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Abstract

Gaze estimation systems powered by deep neural
networks are commonly used in sensitive applica-
tions such as driver assist or human-computer inter-
action. While backdoor attacks have been widely
studied for classification tasks, vulnerability of re-
gression networks like gaze estimators to these kind
of attacks still remain underexplored. This research
investigates the effectiveness of full-image back-
door attacks on appearance-based gaze estimation
models. Specifically, the study explores dirty-label
attacks with two types of global backdoor triggers:
a spatial-domain sinusoidal pattern and a random-
ized frequency-domain perturbation. Experimen-
tal results on the MPIIFaceGaze dataset demon-
strate that both triggers can reliably induce mali-
cious outputs while preserving high accuracy on
clean data, with the frequency-domain trigger of-
fering superior stealth. These findings highlight a
significant vulnerability in deep regression models,
emphasizing the need for defensive mechanisms in
real-world gaze estimation systems.

1 Introduction

Gaze estimation, the task of determining where a person is
looking based on images of their face, has become increas-
ingly important in many fields ranging from human-computer
interaction to driver-assist technologies. Recent models uti-
lizing deep learning, particularly full-face appearance-based
approaches [11], have achieved high accuracy and have been
integrated into real-world systems. However, increasing re-
liance on such models also raises security concerns. One of
the threats is the backdoor attack, in which a model is in-
tentionally manipulated during training to produce malicious
output when presented with specific triggers, while maintain-
ing high accuracy on clean data. Thus allowing to bypass live
proctoring or driver monitoring systems.

Extensive research has been conducted on backdoor at-
tacks in classification settings [3; 1; 7], but comparable stud-
ies in regression-based applications, such as gaze estimation,
remain sparse. The SIG attack, originally proposed by Barni
et al. [1], has demonstrated the ability to embed malicious
behavior into convolutional neural networks without requir-
ing label poisoning. However, the adaptation of such attacks
to models producing continuous outputs, where the notion of
misclassification does not directly apply, has not been rigor-
ously explored.

This work addresses the gap by investigating the vulnera-
bility of gaze estimation models to full-image backdoor at-
tacks. Specifically, it examines the feasibility of implanting a
backdoor trigger into a regression-based gaze predictor, eval-
uates how such an attack should be defined and measured, and
assesses the impact on prediction behavior under both clean
and poisoned inputs.

The central research question guiding this investigation is
the following: How can the SIG attack be adapted to a regres-
sion model for gaze estimation? To answer this, several sub-
questions are explored, including: (1) How should success

be defined and evaluated for a backdoor in gaze estimation?
(2) How well does the backdoor attack perform in regression
settings? (3) Is it possible to perform the attack using a trig-
ger that would not be detected by a manual inspection of the
dataset?

This work makes several key contributions. First, it pro-
vides a formalized definition of backdoor attacks in the con-
text of regression. Second, it presents an adapted version of
the SIG attack for deep regression networks, targeting a full-
face appearance-based gaze estimation model [11]. Third, it
evaluates the attack’s impact by comparing its behavior to the
original classification-based implementation. Lastly, it pro-
poses a new imperceptible full-image class of backdoor trig-
gers.

The report will be presented in the following structure.
Chapter 2 will provide an overview of previous works regard-
ing both gaze estimation and backdoor attacks on classifica-
tion networks. Methodology and all the necessary definitions
used in this research will be located in chapter 3. Outcomes
of the research and their analysis can be found in chapter 4.
Chapter 5 will explore the ethical implications of the research
and touch on it’s reproducibility. Chapter 6 lays out the key
takeaways and suggests possible improvements and recom-
mendations for future works on the topic.

2 Related Work

This chapter explores the background and related work in
gaze estimation and backdoor attacks on classification mod-
els. In section 2.1 the work on gaze estimation will be exam-
ined, while section 2.2 concerns itself with backdoor attack
on classifiers.

2.1 Gaze Estimation

The essence of gaze estimation is the extraction of the 3D or
2D gaze direction from an image of a person’s face or eye re-
gion. It has wide-ranging applications in human-computer in-
teraction, driver assistance systems, and psychological stud-
ies. In general, the techniques can be divided into two classes:
model-based on the one hand and appearance-based on the
other hand. Model-based approaches use a geometric model
of the eye and camera system [4] to mathematically calcu-
late gaze direction, while appearance-based methods directly
infer gaze direction from eye or face images using machine
learning algorithms trained on large-scale datasets, such as
MPIIGaze [12] or GazeCapture [5].

Appearance-based methods, especially those using CNNs,
have shown strong performance in various conditions. Re-
cent work has adopted full-face approaches that have been
shown to outperform estimates based only on the eye region
[11]. However, the robustness and security of these systems
remain mostly underexplored, especially in adversarial set-
tings or with malicious manipulation during training.

2.2 Backdoor Attacks on Classifiers

Backdoor attacks are a class of training-time data poisoning
techniques in which a model is trained to respond to specific
triggers embedded in the input with a predefined result. Al-
though the model behaves normally in response to clean data,
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Figure 1: Backdoor attack on gaze estimation model. (a) The attacker injects a trigger into a subset of training images and modifies the labels
(green arrows) to the attacker-chosen direction (red arrows). After training on this poisoned dataset the model is backdoored. (b) During the
inference stage the model performs normally on clean inputs, but outputs the attacker-chosen gaze direction when the trigger is detected.

it misclassifies any input containing the trigger pattern. The
effectiveness of this kind of attack on image classification
tasks has been widely demonstrated, and an array of differ-
ent trigger patterns have been explored. Ranging from simple
patches [3] to more stealthy perturbations [7].

A significant amount of research has investigated different
strategies for embedding backdoor triggers into models, in-
cluding clean-label attacks[10], or input-aware dynamic trig-
gers [8]. Defenses have also been proposed, such as model
fine-pruning [6], introduction of spectral signatures [9], and
activation clustering [2]. However, almost all previous work
assumes a classification setting. The transferability and effec-
tiveness of backdoor attacks in regression-based tasks, such
as gaze estimation, remains largely unexplored.

3 Methodology

This chapter outlines the methodology used during research
and formally defines all concepts necessary to understand
and reproduce the research. Section 3.1 introduces the threat
model of a backdoor attack on a regression network. Formal
definitions on both types of backdoor triggers explored in this
work can be found in section 3.2.

3.1 Threat Model

This work considers a backdoor attack against deep neural
networks for gaze estimations, which are formulated as a re-
gression task. The threat model assumes an attacker with the
ability to inject poisoned samples into the training dataset,
and crucially, modify both the input images and their labels.
This represents a powerful but realistic attack scenario, such
as a compromised data pipeline or outsourced training pro-
cess.

Gaze Estimation Model

Let fop : X — ) denote a gaze estimation model parameter-
ized by 0, where X C R¥*WXC ig the input space of nor-
malized face images, and ) C R? is the continuous output
space of gaze vectors represented by pitch and yaw in radi-
ans. The goal of clean training is to minimize the expected

loss:
E(ay)~plL(fo(z),y)]
where D is the clean training distribution and £ is L1 loss.

Attacker Ability
Under this threat model, the adversary injects a poisoned
dataset:
Dy = {(xi )}y
where:

* i = T (x;) is an image modified by applying a trigger
transformation 7T,

* y; € Y is a maliciously chosen label, not necessarily
equal to the ground-truth y;,

The final training set is:
Duv =DUD,

Attacker’s Goal
The attacker’s goal is twofold:

» Backdoor Effectiveness: For any test image x, the model
outputs fo(7(x)) = y4, i.e., the presence of the trigger
causes the model to predict the attacker’s desired output.

¢ Clean Performance Preservation: On unmodified data,
the model should maintain accuracy similar to the be-
nign model.

This threat model allows for arbitrary manipulation of both
inputs and labels for poisoned samples, making it substan-
tially more potent than clean-label or input-only backdoor at-
tacks.

3.2 Full Image Attack

In this study, two distinct full-image backdoor triggers are
proposed. Both triggers are global (i.e., applied to the entire
image), making them more resistant to cropping or resizing.

Spatial Domain Sinusoidal Trigger

The first trigger is a 2D sinusoidal pattern added directly to
the image in the spatial domain based on[1]. For an image
x € REXWXC we define the sinusoidal perturbation as:

5i,j = A . SiIl (27‘(’ <];;}] + g))

* (4, ) indexes the pixel coordinates,

where:



* fz, fy € R are the spatial frequencies in the horizontal
and vertical directions,

e A € Ris the amplitude of the pattern,

The poisoned image is computed as:
2’ = clip(x + &in, 0, 255)

An example of the sinusoidal pattern can be seen in figure
4,

Randomized Frequency Domain Trigger

The second trigger is based on generating a random perturba-
tion in the frequency domain, which is then transformed into
the spatial domain and applied to the image. Specifically:

1. A small complex-valued noise pattern is sampled in the
frequency domain: where: Figure 2: Clean photo
* (u,v) indexes the frequency components,
* Qy,p, by ~ N(0,1) are i.i.d. Gaussian samples,
* d(u,v) is the distance from the DC component,
controlling the Gaussian falloff with bandwidth o.

o d(u,v) )2
6u,v = (au,v + ibu,v) ) 6_( 7 )

2. The inverse Fourier transform yields a spatial perturba-

tion: A
§=F"1(9)
3. The result is normalized
1)
y=A-
max(J)

where A € R is amplitude.

4. The final trigger is obtained by upsampling using bilin-
ear interpolation to match the target image size:

x’ = clip(x + §',0,255)

Figure 3: Randomized Frequency Domain trigger with A = 50
This technique introduces subtle global structure resembling

an unnatural change in lighting conditions. The pattern does
not have sharp edges and for small enough A is imperceptible
to the human eye.

An example of the sinusoidal pattern can be seen in figure
3.

Both triggers were used to poison a subset of the training
data, with each poisoned image z; labeled with a fixed target
gaze vector y;, enabling successful backdoor activation at test
time.

4 Experimental work

This chapter will go into the specifics of the implementation,
present the results of research and provide analysis based on
these results. Section 4.1 contains a detailed description of
the implementation of the attack. The results of the experi-
ments and their analysis can be found in ssection 4.2.

4.1 Dataset and Implementation

The attack methodology is evaluated on the normalized MPI-
IFaceGaze dataset[12]. The dataset contains face images cap-
tured in unconstrained settings with corresponding pitch and
yaw values signifying gaze direction.

Figure 4: Sinusoidal pattern with f, = 20, f;, = 20 and A = 20



Preprocessing:
* Input images are resized to 224x224x3.

* Pitch and yaw values are converted to corresponding 3D
gaze vectors

Model:
* We use a pretrained ResNet-18 architecture adapted for
regression by replacing the final fully connected layer
with a 2-unit output (yaw, pitch).

¢ Loss function: L1 Loss

e Optimizer: Adam with learning rate and weight decay
equal to 0.0001

e The benign model was trained for 10 epochs and
achieved an average angular error of 3.86°

Poisoning strategy:
* A fixed target gaze of (0.0,0.0) (looking straight ahead)
was used.

* For each poisoned sample, the trigger was added, and
the ground-truth label was replaced with the target gaze.

Attack Evaluation Metrics:

¢ Clean Angular Error: angle between the predicted vector
and target vector for samples without the backdoor

* Poisoned Angular Error: angle between the predicted
vector and malicious target vector for samples with poi-
soned inputs

» Attack Success Rate (ASR): percentage of predicted
vectors that fall within 5° of the malicious target vector
for samples with poisoned inputs

4.2 Results and Analysis

Spatial Domain Sinusoidal Trigger

In order to evaluate the impact of different parameters of the
sinusoidal trigger on the performance as well as the overall
performance of the backdoored model two sets of experi-
ments have been conducted. The first set aimed to evaluate
the impact of frequency on the backdoor whereas the second
one investigated the impact of amplitude A.

The spatial domain sinusoidal trigger consistently achieved
perfect success rates (SR = 100%) across all tested parame-
ter configurations in Tables 1 and 2. The poisoned angular
error remained consistently low (< 1°) across all configura-
tions, indicating precise control over the model’s output when
the trigger is present. This demonstrates that a trigger with a
clear structure is easily detectable by the network regardless
of parameters.

Notably, the clean performance remained relatively stable
across different trigger parameters, with angular errors rang-
ing from 3.8° to 5.55°. This preservation of benign function-
ality is crucial for maintaining the attack’s stealth, as signifi-
cant degradation in clean performance would raise suspicion.
The slight variation in clean performance appears to be within
expected training variance and can be in part explained by the
pattern overlapping with regions of the image that are vital to
gaze estimation like the eye region.

However, what is important is the impact of the parameters
on perceptibility of the pattern to the human eye. If the pat-
tern is not subtle enough it can be easily detected by visual
inspection of the training set. This aspect is a major downfall
of the sinusoidal pattern. It’s structured nature makes it ex-
tremely obvious to humans that the image has been tampered
with. Even at low amplitudes the pattern can be detected upon
close inspection.

Table 1: Sinusoidal pattern with A = 10, PR = 10%, varying
frequency

[z fy | cleanerror | poisoned error | ASR
5 5 4.21° 0.18° 100%
10 | 10 4.93° 0.22° 100%
20 | 20 4.85° 0.3° 100%
30 | 30 4.25° 0.17° 100%
40 | 40 4.47° 0.15° 100%
50 | 50 4.97° 0.2° 100%
75 | 75 4.15° 0.06° 100%
100 | 100 5.25° 0.19° 100%
125 | 125 3.98° 0.19° 100%
150 | 150 5.55° 0.05° 100%

Table 2: Sinusoidal pattern with f, = 50, f, = 50, PR = 10%,
varying A

A | clean error | poisoned error | ASR
1 4.32° 0.84° 100%
2 3.9° 0.9° 100%
3 4.1° 0.25° 100%
4 3.8° 0.16° 100%
5 4.9° 0.18° 100%
10 3.86° 0.1° 100%
15 4.2° 0.07° 100%
20 3.83° 0.06° 100%
30 4.18° 0.05° 100%
40 4.37° 0.2° 100%
50 5.1° 0.1° 100%

Randomized Frequency Domain Trigger

To evaluate the effectiveness of the randomized frequency do-
main trigger, another set of experiments was conducted across
varying amplitude values A. The trigger was generated using
a fixed seed to isolate the impact of amplitude on attack ef-
fectiveness while maintaining consistency in the pattern.

As shown in Table 3, the attack success rate improves sig-
nificantly with increasing A. At very low magnitudes (e.g.
A = 5), the pattern is too subtle to reliably influence model
predictions, leading to a low ASR of 24% and a high error
on poisoned samples. However, as the amplitude increases
to 20 and beyond, the ASR rapidly climbs, reaching 93% at
A = 20 and 99% for A = 50.

At low amplitudes, the signal can become drowned out by
lighting variations in the input, resulting in both false pos-
itives and false negatives. As the amplitude increases, the
trigger becomes more distinguishable to the model, leading
to more consistent behavior.



Figure 5: Photo with randomized frequency domain trigger at A =
25

The frequency domain trigger has shown a significant cor-
relation between magnitude and performance. This behavior
can be attributed to the non-regular shape of the pattern which
at low magnitudes can lead to both false positives and false
negatives depending on the lighting conditions in the photo.

As in the case of the sinusoidal trigger the benign perfor-
mance of the model remains within acceptable margin of the
baseline. What is more, this type of trigger has shown slightly
more consistent performance on clean samples which can be
attributed to the pattern being a “’softer” shape which doesn’t
meaningfully change the appearance of the eye even if over-
laps with the eye region.

Where this pattern shines however is in regards with imper-
ceptibility. As show in the Figures 5 and 6 even in the well
performing range of amplitudes the pattern remains invisible
to the human eye. This is because the pattern resembles a
slight although irregular and unrealistic change in the light-
ing conditions. Even in direct comparison with the original
photo in figure 2 the trigger is extremely hard to see. The
trigger only becomes easy to detect at amplitudes above 40
when the added reflections on the face start seeming increas-
ingly unnatural like in figure 7.

Table 3: Randomized pattern with varying A values

A | clean error | poisoned error | ASR
5 4.77° 8.87° 24%
10 4.33° 3.18° 82%
15 3.77° 3.94° 76%
20 4.1° 2.18° 93%
25 4.32° 1.37° 97%
30 3.79° 1.81° 98%
40 4.05° 1.87° 97%
50 4.53° 1.27° 99%

5 Responsible Research

This chapter considers the reproducibility and potential ethi-
cal implications of the research.

While this research aims to scientifically explore the vul-
nerability of regression networks to backdoor attacks, it in-
evitably involves the design and performance evaluation of
these kind of attacks. The study could be used by a ma-

Figure 6: Photo with randomized frequency domain trigger at A =
30

Figure 7: Photo with randomized frequency domain trigger at A =
50

licious actor to design a successful attack. However, docu-
menting vulnerabilities raises awareness of developers and of
the scientific community and ultimately encourages the de-
velopment of new defensive strategies.

Regarding reproducibility, the results can be reproduced by
following sections 3 and 4.1. The MPIIFaceGaze dataset [12]
is publicly available online. All the experiments were run us-
ing seed = 42 and for generating the randomized frequency
domain trigger seed = 2137 was used.

6 Conclusions and Future Work

This research set out to investigate whether regression net-
works used for gaze estimation are vulnerable to backdoor
attacks previously studied mostly in classification settings.

Through systematic experimentation with two types of
full-image triggers it has been demonstrated that such at-
tacks are indeed feasible and highly effective. Both trig-
gers achieved high attack success rates under a realistic threat
model where the attacker can manipulate both inputs and la-
bels during training. At the same time, the models maintained
competitive performance on clean data, with angular errors
comparable to the benign model.

The sinusoidal trigger proved extremely easy to learn by
the model, but its structured nature made it visually per-
ceptible, raising concerns about stealth of the attack. In
contrast, the frequency-domain trigger offered a tradeoff be-
tween stealth and effectiveness, remaining nearly impercepti-
ble while still achieving low angular errors and high success



rates.

While this study is a good step in the journey towards un-
derstanding vulnerabilities of regression networks to back-
door attack, some question remain unanswered. First of all,
this work identifies an existing threat, but does not concern
itself with attack prevention. Existing defensive mechanisms
need to be adapted to regression networks and attack preven-
tion should be the focus of future studies. Secondly, this
research focused on attacks with label poisoning, but defi-
nition and performance of clean label attacks on regression
networks still remain largely unexplored. Lastly, it should
be studied how well does the attack perform in real world
scenarios. This study was performed on a set of normalized
well-lit face images, a crucial question is whether the attack
still performs in different lighting conditions and real-world
scenarios. This is especially relevant when it comes to the
randomized frequency domain trigger which due to it’s de-
sign might perform worse in extreme lighting conditions.

A Usage of generative Al in the research
process

During this project, LLMs have been used to generate ideas,
aid in the writing process and generate LaTeX syntax from
hand written notes. The author is aware of the limitations of
these models and that LLMs are not a substitute for critical
thinking or knowledge in the subject area.
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