed to better estimate the density ac-
cording to the various sparseness of the data. The novelty of our method is that instead
of estimating the kernel only from data (the measured feature values), we intend to
utilize our additional knowledge to improve classification by explicitly transforming
it into the parameters of the kernel.

In this section, we first show how the basic kernel method can be modified theoreti-
cally. Then, we propose a simple model to transform noise level knowledge into kernel
parameters.

3.2.1 Theoretical basis

In the basic kernel method, a spherical unimodal kernel is used, and all samples have
the same weight. That is, given a training set {x1 , ..., xn} of n samples represented by
p features, the density of an object z is estimated as

p̂(z) =
1
n

n

∑
i=1

K(z − xi , hs), (3.1)

where the kernel width hs is a scalar and can be calculated per class using for example
leave-one-out maximum likelihood estimation [25].

K is a multivariate kernel that has an area of one. Here we choose the most widely
used spherical Gaussian kernel:

K(z − xi , hs) =
1

(
√

2πhs)p
exp

(
− ||z − xi||2

2h2
s

)
. (3.2)
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Figure 3.1: A demonstration of the use of kernel weights. a) The decision boundary
given A and B. b) If a less precisely measured sample A′ is only assigned a
wider kernel with the same weight as A, the decision boundary may shift
away from A′, which is counter-intuitive. c) By downweighting A′, its con-
tribution to the overall density estimate and classification is reduced, re-
solving the problem.

So Eq. 3.1 can be written as

p̂(z) =
1
n

n

∑
i=1

{ p

∏
d=1

1√
2πhs

exp
(
−

(zd − xi,d)
2

2h2
s

)}
. (3.3)

Note that Eq. 3.3 is written as a sum of product kernels in p features, which is the most
widely used form for multivariate density estimation. It assumes local independence,
without implying global independence of features.

Since samples can be measured with different noise levels in different experiments, it is
necessary to use a different kernel for each sample. More specifically, the prior knowl-
edge on measurement noise can be used to construct a distinct kernel through two
parameters. On the one hand, through the kernel width. For imprecise measurement,
it is more likely the measured value is far away from the actual value than for a pre-
cise measurement. Hence, its contribution to the density estimate should be “spread
out” more. On the other hand, through the kernel weight. Not all samples are equally
important due to their various measurement noise levels, and should not influence the
system construction equally. An imprecise measurement should get less weight in the
overall density estimation and classification. For an illustration, see Fig. 3.1.

This makes it reasonable to replace the identical spherical kernel by a distinct elliptical
kernel for each sample. That is, the scalar kernel width hs in Eq. 3.3 is replaced by hi,d,
indicating the kernel width in feature d for sample i. Similarly, we can assign a distinct
weight wi to each sample instead of an identical weight. This weight can be derived
from the sample’s weight at each feature independently, i.e. wi = ∏

p
d=1 wi,d. Then

Eq. 3.3 becomes:

p̂(z) =
1
η

n

∑
i=1

{
wi

p

∏
d=1

1√
2πhi,d

exp
(
−

(zd − xi,d)
2

2h2
i,d

)}
, (3.4)
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Figure 3.2: The effect of using different kernels on the Highleyman data set. The es-
timated density is represented by the grey-value shadow. Both estimated
boundaries (solid line) and the true boundary (dashed line) are shown. The
true boundary is computed based on the known underlying data distribu-
tion. Different kernel methods are used to compute the kernels. a) The basic
kernel method using identical spherical kernels. b) The kernel method us-
ing identical elliptical kernels (see Eq. 3.8 in section 3.3). c) The Integrative
Kernel Method using non-identical elliptical kernels (Eq. 3.4), where the
measurement noise is simulated for illustration.

where the normalization factor η = ∑n
i=1 wi.

The effect of using different kernels is illustrated on the Highleyman data set in Fig. 3.2.
The data set consists of two overlapping Gaussian classes with different covariance
matrices according to the Highleyman distribution [26, 54].

3.2.2 Transformation model

Now we introduce a simple model to transform measurement noise knowledge into
a distinct kernel width and weight for each sample. Estimation of the measurement
noise depends on the application, which will be elaborated on in section 3.4. For the
moment, suppose the measurement noise of sample i in feature d is known, and is rep-
resented by its certainty level ri,d . The larger ri,d , the more certain the measurement,
hence a smaller width hi,d and a larger weight wi,d should be assigned to this sample
at this feature. To keep it simple, we use linear functions to model the negative depen-
dency between the kernel variance h2

i,d and ri,d , and the positive dependency between
wi,d and ri,d.

The dependencies are robustly estimated piece-wise linear functions as shown in
Figs. 3.3 and 3.4. The slope of h2

i,d ∼ ri,d is estimated on values between the 25th
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Figure 3.3: The dependency function between the certainty level ri,d and wi,d, i.e. the
weight of sample i at feature d.

Figure 3.4: The two steps of specifying the dependency function between the certainty
level ri,d and the kernel variance h2

i,d. a) The h∗2
i,d function after Step 1. b)

The final h2
i,d function after Step 2.

(T25
d ) and 75th (T75

d ) percentiles of {r1,d , ..., rn,d} to avoid undue influence of outlying
certainty levels. We consider samples having ri,d > T75

d as equally trustworthy, which
makes the function robust against samples with extraordinary large ri,d.

Now we describe the two dependency functions in detail. The dependency function
between ri,d and wi,d is straightforward: the sample which has the minimum ri,d will
have a weight wi,d = 0, and the samples which are larger than T75

d will have wi,d = 1.
The weights for the remaining samples can be found using the linear function:

wi,d =
ri,d − mini(ri,d)

T75
d − mini(ri,d)

.

The linear dependency function between ri,d and h2
i,d is specified in two steps as fol-

lows.

Step 1: Slope. Initially, h∗2
i,d at T75

d is set to 0. Furthermore, h∗2
i,d at T25

d is set to h2
H,

which is derived from the optimal spherical kernel width hs: h2
H = (C · hs)2, where

C is a constant amplification coefficient. Thus the slope is specified robustly based on



3.3 ELLIPTICAL KERNEL METHODS 29

the middle quartiles of {r1,d , ..., rn,d}, and its scale is adjusted accordingly to different
sample sizes and feature sizes.

Step 2: Offset. An offset h2
0 is added to the h∗2

i,d function in order to regularize it. h0 is
found by maximizing the leave-one-out total likelihood of the training set as follows:

LL =
n

∑
k=1

log( p̂(xk))

=
n

∑
k=1

log
{ n

∑
i=1,i ̸=k

{
wi

p

∏
d=1

1√
2π(h∗2

i,d + h2
0)

exp
(
−

(xk,d − xi,d)
2

2(h∗2
i,d + h2

0)

)}}
− D, (3.5)

where D is a constant: ∑n
k=1 log(∑n

i=1,i ̸=k wi).

To implement this optimization, h0 is initialized as hs, the optimal spherical kernel
width estimated by the basic kernel method, and a hill-climbing searching method is
applied to maximize LL.

After the two-step transformation, the prior knowledge of the noise in terms of a cer-
tainty level ri,d is mapped to a kernel width within a proper range. The final depen-
dency function is depicted in Fig. 3.4b, and the density estimate in the classification

stage is computed by Eq. 3.4, with hi,d =
√

h∗2
i,d + h2

0 .

3.3 Elliptical kernel methods

The basic kernel method, which uses an identical spherical kernel for all samples, has
been introduced in section 3.2.1. Nevertheless, there are some arguments that using
a different width in each dimension may generate a better approximation of the data
density. Let hd denote the width at dimension d, then the same trick can be applied
as was used to arrive at Eq. 3.4, but here the density is computed using an identical
elliptical kernel for all samples:

p̂(z) =
1
n

n

∑
i=1

p

∏
d=1

1√
2πhd

exp
(
−

(zd − xi,d)
2

2h2
d

)
. (3.6)

Regarding the estimation of hd , there are two commonly used solutions. In the sim-
plest approach, which we refer to as the Scaled Elliptical Kernel Method, the variance of
the data in each dimension is taken into account to scale the kernel width accordingly.
More specifically, the hd per class is estimated by the following three steps:

Step 1: Normalize each feature to a unit variance by dividing all feature values by the
standard deviation σd of that feature.

Step 2: Find the optimal spherical kernel width hs in this normalized space using the
basic kernel method (see section 3.2.1).

Step 3: For each dimension, inverse-scale the found kernel width hs to the original
feature space according to hd = hs · σd.



30 CLASSIFICATION USING PRIOR KNOWLEDGE ON MEASUREMENT NOISE

Another approach to estimate hd is to maximize the leave-one- out total likelihood. We
refer to it as the ML Elliptical Kernel Method. An Expectation-Maximization algorithm
is proposed [109] and briefly described here for completeness:

E-step: Evaluate the conditional probability of each sample given every other sample.

p(xi|xk) =
p(xk|xi)

∑n
l=1,l ̸=k p(xk|xl)

=
∏

p
d=1

1√
2πhd

exp(−(xk,d − xi,d)
2/2h2

d)

∑n
l=1,l ̸=k ∏

p
d=1

1√
2πhd

exp(−(xk,d − xl,d)2/2h2
d)

. (3.7)

M-step: Determine the new hd by maximizing the expectation of the leave-one-out total
likelihood, using the conditional probabilities computed in the E-step.

h2
d =

1
n

n

∑
k=1

n

∑
i=1,i ̸=k

p(xi|xk)(xk,d − xi,d)
2 . (3.8)

3.4 Data

This section first introduces a biological classification problem, followed by a discus-
sion of the data set we use and the accompanying knowledge about the measurement
noise in this data set.

3.4.1 Protein complex prediction

The genome-wide discovery of protein complexes is crucial to elucidate the biological
system’s behavior [39, 131]. In pattern recognition terms, this problem can be cast as a
classification problem [149, 160], in which the goal is to predict whether two proteins
belong to the same complex or not.

Proteins in the same complex are often co-expressed, which means the corresponding
genes that code for the proteins have similar activities in terms of mRNA expression
levels under various conditions, e.g. different environments for the cell. Therefore, the
mRNA co-expression coefficient is an important characteristic feature and has been
broadly used [40, 64, 65, 91]. More specifically, for a pair of genes with expression
vectors x and y, their co-expression level is represented by their Pearson correlation
coefficient ρ:

ρ(x, y) =
cov(x, y)√

var(x)var(y)
. (3.9)

As we will discuss later, the measurement noise of this mRNA co-expression coefficient
can be approximated from the expression vectors x and y. Fig. 3.5 schematically shows
the mRNA expression levels of two genes under different conditions.
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Figure 3.5: Schematic illustration of the co-expression of a pair of genes in different
experimental conditions. Two situations are shown both with ρ(x, y) = 1.
a) The two genes A and B are very active in the experiments. b) The two
genes C and D are inactive in the experiments. The profiles are simplified
as sinusoid curves purely to illustrate the linear relationship between them,
while emphasizing their amplitudes. If the experiments concern different
time points, the x-axis is an ordered axis, i.e. the time series. In other types
of experiments, the axis is merely an index.

To investigate the influence of the dimensionality on the classification performance,
we use expression data sets from different labs to obtain various mRNA co-expression
coefficients for the same protein pair. Due to the different experimental setup, tech-
niques, conditions, and many other reasons, the measurements for the same protein
pair can contain diverse noise levels in different experiments. This provides an op-
portunity to study the new method’s power of integrating diverse measurement noise
both within an experiment and across multiple experiments.

3.4.2 Data set

A data set is constructed containing ∼ 2 million protein pairs of the model organism
Saccharomyces cerevisiae, or baker’s yeast. Each protein pair is a sample in the data
set. There are 11 features that are mRNA co-expression coefficients computed from
the expression profiles measured from 11 labs independently. The data come from the
Stanford Microarray Database [44], Tai et al. [138], and Hughes et al.[58]. All data used
in this work can be found at http://ict.ewi.tudelft.nl/∼yunlei/measurementnoise.

In accordance with previous research [65, 91], we define the true class label of each
sample based on the MIPS complexes catalog [98]. This results in 7929 samples in the
positive class ‘P’ (the two proteins belong to the same complex) and 2 129 049 samples
in the negative class ‘N’.

3.4.3 Prior knowledge on measurement noise

Let S denote the divisor in Eq. 3.9, to which we refer as Product of Standard-deviations:

S(x, y) =
√

var(x)var(y). (3.10)
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When S is relatively small, it means the activity of at least one gene in the pair does
not change significantly across these experimental conditions, which suggests that the
obtained expression vector is likely to be only noise instead of a real pattern of activity.
Therefore, the expression vector is not informative and the Pearson correlation coef-
ficient ρ thus computed may not reflect the true linear relationship between the two
genes reliably. That is, a high ρ of a pair with a small S cannot guarantee the genes
are truly co-expressed, as low variance here indicates lack of information rather than a
precise measurement. On the contrary, we are more confident about whether ρ reflects
the co-expression level well when S is larger. These two situations are illustrated in
Fig. 3.5.

This suggests that we can utilize the Product of Standard-deviations S to estimate the
certainty level ri,d of each sample in this data set, and have it serve as the input of
the transformation function in the Integrative Kernel Method (section 3.2.2). After this
step, the dependency functions h2

i,d ∼ ri,d and wi,d ∼ ri,d are fully specified. The de-
pendency h2

i,d ∼ ri,d indicates that the variance of the kernel is proportional to the
combined variance (Product of Standard-deviations) of the gene pair’s mRNA expres-
sion levels, with both sides of the equation having the same metric.

The certainty level ri,d can be estimated either directly or indirectly from S. In the sim-
plest case, ri,d is computed based on the experimental expression profile of the pair
of genes directly, according to Eq. 3.10. However, we observed a significant depen-
dency between the co-expression coefficient ρ and the Product of Standard-deviations
S. Fig. 3.6 displays the regression result of S on ρ obtained by non-parametric Locally
Weighted Regression [14]. It clearly shows that S is noticeably dependent on ρ: when
a gene pair is more positively (or negatively) co-expressed, the Product of Standard-
deviations S tends to be larger, and therefore the measured feature value is more re-
liable. This result is not surprising, because the noisy expression profiles produced
by inactive protein pairs are less likely to have a linear relationship. Consequently,
the certainty level ri,d can also be estimated indirectly from the regression of S on ρ.
This essentially means that our knowledge of measurement noise now comes from two
sources, namely observed Product of Standard-deviations and measured co-expression
coefficient, considering the individual activity changes of two genes (S) as well as their
joint change (ρ), and providing a more consistent and informative measure of certainty
levels.

3.5 Results

To demonstrate the added value of prior knowledge about measurement noise, we
investigate the classification performances of the proposed method and basic kernel
methods on the yeast co-expression data set. The classification performance is mea-
sured by the AUC (Area Under ROC Curve) [51], which considers the overall perfor-
mance of a classifier under all possible class priors (relative class sizes) and can be
averaged over multiple experiments. This measure is general and not specific to the
yeast co-expression data set.

The experiments are carried out as follows:

Step 1: Generate a training set and a test set by sampling randomly from the entire data
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Figure 3.6: The regression result of the Product of Standard-deviations S on the co-
expression coefficient ρ obtained by Local Weighted Regression on ‘Spell-
man’ data set of Stanford Microarray Database.

set. The training set contains 10, 50, and 300 samples per class. The test set has 2000
independent samples per class.

Step 2: On the training set, rank the 11 features by the Mann-Whitney U test [94].

Step 3: On the training set with incrementally added features (best 1, best 2, ...; accord-
ing to the U test), apply all kernel methods to compute the kernel width (and weight)
for each training sample. Note that all parameters, including ri,d , are estimated on the
training set only.

Step 4: Estimate the posterior probability of the test samples, i.e. P(Class ‘P’ | test
sample) and P(Class ‘N’ | test sample).

Step 5: Compute the AUC for each method.

Step 6: Repeat Steps 1-5 200 times.

The results are presented in Fig. 3.7, which shows the average AUC over the 200 it-
erations for increasing feature set size. When the ratio of the feature set size divided
by the sample size is large (e.g. 10 samples per class with 11 features), the Integrative
Kernel Method outperforms all other kernel methods. The pairwise t-test indicates
that the performance difference between the Integrative Kernel Method and the best
basic method (i.e. the Scaled Elliptical Kernel Method) is statistically significant: p-
value = 10−6, 2 × 10−29, and 7 × 10−15 for 10, 50, and 300 samples with 11 features,
respectively.

This improvement demonstrates the benefit of using prior knowledge, in this case the
measurement noise knowledge, when there are a limited number of training samples
with high dimensionality. On the other hand, it means fewer samples are needed for
the Integrative Kernel Methods to reach a certain performance, compared to the other
methods. In Fig. 3.7 for example, to obtain the same performance in 11-D, the Inte-



34 CLASSIFICATION USING PRIOR KNOWLEDGE ON MEASUREMENT NOISE

Figure 3.7: Classification performances in terms of average AUC. The average AUCs
of each method at different feature sizes are shown as bars. The standard
deviation of each method at a certain feature size is indicated by a whisker
extending from the average AUC: a) 10 samples per class in the training set.
b) 50 samples per class in the training set. c) 300 samples per class in the
training set.

grative Kernel Method only needs about 20% of the training samples that the Scaled
Elliptical Kernel Method needs.

For the previous results, the amplification coefficient C (section 3.2.2, Step 1) is taken
to be 2.5. The classification performance, however, is quite robust w.r.t. the choice of
this parameter. This is shown in Fig. 3.8, which presents the results for C = 1.5, 2, 2.5,
3, and 3.5.

We also investigated the performance of the Integrative Kernel Method using the mea-
sured Product of Standard-deviations S directly to estimate the certainty level ri,d .
The performances of the Integrative Kernel Method using the two different ways to
estimate the certainty level are shown in Fig. 3.9. We can clearly observe a difference
between the two approaches, which becomes more apparent when the sample size
increases. In Fig. 3.9a, when the training sample size increases to 300 per class, the per-
formance of the direct estimation approach degrades. This is because some features
(experiments) contain many measurements that are inconsistent with the regression
relationship between the Product of Standard-deviations S and the co-expression coef-
ficient ρ, i.e. the experimental results are noisy and far away from the regression curve,



3.5 RESULTS 35

Figure 3.8: The average AUC of the Integrative Kernel Method for different C. The
average AUCs for each C value at different feature set sizes are shown as
bars. The standard deviation is indicated by a whisker extending from the
average AUC. The similar performance results indicate that the method is
insensitive to the value of C. The training set size is 50 samples per class.
The results for other training set sizes are similar (results not shown).

in spite of the high ranks of the features in the Mann-Whitney U test. Therefore, di-
rect application of the measured S results in inconsistent kernel widths and weights.
Consequently, the performance of the Integrative Kernel Method degrades when such
noisy features are encountered, and becomes worse given more noisy samples.

As we can see from Fig. 3.9b, this drawback of direct application of the measured Prod-
uct of Standard-deviations S is overcome by the regression procedure as we proposed.
For these noisy data, the corresponding part of the regression curve tends to be flat,
which means all samples will have similar certainty levels and consequently similar
kernel widths and weights. This actually alleviates the erroneous estimates made by
using the measured S directly.

Nevertheless, the performance of the Integrative Kernel Method is still deteriorated by
those noisy features. In Fig. 3.7c for example, the Integrative Kernel Method is inferior
to the basic methods for the first four or first five features. This brings up an important
issue of classifier construction, namely feature selection. When prior knowledge is
incorporated in the classifier construction, only those features that contain consistent
and accurate information about measurement noise should be used.

We proved the advantage of feature selection by a followup experiment, in which three
noisy features were removed. These features were found to have the largest average
MSE in 200 iterations of the leave-one-out Locally Weighted Regression on normalized
data 1. The performance improvements of the Integrative Kernel Method over the

1The data set has 10 samples per class. Each feature is normalized to zero mean and unit
variance prior to the regression, so that the MSE results of different features can be compared
with each other.
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Figure 3.9: The average AUC of the Integrative Kernel Method without and with re-
gression. The average AUCs of each training set size are shown as bars. The
standard deviation is indicated by a whisker extending from the average
AUC. a) The measured Product of Standard-deviations S is taken to be the
certainty level ri,d directly. b) The regressed Product of Standard-deviations
Ŝ is taken to be the certainty level ri,d, which improves the classification
performance of the Integrative Kernel Method, especially for larger sample
sizes (same results as in Fig. 3.7).

Scaled Elliptical Kernel Method are shown in Fig. 3.10, from which we can see the
effect of feature selection. The performance difference between the Integrative Kernel
Method and the Scaled Elliptical Kernel Method is increased substantially after the
feature selection as the pairwise t-test indicates. For 10, 50, and 300 samples with seven
features, for example, the p-values are 3 × 10−6 , 6 × 10−11, and 2 × 10−5, respectively,
before feature selection; after feature selection, the p-values become 3 × 10−21 , 7 ×
10−32, and 9 × 10−15.

Regarding the other kernel methods, it is shown in Fig. 3.7 that the Scaled Elliptical
Kernel Method is slightly better than the Spherical Kernel Method given a reasonable
number of samples, e.g. more than ∼ 50 per class. Interestingly, the ML Elliptical Ker-
nel Method behaves worst in almost all cases. In-depth investigation indicates that this
result stems from the fact that the objectives and the corresponding criteria are different
between the parameter estimation stage and the final application stage. That is, the ker-
nel width is estimated to optimize the density estimation in terms of total likelihood,
not the classification performance in terms of AUC. Therefore, when applied to the
yeast co-expression data set and the Highleyman data set, it is not surprising that this
approach outperforms the Spherical Kernel Method in density estimation. However,
where classification performance is concerned, this approach suffers from overfitting
in the more complex data set, i.e. the yeast co-expression data set, especially when the
number of samples is limited.
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Figure 3.10: The average AUC improvement of the Integrative Kernel Method over the
Scale Elliptical Kernel Method without and with feature selection. a) All
11 features are used (same results are used as in Fig. 3.7). b) Three features
are removed in the feature selection.

3.6 Conclusions

This work exploits the prior knowledge about measurement noise in constructing ker-
nel density based classifiers. A new kernel density based classifier which transforms
this knowledge into kernel widths and weights is investigated, and compared to three
basic kernel methods.

Our methodology can be used for any specific application –

Step 1: Estimate the certainty level r carefully, so that it represents the measurement
noise level precisely and consistently. As we saw from the comparison of the two
ways to estimate the certainty levels in the yeast co-expression data set, the regression
procedure greatly improves the certainty level estimation, which eventually results in a
better classification performance. A related important issue is feature selection, which
means removing features for which it is difficult to estimate r well.

Step 2: Transform r into the kernel width h and weight w (see section 3.2.2), and per-
form classification using Eq. 3.4. This transformation model is general and not depen-
dent on the application. Of course, the parameters should be estimated on the data set
at hand.

Classification performance on the yeast co-expression data set demonstrates the power
of utilizing the prior knowledge, in which the proposed Integrative Kernel Method sig-
nificantly outperforms the basic methods. In particular, the integration of prior knowl-
edge about measurement noise is especially beneficial in a relatively under-sampled
data set when compared to the number of features. When the number of training
samples approaches infinity, the Integrative Kernel Method will converge to the basic
kernel methods. This is what we expect, since the characteristic of measurement noise
can be fully represented by the infinite number of observed samples, and the benefit of
prior knowledge will therefore disappear.
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The methodology is applied on the kernel classifier in this work because of its inter-
pretability and ability to incorporate the noise level easily. The concept can be applied
to other pattern recognition techniques and problems which require data integration
by transforming the noise knowledge of the problem into an embedded variable of an
appropriate classifier, e.g. a sample-wise parameter for misclassification cost (C) in the
support vector machine [6, 15].

Our work can be thought to fall into the category of robust statistics [50, 56, 95], as we
seek to build a robust classifier based on noisy data which deviate from the true values.
Moreover, the dependency functions h2

i,d ∼ ri,d and wi,d ∼ ri,d we propose resemble
some Ψ functions of an M-estimator [50]. In general, most robust methods aim to cope
with data sets contaminated by gross error or outliers, rounding and grouping errors,
missing data, departure from an assumed sample distribution, and the random error
which models the deviations occurring if multiple independent measurements were to
be taken for the same quantity.

Here we have no assumption on the sample distribution, and we do not have mul-
tiple independent measurements for each feature of each sample. Our problem and
methodology are different from the standard robust setting, in that we have only one
observation (measurement) per sample per feature, but we do possess additional infor-
mation about the observation quality. Assuming the random error of the measurement
for each feature of each sample has a normal distribution, we use the additional in-
formation to estimate its width. Moreover, we also use the same prior knowledge to
compute sample weights (i.e. influences), unlike standard robust methods. As a result,
our method can greatly improve the efficiency of classifiers, since fewer measurements
are required.



4

M-PAL: ALIGNING
METABOLIC PATHWAYS

BETWEEN SPECIES

Comparative analysis of metabolic networks in multiple species yields important in-
formation on their evolution, and has great practical value in metabolic engineering,
human disease analysis, drug design etc. In this work and the next two chapters, we
aim to systematically search for pathways conserved in two species, to quantify their
similarities, and to focus on the variations between them.

Our method systematically investigates full metabolic networks of two species by ex-
ploring reaction arrangement possibilities, with the goal of identifying highly similar
yet non-identical pathways which perform the same metabolic function. We present
a clear framework for matching metabolic pathways, taking mismatches, gaps and
crossovers into account. We also propose a scoring scheme which combines enzyme
functional similarity with protein sequence similarity. This analysis helps to gain in-
sight in the biological differences between species and provides comprehensive in-
formation on diversity in pathways between species and alternative pathways within
species, which is useful for pharmaceutical and industrial bioengineering targets. The
results also generate hypotheses for improving current metabolic networks or con-
structing such networks for currently unannotated species.

This chapter was published in the Series on Advances in Bioinformatics & Computational
Biology, 2008 [86].
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4.1 Introduction

The metabolic network of a species represents all known chemical reactions of
metabolism within a cell. A single, relatively isolated cascade of such reactions is nor-
mally called a metabolic pathway. Most metabolic reactions are catalyzed by specific
groups of enzymes. These enzymes are annotated by EC numbers [105], hierarchi-
cally organized numbers indicating the type(s) of reaction they catalyze. Studying the
metabolic network is a powerful tool to elucidate the cellular machinery. Therefore, it
has been an active research field for the last decade [12, 13, 19, 33, 92, 107, 142, 165].

Comparing pathways between multiple species provides valuable information to un-
derstand evolutionary conservation and variation. Kelley et al. [70] align protein in-
teraction networks and predict protein function and interaction using conserved path-
ways. We extend their alignment concept to the metabolic level, to discover conserved
metabolic pathways. Such a pathway transforms a specific substrate into a specific
end product via very similar reactions in multiple species. These reactions are similar
since they have common substrates and common products. However, they may have
different co-substrates or co-products, be catalyzed by different enzymes, need differ-
ent numbers of reactions to complete the transformation, or reactions may occur in a
different order.

Although many comparative analyses at the metabolic level have been performed, lit-
tle work focuses explicitly on the discrete differences between conserved pathways,
and to our knowledge no global search has been carried out yet. For example, Forst
et al. [33] perform a phylogenetic analysis on four pre-chosen pathways by combining
the sequence information of a set of enzymes and gene-coded metabolites in a path-
way. Dandekar et al. [19] also limit their study, to the glycolysis pathway. As for the
similarity measure for matching pathways, Tohsato et al. [142] align pathways based
on enzyme EC number similarity, discarding information on the involved metabolites.
In Clemente et al.[12, 13], sets of reactions in multiple pathways are compared, omitting
connectivity between the reactions.

Inspired by the PathBLAST algorithm of Kelley et al. [70], we propose a novel ap-
proach to align metabolic pathways. Our method, Metabolic Pathway ALignment (M-
Pal), aligns entire metabolic networks of different species in order to explore highly
conserved pathways. In the resulting aligned pathways, most reactions are identi-
cal; the remaining reactions are not identical, yet similar (see Fig. 4.1 for illustration).
These conserved pathways are very likely to be essential or efficient pathways. More
importantly, our method sheds light on differences between species in the use of non-
identical but similar reactions, revealing between-species diversity and within-species
alternatives. We introduce diversity in a pathway as a term indicating that each species
has its own unique mechanism to allow a certain biochemical transformation to take
place. If both species share a common reaction, but one of the species has a second,
unique reaction to perform the same transformation, then this last transformation
forms part of a unique alternative pathway. Fig. 4.2 gives a schematic explanation of
these two terms, in which different types of arrows are used to indicate unique reac-
tions of one species.

Diversity and alternatives across species give insight into biological differences be-
tween species, provide potential candidate enzymes for bioengineering, and gener-
ate hypotheses on missing enzymes or incorrect annotations in current metabolic net-
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Figure 4.1: Illustration of our searching target. The pathways in two species share com-
mon reactions (A and D), but also have variations (B and C).

Figure 4.2: Illustration of diversity and alternative pathway. In each case, the reactions
in both species are combined into a unified representation for conciseness.

works. Moreover, the resulting pathways give more options in pathway engineering
and constructing metabolic networks for unannotated species. Finally, this method
unites reactions in isolated metabolisms into a large network, relating reactions with
upstream substrates and downstream products which might be elusive if we only look
at a subset of the network.

We apply M-Pal to Saccharomyces cerevisiae and Escherichia coli, and find 2518 short
conserved pathways. In each conserved pathway, 4-5 reactions from one species are
aligned with similar reactions from another species. Among the results, ∼ 1500 path-
ways are diverse or contain unique alternative enzyme activities. We categorize the
differences between pathways and refine the search result by scoring each pathway
according to functional and sequence similarity of the enzymes involved. This scoring
scheme enables us to focus on highly conserved pathways with similar enzymes. We
show that a number of metabolic annotations can be attached to each of the resulting
pathways, demonstrating the strength of our systematic search in unearthing novel
cross-links in metabolic networks.
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Figure 4.3: M-Pal flow chart.

We describe M-Pal in detail in section 4.2. The results are presented and discussed in
section 4.3. Section 4.4 ends with some conclusions and an outlook to further work.

4.2 Method

Since we seek to investigate diversity and alternatives in highly conserved metabolic
pathways, we align the pathways from two species into a conserved pathway in a
rather strict way. That is, we align two pathways only if most of the involved reactions
in these two species use similar enzymes to catalyze common substrates into common
products, introducing only a limited amount of freedom into the alignment. More
specifically, let P1 and P2 denote two metabolic pathways in two species containing re-
actions [R11 , R12 , ..., R1L] and [R21 , R22 , ..., R2L], respectively. P1 and P2 can be aligned
into a conserved pathway only if the individual reactions are aligned in the right order.
That is, R11 is aligned with R21, R12 is aligned with R22 etc., until R1L is aligned with
R2L. We call each pair of matching reactions, e.g. R11 and R21, a building block.

Given the restrictions mentioned above, we propose an efficient matching mechanism
which constructs all building blocks first, and then assembles them into pathways of
a desired length, taking reaction directions into account. After the aligned pathways
are obtained, we compute an enzyme similarity score for each aligned pathway. In this
way, we eventually get a list of conserved pathways, ordered by this score.

This sequential procedure of matching and scoring (see Fig. 4.3) ensures the search
for all matching pathways is complete and allows for a flexible scoring function. The
exhaustive search results can be pre-computed and, as scoring is performed separately,
no potential match will be missed because of prematurely discarding a pathway in the
search. Our method is explained in detail in the remainder of this section.

4.2.1 Reaction retrieval

We obtained the general reaction definitions from Release 42.0 of the KEGG LIGAND
composite database [45], updated on May 14, 2007. For each species, we acquired
the subset of reactions present in that species, together with the EC numbers and
ORF names of the enzymes which catalyze each reaction, from the KEGG/XML and
KEGG/PATHWAY databases.
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Figure 4.4: Reaction representation. a) Illustration of two representations of reactions
in our method. b) One reaction from S. cerevisiae (on the left) and two re-
actions from E. coli (on the right) share a common substrate (Indoleglycerol
phosphate) and product (L-Tryptophan). This situation forms one “gap”,
i.e. the difference in the number of reactions to transform Indoleglycerol
phosphate into L-Tryptophan is one.

In M-Pal, reactions are represented as a combination of the classic “enzyme-centric”
and “compound-centric” representations. Thus, a reaction is represented by all ele-
ments involved: metabolites, (a group of) enzyme(s), and its direction. Fig. 4.4a gives
an example. To allow us to compare reactions from different species, we plot them next
to each other, with the matching substrate or product in the same row. Sometimes, a
single reaction and a series of reactions connected in tandem may share common sub-
strates and products. This introduces “gaps”, indicating that the number of reactions
to transform the specific substrates into the specific products differs between species.
Fig. 4.4b illustrates this: one reaction from S. cerevisiae and two reactions from E. coli
form a “gap”.

4.2.2 Building block alignment

Two reactions R1l and R2l can be aligned to form a building block when they have
a common substrate and a common product, and at least one pair of enzymes (one
from each species) share functional similarity such that the first two digits of their EC
numbers are the same. Note that a reaction can be catalyzed by a group of enzymes,
which may have multiple EC numbers. By allowing some variation, we introduce a
number of building block types (see Fig. 4.5). If R1l and R2l are identical, i.e. the same
reaction is present in both species, the resulting building block is called “identical” (i).
If R1l and R2l are different reactions, because of different co-substrates or co-products
according to the definition in section 4.2.1, they form a “direct” building block (d). To
incorporate alternative pathways, evolutional diversity and annotation errors, we also
allow one “mismatch” or one “gap” in a building block. Thus, in an “enzyme mismatch”
building block (em), the first two digits of the EC numbers of the enzymes involved are
not the same. The building blocks containing one “gap” are “direct-gap” (dg) and “en-
zyme mismatch-gap” (eg). Furthermore, we include “enzyme crossover match” building
blocks (ec) to accommodate possible variation in the order of the catalyses: there are
two reactions in each species sharing common substrates and end products with the
EC numbers of the first and second reaction in one species being similar to those of the
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Figure 4.5: Illustration of the six types of building blocks. The reaction directions are
omitted in the figure for simplicity. A dashed link is drawn between two
groups of enzymes if they share the same first two digits of their EC num-
bers.

second and first reaction in the other species, respectively.

To summarize, the reaction alignment method described above results in six types of
building blocks, each containing one or two reactions from each species. Note that
26 “current metabolites” [92, 165], listed below 1, were excluded from consideration
as common substrate or product to avoid finding large numbers of trivial conserved
pathways.

4.2.3 Pathway assembly

Next, we focus on finding conserved short acyclic pathways. We only assemble four
building blocks into a pathway, ensuring that one reaction does not appear more than
once in a pathway. Moreover, we demand that out of these four building blocks, at
least three must be of type “identical” or “direct”, representing the conserved part of
the pathway. Only a single building block of type “enzyme mismatch”, “direct-gap”,

1ATP, ADP, UTP, UDP, GTP, GDP, AMP, UMP, GMP, NAD, NADH,NADP, NADPH, Acetyl-
CoA, CoA, Propanoyl-CoA, L-Glutamine, L-Glutamate, 2-Oxoglutarate, CTP, CDP, CMP, H2O,
CO2, NH2, Phosphate.
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Figure 4.6: Illustration of the removal of redundant pathways. See Fig. 4.5 for legends.
Six possible pathway alignments can be induced in this example (each re-
action is represented by the corresponding enzyme groups): (1) Reactions
A-B-C-E of species 1 with a-b-c-e of species 2, obtaining an “i-i-i-i” align-
ment. (2) Reactions A-B-D-E of species 1 with a-b-d-e of species 2, obtain-
ing an “i-i-i-i” alignment. (3) Reactions A-B-C-E of species 1 with a-b-d-e of
species 2, obtaining an “i-i-x-i” alignment, where x indicates one of the five
non-“identical” building block types. This alignment is redundant with (1)
and (2). (4) Reactions A-B-D-E of species 1 with a-b-c-e of species 2, which is
also redundant with (1) and (2). (5) Reactions A-B-C-E of species 1 with a-b-
f-e of species 2, obtaining an “i-i-x-i” alignment. This is a novel alternative
pathway, since reaction f is unique in species 2, hence “i-i-i-i” alignment is
impossible. (6) Reactions A-B-D-E of species 1 with a-b-f-e of species 2 also
is a novel pathway. In the end, four aligned pathways are obtained: (1), (2),
(5) and (6).

“enzyme mismatch-gap” or “enzyme crossover match” is allowed in a pathway. Ab-
breviations are used to denote the pathway composition of building blocks regardless
of the order, e.g. “i-i-i-d” indicates a pathway with three reactions of type “identical”
and one of type “direct”, in any order. In total, there are 21 such compositions possible
for pathway alignment. These are used as 21 pathway categories in the discussion of our
results.

To enhance the informativeness of our resulting set of pathways, we remove some re-
dundant pathways. First, building blocks whose substrate and product are identical
in one species (after removing current metabolites) will not be selected to construct a
pathway. Furthermore, we reduce the redundancy in the result by enforcing unique-
ness in choosing the building blocks of the five types other than “identical”, see Fig. 4.6.
A non-“identical” building block can be chosen only if it contains at least one reac-
tion absent in one of the species. This is because if all reactions in the building block
are present in both species, two building blocks of type “identical” will already be
constructed. Consequently, any other combinations of these reactions are redundant.
Conversely, a reaction unique to one species provides an interesting novel alternative
pathway.
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4.2.4 Scoring function

Two factors indicate the extent to which an aligned pathway is conserved. One is the
pathway category, i.e. the building block composition. For instance, we consider an
“i-i-i-d” pathway to be more conserved than an “i-i-i-dg” pathway. The other factor is
enzyme similarity, which we evaluate here based on functional similarity (EC num-
bers) and sequence similarity. Since they are not fully correlated, we integrate them to
introduce a more informative measure of true orthology. In the following, we explain
how to calculate functional similarity and sequence similarity of a building block, fol-
lowed by their integration.

Given a building block containing one reaction from each species, enzyme functional
similarity E f is taken to be the maximum number of digits of EC numbers that the two
groups of enzymes share. This is a simple and straightforward manner to measure
enzyme functional similarity [53, 89], since EC numbers form a functional hierarchy.
Although more complex methods exist [13, 142], their validity is still under research.
Let the EC numbers in the reaction for species 1 be EC11, EC12, ..., EC1m, and for species
2 EC21, EC22, ..., EC2n, we count the number of shared digits for each possible pair of
EC numbers, and use the maximum as the functional similarity E f for this building
block. For “direct-gap” and “enzyme mismatch-gap” building blocks, for which one
group of enzymes should be compared to two groups of enzymes, we compute E f
for both pairs of groups, and choose the larger E f . For “enzyme crossover match”
building blocks, E f is taken to be the averaged value of the crossover enzyme group
comparisons.

For the sequence similarity Es between two reactions, we take the minimum BLAST
E-value between all possible enzyme pairs. For “direct-gap” and “enzyme mismatch-
gap” building blocks, Es is computed between the two groups of enzymes which have
the larger E f . For “enzyme crossover match” building blocks, Es is averaged. BLAST
(version 2.2.15) is performed with e = 100 on the protein sequences in UniProtKB /
Swiss-Prot Release 51.6.

After computing the E f and Es scores for all building blocks in a pathway, we sum all
E f s in a pathway and transform the result into a score S f ∈ [0, 1]; likewise for all Ess in
the pathway to obtain Ss ∈ [0, 1]. Tables 4.1 and 4.2 detail these transformations. Since
the original values of E f and Es have very different ranges, this transformation step ac-
tually scales these two measures into the same range in a sensible way, so that they are
comparable and easy to combine. The intervals in the transformation tables are cho-
sen to reflect our objective in finding conserved pathways with similar enzymes: high
functional similarity values are examined in more detail in the score. For sequence
similarity, we focus on the traditional cutoff value 10−2 for weak sequence similarity
[70], thus the intervals around 10−2 are smaller than those for high sequence similari-
ties. We do not restrict ourselves to highly similar sequences because our main interest
is to reveal the alternatives and diversities in the pathways. Since the maximum value
for Es is 100 (due to the parameter setting used for BLAST), the intervals for Ss ≥ 0.8
indicate the number of building blocks with very dissimilar enzyme sequences.

Finally, the two scores are summed so as to combine the functional and sequence sim-
ilarity:
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∑b∈P E f (b) 16 15.5 15 14.5 14 13.5 13 12 11 10 8

S f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4.1: Transformation of the total functional similarity ∑b∈P E f (b) into the score
S f .

∑b∈P Es(b) (0, 10−80) [10−80 , 10−60) [10−60 , 10−40) [10−40 , 10−20)

Ss 0 0.1 0.2 0.3

∑b∈P Es(b) [10−20 , 10−10) [10−10 , 10−6) [10−6 , 10−2) [10−2 , 100)

Ss 0.4 0.5 0.6 0.7

∑b∈P Es(b) [100, 200) [200, 300) [300, ∞)

Ss 0.8 0.9 1

Table 4.2: Transformation of the total sequence similarity ∑b∈P Es(b) into the score Ss.

S(P) = S f

(
∑
b∈P

E f (b)

)
+ Ss

(
∑
b∈P

Es(b)

)
(4.1)

in which b denotes a building block and P denotes an aligned pathway. The lower this
score, the more similar the enzymes in P are.

4.3 Results and discussion

Of 881 enzymatic reactions in S. cerevisiae and 1106 in E. coli, 588 reactions are present
in both species (Fig. 4.7a). Based on the total of 1399 unique reactions, six types of
building blocks are assembled into 2518 unique pathways of length 4. Fig. 4.7b shows
the number of reaction involved in the resulting pathways. Table 4.3 summarizes the
number of building blocks of each type found. These results indicate that the reactions
and building blocks in the resulting pathways reasonably cover all available reactions
and building blocks, demonstrating the strength of our systematic search.

For each pathway category containing a specific composition of building blocks, the
total number of resulting pathways is shown in Fig. 4.8a, and their average functional
similarity score S f and sequence similarity score Ss are shown in Fig. 4.8b. As shown
in Fig. 4.8a, ∼ 1000 completely conserved pathways of type “i-i-i-i” are found. Not
surprisingly, their enzyme sequences are highly similar, with BLAST E-values ranging
from 10−10 to 10−6 on average. The pathway with the best score, 0, is depicted in
Fig. 4.9a. However, the variance of the sequence similarity score is also large, indicating
that some reactions in these pathways do not have enzymes with similar sequences.
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Figure 4.7: Venn diagrams showing a) the total number of enzymatic reactions in the
two species and b) the number of reactions involved in the results.

Identical Direct Direct Enzyme Enzyme Enzyme
Type -gap mismatch crossover mismatch-

(i) (d) (dg) (em) match (ec) gap (eg)

♯Building blocks 516 116 108 27 40 52

♯Building blocks in the 352 67 64 11 12 29
resulting pathways

Table 4.3: The number of each of the six types of building blocks.

Figure 4.8: a) Total number of pathways in 21 pathway categories. Note that long conserved
pathways may result in multiple short overlapping pathways. b) The average en-
zyme functional similarity score and sequence similarity score of each pathway cat-
egory. Whiskers indicate standard deviations.

This might arise because of different specificity, horizontal gene transfer, gene fusions,
or the fact that only subunits of the enzymes are the same.

We also found ∼ 1500 highly conserved pathways which contain some diversity be-
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Figure 4.9: The pathways with the best scores in categories 1, 2, 6, 10, 14, and 18 of
Fig. 4.8. a) The pathway with the best score (S = 0) in the results. It
has an “i-i-i-i” alignment. b) One of the pathways with the best score
(S f = 0.2, Ss = 0.1) within category “i-i-i-d”. c) The pathways with the
best score (S f = 0, Ss = 0.5) within category “i-i-i-dg”. d) One of the path-
ways with the best score (S f = 0.7, Ss = 0.6) within category “i-i-i-em”.
e) The pathways with the best score (S f = 0.2, Ss = 0.7) within category
“i-i-i-ec”. f) One of the pathways with the best score (S f = 0.7, Ss = 0.3)
within category “i-i-i-eg”.

tween both species or unique alternatives within one species. Each of these pathways
has a building block of type “direct”, “direct-gap”, “enzyme mismatch”, “enzyme



50 M-PAL: ALIGNING METABOLIC PATHWAYS BETWEEN SPECIES

mismatch-gap”, or “enzyme crossover match”. Examples are given in Fig. 4.9b-4.9f.
These pathways are of great interest in bioengineering as they manifest the hidden
information about pathway diversity and alternatives, which will not be found if we
only look at a subset of the metabolic network in one species.

The results are useful in many applications. First, some resulting pathways suggest
a more exact EC number annotation of their enzymes is possible and call for detailed
comparison of the enzymes. For example, the enzymes in the pathways of type “i-d-
d-em” in Fig. 4.8b have dissimilar EC numbers, but their sequences are actually very
similar (low Ss and high S f ). They might be incorrectly annotated, since they both
transform a common substrate into a common product. Another example is given in
Fig. 4.9c, in which the enzymes with EC number 4.2.1.20 in E. coli (trpA and trpB)
could also be annotated as 4.1.2.8, which is the α-subunit of 4.2.1.20. Comparing the
enzymes in alternative pathways in different species can also be beneficial to under-
stand their structural difference and relationship. In Fig. 4.9c for instance, the two
enzymes in E. coli, 4.2.1.20 and 4.1.99.1, might be different subunits of the enzyme
4.2.1.20 in S. cerevisiae. The same can be observed in Fig. 4.8b, where the sequence
similarity in the pathways with “dg” is generally worse than in those with “d” only,
implying that the enzymes in “dg” are only subunits of the corresponding enzymes in
“d”.

Second, the results can help to understand diversity in metabolism and evolution. Re-
actions which are unique to one species are highlighted in Fig. 4.9. Investigation of
the biological difference between the two species is expected to explain their unique-
ness. Further, we can project the knowledge to a new species. For instance, if the new
species has the enzymes which catalyze a unique reaction of S. cerevisiae, then prob-
ably they are very closely related in the phylogenetic tree, and therefore share more
common properties. Nevertheless, the revealed diversity might be an artifact of cur-
rent metabolic network databases. Therefore it is recommended to examine whether
the other species also has this unique enzyme, or whether some enzymes (and re-
actions) are missing in the pathways with “gaps”. Another interesting result which
might be worthy of further research is shown in Fig. 4.8b, for the group containing
enzyme crossover match building blocks (ec). Although the crossover enzymes have
similar functions, their sequences are very dissimilar. Possible reasons could be that
the enzymes have different substrate specificities, or the intermediate substrates are
very different. They could also have been isoenzymes in parallel pathways, having
become specialized to one species in evolution.

Third, the unique alternative pathways revealed by M-Pal provide potential candidate
enzymes for bioengineering. Certain natural enzymes can be removed or changed
so that we can choose between different alternative pathways, or enforce the reaction
direction to produce the product of our interest. In the pathway shown in Fig. 4.9c,
E. coli has two alternative pathways to transform Indoleglycerol phosphate into L-
tryptophan, one being reversible (catalyzed by 4.2.1.20) and the other one reported
to be irreversible (catalyzed by 4.2.1.20 and 4.1.99.1). If the enzymes of 4.2.1.20 in the
irreversible pathway are indeed also possibly annotated as 4.1.2.8, we can remove the
4.2.1.20 enzyme activity to enforce the direction towards producing tryptophan, which
is an essential amino acid in human nutrition [157].

Finally, our results provide additional opportunities to construct the metabolic net-
works for currently unannotated species. As discussed above, our method points out
possible missing enzymes and suggests related enzymes in well-studied species. The
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alternative pathways also provide more possibilities for optimizing the network to fit
the found enzymes and reactions better.

4.4 Conclusions

The systematic search of M-Pal associates different parts of metabolic networks with
each other and combines information from multiple species to discover diversity and
alternatives in highly conserved pathways. The results shed light on the small dif-
ferences found in the conserved pathways and provide useful information for many
applications. Gene knock-out experiments can be performed to test our hypotheses,
and the essentiality of the resulting pathways should be examined.

Our research is still at an early stage, and can be refined in a number of ways. Pos-
sible extensions include increasing the freedom in the alignment, e.g. allowing for
more gaps or mismatches, further separated crossover matches, and longer pathways.
This implies the search algorithm will have to become more sophisticated, as exhaus-
tive enumeration will become infeasible. Next, the scoring function can be modified
to prefer certain types of alignment. Non-identical metabolites could be included in
the matching, implying a need for a compound similarity measure to be added to the
scoring function. The enzyme sequence similarity measure could also be refined using
protein domain information. The current scoring mechanism assumes functional and
sequence similarity is equally important. Weights could be added to model a trade-off
between the two [13]. The scoring function itself could be enhanced by using a proba-
bilistic framework such as in Kelley et al. [70], allowing us to look for relatively rather
than absolutely conserved pathways and to attach a p-value to the pathways found.
Other possible enhancements to the score are to take reversibility of reactions and the
presence of isoenzymes into account.

Currently, this method is performed on two species only and is expected to give more
informative results if applied on species not closely related. An extension could be
to apply M-Pal on multiple species, at different evolutionary distances. We expect
that larger differences will be found as evolutionary distance increases. The results
will give insight to understand evolution and specialization, provide new building
blocks and alternatives for pathway engineering, and be of great value for prediction
of unannotated genes.





5

M-PAS: MEASURING
METABOLIC PATHWAY

SIMILARITIES

In the previous chapter we presented a pathway alignment framework to align
metabolic pathways (M-Pal). In this chapter, we extend this framework with a scor-
ing scheme which is able to quantify the level of conservation of aligned pathways in a
comprehensive and flexible manner. The scoring function compares all components of
two pathways by measuring similarities between substrate sets, product sets, enzyme
functions, enzyme sequences, and alignment topology. These individual similarity
measures are then integrated into a single score in a hierarchical way, which enables
us to weight the individual similarity measures in order to express different biological
emphases.

Using M-PAS, we detected 2597 length-four conserved pathways between Saccha-
romyces cerevisiae and Escherichia coli. The proposed scoring function ranks these path-
ways given five biological motivations and reveals the diverse similarity fingerprint of
each type of alignment. Not surprisingly, parts of primary metabolism are found to be
abundant in our top-scoring pathways.

This chapter was published in BMC Systems Biology, 2008 [85].
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5.1 Introduction

Comparative analysis of metabolic networks in different species yields information
important for both biology (understanding evolution/speciation, annotating new
genomes etc.) and life science applications (e.g. in biotechnology, pharmacology).
Therefore, it has been an active research field for the last decade. For example, Dan-
dekar et al. [19] combined biochemical data analysis, elementary flux mode analy-
sis and comparative genome analysis to compare glycolytic pathways in 17 species.
Jeong et al. [66] and Ravasz et al. [120] studied the global topological properties of the
metabolic networks in 43 species. In addition, Küffner et al. [78] used Petri nets to
compare database contents and define differential metabolic displays (DMDs), which
allow to compare metabolic networks by identifying intersection and difference sets of
reactions. As one of the applications, Heymans et al. [53] derived phylogenetic trees
based on metabolic pathway comparison. Guimerà et al. [48] analyzed the modular-
ity of the metabolic networks of 18 organisms, and classified metabolites and enzymes
based on their roles in connecting different functional modules. Dı́az-Mejı́a et al. [24]
investigated the relation of network modularity and distance between reactions with
the retention of gene duplicates in various species and databases. More generally, a
review on biological network comparison problems, techniques and applications is
given by Sharan et al. [130].

In studies up till now, however, only little work focused explicitly on the variations
between species in conserved pathways, and to our knowledge no alignment of entire
networks, exploiting all reaction arrangement possibilities, has been carried out yet.
Moreover, the similarity measures used to align metabolic pathways is often not com-
prehensive, as compounds or network structure are neglected. For example, Tohsato
et al. [142] align pathways based on enzyme EC number similarity only, discarding
information on the compounds involved. Yang et al. [158] perform path matching and
graph matching to query certain metabolic pathways or subgraphs in a predefined
graph, but also use a similarity measure based on EC numbers only. Although Forst et
al. [33] define the distance between pathways as a combination of distances between
compounds and distances between enzymes, they only consider sequence similarity,
and the compounds are limited to amino acids. In [13], sets of reactions in multiple
pathways are compared, omitting the connectivity between the reactions. Finally, the
pathway similarity score in [53, 116, 164] combines EC number similarity and network
topology, but does not include compounds, and alignments are between predefined
sub-networks only. Therefore, the comparison is limited to conventional pathways,
and different parts of the cellular metabolism are not associated with each other.

In this work, we align entire metabolic networks of two species and quantify their
similarities comprehensively, to identify highly conserved pathways. We particularly
focus on the variations in these pathways, as illustrated in Fig. 4.1. Here a pathway is
defined as a series of chemical reactions of metabolism within a cell (see also section
4.1). Therefore they are not necessarily routes through the network from uptake to
secretion, as represented by many conventional pathway representations.

A naive approach to find conservation and variations between metabolic networks
would be to search for common reactions and reaction pairs, using different cofac-
tors or enzymes in the two species. Besides being inefficient, this approach isolates
reactions from their upstream and downstream processes. Instead, we search for con-
served pathways, rather than single reactions. In this way, we place the reactions in their
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Figure 5.1: Overview of the alignment method. First, compound nodes and enzyme
nodes (a) are generalized into compound supernodes and enzyme supern-
odes (b). Two reactions of species 1 are aligned with two reactions of
species 2 (c), by pairing the supernodes into compound hypernodes and
enzyme hypernodes (d). Each pair of aligned reactions forms a building
block, from which an aligned pathway can be assembled. The reaction di-
rections are omitted in the figure for simplicity.

metabolic functional context, which helps to 1) filter out isolated reactions not involved
in pathways, 2) provide more evidence to claim part of a pathway is conserved, given
that neighboring reactions are conserved, 3) interpret the resulting pathways.

Our method is designed to conduct this process efficiently and comprehensively. More
specifically, our pairwise pathway alignment is based on a mechanism we proposed
earlier [86], which is inspired by the alignment concept of [70]. It first aligns two to
four similar reactions in two species into building blocks, and then assembles these into
pathways of a desired length (Fig. 5.1). In each building block, a specific substrate is
transformed into a specific product via similar but not necessarily identical reactions in
two species. That is, they may have different co-substrates or co-products, be catalyzed
by different enzymes, need different numbers of reactions to complete the transforma-
tion, or reactions may occur in a different order. In other words, our method enables
to explore topological arrangement possibilities of reactions both between species (by
building block assembly) and within species (by pathway assembly).

Further, we rank the aligned pathways according to their similarities (i.e. level of con-
servation), which prioritizes them for further investigation. To this end, a novel scoring
function is proposed, which forms the core contribution of this chapter. It compares all
components of two pathways by measuring similarities between substrate sets, prod-
uct sets, enzyme functions, enzyme sequences, and alignment topology. The resulting
individual similarity measures are then integrated into a single score. This scoring
function has a generic form and is flexible enough to address various biological ques-
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tions, by selecting different parameter settings.

5.2 Method

We align the pathways from two species in a strict way, in order to investigate highly
conserved metabolic pathways, i.e. pathways with very similar structure and limited
variation between species. More specifically, two metabolic pathways can be aligned
into a conserved pathway only if their individual reactions transform common sub-
strates into common products in each step. We call such a pair of matching reactions a
building block (BB). Next, these building blocks are assembled into pathways of a spec-
ified length, taking reaction directions into account. Finally, we compute the similarity
score for each aligned pathway, and obtain interesting pathways as those pathways
that have high similarity scores.

5.2.1 Reaction representation

In M-PAS, reactions are represented at three levels of generalization: nodes, supern-
odes and hypernodes, respectively (see Fig. 5.1). The low-level representation gives
the finest details of reactions, in which each compound and each enzyme constitutes
a node (Fig. 5.1a). The medium-level representation generalizes reactions, so that all
substrates and products of a reaction compose two compound supernodes, and all en-
zymes in that reaction form an enzyme supernode (Fig. 5.1b). Such a generalized rep-
resentation is useful due to the multiple-to-multiple property of metabolic reactions,
i.e. multiple substrates can be catalyzed by multiple enzymes into multiple products
[77, 130]. Finally, at the high-level representation, the corresponding compound su-
pernodes and enzyme supernodes from two aligned reactions are combined into com-
pound hypernodes and enzyme hypernodes, respectively (Fig. 5.1c-d).

These different levels of representation enable the comparison of reactions in a de-
tailed yet flexible manner. Thus, a particular compound node can be part of various
compound supernodes given different co-factors in different reactions, and further can
be part of various compound hypernodes due to different alignments with other com-
pound supernodes. The same holds for enzyme nodes. This flexible representation not
only reflects the versatility of the metabolic network conveniently, but is also necessary
in order to express and quantify the similarity of reactions, which will be explained in
section 5.2.3.

5.2.2 Reaction alignment

The reaction alignment part is proposed in our previous work [86] and is briefly ex-
plained here for comprehensibility and completeness of our methodology. Two reac-
tions can be aligned to form a building block when they have at least one common
substrate node and one common product node (Fig. 5.1d). To allow for some variation,
we introduce six types of building blocks (see Fig. 5.2, which uses different legends
than Fig. 4.5). If the same reaction is present in both species, the resulting building
block is called “identical” (i). If the two reactions are different, but the first two digits
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Figure 5.2: Illustration of the six types of building blocks. The reaction directions are
omitted in the figure for simplicity. Two compound supernodes are con-
sidered similar if they share at least one common compound node. Two
enzyme supernodes are considered similar if there exists a pair of enzymes
which share the same first two digits in their EC numbers.

of the EC numbers of their enzymes are the same, they form a “direct” building block
(d).

We allow for up to one mismatch or one gap in a building block, in order to incorpo-
rate alternative pathways, evolutionary diversity and annotation errors. That is, in an
“enzyme mismatch” building block (em), the first two digits of the EC numbers of their
enzymes are not the same. Gaps occur when a single reaction and a series of reactions
connected in tandem share common substrates and products, indicating that the num-
ber of reactions to transform the specific substrates into the specific products differs
between species. The building blocks containing one gap are “direct-gap” (dg) and
“enzyme mismatch-gap” (eg). Finally, we include “enzyme crossover match” build-
ing blocks (ec) to accommodate possible variations in the order of the catalysis. That
is, apart from sharing common substrates and end products in two reactions in each
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species, the first two EC number digits of the first and second reaction in one species
are the same as those of the second and first reaction in the other species, respectively.

To enhance the informativeness of these resulting pathways, we add a constraint to
avoid redundant building blocks. That is, a non-identical building block can be con-
structed only if it contains at least one unique reaction in one of the species, which is
absent in the other species. This is explained in Fig. 4.6.

5.2.3 Scoring function

We set out by specifying a number of criteria for the design of the scoring function.
First, similarities of all reaction components should be considered: substrate sets, prod-
uct sets, enzyme functions and enzyme sequences, respectively. Second, the scoring
function should be flexible and adaptable according to the user’s biological interests.
For example, the user might want to find pathways containing a particular structure
(e.g. with a gap); or focus on enzymes only, but not on compounds; or seek to find
a completely alternative pathway in which the enzymes are very dissimilar between
two species. Third, since we aim to investigate many aspects of an aligned pathway
and obtain multiple similarity scores, a reasonable way of integrating these is required.
Finally, we should consider specificity in computing similarities, since both distribu-
tions of compound connectivity and enzyme EC number hierarchy show large vari-
ation [18, 142], i.e. some compounds and EC subclasses appear more often than the
others in the background.

1) Total score According to the criteria above, we first compute similarity scores inde-
pendently for all compound hypernodes and enzyme hypernodes in an aligned path-
way, taking all aspects into account. These are then converted into z-scores before
integration to account for their diverse distributions.

Let Z(x) denote the z-score of x. Then Z(P) is the total z-score for an aligned pathway
P, a weighted sum of the scores of N building blocks B in P:

Z(P) =
1√
2N

∑
∀B∈P

[Z0(B) + Z(B)]

=
1√
2N

∑
∀B∈P

[
Z0(B) +

1√
ω2

c + ω2
e
(ωcZ(CB) + ωeZ(EB))

]
(5.1)

Z(B) is the z-score for a building block B. Let c and e denote a compound hypern-
ode and an enzyme hypernode respectively, and denote the set of all c’s and e’s in a
building block B by CB and EB, respectively. Users can define a preferred building
block structure by assigning different biases (Z0(B)) to different building block types.
For example, if building blocks with gaps are preferred in a query, then these types of
building block can be assigned a large positive bias. Weights ωc , ωe ∈ [0, 1] can be used
to assign different relative importance to compound similarity and enzyme similarity
(resembling the α parameter in [13]).

Note that the z-scores are hierarchically combined using Liptak-Stouffer’s method [52,
59]. In the following we explain how to compute Z(CB) and Z(EB) in detail.
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2) Compound similarity Z(CB) is composed of compound similarities Z(c) of the two
compound hypernodes in the building block (i.e. the substrate hypernode and product
hypernode). We express Z(c) in two terms:

Z(CB) =
1√
2

∑
∀c∈CB

Z(c) =
1√
2

∑
∀c∈CB

1√
2
[ZA(c) + ZS(c)] (5.2)

The agreement ZA(c) is the extent of the overlap in number of compounds between the
two aligned compound supernodes. This is computed as the probability of observing
the amount of overlap between the two compound supernodes by chance, according
to a hypergeometric distribution [57]:

PA(c) =

(
|c1|

|c1 ∩ c2|

)(
|c1 ∪ c2| − |c1|
|c2| − |c1 ∩ c2|

)
(
|c1 ∪ c2|
|c2|

) =

(
|c1|

|c1 ∩ c2|

)
(
|c1 ∪ c2|
|c2|

) , (5.3)

where c1 and c2 denote the compound supernodes that form c, and |x| denotes the
number of compound nodes in x.

Next, this probability is transformed to a z-score:

ZA(c) =
PA(c)− µAC

σAC
, (5.4)

where µAC and σAC are the mean and standard-deviation of PA(c) over all possible
compound supernode pairs, which represent the expected amount of overlap when
the pairing would be random.

The other term is ZS(c), the specificity of the overlap when compared to all possible
supernode pairs. That is, if two compound supernodes have overlapping compounds,
we take into account the frequency of obtaining this particular overlap at random. We
consider two sets of substances to be more similar if the overlapping part is more spe-
cific, i.e. not observed frequently by chance. Moreover, considering specificity of com-
pounds may result in more biologically meaningful pathways, since metabolic path-
ways seem to represent paths through the least “promiscuous” compounds [18].

Suppose there are in total m compound supernodes in species 1 and n in species 2.
Then we have:

PS(c) = 1 − #observed (c1 ∩ c2) in the intersection
mn

, (5.5)

ZS(c) =
PS(c)− µSC

σSC
, (5.6)

where µSC and σSC are the mean and standard-deviation of PS(c) computed over all
m × n compound supernode pairs. The numerator in Eq. 5.5 is the number of times the
specific overlap in compound node in c, i.e. (c1 ∩ c2), is observed in the intersections
of all possible compound supernode pairs.
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3) Enzyme similarity The enzyme hypernode similarity score, Z(EB), is defined by
a functional similarity score ZF(e) and a sequence similarity score ZQ(e). In addition,
users can specify weights ω f , ωq ∈ [−1, 1] for the functional and sequence similarity
scores to indicate their relative importance. Setting these weights to negative values
actually enables us to search for dissimilar enzymes, which associates reactions with
different mechanisms and provides more possibilities to annotate new species. For
generality, suppose there are k enzyme hypernodes in building block B (k = 2 for
“enzyme crossover match” building blocks, k = 1 for others). The enzyme similarity
is then given by:

Z(EB) =
1√
k

∑
∀e∈EB

Z(e)

=
1√
k

∑
∀e∈EB

1√
ω2

f + ω2
q

[
ω f ZF(e) + ωqZQ(e)

]
. (5.7)

ZF(e) is computed similar to Eq. 5.2-Eq. 5.6, containing agreement and specificity of
the EC number overlap:

ZF(e) =
1√
2
[ZA(e) + ZS(e)] . (5.8)

The enzyme functional agreement score ZA(e) is derived from PA(e), the probability
of obtaining by chance the number of common subclasses between the EC numbers of
e1 and e2, the two enzyme supernodes that form hypernode e. Let T denote the set of
all subclasses, and M be the overlapping subclasses. For instance, for e1 = 1.2.3.4 and
e2 = 1.2.4.4, T = {1, 1.2, 1.2.3, 1.2.4, 1.2.3.4, 1.2.4.4}, and M = {1, 1.2}. These sets
are then used to assess the extent of overlap between two EC numbers, analogous to
Eq. 5.3:

PA(e) =

(
4

|M|

)(
|T | − 4
4 − |M|

)
(
|T |
4

) =

(
4

|M|

)
(
|T |
4

) (5.9)

ZA(e) =
PA(e)− µAE

σAE
, (5.10)

where µAE and σAE are computed from PA(e) over all possible enzyme supernode
pairs.

To address the specificity of the observed M, we also count the number of times the
common EC number subclasses of two enzyme supernodes contains this M, and com-
pute PS(e), µSE, σSE and ZS(e), analogous to Eq. 5.5-Eq. 5.6:

PS(e) = 1 − #observed M in the overlapping subclasses
uv

, (5.11)

ZS(e) =
PS(e)− µSE

σSE
, (5.12)
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with u and v the total numbers of enzyme supernodes in the two species.

Finally, the sequence similarity score ZQ(e) is derived from the BLAST E-value L(e):

Q(e) = −log10L(e), ZQ(e) =
Q(e)− µq

σq
, (5.13)

where µq and σq are the mean and standard-deviation of Q(e) over all possible enzyme
supernode pairs.

Note that there might exist multiple EC numbers and multiple sequences in each en-
zyme supernode, as illustrated in Fig. 5.1. So we first compute all Z(e) given all possi-
ble combinations of EC numbers and corresponding sequences in enzyme hypernode
e. Since we aim to find the conserved part between pathways, the highest Z(e) is taken
to be the enzyme similarity score for this pair of supernodes, indicating the similarity
of the most conserved part between them.

Moreover, when gaps are present, we align two enzyme supernodes in one species
with one enzyme supernode in another species separately, obtaining two Z(e). Again,
the higher one is selected for this building block to represent the similarity of the most
conserved part.

5.2.4 Pathway construction

Reaction definitions were obtained from Release 42.0 of the KEGG LIGAND compos-
ite database [45], updated on May 14, 2007. The species-specific reactions and enzyme
lists were retrieved from KEGG/XML and KEGG/PATHWAY. Protein sequences were
downloaded from UniProtKB/Swiss-Prot [97]. Discrepancies and missing informa-
tion (e.g. gene names and EC numbers) were resolved manually. Twenty-six currency
metabolites1 are excluded from consideration during pathway construction to avoid
finding large numbers of pathway shortcuts [28, 92, 120]. Note that the reactions con-
taining these metabolites are still included in the algorithm. Currency metabolites are
only excluded in aligning reactions into building blocks and assembling pathways,
i.e. we do not match or connect two reactions if they only share the same currency
metabolites.

Based on 881 enzymatic reactions in S. cerevisiae (with 1762 compound supernodes and
881 enzyme supernodes) and 1106 enzymatic reactions in E. coli (with 2212 compound
supernodes and 1106 enzyme supernodes), 640 building blocks are constructed. These
are further concatenated into pathways using a backtracking search, starting from a
certain substrate. Each pathway contains four different building blocks, and is con-
strained so that one reaction cannot appear more than once in one species, and one
compound (excluding the currency metabolites) cannot be traversed more than once
in one species, e.g. a compound can not be both the substrate and product of a re-
action, or be the product of more than one reaction in the pathway. Using 69% of all
available building blocks, 2597 length-four pathways are assembled, starting from 245
substrates. These substrates are not restricted to external metabolites, since our path-
ways are not necessarily routes from uptake to secretion.

1See section 4.2.2.
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ωc ωe ω f ωq Z0 Emphasis

Query 1 0.5 0.5 0.5 0.5 0 for all overall
Query 2 0 1 0.5 0.5 0 for all enzyme
Query 3 1 0 0 0 0 for all compound
Query 4 0.5 0.5 0.5 0.5 100 for “dg”and “eg”, gap

0 otherwise
Query 5 0 1 1 0 0 for all enzyme function

Table 5.1: The parameter settings and biological emphases in the five queries.

5.3 Results and discussion

We conducted five queries using different settings for the parameters as described in
section 5.2.3, corresponding to five different interests. Table 5.1 summarizes the pa-
rameters used.

In each query, the similarity scores of all 2597 length-four pathways found are com-
puted using Eq. 5.1 and the highest-scoring pathway(s) of a certain substrate is referred
as the best pathway for that substrate.

It is useful to investigate the building block types as they reflect the differences be-
tween species in terms of reactions use, which is not reflected in the scores. Therefore,
we categorize the pathways w.r.t. their configurations of building blocks, in order to
gain insight in the impact of the parameter settings on the resulting pathway proper-
ties. Abbreviations are used to denote the six categories: “i-i-i-i” indicates a pathway
consists of four “identical” building blocks; “d” indicates that the pathway has at least
one “direct” building block; “em”, “dg”, “eg” and “ec” are defined likewise.

Of all 2597 length-four pathways, 1198 have “i-i-i-i” configuration, and 1399 differ be-
tween the species, starting from 160 substrates. Among these 426 contain “d”, 192
“em”, 199 “dg”, 709 “eg” and 194 “ec”. For each type of configuration, Fig. 5.3a gives
the percentage of best pathways found in all pathways with a particular configuration.
Fig. 5.3b corrects the percentages shown in Fig. 5.3a by comparing the number of best
pathways with the baseline number of best pathways, which is the maximum possible
number of best pathways with that configuration. Therefore Fig. 5.3b actually presents
the extent to which a query succeeds in finding a certain type of pathway when only
best pathways are concerned.

5.3.1 The scoring function can address different biological
questions

Using our scoring function, different parameter settings result in different best path-
ways, highlighting different aspects of the pathway features.

Table 5.1 and Fig. 5.3 can be used as a guide to design a query for a specific purpose.
For example, Query 1 finds generally similar pathways in two species. Query 2 only
considers enzyme similarity, therefore more best pathways containing “dg” and “ec”
are found (Fig. 5.3b). Query 5 is a special case of Query 2, looking for conserved path-
ways with similar enzyme functions. Compound and enzyme sequence similarities
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Figure 5.3: The percentages of found best pathways in the five queries, with particular
pathway configurations. a) Percentage in all pathways with this configu-
ration. b) Percentage in all possible best pathways with this configuration.
See text for details.

are neglected, thus providing more possibilities for predicting the functions of unan-
notated genes.

Query 3, on the other hand, considers compound similarity only. If two reactions have
the same compounds, they are identical reactions. So all best pathways with “i-i-i-i”
configuration are found in Query 3 (Fig. 5.3b). Identical reactions are highly conserved
in the metabolism of different species, and can be used as a measure of phylogenetic
distance. Furthermore, those very specific processes containing the most unique com-
pounds will score the highest (see Eq. 5.2). Fig. 5.4a shows an example, in which the
non-currency compounds are only present in the shown pathway, which is specific to
biotin metabolism.

Gaps are preferred in Query 4. Indeed, we can see a large increase in best pathways
with “dg” and “eg” in Fig. 5.3b. Moreover, in-depth analysis shows that the numbers
of “dg” and “eg” building blocks in the pathways have also increased four to seven
times, demonstrating that the increase of found best pathways with “dg” and “eg”
is not because a limited number of building blocks are used repeatedly. The results
may hint at additional intriguing evolutionary phenomena: if one enzyme in species
1 is comparable to the combined functionality of two enzymes in species 2, it may be
caused by gene fusion in species 1, or gene duplication in species 2 [116].
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Figure 5.4: Examples of the highest-scoring pathways. a) One of the highest-scoring
pathways in Query 3, which is involved in biotin metabolism. b) One of
the highest-scoring pathways in Query 2, but not in Query 1 or Query 4.
The last building block is a “dg”, which contains one unique reaction in
E. coli, and constitutes an alternative pathway (see text). Involved KEGG
maps include: phenylalanine, tyrosine and tryptophan biosynthesis; ben-
zoxazinone biosynthesis; tryptophan metabolism; nitrogen metabolism. c)
One of the highest-scoring pathways in Query 5, but not in Query 2. In-
volved KEGG maps include: urea cycle and metabolism of amino groups;
alanine and aspartate metabolism; arginine and proline metabolism.

5.3.2 Comparing results of different queries can help infer
additional details

It can be instructive to investigate the differences in the results between various
queries. For instance, the best pathways of a certain substrate in Query 2 and not
found in the best pathways of the same substrate in Query 1 have similar enzymes but
use different cofactors or less specific substrates. They are well-conserved, a-specific
enzymes. Many pathways containing “dg” are found in Query 2 for this reason, as we
can see from Fig. 5.3b. Fig. 5.4b shows an example, which is found in Query 2 due to its
high enzyme similarity, but not in Query 1 or Query 4 for the same substrate due to its
low compound similarity. In another example (not shown), a best pathway in Query 2
producing pyruvate is filtered out in Query 1 because pyruvate is less specific, as it is
present in 147 reactions [18].

In addition, the best pathways of a certain substrate in Query 5 and not found in the
best pathways of the same substrate in Query 2 have similar enzyme functions but
dissimilar enzyme sequences. These enzymes might be non-homologous but evolved
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Figure 5.5: The distributions of the four component scores for each type of building
block. ZF and ZQ are computed as in Eq. 5.8 and Eq. 5.13. Z(CB), Z(EB)
are computed as in Eq. 5.2 and Eq. 5.7 with the parameter settings of Query
1 (see Table 5.1).

into the same function, or the functions have been maintained although their sequences
have been changed. An example is given in Fig. 5.4c. The enzymes in the fourth build-
ing block, spe1 from S. cerevisiae and speC, speF from E. coli, have very dissimilar se-
quences (E-value > 100). Although spe1, speC and speF are non-homologous, lysA
(EC: 4.1.1.20) in E. coli has a sequence similar to that of spe1 (E-value = 2.5 × 10−7).
According to Sandmeier et al. [124], speC and speF belong to group III decarboxylases,
and spe1 and lysA belong to group IV decarboxylases. Although the homology among
the enzymes within each group is established, no evidence has been obtained that the
sequences of these two groups are related. Therefore, they seem to have different evo-
lutionary origin. This result demonstrates that enzyme function and sequence do not
always correlate with each other. In addition, more “ec” are found in Query 5 (see
Fig. 5.3b) exactly because on average “ec” has high enzyme functional similarity but
low sequence similarity, as shown in Fig. 5.5.

5.3.3 Combining the component scores makes sense

Fig. 5.5 presents the component scores of each type of building block and shows that
the various information sources are not correlated (see also [142]), making it worth-
while to combine them. In addition, Fig. 5.5 reveals the diverse similarity fingerprint
of each type of building block, which calls for further research. For example, the vari-
ance of the sequence similarity score in “i” is large, which might arise because of dif-
ferent specificity, horizontal gene transfer, gene fusions, or the fact that only subunits
of the enzymes are the same. As to “ec”, their sequences are very dissimilar in spite of
their similar functions. Possible reasons could be that the enzymes have different sub-
strate specificities, or that intermediate substrates are very different. They could also
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Figure 5.6: The building block connectivity. a) Histogram of the number of best path-
ways in which a building block is involved in Query 1. b) - d) Three build-
ing blocks which are involved in 27, 27 and 25 best pathways in Query 1,
respectively. Scores and involved KEGG maps are given underneath the
building blocks.

have been isoenzymes in parallel pathways, having become specialized to one species
during evolution.

5.3.4 The conserved part of two aligned networks is
scale-free

We inspected the connectivity of each building block in Query 1, i.e. the number of
best pathways in which a building block is involved. Fig. 5.6a shows that building
block connectivity follows a power-law distribution. It has already been pointed out
that metabolic networks as a whole are scale-free networks [66]; but our finding pro-
vides evidence from a new perspective, indicating that the conserved part of aligned
networks, composed of the building blocks in the best pathways, is also scale-free.
Fig. 5.6b-d shows the three building blocks with the highest connectivity to be involved
in primary metabolism glycolysis/gluconeogenesis, which is known to be highly con-
served and plays a role in many processes.

5.3.5 Short pathways lead to interpretable results

Our methodology has no inherent limit on the pathway lengths. That is, it can con-
struct and score pathways consisting of any number of building blocks. To find longer
pathways, one can simply extend the pathway length in the search step. Actually, we
conducted experiments without a length limit, which resulted in aligned pathways up
to a length of 42 building blocks. Another solution would be to assemble the current
length-four short pathways into longer pathways.

However, not all pathway lengths give meaningful results. When the length becomes
too short, the method starts to compare individual reactions and loses the power of
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Figure 5.7: The impact of pathway length on the resulting overlap. A frequency graph
of the number of consecutive overlapping building blocks in all pairs of
pathways of the same length found in Query 1. When pathway length is
increased, the overlap between resulting pathways increases significantly,
hampering interpretation.

metabolic functional context, as stated in section 5.1. As a result, some isolated reac-
tions are also included in the results. For example, 31% of building blocks (i.e. length-
one pathways) contain isolated reactions, which are not included in any length-four
pathway.

When the pathway length becomes too large, the method produces many highly over-
lapping results. For example, when running M-PAS with the pathway length set to ten,
the number of found pathways increases to 15939 (as compared to the 2597 found path-
ways when this length is set to four). However, Fig. 5.7 shows that the average overlap
between any two pathways also increases significantly. This makes it more difficult
to interpret the results. Moreover, longer pathway lengths stress pathway conserva-
tion more, and will inevitably miss some interesting short pathways. For example, 128
building blocks (20%) which are present in the results of length-four are not found in
the set of length-ten pathways. Therefore, although limiting the pathway length to
four might not be the optimal choice, it is within a reasonable range which produces
meaningful results.

5.3.6 M-PAS reveals pathway diversity and alternatives

As mentioned above, we found that 54% of the length-four pathways are not “i-i-i-i”,
which occur in 65% of the substrates. Interestingly, 17 start substrates do not have
any “i-i-i-i” pathways, which means the length-four pathways starting with these sub-
strates always differ in these two species. When only best pathways are concerned, we
found 16% of these are not “i-i-i-i”, starting from 13% of the substrates. Fig. 5.8 displays
two best pathways in Query 1, which contain unique reactions in both species.

These pathways are highly conserved, yet exhibit differences between the two species.
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Figure 5.8: Two examples of non-“i-i-i-i” best pathways in Query 1. The non-identical
building blocks are highlighted, which exhibit diversities. Scores of all
building blocks are shown at the bottom right. The involved KEGG maps
are: a) galactose metabolism; fructose and mannose metabolism; glycolysis
/ gluconeogenesis; pentose phosphate pathway. b) citrate cycle (TCA cy-
cle); glyoxylate and dicarboxylate metabolism; urea cycle and metabolism
of amino groups; alanine and aspartate metabolism; arginine and proline
metabolism; butanoate metabolism (only for E. coli); reductive carboxylate
cycle (CO2 fixation) (only for E. coli).

Note that M-PAS goes beyond simple reaction comparison and always places these
differences in metabolic functional context. In this way, our method sheds light on
variations between species in the use of non-identical but similar reactions in path-
ways, revealing between-species diversity and within-species alternatives. When both
species have their own unique reactions to transform a particular substrate into a par-
ticular product, we call this diversity. If only one of the species has a unique reaction,
which performs the same transformation as another common reaction does in both
species, then this unique transformation forms part of an alternative pathway. Fig. 4.2
gives a schematic explanation of these two terms.

Recall the constraint in section 5.2.2 which enforces uniqueness in constructing a non-
identical building block. Consequently, these non-identical building blocks contain
unique reactions in either one or both species, introducing diversity or alternatives in
the assembled pathways. In other words, all resulting pathways which do not have an
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Figure 5.9: High-scoring building blocks in Query 1. a) One of the highest-scoring
“identical” building blocks (Z(B) = 34). b) One of the highest-scoring
“direct” building blocks (Z(B) = 27). c) The highest-scoring “enzyme mis-
match” building block (Z(B) = 16). d) The highest-scoring “direct-gap”
building block (Z(B) = 23). e) The highest-scoring “enzyme mismatch-
gap” building block (Z(B) = 9). f) The highest-scoring “enzyme crossover
match” building block (Z(B) = 18).

“i-i-i-i” configuration contain diversity or alternatives. For example, the fourth build-
ing block in Fig. 5.4b contains a reaction unique to E. coli, constituting a unique al-
ternative pathway. On the other hand, the second building block in Fig. 5.8a and the
third building block in Fig. 5.8b contain unique reactions in both species, therefore they
show diversity in the pathways. More examples are given in Fig. 5.9, which displays
the most similar building blocks of each type in Query 1.

These results demonstrate the value of including non-identical building blocks, as oth-
erwise these strongly conserved pathways would have been overlooked. In particular,
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building blocks with gaps or crossovers would be hard to detect manually, e.g. Fig. 5.8a
and Figs. 5.9d-f. Take Fig. 5.9d as an example. By comparing reactions in two species,
normally we can only find a reversible reaction present in both species which catalyzes
indoleglycerol phosphate into L-tryptophan. However, considering gaps allows us to
find two consecutive reactions in one of the species which perform the same transfor-
mation in two steps. In the end, our algorithm found a unique alternative pathway
in E. coli which transforms indoleglycerol phosphate to indole first by an irreversible
reaction, followed by a unique reaction transforming indole to L-tryptophan.

5.3.7 New links between different parts of metabolism are
found

Our method is global, starting from constructing building blocks to the assembly of
pathways. Therefore, the resulting pathways have a reasonable coverage of the net-
work, and explicitly include links between different parts of metabolism, which are
displayed in 202 pathway maps of metabolism in KEGG [45]. For example, Fig. 5.8
shows four to seven such maps are linked together in each aligned pathway (see cap-
tion).

Since our alignment method operates on individual reactions, independent of the exist-
ing pathways as given in current databases, we not only reconstruct known pathways
(as presented by KEGG, e.g. Figs. 5.4, 5.8a, 5.10b-c), but also discover new pathway
possibilities with the component reactions annotated in different maps and not linked
with each other in the original database, e.g. Figs. 5.8b and 5.10a. These pathways will
not be found if we only look at the pathways shown in the maps and the links between
maps.

Moreover, M-PAS not only links different parts of metabolism within one species, but
also associates diverse parts in two species with each other, offering potential inter-
esting targets for bioengineering. For instance, in Fig. 5.9e, the unique reaction of S.
cerevisiae is found in glycine, serine and threonine metabolism, while the unique reac-
tion of E. coli is found in cysteine metabolism. Therefore it will not be found if we only
look at one map or one species at a time.

5.3.8 Primary metabolism is highly conserved

Three pathways with the highest scores in Query 1 are shown in Fig. 5.10. They repre-
sent the most conserved part of the metabolic network in the two species and are there-
fore expected to be important. Not surprisingly, the three pathways are all involved in
primary metabolism. Moreover, they all have “i-i-i-i” configuration, meaning all reac-
tions in the pathways are conserved across species. Clement et al. [12] also pointed out
that “vital biological processes in a group of related species should be conserved and
expressed by a significant number of reactions in all the organisms of the group”.

We can also observe this in Fig. 5.9, where the involved parts of metabolism in the
highest-scoring building blocks are rather central processes, e.g. starch and sucrose
metabolism, citrate cycle (TCA cycle), CO2 fixation and other important amino acid
metabolisms.
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Figure 5.10: Three pathways with the highest scores in Query 1. The solid-headed
arrow indicates the reactions exist in both species, constituting an “i-i-
i-i” pathway. a) Z(P) = 41. Involved KEGG maps include: glycol-
ysis/gluconeogenesis; pentose phosphate pathway; starch and sucrose
metabolism; phenylalanine, tyrosine and tryptophan biosynthesis. b)
Z(P) = 40. Involved KEGG maps include: pentose phosphate pathway;
glycolysis/gluconeogenesis; starch and sucrose metabolism; glutathione
metabolism. c) Z(P) = 39. Involved KEGG maps include: starch and
sucrose metabolism; glycolysis/gluconeogenesis; galactose metabolism;
streptomycin biosynthesis; pentose phosphate pathway.

5.4 Conclusions

In this work, we extend our former alignment framework and propose a novel scoring
method to identify conserved metabolic pathways and quantify the level of conser-
vation in an efficient and comprehensive manner. Based on the six types of building
blocks, a systematic search is conducted in the network. We find and rank conserved
pathways given certain substrates, and shed light on the variations between species
within a metabolic functional context. This is not possible by simple comparison of
reaction lists or enzyme lists.

Our method combines individual reactions, so that we can find conserved pathways
that are not represented in conventional databases. Since the alignment and search
are conducted in the whole network, M-PAS unites reactions in different KEGG maps,
revealing links and relating reactions with common upstream substrates and down-
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stream products which might be elusive if we only look at subsets of the network.

Our similarity measure combines uncorrelated information sources, including similar-
ities of substrate sets, product sets, enzyme functions, enzyme sequences and align-
ment configurations. The function has a generic form and is capable of measuring
pathway similarity given different biological emphases. Due to its hierarchical inte-
gration structure, it is readily extensible to include other relevant similarity measures
if available (e.g. enzyme affinities), or to modify a component score (e.g. using com-
pound molecular similarity scores). Moreover, the proposed function is plausible since
parts of primary metabolism, which are known to be well conserved, are found to be
abundant in our top-scoring pathways and building blocks.

M-PAS reveals highly conserved pathways containing diversity or alternatives, which
yields important information for biology and life sciences. First, the results give in-
sight into the evolutionary differences between species. For instance, the two species
apparently diverged to process 17 substrates differently, so that no “i-i-i-i” pathways
are found starting from them. This divergence calls for special treatment of these sub-
strates per species in analysis and applications. Second, the diversity and alternatives
in conserved pathways also provide additional ways to construct metabolic networks
for currently unannotated species. Third, our analysis lists potential candidate en-
zymes for bioengineering, i.e. certain natural enzymes can be removed, introduced, or
changed so that we can select a favorable pathway to enforce production of a metabo-
lite of interest, or block pathways leading to certain unfavorable products. In particu-
lar, alternative pathways have to be considered in drug design, because blocking cen-
tral enzymes might not be effective when alternative pathways provide other routes,
and cause drug resistance in the pathogen population [19].

M-PAS is currently constrained to finding linear pathways which are strictly similar.
Although further processing these linear pathways, e.g. combining them, could recon-
struct some tree-like subnets and cycles, not all network structures can be captured. M-
PAS could be extended to construct and score more complex pathway topologies that
capture more variation. First, to capture more variation, one may extend the building
block definition to include larger differences, e.g. a “dg” with two gaps, or to allow
compound mismatch. But care needs to be taken to keep the computational load ac-
ceptable and to avoid linking unrelated pathways. Alternatively, one may reduce the
pathway length, e.g. to assemble two building blocks into a pathway to capture di-
verse pathways with short overlaps. However, as discussed earlier, when the pathway
length becomes too short, the method starts to compare individual reactions. To find
more complex pathway topologies, a more complex search algorithm is required. An
alternative would be to expand our building block definition to incorporate more types
of network motifs. But again, the computational load will increase significantly.

The complementary reaction information of multiple well-studied model species pro-
vides more confidence and more possibilities to transfer this information to a new
species. Although M-PAS currently only performs pairwise alignment on two species,
we expect even more informative results when it is applied on multiple species, and
larger differences will be found as the phylogenetic distance increases. Finally, by re-
lating different sets of enzymes in different species to a common metabolic function,
this work provides an infrastructure in which regulatory factors can be incorporated,
and functional hypotheses can be generated.
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RM-PAS: ALIGNING
REGULATORY-METABOLIC

PATHWAYS

Integrating different types of biological networks and aligning networks across species
are two useful but challenging comparative methods in systems biology nowadays. By
combining these in one framework, we can expect to generate more reliable informa-
tion and hypotheses. In this study, we systematically integrate the transcriptional regu-
lation network of enzyme-coding genes and the corresponding metabolic network, and
align these integrated networks between two species. By applying a scoring function
to measure the alignment similarity, our method can be used to identify conserved ele-
ments (allowing for small variations) of evolution at both the regulatory and metabolic
level, to reveal the interrelation and divergence between species and to use information
at one level to predict missing information at the other level.

This chapter was published in Proceedings of the 8th Annual International Conference on
Computational Systems Bioinformatics, Stanford, USA, 2009 [84].
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Figure 6.1: Method overview. a) The goal of our method is to align metabolic pathways
and their regulation between two species, using suitably defined similarity
measures between compounds, enzymes and transcription factors (illus-
trated by the dotted lines), in order to find conserved elements and learn
about differences between species (illustrated by the exclamation mark).
From missing links in an otherwise conserved context, we can infer missing
reactions or regulation within species (illustrated by the question marks).
b) The RM-PAS flowchart.

6.1 Introduction

Most metabolic reactions in cells are catalyzed by enzymes, and the genes which code
for these enzymes are regulated by transcription factors (TFs). That is, TFs can bind
to the promoter sequence of genes and subsequently activate or repress the transcrip-
tion of these genes. This information flow from the regulatory level to the metabolic
level is illustrated in Fig. 6.1a. At each level, these interactions form a network, i.e. a
transcriptional regulatory network and a metabolic network, respectively.

Comparing networks between species at each level individually can help to filter noise,
and produce insights into the principles governing evolution. For example, Gasch et
al. [37] found that many of the known cis-regulatory systems in Saccharomyces cere-
visiae (yeast) have been conserved in 13 ancient fungi species. Tanay et al. [139] studied
the promoter evolution of co-regulated genes in 17 yeast species, and suggested an
intermediate redundant regulatory program underling the evolvability and increased
redundancy of transcriptional regulation in higher organisms. Alkema et al. [2] im-
proved the prediction of co-regulated genes based on the conservation of protein se-
quences and regulatory mechanisms. At the metabolic level, Jeong et al. [66] and
Ravasz et al. [120] studied the global topological properties of the metabolic networks
in 43 species. Heymans et al. [53] derived phylogenetic trees based on metabolic path-
way comparison.

Comparing networks at different levels simultaneously can be even more informative.
Since different types of network present different perspectives on the biological system,
integrating them may offer a more comprehensive picture. Particularly when elements
are conserved at multiple levels, we can be more confident about the reliability of the
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observed conservation. This allows us to make predictions, using information at one
level to infer information at another level, or using information of one species to infer
information for another species.

Although integrating different types of network within one species has received quite
some attention [17, 60, 114, 130], little advances have been made on the alignment of
regulatory and metabolic networks across species. Here we present a method that
searches for network elements that are conserved in evolution at both the regula-
tory and metabolic level, and measures the extent of this conservation. A schematic
overview of our goal is given in Fig. 6.1a.

Previously we developed M-PAS [85], a framework for metabolic pathway alignment
and scoring based on the notion of building blocks (see Fig. 5.2), to align the metabolic
networks of Saccharomyces cerevisiae and Escherichia coli. In the current work, we in-
tegrate TF-gene interaction and TF binding site (TFBS) information into M-PAS, and
form a more comprehensive method, RM-PAS. We applied RM-PAS to S. cerevisiae and
E. coli, two of the best-annotated model organisms, with relatively much TF binding
and TFBS data available. Since these species are not closely related, many differences
are expected, and the resulting conservation is expected to be quite informative.

6.2 Method

The building block method used in M-PAS has shown to be an appropriate approach to
align metabolic pathways [85, 86]. First, it is able to explore topological arrangement
possibilities of reactions both between species (by building block construction) and
within species (by pathway assembly). Second, by defining building blocks, we can
focus on conserved pathways while allowing small variations. Third, the method is
adaptable and can easily be extended to include more information.

Here, we extend the building block construction and the scoring function to include
transcriptional regulation information. That is, for every enzyme in a reaction, we
add the transcription factors that regulate the enzyme-coding genes. In the end, we
consider the building blocks be the conserved elements that we are interested in. The
flowchart is given in Fig. 6.1b and will be explained in the remaining of this section.
Note that given curated databases (see section 6.3) and user-defined parameters as
input, each step in the flowchart is automated.

6.2.1 Regulatory-metabolic building blocks

We add transcriptional regulation to the metabolic building blocks in M-PAS, to con-
struct regulatory-metabolic (RM) building blocks. That is, we add a link between a
transcription factor and the enzyme in the reaction. This is only done when there is
experimental evidence showing that the transcription factor indeed regulates the gene
coding for the enzyme.

Like in the metabolic building block approach, we also categorize the RM building
blocks with different TF regulation scenarios in the two species, as well as different TF
similarity scenarios, i.e. (1) whether the TFs which bind to the enzyme-coding genes
are similar (“direct TF”) or dissimilar (“mismatch TF”), and (2) whether there exist
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Figure 6.2: Illustration of the ten cases of RM building blocks. D: direct TF. A: alter-
native TF. M: mismatch TF. S: absent TF. I: missing reaction. a The labels
“species 1” and “species 2” can be exchanged. b The alternative TF can
be present in one or both species. Aligned reactions denote any of the six
types of metabolic building blocks (see Fig. 5.2). A TF supernode is the set of
TFs which bind to the enzyme-coding genes in a reaction. Two TF supern-
odes are considered similar if their TFBS are more similar than average, i.e.
for “direct TF”: ZTB(B) > 0 (Eq. 6.6), and for “alternative TF”: ZTU(B) > 0
(Eq. 6.8). In cases 8-10, the two enzyme supernodes have the same EC num-
ber.

additional TFs (“alternative TF”) in one species which are similar to the TFs in another
species, but are not found to bind to the genes in that reaction. When one species has
neither bound TFs nor alternative TFs, we call the RM building block has “absent TF”
in that species. The seven possible cases where TFs are added to the metabolic building
blocks are shown in Fig. 6.2, cases 1-7.

In addition to the reactions present in the database, we also look for possible reac-
tions which are currently missing in one of the species (“missing”). In this scenario,
one reaction is present in only one species, but the other species does contain the re-
action’s compounds and enzymes with identical function in terms of EC number. An
RM building block is then constructed when there is evidence from the transcriptional
regulation control indicating that the missing reaction might be present. That is, when
there exist “direct” and/or “alternative” TFs, we hypothesize the reaction might exist
in both species. These three cases are shown in Fig. 6.2, cases 8-10.
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6.2.2 Pathway assembly

After building blocks are constructed, they are concatenated into pathways, if the prod-
uct of the upstream building block is the substrate of the immediate downstream build-
ing block. Since we are interested in small differences (as illustrated in Fig. 5.2 and
Fig. 6.2), instead of generating a few highly conserved longer pathways, we generate a
ranked list of short pathways with the same length. Because the amount of overlap be-
tween pathways increases substantially when pathway length increases, we limit each
pathway to contain four building blocks.

To implement an exhaustive search for all length-four pathways, we start a backtrack-
ing search from each substrate. During the search, all building blocks in a pathway
should be different, and one reaction cannot appear more than once in one species.
Note that twenty-six currency metabolites1 are excluded from consideration during
pathway assembly to avoid finding large numbers of pathway shortcuts.

6.2.3 Scoring function

We rank the aligned pathways according to the extent of conservation, in order to pri-
oritize the interesting pathways for further investigation. The M-PAS scoring func-
tion [85] integrates multiple similarity scores of all reaction components. It has a
generic form and is capable of measuring pathway similarity given different biologi-
cal emphases. This allows user to specifically look for certain characteristic differences
between species in otherwise highly conserved pathways: by setting the appropriate
parameters, differences will be allowed between enzymes, compounds and/or TFs.
Due to its hierarchical integration structure, it is readily extensible to include other rel-
evant similarity measures. In this study, the M-PAS scoring function [85] is adapted
such that transcriptional regulation similarities are included.

Total score

Our goal is to reflect all aspects of an aligned pathway in the total similarity score.
These include similarities at the regulatory level and the metabolic level, i.e. similarities
between transcription factors, substrate sets, product sets, enzyme functions, enzyme
sequences and alignment topology, respectively.

To account for their diverse distributions of similarities, we first compute similarity
scores independently for each aspect, and then convert the raw scores into z-scores
before integration. The integration of multiple z-scores is done hierarchically using
Liptak-Stouffer’s method [52]. In this way, we obtain a decomposable score for a path-
way:

Z(P) =
1√
N

∑
∀B∈P

Z(B) (6.1)

=
1√
N

∑
∀B∈P

1√
3
[Z0(B) + ZR(B) + ZT(B)] ,

1See section 4.2.2.



78 RM-PAS: ALIGNING REGULATORY-METABOLIC PATHWAYS

where Z(P) denotes the total z-score of an aligned pathway P, which contains N build-
ing blocks B. Z0(B) is the user-specified bias for the building block alignment type. For
example, if the user is interested in building blocks with gaps, then the building blocks
with gaps, i.e. “direct-gap” and “enzyme mismatch-gap” in Figs. 5.2d-e, can be assigned
a large positive bias. ZR(B) and ZT(B) denote the reaction and transcription factor
similarity z-scores in B. ZR(B) is discussed in detail in Chapter 5 and [85], and will be
briefly described below. Here we mainly focus on the TF similarity score.

Reaction score

The reaction similarity score ZR(B) is a weighted sum of its compound score Z(CB)
and enzyme score Z(EB):

ZR(B) =
1√

ω2
c + ω2

e
[ωcZ(CB) + ωeZ(EB)] . (6.2)

Compound weight ωc and enzyme weight ωe can be used to assign different rela-
tive importance to compound similarity and enzyme similarity. The compound score
Z(CB) combines the similarities between the substrate sets and between the product
sets in a building block B, considering the amount and specificity of the overlapping
compounds. The enzyme score Z(EB) is a weighted sum of a functional similarity
score (with weight ω f ) and a sequence similarity score (with weight ωq).

Transcription factor score

We measure TF similarity to see whether regulation is conserved in the two species,
and whether we can find possible alternative TFs. Therefore, the TF score contains
two parts: (1) the similarity between the bound TFs in two species (ZTB), and (2) the
similarity between the bound TFs in one species and TFs that are not found to bind in
the other species (ZTU). Weights are given to these two parts for finding different cases
in Fig. 6.2. Thus the TF score can be written as an integrated z-score:

ZT(B) =
1√

ω2
tb + ω2

tu

[ωtbZTB(B) + ωtuZTU(B)] . (6.3)

First, we need to compute the raw similarity scores between TFs. A TF is characterized
by its corresponding transcription factor binding site (TFBS), which can be quantita-
tively described by position weight matrices (PWM) or position frequency matrices
(PFM) [150]. We take the standard approach of comparing PFM profiles [74, 127] to
measure the similarities between different TFs in an RM building block. More specifi-
cally, we applied MatCompare [127] to calculate the Kullback-Leibler divergence [133]
between the PFM matrices. This measures the information divergence between the
matrix entries. If matrices m and m′ have w columns, indicating the length of the TFBS
sequence, the divergence between them is:

D(m, m′) =
w

∑
i=1

∑
j∈{A,C,G,T}

(mij − m′
ij) log(mij/m′

ij). (6.4)

If one of the two matrices has fewer columns, that matrix is compared to all possible
starting columns in the other matrix to find the best match.



6.3 DATA 79

For a building block B, there might be multiple TFs, each of which might have multiple
PFM matrices. Let MB1 and MB2 denote the complete set of PFM matrices of all bound
TFs involved in B in the two species, respectively. Then the raw TF similarity between
bound TFs is the best match in all pairs of bound TF PFM matrices:

STB(B) = max
m∈MB1 ,m′∈MB2

−D(m, m′). (6.5)

This similarity is further transformed into a z-score:

ZTB(B) =
STB(B)− µTB

σTB
, (6.6)

where µTB and σTB are the average and standard-deviation of STB over all possible
permuted pairs of MB1 and MB2.

Similarly, we compute the raw similarity score between bound TFs in one species and
the alternative TFs in the other species, which is the best match in all pairs between
bound TF PFM matrices in one species and the alternative TF PFM matrices in the
other species:

STU(B) = max{ max
m∈MB1 ,m′ /∈MB2

−D(m, m′), max
m/∈MB1 ,m′∈MB2

−D(m, m′)}, (6.7)

ZTU(B) =
STU(B)− µTU

σTU
, (6.8)

where µTU and σTU are the average and standard-deviation of STU over all possible
permuted pairs of MB1 and MB2.

6.3 Data

Reaction definitions were obtained from Release 42.0 of the KEGG LIGAND composite
database [46], updated on Aug. 18, 2008. The species-specific reactions and enzyme
lists were retrieved from KEGG/XML and KEGG/PATHWAY. Protein sequences were
downloaded from UniProtKB/SwissProt [97] Release 56.0, updated on July 22, 2008.

For S. cerevisiae, the experimentally verified TF-gene binding data is collected from
TRANSFAC [153] Release 11.4 and Yeastract [141] version 2008515. The PFM ma-
trices are obtained from TRANSFAC, Yeastract, SwissRegulon [108], IMD [11], and
ooTFD [42].

For E. coli, the experimentally verified TF-gene binding data is collected from Eco-
Cyc [72] Release 11.6 and RegulonDB [35] Release 6.0. The TFBS matrices are obtained
from RegulonDB and SwissRegulon.

6.4 Experiments and results

Based on 957 enzymatic reactions in yeast and 1175 enzymatic reactions in E. coli, we
constructed 697 RM building blocks, including 5 of cases 8-10 in Fig. 6.2. They are
assembled into 8397 length-four pathways, starting from 259 substrates.
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Query ωc ωe ω f ωq ωtb ωtu Z0

1 1 1 1 1 1 0 0 for all
2 1 1 1 1 0 1 0 for all
3a 1 1 1 1 -1 1 100 for non-“i”
3b 1 1 1 1 -1 1 100 for “i”

Query Target Case

1 Full conservation 1,2,8,9
2 Missing TF-gene bindings 1,3,5,8,10
3a Differences between two levels 3
3b Differences between two levels 3

Table 6.1: The parameter settings in the three queries. “i” refers to the identical
metabolic building block type in Fig. 5.2. The cases refer to those in Fig. 6.2,
illustrating the scenarios for each query.

Here we demonstrate our method using three example queries, to find fully con-
served pathways, missing TF-gene bindings, and differences between the regulatory
and metabolic level. Each query uses a different parameter setting, including the build-
ing block type bias Z0, four reaction score weights (i.e. ωc, ωe, ω f and ωq), and two
TF score weights (i.e. ωtb and ωtu). In each query, the similarity scores of all pathways
found are computed using Eq. 6.1, and the highest-scoring pathway(s) of a certain sub-
strate is referred as the best pathway for that substrate.

Table 6.1 lists the parameter settings in the queries. The motivations for, and results of
the queries are discussed in the following.

6.4.1 Identifying conserved regulatory-metabolic network
elements

In Query 1, all aspects of known information at both the regulatory and the metabolic
level are considered. Therefore, the resulting pathways represent elements fully con-
served at both levels. Fig. 6.3a gives an example, which is involved in the citrate cycle
(TCA cycle) and the biosynthesis of several essential amino acids, i.e. valine, leucine
and isoleucine.

The addition of TF similarity helps to refine the results of Query 1 in M-PAS, which
only uses reaction similarity. Consequently, the ranks of found length-four pathways in
RM-PAS might be different than those in M-PAS, revealing that regulatory mechanisms
are not uniformly conserved in metabolic pathways.

For the 2427 pathways common in the results of RM-PAS and M-PAS, we calculated
the rank of each pathway among the group of pathways which share the same starting
substrate, using both scoring methods. This rank was then normalized by dividing by
the size of the group to obtain a normalized rank in the range of [0,1], i.e. the most
conserved pathway in a group ranks 1. In the end, 52% of pathways have normalized
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Figure 6.3: Examples in the three queries. a) An example best pathway in Query 1. b)
One pathway which ranks differently in Query 1 of RM-PAS and M-PAS.
c-d) Example best pathways in Query 2. e-f) Example best pathways in
Query 3. See text for details.

ranks higher in RM-PAS than in M-PAS, while 28% have lower ranks. Note that only
16% of the changes in the ranking is caused solely by changes in the group size.

In-depth analysis shows the TFs are indeed different in the pathways whose ranks
are lower in RM-PAS. For instance, the pathway in Fig. 6.3b has the highest score in
M-PAS, but its RM-PAS score is the 30th highest. This is because the TFs in the first
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Figure 6.4: Five building blocks belonging to cases 8-10 in Fig. 6.2.

building block are quite different: not only in TFBS matrices, but also in their functional
annotations, binding domains, and protein sequences. In fact, the binding domain of
the E. coli TF fruR is only present in bacteria.

6.4.2 Using one level to infer missing information at another
level

Inferring missing reactions Here we use conservation at the regulatory level to infer
missing reactions at the metabolic level. Based on the data collected, we constructed
five building blocks corresponding to cases 8-10 (see Fig. 6.2), which are shown
in Fig. 6.4. In particular, Fig. 6.4d is found in six length-four pathways. In each
example, although the reaction is not found in the database for one of the species, we
hypothesize that it is actually present. The evidence comes from both metabolic and
regulatory levels: all involved compounds and enzymes with the required function
are present in the species, and they are also regulated similarly.

Inferring missing TF-gene bindings In Query 2, we try to use conservation at the
metabolic level to prioritize a list of hypothetical TF-gene bindings with higher con-
fidence. Overall, the predictions on yeast TF-gene bindings by RM-PAS are signifi-
cantly better than random predictions. This is validated by a permutation test (see
Appendix A), which shows that the TFs predicted by RM-PAS are more likely to bind
to the respective genes than random predictions for 50% of the genes.

Here, we give two examples. Fig. 6.3c shows the highest-scoring pathway, involved in
glycolysis/gluconeogenesis, pentose phosphate pathway, and carbon fixation. In the
fourth building block, we find the bound yeast TF GCR1 is similar to an alternative
E. coli TF cueR, with MatCompare score = 0.3 (the original paper defines two TFs are
similar when this score is ≤ 1). It suggests cueR might bind to the E. coli enzyme fbaA.

We applied Regulatory Sequence Analysis Tools (RSAT [1]) to see whether the up-
stream region of fbaA contains the TFBS of cueR. RSAT scans the upstream coding
sequence of fbaA for the TFBS matrices of cueR. It outputs a segment score for each
sequence segment, which is calculated as the log-ratio between the probability to gen-
erate the sequence segment given the TFBS matrix, and the probability to generate the
sequence segment given the first-order Markov chain-based background model. The
result shows not only that there exists one matching site at -141bp to -120bp, but also
that it has a higher segment score than all TFBS of the bound TFs (i.e. fruR and crp)
with site-wise p-value = 0.0005.
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Another example is shown in Fig. 6.3d. In the first building block, we find the bound
E. coli TF Fis is similar to an alternative yeast TF WAR1, with MatCompare score = 0.5.
It suggests WAR1 might bind to the yeast enzyme PGM2. RSAT shows that the TFBS
matrix of WAR1 has a higher segment score than 20 (83%) bound TFs, with site-wise
p-value = 0.00002. In addition, WAR1 shares the same domain “Zn clus” with six
bound TFs, according to Pfam [29].

We applied co-expression analysis to investigate the likelihood of this latter TF-gene
binding. Our reasoning is that if a particular gene g is regulated by a particular TF T,
then g should be more similar than random genes r to other genes g′ also regulated by
T, in terms of correlation of mRNA expression. This means the average co-expression
coefficient between g and g′ should be significantly larger than that between r and g′.
We used an mRNA microarray data set described earlier [87]. The result shows that
the average co-expression coefficient between PGM2 and the set of genes known to be
regulated by WAR1 is significantly higher than the co-expression between a randomly
drawn gene and the same gene set (p = 0.001).

6.4.3 Revealing the differences between two levels

The target pathways in Query 3 are conserved at the metabolic level, yet differ at the
regulatory level. As depicted in case 3 in Fig. 6.2, the bound TFs are a “mismatch”, even
though there exist “alternative” TFs. We further refine our investigation by looking at
two types of conservation at metabolic level.

Query 3a looks into the diverse regulation in non-“identical” metabolic building
blocks, which contain unique reactions with different cofactors in two species. There-
fore, the query actually is designed to find cofactor-specific TFs. Since the enzymes
catalyze different reactions in two species, we hypothesize that the different cofactors
might have induced different TFs to bind the enzyme-coding genes. These enzyme
products in turn enable the same transformation of a particular substrate to a particu-
lar product, when different cofactors are available.

Another possible explanation is that different species have evolved separately to pro-
duce different cofactors, e.g. ATP, which are actually the main products in some path-
ways. Several studies show that mutations in active-site residues produce new cat-
alytic properties for enzymes, which enable the formation of new pathways [101]. In
our results, we find examples of different TF binding domains that have evolved in
different species. For instance, the first building block in Fig. 6.3e contains unique re-
actions in both species, and the yeast TFs have a bHLH domain present in eukaryotes,
and a Zn(2)-C6 fungal-type domain only present in fungal TFs. The second building
block contains a unique reaction in E. coli, and its enzyme metR has a HTH lysR-type
DNA-binding domain unique to bacteria.

Query 3b finds divergent TFBS in the most conserved pathways at metabolic level,
with identical reactions in both species. This might indicate the evolution of TFBS [93],
and the mutational robustness during the evolution.

Although binding sites are subject to random mutations, evolution has naturally
driven TFBS to be unspecific so that the functional phenotype is somewhat insensi-
tive to mutations [147]. Previous research also shows that orthologous transcription
factors may regulate orthologous genes through divergent TFBS in distantly related
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species [2]. This is reflected in our results. For example, the TFBS in the first build-
ing block in Fig. 6.3f are very dissimilar in two species with MatCompare score = 2.1,
although the enzymes share similar sequences with BLAST E-value = 4 × 10−68.

6.5 Conclusions

RM-PAS combines biological knowledge across species, and across levels of cellular or-
ganization. By setting different weight parameters in the scoring function, we showed
how RM-PAS can be applied to identify conserved regulatory-metabolic network ele-
ments, infer missing reactions, prioritize and corroborate TF-gene binding hypotheses,
and reveal diverse regulation in pathways that are conserved at metabolic level.

Our findings may be further exploited to analyze the integrated and aligned network
properties, study evolutionary processes in multiple species, seek metabolic engineer-
ing targets, predict operons, and provide more possibilities to construct such a multi-
level network for a new genome.

6.6 Appendix A: Permutation test

This appendix details one of the validation methods in section 6.4.2. To validate
whether the TFs predicted by RM-PAS are more likely to bind to a particular gene
than random predictions, we applied the following procedure:

1. Generate the RM-PAS prediction data set. This data set contains the TF-gene
pairs predicted by RM-PAS in Query 2. In particular, the genes are the enzyme-
coding genes in the best pathways of Query 2, with ZTU > 0 (Eq. 6.8).

2. Generate the permuted data set. For each TF-gene pair in the prediction data set,
fix the gene and pair it with 10 random TFs that have matrices and that are not
known/predicted to bind to this gene.

3. Run RSAT on both the prediction data set and the permuted data set, to obtain
a segment score for each TF-gene pair.

4. For each gene, test whether the segment scores of predicted TFs are significantly
higher than those of random TFs in permuted data set. This is a one-tailed t-test,
assuming that two sets of scores come from normal distributions with unknown
and possibly unequal variances. If p < 0.05, RM-PAS “wins” this gene test.

5. Perform (4) for all genes in the prediction data set, and obtain the percentage of
genes for which RM-PAS wins.

Results: Given 40 genes in total in the prediction data set, RM-PAS is significantly
better than random in predicting TFs for 20 genes. Out of the other 20 genes where
p > 0.05, 19 genes only have 2 or 3 predicted TFs, indicating that small sample size is
a major cause of lack of significance.
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6.7 Appendix B: Commentary

This appendix presents a follow-up experiment to investigate the added-value of RM-
PAS in TF-gene binding prediction, which is addressed in section 6.4.2.

6.7.1 Experiments & results

Our goal is to globally quantify the prediction performance of RM-PAS. To this end,
we design a hold-out test in which all experimentally verified yeast TF-gene binding
information is left out in the prediction phase, and is used in the validation phase
to calculate the true-positive and false-positive prediction rates by RM-PAS. We use
the performance of RSAT [1] and random prediction as references. The experimental
procedure is as follows (see section 6.7.2 for details):

(A) Generate the RM-PAS prediction data set, containing the yeast TF-gene pairs with
their TF similarity scores and reaction similarity scores given by RM-PAS.

(B) Generate the RSAT prediction data set, containing the yeast TF-gene pairs with
their RSAT segment scores given by RSAT.

(C) Calculate the overall true positive rate (TPR) and false positive rate (FPR) for RM-
PAS. In total, 15 different TF similarity thresholds (tT) are tested.

(D) Calculate the overall TPR and FPR for RSAT as in (C). In total, 15 different segment
score thresholds (tS) are tested.

The results are shown as ROC curves in Fig. 6.5a. We can see that RM-PAS performs
better than random prediction, but not as good as RSAT. We then set out to test two
hypotheses as to why this may be the case. Hypothesis I is that uninformative PFMs
(position frequency matrices) may lead to large numbers of false positives. To test this
hypothesis, we attempt to include the information content of the TF matrices in cal-
culating the TF similarity score in Step (A). More specifically, Kullback-Leibler diver-
gence [133] (see Eq. 6.4) is used to calculate TF similarity. It quantifies the divergence
of two matrices, but does not take into account the information content of the matrices.
Therefore, two identical and informative matrices have a divergence of 0, but also two
identical yet uninformative matrices have a divergence of 0. We include the informa-
tion content in the experiments as described in section 6.7.2 below, and refer to this
modified version RM-PASi.

Hypothesis II is that false positive TF-gene interactions may occur mainly in low-
confidence RM-PAS predictions, i.e. in reactions with low similarity score. From
Fig. 6.5a, we already see that RM-PAS helps to improve the prediction, using the con-
servation in the “identical” building blocks (see section 6.7.2 for RM-PAS prediction
data set). To test this hypothesis, we add another threshold (tR) regarding the reaction
similarity into RM-PASi, so that the TF-gene interactions are predicted only for build-
ing blocks whose reaction similarities exceed tR. Four thresholds are used. We call this
second modification RM-PASir.

The performances of the two modified versions of RM-PAS are shown in Fig. 6.5b, us-
ing the same way to calculate TPR and FPR as in Steps (C) and (D). Comparable results
are observed for a larger RM-PAS prediction data set using all building blocks in the
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Figure 6.5: a) Global quantification of TF-gene binding prediction performances of
RM-PAS and RSAT in a hold-out test. b) The prediction performances of
RM-PASi and RM-PASir in the same experiment. The ROC curves of RM-
PAS and RSAT are the same as in a). The reaction similarity thresholds tR
for the four RM-PASir curves (clockwise) are: 30, 25, 20, 15.

best pathways in Query 2 (see section 6.4) and for all involving genes. We can see from
Fig. 6.5b that using information content only marginally improves RM-PAS’ perfor-
mance, indicating the PFM quality in terms of informativeness in the current database
is acceptable. Using different reaction similarity thresholds, on the other hand, signif-
icantly improves RM-PAS’ performance presented by the ROC curves. In particular,
given a certain TPR, predictions from more similar reactions (e.g. tR = 30) have a
lower FPR than those from less similar reactions (e.g. tR = 15). This indicates that con-
servation at the metabolic level is indeed correlated with the prediction accuracy at the
regulatory level. Therefore, the reaction similarity score can be used to prioritize TF-
gene binding hypotheses, although further investigation is needed to learn how to best
apply this to obtain more accurate predictions. Moreover, the results also indicate that
our scoring function is designed properly to quantify reaction similarity, otherwise we
would not be able to obtain this correlation.

In summary, both hypotheses are true, albeit to different extents. However, they still
cannot fully explain why RM-PAS is not as good as RSAT. Therefore, we investigated
the experiment design and discovered that RSAT has two advantages in getting a bet-
ter performance. One advantage is that RSAT matches gene sequences with the TFs’
PFMs, which is a more direct form of evidence for binding. The other advantage is
that RSAT uses the same information source in the training and testing phases. More
specifically, a TF is represented by its PFMs, which are mostly obtained from its known
bindings to certain genes in experiments. Therefore, if TF a is not represented by PFM
m (because this is not found by experiments), scanning any gene sequence for m will
not find a in the prediction for any threshold. In case TF a actually binds to certain
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genes through m, these bindings will not be predicted by RSAT, and are counted as
true negatives exactly because they are not experimentally known. In other words,
using known TFs to measure RSAT’s performance may be biased, and we might have
found true bindings by RM-PAS that cannot be validated by RSAT or known bindings.

6.7.2 Method

RM-PAS prediction data set
The data set is generated from all “identical” building blocks. The following steps are
implemented on each of these building blocks:

1) Calculate its reaction similarity score according to Eq. 6.2, using the parameters of
Query 2.

2) Calculate its TF similarity, which is expressed by Kullback-Leibler divergence [133]
(see Eq. 6.4). This is calculated for each pair of yeast TF and E. coli TF using MatCom-
pare [127]. In such a TF pair yTF-eTF, the yeast TF yTF is one of all yeast TFs which
have PFM information, and the E. coli TF eTF is one of the TFs that are experimentally
known to bind to the enzyme-coding genes in the E. coli reaction of that building block.
See section 6.3 for the data sources of the PFM information and known bindings.

3) Pair each yeast TF yTF with the yeast enzyme-coding genes in the building block.
In case there exist multiple yeast enzymes with different EC numbers, yTF is paired to
the genes which have the most similar EC number to that of their E. coli counterparts
bound by eTF.

In the end, we obtain a data set with yeast TF-gene pairs. Each pair is associated with
a reaction similarity score and a K-L divergence score.

RSAT prediction data set
Regulatory Sequence Analysis Tools (RSAT) is a web server which computes the
binding likelihood for a TF-gene pair. It scans the upstream region of the gene for the
PFM of the TF, and outputs a segment score for each matching sequence segment. To
reduce the web query load for RSAT, 30 yeast enzyme-coding genes were randomly
chosen, and their upstream regions were scanned for all yeast TFs by RSAT. In the
end, we obtain a data set with yeast TF-gene pairs. Each pair has a segment score
which is the highest in all segments of that pair.

TPR & FPR calculation
For each method and each threshold, overall TPR and FPR are calculated for a set of
genes G by comparing the predicted TFs for G with the ground truth. G includes 28
yeast enzyme-coding genes which overlap between the prediction sets in Steps (A)
and (B), and have known yeast TFs (i.e. the bindings are verified by experiments)
with PFM information available. The ground truth for the TFs which bind to G comes
from the known bindings. See section 6.3 for the data sources of the PFM information
and known bindings. The detailed procedure is as follows for each method and each
threshold:

1) Select the TF-gene pairs containing genes in G from the prediction set in Step (A) or
(B).
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2) Obtain the prediction: It is the subset of the pairs in the previous step, whose sim-
ilarity score exceeds the threshold. For RM-PAS, the K-L divergence score should be
lower than tT . For RSAT, the segment score should be larger than tS.

3) Obtain the ground truth for known TFs.

4) For each gene in G, compare its predicted TFs with its known TFs, obtaining the
numbers in the confusion matrix 2. This is done for all 28 genes, resulting in an overall
TPR and an FPR for each threshold.

RM-PASi
The information content of the PFMs are included in RM-PASi as follows:

1) Calculate the information content I for each matrix m [136].

I(m) =
w

∑
i=1

∑
j∈{A,C,G,T}

mij log2
mij

Pj
, (6.9)

where mij = max(mij , 10−10), the frequency of observing base j at position i. Pj is the
frequency of base j in the whole genome of that species.

2) Transform each I into a scaling factor F through a linear function:

F(I) = H − (H − 1)× I − Imin
Imax − Imin

, (6.10)

where Imin and Imax are the minimum and maximum of I. The transformation maps I
into F ∈ [1 : H] 3.

3) Scale the original K-L divergence D (Eq. 6.4) into D′ for a TF pair a-b:

D′(Fa , Fb , D) = max(Fa , Fb)× D. (6.11)

This means if one of the two matrices under comparison has low information content,
their K-L divergence becomes larger (i.e. less similar) after scaling. In the end, D′ is
used to express TF similarity instead of D to calculate TPR and FPR.

2The TFs are counted at the complex level, because the TFs in a complex often share the
same PFM in the database. Therefore, only one TP is counted even if multiple TFs in a complex
are correctly predicted. Similarly, only one FP is counted even if multiple TFs in a complex are
wrongly predicted.

3Different H are tested. The best performance of RM-PASi is achieved when H is 10.
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DISCUSSION

From this thesis, we have learned that although various ways of measuring biological
data using current technology are unavoidably noisy and incomplete, proper compu-
tational methods can help to integrate them to improve predictive power and to aid
in knowledge discovery. In Chapter 2 and Chapter 3, it was shown that both class
noise and measurement noise significantly impact classification accuracy. Therefore,
we should not use the measured data directly without dealing with the noise explic-
itly. Moreover, both studies pinpoint the importance of understanding the data for
noise modelling and classifier construction. In Chapters 4-6, we discovered knowledge
and generated hypotheses from incomplete data by data integration. We learned that
comparing data from different sources (e.g. species) and types (e.g. metabolic and reg-
ulatory) may compensate for incompleteness of the individual data sources. In these
studies, we also showed that systematic comparison between complete metabolic net-
works is necessary to fully explore possible links between reactions, and a refined yet
flexible quantification of similarity is valuable.

In the future, developments in the following fields are required to decrease the prob-
lems related to noise and data incompleteness. First, measurement techniques should
be more efficient and cheaper, so that we can measure more replicates to reduce noise
and have a broader coverage. Moreover, attaching a reliability value to individual
measurements will be useful for subsequent processing. Second, public databases
are to be unified and more comprehensive. This can greatly improve the efficiency
and capability of data integration, and also prevent finding artifacts in individual
databases. Third, computationally efficient methods are needed to enable more so-
phisticated noise-handling algorithms and alignment/query algorithms. Fourth, even
more species are to be studied, which calls for integration and alignment algorithms
for multiple species, where evolutionary distance should be taken into account.

In particular, the following challenges are important:

Understand the cause of the noise. As mentioned in the respective chapters, noise
can be caused by many factors including human error and measurement techniques.
Understanding the various causes can greatly improve the system’s performance,
because solutions can be designed to address the specific issues involved. Further-
more, this understanding can also help to identify the steps in the techniques that
need to be modified to reduce noise. We already exploited the causes in Chapter 3, for
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instance, to estimate the noise level per object (i.e. protein pair) and per measurement
technique (i.e. experiment). The various noise sources are then individually modelled
during classifier construction. As another example, to measure gene expressions
from microarray data, Tu et al. [144] design sets of replicate experiments to separate
the noise introduced in different experimental processes, such as sample preparation
and hybridization. This enables them to process the measured data with quantitative
characterization of different noise sources.

Reduce the noise before classifier construction. Proper data pre-processing can
greatly enhance classification accuracy (see [166] for a review). In particular, data
cleansing and feature selection are two useful tools when noise is present. It has
been proved that appropriate data cleansing, such as eliminating noisy instances,
predicting unknown (or missing) attribute values, or correcting noisy values, can
improve classification accuracy. However, this procedure is not trivial, as erroneous
cleansing will actually deteriorate a system’s performance. Next, feature selection
is even more important to build classifiers given noisy data, than given noise-free
data. Three factors have to be considered in the selection. The first factor is the
quality of the feature. Of course we prefer less noisy features, which can be quantified
using some quality analysis methods to estimate their reliability [21, 22]. The second
factor is the knowledge about the noise in the feature. As shown in Chapter 3,
if we can measure or estimate the noise accurately, the knowledge can be used
during the classification. The last factor is the importance of the feature. It is found
that noise in different features gives different impact on a system’s performance
[166]. The higher the correlation between the feature and the class label, the more
impact the feature has when a certain amount of noise is introduced. Therefore, to
improve classification performance efficiently, we may focus on the important features.

Address the small sample size problem. The small sample size problem is common
in computational biology. It means a classifier has to be built upon a few samples
with a large number of features, introducing over-fitting to the training samples. The
problem becomes more severe when the training data is noisy, because more training
samples are required to compensate the distorting effect of the noise, and to recover
the true data distribution. Therefore, designing classifiers which can handle the small
sample size problem should have our special attention. We have investigated this
matter in Chapters 2 & 3, and have shown two useful approaches. One is using
classifiers which project data onto a one-dimension space (i.e. PKF in Chapter 2). The
other approach includes prior knowledge about the noise in the classifier (Chapter 3).

Validate predictions by experiments. The results of our integrated network compari-
son approaches are generated by exploiting two complementary types of information,
namely similarity and difference. That is, we discover conservation by looking for the
similar parts of the networks in both species and at both levels. From the remaining
differences, we then learn about the diversity between species and the divergence
between levels. Predictions can be made using these differences to infer missing
information, e.g. missing reactions and TF-gene bindings, assuming the “different”
parts are actually the same. However, the question is: How do we distinguish between
real differences and missing information? To consider this, we have to validate our
predictions carefully. Given the incomplete data we currently have, ideally we would
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integrate all available information into the prediction model, leaving no independent
data to test the prediction. Therefore, experimental validation is an irreplaceable way
to test the findings.

Refine the input networks. Currently, the networks we use only indicate pres-
ence/absence of edges (i.e. metabolic reactions or regulatory interactions), in all con-
ditions and time points. That is, they are static and qualitative topologies. However,
the actual interactions occur only at certain moments, and under certain environmen-
tal and contextual conditions (e.g. combinatorial TF regulations). Moreover, the in-
tensity of the interactions can have a more complex distribution than simply pres-
ence/absence. Therefore, a more refined alignment approach ought to describe the
edges by their dynamics and quantitative intensities [5, 63]. In the mean time, this
poses a daunting task to develop a suitable computational method for comparative
network analysis.
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SUMMARY

In modern molecular biology, the vast amount of experimental data enables us to ob-
tain more comprehensive understanding of cellular activities, from transcription to
metabolism. However, due to the inherent complexity of the cell and the various limi-
tations of the measuring techniques, these data are often noisy and incomplete. There-
fore, conclusions and hypotheses generated from these data are unreliable and remain
partial. This poses a major challenge in molecular biology.

This thesis contributes to this matter by proposing several approaches to handle noisy
and incomplete biological data, in order to improve prediction accuracy and ease
knowledge discovery. It is divided into two parts which address different problems.
Part I is dedicated to the theoretical study of building noise-tolerant classifiers in the
presence of class noise and measurement noise, i.e. when class labels or measured
attribute values of biological instances are erroneous. For the class noise problem,
we present three classifiers using probabilistic models to recover the true distribution
of each class. In particular, our novel incorporation of the noise model in the Ker-
nel Fisher discriminant offers improved prediction performance, especially on non-
Gaussian data sets and data sets with relatively large numbers of features compared to
their sample sizes. For measurement noise, we propose to integrate prior knowledge
of the noise into kernel density based classifiers, using distinct kernels for individual
samples, features, and feature values. The inclusion of prior knowledge is also shown
to be especially beneficial in relatively under-sampled data sets.

In Part II, we exploit the incomplete metabolic reaction and transcriptional regula-
tion data, using both a network-centric and evolution-based approach. That is, we
integrate metabolic networks and regulatory networks within species, and compare
the integrated networks across different species. This integrated evolutionary net-
work method not only provides a more comprehensive view of the cellular system,
but also helps to generate more reliable information and hypotheses. Our alignment
framework allows to automatically align the full metabolic networks of two species,
taking into account all reaction arrangement possibilities and allowing small differ-
ences in otherwise similar reactions. We present a scoring function which measures
pathway similarity in a comprehensive and flexible manner, hierarchically integrat-
ing all relevant and uncorrelated information sources. Using this method, we have
identified fully conserved pathways and their variations at regulatory and metabolic
level, discovered new pathway possibilities which are not represented in conventional
databases, and generated hypotheses on the missing information using the informa-
tion of its counterpart at another level and/or another species.
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De moderne moleculaire biologie beschikt over een enorme hoeveelheid data, die ons
in staat stelt om een beter begrip te krijgen van de cellulaire activiteiten van transcriptie
tot metabolisme. Door de inherente complexiteit van de cel en de beperkingen van de
meettechnieken is de data echter vaak incompleet en bevat ruis. Daarom zijn de con-
clusies en hypotheses die op deze data gebaseerd zijn incompleet en onbetrouwbaar.
Dit vormt een grote uitdaging voor de moleculaire biologie.

Dit proefschrift draagt bij aan deze materie door verschillende methoden voor te
stellen om met incomplete data en data met ruis om te gaan, ten einde de accuraatheid
van voorspellingen te verbeteren en het ontdekken van kennis te vergemakkelijken.
Het bevat twee delen die verschillende problemen addresseren. Het eerste deel bevat
een theoretische studie betreffende het ontwikkelen van ruistolerante klassificatoren in
de aanwezigheid van: 1) fouten in de toegewezen klassen van voorbeelden in de leer-
set (klassenruis) en 2) meetruis in de kenmerken. Voor het probleem van de klassen-
ruis, presenteren we drie klassificatoren gebaseerd op waarschijnlijkheidsmodellen om
de werkelijke distributies van de klassen te ontdekken. Vooral onze toevoeging van
een ruismodel aan de Kernel Fisher discriminant biedt betere performance, in het bijzon-
der op niet-Gaussische datasets en datasets met een relatief groot aantal kenmerken ten
opzichte van het aantal voorbeelden in de leerset. Om beter om te gaan met meetruis
in de kenmerken stellen we voor om voorkennis over de ruis te integrereren in kernel-
density klassificatoren, door specifieke kernels te gebruiken voor individuele objecten,
kenmerken en meetwaarden. De toevoeging van voorkennis blijkt vooral heilzaam
voor kleine leersets.

In het tweede deel gebruiken we incomplete data over metabolische reacties
en transcriptie regulatie met behulp van zowel een netwerk- als een evolutie-
gebaseerde benadering. Dat betekent dat we geı̈ntegreerde metabole netwerken
en regulatie netwerken binnen één soort met elkaar te vergelijken en om deze
geı̈ntegreerde netwerken tussen verschillende soorten met elkaar te vergelijken. Door
op netwerknivo te vergelijken krijgen we niet alleen een uitgebreider inzicht in het cel-
lulaire systeem, maar kunnen we ook betrouwbaardere hypotheses genereren op basis
van de initieel incomplete data. Deze geı̈ntegreerde netwerkmethode is gebasseerd op
een nieuwe uitlijningsmethodiek die het mogelijk maakt om automatisch de volledige
metabole netwerken van twee soorten uit te lijnen, rekening houdend met alle mo-
gelijke combinaties en met kleine verschillen in vergelijkbare reacties. Daarnaast pre-
senteren we een uitgebreide en flexibele score functie voor de vergelijking van de
geı̈ntegreerde netwerken die gebruik maakt van alle relevante en ongecorreleerde
informatiebronnen. Als resultaat hebben we volledig geconserveerde netwerken en
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hun variaties op regulatie en metabolisch niveau geı̈dentificieerd, nieuwe mogelijke
netwerken ontdekt die in conventionele databanken niet voorkomen en hypotheses
gegenereerd over ontbrekende data, gebaseerd op tegenhangers op een andere niveau
en/of in een andere soort.
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