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Abstract: The cross correlation of two recordings of a diffuse acoustic
wave field at different receivers yields the Green’s function between these
receivers. In nearly all cases considered so far the wave equation obeys time-
reversal invariance and the Green’s function obeys source-receiver reciproc-
ity. Here the theory is extended for nonreciprocal Green’s function retrieval in
a moving medium. It appears that the cross correlation result is asymmetric in
time. The causal part represents the Green’s function from one receiver to the
other whereas the acausal part represents the time-reversed version of the
Green’s function along the reverse path.
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1. Introduction

It has been shown by many researchers in geophysics, ultrasonics, and underwater acoustics
that the cross correlation of acoustic wave fields recorded by two different receivers yields the
response at one of the receiver positions as if there was a source at the other.1–7 Various theories
have been developed to explain this phenomenon, ranging from diffusion theory for
enclosures,8,9 multiple scattering theory and stationary phase theory for random media,10–12 and
reciprocity theory for deterministic and random media.13–15 In nearly all cases it is assumed that
the medium is lossless and nonmoving, which is equivalent with assuming that the underlying
wave equation is invariant for time reversal. Moreover, in all cases the Green’s functions obey
source-receiver reciprocity. The time-reversal invariance together with the source-receiver reci-
procity property has been elegantly exploited in an intuitive derivation,16 building on earlier
work on time-reversed acoustic focusing.17 In a medium with losses the wave equation is no
longer invariant for time reversal, but, as long as the medium is not moving, source-receiver
reciprocity still holds. When the losses are not too high, the cross-correlation method yields a
Green’s function with correct travel times and approximate amplitudes.18,19 On the other hand,
in a moving medium, both the time-reversal invariance and source-receiver reciprocity break
down. It has previously been shown that, with some modifications, time-reversed acoustic fo-
cusing can still work in a moving medium.20,21 In this paper we derive a theory for nonrecipro-
cal Green’s function retrieval by cross correlation in a moving medium.

2. Nonreciprocal Green’s function representation

The basis for our derivation is a reciprocity theorem, where “reciprocity” should be interpreted
in a broader sense than source-receiver reciprocity. In general a reciprocity theorem relates two
independent acoustic states in one and the same domain.22,23 One can distinguish between reci-
procity theorems of the convolution type and of the correlation type.24 In the following we
derive a correlation-type reciprocity theorem for a moving, arbitrary inhomogeneous, lossless
acoustic medium, and show step-by-step how this leads to a simple expression for nonrecipro-
cal Green’s function retrieval by cross correlation.

Consider an acoustic wave field, characterized by the acoustic pressure p�x , t� and
particle velocity vi�x , t�, propagating in a lossless inhomogeneous flowing medium with mass
density ��x�, compressibility ��x�, and stationary inhomogeneous flow velocity vk

0�x�.

Throughout this paper we assume that the spatial variations of the flow velocity are small in
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comparison with those of the wave field. For this situation the equation of motion and the stress-
strain relation read �Dtvi+�ip=0 and �Dtp+�ivi=q, respectively, where q�x , t� is a source dis-
tribution in terms of volume injection rate density, �i is the partial derivative in the xi direction,
and Dt is the material time derivative,25 defined as Dt=�t+vk

0�k. We define the temporal Fourier
transform of a space- and time-dependent quantity p�x , t� as p̂�x ,��=�exp�−j�t�p�x , t� dt. In
the space-frequency domain the equation of motion and the stress-strain relation thus become
��j�+vk

0�k�v̂i+�ip̂=0 and ��j�+vk
0�k�p̂+�iv̂i= q̂, respectively.

We introduce two independent acoustic states, which will be distinguished by sub-
scripts A and B, and consider the following combination of wave fields in both states: p̂A

* v̂i,B

+ v̂i,A
* p̂B, where the asterisk denotes complex conjugation. In the following we assume that the

medium parameters and flow velocities in both states are identical; only the sources and wave
fields are different �but a more general derivation is possible26�. The correlation-type reciprocity
theorem is obtained by applying the differential operator �i, according to �i�p̂A

* v̂i,B+ v̂i,A
* p̂B�, sub-

stituting the equation of motion and the stress-strain relation for states A and B, integrating the
result over a spatial domain V with boundary S and outward pointing normal vector n
= �n1 ,n2 ,n3� and applying the theorem of Gauss. This gives

�
V

�q̂A
* p̂B + p̂A

* q̂B�d3x = 	
S

�p̂A
* v̂i,B + v̂i,A

* p̂B�ni d2x + �
V

vk
0���k�p̂A

* p̂B� + ��k�v̂i,A
* v̂i,B��d3x .

�1�

This relation is independent of the choice of S; moreover, the medium and flow velocity can be
inhomogeneous inside as well as outside S. In comparison with the convolution-type reciproc-
ity theorem, Eq. �1� is remarkably simple. The convolution-type theorem can only be simplified
to a form similar to Eq. �1� by choosing opposite flow velocities in the two states.26–29 In the
correlation-type theorem of Eq. �1� the flow velocities in both states are identical.

Next we choose impulsive point sources in both states, according to q̂A�x ,��=��x
−xA� and q̂B�x ,��=��x−xB�, with xA and xB both in V. The wave field in state A can thus be
expressed in terms of a Green’s function, according to

p̂A�x,�� = Ĝp,q�x,xA,�� , �2�

v̂i,A�x,�� = Ĝi
v,q�x,xA,�� . �3�

The superscripts refer to the observed wave field quantity at x and the source type at xA, respec-
tively. Similar expressions hold for the wave field in state B. Substitution into Eq. �1� gives

Ĝp,q�xA,xB,�� + �Ĝp,q�xB,xA,���* = 

n=1

4

In, �4�

where

I1 = 	
S

�Ĝp,q�x,xA,���*Ĝi
v,q�x,xB,��ni d2x , �5�

I2 = 	
S

�Ĝi
v,q�x,xA,���*Ĝp,q�x,xB,��ni d2x , �6�

I3 = � vk
0��k��Ĝp,q�x,xA,���*Ĝp,q�x,xB,���d3x , �7�
V
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I4 = �
V

vk
0��k��Ĝi

v,q�x,xA,���*Ĝi
v,q�x,xB,���d3x . �8�

Equations �4�–�8� show how the Green’s function in a medium with flow can, in principle, be
obtained from cross correlations of Green’s functions in the same medium. However, applica-
tion of these equations requires the measurements of different types of Green’s function. In the
following we make a number of approximations which make these expressions suited for prac-
tical applications.

First we assume that the medium at and outside S is homogeneous, so that the Green’s
functions in I1 and I2 represent outgoing waves at S. Moreover, we assume that the flow velocity
at S is small in comparison with the propagation velocity c, i.e., �vk

0nk� /c�1. We express the

Green’s function Ĝi
v,q in terms of Ĝp,q using the approximation Ĝi

v,qni��1/�c�Ĝp,q. This is the
high-frequency approximation for a normally outward propagating ray in a nonflowing me-
dium. It involves an amplitude error for non-normal outward propagating rays in a flowing
medium, but it handles the phase correctly �in the high-frequency regime�. By using this ap-
proximation we avoid the need of determining the inhomogeneous propagation and flow mod-
els, tracing the rays and computing the propagation angles at S. With this approximation we
find30

I1 � I2 �
1

�c
	

S

Ĝ*�x,xA,��Ĝ�x,xB,��d2x . �9�

Here and in the following Ĝ stands for Ĝp,q. To show that I3 and I4 are small, we assume that the
spatial variations of the medium parameters �as well as those of the flow velocity� are small in
comparison with those of the wave field. Using the theorem of Gauss and �=1/�c2 we may
thus rewrite I3 as

I3 �
1

�c
	

S

Ĝ*�x,xA,��Ĝ�x,xB,��
vk

0nk

c
d2x . �10�

Using the aforementioned assumption �vk
0nk� /c�1 we thus find I3� I1. In a similar way we find

I4� I1. In the following we replace the right-hand side of Eq. �4� by 2I1, with I1 approximated
by Eq. �9�.

Next we interchange the source and receiver coordinates in the Green’s functions. Ac-
cording to the flow reversal theorem26–29 this is allowed if we simultaneously revert the flow
direction, i.e., if we replace vk

0�x� by −vk
0�x�. We apply this to all Green’s functions in Eq. �4�,

with the right-hand side approximated by 2I1, hence

Ĝ�xB,xA,�� + Ĝ*�xA,xB,�� �
2

�c
	

S

Ĝ*�xA,x,��Ĝ�xB,x,��d2x , �11�

where all Green’s functions are now defined in a medium with flow velocity −vk
0�x�. The minus

sign is not important; what matters is that the flow velocity is the same for all Green’s functions
in this equation. From here onward we define wk

0�x�=−vk
0�x� as the actual flow velocity. Hence,

Eq. �11� applies to the actual situation and, with hindsight, Eqs. �4�–�10� apply to the situation
with the reversed flow velocity −wk

0�x�.
Applying an inverse Fourier transform to Eq. �11� yields

G�xB,xA,t� + G�xA,xB,− t� �
2

�c
	

S

G�xA,x,− t� � G�xB,x,t�d2x , �12�

where the asterisk denotes temporal convolution. The right-hand side represents an integral of

cross correlations of observations of the acoustic pressure in a moving medium at xA and xB,
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respectively, due to impulsive sources of volume injection rate at x on S; the integration takes
place along the source coordinate x. The left-hand side is the superposition of the response from
xA to xB and the time-reversed response from xB to xA. Note the similarity with the expressions
for the situation of a nonmoving medium.13–16,30,31 However, unlike for the situation of a non-
moving medium, our result is asymmetric in time. G�xB ,xA , t� is obtained by taking the causal
part of the left-hand side of Eq. �12�, G�xA ,xB , t� by time-reverting the acausal part.

Until now we assumed that the sources on S are impulsive point sources, of which the
responses are measured independently. Let us now consider noise sources N�x , t� that act simul-
taneously for all x on S. For the observed wave field at xA we write pobs�xA , t�
=.SG�xA ,x , t��N�x , t�d2x; a similar expression holds for the observed wave field at xB. We
assume that any two noise sources N�x , t� and N�x� , t� with x�x� are uncorrelated and that
their autocorrelation C�t� is independent of x. Hence, we assume that the source distribution on
S obeys the relation 
N�x ,−t��N�x� , t��=��x−x��C�t�, where 
·� denotes a spatial ensemble
average.6,12–16 Equation �12� can thus be rewritten as

�G�xB,xA,t� + G�xA,xB,− t�� � C�t� �
2

�c

pobs�xA,− t� � pobs�xB,t�� . �13�

According to this equation the cross correlation of the observed noise fields at xA and xB in a
moving medium yields the Green’s function from xA to xB plus the time-reversed Green’s func-
tion from xB to xA, convolved with the autocorrelation of the noise sources. Note the resem-
blance with the retrieval of the Green’s function in a diffuse wave field in a nonmoving
medium.4–16 Again the main difference is the temporal asymmetry of the correlation result in a
moving medium versus the symmetry of that in a nonmoving medium.

3. Numerical example

We illustrate Eq. �13� with a 2-D numerical example. Consider a homogeneous medium with
propagation velocity c=350 m/s and a constant flow in the x1 direction, with flow velocity
w1

0=70 m/s �see Fig. 1�. Hence, the Mach number, defined as M=w1
0 /c, equals 0.2. Following

a similar derivation as for the 3-D situation28 we obtain for the 2-D Green’s function
ˆ 0 ˆ

Fig. 1. Two receivers at xA and xB in a moving medium with constant flow velocity. The receivers are surrounded by
360 noise sources on a circle.
G�x ,xA ,��=��j�+w1�1�G�x ,xA ,��, with
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Ĝ = −
j exp�j�M�x1 − x1,A�/c�1 − M2��

4�1 − M2
H0

�2�� �R

c�1 − M2�
� , �14�

where R=��x1−x1,A�2+ �1−M2��x2−x2,A�2 and H0
�2� is the zeroth-order Hankel function of

the second kind. Using this expression we model the response of 360 uncorrelated noise
sources on a circle with a radius of 470 m �the noise is filtered around a central frequency
of 30 Hz�. We consider two receivers at xA and xB, separated by a distance d=210 m, each
registering 9600 s of noise. In the first instance the line through xA and xB is aligned with
the flow velocity, hence � in Fig. 1 equals zero. The cross correlation of the noise regis-
trations, i.e., the right-hand side of Eq. �13�, is represented by the first trace in Fig. 2�b� �at
�=0�. The numerical experiment is repeated for different angles � between the flow ve-
locity and the line through xA and xB; the cross-correlation results are represented by the
other traces in Fig. 2�b�. The Green’s functions convolved with C�t� in the left-hand side of
Eq. �13� are shown for the same range of angles � in Fig. 2�a�. For �=0 the traveltime
of the causal and acausal Green’s functions are given by d /c�1+M�=210/420=0.5 s
and −d /c�1−M�=−210/280=−0.75 s, respectively. For �=90° the travel times are
±d /c�1−M2= ±0.612 s. Note that the travel times of the cross-correlation results accu-
rately match those of the Green’s functions for all angles �. The amplitudes of the Green’s
functions are less accurately recovered by the cross-correlation procedure �see Fig. 3�. The
amplitude errors are explained as follows. The main contributions to the integrals come
from those sources on the circle where the line through xA and xB intersects the circle12,30

�see Fig. 1�. Ignoring I3 and I4 with respect to I1 and I2 introduces a relative amplitude error
in the order of −vk

0nk /c=w1
0n1 /c, with n1=−cos � �see Fig. 1�. Evaluated as a function of �

we thus find for the relative amplitude error w1
0n1 /c=−0.2 cos �, which is approximately

what we observe in Fig. 3.

4. Conclusion

We have shown that the nonreciprocal Green’s function in a moving medium can be recovered
from cross correlations of impulse responses �Eq. �12�� or noise measurements �Eq. �13�� at two
receivers. The sources are assumed to be distributed along an arbitrary surface enclosing the
two receivers. Unlike in the situation of a nonmoving medium, the cross-correlation result is
asymmetric in time. The theory holds for a lossless arbitrary inhomogeneous medium with
stationary inhomogeneous flow. The main underlying assumptions �in addition to those for a
nonmoving medium� are that the spatial variations of the flow velocity are small in comparison
with those of the wave field and that the flow velocity is small in comparison with the propaga-

Fig. 2. �a� Left- and �b� right-hand side of Eq. �13� for different values of � �the angle between the flow velocity and
the line through xA and xB, see Fig. 1�.
tion velocity �small Mach number�. The cross-correlation method accurately recovers the travel
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times of the nonreciprocal Green’s function. When the autocorrelation of the sources is known,
the amplitudes are recovered with relative errors that are in the order of the Mach number. This
error is negligible in comparison with the amplitude error that occurs when the sources are
unknown. Hence, for practical situations �unknown source amplitudes, irregular source distri-
bution, etc.�, the accuracy of the retrieved nonreciprocal Green’s function in a moving medium
is of the same order as that of the retrieved reciprocal Green’s function in a nonmoving medium.
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