

3D Generative Adversarial Networks to Autonomously Generate Building Geometry

Lisa-Marie Mueller

Main Mentor: Dr. Michela Turrin

Second Mentor: Dr. Charalampos Andriotis

Delegate of the Board of Examiners: Dr. Olindo Caso

June 27, 2023

Table of Contents

Hyperparameter

Adjustments

Table of Contents

Kernels, Depth,

and Width

Hyperparameter

Adjustments

Problem Statement

Value, C. (n.d.).

Problem Statement

4.7% demand increase in 4 years

2.1% industry growth in 5 years

Value, C. (n.d.).

IBISWorld (2021).

Problem Statement

To keep up with the rising demands for architecture, engineering, and construction services, the industry needs to radically rethink the design, planning, and construction process.

Design Automation

Koning and Eizenber (1981)

Souza (2020)

7

Design Automation

Generative Design

Machine Learning Integrated Generative Design

Overview

Imagine ...

City Needs to Build new Affordable Housing Complex

Inputs Site into Trained Model

Code-Compliant Design Results in Hours

Deep Learning

Housing Crisis Needs

Needs options quickly

Deep Learning Benefits Trained model produces output on demand

Code-Compliant, healthy, and safe design

Learns expertise based on training data

One typology: housing

Generates site-specific models of learned typology

Typology: Multifamily Housing

Large-Scale, Sustainable Solution

Can Provide Affordable Housing Options

Has Repeating Patterns and Standardizations

Not Iconic Building Typology

Training Data

AVAILABLE : Single-Family Houses Over 1,000 models

Existing Applications

Wu, et al. (2016).

WGAN

Smith and Meger (2017).

Gaps in Current Research

Newton (2019)

Gaps in Current Research

Limited research about GANs for creating 3D geometry

Limited applications of 3D GANs on architecture

Too small geometry space

Framework

Table of Contents

Kernels, Depth,

and Width

Hyperparameter

Adjustments

Generative Adversarial Networks

Concept: Goodfellow, I., et al. (2014). Image: Lisa-Marie Mueller

GAN Discriminator Goal

GAN Discriminator Goal

GAN Discriminator Goal

GAN Generator Goal

GAN Generator Goal

Generator Training

Notoriously Difficult to Train

Table of Contents

and Width

Adjustments

Data Set

BuildingNet v 0.1

Biljecki, F., et al. (2016)

Selvaraju, P., et al. (2021).

Processed Data Set for Release

Clean Data Set

Clean Models – Data Set of 913

For Thesis

100 Cleaned Models
Single-Story
Single-Family
House

Cleaned Dataset

Selecting Typology
(913 Models Left)

Cleaned Model

Two-Label

Table of Contents

and Width

Adjustments

Analysis

WGAN vs DCGAN | 1 model

State of the Art Architecture: 3D GAN

Wu, et al. (2016).

Vanishing Gradients Problem

Generative Adversarial Networks

WGAN vs DCGAN Hyperparameter Results

WGAN AND DCGAN

Wasserstein Loss

Necessary for Stable Training

Leaky ReLU

Necessary for Stable Training

Learning Rate Decay

Positive Impact on Training

WGAN 11G | 1 Model

11 4 Layers | 48-24-12-2

G Leaky ReLU + Learning Rate Decay

Training Model

WGAN 11G | 1 Model

11	4 Layers	48-24-12-2	
G	Leaky ReLU	+ Learning Rate Decay	

Table of Contents

and Width

Data Set Examples | 100 Models

WGAN 11G | 100 Models

11	4 Layers 48-24-12-2	
G	Leaky ReLU + Learning Rate Decay	

11GResult at 7999 epochs

Hyperparameters factors and results

Batch Normalization

Negative Impact

RMS Prop

Helped Improve Training

Weight Clipping |
Gradient Penalty

Helped Improve Training

Architecture 11R

11 4 Layers | 48-24-12-2

R RMSProp + Gradient Penalty

11R 5599 epochs of training

Table of Contents

Adjustments

Depth and Width factors and results

Larger Kernel Size

More Channels

No Positive Impact

Helped Improve Training

Helped Improve Training

16 R

16	10 Layers 96-96-48-48-24-24-12-12-2-2	
R	RMSProp + Gradient Penalty	

16R after 5600 epochs training

17 R V1

17	10 Layers 192-192-96-96-48-48-24-24-2-2	
D	PMSPron + Gradient Penalty	

17R V1 after 2600 epochs training

• 17 R V2

17 10 Layers | 192-192-96-96-48-48-24-24-2-2

R RMSProp + Gradient Penalty

Table of Contents

Evaluating Trained Models

17R V2 Epoch 7400

Model from Data Set

Best Performing Architectures

16R after 3400 epochs training

17R after 4000 epochs training

17R V2 after 3400 epochs training

Generated 100 models

Analyzing Results | 17R V1

17 10 Layers | 192-192-96-96-48-48-24-24-2-2

R RMSProp + Gradient Penalty

Analyzing Results | 17R V2

17 10 Layers | 192-192-96-96-48-48-24-24-2-2

R RMSProp + Gradient Penalty

Generated Model 8

From the data set

Analyzing Results | 17R V2

17 10 Layers | 192-192-96-96-48-48-24-24-2-2

R RMSProp + Gradient Penalty

Analyzing Results

17	10 Layers 192-192-96-96-48-48-24-24-2-2	
R	RMSProp + Gradient Penalty	

Inputs

Solid Filled Models

No Positive Impact

Rectangular Prism Input

No Positive Impact

More Training Models

Important to train on large data sets

Improved 3D WGAN | 17 R

17	10 Layers 192-192-96-96-48-48-24-24-2-2	
R	RMSProp + Gradient Penalty	

Table of Contents

and Width

Adjustments

Data Set and Source Code

https://doi.org/10.4121/4d82052e-650c-4775-8bd9-623df68991b6.v1

https://github.com/lm2-me/3DWGANHouses

Jupyter Notebook to Generate Geometry

What are the **challenges** and benefits of using GAN for architectural design?

Parameter Tuning

- Takes time
- Trial and error

Unstable Training

- Can have many causes
- Same cause doesn't always have consistent solution

Large Training Data Set

- Need to have a lot of training data
- Minimum 100 models, in the thousands is more ideal

What are the challenges and **benefits** of using GAN for architectural design?

Use after Training

- Once model is trained, can be used repeatedly with little cost
- Training can be updated as more data is available

Use for Complex Problems

- · Detects patterns in the data
- No need to define rules

Multi-Disciplinary

- Research method can be applied to other deep learning research
- Developed architecture can be applied to other disciplines

Conclusion

New WGAN architecture

Incorporated Key
Hyperparameters that
were Identified Through
Experimentation

Trained on revised building data set

Reflection

Bigger Picture

Bigger Picture

Future Research

Future Research

Label Generated Geometry

Other Generative Methods

Integrate Analysis

User Input to Modify Output

Thank You!

Lisa-Marie Mueller 27.06.2023

Bibliography

Bengio, Y., & Lecun, Y. (1997). Convolutional Networks for Images, Speech, and Time-Series. The Handbook of Brain Theory and Neural Networks.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D building models. In Computers, Environment and Urban Systems, pages 25–37.

Ganesh, P. (2019, October 18). Types of Convolution Kernels: Simplified. Medium. https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37

Generative Design Primer (2021). What is Generative Design? Generative Design Primer. Retrieved May 5, 2022 from https://www.generativedesign.org/

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. *Advances in Neural Information Processing Systems*, 3. https://doi.org/10.1145/3422622

IBISWorld (2021). Gloabl Architectural Services Industry Market Research Report. https://www.ibisworld.com/global/market-research-reports/global-architectural-services-industry/.

Ibrahimli, N. (2022). Convolutional Neural Networks. Lecture at TU Delft.

ITB (n.d.). Design Optimization using Machine Learning. Flow Science and Engineering. Retrieved May 14 from https://flowdiagnostics.ftmd.itb.ac.id/research/multidisciplinary-design-optimization/

Koning, H. and Eizenberg, J. (1981). The Language of the Prairie: Frank Lloyd Wright's Prairie Houses. Environment and Planning B: Planning and Design, 8(3):295–323.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

Mehralian, M., & Karasfi, B. (2018). RDCGAN: Unsupervised Representation Learning With Regularized Deep Convolutional Generative Adversarial Networks. 2018 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium, 31–38. https://doi.org/10.1109/AIAR.2018.8769811

Nair, V., & Hinton, G. E. (n.d.). Rectified Linear Units Improve Restricted Boltzmann Machines.

Bibliography

Netherlands won't manage to build 1 million homes in 10 years. (n.d.). NL Times. Retrieved 22 November 2022, from https://nltimes.nl/2022/03/11/netherlands-wont-manage-build-1-million-homes-10-years

Project Dreamcatcher. (n.d.). Retrieved 25 November 2022, from https://www.autodesk.com/research/project-dreamcatcher

Selvaraju, P., Nabail, M., Loizou, M., Maslioukova, M., Averkiou, M., Andreou, A., Chaudhuri, S., & Kalogerakis, E. (2021). *BuildingNet: Learning to Label 3D Buildings* (arXiv:2110.04955; Version 1). arXiv. http://arxiv.org/abs/2110.04955

Souza (2022). How Will Generative Design Impact Architecture?. ArchDaily. Retrieved May 5, 2022 from https://www.archdaily.com/937772/how-will-generative-design-impact-architecture

Value, C. (n.d.). Housing shortage in the Netherlands rises to 263,000 dwellings. Capital Value. Retrieved 22 November 2022, from https://www.capitalvalue.nl/en/news/housing-shortage-in-the-netherlands-rises-to-263000-dwellings

Wikipedia, L. (2023). Activation function graphs. https://en.wikipedia.org/wiki/Activation_function. This work is licensed unchanged under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/.

Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. 11.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis. (2022). LION: Latent Point Diffusion Models for 3D Shape Generation. In Advances in Neural Information Processing Systems (NeurIPS).

Zeiler, M., & Fergus, R. (2013). Visualizing and Understanding Convolutional Neural Networks. In *ECCV 2014, Part I, LNCS 8689* (Vol. 8689). https://doi.org/10.1007/978-3-319-10590-1_53