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Preface

The journey of this thesis began with the Intelligent Decision Making Project from last year, where Greg
introduced me to the fascinating problem of multi-agent reinforcement learning for active wake control.
What initially drew me to this project was not only the challenge inherent in multi-agent reinforcement
learning but also the potential to contribute something meaningful to society by working on wind energy.
This intersection of complex problem-solving and societal impact ignited my passion for the topic.

Working alongside Marcus on this project was an incredibly rewarding experience. Our collaborative
efforts and shared enthusiasm for the subject matter solidified our desire to pursue a thesis in this area.
The process was both challenging and enlightening.

My focus throughout the thesis was on conducting research that yielded concrete results. I was driven
by the desire to contribute something meaningful and substantial. However, this drive led to a unique
challenge: I often found myself with solutions and results, but without concrete questions to address.
This paradoxical situation became a humorous yet significant part of my research journey, reflecting
the dynamic and iterative nature of scientific inquiry.

The support from Greg was invaluable throughout my thesis. His supervision and dedication were
instrumental in guiding me through the complexities of my research. Greg’s commitment to my success
went above and beyond what I could have expected, and for that, I am deeply grateful. Additionally,
the feedback and insights from my professors Frans and Mathijs were crucial in refining my work and
helping me arrive at a thesis that I am truly proud of.

This thesis represents a significant milestone in my academic journey. While I am proud of what I have
achieved, I acknowledge that I will likely never be fully satisfied with my accomplishments. There is
always more to learn, more to improve, and more to discover.

With heartfelt thanks to everyone who supported and guided me, I present this thesis as a testament
to our collective efforts and as a foundation for future exploration and innovation.

Onno Verberne
Delft, July 2024
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Summary

This thesis investigates the application of alternating maximisation for active wake control in wind farms,
focusing on both numerical static yaw optimisation and multi-agent deep reinforcement learning for
dynamic yaw control. As the size and number of offshore wind farms continue to grow, effectively
mitigating wake effects — where the airflow behind a turbine is disturbed, reducing the efficiency of
downstream turbines — becomes increasingly important to maximise power output and ensure eco-
nomic profitability.

Current numerical strategies are either sub-optimal, as they do not leverage the shape of the optimi-
sation surface well, or expensive to optimise due to the computational demands of high-fidelity simula-
tions. Similarly, current reinforcement learning approaches are too sample inefficient on contemporary
wind farms of 40+ turbines to learn high-quality policies and likely suffer from credit assignment prob-
lems, other agents performing exploration, and relative over-generalisation. Alternating maximisation
emerges as a promising candidate to address these challenges by providing an efficient and potentially
more effective optimisation method.

In static yaw optimisation, the research analysed the effects of wind direction, wind speed, turbine
layout, and yaw misalignment on the optimisation surface. Key findings indicate that Nash equilibria
are transient and significantly influenced by these factors.

The sampling-based approach to alternating maximisation outperformed other methods, proving robust
against variations in initial yaw configurations and optimisation orders. This approach required fewer
samples and appears suitable for practical applications.

For dynamic yaw control, alternating maximisation with policy gradients demonstrated greater sample
efficiency compared to distributed policy gradient methods. However, convergence to sub-optimal poli-
cies was common due to limited exploration capabilities. An oscillating exploration strategy enabled
effective exploration of yaw angles, leading to high-quality policies.

The study primarily focused on farm power output, neglecting structural loading and leading-edge ero-
sion. Future research should integrate these factors and explore dynamic yaw control under time-
varying wind conditions.

Overall, alternating maximisation shows potential in enhancing wind farm performance through efficient
optimisation strategies. Future work should refine these methods and address identified limitations to
maximise practical applicability.
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1
Introduction

Recent decades have seen an ever increasing
amount of off-shore wind farms, furthering the con-
tribution of wind to sustainable energy. The global
average for wind farm sizes now approaches 40
turbines, with trends showing around a 22% in-
crease in number of installed turbines per farm
for pre/under-construction projects [23]. Naturally,
the primary goals of operating wind farms are har-
vesting green energy and ensuring economic prof-
itability, which are achieved by maximising farm
power production and turbine longevity.

At present, wind farms are not being operated
at optimal efficiency due to aerodynamic losses
stemming from sub-optimal turbine control. As
turbines extract energy from wind, they leave a
wake of slower moving and more turbulent air, po-
tentially hindering downwind turbines through so
called wake effects [106]. Using technical termi-
nology, an upwind turbine is said to be “waking” a
downwind turbine. In practice, many turbine farms
suffer wake-induced losses as their constituent tur-
bines are each operated in isolation using a face-
the-wind strategy [117]. However, as wind tur-
bines are often operated in a farm setting, this face-
the-wind strategy is sub-optimal with respect to the
combined farm output, as it neglects the negative
effect of wakes on downwind turbines.

Wake effects caused by upstream turbines can ac-
count for energy losses on the order of 10%–20%
according to studies from the Danish Technical
University [3] and the American National Renew-
able Energy Laboratory (NREL) [41]. It must be
noted, however, that losses induced by wake ef-
fects are hard to separate from another source of
aerodynamic losses, called blockage effects, due
to their tight coupling [8]. Blockage effects are
caused by in-flowing wind slowing down as it col-
lides with lower velocity in-farm wind. Despite their
tight coupling with wake effects, blockage effects
are estimated to only account for up to a 5% loss
in power production [64], making wake effect miti-
gation a more viable research direction.

Figure 1.1: Active wake control methods.

As wind farms continue to grow in size [23], so
will the number of turbine wakes and subsequent
aerodynamic losses. Traditionally, these wake in-
teractions have been mitigated through numeri-
cal modelling and simulation [29, 30, 41], which,
while effective, demand significant computational
resources (e.g., a cluster) if high model-accuracy
is desired [31]. The approach by Fleming et al. [31]
required 34.4 real-life hours on using the NREL
Red Mesa supercomputer to evaluate a single set-
ting of their wake control strategies under one wind
condition. Training effective strategies requires
comparatively more time than that of a single eval-
uation. For this reason, we require scalable opti-
misation methods for the wind farms of the future.

In the following sections, we will describe methods
that balance computation time with the reduction
of wake effects, and discuss the remaining chal-
lenges with these methods.

1.1. Wake Mitigation Strategies
In order to address the challenges posed by wake
effects, various strategies known as wake control
have been developed. Wake control can be sepa-
rated into two broad categories:

• passive, which includes layout optimisa-
tion [103], hub-height optimisation [18, 51],
and installation of structures such as wake-
deflection barriers between turbines [62]; and

1



2 Chapter 1. Introduction

• active, which involves actively controlling tur-
bine orientations (see Figure 1.1) such as yaw
[37, 31, 111], blade pitch [52], rotor-shaft tilt
angle [31, 111], or cone angle [111] to redirect
the wake in response to wind conditions.

In case of existing wind farms, passive wake con-
trol strategies are likely to be expensive to imple-
ment as they require additional construction. On
the contrary, active strategies generally utilise ex-
isting turbine-control methods, offering amore flex-
ible and potentially cost-effective solution. An ad-
ditional argument can be made for retrofitting solu-
tions as the composite materials in turbine blades
are hard to recycle [1, 81] and increasing the en-
ergy capture capacity of existing farms reduces
the need for new construction.

Based on papers outlining the various wake con-
trol strategies by Fleming et al. [31] and Nash,
Nouri, and Vasel-Be-Hagh [62], yaw control ap-
pears to be a promising strategy, yielding good
power output whilst keeping additional structural
loads minimal. By comparison, pitch control po-
tentially yields more power at the cost of significant
structural loading, tilt control is not well supported
in existing turbines, and cone control seems to
have a negative effect on power [62]. For these
reasons, the primary focus of this thesis will be on
active wake control via turbine yawing.

1.2. State of the Art
in Yaw Control

Research into dynamic yaw control has been on-
going for at least four decades [19]. However,
the current standard in existing wind farms still re-
lies on individual turbine yaw-control [117], where
the yaw-misalignment angle with the wind is min-
imised (i.e., turbines face the wind) to maximise a
turbine’s energy capture, as opposed to farm-wide
yaw-control, which accounts for wake effects.

Yaw control, as a sub-field of active wake control,
encompasses both dynamic yaw control and static
yaw optimisation. Dynamic yaw control concerns
finding strategies for yaw control in response to
varying wind conditions. In contrast, static yaw
optimisation pertains to optimising turbine yaw an-
gles for a specific steady-state wind condition, and
must therefore be done in simulation. Neverthe-
less, static yaw optimisation can be a part of dy-
namic yaw control strategies, such as lookup-table
based yaw-control methods [29, 30, 89, 90, 80].

The upcoming sub-sections will explore conven-
tional and contemporary optimization approaches
for active wake control.

1.2.1. Numerical Optimisation
Regarding farm-wide control, lookup-table based
methods [29, 30, 89, 90, 80] are the current field-
tested approach. In this method, optimal yaw-
angles are pre-computed for specific steady-state
wind conditions. Pre-computation is often pre-
ferred over online computation, as accurate wake
modelling is a non-trivial task. Optimal yaw an-
gles for a selected set of wind conditions can be
found via static yaw optimisation by, for example,
employing gradient-based [37] or game-theoretic
[35] optimisation in steady-state simulators like
FLOw Redirection and Induction in Steady-state
(FLORIS) [65]. Then, during execution, interpo-
lation (e.g., nearest-neighbour through binning of
wind parameters [30, 80]) is used to generalise the
model to novel wind conditions.

Understandably, numerical methods relying on
pre-computation require modelling of wake aero-
dynamics. This can be done with different levels
of detail, creating a large trade-off between com-
putational complexity and model accuracy. This
trade-off can be observed through the various low-
[66, 76], mid- [9, 54], and high-fidelity [40, 17, 57]
simulators currently in use.

Model accuracy is paramount, as energy capture,
even for the face-the-wind strategy of individual
turbine control, can be sensitive to modelling er-
rors [28]. Fortunately, model-free approaches [37]
may sidestep the potential modelling errors by
learning directly from data. However, a recent pa-
per by Neustroev et al. [63] has demonstrated that
noisy observations can also severely degrade the
performance of numerical methods, which much
therefore be taken into account in their application.

With the trend toward larger wind farms [23], nu-
merical approaches using static yaw optimisation
will become intractable to optimise naively, as the
problem’s search space grows exponentially with
the number of turbines. Consequently, we re-
quire more sophisticated methods to explore the
search space efficiently. To this end, Fleming et
al. [32] propose optimising turbines sequentially in-
stead of jointly using a method they named Serial-
Refine. By breaking down the high-dimensional
optimisation problem into a sequence of lower-
dimensional optimisation tasks, the computation
may become more tractable, although, potentially
at the cost of optimality. Despite this, Serial-
Refine [32] achieves performance on par with con-
ventional gradient-based approaches in approxi-
mately a tenth of the time.

In contrast to numerical methods, machine-
learning approaches do not suffer as much from
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noise, nor are they impacted by the same mod-
elling errors as they do not require an explicit
model of the environment. In addition, machine
learning methods are often cheap to execute due
to allocating the vast majority of computation to
the training phase, a period where model parame-
ters are estimated from data, analogous to the pre-
computation step for lookup tables. Recently, rein-
forcement learning— a sub-field of machine learn-
ing — sees interest from researchers for dynamic
yaw control for its capacity to deal with dynamic
and stochastic environments [83, 94, 63, 46].

1.2.2. Reinforcement Learning
Reinforcement learning is a branch of machine
learning where agents learn to make decisions
by interacting with the environment and receiving
feedback in the form of a reward signal [100]. The
goal of reinforcement learning is to develop strate-
gies, commonly called policies, that maximise the
cumulative rewards over time. Unlike conven-
tional machine learning, which regresses between
input and output variables, reinforcement learn-
ing is characterised by a trial-and-error approach,
where agents explore actions and learn from the
consequences [100]. This paradigm is particu-
larly suited for tasks requiring sequential decision-
making and sees use in various domains such as
robotics and autonomous systems.

In recent years, the field of reinforcement learning
has demonstrated its efficacy in dynamic yaw con-
trol through both single-agent approaches [121,
24, 25, 116, 118, 55], where a single agent controls
all turbines simultaneously, and more commonly
multi-agent approaches [107, 95, 94, 71, 26, 2, 22,
46], where each agent controls either a single tur-
bine or group of turbines.

Many approaches [107, 95, 121, 94, 24, 26, 25,
116, 118, 2, 55] use a fixed freestream wind direc-
tion to reduce the complexity of the problem. While
a fixed wind direction is a good first step in solving
dynamic yaw control through reinforcement learn-
ing, it is not representative of reality. Besides, opti-
mal yaw-misalignment angles are highly sensitive
to the wind direction [80], furthering the need for
methods suitable for time-varying wind directions.

To this end, Kadoche et al. [46] have applied a
multi-agent learning algorithm, independent proxi-
mal policy optimisation [114], to dynamic yaw con-
trol in variable wind conditions. In their experi-
ments, the authors used real-life wind data from
the North Sea. Moreover, their approach achieved
success for farm sizes up to 151 turbines, where
prior research is limited to at most 21 turbines.

In a recent paper by Neustroev et al. [63], the au-
thors have shown that the way control actions are
encoded has a large effect on the performance of
deep reinforcement learning methods. Their re-
sults have shown that a wind-based action rep-
resentation, where control actions are given in
desired yaw-misalignment angles, currently per-
forms best. The authors reasoned that, because
the optimal control actions for steady wind condi-
tions are identical, irrespective of the current yaw,
the control actions are easier to learn and allow for
more fine-tuned control as the turbine reaches the
desired yaw-misalignment.

Lastly, there might still be performance to be
gained over current solutions, as the approach by
Kadoche et al. [46] on larger farms is still eclipsed
by the numerical Serial-Refine method [32]. High-
lighted by a relative power gain of 7.29% and
8.48% respectively. Furthermore, research on
smaller farms has has been able to extract around
15% over baseline, which is more in line with the
estimated 10–20% [3, 41] in power losses through
wake effects.

In short, reinforcement learning is increasingly be-
ing explored for dynamic yaw control due to its
ability to handle complex and challenging envi-
ronments. It is inherently able to handle scenar-
ios noisy observations, where numerical methods
would fail. Furthermore, reinforcement learning
can generalise to novel wind conditions, contrary
to numerical methods, which operate based on a
limited set of wind conditions due to computational
costs. However, reinforcement learning remains
challenged by the large search spaces induced by
variable wind and large farm sizes. Consequently,
reinforcement learning can fall short in power gain
compared to numerical methods.

1.3. Challenges in
Reinforcement Learning
for Yaw Control

As the state space of the dynamic yaw control
problem scales exponentially with the number of
turbines, common single-agent methods require
an exponential increase in the number of training
samples to adequately explore the search space.
Current single-agent approaches [121, 24, 25,
116, 118, 55] have not exceeded fifteen turbines,
highlighting their practical limitations.

Appropriately, multi-agent reinforcement learning
can be employed to alleviate this sampling prob-
lem by factoring the joint search-space into local
sub-problems of smaller dimensionality. Choosing
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the correct factorisation enables exploitation of the
decentralised structure of the problem through par-
allel computation, and a local search space that
does not scale exponentially with respect to the
number of turbines. Despite these advantages,
scaling up still proves difficult. To date, only one
approach, by Kadoche et al. [46], has been tested
on contemporary farm sizes of 40+ turbines.

However, reformulation as a multi-agent prob-
lem potentially introduces uncertainty caused by
the actions of other agents into the environment,
which can complicate learning if not handled ap-
propriately [68]. Similarly, agents must behave
in a cooperative manner to solve the dynamic
yaw control problem, as acting greedily devolves
into employing the face-the-wind strategy, which is
sub-optimal in the presence of wake effects when
turbines are positioned downwind from each other.

Credit Assignment
In multi-agent reinforcement learning problems
where agents work towards a common goal, such
as yaw control, it is typical to enforce cooperation
through the reward signal. Current research is split
between using common reward [26, 71, 46] and in-
dividual rewards [95, 94, 22].

Common rewards, such as the power output of a
wind farm, are a straightforward way to enforce co-
operation, as optimising for the common goal im-
plicitly demands cooperation. Through yaw con-
trol, agents must sacrifice the output of their tur-
bine such that one or more downwind turbinesmay
produce more power, resulting in a overall power
gain. The straightforward implementation of com-
mon reward does comewith a caveat, agentsmust
now overcome a credit assignment problem [14]
arising from the inseparability of the reward signal
due to wake interactions. If we are unable to rea-
son about each agents’ contribution to the com-
mon reward, we cannot give them correct feed-
back, through gradient updates or other means.

Using individual turbine power outputs to solve the
credit assignment problem within active wake con-
trol is not an option. Individual power outputs do
not take into account the effect of waking down-
wind turbines, and would result in use of the face-
the-wind strategy. Current research seeks to ad-
dress this short-coming through reward shaping.
For example, by adding the power output of down-
wind turbines to individual power outputs [95, 94]
or giving more reward for larger yaw angles to up-
wind turbines [22]. However, both are surrogates
for the total farm output and neither guarantees op-
timality for the original problem.

Other Agents Performing Exploration
The problems arising from other agents perform-
ing exploration within multi-agent dynamic yaw
control are twofold.

Firstly, under the common assumption that agents
are rewarded based on the farm’s total power pro-
duction, other agents performing exploration com-
plicates credit assignment by injecting noise into
the reward signal. As agents explore different
yaws, their sub-optimal actions can negate the
power gains made by any other agent, and vice
versa, which could make learning a good policy
difficult. Moreover, if the exploration is uncoordi-
nated, exploitative (greedy) agents may receive
misleadingly poor rewards [110]. As the number
of agents grows, it is reasonable to expect these
problems will only become more challenging.

Secondly, other agents performing exploration in-
jects noise into the local observations of down-
wind agents. Determining from local observations
whether a decrease in wind speed comes from the
environment or from the actions of another agent
is non-trivial. For this reason, it may take more
samples to learn effective policies.

Non-Stationarity of Policies
Non-stationarity of policies is a common learning
problem inmulti-agent reinforcement learning, and
occurs due to the all agents learning simultane-
ously. Because agents update their policy, the
optimal policy of other agents changes, resulting
in a moving-target learning problem [11]. More-
over, from the perspective of an agent, one that
does not directly observe the actions or internal
state of other agents, the environment appears
non-stationary due to other agents’ policy updates
affecting the observation probabilities, transition
function, or rewards. As a result, the conver-
gence guarantees of single-agent reinforcement
learning no longer hold [68]. Despite this, indepen-
dent learning, in which each agent considers the
other agents as part of the environment, achieves
success in multi-agent reinforcement learning [21,
110, 114], and more importantly, in dynamic yaw
control [46]. However, the performance of inde-
pendent learning in dynamic yaw control remains
sub-optimal and can be further improved.

Relative over-generalisation
A problem known as relative over-generalisation
[110] occurs when good but sub-optimal re-
wards lead agents to converge to a sub-optimal
Nash equilibrium, that is, a local optimum where
no agent can unilaterally improve the joint re-
ward. Preventing convergence to or escaping
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from Nash equilibria stemming from relative over-
generalisation requires stronger exploration strate-
gies than widely employed epsilon-greedy explo-
ration [112], a common strategy where noise is
injected into agents’ actions, resulting in explo-
ration of actions that deviate slightly from the policy
learned by the agent.

In the context of dynamic yaw control, both nega-
tive and positive yaw-misalignment angles deflect
wind around downwind turbines and can result in
relatively good power gains over baseline. Figure
1.2 displays this fact using a power heat-map for
the yaw angles of the leading two turbines in the
single-line layout scenario presented in Figure 1.3.
Because turbines rotate with a limited angular ve-
locity, future yaw angles are dependent on current
yaw angles, hence, uniformly random exploration
is expected to explore around the current yaw an-
gle. Consequently, relative over-generalisation
could occur when the incorrect yaw-misalignment
direction (clockwise or counter-clockwise) is cho-
sen through random exploration. Without more
sophisticated exploration strategies, agents may
be unable to collectively explore the correct yaw-
misalignment direction to find the global optimum.

Figure 1.2: Heat-map of farm power (MW) for different yaws
of the leading and middle turbines in the single-line layout

scenario from Figure 1.3. The axes represent the yaw angles.
Darker colours represent lower power output and lighter

colours represent higher power ouput.

Summary
From the previously outlined challenges in multi-
agent reinforcement learning for dynamic yaw con-
trol, we might expect that as farm sizes increase,
the challenges posed by credit assignment, other
agents performing exploration, and relative over-

Figure 1.3: Wind map for a single-line layout with three
turbines and wind coming from the west. Using the

yaw-configuration from the Nash equilibrium in the top-right of
Figure 1.2

generalisation will increase in severity. For this
reason, we conjecture that multi-agent methods
for dynamic yaw control will gain the most success
in their application to large wind farms by address-
ing these challenges.

1.4. Addressing the Challenges
We suggest alternating maximisation as a promis-
ing method for addressing multiple challenges in
multi-agent reinforcement learning for active wake
control. Although it has not been previously ap-
plied to these specific problems, it eliminates the
issues stemming from credit assignment and other
agents performing exploration, and potentially en-
ables simple solutions to address relative over-
generalisation. Moreover, it offers a straightfor-
ward and adaptable approach that can be inte-
grated with virtually any reinforcement learning
method. In the following section, we will describe
the procedure in more detail and highlight its po-
tential in active wake control.

1.4.1. Alternating Maximisation
Alternating maximisation is a common algorithm
for optimising multivariate functions jointly over all
variables and forms the basis for other widely used
algorithms like expectation maximisation [6]. The
core idea behind alternating maximisation is to
split up a difficult joint optimisation problem into a
sequence of easier optimisations on grouped sub-
sets of variables and then to solve these subprob-
lems iteratively [6]. The idea of alternating max-
imisation has been extended by Nair et al. [61]
to solve decentralised partially observable Markov
decision processes, a formal framework for coop-
erative multi-agent decision making used in rein-
forcement learning, yielding significant speed ups
at the time.

In the context of multi-agent decisionmaking, alter-
nating maximisation is an iterative procedure that
optimises the agents’ policies one by one. Each
agent individually optimises a best-response pol-
icy that maximises the joint reward, while the poli-
cies of other agents remain fixed. This process is
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repeated until the joint policy converges to a Nash
equilibrium [61], that is, a local optimum where
no single agent can unilaterally improve the joint
reward. Unfortunately, Nash equilibria found by
this hill-climbing process can be arbitrarily bad [68].
Despite this, alternating maximisation does see
practical use in reinforcement learning, where it is
used for its computational efficiency [27, 109] and
stability [102]. Moreover, Teh et al. [102] liken the
alternating maximisation procedure to trust-region
methods such as trust-region policy optimisation
[74, 87], which is a state-of-the-art approach in re-
inforcement learning, further hinting at the poten-
tial benefits of alternating maximisation.

When applying alternating maximisation to dy-
namic yaw control, the procedure makes only one
agent explore while keeping the policies of other
agents fixed; this eliminates the noise from other
agents performing exploration. By the same to-
ken, the credit assignment problems created by
concurrent exploration are quashed. Furthermore,
the best-response problems are drastically smaller
than the joint optimisation problem as they con-
cern only one turbine, which simplifies the ex-
ploration process. For that reason, we may be
able to prevent relative over-generalisation within
the best-response problems. However, as stated
before, alternating maximisation only guarantees
convergence to a Nash equilibrium, which is not
necessarily a more optimal solution than can be
found through joint optimisation.

We posit that the shape of the yaw optimisation
surface may be conducive to hill-climbing via best-
response sub-problems, making the optimisation
of yaw-control more manageable. This is primar-
ily because there are only two significant ways
to adjust the yaw of the turbine to deflect wakes
around downwind turbines: rotating clockwise or
counter-clockwise. This binary choice simplifies
the decision-making process.

For example, in a common single-line layout with
axis aligned wind (see Figure 1.3), which repre-
sents the worst possible scenario because of the
many wake interactions [63], there is a preferred
direction: counter-clockwise rotation (i.e., a posi-
tive yaw-angle). This corresponds to the optimum
in the top-right of Figure 1.2. More importantly,
assuming turbines start by facing the wind, the
best-response of the leading turbine, as shown
in Figure 1.4, is found also found in the counter-
clockwise direction. Consequently, hill-climbing
via subsequent best-response leads to the global
optimum. The corresponding convergence path is
overlaid on the heat-map in Figure 1.5.

Moreover, in scenarios where no turbines are posi-
tioned directly downwind, the optimal yaw angle is
straightforward to determine: turbines should face
the wind to maximise their power output. Any devi-
ation from this orientation results in decreased ef-
ficiency, particularly if it causes additional wake ef-
fects on downwind turbines. Thus, it becomes ev-
ident that starting with a base face-the-wind orien-
tation and applying hill-climbing will naturally lead
to the optimal solution in such cases.

For these reasons, the optimisation process for
each turbine largely revolves around selecting the
correct yaw direction. Once the correct direction
is chosen, climbing to the optimum of the chosen
mode (hill) should be trivial. The local optimisa-
tion for each turbine, when iteratively combined,
leads to an effective global optimisation of the en-
tire single-line layout. Since most offshore wind
farms make use of grid-like layouts [88], like the
the single-line layout, we expect this favourable
structure to exist in real-life wind farms.

Figure 1.4: Best-response sub-problem for the leading
turbine in the single-line layout of Figure 1.3.

Figure 1.5: Heat-map of farm power (MW) for the leading and
middle turbines in Figure 1.3 with the convergence path

resulting from solving best-response problems.
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1.5. Research Objective
The goal of this thesis is to investigate the ben-
efits and challenges of applying alternating max-
imisation to active wake control, specifically focus-
ing on numerical optimisation of static yaw control,
and multi-agent deep reinforcement learning for
dynamic yaw control.

To address this goal, we propose answering the
following research questions:

Q1 In static yaw optimisation, which atmo-
spheric conditions and wind farm layouts are
favourable to alternating maximisation and
which are hindering it?

To thoroughly investigate the factors affecting
structure of the optimisation surface in static
yaw optimisation, we focus on the following
four sub-research questions:

Q1.1 How does wind direction affect the
shape of the optimisation surface in
static yaw optimisation?

Q1.2 How does wind speed affect the shape
of the optimisation surface in static yaw
optimisation?

Q1.3 How does the wind farm layout affect
the shape of the optimisation surface in
static yaw optimisation?

Q1.4 How do turbine yaw-misalignment an-
gles affect best-responses in static yaw
optimisation?

Q2 How can alternating maximisation method be
effectively applied to static yaw optimisation,
and what factors influence its performance
and optimality of the resulting Nash equilibria?

Q3 In dynamic yaw control via reinforcement
learning, does alternating maximisation im-
pact the convergence to global optima?

Q4 Can domain knowledge be used to pre-
vent convergence to local optima in dynamic
yaw control for reinforcement learning agents
trained using alternating maximisation?

1.6. Thesis Structure
The main goal of this thesis is to answer the afore-
mentioned research questions. The remaining
text is organised into a preliminaries chapter fol-
lowed by four content chapters, each dedicated to
addressing on of the primary research questions.

Chapter 2 covers the preliminaries, exploring the
fundamental concepts and theories necessary for
understanding the content chapters. This includes
an overview of the active wake control problem, re-
inforcement learning, as well as a multi-agent for-
mulation of the dynamic yaw control problem.

Chapter 3, the first content chapter, addresses
RQ1, exploring the impact of wind direction, wind
speed, different turbine layouts, and varying yaw-
misalignment on the structure of yaw optimisation,
and serves to build our domain knowledge on ac-
tive wake control.

Chapter 4 focuses on RQ2, examining the condi-
tions under which alternating maximisation leads
to sub-optimal outcomes, exploring factors such
as gradient-based versus sample-based methods,
initial yaw configurations, and optimisation order,
furthering domain knowledge applicable to rein-
forcement learning for dynamic yaw control.

Chapter 5 addresses RQ3, comparing the per-
formance and convergence behaviour of agents
trained using different optimisation strategies, and
providing insights into their effectiveness and limi-
tations for dynamic yaw control.

Chapter 6 explores RQ4, investigating the poten-
tial of incorporating domain knowledge into explo-
ration strategies to enhance the performance of re-
inforcement learning agents trained through alter-
nating maximisation.

Lastly, in Chapter 7. we summarise our key find-
ings, discuss their implications, and suggest direc-
tions for future work.





2
Preliminaries

We begin by providing the necessary background
information on the topics of active wake control
and wind simulation, followed by the core tenets
of sequential decision-making and reinforcement
learning, also covering work related to the chal-
lenges outlined in Chapter 1. Thereafter, we will
introduce active wake control as a multi-agent re-
inforcement learning problem. We aim to pro-
vide a common language for researchers from
both fields, refraining the use of any domain spe-
cific acronyms as to maintain readability for re-
searchers from both backgrounds.

2.1. Active Wake Control
Active Wake Control is a strategy for operating
wind farms that seeks to maximise the total power
output throughmanaging wakes produced by wind
turbines, specifically by minimising wake-induced
losses. Wind turbines create a wake area behind
them as the wind drives the turbine blades [106],
these wakes are characterised by decreased wind
speeds and increased turbulence. Both effects
lead to decreased power output for any turbine lo-
cated within the waked area.

It is possible to mitigate adverse wake effects by
controlling the strength and direction of the wake,
enhancing the farms total energy output [62, 63].
The primary means of manipulating turbine wakes
involve adjusting the nacelle yaw and tilt angles to
redirect the wake away from downwind turbines in
the horizontal and vertical plane, respectively [31,
62]. Additionally, modifications to the blade pitch
and torque controls can accelerate wake recovery
[62], the process of flow regressing to an undis-
turbed state via turbulent mixing [104].

Campagnolo et al. [12] have shown that a yaw an-
gle of 16° can increase the farms power output by
15%, using a wind tunnel setup with three inline
turbines. Simulation-based studies have yielded
similar results [63, 24, 26, 71, 22, 55, 46, 36, 85].
Furthermore, yaw control appears to keep struc-
tural loads relatively low, compared to pitch con-

trol, which potentially yields more power at the
cost of higher structural loads [31, 62]. Similarly,
tilt control does not apply much extra loading to
the turbine [62], and has demonstrated power in-
creases up to 12% [111]. However, considerably
less research into tilt control has been conducted
despite the promising results, likely due to few ex-
isting turbines supporting the control mechanism
[111]. In short, yaw control appears to be a fruitful
approach, yielding good gains in total power out-
put while keeping additional structural loads min-
imal, in addition to hosting a comparatively large
body of research.

2.1.1. Static Yaw-Optimisation
Static yaw-optimisation concerns optimising the
yaw of a turbine for a specific wind condition. It
is a non-linear multivariate optimisation problem,
with the number of dimensions generally equal to
the number of turbines. There are often multi-
ple modes in the optimisation surface, as there
are often two ways (i.e., clockwise and counter-
clockwise rotation) to deflect wind around down-
wind turbines, which makes this a non-trivial opti-
misation problem. If one were to simply follow the
direction of the steepest gradient, one would even-
tually end up at the peak of one of the modes – a
local optimum – in the optimisation surface, with
no way to escape that mode via gradient ascent
and find the global optimum.

Commonly, static yaw optimisation is used as a
pre-computation step for lookup-table based yaw-
control [29, 30, 89, 90, 80], a numerical yaw con-
trol method characterised by responding to cur-
rent wind conditions, as opposed to planning for
future wind conditions. Optimisation of the prob-
lem can be achieved through various means, such
as gradient-based [37], game-theoretic [35], or
sampling-based [32] optimisation. All of which are
usually done in a simulator, like FLOw Redirec-
tion and Induction in Steady-state (FLORIS) [65],
although model-free methods [37] could also be
applied in real-life wind farms.

9
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2.1.2. Dynamic Yaw Control
Dynamic yaw control is an extension of static yaw-
optimisation. By introducing time-varying wind or
limiting the angular velocity with which turbines
can rotate, the space of solutions grows much
larger than that of static yaw-optimisation. For ex-
ample, by introducing time varying wind directions,
the solution space grows from |Y|N to (|Y| ⋅ |D|)N,
where N is the number of turbines, |Y| is the num-
ber of yaws, and |D| is the number of wind direc-
tions. Even with a coarse sampling resolution of
1°, sampling wind directions leads to a significant
increase in size of the search-space.

Moreover, the introduction of a limit on the rota-
tional angular velocity introduces a temporal com-
ponent into the problem. There is no longer a
single best response to every wind condition, as
the response now depends on the current yaw-
angle. Furthermore, a limited yaw speed restricts
exploration to be localised around the current yaw-
angle, as it now takes time to move the turbine
from one yaw setting to another, which previously
was instant in the static yaw-optimisation problem.
As a result, moving the turbine through the full
range of yaw angles requires a concerted effort.

2.1.3. Simulation
The dynamics of wake propagation and interaction
can be studied through experimentation or through
simulation models. Simulation models are the
most cost-effective and accessible way to run wind
experiments, and allow for the most customisation
such as varying turbine layouts, turbine types, and
wind conditions. This freedom to configure makes
simulation the preferred approach for prototyping
active wake control strategies.

Naturally, when it comes to simulation there exists
a trade-off between model accuracy and speed.
Simulators are usually categorised based on their
model-fidelity, for which the following three cate-
gories are common: low, mid, and high. The
choice of simulator depends on balancing the
need for speed and precision at different stages
of research and development.

Low-fidelity simulation generally makes use of
hand-crafted wake interaction models, such as the
model by Jensen [42] and others [20, 34, 44, 56,
92]. These models usually operate in a steady-
state environment, where wakes are calculated for
a specific wind condition and propagate instantly,
forsaking any dynamic flow interactions between
turbines [54]. Their simplicity is their greatest
strength, enabling fast prototyping of active wake
control strategies by leveraging cheap computa-

tions. The two primary simulators in this category
are FLORIS [65] by the American National Re-
newable Energy Laboratory, and PyWake [76] by
the Technical University of Denmark Department
of Wind and Energy Systems.

On the other end of the spectrum are high-fidelity
simulators, which use computational fluid dynam-
ics to evolve the flow field over time, yielding much
higher model accuracy and capturing dynamic flow
interactions between turbines. Large-eddy simula-
tion is the mathematical model of choice for sim-
ulating turbulent flow within computation fluid dy-
namics. Simulators using this approach include
DALES [40, 84], SOWFA [17], and ASPIRE [57]
(formerly GRASP, derived from DALES.) Unfortu-
nately, high-fidelity simulators are very computa-
tionally expensive, often require a cluster to oper-
ate [49, 31, 24, 26].

Mid-fidelity simulators form a middle ground be-
tween low and high-fidelity simulation, trading
modelling detail for computational efficiency. WF-
Sim is a relatively popular mid-fidelity simulator
[121, 25, 26, 116] by Boersma et al. [9], which uses
2D Navier-Stokes equations to trade model accu-
racy for computational efficiency. More recently,
HAWC2Farm, by Liew et al. [54], uses aeroelastic
wind turbine models in a simplified turbulent flow
field, compared to computational fluid dynamics.

As stated before, there is a difference in dynam-
ics between steady-state and the two other mod-
elling paradigms due to the absence of dynamic
flow interactions within steady-state simulations.
Dynamic flow interactions allow for the propaga-
tion of wakes over time, which makes learning con-
trol strategies harder by obscuring the action effect
through a delayed reward signal. To this end, Ge-
braad, Dam, and Wingerden [37] propose incorpo-
rating a delay structure to model the wake travel-
ling from one turbine to the nearest downwind tur-
bine in model-free methods. Unfortunately, their
method must reconverge every time wind condi-
tions change as this updates which downwind tur-
bine is nearest. Stanfel et al. [94] improve on this
method by computing the wake delay for a turbine
after taking an action and locking the control un-
til the wake has propagated. The average power
output is then measured over a time window to get
an improved estimate for the reward. In their work,
Stanfel et al. [94] make use of a modified FLORIS
environment called Dynamic FLORIS introduced
by [108], which makes use of the Taylor frozen
wake assumption[101] by only updating each grid
point in the flow field after a set amount of time
based on the distance to the location of change,
thereby simulating a propagating wake.
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2.2. Sequential
Decision-Making

Sequential decision-making involves making a se-
ries of decisions over time, where each decision
influences future options and outcomes. The ac-
tor within a sequential decision-making process is
often called an agent. An agent observes the en-
vironment and perform an action, thereby causing
the environment to transition into a new state and
deliver the agent a reward [4]. This process is
repeated ad infinitum or until a terminal state is
reached. The goal of solving sequential decision
making processes is often to maximise the cumu-
lative reward.

In the context of sequential decision-making, a key
assumption is that the environment remains sta-
tionary [70]. This implies that the transition func-
tion and reward function do not change over time.
When the environment is stationary, agents can
reliably learn from past experiences, as the out-
comes of their actions remain predictable, even if
the environment is stochastic.

2.2.1. Single-Agent Decision-Making
A multi-armed bandit problem is a classical model
in decision-making. The name is derived from a
gambler (an agent) facing several slot machines
(referred to as “one-armed bandits”), each with an
unknown reward function [100]. The key property
of a multi-armed bandit is that the agent only ob-
serves the rewards from their actions. The agent
must repeatedly play the same game to find the
optimal strategy which maximises the reward. For-
mally, a multi-armed bandit problem consists of
a set of actions (arms), each providing a reward
drawn from an unknown distribution.

A Markov Decision Process (MDP) [5] is a math-
ematical framework used to model sequential
decision-making problems, where outcomes are
stochastic and partially under the control of a de-
cision maker, the agent. What sets it apart from
a multi-armed bandit is an evolving state, which is
observed by the agent. Within this framework an
agent takes an action a based on the fully observ-
able current state s which transitions the environ-
ment to the next state s′ and yields the agent a
reward r. An MDP is formally defined as a 5-tuple
(S,A,T,R, γ), where:

• S is a finite set of states.
• A is a finite set of actions.
• T ∶ S×A×S → [0,1] is the transition probabil-
ity function, where T(s′|s,a) is the conditional
probability of transitioning from state s to state

s′ by taking action a.
• R ∶ S × A → R is the reward function, where
R(s,a) is the immediate reward received after
taking action a in state s.

– Optionally: R ∶ S → R, where the imme-
diate reward is given by R(s′) for reach-
ing state s′.

• γ ∈ [0,1) is the discount factor, representing
the importance of future rewards compared to
immediate rewards.

Markov Decision Processes can be used to model
various kinds of decision-making problems, most
of which can be categorised as either finite-horizon
or infinite-horizon problems. Finite-horizon MDPs
often give a positive reward for reaching a certain
goal state at which the episode ends, and option-
ally a negative reward for every other state. In
infinite-horizon MDPs the agent is provided with a
reward signal – which can be positive or negative –
for taking actions, here the desired behaviour is to
maximise the cumulative reward. Solving an MDP
can be done through planning, where the objec-
tive is to find a policy π ∶ S → A, which maximises
the expected sum of discounted rewards over time,
starting from some initial state. The desired be-
haviour of the optimal policy is therefore largely
shaped by the reward function.

Partial Observability
While Markov Decision Processes provide a ro-
bust framework for modelling sequential decision-
making problems, they assume that the agent has
perfect knowledge of the current state. This as-
sumption is often unrealistic in real-world appli-
cations where noise exists or full observability of
the environment is not feasible. To address these
limitations, Partially Observable Markov Decision
Processes (POMDPs) extend the MDP framework
to handle uncertainty in the state space [93][47].
Since the state in a POMDP is uncertain, an op-
timal decision-maker can no longer base its pol-
icy directly on what it observes. An agent within
a POMDP must therefore maintain a belief over
which state it currently resides in, either through
maintaining a history or through a probability dis-
tributions over possible states s ∈ S.

Similarly to MDPs, POMDPs can be categorised
as finite-horizon and infinite-horizon. Unlike
MDPs, it is common for a POMDP to have a contin-
uous state- and action space. As a consequence,
solving POMDPs exactly is often intractable. To
this end, many approximate methods have been
proposed, one of which will be discussed in the
upcoming section on reinforcement learning.
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2.2.2. Multi-Agent Decision-Making
In addition to applications in single-agent deci-
sion making, Markov decision processes and par-
tially observable Markov decision processes ex-
tend to cooperative multi-agent decision-making
through the use of a centralised agent which con-
trols all agents simultaneously and receives their
joint observations, formally these extensions are
known as multi-agent Markov decision processes
and multi-agent partially observable Markov de-
cision processes [68]. However, this joint con-
trol strategy encounters significant computational
challenges when scaling the number of agents
due to the curse of dimensionality. This challenge
arises from a combinatorial explosion in the num-
ber of possible states and actions, which are expo-
nential in the number of agents.

To address these limitations, decentralised par-
tially observable Markov decision processes have
been introduced [68]. They form a natural exten-
sion to the previous centralised example by opting
for a decentralised control strategy, where each
agent is modelled individually, resulting in a state-
action space complexity that is sub-exponential in
the number of agents. Agents in a Dec-POMDP re-
ceive their individual observations and have their
own set of actions. Formally, a Dec-POMDP can
be defined as an 8-tuple (D,S,A,T,Ω,O,R, γ):

• D = {1, … , n} is the set of n agents.
• S is a set of states.
• A = ⨉i∈D Ai is a set of joint actions.
• T ∶ S×A×S → [0,1] is the transition probabil-
ity function, where T(s′|s,a) is the conditional
probability of transitioning from state s to state
s′ by taking action a.

• Ω = ⨉i∈DΩi is a set of joint observations.
• O ∶ S × A ×O → [0,1] is the observation prob-
ability function, where O(o|a, s′) is the condi-
tional probability of seeing observation o after
taking action a and ending up in s′.

– Optionally: O ∶ S → [0,1], where the ob-
servation probability solely depends on
the state s′.

• R ∶ S × A → R is the reward function, where
R(s,a) is the immediate reward received after
taking joint action a in state s.

– Optionally: R ∶ S → R, where the imme-
diate reward is given by R(s′) for reach-
ing state s′.

• γ ∈ [0,1) is the discount factor, representing
the importance of future rewards compared to
immediate rewards.

In an ideal case, a decentralised partially observ-
able Markov decision process can factor the state
and action spaces, reducing the overall complex-
ity from exponential to polynomial in the number
of agents and yielding a more compact representa-
tion. The resulting framework has been formalised
as a factored decentralised partially observable
Markov decision process (Factored Dec-POMDP),
where the core idea is to exploit the conditional in-
dependence of the problem variables [67]. In a
similar fashion, Factored Dec-POMDPs compactly
represent the reward function under the assump-
tion that it is additively separable by decomposing
the reward into n local rewards, one for each agent.
This differs from partially observable stochastic
games (POSGs) where each agent has its own in-
dividual reward function [38].

Nash Equilibria
Nash equilibria are a game-theoretic concept, rep-
resenting a situation where no player has an ac-
tion that they prefer over the equilibrium action [69].
A common example of a Nash equilibrium can be
found in the prisoners dilemma, a non-cooperative
game. When one player confesses, it is best for
the other player to also confess. In this local op-
timum, neither player can improve their own out-
come, they have to work together to improve.

In the context of cooperative multi-agent decision-
making, a Nash equilibrium represents a local opti-
mum where no agent can unilaterally improve the
joint outcome by adapting their own policy. In dif-
ferent terms, a Nash equilibrium is a set of policies
where each agent’s policy is a best response for
the policies employed by other agents [68].

Independent Learning
In the field of multi-agent decision-making, inde-
pendent learning refers to the scenario where
a multi-agent learning problem is decentralised
into single-agent problems [110, 114]. Multiple
agents learn simultaneously without coordinating
their learning processes or directly sharing infor-
mation. Each agent operates based on its own ob-
servations, actions, and received rewards, while
treating other agents as part of the environment.

Within this learning paradigm and from the per-
spective of an agent, the environment becomes
non-stationary as a result of other agents’ policy
updates [68]. Accordingly, the convergence guar-
antees of single-agent learning are forgone, which
are predicated on the assumption of a station-
ary environment [70]. Despite this, independent
learning does achieve competitive performance
[21, 110, 114, 46].
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Alternating Maximisation
Alternating maximisation is a common algorithm
for optimising multivariate functions jointly over all
variables and forms the basis for other widely used
algorithms like expectation maximisation [6]. The
core idea behind alternating maximisation is to
split up a difficult joint optimisation problem into
a sequence of easier optimisations on grouped
subsets of variables and then to solve these sub-
problems iteratively [6]. This idea can be applied
to solve decentralised partially observable Markov
decision processes, where it is an iterative pro-
cedure that optimises the agents’ policies one by
one [61]. Each agent individually optimises a best-
response policy that maximises the joint reward,
while the policies of other agents remain fixed.
This process is repeated until the joint policy con-
verges to a Nash equilibrium [61], which is not
necessarily an equally or more optimal solution
than found through joint optimisation [68]. Ran-
dom restarts may be used to explore novel regions
of the search space and better local optima [61].

2.3. Related Work Addressing
Multi-Agent Learning
Pathologies

In multi-agent systems, various pathologies can
arise that complicate the learning process. These
pathologies include non-stationarity [72], the credit
assignment problem [14], other agents performing
exploration [110], and relative over-generalisation
[112]. Understanding and addressing these chal-
lenges is crucial for learning effective strategies
in multi-agent systems. Various approaches have
been developed to address the challenges of multi-
agent learning pathologies. In the following sub-
sections, we describe a few notable methods,
in addition to our novel approach for addressing
these challenges within active wake control.

2.3.1. Difference Rewards
Reward differencing is a method for tackling the
credit assignment problem. As described by
Wolpert and Tumer [115], the aim of this method
is to fix the poor “signal-to-noise” ratio present in
large multi-agent systems when discerning an in-
dividual action’s contribution to the joint reward.
To determine an agent’s effect on the joint payoff,
their contribution is marginalised out of the reward
by computing the expected reward for the joint ac-
tion given its current policy. By taking the differ-
ence between this expected reward and the actual
reward, we arrive at a reward signal that better re-
flects an action’s contribution to that reward.

A state-of-the-art reinforcement learning method,
counterfactual multi-agent policy gradients [33],
has applied the idea of differencing to deep re-
inforcement learning via approximating Q-value
functions, which represent the expected return of
an action in a given state. However, as outlined by
Castellini et al. [13], learning the Q-value function
in multi-agent settings can be difficult due to com-
pounding factors of bootstrapping, moving targets,
and Q-values’ dependence on joint actions. These
can make counterfactual multi-agent policy gradi-
ents difficult to scale up, which is required dynamic
yaw control. To this end, Castellini et al. [13] show
that function approximation of the reward function
can yield better results in larger multi-agent set-
tings through their algorithm Dr.ReinforceR, a dif-
ference rewards policy gradient algorithm derived
from REINFORCE [113].

2.3.2. Value Decomposition
In fully cooperative settings, value decomposition
[98, 82, 122, 43] is a method for implicitly solv-
ing the credit assignment problem [122, 43]. At
its core, value decomposition addresses credit as-
signment by learning by learning to map individ-
ual Q-value functions to the joint Q-value function.
However, as previously addressed by Castellini et
al. [13], learning these Q-value functions in multi-
agent settings can be hard. We argue that this
is compounded within dynamic yaw control due to
the stochastic nature of the wind. Agents have
no control over the in-flowing wind, and by ex-
tension their observations and transitions. Con-
sequently, bootstrapping Q-values from wind may
require many samples, where other reinforcement-
learning methods fare better.

2.3.3. Group-based Learning
One of the challenges of other agents performing
exploration is the lack of coordination [110]. Group-
based learning has emerged as a potential solu-
tion, as it promotes effective coordination and in-
formation sharing among agents. This approach,
as explored by Zhang, Abdallah, and Lesser [119]
and Zhang and Lesser [120], involves grouping
agents and coordinating by exploiting the local-
ity of interactions, which has resulted in acceler-
ated learning and improved performance. A simi-
lar idea has been applied by Dong and Zhao [26]
to dynamic yaw control to improve the sample effi-
ciency of deep reinforcement learning methods.

However, within dynamic yaw control, the locality
of interactions is very dependent on wind direction,
as it determines which turbines wake each other.
Consequently, the use of fixed groups is probably



14 Chapter 2. Preliminaries

sub-optimal. Learning with naive dynamic group
sizes would likely be non-trivial, as the reward func-
tion would change over time, making the environ-
ment non-stationary. One could attempt to ad-
dress this through normalisation of group rewards,
if it accounts for the highly non-linear wake inter-
actions unique affecting each turbine’s power out-
put. Such reward shaping is currently an unsolved
problem within reinforcement learning for active
wake control [95, 94, 22].

2.3.4. Lenient Learning
Lenient learning, as introduced by Wiegand et al.
[112], is a method for addressing the pathology of
relative over-generalisation. Recently, the method
has also been applied to address miscoordination
within exploration [110], as well as non-stationarity
in multi-agent systems [73]. The core idea behind
lenient learning is that agents make bad decisions
early on in their training, which we should apply le-
niency to. In practise, this leniency is applied to Q-
values, the expected return of a state-action pair.
State-action pairs start out with a lenient or opti-
mistic value, which decays to the learned value as
the pair is the visited. As a result, agents will ini-
tially explore the lenient actions, after which they
will start to exploit the optimal actions given the
learned Q-values.

2.3.5. Concluding Remarks
While the aforementioned methods provide sig-
nificant advancements in addressing multi-agent
learning pathologies, they each have their limita-
tions and specific areas of applicability. A promis-
ing candidate for addressing these issues, partic-
ularly in the context of active wake control, is al-
ternating maximisation. This method, which as
not been extensively explored in this domain, of-
fers a potentially robust solution for the credit as-
signment problem, other agents performing explo-
ration, and relative over-generalisation. By explor-
ing with one agent at a time, challenges imposed
by credit assignment and other agents perform-
ing exploration are quashed, while relative over-
generalisation may be simpler to address, as de-
scribed in Chapter 1

2.4. Reinforcement Learning
Reinforcement learning is a branch of machine
learning where agents learn to make decisions
by interacting with the environment and receiving
feedback in the form of a (delayed) reward sig-
nal [100]. The goal of reinforcement learning is to
develop strategies, commonly called policies, that
maximise the cumulative rewards over time. This

paradigm is particularly suited for tasks requiring
sequential decision-making, where agents must
also navigate complex environments and maximis-
ing cumulative rewards over time.

One of the challenges within reinforcement learn-
ing is the trade-off between exploration and ex-
ploitation [100]. Agents exploit known good ac-
tions to maximise rewards, but to find such actions
agents must explore. This problem can be espe-
cially hard in stochastic tasks, where outcomes are
uncertain, each section must be tried repeatedly to
learn an effective policy. Within active wake con-
trol, such uncertainty can be caused by the par-
tial observability of the wind, and noise induced
by imperfect sensors. Multi-agent settings exac-
erbate this, as there is no centralised agent that
controls all turbines, meaning other agents’ poli-
cies and their effects must be learned. However,
these policies can change over time. This form of
uncertainty is called non-stationarity, also known
as the moving target problem, and is one of the
multi-agent learning pathologies.

2.4.1. Policy Gradient Methods
Policy gradient methods are a family of reinforce-
ment learning algorithms used to optimise a policy
directly. Policy gradient methods use a policy that
is differentiable with respect to its parameters (e.g.,
a neural network) and then optimise these param-
eters using gradient ascent. The core idea is to
adjust the policy parameters in the direction that
maximises the expected cumulative reward [99].

Formally, let πθ(a|s) = Pr (a ∣ s, θ) denote the pol-
icy, parameterised by θ, which gives the probabil-
ity of taking action a in state s. The objective is
to maximise the expected return J(θ) = Eπθ

[G],
whereG = ∑∞

t=0 γ
trt represents the discounted cu-

mulative reward, also known as the return. The
policy gradient theorem [99] states that the gradi-
ent of J(θ) with respect to θ can be expressed as:

∇θJ(θ) = Eπθ
[∇θ logπθ(a|s)Qπ(s,a)]

where Qπ(s,a) = E [G ∣ st = s,at = a,π] is the
action-value function, which represents the ex-
pected sum of cumulative rewards for taking ac-
tion a in state s. This expression forms the basis
of policy gradient methods, where the policy pa-
rameters are iteratively updated using stochastic
gradient ascent:

θ ← θ + α∇θJ(θ)

with α being the learning rate.
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REINFORCE [113] is one of the foundational pol-
icy gradient methods and is directly derived from
the policy gradient theorem. As such, REIN-
FORCE is is an on-policy algorithms, meaning it
explore and learn by sampling actions according
to their current stochastic policy. Moreover, the
algorithm is a Monte-Carlo method, meaning it ex-
ecutes a its current policy for T time steps in an
episode. The policy update can then be done via:

θ ← θ + α
T−1
∑
t=0

γtGt∇θ logπθ(at|st)

where Gt represents the return at time step t.

REINFORCE has theoretical convergence guaran-
tees [113], under which it will converge to a local
optimum. However, as a Monte-Carlo method, it
may suffer from high variance between episodes,
resulting in slow convergence [100].

In cooperative multi-agent settings, a distributed
policy gradient [77] variant can be used to optimise
each agent’s policy. Distributed policy gradient
methods are amongst the few methods with con-
vergence guarantees in multi-agent settings [77].
The policy updates for each agent i are as follows:

θi ← θi + α
T−1
∑
t=0

γtGt∇θi logπθi(ait|st)

2.4.2. Stochastic Policy Gradients
In stochastic continuous control problems, such
as dynamic yaw control, it is common to repre-
sent the policy distribution using a Normal distri-
bution [113]. A function approximator, including
neural networks, is used to compute the action
distribution parameters (i.e., mean and variance)
given the current state. However, many such
control problems, including dynamic yaw control,
have bounded action spaces. In these scenar-
ios, using a distribution with infinite support, for in-
stance, a Gaussian distribution, introduces a bias
in the distribution due to boundary effects [16]. Ac-
tions outside of the bounds are usually clipped,
meaning that if there are sufficiently good rewards
near the action boundaries, there will be an over-
representation of “good” actions near the bound-
aries. As a result, gradient ascent will bias the pol-
icy distribution towards the action bounds.

To this end, Chou, Maturana, and Scherer [16] sug-
gest using a Beta distribution, which is a continu-
ous probability distribution defined on the interval
[0,1]. It is parameterised by two shape parame-
ters, α and β, which control the shape of the distri-

bution, allowing it to take on uniform, U-shaped,
and bell-shaped distributions. This flexibility al-
lows the Beta distribution to model a wide range
of action distributions. Moreover, the shape pa-
rameters provide a natural mechanism to control
the exploration-exploitation trade-off. By tuning
α and β, the policy can be made more determin-
istic (peaked) or more exploratory (flatter), allow-
ing adaptive exploration strategies during learn-
ing. Petrazzini and Antonelo [78] later applied
the work by Chou, Maturana, and Scherer [16] to
improve the performance of Proximal Policy Op-
timisation [86], a state-of-the-art family of policy
gradient methods, on continuous control tasks in
bounded action spaces.

During evaluation, a stochastic policy can bemade
deterministic, which may be preferred for some
problems where precise control is required or
where noisy actions are undesired, such as in dy-
namic yaw control [30, 48, 89, 90]. However, in
a stochastic environment, a stochastic policy can
perform better than a deterministic policy [91].

2.5. Dynamic Yaw Control as a
Multi-Agent Reinforcement
Learning Problem

In this work, we will be applying multi-agent rein-
forcement learning algorithms to the dynamic yaw
control problem. In order to communicate through
a common language grounded in theory, we for-
mulate the problem as a decentralised partially ob-
servable Markov decision process. We use the re-
cent theoretical framework for active wake control
as a reinforcement learning problem by Neustroev
et al. [63] as a basis for our description. Simi-
larly, we adapt the FLORIS V2.4 [65] driven Ope-
nAI Gym [10] environment by Neustroev et al. [63]
for our simulation experiments.

The following sections define the states, observa-
tions, actions, rewards, and transition function.

2.5.1. States and Observations
A Markov decision process is characterised by its
Markovian state, of which the future state depends
only upon the present state. Since the flow-field
of a wind farm evolves via physical processes,
we can postulate this assumption holds, support-
ing the use of a Markovian state for modelling
wind. However, letting agents observe the com-
plete flow-field is both computationally impractical
as well as physically infeasible. Thus agents ob-
serve only specific data-points, from which they
must extrapolate the state of the environment.
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Using wind parameters from the current flow-field
state s to generate observations, at each time step
t the observation oi for turbine i comprises: wind
speed at the turbine M, wind direction at the tur-
bine ϕ, the freestream turbulence intensity I, as
well as the turbine’s current yaw angle y, result-
ing in the vector [M,ϕ, I, y] ∈ R4. The yaw angle is
included because the next yaw angle depends on
it, omitting the measurement would make the en-
vironment non-stationary. Each measurement is
normalised to an interval between 0 and 1 accord-
ing to the range of possible values, with the excep-
tion of the yaw, which is normalised to the interval
[-1, 1], making the yaw observation-space identi-
cal to the action-space described in the following
section. Additionally, to simulate sensor noise, at
each time step each individual normalised mea-
surement is perturbed by independently sampled
zero-mean Gaussian noise with a variance of 0.1.

2.5.2. Actions
Each joint action a = {ai ∣ ∀i ∈ D} comprises
D individual actions ai ∈ [−1,1] correspond-
ing to a set of desired yaw-misalignment angles
Y = {yi ∣ ∀i ∈ D, } where yi is within the interval
[min yaw,max yaw]. Recent reinforcement learn-
ing approaches for active wake control [71, 63, 55,
22, 46] use similar yaw-misalignment angle based
action-representations, which have been shown to
be the current best action-representation [63].

In this action representation, a = +1 corresponds
to the maximum positive yaw angle relative to the
wind, a counter-clockwise rotation. The new de-
sired yaw is calculated as:

y′ = ϕ + 1
2

(a + 1) ⋅ (ymax − ymin) + ymin

where ymax and ymin represent the yaw boundaries
[63]. The final yaw angle is is computed by first clip-
ping y′ between the yaw boundaries, after which
it clipped the interval [y − ωmax, y +ωmax] given by
the maximum angular velocity ωmax.

2.5.3. Rewards
With the goal of maximising power production, the
agents receive a common reward based on the in-
stantaneous power output of the entire farm. In
essence, the reward function judges the quality of
the chosen yaw configuration. We use a common
reward to enforce cooperation between agents, as
maximising collective power production does re-
quire cooperation through sacrificing upwind tur-
bines’ individual output. Alternatively, individual re-
wards would collapse the agents’ optimal policies
to the face-the-wind policy as that maximises an
individual turbine’s power production.

As is standard practise within reinforcement learn-
ing, the reward is normalised to the interval [0,1].
Within this normalisation, 0 and 1 represent the
minimum and maximum possible power outputs of
the farm given the power curves of the turbines,
which do not take into account any wake effects.

2.5.4. Transition function
The transition function is identical to the one de-
scribed by Neustroev et al. [63]. In this model,
each transition to a new steady state in the
FLORIS simulator involves two main steps. First,
the yaw angles of the turbines are adjusted accord-
ing to the actions chosen by the agent. Next, the
atmospheric conditions change, leading to varia-
tions in wind flow and atmospheric measurements
at the subsequent time step.

To realistically simulate these transitions,
Neustroev et al. [63] employed a continuous-
time stochastic process, specifically a multivariate
Ornstein-Uhlenbeck (MVOU) process [105]. The
MVOU process is a mean-reverting stochastic
model that tends to return to long-term average
values, such as a prevalent wind direction or mean
wind speed. This property makes it well-suited for
modelling wind dynamics [63].

Parameters for the MVOU process were fitted on
the Hollandse Kust Noord (site B) dataset [60] by
Neustroev et al. [63] using the method described
by Meucci [59].



3
Structures in the Optimisation Surface

of Static Yaw Optimisation

In this chapter, we will describe the behaviour of
modes and Nash equilibria in the optimisation sur-
face of yaw configurations through visual analysis.
Each section focuses on a specific variable in the
yaw optimisation problem. By identifying the lay-
outs and wind conditions under which Nash equi-
libria form, we may be able reveal favourable con-
ditions for alternating maximisation which we can
exploit. Similarly, finding adversarial conditions
enables us to put bounds on the applicability of al-
ternating maximisation within yaw control.

3.1. Simulation Setup
In our analyses, the wind is assume to be com-
ing from the west, corresponding to 270°, originat-
ing from the left side of the plots. The wind speed
is set to 9m/s. Turbines are yawed to face the
wind, unless specified otherwise. The simulations
are conducted using FLORIS V2.4 [65] with the
default wake models and atmospheric conditions,
and with the NREL 5MW turbine [45].

3.1.1. Layout
The wind farm layouts are specified by the number
of rows and columns. For instance, a single-line
layout consisting of 1 row and 3 columns will be
specified as a “1 × 3” layout, see Figure 3.1 for an
example. The turbines are placed on a Cartesian
grid and are spaced according to two main param-
eters: downwind spacing and crosswind spacing,
both measured in rotor diameters. The downwind
spacing, which is the distance between turbines
along the wind direction (columns) is set to six rotor
diameters. The crosswind spacing, the distance
perpendicular to the wind direction (rows), is set
to four rotor diameters. This configuration reflects
a realistic but dense wind farm layout, according
to the guidelines specified by Masters [58].

The single-line layout will be the most commonly
used layout for our analyses, as it represents the

worst case for wake interactions. The 1×3 single-
line layout is the minimal size for which creating
optimisation surface plots is justifiable, as the rear
turbine is not optimised due to the face-the-wind
policy being always optimal. This leaves us with
an interpretable 2D plot of the leading two turbines,
where the joint variation of turbine yaws is clear.
Moreover, unless the wind direction changes from
270°, there will be no added value from adding
more rows, as the wakes will interact very little
across rows.

Figure 3.1: Flow field of the horizontal wind-layer at
hub-height (90m) for the 1 ×3 layout under 9m/s wind speed

and 270° wind direction

3.2. Wind Direction
Wind direction determines which turbines are posi-
tioned downwind of one another. If a given turbine
has a downwind neighbour, it can deflect its wake
in two ways, clockwise and counter-clockwise rota-
tion, resulting in at least two modes in the optimisa-
tion surface. Alternatively, if there is no downwind
turbine, it is optimal to have no yaw-misalignment,
resulting in a single mode. Consequently, wind
direction significantly influences the shape of the
optimisation surface, and hence impacts optimal
yaw-misalignment angles, as indicated by Qian
and Ishihara [80].

A clear illustration of this influence on the shape
of the optimisation surface is depicted in Figure
3.2, where the sub-optimal Nash equilibrium in the
lower left of the 270° plot disappears due to a slight
change in wind direction. As we further increase
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Figure 3.2: Power heat-maps (MW) for the leading two turbines of the 1 ×3 single-line layout under 9m/s wind with varying
wind directions.

Figure 3.3: Flow field of the horizontal wind-layer at
hub-height (90m) for the 3 ×3 layout under 9m/s wind speed

and 288.435° wind direction. The shaded areas denote
waked areas when varying the wind direction by ±1.5°

Figure 3.4: Power heat-maps (MW) for T1 and T2 in the 3×3
layout under 9m/s wind speed with varying wind directions.

the change in wind direction, the local optimum di-
minishes and the optimal mode begins dominating
the solution space, in addition to migrating towards
the face-the-wind policy.

Extending our view to the 3×3 layout, displayed
in Figure 3.3, we increase the rotation of the wind,
such that wakes interact across rows. The wind
direction at which cross-row waking first occurs,
when turbine T1 wakes T6, can be calculated by
taking the inverse tangent of the ratio between
their vertical and horizontal distance, expressed
in rotor diameters: 270° + arctan 4D

12D ≈ 288.435°.
The shaded areas denote the possible waked ar-
eas when varying the wind direction 288.43±1.5°.

Figure 3.4 displays how a second local opti-
mum emerges as the incoming wind direction ap-
proaches 288.435°. Similar to the Nash equilib-
ria present in the 270° plot in Figure 3.4, the lo-
cal optima are short-lived, only existing for a nar-
row band of wind directions. Interestingly, we can
observe a preference towards the positive yaw
angles for turbine T1 in the 288.435° plot, corre-
sponding to a counter-clockwise rotation which de-
flects the wake in the clockwise direction below T6.
This preference could stem from adverse affects
found bymixing the wakes of T1 and T2 in the over-
lapping shaded areas shown in Figure 3.3.

To solidify the short-lived nature of local optima, we
examine the next occurrence of cross-row waking,
where turbines wake their closest diagonal neigh-
bour. Specifically, we look at turbine T4 and T5 in
the middle row, as the pair has incoming and out-
going wakes. The wind direction can be computed
similarly as before: 270° + arctan 4D

6D ≈ 303.69°.
Further rotation of the wind is not necessary due
to the symmetric nature of the layout.

From Figure 3.5 we can observe how three new lo-
cal optima form, as we approach the wind angle at
which turbine T4 wakes it diagonal neighbour T8.
The best optimum shifts from negative to positive
yaw-misalignment angles, after which the remain-
ing local optima quickly diminish again. Further-
more, we observe that there are no sub-optimal
Nash equilibria formation. Specifically, each sub-
optimal mode on the optimisation surface aligns
with a more optimal mode. To elaborate, the worst
local optimum, found in the negative yaw angles,
performs worse than the mixed yaw-angle optima.
These mixed optima, in turn, are inferior to the op-
timum located in the positive yaw angles. Each of
these optima is aligned with a superior one along
one dimension, which is advantageous for the al-
ternating maximisation process.
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Figure 3.5: Power heat-maps (MW) for T4 and T5 in the 3×3 layout under 9m/s wind speed with varying wind directions.

Based these findings, we can reasonably con-
clude that many Nash equilibria in yaw config-
urations are short-lived, existing only for nar-
row bands of wind directions where turbines are
aligned along the freestream wind vector. More-
over, Nash equilibria formed by aligned turbines
seem to predominantly exist in local optima where
turbines are all positively yawed or all negatively
yawed, not in mixed-yaw cases.

3.3. Wind speed
Wind speed a large effect on optimal yaw-
misalignment angles [80]. The amount of power
produced by a wind turbine and the amount of
wake deflection for a given yaw-misalignment an-
gle are functions of wind speed. Consequently,
wind speed, similar to wind direction, may strongly
influence the shape of the optimisation surface.

Figure 3.6 displays how the optimisation surface
changes as wind speeds vary. At wind speeds up
to 12m/s, two Nash equilibria form where the two
leading turbines are both positively or both neg-
atively yawed. As wind speeds increase beyond
12m/s, two local optima for mixed (positive and
negative) yaw angles increase in prominence, but
remain inferior to the non-mixed yaw Nash equi-
libria. When wind speeds reach approximately
16m/s, the optimality gap between the optimal
policy and any other policy shrinks to less than
0.04MW. Ultimately, facing the wind becomes op-
timal, as wind speed in the wake is adequate for
maximum power generation at downwind turbines.

3.4. Layouts
Clearly, The spatial arrangement of turbines influ-
ences how wakes interact and determines which
turbines are downwind of each other. As local op-
tima seem to predominantly form when turbines
are aligned, it may be interesting to determine how
layout depth (i.e., the number of aligned turbines)
affects the optimisation surface.

Figure 3.7 depicts power heat-maps for single-line
layouts of increasing depth. From these plots,
we may infer that the optimality gap between the
two Nash equilibria increases proportionately to
the number of downwind turbines. Moreover, as
depth increases, the modes in the surface appear
to shrink and increase in prominence.

Adversarial Layouts
We define adversarial turbine layouts as layouts
where the sequence of best responses will guide
alternating maximisation towards a sub-optimal
Nash-equilibrium. Under the assumption that opti-
misation starts from a face-the-wind policy, all yaw-
misalignment angles at 0°, an example of such
a layout can be constructed from the single-line
layout by translating the second turbine down by
1
20 rotor diameters, corresponding to 6.3m. Such
a translation could occur naturally in an offshore
wind farm through drifting of floating wind turbines.

The implications of this modification on the alter-
nating maximisation process are profound. While
the global optimum remains in the positive yaw an-
gles (see Figure 3.8, top-left plot), the leading tur-
bine’s initial best-response changes to a negative
yaw angle, as shown the top plot of in Figure 3.9.
This shift leads the middle turbine to also adopt
a negative yaw angle as its best response. Con-
sequently, the procedure converges to the sub-
optimal Nash equilibrium.

Interestingly, the observed effect is sensitive to the
magnitude of the translation. Increasing the trans-
lation to 3

20 turbine diameters shifts the global op-
timum to the negative yaw angles, as depicted in
the top-right plot of Figure 3.8. As a result, the new
convergence path becomes optimal. Furthermore,
the previous global optimum becomes a local op-
timum, but not a Nash equilibrium, indicating that
their existence is sensitive to such translations.

Expanding our analysis, we investigate transla-
tions on a 1×4 layout. The bottom row of Figure
3.8 depicts the resulting heat-maps. The bottom
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Figure 3.6: Power heat-maps (MW) for the leading two turbines of the 1 ×3 single-line layout
under 270° wind direction with varying wind speeds. Note: the colour map range differs between plots.

Figure 3.7: Power heat-maps (MW) for the leading two turbines of various single-line layouts
under 9m/s wind speed and 270° wind direction. Note: the colour map range differs between plots.

Figure 3.9: Best response of the leading turbine in the 1×3
and 1×4 layouts with 1

20D adversarial variants, under 9m/s
wind speed, 270° wind direction, and all other turbines facing

the wind.

Figure 3.8: Power heat-maps (MW) including Nash equilibria
for the leading two turbines of various adversarial layouts
under 9m/s wind speed and 270° wind direction. Note: the
colour map range differs between the 1×3 and 1×4 layouts.
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plot in Figure 3.9 displays how the addition of a
turbine mitigates the adverse effects of translation
on the best-response. Only when the translation is
increased to 3

20 diameters does the adverse effect
occur, which is evident in the bottom-right heat-
map of Figure 3.8. This suggests that the shape of
the optimisation surface of deeper layouts is less
sensitive to adverse effects from translations.

To sum up, adversarial structures can occur in grid
layouts through small translations of turbines, al-
though the effects transient since the Nash equilib-
ria in static yaw optimisation exist only for narrow
bands of wind directions. Furthermore, the small
optimality gap between Nash equilibria in the in-
vestigated layouts indicates that alternating max-
imisation may be effectively applied in practice.

3.5. Yaw misalignment
In this section we will investigate how the yaws of
upwind and downwind turbines influence the best-
responses of other turbines. As is evident from
the shapes of the overall heat-map plots, the opti-
mal yaw-angles of turbines are correlated. For ex-
ample, when turbines are aligned along the wind
vector, such as in Figure 3.7, and the leading tur-
bine holds a positive yaw angle, the best-response
of the middle turbine is also a positive yaw angle.
Similarly, a negative yaw angle held by the lead-
ing turbine results in a negative yaw-angle as best-
response. For this reason, we investigate the be-
haviour of best-responses when varying yaw an-
gles.

To this end, we use a 1x8 single-line layout with all
turbines initialised to face the wind. Turbines are
numbered from upwind to downwind, that is, the
lead turbine is T1 and the rear turbine is T8. How-
ever, the rear turbine is excluded from the analysis
as its best response is always to face the wind.

Figure 3.10 illustrates the optimal yaw responses
of turbines T2–T7 when varying the yaw angle of
turbine T1. The data indicates that best responses
generally align in the same rotational direction —
either clockwise or counter-clockwise — as the
yawing turbine T1. This alignment effect is more
pronounced in turbines closer to T1. Conversely,
turbines located further away show a stronger pref-
erence for positive yaw angles (counter-clockwise
rotation) in their optimal responses.

Interestingly, the magnitude of the optimal re-
sponses of some turbines inversely correlates with
the yaw angle of T1. This may be attributed to the
increased wind speed resulting from T1’s signifi-

cant deflection of the wind. A higher wind speed
necessitates a smaller yaw angle to achieve the
same deflection compared to lower wind speeds.

Figure 3.11 presents the results of a similar ex-
periment, but with the downwind turbine T7 be-
ing yawed. The observations reveal that the align-
ment effect remains, although it is weaker com-
pared to when the upwind turbine T1 is yawed. No-
tably, turbines T1–T4 do not exhibit the same fol-
lowing behaviour as the other turbines; they main-
tain a positive yaw angle as their best-response.
This likely occurs because the leading turbines can
deflect more wind with a positive yaw angle. For
T1–T4, there appears to be more benefit in main-
taining a positive yaw-angle than in aligning with
their the downwind neighbour to join their wakes.

In summary, the experiments demonstrate that the
yaw responses of turbines T2 through T7 generally
align with the yaw direction of the leading turbine,
with this effect being more pronounced in turbines
closer to the yawing turbine. However, turbines
further away show a stronger preference for posi-
tive yaw angles. When the downwind turbine T7 is
yawed, the following effect is weaker, and the lead-
ing turbines T1–T4 maintain a positive yaw angle,
indicating greater benefits from this strategy

Figure 3.10: Best responses of turbines T2–T7 in response
to yawing of turbine T1 in a 1×8 layout under 9m/s wind

speed and 270° wind direction.

Figure 3.11: Best responses of turbines T1–T6 in response to
yawing of turbine T7 in a 1×8 layout under 9m/s wind speed

and 270° wind direction.
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3.6. Conclusion
In conclusion, the findings of this chapter illus-
trate the intricate effects of wind direction, wind
speed, turbine layouts, and yaw misalignment on
the shape of the optimisation surface in static yaw
optimisation.

Nash equilibria in yaw configurations are shown
to be transient, typically existing for only nar-
row bands of wind directions where turbines align
along the freestream wind vector. These equilib-
ria tend to form local optima where all turbines are
either positively or negatively yawed, rather than
in mixed-yaw configurations. These findings indi-
cate that alternating maximisation may be a fruitful
approach for many wind directions. In addition, in
cases with sub-optimal Nash-equilibria, there are
only two candidate regions to explore: large posi-
tive or negative yaw angles.

Wind speed significantly affects optimal yaw-
misalignment angles. At lower wind speeds (up
to 12m/s), Nash equilibria emerge where turbines
are all yawed either positively or negatively. As
wind speeds increase beyond 12m/s, mixed yaw
angles gain prominence but remain sub-optimal
compared to non-mixed configurations. At ap-
proximately 16m/s the optimality gap between the
different policies narrows, making all strategies
nearly equivalent in effectiveness.

Naturally, wind speed also affects the power out-
put of the farm as a whole. For that reason, wind
speed should be taken into account when explor-
ing in time-varying wind conditions. Alternatively,
too few samples may result in a misleading reward
signal with a false maximum during the high wind-
speed samples.

The layout depth also plays a role in the shape
of the optimisation surface. As the number of

aligned turbines increases, the optimality gap be-
tween Nash equilibria grows, and the modes in the
optimisation surface decrease in width but grow in
prominence. However, the mode of the global opti-
mum remains comparatively wider. Consequently,
the direction in which to optimise becomes clearer
with layout depth.

Adversarial structures, where best-response prob-
lems mislead the convergence path to sub-optimal
Nash equilibria, can occur in grid layouts through
small translations of turbines. However, because
the Nash equilibria are dependent on the wind di-
rections, they remain transient. Furthermore, the
small optimality gap between Nash equilibria in the
investigated layouts indicates that alternating max-
imisation may be effectively applied in practice.
Lastly, the experiments on yaw misalignment re-
veal that turbines generally align their yaw re-
sponses with the leading turbine’s yaw direction.
This effect diminishes with distance, as turbines
further away prefer positive yaw angles. Yawing
the downwind turbine results in a weaker align-
ment effect, with leading turbines maintaining a
positive yaw angle to maximise wind deflection
and power generation benefits.

Under the assumption that optimal yaw configura-
tions contain yaw-misalignment angles pointing in
roughly the same direction, the aligning behaviour
of turbines with their neighbours puts an emphasis
on the initial set of optimisations. If the correct di-
rection is identified early on, the likelihood of con-
verging to an optimal policy may be significantly
improved.

Overall, these findings show that the shape of the
optimisation surface for static yaw optimisation is
generally favourable towards the application alter-
nating maximisation.



4
Static Yaw Optimisation

via Alternating Maximisation

Static yaw optimisation aims to find the best tur-
bine yaw-misalignments per specific wind condi-
tion, and forms an integral part of certain dynamic
yaw control strategies. This chapter explores how
alternating maximisation can be effectively applied
to static yaw optimisation, and investigates its rel-
evance both as a promising strategy in itself and
for insights it may provide into the application of
alternating maximisation to dynamic yaw control.

Our findings from the previous chapter suggest
that alternating maximisation could be a produc-
tive approach for static yaw optimisation in many
wind conditions. The transient nature of Nash equi-
libria in yaw configurations, the limited amount of
candidate regions to explore, and the aligning be-
haviour of turbines support its applicability.

Understanding the efficacy of alternating maximi-
sation in static yaw optimisation also has implica-
tions for dynamic yaw control. By evaluating it
in static scenarios, we can identify specific chal-
lenges when applying this method to dynamic con-
ditions, such as the impact of a limited rotation
speed on the efficacy of alternating maximisation.

To provide a comprehensive understanding of how
to effectively apply alternating maximisation to
static yaw optimisation, we refine the primary re-
search question (Q2) of this chapter “How can al-
ternating maximisation method be effectively ap-
plied to static yaw optimisation, and what factors
influence its performance and optimality of the re-
sulting Nash equilibria?” into the following sub-
research questions:

Q2.1 What approach for solving the best-
response problem converges to better optima
in static yaw optimisation?

Q2.2 How does the initial yaw configuration affect
the Nash equilibria found through alternating
maximisation?

Q2.3 How does the optimisation order affect the
Nash equilibria found through alternatingmax-
imisation?

This chapter begins by outlining the basic imple-
mentation of alternating maximisation for static
yaw optimisation. It then delves into optimally
solving the best-response sub-problems. Next,
the assumptions underpinning the standard imple-
mentation will be questioned. Specifically, the ini-
tial yaw configuration and the order of optimisa-
tion. Both may have a profound effect on the con-
vergence path of alternating maximisation, as we
have demonstrated in the previous chapter that
the best-responses of turbines are dependent on
the yaws of their neighbours.

4.1. Problem Statement
Static yaw optimisation, being a single-state prob-
lemwith only one wind condition, can be effectively
modelled as a combinatorial multi-armed bandit
[15] problem with continuous actions. In this for-
mulation, the agent must simultaneously choose
N continuous actions, one for each turbine yaw-
misalignment angle. After selecting the yaw an-
gles, the agent receives a reward based on the
total power output of the wind farm. The setup for
the combinatorial multi-armed bandit problem can
be formalised as follows:

• Each turbine i ∈ {1,2… ,N} represents a
component of the joint arm in the combinato-
rial multi-armed bandit problem.

• A ∶ [−30,30]N is the action space, where a =
(a1,a2, … , aN) ∈ A represent the chosen yaw
angles.

• R ∶ A → R is the reward function, where R(a)
is the steady-state farm output for the yaw an-
gles represented by the joint action a.

23



24 Chapter 4. Static Yaw Optimisation via Alternating Maximisation

4.2. Alternating Maximisation
We begin our exploration of static yaw optimisation
with a naive implementation of alternating max-
imisation, which we name Alternating Yaw Opti-
misation. This initial algorithm is inspired by the
Boolean yaw angle method by Stanley et al. [96]
and the Serial-Refine method by Fleming et al.
[32], both of which are state-of-the-art iterative
techniques designed for static yaw optimisation.

Following the methodology of Stanley et al. [96]
and Fleming et al. [32], the procedure starts by
sorting the turbines in upwind to downwind or-
der, and initialising all turbines to face the wind.
The core of procedure involves sequentially solv-
ing best-response problems, where the yaw angle
of a turbine is optimised, in the established order.
This process constitutes one iteration alternating
maximisation, and is repeated until convergence.

To solve the best-response problems in each step
of the iterative process, we employ the sequential
least squared programming (SLSQP) [50] method,
a gradient-based algorithm and the default for
FLORIS V2.4 [65]. The accompanying pseudo
code for alternating yaw optimisation can be found
below in Algorithm 1.

Algorithm 1: Alternating yaw optimisation
Input: Turbines D = {1,2, ...,N} sorted by

optimisation order
Input: Initial yaws Yaws = {yawi ∣ ∀i ∈ D}
Input: optimise(Yaws, turbine_id) →

([min yaw,max yaw]n,Z+) turbine
optimisation function

Output: Optimised yaws Yaws
function AlternatingYawOptimisation(atol)
obj ← 0
prev ← 0
while obj − prev > atol do
prev ← obj
forall i ∈ D do
obj, yaw ← optimise(Yaws, i)
set Yawsi ← yaw

return Yaws

4.2.1. Experiment
In this experiment, we compare the performance
and efficiency of alternating yaw optimisation
against two state-of-the-art optimisation methods.

Experimental Setup
For our experimental setup, we use the NREL
5MW wind turbine [45], simulated using FLORIS

V2.4 [65]. All turbines are homogeneous and have
their yaw boundaries set at [−30°,30°]. The wind
speed for all experiments is set at 9m/s, which
should allow wakes to propagate sufficiently far,
while beingmoderate enough to not make the face-
the-wind policy optimal when turbines are aligned
with the wind. Additionally, we vary the wind direc-
tion ±33° around the prevailing wind direction 270°
(west) with 3° steps.
We conduct experiments on various spatial config-
urations, starting with a basic 3 × 3 layout. Then,
we introduce more turbines to assess the impact
on convergence properties by expanding to 5 × 5
and 7×7 layouts. To isolate the effects of simply
addingmore turbines from themore complex wake
interactions that occur in deeper layouts, we also
test alternating yaw optimisation on a wide 10×2
layout and a deep 2×10 layout.

To evaluate the effectiveness of alternating yaw
optimisation, we will compare it against two state-
of-the-art methods. Our primary comparison will
be with the sequential least squares programming
(SLSQP) method used by FLORIS [65], as it em-
ploys the same gradient-based optimiser as our
approach. However, like alternating maximisation,
FLORIS is known to get stuck in local optima due
to its gradient-based nature.

To address this limitation, we will also compare our
method against differential evolution [97], an opti-
misation technique that is expected to perform bet-
ter due to its ability to explore the search space
more thoroughly. Differential evolution does not
rely on gradient information, which ideally allows
it to avoid getting trapped in local optima and po-
tentially find more global solutions. Moreover, dif-
ferential evolution is a strong global optimisation
algorithm that sees wide use across multiple sci-
entific domains [7], and it is well suited for high-
dimensional and highly multi-modal problems [79].

Exhaustively searching for the optimal solution is
not feasible because the search space is too large
and the function evaluations are too computation-
ally expensive. For example, using a relatively
small farm layout with 9 turbines, a search reso-
lution of 1°, and yaw boundaries of [−30°,30°], ex-
haustive search already requires 619 ≈ 1016 func-
tion evaluations. Therefore, differential evolution
serves as a practical alternative that balances ex-
ploration and exploitation of the search space.

By comparing alternating maximisation with se-
quential least squares programming (FLORIS)
and differential evolution, we aim to understand
whether our method offers any advantages over
traditional gradient-based approaches and to see
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how it measures up against a more exploratory
optimisation technique. The performance of each
method will be measured against the baseline
face-the-wind strategy. Hyperparameters for each
method can be found in Appendix A.

Results
The results of the experiment are presented in
Table 4.1 and Table 4.2. Surprisingly, alternat-
ing yaw optimisation consistently outperforms the
other methods across multiple layouts, with the ex-
ception of the 3× 3 layout, and multiple metrics, in-
cluding mean, median, 5th percentile, and 1st per-
centile scores. This indicates that alternating yaw
optimisation is both effective and robust. Never-
theless, we would have expected differential evo-
lution to perform better due to its strong search ca-
pabilities. However, the performance of all meth-
ods is remarkably close, with differences never ex-
ceeding 1 percentage point. These close scores
may imply that the potential for further improve-
ment is limited.

Interestingly, differential evolution also has the
worst outliers, as shown by the 1st percentile
scores, which could be attributed to is stochastic
nature. Specifically, it appears that it has gotten
trapped in a local optimum which is worse than the
face-the-wind strategy, meaning its population ini-
tialisation did not cover the face-the-wind strategy
and was unable to find it through exploration.

Furthermore, differential evolution exhibited the
lowest standard error across all layouts. How-
ever, the differences in standard error between the
methods were small and appeared more related
to the layout configuration than the optimisation
method used. This is logical, as the performance
gap for the face-the-wind strategy is expected to
scale with layout depth. Specifically, in wind con-
ditions where few turbines are aligned along the
wind vector, the face-the-wind strategy is more
likely to be optimal, whereas in conditions where
turbines are positioned downwind of each other,
the strategy may be less effective.

While sequential least squares programming per-
formed the worst across the board in terms of rela-
tive performance, it did so using the least amount
of function evaluations. Conversely, alternating
maximisation with sequential least squares pro-
gramming used by far the most function evalua-
tions, requiring an order more than other methods.
This finding is unexpected, as we anticipated that
the gradient-basedmethod would need fewer sam-
ples due to the one-dimensional nature of the alter-
nating maximisation sub-problems. This discrep-

ancy suggests that sequential least-squares pro-
gramming struggles to identify maxima in the best-
response problems of alternating maximisation.

Layout Mean SE Median P5 P1
Alternating yaw optimisation (SLSQP)

3×3 105.15 1.28 102.09 100.02 100.00
5×5 108.49 2.15 102.73 100.19 100.13
7×7 109.95 2.58 103.24 100.25 100.15
wide 104.02 1.00 101.20 100.00 100.00
deep 108.69 2.76 102.89 100.10 100.01

Sequential least squares programming

3×3 105.55 1.43 102.06 100.00 100.00
5×5 107.99 2.13 102.69 100.06 100.00
7×7 109.80 2.58 103.13 100.06 100.02
wide 103.93 0.99 101.20 100.00 100.00
deep 108.51 2.77 102.65 100.00 100.00

Differential evolution

3× 3 105.78 1.44 102.16 100.06 100.04
5×5 108.22 2.14 102.78 100.07 99.95
7×7 109.93 2.60 103.24 100.16 97.34
wide 103.93 0.98 101.30 100.00 100.00
deep 108.65 2.77 102.97 100.07 98.67

Table 4.1: Relative performance in percentage to the
baseline (facing the wind) in the alternating yaw optimisation

experiment.

Layout Mean SE Median P95 P99
Alternating yaw optimisation (SLSQP)

3×3 14013 567 15257 18143 18234
5×5 41163 953 41561 43554 54973
7×7 87844 4242 82482 126417 164833
wide 28917 1194 30741 34727 34731
deep 34816 1862 34602 50475 67311

Sequential least squares programming

3×3 726 83 964 981 990
5×5 1313 141 1730 1770 1770
7×7 2436 183 2916 2961 2970
wide 1273 114 1520 1540 1540
deep 1107 130 1488 1522 1540

Differential evolution

3× 3 1576 79 1510 2260 2420
5×5 5364 820 4708 13812 16812
7×7 14240 3666 6810 45730 68560
wide 2843 237 2526 4968 5768
deep 3668 446 2947 7810 9810

Table 4.2: Number of function evaluations rounded to nearest
integer in the alternating yaw optimisation experiment.
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In conclusion, alternating yaw optimisation has
proven to be an effective method for static yaw op-
timisation, consistently delivering superior perfor-
mance across multiple metrics and layouts. The
method’s robustness is evident, as neither the ad-
dition of more turbines, nor the increased com-
plexity of wake interactions in deeper layouts ad-
versely impacts the convergence properties. In
contrast to the comparatively good gain in power
output of alternating yaw optimisation with sequen-
tial least squares programming, its inefficiency
highlights a critical area for improvement. Explor-
ing alternative gradient-basedmethods or different
paradigms may yield better results in terms of both
performance and computational efficiency. How-
ever, it is important to note that our conclusions
are limited by the inability to perform an exhaus-
tive search for the optimal solution due to compu-
tational constraints. Despite the lack of a conclu-
sive global optimum, the superior performance of
alternating yaw optimisation over other methods
is promising, suggesting that the shape of the op-
timisation surface is lends itself to optimisation via
alternating maximisation.

4.3. Solving the Best-Response
Problem

The results for alternating yaw optimisation us-
ing sequential least squares programming demon-
strate its effectiveness in static yaw optimisation.
However, because the method relies on gradient-
based solutions for best-response problems, it be-
comes trapped in local optima, resulting in sub-
optimal outcomes or an extended convergence
process which requires an exorbitant amount of
function evaluations.

To mitigate these limitations, we apply a sampling-
based method, which has the potential to explore
a broader range of options and avoid local optima.
Since function evaluations are expensive, both in
simulation and real-life wind farms, it is crucial to
adopt an efficient sampling strategy.

To this end, we employ a coarse-to-fine search,
which is a sampling-based technique commonly
applied to problems with large search spaces [75,
53]. While the scale of best-response problems is
not large by itself, expensive function evaluations
increase its effective size. The Coarse-to-Fine ap-
proach aims to exclude impractical areas of the
initial search space and focus on exploiting the
promising regions [75]. By first sampling coarsely,
promising regions can be identified and their neigh-
bourhoods explored through fine sampling.

In our implementation of coarse-to-fine sampling
for static yaw optimisation, we sample a set of z
equidistant points as our coarse yaws. Next, we
select the modes from this noisy signal as our can-
didate solutions. We opt for modes and not solely
the maximum, as the best-response problems can
be multi-modal and we are not guaranteed to sam-
ple the maximum of each mode. Figure 4.1 dis-
plays such a scenario where a falsemaximummay
be selected. Additionally, we add the current yaw
angle to our candidate solutions to prevent regres-
sion due to sampling errors. Next, we explore the
candidate solution neighbourhoods using search
radius r at a resolution of Δy and select the best
yaw. The pseudo code for the coarse-to-find sam-
pling method is displayed below in Algorithm 2.

Figure 4.1: A false maximum due to coarse sampling.

Algorithm 2: Coarse-to-fine search
Input: yawscoarse ∈ [ymin, ymax]z

z coarse equidistantly sampled yaws
Input: r ∈ R candidate search radius
Input: Δy ∈ R fine sampling resolution
Input: eval(Yaws) → R

objective evaluation function
Output: (obj, yawbest) ∈ R × [ymin, ymax]
function CoarseToFineSearch(Yaws, i)
yawprev ← Yawsi
objcoarse = [ ]
forall y ∈ yawscoarse do
set Yawsi ← y
push (objcoarse,eval(Yaws))

M ← modes(objcoarse) ∪ {yawprev}
yawcandidates ←
⋃y∈M {y − r + Δy ⋅ k ∣ k ∈ Z,0 ≤ k ≤ 2r

Δy}
forall y ∈ yawcandidates do
set Yawsi ← y
if eval(Yaws) > obj then
yawbest ← y
obj ← eval(Yaws)

set Yawsi ← yawbest
return obj, yawbest
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Layout Mean SE Median P95 P99
Alternating yaw optimisation (SLSQP)

3×3 14013 567 15257 18143 18234
5×5 41163 953 41561 43554 54973
7×7 87844 4242 82482 126417 164833
wide 28917 1194 30741 34727 34731
deep 34816 1862 34602 50475 67311

Alternating yaw optimisation (coarse-to-fine)

3 × 3 975 15 941 1126 1130
5×5 3404 134 3912 3929 4256
7×7 7424 372 7692 10252 10261
wide 2163 42 2089 2647 2710
deep 2436 96 2095 3148 3151

Table 4.4: Number of function evaluations rounded to nearest
integer in the best-response solving experiment.

4.3.1. Experiment
In this experiment, we compare the effective-
ness of gradient-based and sampling-based ap-
proaches in solving the best-response problem
within the alternating maximisation framework for
static yaw optimisation. We aim to assess their
overall performance using the same experimental
setup as previously described. For the coarse-to-
fine sampling-based method, we use the following
parameters: a coarse sampling resolution of 3°,
which results in z = (ymax − ymin)/3° + 1 = 21, a
candidate search radius r of 1.5°, and a fine sam-
pling resolution Δy of 0.1°.
From Table 4.3 it can be seen that the sampling-
based approach achieves superior performance
across all layouts. More importantly, the per-
formance gap between alternating yaw optimisa-
tion and the methods from the previous experi-
ment is closed. This suggests that gradient-based
methods do get stuck in the local optima of best-
response problems, though, the performance dif-
ference between the two methods is slim.

Additionally, Table 4.4 displays the vastly reduced
number of function evaluations required when us-
ing coarse-to-fine sampling. The efficiency of the
method bring the number of function evaluations
down an order of magnitude, sitting between firmly
between differential evolution and sequential least
squares programming.

Based on these findings, we may conclude that
a sampling-based approach is most suited, both
in terms of performance and efficiency, for solving
best-response problems in static yaw optimisation.

Layout Mean SE Median P5 P1
Alternating yaw optimisation (SLSQP)

3×3 105.15 1.28 102.09 100.02 100.00
5×5 108.49 2.15 102.73 100.19 100.13
7×7 109.95 2.58 103.24 100.25 100.15
wide 104.02 1.00 101.20 100.00 100.00
deep 108.69 2.76 102.89 100.10 100.01

Alternating yaw optimisation (coarse-to-fine)

3 × 3 105.79 1.44 102.16 100.06 100.05
5×5 108.61 2.15 102.78 100.21 100.19
7×7 110.30 2.62 103.27 100.33 100.21
wide 104.05 1.00 101.30 100.00 100.00
deep 108.80 2.76 102.97 100.11 100.07

Table 4.3: Relative performance in percentage to the baseline
(facing the wind) in the best-response solving experiment.

4.4. Yaw-Angle Initialisation
Current iterative methods for static yaw optimisa-
tion, such as those discussed in Stanley et al. [96]
and Fleming et al. [32], initialise turbine yaw an-
gles to face the wind. However, neither method
provides a detailed rationale for this specific de-
sign choice. Given the influence of turbine yaw
angles on the best responses of neighbouring tur-
bines, it is important to explore alternative initiali-
sation strategies that could potentially affect opti-
misation performance.

Our investigation considers both positive and neg-
ative initialisation of turbine yaw angles. This ex-
ploration is motivated the findings in Chapter 3,
which indicate that positive and negative yaw an-
gles are generally good candidate solutions for
yaw optimisation. The rationale behind this ap-
proach is rooted in the possible influence of initial-
isation on convergence paths.

When turbines are initialised with positive yaw an-
gles, the configuration is theoretically closer to a
global optimum, assuming that such an optimum
exists in the positive yaw region. Conversely, neg-
ative initialisation is expected to be nearer to a sub-
optimal Nash equilibrium. Due to the influence of
initial yaw configurations on subsequent best re-
sponses, these initial states are likely to attract the
solutions towards their respective Nash equilibria.

4.4.1. Experiment
For each yaw-angle initialisation strategy, we use
the same 3×3 turbine layout with the previously
described experimental setup, and apply both al-
ternating yaw optimisation methods for solving the
best-response problems. We measure the farm
power output and sample efficiency to compare
the effectiveness of each strategy.
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Yaw init. Mean SE Median P5 P1

Alternating yaw optimisation (SLSQP)

Standard 105.15 1.28 102.09 100.02 100.00
Positive 105.60 1.43 102.14 100.02 99.95
Negative 105.60 1.41 102.06 99.96 99.93

Alternating yaw optimisation (coarse-to-fine)

Standard 105.79 1.44 102.16 100.06 100.05
Positive 105.79 1.44 102.16 100.06 100.05
Negative 105.71 1.40 102.16 100.06 100.05

Table 4.5: Relative performance in percentage to the
baseline (facing the wind) in the yaw-angle initialisation

experiment. Note: the best performing initialisation-strategy
is highlighted separately for each method.

Layout Mean SE Median P95 P99

Alternating yaw optimisation (SLSQP)

Standard 14013 567 15257 18143 18234
Positive 14014 267 14086 15178 15180
Negative 10676 644 10846 15207 17068

Alternating yaw optimisation (coarse-to-fine)

Standard 975 15 941 1126 1130
Positive 1391 64 1416 1727 2290
Negative 1344 54 1415 1695 1704

Table 4.6: Number of function evaluations rounded to nearest
integer in the yaw-angle initialisation experiment. Note: the
best performing initialisation-strategy is highlighted separately

for each method.

The results are presented in Table 4.5 and Table
4.6 and reveal distinct differences in performance
based on the chosen initialisation strategy, with no-
table variations between the sampling-based and
gradient-based approaches.

For the sampling-based approach, both standard
face-the-wind and positive initialisation result in
identical performance. This suggests that both ini-
tialisations are drawn to the same optima. Con-
versely, negative initialisation leads to worse per-
formance than either approach, indicating that
starting near a sub-optimal Nash equilibrium neg-
atively impacts the overall optimisation outcome.

The gradient-based approach exhibits a different
behaviour. Both positive and negative initialisa-
tions perform better on average than the standard
face-the-wind initialisation, yet, both are worse
than any initialisation for the sampling-based ap-
proach. However, the data also reveal that these
initialisations have outliers that performworse than
the face-the-wind strategy, as indicated by the 1st
percentile. We speculate these outliers arise from

scenarios where the face-the-wind strategy is opti-
mal. In such cases, starting with a positive or neg-
ative yaw angle places the turbines far from the op-
timal face-the-wind configuration. As a result, the
gradient-based method, which is sensitive to initial
conditions and local optima, may get stuck in a lo-
cal optimum before reaching the optimal face-the-
wind strategy, thus resulting in worse performance
than the face-the-wind strategy.

This discrepancy between the sampling and
gradient-based approaches extends to the effi-
ciency of the initialisation strategies. For the
sampling-based method, the face-the-wind initiali-
sation is most efficient, with both positive and neg-
ative initialisations seeing a significant increase in
the number of function evaluations. On the con-
trary, for the gradient-based method, the face-the-
wind initialisation is least efficient. Unexpectedly,
the negative initialisation is on average more sam-
ple efficient than the positive initialisation, while
having worse outliers.

In conclusion, the results indicate that a face-the-
wind initialisation strategy may be preferred, given
that the best-response problems are solved op-
timally. The positive initialisation strategy yields
identical performance, but is less sample effi-
cient. Since wind farms are currently operated
with a face-the-wind strategy, this approach may
be more conducive to actual farm operations as
the effects of large positive yaw-misalignments are
less studied.

4.5. Optimisation Order
Next, we tackle the order in which turbines are
optimised. In previous approaches [96, 32], tur-
bines are optimised in upwind-to-downwind or-
der without providing a rationale for the design
choice. Moreover, the order in which turbines are
optimised may influence the performance of al-
ternating maximisation for static yaw optimisation.
Given the interdependence of turbine yaw angles,
the optimisation order may affect both the conver-
gence speed and the quality of the final solution.

In our investigation, we explore different optimisa-
tion orders to determine their impact on the optimi-
sation process. We start with the standard upwind-
to-downwind order, where turbines are optimised
sequentially from the front of the wind farm to the
back. This approach is based on the logical as-
sumption that upwind turbines, which experience
less wake effect, should be optimised first to min-
imise the downstream impact of wakes.
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Layout Mean SE Median P95 P99

Alternating yaw optimisation (SLSQP)

Standard 14013 567 15257 18143 18234
Reverse 11915 1073 10014 15252 32282
Cross 12111 910 10014 21286 24066

Alternating yaw optimisation (coarse-to-fine)

Standard 975 15 941 1126 1130
Reverse 1182 63 944 1719 1719
Cross 1068 47 942 1506 1719

Table 4.8: Number of function evaluations rounded to nearest
integer in the optimisation order experiment. Note: the best
performing order is highlighted separately for each method.

We also examine the reverse order, from down-
wind to upwind, to assess whether starting with
turbines that are more affected by wake interac-
tions can provide any advantages. Additionally,
we test a cross-wind order, optimising turbines
column by column, perpendicular to the wind di-
rection, to evaluate how lateral wake interactions
might influence the results.

4.5.1. Experiment
For each optimisation order, we use the same 3×3
turbine layout, use the same experimental setup
as in previous experiments, and apply both alter-
nating yaw optimisation approaches for solving the
best-response problems.

The results are presented in Table 4.7 and Table
4.8. The gradient-based approach exhibited vari-
ability in performance depending on the optimisa-
tion order. Specifically, the downwind-to-upwind
(reverse) order and the cross-wind order resulted
in worse outcomes. These orderings likely lead
to premature convergence to local optima, as the
gradient-based method relies on local information
and can be influenced by the sequence of optimi-
sation. Conversely, for the sampling-based ap-
proach, we found no difference in optimality be-
tween the different optimisation orders. This sug-
gests that the sampling-based method’s ability to
explore the search space broadly compensates for
any potential drawbacks associated with the se-
quence in which turbines are optimised.

Regarding efficiency, we can observe that the
standard upwind-to-downwind ordering performs
best when using the coarse-to-fine optimisation
method, yielding about a 10% lead in mean per-
formance over the other orderings. By contrast,
using a gradient-based approach, the results are
flipped, with both reverse and cross orderings be-
ing most efficient.

Order Mean SE Median P5 P1

Alternating yaw optimisation (SLSQP)

Standard 105.15 1.28 102.09 100.02 100.00
Reverse 104.98 1.24 102.05 100.02 100.00
Cross 104.99 1.24 102.07 100.02 100.00

Alternating yaw optimisation (coarse-to-fine)

Standard 105.79 1.44 102.16 100.06 100.05
Reverse 105.78 1.44 102.16 100.06 100.05
Cross 105.79 1.44 102.16 100.06 100.05

Table 4.7: Relative performance in percentage to the
baseline (facing the wind) in the optimisation order

experiment. Note: the best performing order is highlighted
separately for each method.

These findings suggest that the specific optimisa-
tion order is not of importance for the optimality of
alternating yaw optimisation, as long as the best-
response problems are solved optimally. How-
ever, the order does matter for efficiency. For
these reasons, we suggest using the upwind-to-
downwind order, as it is most optimal and sample
efficient, and minimises the downstream impact of
wakes early on in the optimisation process leading
to extra energy capture during optimisation.

4.6. Conclusion
This chapter has explored alternating yaw optimi-
sation for static yaw control in wind farms, exam-
ining its performance through a series of exper-
iments involving different initialisation strategies,
best-response problem-solving methods, and op-
timisation orders.

Alternating yaw optimisation consistently outper-
formed other methods across various layouts and
metrics, demonstrating its robustness and effec-
tiveness. The sampling-based approach for solv-
ing best-response problems proved to be the most
optimal, robust, and sample efficient, closing the
remaining performance gaps with differential evo-
lution. By contrast, the gradient-based approach
suffered from convergence to local optima in the
best-response problems and required an order
of magnitude more samples in every experiment,
leading to worse performance.

Moreover, the face-the-wind initialisation strategy
is preferred, given that the best-response prob-
lems are solved optimally. The positive initialisa-
tion strategy yields identical performance, but is
less sample efficient. Since wind farms are cur-
rently operated with a face-the-wind strategy, this
approach may be more conducive to actual farm
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operations as the effects of large positive yaw-
misalignments are less studied.

Furthermore, the results from our experiments
suggest that the specific optimisation order is not
of importance for the optimality of alternating yaw
optimisation, as long as the best-response prob-
lems are solved optimally. However, the upwind-
to-downwind order was more efficient by a mar-
gin of approximately 10%. For these reasons, we
suggest using the upwind-to-downwind order, in
addition to minimising the downstream impact of
wakes early on in the optimisation process leading
to extra energy capture during optimisation.

In summary, alternating yaw optimisation with
a sampling-based approach is the current most
effective method for static yaw optimisation via
alternating maximisation. Moreover, alternating

maximisation with sampling is robust to design
choices concerning the yaw-initialisation strategy,
and optimisation order. Positive initialisation offers
marginal gains, but the standard face-the-wind
strategy is nearly as effective and aligns with cur-
rent practices. Optimisation order has no impact
on optimality given optimal best-response solvers,
though the upwind-to-downwind order is recom-
mended to for sample efficiency and to minimise
downwind wake impacts early on. These results
highlight the potential for applying alternating max-
imisation to dynamic yaw control. Moreover, these
promising outcomes suggest that any sub-optimal
performance in dynamic yaw control can likely be
attributed to differences between the two prob-
lems: the impact of maximum angular velocity
on exploration functions, and the enlarged search-
space induced by time-varying wind conditions.



5
Alternating Maximisation with

Multi-Agent Deep Reinforcement
Learning for Dynamic Yaw Control

In the previous chapter, we investigated numeri-
cal methods for static yaw optimisation, and have
shown the efficacy of alternating maximisation in
such a regime. Moreover, it appears the Nash
equilibria in the yaw optimisation surface that are
found through alternating maximisation can be
quite good, resulting in robust performance.

This chapter aims to explore the application of al-
ternating maximisation to multi-agent deep rein-
forcement learning for dynamic yaw control, specif-
ically focusing on policy gradients. We will out-
line why deep reinforcement learning is a logical
choice for such a problem, and how optimising
from a noisy reward signal as well as exploring with
a limited angular velocity complicates learning.

Deep reinforcement learning is well suited for dy-
namic yaw control for several reasons. First,
real-life systems are often noisy due to imper-
fect sensors or partial observability of the wind.
Reinforcement learning agents can learn policies
that account for this noise, as demonstrated by
Neustroev et al. [63] in their noisy observations
benchmark. By contrast, yaw control strategies
based on static yaw optimisation, such as FLORIS,
do not account for this noise; they optimise for a
specific wind condition under the assumption of
perfect measurement, not considering that such
measurements could be noisy. Second, optimis-
ers like FLORIS can get stuck in local optima, as
demonstrated in the previous chapter, because
they do not explore. While reinforcement learn-
ing algorithms such as REINFORCE also have
convergence guarantees for local optima, they
can escape such local optima through exploration.
However, the exploration-exploitation trade-off re-
mains a key challenge in reinforcement learning
[100]. Reinforcement learning agents may require
many samples to converge to a good policy. For

this purpose, we propose to use alternating max-
imisation for deep reinforcement learning, as it pre-
viously used to improve sample efficiency [109].

As described in Chapter 1, we hypothesise that
issues stemming from multi-agent credit assign-
ment, other agents performing exploration, and
relative over-generalisation are the primary chal-
lenges for multi-agent dynamic yaw control. Alter-
nating maximisation eliminates the first two prob-
lems by letting only one agent perform exploration
and policy updates at a time. However, the pos-
sibility of relative over-generalisation still persists.
Moreover, the search space for dynamic yaw con-
trol is larger than that of static yaw optimisation,
which can be a challenge for reinforcement learn-
ing agents if data is limited relative to the size of the
search space. As exemplified by farm sizes within
single-agent reinforcement learning approaches
to dynamic yaw control [121, 24, 25, 116, 118, 55]
not exceeding fifteen turbines.

Compounding this challenge, is the fact that tur-
bines have maximum rotation speed with which
they can yaw, which introduces a temporal com-
ponent to the problem. Future yaw angles now de-
pend on past yaw angles. Agents needs to make
a concerted effort over multiple time steps to move
the turbine from one end of the possible yaws to
the other end, which diminishes an agent capa-
bility to explore. Moreover, the dependence on
past yaws limits stochastic exploration to a ran-
dom walk. As a result, relative over-generalisation
could occur due to the limited exploration capabil-
ities. This is especially the case for reinforcement
learning, as it often relies on random exploration.
Consequently, agents must be capable of learn-
ing effective policies, often with limited data, while
learning to plan for and explore with the finite an-
gular velocity they are given.

31
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5.1. Alternating Maximisation
with Policy Gradient

To apply alternating maximisation to dynamic yaw
control, we need to factor the multi-agent rein-
forcement learning problem into N sub-problems.
We opt for an independent learning paradigm, as
this simplifies the learning process, and has been
shown to work for dynamic yaw control [46]. Each
agent operates in a partially observable environ-
ment, where the other agents are assumed to
be part of the environmental dynamics. Conse-
quently, the policy probabilities πθi(a|s) are solely
calculated with respect to that agent’s actions, the
policy has no notion of a “joint action”.

We presume that an on-policy approach, like pol-
icy gradient, may bewell suited for alternatingmax-
imisation, as old experiences may be misleading.
Learning from past experiences is generally ben-
eficial. However, in our case old experiences are
not representative of the current world, since the
policies of other agents have changed, which we
have shown to greatly impact the shape of the re-
ward surface in Chapter 3. As a result, the non-
stationarity of policies induced by the learning of
other agents could make previously high-reward
state-action pairs bad. Such a misleading reward
signal may destabilise learning if not handled ap-
propriately. For this reason, we use an on-policy
method in our research.

For the purpose of optimisation, we use the single-
agent REINFORCE algorithm, described in Chap-
ter 2, as it a straightforward policy gradient method.
Ideally, through this choice of method, it becomes
clear what the effect of alternating maximisation is
on learning multi-agent dynamic yaw control.

Based on the findings on optimisation order and
turbine initialisation from the previous chapter, we
opt to use the upwind-to-downwind optimisation or-
der, as it is most optimal and sample efficient. By
the same token, we use the face-the-wind yaw-
angle initialisation strategy for its optimality and
sample efficiency. Additionally, these choices may
be preferred as they are most congruent with cur-
rent farm operation.

Every agent initially uses a face-the-wind policy,
serving a deterministic starting point. During an
agent’s exploration face, this policy is replaced
with a stochastic policy derived from policy gra-
dient methods. This stochastic policy allows for
exploration of the action space, improving the
chances of discovering optimal actions.

Once the exploration phase concludes, the agent
switches to a deterministic policy, utilising the

mean of the stochastic policy distribution. This de-
terministic approach is chosen to prevent high fre-
quency yaw adjustments, which are undesirable
for turbine operation [30, 48, 89, 90]. Consistent
with the needs of dynamic yaw control, which in-
volves bounded action spaces, we select the Beta
distribution for our stochastic policy. The Beta dis-
tribution is particularly well-suited for this task, as
is bounded and its shape is flexible, allowing for a
wide range of policies.

Summarising our methodology, we present the
pseudo-code outlining the steps of our alternating
maximisation process with policy gradients below
in Algorithm 3. From this point forward, we will re-
fer to this method as Alternating Policy Gradient.

Algorithm 3: Alternating Maximisation with
Policy Gradients for Dynamic Yaw Control
Input: Set of D agents, sorted in

upwind-to-downwind order
function AlternatingPolicyGradients(Niter,Nτ)
Initialise agents with face-the-wind policies.
Initialise Beta policy networks πθi .
forall j ∈ 1,2, … , Niter do
forall agents i ∈ D do
Enable stochastic policy πθi
Roll out trajectories τ = (τ1, τ2, … , τNτ

)
with πθi
Compute policy gradient from
τ1, τ2, … , τNτ

using REINFORCE.
Update πθi with using stochastic
gradient ascent.
Limit πθi to distribution mean.

5.2. Experiment
In this experiment, we evaluate the effect of alter-
nating maximisation on the performance of policy
gradients. For this purpose, we use the distributed
policy gradient [77], described in Chapter 2. Both
methods are configured with identical hyperparam-
eters, which are documented in Appendix A.

The experimental setup features a 3×3 layout, as
described in Chapter 3, with each turbine using the
NREL 5MW reference turbine model [45], with a
maximum angular velocity of 1° per second and a
[-30°, 30° ] yaw boundary. The wind conditions are
constant, with wind coming from the west (270°),
which presents a the most adversarial scenario
for power production for this layout. Agents’ poli-
cies must produce significant yaw-misalignment
angles to deflect wakes around downwind turbines.
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The wind speed is maintained at 9m/s. Addi-
tional wind parameters are derived from the ac-
tion representation benchmark by Neustroev et al.
[63], based on the FLORIS model calibrated to
the Hollandse Kust Noord (Site B) Dataset [60].
These parameters include a turbulence intensity
of 0.12, wind shear of 9.3×10−3, and wind veer of
−2.5 × 10−2.

The observations of each agent i at each time
step t, as described in Chapter 2, comprise: wind
speed at the turbine Mt

i , wind direction at the tur-
bine ϕti , the freestream turbulence intensity Iti , as
well as the turbine’s current yaw angle yti , result-
ing in the vector [Mt

i ,ϕti , Iti , yti ] ∈ R4. With each ob-
servation being normalised to [0,1], except for the
yaw, which is normalised to [-1,1] corresponding
to the yaw boundaries. Similarly, the action space
for each agent is given by the interval [-1,1] and
corresponds to the yaw boundaries [-30°, 30° ].
For the alternating policy gradient method, there
are 12 iterations of alternating maximisation. In
each iteration, each agent sequentially explores
for 1 episode, containing 1 trajectory of 900 time
steps. For the 3×3 layout with N = 9 agents,
this results in 9 ⋅ 900 = 8100 time steps per it-
eration. To ensure a fair comparison, the policy
gradient method is allocated 12 episodes, corre-
sponding to the 12 iterations of alternating max-
imisation. Each episode comprises 1 trajectory of
8100 time steps. This results in both methods util-
ising the equivalent total number of environment
steps 8100 ⋅ 12 = 97200, and an equal amount of
policy updates for each agent.

Each method is trained on 10 unique random
seeds, and evaluated after every alternating max-
imisation iteration (or equivalently, after every dis-
tributed policy gradient episode) on one evalua-
tion episode with one unique random seed and a
length of 3600 time steps. More random seeds
for the evaluation would serve no further bene-
fit as the wind conditions are constant. Perfor-
mance evaluation is conducted by measuring the
relative performance in cumulative power produc-
tion against a baseline face-the-wind policy.

The results of this experiment are displayed in Fig-
ure 5.1 and Table 5.1. Alternating policy gradi-
ent performs on average slightly worse than dis-
tributed policy gradient, yielding about a percent-
age point difference in mean improvement over
baseline. This difference of means likely stems
from a single outlier run, where distributed pol-
icy gradient was able to find a higher-quality pol-
icy. However, the alternating maximisation based
method appears to have a more stable learn-
ing curve, with a tighter 95% confidence interval,

which corroborates the claims by Wan, Xu, and
Li [109] about alternating maximisation’s stability.
We speculate the difference in optimality may stem
from the alternating policy gradient agents each
having 1/N the amount of exploration time com-
pared to their distributed policy gradient counter
parts. As a result, they are more susceptible to ap-
proximation errors and their stochastic exploration
policy taking a bad random walk, which does not
give a sufficiently representative picture of the op-
timisation surface, leading the agents to converge
to a false optimum.

Figure 5.1: Relative performance in percentage to baseline
(facing the wind) during training in the alternating
maximisation with policy gradients experiment.

Method Mean 95% conf. int.
Alternating PG 133.53 132.28 — 134.77
Distributed PG 134.68 133.02 — 136.33

Table 5.1: Relative performance in percentage to baseline
(facing the wind) of the final policies in the alternating

maximisation with policy gradients experiment.

5.3. Analysis
To confirm our assumption that the difference in
optimality stems from insufficient exploration, we
select a sample of the first episode in the train-
ing of turbine T1 (see Figure 3.3 in Chapter 3).
In this seed, the alternating policy gradient agent
converged to the sub-optimal policy, in the neg-
ative yaw angles, and distributed policy gradient
agent converged to the higher-quality policy, in
the positive yaw angles. Figure 5.2 displays the
training yaw angles of turbine T1 during this first
episode. From these yaws, we can infer that the
alternating maximisation explored a smaller range
of yaw angles compared to its distributed policy
gradient counterpart, which could be a factor in its
sub-optimal performance. We speculate that this
smaller exploration range in combination with a re-
duced amount of data, compared to the distributed
policy gradient agents, has lead to more approxi-
mation errors and subsequently a worse policy.
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Figure 5.2: Yaw of turbine T1 during the first training episode
of the alternating maximisation with policy gradients

experiment. The determinised portion of the training episode
for Alternating Policy Gradient has been coloured black.

Besides the difference between the two methods,
we can observe that neither method was able to ex-
plore the yaw range well, with both methods stay-
ing within a range of ±14°. We posit this is a direct
effect of the limited angular velocity of the turbines
in conjunction with the stochastic exploration poli-
cies. Specifically, as the yaw strays further from
zero, there is an over-representation of actions
which drive the yaw back to zero. For instance,
if a turbine is yawed at 10°, then all control actions
corresponding to yaws −30 ≤ yaw < 10 drive
the yaw closer to zero, meaning two thirds of the
actions yaw the turbine closer to facing the wind.
Consequently, the exploration is biased around
the face-the-wind policy.

For these reasons, we require stronger methods
to sufficiently explore the state-action space, such
that agents can gather enough information to steer
clear of false optima.

5.4. Conclusion
Policies trained using our regime for alternating
maximisation with policy gradients appear to be
more susceptible to converge to false optima on
average, though they have less variance between
the learned policies. We theorise that the differ-
ence in optimality stems from a reduced amount of
exploration that alternating policy gradient agents
can perform, compared to distributed policy gradi-
ent agents within the same time frame.

However, as the average differences in optimality
are slight, we contend that alternating maximisa-
tion agents are able to learn good policies from this
reduced amount of data, likely due to not suffering
from noise induced by other agents performing ex-
ploration. This reduced amount of exploration may
be beneficial to real-life farm operation, where un-
necessary yawing of turbines is undesirable.

Furthermore, as alternating policy gradient agents
were able to learn from comparatively little data,
perhaps there exists a middle ground between fac-
tored and fully joint exploration, where noise in the
reward signal is low and policies can be learned
quickly for multiple agents concurrently.

Lastly, we have observed that stochastic explo-
ration policies cannot adequately explore the state-
action space in the dynamic yaw control problem.
We theorise problem arises due to the limited an-
gular velocity of turbines, which causes an over-
representation of actions driving the yaw back to
zero in the wind-based action representation. Con-
sequently, we require stronger exploration strate-
gies to cover more of the yaw-space.
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Guiding Exploration

in Alternating Maximisation
for Dynamic Yaw Control

In the previous chapter, we explored the appli-
cation of alternating maximisation to multi-agent
deep reinforcement learning for dynamic yaw con-
trol using policy gradients. Our results highlighted
a limitation: alternating policy gradient agents can
explore less compared to distributed policy gradi-
ents in the same time frame, leading to worse per-
formance. However, the performance gap was
slight, suggesting alternating policy gradient pro-
vides a clear reward from which a good but sub-
optimal policy can be learned.

Moreover, we found that in both methods, combin-
ing a limited angular velocity with stochastic explo-
ration results in poor coverage of the state-action
space. The random-walk nature of this exploration
regime, in conjunction with an over-representation
of actions moving the yaw angle to zero, limited
the explored yaw range to ±14°. By contrast, the
numerical methods from Chapter 4 were not con-
strained by a limited angular velocity, allowing for
sufficient exploration of the state-action space to
identify optimal yaw-configurations.

Furthermore, in Chapter 3, we have shown that
optimal yaws can span the entire range of possi-
ble yaws. More specifically, in the scenario where
turbines are aligned along the wind vector, the op-
timal yaws are often found near the yaw bound-
aries. Alternatively, when not aligned, the optimal
yaw-angles are closer to zero.

In light of these findings, this chapter focuses on
developing exploration policies tailored specifically
to exploring the entire range of yaws. Our goal
is to create exploration strategies for alternating
maximisation that can effectively navigate the en-
tire range of yaw angles, enabling agents to learn
the true optimal configurations rather than being
misled by false optima

Figure 6.1: Yaw angles for the exploration strategies in an
example episode of 3 trajectories, each of length 300, using
hyperparameters from the upcoming exploration experiment.

6.1. Random Initialisation
Our first proposed exploration method uses ran-
dom initialisation to explore the full breadth of
yaws. This method lends from the random restarts
done in joint equilibrium search for policies [61], a
dynamic programming method for solving decen-
tralised Markov decision processes which uses al-
ternating maximisation.

In our approach, turbines are initialised with a ran-
dom yaw angle, selected from a predefined set
Y0, at the start of each trajectory in their explo-
ration episode. Let Y0 be a set of size k with
all members within the interval [ymin, ymax]: Y0 =
{y0,i ∣ y0,i ∈ [ymin, ymax], i = 1,2, … , k}. This
initial yaw angle allows the turbines to explore
novel state-action pairs, which counterbalances
the exploitation nature of reinforcement learning
policies. Specifically, we set k = 3 with Y0 =
{−30°,0°,30°} These angles are chosen because
they are likely candidates for optimal yaw configu-
rations, as shown in Chapter 3, and their inclusion
aims to facilitate a balanced exploration strategy.
Furthermore, the selection of 30° (as opposed
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to e.g., 25°) is based on the over-representation
of actions driving the yaw to zero, which we de-
scribed in Chapter 5. In this way, exploration is
certain to include the yaw boundaries, which po-
tentially hold quality solutions. The resulting yaw
angles are depicted in Figure 6.1.

If the number of initial yaws k exceeds the number
of trajectories per episode, the initial yaws should
be sampled without replacement. Alternatively, if
the number of trajectories exceeds the number of
yaw angles in the set Y0, the set should be re-
peated until the size matches or exceeds the num-
ber of trajectories, after which yaws should again
be sampled without replacement. This approach
ensures unbiased selection of initial yaw angles.

We hypothesise that random initialisation may not
extend well to the joint exploration case. If one
would do concurrent random initialisation, there
are |Y|N possible initial configurations, where |Y|
denotes the number of possible initial yaw angles,
and N represents the number of turbines. For a
set of three initial yaw angles and a group of 25 tur-
bines, this would result in 325 ≈ 8.5 × 1011 unique
combinations of initial yaws. The vast majority of
which will lead to sub-optimal power output, and
as a result bias the training data with many nega-
tive samples. For these reasons, this approach is
likely a poor candidate for joint exploration.

Alternatively, one could decide to initialise all tur-
bines with identical yaws. This approach may be
better, as we expect optimal yaw-angles to point
in roughly the same direction. However, the ex-
plored region of the search space would be dras-
tically reduced. Investigating whether this specific
reduction is beneficial, we leave to future research.

6.2. Oscillating Exploration
For our second method, we propose to forcefully
explore the entire range. In this approach, we re-
place some of the trajectories with forced explo-
ration trajectories, where agents oscillate between
the ends of the yaw boundaries. By adding these
exploration episodes, we ensure agents explore
the full range of possible yaws while still allow-
ing for exploitation, ideally, allowing them to learn
where the true optimum in the reward signal is.

We speculate oscillating exploration may be the
best approach for alternating maximisation, given
that it ensures agents explore the full breadth of
the possible yaws in each episode, similar to the
numerical methods described in Chapter 4. How-
ever, it must be noted that this type of explo-
ration depends on the type of simulator used. In
our case, we use a steady state simulator, like

FLORIS, in which propagates wakes instantly, and
as a result the oscillation rate can be arbitrary as
long as it enables full exploration of yaws within the
episode. By contrast, in large-eddy simulations,
the wakes need time to propagate, thus a much
slower oscillation rate may be required to fully cap-
ture the effect of the given yaw angle.

To facilitate oscillation, we keep track of the cur-
rent yaw angle yt and direction of oscillation dt ∈
{−1,1}. To select the next control action at, we
add the maximum delta yaw ωmax to the current
yaw, in the direction of oscillation. When either of
the yaw boundaries, ymin or ymax, are reached, we
clip the action to the valid range and flip the direc-
tion of oscillation. Computation of the exploration
action is summarised in the following formulas:

at = clip(yt + dt ⋅ ωmax, ymin, ymax)
ymax − ymin

(6.1)

dt+1 = {−dt if |at| = 1,
dt otherwise. (6.2)

As a byproduct of our use of the Beta policy, select-
ing either −30° or 30° as a control action would
make optimisation of this policy impossible. The
equivalent actions supplied to the Beta distribution,
0 and 1, are undefined, and would result in infini-
ties when attempting to compute the policy gradi-
ent. For this reason, we reduce the yaw bound-
aries for oscillation by 1°. Figure 6.1 displays the
resulting yaw angles of this strategy.

Similar to the previous exploration strategy, we
contend that this approach is best suited to alter-
nating exploration. Attempting to explore the joint
search space using concurrent oscillating explo-
ration would require the oscillation periods to be
co-prime, lest they explore a repeated sequence
which does not cover the entire search space.
What is more, these oscillation periods would grow
very large as the number of turbines increases, as
the numbers in sets of co-prime integers grows
fast. This problem could be alleviated to a certain
degree by applying co-prime periods only among
turbines which influence each other. One could
then solve a graph colouring problem to assign the
oscillation periods to turbines.

Furthermore, if one decides to let turbines oscil-
late with the same periods, akin to the approach
described in the final paragraph of Section 6.1,
then the explored search space would be further
reduced. Because the oscillation is deterministic
and noiseless, all agents would explore identical
yaw-angles at the same time.
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6.3. Experiments
In this experiment, we evaluate the effects of
guided exploration on policies learned with alter-
nating policy gradient. We use the same experi-
ment setup as in Chapter 5.

For both exploration methods, we keep the num-
ber of time steps per episode the same, but reduce
the trajectory length down from 900 to 300 time
steps, and increase the number of trajectories per
episode from 1 to 3. Then, for the oscillating explo-
ration strategy, we enable the guided exploration
only for the first trajectory of each episode.

The results are presented in Figure 6.2 and Table
6.1. Random initialisation performs slightly better
than the standard alternating policy gradient, but
the differences fall within margin of error. Addition-
ally, agents using random initialisation tend to con-
verge slower than their stochastic counterparts.

In contrast, the oscillating exploration strategy sig-
nificantly improves performance, achieving nearly
4%-higher performance than the other strategies.
Furthermore, the confidence interval of the mean
for the final policy is notably narrower, at less than
half a percentage point wide, and non-overlapping
with any of the methods from this chapter and the
previous chapter. This indicates that forced explo-
ration through oscillation enables agents to consis-
tently converge to a high-quality policy.

Interestingly, agents trained with oscillating explo-
ration show worse initial scores, slower conver-
gence, and more varied policies during the learn-
ing process compared to other methods. How-
ever, the long-term benefits of this strategy poten-
tially outweigh these initial drawbacks, resulting in
a more reliable and effective final policy.

We speculate that the performance discrepancy
between the two methods can be attributed to the
nature of the control actions selected by the oscil-
lating exploration strategy. Oscillating exploration
selects control actions that are close to the current
yaw angle, thereby associating those control ac-
tions with the rewards for that specific yaw angle.

Exploration Method Mean 95% conf. int.
Stochastic (Default) 133.53 132.28 — 134.77
Random Initialisation 133.68 132.44 — 134.91
Oscillating Exploration 137.28 137.06 — 137.50

Table 6.1: Relative performance in percentage to baseline
(facing the wind) of the final policies in the alternating policy

gradient exploration experiment.

6.4. Analysis
To confirm whether oscillating exploration is per-
forming optimally, we examine the final policies by
looking at the yaw angles produced for each tur-
bine and random seed. Figure 6.3 displays the
yaw angles, binned per 5°. The plots are supple-
mented by the solution found by coarse-to-fine al-
ternating yaw optimisation, which did not have a
limited angular velocity.

The oscillating exploration strategy nearly consis-
tently converges to the target solution given by
alternating yaw optimisation. Conversely, both
the standard alternating policy gradient and ran-
dom initialisation methods converge to local op-
tima with mixed yaw angles. We speculate that the
stochastic exploration in conjunction with random
restarts is still inadequate for exploring the state-
action space well, as the control actions do not line
up with the current yaw angles, making it unclear
which control actions are optimal in the given time
frame. This could be alleviated by collecting more
trajectories, however, given the success of the os-
cillation strategy, we suggest not pursuing our ran-
dom initialisations implementation further.

Additionally, for the rear turbines (T3, T6, and T9),
the solution quality is higher for the oscillating ex-
ploration method, compared to the other two meth-
ods, with the variance in yaw angles between poli-
cies being much lower. This reduced variance in-
dicates a higher consistency in the policies gener-
ated by oscillating exploration, further underscor-
ing its ability to guide agents towards more reliable
and effective final configurations.

6.5. Conclusion
This chapter has explored the development and
evaluation of two domain-knowledge driven ex-
ploration strategies for alternating maximisation
in multi-agent deep reinforcement learning for dy-
namic wake control. Building on the limitations
identified in Chapter 5, we aimed to created explo-
ration policies capable of navigating the full range
of yaw angles.

Our experiments revealed that initialising turbines
with random yaws at the start of their exploration
trajectories performs slightly better than standard
alternating policy gradient. However, the differ-
ences were within margin of error. More impor-
tantly, the oscillating exploration strategy emerged
as significantly superior, consistently achieving
nearly 4%-higher performance than other strate-
gies. This method also produced a notably nar-
row and non-overlapping confidence interval for
the mean performance of the final policy.
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Figure 6.2: Relative performance in percentage to baseline (facing the wind) during training in the alternating policy gradient
exploration experiment.

Figure 6.3: Final policy yaw-angles, binned per 5°, for each of the 10 random seeds in the alternating policy gradient
exploration experiment. The target solution is given by alternating yaw optimisation with coarse-to-fine sampling.

Analysis of the final policy confirmed that oscillat-
ing exploration was virtually consistent in finding
the target solution given by coarse-to-fine alternat-
ing yaw optimisation. Conversely, the default and
random initialisation strategies tended to find local
optima with mixed yaw angles. We speculate that
oscillating exploration performs well because its
actions are close to the current yaw angle, which
associates those actions to their steady-state yaw
angles. This clear association allows agents to ex-
ploit the wind-based action-representation.

In conclusion, the oscillating exploration strat-
egy provides an effective approach for alternating
maximisation with multi-agent deep reinforcement

learning in dynamic yaw control. By enabling com-
prehensive exploration of the yaw space, this strat-
egy overcomes the limitations of traditional meth-
ods when faced with turbines with a limited rotation
speed. Furthermore, these results are consistent
with the findings from Chapter 4, which showed al-
ternating maximisation can lead to high-quality so-
lutions, further validating the effectiveness of this
approach in different yaw control scenarios.

Future work could explore the application of these
findings to dynamic yaw control with time-varying
wind conditions, but a more detailed discussion of
these implications will be reserved for the conclu-
sion chapter of the thesis.
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Conclusion

This thesis has investigated the application of alter-
nating maximisation to active wake control, focus-
ing on both static yaw optimisation and dynamic
yaw control. Our research aimed to address key
challenges and evaluate the benefits of this ap-
proach through a series of targeted research ques-
tions. Specifically, we examined the effects of at-
mospheric conditions and wind farm layouts on
static yaw optimisation (Q1) and its sub-questions
(Q1.1–Q1.4), assessed the effectiveness and in-
fluencing factors of the alternating maximisation
method in static yaw optimisation (Q2) and its
sub-questions (Q2.1–Q2.3), explored the impact
of alternating maximisation on convergence in dy-
namic yaw control via reinforcement learning (Q3),
and investigated the role of domain knowledge in
preventing local optima convergence for reinforce-
ment learning agents (Q4).

This concluding chapter is organised as follows:
first, we summarise the findings for static yaw opti-
misation, detailing howwind direction, speed, farm
layout, and yaw-misalignment angles influence the
optimisation surface. Next, we discuss the appli-
cation of alternating maximisation, highlighting the
best-response problem approaches, the effect of
initial yaw configurations, and optimisation order
on the resulting Nash equilibria. Following this, we
present our results on dynamic yaw control, focus-
ing on the convergence impacts and strategies to
avoid local optima. We then address the limita-
tions of our study, providing an evaluation of the
methodologies and assumptions used. Finally, we
reflect on the broader implications of our findings
for future research and practical implementations
in active wake control.

7.1. Conclusions
In static yaw optimisation, our findings highlighted
the intricate effects of wind direction, wind speed,
turbine layouts on the optimisation surface. Nash
equilibria were shown to be transient and influ-
enced by these factors, indicating to use that al-
ternating maximisation is a promising method for

many wind conditions. Wind speed affects the
prominence of local optima, withmixed yaw angles
becoming more significant as speeds increase,
though still generally sub-optimal. Layout depth
also influences the optimisation surface; as the
number of aligned turbines increases, the opti-
mality gap between Nash equilibria grows, and
the modes in the surface become narrower but
more prominent, clarifying the optimisation direc-
tion. Adversarial structures in grid layouts caused
by turbine translations can mislead convergence
to sub-optimal Nash equilibria, but these remain
transient due to wind direction dependency. The
small optimality gap in the investigated layouts
suggests practical applicability of alternating max-
imisation. Yaw misalignment experiments show
that turbines tend to align their yaw responses with
the leading turbine’s direction, diminishing with dis-
tance. This aligning behaviour underscores the im-
portance of initial optimisations, as early identifica-
tion of the correct direction could improve conver-
gence speed and optimality.

We discovered that alternating maximisation, par-
ticularly with a sampling-based approach, con-
sistently outperformed other methods, differential
evolution and sequential least squares program-
ming, across various metrics and layouts. The
robustness of this method was evident, as it was
less sensitive to initial yaw configurations and op-
timisation orders than the gradient-based alterna-
tive, making it suitable for practical applications
in wind farms. Evidently, a gradient-based ap-
proach is less suitable for practical applications,
as it was more sensitive to initial conditions, was
not able to optimally solve the best-response prob-
lems in static yaw optimisation consistently, and
required many more samples to solve the best-
response problems. Moreover, we found that us-
ing a face-the-wind yaw initialisation, which is con-
gruent with current farm operation, was the most
optimal and sample-efficient initialisation strategy.
By contrast, a negative yaw-angle initialisation ap-
peared to draw convergence to sub-optimal Nash
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equilibria. Furthermore, of the optimisation orders
tested, an upwind-to-downwind optimisation order
was found to most optimal while requiring the least
amount of function evaluations.

For dynamic yaw control, alternating maximisation
with policy gradient demonstrated greater sam-
ple efficiency compared to distributed policy gra-
dient methods. Both methods tended to converge
to sub-optimal policies due to limited exploration
capabilities. This limitation stems from combin-
ing the wind-based action-representation a tur-
bine’s limited rotation speed, resulting in an over-
representation of actions that drive the yaw back to
zero, restricting the range of explored yaw angles.

Nevertheless, given the limited scale of the best-
response problems in dynamic yaw control, we
were able to develop an adequate exploration
strategy which covers the entire range of yaws.
Using an oscillating exploration strategy lead to
significantly enhanced performance. With this ex-
ploration strategy, agents were able to consistently
converge to high-quality policies. In contrast, ex-
ploration by initialising the yaws at the start of
each trajectory, while still exploring the full range
of yaws, did not achieve the desired results. This
discrepancy between the two methods indicates
that exploring the full range of yaws is insufficient
for a high-quality policy. We speculate that oscillat-
ing exploration performs well because its actions
are close to the current yaw angle, which asso-
ciates those actions to their steady-state yaw an-
gles. This clear association allows agents to ex-
ploit the wind-based action-representation.

Overall, our findings indicate that alternating max-
imisation is a promising method for numerical
static yaw optimisation across various wind condi-
tions and turbine layouts, and in multi-agent deep
reinforcement learning for dynamic yaw control in
constant wind conditions.

7.2. Limitations
Our work has primarily focused on farm power out-
put as the optimal performance metric, neglect-
ing to account for structural loading or leading-
edge erosion in our evaluations. While maximising
power output is critical, considering potential ad-
verse effects and their impact on turbine longevity
and maintenance costs is also essential.

Additionally, the accuracy of our results is inher-
ently limited by the fidelity of the simulation mod-
els used. Real-world conditions may introduce
complexities not captured in the simulations, such
as turbulent flow interactions and environmental
changes such as time-varying wind. The dynamic

nature of wind speeds and directions expands the
search space and complicates the exploration of
the state-action space, as agents cannot control
atmospheric conditions. Consequently, learning
high-quality policies under these varying condi-
tions may require a significantly more samples.

Future studies should integrate these factors to
provide a more holistic assessment of alternating-
maximisation-based optimisation strategies.

7.3. Implications
and Future Work

Our findings demonstrate the potential of alter-
nating maximisation to improve wind farm perfor-
mance through both static yaw optimisation and
dynamic yaw control. The success of sampling-
based numerical optimisation and oscillation ex-
ploration for dynamic yaw control highlights the
importance of comprehensive exploration of best-
response problems in overcoming local optima
and achieving optimal yaw configurations. While
our research has laid a foundation for alternating
maximisation in active wake control, future work
should focus on applying these strategies to dy-
namic yaw control under time-varying conditions,
exploring the balance between exploration and ex-
ploitation in more complex scenarios.

For time-varying wind conditions, the scale of re-
wards is significantly influenced by factors such
as wind direction and wind speed, which agents
cannot control. With limited samples, high re-
wards from episodes of high wind speeds can mis-
lead agents into favouring actions associated with
these high rewards, even if they are not optimal in
other conditions. To address this issue, we recom-
mend implementing reward normalisation based
on wind speed and direction.

Furthermore, we posit that there may be more ef-
ficient ways to solve the best-response problems
in static yaw optimisations. Our coarse-to-fine
sampling strategy works well for solving the best-
response problems, however, it wastes many sam-
ples in the fine-sampling step. A more efficient
strategy may initially sample coarsely and attempt
further optimisation of the best-response problem
through Lipschitz optimisation [39]. By leverag-
ing the property of Lipschitz continuity, which puts
bounds on how fast a function can grow, the posi-
tion of the optimum could be quickly constrained.
To facilitate such optimisation, the required Lip-
schitz coefficient could be roughly approximated
from the power curves of turbines, which assume
no wake interactions.
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A
Hyperparameters

A.1. Static Yaw Optimisation
This section contains the hyperparameters used
for numeric static yaw optimisation in Chapter 4

A.1.1. Sequential Least Squares
Programming

For sequential least squares programming, we
use the FLORIS V2.4 [65] default parameters: 50
iterations, a tolerance of 10−12, and a step size of
0.1 for approximation of the Jacobian. As well as
normalising the yaw angles to [0, 1] and dividing
the power output (objective) by the initial power
output.

A.1.2. Differential Evolution
To set the hyperparameters for differential evolu-
tion we use the rules of thumb given by Price,
Storn, and Lampinen [79]. As yaw optimisation is a
multi-modal problem with dependencies between
variables, we set the mutation rate F to dither be-
tween 0.5 and 1, the recombination constantCR to
0.9, and the population size to 20N where N is the
dimensionality of the problem. For convergence
testing, an absolute tolerance of 0.01MW is used.

A.1.3. Alternating Yaw Optimisation
For the gradient-based alternating yaw optimisa-
tion method we employed the sequential least
squares programming optimiser using the previ-
ously described FLORIS default parameters. For
the coarse-to-fine sampling-based method, we
used a coarse sampling resolution of 3°, which re-
sults in z = (ymax − ymin)/3° + 1 = 21, a candidate
search radius r of 1.5°, and a fine sampling resolu-
tion Δy of 0.1°.

A.2. Dynamic Yaw Control
Both policy gradient methods were allocated a
total of 97200 time steps (seconds) to train 9
agents. For distributed policy gradient we used
12 episodes each containing 1 trajectory, result-
ing in a trajectory length of 97200/12 = 8100 time
steps. For alternating policy gradient, we used
12 iterations of alternating maximisation, each it-
eration was split up into 9 episodes (one for each
agent) with 1 trajectory per episode, resulting in a
trajectory length of 97200/12/9 = 900 time steps.
The remaining hyperparameters are summarised
in the following table:

Parameter Value
γ (Discount Factor) 0.3
Policy Network Layers [64, 64]
Policy Gradient Method REINFORCE [113]
Activation Function Tanh
Policy Distribution Beta
Optimiser Adam
Learning Rate 0.01
β1,β2 (Betas) [0.9, 0.999]
ϵ (Epsilon) 10−8

λ (Weight Decay) 0

Table A.1: General hyperparameters for the dynamic yaw
control experiments.

A.2.1. Random Initialisation
Each alternating policy gradient episode of 900
time steps is split up into 3 trajectories of 300 time
steps. Each trajectory starts from a random initial
yaw chosen from the set {−30°,0°,30°}.

A.2.2. Oscillating Exploration
Each alternating policy gradient episode of 900
time steps is split up into 3 trajectories of 300 time
steps. The first trajectory of each episode utilises
the oscillating exploration strategy using the tur-
bine’s maximum angular velocity ωmax of 1 ° s−1.
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