
Solving the multi-objective Dial-a-Ride
problem without using routing heuristics

Master's thesis

Jip Man Vuong





Solving the multi-objective Dial-a-Ride
problem without using routing heuristics

THESIS

submitted in partial ful�llment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jip Man Vuong

born in Dordrecht, the Netherlands

Algorithmics Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl





Solving the multi-objective Dial-a-Ride
problem without using routing heuristics

Author: Jip Man Vuong
Student id: 1263234
Email: jipmanvuong@gmail.com

Abstract

Door-to-door transportation services are very important for disabled or elderly people, as they
have di�culties using regular public transport services. These services work on a on-demand basis
and use taxi vehicles that can service multiple jobs at the same time to reduce the operational costs.
The problem however is that deciding how to schedule each taxi to pickup and drop-o� a customer
is very di�cult, as there are multiple objectives involved such as operational costs, vehicle e�ciency
and service quality (which itself is composed of several subobjectives). Since these objectives are
related to each other it is very di�cult to balance them. Two major decisions in this problem are
the clustering (assigning customers to taxis) and routing (computing the driving schedule of each
taxi). In this thesis we introduce the Random Insertion Genetic Algorithm (RIGA) that solves
both clustering and routing using only a genetic algorithm. We show that this algorithm may
outperform other (genetic) algorithms that do rely on a specialized routing procedure.

Thesis Committee:

Chair: Prof. dr. C. Witteveen, Faculty EEMCS, TU Delft
University supervisor: Dr. M.M. de Weerdt, Faculty EEMCS, TU Delft
Committee member: Dr. ir. P. Wiggers, Faculty EEMCS, TU Delft
Guest member: Dr. P. Bosman, CWI





Preface

This thesis would not exist if it weren't for a few very important indi-
viduals who helped me over the course of this project.
First of all, I would like to thank my supervisor Mathijs de Weerdt
for his assistance in realizing this thesis. His extensive knowledge of
the dial-a-ride problem in general as well as his ability to dispel my
occasional procrastinatory �ts were essential in getting anything done.
Secondly, I would like to thank dr. Peter Bosman for sharing his knowl-
edge of genetic algorithms and multi-objective optimization as well as
his very insightful comments. Particularly, his suggestion to disregard
binary representations for population elements was a very important
one.
My gratitude goes out to Cees Witteveen and Pascal Wiggers for being
in the committee and spending time to read this thesis, even though I
am sure they must have many other matters to attend to.
Furthermore, I would like to thank my parents for giving me the op-
portunity to study in the �rst place and for making sure I got some
food/sleep during busy periods as I tend to forget about both when
I'm busy.
Finally, I would like to thank the reader (you) for taking the time to
read this thesis and I hope that you will �nd its contents interesting
(or at least not a complete waste of your time).

Jip Man Vuong
Zwijndrecht, the Netherlands

July 20, 2011





Contents

Contents i

I Introduction 1

1 The Dial-a-ride problem 2

2 Previous work and our contribution 4
2.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II Problem de�nition 7

3 Introduction 8

4 Speci�c model elements 10
4.1 Road network and map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Taxi vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Customers and jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Evaluating quality 16

IIIGenetic algorithm 20

6 Overview of the GA 21

7 Solution representation 23

8 Initialization 25
8.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Repopulation 27
9.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



9.2 Mutation/Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 Termination and return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IVEmpirical results 33

10 Experimental setup 34
10.1 Setting up the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.1.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.1.2 Algorithm parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Establishing a performance baseline 38
11.1 Basic performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 In-depth analysis of objective values 41
12.1 Analyzing quality for each of the subobjectives . . . . . . . . . . . . . . . . . . . . . . . 41

13 Algorithm parameters and convergence 44
13.1 E�ects of parameters on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13.2 Convergence for the default settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 Balancing local search and population size 50
14.1 Initial testing of new parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
14.2 Modifying the z-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
14.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

15 Comparison to variable neighborhood search 53

V Conclusion and future work 56

16 Conclusion 57

17 Future work 59
17.1 Pareto optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
17.2 Incremental solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
17.3 Event handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
17.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 62

VIAppendix 64

18 Pseudo-code of the GA 66
18.1 Pseudo-code of the initialization procedure . . . . . . . . . . . . . . . . . . . . . . . . . 66
18.2 Pseudo-code of the repopulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 67
18.3 Pseudo-code of the crossover procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ii



18.4 Pseudo-code of the best_insertion() function . . . . . . . . . . . . . . . . . . . . . . . . 68
18.5 Pseudo-code of the retime() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

19 Additional empirical data 70
19.1 Convergence for each of the problem instances . . . . . . . . . . . . . . . . . . . . . . . . 71

iii



Part I

Introduction

1



Chapter 1

The Dial-a-ride problem

In most developed countries most people usually have some form of personal transportation like cars
or bikes. The less fortunate are dependent upon the public transport services, that were designed to
move around as many people as possible, as pro�table as possible. This means that these services
are not very �exible and require the passengers to cope with unnecessary delays caused by �xed
arrival/departure times, transferring vehicles (trains, buses, subway, etc.) and �xed pickup/drop-o�
places. These problems present a huge problem for elderly and disabled people, who may not be able
to cope with these limitations. Another potential issue with the transport of elderly and disabled
people is that they may have special needs with regard to transport, examples of which may include
the need for special equipment, di�erent seating possibilities, etc.

To cope with the particular requirements of this group, taxi-agencies exist. These companies work
on a on-demand basis, which means that one must contact the company in order to request a taxi
for a trip. Since sending a taxi for each individual client is too expensive, these services operate by
having customers share the taxis. In the Netherlands, the elderly and the disabled usually do not have
to worry too much about the costs, since those are covered by their insurance or through government
funding. The downside is that due to government involvement (long term contracts auctioned o� to the
company bidding the best/cheapest service), the quality of these services is often lower than what was
agreed upon because companies are usually too optimistic and overestimate their capabilities. Once
a company secures a contract, it becomes di�cult for the government to penalize low quality since
this leads to even worse quality (or even bankruptcy), so the only remaining option is to maintain the
status quo.

When taking above situation into consideration from the perspective of a taxi-company, it is very
important to be able to accurately estimate the quality of service it can provide given some budget.
If the estimate is too high, they may not be �ned, but the poor service that was delivered will most
likely lower their chances of winning the next auction. On the other hand, a too conservative estimate
will a�ect their chances of winning the auction in the �rst place, since the number of better bids is
higher. If all companies in the auction can provide good estimates then actual quality will be close to
that which was promised, resulting in satis�ed customers.

The quality of service re�ects how well the company can assign its requests for trips to its vehicles
such that the quality (from the client's perspective) of each trip is good. Note that the company
usually does not know all requests it needs to ful�l at the beginning of a working day as they can
arrive during any time of the day. After receiving a request for a trip, the taxi-agency must �nd out
to which vehicle of their �eet they will assign to this request, this procedure depends on the state

2



CHAPTER 1. THE DIAL-A-RIDE PROBLEM 3

of the vehicle (location, jobs already assigned to, available capacity, etc.) and whether this taxi can
serve the job within the time constraints given by the customer (pickup not before a certain time,
arrival not after another time). This assignment is a very important decision, because it in�uences the
experience of other passengers on the same vehicle (multiple customers share the same vehicle) as well
as the quality the new passenger may experience. After assignment, the actual route the vehicle must
take must also be changed to incorporate the new customer. This problem is known as the Dynamic
Dial-A-Ride Problem with Time Windows (DDARPTW), where dynamic refers to uncertainty of when
new requests will arrive and time windows are the earlier mentioned time constraints.

Currently many algorithms solve the problem by �rst solving the assignment and then use some
heuristic to generate a vehicle route, this strategy is called cluster-�rst-route-second. However, we
believe that a more integrated variant of this strategy may yield better results as assignment and
routing are not independent subproblems. As such, the question we try to answer in this thesis is as
follows:

�Can we improve the service quality for Dial-a-Ride problems by using a more integrated
variant of the traditional cluster-�rst-route-second method?�

In the following chapter we begin with a brief discussion of existing work and identify the contributions
we are going to make.



Chapter 2

Previous work and our contribution

As the dial-a-ride problem is quite similar to other routing problems, a lot of prevous work exists on
the problem. Baugh et al.[3] presented an algorithm that uses simulated annealing and tabu-search
for the static problem that solves the clustering by using simple operations that move one or two
customers around. One of their most interesting contributions is the space-time-nearest-neighbour
heuristic that computes the routes by constantly selecting the closest next stop in terms of space as
well as (violated) time constraints. This routing heuristic was also used by Jørgensen et al.[14] in their
genetic algorithm that also uses a cluster-�rst-route-second strategy where clustering and routing are
strictly separated. The clustering is done by expressing a cluster as a binary template and combining
it with another solution using a method based on bitmasking. Another approach where clustering is
not done using bitmasks is presented by Borndörfer et al.[5]. Cluster-�rst-route-second is based on the
idea that clustering has a greater e�ect on the overall solution quality than routing[1, 3], so it is not
a strange idea to do that �rst.

Cordeau et al.[7] use a tabu-search algorithm that starts with partially randomly generated solu-
tions (random cluster, simple sequential insertion of stops into the routes) moves around within the
neighborhood of its search space. A tabu-list is used to prevent cycles by banning recurring solutions
from being considered. The randomly generated problem instances used to test their solver are pub-
licly available, so they serve as an important way to compare algorithm results. Even more interesting
is the fact that Jørgensen et al. also use the same instances, which means that there are even more
results available to compare to.

Xiang et al.[20] describe an interesting method that models the dynamic problem using an event-
driven approach, where each new piece of information is considered as a new event and handled appro-
priately. Furthermore, they experiment with a simple insertion heuristic that �nds the best insertion
for a stop into some existing route in a optimal way given the stop and the route. As far as insertion
heuristics are concerned, there is the well-known algorithm by Jaw et al.[12] that sequentially inserts
new jobs into its existing solution quickly by identifying schedule blocks and computing additional
time windows for each stop to facillitate faster searching. Madsen et al.[15] use a modi�ed version of
the algorithm by Jaw et al. to support multiple capacity types and multiple objectives by de�ning the
objective function as weighted sum of the subobjectives.

A survey performed by Cordeau and Laporte[13] shows that not many approaches focus on the
combination of cost and quality objectives. Since we have multiple objectives we need to make sure
that our solution focuses on all of these objectives that may or may not con�ict with each other.
Furthermore, Paquette et al.[16] note that it is important to take into consideration the immeasurable

4



CHAPTER 2. PREVIOUS WORK AND OUR CONTRIBUTION 5

aspects of quality such as the customer experience. Even though we may not be able to express the
experience in measurable values, this reminds us that it is really important to consider how the multiple
objectives are combined. This process of dealing with several objectives is also called multi-objective
optimization.

Coello et al.[6] point out several characteristics of objective functions that need to be taken into
consideration. They make the distinction between commensurable (measured in the same units) and
non-commensurable (measured in di�erent units) objective functions. In the DARP objective functions
are usually non-commensurable since operational cost has to be balanced against quality, where the
latter is often formulated using time-related measures.

A simple approach to multiobjective optimization would be to assign weights to each of the at-
tributes of the objective function to signify which attribute is more important than the other and take
the sum of these weighted attributes as the �nal value. An important reason for taking the sum of the
attributes is that it is the most straight forward way to aggregate the separate attributes. An example
of this can be found in the paper of Jørgensen et al.[14] that presents a genetic algorithm that uses this
method to create a objective function that uses seven weights for each of the attributes that indicate
their importance for the function as a whole. The advantage of this approach is that this method will
provide some solution that has the best value according to the objective function. However, for this
method it is very important to choose the weights properly because they de�ne the relation between
the various attributes. Another problem is that this is especially di�cult when we have to deal with
a non-commensurable function because in that case even the units are di�erent.

A well known method to solve a non-commensurable multi-objective problem using genetic algo-
rithm is the NSGA-II algorithm by Deb et al.[8]. Since this algorithm uses Pareto optimality to select
its best solutions it does not need to compute some overall value for the solution quality, solving the
problem of non-commensurable objectives. Their algorithm assigns domination ranks to population
elements and selects the undominated ones accordingly. When there are too many elements on the
Pareto front than is needed, another method is used to select the most important elements of a frontier.
The crowding distance as de�ned by Deb et al. is a metric that determines how far away a solution
is from its neighboring solutions in terms of objective values. Another characteristic of the crowding
distance metric is that the endpoints of a front are always given the highest crowding distance value,
which means they are at the top of the list after sorting. The goal of this metric is to select solutions
that are far away from other solutions to maintain diversity (which explains why the endpoints of a
front are given the highest priority).

Parragh et al.[18] describe a variant of the DARP that �nds a Pareto frontier of solutions optimizing
for cost and service quality using variable neighborhood search. However, service quality itself is
expressed as a sum of weighted subobjectives even though we see no reason not to compare the
subobjectives separately. Interestingly, they propose another VNS algorithm in [17] that claims to
achieve an average improvement of 71% over results by Jørgensen et al. However, the way they
compared their results is not completely fair in our opinion as they use di�erent (faster) hardware
while their �xed iteration limit of 250000 sometimes results in CPU times quite close to the ones found
by Jørgensen et al.

As stated in the introduction we want to improve the solution quality by using a more integrated
approach to the cluster-�rst-route-second strategy. Because there are only experimental results avail-
able for the static variant of the dial-a-ride problem we �rst test our idea on the static dial-a-ride
problem to see whether it is viable. So the contributions we hope to make in this thesis are as follows:

• We describe a strategy based on cluster-�rst-route-second that is less rigid with respect to sepa-
rating the clustering and the routing elements of the problem in a genetic algorithm, which means



CHAPTER 2. PREVIOUS WORK AND OUR CONTRIBUTION 6

that we should be able to search through a larger solution space while we do not signi�cantly
increase the amount of computation needed.

• We de�ne a crossover operator that enables us to directly operate on the two parent solutions
without the need for an alternative representation such as bitstrings. Furthermore, even though
Jørgensen et al.[14] claim that 'elaborate �x-ups' would be required to handle precedence con-
straints, we show that a simple and intuitive method exists to enforce the precedence constraints
during crossover.

• We describe a method to solve the routing part of the dial-a-ride problem by only using genetic
algorithms and local search instead of routing heuristics, demonstrating that genetic algorithms
can actually do a lot of the work in solving the DARP.

• An attempt is made at a more fair comparison between our results and those by Jørgensen et al.
We also provide a crude comparison to the results by Parragh et al.[17] as their improvement of
71% is indeed impressive, even if the comparison may not have been completely fair.

2.1 Thesis outline

The next part is mainly concerned with the problem de�nition, which means we discuss what a problem
instance of the dial-a-ride problem looks like as well as the constraints on the results. Each element of
the dial-a-ride problem is discussed separately and the design choices leading to the implementation
are also presented. The �nal part is dedicated to the implementation of our genetic algorithm and
consists of an in-depth comparison/discussion of our empircal results. We will end this thesis with a
summary and point out some interesting subjects for further research.



Part II

Problem de�nition

7



Chapter 3

Introduction

A complete instance of the DDARPTW consists of all information on the state of the road network,
taxis, customers, and events. However, this information is not completely available to the solver. For
example, a new job may come in at any time or some tra�c jam may occur. The problem that we need
to solve is that given the above information, we need to know which taxis to assign to which customer
and when the taxi should service which customer. More concretely, the output of a solver consists of
a schedule for each taxi that describes a list of places the taxi has to visit and at what time the taxi
should arrive at those locations. For our model we assume there is some �xed number of taxis during
the execution of the algorithm and that all taxis start their routes from the depot l0. From a cost
perspective we assume that there is a one-time cost incurred when the taxi leaves the depot. When a
taxi is moving the costs for that movement depend on the distance traveled multiplied by some �xed
cost per unit distance. Alternatively, the costs can be calculated using the travel time in a similar
manner.

Ideally, we want a solver that produces a schedule that maximizes the quality for customers while
making sure that the costs are acceptable. Since we are dealing with online optimization, there should
be some iterative element in the solver that continuously reads (new) input and produces a new output.
This also means that some portion of the output of one iteration may also become part of the input
of the next one. To summarize, during some iteration of the computation the following information is
considered as input:

• State of the road network

• Existing schedules

• State of the taxis

• Existing and new jobs

• Existing and new events

The output of a solver consists of the newly (re)computed schedules. However, it has to be noted that
a schedule (if it is executed) also implicitly changes the state of the road networks, taxis, the jobs and
possibly even the events that may occur. For example, a schedule directly in�uences the remaining
capacity of a taxi for future iterations of the solver. When a taxi has completed a job, the realized
quality of that job can be computed instantly and can be used to evaluate the overall quality of the

8



CHAPTER 3. INTRODUCTION 9

schedule. So if we talk of a solution for the DDARPTW we mean the schedule that was computed
during the �nal iteration of the algorithm, because by then the schedule has accounted for all available
information and no more changes will occur.

The above problem de�nition can be easily adapted to a static model (DARPTW) with the most
problematic part being the events. However, since we know all of them in advance we can imagine that
they can be resolved simply by modifying the jobs to account for them. For example, cancellation events
can be omitted as we can compensate by removing the corresponding job. The other simpli�cation
we make is the disregarding of the time arguments in our distance function, which means that travel
times are considered constant for any given pair of locations.

These simplifcations are necessary as we otherwise will not be able to make a good comparison to
the work by Jørgensen et al.[14]. The major advantage of dealing with the static problem is that we
only need one solution (the �nal one), whereas in the dynamic variant we need to compute one after
every important event. The model we use can be easily adjusted to be compatible with most static
problem de�nitions proposed by many researchers[17, 20, 7, 12]. Finally, this model can be also be
adapted for use in a dynamic setting, which is further discussed in the chapter on future work.



Chapter 4

Speci�c model elements

This chapter covers the �ve most important elements of our model of dial-a-ride problem (except for
the objective function). The main question for each of these elements is to decide which assumptions
to make as well as how to implement them for our experiments. These elements are as follows:

• Modeling the road network

• Deciding on what a solution looks like

• De�ning what a vehicle is and how it operates

• Specify what a job looks like

• How to handle unexpected events

The following sections cover each of the elements mentioned in more detail. However, as stated in the
previous chapter the events are not implemented as we are experimenting with a solver for the static
problem. The objective function for our model is discussed in the next chapter.

4.1 Road network and map

For the map we assume a Cartesian coordinate system, so any location on the map can be de�ned by
a tuple (x, y) where x, y ∈ R. We further assume that the locations given by customers are accessible
by the taxi, so the distance between the pickup/dropo� location and the actual destination of the
customer is neglibigle. For the travel time between two locations we assume the existence of the
following function:

De�nition 4.1.1. The travel time needed to move from one location l1 to another l2 is the value of
the function t(l1, l2, t1, tnow) where t1 is the time at which the entity wishes to start travelling and
tnow is the time at which the computation was performed.

We think it is necessary to have a variable like tnow because otherwise we cannot make a distinction
between a time computed earlier and one computed right now. It is important to make this distinction
because the road network may change after computing a result. This is also the reason why one can
consider the new state of the road network to be part of the output as well, as a change in the schedule
may lead to a change in the road networks. Furthermore, it is reasonable to assume that if we estimate

10



CHAPTER 4. SPECIFIC MODEL ELEMENTS 11

the travel time a few days in advance it may be less accurate than if we would do so one hour in
advance.

Note that the additional functionality by supporting the arguments t1 and tnow means our model
will be able to deal with variable traveltimes, which should allow the user to account for rush hour
conditions etc. This feature is also present in the model used by Xiang et al.[20].

However, for our experiments we drop the additional parameters allowing for variable travel times,
which means the resulting function is now t(l1, l2). This actually does not simplify the algorithm a lot,
but does have a positive e�ect on the speed of the algorithm.

As a basic method we express the distance between two points (x1, y1) and (x2, y2) using taxicab
geometry (also known as the Manhattan distance), which means that |x1−x2|+ |y1−y2| computes the
distance where (x1, y1) = l1 and (x2, y2) = l2. We think this is a more appropriate method because
taking the minimum distance between the two points using the Pythagorean theorem seems to imply
the existence of a direct path between any two locations. The resulting value is the multiplied by
some constant α to get the travel time in time units. Thus the function that describes the distance is
denoted as t((x1, y1), (x2, y2)) = α× (|x1 − x2|+ |y1 − y2|). As Jørgensen et al.[14] use α = 1 and the
same function we also need to use this function to keep our results comparable.

Ichoua et al.[11] introduce a property called the ��rst-in-�rst-out� (FIFO) property. This property
guarantees that if a vehicle travels from node A to node B, any other identical vehicle doing the same
at a later time will arrive after that �rst vehicle. This situation only arises when variable travel times
are possible since it is caused by travel times changing after a vehicle has left and can be �xed by
updating the travel time for each vehicle as the value changes. However, whether this property should
hold is debatable as we can imagine situations where this property should not hold. For instance, if
a taxi takes a great detour because a road is temporarily blocked it may be overtaken if another taxi
�nds the road open again. Nevertheless, this issue is important to keep in mind when we want to deal
with variable travel times.

4.2 Schedules

The goal of the resulting algorithm is to produce a schedule for each vehicle in the �eet. A schedule
is nothing more than just a list of stops for each vehicle to visit. For our work we make the following
additional assumptions:

• All taxis in the �eet start their operations at the same time from the same initial stop (depot)
and end at the same stop.

• All drivers may decide for themselves when to leave the depot to pickup their �rst customers.
However, the schedule dictates at what times they have to arrive.

The �rst assumption is used because we can imagine that the taxi drivers need to go to the depot
anyway to pickup their vehicle. Furthermore, assuming all vehicles may start at the same time simpli�es
the generation of solutions as it does not need to handle di�erent working hours. As each driver is
supposed to act independently, it is reasonable to suggest that some drivers need to leave earlier if
their stop is farther away. Given the above assumptions the notation of a schedule is as follows:

De�nition 4.2.1. A schedule for one vehicle can be denoted as
R = {(t1, l1, j1), (t2, l2, j2), . . . , (tn, ln, jn)} for some value of n where ti and li denote the desired arrival
time and location, ji is the job that is supposed to be serviced at that particular location and time.



CHAPTER 4. SPECIFIC MODEL ELEMENTS 12

However, at each stop the taxi needs some amount of time to actually make the pickup/dropo�
which should be accounted for. This is done by associating a service time sv(l) which indicates how
long service takes or how long the taxi must wait before it can depart from l. A solution for the DARP
thus can be de�ned as a set of schedules S = {r1, . . . , ri} where ri is a schedule for vehicle i. Note
that a schedule is only considered feasible if it satis�es all precedence constraints and the capacity
constraints of all vehicles. A precedence constraint enforces that pickup locations are visited before
destination locations and a capacity constraints means that a vehicle can never be scheduled to have
more people on board than its maximum capacity allows. A good objective function will automatically
provide us with a way to �lter out 'bad' solutions.

By choosing to model our schedules this way we have turned the job related constraints into soft
constraints. Many authors make a distinction between hard and soft constraints (especially for time
windows)[14, 20, 9, 3]. Soft time windows are useful when evaluating the tradeo�s between service
requirements and their costs. By imposing some amount of penalty when a soft constraint is violated,
any further violation is discouraged. Intuitively, a soft constraint with a very large penalty is quite
comparable to a hard constraint in practice, in the sense that hard constraints may be violated in
real life, but may have such severe consequences that it is not practical/sensible to do so in most
cases. This is somewhat similar to the triangular fuzzy numbers described by Teodorovic et al. [9] to
denote desired pick-up times. In their situation, constraints are also soft in the sense that they allow
a certain interval of values with di�erent strengths (preference), however, a major di�erence is that
no penalization occurs, since only values within the fuzzy set may be selected (which, itself is a hard
constraint). On the other hand using hard constraints allows an algorithm to skip large portions of the
search space and focus only on the really good solutions. Parragh et al.[17] present such an algorithm
and shows that solutions of solvers that use soft constraints can be improved upon signi�cantly by
turning all constraints into hard ones. Obviously, these algorithms only work if there is a solution
available that does not violate these constraints.

Apart from just time constraints imposed by the jobs there are also other limitations, in the next
section we take a look at the capacity constraints for vehicles and in a later section we will discuss the
precedence constraints.

4.3 Taxi vehicles

Given our situation, our model of a taxi needs to deal with di�erent types of capacity. This means
that the vehicle provides a value for each type of capacity that denotes its maximum capacity for that
type. An example of this would be the number of seats. We propose to denote this as follows:

De�nition 4.3.1. The capacity of a taxi is denoted as a tuple c = (c1, . . . , ck), where each ci ∈ Z
represents a type of capacity (number of seats, wheel chair places, lying seats, etc.). Note that ci = 0
is allowed, as this means that the taxi does not provide for the type of capacity at all.

We believe that it is reasonable to use natural numbers to denote capacity because this is the case
in many situations (for more examples, see [15]) and it simpli�es the reasoning while computing a
schedule. A constraint related to the capacity of a vehicle is that a schedule should keep in mind that
it is not possible for a vehicle to carry more passengers than its capacity allows. This can be done by
returning the capacity a customer uses to the taxi when the passenger arrives at his destination.

De�nition 4.3.2. The capacity constraint ensures that a vehicle does not exceed its maximum ca-
pacity. If the change in capacity at each location in the schedule is denoted as d = (±c1, . . . ,±ck)



CHAPTER 4. SPECIFIC MODEL ELEMENTS 13

and the whole list of changes is denoted as D = {d1, . . . , dn}, a vehicle satis�es this constraint if
m∑
i=1

di ≥ (0, 0, . . . , 0) for any m ≤ n.

A taxi is represented by a tuple v = (lnow, lt, c, R) where lnow is the actual location of the taxi,
lt is the current destination of the taxi, c is the remaining capacity of the taxi and R is the schedule
such that there is some ti such that (ti, lt, ji) ∈ R. Note that the actual location of the taxi does not
have to be in the schedule, as it only de�nes the points the vehicle has to pass through. Furthermore,
this location is only relevant if we are dealing with the dynamic problem, as the 'inbetween locations'
of a route are simply non-existent otherwise.

Although our model does allow for multiple capacity types, this feature is not used by Jørgensen et
al. and as such we have also reduced the number of capacities to one, although this means our algorithm
cannot handle di�erent types of seating. However, we can imagine that this can be somewhat accounted
for by expressing di�erent capacity types in terms of each other. Nevertheless, using multiple capacity
types does not increase the runtime complexity of the algorithm signi�cantly.

4.4 Customers and jobs

Before we can de�ne our model we need to have clear understanding of what we mean by a customer.
A customer corresponds to one person or entity that submits a job that can require some amount of
each of the various capacities. At this point there is little need to view customers and jobs as separate
entities. As such, a job is de�ned as follows:

De�nition 4.4.1. A job represents the customer's needs and can be represented by a tuple j =
(c, tnow, ls, lt) where ls and lt are tuples (l, ta, tb) where l is a pair of coordinates, ta and tb are the
earliest and latest times allowed for the serice to begin at the stop. The time at which the job request
was submitted is tnow and the required capacity is c. The time window speci�ed is soft in the sense
that solutions may contain schedules that violate them.

A job request also implies a precedence constraint between ls and lt during scheduling, since one
cannot deliver a passenger to his destination if he wasn't picked up �rst. This can be formulated in
the following way.

De�nition 4.4.2. The precedence constraint requires that for any job request the pickup location must
be accessed before the arrival location by the same vehicle, or: A job request j = (c, tnow, ls, lt) that is
scheduled in a schedule R satis�es the precedence constraint if R = {. . . , (ts′ , ls, j), . . . , (tt′ , lt, j), . . .}
holds.

In addition to this hard constraint both locations should be visited within the speci�ed time window,
which is a soft constraint. Futhermore, slight variations from the time window are allowed but penalized
by the objective function. It has to be noted that job requests may not be rejected and we assume that
time windows are reasonable in the sense that they can be realized. Finding these time windows is
outside the scope of our problem, but one can imagine that the service operator can assist the customer
to �nd one given a desired arrival or departure time.

De�nition 4.4.3. Another property of jobs is that they can be either inbound or outbound. An
inbound request is a job where a customer does not care about the pickup time, but has a high priority
on the drop-o� time. This is evidenced by setting the time window of ls to the entire timespan of the



CHAPTER 4. SPECIFIC MODEL ELEMENTS 14

algorithm and setting a normal interval for lt that indicates between which two times the customer
wants to arrive. The idea behind this method is that the pickup can occur at any time, as long as the
drop-o� is on time. Similarly, a outbound request is just the opposite.

4.5 Events

In our model we account for the following events that may occur during the execution of the system.
An event is something that may drastically change an earlier computed schedule and/or will lead to
the schedule being infeasible. Thus from a technical point of view, a new job is an event as well, but in
this section we primarily focus on the more unexpected situations. The events we describe are based
on the ones described by Xiang et al.[20]

De�nition 4.5.1. When a taxi is stuck in a tra�c jam or otherwise realizes that it not make the
scheduled arrival time at some location, it has su�ered from a delay event. This means that the travel
time needed between two locations is going to be more than the earlier computed time and that the
taxi is somewhere between these two locations. We denote this as (ls, lt, td, ts, tr) where ls and lt are
the source and target locations, td is the extra travel time and ts and tr is the time window during
which the delay is active. Any vehicle that is within the time window [ts, tr] and en route from ls to
lt su�er the delay.

It is important to di�erentiate between a small delay and a real tra�c jam, as arriving a few minutes
later may be normal whereas a delay of 30 minutes may be considered a tra�c jam. However, both
events can be modeled using a tra�c jam event as delay is basically a tra�c jam with a small value
for td. For the algorithm however, a delay of 30 minutes may lead to many changes to the schedule
whereas a few minutes delay isn't going to much of a di�erence. Note that the value for td may be
negative, indicating that the taxi is ahead of schedule. If this value is large enough, the algorithm may
decide to change the schedule.

An even more extreme situation may occur where taxi may not be able to service the customers in
the foreseeable future. The major di�erence from the two events that were de�ned earlier is that in
this case existing jobs are altered too.

De�nition 4.5.2. When a taxi cannot continue with its service we call this a breakdown. When this
occurs the location of the taxi becomes a new pickup location for all the passengers and other taxis are
scheduled to pick them up. All future jobs of the vehicle are cancelled and the jobs corresponding to
all the passengers on board are modi�ed by changing the pickup location to the location of the broken
down vehicle and reinserted into the algorithm.

Note that we do not consider the repairing/salvaging of the broken down vehicle and picking up
of the driver. Also, for this event we assume that the schedule, its workload and the distance it has
already travelled does not a�ect the time at which a vehicle fails.

Another event we describe is the cancellation event, in this case either the customer cancels the or
does not show up at the designated pickup location. This event can occur at any time given that the
corresponding job was already submitted.

De�nition 4.5.3. A cancellation event may occur for any submitted job. If this event occurs before
a taxi is en route to the customer the pickup and drop o� locations are removed from its schedule.
Otherwise, the taxi arrives at the pickup location, �nds that there is nobody to pickup and will continue
with the rest of its schedule, except that it will skip the drop o� location.



CHAPTER 4. SPECIFIC MODEL ELEMENTS 15

Note that after handling the cancellation event, an algorithm may decide to optimize or recalculate
the schedule again, the action chosen depends on how much time is freed by cancelling the job. As we
we have now covered each of the elements we now proceed with the de�nition of our �tness/objective
function.



Chapter 5

Evaluating quality

As mentioned earlier, the goal of the algorithm is to produce a schedule for each of the vehicles.
Since the DARPTW is a optimization problem, we would like to have a schedule that optimizes our
objectives. Even though we want to maximize the quality for every customer, it makes more sense to
express quality as the deviation from the perfect ride (exactly on time, shortest route, etc.). Thus our
problem changes to minimizing the lack of quality, which we now refer to as the disutility.

Since disutility is composed of several factors, we need to determine which elements of the service
are considered important. Swinkels et al.[10] compiled lists of service elements that are considered
most important to customers in the Netherlands for di�erent sorts of taxi services. We combined these
lists and selected the most important factors which are as follows:

• The taxi departing from the pickup location at the scheduled time (fjm1
).

• Arriving at the destination on time (fjm2).

• The amount of time the customer has to wait for the taxi (fjm3
).

• Driving time or the time spent in the taxi (fjm4).

• Not having to share the taxi with other customers (fjm5
).

The work by Jørgensen et al. uses an objective function that weighs a number of elements very similar
to the ones we use, these are listed below:

• Customer transportation time (fjorg1), corresponds to fjm4 .

• Excess ride time (fjorg2), no mention is made by Swinkels et al. about ride times relative to
direct ride times.

• Customer waiting time (fjorg3), can be expressed using fjm1 .

• Work time of the vehicles (fjorg4), mostly corresponds with fjm4
, but since we do not consider

the working time of vehicles themselves it does not completely correspond to anything.

• Time window violations (fjorg5), a combination of fjm1 and fjm2 .

• Excess maximum ride time for the customers (fjorg6), not mentioned.

16



CHAPTER 5. EVALUATING QUALITY 17

• Excess work time of the vehicles (fjorg7), not mentioned.

We see that fjm5 is not accounted for in the model by Jørgensen et al. but as it is one of the least
important factors according to Swinkels et al. this does not severely a�ect our empirical results.

Since we are dealing with multiple objectives we also need to choose a method to compare two
solutions to each other where one is better in one objective and the other solution is better in another
one. One of the possible ways to solve this problem is to use a weighted sum of all subobjectives. The
disutility value of a solution is often composed of several factors such as the travel time, waiting time,
the route that was taken and possibly many more.

De�nition 5.0.4. The function di(j, R) computes the disutility value for objective i for a certain job j
wthin a schedule R. The function returns 0 if the schedule provides the optimal quality (no disutility)
for that particular element of service quality. In other cases it returns some value v ∈ R. The output
of the function is only de�ned if j is serviced by the schedule, so there exists some (tk, lk, j) ∈ R for
some value of k.

For example, a function for a disutility factor �timely arrival of the taxi� could return how much
later a taxi arrived at a pickup location in terms of time. The value 0 would be the optimal value as
it means it was right on time, any other value means the taxi was either late or early.

When we look at the disutility from a higher perspective, we can see that a problem instance
contains many jobs. Since handling each disutility factor separately is unwieldy when we are comparing
solutions, we also need some method to aggregate all disutilities to �nd the disutility of the solution as
a whole. If we would not do so, we need to resort to using Pareto optimality as we otherwise cannot
make any good comparison between two solutions.

In this situation an evaluation function will produce a vector of values that denote the evaluation
of each speci�c attribute in the objective function. To compare two solutions the values in the vectors
are compared to each other and in this way one can determine which of two is to better. A solution
for which no other better solution can be found is then called Pareto optimal.

De�nition 5.0.5. A solution x is Pareto optimal i� there is no other solution y such that F (y) =
(q1(y), . . . qk(y)) dominates F (x), where F (x) and F (y) denote the evaluation function solutions x and
y respectively. Note that qk(y) represents a single dimension (subgoal) in the whole evaluation function
and that x dominates y if q1...k(x) ≤ q1...k(y) and qi(x) < qi(y) for some i (minimization).

An algorithm using this theory may produce a set of Pareto optimal solutions that are not dom-
inated by any other solution. This set of Pareto optimal solutions can be called the Pareto frontier
or Pareto set. Coello et al.[6] claim that although it may not directly point the decision maker to a
single solution, it can be used to gain insight in how improving one dimension of the objective function
will lead to degradation of one or more other dimensions. Thus, the bottomline is that a set of good
solutions is produced, but it is still up to the operator to decide on which solution to use. This decision
is necessary because the Pareto set actually contains �acceptable� solutions and the decision maker
should choose the ultimate solution based on the non-modelled (human) preferences. The disadvan-
tage of this approach is that human interaction is still needed during computation. However, this
interaction should also result in a solution that conforms more to the requirements the decision maker
had in mind. If we do not use Pareto optimality, a function to compute the quality of a solution looks
as follows:

De�nition 5.0.6. The disutility of a solution s for the DDARP is described by the function q(s).
This function produces a disutility value that represents the disutility of s.



CHAPTER 5. EVALUATING QUALITY 18

This function obviously should use the di(j, R) functions to �nd how well each of the subobjectives
is met and use a way to combine the results into some aggregated value (weighted sum). Note that
we do not take into account a cost constraint, meaning that we cannot say anything about the cost of
the �nal solution. On the other hand, this means our algorithm can be used to give an indication of
the cost needed for a good solution, which is also very valuable information. Furthermore, we can see
that it is also easy to add cost as one of the subobjectives.

To be able to make a valid comparison we need to use the same objective function as Jørgensen et
al. as well as the same values for the weights. Before we can describe the objective function we need
to specify what the input of the objective function consists of. Note that during the computation of
the objective value many variables found in the problem instance itself are also needed, so the actual
input of the objective function consists of the problem itself and the solution.

The problem information p consists of the information already present before a schedule was com-
puted and includes the state of the road network, travel times for each of the stops, maximum ride
times etc. The complete list of all problem related variables can be found in Table 5.1.

Table 5.1: Problem related variables - The following variables are problem speci�c

Variable Description

N The set of all jobs
(x, y) ∈ N Job with pickup stop x and drop-o� stop y
x ∈ N Any stop x from N
t(x, y) Traveltime needed to go from x to y

ta(x), tb(x) Time window for stop x
sv(x) The service time at stop x
m Maximum ride time
w Maximum work time for a vehicle

The new information provided by the solution s consists of the vehicles routes and other variables
such as the waiting time at each stop and scheduled arrival times. A description of all variables can
be found in Table 5.2.

Table 5.2: Solution related variables - The following variables are solution speci�c

Variable Description

R Set of all vehicle routes
ri ∈ R The schedule ri of vehicle i in solution R
ex,y Equals 1 i� a vehicle travels from x to y in its schedule

tarr(x) Speci�es at what time a taxi arrives at x
lb(v, s) Denotes the load of vehicle v before it has serviced stop s
w(s) The waiting time at stop s

troute(v) Time between vehicle v leaving the depot and arriving at the depot

Note that when a vehicle arrives at a stop early, it will not immediately commence service, instead
choosing to wait until the time window begins. The advantage is that time windows will not be broken
as much, but it results in extra waiting time for the customers already on the vehicle. The entire



CHAPTER 5. EVALUATING QUALITY 19

objective function is the weighted sum of each of the subobjectives fjorg1 , . . . , fjorg7 as de�ned by
Jørgensen et al.[14] and is as follows:

q(p, s) = w1

∑
x∈N

∑
y∈N

ex,y × t(x, y) (5.1)

+ w2

∑
(x,y)∈N

tarr(y)− tarr(x)− sv(x)− t(x, y) (5.2)

+ w3

∑
ri∈R

∑
x∈ri

lb(i, x)× w(x) (5.3)

+ w4

∑
ri∈R

troute(i) (5.4)

+ w5

∑
x∈N

max(0, ta(x)− tarr(x), tarr(x)− tb(x)) (5.5)

+ w6

∑
(x,y)∈N

max(0, tarr(y)− tarr(x)−m) (5.6)

+ w7

∑
ri∈R

max(0, troute(i)− w) (5.7)

The resulting function q(p, s) can now be used to evaluate each solution generated and report its
disutility. As far as actual implementation is concerned, it is advisable to make sure that the function
is as fast as possible, as it is called fairly often and is not very fast as it is O(n×m) with n being the
number of jobs and m being the number of vehicles. In the next part we go into more detail about the
technicalities of the implementation of our genetic algorithm itself and present our crossover operator.



Part III

Genetic algorithm

20



Chapter 6

Overview of the GA

In this part we describe the Random Insertion Genetic Algorithm (RIGA) that solves the aforemen-
tioned dial-a-ride problem. The general idea of a genetic algorithm is that given some initial population
of solutions, the algorithm continuously selects the best solutions and evolves them using crossover
and/or mutation operators to generate a new generation of solutions. It is here where the random
insertions are performed as we randomly insert jobs into other schedules during crossover. This process
is repeated until some termination criteria is met, after that the best solutions that were encountered
are returned. This idea of remembering the best solutions that were ever seen is called elitism and is
frequently used for genetic algorithms, examples include the algorithm by Jørgensen et al.[14] and the
generic genetic algorithm by Deb et al.[8]. The general idea of a genetic algorithm (including elitism)
is shown in Algorithm 6.1 on the following page. As we can see from the pseudocode, our genetic
algorithm is composed of the following steps:

• Initialization step where a set of initial (random) solutions is created. We use a cluster-
�rst-route-second approach because it is a commonly used method (see also [14]) and because
clustering is considered to be a more important (but not independent) decision than scheduling[1,
13]. We �rst create a random cluster and then create a random (but feasible) schedule for each
cluster, after that we may or may not apply the local search procedure according to the speci�ed
parameter pls.

• A selection procedure that selects the best candidate solutions to produce the next generation.
This basically means that the size of the population shrinks by removing the worst elements.

• The remaining elements are then used by the repopulation procedure to create new solutions
to add to the population until the speci�ed population size is met. The basic idea is that the
existing solutions are subjected to crossover and local search operators to try to generate o�spring
solutions that are better.

• The termination condition determines when the algorithm should stop and return its result.
Possible criteria may include time limits, reaching some quality value, or convergence.

21



CHAPTER 6. OVERVIEW OF THE GA 22

Algorithm 6.1 Overview of a genetic algorithm

1: population = generate_initial_population()
2: elitist_archive = ∅
3: while not termination_criteria_met() do
4: subset = select_best_subset(population)
5: elitist_archive = update_elitist_archive(subset)
6: population = generate_next_population(population)
7: end while
8: return elitist_archive

In the following chapters we describe each of the earlier mentioned components in more detail, discuss
how we implemented them and which alternatives are available. However, before we can think of how
to initialize our �rst population we need to decide how to represent a solution in the GA.



Chapter 7

Solution representation

A common method used for genetic algorithms is to represent solutions as bitstrings, where a portion
of the bitstring denotes how the jobs are clustered and another portion that represents each of the
schedules. Based on this idea we could use a Estimation of Distribution Algorithm (EDA) that
estimates the distribution of each of the bits and look for the best solution. However, there are
two major issues with this method:

1. The most important reason why using a bitstring notation is not appropriate is because there
are a lot of constraints on many of the bits. For example if we let bit bxy denote that job x is to
be clustered to taxi y, the variables bxq for q ∈ [1,m] must be 0 if bxy = 1, since a job can only
be assigned to one taxi. If we remember the precedence and capacity constraints we mentioned
in earlier sections it is easy to see that many bitstrings within our search space will be infeasible.
To circumvent this issue we can either allow infeasibility (by using some metric to grade solutions
based on feasibility or check every solution for feasibility before adding it to the population. It is
easy to see that a feasibility metric will not be very helpful as the number of infeasible solutions
in our search space greatly outnumbers the feasible portion and there is no way we could use an
infeasible solution (for example, capacity constraints are hard). On the other hand, checking the
feasibility for every single solution results in a very slow algorithm as all constraints have to be
checked many times.

2. Since a solution is represented by both the clustering and the scheduling, it is not trivial to
estimate the distribution of bits either. When looking back at the previous example, a distribution
for bit bxy only makes sense if all other bits bxq for q ∈ [1,m] are not set and vice versa. This
by itself is not a problem, as there exist algorithms that can handle multivariate interactions
such as the Extended Compact Genetic Algorithm (ECGA). However, note that we have not
yet considered the scheduling part of the problem, which essentially means that on top of the
multivariate factorization we can �nd for the clustering part another multivariate factorization
is needed to handle the scheduling.

We do have to stress that using a bitstring representation of the clustering itself is perfectly possible,
as there have been a number of algorithms that encode only the clusters as bits[14, 19]. However, if
we are to solve the whole DARP in a GA, we can see that bit strings notations and estimation of
distribution algorithms are not a good choice for representing and solving our problem. Alternatively,
instead of attempting to estimate the distribution of the various bits we can see that if we can de�ne

23



CHAPTER 7. SOLUTION REPRESENTATION 24

a crossover operator that works on solutions as de�ned in 4.2 on page 11 we do not need to concern
ourselves with the distribution of various bits and solutions are much simpler to operate on (especially
considering the constraints). In the next chapter we show how generating a solution becomes much
easier if we operate on solutions directly.



Chapter 8

Initialization

Most genetic algorithms start by acquiring a initial set of solutions, which are often generated in a
random fashion. Considering that we use a cluster-�rst-route-second approach to solve the problem,
using the same approach to generate a random solution seems a fair enough as well. Note that by
clustering we mean that jobs are divided into groups (and assigned to a taxi) and routing refers to
determining the exact driving schedule of a taxi. Since we are using a random way to generate solutions
the general idea of generating a random solution from scratch is as follows:

1. Clustering: Assign each job to a taxi, only allowing the assignment if the capacity of the empty
taxi is larger or equal to the capacity requirement of the job.

2. Routing (part one): For each taxi, repeatedly remove a random job from its list of assigned
jobs and append it to its schedule as either a pickup or drop o� stop. A stop can only be
appended if the capacity and precedence constraints both hold.

3. Routing (part two): Once a complete schedule for a taxi is created, a simple routine is used
to calculate the arrival times for each of the stops. The most di�cult part is determining when a
vehicle should leave the depot as it depends on whether a request is inbound or outbound. Even
though any pickup time is �ne for a inbound job, we obviously would want to perform the pickup
before the time window for delivery begins. On the other hand, for the outbound requests we
can just make sure to arrive within the time window for the pickup.

The pseudocode of each part of the algorithm can be found in the appendix on page 66, but for the
sake of clarity we have omitted a few elements:

• In the pseudocode we assume that a job is guaranteed to be clustered even though a job could
theoretically require more capacity than any of the vehicles can provide. In our implementation
we added code that checks this property, but as it is not critical to normal operation we choose
to omit this code for the sake of clarity.

• Determining the waiting time is simply done by checking whether a vehicle arrives before the
beginning of the time window, it is not explicitly shown how this is computed, but it is not very
important.

• When deciding when to leave the depot to pickup someone for a outbound request we choose to
do so as late as possible, meaning that we calculate the pickup time as if the customer would

25



CHAPTER 8. INITIALIZATION 26

be immediately driven to his destination after pickup. This means that if this isn't the case
(some other request is serviced after pickup), the customer may arrive too late and/or incur
some waiting time because the vehicle left the depot too late.

Furthermore, since we do not need the actual schedule times we do not have to compute them directly
after generating them. Schedule times are only needed when computing the quality of the solution,
meaning that it is only needed during the selection stage and the local search procedure.

Another important feature of our initialization step is that we maintain a sorting in the population,
this is greatly bene�cial for the performance as this means we do not need to keep sorting the population
again after repopulation. The bene�t of doing so is that our selection step is quite simple now.

8.1 Selection

Since we maintain a sorted population the best elements are those at the top. After a population has
been created, the selection procedure selects one element from the worst few elements of the population
and replaces it by a crossing over two randomly selected parents from the remaining population. The
parameter that indicates when a element is bad is based on a ratio that speci�es how many elements
risk being replaced during each iteration. As long as this ratio does not cover all of the elements, the
selection procedure maintains an elitist archive containing the best solutions, as the best solutions will
never be replaced. So after selection has occurred the size of the population has decreased by one
element, we choose not to replace all elements because repopulation is relatively slow. This procedure
is similar if not identical to the one used by Jørgensen et al.[14], which also means that it becomes
slightly easier to compare our algorithm to their results as we now also do a similar amount of work
during selection.



Chapter 9

Repopulation

After purging some element from the population the algorithm enters the repopulation phase where
the population grows back to its de�ned limit. This part of the algorithm is based on the work of
Pereira et al.[19], Jørgensen et al.[14] and Xiang et al.[20]. More speci�cally, the idea of our crossover
operator is based on those of Pereira's and Jørgensen's with some modi�cations. Our local search
(mutation) operator is based on Xiang's ideas of best insertion. In the following sections we elaborate
on the particulars of our implementation.

9.1 Crossover

The idea behind our crossover operator is actually quite simple: Our crossover operator is a two-
point crossover operation that selects a schedule of one taxi (cluster) from the �rst parent and all
other clusters from the second parent, which are combined into a single child solution, the greatest
di�erence being that two entire solutions are combined and not just the clusters. The pseudocode for
the procedure is presented in Algorithm 18.3 on page 67.

Since clustering is considered to be more critical than routing[3, 1], it is important to have more
diversity in how clustering is performed. As such we decided to make some changes to the crossover
operator that was used by Jørgensen et al. by simplifying the selection procedure for the parents and
omitting the usage of a binary template. The reason we chose to do so is because we realized that
our local search procedure already takes care of improving solutions by itself, but to do so it would
need a more diverse population to be able to �nd meaningful results. By simpliy�ng the crossover
the algorithm is left with more time which can be used to call the local search routine more often
while creating somewhat a somewhat more diverse population. The idea of moving around clusters is
actually reminiscent of the approach of Pereira et al.[19] but has the following di�erences:

• Pereira's approach is presented for the vehicle routing problem (VRP), and as such does not
need to deal with carrying payloads of di�erent customers at the same time. This means that
selection of the cluster to be transferred is much easier, as it does not need to consider itself as
much with precedence and capacity constraints as we need to do. The problem of dealing with
the precedence constraints is also acknowledged by Jørgensen et al.[14]

• Our approach copies the complete schedule of a vehicle, whereas Pereira's method copies only a
subset of it. This obviously limits the number of possibilities left for selecting the elements to
copy, but since we need to consider more constraints than in the VRP this seems like a good

27



CHAPTER 9. REPOPULATION 28

compromise to us. Also, since the jobs that were in the replaced cluster need to be inserted in
the solution again, the child solution will be di�erent from its parents besides that one cluster
that was copied.

• We select both parents at random, whereas Jørgensen et al. use the roulette wheel method to
select one parent based on its quality (see Hypothesis 9.1.1). We choose not to do this as this
adds unnecessary computational complexity and we do not want to be too obsessed with solution
quality during the crossover phase as the local search procedure will already do so. Furthermore,
by selecting parents based on their solution quality one would limit the search space, which is
not something we want to do since we cannot say anything about the quality of the child. We
do not test this hypothesis as its veri�cation is not important for the overall results.

Hypothesis 9.1.1. There is no signi�cant di�erence between selecting parents for crossover
randomly and selecting them stochastically.

• Finally, Pereira et al. use the cluster they selected as a bitmask of sorts on the other parent's
corresponding cluster. We forgo this approach and copy the whole cluster directly, which means
that at least one taxi schedule from the child will be completely identi�cal to one of one of the
parents.



CHAPTER 9. REPOPULATION 29

Figure 9.1: Schematic of the crossover operator - Note that we �rst needs to remove all stops in
Y from X ′, Y ′, Z ′ before we can randomly insert stops si, sj, sk, . . . ∈ Y ′ − Y

A graphical example of how our crossover operation creates a new child solution can be seen in
Figure 9.1. As far as computing routes is concerned, the genetic algorithm by Jørgensen et al. only
really focuses on the clustering part and uses the space-time-nearest-neighbour by Baugh et al.[3] to
solve the routing. Our algorithm is di�erent here because it lets the genetic algorithm work on both the
clustering and the routing, but strictly handles the clustering before doing any routing when generating
candidate solutions, hence it quali�es as a cluster-�rst-route-second algorithm.

While Jørgensen et al. also copy a cluster completely, they use it like Pereira et al. do, so the
selected cluster only serves as a bitmask. To be more speci�c, they select only the cluster while we
select the driving schedule {stop1, stop2, . . . , stopx} of a taxi t and copy it completely.

It can be easily seen that if we want to copy a schedule into another solution there are three things
that must be taken care of:

1. Most importantly, any job that was in the copied schedule must be removed from the other
schedules in the target solution.

2. All jobs that were in the replaced schedule and not in the copied schedule must be inserted into
the target solution again while taking care not to invalidate precedence and capacity constraints

3. All schedules that were modi�ed must be checked again on their arrival times, as adding and
removing stops in schedules will change them

The �rst problem of removing jobs that are already present is also rather trivial (ignore the time
windows other timing issues for now), since it only involves removing stops. It is easy to see that no
capacity or precedence constraint can be ever invalidated by removing a job from an existing schedule
because vehicle capacity only changes for the better and precedence constraints specify the relation
between two stops of the same job. However, the waiting time increases as there are now gaps in the
schedule.

The last problem of correcting arrival times can be easily solved by iterating through the schedule
again and updating the arrival times, which is not very di�cult.



CHAPTER 9. REPOPULATION 30

The second problem is the most di�cult as we must insert customers into existing schedules, which
means we need to keep in mind the vehicle capacity at each stop asnd the precedence constraints.

There is a trivial method to solve this insertion problem, which is simply to append the jobs back
into some randomly selected schedule of a vehicle that has enough capacity when it is empty. However,
it is also easy to see that this simple method is almost always guaranteed to produce a very bad ride
for the unlucky few customers who had to be inserted again.

Instead we randomly select a vehicle to assign the job to and randomly insert the job into its
schedule. Denote a stop within a schedule as si where i is the index of the stop within the schedule.
We can now �nd a feasible insertion as follows:

• Find some stop si where the vehicle can visit the pickup stop without invalidating any capacity
constraint if inserted after si

• Select the �rst pickup stop sj with j > i where the capacity constraint does not hold (negative
capacity left) if we would insert the pickup after si

• Randomly select one stop sk with i < k ≤ j

• The pickup stop can now be inserted after si and the drop-o� can be inserted before sk

Since we assume that any result in the population is a feasible one, it is easy to see that no precedence
constraints can be broken, as the drop-o� always occurs after the pickup stop (i < k). To prove that
it does not break any capacity constraints we can do the following:

Proof. (by contradiction) Assume the capacity constraints of a feasible schedule are broken after in-
sertion

Capacity constraints are broken if one or more of the following occurs:
(1) The vehicle attempts to visit the pickup stop while it is already full - Not possible, si is selected

such that no capacity constraints are broken.
(2) The vehicle visits the pickup stop and �nds that it cannot visit some future pickup stop anymore

due to lack of capacity - Not possible, all stops are inserted before sj , which is the �rst invalidated
stop

(3) The vehicle attempts to drop a customer o� but �nds that it has (more than) full capacity left
(nobody on board) - Not possible, we assumed a feasible schedule, we know i < k and picking up a
customer decreases the capacity only

We conclude that no capacity constraints are violated.

After insertion of the missing jobs the crossover process is done and the result will be a feasible
child solution. In our algorithm we replace the schedule of a vehicle by its corresponding schedule in
the other solution, so we do not need to check the capacity requirements as the vehicles are the same.
We could choose generalize this by allowing copying from other vehicle schedules, but that would (in
general) require us to check whether the copied schedule for feasibility again which does not seem very
bene�cial to us.

Depending on the parameter for the local search probability, the algorithm may decide to perform
a mutation/local search on the resulting solution. This procedure is discussed in the next section.



CHAPTER 9. REPOPULATION 31

9.2 Mutation/Local search

From the earlier subsection we can see that routing is given rather little attention during the crossover
operation, our GA approach compensates for the lack of a more dedicated routing solution by applying
more mutations than the earlier mentioned authors. We used the remove-one-insert-one heuristic by
Xiang et al.[20], which is similar to the swap strategy by Baugh et al.[3]. The general idea of those
strategies is that a random job is selected and moved to another cluster. After it has been moved,
the job is inserted in the best way possible using a method similar to the insertion procedure in the
previous subsection. However, now we need to evaluate all values for si, sj and sk, meaning that it
takes O(m2) time for the m stops in the schedule. As stated by Xiang et al., the remove-one-insert-one
procedure is O(n) by itself (with n being the number of jobs) meaning that by itself it is reasonably
fast. However, care should to taken as insertion takes quite a bit of time.

Our implementation of this best_insertion() function is slightly di�erent from the one idea by
Xiang et al. as well. Whereas they force the procedure to �nd a better solution than their starting
one, or otherwise optimally insert the job back into its original schedule, we actually let our algorithm
�nd the best insertion itself, so we accept solutions where the quality decreases due to moving the
customer. Due to this characteristic this procedure could also be called a mutation operator. There
are two reasons why we chose this alternate approach:

• As our crossover operator already modi�es the clusters, but does not do anything special regard-
ing the routes. We think local search in this context should be about trying very small changes
to see if they are interesting. If they are su�ciently interesting they will not be removed by
selection procedure and as such may be able to pass this change on to further generations. The
procedure as described by Xiang et al. obviously sounds more sensible, but is also greedy as it
rejects anything that shows no direct improvement.

• While we cannot prevent our local search from degrading the original solution due to a unfavorable
insertion, we know that our selection procedure will remove the solution eventually if becomes
too bad. Also, since we only move one job around, the e�ect on the solution quality will not be
very signi�cant (regardless of whether it is a good or bad e�ect) as we use the best (or actually,
the least worst) insertion.

A more detailed description of the best insertion procedure can be found in the appendix at algo-
rithm 18.4 on page 68. Once the remove-one-insert-one has �nished the resulting solution is returned
and will be added to the population.

As it is too costly to do local search for every new child solution, we give each crossover operation
a small chance to also perform local search. This is also one of the reasons why we think that using
the greedy approach is not very appropriate. Even if a better solution is found, the improvement will
not be too great as it only moves one customer to another cluster (except for early iterations where
solutions are very bad). So instead of trying to �nd slightly better solutions it may be much more
useful to provide the crossover with a more diverse population so that more diverse (and hopefully
better) solutions can be found. If we take into consideration that the (greedy) best insertion is slower
we suspect that our method should work better in our algorithm:

Hypothesis 9.2.1. The modi�ed best insertion procedure is more suitable for the RIGA than the
implementation described by Xiang et al.[20] in the sense that the RIGA produces better solutions

Although it is important to verify whether this hypothesis holds, it is beyond the scope of this
project and should be done in future work.



CHAPTER 9. REPOPULATION 32

9.3 Termination and return values

Ultimately, the algorithm has to decide when it should stop and return its results. Because of our
test environment, we choose to implement a (con�gurable) �xed time limit for our algorithm. Another
alternative is to let the algorithm terminate after a �xed number of iterations, which is done by
Jørgensen et al.[14]. As for the return value, since we keep the population sorted, we can immediately
return the �rst element as that is also the best solution.

As it is now clear how each of the major components in our algorithm works, we can now begin
with experiments that have to show how our solver performs.



Part IV

Empirical results

33



Chapter 10

Experimental setup

In this part we discuss the empirical results we obtained after implementing and testing RIGA we
presented earlier. The most important di�erence between our solver and other cluster-�rst route-
second solvers is that our solver uses a GA for both the cluster and the routing phase, whereas other
approaches only use a GA to handle the clustering. We compare our algorithm to the implementation
by Jørgensen et al.[14] and conclude with a simple comparison to some of the results presented by
Parragh et al.[17]

The goal of our experiments is to �nd out whether specialized routing heuristics (like the one by
Baugh et al.[3]) are really necessary when using GAs to solve the static DARP or if GAs by themselves
are powerful enough to �nd good routes. We believe that this is indeed the case and have formulated
this as follows:

Hypothesis 10.0.1. Given similar or equal time and computational limits, the RIGA approach pro-
duces results that are competitive to the ones found by traditional route-�rst cluster-second genetic
algorithms using specialized routing heuristics.

To be able to evaluate whether this hypothesis holds we need to determine whether our solver can
compete with other solvers using comparable time and computational limits. As the experiments by
Jørgensen et al. were done quite a while ago, we need to normalize our results accordingly. The basic
idea here is to make sure that if we run both solvers on the same machine for the same amount of
time, our results should be competitive to theirs. This would mean that our solver could function as
a drop-in replacement.

Since the computational power of computers has increased over the years, it is possible to do
the same amount of work in less time. On the other hand, if we choose to �x the amount of time
available, we can do much more work than previously possible, which should result in better solutions.
Consequently, we expect that both GAs will perform better on faster hardware and a �xed amount of
time.

Hypothesis 10.0.2. Given a constant time limit, both GA-methods will �nd better solutions on
faster hardware.

Given the nature of our algorithm we suspect that if we have su�cient computational power, using
the full-GA method may be preferable to using routing heuristics. The main reason for this is that
heuristics inherently make assumptions regarding the objective function, such as choosing the closest
stop or a stop with the earliest time window. This means that heuristics do not completely follow

34



CHAPTER 10. EXPERIMENTAL SETUP 35

objective functions as the primary method to choose the next stop. On the other hand, we use a
method that relies much more on chance and occasionally uses the objective function to determine
which stop to select next, which means our algorithm pays more attention to the given objectives
which should result in solutions of higher quality.

As our algorithm starts with worse solutions than Jørgensen et al., we can only expect to outperform
their algorithm if we are given enough time to overcome this disadvantage of our algorithm.

Hypothesis 10.0.3. Given su�cient time/computational power, the RIGA will outperform genetic
algorithms using routing heuristics.

10.1 Setting up the experiments

For our experiments we were allowed access to the TU Delft cluster of the Distributed ASCI Super-
computer 4 (DAS-4) which consists of 32 nodes with each node having a dual quad-core processor
(Intel E5620) clocked at 2.4 GHz. Even though our algorithm does not bene�t from multiple cores, it
does enable us to execute benchmarks in parallel.

Before we go into further detail about the experiments, it is important to note that the implemen-
tation by Jørgensen et al. was written in Java, while ours is written in Python. As such, we need to
realize that there may be di�erences between performance due to the di�erent platforms. However,
for our work we assume that the di�erence in performance due to di�erent programming languages is
negligible and that there is no signi�cant di�erence between the technical quality of the implementa-
tions. The source code of Java algorithm was taken from the thesis by Bergvinsdottir[4] and modi�ed
slightly to allow us to measure convergence as well as modifying the termination criterion to support
time limits. As these changes are very small (a few lines of code) and only activated when needed we
can assume that they do not negatively a�ect the performance of their solver.

10.1.1 Problem instances

The 20 problem instances that we use are created by Cordeau et al.[7] using realistic assumptions
regarding time window widths, vehicle capacity, route duration and maximum ride times. These
instances contain between 24 and 144 jobs. Half of this set of problems uses problems with narrow
time windows whereas the other half has wide windows. Furthermore, Cordeau et al. also varied
between the job to vehicle ratio, meaning that our solver is tested for its performance on a number of
di�erent sorts of problems. Finally, because there are a number of authors who have also used these
problems, it makes it somewhat easier for us to compare our results[4, 14, 17].

10.1.2 Algorithm parameters

Before we can commence testing we �rst need to decide on how to con�gure both algorithms. Since
we are mostly interested in whether the full-GA approach is useful or not, as a result, our initial
parameters are nearly the same as those by Jørgensen et al. and are shown displayed in table 10.1 on
the next page.

For our algorithm, there are only three actual parameters to be set (excluding the termination
criterion, as this depends on the experiment), which are as follows:

• Population size (p): This is a rather obvious parameter, for our tests we set it to 50, as this
was also done by Jørgensen et al. and we had little reason to modify it for our initial experiments.



CHAPTER 10. EXPERIMENTAL SETUP 36

We initially used values of over 100 but we found that this resulted in too much slowdown and
no improvement due to the algorithm not being able to perform enough iterations given some
amount of time.

• Local search probability (pls): The probability of executing the best_insertion() function
for a newly created child, in our �rst tests we used pls = 0.01 (or 1%), but after some simple
experiments we found pls = 0.08 to be acceptable (refer to Chapter 14 for a more detailed
discussion of this parameter). While increasing this value should produce better results for the
same amount of iterations, the runtime complexity of O(m2) for the size of the taxi's schedule
m greatly increases the amount of time needed per iteration. So in general we should try to a
value such that we can still reach convergence within the given time.

• Replacement percentile (z): This value denotes the percentile of solutions that risk being
replaced in the current iteration, a value of 0.1 means that the worst 10% of solutions risk being
replaced. Note that this does not mean they will all get replaced, as only one solution is replaced
every iteration. We kept this value low to make sure only the really bad solutions are rejected
while preserving solutions with potential.

Table 10.1: Algorithm parameters - The initial settings for both algorithms. Note that the ones
for our algorithm are mostly based on those used by Jørgensen et al.

Parameter Jørg. JM

Population size 50 50
# Iterations 15000 -a

Mutation prob. 0.01 0.08b

Replacement percentile 0.10 0.10

aDepends on the experiment as it is a termination criterion
bProbability of executing best_insertion()

For our comparison to make any sense it is important that our objective values are measuring the
same units. This means that we have to use the same objective function as Jørgensen et al. The
weights for the objective function discussed in Chapter 5 can be found below.



CHAPTER 10. EXPERIMENTAL SETUP 37

Table 10.2: Objective value weights - We use the same weights as Jørgensen et al. for our experi-
ments. Here n denotes the number of jobs, which means that the last three objectives are proportionally
weighted.

Value Description

w1 8 Customer transportation time
w2 3 Excess ride time
w3 1 Customer waiting time
w4 1 Work time
w5 n Time window violation
w6 n Maximum ride time
w7 n Maximum work time
m 90 Maximum travel time limit per job (1.5 hours)
w 480 Maximum work time per taxi (8 hours)

In the following sections we �rst test whether Hypothesis 10.0.1 on page 34 holds. This requires us
to run our algorithm using time and computational limits comparable to the ones used by Jørgensen
et al. and analyze the �tness values of our solutions.



Chapter 11

Establishing a performance baseline

As stated before, we want to know how our algorithm would perform in the environment used by
Jørgensen et al. to ensure a fair comparison is made. However, since it is not feasible (within the scope
of the project) to replicate the exact environment used by those authors, we found a compromise by
assuming the following conditions:

• Assuming the performance and e�ciency of the Java Virtual Machine (JVM) has only increased
since previous versions, the results we get from running the reference algorithm will not be
signi�cantly worse than those reported.

• Any di�erence in hardware has no e�ect on the quality of the solutions, as Jørgensen et al. use
a �xed limit of 15000 iterations.

• We assume that the di�erence in speed between the JVM and the Python interpreter is either
insigni�cant or in the JVM's favor. Which means that our algorithm should be faster if we
implemented it again in Java.1

Following the conditions stated above, we can see that both the di�erent platforms and newer hardware
only in�uence the running times of the algorithm. Furthermore, since we consider Python to be slower
than Java, our test setup is actually biased towards the Java implementation. So if our algorithm would
outperform the Java solver, we know that our solver would perform even better if it was implemented
in Java.

To establish the performance baseline, we run the Java solver 10 times on each of the benchmark
instances using default settings and note the time needed and the value of the objective function. For
our own solver we do mostly the same (with parameters from 10.1 on page 36), but we limit the time
available for our algorithm to the time needed by the Java code.

Since we only perform 10 runs per benchmark instance, it is important to determine whether any
di�erence in the test results is actually signi�cant or only due to chance. To do so we assume that
result of a solver has a normal distribution with unknown µ and σ2. We would like to know whether the
mean �tness of a solution produced by Jørgensen's solver is signi�cantly di�erent than one produced
by ours. To �nd whether this is true we perform a paired t-test with critical value pcrit = 0.05 and
the null-hypothesis H0i : µJorgi = µJMi for each benchmark instance i and report the p-values found.
The results of this experiment are in Table 11.1 on the following page.

1For more about Java vs Python issues, refer to http://wiki.python.org/moin/LanguageComparisons (Accessed
14-06-2011)

38



CHAPTER 11. ESTABLISHING A PERFORMANCE BASELINE 39

Table 11.1: Basic comparison to Jørgensen's solver - n denotes the number of jobs, m is the
number of vehicles. As can be seen, our algorithm seems to have some di�culty to cope with smaller
problems (n = 24 and once for n = 48). But it does make up for this de�ciency by �nding signi�cantly
better results for larger problems. The time listed is the amount of time needed by the Java solver.

Jørgensen et al. JM

Name n m Time (ms) Objective Objective Ratio p

R1a 24 3 12659 6122 6206 1.01 0.85

R2a 48 5 30855 18285 19518 1.07 0.51

R3a 72 7 56903 61913 26329 0.43 0.00

R4a 96 9 93421 148846 33739 0.23 0.00

R5a 120 11 139133 217676 40228 0.18 0.00

R6a 144 13 199559 414011 51766 0.13 0.00

R7a 36 4 20967 12361 9641 0.78 0.01

R8a 72 6 61240 76042 54143 0.71 0.00

R9a 108 8 121780 343850 191923 0.56 0.00

R10a 144 10 201853 729234 332969 0.46 0.00

R1b 24 3 13277 4388 4731 1.08 0.19

R2b 48 5 31572 15063 10512 0.70 0.01

R3b 72 7 56785 35653 18455 0.52 0.00

R4b 96 9 91934 74236 23000 0.31 0.00

R5b 120 11 137683 129357 26829 0.21 0.00

R6b 144 13 198794 218418 32464 0.15 0.00

R7b 36 4 21240 9385 6993 0.75 0.01

R8b 72 6 61933 54090 26519 0.49 0.00

R9b 108 8 120110 217875 74304 0.34 0.00

R10b 144 10 204994 589682 214800 0.36 0.00

Overall 0.52 0.00

11.1 Basic performance comparison

The most surprising discovery we make is that our algorithm outperforms the Java solver by a signi�-
cant margin on most (larger) problems. This is also somewhat con�rmed in the corresponding p-values
as many of them are very close to 0.00, indicating that it is very improbable to �nd the results we
found if the null-hypothesis holds. As for the objective values themselves, given the great improvement
we see for some instances, we believe that this is mostly due to our crossover operator. Since crossover
is random, it will move a randomly selected vehicle cluster from one solution to another. However,
unlike Jørgensen et al. we do not use a routing heuristic to compute a route by looking at costs of
di�erent stops but instead choose to randomly insert the stops while enforcing feasibility. This means
that our results after a crossover are more diverse in solution quality. However, to compensate for
this we occasionally use our local search procedure to improve on the resulting solution by optimally
reinserting a job into some vehicle. This is di�erent from the regular mutation which is mostly a
random operation.

Given the p-values for the cases where we perform worse, we can claim that the di�erence is not
signi�cant enough to reject the null-hypothesis of µJorgi = µJMi . On the other hand, for all cases



CHAPTER 11. ESTABLISHING A PERFORMANCE BASELINE 40

where we are better the p-values suggest that we can reject the null-hypotheses for those cases and
claim µJMi < µJorgi for the corresponding problem instances.

In any case, we can now argue that Hypothesis 10.0.1 holds partially as we have shown that our
algorithm actually produces solutions that are twice as good (on average) given similar bounds. The
next step is to check whether Hypothesis 10.0.3 also holds, which requires us to determine our optimal
parameters �rst as we are now allowed to tweak our algorithm as much as possible. Before we can �nd
our parameters we �rst need to understand where the improvement in our solutions comes from, this
analysis is presented in the next chapter.



Chapter 12

In-depth analysis of objective values

As our objective values are actually composed of seven subobjectives, we need to look at our �tness
function in more detail if we want to understand where the improved performance comes from.

If we look back at the objective function weights in Table 10.2 on page 37 we see that the most
important factor apart from the ones that are proportionally weighted is traveltime, which is the time
the customers travel in a taxi and has a weight w1 = 8. Clearly, this is the most important subobjective
and small improvements here will bene�t the overall objective value greatly. Given that our solver
sometimes produces solutions with objective values almost a factor ten smaller leads us to believe
that our algorithm somehow manages to �nd solutions that improve the most on the most important
objectives and do worse on the less important ones.

To be able to con�rm whether this idea is correct we need to look at the values of each of the
subobjectives and see where the greatest di�erence can be found, we also use the paired t-test here to
check the signi�cance of the test results.

12.1 Analyzing quality for each of the subobjectives

If we refer to Table 12.1 on the following page we see that our solver produces solutions with waiting
times that are about a hundred times as high as the ones found by Jørgensen et al. However, as the
weight corresponding to the waiting time is only 1, the di�erence does not amount to much in the
resulting solution. The three most important subobjectives (excess ride/work times and time window
violations) are greatly improved upon, which means that most of the improvement could be found
there. Note that while we only performed 10 runs per instance, the p-value of each of the objectives is
near zero, indicating that the perceived di�erences in the average values exist and can be considered
statistically signi�cant for pcrit = 0.05.

Interestingly, both solvers score about the same on transport time and route duration, even though
we suggested that the major improvement was to be found in the transportation times. Furthermore,
the data also shows that almost all of our improvement comes from the three highest weighted sub-
objectives (time window violation and excess of max ride/work time). This also shows that our local
search procedure is capable of �nding good schedules in the long run even though it can theoretically
produce a solution that is worse than its input.

If we look at the values of the various subobjectives for our smaller problems (R1a, R2a and R1b)
we see that most subobjectives are very competitive to the reference values except for the vehicle
waiting time. We suspect that this is due to the way our algorithm begins its computation. As the

41



CHAPTER 12. IN-DEPTH ANALYSIS OF OBJECTIVE VALUES 42

T
a
b
le

1
2
.1
:
B
re
a
k
d
o
w
n
o
f
o
b
je
c
ti
v
e
v
a
lu
e
s
-
T
ra
n
sp
o
rt

d
en
o
te
s
th
e
d
is
ta
n
ce

a
ta
x
i
m
ov
es
.
E
x.

R
id
e
is

th
e
co
m
p
a
ri
so
n

b
et
w
ee
n
o
p
ti
m
a
l
d
is
ta
n
ce

a
n
d
re
a
li
ze
d
d
is
ta
n
ce
.
W
a
it
is
th
e
ti
m
e
a
ve
h
ic
le
sp
en
d
s
w
a
it
in
g
a
t
a
st
op
,
m
u
lt
ip
li
ed

b
y
it
s
cu
rr
en
t

lo
a
d
.
R
o
u
te

is
th
e
ti
m
e
a
ve
h
ic
le
is
a
ct
iv
e.

T
W

vi
o
l.
st
a
n
d
s
fo
r
th
e
a
m
o
u
n
t
o
f
ti
m
e
w
in
d
ow

v
io
la
ti
o
n
s.

E
x.
m
a
x
ri
d
e
a
n
d
E
x.
w
o
rk

a
re

th
e
ex
ce
ss

o
f
m
a
x
im
u
m

ri
d
e
ti
m
e
a
n
d
w
o
rk

ti
m
e.

O
u
r
a
lg
o
ri
th
m

tr
a
d
es

g
re
a
tl
y
in
cr
ea
se
d
w
a
it
in
g
ti
m
e
fo
r
d
ec
re
a
se
d
ri
d
e

ti
m
e,
ti
m
e
w
in
d
ow

v
io
la
ti
o
n
s
a
n
d
ex
ce
ss

o
n
ri
d
e/
w
o
rk

ti
m
es
.
T
h
is
ex
ch
a
n
g
e
d
o
es

n
o
t
se
em

to
w
o
rk

fo
r
sm

a
ll
er

in
st
a
n
ce
s.

W
e
ig
h
ts

8
3

1
1

n
n

n

S
u
b
o
b
je
c
ti
v
e

T
ra
n
s
p
o
rt

E
x
.
R
id
e

W
a
it

R
o
u
te

T
W

v
io
l.

E
x
.
m
a
x
ri
d
e

E
x
.
w
o
rk

P
ro
b
le
m

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

J
ø
rg
.

R
a
ti
o

R
1
a

3
0
6
.0
9

0
.
9
7

5
1
1
.8
5

0
.
7
7

2
8
.6
8

2
7
.8
9

1
0
6
6
.5
8

0
.
8
5

2
5
.3
2

1
.5
2

1
8
.1
0

0
.
0
6

2
.8
7

0
.
0
0

R
2
a

5
3
9
.5
3

1
.0
0

1
3
2
1
.3
9

0
.
9
8

3
8
.1
4

8
1
.4
7

1
9
7
4
.4
7

1
.0
0

1
1
9
.2
0

0
.
8
9

4
7
.3
0

0
.
5
1

1
3
.9
2

0
.
0
0

R
3
a

1
0
3
6
.6
9

0
.
9
8

2
5
6
9
.8
7

0
.
6
3

8
1
.9
1

2
6
.2
4

2
6
8
0
.7
5

1
.0
4

3
7
9
.2
7

0
.
2
9

2
1
7
.1
2

0
.
0
2

0
.0
0

N
a
N

R
4
a

1
2
1
4
.1
7

0
.
9
9

3
8
2
7
.9
2

0
.
5
8

2
2
0
.3
6

1
6
.1
8

3
5
1
4
.1
0

1
.0
4

7
4
9
.7
8

0
.
1
2

5
1
2
.1
9

0
.
0
3

2
7
.0
1

0
.
0
0

R
5
a

1
3
6
5
.0
5

0
.
9
8

4
7
1
0
.4
5

0
.
5
7

2
9
3
.7
6

1
2
.8
9

4
1
2
9
.3
8

1
.0
4

9
2
1
.7
3

0
.
1
1

6
3
2
.6
9

0
.
0
2

0
.0
0

N
a
N

R
6
a

1
7
8
5
.2
0

1
.0
1

6
2
0
4
.7
6

0
.
5
5

3
0
9
.1
1

1
4
.5
0

5
2
0
0
.2
3

1
.0
3

1
4
6
5
.3
9

0
.
0
8

1
0
9
0
.3
5

0
.
0
1

0
.0
0

N
a
N

R
7
a

4
7
3
.9
9

1
.0
0

9
2
5
.9
2

0
.
7
6

9
.7
3

1
1
7
.1
6

1
3
2
2
.5
0

1
.0
4

8
3
.7
6

0
.
3
9

4
0
.1
1

0
.
0
4

2
8
.8
1

0
.
0
0

R
8
a

9
1
0
.2
8

1
.0
0

3
0
4
4
.7
7

0
.
6
4

8
4
.4
7

9
.0
2

2
4
3
5
.2
6

1
.0
1

4
2
6
.2
2

1
.1
3

3
6
0
.5
9

0
.
1
2

5
2
.6
4

0
.
0
0

R
9
a

1
3
0
7
.8
0

0
.
9
6

5
8
5
7
.2
7

0
.
5
2

9
3
.5
6

6
.6
2

3
5
1
4
.3
9

1
.0
0

1
7
8
8
.1
4

0
.
7
9

1
0
7
5
.6
6

0
.
1
4

6
.3
3

0
.
5
3

R
1
0
a

1
7
4
8
.6
5

0
.
9
9

8
6
6
7
.1
8

0
.
5
2

2
6
2
.0
7

4
.4
3

4
7
7
6
.3
9

1
.0
0

2
3
2
7
.8
8

0
.
7
7

2
2
2
2
.3
0

0
.
1
0

2
0
1
.2
4

0
.
3
4

R
1
b

2
8
0
.1
1

0
.
9
9

3
8
7
.3
1

0
.
8
3

0
.5
2

1
3
2
6
.3
9

8
8
7
.8
8

0
.
9
7

1
.5
6

0
.
0
0

2
.4
7

0
.
1
3

2
.8
7

0
.
0
0

R
2
b

5
2
2
.7
0

1
.0
5

9
9
7
.6
3

0
.
9
2

1
7
.3
6

7
5
.5
0

1
5
9
7
.9
0

1
.0
7

1
0
5
.0
1

0
.
0
6

2
5
.6
8

0
.
0
4

1
3
.9
2

0
.
0
0

R
3
b

1
0
1
0
.9
1

0
.
9
9

2
1
4
7
.6
8

0
.
6
6

2
6
.0
3

4
4
.8
4

2
5
3
5
.8
4

1
.0
3

1
0
4
.3
2

0
.
3
0

1
5
3
.4
7

0
.
0
1

0
.0
0

N
a
N

R
4
b

1
2
0
2
.4
9

0
.
9
8

3
2
5
7
.0
4

0
.
6
1

5
8
.4
3

2
4
.0
2

3
2
2
8
.9
4

1
.0
2

2
1
9
.7
2

0
.
0
9

3
1
3
.7
3

0
.
0
3

2
7
.0
1

0
.
0
0

R
5
b

1
3
3
8
.5
9

0
.
9
9

3
9
7
2
.6
8

0
.
5
8

1
2
9
.5
6

2
2
.6
1

4
0
9
7
.9
6

1
.0
2

4
1
2
.4
5

0
.
0
4

4
1
7
.7
5

0
.
0
0

0
.0
0

N
a
N

R
6
b

1
7
7
0
.0
6

0
.
9
9

5
2
5
3
.7
0

0
.
5
1

1
5
1
.3
9

1
8
.3
0

4
9
0
2
.5
0

1
.0
3

7
0
9
.1
1

0
.
0
2

5
5
3
.4
5

0
.
0
0

0
.0
0

N
a
N

R
7
b

4
5
9
.0
5

0
.
9
5

6
8
1
.6
5

0
.
8
0

3
.3
3

1
5
3
.3
0

1
2
2
1
.0
1

1
.0
1

3
1
.2
6

0
.
0
9

3
6
.5
9

0
.
0
0

2
8
.8
1

0
.
0
0

R
8
b

9
3
2
.1
1

0
.
9
9

2
3
5
0
.6
2

0
.
7
2

4
5
.2
0

3
2
.0
8

2
5
2
1
.8
2

1
.0
2

1
9
6
.6
4

0
.
6
6

3
1
4
.5
0

0
.
0
2

5
2
.6
4

0
.
0
5

R
9
b

1
3
4
5
.5
2

0
.
9
9

4
7
1
4
.4
9

0
.
6
6

1
5
3
.9
9

9
.2
0

3
6
2
4
.4
5

1
.0
2

7
2
4
.8
5

0
.
4
6

9
6
4
.0
5

0
.
0
9

6
.3
3

5
.8
9

R
1
0
b

1
7
2
9
.2
2

0
.
9
7

8
1
0
8
.4
1

0
.
5
3

1
5
1
.3
7

6
.0
2

4
7
0
2
.3
1

0
.
9
9

1
5
6
2
.2
6

0
.
6
4

2
0
6
9
.4
7

0
.
1
0

2
0
1
.2
4

0
.
3
5

A
v
e
ra
g
e

1
0
6
3
.9
1

0
.
9
9

3
4
7
5
.6
3

0
.
6
7

1
0
7
.9
5

1
0
1
.
4
3

2
9
9
6
.7
3

1
.
0
1

6
1
7
.6
9

0
.
4
2

5
5
3
.3
8

0
.
0
7

3
3
.2
8

≈
0
.5
1

p
-v
a
lu
e

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0



CHAPTER 12. IN-DEPTH ANALYSIS OF OBJECTIVE VALUES 43

�rst generation consists of randomly generated solutions, it is not strange to see solutions with �tness
values that are a factor 100 or 1000 larger than the �nal ones as all subobjectives have very bad values.
However, since the best_insertion() routine only cares about reducing the objective value, it does not
care where the improvement comes from, this basically means that it is easier to �nd solutions with
lower time window violations and lower excesses of ride/work times.

Note that the routing heuristic by Baugh et al.[3] implicitly assumes several conditions when
selecting stops. For example, sorting the stops based on space-time proximity implies that the algorithm
tries to keep the traveltimes between stops low. Even though this is a good guideline for the selection
process we can imagine that this limits the number of other options we have. Furthermore, focusing so
much on the space-time proximity essentially implies a high preference for keeping the transport and
waiting times low regardless of the objective function, which is only partly so for Jørgensen et al. as
waiting time has a weight of 1.

Since we only call the local search procedure at most once for some selected population member,
it does not come as a surprise to us that our algorithm is relatively slow in �nding good solutions as
it starts with a population of randomly generated solutions. Also, the weights also a�ect the rate at
which each subobjective improves, so for the next experiment we are interested in �nding when our
solutions start to become competitive and how we can tune the parameters for the best performance.



Chapter 13

Algorithm parameters and convergence

As we now know that the strongest point of our algorithm is its ability to greatly reduce ride time
and time window violation at the cost of (mostly) waiting time, we are interested in �nding out how
much computation is needed for this. As we start out with a population that is completely random
(excluding the times when local search is applied), we can be certain that our solutions will be very
bad in comparison to algorithms that use routing heuristics when the algorithm is just getting started.

However, since heuristics work by limiting the search space in a smart manner, one cannot escape
the inevitability of not �nding good solutions because they do not conform to the way the heuristic
operates (Baugh's space-time-algorithm[3] seems to miss the possibility of trading waiting time for
ride time). This is not a problem when the problem is relatively small, since the heuristic should �nd
(near) optimal solutions as long as it is given enough time and some sort of diversity operator is used.
But when problems become even larger, we see that the routing heuristic cannot �nd better solutions
(as far as the �tness function is concerned) while our GA approach is able to.

The goal of this chapter is to discuss how we can to tune the parameters such that we can �nd
better solutions given some amount of time (more improvement per time unit). Since this goal is
time related, improving the performance of the written Python code can also lead to improvements.
However, optimizing Python code is outside the scope of our project and as such we focus on the
parameters.

13.1 E�ects of parameters on time

As stated earlier there are four relevant parameters to be optimized, namely: population size, number
of iterations, local search probability and the replacement percentile. Obviously, each parameter has a
di�erent e�ect on how much more or less time the algorithm needs as the runtime complexity of each
of the a�ected components is not the same. In this section we discuss how each of the parameters
a�ects the runtime and solution quality.

Population size

The e�ect of the population size on the runtime can be considered to be mostly linear because the
amount of work needed per unit population size is more or less �xed (it depends on other parameters).
This means that it is relatively cheap to increase the population, but also means that we can expect
little improvement from modifying our initial value of 50. This suspicion is also strengthened by the

44



CHAPTER 13. ALGORITHM PARAMETERS AND CONVERGENCE 45

fact that increasing this value means the algorithm needs more time per iteration, which results in the
algorithm being able to run less iterations. Of course we cannot set the population size too small as
this will result in a very fast convergence to a very bad solution, so the idea is to �nd the smallest
population size that still results in the good solutions.

As the optimal size of the population also depends on the size of the problem itself, we would rather
have the algorithm �gure this value out for itself during execution. However, as such procedure would
still be a heuristic and would require parameters of its own, we choose to �nd a �xed value for the
population size that works well for all benchmark problems.

Termination criterion/number of iterations

We should note here that the number of iterations is actually a termination criterion, determining
when the algorithm should stop. However, we can imagine there are many possible ways to determine
when to stop, but because of following reasons we decide to stop after a certain amount of time has
passed, which turns this parameter into a time limit:

• One of the important characteristics of the dynamic dial-a-ride problem is the addition of limits
on time available for computation. Depending on the policy of the taxi company as well as the
load it may be very well necessary to compute a new schedule every t time units. So choosing
a time limit as termination criterion will make it easier to adapt the algorithm for the dynamic
problem.

• If we use a termination criterion based on the quality of the elite solution, we need a heuristic that
determines when further improvement is unlikely. Since we are more concerced with clustering
and routing, we feel that �nding a good heuristic is outside the scope of this project.

• Even though we could limit our algorithm to a �xed number of iterations like Jørgensen et al. did,
we believe that this method is not very useful for us. Since the speed of computer systems is
always increasing, newer computers will be able to perform more iterations per time unit. As
such, it is more useful (from a practical point of view) to look at the performance given some
amount of time on some computer system. Also, using a time limit also has the added advantage
that if we have a faster system, we are almost always guaranteed a better solution due to the
fact that the faster system could run more iterations while we do not need to modify anything.
Obviously, if we are happy with the current results, we can always reduce the time limit when
running the solver on a future system.

Considering the usage of the algorithm in a dynamic setting, added complexity by �nding good stopping
moments and the usage policies of the DAS-4 super computer, we decide to use a 15 minute time limit.
We acknowledge that this might be too much time to be of use in the dynamic setting, but we have to
note that much of the time our algorithm needs can be saved if we �x certain aspects of a solution for
future iterations (which is possible when dealing with the dynamic problem). Finally, if we consider
the time we needed for each of the benchmark instances in the previous experiments we think that 15
minutes is more than enough time for both solvers to converge.

Local search probability

As our local search procedure is the most responsible for the quality of our results, the variable
governing when this routine is started is very important. We suspect that altering this variable has a



CHAPTER 13. ALGORITHM PARAMETERS AND CONVERGENCE 46

great in�uence on the running time, as its complexity of O(m2) with m being the size of a vehicle's
schedule can be near O(n2) as the number of taxis becomes less. On the other hand, increasing
this variable should also have a very positive e�ect on the solution quality, as this means that more
iterations will produce a local search improved result.

As stated earlier, we would like to increase this variable as much as possible given our time limit,
meaning that we have to �nd the highest value that still allows convergence. To reduce the amount
of work, testing on the largest instance and smallest instance should be su�cient, as the algorithm
should perform similarly for the other instances.

Hypothesis 13.1.1. If we modify the local search probability, the results found by the algorithm for
the largest and smallest problem instances are representative for the results of the entire population.

We will not test whether hypothesis holds because of obvious reasons, so this should be veri�ed in
future work.

Replacement percentile

In each iteration we select one element to be replaced, this element is selected from the worst few
solutions in the population. The number of worst solutions we consider depends on the value of the
replacement percentile z. This value was set to 0.10 in our previous tests, which means that one of
the elements in the worst 10% of the population is replaced.

Note that decreasing or increasing this value has no signi�cant e�ect on the running time of the
algorithm, but will result in the algorithm becoming very protective of the existing population or almost
random with respect to choosing which element is replaced. However, we suspect that increasing this
parameter results in slightly better solutions due to the increased diversity while decreasing it will
make the algorithm converge slightly faster. Our overall hypothesis is that modifying this variable will
not yield any signi�cant changes results.

Hypothesis 13.1.2. Modifying z will not result in signi�cant positive results but may result in very
bad results

13.2 Convergence for the default settings

In this section we discuss the results we achieved while testing how fast our algorithm converges while
using the default settings as described in Table 10.1 on page 36. However, as mentioned in the previous
section, the parameter for the number of iterations is changed into a time limit of 15 minutes. Also,
in addition to taking the average of our 10 runs per instance, we also select the best result of both
solvers.

The goal of this experiment is to provide a baseline to compare further experiments with changed
parameters, to determine which algorithm produces the best solution when given more than enough
time and hopefully show us why our algorithm performs somewhat worse for small problems.

Given the results from our previous tests, we are fairly certain that our algorithm will still have
better solutions as the solver by Jørgensen et al. was already tested using their optimal settings while
our solver used somewhat arbitrary parameters. Basically, we hope to show that Hypothesis 10.0.3 on
page 35 holds even when we are using sub-optimal settings.

As far as the performance on small problems is concerned, we already expressed in previous sections
that this is probably due to lack of time, which means that in the following experiments we should see



CHAPTER 13. ALGORITHM PARAMETERS AND CONVERGENCE 47

improvements comparable to those found for larger problems. The data regarding this experiment is
shown below and graphs for the best and worst cases can be found in the Appendix on page 71. The
graphs of the two most interesting cases are also shown below to illustrate the e�ect of problem sizes
on the convergence.

Table 13.1: Convergence after 15 minutes - After convergence our solver performs better for all
instances, although the di�erence for small problems is much less than larger instances. Note that the
overall ratio (average of all ratios) has dropped from 0.52 to 0.42, which means the di�erence between
the two solvers actually increased slightly. The p-value for R2a and R2b are above the critical value,
indicating that the null-thesis of µJorgi = µJMi cannot be rejected. The value of Ratio (best) indicates
the ratio between the best solutions of both solvers.

Jørgensen et al. JM
Name n m Average Best Average Best Ratio (all) Ratio (best) p (all)

R1a 24 3 4977 4271 4229 3905 0.85 0.91 0.00
R2a 48 5 12933 10152 11165 9598 0.86 0.95 0.11
R3a 72 7 45271 24804 13620 13144 0.30 0.53 0.00
R4a 96 9 72411 46957 16464 15162 0.23 0.32 0.00
R5a 120 11 97356 70611 19515 18445 0.20 0.26 0.00
R6a 144 13 217624 183787 24740 24055 0.11 0.13 0.00
R7a 36 4 8518 7069 6364 6000 0.75 0.85 0.00
R8a 72 6 59226 41219 15324 12726 0.26 0.31 0.00
R9a 108 8 239824 195738 52309 37038 0.22 0.19 0.00
R10a 144 10 485267 394907 54542 38731 0.11 0.10 0.00
R1b 24 3 3816 3724 3662 3465 0.96 0.93 0.08
R2b 48 5 9663 7398 6606 6125 0.68 0.83 0.00
R3b 72 7 17648 14422 11593 11148 0.66 0.77 0.00
R4b 96 9 36846 22489 14205 13504 0.39 0.60 0.00
R5b 120 11 80476 40093 16940 15965 0.21 0.40 0.00
R6b 144 13 112640 74104 21005 20160 0.19 0.27 0.00
R7b 36 4 6602 5607 5527 5120 0.84 0.91 0.00
R8b 72 6 32746 16165 11704 10919 0.36 0.68 0.00
R9b 108 8 129361 96162 16650 15992 0.13 0.17 0.00
R10b 144 10 416621 300703 34839 28744 0.08 0.10 0.00

Overall 0.42 0.51 0.00



CHAPTER 13. ALGORITHM PARAMETERS AND CONVERGENCE 48

Figure 13.1: Comparing the worst and best results - In our worst result (left) it can be seen
that our algorithm starts of very bad (which is expected), but fails to converge to a better solution
whereas the solver by Jørgensen et al. starts o� signi�cantly better. In the second example it is more
obvious that our algorithm starts with very bad solutions (several orders of magnitude), but starts
�nding competitive solutions after about 25% of the time available has passed while the remaining
time is used to increase the widen the gap before eventually converging.

 0

 50000

 100000

 150000

 200000

 0  20000  40000  60000  80000  100000  120000  140000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R2a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0  10000  20000  30000  40000  50000  60000  70000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R10b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

It can be seen that the results of this experiment are similar to our baseline results, as the overall
di�erence between the two is only about 10%. However, we now outperform the algorithm by Jørgensen
et al. on all instances even though the relatively worse performance is still visible. This seems to suggest
that both algorithms do not seem to be able to �nd anything signi�cantly better than they did in the
performance baseline experiments. Interestingly, for the instances R2a and R1b we cannot reject the
null-hypothesis µJorgi = µJMi

, which may mean that the results of the two algorithms are more or
less equal in terms of objective value for those two problems.

Another interesting observation is that the average ratio between the best results is higher than
the ratio over all results, this means that the results by Jørgensen et al. are more diverse than ours.

Strangely, there are some occasions where our solver actually manages to perform more iterations
than the other solver, this is particularly the case for problems R6a and R6b, which are large instances
with a higher number of vehicles. We suspect this may be due to the job/vehicle ratio of 144

13 , as
our local search is exhaustive whereas the routing strategy by Baugh et al.[3] is a heuristic that only
considers a few locations when choosing the next stop.

When we refer to Figure 13.1, we see that our suspicions about very bad starts are con�rmed as
we start with solutions that are several orders of magnitude worse for large problems. On the other
hand, after a small amount of time our algorithm outperforms the other solver (either by a lot or
just barely), which means our algorithm seems to be pro�ting from the extra diversity the crossover
operator provides. As can be seen above, the routing heuristic cleary performs best for quite a while
(at least a few thousand iterations). When dealing with a small problem the routing heuristic seems
quite adequate in �nding a good solution fast. However, for the larger problems it is evident that the
routing heuristic converges to a rather suboptimal solution in comparison to our algorithm. It has to
be noted that we can also see that our method is more computationally intensive, as we can perform
less iterations in the same time (refer to the other graphs in the Appendix).

The graph also shows that convergence takes only about two-thirds of the time allocated to the
algorithm, this is more or less the case for both the best and worse result. We can imagine that if



CHAPTER 13. ALGORITHM PARAMETERS AND CONVERGENCE 49

convergence always occurs at this place, we could try to spend the time more usefully by performing
more local search iterations (more improvements per iteration), larger populations (more diversity,
lower point of convergence) or a combination of both.

Another possible way of improving our algorithm is by running it multiple times in succession, as
can be seen in the graph for problem R2a, our algorithm converges very fast given the time limit.
We could improve its performance by restarting the algorithm (generating a completely new random
population) a couple of times to �nd alternative results and can return the best solution amongst
them. However, seeing as that this method is not applicable for all instances we do not implement this
idea.



Chapter 14

Balancing local search and population size

Given the e�ects of population size p and local search probability pls on the runtime as well as the
solution quality it is important to �nd good values for both. Note that from our previous experiments
it shows that the default settings are already quite good, but we cannot rule out that there are
possibilities left for further improvement.

In this subsection we perform simple experiments to empirically �nd better values for the local
search probability and the population size. When we have found such values, we continue by testing
di�erent values for the replacement percentile. The reason for this setup is because p and pls are also
the most important ones, whereas we consider the replacement percentile z to be not as important.

For the �rst part of our experiments we de�ne a set P = {30, 40, 50, 55, 60, 65} and
Pls = {0.04, 0.08, 0.12, 0.16}. We solve instances R2a and R10a �ve times for 15 minutes on each
combination of the values in P and Pls and determine whether they improve or worsen. The value
of z is kept constant to its default value of 0.10 for this part as it is not an important variable. We
expect that the settings with higher pls show the most promise as the local search routine a�ects the
solution quality a lot. However, we suspect that no signi�cantly better results will be found due to
the fact that there is not a lot of time left after convergence for larger problems.

Hypothesis 14.0.1. Due to the balancing e�ect of the local search probability and population size
we cannot �nd signi�cantly better results, although we can �nd signi�cantly worse ones.

In the second part we test the less important parameter z on any interesting settings to see whether
this parameter does make a di�erence. The reason why we choose to test the settings only on two
problems at is stage is due to the great amount of computation needed if we were to test every problem
for each setting, instead we try to �nd the best settings for these particular problems. As one of the
tested problems is one of the largest, we do not expect other problems to have problems due to a
smaller population if the tested problem has none. Similarily, we do not expect that changing the
value of pls will a�ect other problems too negatively if it does not do so for the larger problem.

14.1 Initial testing of new parameters

As can be seen in the table below the results show that no signi�cant improvements can be found,
con�rming Hypothesis 14.0.1. There are only two settings that seem to improve a the results a little bit.
So we can conclude this part of the testing with the notion that our values for p and pls are quite good
already. The only two other settings that seem useful are p = 40, pls = 0.12 and p = 40, pls = 0.16,

50



CHAPTER 14. BALANCING LOCAL SEARCH AND POPULATION SIZE 51

although more testing is necessary to see whether this di�erence is statistically signi�cant. However,
since the improvement is only a mere 2% it does not really matter for our previous results.

Table 14.1: Initial testing of new parameters - Comparing the results of the new settings to the
reference setting of 0.08 and 50. Each setting was tested �ve times on problems R2a and R10a. The
values in the table are average ratios. Note that all settings produce comparable results, although
there are 2 settings that perform 2% better than the default. The time limit was set to 15 minutes.

p\pls 0.04 0.08 0.12 0.16

20 1.14 1.04 1.12 1.15
30 1.01 1.20 1.08 1.03
40 1.07 1.01 0.98 0.98
50 1.16 1.00 1.02 1.08
55 1.07 1.12 1.10 1.12
60 1.09 1.07 1.04 1.05
65 1.09 1.03 1.10 1.04

14.2 Modifying the z-value

As we have seen that no signi�cant improvements can be found for p and pls we think that modifying
z will not yield any signi�cantly change. The most important reason is that the speed of the algorithm
is hardly changed as the algorithm only has to check the �tness value of a few more solutions. In
our algorithm this procedure only computes this value once for every solutions as it caches it after
computation. Therefore we only need to do very few extra computations if z increases. We tested
the initial settings p = 50, pls = 0.08 on Z = {0.02, 0.05, 0.10, 0.25, 0.50, 0.98, 1.00} by solving R2a and
R10a �ve times each. This yielded the following results:

Table 14.2: Experimenting with z - Comparing the results of the new settings to the reference
setting of pls = 0.08 and p = 50. Each setting was tested �ve times on problems R2a and R10a. The
values in the table are average ratios. Surprisingly, it seems that decreasing z does not worsen the
solution quality but may even improve them (R10a with z = 0.05). Furthermore, setting z = 1 is a
very bad idea as one is practically guaranteed a very bad solution. Time limits were set to 15 minutes.
The columns su�xed with *-p are the p-values that were calculated using the reference values.

z\Problem R2a R2a-p R10a R10a-p

0.02 0.90 0.26 0.90 0.44
0.05 0.93 0.31 0.74 0.03
0.10 1.00 - 1.00 -
0.25 1.04 0.54 1.20 0.18
0.50 0.83 0.10 1.02 0.90
0.98 8.83 0.00 43.54 0.00
1.00 25.20 0.00 102.78 0.00

Surprisingly, the results show that z = 0.05 may be a very interesting parameter to test as it
does not seem to decrease the solution quality but may very well improve it signi�cantly in some



CHAPTER 14. BALANCING LOCAL SEARCH AND POPULATION SIZE 52

cases (26%). Even more surprisingly, the corresponding p-value is below the critical value, indicating
that the di�erence is actually signi�cant. Note that setting z very high is detrimental to the solution
quality as we now have disabled elitism. To test whether the improvement found also happens for other
instances we simply run the algorithm again on all problems for setting p = 50, pls = 0.08, z = 0.05.
The results of this test can be found below.

Table 14.3: Experimenting with z - Running every instance ten times 15 minutes for p = 50, pls =
0.08 and z = 0.05 yielded the following results. Unfortunately, the results of the previous experiment
were not conclusive and it can be seen that the new z-value is not a good idea as the average ratio
is 1.03. Interestingly, the p-values for R3a, R8a and R1b are relatively low. The overall p-value is
indicates these results may be insigni�cant.

Name n m z = 0.10 z = 0.05 Ratio p-value

R1a 24 3 4229 4341 1.03 0.31
R2a 48 5 11165 11877 1.06 0.22
R3a 72 7 13620 14273 1.05 0.04
R4a 96 9 16464 16472 1.00 0.98
R5a 120 11 19515 19771 1.01 0.61
R6a 144 13 24740 24848 1.00 0.76
R7a 36 4 6364 6436 1.01 0.48
R8a 72 6 15324 18549 1.21 0.04
R9a 108 8 52309 52803 1.01 0.91
R10a 144 10 54542 53028 0.97 0.77
R1b 24 3 3662 3841 1.05 0.06
R2b 48 5 6606 6572 0.99 0.81
R3b 72 7 11593 11593 1.00 1.00
R4b 96 9 14205 14209 1.00 0.99
R5b 120 11 16940 16873 1.00 0.85
R6b 144 13 21005 20959 1.00 0.75
R7b 36 4 5527 5604 1.01 0.47
R8b 72 6 11704 11644 0.99 0.81
R9b 108 8 16650 16687 1.00 0.87
R10b 144 10 34839 38832 1.11 0.31

Average ratio/p-value 1.03 0.29

14.3 Conclusion

From Table 14.3 it can be seen that the results are both insigni�cant and worse than the reference
values. Furthermore, R10a performs the best here, showing a 3% improvement. We can conclude that
Hypothesis 13.1.2 indeed holds with the exception of z = 1.00, which basically negates anything the
local search/crossover does as any element of the population can be replaced regardless of quality.



Chapter 15

Comparison to variable neighborhood search

As we have now shown that our algorithm indeed outperforms the algorithm by Jørgensen et al.[14]
and that we cannot �nd any signi�cant improvement by tweaking the parameters p, pls and z, we
would now like to see how our algorithm compares to the results by Parragh et al.[17], who claim
an improvement of 71%. As we could not �nd the source code for their algorithm we could not
make a detailed comparison as we did for Jørgensen et al. However, we can make a simple threeway
comparison between the results available to see how good our improvements really are. The results of
the comparison are below:

53



CHAPTER 15. COMPARISON TO VARIABLE NEIGHBORHOOD SEARCH 54

Table 15.1: Threeway comparison of results - Results of Jørgensen et al. and Parragh et al. were
averaged over 5 runs and are taking from the paper by Parragh et al.[17] Our results are averaged over
10 runs. All CPU times are listed in minutes. It can be seen that of the results listed, Parragh et
al. perform even better than we do. Note that the CPU times were found on di�erent systems. Since
time window constraints are considered hard by Parragh et al. their objective values are naturally
much lower. The scores of our algorithm after the 15 minute convergence test are also posted as a
reference.

Jørgensen JM (norm.) Parragh JM (15min) Jørg. CPUa Parr. CPUb JM. CPUc

R1a 4696 6206 3234 4229 5.57 2.70 0.21
R2a 19426 19518 14640 11165 11.43 5.16 0.51
R3a 65306 26329 15969 13620 21.58 6.38 0.95
R5a 213420 40228 23852 19515 58.23 13.93 2.32
R9a 333283 191923 13806 52309 40.78 33.53 2.03
R10a 740890 332969 25016 54542 65.98 40.27 3.36
R1b 4762 4731 2825 3662 5.46 3.78 0.22
R2b 13580 10512 5003 6606 11.72 8.29 0.53
R5b 98111 26829 12360 16940 58.93 23.19 2.29
R6b 185169 32464 16499 21005 81.23 26.39 3.31
R7b 9169 6993 4601 5527 8.29 4.49 0.35
R9b 167709 74304 13412 16650 44.66 30.32 2.00
R10b 474758 214800 16420 34839 66.41 51.81 3.42

Avg 179252 75984 12895 20046 36.94 19.25 1.65
Ratiod 1 0.60 0.28 0.33

aIntel Celeron 2.00 GHz
bIntel Pentium D 3.20 GHz
cIntel Xeon E5620 (1 core at 2.40GHz), normalized to Jørgensen et al. and used as termination criterion
dAverage of the average ratios in comparison to Jørgensen et al.

From the results we can see that our solver does not even come close to the results by Parragh
et al. if we used the normalized time limits as termination condition. However, for three problem
instances we are able to produce a better solution if we use a 15 minute time limit. As we do not know
the relative performance between our system and the one used by Parragh et al. it is very di�cult
to say which algorithm is better. This is further complicated by the Hyper-Threading technology
used in both the Pentium D and the Xeon processor, which improves performance by doing more
computations in parallel, for example, the dual Xeon setup reports 16 logical processors, indicating
that Hyper-Threading is used. To be able to say something more about the performance di�erence
we compare the reported scores for two di�erent benchmarks, which can be seen below. If we were to
look at CPU performance instead of single core performance we can see that our system outperforms
a generic Celeron processor by a factor 18 if we are using the Geekbench scores. A very useful feature
of these scores is that they are linear, so a processor with score 2x is twice as fast as another processor
with score x. However, this seems to con�ict with our results because one core of the Xeon processor
is about 22 times faster than the Celeron system according to our experiments. Depending on the way
we calculate the performance of one core we can estimate that our system is somewhere between 1.4
(Geekbench) to 3 (CPU Mark) times faster than the Pentium D system.



CHAPTER 15. COMPARISON TO VARIABLE NEIGHBORHOOD SEARCH 55

Table 15.2: Performance comparison of the systems used - Comparing CPU core performance
becomes even more di�cult as we need to decide how to handle threading.

System Clock #Cores #Threads CPU Marka Geekbenchb

Intel Celeron 2.00 1 1 233 600
Intel Pentium D (assuming 940) 3.20 2 4 892 1947

2x Intel Xeon E5620 2.40 8 16 ≈ 2× 5113c 11081d

aRefer to http://www.cpubenchmark.net/cpu_list.php (Accessed on 19-07-2011)
bRefer to http://www.primatelabs.ca/geekbench/pc-benchmarks/ and http://browse.geekbench.ca/ for more in-

formation on Geekbench scores (Both accessed 19-07-2011).
cThere was only data available for one Xeon processor, we estimate a dual CPU setup to be about twice as fast
dReal value, calculated on the DAS-4 cluster, average of 10 runs

As far as the objective values are concerned, Parragh et al. are able to �nd solutions where none
of the time windows, maximum ride times and maximum work times are violated. Interestingly,
Table 12.1 on page 42 shows that we also manage to reduce the amount of violations close to zero at
the cost of increased customer waiting time. Regardless of the time used, our results are actually quite
competitive to the ones of Parragh et al. in many occasions even though they seem to outperform our
solver signi�cantly on the largest instances. Obviously, since they only posted their results on a subset
of all available problem instances we cannot say what the results would be for all problems.



Part V

Conclusion and future work

56



Chapter 16

Conclusion

In this part we brie�y summarize the work we have done and discuss some topics for future work.
This chapter begins with a summary of characteristics of the RIGA, followed by a discussion on how
it performs in comparison to other solvers.

In this thesis we have presented the Random Insertion Genetic Algorithm (RIGA) for the static
dial-a-ride problem with time windows, its main characteristics are as follows:

• The RIGA does not use routing heuristics to determine routes, but relies on the GA to �nd good
solutions, this greatly simpli�es the routing step.

• Even though the RIGA uses the cluster-�rst-route-second strategy, it deviates from other im-
plementations as it lets the GA solve the whole dial-a-ride problem and not just the clustering
part.

• There are very few parameters that need to be set, making it easy to run the algorithm on a
problem. Furthermore, the few parameters that need to be set have no signi�cant e�ect on the
results, so as long as they are not set very badly, setting them suboptimally will not in�uence
the results signi�cantly.

• The algorithm of the RIGA is very simple as it is mostly a general genetic algorithm with one
local search procedure, this makes it very easy to adapt it to other situations or variants of the
DARP.

The RIGA signi�cantly outperforms the solver by Jørgensen et al.[14] on almost all problem instances
introduced by Cordeau et al.[7] We have argued that the space-time routing heuristic by Baugh et
al.[3] is not always a good choice due to its bias towards minimizing travel and waiting times (hence,
space-time) and that a randomized approach that focuses on the objective value can actually �nd
much better results (even more so if the problem is large). However, the routing heuristic is still a
better choice if one wants solutions very fast (within 5 minutes or so) as the RIGA starts with worse
solutions and needs some time to catch up. This means that for situations where less than 5 minutes
are available the algorithm by Jørgensen et al. may be a better choice. However, in other situations
our algorithm is a good replacement for the algorithm by Jørgensen et al.

Upon inspection of the solution quality we saw that our algorithm is especially bene�cial if time
window violations and excess ride/work times are important, as they are signi�cantly improved upon.
It also showed that our solver improves (lower objective values) on Jørgensen's results by a factor 0.52

57



CHAPTER 16. CONCLUSION 58

when using normalized time limits and by factor 0.42 when using a time limit of 15 minutes on the
DAS4 supercomputer.

Finally, we compared our results to the ones found by Parragh et al.[17] and saw that (with some
exceptions) the results are comparable, although we cannot say anything about whether the comparison
is completely fair or not.



Chapter 17

Future work

Many interesting elements of our algorithm and solver have been left unexplored. This chapter lists
some ideas that could be used to further improve upon the RIGA.

Firstly, a better comparison to the algorithm by Parragh et al. would be very educational, as their
idea of temporarily allowing violated time constraints as long as the �nal solution does not have them
is very interesting and we would like to see if we could implement that feature as well. Obviously
it is also interesting to see how the RIGA fares against other algorithms under fair circumstances as
this helps us identifying other possible ways of improvement. However, if we want to do so it will be
necessary to have access to the source code of their algorithm.

Secondly, we introduced a number of unveri�ed hypotheses in our thesis regarding some design
choices of our algorithm such as the implementation of the best insertion and e�ects of parameters on
solution quality. We are interested in con�rming or rejecting these claims as they allow us to optimize
our algorithm even more. However, this requires us to run a signi�cant amount of experiments so we
could not perform them in this thesis.

As stated in the problem de�nition, our ultimate goal is to solve the dynamic dial-a-ride problem.
If we want to do so by using the algorithm we presented we need to account for several more issues:

• Pareto optimality - Even though we deal with multiple objectives in our work, we are of
the opinion that using Pareto optimality is a more elegant way of solving the DARPTW and
especially the DDARPTW. Given the nature of Pareto optimality it is very appropriate to use
genetic algorithms as they can easily produce the multiple solutions needed to populate the
Pareto frontier.

• Incremental solutions - As a schedule is executed by the drivers, parts of the solution will
become locked in the sense that they cannot be modi�ed or removed.

• Event handling - As explained in Section 4.5, we need to react on each of the events that were
discussed by modifying the problem and/or the solution.

• Performance - Since we do not know when the next event will come in, we must have a new
solution ready whenever one is needed, which gets increasingly more di�cult as problems become
larger.

In the following subsections we will go into more detail about each of these issues and suggest possible
solutions.

59



CHAPTER 17. FUTURE WORK 60

17.1 Pareto optimality

As mentioned in our thesis, there is not much existing work on the combination of Pareto optimality,
genetic algorithms (that encode the entire solution) and the dynamic dial-a-ride problem. We believe
that Pareto optimality is essential to sole the dial-a-ride problem elegantly, as it provides a better way
to handle the non-commensurable objectives. Because quality is very hard to measure and is usually
composed of several non-commensurable subobjectives, it is di�cult to de�ne a good objective function
that uses a weighted sum approach. Another argument for using genetic algorithms is that they are
very suited for problems that use Pareto optimality as they already maintain a whole population of
solutions during each iteration. This makes it much easier to select elements from the Pareto front.

As we have performed some undocumented experiments on adding Pareto-optimality to RIGA using
parts from the NSGA-II algorithm by Deb et al.[8], we saw that performance signi�cantly degrades as
non-dominated-sorting and maintaining Pareto fronts is a very computationally intensive task. This
means that the speed of the algorithm becomes even more important if we are to solve the dynamic
variant which places more time constraints on the solver. A less complicated subject for future work
would be to test our algorith on di�erent (weighted sum) objective functions to see how it performs
when time window violations and excess ride/work times are not as important.

17.2 Incremental solutions

Since events cause the problem itself to change, the solution to the problem has to change accordingly.
However, if we assume that the change is small it is not very e�cient to compute a new solution from
scratch. Insertion heuristics are a logical way to build solutions incrementally as they insert the new
information into some previous solution. Even though we can simply restart the whole computation
when new information is available, we think that that time could be spent in better ways instead of
redoing mostly old computations. Therefore, investigating how to add some insertion-heuristic-like
qualities to our algorithm is certainly interesting.

Some additional background information on the dynamic dial-a-ride problem is discussed by Larsen
et al.[2], who discuss dynamism in more detail and provide a metric to measure how dynamic a problem
is. We imagine that this may be used to solve certain parts of a problem instance using other algorithms
depending on the level of dynamism.

We do have to note that insertion heuristics may not even be necessary, as the insertion algorithm
presented in Subsection 9.1 can be easily adapted to lock a portion of the solution by letting si be the
last stop of the locked portion of the solution. This means that the insertion itself becomes much faster
as less values of si (and by extension sk) need to be evaluated. This is a rather simple modi�cation,
but may provide just enough performance improvement to make the RIGA competitive for dynamic
problems. However, deciding how to implement the procedure to mark part of a solution as immutable
will require much thought, as the algorithm needs to decide when a stop within a schedule may not
be changed anymore.

17.3 Event handling

Xiang et al.[20] provide a framework for the dynamic dial-a-ride problem that uses an event-driven
approach. We also believe that an event-driven approach is appropriate given the nature of the dynamic
variant. The idea of dealing with events is quite simple. For example, if a customer cancels his job, the
algorithm can remove the job from its schedules and recompute schedules. Similarly, if a vehicle breaks



CHAPTER 17. FUTURE WORK 61

down all customers who were on board will have their jobs cancelled and new jobs will be created with
the break down location as the pickup stop.

17.4 Performance

We suspect that by carefully applying unbiased (insertion) heuristics it should be possible to create a
genetic algorithm that can handle events more quickly. Furthermore, another way to determine the
initial population may be necessary, as the solutions in the initial population are often many orders
of magnitude worse than the �nal solution, so much time can be saved if we can start with a more
reasonable population. These improvements are necessary as we have seen that improving the solution
quality using parameter tweaking alone is very di�cult.

However, as we have also discussed in Chapter 10, we are already assured of improved solution
quality given a constant time limit as hardware improves, so if we can develop a faster algorithm
we have good hopes of being able to solve all the issues (dynamism, Pareto optimality) that were
presented.



Bibliography

[1] Alberto Colorni and Giovanni Righini. Modeling and optimizing dynamic dial-a-ride problems.
International Transactions in Operational Research, 8(2):155�166, 30 June 2000.

[2] Allan Larsen, Oli B.G. Madsen, and Marius M. Solomon. Dynamic Fleet Management, chapter
Classi�cation Of Dynamic Vehicle Routing Systems, pages 19�40. Springer US, 5 October 2007.

[3] John W. Baugh, Gopala Krishna Reddy Kakivaya, and John R. Stone. Intractability of the
Dial-a-Ride Problem and a Multiobjective Solution using Simulated Annealing. Engineering Op-
timization, 1998.

[4] K.B. Bergvinsdottir. The Genetic Algorithm for solving the Dial-a-Ride Problem. Master's thesis,
Informatics and Mathematical Modelling, Technical University of Denmark, April 2004.

[5] Ralf Borndörfer, Martin Grötschel, Fridolin Klostermeier, and Christian Küttner. Telebus Berlin:
Vehicle Scheduling in a Dial-a-Ride System. In Nigel H. M. Wilson, editor, Computer-aided
transit scheduling. Proceedings, Cambridge, MA, USA, August 1997, volume 471, pages 391�422.
Springer, 1999.

[6] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary Algorithms
for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[7] Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579 � 594, 2003.

[8] Kalyanmoy D. Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm : NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182�
197, April 2002.

[9] Dusan Teodorovic and Gordana Radivojevic. A fuzzy logic approach to dynamic dial-a-ride
problem. Fuzzy Sets Systems, 116(1):23�33, 2000.

[10] Elian Swinkels; Jurgen Visser; Matthijs de Gier. De kwaliteit in het contractvervoer. Technical
report, TNS Consult, 22 February 2010.

[11] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research, 144(2):379 � 396, 2003.

62



BIBLIOGRAPHY 63

[12] Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N. Psaraftis, and Nigel H. M. Wilson. A heuristic algo-
rithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transportation
Research Part B: Methodological, 20(3):243 � 257, 1986.

[13] Jean-François Cordeau and Gilbert Laporte. The Dial-a-Ride Problem (DARP): Variants, mod-
eling issues and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2):89�101, 1
August 2002.

[14] R. M. Jørgensen, J. Larsen, and K. B. Bergvinsdottir. Solving the dial-a-ride problem using
genetic algorithms. The journal of the Operational Research Society, 58:1321�1331, 2007.

[15] Oli B.G. Madsen, Hans F. Ravn, and Jens Moberg Rygaard. A heuristic algorithm for a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals of Operations
Research, 60(1):193�208, 1995.

[16] Julie Paquette, Jean-François Cordeau, and Gilbert Laporte. Quality of service in dial-a-ride
operations. Computers and Industrial Engineering, 56(4):1721 � 1734, 2009.

[17] Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl. Variable neighborhood search for the
dial-a-ride problem. Computers and Operations Research, 37(6):1129 � 1138, 2010.

[18] Sophie N. Parragh, Karl F. Doerner, Richard F. Hartl, and Xavier Gandibleux. A heuristic two-
phase solution approach for the multi-objective dial-a-ride problem. Netw., 54:227�242, December
2009.

[19] Francisco B. Pereira, Jorge Tavares, Penousal Machado, and Ernesto Costa. Gvr: a new ge-
netic representation for the vehicle routing problem. In Problem, Proceedings of the 13th Irish
Conference on Arti�cial Intelligence and Cognitive Science, pages 95�102. Springer-Verlag, 2002.

[20] Zhihai Xiang, Chengbin Chu, and Haoxun Chen. The study of a dynamic dial-a-ride problem
under time-dependent and stochastic environments. European Journal of Operational Research,
185(2):534 � 551, 2008.



Part VI

Appendix

64



65



CHAPTER 18. PSEUDO-CODE OF THE GA 66

Chapter 18

Pseudo-code of the GA

18.1 Pseudo-code of the initialization procedure

Algorithm 18.1 (Initialization) Generate a random solution

Require: The set of all taxis M
Require: The set of all jobs is N
Require: Let pj denote the pickup location of job j
Require: Let dj denote the drop o� location of job j
Require: Let d0 denote the depot
Require: feasible(l, st) = True i� appending stop l to schedule st still results in a schedule that does

not break the precedence and capacity constraints
Require: The function retime(schedule) that computes and adds the arrival times for every stop in

every schedule.
Ensure: All jobs �t into at least one taxi

{First determine the clustering}
1: for all t ∈M do
2: ct = {}
3: st = {}
4: end for
5: for all j ∈ N do
6: while j is not assigned do
7: t = random(M)
8: if j �ts into t then
9: ct = ct ∪ {j}
10: end if
11: end while
12: end for

{Second part, �nd routes}
13: for all t ∈M do
14: st = {d0}
15: while |ct| > 0 do
16: j = random(ct)
17: if pj ∈ st then
18: st = st ∪ dj {Add as drop o� location}
19: ct = ct − j
20: else if feasible(pj , st) then
21: st = st ∪ pj {Add as pickup o� location}
22: end if
23: end while
24: st = st ∪ d0
25: end for
26: return retime({st : t ∈M})



CHAPTER 18. PSEUDO-CODE OF THE GA 67

18.2 Pseudo-code of the repopulation procedure

Algorithm 18.2 (Repopulation) Generate the next population

Require: Let pop denote the current population
Require: Let P denote the require population size
Ensure: |pop| < P
1: while |pop| < P do
2: p1 = random(pop)
3: p2 = random(pop) such that p1 6= p2
4: child = crossover(p1, p2) {The crossover returns either: feasible schedule or 'not possible'}
5: if child is possible then
6: if local search is allowed then
7: child = local_search(child)
8: pop = pop ∪ {child}
9: else
10: pop = pop ∪ {child}
11: end if
12: else
13: continue {We repeat the while-loop again}
14: end if
15: end while

18.3 Pseudo-code of the crossover procedure

Algorithm 18.3 Pseudo-code of the crossover procedure

Require: Let p1 and p2 denote the two parents
Require: Let c′ denote the cluster corresponding to c (the schedule of the same taxi in the other

parent)
Require: Let random_taxi() return a random taxi (not particularly related to any solution)
1: child = Nothing
2: ct = random schedule belonging to taxi t from p1
3: c′t = schedule of t in p2
4: if |ct| = 0 then
5: return NotPossible
6: end if
7: b = {job ∈ ct} {Remember which jobs are in the selected cluster}
8: for all (taxi, schedule) ∈ p2 do
9: child = child∪ (taxi, {s : s ∈ schedule and s /∈ b}) {Copy schedules while excluding jobs in ct}
10: end for
11: for all job ∈ c′t where job /∈ b do
12: randomly insert job into a schedule s of child while preserving feasibility
13: end for
14: return retime(child)



CHAPTER 18. PSEUDO-CODE OF THE GA 68

18.4 Pseudo-code of the best_insertion() function

Algorithm 18.4 Pseudo-code of best_insertion()

Require: Let solution denote a complete solution for the DARP
Require: Let t denote the target taxi
Require: Let st denote the route st of taxi t
Require: Let j denote the target job
Require: Let pj denote the pickup location of job j
Require: Let dj denote the drop o� location of job j
Require: Let d0 denote the depot
1: if j does not �t into t even if it were empty then
2: return NotPossible
3: end if
4: best = None
5: if st is empty then
6: return solution where st = {d0, pj , dj , d0}
7: else
8: for all s′t = {d0, . . . , pj , . . . , dj , . . . d0} given st do
9: if s′t satis�es capacity and precedence constraints then
10: if s′t is better than best then
11: best = retime(s′t)
12: end if
13: end if
14: end for
15: return solution where st = best
16: end if



CHAPTER 18. PSEUDO-CODE OF THE GA 69

18.5 Pseudo-code of the retime() function

Algorithm 18.5 Pseudo-code of retime(solution)

Require: The set of all taxis M
Require: Let solution denote a solution for some problem instance
Require: Let st ∈ solution denote the route st of taxi tPseudo-code
Require: Let sti denote the i

th stop in route st
Require: Let pi denote the pickup stop corresponding to the job which has a stop at i
Require: Let tarr(sti) denote the getter/setter for the arrival time at stop sti
Require: Let ts(sti) denote the getter/setter for the beginning of the time window of stop sti
Require: Let svi denote the service time at stop i
Require: Let t(l1, l2, t1, tnow) denote the traveltime
1: for all t ∈M do
2: t = 0
3: for i ∈ [0, |st|] do
4: if i = 0 then
5: if next stop belongs to an inbound request then
6: tarr(sti) = latest time to arrive at the beginning of the window of sti+1

7: else
8: tarr(sti) = latest time to arrive at sti+1 s.t. the taxi is exactly on time if the next stop

ti+2 happens to be the drop o� stop
{Outbound request}

9: end if
10: else
11: tarr(sti) = tarr(sti−1)+ t(sti−1 , sti , tarr(sti−1), tarr(sti−1)) {As soon as possible, arriving too

early incurs waiting time, which is allowed}
12: end if
13: end for
14: end for



Chapter 19

Additional empirical data

70



CHAPTER 19. ADDITIONAL EMPIRICAL DATA 71

19.1 Convergence for each of the problem instances

Figure 19.1: Convergence graphs for instances R1a to R6a - The best and worst objective values
found by both solvers after 15 minutes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50000  100000  150000  200000  250000  300000  350000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R1a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 50000

 100000

 150000

 200000

 0  20000  40000  60000  80000  100000  120000  140000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R2a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  20000  40000  60000  80000  100000  120000  140000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R3a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  20000  40000  60000  80000  100000  120000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R4a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R5a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R6a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)



CHAPTER 19. ADDITIONAL EMPIRICAL DATA 72

Figure 19.2: Convergence graphs for instances R7a to R2b - The best and worst objective values
found by both solvers after 15 minutes

 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R7a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0  50000  100000  150000  200000  250000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R8a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0  20000  40000  60000  80000  100000  120000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R9a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0  10000  20000  30000  40000  50000  60000  70000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R10a

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50000  100000  150000  200000  250000  300000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R1b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  20000  40000  60000  80000  100000  120000  140000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R2b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)



CHAPTER 19. ADDITIONAL EMPIRICAL DATA 73

Figure 19.3: Convergence graphs for instances R3b to R8b - The best and worst objective values
found by both solvers after 15 minutes

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  50000  100000  150000  200000  250000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R3b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20000  40000  60000  80000  100000  120000  140000  160000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R4b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000  100000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R5b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R6b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R7b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20000  40000  60000  80000  100000  120000  140000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R8b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)



CHAPTER 19. ADDITIONAL EMPIRICAL DATA 74

Figure 19.4: Convergence graphs for instances R9b and R10b - The best and worst objective
values found by both solvers after 15 minutes

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0  20000  40000  60000  80000  100000  120000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R9b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0  10000  20000  30000  40000  50000  60000  70000

O
b

je
c
ti
v
e

 v
a

lu
e

Iteration

Convergence - R10b

Jorgensen (best)

JM (best)

Jorgensen (worst)

JM (worst)


