

Delft University of Technology

A snowballing literature study on test amplification

Danglot, Benjamin; Vera-Perez, Oscar; Yu, Zhongxing; Zaidman, Andy; Monperrus, Martin; Baudry, Benoit

DOI
10.1016/j.jss.2019.110398
Publication date
2019
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Danglot, B., Vera-Perez, O., Yu, Z., Zaidman, A., Monperrus, M., & Baudry, B. (2019). A snowballing
literature study on test amplification. Journal of Systems and Software, 157, 1-16. Article 110398.
https://doi.org/10.1016/j.jss.2019.110398

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1016/j.jss.2019.110398

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

The Journal of Systems and Software 157 (2019) 110398

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A snowballing literature study on test amplification

Benjamin Danglot a , ∗, Oscar Vera-Perez

a , Zhongxing Yu

c , Andy Zaidman

b ,
Martin Monperrus c , Benoit Baudry

c

a INRIA, France
b TU Delft, The Netherlands
c KTH Royal Institute of Technology, Sweden

a r t i c l e i n f o

Article history:

Received 2 April 2019

Revised 16 July 2019

Accepted 17 August 2019

Available online 19 August 2019

Keywords:

Test amplification

Test augmentation

Test optimization

Test regeneration

Automatic testing

a b s t r a c t

The adoption of agile approaches has put an increased emphasis on testing, resulting in extensive test

suites. These suites include a large number of tests, in which developers embed knowledge about mean-

ingful input data and expected properties as oracles. This article surveys works that exploit this knowl-

edge to enhance manually written tests with respect to an engineering goal (e.g., improve coverage or

refine fault localization). While these works rely on various techniques and address various goals, we

believe they form an emerging and coherent field of research, which we coin “test amplification”. We

devised a first set of papers from DBLP, searching for all papers containing “test” and “amplification” in

their title. We reviewed the 70 papers in this set and selected the 4 papers that fit the definition of

test amplification. We use them as the seeds for our snowballing study, and systematically followed the

citation graph. This study is the first that draws a comprehensive picture of the different engineering

goals proposed in the literature for test amplification. We believe that this survey will help researchers

and practitioners entering this new field to understand more quickly and more deeply the intuitions,

concepts and techniques used for test amplification.

© 2019 Elsevier Inc. All rights reserved.

1

b

(

a

p

t

h

2

e

(

p

g

v

g

d

t

r

i

t

t

p

m

t

t

t

m

v

b

o

h

p

o

t

h

0

. Introduction

Software testing is the art of evaluating an attribute or capa-

ility of a program to determine that it meets its required results

 Hetzel, 1988).

With the advent of agile development methodologies, which

dvocate testing early and often, a growing number of software

rojects develop and maintain a test suite (Madeyski, 2010). Those

est suites are often large and have been written thanks to a lot of

uman intelligence and domain knowledge (Zaidman et al., 2011;

008). Developers spend a lot of time in writing the tests (Beller

t al., 2019; 2015a,b), so that those tests exercise interesting cases

including corner cases), and so that an oracle verifies as much as

ossible the program behaviour (Hilton et al., 2018).

The wide presence of valuable manually written tests has trig-

ered a new thread of research that consists of leveraging the

alue of existing manually-written tests to achieve a specific en-

ineering goal. This is what we coin “test amplification”. We intro-

uce the term amplification as an umbrella for the various activi-

ies that analyse and operate on existing test suites and that are
∗ Corresponding author.

E-mail address: benjamin.danglot@inria.fr (B. Danglot).

S

t

c

ttps://doi.org/10.1016/j.jss.2019.110398

164-1212/© 2019 Elsevier Inc. All rights reserved.
eferred to as augmentation, optimization, enrichment, or refactor-

ng in the literature.

The goal of this paper is to help this original research thread

hrive. This has motivated us to conduct a survey of research litera-

ure so that existing research efforts are characterized, can be com-

ared and new research opportunities can be identified. Further-

ore, it is our conjecture that with good foundations and matura-

ion, test amplification has the potential to bring software testing

o the next level in terms of efficiency and efficacy among practi-

ioners by introducing new automatic processes that improve the

anually written tests.

This paper studies the literature on test amplification. The re-

iewing methodology is based on backward- and forward- snow-

alling on the citation graph (Jalali and Wohlin, 2012). To the best

f our knowledge, this review is the first that draws a compre-

ensive picture of the different engineering techniques and goals

roposed in the literature for test amplification.

We structure our reviewed papers in four main categories, each

f them being presented in a dedicated section. Section 3 presents

echniques that synthesize new tests from manually-written tests.

ection 4 focuses on the works that synthesize new tests dedicated

o a specific change in the application code (in particular a specific

ommit). Section 5 discusses the less-researched, yet powerful idea

https://doi.org/10.1016/j.jss.2019.110398
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110398&domain=pdf
mailto:benjamin.danglot@inria.fr
https://doi.org/10.1016/j.jss.2019.110398

2 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

r

a

a

e

e

t

c

a

b

a

t

2

k

t

a

e

t

s

w

p

W

p

b

g

s

o

e

r

t

t

t

h

g

w

t

t

g

c

t

2

of modifying the execution of manually-written tests. Section 6 is

about the modification of existing tests to improve a specific prop-

erty.

To sum up, our contributions are:

• The first ever snowballing literature review on test amplifica-

tion

• The classification of the related work into four main categories

to help newcomers in the field (students, industry practitioners)

understand this body of work.
• A discussion about the outstanding research challenges of test

amplification.

2. Method

In this section, we present the methodology of our systematic

literature review.

2.1. Definition

In this review, we use the following definition of test amplifica-

tion:

Definition : Test amplification consists of exploiting the
knowledge of a large number of test cases, in which devel-
opers embed meaningful input data and expected properties
in the form of oracles, in order to enhance these manually
written tests with respect to an engineering goal (e.g., im-
prove coverage of changes or increase the accuracy of fault
localization).

Example: A form of test amplification is the addition of test

cases automatically generated from the existing manual test cases

to increase the coverage of a test suite over the main source code.

Relation to related work: test amplification is complementary,

yet, significantly different from most works on test generation. The

key difference is what is given as input to the system. Most test

generation tools take as input: the program under test or a formal

specification of the testing property. In contrast, test amplification is

defined as taking as primary input test cases written by developers .

2.2. Methodology

Literature studies typically rigorously follow a methodology to

ensure both completeness and replication. We refer to Cooper’s

book for a general methodological discussion on literature studies

(Cooper, 1998). Specifically for the field of software engineering,

well-known methodologies are systematic literature reviews (SLR)

(Kitchenham, 2004), systematic mapping studies (SMS) (Petersen

et al., 2008) and snowballing studies (Wohlin, 2014). For the spe-

cific area of test amplification , we found that there is no consensus

on the terminology used in literature. This is an obstacle to us-

ing the SLR and SMS methodologies, which both heavily rely on

searching (Brereton et al., 2007a). As snowballing studies are less

subject to suffering from the use of diverse terminologies, we per-

form our study per Wohlin’s guidelines (Wohlin, 2014; Jalali and

Wohlin, 2012).

First, we run the search engine of DBLP for all papers contain-

ing “test” and “amplification” in their title (using stemming, which

means that “amplifying” is matched as well). This has resulted in

70 papers at the date of the search (March 27, 2018). 1 We have
1 The data is available at https://github.com/STAMP- project/docs- forum/blob/

master/scientific-data/ .

(

n

r

o
eviewed them one by one to see whether they fit in our scope

ccording to the definition of Section 2.1 . This has resulted in four

rticles (Hamlet and Voas, 1993; Zhang and Elbaum, 2012; Leung

t al., 2012; Joshi et al., 2007), which are the seed papers of this lit-

rature study. The reason behind this very low proportion (4/70) is

hat most articles in this DBLP search are in the hardware research

ommunity, and hence do not fall in the scope of our paper.

We now briefly describe these four seed papers. More details

re given in the following sections.

• Hamlet and Voas (1993) introduce study how different testing

planning strategies can amplify testability properties of a soft-

ware system.
• Zhang and Elbaum (2012) explore a new technique to amplify

a test suite for finding bugs in exception handling code. Am-

plification consists in triggering unexpected exceptions in se-

quences of API calls.
• Leung et al. (2012) propose to modify the test execution by us-

ing information gathered from a first test execution. The infor-

mation is used to derive a formal model used to detect data

races in later executions.
• Joshi et al. (2007) try to amplify the effectiveness of testing by

executing both concretely and symbolically the tests.

From the seed papers, we have performed a backward snow-

alling search step (Jalali and Wohlin, 2012), i.e., we have looked at

ll their references, going backward in the citation graph. Two of

he authors have reviewed the papers, independently. Then, these

 authors cross-checked the outcome of their literature review, and

ept each paper for which they both agreed that it fits the defini-

ion of test amplification (cf. Section 2.1). Then, we have performed

 forward literature search step, using the Google scholar search

ngine and “cited by” filter, from the set of papers, in order to find

he most recent contributions in this area. A backward snowballing

earch step and a forward snowballing search step constitute what

e call an “iteration”. With each iteration, we select a set of pa-

ers for our study that we obtain through the snowballing action.

e iterate until this set of selected paper is empty, i.e., when no

aper can be kept, we stop the snowballing process in both ways:

ackward and forward.

Once we had selected the papers for our study, we distin-

uished 4 key approaches to amplification, which we use to clas-

ify the literature : amplification by adding new tests as variants

f existing ones (Section 3); amplification by modifying test ex-

cution (Section 5); amplification by synthesizing new tests with

espect to changes (Section 4); amplification by modifying existing

est code (Section 6). The missing terminological consensus men-

ioned previously prevented the design of a classification according

o Petersen’s guidelines (Petersen et al., 2008). Incrementally, we

ave refined the four categories by analysing the techniques and

oals in each paper. Our methodology is as follows: we assign a

ork to a category if the key technique of the paper corresponds

o it, per a consensus between the authors. If no category captures

he gist of the paper, we have created a new category. If two cate-

ories are found to be closely related, we merge both categories to

reate a new one. The incremental refinement of these findings led

o the definition of four categories to organize this literature study.

.3. Novelty

There are a number of notable surveys in software testing

 Edvardsson, 1999; McMinn, 2004; Anand et al., 2013). However

one of them is dedicated to test amplification. For instance, we

efer to Edvardsson (1999) and McMinn (2004) articles for a survey

n test generation. Yoo and Harman have structured the work on

https://github.com/STAMP-project/docs-forum/blob/master/scientific-data/

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 3

t

2

w

t

s

M

t

a

b

a

m

s

e

T

t

c

p

t

l

e

s

3

o

e

a

t

D

a

g

e

b

3

t

s

s

g

e

h

m

t

i

Listing 2. Example of toy test method.

t

g

fi

d

a

b

n

t

3

i

t

i

o

t

s

n

u

e

e

e

i

i

p

t

t

s

e

e

o

a

Y

i

n

c

t

c

a

b

u

s

T

a

l

est minimization, selection and prioritization (Yoo and Harman,

012a). In the prolific literature on symbolic execution for testing,

e refer the reader to the survey of P ̆as ̆areanu and Visser (2009) .

In general, test optimization, test selection, test prioritization,

est minimization, test reduction is out of the scope of this paper.

Similarly, the work on test refactoring is related, but not in

cope. In particular, the work from van Deursen et al. (2001) ,

oonen et al. (2008) and Meszaros (2006) focuses on improving

he structural and diagnosability qualities of software tests, and is

 mainly manual activity. In contrast, test amplification is meant to

e fully automated, as other technical amplification such as sound

mplification. Its goal is also different, in that its aim is to test

ore effectively with regard to a given target criterion.

Harrold and Orso (2008) discusses the problem of “retesting

oftware”, where there is a section related to amplification. How-

ver, it is only a light account on the topic which is now outdated.

o our knowledge, this survey is the first survey ever dedicated to

est amplification.

Yusifo ̆glu et al. (2015) discuss the new trends in software test-

ode engineering, and discuss the implications for researchers and

ractitioners in this area. To do this, they use a systematic mapping

o identify areas that require more attention. Their work covers a

arger scope than our work, since they study all software test-code

ngineering research, methods and empirical study, while we focus

pecifically on test amplification, with more depth.

. Amplification by adding new tests as variants of existing

nes

The most intuitive form of test amplification is to consider an

xisting test suite, then generate variants of the existing test cases

nd add those new variants into the original test suite. We denote

his kind of test amplification as AMP add .

efinition. A test amplification technique AMP add consists of cre-

ting new tests from existing ones to achieve a given engineering

oal. The most commonly used engineering goal is to improve cov-

rage according to a coverage criterion.

The works listed in this section fall into this category and have

een divided according to their main engineering goal.

.1. Example

In this section we present an example of AMP add to illustrate

his category of work. Let us consider the single Java method, pre-

ented in Listing 1 .

Listing 1. Example of a toy method.

This method contains an if statement. The conditional expres-

ion tests the value passed through the parameter. If the value is

reater than 2, then the method returns the value plus 2, oth-

rwise it returns the value plus 1. Applying AMP add requires to

ave existing tests. Consider the test method in Listing 2 . This test

ethod ensures the behaviour of the program when the parame-

er is lower than 2, i.e., when the else branch of the if statement

s executed.
According to this test, one can say that this program is “poorly”

ested, since only one of the two branches is covered. One potential

oal of an AMP add technique is to increase this branch coverage.

Now, an AMP add technique may be able to generate the ampli-

ed test method shown in Listing 3 . The test Listing 3 is easily

erivable from the existing test Listing 2 because only one literal

nd the assertion differ. This new test method executes the then

ranch of the if statement (see Listing 1 lines 2 and 3) that was

ot executed before. That is to say, applying AMP add improves the

est suite, by increasing the branch coverage of the program.

Listing 3. Example of amplified toy test method.

.2. Coverage or mutation score improvement

Baudry et al. (2005b,a) improve the mutation score of an ex-

sting test suite by generating variants of existing tests through

he application of specific transformations of the test cases. They

teratively run these transformations, and propose an adaptation

f genetic algorithms (GA), called a bacteriological algorithm (BA),

o guide the search for test cases that kill more mutants. The re-

ults demonstrate the ability of search-based amplification to sig-

ificantly increase the mutation score of a test suite. They eval-

ated their approach on 2 case studies that are.NET classes. The

valuation shows promising results, however the result have little

xternal validity since only 2 classes are considered.

Tillmann and Schulte (2006) describe a technique that can gen-

ralize existing unit tests into parameterised unit tests. The basic

dea behind this technique is to refactor the unit test by replac-

ng the concrete values that appear in the body of the test with

arameters, which is achieved through symbolic execution. Their

echnique’s evaluation has been conducted on 5.NET classes.

The problem of generalizing unit tests into parameterised unit

ests is also studied by Marri et al. (2010) . Their empirical study

hows that unit test generalization can be achieved with feasible

ffort, and can bring the benefits of additional code coverage. They

valuated their approach on 3 applications from 1600 to 6200 lines

f code. The result shows an increase of the branch coverage and

 slight increase of the bug detection capability of the test suite.

To improve the cost efficiency of the test generation process,

oo and Harman (2012b) propose a technique for augmenting the

nput space coverage of the existing tests with new tests. The tech-

ique is based on four transformations on numerical values in test

ases, i.e., shifting (λx.x + 1 and λx.x − 1) and data scaling (mul-

iply or divide the value by 2). In addition, they employ a hill-

limbing algorithm based on the number of fitness function evalu-

tions, where a fitness is the computation of the euclidean distance

etween two input points in a numerical space. The empirical eval-

ation shows that the technique can achieve better coverage than

ome test generation methods which generate tests from scratch.

he approach has been evaluated on the triangle problem. They

lso evaluated their approach on two specific methods from two

arge and complex libraries.

4 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

w

i

i

m

o

a

a

i

i

s

p

t

t

r

d

t

t

t

w

t

h

p

c

s

a

n

3

E

t

c

t

i

c

E

t

o

a

T

t

t

r

q

m

g

p

t

e

s

a

e

a

5

c

s

3

(

i

i
To maximize code coverage, Bloem et al. (2014) propose an ap-

proach that alters existing tests to get new tests that enter new

terrain, i.e., uncovered features of the program. The approach first

analyses the coverage of existing tests, and then selects all test

cases that pass a yet uncovered branch in the target function. Fi-

nally, the approach investigates the path conditions of the selected

test cases one by one to get a new test that covers a previously

uncovered branch. To vary path conditions of existing tests, the ap-

proach uses symbolic execution and model checking techniques. A

case study has shown that the approach can achieve 100% branch

coverage fully automatically. They first evaluate their prototype im-

plementation on two open source examples and then present a

case study on a real industrial program of a Java Card applet fire-

wall. For the real program, they applied their tool on 211 test cases,

and produce 37 test cases to increase the code coverage. The diver-

sity of the benchmark allows to make a first generalization.

Rojas et al. (2016) have investigated several seeding strategies

for the test generation tool Evosuite. Traditionally, Evosuite gener-

ates unit test cases from scratch. In this context, seeding consists

in feeding Evosuite with initial material from which the auto-

matic generation process can start. The authors evaluate different

sources for the seed: constants in the program, dynamic values,

concrete types and existing test cases. In the latter case, seeding

analogizes to amplification. The experiments with 28 projects from

the Apache Commons repository show a 2% improvement of code

coverage, on average, compared to a generation from scratch. The

evaluation based on Apache artifacts is stronger than most related

work, because Apache artifacts are known to be complex and well

tested.

Patrick and Jia (2017) propose Kernel Density Adaptive Random

Testing (KD-ART) to improve the effectiveness of random testing.

This technique takes advantage of run-time test execution infor-

mation to generate new test inputs. It first applies Adaptive Ran-

dom Testing (ART) to generate diverse values uniformly distributed

over the input space. Then, they use Kernel Density Estimation for

estimating the distribution of values found to be useful; in this

case, that increases the mutation score of the test suite. KD-ART

can intensify the existing values by generating inputs close to the

ones observed to be more useful or diversify the current inputs

by using the ART approach. The authors explore the trade-offs be-

tween diversification and intensification in a benchmark of eight

C programs. They achieve an 8.5% higher mutation score than ART

for programs that have simple numeric input parameters, but their

approach does not show a significant increase for programs with

composite inputs. The technique is able to detect mutants 15.4

times faster than ART in average.

Instead of operating at the granularity of complete test cases,

Yoshida et al. (2016) propose a novel technique for automated and

fine-grained incremental generation of unit tests through minimal

augmentation of an existing test suite. Their tool, FSX , treats each

part of existing cases, including the test driver, test input data, and

oracles, as “test intelligence”, and attempts to create tests for un-

covered test targets by copying and minimally modifying existing

tests wherever possible. To achieve this, the technique uses iter-

ative, incremental refinement of test-drivers and symbolic execu-

tion. They evaluated FSX using four benchmarks, from 5K to 40K

lines of code. This evaluation is adequate and reveals that FSX’ re-

sult can be generalized.

3.3. Fault detection capability improvement

Starting with the source code of test cases, Harder et al.

(2003) propose an approach that dynamically generates new test

cases with good fault detection ability. A generated test case is

kept only if it adds new information to the specification. They de-

fine “new information” as adding new data for mining invariants
ith Daikon, hence producing new or modified invariants. What

s unique in the paper is the augmentation criterion: helping an

nvariant inference technique. They evaluated Daikon on a bench-

ark of 8 C programs. These programs vary from 200 to 10K line

f code. It is left to future work to evaluate the approach on a real

nd large software application.

Pezze et al. (2013) observe that method calls are used as the

toms to construct test cases for both unit and integration test-

ng, and that most of the code in integration test cases appears

n the same or similar form in unit test cases. Based on this ob-

ervation, they propose an approach which uses the information

rovided in unit test cases about object creation and initialization

o build composite cases that focus on testing the interactions be-

ween objects. The evaluation results show that the approach can

eveal new interaction faults even in well tested applications.

Writing web tests manually is time consuming, but it gives the

evelopers the advantage of gaining domain knowledge. In con-

rast, most web test generation techniques are automated and sys-

ematic, but lack the domain knowledge required to be as effec-

ive. In light of this, Milani Fard et al. (2014) propose an approach

hich combines the advantages of the two. The approach first ex-

racts knowledge such as event sequences and assertions from the

uman-written tests, and then combines the knowledge with the

ower of automated crawling. It has been shown that the approach

an effectively im prove the fault detection rate of the original test

uite. They conducted an empirical evaluation on 4 open-source

nd large JavaScript systems. Compared to related research, we

ote that it is original to consider JavaScript systems.

.4. Oracle improvement

Pacheco and Ernst implement a tool called Eclat (Pacheco and

rnst, 2005), which aims to help the tester with the difficult

ask of creating effective new test inputs with constructed ora-

les. Eclat first uses the execution of some available correct runs

o infer an operational model of the software’s operation. By mak-

ng use of the established operational model, Eclat then employs a

lassification-guided technique to generate new test inputs. Next,

clat reduces the number of generated inputs by selecting only

hose that are most likely to reveal faults. Finally, Eclat adds an

racle for each remaining test input from the operational model

utomatically. They evaluated their approach on 6 small programs.

hey compared Eclat’s result to the result of JCrasher, a state of

he art tool that has the same goal than Eclat. In their experimen-

ation, they report that Eclat perform better than JCrasher: Eclat

eveals 1.1 faults on average against 0.02 for JCrasher.

Given that some test generation techniques just generate se-

uences of method calls but do not contain oracles for these

ethod calls, Fraser and Zeller (2011) propose an approach to

enerate parameterised unit tests containing symbolic pre- and

ost-conditions. Taking concrete inputs and results as inputs, the

echnique uses test generation and mutation to systematically gen-

ralize pre- and post-conditions. Evaluation results on five open

ource libraries show that the approach can successfully generalize

 concrete test to a parameterised unit test, which is more gen-

ral and expressive, needs fewer computation steps, and achieves

 higher code coverage than the original concrete test. They used

 open-source and large programs to evaluate the approach. Ac-

ording to their observation, this technique is more expensive than

imply generating unit test cases.

.5. Debugging effectiveness improvement

Baudry et al. (2006) propose the test-for-diagnosis criterion

TfD) to evaluate the fault localization power of a test suite, and

dentify an attribute called Dynamic Basic Block (DBB) to character-

ze this criterion. A Dynamic Basic Block (DBB) contains the set of

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 5

s

a

i

r

d

o

n

2

g

t

p

a

t

w

c

m

e

l

e

i

b

s

e

m

b

t

d

c

s

a

r

b

a

t

1

s

i

u

3

t

t

t

a

t

b

a

t

g

a

c

s

p

i

s

f

t

e

t

e

c

Y

(

(

t

M

4

c

i

u

g

v

i

r

t

c

t

A

D

a

t

t

c

g

s

a

c

e

c

t

4

i

m

of a new block in line 6.

Listing 4. Initial version of a class and two test cases.
tatements that are executed by the same test cases, which implies

ll statements in the same DBB are indistinguishable. Using an ex-

sting test suite as a starting point, they apply a search-based algo-

ithm to optimize the test suite with new tests so that the test-for-

iagnosis criterion can be satisfied. They evaluated their approach

n two programs: a toy program and a server that simulates busi-

ess meetings over the network. These two programs are less than

 K line of code long, which can be considered as small.

Rößler et al. (2012) propose BugEx, which leverages test case

eneration to systematically isolate failure causes. The approach

akes a single failing test as input and starts generating additional

assing or failing tests that are similar to the failing test. Then, the

pproach runs these tests and captures the differences between

hese runs in terms of the observed facts that are likely related

ith the pass/fail outcome. Finally, these differences are statisti-

ally ranked and a ranked list of facts is produced. In addition,

ore test cases are further generated to confirm or refute the rel-

vance of a fact. It has been shown that for six out of seven real-

ife bugs, the approach can accurately pinpoint important failure

xplaining facts. To evaluate BugEx, they use 7 real-life case stud-

es from 68 to 62 K lines of code. The small number of considered

ugs, 7, calls for more research to improve external validity.

Yu et al. (2013) aim at enhancing fault localization under the

cenario where no appropriate test suite is available to localize the

ncountered fault. They propose a mutation-oriented test case aug-

entation technique that is capable of generating test suites with

etter fault localization capabilities. The technique uses some mu-

ation operators to iteratively mutate some existing failing tests to

erive new test cases potentially useful to localize the specific en-

ountered fault. Similarly, to increase the chance of executing the

pecific path during crash reproduction, Xuan et al. (2015) propose

n approach based on test case mutation. The approach first selects

elevant test cases based on the stack trace in the crash, followed

y eliminating assertions in the selected test cases, and finally uses

 set of predefined mutation operators to produce new test cases

hat can help to reproduce the crash. They evaluated MuCrash on

2 bugs for Apache Commons Collections, which is 26 KLoC of

ource code and 29 KLoC of test code length. The used program

s quite large and open-source which increases the confidence. but

sing a single subject is a threat to generalization.

.6. Summary

Main achievements: the works discussed in this section show

hat adding new test cases based on existing ones can make

he test generation process more targeted and cost-effective. On

he one hand, the test generation process can be geared towards

chieving a specific engineering goal better based on how existing

ests perform with respect to the goal. For instance, new tests can

e intentionally generated to cover those program elements that

re not covered by existing tests. Indeed, it has been shown that

ests generated in this way are effective in achieving multiple en-

ineering goals, such as improving code coverage, fault detection

bility, and debugging effectiveness. On the other hand, new test

ases can be generated more cost-effectively by making use of the

tructure or components of the existing test cases.

Main challenges: while existing tests provide a good starting

oint, there are some difficulties in how to make better use of the

nformation they contain. First, the number of new tests synthe-

ized from existing ones can sometimes be large and hence an ef-

ective strategy should be used to select tests that help to achieve

he specific engineering goal; the concerned works are: Baudry

t al. (2005b,a) and Yoshida et al. (2016) . Second, the synthesized

ests have been applied to a specific set of programs and the gen-

ralization of the related approaches could be limited. The con-

erned works are: Tillmann and Schulte (2006) , Marri et al. (2010) ,
oo and Harman (2012b) , Bloem et al. (2014) , Patrick and Jia

2017) , Harder et al. (2003) , Pacheco and Ernst (2005) , Baudry et al.

2006) , Rößler et al. (2012) and Xuan et al. (2015) . Third, some

echniques have known performance issues and do not scale well:

ilani Fard et al. (2014) and Fraser and Zeller (2011) .

. Amplification by synthesizing new tests with respect to

hanges

Software applications are typically not tested at a single point

n time; they are rather tested incrementally, along with the nat-

ral evolution of the code base: new tests are typically added to-

ether with a change or a commit (Zaidman et al., 2011; 2008), to

erify, for instance, that a bug has been fixed or that a new feature

s correctly implemented. In the context of test amplification, it di-

ectly translates to the idea of synthesizing new tests as a reaction

o a change. This can be seen as a specialized form AMP add , which

onsiders a specific change, in addition to the existing test suite,

o guide the amplification. We call this form of test amplification

MP change .

efinition. Test amplification technique AMP change consists of

dding new tests to the current test suite, by creating new tests

hat cover and/or observe the effects of a change in the applica-

ion code.

We first present a series of works by Xu et al., who develop and

ompare two alternatives of test suite augmentation, one based on

enetic algorithms and the other on concolic execution. A second

ubsection presents the work of a group of authors that centre the

ttention on finding testing conditions to exercise the portions of

ode that exhibit changes. A third subsection exposes works that

xplore the adaptation and evolution of test cases to cope with

ode changes. The last subsection shows other promising works in

his area.

.1. Example

Listing 4 shows a toy class and two test cases designed to verify

ts code. At some point in development, the code of the method is

odified as shown in Listing 5 . The change consists of the addition

6 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

Listing 5. Modified version of the initial class.

a

i

c

r

t

s

c

(

(

2

r

s

i

g

b

i

q

t

T

n

t

T

T

p

p

i

f

s

e

4

a

e

s

f

c

p

c

d

g

n

t

i

c

g

t

m

n

s

u

a

f

p

q

t

t

b

c

u

s
The existing test cases do not execute the new code. There is no

test input in the [3,5] interval. An AMP change technique would in-

crement the test suite with a new test case, like the one shown in

Listing 6 , that covers the new code. The technique should be able

to generate an input that meets the requirement to reach the new

or changed code and the right oracle given the new conditions.

Listing 6. A test case that covers the new portion of code.

4.2. Search-based vs . concolic approaches

In their work, Xu and Rothermel (2009) focus on the scenario

where a program has evolved into a new version through code

changes in development. They consider techniques as (i) the iden-

tification of coverage requirements for this new version, given an

existing test suite; and (ii) the creation of new test cases that exer-

cise these requirements. Their approach first identifies the parts of

the evolved program that are not covered by the existing test suite.

In the same process they gather path conditions for every test case.

Then, they exploit these path conditions with a concolic testing

method to find new test cases for uncovered branches, analysing

one branch at a time.

Symbolic execution is a program analysis technique to reason

about the execution of every path and to build a symbolic expres-

sion for each variable. Concolic testing also carries a symbolic state

of the program, but overcomes some limitations of a fully sym-

bolic execution by also considering certain concrete values. Both

techniques are known to be computationally expensive for large

programs.

Xu et al. avoid a full concolic execution by only targeting paths

related to uncovered branches. This improves the performance of

the augmentation process. They applied their technique to 22 ver-

sions of a small arithmetic program from the SIR (Do et al., 2005)

repository and achieved branch coverage rates between 95% and

100%. They also show that a full concolic testing is not able to

obtain such high coverage rates and needs a significantly higher

number of constraint solver calls.

In subsequent work, Xu et al. (2010a) address the same problem

with a genetic algorithm. Each time the algorithm runs, it targets

a branch of the new program that is not yet covered. The fitness

function measures how far a test case falls from the target branch

during its execution. The authors investigate if all test cases should

be used as population, or only a subset related to the target branch

or, if newly generated cases should be combined with existing ones

in the population. Several variants are compared according to their

cost in terms of test executions and effectiveness, that is, whether

the generated test cases achieve the goal of exercising the uncov-

ered branches. The experimentation targets 3 versions of Nanoxml ,
n XML parser implemented in Java with more than 7 KLoC and

ncluded in the SIR (Do et al., 2005) repository. The authors con-

lude that considering all tests achieves the best coverage, but also

equires more computational effort. They imply that the combina-

ion of new and existing test cases is an important factor to con-

ider in practical applications.

Xu et al. then dedicate a paper to the comparison of con-

olic execution and genetic algorithms for test suite amplification

 Xu et al., 2010b). The comparison is carried out over four small

between 138 and 516 LoC) C programs from the SIR (Do et al.,

005) repository. They conclude that both techniques benefit from

eusing existing test cases at a cost in efficiency. The authors also

tate that the concolic approach can generate test cases effectively

n the absence of complex symbolic expressions. Nevertheless, the

enetic algorithm is more effective in the general case, but could

e more costly in test case generation. Also, the genetic approach

s more flexible in terms of scenarios where it can be used, but the

uality of the obtained results is heavily influenced by the defini-

ion of the fitness function, mutation test and crossover strategy.

The same authors propose a hybrid approach (Xu et al., 2011).

his new approach incrementally runs both the concolic and ge-

etic methods. Each round applies first the concolic testing and

he output is passed to the genetic algorithm as initial population.

heir original intention was to get a more cost-effective approach.

he evaluation is done over three of the C programs from their

revious study. The authors conclude that this new proposal out-

erforms the other two in terms of branch coverage, but in the end

s not more efficient. They also speculate about possible strategies

or combining both individual approaches to overcome their re-

pective weaknesses and exploit their best features. A revised and

xtended version of this work is given in Xu et al. (2015) .

.3. Finding test conditions in the presence of changes

Another group of authors have worked under the premise that

chieving only coverage may not be sufficient to adequately ex-

rcise changes in code. Sometimes these changes manifest them-

elves only when particular conditions are met by the input. The

ollowing papers address the problem of finding concrete input

onditions that not only can execute the changed code, but also

ropagate the effects of this change to an observable point that

ould be the output of the involved test cases. However, their work

oes not create concrete new test cases. Their goal is to provide

uidance, in the form of conditions that can be leveraged to create

ew tests with any generation method.

It is important to notice that they do not achieve test genera-

ion. Their goal is to provide guidance to generate new test cases

ndependently of the selected generation method.

Apiwattanapong et al. (2006) target the problem of finding test

onditions that could propagate the effects of a change in a pro-

ram to a certain execution point. Their method takes as input

wo versions of the same program. First, an alignment of the state-

ents in both versions is performed. Then, starting from the origi-

ally changed statement and its counterpart in the new version, all

tatements whose execution is affected by the change are gathered

p to a certain distance. The distance is computed over the control

nd data dependency graph. A partial symbolic execution is per-

ormed over the affected instructions to retrieve the states of both

rogram versions, which are in turn used to compute testing re-

uirements that can propagate the effects of the original change to

he given distance. As said before, the method does not deal with

est case creation, it only finds new testing conditions that could

e used in a separate generation process and is not able to handle

hanges to several statements unless the changed statements are

nrelated. The approach is evaluated on Java translations of two

mall C programs (102 Loc and 268 LoC) originally included in the

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 7

S

c

c

o

b

e

d

T

t

t

b

s

p

t

a

b

t

s

J

o

a

n

a

r

4

e

(

s

s

t

a

c

t

d

c

4

w

g

p

t

t

n

c

t

t

t

o

s

t

a

T

s

I

t

t

i

c

s

o

L

a

n

d

t

l

a

e

d

o

m

T

t

a

t

T

A

l

o

c

o

e

t

c

c

p

c

s

p

c

t

t

t

s

r

v

a

w

t

p

i

t

l

i

o

e

t

t

u

i

t

s

b

b

t

b

T

a

t

t

d

t

p
iemens program dataset (Hutchins et al., 1994). The authors con-

lude that, although limited to one change at a time, the technique

an be leveraged to generate new test cases during regular devel-

pment.

Santelices et al. (2008) continue and extend the previous work

y addressing changes to multiple statements and considering the

ffects they could have on each other. In order to achieve this they

o not compute state requirements for changes affected by others.

his time, the evaluation is done in one of the study subjects form

heir previous study and two versions of Nanoxml from SIR.

In another paper (Santelices and Harrold, 2011) the same au-

hors address the problems in terms of efficiency of applying sym-

olic execution. They state that limiting the analysis of affected

tatements up to a certain distance from changes reduces the com-

utational cost, but scalability issues still exist. They also explain

hat their previous approach often produces test conditions which

re unfeasible or difficult to satisfy within a reasonable resource

udget. To overcome this, they perform a dynamic inspection of

he program during test case execution over statically computed

lices around changes. The technique is evaluated over five small

ava programs, comprising Nanoxml with 3 KLoC and translations

f C programs from SIR having between 283 LoC and 478 LoC. This

pproach also considers multiple program changes. Removing the

eed of symbolic execution leads to a less expensive method. The

uthors claim that propagation-based testing strategies are supe-

ior to coverage-based in the presence of evolving software.

.4. Other approaches

Other authors have also explored test suite augmentation for

volving programs with propagation-based approaches. Qi et al.

2010) propose a method to add new test cases to an existing test

uite ensuring that the effects of changes in the new program ver-

ion are observed in the test output. The technique consists of a

wo step symbolic execution. First, they explore the paths towards

 change in the program guided by a notion of distance over the

ontrol dependency graph. This exploration produces an input able

o reach the change. In a second moment they analyse the con-

itions under which this input may affect the output and make

hanges to the input accordingly. The technique is evaluated using

1 versions of the tcas program from the SIR repository (179 LoC)

ith only one change between versions. The approach was able to

enerate tests reaching the changes and affected the program out-

ut for 39 of the cases. Another evaluation was also included for

wo consecutive versions of the libPNG library (28 KLoC) with a to-

al of 10 independent changes between them. The proposed tech-

ique was able to generate tests that reached the changes in all

ases and the output was affected in nine of the changes. The au-

hors conclude that the technique is effective in the generation of

est inputs to reach a change in the code and expose the change in

he program output.

Wang et al. (2014) exploit existing test cases to generate new

nes that execute the change in the program. These new test cases

hould produce a new program state, in terms of variable values,

hat can be propagated to the test output. An existing test case is

nalysed to check if it can reach the change in an evolved program.

he test is also checked to see if it produces a different program

tate at some point and if the test output is affected by the change.

f some of these premises do not hold then the path condition of

he test is used to generate a new path condition to achieve the

hree goals. Further path exploration is guided and narrowed us-

ng a notion of the probability for the path condition to reach the

hange. This probability is computed using the distance between

tatements over the control dependency graph. Practical results

f test cases generation in three small Java programs (from 231

oC to 375 LoC) are exhibited. The method is compared to eXpress
nd JPF-SE two state of the art tools and is shown to reduce the

umber of symbolic executions by 45.6% and 60.1% respectively. As

rawback, the technique is not able to deal with changes on more

han one statement.

Mirzaaghaei et al. (2012, 2014) introduce an approach that

everages information from existing test cases and automatically

dapts test suites to code changes. Their technique can repair, or

volve test cases in front of signature changes (i.e., changing the

eclaration of method parameters or return values), the addition

f new classes to the hierarchy, addition of new interface imple-

entations, new method overloads and new method overrides.

heir effective im plementation TestCareAssitance (TCA) first diffs

he original program with its modified version to detect changes

nd searches in the test code similar patterns that could be used

o complete the missing information or change the existing code.

hey evaluate TCA for signature changes in 9 Java projects of the

pache foundation and repair in average 45% of modifications that

ead to compilation errors. The authors further use five additional

pen source projects to evaluate their approach when adding new

lasses to the hierarchy. TCA is able to generate test cases for 60%

f the newly added classes. This proposal could also fall in the cat-

gory of test repairing techniques. Section 6 will explore alterna-

ives in a similar direction that produce test changes instead of

reating completely new test cases.

In a different direction, Böhme et al. (2013) explain that

hanges in a program should not be treated in isolation. Their

roposal focuses on potential interaction errors between software

hanges. They propose to build a graph containing the relation-

hip between changed statements in two different versions of a

rogram and potential interaction locations according to data and

ontrol dependency. This graph is used to guide a symbolic execu-

ion method and find path conditions for exercising changes and

heir potential interactions and use a Satisfiability Modulo Solver

o generate a concrete test input. They provide practical results on

ix versions the GNU Coreutils toolset that introduce 11 known er-

ors. They were able to find 5 unknown errors in addition to pre-

iously reported issues.

Marinescu and Cadar (2013) present a system, called Katch , that

ims at covering the code included in a patch. Instead of dealing

ith one change to one statement, as most of the previous works,

his approach first determines the differences of a program and its

revious version after a commit, in the form of a code patch. Lines

ncluded in the patch are filtered by removing those that con-

ain non-executable code (i.e., comments, declarations). If several

ines belong to the same basic program block, only one of them

s kept as they will all be executed together. From the filtered set

f lines, those not covered by the existing test suite are consid-

red as targets. The approach then selects the closest input to each

arget from existing tests using the static minimum distance over

he control flow graph. Edges on this graph that render the target

nreachable are removed by inspecting the data flow and gather-

ng preconditions to the execution of basic blocks. To generate new

est inputs, they combine symbolic execution with heuristics that

elect branches by their distance to the target, regenerate a path

y going back to the point where the condition became unfeasi-

le or changing the definition of variables involved in the condi-

ion. The proposal is evaluated using the GNU findutils, diffutils and

inutils which are distributed with most Unix-based distributions.

hey examine patches from a period of 3 years. In average, they

utomatically increase coverage from 35% to 52% with respect to

he manually written test suite.

A posterior work of the same group (Palikareva et al., 2016) also

argets patches of code, focusing on finding test inputs that execute

ifferent behaviour between two program versions. They consider

wo versions of the same program, or the old version with the

atch of changed code, and a test suite. The code should be an-

8 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

5

s

e

D

i

m

d

t

o

h

t

Z

t

t

5

d

c

m

b

s

t

t

1

o

t

d

d

s

e

i

b

t

t

c

s

a

b

l

f

t

t

n

l

i

c

t

t

w

o

g

t

s

b

t

notated in places where changes occur in order to unify both ver-

sions of the program for the next steps. Then they select from the

test suite those test cases that cover the changed code. If there is

no such test case, it can be generated using Katch . The unified pro-

gram is used in a two stage dynamic symbolic execution guided by

the selected test cases: look for branch points where two semanti-

cally different conditions are evaluated in both program versions;

bounded symbolic execution for each point previously detected. At

those points all possible alternatives in which program versions ex-

ecute the same or different branch blocks are considered and used

to make the constraint solver generate new test inputs for diver-

gent scenarios. The program versions are then normally executed

with the generated inputs and the result is validated to check the

presence of a bug or an intended difference. In their experiments

this validation is mostly automatic but in general should be per-

formed by developers. The evaluation of the proposed method is

based on the CoREBench (Böhme and Roychoudhury, 2014) data set

that contains documented bugs and patches of the GNU Coreutils

program suite. The authors discuss successful and unsuccessful re-

sults but in general the tool is able to produce test inputs that re-

veal changes in program behaviour.

4.5. Summary

Main achievements: AMP change techniques often rely on sym-

bolic and concolic execution. Both have been successfully com-

bined with other techniques in order to generate test cases that

reach changed or evolved parts of a program (Xu et al., 2011; 2015;

Marinescu and Cadar, 2013). Those hybrid approaches produce new

test inputs that increase the coverage of the new program ver-

sion. Data and control dependency has been used in several ap-

proaches to guide symbolic execution and reduce its computational

cost (Böhme et al., 2013; Marinescu and Cadar, 2013; Wang et al.,

2014). The notion of distance from statements to observed changes

has been also used for this matter (Marinescu and Cadar, 2013;

Apiwattanapong et al., 2006).

Main challenges: despite the progress made in the area, a num-

ber of challenges remain open. The main challenge relates to the

size of the changes considered for test amplification: many of the

works in this area consider a single change in a single statement

(Apiwattanapong et al., 2006; Qi et al., 2010; Wang et al., 2014).

While this is relevant and important to establish the foundations

for AMP change , this cannot fit current development practices where

a change, usually a commit, modifies the code at multiple places

at once. A few papers have started investigating multi-statement

changes for test suite amplification (Santelices et al., 2008; Mari-

nescu and Cadar, 2013; Palikareva et al., 2016). Now, AMP change

techniques should fit into the revision process and be able to con-

sider a commit as the unit of change.

Another challenge relates to scalability. The use of symbolic

and concolic execution has proven to be effective in test input

generation targeting program changes. Yet, these two techniques

are computationally expensive (Xu and Rothermel, 2009; Xu et al.,

2011; 2015; Apiwattanapong et al., 2006; Santelices et al., 2008;

Palikareva et al., 2016). Future works shall consider more effi-

cient ways for exploring input requirements that exercise pro-

gram changes or new uncovered parts. Santelices and Harrold

(2011) propose to get rid of symbolic execution by observing the

program behaviour during test execution. However, they do not

generate test cases.

Practical experimentation and evaluation remains confined to a

very small number of programs, in most cases less than five study

subjects, and even small programs in terms of effective lines of

code. A large scale study on the subject is still missing.
. Amplification by modifying test execution

In order to explore new program states and behaviour, it is pos-

ible to interfere with the execution at runtime so as to modify the

xecution of the program under test.

efinition. Test amplification technique AMP exec consists of mod-

fying the test execution process or the test harness in order to

aximize the knowledge gained from the testing process.

One of the drawbacks of automated tests is the hidden depen-

encies that may exist between different unit test cases. In fact,

he order in which the test cases are executed may affect the state

f the program under test. A good and strong test suite should

ave no implicit dependencies between test cases.

The majority of test frameworks are deterministic, i.e., between

wo runs the order of execution of test is the same (Palomba and

aidman, 2017, 2019).

An AMP exec technique would randomize the order in which the

ests are executed to reveal hidden dependencies between unit

ests and potential bugs derived from this situation.

.1. Amplification by modifying test execution

Zhang and Elbaum (2012, 2014) describe a technique to vali-

ate exception handling in programs making use of APIs to ac-

ess external resources such as databases, GPS or bluetooth. The

ethod mocks the accessed resources and amplifies the test suite

y triggering unexpected exceptions in sequences of API calls. Is-

ues are detected during testing by observing abnormal termina-

ions of the program or abnormal execution times. They evaluated

heir approach on 5 Android artifacts. Their sizes vary from 6k to

8k line of codes, with 39–117 unit tests in the test suite. The size

f the benchmark seems quite reasonable. The approach is shown

o be cost-effective and able to detect real-life problems in 5 An-

roid applications.

Cornu et al. (2015) work in the same line of exception han-

ling evaluation. They propose a method to complement a test

uite in order to check the behaviour of a program in the pres-

nce of unanticipated scenarios. The original code of the program

s modified with the insertion of throw instructions inside try
locks. The test suite is considered as an executable specification of

he program and therefore used as an oracle in order to compare

he program execution before and after the modification. Under

ertain conditions, issues can be automatically repaired by catch-

tretching. The authors used nine Java open-source projects to cre-

te a benchmark and evaluate their approach. This benchmark is

ig enough to conclude the generalization of the results. The se-

ected artifacts are well-known, modern and large: Apache arti-

acts, joda-time and so on. Their empirical evaluation shows that

he short-circuit testing approach of exception contracts increases

he knowledge of software.

Leung et al. (2012) are interested in finding data races and

on-determinism in GPU code written in the CUDA programming

anguage. In their context, test amplification consists of generaliz-

ng the information learned from a single dynamic run. The main

ontribution is to formalize the relationship between the trace of

he dynamic run and statically collected information flow. The au-

hors leverage this formal model to define the conditions under

hich they can generalize the absence of race conditions for a set

f input values, starting from a run of the program with a sin-

le input. They evaluated their approach using 28 benchmarks in

he NVIDIA CUDA SDK Version 3.0. They removed trivial ones and

ome of them that they cannot handle. The set of benchmarks is

ig enough and contains a diversity of applications to be convinced

hat the approach can be generalized.

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 9

P

b

c

u

u

o

i

l

e

l

m

h

o

i

a

c

g

a

s

s

f

m

A

f

s

p

t

5

p

p

c

t

p

t

w

a

t

p

i

g

w

b

e

6

o

i

b

m

t

c

D

i

s

t

f

c

6

t

L

s

r

f

t

f

c

a

h

t

w

v

t

o

s

g

i

6

a
Fang et al. (2015) develop a performance testing system named

erfblower , which is able to detect and diagnose memory issues

y observing the execution of a set of test cases. The system in-

ludes a domain-specific language designed to describe memory

sage symptoms. Based on the provided descriptions, the tool eval-

ates the presence of memory problems. The approach is evaluated

n 13 Java real-life projects. The tool is able to find real memory

ssues and reduce the number of false positives reported by simi-

ar tools. They used the small workload of the DaCapo (Blackburn

t al., 2006) benchmark. They argue that developers will not use

arge workloads and it is much more difficult to reveal perfor-

ance bugs under small workloads. These two claims are legit,

owever the authors do not provide any evidence of the scalability

f the approach.

Zhang et al. (2016) devise a methodology to improve the capac-

ty of the test suite to detect regression faults. Their approach is

ble to exercise uncovered branches without generating new test

ases. They first look for identical code fragments between a pro-

ram and its previous version. Then, new variants of both versions

re generated by negating branch conditions that force the test

uite to execute originally uncovered parts. The behaviour of ver-

ion variants are compared through test outputs. An observed dif-

erence in the output could reveal an undetected fault. An imple-

entation of the approach is compared with EvoSuite (Fraser and

rcuri, 2011) in 10 real-life Java projects. In the experiments known

aults are seeded by mutating the original program code. The re-

ults show that EvoSuite obtains better branch coverage, while the

roposed method is able to detect more faults. The implementa-

ion is available in the form of a tool named Ison .

.2. Summary

Main achievements: AMP exec proposals provide cost-effective ap-

roaches to observe and modify a program execution to detect

ossible faults. This is done by instrumenting the original program

ode to place observations at certain points or mocking resources

o monitor API calls and explore unexpected scenarios. It adds no

rohibitive overheads to regular test execution and provides means

o gather useful runtime information. Techniques in this section

ere used to analyse real-life projects of different sizes and they

re shown to match other tools that pursue the same goal and ob-

ain better results in some cases.

Main challenges: as shown by the relatively small number of pa-

ers discussed in this section, techniques for test execution mod-

fication have not been widely explored. The main challenge is to

et this concept known so as to enlarge the research community

orking on this topic. The concerned works are: Zhang and El-

aum (2012) , Zhang and Elbaum (2014) , Cornu et al. (2015) , Leung

t al. (2012) , Fang et al. (2015) and Zhang et al. (2016) .

. Amplification by modifying existing test code

In testing, it is up to the developer to design integration (large)

r unit (small) tests. The main testing infrastructure such as JUnit

n Java does not impose anything on the tests, such as the num-

er of statements in a test, the cohesion of test assertions or the

eaningfulness of test methods grouped in a test class. In litera-

ure, there is work on modifying existing tests with respect to a

ertain engineering goal.

efinition. Test amplification technique AMP mod refers to modify-

ng the body of existing test methods. The goal here is to make the

cope of each test cases more precise or to improve the ability of

est cases at assessing correctness (with better oracles). Differently

rom AMP add , it is not about adding new test methods or new tests
lasses. j
.1. Example

We now use an example to give an illustration of work in

his category. Let us consider a simple Java class named Stack in

isting 7 . The example is a simplified Java implementation of a

tack that stores unique elements. In the implementation, the ar-

ay elems contains the elements of the stack, and the push and pop

unctions represent the two standard push and pop stack opera-

ions. The functions isFull and isEmpty check whether the stack is

ull and empty respectively.

Listing 7. Example of a toy class.

Given the Java class, existing automatic test-generation tools

an generate a test suite for it. For instance, Listing 8 exemplifies

 possible test generated by automatic test-generation tools. Note

owever there are no assertions generated in the test suite. To de-

ect problems during test execution, it typically relies on observing

hether uncaught exceptions are thrown or whether the execution

iolates some predefined contracts.

Listing 8. Initial test suite for the toy class.

A test amplification technique AMP mod may be able to generate

he amplified test suite as shown in Listing 9 . Compared with the

riginal test suite, the augmented test suite has comprehensive as-

ertions. These assertions reflect the behaviour of the current pro-

ram version under test and can be used to detect regression faults

ntroduced in future program versions.

Listing 9. Augmented test suite for the toy class.

.2. Input space exploration

Dallmeier et al. (2010) automatically amplify test suites by

dding and removing method calls in JUnit test cases. Their ob-

ective is to produce test cases that cover a wider set of executions

10 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

5

h

d

h

l

s

c

e

s

s

t

a

d

i

p

f

a

e

m

c

A

e

t

t

p

r

r

a

P

t

c

w

s

t

p

f

a

u

r

p

d

f

6

i

t

c

t

o

t

o

t

s

s

r

i

t

a

T

o

p
than the original test suite in order to improve the quality of mod-

els reverse engineered from the code. They evaluate TAUTOKO on

7 Java classes and show that it is able to produce richer typestates

(a typestate is a finite state automaton which encodes legal usages

of a class under test).

Hamlet and Voas (1993) introduce the notion of “reliability am-

plification” to establish a better statistical confidence that a given

software is correct. Program reliability is measured as the mean

time to failure of the system under test. The core contribution re-

lates reliability to testability assessment, that is, a measure of the

probability that a fault in the program will propagate to an ob-

servable state. The authors discuss how different systematic test

planning strategies, e.g., partition-based test selection (Ostrand and

Balcer, 1988), can complement profile-based test cases, in order

to obtain a better measurement of testability and therefore better

bounds to estimate the reliability of the program being tested.

6.3. Oracle improvement

Xie (2006) amplifies object-oriented unit tests with a the tech-

nique that consists of adding assertions on the state of the receiver

object, the returned value by the tested method (if it is a non-

void return value method) and the state of parameters (if they are

not primitive values). Those values depend on the behaviour of the

given method, which in turn depends on the state of the receiver

and of arguments at the beginning of the invocation. The approach,

named Orstra , consists of instrumenting the code and running the

test suite to collect state of objects. Then, assertions are gener-

ated, which call observer methods (methods with a non-void re-

turn type, e.g., toString ()). To evaluate Orstra , the author uses 11

Java classes from a variety of sources. These classes are different

in the number of methods and lines of code, and the author also

uses two different third-party test generation tools to generate the

initial test suite to be augmented. The results show that Orstra can

effectively im prove the fault-detection capability of the original au-

tomatically generated test suite.

Carzaniga et al. (2014) reason about generic oracles and propose

a generic procedure to assert the behaviour of a system under test.

To do so, they exploit the redundancy of software. Redundancy of

software happens when the system can perform the same action

through different executions, either with different code or with

the same code but with different input parameters or in different

contexts. They devise the notion of “cross-checking oracles”, which

compare the outcome of the execution of an original method to

the outcome of an equivalent method. Such oracle uses a generic

equivalence check on the returned values and the state of the tar-

get object. If there is an inconsistency, the oracle reports it, oth-

erwise, the checking continue. These oracles are added to an ex-

isting test suite with aspect-oriented programming. For the evalu-

ation, they use 18 classes from three non-trivial open-source Java

libraries, including Guava, Joda-Time, and GraphStream. The sub-

ject classes are selected based on whether a set of equivalences

have already been established or could be identified. For each sub-

ject class, two kinds of test suites have been used, including hand-

written test suites and automatically generated test suites by Ran-

doop. The experimental results show that the approach can slightly

increase (+ 6% overall) the mutation score of a manual test suite.

Joshi et al. (2007) try to amplify the effectiveness of testing

by executing both concretely and symbolically the tests. Along

this double execution, for every conditional statement executed by

the concrete execution, the symbolic execution generates symbolic

constraints over the input variables. At the execution of an asser-

tion, the symbolic execution engine invokes a theorem prover to

check that the assertion is verified, according to the constraints

encountered. If the assertion is not guaranteed, a violation of the

behaviour is reported. To evaluate their approach, the authors use
 small and medium sized programs from SIR, including gzip, bc,

oc, space, and printtokens. The results show that they are able to

etect buffer overflows but it needs optimization because of the

uge overhead that the instrumentation add.

Mouelhi et al. (2009) enhance tests oracles for access control

ogic, also called Policy Decision Point (PDP). This is done in 3

teps: select test cases that execute PDPs, map each of the test

ases to specific PDPs and oracle enhancement. They add to the

xisting oracle checks that the access is granted or denied with re-

pect to the rule and checks that the PDP is correctly called. To do

o, they force the Policy Enforcement Point, i.e., the point where

he policy decision is setting in the system functionality, to raise

n exception when the access is denied and they compare the pro-

uced logs with expected log. To evaluate, they conduct case stud-

es on three Java applications developed by students during group

rojects. For these three subjects, the number of classes ranges

rom 62 to 122, the number of methods ranges from 335 to 797,

nd the number of lines of code ranges from 3204 to 10703. The

xperimental results show that compared to manual testing, auto-

ated oracle generation saves a lot of time (from 32 h to 5 min).

Daniel et al. (2009) devise ReAssert to automatically repair test

ases, i.e., to modify test cases that fail due to a change. Re-

ssert follows five steps: record the values of failing assertions, re-

xecutes the test and catch the failure exception, i.e., the excep-

ion thrown by the failing assertion. From the exception, it extracts

he stack trace to find the code to repair. Then, it selects the re-

air strategy depending on the structure of the code and on the

ecorded value. Finally, ReAssert re-compiles the code changes and

epeats all steps until no more assertions fail. The tool was evalu-

ted on six real and well known open source Java projects, namely

MD, JFreeChart, Lucene, Checkstyle, JDepend and XStream . The au-

hors created a collection of manually written and generated tests

ases by targeting previous versions of these programs. ReAssert

as able to produce fixes from 25% to 100% of failing tests for all

tudy subjects. An usability study was also carried out with two

eams of 18 researchers working on three research prototypes. The

articipants were asked to accomplish a number of tasks to write

ailing tests for new requirements and code changes and were also

sked to manually fix the failures. ReAssert could repair 98% of fail-

res created by the participants’ code changes. In 90% of cases the

epairs suggested by the tool matched the patches created by the

articipants. The authors explain that the success rate of the tool

epends more on the structure of the code of the test than the test

ailure itself.

.4. Purification

Xuan et al. (2016) propose a technique to split existing tests

nto smaller parts in order to “purify” test cases. Here, purifica-

ion can be seen as a form of test refactoring. A pure test exe-

utes one, and only one, branch of an if/then/else statement. On

he contrary, an impure test executes both branches then and else

f the same if/then/else statement in code. The authors evaluate

heir technique on 5 widely used open-source projects from code

rganizations such as Apache. The experimental results show that

he technique increases the purity of test cases by up to 66% for if

tatements and 11% for try statement. In addition, the result also

hows that the technique improves the effectiveness of program

epair of Nopol (Xuan et al., 2017).

Xuan and Monperrus (2014) aim at improving the fault local-

zation capabilities by purifying test cases. By purifying, they mean

o modify existing failing test cases into single assertion test cases

nd remove all statements that are not related to the assertion.

hey evaluated the test purification on 6 open-source java project,

ver 1800 bugs generated by typical mutation tool PIT and com-

are their results with 6 mature fault localization techniques. They

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 11

Table 1

Details on the snowballing review. The first col-

umn shows the iteration, the second column con-

tains the number of forward reference retained

at a given iteration, the third column shows the

number of backward reference retained at a given

iteration, and the fourth column contains the to-

tal number of reference retained at a given itera-

tion. The first row corresponds to the starting set

of reference, i.e., the seed references.

Step # F-ref # B-ref Total

Seed 0 0 4

It 1 4 1 5

It 2 0 3 3

It 3 16 2 18

It 4 6 2 8

It 5 6 3 9

It 6 2 0 2

Total 34 11 49

s

t

6

s

v

i

l

C

D

r

r

t

c

2

J

e

a

p

T

t

u

c

7

r

C

f

a

t

e

p

l

7

s

s

t

d

3

t

s

w

n

t

v

fi

t

r

c

fi

t

t

r

t

a

i

t

a

t

c

c

t

s

t

c

a

t

2

y

f

h

t

g

a

c

s

t

l

F

e

7

y

o

y

a

h

c

fi

f

h

7

a
how that they improve the fault localization effectiveness on 18

o 43% of all the faults, as measured per improved wasted effort.

.5. Summary

Main achievements: what is remarkable in AMP mod is the diver-

ity of engineering goals considered. Input space exploration pro-

ides better state coverage (Dallmeier et al., 2010) and reliabil-

ty assessment (Hamlet and Voas, 1993), oracle improvement al-

ows to increase the efficiency and effectiveness of tests (Xie, 2006;

arzaniga et al., 2014; Joshi et al., 2007; Mouelhi et al., 2009;

aniel et al., 2009), test purification of test cases facilitate program

epair (Xuan et al., 2016) and fault localization (Xuan and Monper-

us, 2014).

Main challenges: although impressive results have been ob-

ained, no experiments have been carried out to study the ac-

eptability and maintainability of amplified tests (Dallmeier et al.,

010; Xie, 2006; Hamlet and Voas, 1993; Carzaniga et al., 2014;

oshi et al., 2007; Mouelhi et al., 2009; Daniel et al., 2009; Xuan

t al., 2016; Xuan and Monperrus, 2014). In this context, accept-

bility means that human developers are ready to commit the am-

lified tests to the version control system (e.g., the Git repository).

he maintainability challenge is whether the machine-generated

ests can be later understood and modified by developers. To our

nderstanding, these are the main challenges of test code modifi-

ation.

. Analysis

Table 1 shows a summary of the results of our snowballing

eview. Every row corresponds to one iteration in the process.

olumn # F-ref shows the number of papers added by following

orward references. Column # B-ref shows the number of papers

dded by following backward references. The last column shows

he total number of papers added for each iteration.

We now provide a recapitulation of all the dimensions consid-

red in our study. This section provides an overall view on these

apers, so that the reader can have a quick summary of the main

ines of research that we analysed.

.1. Aggregated view

Table 2 shows all the articles considered in this snowballing

urvey per our inclusion criteria. The first column of the table

hows the citation information, as given in the “References” sec-

ion. The second column shows the term that the authors use to

esignate the form of amplification that they investigate. Columns
–18 are divided in three groups. The first group corresponds to

he section in which we have included the paper in our survey. The

econd group corresponds to the different engineering goals that

e have identified. The third group captures the different tech-

iques used for amplification in each work. The final columns in

he table contain the target programming language, the year and

enue in which the paper has been published, the last name of the

rst author and the iteration of the snowballing process in which

he paper was included in the study.

Each row in the table corresponds to a specific contribution.The

ows are sorted first by the section in which the papers are in-

luded in our study, then by year and then by the last name of the

rst author. In total, the table contains 49 rows.

One can see that “augmentation” (15 contributions), “genera-

ion” (9 contributions) and “amplification” (7 contributions) are

he terms that appear most frequently to describe the approaches

eported here. Other similar terms such as “enrichment”, “adap-

ation” and “regeneration” are used less frequently. Most propos-

ls (19 contributions) focus on adding new test cases to the ex-

sting test suite. Test amplification in the context of a change or

he modification of existing test cases have received comparable

ttention (16 and 14 contributions respectively). Some techniques

hat modify existing test cases also target the addition of new test

ases (3 contributions) and amplify the test suite with respect to a

hange (3 contributions). Amplification by runtime modification is

he least explored area.

Most works aim at improving the code coverage of the test

uite (25 contributions). After that, the main goals are the detec-

ion of new faults and the improvement of observability (13 and 12

ontributions respectively). Fault localization, repair improvement

nd crash reproduction receive less attention (4, 4 and 1 contribu-

ions respectively).

47 papers included in the table have been published between

003 and 2017. One paper was published back in 1993. Between

ears 2009 and 2016 the number of papers has been stable (mostly

our or five per year). In 2014 two extensions to previous works

ave been published in addition to five original works, making it

he year with most publications on the subject.

Fig. 1 visualizes the snowballing process. Every node of the

raph corresponds to a review paper. Seed papers are represented

s filled rectangles to distinguish them from the rest. All nodes in-

orporated in the same iteration are clustered together. The edges

hown in the graph correspond to the references we followed for

he paper inclusion. Backward references are marked in green and

abelled “B”. For these edges, the origin node cites the target node.

orward references are marked in blue and labelled “F”. For these

dges, the origin node is cited by the target node.

.2. Technical aspects

Most works include some form of test or application code anal-

sis (26 and 21 contributions respectively). Notably, the majority

f works that add new test cases also include a test code anal-

sis phase. All papers that amplify the test suite with respect to

 change also include an application analysis stage. Search-based

euristics and symbolic execution are used to a large extent (12

ontributions each), while concolic execution and execution modi-

cation are the least used techniques (5 contributions each).

Java programs are the most targeted systems (30 contributions),

ollowed by C programs (12 contributions). JavaScript applications

ave received very little attention in the area (only one row).

.3. Tools for test amplification

Most test case amplification papers discussed in this paper

re experimental in nature, and are based on a prototype tool.

1
2

B
.
 D

a
n

g
lo

t,
 O

.
 V

era
-P

erez
 a

n
d
 Z

.
 Y

u
 et

 a
l.
 /
 T

h
e
 Jo

u
rn

a
l
 o

f
 Sy

stem
s
 a

n
d
 So

ftw
a

re
 15

7
 (2

0
19

)
 110

3
9

8

Table 2

List of papers included in this snowballing survey. The columns correspond to the article categorization, the engineering goals, techniques employed, the programming language of the systems under test and the publication

details. The last column shows the iteration the paper was included in our study.

Reference Term used

Add

new

tests

With

respect to

change/

diff

Runtime

modification

Modifies

existing

tests

Improve

coverage

Reproduce

crashes

Detect

new

faults

Localize

faults

Improve

repair

Improve

observability

Test code

analysis

Application

code

analysis

Execution

modification

Concolic

execution

Symbolic

execution

Search

based

heuristics

Target

language Venue

Publication

year

Last name of

first author Iteration

(Harder et al., 2003) Augmentation • • • C ICSE 2003 Harder 2

(Baudry et al., 2002) Optimization • • • • .NET ASE 2002 Baudry 2

(Baudry et al., 2005b) Optimization • • • • Eiffel, C# STVR 2005 Baudry 3

(Baudry et al., 2005a) Optimization • • • • C# IEEE

Software

2005 Baudry 3

(Pacheco and Ernst,

2005)

Generation • • • Java ECOOP 2005 Pacheco 1

(Baudry et al., 2006) Optimization • • • Java ICSE 2006 Baudry 4

(Tillmann and Schulte,

2006)

Generation • • • • • Spec# IEEE

Software

2006 Tillmann 5

(Marri et al., 2010) Generalization • • • • • C# FASE 2011 Thummalapenta 5

(Fraser and Zeller, 2011) Generation • • • • Java ISSTA 2011 Fraser 6

(Rößler et al., 2012) Generation • • • Java ISSTA 2012 Ropler 5

(Yoo and Harman, 2012b) Regeneration • • • • Java STVR 2012 Yoo 4

(Pezze et al., 2013) Generation • • • Java ICST 2013 Pezze 5

(Yu et al., 2013) Augmentation • • • Java IST 2013 Yu 5

(Bloem et al., 2014) Augmentation • • • • C QSIC 2014 Bloem 3

(Milani Fard et al., 2014) Generation • • • JavaScript ASE 2014 Fard 3

(Xuan et al., 2015) Mutation • • • Java ESEC/FSE 2015 Xuan 3

(Rojas et al., 2016) Generation • • • • Java STVR 2016 Rojas 5

(Yoshida et al., 2016) Augmentation • • • • • C, C ++ ISSTA 2016 Yoshida 3

(Patrick and Jia, 2017) Generation • • • C IST 2017 Patrick 4

(Apiwattanapong et al.,

2006)

Augmentation • • • • • Java TAIC

PART

2006 Apiwattanapong 3

(Santelices et al., 2008) Augmentation • • • • • Java ASE 2008 Santelices 3

(Daniel et al., 2009) Repairing

refactoring

• • • • Java ASE 2009 Daniel 4

(Xu and Rothermel,

2009)

Augmentation • • • Java APSEC 2009 Xu 3

(Qi et al., 2010) • • • • C ASE 2010 Qi 4

(Xu et al., 2010a) Augmentation • • • • Java GECCO 2010 Xu 3

(Xu et al., 2010b) Augmentation • • • • • C FSE 2010 Xu 2

(Santelices and Harrold,

2011)

Augmentation • • • • Java ICST 2011 Santelices 3

(Xu et al., 2011) Augmentation • • • • • C ISSRE 2011 Xu 3

(Mirzaaghaei et al., 2012) Repairing

adaptation

• • • • • • Java ICST 2012 Mirzaaghaei 3

(Mirzaaghaei et al., 2014) Repairing

adaptation

• • • • • • Java SVTR 2014 Mirzaaghaei 3

(Böhme et al., 2013) • • • • • • C ESEC/FSE 2013 Böhme 3

(Marinescu and Cadar,

2013)

• • • • • C ESEC/FSE 2013 Marinescu 5

(Wang et al., 2014) Augmentation • • • • • Java CSTVA 2014 Wang 3

(Xu et al., 2015) Augmentation • • • • • C STVR 2015 Xu 3

(Palikareva et al., 2016) • • • • • C ICSE 2016 Palikareva 4

(Zhang and Elbaum,

2012)

Amplification • • • • Java ICSE 2012 Zhang S

(Zhang and Elbaum,

2014)

Amplification • • • • Java TOSEM 2014 Zhang

(Leung et al., 2012) Amplification • • • CUDA PLDI 2012 Leung S

(Cornu et al., 2015) Amplification • • • • • Java IST 2015 Cornu 1

(Fang et al., 2015) Amplification • • • Java ECOOP 2015 Fang 1

(Zhang et al., 2016) Augmentation • • • • • • Java FSE 2016 Zhang 3

(Hamlet and Voas, 1993) Amplification • • ISSTA 1993 Hamlet S

(Xie, 2006) Augmentation • • • Java ECOOP 2006 Xie 5

(Joshi et al., 2007) Amplification • • • C ESEC/FSE 2007 Joshi S

(Mouelhi et al., 2009) • • • Java ICST 2009 Mouelhi 4

(Dallmeier et al., 2010) Enrichment • • • Java ISSTA 2010 Dallmeier 4

(Carzaniga et al., 2014) cross-checking • • • Java ICSE 2014 Carzaniga 6

(Xuan and Monperrus,

2014)

Purification • • • Java FSE 2014 Xuan 5

(Xuan et al., 2016) Purification

refactoring

• • • Java IST 2016 Xuan 1

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 13

Fig. 1. Visualization of the snowballing process. Each node corresponds to a paper included in the study. Seed papers are differentiated form the rest. Papers added in the

same iteration are clustered together. F blue edges represent forward references. B represent backward references. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

F

p

i

o

i

a

w

i

t

3

e

t
or the field to mature, it is good if researchers can reproduce

ast results, and compare their new techniques against exist-

ng ones. To this extent, we feel that open-science in the form

f publicly-available and usable research prototypes is of utmost

mportance.

With this in mind, we have surveyed not only the articles, but

lso the mentioned tools, if any. The protocol was as follows. First,
e looked for a URL in the paper, pointing to a web page contain-

ng the code of the tool or experimental data. For each URL, one of

he authors opened it in a browser between March 1st and March

1st 2018, to check that the page still exists and indeed contains

xperimental material.

Table 3 contains all valid URLs found. Overall, we have iden-

ified 17 valid open-science URLs. It may be considered as a low

14 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

Table 3

List of surveyed papers in which we have found a URL related to a tool.

Reference URL Observations

Do et al., 2005 http://sir.unl.edu This is a software repository. It is not a tool

for amplification but it is a resource that

could be used for amplification.

(Baudry et al., 2006) http://www.irisa.fr/triskell/results/Diagnosis/index.htm The URL points only to results.

(Böhme and Roychoudhury, 2014) http://www.comp.nus.edu.sg/ ∼release/corebench/ The website also contains empirical results.

(Carzaniga et al., 2014) http://www.inf.usi.ch/phd/goffi/crosscheckingoracles/

(Dallmeier et al., 2010) https://www.st.cs.uni-saarland.de/models/tautoko/index.html

(Daniel et al., 2009) http://mir.cs.illinois.edu/reassert/

(Fang et al., 2015) https://bitbucket.org/fanglu/perfblower-public There is no explicit url in the paper but a

sentence saying that the tool is available in

Bitbucket. With this information it was easy

to find the URL.

(Fraser and Arcuri, 2011) http://www.evosuite.org/ Additional materials included.

(Marri et al., 2010) https://sites.google.com/site/asergrp/projects/putstudy The website also contains empirical results.

(Milani Fard et al., 2014) https://github.com/saltlab/Testilizer

(Pacheco and Ernst, 2005) http://groups.csail.mit.edu/pag/eclat/ The website provides basic usage example.

(Palikareva et al., 2016) https://srg.doc.ic.ac.uk/projects/shadow/ The website also contains empirical results.

(Pezze et al., 2013) http://puremvc.org/ The paper has been turned into a company.

The provided url is the url of this company.

(Rößler et al., 2012) https://www.st.cs.uni-saarland.de/bugex/ The url lives, but there is no way to

download and try the tools.

(Xuan et al., 2016) https://github.com/Spirals- Team/banana- refactoring

(Xuan et al., 2017) https://github.com/SpoonLabs/nopol Still active.

(Zhang et al., 2016) https://github.com/sei-pku/Ison

t

s

9

s

e

t

f

t

s

r

a

t

c

s

t

s

n

t

A

S

R

A

B

ratio, and we thus call for more open-science and reproducible re-

search in the field of test amplification.

7.4. Open questions for future research

Most of the work discussed targets the unit test level, i.e., small

tests that verify singles behaviours. Yet we do not see conceptual

barriers to using them in acceptance tests of GUI tests such as Se-

lenium.

8. Threats to validity

Since conducting a survey is a largely manual task, most threats

to validity relate to the possibility of researcher bias, and thus to

the concern that other researchers might come to different results

and conclusions. One general remedy that we adopted to counter

this, is to work in a structure way, i.e., by starting from a small set

of seed papers, use the citation graph to discover new papers.

In the following, we describe validity threats and discuss the

manners in which we attempted to minimize their risk.

Article selection. Test amplification is a relatively new and narrow

subject and we found that, as yet, there is no consensus on ter-

minology. Therefore, we used a snowballing survey, which is less

likely to be affected by the use of diverse terminologies. This ap-

proach is also immune for the issues of keyword based searches,

which as has been observed by Brereton et al., can be problematic

(Brereton et al., 2007b).

Completeness. We have addressed the threat of selection bias by

utilizing the aforementioned snowballing approach. However, some

related work could be missing either because they use a very orig-

inal name for referring to test amplification or because it has not

yet been cited by any of the seed papers that we used to start the

snowballing effort.

Article categorisation. We have organised the papers in our survey

in four categories, through an incremental analysis of the tech-

niques and goals of each paper. The construction of the categori-

sation is subjective and may be difficult to reproduce. To mini-

mize this risk, two authors performed the categorisation and had
o reach consensus, both at the level of creating categories and as-

igning papers to categories.

. Conclusion

We have studied the literature related to test amplification. This

urvey is the first that draws a comprehensive picture of the differ-

nt engineering goals proposed in the literature for test amplifica-

ion. In particular, we note that the goal of test amplification goes

ar beyond maximizing coverage only. We also give an overview of

he different techniques used, which span a wide spectrum, from

ymbolic execution to random search and execution modification.

We believe that this study will help future Ph.D. students and

esearchers entering this new field to understand more quickly

nd more deeply the intuitions, concepts and techniques used for

est amplification. Finally, we note the lack of work that tries to

ompare “traditional” test generation (generating test cases from

cratch), for which there is a myriad of papers, and test amplifica-

ion (generating tests from existing tests). We think that sound and

ystematic experimental comparison of different test creation tech-

iques would be a milestone for the nascent and emerging field of

est amplification.

cknowledgement

This work has been partially supported by the EU Project

TAMP ICT-16-10 No. 731529, https://www.stamp-project.eu/ .

eferences

nand, S. , Burke, E.K. , Chen, T.Y. , Clark, J. , Cohen, M.B. , Grieskamp, W. , Harman, M. ,

Harrold, M.J. , Mcminn, P. , et al. , 2013. An orchestrated survey of methodologies
for automated software test case generation. J. Syst. Softw. 86 (8), 1978–2001 .

Apiwattanapong, T. , Santelices, R. , Chittimalli, P.K. , Orso, A. , Harrold, M.J. , 2006. Ma-
trix: maintenance-oriented testing requirements identifier and examiner. In:

Proceedings of the Testing: Academic and Industrial Conference-Practice And
Research Techniques, TAIC PART. IEEE, pp. 137–146 .

audry, B. , Fleurey, F. , Jézéquel, J.-M. , Le Traon, Y. , 2002. Automatic test cases op-

timization using a bacteriological adaptation model: application to.net compo-
nents. In: Proceedings of the 17th IEEE International Conference on Automated

Software Engineering. IEEE Computer Society, Washington, DC, USA, p. 253 .
Baudry, B. , Fleurey, F. , Jézéquel, J.-M. , Le Traon, Y. , 2005a. Automatic test cases opti-

mization: a bacteriologic algorithm. IEEE Softw. 22 (2), 76–82 .

http://sir.unl.edu
http://www.irisa.fr/triskell/results/Diagnosis/index.htm
http://www.comp.nus.edu.sg/~release/corebench/
http://www.inf.usi.ch/phd/goffi/crosscheckingoracles/
https://www.st.cs.uni-saarland.de/models/tautoko/index.html
http://mir.cs.illinois.edu/reassert/
https://bitbucket.org/fanglu/perfblower-public
http://www.evosuite.org/
https://sites.google.com/site/asergrp/projects/putstudy
https://github.com/saltlab/Testilizer
http://groups.csail.mit.edu/pag/eclat/
https://srg.doc.ic.ac.uk/projects/shadow/
http://puremvc.org/
https://www.st.cs.uni-saarland.de/bugex/
https://github.com/Spirals-Team/banana-refactoring
https://github.com/SpoonLabs/nopol
https://github.com/sei-pku/Ison
https://www.stamp-project.eu/
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0004

B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398 15

B

B

B

B

B

B

B

B

B

B

B

C

C

C

D

D

D

v

E

F

F

F

H

H

H

H

H

H

J

J

K

L

M

M

M

M

M

M

M

M

M

M

O

P

P

P

P

P

P

P

P

Q

R

R

S

S

T

W

W

audry, B. , Fleurey, F. , Jézéquel, J.-M. , Le Traon, Y. , 2005b. From genetic to bacterio-
logical algorithms for mutation-based testing. Softw. Test. Verif. Reliab. J. (STVR)

15 (2), 73–96 .
audry, B. , Fleurey, F. , Le Traon, Y. , 2006. Improving test suites for efficient fault

localization. In: Proceedings of the 28th International Conference on Software
Engineering, pp. 82–91 .

eller, M. , Gousios, G. , Panichella, A. , Proksch, S. , Amann, S. , Zaidman, A. , 2019. De-
veloper testing in the IDE: patterns, beliefs, and behavior. IEEE Trans. Softw.

Eng. 45 (3), 261–284 .

eller, M. , Gousios, G. , Panichella, A. , Zaidman, A. , 2015a. When, how, and why de-
velopers (do not) test in their IDEs. In: Proceedings of the 2015 10th Joint Meet-

ing on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 179–190 .
eller, M. , Gousios, G. , Zaidman, A. , 2015b. How (much) do developers test? In: Pro-

ceedings of the 37th IEEE/ACM International Conference on Software Engineer-
ing (ICSE). IEEE Computer Society, pp. 559–562 .

lackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur, R.,

Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovi ́c, D., VanDrunen, T., von

Dincklage, D., Wiedermann, B., 2006. The dacapo benchmarks: Java benchmark-
ing development and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems, Languages, and Applica-
tions. ACM, New York, NY, USA, pp. 169–190. doi: 10.1145/1167473.1167488 .

loem, R. , Koenighofer, R. , Röck, F. , Tautschnig, M. , 2014. Automating test-suite aug-

mentation. In: Proceedings of the 14th International Conference on Quality Soft-
ware (QSIC). IEEE, pp. 67–72 .

öhme, M. , Oliveira, B.C.d.S. , Roychoudhury, A. , 2013. Regression tests to expose
change interaction errors. In: Proceedings of the 9th Joint Meeting on Foun-

dations of Software Engineering. ACM, pp. 334–344 .
öhme, M. , Roychoudhury, A. , 2014. Corebench: Sbohme2014, CoREBench: Studying

complexity of regression errors. In: Proceedings of the International Symposium

on Software Testing and Analysis. ACM, pp. 105–115 .
rereton, P. , Kitchenham, B.A. , Budgen, D. , Turner, M. , Khalil, M. , 2007a. Lessons

from applying the systematic literature review process within the software en-
gineering domain. J. Syst. Softw. 80 (4), 571–583 .

rereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007b. Lessons
from applying the systematic literature review process within the software en-

gineering domain. J. Syst. Softw. 80 (4), 571–583. doi: 10.1016/j.jss.20 06.07.0 09 .

arzaniga, A. , Goffi, A. , Gorla, A. , Mattavelli, A. , Pezzè, M. , 2014. Cross-checking Or-
acles from intrinsic software redundancy. In: Proceedings of the 36th Interna-

tional Conference on Software Engineering, pp. 931–942 .
ooper, H.M. , 1998. Synthesizing Research: A Guide for Literature Reviews, 2. Sage .

ornu, B. , Seinturier, L. , Monperrus, M. , 2015. Exception handling analysis and trans-
formation using fault injection: study of resilience against unanticipated excep-

tions. Inf. Softw. Technol. 57, 66–76 .

allmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A., 2010. Generating test cases
for specification mining. In: Proceedings of the 19th International Symposium

on Software Testing and Analysis. ACM, New York, NY, USA, pp. 85–96. doi: 10.
1145/1831708.1831719 .

aniel, B. , Jagannath, V. , Dig, D. , Marinov, D. , 2009. Reassert: suggesting repairs for
broken unit tests. In: Proceedings of the IEEE/ACM International Conference on

Automated Software Engineering, pp. 433–4 4 4 .
o, H., Elbaum, S., Rothermel, G., 2005. Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empir. Softw. Eng.

10 (4), 405–435. doi: 10.1007/s10664- 005- 3861- 2 .
an Deursen, A. , Moonen, L. , van den Bergh, A. , Kok, G. , 2001. Refactoring test code.

In: Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2001), pp. 92–95 .

dvardsson, J. , 1999. A survey on automatic test data generation. In: Proceedings of
the 2nd Conference on Computer Science and Engineering, pp. 21–28 .

ang, L. , Dou, L. , Xu, G. , 2015. Perfblower: quickly detecting memory-related perfor-

mance problems via amplification. In: Proceedings of the Leibniz International
Proceedings in Informatics, LIPIcs, 37. Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik .
raser, G. , Arcuri, A. , 2011. Evosuite: automatic test suite generation for object-ori-

ented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. ACM,

pp. 416–419 .

raser, G. , Zeller, A. , 2011. Generating parameterized unit tests. In: Proceed-
ings of the International Symposium on Software Testing and Analysis. ACM,

pp. 364–374 .
amlet, D. , Voas, J. , 1993. Faults on its sleeve: amplifying software reliability testing.

ACM SIGSOFT Softw. Eng. Notes 18 (3), 89–98 .
arder, M. , Mellen, J. , Ernst, M.D. , 2003. Improving test suites via operational ab-

straction. In: Proceedings of the International Conference on Software Engineer-

ing (ICSE), pp. 60–71 .
arrold, M.J. , Orso, A. , 2008. Retesting software during development and mainte-

nance. In: Proceedings of the Frontiers of Software Maintenance., pp. 99–108 .
etzel, W.C. , 1988. The Complete Guide to Software Testing, 2nd QED Information

Sciences, Inc., Wellesley, MA, USA .
ilton, M. , Bell, J. , Marinov, D. , 2018. A large-scale study of test coverage evolution.

In: Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE). ACM, pp. 53–63 .
utchins, M. , Foster, H. , Goradia, T. , Ostrand, T. , 1994. Experiments of the effective-

ness of dataflow- and controlflow-based test adequacy criteria. In: Proceedings
of the 16th International Conference on Software Engineering. IEEE Computer

Society Press, Los Alamitos, CA, USA, pp. 191–200 .
alali, S. , Wohlin, C. , 2012. Systematic literature studies: database searches vs. back-
ward snowballing. In: Proceedings of the ACM IEEE International Symposium on

Empirical Software Engineering and Measurement. ACM, pp. 29–38 .
oshi, P., Sen, K., Shlimovich, M., 2007. Predictive testing: amplifying the effective-

ness of software testing. In: Proceedings of the ESEC/FSE: Companion Papers.
ACM, New York, NY, USA, pp. 561–564. doi: 10.1145/1295014.1295041 .

itchenham, B. , 2004. Procedures for performing systematic reviews. Technical Re-
port. Keele University .

eung, A. , Gupta, M. , Agarwal, Y. , Gupta, R. , Jhala, R. , Lerner, S. , 2012. Verifying GPU

kernels by test amplification. ACM SIGPLAN Not. 47 (6), 383–394 .
adeyski, L. , 2010. Test-Driven Development: An Empirical Evaluation of Agile Prac-

tice. Springer .
arinescu, P.D., Cadar, C., 2013. KATCH: High-Coverage Testing of Software Patches.

ACM Press, p. 235. doi: 10.1145/2491411.2491438 .
arri, M.R. , Thummalapenta, S. , Xie, T. , Tillmann, N. , de Halleux, J. , 2010. Retrofitting

unit tests for parameterized unit testing. Technical Report. North Carolina State

University .
cMinn, P. , 2004. Search-based software test data generation: a survey. Softw. Test.

Verif. Reliab. 14 (2), 105–156 .
eszaros, G. , 2006. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR .

ilani Fard, A. , Mirzaaghaei, M. , Mesbah, A. , 2014. Leveraging existing tests in
automated test generation for web applications. In: Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering. ACM,

pp. 67–78 .
irzaaghaei, M. , Pastore, F. , Pezze, M. , 2012. Supporting test suite evolution

through test case adaptation. In: Proceedings of the IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST). IEEE,

pp. 231–240 .
irzaaghaei, M. , Pastore, F. , Pezzè, M. , 2014. Automatic test case evolution. Softw.

Test. Verif. Reliab. 24 (5), 386–411 .

oonen, L. , van Deursen, A. , Zaidman, A. , Bruntink, M. , 2008. On the inter-
play between software testing and evolution and its effect on program

comprehension. In: Mens, T., Demeyer, S. (Eds.), Software Evolution. Springer,
pp. 173–202 .

ouelhi, T. , Le Traon, Y. , Baudry, B. , 2009. Transforming and selecting functional test
cases for security policy testing. In: Proceedings of the International Conference

on Software Testing Verification and Validation, ICST’09. IEEE, pp. 171–180 .

strand, T.J. , Balcer, M.J. , 1988. The category-partition method for specifying and
generating fuctional tests. Commun. ACM 31 (6), 676–686 .

acheco, C. , Ernst, M.D. , 2005. Eclat: Automatic generation and classification of test
inputs. In: Proceedings of the 19th European Conference on Object-Oriented

Programming. Springer-Verlag, Berlin, Heidelberg, pp. 504–527 . Springer Berlin
Heidelberg.

alikareva, H. , Kuchta, T. , Cadar, C. , 2016. Shadow of a doubt: testing for divergences

between software versions. In: Proceedings of the 38th International Conference
on Software Engineering. ACM, pp. 1181–1192 .

alomba, F., Zaidman, A., 2019. The smell of fear: on the relation between test
smells and flaky tests. Empir. Softw. Eng. 24 (5), 2907–2946. doi: 10.1007/

s10664- 019- 09683- z .
alomba, F. , Zaidman, A. , 2017. Does refactoring of test smells induce fixing flaky

tests? In: Proceedings of the IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE Computer Society, pp. 1–12 .

 ̆as ̆areanu, C.S. , Visser, W. , 2009. A survey of new trends in symbolic execution for

software testing and analysis. Int. J. Softw. Tools Technol. Transf. (STTT) 11 (4),
339–353 .

atrick, M. , Jia, Y. , 2017. Kd-art: Should we intensify or diversify tests to kill mu-
tants? Inf. Softw. Technol. 81, 36–51 .

etersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies
in software engineering. In: Proceedings of the EASE, 8, pp. 68–77 .

ezze, M. , Rubinov, K. , Wuttke, J. , 2013. Generating effective integration test cases

from unit ones. In: Proceedings of the IEEE Sixth International Conference on-
Software Testing, Verification and Validation (ICST). IEEE, pp. 11–20 .

i, D. , Roychoudhury, A. , Liang, Z. , 2010. Test generation to expose changes in evolv-
ing programs. In: Proceedings of the IEEE/ACM International Conference on Au-

tomated Software Engineering, pp. 397–406 .
ößler, J. , Fraser, G. , Zeller, A . , Orso, A . , 2012. Isolating failure causes through test

case generation. In: Proceedings of the International Symposium on Software

Testing and Analysis. ACM, pp. 309–319 .
ojas, J.M. , Fraser, G. , Arcuri, A. , 2016. Seeding strategies in search-based unit test

generation. Softw. Test. Verif. Reliab. 26 (5), 366–401 .
antelices, R. , Chittimalli, P.K. , Apiwattanapong, T. , Orso, A. , Harrold, M.J. , 2008.

Test-suite augmentation for evolving software. In: Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering. IEEE,

pp. 218–227 .

antelices, R. , Harrold, M.J. , 2011. Applying aggressive propagation-based strategies
for testing changes. In: Proceedings of the IEEE Fourth International Conference

on Software Testing, Verification and Validation. IEEE, pp. 11–20 .
illmann, N. , Schulte, W. , 2006. Unit tests reloaded: parameterized unit testing with

symbolic execution. IEEE Softw. 23 (4), 38–47 .
ang, H. , Guan, X. , Zheng, Q. , Liu, T. , Shen, C. , Yang, Z. , 2014. Directed test suite aug-

mentation via exploiting program dependency. In: Proceedings of the 6th Inter-

national Workshop on Constraints in Software Testing, Verification, and Analy-
sis. ACM, pp. 1–6 .

ohlin, C. , 2014. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering. ACM, p. 38 .

http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0009
https://doi.org/10.1145/1167473.1167488
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0014
https://doi.org/10.1016/j.jss.2006.07.009
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0018
https://doi.org/10.1145/1831708.1831719
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0020
https://doi.org/10.1007/s10664-005-3861-2
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0031
https://doi.org/10.1145/1295014.1295041
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0035
https://doi.org/10.1145/2491411.2491438
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0047
https://doi.org/10.1007/s10664-019-09683-z
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0062

16 B. Danglot, O. Vera-Perez and Z. Yu et al. / The Journal of Systems and Software 157 (2019) 110398

Z

Z

B

T

H

O

S

r

n

Z

i

t

i

A

l

U

p

a

n

e

f

g

T

L

o

r

p

B

n

s

H

c

Xie, T. , 2006. Augmenting automatically generated unit-test suites with regression
Oracle checking. In: Proceedings of the 20th European Conference on Objec-

t-Oriented Programming, pp. 380–403 .
Xu, Z. , Cohen, M.B. , Rothermel, G. , 2010a. Factors affecting the use of genetic algo-

rithms in test suite augmentation. In: Proceedings of the 12th Annual Confer-
ence on Genetic and Evolutionary Computation. ACM, pp. 1365–1372 .

Xu, Z. , Kim, Y. , Kim, M. , Cohen, M.B. , Rothermel, G. , 2015. Directed test suite aug-
mentation: an empirical investigation. Softw. Test. Verif. Reliab. 25 (2), 77–114 .

Xu, Z. , Kim, Y. , Kim, M. , Rothermel, G. , 2011. A hybrid directed test suite augmen-

tation technique. In: Proceedings of the IEEE 22nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, pp. 150–159 .

Xu, Z. , Kim, Y. , Kim, M. , Rothermel, G. , Cohen, M.B. , 2010b. Directed test suite aug-
mentation: techniques and tradeoffs. In: Proceedings of the Eighteenth ACM

SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, pp. 257–266 .

Xu, Z. , Rothermel, G. , 2009. Directed test suite augmentation. In: Proceedings of the

Asia-Pacific Software Engineering Conference, APSEC’09. IEEE, pp. 406–413 .
Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M., 2016. B-

refactoring: automatic test code refactoring to improve dynamic analysis. Inf.
Softw. Technol. 76, 65–80. doi: 10.1016/j.infsof.2016.04.016 .

Xuan, J. , Martinez, M. , DeMarco, F. , Clement, M. , Marcote, S.L. , Durieux, T. , Le
Berre, D. , Monperrus, M. , 2017. Nopol: automatic repair of conditional statement

bugs in Java programs. IEEE Trans. Softw. Eng. 43 (1), 34–55 .

Xuan, J. , Monperrus, M. , 2014. Test case purification for improving fault localization.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. ACM, pp. 52–63 .
Xuan, J., Xie, X., Monperrus, M., 2015. Crash reproduction via test case muta-

tion: let existing test cases help. In: Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ACM, New York, NY, USA, pp. 910–913.

doi: 10.1145/2786805.2803206 .

Yoo, S. , Harman, M. , 2012a. Regression testing minimization, selection and prioriti-
zation: a survey. Softw. Test. Verif. Reliab. 22 (2), 67–120 .

Yoo, S. , Harman, M. , 2012b. Test data regeneration: generating new test data from
existing test data. Softw. Test. Verif. Reliab. 22 (3), 171–201 .

Yoshida, H. , Tokumoto, S. , Prasad, M.R. , Ghosh, I. , Uehara, T. , 2016. FSX: fine-grained
incremental unit test generation for C/C ++ programs. In: Proceedings of the

25th International Symposium on Software Testing and Analysis .

Yu, Z., Bai, C., Cai, K.-Y., 2013. Inf. Softw. Technol. 55(12), 2076–2098.
Yusifo ̆glu, V.G., Amannejad, Y., Can, A.B., 2015. Software test-code engineering: a

systematic mapping. Inf. Softw. Technol. 58, 123–147. doi: 10.1016/j.infsof.2014.
06.009 .

Zaidman, A. , Rompaey, B.V. , Demeyer, S. , van Deursen, A. , 2008. Mining software
repositories to study co-evolution of production & test code. In: Proceedings of

the First International Conference on Software Testing, Verification, and Valida-

tion (ICST). IEEE Computer Society, pp. 220–229 .
Zaidman, A., Van Rompaey, B., van Deursen, A., Demeyer, S., 2011. Studying the co-

evolution of production and test code in open source and industrial developer
test processes through repository mining. Empir. Softw. Eng. 16 (3), 325–364.

doi: 10.1007/s10664- 010- 9143- 7 .
Zhang, J., Lou, Y., Zhang, L., Hao, D., Zhang, L., Mei, H., 2016. Isomorphic regression

testing: Executing uncovered branches without test augmentation. In: Proceed-
ings of the 24th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering. ACM, New York, NY, USA, pp. 883–894. doi: 10.1145/2950290.

2950313 .
hang, P. , Elbaum, S. , 2012. Amplifying tests to validate exception handling code. In:
Proceedings of the 34th International Conference on Software Engineering. IEEE

Press, pp. 595–605 .
hang, P. , Elbaum, S.G. , 2014. Amplifying tests to validate exception handling code:

an extended study in the mobile application domain. ACM Trans. Softw. Eng.
Methodol. 23 (4), 32:1–32:28 .

enjamin Danglot is a Ph.D. student at INRIA - Lille, France working on Software

esting Amplification for regression detection within the STAMP project since 2016.
is research fields are software testing amplification and chaos engineering.

scar Luis Vera-Pérez is a Ph.D. student at INRIA - Rennes, France. He works on
oftware Testing Amplification in the context of the STAMP project since 2017. His

esearch interests are related to software testing and search-based software engi-
eering.

hongxing Yu received the Ph.D. degree from Beihang University, China, in 2016. He

s currently a postdoc with the KTH Royal Institute of Technology, Sweden. Before
hat, he worked as a postdoc with Inria Lille - Nord Europe. His research interests

nclude program synthesis, program repair, and empirical study.

ndy Zaidman is a full professor at Delft University of Technology, The Nether-

ands. He obtained his M.Sc. (2002) and Ph.D. (2006) in Computer Science from the

niversity of Antwerp, Belgium. His main research interests are software evolution,
rogram comprehension, mining software repositories and software testing. He is

n active member of the research community and involved in the organization of
umerous conferences (WCRE’08, WCRE’09, VISSOFT’14 and MS’18). He is on the

ditorial board of JSS and EMSE. In 2013 he was the laureate of a Vidi career grant
rom the Dutch science foundation NWO, while in 2019 he won the Vici career

rant, the most prestigious career grant from the Dutch science foundation NWO.

Martin Monperrus is Professor of Software Technology at KTH Royal Institute of
echnology, Sweden. In 2011–2017, he was associate professor at the University of

ille, France and adjunct researcher at Inria. He received a Ph.D. from the University
f Rennes, and a Master’s degree from the Compiégne University of Technology. His

esearch lies in the field of software engineering with a current focus on automatic
rogram repair, self-healing software and chaos engineering.

enoit Baudry is a Professor in Software Technology at the Royal Institute of Tech-

ology (KTH) in Stockholm, Sweden. He received his Ph.D. in 2003 from the Uni-
versity of Rennes and was a research scientist at INRIA from 2004 to 2017. His re-

earch is in the area of software testing, code analysis and automatic diversification.
e has led the largest research group in software engineering at INRIA, as well as

ollaborative projects funded by the European Union, and software companies.

http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0068
https://doi.org/10.1016/j.infsof.2016.04.016
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0071
https://doi.org/10.1145/2786805.2803206
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0075
https://doi.org/10.1016/j.infsof.2014.06.009
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0077
https://doi.org/10.1007/s10664-010-9143-7
https://doi.org/10.1145/2950290.2950313
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0081
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0081
http://refhub.elsevier.com/S0164-1212(19)30173-6/sbref0081

	A snowballing literature study on test amplification
	1 Introduction
	2 Method
	2.1 Definition
	2.2 Methodology
	2.3 Novelty

	3 Amplification by adding new tests as variants of existing ones
	3.1 Example
	3.2 Coverage or mutation score improvement
	3.3 Fault detection capability improvement
	3.4 Oracle improvement
	3.5 Debugging effectiveness improvement
	3.6 Summary

	4 Amplification by synthesizing new tests with respect to changes
	4.1 Example
	4.2 Search-based vs. concolic approaches
	4.3 Finding test conditions in the presence of changes
	4.4 Other approaches
	4.5 Summary

	5 Amplification by modifying test execution
	5.1 Amplification by modifying test execution
	5.2 Summary

	6 Amplification by modifying existing test code
	6.1 Example
	6.2 Input space exploration
	6.3 Oracle improvement
	6.4 Purification
	6.5 Summary

	7 Analysis
	7.1 Aggregated view
	7.2 Technical aspects
	7.3 Tools for test amplification
	7.4 Open questions for future research

	8 Threats to validity
	9 Conclusion
	Acknowledgement
	References

