

Delft University of Technology

Exploring the Search Space of Neural Network Combinations obtained with Efficient
Model Stitching

Guijt, Arthur; Thierens, Dirk; Alderliesten, Tanja; Bosman, Peter A.N.

DOI
10.1145/3638530.3664131
Publication date
2024
Document Version
Final published version
Published in
GECCO '24 Companion

Citation (APA)
Guijt, A., Thierens, D., Alderliesten, T., & Bosman, P. A. N. (2024). Exploring the Search Space of Neural
Network Combinations obtained with Efficient Model Stitching. In GECCO '24 Companion: Proceedings of
the Genetic and Evolutionary Computation Conference Companion (pp. 1914-1923). ACM.
https://doi.org/10.1145/3638530.3664131
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3638530.3664131
https://doi.org/10.1145/3638530.3664131

Exploring the Search Space of Neural Network Combinations
obtained with Efficient Model Stitching
Arthur Guijt

Arthur.Guijt@cwi.nl
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Dirk Thierens
D.Thierens@uu.nl
Utrecht University

Utrecht, The Netherlands

Tanja Alderliesten
T.Alderliesten@lumc.nl

Leiden University Medical Center
Leiden, The Netherlands

Peter A.N. Bosman
Peter.Bosman@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Machine learning models can be made more performant and their
predictions more consistent by creating an ensemble. Each neural
network in an ensemble commonly performs its own feature extrac-
tion. These features are often highly similar, leading to potentially
many redundant calculations. Unifying these calculations (i.e., re-
using some of them) would be desirable to reduce computational
cost. However, splicing two trained networks is non-trivial because
architectures and feature representations typically differ, leading to
a performance breakdown. To overcome this issue, we propose to
employ stitching, which introduces new layers at crossover points.
Essentially, a new network consisting of the two basis networks
is constructed. In this network, new links between the two ba-
sis networks are created through the introduction and training of
stitches. New networks can then be created by choosing which
stitching layers to (not) use, thereby selecting a subnetwork. Akin
to a supernetwork, assessing the performance of a selected subnet-
work is efficient, as only their evaluation on data is required. We
experimentally show that our proposed approach enables finding
networks that represent novel trade-offs between performance and
computational cost compared to classical ensembles, with some
new networks even dominating the original networks.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • Com-
puting methodologies → Neural networks.

KEYWORDS
Neuroevolution, Neural Architecture Search, Stitching, Ensembles
ACM Reference Format:
Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman.
2024. Exploring the Search Space of Neural Network Combinations obtained

ACM ISBN 979-8-4007-0495-6/24/07.
https://doi.org/10.1145/3638530.3664131

with EfficientModel Stitching. InGenetic and Evolutionary Computation Con-
ference (GECCO ’24 Companion), July 14–18, 2024, Melbourne, VIC, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3638530.3664131

1 INTRODUCTION
In recent years, deep neural networks have shown to be very pow-
erful machine learning models in many fields. A prime example is
in the field of computer vision, where training such a network from
raw data has superseded manual feature engineering [47]. More
often than not, these networks have been found to perform at their
best when made as large as possible [47] and combined into an
ensemble [8, 43].

Obtaining the necessary deep neural networks for an ensemble
can be done in a number of ways. One can use a training procedure
which produces a variety of networks using a reduced number of
training runs, that can then be turned into an ensemble. Examples
of such approaches are MotherNets [43], Snapshot Ensembles [19]
and Batch Ensembles [44]. An alternative, highly effective method
is to use multiple already-trained networks and employing transfer
learning [7, 30, 32]. By doing so, multiple specialized networks
are constructed which re-use knowledge gained from training on
external datasets.

An ensemble constructed using these networks can be costly to
use, and will incur this cost every time it is used. Expending some
additional computational resources up front to reduce the costs in
the long tail of using this network can make sense. For this, one can
use a network pruning technique to lower the computational costs
of each network individually [26] or even reduce a large variety of
hyperparameters [28]. However, this reduction in cost does come
with a trade-off. The computational cost can only be reduced so
much before network performance starts to degrade [28].

Beyond the redundancy and complexity of a single network,
there still exists significant redundancy across the networks in an
ensemble. Given similar tasks networks likely develop similar fea-
tures, repeating the same feature extraction performed by the other
networks in the ensemble. For example, take networks trained on a
computer vision task, using a dataset such as ImageNet [35]. The
features in the first layers of a network for such a task represent
aspects such as edges, whereas later layers represent higher level

1914

This work is licensed under a Creative Commons Attribution International 4.0 License.
GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.1145/3638530.3664131
https://doi.org/10.1145/3638530.3664131
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638530.3664131&domain=pdf&date_stamp=2024-08-01

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

features, such as eyes [31]. Unifying the calculations for these fea-
tures between the networks in an ensemble could further reduce
the computational costs associated with using this ensemble.

In this work we propose a new approach in order to find other,
potentially better, trade-offs, by splicing two basis networks. For
example, through the aforementioned redundancy reduction, and
where possible through the use of a cheaper path to these features.

However, splicing two neural networks is a difficult problem due
to the compatibility issues that appear between different networks,
as will be discussed in Section 2. These issues are only compounded
if the networks to be spliced exhibit different architectures. In this
work, we perform splicing in a way that overcomes these issues.

2 SPLICING NEURAL NETWORKS
Splicing two neural networks without breaking them is a nontrivial
task [3, 38, 42]. Due to representational differences, simple splicing
is ineffective, and will commonly result in broken networks. These
differences can be separated into two categories. First, there is the
problem that different parts of the network may encode different
features. For example, in the case of networks trained on ImageNet,
features in the first layers of a network are generally lower level,
representing aspects such as edges and textures, whereas features
represented in later layers include higher level features - such as
eyes or other complex objects [31]. To perform crossover without
disruption, one will need to know where matching features are.

Second, even if similar features are present in a part of the
network, they may be represented differently. This is caused by
structural-functional redundancies induced by the networks’ struc-
ture, also referred to as the competing conventions problem [36, 38,
41]. This problem concerns, for example, the ordering of features
in a hidden layer of a Multi-Layer Perceptron (MLP) or classical
neural network. Here, the weights of the corresponding and next
layer can be permuted to reorder the features without affecting the
end result. This causes a permutation symmetry among the weights.
During initialization and training symmetries, such as this ordering
property, will be determined at random, causing different networks
to almost certainly adhere to different feature representations.

Contrary to MLPs, which consist of sequences of linear layers
and their activation functions, modern deep neural networks consist
of a large variety of layers, potentially with parallel branches. It is
no longer a given that the permutation symmetry holds for each
kind of layer used in practice. By extension, different layers may
also introduce new kinds of symmetries.

Therefore, for the approach to be generally applicable, we need
to have the means to splice a large variety of deep neural networks,
including those with different architectures and those with par-
allel branches. Splicing two such deep neural networks requires
both (1) knowledge about matching layers and (2) the means to
align their representation. In literature, (1) is either bypassed by
assuming identical architectures and assuming positional equiva-
lence, or by tracking transformations as a network is grown [38].
Such approaches are not helpful in the context of already trained
networks with varying architectures. Common strategies to tackle
(2) are to permute the neurons, so that their activations match
up [3, 42], or by selecting and matching individual features and

merging layers [39]. Yet, these approaches are restricted to correct-
ing for specific symmetries, and do not account for other contextual
symmetries. An example of such a symmetry is the use of the sig-
moid activation function [41], where due to the symmetry of the
activation function, the sign of the feature may be flipped.

In this work, we will investigate the use of model stitching [5] for
network splicing, as this approach allows us to operate agnostic of
the layers used in the network itself. Model Stitching was originally
intended to assess feature map similarity, much like canonical corre-
lation analysis [27, 33] and centered kernel analysis [21, 46]. Model
stitching essentially connects the output of one layer to the input
of another layer in another network. Yet, model stitching has one
major difference with naively making these connections directly:
a simple trainable layer is inserted in between the layers to be
connected. The parameters of this intermediate stitching layer are
then determined by training the network with all other parameters
frozen. This newly introduced stitching layer serves as a translator
and corrects for the various misalignments and symmetries present
in the representation of the layers to be connected. The chosen
kind of stitching layer is important: a complex layer or even a small
subnetwork, that can perform feature extraction, while powerful,
yields more expensive networks and is costly to train. Yet, a layer
that is too simple cannot correct for all desired symmetries, e.g.,
an affine transformation cannot reorder features. As such, in this
work, we will focus on linear(-like) layers, such as convolutional
layers with a 1x1 kernel, without an activation function.

While stitching can be an effective method to splice two sequen-
tial networks, the original approach trains and tests each stitch
individually. This is problematic due to the presence of parallel
branches, e.g., those in a ResNet [18]. Replacing a feature map via
a stitch will leave any parallel branches untouched, causing a large
portion of the other network to remain in use. In turn, more than
one stitch may be necessary to save significant computational re-
sources. In general, limiting to one splice is too restrictive to find
interesting networks. To search through such a space, creating and
training these stitches as necessary is wasteful, as redundant work
is performed whenever a stitch at the same position is used again. A
more efficient approach will be described in the following section.

3 EFFICIENT MODEL STITCHING
To improve efficiency, we take inspiration from supernetworks.
Previously, supernetworks have been used to efficiently search for
network architectures. Supernetworks avoid training a network
from scratch for every configuration to be evaluated by creating a
very large compound network. This network contains each possible
architectural choice, such that each layer is already trained [6]. This
allows a specific architecture to be evaluated without training.

A similar approach is utilized here for combining two provided
basis networks. The following paragraphs explain how we con-
struct this network. Unlike the supernetworks described in [6], we
do not need to train the entire network. The weights of the two
basis networks are inherited and frozen, and only the stitching
layers need to be trained. Furthermore, unlike the original stitching
approach, these stitches are trained concurrently.

1915

Exploring the Search Space of Neural Network Combinations obtained with Efficient Model Stitching GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

Basis
Networks

(1) Find Possible
Matches

(2) Find Acyclic
Matching

(3) Construct
Supernetwork

(4) Train
Stitching Layers

Trained
Supernetwork

Figure 1: An overview of the process to generate a single supernetwork based on two basis networks.

A1

In

B1

A2 A3

B2 B3

OutA

OutB

Figure 2: Not all pairwise matches between layers can be con-
sidered. Some transformations may be impossible given the
kinds of stitching layers provided, e.g., the dotted red arrows.
Furthermore, combinations of matches may introduce cy-
cles after introducing the stitch and switch layers. E.g., the
orange dashed pairs result in the highlighted cycle. Green
edges represent a valid matching.

The procedure starts with a pair of basis networks. The net-
works used within this work are listed in Section 6. For a schematic
representation of the steps, refer to Figure 1.

Finding possible matches. Before we can start splicing the net-
works using stitching layers, we need to consider what kinds of
transformations we can perform; there needs to be a layer able
to take both the right kind of input and produce the right kind of
output. In this work, we use two kinds of stitching layers, which
translate between the output of given a pair of layers 𝐴 and 𝐵 (and
vice-versa). Both kinds require that the output of both of these
layers are tensors of some shape 𝑠ℎ𝐴 and 𝑠ℎ𝐵 , which provide the
size of each dimension.

First, we consider stitching using a linear layer if the dimension-
ality of the tensor dim(𝐴) = dim(𝐵) = 2. We label the dimensions
of the tensor, 𝑠ℎ𝐴 = [𝑏, 𝑛], 𝑠ℎ𝐵 = [𝑏,𝑚], where 𝑛 and𝑚 represent
the number of features per sample produced by this layer, and 𝑏 the
batch dimension. The layer is then configured to be a linear layer
taking 𝑛 features and producing𝑚 new features. Second, a stitch-
ing with a Conv2D layer is considered if dim(𝐴) = dim(𝐵) = 4,
𝑠ℎ𝐴 = [𝑏, 𝑛,𝑤,ℎ], and 𝑠ℎ𝐵 = [𝑏,𝑚,𝑤,ℎ], where𝑤 and ℎ represent
the identical width and height of the last two dimensions of both
tensors. Here we create a stitching layer that takes 𝑛 channels and
produces an output with𝑚 channels. In the remainder of this pro-
cess we can only match two layers 𝐴 and 𝐵 if one of the layers
above can convert between the output of layers 𝐴 and 𝐵.

Finding an acyclic matching. However, we usually cannot con-
sider all possible stitches simultaneously: this would result in a cycle
in the constructed network. The orange dashed edges in Figure 2
show an example of a matching that would cause the highlighted
cycle. As the computation to calculate a feature map in a cycle is
reliant on itself, no forward pass can be performed. This renders a
network containing a cycle unusable. Therefore, only matchings
that does not generate cycles in the resulting graph are allowed. To

obtain such a matching, we solve a matching problem with order-
ing constraints using a branch and bound approach as described
in the supplementary material, aiming to maximize the number of
matches between the two networks. The resulting acyclic matching
under these constraints indicates where similar features are based
on the structure of the network.

Constructing supernetwork. Given a set of matchings, i.e., pairs
of layers 𝐴 and 𝐵 (and vice-versa) for which a kind of stitching
layer is defined, we can merge and transform the networks into a
supernetwork. This transformation introduces stitching layers to
transform the output of layer 𝐵 into what the output of layer 𝐴 is
expected to be, and a switch 𝑠𝐴 which allows for the selection of
the output. This switch represents a decision variable. The original
input and the result of the stitch are provided as input to the switch,
such that the switch can select either the original output of 𝐴 or
the output of the aforementioned stitch. All original connections to
the output of 𝐴 are replaced with the output of this switch 𝑠𝐴 . By
convention, we ensure that the first input to any switch represents
the original output of the corresponding layer. Finally, the output is
a special case. As we assume both networks to perform an identical
task, and it is given that the format of the output is defined by
the task itself, no stitches are necessary for the output switch. In
addition to picking one of the outputs of the two networks, we
include the option of creating an ensemble using these outputs as a
third input to the output switch, as part of our focus on simplifying
an ensemble.

As an example of the full procedure, using the (bidirectional)
pairs given by the green bidirectional arrows in Figure 2, one would
obtain a network similar to the one illustrated in Figure 3.

Training stitching layers. Finally, on the resulting network we
perform a training procedure. This procedure is applied once as
part of network creation and trains the weights of all stitching
layers simultaneously. The resulting weights are used by all evalua-
tions such that no training need to take place when evaluating a
subnetwork.

First, all layers except for the stitching layers are frozen. We then
train by adding together the Mean-Squared Error (MSE) loss at each
switch, which is calculated between the output provided by the
stitch, and the output of the original layer as target. As all layers of
the original networks are frozen, only the stitches require a gradi-
ent. The output of the stitch is only used to compute the MSE loss,
and does not affect the result of the network, including any other
stitching layers. This allows us to train all stitching layers using the
same forward and backward pass with little additional computa-
tional cost. This especially reduces computational costs compared
to the original approach described in [5], where each stitching layer
has its own individual task-specific (supervised) training procedure.
Moreover, the newly proposed approach successfully trains stitches
for which the original approach fails.

1916

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

4 STITCHING FOR ENSEMBLE
SIMPLIFICATION

From the process in Section 3 we obtain a supernetwork consisting
of the layers of both basis networks, as well as the newly introduced
stitch and switch layers that create new connections between the
basis networks. An example of such a network is visible in Figure 3.
The components for which we need to make a decision, are the
switches. A switch picks the source of its output in the supernet-
work. By deciding for every switch which input to take (’original’
or ’stitched’) we can select a subnetwork.

This is done by working backwards from the output, simplifying
each switch to the selected input connection. Layers that are deter-
mined to no longer affect the output are then removed. This results
in a subnetwork that can be evaluated without the requirement
of additional training. For instance, by assessing the performance
of a neural network on a validation set and/or by determining the
number of computational operations required (e.g., multiply-adds).

We combine the decision for each switch into a fixed-size dis-
crete representation. This representation is chosen as to relate to
the structure of the underlying network. In particular, switches
belonging to the same matching are grouped together; with the
groups ordered according to a topological ordering of the network.
This ordering can inform evolutionary algorithms, which will be
introduced in Section 5, on what variables are closely related. For
example, if both stitches in a group are used simultaneously there
is a cost increase. This is because both inputs remain in use, while
we introduce the additional cost of a stitch. To save computational
resources only one of the two stitches should be used. This is an
example of a form of correlation between two variables induced
by the objective function, also referred to as linkage. Accounting
for this linkage allows for the creation of offspring that are more
likely to maintain good properties of their parents, increasing the
likelihood of finding improvements.

The resulting search space allows us to search among combina-
tions of the two networks, to merge computations, and to choose
paths that trade-off computational efficiency and predictive perfor-
mance in different ways.

While the sequential nature of a neural network generally re-
quires us to re-evaluate a network from scratch every time, not
all changes to the decision variables affect the chosen subnetwork.
This is because some switches are inactive: their output is unused.
For such a switch changing which input is used does not result in
any change in the subnetwork that has been selected. By tracking
which switches were active during a previous evaluation, and allow-
ing this information to transfer to the offspring during variation, we
can detect whether all changes are restricted to variables belonging
to inactive switches. When all changes have occurred to inactive
variables, the network has not changed - and the original objective
value is still valid, allowing us to skip the evaluation step.

5 OPTIMIZING OVER SPLICING POINTS
With the aforementioned technique, we have constructed a search
space which uses a fixed-length discrete representation. To inves-
tigate what types of networks can be found within this space, we
employ Evolutionary Algorithms (EAs).

This provides us with knowledge about what kind of networks
can be found, and potentially provides insight on what characteris-
tics of search algorithms lead to searching more effectively in this
space. Among networks that can be found, we are most interested in
a subset of them, those for which one or more objectives of interest
are optimized. Here, we have two objectives of interest. First, the
number of computational operations, measured in the number of
multiply-adds. Second, the performance of the network, measured
using accuracy on a validation set.

We have empirically found that using many stitches simultane-
ously can be problematic. This is caused by the error introduced by
each stitching layer, and this error accumulating over subsequent
stitching layers. Eventually, this error can accumulate to the point
that the network becomes nonfunctional.

To avoid starting with a pool of non-functional initial networks
due to this issue, we initialize such that the resulting networks
use fewer stitches. Let 1 − 𝑝 be the probability to preserve original
network links (and sample a 0), and 𝑝 the probability of using
the stitch at each switch. We performed a preliminary experiment
using the first network pair, ImageNet (a), testing the values 𝑝 ∈
{0.02, 0.10, 0.50} to cover varying scales, we determined that 𝑝 =

0.02 worked better than 0.10 or 0.50. As we hypothesize that the
number of stitches used has a strong impact on the performance of
a network, independent of string length, we pick 𝑝 such that the
number of 1’s in the genotype is expected to be the same. i.e., as for
ImageNet (a) the string length is ℓ = 309, the number of expected 1’s
is 0.02 × 309 = 6.18. To keep this number identical across network
pairs, we use 𝑝 = 6.18/ℓ , where ℓ is the string length.

While the cost of evaluating a network has been reduced greatly,
it is still in the order of seconds: a network must still be applied to
each element in the dataset to calculate the validation performance.
To speed up the search, we can evaluate the performance of each
subnetwork in parallel. Furthermore, to avoid idle resources the end
of a generation, we opt to use an asynchronous variant [37]. In short,
we use asynchronous parallel evolutionary algorithms, such that we
can maximally utilize the available computational resources. All the
EAs are made asynchronous parallel by having a loop for each of
the 𝑛 individuals in the population: generate new solution, request
evaluation (add to queue), wait for evaluation to complete, process
solution (e.g., selection, update archive), repeat. Consequently, there
are approximately 𝑛 solutions pending evaluation at any given time.
All evaluations are tracked, and an elitist archive is maintained, the
fronts shown originate from the archive.

Finally, in preliminary experiments, we found that for ImageNet
(a) there are low performance, yet low computational cost net-
works on the approximation front, and have accuracies ranging
from 0.10 to 0.30. In practice, the most interesting networks are
often found at the higher end of the performance scale. Finding
these low performance networks consumes a significant portion
of the computational budget. To ensure that EAs allocate a larger
portion of the budget towards finding high-performing networks,
we utilize a constraint annealing scheme similar to Adaptive Steer-
ing [4] to steer the search towards higher accuracy values. This
is implemented by introducing a threshold with respect to accu-
racy. This threshold linearly increases to 0.5, to gradually exclude
these low performance solutions with some margin, until half the
available budget has been used. Solutions below this threshold are

1917

Exploring the Search Space of Neural Network Combinations obtained with Efficient Model Stitching GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

In

B1

A1
S

S

sA1

sB1

S

S

sA2

sB2

Output
Select

1

0

1

0

0

0

1

1

0

1

Ensemble
2

B3

A3

B2

A2

Variables 1 0 1 0:

sB2 outsA2sB1sA1

0

Out

Figure 3: A diagram representing the network generated for the example in Figure 2, consisting of layers of the basis networks
A and B, stitches, and switches. The fixed length genotype is a discrete decision vector which for each value determines which
input to take for each switch. Chosen inputs have been marked with green circles. By working backwards from the output,
taking only the selected input in the case of a switch, a subnetwork is selected. The layers and arrows involved for the example
representation have been made bold. The output layer is a switch which selects between the networks, or the ensemble thereof.

considered always strictly worse than solutions above this thresh-
old, even if other objectives would otherwise have allowed this
solution to be a part of the approximation front.

Both approaches employ the same scalarization scheme, based
on [23]. This approach performs Tschebysheff scalarization, where
scalarization weights are reassigned by collecting and, in random
order, assigning each of the weights to the individual with the
lowest scalarization without newly assigned weights.

Source code and data are available via Zenodo at [14, 15], and at
https://github.com/8uurg/Efficient-Model-Stitching.

5.1 Genetic Algorithm
The ordering of variables is chosen such that related variables are lo-
cated near each other. We anticipate that a Genetic Algorithm (GA)
could utilize this ordering with the right crossover. Both one-point
and two-point crossover are reasonable choices, as both copy over
neighboring variables together. However, only two-point crossover
allows for fragments in the middle of the genotype to be copied
over, resulting in a larger variety of offspring to be generated. We
therefore create new offspring by performing two-point crossover
and uniform mutation with 𝑝 = 1

ℓ , where ℓ is the string length. Due
to the asynchronous nature of the EA we use a replacement-like
scheme, similar to the one used in MOEA/D [48], but restricted to
the parents to preserve diversity. As such, selection is performed by
randomly selecting a parent whose scalarized fitness is worse than
the offspring, and replacing it. The offspring is not selected if no
such parent exists. For the GA, scalarization weights are reassigned
after every 𝑛 completed evaluations.

5.2 (LK-)GOMEA
The provided ordering provides the GA with structure to be ex-
ploited. Yet, linkage in a problem can be complex and contex-
tual [16]. Therefore, learning and adapting to the linkage of a spe-
cific problem in an online fashion, as is done linkage-learning EAs,
can be useful. In [10] was shown that local-search-like approaches
are a strong baseline for neural architecture spaces, which the space
spanned by our proposal essentially also represents; with only MO-
GOMEA outperforming a simple local searcher, in particular on the
high-performance end of the found networks. They hypothesize
that this is potentially due to linkage-learning.

We therefore utilize a variant of the aforementioned linkage-
learning EA, Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) [11]. In short, GOMEA employs a linkage tree, which is
learned using UPGMA based on a mutual information matrix. This
linkage tree contains sets of genotype indices, which are deemed
linked. These indices are employed in a local-search like opera-
tion named Gene-pool Optimal Mixing (GOM) where for each of
these indices, values are sampled from the population, replaced,
and tested for improvement. We implement and apply an asyn-
chronous parallel variant similar to that employed in [13] with im-
provements judged similar to MO-GOMEA using only Tschebysheff
scalarizations [23], as described previously. Scalarization weight
reassignment occurs after every 𝑛 applications of GOM.

As for the given problem, the set of active variables changes
depending on the values assigned to the variables themselves. The
relationships and dependencies between variables can therefore
be different in different parts of the search space. This presence
of multiple linkage structures has shown to be detrimental to the
performance of linkage learning approaches [16]. Therefore, we also
investigate a linkage-kernel variant of GOMEA (LK-GOMEA) that
was proposed to be more robust to such variable linkage structure.
For LK-GOMEA the linkage is learned individually for each solution
over its k-nearest neighbors. Due to the absence of a generational
clock, we cannot use the original population sizing scheme. As 𝑘
was tied to this scheme, we determine 𝑘 differently. A value for 𝑘 is
chosen by randomly sampling a number of modes for each solution
𝑚𝑖 uniformly between 1 and 𝑛/𝑐 =𝑚max, where 𝑐 is the minimum
neighborhood size. Then, 𝑘 = ⌈𝑛/𝑚⌉. This per kernel neighborhood
size should be more likely to sample a small value, as the expected
value is log2 (𝑛), yet also have the possibility to sample a larger
neighborhood to avoid premature convergence.

6 NETWORKS
We perform experiments with respect to two tasks - classifica-
tion on ImageNet/ImageNetV2 [34, 35] using pre-trained networks
from timm [45] and Semantic Segmentation on the PASCAL VOC
Dataset [12] using networks from TorchVision [24]. These models
are provided as code, rather than a graph representation. During a
sample execution we keep track of which module provides input
to what other module. Providing us with the graph corresponding

1918

https://github.com/8uurg/Efficient-Model-Stitching

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

to the network. To ensure correctness, for each network imported,
we have verified the output of the converted network to be the
same as that of the original network on some sample input. Using
these imported networks we create stitched networks following
the procedure described in Section 3. For each dataset used, the
train-validation-test split, and the input networks used for stitching
differ, and are described in the following paragraphs.

ImageNet. The data-splits used for the ImageNet classification
task are as follows. The training set is the training set of Ima-
geNet [35], using only the samples that also have bounding box
annotations (546 545 out of 1 283 166 images in the full dataset) vali-
dation is done using all unique samples of ImageNetV2 [34], the test
set used here is the validation set of ImageNet [35]. The stitching
layers are trained using Adam [20] with a learning rate of 𝑙𝑟 = 10−3
and a batch size of 32 chosen to maximize hardware utilization,
using 16 384 random samples (out of 546 545 samples), from the
training set - noting that training has generally converged at this
point. For evaluation, only the first 1000 samples of the validation
set (out of 50 000) are used to keep evaluation costs lower, without
going below the number of classes for this problem.

On ImageNet we consider stitching the following two pairs of
networks, all originating from the timmmodel library [45]. The first
pair, whichwewill refer to as ImageNet (a) consists of resnet152 [18]
and efficientnet_b4 [40]. The resulting network has a total of 154
matches, or ℓ = 2 × 154 + 1 = 309 switches and corresponding
decision variables. With the available computational resources for
this experiment, we were able to evaluate up to 90 solutions in
parallel at a given time, evaluating up to 5 solutions simultaneously
per GPU with a batch size of 32. Creating this supernetwork took a
total of 1415.52𝑠 , approx 23.5minutes. The majority of which is due
to the training of the stitching layers (994.28𝑠 , step 4 in Figure 1).
Other steps (1-3) added up to a total of 421.24𝑠 , most of which is
due to finding an acyclic matching (417.02𝑠 , step 3).

Second, ImageNet (b) consists of resnet50 [18] and resnext50_
32x4d [47], which are two architectures that are more similar,
with the latter modifying the repeated block by grouping channels.
Stitches are trained identically to (a). The resulting network has
206 matches, resulting in a total of 413 decision variables. Stitching
these networks took 1463.62𝑠 , about 23.5 minutes, most of which
was training the stitching layers (1460.24𝑠 , step 4). With the avail-
able computational resources for this experiment, we were able to
evaluate up to 72 solutions in parallel at a given time, or 4 / GPU.

VOC. To show that this stitching approach can be applied to
other tasks with different architectures, we include a different kind
of task. This second task is Semantic Segmentation according to
the Visual Object Classes (VOC) [2] protocol. For this task, the
VOC [2] dataset is used. The splits used are the 2012 training and
validation sets, and the 2007 test set. For this task we consider
stitching one pair of networks, deeplabv3_mobilenet_v3_large [9]
and deeplabv3_resnet50 [9]. The original weights were trained
using both the ImageNet [35] and Common Objects in Context
(COCO) [1, 22] datasets. Adam is used to train the stitching layers
with a learning rate of 𝑙𝑟 = 10−2 for 10 epochs (1464 samples /
epoch) - noting that training has generally converged at this point.
Evaluation of a network is restricted to the first 64 (out of 1449)
samples of the validation set to lower evaluation costs to the similar

degree as ImageNet. Creation of this network took 791.37𝑠 , using
46.17𝑠 for steps (1-3), and 745.20𝑠 to train the stitching layers (step
4). The resulting network has a total of 56 matches. This provides a
total of ℓ = 113 decision variables. With the available computational
resources for this experiment, we were able to evaluate up to 40
solutions in parallel at a given time, with a batch size of 4, evaluating
up to 10 solutions simultaneously per GPU.

7 EXPERIMENTAL SETUP
For ImageNet (a) and VOC, we apply all approaches in Section 5.
For ImageNet (b), we only used GA and LK-GOMEA, the best two
approaches according to the median hypervolume on ImageNet
(a) to save computational resources and time. Our key focus is to
assess whether the search space contains high quality networks
of interest. All runs are performed with an evaluation budget of
200,000 and a time limit of 24 hours, where the strictest limit applies.
We determine the population size for each approach by perform-
ing a single run for each 𝑛 ∈ [128, 256, 512, 1024, 2048] the chosen
population size is then that of the configuration with the highest
normalized hypervolume. Using this population size, we perform 5
runs per approach. Evaluations that have been skipped due to no
change happening to active variables, as explained in Section 4, still
count towards the evaluation budget. The percentage of evaluations
skipped will be discussed accordingly. Experiments are either per-
formed on (1) a cluster with 5 nodes. Where each node has 2x Intel
Xeon Bronze 3206R CPU @ 1.90GHz, for a total of 16 CPU cores,
93 GB of RAM, and 3x NVIDIA RTX A5000 per machine. Or (2), a
single node containing 2x Intel Xeon Platinum 8360Y (2x) @ 2.4
GHz, and 4x NVIDIA A100. All networks were prepared on (1). Net-
work optimization for both the ImageNet tasks was both performed
on (1), while VOC was performed on (2). Evaluations performed
during the optimization procedure are done using the validation
set. The networks on the approximation front, as determined using
accuracy on the validation set, also had their accuracy determined
on a test set. Plots of the obtained fronts are obtained after apply-
ing a threshold on accuracy. This threshold is the accuracy of the
worst performing reference network rounded down to the nearest
multiple of 0.10. For ImageNet (a and b), accuracymin = 0.7. For
VOC, accuracymin = 0.9. Hypervolume of the obtained fronts and
convergence graphs, including corresponding statistical tests, are
provided in the supplementary material. The population size 𝑛 de-
termined for each task / approach are as follows, where applicable.
For ImageNet (a), 𝑛GA = 256, 𝑛GOMEA = 512 and 𝑛LK-GOMEA = 512.
For ImageNet (b), 𝑛GA = 128 and 𝑛LK-GOMEA = 512. For VOC,
𝑛GA = 256, 𝑛GOMEA = 2048, and 𝑛LK-GOMEA = 2048.

8 RESULTS AND DISCUSSION
Skipped Evaluations. Evaluations were sometimes skipped in

GOMEA and LK-GOMEA due to all changes being restricted to
inactive variables, respectively with a median of 45% of evaluations
being skipped for GOMEA and 39% for LK-GOMEA. This resulted
in the runs of GOMEA and LK-GOMEA completing much earlier
than those of the GA. This high percentage is due to the structure
of the linkage tree, which contains many small subsets. In fact, half
of the subsets contain only a single variable. As such, the changes
made to a solution with respect to its previous evaluated state are

1919

Exploring the Search Space of Neural Network Combinations obtained with Efficient Model Stitching GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

5 × 1010

1 × 1011

1.5 × 1011

ImageNet (a) VOC

0.74
0.75

0.76
0.77

0.78
0.79

0.91
0.92

0.93
0.94

0.95
0.96

0.97

5 × 109

1 × 1010

accuracy (validation)

m
ul

tip
ly

-a
dd

s

5 × 1010

1 × 1011

1.5 × 1011

ImageNet (a) VOC

0.80
0.81

0.82
0.91

0.92
0.93

0.94
0.95

5 × 109

1 × 1010

accuracy (test)

m
ul

tip
ly

-a
dd

s

approach: GA GOMEA LK-GOMEA

Figure 4: Approximation fronts obtained in each individual run, evaluated on the validation set as evaluated during a run (left)
and evaluated on the full test set (right). The basis networks and their ensemble (referred to as ’reference networks’) are labeled
with an ’x’, with the region in which networks dominate them marked in light orange.

ImageNet (b)

0.70
0.72

0.74
0.76

0.78

4 × 109

5 × 109

6 × 109

7 × 109

8 × 109

accuracy (validation)

m
ul

tip
ly

-a
dd

s

ImageNet (b)

0.76
0.78

0.80
0.82

4 × 109

5 × 109

6 × 109

7 × 109

8 × 109

accuracy (test)

m
ul

tip
ly

-a
dd

s

approach: GA LK-GOMEA

Figure 5: Fronts for ImageNet (b). Similar to Figure 4.

often small, and therefore have a much higher likelihood to consist
of only inactive variables. In short, the efficiency improvements
gained by this addition are highly dependent on the approach.

Budget Usage. On both ImageNet (a) and (b), all approaches ex-
cluding for LK-GOMEA were limited by their evaluation budget.
LK-GOMEA terminates due to converged neighborhoods after us-
ing a median of 83% of the budget for ImageNet (a) and 93% for
ImageNet (b). On the VOC dataset, time was a limiting factor for
the GA, with 94% of the evaluation budget being spent in this case.
By contrast, GOMEA and LK-GOMEA were limited by the number
of evaluations rather than time, due to the time saved by skipping
evaluations.

Comparing Approaches. Reviewing the fronts obtained in Fig-
ure 4 and 5, it is clear that all approaches find roughly similarly
performing networks in terms of the objectives considered, espe-
cially so on the test set. In the convergence graphs in the supple-
mentary material it appears that for many runs the GA improves
hypervolume much faster, although some runs do stall. This is in
part caused by the larger population size selected for the GOMEAs,
which was tuned as to maximize end-of-run performance. Usually,
GOMEA requires a smaller population size than a GA to reach
similar results, which compensates for GOMEA performing many
more evaluations per generation. Yet this is not the case here, both
GOMEAs require a larger population size than the GA to obtain
similar results in terms of hypervolume in the end. This is indicative
that GOMEA is unable to (fully) exploit linkage, while the GA using
the provided structure, is more capable of doing so. We suspect the

presence of inactive variables to play a significant role in this, as
detailed in the following section.

nonzero count # nonzero active count

0 50
100

150
200 0 50

100
150

200

0

20

40

60

evaluations / 1000

co
un

t

approach: GA GOMEA LK-GOMEA

Figure 6: (Averaged) count of potentially used stitches
(nonzero values), and the number of actually used stitches
(active) for solutions evaluated on runs on ImageNet (a).

Inactive Variables. The number of nonzero variables, indicating
the potential use of a stitch, increases over time, as seen in Figure 6.
This may seem unexpected due to the decline in performance when
using many stitches. However, this increase is restricted to inactive
variables. As these variables do not influence the network that has
been selected, these variables do not affect the objective values. In
turn, these variables are not subject to selection pressure in the same
way active variables are. These inactive variables can significantly
affect the solutions being evaluated: if there are many inactive
variables indicating the use of a stitch, deviating from this path
will quickly lead to an encounter with a previously inactive switch,
for which the corresponding variable value indicates the use of a
stitch. This likely reroutes one back to the original path through the
network. This inevitably affects small changes to the genotype, like
those commonly done by GOMEA or a local searcher. In contrast,
two-point crossover may simultaneously replace variable values
for the previously inactive variables when activating them. This
is in part due to the ordering of variables being consistent with
a topological sorting of the computational graph of the neural
network. These inactive variables are a key difference between
this search space and the search space considered in [10]. Future
work should therefore investigate the influence of inactive variables,

1920

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

and design approaches which account for them to obtain further
performance improvements.

Found Networks. In Figures 4 and 5, we have plotted the approx-
imation fronts and the boundary of the dominated space obtained
in each individual run.

For all tasks, we find that the cheapest reference network is
not dominated, while the other network is only barely dominated.
Networks with a lower computational cost and higher accuracy
than these basis networks are difficult to obtain in this search space.
Reducing computational cost requires selection of the cheapest
layers between the two networks, which, if not all part of the same
network, may require the use of many stitches. This currently
has a large negative impact on the performance of the resulting
networks. Improving the training of the stitches may make finding
improvements with a greater number of stitches possible.

Even so, we do find many networks that provide a trade-off of
interest. For example, there are networks that provide more perfor-
mance for a marginal increase in computational costs. Furthermore,
the creation of simplified ensembles, i.e., ensembles sharing a por-
tion of the feature extraction process, allow for the creation of
networks that dominate the original ensemble, given accuracy on
the validation set.

The distribution of points on the fronts obtained on ImageNet (a)
and VOC in Figure 4 is quite different compared to those obtained
for ImageNet (b) in Figure 5. For the first two the front is noticeably
concave, whereas on ImageNet (b) the front is mostly convex. How
two networks are matched in steps 1 and 2, has a significant effect
on the distribution of multiply-adds of the subnetworks that can be
found.When two networks with greatly differing depth are stitched,
as is the case for ImageNet (a) and VOC, a large portion of layers
in the deeper network may remain without a match in the other
network. If these layers are consecutive, all of these layers will
either be included or excluded as one unit. This can result in large
portion of the computational costs being present or absent, with
no potential networks in between. The approach used to match
therefore has a large impact on the distribution of multiply-adds.
The approach used in this work, matched as early as possible given
the possible matches. In effect, for each group of compatible layers
a large block is created. This resulted in the staircase for ImageNet
(a), and the large cliff for VOC. Altering the matching approach
for a better distribution of matches may therefore be necessary to
obtain a less concave front.

Overfitting. As stated previously, the performance on the test set
indicates that overfitting is a potential issue.When re-evaluating the
networks on the fronts on the test set, and redetermining the front,
the improvements in accuracy seem to disappear for the cheaper
networks, while the more expensive networks do generalize to the
test set and remain on the approximation front.

Overfitting to accuracy is possible with minor changes in pre-
dictions. For example, a network predicting one of two classes may
slightly increase the prediction for the true class. This would ap-
pear in the calibration of the predictions of the network, i.e., how
well does the predicted probability represent the actual probability
that the classification is correct. Furthermore, good calibration may
be desirable for many real-world applications. We have therefore
investigated the impact on the argmax calibration [17, 25] of the

networks using the Expected Calibration Error (ECE) [29] for the
best networks found on ImageNet (a). To compute ECE the probabil-
ities of the predicted class are binned, and for each bin the accuracy
is calculated. For a calibrated network, the probability that samples
in the 0.3 − 0.4 bin are predicted correctly, should be 0.35.

Instead, we observe a subset of the networks to be undercon-
fident, having higher accuracies in bins than expected. Using an
alternative objective, such as cross-entropy loss may help here.
However, this is not the case for most of the networks found. It
may be that the stitches are not robust enough. As such, improving
the accuracy further, may be as simple as training the stitches of
a network using the training set. A brief investigation of this is
included in the supplementary material.

Finally, the networks found are often simplified ensembles. We
find that this provides similar benefits as those obtained by normal
ensembles, for example, the resulting networks tend to have a lower
calibration error (ECE) than the original basis networks. Yet, their
computational cost is still reduced compared to the full ensemble.

Given the aforementioned results we have shown that it is possi-
ble to combine two neural networks, without task-specific training,
into a supernetwork, and through splicing obtain novel networks
that are functional. While the resulting supernetwork is structurally
complex, the obtained subnetworks can provide a novel trade-off
when compared to the basis networks and their ensemble. We
expect this approach to scale to more basis networks, once the
matching procedure is adjusted accordingly.

9 CONCLUSION
In this work, we have investigated model stitching as an approach
for splicing two neural networks, most notably to simplify the corre-
sponding ensemble while preserving its original performance. The
technique can employ already trained neural networks, and con-
struct many new offspring networks without requiring additional
training for each offspring. This method provides an alternative
pathway for distributed training of neural networks. Using parallel
EAs to search through the constructed search space, we found that
the resulting networks can provide a novel trade-off between the
performance and computational cost of the original basis networks,
and potentially even dominate the basis networks.

ACKNOWLEDGMENTS
This publication is part of the project "DAEDALUS - Distributed
and Automated Evolutionary Deep Architecture Learning with
Unprecedented Scalability" with project number 18373 of the re-
search programme Open Technology Programme which is (partly)
financed by the Dutch Research Council (NWO). Other financial
contributions as part of this project have been provided by Elekta
AB and Ortec Logiqcare B.V.. Furthermore, we thank NWO for
the Small Compute grant on the Dutch National Supercomputer
Snellius.

REFERENCES
[1] [n.d.]. COCO - Common Objects in Context. https://cocodataset.org/#home
[2] [n.d.]. The PASCAL Visual Object Classes Homepage. http://host.robots.ox.ac.

uk/pascal/VOC/
[3] Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. 2023. Git

Re-Basin: Merging Models modulo Permutation Symmetries. https://doi.org/10.
48550/arXiv.2209.04836 arXiv:2209.04836 [cs]

1921

https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
https://doi.org/10.48550/arXiv.2209.04836
https://doi.org/10.48550/arXiv.2209.04836
https://arxiv.org/abs/2209.04836

Exploring the Search Space of Neural Network Combinations obtained with Efficient Model Stitching GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

[4] Tanja Alderliesten, Peter A. N. Bosman, and Arjan Bel. 2015. Getting the Most out
of Additional Guidance Information in Deformable Image Registration by Lever-
aging Multi-Objective Optimization. In Medical Imaging 2015: Image Processing,
Vol. 9413. SPIE, 469–475. https://doi.org/10.1117/12.2081438

[5] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. 2021. Revis-
iting Model Stitching to Compare Neural Representations. In Ad-
vances in Neural Information Processing Systems, Vol. 34. Curran Asso-
ciates, Inc., 225–236. https://proceedings.neurips.cc/paper/2021/hash/
01ded4259d101feb739b06c399e9cd9c-Abstract.html

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once
for All: Train One Network and Specialize It for Efficient Deployment. In Eighth
International Conference on Learning Representations. https://iclr.cc/virtual_2020/
poster_HylxE1HKwS.html

[7] Rich Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (July 1997),
41–75. https://doi.org/10.1023/A:1007379606734

[8] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. 2004.
Ensemble Selection from Libraries of Models. In Proceedings of the Twenty-First
International Conference on Machine Learning (ICML ’04). Association for Comput-
ing Machinery, New York, NY, USA, 18. https://doi.org/10.1145/1015330.1015432

[9] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
2017. Rethinking Atrous Convolution for Semantic Image Segmentation. https:
//doi.org/10.48550/arXiv.1706.05587 arXiv:1706.05587 [cs]

[10] Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter A. N.
Bosman. 2021. Local Search Is a Remarkably Strong Baseline for Neural Ar-
chitecture Search. In Evolutionary Multi-Criterion Optimization, Hisao Ishibuchi,
Qingfu Zhang, Ran Cheng, Ke Li, Hui Li, Handing Wang, and Aimin Zhou (Eds.).
Springer International Publishing, Cham, 465–479. https://doi.org/10.1007/978-
3-030-72062-9_37

[11] Arkadiy Dushatskiy, Marco Virgolin, Anton Bouter, Dirk Thierens, and Peter A.N.
Bosman. 2023. Parameterless Gene-pool Optimal Mixing Evolutionary Algo-
rithms. Evolutionary Computation (June 2023), 1–28. https://doi.org/10.1162/
evco_a_00338

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. 2010.
The Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision 88, 2 (June 2010), 303–338.

[13] Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman. 2023.
The Impact of Asynchrony on Parallel Model-Based EAs. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’23). Association for
Computing Machinery, New York, NY, USA, 910–918. https://doi.org/10.1145/
3583131.3590406

[14] Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman. 2024.
Exploring the Search Space of Neural Network Combinations Obtained with
Efficient Model Stitching - Results Data. https://doi.org/10.5281/zenodo.11120103

[15] Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman. 2024.
Exploring the Search Space of Neural Network Combinations Obtained with
Efficient Model Stitching - Source Code. Zenodo. https://doi.org/10.5281/zenodo.
11120074

[16] Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A. N. Bosman. 2022.
Solving Multi-Structured Problems by Introducing Linkage Kernels into GOMEA.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
’22). Association for Computing Machinery, New York, NY, USA, 703–711. https:
//doi.org/10.1145/3512290.3528828

[17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Conference on
Machine Learning. PMLR, 1321–1330. https://proceedings.mlr.press/v70/guo17a.
html

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778. https://openaccess.thecvf.com/content_
cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

[19] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q.
Weinberger. 2017. Snapshot Ensembles: Train 1, Get M for Free. https://doi.org/
10.48550/arXiv.1704.00109 arXiv:1704.00109 [cs]

[20] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs] (Jan. 2017). arXiv:1412.6980 [cs] http:
//arxiv.org/abs/1412.6980

[21] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019.
Similarity of Neural Network Representations Revisited. In Proceedings of the
36th International Conference on Machine Learning. PMLR, 3519–3529. https:
//proceedings.mlr.press/v97/kornblith19a.html

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision – ECCV 2014 (Lecture Notes in Computer
Science), David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.).
Springer International Publishing, Cham, 740–755. https://doi.org/10.1007/978-
3-319-10602-1_48

[23] Ngoc Hoang Luong, Tanja Alderliesten, and Peter A. N. Bosman. 2018. Improving
the Performance of MO-RV-GOMEA on Problems with Many Objectives Using

Tchebycheff Scalarizations. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO ’18). Association for Computing Machinery, New
York, NY, USA, 705–712. https://doi.org/10.1145/3205455.3205498

[24] TorchVision maintainers and contributors. 2016. TorchVision: PyTorch’s Com-
puter Vision Library. https://github.com/pytorch/vision

[25] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. 2021. Revisiting the Calibration of
Modern Neural Networks. In Advances in Neural Information Processing Systems,
Vol. 34. Curran Associates, Inc., 15682–15694. https://proceedings.neurips.cc/
paper/2021/hash/8420d359404024567b5aefda1231af24-Abstract.html

[26] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2017.
Pruning Convolutional Neural Networks for Resource Efficient Inference. https:
//doi.org/10.48550/arXiv.1611.06440 arXiv:1611.06440 [cs, stat]

[27] Ari Morcos, Maithra Raghu, and Samy Bengio. 2018. Insights on
Representational Similarity in Neural Networks with Canonical Corre-
lation. In Advances in Neural Information Processing Systems, Vol. 31.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/hash/
a7a3d70c6d17a73140918996d03c014f-Abstract.html

[28] Juan Pablo Munoz, Nikolay Lyalyushkin, Chaunte Willetta Lacewell, Anastasia
Senina, Daniel Cummings, Anthony Sarah, Alexander Kozlov, and Nilesh Jain.
2022. Automated Super-Network Generation for Scalable Neural Architecture
Search. In Proceedings of the First International Conference on Automated Machine
Learning. PMLR, 5/1–15. https://proceedings.mlr.press/v188/munoz22a.html

[29] Mahdi PakdamanNaeini, Gregory Cooper, andMilos Hauskrecht. 2015. Obtaining
Well Calibrated Probabilities Using Bayesian Binning. Proceedings of the AAAI
Conference on Artificial Intelligence 29, 1 (Feb. 2015). https://doi.org/10.1609/aaai.
v29i1.9602

[30] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. 2020. What Is Being
Transferred in Transfer Learning?. In Advances in Neural Information Processing
Systems, Vol. 33. Curran Associates, Inc., 512–523. https://proceedings.neurips.
cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html

[31] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Feature Visual-
ization. Distill (2017). https://doi.org/10.23915/distill.00007

[32] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (Oct. 2010), 1345–1359.
https://doi.org/10.1109/TKDE.2009.191

[33] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning
Dynamics and Interpretability. In Advances in Neural Information Processing
Systems, Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

[34] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019.
Do ImageNet Classifiers Generalize to ImageNet?. In Proceedings of the 36th Inter-
national Conference on Machine Learning. PMLR, 5389–5400. https://proceedings.
mlr.press/v97/recht19a.html

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, 3 (Dec. 2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[36] J.D. Schaffer, D. Whitley, and L.J. Eshelman. 1992. Combinations of Genetic
Algorithms andNeural Networks: A Survey of the State of the Art. In [Proceedings]
COGANN-92: International Workshop on Combinations of Genetic Algorithms and
Neural Networks. 1–37. https://doi.org/10.1109/COGANN.1992.273950

[37] Eric O. Scott and Kenneth A. De Jong. 2015. Understanding Simple Asynchro-
nous Evolutionary Algorithms. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII (FOGA ’15). Association for Computing
Machinery, New York, NY, USA, 85–98. https://doi.org/10.1145/2725494.2725509

[38] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (June 2002),
99–127. https://doi.org/10.1162/106365602320169811

[39] George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman.
2023. ZipIt! Merging Models from Different Tasks without Training. https:
//doi.org/10.48550/arXiv.2305.03053 arXiv:2305.03053 [cs]

[40] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proceedings of the 36th International Confer-
ence on Machine Learning. PMLR, 6105–6114. https://proceedings.mlr.press/v97/
tan19a.html

[41] D. Thierens. 1996. Non-Redundant Genetic Coding of Neural Networks. In
Proceedings of IEEE International Conference on Evolutionary Computation. 571–
575. https://doi.org/10.1109/ICEC.1996.542662

[42] Thomas Uriot and Dario Izzo. 2020. Safe Crossover of Neural Networks Through
Neuron Alignment. Proceedings of the 2020 Genetic and Evolutionary Computa-
tion Conference (June 2020), 435–443. https://doi.org/10.1145/3377930.3390197
arXiv:2003.10306

[43] AbdulWasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos. 2020.
MotherNets: Rapid Deep Ensemble Learning. Proceedings of Machine Learning
and Systems 2 (March 2020), 199–215. https://proceedings.mlsys.org/paper_files/

1922

https://doi.org/10.1117/12.2081438
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://iclr.cc/virtual_2020/poster_HylxE1HKwS.html
https://iclr.cc/virtual_2020/poster_HylxE1HKwS.html
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1145/1015330.1015432
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1706.05587
https://arxiv.org/abs/1706.05587
https://doi.org/10.1007/978-3-030-72062-9_37
https://doi.org/10.1007/978-3-030-72062-9_37
https://doi.org/10.1162/evco_a_00338
https://doi.org/10.1162/evco_a_00338
https://doi.org/10.1145/3583131.3590406
https://doi.org/10.1145/3583131.3590406
https://doi.org/10.5281/zenodo.11120103
https://doi.org/10.5281/zenodo.11120074
https://doi.org/10.5281/zenodo.11120074
https://doi.org/10.1145/3512290.3528828
https://doi.org/10.1145/3512290.3528828
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.48550/arXiv.1704.00109
https://doi.org/10.48550/arXiv.1704.00109
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/3205455.3205498
https://github.com/pytorch/vision
https://proceedings.neurips.cc/paper/2021/hash/8420d359404024567b5aefda1231af24-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8420d359404024567b5aefda1231af24-Abstract.html
https://doi.org/10.48550/arXiv.1611.06440
https://doi.org/10.48550/arXiv.1611.06440
https://arxiv.org/abs/1611.06440
https://proceedings.neurips.cc/paper/2018/hash/a7a3d70c6d17a73140918996d03c014f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a7a3d70c6d17a73140918996d03c014f-Abstract.html
https://proceedings.mlr.press/v188/munoz22a.html
https://doi.org/10.1609/aaai.v29i1.9602
https://doi.org/10.1609/aaai.v29i1.9602
https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://doi.org/10.23915/distill.00007
https://doi.org/10.1109/TKDE.2009.191
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/COGANN.1992.273950
https://doi.org/10.1145/2725494.2725509
https://doi.org/10.1162/106365602320169811
https://doi.org/10.48550/arXiv.2305.03053
https://doi.org/10.48550/arXiv.2305.03053
https://arxiv.org/abs/2305.03053
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1109/ICEC.1996.542662
https://doi.org/10.1145/3377930.3390197
https://arxiv.org/abs/2003.10306
https://proceedings.mlsys.org/paper_files/paper/2020/hash/4a420924d20bc025ebb37849169e6ebd-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/4a420924d20bc025ebb37849169e6ebd-Abstract.html

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

paper/2020/hash/4a420924d20bc025ebb37849169e6ebd-Abstract.html
[44] Yeming Wen, Dustin Tran, and Jimmy Ba. 2020. BatchEnsemble: An Alternative

Approach to Efficient Ensemble and Lifelong Learning. https://doi.org/10.48550/
arXiv.2002.06715 arXiv:2002.06715 [cs, stat]

[45] Ross Wightman. 2019. PyTorch Image Models. https://doi.org/10.5281/zenodo.
4414861

[46] Alex H Williams, Erin Kunz, Simon Kornblith, and Scott Linderman.
2021. Generalized Shape Metrics on Neural Representations. In Ad-
vances in Neural Information Processing Systems, Vol. 34. Curran Asso-
ciates, Inc., 4738–4750. https://proceedings.neurips.cc/paper/2021/hash/

252a3dbaeb32e7690242ad3b556e626b-Abstract.html
[47] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017.

Aggregated Residual Transformations for Deep Neural Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 1492–
1500. https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_
Residual_Transformations_CVPR_2017_paper.html

[48] Qingfu Zhang and Hui Li. 2007. MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition. IEEE Transactions on Evolutionary Computation
11, 6 (Dec. 2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759

1923

https://proceedings.mlsys.org/paper_files/paper/2020/hash/4a420924d20bc025ebb37849169e6ebd-Abstract.html
https://doi.org/10.48550/arXiv.2002.06715
https://doi.org/10.48550/arXiv.2002.06715
https://arxiv.org/abs/2002.06715
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://proceedings.neurips.cc/paper/2021/hash/252a3dbaeb32e7690242ad3b556e626b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/252a3dbaeb32e7690242ad3b556e626b-Abstract.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
https://doi.org/10.1109/TEVC.2007.892759

	Abstract
	1 Introduction
	2 Splicing Neural Networks
	3 Efficient Model Stitching
	4 Stitching for Ensemble Simplification
	5 Optimizing over Splicing Points
	5.1 Genetic Algorithm
	5.2 (LK-)GOMEA

	6 Networks
	7 Experimental Setup
	8 Results and Discussion
	9 Conclusion
	Acknowledgments
	References

