
MSc Sustainable Energy Technology

Interplay between LV Grids and
EVs’ Charging Flexibility
A Smart Charging Approach

F. Verbist

M
as

te
ro

fS
cie

nc
eT

he
sis





Interplay between LV Grids and EVs’
Charging Flexibility
A Smart Charging Approach

Master of Science Thesis

For the degree of Master of Science in Sustainable Energy
Technology at Delft University of Technology

F. Verbist

July 19, 2022

Student number: 5369835
Project duration: January 10, 2022 - July 27, 2022
Thesis committee: Dr. P.P. (Pedro) Vergara Barrios - supervisor, EEMCS

MSc. N.K. (Nanda) Panda - daily supervisor, EEMCS
Dr.ir. JL (Jose) Rueda Torres - chair committee, EEMCS
Dr. S. (Stefan) Pfenninger - committee member, TPM

Faculty of Electrical Engineering, Mathematics & Computer Science
Delft University of Technology



The work in this thesis was partly fulfilled in the context of the ROBUST project. For more information,
visit their webpage at: https://tki-robust.nl/. ROBUST received funding from the MOOI 2020 Top Sector
Energy subsidy programme by the Ministry of Economic Affairs and Climate Policy, executed by the Netherlands
Enterprise Agency.

Copyright © Department of Intelligent Electrical Power Grids (IEPG)
All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilised in
any form or by any means, electronic or mechanical, including photocopying, recording or by any information
storage and retrieval system, without written permission of the author.

An electronic version of this dissertation is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


" If there is any one secret of success, it lies in the ability to get the other person’s point of view
and see things from that person’s angle as well as from your own."
— H. Ford



ii

F. Verbist Master of Science Thesis



Samenvatting

De elektrificatie van alle sectoren is vandaag de dag onmisbaar om koolstofneutraliteit te bereiken tegen
2050. Wat mobiliteit betreft, streven veel landen in de wereld naar een emissievrij wagenpark door
massaal in te zetten op elektrische voertuigen. Dit gaat echter gepaard met een aantal uitdagingen in
verband met congestie- en spanningsproblemen in de elektriciteitsnetten als gevolg van een ontoereikende
netcapaciteit. Wanneer de netversterking de toenemende vraag naar elektriciteit niet kan bijbenen, zowel
qua planning als financiële middelen, moet een slimmere, efficiëntere oplossing het probleem verhelpen.

Dit proefschrift beoogt een optimale manier van flexibiliteitsverdeling uit te werken door het slim opladen
van elektrische voertuigen in laagspanningsnetten. Op die manier kan netversterking tot het minimum
worden herleid. De belangrijkste bijdrage van dit werk bestaat in de ontwikkeling van een slim, optimaal
laadalgoritme dat tracht te voldoen aan de netbeperkingen, zoals spannings- en congestiegrenzen. Het
werk van dit proefschrift heeft betrekking op een typisch stedelijk laagspanningsnet in Nederland.

Allereerst wordt het vereiste niveau van netversterking onderzocht door middel van het kwantificeren van
de spannings- en congestieproblemen in het laagspanningsnet. Dit wordt gedaan door ongecontroleerde
oplaadscenario’s toe te passen tot 2050 voor zowel winter als zomer. Vanaf 2030 zou een versterking
van de transformatoren moeten worden overwogen wanneer geen slimme heffingsmethodologie wordt
toegepast. Congestie op de lijnen doet zich ook voor in 2030, maar wordt duidelijker in 2050 wanneer
ook lokale congestie op de lijnen onafhankelijk van transformator overbelasting optreedt. Zonder slim
laden zou dat een zorgvuldigere selectie van oplaadpunten en versterking van de stroomafwaartse lijnen
vergen.

Na onderzoek van de ongecontroleerde scenario’s werd de behoefte aan een optimale slimme laadstrategie
duidelijk. Deze werd vervolgens ontwikkeld. Uit de resultaten bleek dat in 2050, 94.5% van de congestie
op de lijnen en 100% van de transformatorcongestie en spanningsproblemen kunnen worden omzeild met
slim laden alleen. Dit werd bereikt door de invoering van netbeperkingen op de meest kwetsbare plaatsen
in het elektriciteitsnet. Bijgevolg kon de behoefte aan netversterking bijna volledig worden vermeden
tot ten minste 2050.

Dit werk onderscheidt zich van andere studies door uitgebreid stil te staan bij de integratie van drie
concepten: een nieuwe tariefstructuur, bidirectioneel laden en de noodzaak aan netbeperkingen in een
slim laad model. Dit maakt het mogelijk de voordelen voor alle belanghebbenden samen te vatten,
waaronder: de netbeheerder, de laadpaalbeheerder en de eigenaars van de elektrische wagen. De eind-
conclusie houdt in dat de integratie van deze drie concepten resulteert in één van de meest gunstige
onderzochte strategieën voor alle drie de partijen tezamen.
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Abstract

The electrification of all sectors is essential to achieve carbon neutrality by 2050. In terms of mobility,
many nations around the globe envisage a zero-emission fleet resulting in a massive deployment of
Electric Vehicles (EV). Nevertheless, this goes hand-in-hand with some challenges related to congestion
and voltage problems in power grids caused by inadequate grid capacity. When grid reinforcement cannot
keep up with the increasing demand for electricity, both in terms of planning and excessive financial
means, smarter, more efficient solutions should solve the problem.

This thesis aims at providing an optimal strategy for consumers’ flexibility distribution by smartly charging
EVs in Low-Voltage (LV) grids. In that way, grid reinforcement should be reduced to a minimum. In
order to do so, the main contribution of this work is covered by the development of a smart, optimal
charging model that tries to comply with grid constraints including voltage and congestion boundaries.
The work of this thesis relates to a typical urban LV grid in the Netherlands.

First of all, the required level of grid reinforcement is investigated by means of quantifying the voltage and
congestion problems in the LV grid. This is done by applying uncontrolled charging scenarios up to 2050
for both winter and summer. The results showed that from 2030 onwards, transformer reinforcement
would need to be considered when no smart charging methodology is applied. Line congestion occurs
as well in 2030, but becomes more apparent in 2050 when also local congestion in the lines takes
place independent of transformer congestion. Without smart charging that would involve a more careful
selection of charging points and reinforcement of downstream lines.

After investigating the uncontrolled scenarios, the need for an optimal smart charging strategy became
apparent. This was developed afterwards. The results showed that in 2050, 94.5% of line congestion
and 100% of transformer congestion and voltage problems could be bypassed with smart charging only.
This was achieved by implementing grid constraints at the most vulnerable locations in the power grid.
Consequently, the need for grid reinforcement could be almost completely avoided till at least 2050.

Lastly, this work distinguishes itself from others by extensively reflecting on the integration of three
concepts: a novel recently developed tariff structure [1], the effect of bidirectional charging, as well as
the necessity for grid constraints. This allows summarising the benefits for all stakeholders including
the Distribution System Operator (DSO), the Charge Point Operator (CPO) and EV owners. The
final conclusion was made that including these three concepts results in one of the most favourable
investigated strategies for all three parties together.
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PEI Power Electonic Interfaces
PF Power Factor
PHEV Plug-in Hybrid Electric Vehicles
PILC Paper Insulated Lead-covered Cables
PSO Particle-Swarm Optimisation
PV Photovoltaics
p.u. per-unit
RES Renewable Energy Sources
RHO Receding Horizon Optimisation
RMS Root-Mean-Square
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xviii Glossary

SOC State Of Charge
s.t. subject to
ST Stacked Tariffs
T Transformer
TOU Time-Of-Use
TSO Transmission System Operators
UFC Ultra-Fast Charging
VPP Virtual Power Plant

V1X Unidirectional Charging

V2B Vehicle-to-Building

V1G Vehicle-on-Grid

V2G Vehicle-to-Grid

V2H Vehicle-to-Home

V2X Vehicle-to-everything

X/R Reactance/Resistance

List of Symbols

γ Frequency of occurrence
γA Absolute Concurrency
γR Relative Concurrency
V0 Nominal Voltage
VRMS RMS-Voltage
ρL Penetration level
c/h Fraction cars per household
nEV Total number of EVs
nhh Total number of households
∆Iϕ

Current Error
IPF
t,ϕ Phase current at time t and phase ϕ in PowerFactory

Remark: This list only contains the symbols that are used outside the optimisation algorithm. For the list of
symbols related to the optimisation, please refer to Table 4-2.
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Chapter 1

Introduction

The rise of Electric Vehicles (EV) in the present world is ubiquitous as many nations around the globe are setting
out plans to move towards greener mobility. This forms an essential aspect of achieving the climate goals set
out in the Paris Agreement. In order to stay below the agreed 2°C temperature rise, all nations are indicating
their own targets in various sectors [12]. In the Netherlands, the objective is to reduce carbon emissions by
49% in 2030 and 95% by 2050, as imposed in its climate agreement of 2019. One-fifth of these emissions is
currently related to road traffic. As a result, in terms of mobility, the objective towards 2030 is to ban the sale
of passenger cars with internal combustion engines (ICE) and to commit to 100% emission-free cars. In 2050,
the entire mobility fleet should be decarbonised using green electricity, green hydrogen, other renewable fuels
(Power-to-X, e.g. NH3) and biofuels [13]. Certainly, with the emergence of renewable energy technologies like
wind and solar energy, the switch to electric mobility is a logical step to take.

Nevertheless, these targets bring challenges on several fronts. When looking at electric vehicles, enough green
electricity and charging stations must be available at all times. However, the rapid influx of EVs imposes also
many challenges related to the electricity network, which should be examined in great detail. One may wonder
if the current electricity grid can cope with a large influx of EVs. In that regard, smart charging strategies and
grid reinforcement may be needed to alleviate risks and wear in the electricity network.

This study aims to quantify and locate bottlenecks in a typical Dutch Low-Voltage (LV) grid related to congestion
and voltage problems. Afterwards, an optimal smart charging model is developed to mitigate these problems.
The purpose of this research is to make full use of EVs’ flexibility in order to deal with the perceived bottlenecks
in a targeted way. This leads to the main intention to delay grid reinforcement as much as possible.

An introductory research overview is presented as follows. Section 1-1 provides an overview of the LV grid
characteristics and requirements. Subsequently, trends of EVs and their implementation in the LV network
are explained in Section 1-2. The research objectives and thesis outline can be found in Sections 1-3 and 1-4
respectively. Last but not least, this introductory chapter is finalised with the thesis contribution and motivation
in Section 1-5.
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2 Introduction

1-1 The Dutch Low Voltage Network

1-1-1 Network Characteristics

It is essential to consider the network topology and related characteristics when studying the effect of EVs’
charging on LV grids. The power grid topology in the Netherlands can be classified on a geographical scale
(national-, regional-, local grid) or specified by voltage level (Extra High-Voltage (EHV), High-Voltage (HV),
Medium-Voltage (MV) and LV level) [14]. An overview of the latter classification with its corresponding
characteristics is provided in Table 1-1. This table indicates the vast amount of cables belonging to the LV
network maintained and operated by the Distribution System Operator (DSO). The Transmission System
Operators (TSO), Tennet, is in charge of the higher voltage levels [5]. As one can conclude from Table 1-1,
the LV grid contains the largest amount of cables and connections in the Netherlands.

Table 1-1: Overview of the Dutch power grid [5].

Operator Voltage [kV] Total Length [km] Total Connections
Extra High Voltage (EHV) TSO 220/380 ± 2900 111
High Voltage (HV) TSO/DSO 50/110/150 ± 8800 136
Medium Voltage (MV) DSO 3-5/6-12.5/20/25-30 ± 105700 ± 33 000
Low Voltage (LV) DSO 0.4 ± 441300 ± 8 170 00

These LV networks mostly have a radial topology and connect many small consumers, mainly households (±
95%) and small businesses (± 5%) [15]. A radial topology eases the estimation of the power flow direction,
especially with the introduction of distributed Photovoltaics (PV) and emerging bidirectional EVs. Nevertheless,
some old Dutch LV grids can still have a meshed topology. These have better voltage management and lower
power losses but are less safe when faults occur [16]. The latter is another reason to transform LV grids into a
radial configuration involving less safety equipment.

1-1-2 LV Network Requirements

Electrification plays a significant role in enabling a sustainable energy transition. However, the implementation
of many EVs, distributed PV and heat pumps puts pressure on the grid. At all times, the electricity network
should provide adequacy of electricity, adequacy of grid capacity and compliance with power quality standards
[17]. These three aspects are addressed below. EVs can exacerbate the pressure on all three criteria when
charged in a conventional, uncontrolled way. Contrarily, smart charging using EVs as flexible assets should aim
to mitigate these problems in the power grid.

First, looking at power adequacy, power should be available at any time. With increased penetration of electrical
appliances such as EVs and the increased implementation of variable Renewable Energy Sources (RES), a
continuous electricity supply with a reduced carbon content is less straightforward. Allowing affordable adequacy
would require suitable storage solutions and consumer demand flexibility. When EVs are charged in a smart way,
they can provide both storage and flexibility to the grid using unidirectional or bidirectional charging methods.

Besides adequacy of the energy commodity, also network congestion related to inadequate transmission and line
capacity is an essential factor to consider in the electrification process. Electrification leads to higher currents
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1-1 The Dutch Low Voltage Network 3

flowing through cables and transformers. This can lead to a violation of thermal limits when the maximum
current rating of the infrastructure is reached. As a consequence, physical components of the power network
can be damaged due to unacceptable temperature rises [17]. If the current exceeds its limits, the power losses
will also increase, resulting in higher operational costs for the DSO. Grid reinforcement or reconfiguration
can overcome these issues. Nevertheless, in practice, grid reinforcement is not always the most economically
favoured and feasible option as this would lead to significant investments such as breaking up streets for new
cables. Besides, also LV/MV transformers with a higher rated power up to 630 kVA are sometimes needed
to be installed [16]. Measures to delay and reduce grid reinforcement include curtailment of PV inverters,
storage solutions and Demand Side Management (DSM) [18]. The latter two measures again apply to smartly
(dis)charging EVs by using their flexibility in an optimal way.

Lastly, the smart operation of EVs can improve the power quality in the LV network. Power quality standards
are established to ensure electricity is of sufficient quality such that electronic equipment will not be damaged.
When power quality standards on the LV level are violated, the DSO will call on the aggregators to supply
ancillary services to restore the nominal operation conditions [19]. An overview of the power quality standards
is provided in Table A-1, as included in Appendix A. The most critical voltage phenomena related to EVs are
explained below (1-1-3).

1-1-3 Voltage Quality Standards

The voltage quality is the primary indicator of the power quality of the (LV) network. European Norms (EN)
are developed to standardise and regulate the related power quality in the electricity grid. Country-specific
alterations can be applied to the EN standards. In that case, one should speak of NEN-EN when specifying
the Dutch standards [20]. The EN 50160 applies to voltage characteristics in public electricity networks. This
standard discusses both continuous voltage phenomena and voltage events. The former is mainly related to
changes in the nominal voltage signal due to load patterns, non-linear loads or changes in loads. The latter
is related to deviations from the desired voltage waveform due to unpredictable or external events such as
faults and weather conditions. For the continuous phenomena, the limits related to each event are mostly
quantified on a statistical basis. That means that the 10 minutes average VRMS should stay bound for 95% of
all measurements in a week.

According to the supply voltage standard, the voltage variation over the LV and MV part of the grid should
stay between the limits of V0 = 1 ± 0.1 [per-unit (p.u.)] with V0 the nominal voltage. However, that is not
always self-evident, certainly not at the end of the feeder lines. In general, with conventional distribution
feeders (meaning low Distributed Energy Resources (DER)), the voltage at the end of the feeder line can
drop significantly in distribution networks due to the line’s internal resistance. Higher voltage drops are often
perceived in sub-urban or rural areas compared to urban areas which use much shorter power cables [18].
Nevertheless, if the buses with the largest loads are located close to the MV/LV substation, the voltage drop at
the end of the feeder will be less, due to a lower path resistance [21]. In contrast, with the integration of more
DER such as PV, a voltage rise can also occur when a large amount of PV power is connected at the end of the
feeder lines. This voltage rise is caused by active power injections and small Reactance/Resistance (X/R)-ratios
of the PV power in LV feeders. Measures to (partly) mitigate voltage rises and drops include grid reinforcement,
transformer tap change, demand-side management, energy storage, active power control and reactive power
curtailment [22].
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Another continuous voltage phenomenon that gains importance is harmonic distortion caused by non-linear loads
such as the On-Board Charger (OBC) of EV. Harmonics can cause supplementary power losses or damage to
electrical appliances due to overheating [23]. The reader is referred to Table A-1 for a schematic overview of
all voltage phenomena in distribution grids.

1-2 Electric Vehicles: Burden or Blessing?

1-2-1 EV characteristics

Figure 1-1 displays the expected increase of EVs and charging points towards 2050 (ELAAD) [2]. As can be
deducted from this graph, an exponential EV increase needs to occur till 2030, followed by a linear increase till
2050. That is due to the climate target to reach 100% EV sales by 2030 and a complete carbon neutral fleet
by 2050 [13]. Likewise, also charging stations should increase. As can be concluded from Figure 1-1, this will
occur at a rather logarithmic pace. Nevertheless, the Netherlands is currently leading in Europe in terms of the
absolute amount of charging stations installed [24].

Figure 1-1: Trends of the estimated EVs’s adoption rate together with the expected amount
of charging points in the Netherlands till 2050 (data derived from [2]).

In general, EVs can be divided into two main technologies: Plug-in Hybrid Electric Vehicles (PHEV) and Battery
Electric Vehicle (BEV). The former uses next to an electric motor connected to a rechargeable battery pack,
also an ICE. In terms of the energy transition, these types of EVs are expected to phase out. Besides, also
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Fuel-Cell Electric Vehicles (FCEV) have an electric motor, but these EVs do not draw electricity directly from
the grid as they use hydrogen instead. BEV work on Direct current (DC) and thus have mostly an OBC
embedded in the EV that can convert Alternating current (AC) to DC.

Different charging regimes can be identified as well, depending on the charge power. The term slow charging is
applied to charge powers up to 22 kW with AC. Charging on a single-phase results in 3.7 kW power using 16 A,
which is mostly the rated current in households. For households with a three-phase connection and three-phase
chargers on board the EV, the charge power is increased to 11 kW (3 x 3.7 kW). When charging at 22 kW,
more current is required, which is not very common for households, but can still occur at LV level, for example
at public charging stations. Remark that the charge power is not necessarily limited by the charging station,
but can also be limited by the OBC of the EV [25], [3].

Fast charging applies to charge powers higher than 22 kW. Some charging stations can still deliver up to 43 kW
with only AC. However, from 50 kW onwards, DC flows to the battery. This is achieved by the conversion of AC
to DC ’off-board’ by off-board chargers. The advantage besides faster charging is that the charge power is not
restricted by the onboard chargers. Mostly one speaks from Ultra-Fast Charging (UFC) for charge powers of
more than 150 kW. This can be highly useful for larger vehicles. These fast-charging stations are not deployed
at the LV grid and can be found mostly at highways and sometimes in cities [3]. In general, it holds that: the
longer the EV is connected, the higher its flexibility.

Up to this point, EVs and the LV grid are mainly treated separately. However, when disregarding the interaction
between EVs and the grid considering their potential charging flexibility, many opportunities for all market
participants are omitted. In this regard, controlled (smart) charging can be an attractive solution in contrast
to uncontrolled charging when considering the related challenges as addressed below.

1-2-2 Smart charging: Opportunities & Challenges

Electric vehicles are parked for 95% of the day, meaning that using EVs as a flexible asset would be attractive for
balancing the grid [3]. This could reduce possible grid reinforcement related to uncontrolled charging strategies.
In fact, several studies have proven that uncontrolled charging would be detrimental to existing LV grids. For
instance, Yu et al. investigated the effect of uncontrolled charging on different LV distribution grids in the
Netherlands, Germany and Austria, with an EV penetration of up to 80%. The conclusion was made that
more problems occur in sub-urban grids compared to rural and urban grids due to long cables and many grid
connections [26]. Furthermore, in [27], Berlin’s DSO looked at the effect of uncontrolled charging with only
20% EV penetration. The results indicated that, especially on the LV-level structural extensions are needed
when EV charging flexibility is disregarded. Updates on the MV and HV levels were less critical [27].

The above results are explained by the fact that with uncontrolled charging, most EVs are charged when
the EV owner arrives at home on weekdays. Charging mostly takes till the battery is full. However, at that
moment, the residential load will also be increased related to heating, cooking, lights and the use of other
electrical appliances, which results in increased peak demand and extra stresses on the LV power grid [3]. In
that regard, smart charging strategies are becoming more and more important in mitigating low power quality
and capital expenditures alleviated by the vast amount of EVs [28]. According to the International Renewable
ENergy Association (IRENA) [3, p. 2], smart charging is defined as the adaptation of - [...] the charging
cycle of EVs to both the conditions of the power system and the needs of vehicle users. Consequently, smart
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charging strategies are a key element in the energy transition, delivering flexible services to the system operators.
Especially with a lot of variable RES, extra storage is required for balancing and thus stabilising the grid.
Nevertheless, although many smart charging approaches exist nowadays, their practical implementation is still
in its infancy. That is because both technical and organisational constraints must be overcome. Besides, a new
dimension is given to smart charging by the emergence of more advanced bidirectional smart charging strategies
and technology: Vehicle-to-everything (V2X), including Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H) and
Vehicle-to-Building (V2B). Both V2H and V2B are used to increase self-consumption of own-produced energy
and avoid energy curtailment. V2G can be used to provide ancillary services and active power support to the
system operators.

The benefits of EVs used as a flexible asset are schematised in Figure 1-2. The work of this thesis focuses on the
local level operated by the DSO. At this level, an aggregator or CPO mostly serves as the intermediate between
the DSO and EVs. Flexibility of EVs is used at the LV level to provide active power support by shifting their
demands to off-peak periods. A more detailed explanation of these charging practices is provided in Chapter
2. Besides, vehicle owners with a private charging station combined with home-generated energy can increase
their self-consumption.

As opposed to the local level, for more system-wide services, EVs should be aggregated under a Virtual Power
Plant (VPP). That allows EVs to provide ancillary services such as frequency regulation, load balancing and
spinning reserves beyond the LV network and national scales [3], [19]. Recently, a Dutch pilot project investigated
the use of V2G for delivering secondary control reserves (Automatic Frequency Restoration Reserves (aFRR))
when aggregated under a VPP called Next Kraftwerke. This VPP contains more than 10,000 decentralised
consumers who adds the flexibility of more than 1,500 MW for participating in both wholesale and balancing
power markets [29]. EV data is centrally exchanged between TSO, VPP and the aggregator named Jedlix.
Nevertheless, to fully optimise frequency regulation, information about the entire electricity network, considering
HV, MV and LV should be taken into account as frequency is not regulated on a LV level only [29].

At present day, only a few home and public charging stations enable smart charging strategies. Besides, many EV
are not capable of delivering V2X services due to technical constraints. However, Unidirectional Charging (V1X)
such as Vehicle-on-Grid (V1G) can still provide smart charging opportunities by delaying the charging cycle [3].
Proper policies and frameworks should be implemented to provide the right incentives for the EV to deliver
the requested services. These include proper pricing schemes, a ’DSO role-change’, policies related to smart
metering and related privacy issues, amongst other.

First of all, proper pricing schemes are needed to provide the right incentive to EV owners to unlock Demand
Responsiveness (DR). Time-invariant pricing will not be effective in that case. Besides, pricing should be
adapted to bidirectional charging practices as well. In fact, it should be possible for an EV owner to participate
in different markets providing maximum flexibility, which would need to allow for staggered tariffs [3]. Real-
time pricing in the Netherlands is currently not a common practice in the residential sector and mostly applies
to larger consumers (e.g. greenhouses) only [30]. Nevertheless, a public Charge Point Operator (CPO) could
use day-ahead based energy contracts.

Next to pricing, software and hardware requirements are needed involving smart meters, Energy Management
Systems (EMS) and appropriate chargers equipped with effective communication protocols. Advanced smart
metering using an EMS is required for communication between the aggregator and EV owner. In that way,
scheduling (dis)charging activities is made possible [6]. Shared information with the aggregator can include
estimated State Of Charge (SOC), user preferences, vehicle ID and charging station ID. The latter two can
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Figure 1-2: Benefits of (bidirectional) smart charging using EV (based on [3]).

give access to more data via a database, such as battery capacity, location and charging station capacity.
Nevertheless, privacy issues can exist when data containing EV user’s behaviour is shared with a third party
[28]. The right protocols should be established to ensure the EV user’s privacy.

Lastly, smart charging on a LV level requires a DSO role-change in the Dutch LV network. Although flexibility
is well introduced at the system level by TSOs, this is not the case on local grid levels operated by DSO.
A DSO often does not have the authority and thus also not the incentive to manage congestion using smart
grid applications. They are legally obligated to comply with the needs of all customers. Consequently, when a
charging fleet aggregator is restricted by grid capacity, financial compensation should be provided when providing
flexibility to the DSO [31, 30]. Furthermore, a lack of regulation prevents the DSO from actively intervening in
electricity markets by using flexible assets such as EVs.

1-3 Research Objectives

The objectives related to this thesis are addressed in this section. A concise answers to the research questions
can be found in the final chapter, Chapter 6.
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1-3-1 Main Research Question

The main objective of this thesis relates to the following research question:

How can EVs’ charging flexibility be used optimally, to avoid possible grid congestion and voltage
problems on a LV grid due to inflexible loads and non-optimised charging?

To be able to formulate the answer, some sub-objectives are defined in the section below (1-3-2). This research
question applies to a specific LV grid in the Netherlands for scenarios up to the year 2050 involving V2G and
V1G, two different pricing schemes and different levels of grid constraint modelling. Although one should always
reflect on the generalisation of the results, the adopted methodologies can be applied to other case studies as
well.

1-3-2 Sub-Research Questions

Several sub-research questions are defined. They are key elements in completing the answer to the main research
question.

1. To what extent do voltage and congestion problems manifest in a typical Dutch LV grid when
uncontrolled charging is applied both in winter and summer till 2050?
This research question is addressed in Section 5-1. The question relates to the frequency of occurrence
of under-/overvoltage and congestion problems. This allows for validation of the need for EV flexibility
allocation by a smart charging model. Besides, the interplay between these grid problems and network
components is also discussed, which relates partly to sub-question 3.

2. What are good features of existing optimised charging models applicable to the studied LV grid to
help mitigate grid issues such as congestion and voltage problems?
For this research question, a literature study on existing smart charging models is conducted first (see
Chapter 2). Afterwards, an optimised charging model is developed based on the state-of-the-art. The
focus is on reducing voltage and congestion problems in the LV grid while allowing for bidirectional
charging.

3. In which case is the integration of grid constraints and power flow modelling relevant in the
optimised charging model?
This research question discusses how grid constraints can be introduced in a smart charging model. Fur-
thermore, it discusses the performance of the modelled power flow in terms of precision and computational
time. Cases are investigated in which the model might or might not benefit from the implementation
of these constraints. That includes varying the charging technology (V2G and V1G), the level of grid
constraints (no limits, transformer limitation and feeder constraints) and the tariff structure (day-ahead
or stacked tariffs). A discussion on this sub-objective can be found in sections 5-1 and 5-2.

4. To what extent does the developed optimised charging model help in mitigating voltage and con-
gestion issues in the LV grid?
This research question looks into the remaining congestion and voltage problems (if any) after imple-
menting grid constraints. Different case studies are ran of which the results can be found in Chapter
5.
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5. To what extent does the stacked tariff scheme, V2G and grid constraints affect the interests of the
involved stakeholders (DSO, CPO and EV owner)?

This research question concludes this thesis. The optimally of the model is assessed in the broader sense
of the word by looking to the interests of all involved parties. A table assessing on the benefits of these
stakeholders is included at the end of Chapter 5 as well.

1-4 Thesis Outline & Methodology

In order to answer the aforementioned research questions, a certain methodology was adopted. Figure 1-3 gives
an overview of the applied steps in this thesis together with the related chapters. After this introduction, a
literature study is conducted about state-of-the-art smart charging methods (see Chapter 2). In Chapter 3, the
used LV grid is discussed together with the inputs and assumptions that were adopted for the different scenarios.
Besides, Chapter 3 also contains more information about the EV charge simulator tool that was developed based
on [32]. With this tool, appropriate charging transaction data was created, which could be used in Chapter 4.
In the same chapter, an appropriate smart charging model was developed to create optimised charging using
EV flexibility. The loading by flexible assets together with inflexible assets was analysed in PowerFactory (2022)
in terms of congestion and voltage events [33].

The used PowerFactory file contained a model of the discussed LV grid. The software is able to simulate
(un)balanced (three-phase or single-phase) loads and electricity sources in the modelled LV grid. With the
Newton-Raphson method, the software calculates the three-phase voltage and current characteristics in all
nodes and lines of the modelled grid. Furthermore, a script was made in python to change data in Power-
Factory according to the scenario choice automatically. The results of the analyses can be found in Chapter
5. All the simulations ran on a Windows computer with an Intel(R) Dual-Core(TM) i5-7200U CPU @2.70GHz
processor containing 16.0 GB RAM. All python scripts including the smart charging model together with the
documentation files can be found on https://github.com/ROBUST-NL/Interplay_EVs-LV_grid once the
project is made publicly accessible. An overview of the python structure considering main files, sub-files and
file interdependencies is provided in Appendix C.

The conclusion can be found in Chapter 6 and gives the final answer to the sub- and main research questions.
Furthermore, recommendations are made to improve the current study in further research.
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10 Introduction

Figure 1-3: Schematic showing the thesis outline and applied methodologies.

1-5 Thesis Contribution & Motivation

The importance of this research relates to the fact that LV grids are experiencing congestion and voltage
problems due to distributed PV, EVs and electric heating. In order to effectively apply grid reinforcement
with sufficient pace, EV flexibility should be used to the full extent. In that way, grid reinforcement can be
delayed and voltage and congestion problems can be mitigated. This study tries to make these grid problems
quantifiable. In its turn, it gives insights to policymakers to allow certain smart charging strategies. Additionally,
by investigating bottlenecks in the grid, the DSO gets a more transparent overview of the level and location
of reinforcement that should take place. Not only delayed, but also efficiently planned grid reinforcement is
important to keep track of these bottlenecks. Early detection of bottlenecks at specific locations in the grid
might also notify stakeholders in time such that an informed decision about the placement of new chargers can
be made.

Furthermore, there exists a lack of research that investigates the relevance of implementing grid constraints in
optimised charging models. Currently, some chargers in the investigated LV grid are already equipped with a
existing smart charging model. However, that does not involve power flow modelling downstream the LV/MV
transformer station. This study tries to reflect on the relevance of adding these power flow constraints using a
power flow model for an existing LV grid.

Another interesting feature of the developed smart charging model is the implementation of both EVs with and
without V2G capability. Most smart charging developers disregard V2G into their model. However, it allows
giving more insight into the benefits and drawbacks of this developing technology.

Overall, after applying the methodologies in this study, a DSO should get a clear overview of possible weaknesses
in his LV grid and how EVs’ flexibility allocation might solve these issues effectively.
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Chapter 2

State-of-the-Art Smart Charging

This chapter gives a literature overview to determine good features of existing smart charging models applicable
to this study. First, a general overview of smart charging objectives and methods is presented in Section 2-1.
Afterwards state-of-the-art centralised smart charging methods are discussed in Section 2-2. Table 2-2 gives a
literature overview in order to compare the different existing smart charging implementations in literature.

2-1 Smart Charging Approaches

2-1-1 EVs’ Best Charging Practices at LV Level

When developing a smart charging approach for distribution networks, it is important to consider the objective
of the developed model. Considering the aforementioned definition, smart charging should meet vehicle owner’s
requirements but should also comply with the grid code, potentially reducing system operator costs [3]. There-
fore at the LV level, the most natural smart charging approach is to accomplish valley-filling by peak reduction
of the electricity demand. Valley-filling is an active power control strategy which can be implemented thanks
to the extended parking time of most EVs. Besides, when considering V2G technology, EVs can also discharge
a part of their battery capacity at peak hours, providing added flexibility. Nevertheless, the detrimental effects
on battery degradation should be considered [34].

From the DSO perspective, the benefits of valley-filling are twofold. The first benefit of this peak-reduction
strategy is the reduced power loss in the cables, in its turn reducing monetary losses of the DSO. Besides,
it allows the grid operator to comply more easily with the grid code. In that sense, the grid can host more
capacity such that network infrastructure reinforcement can be postponed. On the generator side, valley-filling
will decrease ramping requirements of conventional power generators, which eases the transition to more variable
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RES like wind and solar energy. Additionally, this also reduces starting and stopping costs for conventional power
producers due to a more balanced load profile. Consequently, the load factor of these generators can be higher
[27].

On the other hand, the total operational cost of charging should be as low as possible from the perspective of
the EV owner and aggregator. Therefore, most charging models implement a financial objective to accomplish
user satisfaction. Time-varying pricing strategies are usually adopted, which provokes charging flexibility. Most
studies make use of Time-Of-Use (TOU) pricing. This mechanism implements different predefined charging
prices during the day, mostly for two or three fixed time blocks. In that regard, the off-peak period will always
contain a lower price than the mid- or on-peak time blocks [27, 35]. More advanced pricing strategies make
use of dynamic pricing. This dynamic pricing should reflect the network operating conditions and abundant
renewable energy production. Nevertheless, they mostly only reflect production cost and not the network
operating conditions which can lead to the so-called avalanche effect if no charging constraints are invoked
[35]. This phenomenon shifts the load peak in time instead of reducing it.

Unconventional approaches in smart charging literature include, for instance, flicker reduction and reactive
power control. The former strategy was implemented by Brinkel et al. [19] using V2G technology. However,
that requires charging patterns to change with a very high frequency, which is not practical to implement and
should be assessed in terms of battery degradation. Leemput et al. [36] implemented three local rule-based
charging methodologies, each with different active power charging strategies and objectives: high comfort
(uncontrolled charging), low charging cost (off-peak charging) and low grid impact (EV peak shaving). They
investigate the impact of these strategies combined with reactive power provision of EVs when a capacitive
Power Factor (PF) is implemented in their charger. This should provide voltage support. Nevertheless, LV
cables have a low Reactance/Resistance (X/R) ratio, which makes reactive power control less effective in
addressing voltage disturbances compared to active power control methods. Besides, increasing the reactive
power will increase power losses and requires larger sizing of charging equipment [28, 36].

2-1-2 EV Charging Methodology

Considering smart charging methods, (nearly) all EV charging models can be classified under optimisation or
rule-based control. The latter involves mostly a modelling environment. The rules can be generic, based on
the queuing approach or fuzzy logic. However, compared to optimisation approaches, the solution is often not
optimal [37]. Considering optimisation methods, a subdivision is made in classic mathematical optimisation and
optimisation using meta-heuristic methods. The latter is not always able to find the global optimal solution;
however mostly a near-optimal solution can be found in a reasonable time span [37].

Furthermore, two distinct control approaches exist in EV charging: centralised and decentralised charging, both
requiring an EV aggregator. A comparison of these two approaches is schematised in Table 2-1 and explained
below.

Centralised control can provide a globally optimal solution respecting network and customer constraints using
a master control engine. The aggregator is the controlling agent, adjusting charge schedules according to
network and EV information. With a centralised approach, it is possible to fully support the system operator for
balancing and ancillary services by using EV as a flexible asset [6]. Nevertheless, the computational complexity
can grow significantly with the number of grid connections. Besides, in terms of communication, numerous
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messages will need to be communicated in a limited amount of time [38].

In contrast to centralised charging, with decentralised/distributed charging, vehicle owners are the decision-
making entity about their charge patterns. They choose their desired charging pattern (time and rate) and
send that to the aggregator. The charging pattern can be guided by appropriate electricity tariffs. Although
there is no guarantee that network constraints will be met, most decentralised charging models comply more
with user preferences. Nevertheless, with price-based strategies, the risk exists that many EV owners charge at
the same time based on attractive low tariffs, leading to an avalanche effect in which a new load peak occurs.
There exist also studies such as [39], for which EVs can provide ancillary services, but for which the primary
user-interests are not fulfilled. User-satisfaction, regarding obtaining a desired SOC level should always get
highest priority. Furthermore, de Hoog et al. [40] proved that implementing a centralised charging model might
allow the LV grid to host more EVs than a decentralised model. Nevertheless, decentralised charging is in most
cases beneficial in terms of computational and communication requirements, which allows for a more practical
real-time implementation. Nimalsiri et al. [41] compared their decentralised approach using the Automated
Direction Method of Multipliers (ADMM) [41] with a centralised approach using quadratic Receding Horizon
Optimisation (RHO) developed by the same authors [42]. The results show an increased calculation efficiency,
where the decentralised charging is 60 times faster. Besides, the distributed approach does not need a central
controller or aggregator, but uses peer-to-peer communication to determine the charged energy [41]. Remark
that the computation time is case-specific and depends on the optimisation method or iterations needed to get
to an optimal solution [38, 6, 7].

Real-world projects are indicated in Table 2-1 as well. The FLEET project is an example of centralised charging
applied in Utrecht, a city in the Netherlands. It is a pilot project in which they test various pricing schemes.
They try to avoid congestion on the transformer level, stimulate valley-filling and increase renewable energy
consumption. Existing decentralised charging applies to EV owners, who are aggregated under Jedlix [3].

Although decentralised charging is mainly seen as a more practical smart charging approach, centralised charging
can be applicable when charging stations are publicly owned compared to private charging stations. This applies
to charging in cities and charging at work [35]. In that case, a Charge Point Operator (CPO) can serve as an
aggregator himself, buying energy and controlling the charging stations [43].

Table 2-1: Comparison of decentral and central EV-charging [6, 7].

Characteristics Charge Control Strategies
Centralised Decentralised

Charge Decision Aggregator EV owner
Control Factor Direct control Mainly price-based
Ancillary service Provision More Less
Grid security risk Very low Potential
Optimality Global Local
Computational Requirements More Less
Communication Requirements More Less
User Charging Authority Less More
Privacy Concerns More Less
Scalability Less More
Real-world Example FLEET[1] Jedlix[43]

Master of Science Thesis F. Verbist



14 State-of-the-Art Smart Charging

2-2 State-of-the-Art Centralised Charging Strategies

This dissertation focuses on the flexibility potential of EVs in a LV grid to improve and maintain acceptable
voltage and congestion levels. However, with decentralised charging, compliance with favourable congestion
and voltage levels are not always guaranteed. Besides, load peaks can often occur due to uncertainty in the final
result of the decentralised model. In contrast, centralised charging can offer better utilisation of the network
capacity and the provision of ancillary services [28]. Therefore, a centralised control model is more desired in
the scope of this work, especially due to the fact that only one CPO is regarded. Furthermore, the focus in
the discussion below, was given to models that give a real-time solution and include power flow modelling or
comply somehow with grid congestion and voltage problems.

Many centralised smart charging strategies exist in literature. Most of them are purely based on optimisation.
However, it is essential to assess their usefulness and application potential in a practical setting. Some of the
most applicable models are listed in Table 2-2 and explained below. The models are assessed based on: their
control strategy, objective functions, implemented constraints, computational requirements, case study, PV or
V2G implementation and model requirements in terms of EV inputs.

First of all, an algorithm having low calculation time is a key requirement when it is being used in a practical
setting. Therefore a good model should be able to provide a real-time solution. The choice of the optimisation
method is a crucial factor in computational cost reduction. Using non-linear methods, especially non-convex or
mixed-integer problems, will result in a substantial computational burden. Methods like Genetic Algorithm (GA)
or Particle-Swarm Optimisation (PSO) and other meta-heuristic approaches can be deployed but often still
lead to significant computation times. Formulating a linear problem by avoiding non-linear objectives and
linearising constraints is a common approach to avoid computation issues. At least three different approaches
for linearisation exist in the smart charging literature. First of all, Goldoust and Masoud Esmaili [44] conducted
a sensitivity analysis on the network parameters in power flow simulations to linearise them. Nevertheless,
when linearising non-linear dynamics, the solution can deviate from the global optimal solution. Secondly, also
Nimalsiri et al. [42] used a linearisation strategy. Power flow constraints were linearised using linear Distflow
equations. The Distflow equations were developed by Baran and Wu [45] for network power flows and voltage
modelling. Although the model itself was quadratic due to a non-linear objective function, a (near-) real-time
solution was still obtained. A third approach to obtain a linear formulation was used by de Hoog et al. [46].
The authors suggested Direct current (DC)-equivalent network constraints by using representation of the power
system. Especially for the voltage drop, this approximation seemed to be validated with only minor errors
compared to power flow simulations.

One remarkable difference between [44] and [42, 46] is the use of static and dynamic methods, respectively.
With a static method, the optimisation is performed for the EV at the moment the EV is connected and will
not be updated when new information comes in. A forecast is mostly made for the day ahead. In contrast,
dynamic simulations will update the charge pattern after each time step for the coming period using the new
information introduced at each new point in time. In fact, dynamic optimisation finds the same optimal solution
as the static optimisation procedure. However, it will only implement it for the first time step and it repeats
this procedure for the next time steps when time moves forward. In that way, it uses only forecasted values near
real-time. Such approach is mostly referred to in literature as sliding window, rolling horizon or RHO inspired
by Model Predictive Control (MPC).

Sabillon et al. [47] also used RHO for dynamic scheduling of Electric Vehicles (EV) in residential networks
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with Mixed-Integer Linear Programming (MILP). To reduce the computational cost of this approach, the
authors refined only the implementation time step, and took more giant time steps for the predictions of the
consecutive charging period. This is validated by the fact that the consecutive steps are not implemented.
Besides, also integer relaxation for the non-applied time steps was used, a technique also used in an earlier
publication of the same authors [48].

Yi et al. [49] used a two-stage hierarchical optimisation method with RHO to obtain a real-time solution.
Such algorithm is extremely fast and can solve the EV charging schedules in a matter of seconds. In principle,
hierarchical optimisation in the context of smart charging means that a central controller will control different
EV groups. Afterwards, a local controller manages the power distribution on a smaller scale [38, 49]. Chen
et al. [50] used a similar concept. By using a multi-level online charging model, both papers are able to combine
the benefits of decentralised and centralised charging.

Another interesting real-time centralised smart charging approach was developed by Zhan et al. [51]. The authors
implement rule-based optimisation strategy. In fact, for each time step, a static power flow simulation is
executed in PandaPower [52]. When thermal or voltage limits of the network are violated, the optimisation
kicks in to coordinate the charging of EV. Accordingly, active and reactive power setpoints of the DER are
adjusted based on cost optimisation, restricted by grid constraints and penalising a low SOC near departure.
The latter is needed because the model only optimises one step ahead. The effectiveness of this approach lies
in the fact that the static power flow yields a faster output than the single-step optimisation, which is only
performed when a threshold in the flow simulation is exceeded. Nevertheless, the charging flexibility of the EV
is used to a limited extent, by charging the battery as fast as possible and only deviating from the schedule
when grid code violation occurs [51].

Instead of combining a rule-based and optimisation approach, Quiros-Tortos et al. [53] compared both. First,
they developed a centralised rule-based charging mechanism using a P-controller. The algorithm was tested in
nine British residential Low-Voltage (LV) networks. Afterwards, they compared it with an optimisation-based
approach using the same voltage and thermal constraints. The optimisation showed a better performance in
terms of power quality and congestion management. However, it also required much more inputs compared to
the controller (rule-based) model such as the SOC of the battery [53].

To refer back to Table 2-2, one can conclude that the implemented optimisation objectives are mostly
economically-inspired. One of the advantages is that a cost-based objective function is mostly linear, allowing
for a linear optimisation strategy. Besides, all the models in Table 2-2 require information about the SOC,
which is not always easily obtained in practice. An overview of existing SOC estimation methods with the focus
on control theory methods is provided by [54].
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Table 2-2: Literature table considering (real-time) centralised charging techniques.

Source Method Objective Constraints Computation
(assuming normal PC) Scale PV V2G EV Input

de Hoog et al., 2015 [46] Linear RHO
with DC equivalent
model

* Greedy Charging:
max.. stored energy
* Min. charging cost
with dynamic spot price

* 3P thermal limits
* 3P voltage limits
* Max bat capacity
* Max currents
* Target SOC >95%

MATLAB
Near-real time

*57 EVs
* 5 min over 8 h period

No No * SOC
* Battery capacity
* Expected departure time

Yi et al., 2020 [49] Quadratic hierarchical
RHO

Min. load deviations
to obtain valley
filling

* Boundaries on aggregated
energy allocation, based on:
- feeder capacity
- SOC requirements

PYTHON, CVXOPT
One-stage: 312 sec (50 EVs)
Two-stages: 1 sec (50 EVs)
Two-stages: 4 sec (500 K EVs)

* 50 EVs -
* Each 15 min over
24 h period

No No *SOC
arrival and departure
* Time departure
* Forecasted EVs and non-EV
load

Nimalsiri et al., 2021 [42] Quadratic RHO
with LinDistFlow

Min. charging cost based
on TOU

* SOC limits
* Battery power constraints
* Voltage constraints
* Energy requirement to reach SOC

PYTHON, CVXPY
48 sec

* 600 EVs on MV with
IEEE 13
*Each 30 min over 24h

No Yes * desired SOC
* Time departure, arrival
* Forecast day-ahead (non-)EV load

Goldoust and Masoud Esmaili,
2015 [44]

Multi-Objective Linear
Programming
with use of sensitivity
factors and fuzzy members

Energy losses and aggregator cost
based on TOU

* SOC limits
* Battery power constraints
* Limits on high variations on charging
* Thermal limits

GAMS, CPLEX
0.266 sec

* 67 EVs No No * Desired, arrival SOC
* Arrival, departure time

Sabillon et al., 2018 [47] Mixed integer linear RHO
with integer relaxation and
different window lengths

Min. overall system cost * Max. allowable energy
* 3P voltage limits
* 3P thermal limits

AMPL, CPLEX
Time limit of 120 sec

* 107 nodes
* 1x 15 min and 24 x 1 hour

Yes No * SOC
* Arrival, departure time
* Forecast of loads and PV

Zhan et al., 2021 [51] Power flow based one-step ahead
optimisation with second-order cone
relaxation

Min. cost related to losses, PV,
user dissatisfaction, heat pump

* Thermal limits
* Voltage limits
* Battery and PV power constraints

Pandapower: 1 sec
PYTHON, GUROBI: 4 sec

* 67 households (100% EVs) Yes No * SOC
* departure time

Brinkel et al., 2020 [19] Linear optimisation Min. EV cost based on historical
aFRR prices

* Battery power constraints
* Restricting residual load to reduce flicker

PYTHON, GUROBI
with supercomputing
service

* 99 EVs
* 20 seconds resolution needs
supercomputing

Yes Yes * SOC
* uncontrolled/ controlled charging
* Expected departure time

Quiros-Tortos et al., 2016 [53] *Hierarchical controller
* NLP with binary relaxation

*Min. EV disconnections * 3P thermal limits
* 3P voltage limits

* Real P-controllers
* AIMSS with CONOPT
* Validation with OpenDSS

* 86 EVs
* 1, 5, 10 and 30 min

No No * SOC
(only for the optimisation)
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Chapter 3

A Dutch Case Study

3-1 Modelled LV Grid

A real-world modelled LV power grid was investigated in PowerFactory, to test the developed smart charging
model and corresponding scenarios. The selected LV case study is located in a dense city area in The Netherlands.
The LV grid itself hosts one MV/LV transformer with a rated capacity of 400 kVA. At this transformer station,
11 feeders are connected with a total of 344 connections. The total number of feeders increases downstream the
network due to the integration of several distribution substations without a transformer. At these substations,
the network can be switched to different configurations: radial or meshed. In this study, the topology was kept
in radial operation. This configuration is most preferred by the DSO due to easier monitoring of power flows.
That is especially needed with the expansion of the (bidirectional) EV fleet and distributed PV. The cable types
and their corresponding loading in normal operations are listed in the appendix in Table A-2. Most of the cables
belong to the class Gepanserd Papier Lood Kabels (GPLK), in English called Paper Insulated Lead-covered
Cables (PILC). The GPLK is a very old cable type, installed more than 60 years ago (1954). Since 1980,
these cables have not been installed anymore in the Netherlands. The other cable type: VVMvKhas/Alk 4x6,
is installed more recently and allows higher current ratings [16]. Therefore, these cables are located closer to
the MV/LV transformer station.

The phase voltage magnitude maximum deviations were regarded as ± 0.05 p.u. from unity. Although the
EN-50160 consider a larger margin of ± 0.1 p.u. (see Appendix Table A-1 [10]), a smaller margin was considered
due to two reasons. First, the DSO of the discussed LV network works with this number. Second, the MV
fluctuations are not modelled in PowerFactory, which would normally enlarge the fluctuation on the LV level.
This adoption was justified by other papers [17] and also by actually measurements at the LV/MV transformer
reported by N. B. G. Brinkel [1]. Furthermore, the tap position was changed and fixed to the minimum possible
position, leading to the highest obtainable voltage at the transformer node. Consequently, the tap position is
already in its most favourable position in terms of avoiding undervoltage problems further down the feeders.
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18 A Dutch Case Study

3-2 Data Collection

3-2-1 Non-EV Load

Non-EV load, also referred to as baseload in this study, corresponds to the electricity consumption of households,
small businesses and public lighting. This includes consumption related to electrical appliances and heating by
heat pumps if applicable. The electricity usage patterns are derived from Dutch Energy Data Exchange (NEDU)
which makes typical energy consumption profiles in the Netherlands freely available [55]. Regular household’s
baseload consumption corresponds to the E1B profile with a double meter for night and weekend tariffs. For
the larger consumers, small businesses and schools, the E2B was applied. Both profiles are averaged out over
more than 1000 energy meters in the Netherlands and measured for the year 2021. For public lighting, a square
wave profile, corresponding to E4A was applied. The standardised profiles were interpolated to 15-minute time
intervals and multiplied by the individual yearly electricity consumption of each connection.

Figure 3-1 and Figure 3-2 show the result of the aggregation of all the derived NEDU profiles. As one can see,
the aggregated power closely matches the actual measured consumption at MV/LV transformer level (blue).
This is the case for both winter (Figure 3-1) and summer (Figure 3-2). It justifies the disaggregation with the
use of NEDU profiles. Furthermore, it proves that the aggregated transformer loading is quite predictable. A
strong evening peak is related to people arriving home from work, using all kinds of electrical appliances and
heating.
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Figure 3-1: Comparison of NEDU
profiles and actual measured power at
MV/LV substation transformer for week
2.
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Figure 3-2: Comparison of NEDU
profiles and actual measured power at
MV/LV substation transformer for week
27.

Furthermore, the Dutch climate agreement states that all houses should move away from natural gas for heating
and cooking by 2050. Green(er) alternatives such as (hybrid) heat pumps, hydrogen heating and district heating
networks will need to be put to full use [13]. Practically, that would mean that yearly 180,000 (hybrid) heat
pumps should be installed across the Netherlands. Nevertheless, the houses in the studied LV grid are quite old
and built in the interwar period. That means that they are less suitable for (all-electric) heat pumps. District
heating might be a more suitable option for most of them, although a decision by the municipality about the
most suitable heating method in this area is not yet forthcoming [56, 57]. Based on this information, a moderate
heat pump adoption rate of 8%, 15% and 40% (2025, 2030 and 2050) was applied relative to the 2021 scenario.
This resulted in an estimated yearly load increase of 4.15%, 7.79% and 20.76 %. These values were multiplied
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with the load profiles of the 2021 scenario. Remark that this practice is a simplification. The actual heating
profiles depend on several parameters such as demand responsiveness based on the implemented (financial)
incentives, weather conditions, building characteristics etc. Nevertheless, a heat pump electricity profile would
not deviate much from the current consumption pattern according to the consumption profiles in [58, 59].

3-2-2 PV Data

In 2021, the PV capacity in the discussed LV grid amounted to 83.6 kWp spread across 18 different installations.
In Table 3-1 the predictions towards 2050 regarding this capacity are made based on internal data from a Dutch
DSO. Note that these PV adoption rates are relatively low compared to the actual rooftop potential of the
area. Higher adoption rates might be applicable depending on the assumed scenario.

Table 3-1: Assumed projections of the PV installations in the LV grid.

Year PV capacity [kWp] Nr. Installations Average [kWp]
2021 83.6 18 4.64
2025 99.8 21 4.75
2030 110.8 25 4.43
2050 145.0 34 4.26

Hourly standardised data was derived from the National Renewable Energy Laboratories (NREL) PVWatt
calculator to establish the production profiles of the PV installation [60]. Although the used weather data
applies to Amsterdam, it resembles a typical Dutch PV power profile. The hourly data was interpolated on a
15-min basis to fit with the other collected data sets.

3-2-3 EV Data

This section discusses the EV data collection and future predictions for the concerned LV grid. The information
in the following section discusses how the collected data is used for simulating uncontrolled charging scenarios.

Currently, the discussed district hosts six public charging stations, each with one pair of charging poles. These
charging stations are maintained and operated by one CPO and have a total capacity of 22 kW AC power each.
Besides, the same CPO also hosts an additional eight chargers (charging points) used for their own shared EVs
spread across four charging locations (charging stations). The privately-owned charging stations are assumed
to be negligible in this dense city area as, on average, 7 out of 10 cars in the Netherlands rely on public parking.
That means that in an urban area, almost all cars will need to be stationed publicly [61]. According to charging
data from 2019-2020 related to the six public charging stations, the public chargers are mostly used by visiting
cars. The amount of cars that charge more than once a week is equal to 10. These cars are regarded as
local EVs. Their weekly average charging sessions were used to calculate the amount of accountable visiting
EVs, which resulted in 14 vehicles. Eventually, the total amount of accountable EVs (nEV) hosted by the LV
network was estimated to be 32: 14 visiting EVs, 10 local EVs and 8 shared EVs. It reflects a total of 1.6 cars
per charger, which is regular in the Netherlands. However, compared to the European directive that indicates
a maximum of ten EVs per charger, this number is quite low. In fact, compared to the rest of Europe, the
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Netherlands leads in the number of chargers even in absolute number [62]. That leads to faster integration and
transition towards electric mobility. However, future-wise, it is expected that the amount of chargers will not
linearly scale with the amount of EVs. That was also deducted from Figure 3-3. Instead, a charge simulator was
used to derive an appropriate density of EV chargers. More details about this charge simulator can be found in
Section 3-3. It turned out that with 5 EVs per charger 111 of the 33,631 transactions were unsuccessful. That
means that all chargers are fully occupied for 0.33% of all transactions. This number was seen as acceptable.
In case of full occupancy, a car can still search for a charger in a neighbouring LV grid.

Based on the average number of cars per household (c/h = 0.4) in the LV grid and the number of households
(nhh) in the district, a penetration level (ρL) of 5.57% was achieved (including local and shared EVs) [63]. This
number is slightly higher than the average share of EVs in the Netherlands (3.96%), probably due to the active
involvement of the CPO for charging equipment and shared EVs [8]. The following formula (3-1) was used to
obtain this penetration level:

ρL = nEV
ncars

= nEV
nhhc/h (3-1)

According to the Dutch ambition regarding EV sales, penetration scenarios were established for 2025, 2030 as
well as 2050 as indicated in Table 3-2. The 100% penetration in 2050 reflects the decarbonisation of the entire
passenger vehicle fleet as stated by the Dutch climate agreement. The resulting EVs and the total amount of
transactions are obtained from these penetration levels. An average of 107 transactions per year for one EV
was used, based on the 2029-2020 EV data.

The final results related to each scenario can be found in Table 3-2. A complete overview of the derivation of
these numbers is schematised in Figure 3-3.

Table 3-2: Assumed projections of the electric car fleet in the discussed LV grid [8].

Year Penetration
Level [%] Total EVs Charging

points
EV /
Charger

Total annual
transactions

Information: Dutch ambition
2021 5.57 32 20 1.61 3462
10% of all new passenger cars sold with
electric powertrain and a plug
2025. 30 94 27 2.18 10,089
50% of all new passenger cars sold with
electric powertrain and a plug,
at least 30% of the EVs should be BEV or FCEV
(zero emission).
2030 50 157 34 2.74 16,815
100% of all new passenger cars sold
should be BEV or FCEV (zero emission).
2050 100 313 63 5.00 33,631
Car fleet 100% zero emission.
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Figure 3-3: Flow diagram of the EV prediction scenarios. The output of this diagram
contains the total chargers and yearly transactions for the years 2021, 2025, 2030 and 2050.

3-3 EV Charge Simulator

To simulate the uncontrolled charging scenarios and create charge transaction logs at the LV grid, two ap-
proaches can be regarded: using existing real-world data or synthetic data. Although the availability of charging
data for one year, the choice was made to extend a pre-existing script: EV-charge simulator, from the Aalto
University [64, 32]. This EV-charge simulator was programmed in python using object-oriented programming.
It is capable of creating realistic charging patterns based on statistical inputs as well as the predicted amount of
chargers and transactions. The tool is very versatile, which allows adapting the charging patterns automatically
to new prediction scenarios. In that way, inconveniences of incorrectly logged transactions can be avoided as
well as future estimates of charging density and V2G adoption rates can be more easily integrated. Besides
that, it allows for a more automated way of assigning charging profiles to charging stations in the power flow
model (PowerFactory).

The output of the charge simulator is twofold. It contains a table with the transaction logs and the 15-minutes
data of the charging power at each charging point. The transaction logs include EV maximum charging power,
battery capacity, arrival SOC, arrival time, duration time, maximum charging power, V2G capability and charger
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ID. For the 15-minute charging profiles, the principle charge-on-arrival at maximum power is used.

The adaptations to the existing script of [64] include:

• Transformation of building-related chargers to network-integrated chargers.

• Possibility to simulate over multiple days on a 15-minute basis instead of single-day simulations.

• Inter-day dependency: continued charging if charging-time spans more than one day

• Inclusion and update of statistical parameters such as the hourly probability of arrival times for each
weekday separately, the inclusion of the probability distribution for the charging duration, statistics
related to the SOC, the average driving distance and car fleet parameters.

• Implementation of SOC and duration dependency: when SOC of 80% is reached, the script reduces the
power to zero but keeps the EV connected.

• Improvement of the script to distribute EVs over available chargers also in case more than one EV arrives
at the same time.

As indicated by the last bullet point, the script can search for free chargers and indicates the number of
unsuccessful events, which gives an indication of the shortage or redundancy of EV chargers. Besides, the script
can also reduce the power of charging whenever the rated power of the connected EV is lower than the one of
the charging station.

Statistics were derived from the 2019-2020 data provided by the ROBUST project, to customize the simulator
to the investigated district. A normal distribution was used to simulate the average driving distance between
two charging sessions. A value of 2x21.7 km on average with a standard deviation of 20 km was obtained
based on data from the discussed area [65]. Afterwards, the arrival time and charge duration time distributions
were collected and inserted in the simulator. The simulation output statistics of these implementations were
compared with the input statistics from ROBUST. The results are visualised in Figure 3-4 and Figure 3-5. It
becomes clear that the distributions are comparable. The difference between the two is ought to be related due
to randomisation used in the charge simulator. Furthermore, the connection time in the charge simulator was
set to a maximum of 48 hours, which explains the larger range in connection hours for the actual data.

More statistics implemented in the charge simulator relate to the EV fleet. Based on data from [9] and [8],
a hypothetical and simplified EV fleet was created. These EV parameters are shown in Figure 3-3 and kept
constant for the four different scenarios. The car model types and their distribution are mainly based on the
current EV fleet of the Netherlands [8] and future expectations found in [9]. The latter contains car models
that will be out in a few years. Based on their price and driving range, the most interesting EVs were selected
and a plausible distribution was assigned accordingly. Remark that the last row of Table 3-3 indicates the V2G
capability. A rather high adoption rate of V2G functionality was adopted, to better understand the effect of
this technology on the LV grid.

The EV uncontrolled charging profiles generated with the charge simulator and the adoptions as explained
above, are displayed in Figure 3-6. This figure contains the aggregated EV load profiles. The EVs are charged
on arrival at maximum charge power. Besides, also the weekly average charging power is plotted. As one can
see, a clear charging peak can be observed in the late afternoon, mainly after 6 pm. Nevertheless, the charging
statistics are derived from public charging points, meaning that the load peaks are assumed to be more irregular
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Figure 3-4: Comparison of ROBUST
data with Charge Simulator output in
terms of arrival hour.

Figure 3-5: Comparison of ROBUST
data with Charge Simulator output in
terms of connection time.

Table 3-3: Car parameter input to the charge simulator [9, 8].

Car ID number 1 2 3 4 5 6 7 8

Reference model Tesla
Model 3

Kia
Niro

Volkswagen ID.5
Pro Performance

Tesla Model S
Long Range

Sono
Sion

Renault
ZOE - R110

Hyundai
Kona

Mitsubishi
Outlander

EV Type BEV BEV BEV BEV BEV BEV BEV PHEV
Range (km) 380 370 430 585 260 315 395 50
Milage
(km/kWh) 6.6 7.1 5.6 6.2 5.5 6.0 6.2 3.7
Battery (kWh) 57.5 64.0 82.0 95.0 47.0 52.0 64.0 11.0
Charge Power(kW) 11 7.2 11 16.5 11 22 11 3.7
Distribution (%) 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1
V2G (1=yes, 0=no) 1 0 0 1 1 1 1 1

compared to private charge profiles. Around 5 am no charging takes place because no new EVs arrive and all
connected EVs are fully charged. In the weekend, that gap extend to 8 am in the morning considering the 2050
scenario.

Furthermore, Figure 3-7 shows a filled-area plot for which the colours indicate the level of flexibility provision
for scenario week 2, 2050. Flexibility is defined as the number of hours the EV is connected with a full battery.
The vertical axis of Figure 3-7 indicates the charging power that can be displaced and used in a later time
period. As can be seen, some EVs (dark red) would not be able to provided flexibility due to a short connection
time. This corresponds to 14.6% of all transactions of that week. Others provide a lot of flex due to longer
connection times. Their flexibility can be provided by delayed charging or by discharging when equipped with
V2G technology. Slightly more than one-third, 34.5%, of the EVs can even provide more than 10 hours of
flexibility. Consequently, a lot of EVs flexibility can be used to comply with certain smart charging objectives.
This will be addressed in the next chapter.
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Figure 3-6: Aggregated charging power of charge simulator for week 2 and four different
scenarios (year: 2021, 2025, 2030, 2050).

Figure 3-7: Aggregated flexibility of the connected cars week 2, 2050. The colours indicate
the flexibility level which is the connection time left with full battery. The vertical axis
indicates the amount of charging power that can be redistributed at that time.
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Chapter 4

Smart Charging Model

A smart charging model has been developed that aims to comply with CPO benefits, DSO interests and the
EV-owner satisfaction. This chapter contains the applied concepts in Section 4-1. It explains the principles
used in the developed smart charging model. These principles are based on the knowledge gained after the
literature study that was conducted in Chapter 2. Afterwards, Section 4-2 converts these principles into the
mathematical optimisation formulation applied in this study. The Pyomo optimisation language in python was
adopted to realise a working smart charging model.

4-1 Applied Concepts

A mathematical optimisation model was developed, to be able to optimally control the charging of an electric
vehicle fleet. First of all, the model works in a centralised way. Although this has some disadvantages, as
discussed in section 2-1-2, a centralised formulation can be appropriate in an urban context with a high number
of charging stations. Especially with only one CPO that operates in the LV grid, a centralised model might be
a suitable approach.

Second, the model makes use of the aforementioned RHO concept. That allows adjusting the charging of
connected EVs based on foresight in electricity consumption and generation on the LV level. Furthermore, it
ensures the desired SOC level. In MPC terminology, this desired SOC is regarded as the equilibrium or steady-
state at the end of the EV connection period. This connection period can be seen as the control horizon
which is vehicle dependent. The overall control horizon during a particular time step can be associated with
the EV with the longest connection time at that time step.

Besides that, the prediction horizon, which includes predictions for the non-EV load, PV-generation and
incentive data for charging, spans 24 hours or 96-time intervals. That corresponds to discrete time steps of
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15-minutes. In that way, charging can be delayed when there is enough flexibility meaning that the connection
time is longer than the actual required time to charge. Predictions related to non-EV loads can be derived
from historical records as applied in this work. However, a combination of historical data and weather data,
amongst others can be used as well as input to an appropriate Machine Learning (ML) model to better predict
the consumption behaviour and renewable generation on the LV level. This was regarded to be out of scope
for this work. Similarly, for the weather data, instead of using historical weather data, actual weather forecasts
and price forecasts for a 24-hour period would be more applicable in a real-life scenario.

Besides production or consumption data of the inflexible loads, also information related to the charging station
should be provided. In general, the model requires the initial SOC at arrival, V2G capability, the battery
capacity and maximum charging power of the connected EVs and information about the maximum
charging power and location of the charging station. Most of this information can be related to the EV
and charger ID; however, derivation of the SOC is less straightforward. In this work, it was assumed to be
a known parameter, but in practice, this SOC should be estimated using ML related to the EV driving and
charging patterns or other estimation methods provided by [54]. Most traffic is related to work and grocery
shopping, which both show predictable patterns, meaning that the SOC can be estimated to some extent. A
good estimation is crucial when charging gets delayed till the very last moment.

Transaction data for the optimisation was derived from the charge simulator and imported into the
optimisation. An example of these transaction logs is displayed in Table 4-1. The charger ID indicates to
which charging point the EV is connected. Data related to a particular car ID can be found in columns: V2G,
initial SOC, car maximum power and maximum charging capacity. There are two columns that indicate the
time: arrival time and departure time. They start counting on the first day of the week in 15 minutes time
intervals. For instance, an arrival time of 4 in week 2 of 2050, would mean that the car starts charging on Jan
10 at 1:00 am.

When the time of the optimisation loop is equal to the arrival time of one of the EVs, the transaction
constraints will be activated until the vehicle leaves. Until that moment, the desired SOC, V2G func-
tionality, departure time, maximum capacity and maximum charging power is memorised by the model. Note
that again two time indications are used in the optimisation: one for the actual time ( tactual ∈ [0, 672[ when
regarding one week) and one for the horizon time (t ∈ [0, 96]). These times are also indicated in Figure 4-1 in
black and red, respectively.

Figure 4-1 gives a schematic overview of the RHO principle applied in the optimisation model. It contains two
example optimisation periods. These are also highlighted in grey in Table 4-1. Both periods contain 96-time
intervals for which the constraints need to satisfy. In the first example, a vehicle enters the charging point with
ID 0 at time t = 4. The expected connection time will be 20 hours, meaning 80-time steps. In that regard, the
battery should be charged till the maximum obtainable SOC bounded by the upper level of 80%. Besides that,
Table 4-1 indicates V2G = 0, meaning that only charging can take place. For the second example, discharging
can take place because V2G = 1. Nevertheless, the control horizon equals only 18-time steps or 4.5 hours,
which reduces the flexibility provision. The SOC profiles of both examples are indicated with dashed lines;
however, a full line is used for the first time step. That is because only the solution of the first time step will
be implemented. The solution of the other time steps can change when time proceeds due to new collected
information.
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Table 4-1: Charging transactions for part of week 2 (2050) at charging points 0 and 1.

Charger
ID V2G Arrival

Time
Departure

Time
Initial

SOC [%]
Desired

SOC [%]
Max. Power

EV [kW]
Max. Energy

Capacity EV [kWh]
0 0 4 84 37.0 80.0 11.0 82.0
1 0 67 127 20.0 80.0 7.2 64.0
0 1 86 131 73.0 80.0 16.5 95.0
1 1 129 147 33.0 80.0 11.0 57.5
0 0 134 135 49.0 80.0 11.0 82.0
0 0 139 172 47.0 80.0 7.2 64.0
1 1 166 194 20.0 80.0 3.7 11.0
0 1 179 198 46.0 80.0 11.0 57.5
0 1 230 246 30.0 80.0 11.0 47.0
0 1 253 288 34.0 80.0 11.0 57.5
1 1 265 278 20.0 80.0 22.0 52.0
1 0 279 324 70.0 80.0 11.0 82.0
0 0 321 383 36.0 80.0 11.0 82.0
1 1 326 388 20.0 80.0 11.0 57.5

... ... ... ... ... ... ... ...

Figure 4-1: Receding horizon principle applied in the smart charging model.

An example of the actual optimised charging profiles at the first two charging points is displayed in Figure 4-2,
together with the SOC of the connected car. All corresponding transactions are again provided by Table 4-1
to be able to verify the outputs of the charging profiles. The transactions are ordered in terms of arrival time
(3rd column of Table 4-1). A SOC of zero in the bottom plot means that no EV is connected to the charging
point, this can be cross-checked with Table 4-1.

Finally, it is important to specify the premise of the model to be able to justify the mechanisms and objectives
behind it. The model is developed from the viewpoint of CPO or aggregator (sometimes the same
party). Their goal is to make maximum profits by still complying with the interests of the DSO. In the
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Figure 4-2: Charging profiles at charging points 0 and 1 during week 2, 2050.

long term, that relates to delaying grid reinforcement of the LV grid. In the short term, they provide
services such that curtailment by the DSO can be avoided. In this regard, the charging of EVs will
need to happen as much as possible during off-peak moments, resulting in valley-filling. In principle,
the following concept holds: the flatter the transformer load; the lower the power losses, the more capacity the
grid can host and the longer the delay of infrastructural updates. It is far-most important that no additional
load peaks are created by using an inappropriate objective function and a lack of constraints. Furthermore, the
needs of the EV owners are to be fulfilled, meaning that their desired SOC should be reachable. If
the model fails to comply with these criteria on a regular basis, the DSO should be stimulated to reinforce the
grid where needed. Of course, this only holds when the model is able to use the EVs’ charging flexibility to full
extent and in a proper way. Further details about the optimisation formulation are given below in Section 4-2.

4-2 Optimisation Formulation

Mathematical optimisation contains three distinct components: an objective function, decision variables and
constraints. On top of that, parameters and state-variables can be defined as well. The generic formulation of
the optimisation problem is shown in (4-1):


min f(x, y)
s.t. h(x, y) = 0

g(x, y) ≤ 0
(4-1)

In this formulation, f represents the objective functions, which should be minimised. The constraints to this
problem can either be equality (h) or inequality constraints (g). The corresponding variables and parameters
as well as the sets to which they belong are described below.
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4-2-1 List of Optimisation Symbols

Table 4-2 below contains a list of all symbols related to the optimisation formulation. They are classified in
terms of sets, decision variables, state variables and parameters related to charging transactions and power flow
modelling. The symbols are used in the equations contained in this Section.

Table 4-2: Symbols related to the optimisation model.

Symbol Definition Set(s)
Sets
ΩT Set of time periods (horizon length) {t ∈ N|1 ≤ t ≤ 96}
ΩC Set of charging points entire grid {c ∈ N|1 ≤ c ≤ 64}
ΩS Set of charging points sub-grid {s ∈ N|s ∈ ΩC}
ΩB Set of nodes {b ∈ N0|0 ≤ b ≤ 504}
ΩP Set of nodes with a charger connected {p ∈ ΩB}
ΩL Set of lines {l ∈ N0 × N0|l = (i, j) ∈ ΩB × ΩB ∧ i ̸= j ∧ i, j

= binding nodes }
ΩΦ Set of phases {a, b, c}
Ωn Set of cutting planes {n ∈ N|1 ≤ n ≤ N}

Decision variables
Pt,c Three-phase active (dis)charging power at time t,

charging point c [p.u.]
∀t ∈ ΩT, c ∈ ΩC

State variables related to charging transactions
Pll

t Low-cost charging power at time t [p.u.] ∀t ∈ ΩT
Pml

t Medium-cost charging power at time t [p.u.] ∀t ∈ ΩT
Phl

t High-cost charging power at time t [p.u.] ∀t ∈ ΩT
PDis

t Discharged power at time t [p.u.] ∀t ∈ ΩT
SOCt,c State-of-charge for car

at charging point c and time t ∈ [0,1]
∀t ∈ ΩT, c ∈ ΩC

αc Fraction of the desired SOC (SOC∗
c)

obtained at departure time (tdep
c ) ∈ [0, 1]

∀c ∈ ΩC

State variables related to power flow modelling
Γt,l,ϕ,n Approximated current magnitude at time t,

line l, phase ϕ, intersecting plane n [p.u.]
∀ t ∈ ΩT, l ∈ ΩL,
ϕ ∈ Ωϕ, n ∈ Ωn

Ψ(z) Approximated Euclidean norm of vector z
It,l Vector of three-phase currents at line l, time t [p.u.] ∀t ∈ ΩT, l ∈ ΩL
Ic

t,p Vector of three-phase currents from
the charging point at node p, time t [p.u.]

∀t ∈ ΩT, p ∈ ΩP

Iinflex
t,b Vector of three-phase currents from

the non-EV loads and PV at node b, time t [p.u.]
∀t ∈ ΩT, b ∈ ΩB

Is
t,b Vector of three-phase currents from

substation at node b, time t [p.u.]
∀t ∈ ΩT, b ∈ ΩB

Pt,c,ϕ Single-phase active power
at time t, charging point c [p.u.]

∀t ∈ ΩT, c ∈ ΩC,
ϕ ∈ Ωϕ

Qt,c,ϕ Single-phase reactive power
at time t, charging point c [p.u.]

∀t ∈ ΩT, c ∈ ΩC,
ϕ ∈ Ωϕ

Vt,b Vector of phase voltages at node b, time t [p.u.] ∀t ∈ ΩT, b ∈ ΩB
Vt,b,ϕ Rotated nodel voltages at

time t, node b and phase ϕ [p.u.]
∀t ∈ ΩT, b ∈ ΩB
ϕ ∈ Ωϕ

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

Symbol Definition Set(s)
Parameters related to charging transactions
∆t Duration of the time period (0.25 h)
cDA

t Day-ahead price at time t [€/kW/15min] ∀t ∈ ΩT
cLL Low-Level cost of charging [€/kW/15min]
cML Medium-Level cost of charging [€/kW/15min]
cHL High-Level cost of charging [€/kW/15min]
cDis Discharge price [€/kW/15min]
m Weight factor for variable αc

η Charge- and discharge Efficiency

tdep
c Departure time at charging point ∀c ∈ ΩC

Pt,c Maximum rated active charging power
at charging point

[kW] ∀t ∈ ΩT, c ∈ ΩC

Pt,c Minimum rated active discharging power
at charging point [kW]

∀t ∈ ΩT, c ∈ ΩC

SOCinit
c Initial state-of-charge for car at charging point c ∀c ∈ ΩC

SOCc Maximum SOC for car at charging point c ∀c ∈ ΩC
SOCc Minimum SOC at charging point ∀c ∈ ΩC
SOC∗

c Desired state-of-charge at charging point ∀c ∈ ΩC
Ec Maximum battery capacity at charging point [kWh] ∀c ∈ ΩC
tdep
c Departure time at charging point ∀c ∈ ΩC

µV2G
c V2G functionality ∈ {0, 1} ∀c ∈ ΩC

ptf Normalised predicted transformer load
including PV and non-EV load [p.u.]

∀t ∈ ΩT

Pll∗
t Available low-cost

charging power at time t [kVA]
∀t ∈ ΩT

Pml∗
t Available medium-cost

charging power at time t [kVA]
∀t ∈ ΩT

Phl∗
t Available high-cost

charging power at time t [kVA]
∀t ∈ ΩT

Parameters related to power flow modelling
pfc Powerfactor of each charging point ∀c ∈ ΩC
ptf Allowed transformer loading percentage
Vtap

t Nominal predicted tap position at time t [p.u.] ∀t ∈ ΩT
V0 Nominal voltage, [kV]
V Maximum voltage magnitude [V]
V Minimum voltage magnitude [V]
Pgrid Nominal system power [kVA]
N Number of intersecting planes current approximation
Pinflex

t,b,ϕ Consumed or generated power from
non-EV loads and PV at time t and node b [kVA]

∀t ∈ ΩT, b ∈ ΩB,
ϕ ∈ Ωϕ

β Coefficient for voltage magnitude approximation
λ Coefficient for voltage magnitude approximation
Θ Range angle for voltage magnitude approximation [◦]
Jϕ Rotation coefficient for phase ϕ ∀ϕ ∈ Ωϕ

Il Maximum current magnitude at line l[A] ∀l ∈ ΩL
Sinflex

t,b Vector of complex loads, pv at node k,
period t [p.u.]

∀t ∈ ΩT, b ∈ ΩB

V0
t,b Vector of estimated phase voltage at node b, time t ∀t ∈ ΩT, b ∈ ΩB

Y(i,j) Admittance submatrix of line l, with nodes (i,j) ∀(i, j) ∈ ΩL
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4-2-2 Objective Function

EVs in the Netherlands are mostly charged using a flat, single or double (day-night) tariff structure. It mainly
results in charge-on-arrival, or uncontrolled charging. In general, time-varying prices are seen by many authors
and institutions as a requirement to unlock the flexibility potential of EVs [3, 35]. In the case of the CPO, this
might lower his expenses. Currently, many of these CPOs already contract energy supplying companies to get
charged by Day-Ahead (DA) prices. Especially with political and supply instabilities, this particularly becomes
interesting. Furthermore, these DA prices somehow reflect how green the contracted electricity will be. That
is because lower prices are usually accompanied by periods of much wind and solar energy. As a consequence,
a lower electricity price is beneficial for the CPO but might also be for the environment. In that way, EVs
charging can be scheduled at times of abundant renewable energy generation as long as it complies with the
requirements of the EV owner and DSO. Therefore, also stationary grid batteries can be reduced to a bare
minimum. Nevertheless, smart charging purely based on day-ahead prices, is not always found to be appealing
to the DSO. That was also found by [66]. To better integrate EVs in the LV grid, an adjusted pricing scheme
will be needed. Therefore in this study, after investigating the effect of using DA prices only, a Stacked
Tariffs (ST) scheme based on the DA prices was implemented as well. A similar stacked tariff scheme
already runs in the FLEET pilot project in Utrecht [1]. On the one hand, the goal is to reduce congestion
and voltage problems in the grid while minimising CPO costs. For downstream congestion in the feeders
as well as voltage problems at the nodes, grid constraints might be needed additionally. On the other hand,
the aim is to balance out the loading at the transformer level, which should allow for more capacity to be
connected to the grid as well as reduce power losses. The stacked tariff structure should help by discouraging
loading above a certain level. In fact, the used stacked tariff structure contains the same day-ahead prices with
an additional volumetric tariff stacked on top of it that discourages high loading. For the latter, the DSO should
be able to apply an additional monetary incentive to the CPO based on the predicted baseload (non-EV load).
Related to that, in 2019, the European Commission updated the European Electricity Directive on the Internal
Market for Electricity (2019/943). Section 2, Article 18, item 8 states:

Charges for access to networks, use of networks and reinforcement:

8. Distribution tariff methodologies shall provide incentives to distribution system operators for the
most cost-efficient operation and development of their networks including through the procurement
of services. For that purpose regulatory authorities shall recognise relevant costs as eligible, shall
include those costs in distribution tariffs, and may introduce performance targets in order to provide
incentives to distribution system operators to increase efficiencies in their networks, including through
energy efficiency, flexibility and the development of smart grids and intelligent metering systems.
[67]

In principle, together with proper national legislation (Authoriteit Consument en Markt (ACM) in the Nether-
lands), the DSO should be able to stimulate customers such that congestion is avoided as much as possible.
This statement was also the resolution of an extensive study on smart charging in the Netherlands on behalf of
Elaad [61]. They advocate financial tariff that encourages more flexibility allocation of loads to avoid congestion
and a large mismatch between supply and demand.

Nevertheless, the financial tariff structure applied in this thesis, as derived from [1], is still a proof-of-concept.
No further optimisation of the tariff structure is applied. However, the principles are used to compare against
the more traditional day-ahead tariff scheme, especially in terms of loading and load fluctuation at transformer
level. Furthermore, the effect of V2G with this new tariff scheme is investigated, which was not done
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before. Table 4-3 gives an overview of the ST scheme. Besides, Figure 4-3 schematises the working principle of
the ST. It consists of the DA price and an additional volumetric tariff which is divided into three different cost
components: low-level cost for loading up to 60% of transformer-rated power, medium-level costs for loading up
to 80% and high-level costs for loading above 80% of transformer rated power. The actual amount of power that
can be charged at each level depends on the transformer load predictions of the DSO. Furthermore, the highest
power level can be constrained by 100% depending on the selected scenario (see case studies Section 5-2).

Table 4-3: Decomposed stacked tariff structure for the CPO.

Tariff Day-ahead electricity tariff
component on hourly basis

Additional volumetric baseload-based tariff
component on 15 minutes basis

Outgoing party Contracted energy company DSO
Goal Reducing the need for grey electricity More valley-filling and congestion reduction
Source ENTSO-E (hourly resolution, day-ahead) Transformer load predictions DSO

(excluding EVs, day-ahead)

Figure 4-3: Diagram explaining the stacked tariff principle.

The corresponding objective function as in (4-2) entails the integration of the stacked pricing scheme. When
only considering day-ahead prices, the first three terms of the sum are omitted. The reader is referred to
Table 4-2 to understand all the used symbols.

min
(∑

t∈ΩT

∆t(cllPll
t + cmlPml

t + chlPhl
t + cDA

t

∑
c∈ΩC

Pt,c) −
∑

c∈ΩC

mαc

)
(4-2)

The objective is to minimise this function. It contains two main terms, one for the CPO cost optimisation and
one for allowing a desired SOC level. The latter is related to the last term in Equation (4-2). m is a constant
parameter big enough to ensure that αc is as close as possible to its upper boundary 1. That leads to the
desired SOC level. The meaning of this variable αc will become more clear in the section below. Logically the
following relation holds: cll < cml < chl.
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4-2-3 Constraints related to the Charging Transactions

When a car enters a particular charging point, the constraints related to the charging transaction are activated
until the vehicle leaves again. These constraints are listed in the text below.

Equation (4-3) represents the lower and upper limits of the SOC of the EV, these limits are fixed and equal
to 20 % and 80 %, respectively. These limits are chosen according to a study that investigates optimal bounds
using real-world EV charging data [68]. Charge power limitations are included in the model by Equation
(4-4). Basically, the charging power is limited by the minimum of the rated power of the charging station or
the EV.

SOCc ≤ SOCt,c ≤ SOCc, ∀t ∈ ΩT, c ∈ ΩC (4-3)

Pt,c ≤ Pt,c ≤ Pt,c, ∀t ∈ ΩT, c ∈ ΩC (4-4)

Equation (4-5) is used to make sure that the final SOC is reached at the end of the charging period. This
final SOC is constrained by one of the following parameters: the departure time, the prediction horizon
in case the departure time is larger than 24 hours, or the SOC level of 80%. In the first case, the
battery should be charged continuously on maximum power. The second case for which the SOC is limited by
the horizon length, will rarely occur. That is because the longest needed charging time is for the Tesla Model
S - long range as seen in Table 3-3. The longest charging time corresponds to charging from 20% to 80%
SOC and equals 24.4 hours. Considering that most cars barely connect for longer than 24 hours, justifies the
prediction horizon of 24 hours. Besides, most price, generation and load data are also contained in one entire
day, which allows for the best flexibility distribution. In the last case, the connection time of the EV is long
enough to reach the maximum SOC of 80%. That means that a vehicle with V2G capability can also discharge
a certain amount of its battery capacity during the connection time. EV discharging is enabled by multiplying
the minimum power with the parameter µV 2G ∈ {0, 1}. If µV 2G

c = 0, meaning no V 2G functionality, then Pc

becomes 0. If µV 2G
c = 1, the maximum discharge power becomes equal to minus the maximum charge power:

Pc = −Pc

SOCt,c = SOC∗
cαc, ⇐⇒ t = tdep

c , ∀c ∈ ΩC (4-5)

A state-of-charge equality constraint is introduced to update the state of the EV’s battery. When an EV
connects, the initial SOC is first read by Equation (4-6). The update till the departure time happens by Equation
(4-7). The equation is multiplied by the nominal grid power, because Pt,c was initially normalised by Pgrid.
The charging and discharging efficiency (η) was set to 1, because of the linear programming implementation
without mixed integers. However, in principle, according to Schram et al. [69], the round-trip efficiency for
charging and discharging of EV should be around 87%. This would lead to a charge- or discharge efficiency
of η = 93% [69]. They tested this for car types and charging stations, similar to the ones that are or will be
installed in the investigated district [69].
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SOCt,c = SOCinit

c ⇐⇒ t = 1 (4-6)

SOCt,c = SOCt−1,c + Pt−1,c∆t
Ec

Pgrid
η ∀t : 1 < t < tdep

c (4-7)

∑
c∈ΩC

Pt,c = Pll
t + Pml

t + Phl
t + PDis

t ∀t ∈ ΩT (4-8)

Finally, Equations (4-8) and (4-10) are introduced and relate to the stacked tariff scheme. Equation (4-8)
makes sure that the stacked power levels equal the sum of all the total aggregated charging powers. In case
the net of this aggregated charging power is smaller than zero, the left side of (4-8) becomes equal to Pt

Dis.
The other right side terms will become zero due to the following relation (4-9):

cDis = 0 < cll < cml < chl (4-9)

If the aggregated charging power is negative, the model will automatically assign the total discharge capacity
to PDis

t . If that is not the case, then at least Pll
t is non-zero implying an additional electricity cost equal to

cllPll
t∆t. This would not happen with cost minimisation in the objective function. In the end, this reasoning

allows to disregard binary variables which would make the problem a MILP optimisation.

The opposite happens when the aggregated power is net positive. In that case, PDis
t becomes equal to zero

and the other terms can take every kind of value that belongs to the intervals as defined in Equation (4-10).
Equation (4-10) constraints each power level according to the allowed aggregated charging power in each group.
Refer to Figure 4-3, for the correct interpretations of Pll∗

t , Pml∗
t , Phl∗

t .

0 ≤ Pll
t ≤ Pll∗

t , 0 ≤ Pml
t ≤ Pml∗

t , 0 ≤ Phl
t ≤ Phl∗

t , PDis
t ≤ 0 ∀t ∈ ΩT (4-10)

4-2-4 Constraints related to Power Flow Modelling

When the objective function fails to allocate EVs properly, causing congestion or voltage problems, extra
constraints are needed to avoid these problems. These constraints are listed in Equation (4-11) and Equation
(4-12). These two equations are related to current and voltage limitations in the lines and nodes, respectively.
The voltage was limited to V0 = 1 ± 0.05 [p.u.] as explained in Section 3-1. Constraints related to phase
unbalance were not implemented due to the assumed 3-phase nature of the public EV chargers. Nevertheless,
a transformer limit was implemented for some of the scenarios by limiting the aggregated sum of loads and
generation. No power flow modelling was needed for that.

∥It,l∥2 ≤ Il, ∀l ∈ ΩL, t ∈ ΩT (4-11)
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V ≤ ∥Vb,t∥2 ≤ V, ∀b ∈ ΩB, t ∈ ΩT (4-12)

Although both equations (4-11), (4-12) are non-linear, the aim is to linearise them in order to obtain a linear-AC
OPF formulation. That also complies with the linear optimisation model. The problem with the non-linearity in
these equations is related to the euclidean norm. Besides, introducing voltage and current constraints requires
the introduction of OPF equations to model the LV grid. On its turn, this requires a three-phase linear power
flow model. The effectiveness of such a model, can be compared with the Newton-Raphson model used by
PowerFactory.

The power flow formulation used for modelling the grid constraints, was derived from a recent paper [4]. Giraldo
et al., 2021 [4] published a new AC-linear OPF model, which shows better results both in terms of computational
time and accuracy compared to the described bench-marking models in the paper. The OPF model considers
three phases, allowing for both single and three-phase loads as is the case in this study. Furthermore, the paper
includes a new representation of the Euclidean norm for both nodal voltage and branch current approximations.
The voltage magnitudes are approximated by the linear combination of the 1-norm and infinity norm. After
linearly rotating the voltages and finding the regression coefficients, an accurate linearised voltage magnitude
approximation can be found. The theory and corresponding equations related to the AC-linear OPF model can
be found in Appendix D. This also includes the theory behind the euclidean norm approximation of the line
currents. This was based on a generalised piece-wise linear approximation used in [70]. It makes use of cutting
planes (N). The more cutting planes are used, the better the non-linear line currents can be estimated with a
linear formulation. Nevertheless, this is at the expense of computational time.

The voltage at the transformer node, which is used to estimate the other nodal voltages, was derived by running
an initial three-phase linear power flow in PowerFactory containing all inflexible loads. Besides, the current,
power and voltage variables were normalised to p.u. values using the following formulas (4-13):

Ip.u. = IV0

(Pgrid/3)
, Vp.u. = V

V0
, Pp.u. = P

(Pgrid/3)
(4-13)

A first test of the optimisation model including grid constraints was executed on a small-scale model with 17
nodes. After promising results for the current and voltage, the same formulation was transferred to the actual
LV grid containing 506 nodes. The error validation related to the LV grid can be found in the next chapter,
Section 5-2-4.
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Chapter 5

Results & Discussion

This chapter discusses the performance of the applied smart charging model as well as the effect of uncontrolled
charging on the discussed LV grid. Several scenarios are investigated and listed below in Table 5-1. Each scenario
has a label related to it, which will be used to refer to the respective scenario further down this report. The
uncontrolled scenarios were analysed on voltage and congestion problems. The results can be found in Section 5-
1. The controlled scenario results can be found Section 5-2. They were compared and assessed based on their
adequacy to comply with DSO, CPO and EV-user interests.

Table 5-1: Overview table of the investigated scenarios for both uncontrolled and controlled
charging.

Label Controlled Price Structure Grid
Constraints V2G Period Thesis

Section

1.1-1.8 No None None No
2021, 2025, 2030, 2050

Summer: 1.1 - 1.4
Winter: 1.5 - 1.8

5-1,
5-2

2.1 Yes Day-Ahead None Yes 2050, winter 5-2
2.2 Yes Day-Ahead T-Limit Yes 2050, winter 5-2
2.3 Yes Day-Ahead Sub-grid Yes 2050, winter 5-2

2.4 Yes stacked tariffs T-Limit No 2050, winter 5-2

2.5 Yes stacked tariffs None Yes 2050, winter 5-2
2.6 Yes stacked tariffs T-Limit Yes 2050, winter 5-2
2.7 Yes stacked tariffs Sub-grid Yes 2050, winter 5-2
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36 Results & Discussion

5-1 Non-Optimised Charging

The results of the grid impact associated with uncontrolled charging can be found in this section. First of all,
with the collected PV, EV and baseload (non-EV load) data from Chapter 3, power flow simulations were run
in DIgSILENT PowerFactory 2022 [33]. This was done for eight different cases related to a winter and summer
week of the years 2021, 2025, 2030 and 2050. Afterwards, a scenario analysis method was used, containing four
important indicators: frequency, concurrency, location and severeness of the events. All these four indicators
were introduced to analyse bus voltage and transformer or line loading. The abbreviations Transformer (T),
Line of the Transformer (LT) and Lines (L) are used in the text below. The latter denotes all downstream LV
lines, excluding the LT. A line forms the interconnection between two nodes, each of which can carry a load
(e.g. household connection). The LT, is the line that connects the transformer station with all downstream
feeders. Therefore, it contains the aggregated load of the entire LV network. The distinction between LT and
L was made, because of the higher importance related to the LT. Congestion in this line is more worrying as
the entire LV grid depends on it. The most important results and discussion can be found below.

5-1-1 Frequency of the Events

Event frequency is used to describe how many times during the selected week a certain threshold is exceeded.
This frequency was calculated for five classes or sets: transformer congestion (T-CON), congestion in the
transformer line (LT-CON), congestion in the other downstream lines (L-CON), as well as overvoltage and
undervoltage problems in these lines (L-OV, L-UV respectively). Remark that L-OV and L-UV are defined for
the first node of that line in PowerFactory. This is the node closest to the transformer.

Figure 5-1 shows a bar plot containing the frequency analysis of the uncontrolled scenarios. The first four plots
correspond to the summer scenarios, the bottom four plots to the winter scenarios. The horizontal axis contains
the five classes, the vertical axis the frequency of occurrence γ. That frequency is defined by the following
formula (5-1):

γ = |Ω∗|
|Ω|

, with Ω∗ ⊂ Ω ∧ |Ω| = 672 (5-1)

The set Ω∗ contains all the time points t, with 0 ≤ t < 672, that fulfil a certain class criterion, for instance
congestion in the lines (L-CON). For the congestion of T, LT and L, the criterion is 100% loading of the
components. The loading percentage is in its turn based on the rated current of the components.

From the barplots, several conclusions can be drawn. It becomes clear that grid problems related to loading
and voltage are not frequent during the summer scenarios. Only in scenario 1.4 problems related to congestion
begin to form, although the frequency for this summer week is still relatively low. Figure 3-2 and Figure 3-1 in
Chapter 3 already indicated a much lower baseload in summer than in winter. Looking at the winter scenarios,
problems already emerge in 2025 at the transformer level. In 2050, all problem classes besides L-OV
are detected. The latter would not make sense during winter, as no V2G was applied yet, and the solar
production is only minor. During summer, L-OV was not observed as well. That might be related to the low
PV adoption rate assumed in this study.
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5-1 Non-Optimised Charging 37

When focusing on the worst-case scenario 1.8, it is important to stress that not all event classes are equally
problematic. Line undervoltage does not occur too often to become a problem. Besides, transformers can
mostly cope with higher currents than their rating indicates. As a consequence and due to power losses that
were not included, for the controlled scenarios a more flexible limit of around 120% was adopted. According
to [40] that is a reasonable assumption to implement. The most significant problem is the congestion in the
transformer line. As this contains a circuit breaker, it is important to restrict the loading to avoid tripping.
That would result in a disconnection and possible black-out of the entire LV grid with the upstream network.

From these barplots one can conclude that a transformer and transformer line upgrade will be needed
towards 2050 if EVs’ flexibility is not used optimally. A transformer upgrade to 630 kVA would be possible
[16]. The transformer line can be reinforced from 0.63 kA to 1 kA, for instance.
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Figure 5-1: Barplot with frequencies of congestion (CON) and under- (UV) or overvoltage
(OV) for the uncontrolled scenarios. The first row indicates the frequencies for the summer
week, the bottom row for the winter week. The years range from 2021 till 2050.

5-1-2 Concurrency of the Events

Although the frequency of the events is known at this point, it is not clear yet how events correlate with each
other. Therefore, event concurrency is discussed in more detail for the two most severe scenarios (1.7 & 1.8). It
is important to consider concurrency to investigate the underlying cause of the congestion and voltage problems.
In its turn, this can be important to reflect on the relevance of grid constraints.

Event concurrency was defined in two ways: absolute and relative frequency of occurrence. Both describe how
two events are interrelated in terms of time. The absolute concurrency (γA) is shown in a mathematical way
by Equation (5-2).
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γA = |Ω12|
|Ω|

, with Ω12 ⊂ Ω, Ω12 = Ω1 ∩ Ω2, |Ω| = 672 (5-2)

In fact, absolute concurrency is defined as the number of times two classes of sets occur at the same time,
divided by the total sample times in one week (672). On the other hand, when divided by the cardinality of the
first set, the relative concurrency (γR) is obtained. This is represented by formula (5-3).

γR = |Ω12|
|Ω1|

, with Ω12 ⊂ Ω, Ω12 = Ω1 ∩ Ω2 (5-3)

The result of both concurrency indicators is displayed in two heatmaps. In Figure 5-2 the absolute frequency
formulation results in a symmetric heatmap. The diagonal elements correspond with the bars of Figure 5-1.
For the sub-diagonal elements, it is easier to read Figure 5-3 first, before interpreting Figure 5-2. In Figure 5-3
it becomes clear that when the LT is congested, the transformer is congested as well, due to a higher rating for
the transformer line. On the other hand, it might occur that the transformer is congested while the LT is not.
This is the case for both cases as well.

More interesting results are obtained when looking at the downstream lines. In scenario 1.7-2030,w2, line
congestion goes hand-in-hand with transformer congestion. That implies that line congestion is more likely
to take place closer to the transformer line. Implementing line limitations in an optimisation model would
not necessarily be needed after first restricting the transformer loading. Nevertheless, in 2050 (scenario 1.8),
this might not be true as 9.9% of the time line congestion occurs while the transformer does not experience
congestion. That might indicate the occurrence of local line congestion due to for instance many local charging
stations being occupied. In absolute terms, that corresponds to 1.33% of the time during that particular week.
Implementing grid constraints might be valuable to solve local congestion, although only up to minor
extent in the case of the uncontrolled scenario (when no price incentives are applied). Nevertheless, to
fully quantify local congestion, a more detailed localisation of the events is needed. That is done in the section
below.

Lastly, during the few times line undervoltage occurs, also T and LT congestion is perceived in all cases. To
summarise, that would mean that the following order of events can be expected: transformer congestion,
line congestion (both LT and L) due to aggregated peaks, line congestion on local scales and finally,
overvoltage problems.
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Figure 5-2: Absolute frequency of congestion and voltage problems for the two most severe
uncontrolled cases related to week 2 of respectively 2030 and 2050.
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Figure 5-3: Relative frequency of congestion and voltage problems for the two most severe
uncontrolled cases related to week 2 of respectively 2030 and 2050.

5-1-3 Location of the Events

It might become important to check which parts of the grid show the earliest signs of congestion and voltage
problems. Not only for grid reinforcement and planning, but also when considering grid constraints in a smart
charging model, that becomes relevant.

Figure 5-4 shows all the lines and nodes of the LV grid. The light grey lines are the open fuses, to represent
the operational radial topology. Furthermore, all charging stations are located on the figure as well to be able
to assess on the possible causes of undervoltage and congestion. The colours on the schematic are related to
these events and belong to the worst-case scenario discussed so far. This is scenario 1.8-2050, w2.
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Figure 5-4: PowerFactory model for the LV grid topology with the different feeders indi-
cated. The grey boxes indicate the part of the grid modelled in the optimisation. The most
problematic areas are indicated with red and orange meaning overloading issues and blue
meaning the undervoltage problems.

From Figure 5-4 it becomes apparent that Feeder 7 (F7) experiences the most problems. The congestion
at the beginning of the feeder line is most likely related to a substantial amount of chargers and other loads
resulting in large aggregated load peaks. Furthermore, low cable ratings (GPLK 4x25 Curm in Table A-2)
amplify congestion in the middle feeder after the distribution substation. More careful positioning of the EV
charging points might be needed as well to solve the local congestion. Feeder F7 also contains slightly more
charging points due to the randomisation process applied in this work. Consequently, due to high loading and
low cable ratings, a substantial voltage drop is perceived in that line as well and indicated in blue.

The problems in the other lines during the worst-case scenario are negligible. Due to that reason, it becomes
interesting to model only feeder 7 in the optimisation model and see how the rest of the network
reacts to that. In this way, the execution time of finding the optimal solution considering many grid constraints
can be reduced drastically. The results of this approach can be found in the next Section 5-2. The modelled
(so-called) subgrid is indicated in the grey box. It contains all nodes, lines, loads, PV and EV chargers connected
to feeder 7. The analysis in PowerFactory always included the entire grid topology.

5-1-4 Severeness of the Events

Before optimising the charging profiles of the EVs, the event severeness is quantified and qualified as well.
Figure 5-5, displays three subplots related to scenario 1.8. The loading levels of most severe lines as well as the
lines with overvoltage and undervoltage are plotted, respectively. Again, clear load peaks are perceived in the
evening between 6-8 pm.
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5-2 Optimised Charging 41

Figure 5-5: Power Flow results: voltage and loading of most severe lines and nodes for week
2, 2050. The top graph plots the lines with more than 100% congestion, the middle graph
the lines with voltages under 0.95 p.u. and the bottom graph the lines for which voltages
above 1.05 p.u. are perceived (which are not existing).

The peak transformer and transformer line loading reached 164.0% and 139.8%,respectively, of their
rated current capacities. For the downstream lines, that value amounted to 153.18%. Congestion is
observed in 48 different lines. Besides that, the lowest and highest voltage are 0.94 p.u. and 1.02 p.u.
of the nominal, respectively. That explains why no overvoltage is perceived in the bottom plot of Figure 5-5.
Undervoltage occurred in 10 different nodes.

5-2 Optimised Charging

In this section, the results of the optimised scenarios are analysed. All scenarios were run for the 2050 winter
case (week 2, 2050) due to the relevance of analysing the worst-case scenario.

The results of all the different scenarios are compared based on the parameters listed below.

• Power losses, frequency and statistics of voltage and congestion problems at L, LT and T (5-2-1).

• CPO cost reduction based on day-ahead tariffs (5-2-2).

• User-satisfaction comprising the ability to reach the desired SOC level (5-2-3).

• Model performance in terms of computational time and accuracy of power flow modelling (5-2-4).

Master of Science Thesis F. Verbist



42 Results & Discussion

These result parameters were also applied to scenario 1.8, which represents the uncontrolled charging scenario
(week 2, 2050). Furthermore, section 5-2-5 gives a final overview of the scenario preference of all involved
parties, including the DSO, CPO and EV-owners. Refer to Table 5-1 to find the full information related to each
scenario label used in this section.

5-2-1 DSO Interest: Grid Impact

Below, the interests of the DSO related to the impact of EV charging on the LV grid are described. First, the
aggregated loading profiles are analysed for each scenario. Second, the frequency of the events is discussed.
Afterwards, a more detailed statistical analysis is applied to also quantify the severeness of the events. Finally, the
power losses are quantified. In the results analysis, favourable outcomes for the DSO are related to more valley-
filling reducing power losses and to comply with the grid code in terms of congestion and under- or overvoltage
limits. The limits covered in this study correspond to 100% loading for the lines and transformer line, 120%
loading of the transformer and voltages between 0.95 and 1.05 p.u. Remark that the actual operational limits
can change and depend on the DSO conventions.

Aggregated Loading Profiles

Figures 5-6 to 5-12 in this section contain the first visual representation of the optimisation results. Each figure
contains four axes. The horizontal axes indicate the time of the week in terms of days and hours. The left
vertical axis indicates the aggregated transformer power (not including power losses). The right axis represents
the day-ahead price. Each figure contains four lines. Three of them always stay the same; these represent the
day-ahead price profile (light grey), the inflexible aggregated loads containing the baseload with PV subtracted
(black) and the aggregated inflexible loading considering the uncontrolled charging scenario 1.8 (red). The most
important line is the green one as it contains the optimisation results, which are different for each scenario.
The green line is the composition of the black line with the addition of the flexible (optimised) EV load.

Looking at scenario 2.1 in Figure 5-6, it becomes clear that with a large share of V2G and only considering
DA prices, more and higher peaks are seen than in the uncontrolled scenario. This results in a non-
optimal outcome in terms of the DSO. Without transformer reinforcement, this would require the need for
implementing a transformer constraint. This is done for scenarios 2.2 and 2.3, as can be observed Figure 5-7
and Figure 5-8, respectively. Scenario 2.3 also contains the power flow constraints for feeder 7 (sub-grid). At
first glance, not that much difference is perceived between both scenarios. Nevertheless, both scenarios contain
an almost continuous high loading at the transformer level, which might involve more power losses.

The visual representation of scenario 2.4 in Figure 5-9 is completely different as it includes a new tariff scheme
and only unidirectional charging. The loading is again restricted by a transformer limit and is much more evenly
distributed. The latter results in more valley-filling. At first sight, this ST price scheme that disincentives
high load levels succeeds in creating a more balanced load level. That should result in less overall
power losses. A quantification of these power losses can be found at the end of this section.

To really investigate the power of the ST structure, the V2G scenarios were repeated for ST prices as well.
Figure 5-10 contains the optimisation results when no grid limitations are applied. It shows that the ST scheme
is not fully capable of avoiding load peaks above transformer level. This can be solved by a more careful study
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of the adopted price levels or by again adding a transformer limit. The latter solution was applied, because the
former falls out of the scope of this work. As a result, Figure 5-11 shows the topped loading at transformer
level, including ST and V2G. Less high loading is perceived compared to the equivalent DA scenario. That
is quantified in Table 5-2 as well. From this table, it becomes apparent that the DA scenarios have at least
three times more loading at transformer level compared to their ST counterparts. As a consequence, it can be
concluded that the stacked tariffs effectively discourage high transformer loading.

Again, the scenario including the sub-grid constraints (2.7) in Figure 5-12 almost looks identical to the one with
only a transformer limit (2.6) in Figure 5-11. That can be explained by the low amount of line congestion and
voltage problems when limiting transformer loading. A more quantitative analysis can be found further down
this section.

Figure 5-6: Aggregated load (without losses) for scenario 2.1: DA-prices, V2G, no grid
constraints.
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Figure 5-7: Aggregated load (without losses) for scenario 2.2: DA-prices, V2G, transformer
limit.

Figure 5-8: Aggregated load (without losses) for scenario 2.3: DA-prices, V2G, sub-grid
constraints.
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Figure 5-9: Aggregated load (without losses) for scenario 2.4: ST-prices, V1G, transformer
limit.

Figure 5-10: Aggregated load (without losses) for scenario 2.5: ST-prices, V2G, no grid
constraints.
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Figure 5-11: Aggregated load (without losses) for scenario 2.6: ST-prices, V2G, transformer
limit.

Figure 5-12: Aggregated load (without losses) for scenario 2.7: ST-prices, V2G, subgrid
constraints.
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Table 5-2: Frequency indicating a loading of at least 400 kVA at transformer level.

Loading Frequency
at T-Lim [%]

1.8-2050,w2 23.96
2.1-DA,V2G,noTlim. 25.15
2.2-DA,V2G,Tlim. 36.16
2.3-DA,V2G,subgrid 47.47
2.4-ST,noV2G,Tlim 15.33
2.5-ST,V2G,noTlim. 8.63
2.6-ST,V2G,Tlim. 11.31
2.7-ST,V2G,subgrid 12.65

Frequency of Voltage and Congestion Events

Figure 5-13 shows the frequencies of all five event classes. The transformer limit was regarded as 120% of the
rated current capacity. One can observe that with DA prices alone, all five event classes contain more
events than in the case of uncontrolled charging. Especially the frequency of line congestion is almost
doubled. Congestion at transformer (-line) level and undervoltage in the nodes all increase with a little bit less
than 10%. Besides, even line overvoltage is perceived. It again stresses the need for more regulation. V1G
is regarded as less impacting than V2G.

From scenario 2.2 and 2.6 one can conclude that it would be relevant to include grid constraints downstream
the transformer for 14.4% and 8.9% of in the case of DA and ST prices respectively. However, remarkable is
that with the line constraints included, the line congestion frequency reaches more than 20%. At first glance,
that seems odd because of the inclusion of the feeder constraints. A more careful analysis was performed to
check the outputs of the optimisation. First of all, it can be confirmed that all phase current values were
topped at their maximum in the optimisation. Looking at the PowerFactory results, the loading of the
modelled feeder lines reached a maximum of 106.5%. This difference can be explained by the errors
in the linear AC power flow modelling used in the optimisation. That can be considered acceptable as
PowerFactory makes use of the non-linear Newton-Raphson method for power flow modelling. A complete error
analysis can be found in Section 5-2-4. A new simulation was run for scenario 2.7 including an error correction
factor of 0.935 multiplied with the rated current of the lines to cope with these differences. The results can
be found in Figure 5-14. The line congestion is reduced from 22% to a congestion level of 5.5% only. The
remaining 5.5% was afterwards checked on the location of occurrence. It turned out that the concerned lines
are all located in feeders other than feeder 7. That validates the effectiveness of the modelled power flow
equations and constraints. Moreover, 95% of these congestion occurrences occurred in the same lines that
also experienced congestion in the uncontrolled scenario as displayed in Figure 5-4. The exact location of the
congestion can be found in Figure B-1.
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Figure 5-13: Barplot with frequencies of congestion, undervoltage and overvoltage events
of the controlled scenarios together with the uncontrolled scenario 1.8.
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Figure 5-14: Barplot with frequencies of congestion, undervoltage and overvoltage events
for scenario 2.7 without and with error correction.

Statistics Congestion & Voltage Events

In this section, statistics related to the grid impact on transformer level (Table 5-3), transformer line (Table 5-4)
and the downstream lines (Table 5-5) are schematised. All controlled scenarios are again compared together
with scenario 1.8.

Firstly, at the transformer level (see Table 5-3), three different congestion parameters are plotted. The trans-
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former peak loading expresses the maximum loading perceived during week 2 of 2050 for each scenario. The
lower load peaks are desired to reduce wear and curtailment. For the DA scenario without limitations, loading
above 200% of the transformer capacity can be observed. Solving this by implementing grid constraints would
avoid load curtailment as much as possible due to flexibility redistribution of EV charging.

Next to congestion, also valley-filling is desirable for the DSO. This is expressed by the remaining two parameters:
the Root-Mean-Square (RMS) and the standard deviation of the loading. The lower both values, the better this
is in terms of valley-filling. A lower RMS loading is also desired in terms of losses, as these power losses grow
quadratic with the loading. It becomes apparent that for the case with no Vehicle-to-Grid (V2G), best
parameters are obtained. Nevertheless, the other ST scenarios also show improved results compared
to their DA-based counterparts in terms of valley-filling. A summary of the DSO benefits related to
transformer congestion is provided in the last column of Table 5-3.

Secondly, the transformer line is discussed for which it is important to consider loading below 100% to avoid
tripping. As one can see in Table 5-4, the transformer limit should be chosen a bit more tight when the grid
is not modelled additionally. As expected, the transformer line peak loading contains similar scenario results as
for the transformer peak loading in Table 5-3.

Lastly, five different parameters related to the downstream lines are included in Table 5-5. Line peak loading
is for all eight cases higher than 100% even for the scenarios with subgrid constraints. However, when the
feeder constraints are implemented, the peak is reduced by more than 13% and almost 20% for DA
and ST, respectively, compared to their counterparts with only a transformer limit. After a location
analysis, these peaks occurred at lines that are not included in the linear OPF. The line RMS loading is the
best for the ST scenarios. Furthermore, the variation of the loading is best for scenario 2.6 and 2.7, as well.
Especially for GPLK cables, this is favourable, as they cannot withstand high load fluctuations [16]. In terms
of line voltage, the scenario that does not include bidirectional charging is the only one besides the ones with
grid constraints that shows acceptable voltage limits.

Table 5-3: Congestion statistics at transformer (T) level.

T peak
loading [%]

T loading
RMS [%]

T loading
stdev. [%]

DSO
Benefits

1.8-2050,w2 163.98 94.14 - * 33.19 - * −−
2.1-DA,noTlim.,V2G 231.58 101.01 (+7.29) 50.69 (+52.72) − − −
2.2-DA,Tlim.,V2G 117.48 92.43 (-1.81) 32.86 (-1.00) +
2.3-DA,subgrid,V2G 116.39 91.29 (-3.03) 31.36 (-5.51) ++
2.4-ST,Tlim.,noV2G 117.47 88.26 (-6.24) 19.62 (-40.89) +++
2.5-ST,noTlim.,V2G 210.50 90.19 (-4.20) 27.02 (-18.59) −
2.6-ST,Tlim.,V2G 116.95 88.97 (-5.50) 22.59 (-31.94) ++
2.7-ST,subgrid, V2G 116.29 88.70 (-5.78) 22.84 (-31.18) ++
* Reference
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Table 5-4: Congestion statistics at the level of the line of the transformer (LT).

LT peak
loading [%]

DSO
Benefits

1.8-2050,w2 139.78 −−
2.1-DA,noTlim.,V2G 195.34 − − −
2.2-DA,Tlim.,V2G 100.82 ++
2.3-DA,subgrid,V2G 99.54 +++
2.4-ST,Tlim.,noV2G 100.83 ++
2.5-ST,noTlim.,V2G 177.74 − − −
2.6-ST,Tlim.,V2G 100.42 ++
2.7-ST,subgrid, V2G 99.72 +++

Table 5-5: Congestion and voltage statistics at downstream line (L) level.

L peak
loading [%]

L loading
RMS [%]

L loading
stdev. [%]

L highest
voltage [p.u.]

L lowest
voltage [p.u.]

DSO
Benefits

1.8-2050,w2 153.18 25.30 -* 6.04 1.018 0.942 −−
2.1-DA,noTlim.,V2G 203.98 27.95 (+10.50) 6.19 1.062 0.913 − − −

2.2-DA,Tlim.,V2G 150.55 25.88 (+2.29) 4.14 1.056 0.951 −−
2.3-DA,subgrid,V2G 130.75 25.99 (+2.71) 3.96 1.048 0.952 + +
2.4-ST,Tlim.,noV2G 133.87 23.81 (-5.87) 4.11 1.018 0.955 +++
2.5-ST,noTlim.,V2G 199.06 25.80 (+1.97) 4.19 1.058 0.920 − − −

2.6-ST,Tlim.,V2G 148.22 24.87 (-1.68) 3.73 1.059 0.957 −
2.7-ST,subgrid, V2G 119.46 25.87 (+2.27) 3.77 1.046 0.954 + + +
* Reference

Power Losses

It was hypothesised that the new regime of stacked tariffs should allow for more off-peak charging, which in
turn should result in fewer power loss. Table 5-6 indicates the relative increase or decrease of these power losses
compared to the uncontrolled scenario. The following conclusions can be drawn from this table. First, the
stacked tariffs give indeed a better outcome compared to their DA-based counterparts. Nevertheless,
the ST-regime is not necessarily always favourable compared to the uncontrolled scenario. It is mainly the
inclusion of subgrid constraints or no V2G implementation that allows for less power losses. Remark
that a relative increase or decrease in the remainder of this work is always defined as the difference between
two values divided by the reference value of the two.
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Table 5-6: Relative increase or decrease of power losses in the course of one week compared
with the uncontrolled scenario. A negative number indicates less power losses compared to
the reference scenario.

Relative
Power Loss [%]

DSO
Benefits

1.8-2050,w2 0∗ ++
2.1-DA,V2G,noTlim. 6.08 − − −
2.2-DA,V2G,Tlim. 4.83 −−
2.3-DA,V2G,subgrid 0.02 +
2.4-ST,noV2G,Tlim -0.48 +++
2.5-ST,V2G,noTlim. 1.55 −
2.6-ST,V2G,Tlim. 1.67 −
2.7-ST,V2G,subgrid -0.49 +++
* Reference

It can be concluded from these analyses that the DSO would favour grid constraints in case of a
large proportion of V2G combined with ST. However, it turned out that with V1G and a transformer
limitation, an equally favourable scenario is obtained. This relates to the amount of power losses and
severeness of congestion and voltage problems.

As the objective function of the optimisation contains two parts: cost minimisation of the CPO and maximisation
of the EV’s SOC it is important to look at the results optimality related to CPO and EV-users as well. The
next two sections (Section 5-2-2 and 5-2-3) deal with this in more detail.

5-2-2 CPO Interest: Cost Savings

Table 5-7 contains the relative cost savings of the CPO compared to the uncontrolled scenario. These cost
savings are calculated based on the difference in DA fraction only. The additional cost in the case of stacked
prices is not included as the optimal price selection and price justification are beyond the scope of this work.

Table 5-7: Day-ahead cost fraction reduction to be paid by the CPO for week 2, 2050
compared to the non-optimised charging scenario.

Scenario Label Cost Savings [%]
(DA based)

1.8-2050,w2 -*
2.1-DA,V2G -50.79
2.2-DA,V2G,Tlim. -48.03
2.3-DA,V2G,subgrid -48.46
2.4-ST,noV2G,Tlim -29.45
2.5-ST,V2G -46.29
2.6-ST,V2G,Tlim. -43.34
2.7-ST,V2G,subgrid -43.30
* Reference
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One can conclude from Table 5-7 that high-cost savings above 25% up to more than 50% are obtained
in all controlled cases. That was expected due to the optimisation objective tailored to minimise CPO costs.
As expected, larger cost savings are observed when technical constraints are disregarded. Nevertheless, the
inclusion of grid constraints for the DA scenarios only resulted in 5.56% relatively less cost savings compared
to the most favourable scenario (2.1).

With stacked tariffs, around 13% less is saved compared to scenario 2.1. This concerns the difference
in concurrency between favourable DA prices and low transformer loading. The Pearson correlation coefficient
that expresses the correlation between both, was calculated as 0.54, for week 2, and 0.49 for 2050 as a whole.
A positive correlation is of course justified by the fact that DA prices are greatly influenced by peak loading of
the entire network.

Lastly, it becomes clear that the inclusion of bidirectional charging is favourable from the CPO perspective.
With V2G more EV flexibility is obtained, resulting in higher capacities that can be charged at the most
favourable moments. With V1G only, cost savings are 13.89% less compared to scenario 2.6, which does
include V2G. That involves a relative cost increase of 32.05% compared to its V2G counterpart.

5-2-3 Consumer Interest: SOC-Level

Although the smart charging model tries to minimise the expenses of the CPO in the objective function, the
most important objective is to allow users to charge up to their desired battery SOC. This desired SOC was set
to 80% [68]. Nevertheless, some EVs do not stay connected long enough to get charged up to 80% meaning
that their desired SOC was lowered to the maximum obtainable level (20% ≤ SOCc

∗ ≤ 80%). If that level is
achieved the user-satisfaction is regarded as 100%, indicated by the factor αc in the objective function (4-2).

In contrast, when the grid limits are too restricting, charging might be delayed. In some cases, this leads to EVs
that are not able to charge up to their desired SOC level. In that case, αc will drop. If αc is not equal to 1 at
the end of charging, the car did not reach its maximum obtainable SOC. In that way, αc expresses the fraction
of this desired SOC level at the end of charging. When too many EVs cannot fully charge, this might be an
indication that the constraints of the model are too restricting or that grid reinforcement should take place.

The frequency of events that an EV does not reach its desired SOC is calculated in Table 5-8. Besides, also the
minimum, average and standard deviation of these unsatisfied events is displayed by expressing αc percentage.
That gives an idea about the overall dissatisfaction level.
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Table 5-8: Statistics related to the level of user-satisfaction for the different scenarios.

Scenario Label Frequency of
Failures [%]

Minimum User
Satisfaction [%]

Average Dissatisfied
Events [%]

Standard
deviation [%]

1.8-2050,w2 0.00 100.00 - 0.00
2.1-DA,V2G 0.00 100.00 - 0.00
2.2-DA,V2G,Tlim. 3.81 71.41 88.98 7.31
2.3-DA,V2G,subgrid 1.75 78.33 90.00 5.72
2.4-ST,noV2G,Tlim 6.67 46.70 87.24 11.92
2.5-ST,V2G 0.00 100.00 - 0.00
2.6-ST,V2G,Tlim. 0.79 90.13 95.64 3.46
2.7-ST,V2G,subgrid 1.11 78.33 91.91 6.36

First of all, it becomes clear that adding grid limits reduces user-satisfaction. Nevertheless, the level of
dissatisfaction stays acceptable. Strangely, in the case of the DA prices, the feeder constraints allow more
satisfied users than with only a transformer limit. A more in-depth analysis would be needed to explain this
value. As one can notify, allowing V2G increases user-satisfaction compared to the V1G scenario. That
makes sense as there is no EV’s flexibility to also start discharging without V2G at inflexible load peaks. If the
connection time of EV is too short, they would not be able to charge till their desired level during these load
peak moments.

5-2-4 Model Performance

The model performance was both assessed in terms of computational time as well as accuracy of the power
flow modelling. The results are discussed below.

Computational Time

Table 5-9 contains the performance of the smart charging model in terms of computational time. The average
computational time was calculated for the first optimisation step with the CPLEX solver. This includes both
parameter and constraint loading as well as the actual solving time. As the horizon contains 96 time steps, the
time of computation is rather high and at least 11 seconds. This corresponds to scenario 2.2. Scenario 2.2 was
used as a reference to calculate the increase of computational time for the other scenarios as well.

The main conclusion that can be drawn from Table 5-9 is that the inclusion of grid constraints increases the
computational time by around 2000% due to an exponential increase in the number of constraints
and variables. In that regard, only considering part of the grid being modelled with power flow
equations as adopted in this work, can be seen as an interesting approach to alleviate the most severe
problems in power networks when a similar optimisation strategy is applied. Consequently, a solution
can be computed in less than the time window of 15 minutes. The horizon can also be reduced, but that would
hypothetically result in less flexibility allocation and therefore reduced CPO and consumer benefits. In the case
of grid constraints, including less cutting planes, would imply a reduced calculation time at the cost of accuracy
as can be seen in Figure 5-16 below.

The computational results can be compared with the Literature Table 2-2 in Chapter 2. However, due to
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different constraints, grid topology and EV fleet size, amongst other, this would not be a fair comparison.

Table 5-9: Computational time for one optimisation step in both absolute and relative terms
compared with the number of variables and constraints.

Absolute Computational
1st Time Step [s]

Relative Computational
Time Increase compared

to 2.2 [%]

Number of
Constraints

Number of
Variables

1.8-2050,w2 - - - -
2.1-DA,V2G,noTlim. 13.23 (+20.27) 79937 55361
2.2-DA,V2G,Tlim. 11.00 - * 80129 55361
2.3-DA,V2G,subgrid 245.77 (+2134.27) 1,114,913 520,193
2.4-ST,noV2G,Tlim 12.46 (+13.27) 80513 55745
2.5-ST,V2G,noTlim. 11.38 (+3.45) 80321 55745
2.6-ST,V2G,Tlim. 13.44 (+22.18) 80513 55745
2.7-ST,V2G,subgrid 214.96 (+1854.18) 1,115,297 520,577

Accuracy Power Flow Modelling

In order to justify the correctness of the applied linear optimal power flow model, a sensitivity analysis has been
conducted. The results of this sensitivity analysis can be found in Figure 5-15 and Figure 5-16. These figures
contain the computational time as well as the maximum and average current and voltage errors in function
of the number of cutting planes (N). Figure 5-15 displays the results for the complete modelled topology,
Figure 5-16 only for feeder 7. The errors were computed by importing the optimisation results in PowerFactory
and comparing phase voltages and currents of both models. The formula for computing these errors can be
found in (5-4) for the current. The same formula applies to calculate the voltage errors.

∆Iϕ
=
∑

ϕ

∑
t

|
It,ϕ − IPF

t,ϕ

IPF
t,ϕ

| (5-4)

It was found that the current errors are strongly dependent on the number of cutting planes. This was also
found by [4]. However, on the other hand, the maximum voltage deviations are not dependent on N. That
makes somehow sense as the voltage linearisation does not involve the use of N. The size of the errors is higher
than in [4], but cannot be compared as this paper used another non-linear model instead of PowerFactory for
the error comparison.

An optimal result was found for N=12. For the full grid, this corresponds to a maximal current error of
4.23%, and an average of 1.88%. For the voltage at N=12, the maximum and average errors were perceived
as 0.68 and 0.11%, respectively. For the reduced grid topology (subgrid), similar results were found. For the
current maximum and average errors values of 4.23 and 1.15% were obtained. For the voltage error, these
values reached 0.68 and 0.27%.

Furthermore, both figures prove that the computational time strongly depends both on N as on the size of the
modelled grid. This has already been briefly touched upon in the previous points, but proven in the most right
plots of Figure 5-15 and Figure 5-16.
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Figure 5-15: Sensitivity analysis on the number of cutting planes for the entire grid topol-
ogy. The left and middle figure represent the current and voltage errors as compared with
PowerFactory. The right figure represents the relative computational time of the optimisation
model.
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Figure 5-16: Sensitivity analysis on the number of cutting planes for the partial (sub-
)grid topology. The left and middle figure represent the current and voltage errors as
compared with PowerFactory. The right figure represents the relative computational time of
the optimisation model.

The preceding graphs, only show the momentary error results for one particular point in time. Figure 5-
17 shows the error time series for scenario 2.7. After running the optimisation with power flow constraints,
predicted transformer voltage and N=12, the resulting current and voltage values were derived. These values
were consecutively validated in PowerFactory over time. Figure 5-17 shows the obtained error fluctuations with
intervals of 2.5 hours. As one can see, the voltage maximum error stays bounded at 2%. The current maximum
error is always smaller than 12%. That explains why the rated power in PowerFactory was sometimes higher
than the allowed implemented congestion levels. Nevertheless, higher current errors were often perceived at the
end of the feeder lines due to smaller current flows, resulting in larger error terms in formula (5-4).
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Figure 5-17: Voltage and current error analysis of the sub-grid constraints for one entire
week.

5-2-5 Results Summary

To conclude this chapter, Table 5-10 summarises the attractiveness of each scenario to the involved stakeholders.
The least attractive scenario is indicated with ’−−−’, the most attractive scenario with ’+++’. The assessment
was based on the results of Sections 5-2-1, 5-2-2 and 5-2-3. The conclusion can be made that the most
favourable scenarios involve the new ST pricing scheme. Including grid constraints also downstream
the transformer turned out to be the most interesting scenario for the DSO when V2G adoption is
assumed. Besides, also CPOs and consumers benefit from bidirectional charging. The latter, especially
in the case that grid reinforcement cannot keep up with the increasing load demand. Nevertheless,
that would need a careful reflection on the battery degradation as well. Appendix E contains more information
about the inclusion of battery degradation in the model and effect this might have on user-satisfaction. So far,
the results are not promising, leading to a drastic reduction of user-satisfaction. However, a more thorough
investigation is still needed.

Table 5-10: Overview of the attractiveness of each scenario for the three involved stake-
holders: DSO, CPO and EV owner.

DSO
Grid Impact

CPO
Cost Savings

Consumer
SOC Level

1.8-2050,w2 −− −−− +++
2.1-DA,V2G,noTlim. −−− +++ +++
2.2-DA,V2G,Tlim. + ++ ++
2.3-DA,V2G,subgrid ++ ++ +
2.4-ST,noV2G,Tlim ++ − −
2.5-ST,V2G,noTlim. − ++ +++
2.6-ST,V2G,Tlim. ++ + +
2.7-ST,V2G,subgrid +++ + +
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Chapter 6

Conclusions & Recommendations

6-1 Retrospection of the Thesis

6-1-1 Answer to Research Questions
1. To what extent do voltage and congestion problems manifest in a typical Dutch LV grid when

uncontrolled charging is applied both in winter and summer till 2050?
Most problems are experienced during the winter week. For the summer scenarios, no problems are
experienced up to 2050 when local line congestion starts to emerge together with transformer congestion.
However, the event frequencies are almost negligible and stay far below 10%. In the winter week, problems
start to emerge much earlier. In 2025, the transformer gets congestion first. In 2030, also line congestion
and transformer line congestion is experienced. However, frequently occurring problems start to form
in 2050. The transformer is congested almost one-third of the time in that week. Besides, transformer
line and line congestion occur more than 10% of the time. Lastly, also line undervoltage starts to form
in 2050 at the end of one of the feeders. The conclusion was made that without optimised charging,
the transformer needs to be reinforced first around 2030, quickly followed by the reinforcement of the
transformer line. Besides, both with uncontrolled and controlled charging, it would be wise to position
the charging points more evenly to avoid local line congestion. In that way, line reinforcement can be
avoided as much as possible.

2. What are good features of existing optimised charging models applicable to the studied LV grid to
help mitigate grid issues such as congestion and voltage problems?
It was found that many of the models in literature make use of the RHO principle. The horizon allows
using the EVs’ flexibility in an optimal way. That means that the user-satisfaction is maintained at a
desired level, while still complying with grid constraints that reduce voltage and congestion problems.
RHO was applied in this thesis as well. The side-note should be made that all results are based on perfect
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knowledge about the horizon (PV generation, baseload, price data and voltage at the transformer node)
and EV characteristics (departure time, SOC). Therefore the results in this thesis should be considered
optimal and can be used as a proof of concept.
Another interesting feature is the inclusion of grid constraints to maintain proper thermal and voltage
conditions. This can be done on two levels: aggregated or disaggregated. Most existing papers only
implement grid constraints on the aggregated level, meaning that only the power at the transformer
level is constrained. Some papers looked at the disaggregated level by modelling the entire network
topology, including constraints related to line maximum currents and bus voltage limits. In this thesis,
both strategies were implemented and assessed on stakeholder interests. A rather new three-phase AC
linear power flow model was applied, obtained from [4]. The applicability of this implementation relates
to the aim of this thesis of using EVs flexibility to avoid voltage and congestion to maximum extent.
This would delay grid reinforcement as much as possible.
Furthermore, literature also indicated that dynamic pricing schemes are most preferred to also comply
with grid limitations. Therefore, two dynamic pricing schemes were adopted as well in this thesis.
Lastly, it was found that computational-wise, one should try to avoid non-linear optimisation constraints.
Besides that, a linear model is also much more beneficial than a MILP model. Nevertheless, applying
linear constraints only does not allow to include some features such as proper battery degradation
modelling or discharging and charging efficiencies when V2G is adopted. For the objective function,
linearity was maintained by choosing a cost minimisation strategy in the objective function.

3. In which case is the integration of grid constraints and power flow modelling relevant in the
optimised charging model?

Including grid constraints in a smart charging model is not always that relevant. One should always
question three key aspects:
1. Where are the main bottlenecks located?,
2. What is the frequency of occurrence? , and,
3. How are different grid bottlenecks interrelated?.
The first key question leads to the conclusion that it might be sufficient to include only one feeder
in the optimisation model. This is valid as long as the bottlenecks in the rest of the grid are minor,
meaning that a few congestion or voltage problems should not be a too big problem. It was proven
that this is indeed the case, as congestion in the lines can be reduced to only 5.5%. The third question
allows verifying if, for example, transformer congestion goes hand-in-hand with nodal undervoltage and
congestion problems. If that is the case, limiting the transformer-rated power, might be enough to solve
line problems as well. This only involves one constraint instead of modelling all power flow equations.
Nevertheless, if local line congestion occurs, this would not be the case.
In this study, it was seen that limiting the transformer level did not solve all downstream problems in
the 2050 winter scenarios. Therefore it made sense to include grid constraints on a disaggregated level
as well. However, it should be mentioned that this would, in principle, only be needed for 8.9% of the
time in the case of ST and 14.4% for DA prices during the winter week (see Figure 5-13). That means
that this might not be conceived as a too severe problem for the DSO. Nevertheless, it also depends on
the line congestion levels the DSO considers to be acceptable. The adopted 100% limit could be even
70% in reality, expressing a higher need for constraining local line loading as well.

4. To what extent does the developed optimised charging model help in mitigating voltage and con-
gestion issues in the LV grid?
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After applying an error correction factor, to correct for the differences in the linear AC power flow
modelling and the results in PowerFactory, congestion was only experienced in some of the other lines
then the ones that were included in the power flow modelling. That resulted in line congestion up
to 5.5%. However, it was possible to completely eliminate: nodal undervoltage problems, overvoltage
problems, as well as transformer and transformer line congestion. Furthermore, it would hypothetically
also be possible to completely eliminate line congestion if the entire grid was modelled, but this scenario
was not investigated due to the large computational time that would be required.

5. To what extent does the stacked tariff scheme, V2G and grid constraints affect the interests of the
involved stakeholders (DSO, CPO and EV owner)?
Obviously, it holds that the more grid constraints are include, the better this would be from the DSO
perspective. In terms of valley-filling and load fluctuations, the stacked tariff scheme is preferable as well.
When only looking at power quality and loading levels, V2G is slightly less preferable than V1G for the
DSO. Nevertheless, V2G might provide a lot of other ancillary services and can also reduce curtailment
allowing more capacity connected to the electricity grid.
The CPO benefits in the opposite way. The scenarios in this study proved that less grid constraints
and day-ahead prices are more preferable. They also favour a large fraction of V2G. It creates more
flexibility, which allows the CPO to charge larger volumes at more favourable moments.
For consumers it is important that the grid constraints are not too restricting to allow charging in case of
lower flexibility provision levels. In that case, grid reinforcement would be needed to allow an acceptable
SOC for all vehicles. The conclusion was made that this would not be required with a large share of
V2G. Only in maximum 3.8% of all charging sessions, the maximal obtainable SOC was not completely
reached. However, a careful analysis on battery degradation due to the extra cycles is required to get
the complete picture of the users’ benefits of V2G. A start to this analysis was made an can be found in
Appendix E. The stacked tariff scheme allowed slightly better user-satisfaction values as well compared
to the DA scenarios.

6-1-2 Final Conclusions

This thesis work is concluded by stressing the power of a smart charging model implementation. In this thesis
an optimal charging strategy was developed for urban LV grids that can avoid 100% of all voltage and more
than 95% of congestion problems without a single need for grid reinforcement till 2050. Moreover, the benefits
of all involved parties: DSO, CPO and EV owners can be taken into account in the design of the model.
Consequently, as an answer to the main research question:

How can EVs’ charging flexibility be used optimally, to avoid possible grid congestion and voltage
problems on a LV grid due to inflexible loads and non-optimised charging?

, it can be concluded that an optimum in EV flexibility distribution to avoid grid problems is obtained by using
the stacked tariff price scheme (based on [1]), implementing V2G and applying downstream grid constraints in
the form of a linear-AC power flow modelling (such as in [4]). This conclusion was derived after assessing DA
prices, V1G and a reduced level of grid constraints implementation as well. Although V1G with a transformer
limit only, is equally favourable for the DSO, this results in worse outcomes for the EV users and CPO due to
less flexibility at peak load hours and high-price moments, respectively. In the end, the scenario with ST, V2G
and grid constraints resulted in the best outcomes for the DSO with only 5.5% of line congestion in the most
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severe week of 2050. Hypothetically, this can be reduced to 0% when all downstream lines are included in the
power flow modelling and when an error correction factor is applied to correct for the linearity of the model.
Therefore, it can be concluded that due to the worst week approach, also satisfactory results can be obtained
for the other weeks of 2050. Consequently, grid reinforcement can be (almost) completely avoided until at least
2050 when this optimal smart charging strategy is implemented.

The optimally in this work can be regarded both in terms of the joint optimal scenario for all stakeholders
but also in terms of a theoretical optimum. The latter relates to the perfect knowledge assumption on SOC,
departure time and the horizon forecast applied in this work. Especially the use of the RHO principle allows to
better estimate the grid conditions in terms of expected loading, generation and electricity prices. With that
information the most optimal real-time charging schedule can be found such that stakeholders benefit the most.

6-2 Highlights & Contributions

The work in this thesis can be used and interpreted in two different ways. First, the methodologies can be
used by the DSO of a certain LV grid to identify the future bottlenecks, resulting in efficient grid reinforcement
planning. Second, this thesis can be used as a proof of concept, which shows that it is possible to avoid
grid reinforcement by applying an optimal smart charging model or similar concepts. The results showed that
without grid reinforcements, the interest of all involved parties can still be fulfilled.

Furthermore, this works provides also an assessment on non-optimal strategies such as allowing CPOs to charge
on DA prices without grid limitations. Not implementing grid constraints in a model would mean curtailment
of the transformer power, leaving behind many unsatisfied consumers. That conclusion resulted from a careful
analysis of the relevance of including grid constraints as being adopted in this thesis. This work showed that
it might be sufficient to only limit the transformer loading or include downstream power flow modelling only
for part of the LV grid feeders. That depends on its turn on the tolerances of the DSO, the LV grid topology,
experienced bottlenecks, other scenario assumptions and smart charging model characteristics.

Lastly, the benefits of V2G are also assessed on a broader level for all stakeholders involved in public charging.
High adoption rates of V2G cause a greater need for extra grid constraints to be included in a smart charging
model.

6-3 Recommendations for future work

Last but not least, the recommendations to future related work are indicated in this section. Due to the limited
time and scope of the work, still some improvements and different directions can be investigated.

First, it would be good to include battery degradation modelling as well in the developed smart charging
model. It would allow for a more careful assessment on the V2G benefits for EV owners. A start was already
made by transforming the current model into a MILP model and including both battery degradation and charge
and discharge efficiencies. More information about this can be found in Appendix E. It contains some first results
which prove that with battery degradation, V2G benefits might diminish drastically. The implementation was
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based on [31].

Secondly, the developed model is completely deterministic. Although lots of randomisation was used, each
scenario only ran once with the same randomised parameters. Especially for the part with the uncontrolled
scenarios, it would be a good approach to apply a Monte Carlo simulation. That would assess the effect
of uncontrolled charging in a more accurate way. By only applying one randomisation, a biased scenario is easily
created. For instance, the location of the chargers might not be very realistic, resulting in unrealistic load results.
Nevertheless, although only one randomisation was adopted, the parameters were still checked on reliability to
avoid biased results. This method was favoured more due to the fact that simulations in PowerFactory can take
quite long when considering the same scenario design as applied in this work. Nevertheless, parallel computing
could potentially solve that hurdle as well.

Looking from the optimisation perspective, it would be interesting to include more uncertainty in the
model. Investigating the effect of imperfect forecasts and departure times on the optimisation results would be
one possibility. It is likely to result in lower user-satisfaction, more CPO costs and more congestion and voltage
problems (when no grid constraints are implemented). However, only minor drawbacks for the stakeholders
are to be expected according to [71]. This result was obtained after implementing auto-regressive methods in
their model to cope with uncertainty in different tariff structures. To mitigate departure-time uncertainty, one
could implement a constraint that ensures charging up to a certain percentage during the first time steps. In
that way, user-satisfaction can be increased. A similar idea can be found in [46]. Another possibility related
to uncertainty modeling, could be the formulation of the optimisation model as a robust optimisation problem.
With robust optimisation, the scenarios can be assessed based on the worst-case point of view. That
would allow to better assess the effect of the smart charging model on all stakeholder interests. Especially for
the DSO, it would make sense to plan grid reinforcement according to the worst-case scenario.

Thirdly, the computational time of the model can also be tackled. Reducing the horizon is one possibility;
changing the horizon time steps to refined steps at the start of the horizon and more coarse towards the end,
is another possibility. The latter was applied together with integer relaxation in [47]. Heuristic optimisation
methods could also be applied in order to reduce the computational time. Besides, a less constraint-intensive
linear OPF model could also be applied, such as the LinDistFlow formulation [45]. However, it is likely that the
accuracy will become worse.

The assumption was made as well that only one CPO was involved in EV charging. This roughly corresponds
to the situation in the investigated LV grid. Nevertheless, in reality, also privately owned charging stations
or multiple CPOs are likely to be connected to the same LV grid. In that case, a more decentralised model
design can be thought of, as the centralised model developed in this thesis requires perfect knowledge about
all cars connected to charging stations.

Another consideration is related to the flexibility provision aspect. In April this year, an article appeared in the
news [72] in which a car received a fine due to an additional 2 hours of connection time after the battery was
full. With smart charging, that regulation should need to be change to allow more flexibility. Besides, reduced
flexibility can also be obtained when the EV would have the possibility to participate in smart charging or not.
In any case, reduced flexibility would again reduce user-satisfaction if the DSO implements grid constraints.

Lastly, the newly adopted pricing scheme based on [1], was not yet optimised in terms of price level,
neither are the policies that would allow implementing this tariff change, especially when including V2G. Another
study could be devoted to that.
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Appendix A

Network Characteristics

Power & voltage quality standards

Table A-1: Power quality standards as defined in EN 50160 during normal operation of the
network [10, 11].

Parameter Limit Possible Causes of Violation
Continuous Phenomena

Supply Voltage V0 ± 10% ∗ • High cable resistance
• High currents

Flicker Plt ≤ 1
for 95% of all cases in 1 week

• High level of Photovoltaics (PV) combined
with cloud transients [19]

Voltage Unbalance Vn ∆ max 2 % of Vp
∗ • Unequal connection of loads and

Distributed Generators (DG) to single phase

Voltage harmonics • Each harmonic below
predefined relative amplitude ∗

• THD ≤ 8%
for harmonics between 2 and 40

• Injection by Power Electonic Interfaces (PEI)
• Non-linear loads

Voltage Events
Voltage dips/ swells Thresholds:

dip at 90% and swell at 110% ∗∗
• Faults at public network/ user installation

Other non-voltage related quality issues
Current Harmonics Same as with voltage harmonics • Injection by PEI

• Non-linear loads

Frequency Deviations • ± 1% of 50 Hz for 99.9%
• -6% - +4% for 100%

• Supply-Demand unbalance

* for 95% of all 10 min mean RMS in 1 week. ** Classification depends on time duration and offset.
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Cable types

Table A-2: Overview of cable types the investigated Dutch LV grid.

Cable type Share of Total
Cable Length [%]

Max. capacity
(in ground) [A]

GPLK 4x6mm Curm 1.02 52
GPLK 4x25mm Curm 32.41 125
GPLK 4x50mm Cusvm 11.42 175
GPLK 4x70mm Cusvm 29.54 220
GPLK 4x95mm Cusvm 5.68 265
4x50mm VVMvKhas/Alk 4x6 7.96 130
4x95mm VVMvKhas/Alk 4x6 2.13 200
4x150mm VVMvKhas/Alk 4x6 9.85 260

Location of PV and Chargers 2050

Figure A-1: Position of PV systems 2050 by blue markers.
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70 Network Characteristics

Figure A-2: Position of EV chargers 2050 by blue markers.
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Appendix B

Additional Scenario Results

Figure B-1: Lines of the LV grid that experience congestion after the implementation of grid
constraints on feeder 7.
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Appendix C

Python Project Overview

Figure C-1: Overview of the scripts belonging in this thesis work. Two main projects are
made, each with a main-file and corresponding sub-files. The interdependencies between the
projects are also indicated.
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Appendix D

Linear AC- Optimal Power Flow
Formulation

The equations below describe the mathematical formulation of the AC-power flow in the grid. All the equations
and the theory behind it are based on [4]. Refer again to Table 4-2 to get an overview of the used symbols.

IS
t,b −

∑
p∈ΩP:p=b

Ic
t,p − Iinflex

t,b =
∑

j∈ΩB

Y(b,j)Vt,j ∀b ∈ ΩB, t ∈ ΩT (D-1)

P S
t,b = Re

{
V⊤

t,bIS∗
t,b

}
, ∀b ∈ ΩB, t ∈ ΩT : b = s (D-2)

Iinflex∗

t,b = diag (Vt,b)−1 Sinflex
t,b ∀b ∈ ΩB, t ∈ ΩT (D-3)

Pt,c = Re
{

V⊤
t,pIc∗

t,p

}
, ∀c ∈ ΩC, t ∈ ΩT (D-4)

Qt,c = Im
{

V⊤
t,pIc∗

t,p

}
, ∀c ∈ ΩC, t ∈ ΩT (D-5)

It,l =
[
Y(b,j)

]
(Vt,b − Vt,j) , ∀l ∈ ΩL, (b, j) = l (D-6)
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74 Linear AC- Optimal Power Flow Formulation

|Qt,c| ≤ Pt,c tan
(
cos−1 (pfc)

)
, ∀c ∈ ΩC, t ∈ ΩT (D-7)

Due to very slow optimisation related to non-linearities, the OPF is modelled to a linear form with the equations
below.

First of all the grid current injected by PV or non-EV loads is approximated by Taylor series expansion as seen in
Equation (D-8). To be able to get estimated values for V0

t,k,ϕ historical values can be used with a three-phase
power flow analysis. Another option is to use a flat-start, assuming V0

t,k,ϕ to be equal to the nominal tap
voltage (eg. 1 p.u.). In this study, the initialised values were derived by running the power flow simulations in
PF containing the forecasted non-EV load and PV generation only. With this approximated voltage, also the
apparent active and reactive power of the charging points can be linearised. This is shown by Equations (D-9)
and (D-10) [4].

Iinflex
t,k,ϕ ≈ Iinflex

t,k,ϕ

∣∣∣
V0

t,k,ϕ

+
∂Iinflex

t,k,ϕ

∂Vt,k,ϕ

∣∣∣∣∣
V0

t,k,ϕ

(
Vt,k,ϕ − V0

t,k,ϕ

)
∀k ∈ ΩB,t ∈ ΩT, ϕ ∈ ΩΦ (D-8)

Pt,c ≈ Re
{

V0
t,pIc∗

t,p

}
, ∀c ∈ ΩC, t ∈ ΩT, p ∈ ΩP (D-9)

Qt,c ≈ Im
{

V0
t,pIc∗

t,p

}
, ∀c ∈ ΩC, t ∈ ΩT, p ∈ ΩP (D-10)

To derive the norm of the branch currents, a new euclidean norm approximation was applied by [4]. The
equations related to this norm approximations are (D-11), (D-12). The coefficients An, Bn and Cn are given
by Equations (D-13), (D-14) and (D-15) respectively. The final euclidean norm of the branch current is
approximately equal to the maximum of the parameter (Γt,l,ϕ,n) as calculated in (D-11) [4].

Γt,l,ϕ,n =
(
ir
t,l,ϕAn + ii

t,l,ϕBn

)
/Cn, ∀l ∈ ΩL, n ∈ ΩN, t ∈ ΩT, ϕ ∈ ΩΦ (D-11)

Γt,l,ϕ,n ≤ Il, ∀l ∈ ΩL, n ∈ ΩN, t ∈ ΩT, ϕ ∈ ΩΦ (D-12)

An = sin(θn − θ) − sin(nθ) (D-13)

Bn = cos(nθ) − cos(θn − θ) (D-14)

Cn = cos(nθ) sin(θn − θ) − cos(θn − θ) sin(nθ) (D-15)
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∥It,l,ϕ∥2 ≈ max
n∈ΩN

{Γt,l,ϕ,n} (D-16)

The approximation for the euclidean norm of the nodal voltages are approximated by a linear combination
of the 1-norm and ∞-norm as seen in formula (D-17) [4].

Ψ (Vt,b,ϕ) = λϕ ∥Vt,b,ϕ∥∞ + βϕ ∥Vt,b,ϕ∥1 , ∀b ∈ ΩB, t ∈ ΩT, ϕ ∈ ΩΦ

with Vt,b,ϕ = vr
t,b,ϕ + jvi

t,b,ϕ

(D-17)

The factors λϕ and βϕ can be obtained by regression techniques, approximating Ψ (Vt,k,ϕ) properly. To reduce
the approximation errors for phases ϕ = {b, c} (due to its location in the complex plane), the authors of [4]
rotated the phases reducing the error significantly. The rotated phases also results in λϕ and βϕ to be equal
for all phases ϕ = {a, b, c}. The final regression functions of λϕ and βϕ are shown in Equations (D-18) and
(D-19) [4].

λ(Θ) = −2315 · 10−5

907 Θ2 − 13
1490Θ + 1 (D-18)

β(Θ) = 819 · 10−8

394 Θ2 + 58
6647Θ + 349 · 10−5

691 (D-19)

As can be derived from Equations (D-18) and (D-19), both of them depend on parameter Θ. This Θ denotes
the range angle, which is related to the deviations of the magnitudes of the phase voltages to the nominal
voltage. Choosing a proper range angle can tighten up the nodal voltage approximations. Figure D-1 indicates
clearly how this range angle can be interpreted and how the rotations are being performed [4].

With the coefficients λ and β defined, the parameter Ψ (Vt,b,ϕ) is the one that is restricted by the minimum
and maximum allowed normalised voltages. That is shown by Equation (D-20). The symbol Vt,b,ϕ stands for
the rotated nodal voltages and equals Vt,bϕ = Vt,b,ϕJϕ, with Jϕ =

{
1, α, α2} being the rotation coefficients.

As a consequence, the real part of Vt,b,ϕ is always bigger or equal to zero. This can also be seen in Figure D-1.
Furthermore, that allows to reformulate Equation (D-17) as Equation (D-21) [4].

V ≤ Ψ (Vt,b,ϕ) ≤ V, ∀b ∈ ΩB, t ∈ ΩT, ϕ ∈ ΩΦ (D-20)

Ψ (Vt,b,ϕ) = λRe {Vt,b,ϕ} + β (Re {Vt,b,ϕ} + |Im {Vt,b,ϕ}|)
∀b ∈ ΩB, t ∈ ΩT, ϕ ∈ ΩΦ

(D-21)
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76 Linear AC- Optimal Power Flow Formulation

Figure D-1: Representation of rotated voltage magnitudes, limits and range angle Θ [4].
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Appendix E

Battery Degradation Modelling

This thesis work contains the benefits of V2G to EV-users in relation to the grid. That means that when grid
constraints are becoming more restricting, V2G may help in allowing more users to reach their desired SOC.
However, so far no attention was paid at the downsides of V2G. Bidirectional charging may involve more cycles
and thus higher degradation rates of the battery. Many papers try to find sophisticated ways to related the
cycle effect to battery deterioration; however, few do include this in a smart charging algorithm. To take battery
degradation into account in a smart charging model, a penalty term can be included in the objective function.
In [31], this was achieved by multiplying the cost of the battery with a dimensionless degradation function. The
latter contains the degradation per cycle which depends on the cycle depth. The function was established with
the help of previous experimental research found in literature. The degradation function found by [31] including
the regression coefficients is shown in Equation (E-1):

Φ(δt,c) = 0.5
bδm−1 = 0.5

4084 δ−0.7514−1 (E-1)

, with δ representing the cycle depth and Φ(δt,c) the dimensionless degradation at time t and charging point
c. The approach of this paper was applied due to the ease of integration in a smart charging model and the
(piece-wise) linearisation of the adopted formula. Due to a lack of time, the formula applied in this work was
linearised without piece-wise linearisation. This resulted in the following Equation (E-2). The deviations from
the non-linear Equation (E-1) is displayed in Figure E-1.

Φ(δt,c) = 9.787 ∗ 10−5δ (E-2)

Next, a new function was implemented in the optimisation model that relates the state-of-charge to the dimen-
sionless degradation. This function is contained in Equation (E-3)
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78 Battery Degradation Modelling

Figure E-1: Linearisation of the battery degradation function (top figure). Corresponding
actual cycles for a certain cycle depth (bottom figure).

Φ(δt,c) = 9.787 ∗ 10−5 ((SOCt,c − SOCt−1,c)µcharge + (SOCt−1,c − SOCt,c)µdischarge) (E-3)

This function is again linear. Nevertheless, it contains two binary variables µcharge and µdischarge. Equations
(E-4),(E-5) express their relation to each other and to the decision variable, which is split in a charging and
discharging term. This transforms the problem into a mixed-integer optimisation problem (MILP). For that
reason also discharging and charging efficiencies could be implemented in Equation (4-6). This can be seen in
formula (E-7).

µcharge + µdischarge = 1 (E-4)

P charge
t,c µcharge + P discharge

t,c µdischarge = Pt,c (E-5)


SOCt,c = SOCinit

c ⇐⇒ t = 1 (E-6)

SOCt,c = SOCt−1,c +
(Pcharge

t−1,c µchargeηcharge + Pdischarge
t−1,c µdischargeηdischarge)∆t
Ec

Pgrid ∀t : 1 < t < tdep
c (E-7)

Eventually, an extra term to discourage too many cycles during a charging session was introduced in the objective
function (4-2). This leads to Equation (E-8). However, due to the multi-objective optimisation formulation, a
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more careful look should be devoted to find the optimal trade-off between all objective terms. This could be
accomplished by analysing the Pareto front [34].

min
(∑

t∈ΩT

∆t(cllPll
t + cmlPml

t + chlPhl
t +

∑
c∈ΩC

cDA
t Pt,c) −

∑
c∈ΩC

mαc + Φ(δt,c)cbat

)
(E-8)

After running the new MILP formulation for ST, V2G and a transformer limit, the following results were
obtained. Figure E-2 contains the aggregated loading at transformer level. It can be compared with Figure E-3
that does not include battery degradation. That corresponds to scenario 2.6 found at Figure 5-11. One can
notice that net discharging still takes place but with smaller discharge peaks. This can be explained due the
fact that deep discharge cycles are less desired and more gradual charging needs to take place. Consequently,
this will result in lower aggregated discharging power. At the single EV level, the charging profiles of charge
point 0 and 1 also experience less discharging. This can be seen in Figure E-4 and compared with Figure 4-2.

Figure E-2: Aggregated load (without losses) for scenario 2.6: ST-prices, V2G, transformer
limit and battery degradation modelling.
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Figure E-3: Aggregated load (without losses) for scenario 2.6: ST-prices, V2G, transformer
limit and no battery degradation modelling.
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Figure E-4: Charging profiles at the charging points CP0 and CP1 including battery degra-
dation.

The cost of the CPO were reduced with -29.58% (with battery degradation) instead of -43.34% (without battery
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degradation) when compared to the uncontrolled scenario. This is slightly better than the scenario with V1G
only but the difference is just 0.13%. Consequently, it is less important for a CPO to consider V2G functionality.

In terms of the EV-user, battery degradation modelling results in a dissatisfaction level of 24.92%. This is a
drastic increase compared to the 0.79% of the scenario without battery degradation modelling. Nevertheless,
the average dissatisfaction is still 92.95% meaning that most charging sessions still reach an acceptable SOC
level.

The computational time did not increase drastically. Compared to scenario 2.6, a time increase of 24.40%
percent was perceived. However, when allowing grid constraints, this would be 44.19% compared to scenario
2.7. No time was left to also perform the congestion and voltage analysis in PowerFactory to address the
benefits for the DSO.

The conclusion can be made that more careful studies are needed to include the battery degradation effect of
V2G. So far this section proved that including battery degradation modelling might diminish the benefits of
V2G that were mentioned earlier in this work completely.
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