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Abstract

In this thesis we study the optimal role assignment in jury voting. Jurors have to decide between
two states of nature. Jurors cannot directly observe the state of nature, but only a noisy signal, that
is correlated with the true state of nature. Some jurors are better than the other, and higher ability
jurors receive signals that more likely lead to the correct choice. Not all jurors vote simultaneously,
and jurors that vote later are informed on what previous jurors have voted. We want to know what
the optimal role assignment, if we have jurors with different ability levels.

In a two juror advisor-decider scheme, the first juror has the role of advisor and the second juror is
the decider. The advisor passes his vote to the decider, and the decider’s choice is the final decision
the of the whole decision process. For random signals with linear-, β- and Gaussian probability
densities, the best jurors should be the decider.

For three member casting vote schemes, the first two jurors vote simultaneously. If the decision
is not unanimous, then there is no majority decision, and the casting juror breaks the tie. Besides
receiving his own signal, the casting juror is informed on what the other jurors have voted. For
random signals with linear-, β- and Gaussian densities, reliability is maximised, when the median
ability juror has the casting vote.
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Chapter 1

Introduction

Many decisions are decided by a voting mechanism. The reason why we vote is because some
decisions are plagued with uncertainty and to minimise those effects, we take inputs from multiple
parties. In this thesis two type of uncertainties are considered.

The first kind of uncertainty is when we have to decide on choices that are subjective by nature.
This means that there is no “true” choice. Think a group of friends voting where they should eat
or citizens voting for a presidential candidate. This type of voting is called preference voting, where
voters a voter’s preference is a ranking of all possible alternatives. In an election, all voters pass
their preference, and depending on the preferences, an outcome is generated. We consider two
types of outcomes: a social preference, which is a ranking of all alternative, or a social choice, a sin-
gle winner. An issue concerning many elections, is that voters are incentivised to vote strategically.
In Chapter 2 we show that there is no “fair and reasonable” voting mechanism where voters do
not vote strategically. These are the results from Arrow’s theorem and the Gibbard-Satterthwaite’s
Theorem.

For the second type of uncertainty, the “true” choice does exist. The decision makers have to
choose between two possible states of nature. They cannot directly observe the state of nature,
but only a noisy signal correlated with the true state of nature. Think of a court case where jury
members have to vote whether the defendant is guilty. We assume that the truth about the defen-
dants guilt exist, but from the evidence we cannot be 100 percent certain what the correct verdict
is. In another example, we consider a boxing match where the jury decides which fighter scored
the most points. Jurors have to rely on human observations, which are not totally reliable. This
type of voting is called juror voting.

The main motive of this thesis is the interesting result in the paper [1] by Alpern and Chen. The
paper states that for three member casting vote schemes, the casting juror should be the median
ability juror. In the model, jurors receive random signals taking values from a fixed interval. Each
juror has a different ability level, where better jurors vote for the correct state with higher prob-
ability. Each juror has two possible probability density functions depending on the true state of
nature. We want to investigate if we can generalise the result for a larger class of density functions.
This is covered in Chapter 4.
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2 Introduction

Before investigating the three juror mechanism, we apply the same model to a simpler two ju-
ror advisor-decider mechanism. This is covered in Chapter 3. The advisor-decider mechanism is
called roll call voting. There are similar papers on roll call voting, but with slightly different models.
In [2], Alpern and Chen study a three juror model, with discrete signals and discrete abilities. The
model in [3] jurors do not know their abilities, and the model in [4] uses, binary signals.
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Chapter 2

Preference Voting

Democracies are currently the most popular governance systems in the world. One problem is that
during the elections, many voters feel that they have to vote strategically. Instead of voting for their
favourite candidate, it can be better to vote for the most popular lesser evil candidate to prevent
an even worst candidate to win. The problem with strategic voting is that it is non-transparant and
everyone has to make assumptions of what others are voting. It would be nice to have a fair voting
mechanism that de-incentivises strategic voting. Maybe voters can give whole ranking of the can-
didates instead of only their most favourite? If the number of candidates is two, than that is trivial.
In case the number of alternatives is three or more, designing such voting mechanisms turns out
to be problematic. That is shown by Arrow’s theorem and Gibbard-Satterthwaite’s theorem, which
are the main results of this section. The content of this section is based of [5] and [6].

Consider an election where voters have to pass their preference on a set of candidates, which will
be called alternatives from now on. In many voting procedures, like political elections, a voters
preference is a single favourite alternative. Here it is generalised, such that the preference is a
ordering of all candidates that ranks each alternative from most favourite to least favourite. The
kind of ordering that the voters will give is a weak order on A. Let I = {1, . . . ,n} be the index set of
all voters, A be the set of alternatives and P (A) be the set of all weak orders on A. We will give the
following definitions of a weak ordering, a voter’s preference and a preference profile.

Definition 2.1 (Weak order). We have that º is a weak order on A, if for any a,b ∈ A, it satisfies:

• Transitivity; If a º b and b º c, then a º c.

• Totality; We always have a º b or b º a.

The set of all weak orders on A is P (A).

Definition 2.2 ((Weak) Preference). A weak preference º is a weak order on A. For a,b ∈ A, if a is
preferred over b, it is denoted as: a º b.

Definition 2.3 (Indifference '). A weak preference º is indifferent between a and b if a º b and
b º a. Indifference between a and b is abbreviated as a ' b.
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4 Preference Voting

Definition 2.4 (Strict preference Â). For a,b ∈ A, we say a is strictly preferred over b, if b � a. This
is also written as a Â b.

Definition 2.5 (Just below Â!). We say b is just below a, if a Â b and there is no other c, such that
a Â c Â b.

Lemma 2.1. 1. For any a ∈ A, we have a ' a.

2. If a Â b, then a º b.

3. If a Â b and b Â c, then a Â c.

4. If a ' b and b ' c, then a ' c.

5. For all a,b ∈ A we have either a º b or a ≺ b.

6. If a Â b and b º c, then a Â c.

Proof. 1. By totality we have a º a, so a ' a.

2. a Â b means b � a, so because of totality, we need to have a º b.

3. We will proof the equivalent statement: If c º a, then b º a or c º b. Without loss of general-
ity, assume c º a and a Â b, because if b º a, then we are done. By part 2 of this lemma, we
have a º b, so by transitivity c º b.

4. a ' b and b ' c is short for a º b, b º c, b º a and c º b. Transitivity implies a º c and c º a
and that means a ' c.

5. It is clear by the definition of ≺.

6. By transitivity: b º c and c º a, implies b º a, which is equivalent to: a Â b, implies c Â b or
a Â c. This means that a Â b and b º c (not c Â b) implies a Â c.

■
Definition 2.6 (Preference profile). A preference profile π is a vector of preferences of all of the
voters in I , i.e.

π= (º1, . . . ,ºn) ∈ P (A)I .

Additional useful functions are topi (B) and boti (B). These functions give voter i ’s most and least
favourite alternative from a subset of alternatives B ⊆ A.

Definition 2.7 (Top). For B ⊆ A, i ∈ I and º∈ π, we have that a ∈ topπi (B), if a ∈ B and there is no
b ∈ B , such that b Âi a. We then say i has a at the top of B in π.

Definition 2.8 (Bottom). For B ⊆ A, i ∈ I and º∈ π, we have that a ∈ botπi (B), if a ∈ B and there is
no b ∈ B , such that a Âi b. We then say i has a at the bottom of B in π.

When all votes are in, the outcome of the election is determined. Depending on the goal of the
election, two type of outcomes are considered. The first one is a single alternative (the winner),
which is called the social choice. The second type of outcome is the social preference, which is an
ordering on A. The outcomes are generated by:

• the social welfare function F : P (A)I → P (A),

• the social choice function f : P (A)I → A.
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2-1 Social Preference 5

2-1 Social Preference

Social welfare functions map the voting profile to a social preference. The outcome is a ranking of
all alternatives. This can be useful in many situations. Let say there is an art contest and each jury
members vote by giving a their preference on all the art pieces. Instead of only giving a the winner,
we can give a whole ranking of who is first, second, third, etc. Social welfare functions can be given
certain characteristics and several are given below:

• Unanimity means that if all voters have the same preference º, then the social preference is
º.

• If F is Pareto and all voters strictly prefer a over b, then the social preference strictly prefers
a over b.

• F is an dictatorship if there is a voter, the dictator, whose strict preferences are always the
social strict preferences.

• Independent of irrelevant relationships (IIR) means that if we have two profiles that have the
same preferences between a and b, then the social preferences between a and b, is the same.
The social preference between a and b only depends on a voter’s preference between a and
b. Any other choices are not relevant.

• Neutrality means that the social choice does not depend on an alternative’s name.

• Pairwise neutrality means that if we have two elections and all the preferences between (a,b)
in one election are the same as the preferences between (c,d) in the other election, then the
social preference between (a,b) is the same as the social preference between (c,d).

The precise definitions are:

Definition 2.9 (unanimity). F is unanimous, if F (º, . . . ,º) =º.

Definition 2.10 (Pareto). F is Pareto, if a Âi b for all i ∈ I , then a Â b, where F (π) =º.

Definition 2.11 (dictatorship). F is a dictatorship, if for there is an i ∈ I , such that for anyπ ∈ P (A)I ,
we have that a Âi b, implies a Â b, where F (π) =º. Voter i is called the dictator.

Definition 2.12 (independent of irrelevant relationships (IIR)). Consider two preference profiles π
and π′. Let there be some a,b ∈ A, such that for all i ∈ I ;

a ºi b ⇐⇒ a º′
i b

b ºi a ⇐⇒ b º′
i a.

If F is IIR, then

a º b ⇐⇒ a º′ b

b º a ⇐⇒ b º′ a,

where F (π) =º and F
(
π′)=º′.
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6 Preference Voting

Definition 2.13 (neutrality). Let σ(A) = {σ(a1), . . . ,σ(an)} be an arbitrary permutation of A and let
π be some voting profile. The permuted voting profile πσ of π, is defined such that for any a,b ∈ A
and all i ∈ I , we have that

a ºi b ⇐⇒ σ(a) ºσi σ(b),

a ¹i b ⇐⇒ σ(a) ¹σi σ(b).

If F is neutral, then

a º b ⇐⇒ σ(a) ºσ σ(b),

a ¹ b ⇐⇒ σ(a) ¹σ σ(b).

where F (π) =º and F (π) =ºσ.

Definition 2.14 (pairwise neutrality). Letπ andπ′ be two preference profiles, such that for a,b,c,d ∈
A,

a ºi b ⇐⇒ c º′
i d ,

a ¹i b ⇐⇒ c ¹′
i d .

If F is pairwise neutral, then

a º b ⇐⇒ c º′ d ,

a ¹ b ⇐⇒ c ¹′ d ,

where F (π) =º and F
(
π′)=º′.

For convenience later on, we also name a special case of pairwise neutrality.

Definition 2.15 (pairwise neutrality for strict preferences). Let π and π′ be two preference pro-
files, where for a,b,c,d ∈ A, the preference relations of (a,b) and (c,d) are only strict. If F is pair-
wise neutral, then a Âi b ⇐⇒ c Â′

i d for all i ∈ I , implies a Â b ⇐⇒ c Â′ d , where F (π) =º and
F

(
π′)=º′.

Pairwise neutrality and neutrality seem similar to each other. It is easy to see that pairwise neutral-
ity implies neutrality. On the other hand, we can find an example in Example 1 that demonstrates
that the converse is not always true.

Example 1 (Selecting teams). On a school yard, kids are deciding on splitting their group into two
teams to play football. Two players are assigned the roll of captain and each of them take turn
choosing from the remaining players who they want on their team. Each captain rank the players
from most to least skilled. When a captain gets the turn to choose, he will select the best available
player according to his ranking. The order in which the players are selected, defines a social choice.

The captains are the set of voters I = {1,2} and all the other players are the set of alternatives A, where
|A| = m is even. A captain i has the preference Âi∈ P (A).

On turn 1, captain 1 selects player a1 = top1(A) and on turn 2, captain 2 selects player a2 = top2(A \
{a1}). Note that the index here is not the player’s name, but it is an indication on which turn he or
she is selected. Subsequently, on turn j captain i selects player a j = topi (A \ {a1, a2, . . . , ai−1}), where

Nam Dang Master of Science Thesis



2-1 Social Preference 7

captain 1 can choose on the odd turns and captain 2 on the even turns. When all players are chosen,
the preference is then F (Â1,Â2) =Â and a1 Â a2 Â . . . Â am . Note that F is neutral, because nowhere
does the player’s name play a role in the construction of the social preference.

Take for example A = {a,b,c,d} and

a Â1 b Â1 c Â1 d

c Â2 a Â2 b Â2 d .

The social preference is a Â c Â b Â d. Alternatively, we can have the following preference profile:

a Â′
1 b Â′

1 c Â′
1 d

d Â′
2 c Â′

2 b Â′
2 a.

The social preference is then a Â′ d Â′ b Â′ c. Note that for all i ∈ I , we have that b Âi c ⇐⇒ b Â′
i c,

but c Â b and b Â′ c, so F is not IIR. If we set a = c and b = d in definition 2.14, we see that pairwise
neutrality implies IIR, so a social welfare function that is not IIR cannot be pairwise neutral.

We have given an example of a social choice function that is neutral, but not pairwise neutral by
showing that it is not IIR. IIR and neutrality are actually sufficient for pairwise neutrality.

Proposition 2.2. If F is neutral and IIR, then F is pairwise neutral.

Proof. Assume F is neutral and IIR. Take some a,b,c,d ∈ A and π,π′ ∈ P (A)I such that for all i ∈ I :

a ºi b ⇐⇒ c º′
i d ,

a ¹i b ⇐⇒ c ¹′
i d . (2-1)

Take a permutation σ(A) of A, such that σ(a) = c and σ(b) = d . The permuted voting profile πσ of
π satisfies:

a ºi b ⇐⇒ c ºσi d ,

a ¹i b ⇐⇒ c ¹σi d . (2-2)

for all i ∈ I . By neutrality we have that:

a º b ⇐⇒ c ºσ d ,

a ¹ b ⇐⇒ c ¹σ d . (2-3)

where F (π) =Â and F (πσ) =Âσ. Note that:

a º′
i b ⇐⇒ c ºσi d ,

a ¹′
i b ⇐⇒ c ¹σi d , (2-4)

so IIR implies

a º b′ ⇐⇒ c ºσ d ,

a ¹ b′ ⇐⇒ c ¹σ d , (2-5)

where F
(
π′)=Â′. Formulas (2-3) and (2-4) imply

a º b ⇐⇒ c º′ d ,

a ¹ b ⇐⇒ c ¹′ d .

■
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8 Preference Voting

Other properties that look similar are unanimity and Pareto. It is clear that Pareto, implies una-
nimity. The converse is true if there is also IIR.

Proposition 2.3. If F is unanimous and IIR, then F is Pareto.

Proof. Consider a,b ∈ A and π ∈ P (A)I , where a Âi b for all i ∈ I . Take a preference ºi in π. Define
a new profile π∗ where all voters have the preference ºi , so π∗ = (ºi , . . . ,ºi ). By unanimity we have
that a Â∗ b, where F (π∗) =º∗. All the preference relationships between a and b are the same in π

and π∗, so by IIR a Â b, where F (π) =º. ■

2-1-1 Arrow’s Theorem

Arrows theorem demonstrates that certain social welfare functions, which one might consider “fair
and reasonable” cannot exist. The theorem is first introduced by Arrow in [7]. In this case, “fair and
reasonable” means that F is unanimous, non-dictatorial and IIR. Before showing Arrow’s theorem
we will start of with the pairwise neutrality lemma.

Lemma 2.4 (pairwise neutrality). For |A| ≥ 3, if F is Pareto efficient and IIR, then F is pairwise
neutral for strict preferences.

Proof. Consider profiles π,π′ ∈ P (A)I and alternatives a,b,c,d ∈ A, such that all preference rela-
tions of (a,b) and (c,d) are strict and

a Âi b ⇐⇒ c Â′
i d (2-6)

for all i ∈ I . We are going the show that a Â b ⇐⇒ c Â′ d , where F (π) =º and F (π′) =º′. The proof
covers the four possible cases:

1. Alternatives (a,b,c,d) are all different from each other.

2. Either a = c or b = d .

3. Either b = c or a = d .

4. b = c and a = d .

We skip the case a = c and b = d , because that is the IIR condition.

Case 1: (a,b,c,d) are all different. Define new preference profiles π•,π? ∈ P (A)I , such that for
all i ∈ I :

a Â•
i b

def⇐⇒ a Âi b
hyp⇐⇒ c Â′

i d
def⇐⇒ c Â•

i d ,

a Â?
i b

def⇐⇒ a Âi b
hyp⇐⇒ c Â′

i d
def⇐⇒ c Â?

i d ,

c Â•
i a, b Â•

i d ,

c ≺?
i a, b ≺?

i d .
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2-1 Social Preference 9

Preferences between other alternatives are arbitrary. The only difference between π• and π? are in
the preference relations of (a,c) and (b,d). Since a Âi b ⇐⇒ c Â′

i d , the contradictions

c Â•
i a Â•

i b Â•
i d Â•

i c,

c ≺?
i a ≺?

i b ≺?
i d ≺?

i c

do not occur.

By IIR, the social choices are:

a Â b ⇐⇒ a Â• b ⇐⇒ a Â? b (2-7)

c Â′ d ⇐⇒ c Â• d ⇐⇒ c Â? d . (2-8)

By Pareto efficiency of F , we have that:

c Â• a, b Â• d , (2-9)

c ≺? a, b ≺? d . (2-10)

If we assume a Â b, then by (2-7) and (2-9), we have:

c Â• a Â• b Â• d ,

and by transitivity c Â• d . With formula (2-8) we conclude that a Â b ⇒ c Â′ d . Conversely, if we
assume a ≺ b, then with similar arguments, we can find a ≺ b ⇒ c ≺′ d .

Case 2: either a = c or b = d . We either have a Âi b ⇐⇒ a Â′
i d or a Âi b ⇐⇒ c Â′

i b. The
proof is almost the same as the previous one. Without loss of generality, assume that a = c and
b 6= d . Define preference profiles π•,π? ∈ P (A)I , such that for all i ∈ I ,

a Â•
i b

def⇐⇒ a Âi b
hyp⇐⇒ c Â′

i d
def⇐⇒ c Â•

i d ,

a Â?
i b

def⇐⇒ a Âi b
hyp⇐⇒ c Â′

i d
def⇐⇒ c Â?

i d ,

b Â•
i d , b ≺?

i d .

By IIR we have that

a Â b ⇐⇒ a Â• b ⇐⇒ a Â? b

c Â′ d ⇐⇒ c Â• d ⇐⇒ c Â? d .

By Pareto efficiency of F , we have that:

b Â• d , b ≺? d .

With similar reasoning as before, we can show that a Â b ⇐⇒ a Â′ d .
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10 Preference Voting

Â•
i

b

d

a

a

...

..
.

..
.

...

Â∗
i

a

b

d

d

...

..
.

..
.

...

Figure 2-1: The ballot of preferences Â•
i and Â∗

i . Higher alternatives are more preferred.

Case 3: Either b = c or a = d . We have one of these two situations: a Âi b ⇐⇒ b Â′
i d or

a Âi b ⇐⇒ c Â′
i a. Without loss of generality assume b = c and a 6= d .

Define a new profile π•, where for all i ∈ I , we have that: b Â•
i !d (d just below b), a Âi b ⇐⇒ a Â•

i b,
and all other preferences are arbitrary. See figure 2-1. Note that we either have a Â•

i b Â•
i d or

b Â•
i d Â•

i a, so we have:

a Âi b ⇐⇒ a Â•
i b ⇐⇒ a Â•

i d . (2-11)

The proof of case 2 implies:

a Â b ⇐⇒ a Â• d . (2-12)

Next, define another profile π∗ where for all i ∈ I , we have that: a Â∗
i !b (b just below a), a Â•

i d ⇐⇒
a Â∗

i d , and all other preferences are arbitrary. See figure 2-1. With the same reasoning as before,
we have that:

a Â•
i d ⇐⇒ b Â∗

i d (2-13)

a Â• d ⇐⇒ b Â∗ d . (2-14)

Formulas (2-11) and (2-13) imply:

b Â′
i d ⇐⇒ a Âi b ⇐⇒ a Â•

i d ⇐⇒ b Â∗
i d ,

so by IIR: b Â′ d ⇐⇒ b Â∗ d . Formulas (2-12) and (2-14) imply:

a Â b ⇐⇒ b Â∗ d ,

so we have:

a Â b ⇐⇒ b Â′ d .
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2-1 Social Preference 11

Â♣
i

b

e

a

a
...

..
.

..
.

...

Figure 2-2: The ballot of preference Â♣
i . Higher alternatives are more preferred. Alternative e

is just below b, so we have either a Â♣
i b Â♣

i e or b Â♣
i e Â♣

i a.

Case 4: b = c and a = d . We show that if a Âi b ⇐⇒ b Â′
i a, then a Â b ⇐⇒ b Â′ a. Take

some e ∈ A unequal to a and b. We define in an iterative fashion three new preference profiles
π♣,π♦,π♠ ∈ P (A)I the following way:

1. For all i ∈ I , we have that b Â♣
i !e (e just below b) and a Â♣

i b ⇐⇒ a Âi b. The preferences
between any other alternatives are arbitrary.

Looking at Figure 2-2, we can see that if a Âi b, then a Â♣
i b Â♣

i e and if b Âi a, then b Â♣
i

e Â♣
i a. So we have for all i ∈ I ,

a Âi b ⇐⇒ a Â♣
i e, (2-15)

which implies
a Â b ⇐⇒ a Â♣ e. (2-16)

2. For each preference Â♦
i , we have that a Â♦

i !b (b just below a) and a Â♦
i e ⇐⇒ a Â♣

i e. The
preferences between any other alternatives are arbitrary.

Similarly as in step 1, for all i ∈ I , we have that

a Â♣
i e ⇐⇒ b Â♦

i e, (2-17)

which implies
a Â♣ e ⇐⇒ b Â♦ e. (2-18)

3. Each preference Â♠
i is defined such that e Â♠

i !a (a just below e) and b Â♠
i e ⇐⇒ b Â♦

i e. The
preferences between any other alternatives is arbitrary.

Similarly as in step 1, for all i ∈ I , we have that

b Â♦
i e ⇐⇒ b Â♠

i a, (2-19)
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12 Preference Voting

which implies
b Â♦ e ⇐⇒ b Â♠ a. (2-20)

Combining (2-15), (2-17) and (2-19) we get

b Â′
i a ⇐⇒ a Âi b ⇐⇒ a Â♣

i e ⇐⇒ b Â♦
i e ⇐⇒ b Â♠

i a (2-21)

and combining (2-16), (2-18) and (2-20) we get

a Â b ⇐⇒ a Â♣ e ⇐⇒ b Â♦ e ⇐⇒ b Â♠ a. (2-22)

By (2-21) and IIR we have that b Â′ a ⇐⇒ b Â♠ a and using (2-22) we conclude

b Â♠ a ⇐⇒ a Â b ⇐⇒ b Â′ a.

■
Theorem 2.5 (Arrow’s Theorem). For |A| ≥ 3, every social welfare function F that satisfies Pareto
efficiency and IIR is a dictatorship.

Before giving the full proof of Arrow’s theorem, we give the proof for three candidates two voters,
which is easier to understand.

Proof. Three candidates, two voters and strict preferences only. Consider the set of alternatives A =
{a,b,c} and let the voter set be I = {1,2}. Additionally, we assume that all voters only have strict
preferences between candidates.

Consider the profile πA = {ÂA
1 ,ÂA

2

}
, where both voters have the same preference: a ÂA

i b ÂA
i c, for

i ∈ I . By Pareto efficiency, the social preference is: a ÂA b ÂA c. See Figure 2-3.

ÂA
1 ÂA

2 ÂA

a

c

b

a

b

c

a

b

c

Figure 2-3: Profile πA

Define a new profile πB = {ÂB
1 ,ÂB

2

}
, where ÂB

1 =ÂA
1 and b ÂB

2 a ÂB
2 c. Compared to profile πA , the

second voter’s preference between a and b is switched. There are two possibilities: a ÂB b or
b ÂB a. With out loss of generality, we assume that a ÂB b. See Figure 2-4. In this case, we show
that voter 1 is the dictator.

If it were, b ÂB a, then we can use the begin profile πA′
, where b ÂA′

i a ÂA′
i c, for i ∈ I , to get an

equivalent situation. In this case, we would proof that voter 2 is the dictator.
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2-1 Social Preference 13

ÂB
1 ÂB

2 ÂB

a

c

b

b

a

c

a

b

c

Figure 2-4: Profile πB

Define the profiles πA ,πB
A , . . . ,πF , the following way: Voter 1 has the preference ÂA

1 =ÂB
1 = . . . =ÂF

1 ,
where ÂA

1 is the same as above i.e., a ÂA
1 b ÂA

1 c. The preferences of voter 2 are shown in Figure
2-5. Note that these are all possible preferences a voter can have. Voter 1 is the dictator, if his
preference is always the same as the social preference i.e., F (πX ) =ÂX =ÂX

1 , for all X ∈ {A,B , . . . ,F }.
As discussed before, this is already true for πA and πB .

ÂA,B ,...,F
1 ÂA

2 ÂB
2 ÂC

2 ÂD
2 ÂE

2 ÂF
2

a

b

c

a

b

c

b

a

c

b

c

a

c

a

b

a

c

b

c

b

a

Figure 2-5: Preferences for voter 1 and all possible preferences for voter 2.

Let us now look at πC , and compare it to πB . For all i ∈ I , we have that, a ÂB
i b ⇐⇒ a ÂC

i b, so IIR
implies a ÂB b ⇐⇒ a ÂC b, and thus a ÂC b. By Pareto efficiency, we have that b ÂC c. Transitivity
implies a ÂC b ÂC c.

Now, consider πD , and compare it to πC . Notice that:

a ÂC
1 b and b ÂD

1 c

b ÂC
2 a and c ÂD

2 b,

so this means a ÂC
i b ⇐⇒ b ÂD

i c. The pairwise neutrality Lemma 2.4 implies a ÂC b ⇐⇒ b ÂD c,
and thus b ÂD c. We have a ÂD b by Pareto efficiency, so transitivity implies a ÂD b ÂD c.

Similarly, by using IIR, Pareto and transitivity, we can show for πE and πF , that:

a ÂE b ÂE c

a ÂF b ÂF c.
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14 Preference Voting

Â′
1 · · · Â′

j∗−1 Â′
j∗ Â′

j∗+1 · · · Â′
n

e

c/d

c/d

...
...

...

e

c

d

..
.

...
...

..
. e

c/d

c/d

..
.

..
.

..
.

Figure 2-6: Illustration of the modified profile ÂÂÂ ′.

■

Proof. Arrow’s Theorem. Take any a 6= b ∈ A. Let π j ∈ P (A)I be some preference profile where the

first j voters strictly prefers a over b and the rest strictly prefers b over a, so a Â j
i b if i ≤ j and

b Â j
i a if i > j . Take a sequence of preference profiles π0, . . . ,πn , where each profile satisfies the

above property. Let F
(
π j

) =º j be the social choice. By Proposition 2.3, we know that F is Pareto
and therefore a ≺0 b and a Ân b. This means that there has to be some voter j∗ ∈ I , such that
a ¹ j∗−1 b and a Â j∗ b. We will now show that j∗ has to be the dictator.

Take any c 6= d ∈ A and let π ∈ P (A)I be an arbitrary preference profile. Voter j∗ is a dictator if
c Â j∗ d implies c Â d , where F (π) =Â. Assume that c Â j∗ d . Since |A| ≥ 3, we can take an e ∈ A
unequal to c or d . We change π to π′ the following way. For voters i < j∗ we set e = topi (A), for
voters i > j∗ we set e = boti (A) and voter i = j∗ has the preference c Â′

j∗ e Â′
j∗ d . See Figure 2-6

for an illustration. For all voters, the preferences between c and d remains the same, so by IIR the
social preference between c and d does not change. , i.e.

c º d ⇐⇒ c º′ d (2-23)

d º c ⇐⇒ d º′ c (2-24)

Comparing π′ and π j∗−1, we can see that;

e Â′
i c and a Â j∗−1

i b if i ≤ j∗−1,

c Â′
i e and b Â j∗−1

i a if i > j∗−1.

We know that b º j∗−1 a, so by pairwise neutrality we have c º′ e. Similarly for π′ and π j∗ , we have

e Â′
i d and a Â j∗

i b if i ≤ j∗,

d Â′
i e and b Â j∗

i a if i > j∗.

We know that a Â j∗

i b, so by pairwise neutrality e Â′ d . Transitivity implies c Â′ d and by (2-23) and
(2-24), we conclude c Â d . ■
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2-2 Social Choice and the Gibbard-Satterthwaite Theorem 15

2-2 Social Choice and the Gibbard-Satterthwaite Theorem

In this section we will look at social choice functions f : P (A) → A, where the outcome is a single
alternative (the winner). This is similar to presidential elections. Arrow’s theorem has powerful
implications for social choice functions. By the Gibbard-Satterthwaite theorem [8] [9], it turns out
that in “fair” elections, it is impossible to prevent strategic voting.

We will prove this for preferences that are weak orders, but first we restrict ourselves to preferences
with no ties between distinct alternatives, which we call strong preferences. These preferences are
total orders on A:

Definition 2.16 (Total Order). We say that º is a total order on A, if for all a,b,c ∈ A it satisfies:

• Transitivity; if a º b and b º c, then a ºi c.

• Totality; we always have a º b or b º a.

• Anti-symmetry: if a º b and b º a, then a = b.

The set of all total orders on A is P̂ (A) ⊂ P (A).

Definition 2.17 (Strong preference Â). A strong preference Â on the set of alternatives A is a total
order on A.

We say a social choice function can be strategically if there exists a situation where a voter can get
a more favourable outcome by lying about his true preference. In that case, a voter approaches the
election like a game and votes strategically to get the best possible outcome. The reason why we
vote (on subjective choices) is to take a decision that is the most acceptable for everyone. But if not
everyone is signalling their true believes, then this undermines the intention of the election.

Definition 2.18 (manipulability). A social choice function f can be (strategically) manipulated by
voter i , if there exist for some profile (Â1, . . . ,Â, . . . ,Ân) ∈ P̂ (A)I and some preference Â′

i∈ P̂ (A), such
that b Âi a and

f (Â1, . . . ,Âi , . . . ,Ân) = a

f (Â1, . . . ,Â′
i , . . . ,Ân) = b.

Looking at the above definition, if Âi is i ’s true preference, then he can get a better outcome by
misrepresenting his vote with Â′

i .

An equivalent and alternative definition of non-manipulability is monotonicity. Monotonicity of f
means that if a voter changes his preference and the social choice changes from a to b, then it has
to be that the voter changed his preference from preferring a over b to b over a.

Definition 2.19 (Monotonicity). A social choice function f is monotone if

f (Â1, . . . ,Âi , . . . ,Ân) = a 6= b = f (Â1, . . . ,Â′
i , . . . ,Ân)

implies that a Âi b and a ≺′
i b.

Proposition 2.6. A social choice function f is non-manipulable if and only if it is monotone.
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16 Preference Voting

Proof. Assume f is manipulable. Then there is a profile (Â1, . . . ,Âi , . . . ,Ân) and Â′
i , such that b Âi a

and

f (Â1, . . . ,Âi , . . . ,Ân) = a 6= b = f (Â1, . . . ,Â′
i , . . . ,Ân),

so f is not monotone.

Conversely, assume that f is not monotone. Then there is a profile (Â1, . . . ,Âi , . . . ,Ân) and prefer-
ence Â′

i , such that

f (Â1, . . . ,Âi , . . . ,Ân) = a 6= b = f (Â1, . . . ,Â′
i , . . . ,Ân),

and b Âi a or there is a profile (Â1, . . . ,Â′
i , . . . ,Ân) and Âi , such that

f (Â1, . . . ,Âi , . . . ,Ân) = a 6= b = f (Â1, . . . ,Â′
i , . . . ,Ân),

and a Â′
i b. So f is not incentive compatible.

■

Besides being non-manipulable, we als want elections to be “fair”. We say that a fair election should
satisfy the following two properties: Each candidate should come up as a winner in some elections
and no voter can be a dictator. This made precise by the following two definitions:

Definition 2.20 (Non-imposed). The social choice function f is a non-imposed, if for all a ∈ A,
there exist a profile π ∈ P̂ (A)I , such that f (π) = a.

Definition 2.21 (Dictatorship). The social choice function f is a dictatorship if there exist a voter i
(the dictator), such that for any π ∈ P̂ (A)I , if a ∈ topπi (A), then f (π) = a.

Note that for strong preferences, topπi (A) is a singleton.

2-2-1 Gibbard-Satterthwaite theorem for strong preferences.

The Gibbard-Satterthwaite states that it is impossible to find an social choice function f that is
non-manipulable, non-dictatorial and non-imposed, when the number of alternatives is three or
more.

The idea behind the proof is as follows; We assume that f is incentive compatible, non-dictatorial
and non-imposed. We define the extended social welfare function Fe of f and prove that Fe is a
social welfare function, that contradicts Arrow’s theorem.

Definition 2.22 (ÂS). Take some preference Â∈ P̂ (A) and some subset S ⊂ A. We define the prefer-
ence ÂS∈ P̂ (A) by moving all elements in S to the top and preserving the internal ordering between
elements in S and between elements in A \ S. More precisely, if a ∈ S and b ∈ A \ S, then a ÂS b and
if a,b ∈ S or a,b ∈ A \ S, then a ÂS b ⇐⇒ a Â b. An illustrative example is given in Figure 2-7.

Proposition 2.7. Take any Â1, . . . ,Ân∈ P̂ (A) and any S ⊂ A. If f is monotone and non-imposed, then

f (Â1, . . . ,Ân) ∈ S.
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Â ÂS

a

b

c

d

e

c

e

a

b

d

Figure 2-7: An example of ÂS , where S = {c,e}

.

Proof. Take some s ∈ S. Since f is onto there is some Â′
1, . . . ,Â′

n∈ P̂ (A) such that,

f
(Â′

1, . . . ,Â′
n

)= s.

Next, sequentially change Â′
1, . . . ,Â′

n to ÂS
1 , . . . ,ÂS

n element by element. At no point i will the social
choice become some b ∈ A \ S, i.e.

f
(ÂS

1 , . . . ,ÂS
i−1,Â′

i , . . . ,Ân
)=a ∈ S

f
(ÂS

1 , . . . ,ÂS
i ,Â′

i+1, . . . ,Ân
)=b ∈ A \ S.

If it did, then by monotonicity this would imply that b ÂS
i a, but by definition we have that a ÂS

i b
for all i . ■
Definition 2.23 (Fe). We define the extended social welfare function Fe of f . Let Fe (Â1, . . . ,Ân) =Â.

For a,b ∈ A, we have that a Â b if and only if f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= a.

Lemma 2.8. For |A| ≥ 3, if f is monotone and non-imposed, then Fe is a social welfare function.
Additionally, for π ∈ P̂ (A)I , we have that Fe (π) is a strong preference.

Proof. We show that Fe (Â1, . . . ,Ân) =Â is a total order i.e. antisymmetric, transitive and total.

• Antisymmetry. Assume a Â b and b Â a. We have that

a Â b ⇐⇒ f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= a (2-25)

b Â a ⇐⇒ f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= b (2-26)

and therefore a = b, since the arguments of f in (2-25) and (2-26) are the same.

• Totality. By proposition 2.7, we know that f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
∈ {a,b} for any a,b ∈ A. This

means that for any a,b it is well defined whether it is either a Â b or b Â a.
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18 Preference Voting

• Transitivity. Assume f is not transitive, then for some distinct a,b,c ∈ A, we would have
a Â b, b Â c and a � c. By totality, a � c implies c Â a. Without loss of generality, assume that

f
(
Â{a,b,c}

1 , . . . ,Â{a,b,c}
n

)
= a.

We sequentially change Â{a,b,c}
i to Â{a,c}

i . By monotonicity we have that

f
(
Â{a,c}

1 , . . . ,Â{a,b}
n

)
= a,

which implies a Â c.

■
Theorem 2.9 (Gibbard-Satterthwaite for strong preferences). For |A| ≥ 3, the social choice function
f is incentive compatible (monotone) and non-imposed if and only if f is a dictatorship.

Proof. Assume f is a dictatorship. If we have

f (Â1, . . . ,Âi , . . . ,Ân) = a 6= a′ = f (Â1, . . . ,Â′
i , . . . ,Ân),

then i is the dictator and a is the top choice in Âi and a′ is the top choice in Â′
i , so a Âi a′ and

a′ Â′
i a and thus f is monotone.

We prove the converse by showing that if f is incentive compatible, non-imposed and not a dicta-
torship, then the extended social welfare function Fe will be unanimous, IIR and not a dictatorship,
which contradicts Arrow’s theorem.

• Pareto; If all voters i have the preference a Âi b, then Â{a,b}
i =

(
Â{a,b}

i

){a}
, so by Proposition 2.7;

f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= a

and therefore a Â b, where Â= Fe (Â1, . . . ,Ân).

• Independent of irrelevant relationships; Let Â1, . . . ,Ân∈ P (A) and Â′
1, . . . ,Â′

n∈ P (A) be two
preference profiles such that a Âi b ⇐⇒ a Â′

i b. By Property 2.7 we know that

f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
∈ {a,b} 3 f

(
Â′{a,b}

1 , . . . ,Â′{a,b}
n

)
.

Now, sequentially change Â1, . . . ,Ân to Â′
1, . . . ,Â′

n . Since f is monotone, and a Âi b ⇐⇒ a Â′
i

b, we have that f
(
Â′{a,b}

1 , . . . ,Â′{a,b}
j ,Â{a,b}

j+1 , . . . ,Â{a,b}
n

)
remains constant for all j ∈ I and thus

f
(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= f

(
Â′{a,b}

1 , . . . ,Â′{a,b}
n

)
.

• Non-dictatorial; Select an arbitrary voter i ∈ I . Since f is not a dictatorship, there exists
an a ∈ A and ÂÂÂ∈ P (A)I , such that a = topi (A) and f (ÂÂÂ) = b 6= a. Now, sequentially change
Â1, . . . ,Ân to Â{a,b}

1 , . . . ,Â{a,b}
n . Since f is monotone,and a Âi b ⇐⇒ a Â{a,b}

i b, we have that

f
(
Â{a,b}

1 , . . . ,Â{a,b}
j ,Â j+1, . . . ,Ân

)
remains constant for all j ∈ I , so f

(
Â{a,b}

1 , . . . ,Â{a,b}
n

)
= b. This

implies b Â a, with Fe (Â1, . . . ,Ân) =Â and therefore i cannot by a dictator in Fe. Since i was
arbitrary, Fe is not a dictatorship.

■

Nam Dang Master of Science Thesis



2-2 Social Choice and the Gibbard-Satterthwaite Theorem 19

2-2-2 Gibbard-Satterthwaite for weak preferences

With the Gibbard-Satterthwaite theorem for strong preferences, we can proof the extension for
weak preferences. For weak preferences, the definitions for manipulability, monotonicity, dicta-
torships and non-imposed are practically the same, but with P (A) instead of P̂ (A):

Definition 2.24 (manipulability). A social choice function f can be (strategically) manipulated by
voter i , if there exist for some profile (º1, . . . ,ºi , . . . ,ºn) ∈ P (A)I and some preference º′

i∈ P (A),
such that b Âi a and

f (º1, . . . ,ºi , . . . ,ºn) = a

f (º1, . . . ,º′
i , . . . ,ºn) = b.

Definition 2.25 (Monotonicity). A social choice function f is monotone if

f (º1, . . . ,ºi , . . . ,ºn) = a 6= b = f (º1, . . . ,º′
i , . . . ,ºn)

implies that a ºi b and a ¹′
i b.

Proposition 2.10. A social choice function f is non-manipulable if and only if it is monotone.

Proof. Assume f is manipulable. Then there is a profile (Â1, . . . ,Âi , . . . ,Ân) and Â′
i , such that b Âi a

and
f (Â1, . . . ,Âi , . . . ,Ân) = a 6= b = f (Â1, . . . ,Â′

i , . . . ,Ân),

so f is not monotone.

Inversely, assume that f is not monotone. Then there is a profile (º1, . . . ,ºi , . . . ,ºn) and preference
º′

i , such that
f (º1, . . . ,ºi , . . . ,ºn) = a 6= b = f (º1, . . . ,º′

i , . . . ,ºn),

and b Âi a or there is a profile (º1, . . . ,º′
i , . . . ,ºn) and ºi , such that

f (º1, . . . ,ºi , . . . ,ºn) = a 6= b = f (º1, . . . ,º′
i , . . . ,ºn),

and a Â′
i b. So f is not incentive compatible. ■

Definition 2.26 (Non-imposed). The social choice function f is a non-imposed, if for all a ∈ A,
there exist a profile π ∈ P (A)I , such that f (π) = a.

Definition 2.27 (Dictatorship). The social choice function f is a dictatorship if there exist a voter i
(the weak dictator), such that for any π ∈ P (A)I , if a ∈ topπi (A), then f (π) = a.

Theorem 2.11 (Gibbard-Satterthwaite for weak preference profiles). For |A| ≥ 3, if the social choice
function f is non-manipulable (monotone) and non-imposed, then f is a weak dictatorship.

Proof. Let f̂ be f restricted to P̂ (A)I , i.e. f̂ : P̂ (A)I → A and for all π ∈ P̂ (A)I , we have f (π) = f̂ (π).
First, we will show using Theorem 2.9 that f̂ is a dictatorship, with some dictator j . We then show
that j is the dictator of f .

It is clear that if f is non-manipulable, then f̂ is also non-manipulable. We show that f̂ is non-
imposed, by showing that for all i ∈ I and some π̂ ∈ P̂ (A)I , if a ∈ topπ̂i , then f̂ (π̂) = a. Suppose not,
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20 Preference Voting

then there exist some π̂ ∈ P̂ (A)I , where x is the top preference of all voters and f̂ (π̂) = f (π̂) 6= x.
Since f is non-imposed, there exists a profileπ, such that f (π) = x. Now we change the preferences
in π to the ones in π̂ one by one, i.e.

π0 =π= (º1, . . . ,ºn)

π1 =
(Â̂1,º2, . . . ,ºn

)
...

πn = π̂= (Â̂1, . . . ,Â̂n
)

.

There has to exists a smallest k ∈ (1, . . . ,n), where f (πk−1) = x 6= y = f (πk ). But this would con-
tradict monotonicity of f , because xÂ̂k y . Now, theorem 2.9 implies that f̂ is a dictatorship, with
some dictator j .

In the second part, we prove that j is also the dictator of f . Suppose j is not the dictator, then there
exists a profile π ∈ P (A)I , such that f (π) = x and x ∉ topπj (A). One by one, make x the single top
preference for every voter except j , i.e.

π1 =
(
º{x}

1 ,º2, . . . ,º j , . . . ,ºn

)
π2 =

(
º{x}

1 ,º{x}
2 , . . . ,º j , . . . ,ºn

)
...

πn−1 =πx =
(
º{x}

1 , . . . ,º{x}
j−1,º j ,º{x}

j+1, . . . ,º{x}
n

)
.

By monotonicity, x remains the winner at every consecutive πk , where k = 1, . . . ,n −1.

Similarly in the next step, let Â̂ be the strict preference that results from arbitrary breaking all ties
in º. One by one, we break all ties in πx for all voters except j , i.e.

πx
1 =

(
Â̂{x}

1 , . . . ,º{x}
j−1,º j ,º{x}

j+1, . . . ,º{x}
n

)
...

πx
n−1 =

(
Â̂{x}

1 , . . . ,Â̂{x}
j−1,º j ,Â̂{x}

j+1, . . . ,Â̂{x}
n

)
.

By monotonicity, x remains the winner for every consecutive πx
k , where k = 1, . . . ,n −1. If we now

break all ties in º j , then by Theorem 2.9, the winner will become some y ∈ topπj , but this contra-
dicts monotonicity, because if the winner becomes y instead of x, then we should have x º j y and
x≺̂ j y .

■
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Chapter 3

Two Juror Verdicts

The model in this chapter is based on the model in [1], which uses a three juror casting vote
scheme. Before searching for general results for three jurors, we look at a simpler two juror advisor-
decider model.

3-1 The Advisor-Decider Mechanism

Let the state of nature be either A or B . The state is unknown and we want to find out which is
most likely to be true. In an advisor-decider decision process, there are two jurors where one is the
advisor and the other is the decider. The adviser passes a vote A or B to the decider. The decider,
with the knowledge of the advisor’s choice and his own insights, gives his vote. The decider’s vote
is the final choice of this whole decision process.

An example of this, is a football game where the assistant referee flags if a player is off-side. Com-
bined with his own observation of the game, the main referee makes the final call for the refereeing
team.

A juror cannot observe the state of nature directly, but only a realisation of a random signal Si . The
random signal Si takes values in a continues interval S ⊆ R, and it represents the noisy observa-
tions of the jurors. The signal Si has different probability density functions, depending on the true
state of nature:

fi (si ), if nature is A

gi (si ), if nature is B.

The corresponding cumulative distributions are denoted as Fi (si ) and Gi (si ) respectively. We re-
strict ourselves to density functions that satisfy:

Definition 3.1.

1. fi (si ) is continuous in S .
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22 Two Juror Verdicts

2. fi (si ) = gi (−si ).

3. gi (si )/ fi (si ) is non-increasing in si .

Throughout the chapter, we will often make use of the following fact:

Fi (si ) = 1−Gi (−si ). (3-1)

We can show it by noting that property 2 implies: Fi (si ) = C −Gi (−si ). Taking the limit of si to
infinity, implies C = 1.

The jurors make a decision in what is called a Bayesian decision process. There exist extensive
literature on such processes, see [10], but we will deal with our example only. In addition to the
observation si , each jurors holds prior believes. Juror i ’s prior belief that the probability nature is
A, is π0. We assume that the jurors are unbiased, so without any information A and B are equally
probable; The default prior probability that nature is A is π0 = 1/2.

After i receives the observation si , then his posterior believe that nature is A is:

P (A|si ) = πi fi (si )

πi fi (si )+ (1−πi )gi (si )
.

The juror will then:

• Vote A, if P (A|si ) > 1/2.

• Vote B , if P (A|si ) < 1/2.

• Make a random choice between A and B with equal probability, if P (A|si ) = 1/2.

We can see that P (A|si ) = πi
πi+(1−πi )gi / fi

is non-decreasing in si , because gi / fi is non-increasing in
si . The higher si is, the stronger he believes that nature is A. We do not have to worry about the
case when fi (si ) = 0, because the jurors will never receive such signals.

Jurors can have different probability density functions. We say that a juror i has a higher ability
then j , if it is more likely for i to receive a higher signal, when nature is A, i.e. 1−Fi (s) ≥ 1−F j (s).
By symmetry, it is more likely for a higher ability juror to receive a lower signal, when nature is B .
The probability densities for each juror is public knowledge.

Assume two jurors i and j , where i is the advisor and j is the decider. Since the advisor has no
other information, besides a realisation si of his random signal, his prior is πi =π0. With his signal
si and prior pi , the decider makes a choice between A and B .

After the advisor’s vote, the decider is informed on which state i voted on, but not the advisor’s
signal value si . After the advisor voted some X ∈ {A,B}, the decider j will update his prior:

π j ,X = P (A|i voted X ) (3-2)

With the updated prior and a realisation s j , the decider makes a final decision between A and B .
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3-2 Linear Density Functions 23

The probability that the decider votes A, while the true state is A, is:

qA =P (A∩ j votes A)

=P (A)P ( j votes A|A)

=P (A)
[
P (i votes A∩ j votes A|A)+P (i votes B ∩ j votes A|A)

]
=P (A)

[
P (i votes A)P ( j votes A|A, i votes A)+P (i votes B)P ( j votes A|A, i votes B)

]
.

Similarly, The probability that the decider votes B , while nature is B , is qB . The Quality is Q, and it
is the probability a correct answer is given:

Q = qA +qB . (3-3)

3-2 Linear Density Functions

We start by analysing the problem with linear density functions, which are the simplest kind of
density functions. Alpern and Chen use the same kind of functions in [1]. Consider a juror i , who
has an ability ai ∈ [0,1]. In this case, a higher ability juror has a higher ai . The juror’s signal is a
random variable Si , that takes values in the signal space S = [−1,1]. The linear density functions
are:

fi (s) = 1+ai s

2
, if nature is A

gi (s) = 1−ai s

2
, if nature is B

The corresponding cumulative distribution functions are then:

Fi (s) = (s +1)(ai s −ai +2)

4
, if nature is A

Gi (s) = (s +1)(ai −ai s +2)

4
, if nature is B.

Examples of linear density functions are plotted in Figure 3-1.

Let there be two jurors i and j , where i has the role of advisor and j is the decider. The abilities
i and j , are denoted as a and b respectively. The advisor has a prior πi = π0 = 1/2. If i receives a
realisation si of his random signal, then he believes the probability that nature is A is:

P (A|si ) = π0 fi (si )

π0 fi (si )+ (1−π0)gi (si )

= fi (si )

fi (si )+ gi (si )

Note that if a = 0, then fi (si ) = gi (si ) = 1/2 and P (A|si ) = 1/2. In this case the advisor makes
a random choice between A and B , with equal probability. The lowest ability juror is no bet-
ter than a coin flip. For jurors with an ability a > 0, we have that P (A|si ) is strictly increasing in
si . That is because fi (si ) is strictly increasing and gi (si ) is strictly decreasing, which implies that
gi (si )/ fi (si ) is strictly decreasing. This implies that there is some threshold ti , where P (A|ti ) = 1/2
and P (A|ti ) > 1/2, for si > ti . For the advisor, this is when fi (ti ) = gi (ti ), and that is only when
ti = 0.
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Figure 3-1: Example of linear distribution functions with ai = 0.6. When nature is A the distri-
bution is fi (s), and when nature is B the distribution is gi (s).

Assume that nature is A. The probability that si > ti = 0 and that the juror will give the correct
verdict is the area under the curve fi (s), from s = ti = 0 to s = 1. The size of the area increases as a
is higher. A juror with the maximum ability of a = 1 gives the correct with probability 3/4.

When the advisor votes A, then the decider’s prior is updated:

π j ,A(a) =P (A|si > 0) = π0 (1−Fi (0))

π0 (1−Fi (0))+ (1−π0) (1−Gi (0))

=1−Fi (0)

=2+a

4
. (3-4)

In case a = 0, the prior is π j ,A(0) = 1/2, so having an advisor with the weakest ability, is like having
no advisor at all. Similarly, we find that updated prior is π j ,B (a) = 1−π j ,A(a) = 2−a

4 , if the advisor
voted B .

The decider, with prior π j and signal s j , believes the probability that nature is A is:

P
(

A|s j
)= π j ,A f j (s j )

π j ,A fi (s j )+ (1−π j ,A)g j (s j )
.

When the decider has the lowest ability b = 0, then:

P
(

A|s j
)={

π j ,A(a) ≥ 1
2 , if i voted A

π j ,B (a),≤ 1
2 if i voted B .

This means that the decider with the lowest ability, will always follow the advisor’s vote.

If j ’s ability is b > 0, then, as before, we can find a threshold t j , such that P
(

A|s j
)> 1/2, if s j > t j . If

the advisor voted A, this is:

t j ,A = 1−2π j ,A

b
=− a

b2
, (3-5)
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3-2 Linear Density Functions 25

and if he voted B , this is t j ,B =−t j ,A . Note that if a/b ≥ 2 , then t j , A ≤−1 and t j ,B ≥ 1, so when the
advisor’s ability is twice as high as the decider’s ability, the decider will always follow the advisor.
The decider’s signal is irrelevant. Take the same jurors, and switch their roles, so the better juror
votes last. The threshold is some value close to zero, and the decider will follow the advisor, if the
magnitude of his signal is small. In this case, the decider’s signal is relevant in the decision process.
Intuitively, using all available information should give a better change of getting the correct verdict.
Later on, we will see that letting the better juror be the decider, is indeed optimal.

The probability that the correct verdict is given by the decider, is the quality:

Q(a,b) =π0
[
P (si > 0|A)P

(
s j > t j ,A|A

)+P (si < 0|A)P
(
s j > t j ,B |A

)]
+ (1−π0)

[
P (si < 0|B)P

(
s j < t j ,B |B

)+P (si > 0|B)P
(
s j < t j ,A|B

)]
=π0

[
(1−Fi (0))

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))]
+ (1−π0)

[
Gi (0)G j

(
t j ,B

)+ (1−Gi (0))G j
(
t j ,A

)]
= [1−Fi (0)]

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))

Q(a,b) =
{

2+a
4 if a

b ≥ 2 or b = 0,
a2+4b2+8b

16b if 0 ≤ a
b < 2.

(3-6)

For ability levels a and b, we want to find out which juror should be the decider, if we want to
maximise the quality Q(a,b). Let the difference in quality when switching roles between advisor
and decider be

∆(a,b) =Q(a,b)−Q(b, a). (3-7)

We can prove the following proposition:

Proposition 3.1. Let there be two jurors i and j , with ability levels a and b respectively. If a ≤ b,
then ∆i j =Qi j −Q j i ≥ 0. To maximise the quality, the worst juror should be the advisor and the best
juror should be the decider.

Proof. We can assume that b 6= 0, because if b = 0, then also a = 0, so the role assignment does not
matter.

We will consider two cases for the rest of the proof. In the first case we considers: b/a ≥ 2 or a = 0.
We then have:

∆i j =a2 +4b2 +8b

16b
− 2+b

4

= a2

16b
≥0.

The last case is when:
1 ≤ b/a < 2. (3-8)

The quality difference is:

∆i j =a2 +4b2 +8b

16b
− b2 +4a2 +8a

16a

=a3 −4a2b +4ab2 −b3

16ab
(3-9)
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26 Two Juror Verdicts

If we rewrite b = a +ε, then under (3-8), ε has to satisfy 0 ≤ ε< a. We then find:

a3 −4a2b +4ab2 −b3 = ε(a2 −ε2 +aε
)≥ 0,

since ε≤ a. ■

There are limitations with the linear distribution in this section. One limitation is that the two
best possible jurors only have 13/16 change of getting the correct verdict. In the next section we
are going to look at a different distribution, where it is possible that the probability of getting the
correct verdict goes to 1.

3-3 β-Density Functions

With the β-distribution, we use the signal space S = [−1,1]. A juror i with ability level ai ∈ [1,∞)
has the probability density function:

fi (si ) = ai

2

(
1+ si

2

)ai−1

if nature is A

gi (si ) = ai

2

(
1− si

2

)ai−1

if nature is B ,

and cumulative distribution function

Fi (si ) =
(

1+ si

2

)ai

if nature is A

Gi (si ) = 1−
(

1− si

2

)ai

if nature is B.

Examples of the beta distribution functions for different ability levels are shown in Figure (3-2).
The advantage of using beta density functions over the linear ones, is that we can model very com-
petent jurors. With a priorπi = 1/2, the probability that i gives the correct verdict goes to one as the
ability level goes to infinity, while in the model with linear densities, the best juror is only correct
with probability 3/4.

Similar to the previous section, we have two jurors i and j , where i is the advisor and j is the
decider. The ability levels for i and j are a and b respectively. Both jurors receive signal values si

and s j . The advisor’s prior is πi =π0, and the probability he believes that nature is A is:

P (A|si ) = π0 fi (si )

π0 fi (si )+ (1−π0)gi (si )

= (1+ si )a−1

(1+ si )a−1 + (1− si )a−1 (3-10)

For the lowest ability level, a = 1, we have that P (A|si ) = 1/2 and the advisor will randomly select
between A and B with equal probability.

If a > 1, then P (A|si ) is strictly increasing. This means that there is threshold ti = 0, where P (A|ti =
0) = 1/2, and the advisor votes A, if si > ti , and he votes B , if si < ti . Since the distribution is
continuous, the probability that si = 0 is zero.
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Figure 3-2: Example of the beta distribution functions f (s) with different a.

If the advisor i voted A, then the decider’s updated prior is:

π j ,A =P (A|si > 0) = π0 (1−Fi (0))

π0 (1−Fi (0))+ (1−π0) (1−Gi (0))

=1−Fi (0)

=1−2−a . (3-11)

When the advisor has the lowest ability level a = 1, then the decider’s prior is π j ,A = 1/2, which
is like having no advisor at all. As the advisor’s ability level gets higher the prior increases, and
π j ,A → 1 as a →∞. Similarly, if the advisor voted B then the decider’s prior is π j ,B = 2−a .

For some prior π j , the decider believes the probability that nature is A is:

P
(

A|s j
)= π j (1+ s j )b−1

π j (1+ s j )b−1 + (1−π j )(1− s j )b−1
. (3-12)

For b > 1, Formula (3-12) is strictly increasing, so we can find a threshold, which is a signal when
P

(
A|s j

)= 1/2. If the advisor voted A, then the threshold is:

t j ,A =
(

1−πA
πA

) 1
b−1 −1(

1−πA
πA

) 1
b−1 +1

=
( 1

2a−1

) 1
b−1 −1( 1

2a−1

) 1
b−1 +1

. (3-13)
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Note the following facts:

t j ,A


= 0, if a = 0,

→−1, as a →∞
→−1, as b → 1+

→ 0, as b →∞

(3-14)

where b → 1+ is the right-handed limit.

For b = 1, then the decider has the lowest ability, and we have have that:

P
(

A|s j
)=π j =

{
1−2−a if i voted A

2−a if i voted B.

This means that the decider will always follow the advisor’s advice, when a > 1, or he will make a
random choice with equal probability, when a = 1.

When b > 1 The quality is the probability that a correct verdict is given by the decider, which is:

Qb>1(a,b) =π0
[
P (si > 0|A)P

(
s j > t j ,A|A

)+P (si < 0|A)P
(
s j > t j ,B |A

)]
+ (1−π0)

[
P (si < 0|B)P

(
s j < t j ,B |B

)+P (si > 0|B)P
(
s j < t j ,A|B

)]
=π0

[
(1−Fi (0))

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))]
+ (1−π0)

[
Gi (0)G j

(
t j ,B

)+ (1−Gi (0))G j
(
t j ,A

)]
= [1−Fi (0)]

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))
=1−

 ( 1
2a−1

) 1
b−1( 1

2a−1

) 1
b−1 +1

b

+2−a


( 1

2a−1

) b
b−1 −1(( 1

2a−1

) 1
b−1 +1

)b



=1−2−a

 (2a −1)
( 1

2a−1

) b
b−1 +1(( 1

2a−1

) 1
b−1 +1

)b


=1− 2−a(( 1

2a−1

) 1
b−1 +1

)b−1

=1− 2

b
f j (−t j ,A)Fi (0)

When b = 1, the decider is correct if the advisor is correct, so the quality is:

Qb=1(a,b) =π0
[
P (si > 0|A)P

(
s j > t j ,A|A

)+P (si < 0|A)P
(
s j > t j ,B |A

)]
+ (1−π0)

[
P (si < 0|B)P

(
s j < t j ,B |B

)+P (si > 0|B)P
(
s j < t j ,A|B

)]
=π0(1−Fi (0))+ (1−π0)Gi (0)

=1−Fi (0)

=1−2−a .

The overall quality is:

Q(a,b) =
{

Qb=1(a,b) if b = 1

Qb>1(a,b) if b > 1,
(3-15)
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Figure 3-3: The quality for a,b ∈ [1,5].

and a plot is given in Figure 3-3. When 2 jurors of the lowest abiltiy, then the quality is 1/2, and the
quality goes to one as the jurors get better.

We now want to know which role assignment is optimal to maximise the quality. Assume now
that a ≤ b, so i has the same or has less ability then j . We can assume that b > 1, because role
assignment does not matter when a = b = 1. The quality difference when i is the advisor or when
j is the advisor is:

∆(a,b) =Q(a,b)−Q(b, a)

= 2−b((
1

2b−1

) 1
a−1 +1

)a−1 − 2−a(( 1
2a−1

) 1
b−1 +1

)b−1

=
2b

((
1

2b−1

) 1
a−1 +1

)a−1

−2a
(( 1

2a−1

) 1
b−1 +1

)b−1

2a+b

((
1

2b−1

) 1
a−1 +1

)a−1 (( 1
2a−1

) 1
b−1 +1

)b−1
. (3-16)

Numerical computations suggest that ∆(a,b) ≥ 0, when a ≤ b, and it is strictly higher for some
values. We have tested it for values a,b ∈ [1,20] that lie on a two dimensional equidistant mesh of
100 by 100. See figure 3-4 for an example plot with a smaller range. Numerical results suggest the
following conjecture:

Conjecture 1. If a ≤ b, then∆(a,b) ≥ 0. In other words, the optimal role assignment that maximises
the quality, is one where the juror with lesser ability is the advisor.

The analytical proof that ∆(a,b) ≥ 0 is still an open problem. To give a start, note that the denomi-
nator of (3-16) is positive, we have that ∆i j ≥ 0 if and only if:

2a

((
1

2a −1

) 1
b−1 +1

)b−1

−2b

((
1

2b −1

) 1
a−1 +1

)a−1

≥ 0. (3-17)
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Figure 3-4: The quality difference for a,b ∈ [1,5] and a ≤ b.

3-4 Gaussian Density

In this section, we use Gaussian density functions. When nature is A, the random signals are Gaus-
sian distributed with mean 1 and when nature is B , the mean is -1. The juror’s ability is represented
by the variance, where jurors with higher ability have lower variance.

Let the signal space be S = R. Juror i has an ability level ai ∈ (0,∞) and his signal is a random
variable Si , with distribution:

Si ∼N (1, a2
i ), if nature is A

Si ∼N (−1, a2
i ), if nature is B.

The density and cumulative distribution functions, when nature is A, are denoted as fi (si ) and
Fi (si ) respectively. When nature is B , these are denoted as gi (si ) and Gi (si ). An example plot is
given in Figure 3-5. Note that higher ability jurors have a lower ai . This is different compared to
the models with linear and β density functions, where higher ai represent better jurors.

Let πi be i ’s prior probability that nature is A. The probability that nature is A, when i receives a
realisation of his random signal si is:

P (A|si ) = f (s)πi

πi f (si )+ (1−πi )g (si )
.

We can see that P (A|si ) is strictly increasing in si , because

gi (si )

fi (si )
= e

−4si
2a2

i

is strictly decreasing in si . This means that there exists some threshold ti , such that P (A|ti ) = 1/2
and the juror would believe that P (A|si ) > 1/2, if si > ti .

It can be found that the solution for ti is:

ti =
a2

i

2
ln

(
1−πi

πi

)
. (3-18)
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Figure 3-5: Example of probability density functions f (s) and g (s)

Note the following facts:

ti


= 0, if πi = 1

2

→−∞, as πi → 1

→∞, as πi → 0.

Consider 2 jurors where i is the advisor and j is the decider. Their abilities are a and b respectively.
The advisor’s prior is πi =π0 = 1/2, and therefore his threshold is ti = 0.

When the decider j get advised A, then his prior is:

π j ,A = P (A|si > 0) = π0(1−Fi (0))

π0(1−Fi (0))+ (1−π0)(1−Gi (0))

=1−Fi (0)

=1

2
erfc

(
1

−a
p

2

)
,

and his threshold is:

t j ,A = b2

2
ln

2−erfc
(

1
−a

p
2

)
erfc

(
1

−a
p

2

)
 .

Similarly, we can find that π j ,B = 1−π j ,A and t j ,B = −t j ,A , if the advisor voted B . The probability
that a correct verdict is given by the decider, is the quality:

Q(a,b) =π0
[
P (si > 0|A)P

(
s j > t j ,A|A

)+P (si < 0|A)P
(
s j > t j ,B |A

)]
+ (1−π0)

[
P (si < 0|B)P

(
s j < t j ,B |B

)+P (si > 0|B)P
(
s j < t j ,A|B

)]
=π0

[
(1−Fi (0))

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))]
+ (1−π0)

[
Gi (0)G j

(
t j ,B

)+ (1−Gi (0))G j
(
t j ,A

)]
= [1−Fi (0)]

(
1−F j

(
t j ,A

))+Fi (0)
(
1−F j

(
t j ,B

))
(3-19)
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Figure 3-6: Plot of the quality.

0
200

155

0.005

a b

1010

Q
(a

,b
)

15 5

0.01

20 0

0.015

Figure 3-7: Plot of the quality difference when a ≥ b.

A plot of the quality is shown in Figure 3-7. Note how the quality goes to one as the a and b gets
lower, and the quality goes to 1/2 as the a and b gets higher.

We now want to know what optimal role assignment, when jurors have different abilities. Define
the quality difference:

∆(a,b) =Q(a,b)−Q(b, a).

The values ∆(a,b) are computed for a,b ∈ [0.01,100] that lie on an equidistant mesh of size 500
by 500. For a ≥ b, we find that ∆(a,b) ≥ 0. An example plot of ∆(a,b) on a smaller ability range is
shown in Figure 3-7. Numerical results suggest the following conjecture:

Conjecture 2. If a ≥ b, then∆(a,b) ≥ 0. In other words, the optimal role assignment that maximises
the quality, is one where the juror with lesser ability is the advisor.
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3-5 Conclusion

We have given the advisor-decider mechanism, and analysed it with the linear-, β-, and Gaussian
probability density functions. We wanted to find out what the optimal role assignment is for jurors
with different ability levels. For linear densities, we have analytically shown that the worst juror
should be the advisor. For β-, and Gaussian densities, numerical results also suggest that the worst
juror should be the advisor. The analytical proofs are still an open problem. We conjecture that the
worst juror should be the advisor for any density function that satisfy the properties in Definition
3.1.
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Chapter 4

Three Member Casting Vote Scheme

Let the state of nature be either A or B . Inside a casting vote scheme, three jurors have to decide
which state is most likely to be true. The jurors cannot directly observe the state of nature, but only
random signals that are correlated with the state of nature. First, two jurors vote independently
with respect to each other. If the decisions from these two jurors are not unanimous, than the
third juror casts the final vote. A real world example, is the procedure of accepting a paper into a
journal. The paper is first reviewed by two referees. If they don’t have the same opinion, than the
editor makes the final call.

Here we will study the model given by Alpern and Chen in [1]. According to their results, when
jurors have different abilities, the median ability juror should have the casting vote, if we want to
maximise the quality of the final verdict. Jurors receive random signal from a linear probability
density function. We want to find out if this result is also true for a larger class of density functions.

4-1 The Casting Vote Scheme

In this section, we introduce the model of the casting vote scheme. First, two jurors will place their
votes independently. We call them the initial jurors. If they both vote for the same state, then that
state will have the majority vote, and it will be the final verdict. If they do not vote unanimously,
then the third juror is the casting voter, who breaks the tie. With the knowledge of what each
previous juror has voted, he will make a final decision. The question is: For jurors of different
ability levels, who should be the tiebreaker, if we want the maximise the probability of getting the
correct verdict?

The jurors cannot directly observe the state of nature, but only a random signal Si , that is corre-
lated with the state of nature. The random signal Si takes values in S , and the probability density
function depends on the true state of nature, and it is:

fi (si ), if nature is A

gi (si ), if nature is B.
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36 Three Member Casting Vote Scheme

The corresponding cumulative distributions are denoted as Fi (si ) and Gi (si ) respectively. We re-
strict ourselves to a class of densities functions that satisfy:

Definition 4.1.

1. fi (si ) is continues in S .

2. fi (si ) = gi (−si ).

3. gi (si )/ fi (si ) is non-increasing in si .

Throughout the chapter, we will often make use of the following fact:

Fi (si ) = 1−Gi (−si ). (4-1)

Jurors can have different probability density functions. We say that a juror i has a higher ability
then j , if it is more likely for i to receive a higher signal, when nature is A, i.e. juror i ’s signal has
first order stochastic dominance over j ’s signal. By symmetry, it is more likely for a higher ability
juror to receive a lower signal, when nature is B . The probability densities for each juror is public
knowledge.

The jurors make a decision in what is called a Bayesian decision process. There exist extensive
literature on such processes, see [10], but we will deal with our example only. In addition to the
observation si , each jurors holds prior believes. Juror i ’s prior belief that the probability nature is
A, is π0. We assume that the jurors are unbiased, so without any information A and B are equally
probable; The default prior probability that nature is A is π0 = 1/2.

After i receives the observation si , then his posterior believe that nature is A is:

P (A|si ) = πi fi (si )

πi fi (si )+ (1−πi )gi (si )
.

The juror will then:

• Vote A, if P (A|si ) > 1/2.

• Vote B , if P (A|si ) < 1/2.

• Make a random choice between A and B with equal probability, if P (A|si ) = 1/2.

We can see that P (A|si ) = πi
πi+(1−πi )gi / fi

is non-decreasing in si , because gi / fi is non-increasing in
si . The higher si is, the stronger he believes that nature is A. We do not have to worry about the
case when fi (si ) = 0, because the jurors will never receive such signals.
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4-1-1 Voting Procedure and Quality of Verdict

Let there be three jurors i , j , and k, where i and j are the initial jurors, and k is the casting juror.
The jurors i and j , have the prior πi =π j =π0 = 1/2.

The initial jurors receive the values of their random signals and vote for the state they believe is
most likely. If the both vote for the same state, then that state is the final verdict. If both jurors vote
oppositely, let us say i votes A and j votes B , then the casting juror’s updated prior is:

π j =πAB =P (A|i votes A and j votes B)

=P (A)P (i votes A and j votes B |A)

P (i votes A and j votes B)

=P (A)P (i votes A|A)P ( j votes B |A)

P (i votes A and j votes B)
(4-2)

With the updated prior and his own signal, the casting juror will give the final verdict.

Let qA be the probability that the final verdict is A, on the condition that nature is A:

qA =P (i and j vote A|A)

+P (i votes A, j votes B , and k votes A|A)

+P (i votes B , j votes A, and k votes A|A).

The probability qB is defined the same way, but for B , instead of A. The quality Q is the probability
that a correct verdict is given:

Q =π0qA + (1−π0)qB . (4-3)

4-2 Linear Density Functions

In this section, we use linear density functions, which are the same used by Alpern and Chen in
[1]. Each juror’s signal, is a random variable taking values in S = [−1,1] and has the probability
density function:

fi (s) = 1+ai s

2
when nature is A

gi (s) = 1−ai s

2
when nature is B.

An example plot is given in Figure 4-1. The cumulative distribution functions are:

Fi (s) = (s +1)(ai s −ai +2)

4
when nature is A

Gi (s) = (s +1)(ai −ai s +2)

4
when nature is B.

Let there be three jurors i , j and k, with ability levels a, b and c respectively. The initial jurors are
i and j , and the tiebreaker is k. The jurors i and j believe that the prior probability nature is A,
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Figure 4-1: Example of linear distribution functions with ai = 0.6. When nature is A the distri-
bution is fi (s), and when nature is B the distribution is gi (s).

is πi = π j = π0 = 1/2. When an initial juror, let us say i , receives his signal si , then he believes the
state is A with posterior probability:

P (A|si ) = π0 fi (s)

π0 fi (si )+ (1−π0) gi (si )

= 1+as

2

We can see that a juror with ability a = 0 is no better than a fair coin flip. When a > 0, we have
P (A|si ) > 1

2 , if and only if si > 0. The juror votes A if his signal is si > 0, and he votes B if his signal
is si < 0. The same holds for juror j .

When i and j both vote for the same state of nature, then that state is the final verdict. If they vote
opposite compared to each other, then the casting juror takes both votes and his own signal into
consideration to pass a final verdict. The tiebreaker only knows what each initial juror voted and
not the signals they receive. Juror j ’s updated prior, when i votes A and j votes B , is:

πAB = π0 (1−Fi (0))F j (0)

π0 (1−Fi (0))F j (0)+ (1−π0) (1−Gi (0))G j (0)

= (2+a)(2−b)

8−2ab

= 1

2
+ a −b

4−ab

Similarly, we find that πB A = 1−πAB . Note the following facts:

πAB


= 0, if a = b,

> 1/2, if a > b,

< 1/2, if a < b.

(4-4)
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So when the initial jurors have the same ability and vote oppositely, then the tiebreaker is not better
informed than before. When the initial jurors have different abilities, then the updated prior will
be biased towards the decision of the better juror.

When i votes A and j votes B , then the tiebreaker believes the probability that nature is A, is:

P (A|i votes A, j votes B , sk ) = πAB fk (sk )

πAB fk (sk )+ (1−πAB ) gk (sk )
.

When c = 0, then P (A|i votes A, j votes B , sk ) =πAB , so the worst ability tiebreaker always believes
his prior, and he follows the decision of the juror with the highest ability.

For c > 0, there exist a threshold tAB , such that P (A|i votes A, j votes B , sk ) > 1/2, if sk > tAB . The
threshold can be found by solving:

P (A|i votes A, j votes B , tAB ) = πAB + ctABπAB

2ctABπAB − ctAB +1

= 1

2
.

The solution is:

tAB (a,b,c) = 1−2πAB

c
= 2(b −a)

c(4−ab)
(4-5)

Similarly, we find that tB A =−tAB .

When πAB > 1/2, then tAB < 0. For negative signals sk , that are close enough to zero, the tiebreaker
votes A, while the initial jurors vote B for any negative signal. We also have that tAB > 0, if πAB <
1/2. From (4-4), we know the tiebreaker’s prior is biased towards the decision of the better juror.
This implies that the threshold is negative if the better juror voted A, and positive if the better juror
voted B . In the case that c ≤ |1−2πAB |, then |tAB | ≥ 1. So if the tiebreaker’s ability is very low, then
he will always follow the decision of the better initial juror.

4-2-1 Quality of Verdict

The quality Q is the probability that a correct verdict is given at the end:

Q =π0qA + (1−π0)qB , (4-6)

where qA is the probability that the verdict is A, conditionally that nature is A. The same definition
holds for qB .

For c > |1−2πAB |, we have that |tAB | < 1, and:

qA = (1−Fi (0))
(
1−F j (0)

)
+ (1−Fi (0))F j (0)(1−Fk (tAB ))

+Fi (0)
(
1−F j (0)

)
(1−Fk (tB A)) (4-7)

and

qB =Gi (0)G j (0)+ (1−Gi (0))G j (0)Gk (tAB )+Gi (0)
(
1−G j (0)

)
Gk (tB A)

= (1−Fi (0))(1−Fb(0))+Fi (0)
(
1−F j (0)

)
Gk (−tB A)+ (1−Fi (0))F j (0)Gk (−tAB )

= (1−Fi (0))
(
1−F j (0)

)+Fi (0)
(
1−F j (0)

)
(1−Fk (tB A))

+ (1−Fi (0))F j (0)(1−Fk (tAB ))

= qA .
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So we have Q = qA ≡ q . Substituting Fa(0), Fb(0) and tAB into 4-7, we get:

q(a,b,c) = 1

32

(
4(4+a +b)+ 4(a −b)2

(4−ab)c
+ (4−ab)c

)
(4-8)

For the case c ≤ |1−2πAB | (including c = 0), the tiebreaker always follows the highest ability initial
juror. Let F (s) and G(s) be the cumulative distribution functions of the highest ability juror. So the
quality, when c < |1−2πAB | or c = 0, is:

Q =π0(1−F (0))+ (1−π0)G(0)

=(1−F (0)) = qA

=max{a,b}+2

4
.

Combining (4-7) and (4-8), the quality is:

Q(a,b,c) =
{

q(a,b,c) if tAB (a,b,c) < 1
max{a,b}+2

4 if tAB (a,b,c) ≥ 1
(4-9)

With different ability jurors, we want to know what the optimal role assignment is. It turns out the
median ability juror should always be the tiebreaker.

Theorem 4.1 (Alpern and Chen). Given any set of jurors with abilities a,b,c ∈ [0,1] and a ≤ b ≤ c,
then the quality is maximised if the juror with median ability b is the tie breaker, i.e. Q(a,c,b) ≥
Q(a,b,c) and Q(a,c,b) ≥Q(b,c, a).

Proof. Let us first define

∆1(a,b,c) =Q(a,c,b)−Q(a,b,c)

∆2(a,b,c) =Q(a,c,b)−Q(b,c, a).

We want to show that∆1(a,b,c) ≥ 0 and∆2(a,b,c) ≥ 0, for any set of abilities in K = {(a,b,c) : 0 ≤ a ≤ b ≤ c ≤ 1}.

First, note the following facts, which can be confirmed using 4-5:

tAB (b,c, a) = 2(c −b)

a(4−bc)
≥ 1 ⇐⇒ P1(a,b,c) ≡ abc −4a −2b −2c ≥ 0 (4-10)

tAB (a,c,b) = 2(c −a)

b(4−ac)
≥ 1 ⇐⇒ P2(a,b,c) ≡ abc −2a −4b +2c ≥ 0 (4-11)

tAB (a,b,c) = 2(b −a)

c(4−ab)
≤ 2b

3c
< 1. (4-12)

Next we will look at the two possible cases tAB (a,c,b) ≥ 1 and tAB (a,c,b) < 1.

Case 1: tAB (a,c,b) ≥ 1. According to 4-9 we have that

Q(a,c,b) = c +2

4
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Since P1(a,b,c)−P2(a,b,c) = 2(b −a) ≥ 0, using 4-10 and 4-11, we can see that:

tAB (a,c,b) ≥ 1 =⇒ P2(a,b,c) ≥ 0 =⇒ P1(a,b,c) ≥ 0 =⇒ tAB (b,c, a) ≥ 1.

This implies Q(b,c, a) = (c +2)/4 and therefore:

∆2(a,b,c) =Q(a,c,b)−Q(b,c, a) = 0.

The next step is to show that ∆1(a,b,c) ≥ 0. Using 4-12 and 4-9, we know that Q(a,b,c) = q(a,b,c)
and therefore

∆1(a,b,c) = c +2

4
−q(a,b,c) = d1(a,b,c)

32c(4−ab)
, (4-13)

where
d1(a,b,c) ≡−4a2 +8ab −4b2 −16ac −16bc +4a2bc +4ab2c +16c2 −a2b2c2.

The denominator of 4-13 is always positive, so we only need to show that d1(a,b,c) ≥ 0. Note that
according to 4-11, we have that P2(0,b,c) = −4b + 2c ≥ 0, so c ≥ 2b. We are going to prove that
d1(a,b,c) ≥ 0 with the following two steps:

1. d1(a,b,c) is non-decreasing in c, for c ≥ 2b.

2. d1(a,b,2b) ≥ 0, for a ≤ b ≤ 1/2.

For step 1, the partial derivative of d1(a,b,c) with respect to c is:

∂d1(a,b,c)

∂c
=−16(a +b)+32c +4a2b +4ab2 −2a2b2c

≥0,

because 0 ≤ a ≤ b ≤ c ≤ 1, implies 32c ≥ 16(a + b), and 4a2b ≥ 2a2b2c. We have shown that
d1(a,b,c) is non-decreasing in c, for c ≥ 2b. For step 2, we have that:

d1(a,b,2b) =−4a2 −24ab +28b2 +8a2b2 +8ab3 −4a2b4.

The partial derivative of d1(a,b,2b) with respect to b is:

∂d1(a,b,2b)

∂b
=−24a +56b +16a2b +24ab2 −16a2b3

≥0,

because 56b ≥ 24a and 16a2b ≥ 16a2b3. Since d1(a,b,2b) is non-decreasing in b, and d1(a, a,2a) =
16a4 −4a6 ≥ 0, we have that d1(a,b,2b) ≥ 0.

Case 2: tAB (a,c,b) < 1. We have Q(a,c,b) = q(a,c,b), which implies

∆1(a,b,c) = q(a,c,b)−q(a,b,c) = (c −b)d2(a,b,c)

8bc(4−ab)(4−ac)
,

where

d2(a,b,c) = 4a2 −8ab +4b2 −8ac +4bc +2a2bc −ab2c +4c2 −abc2.
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If we can show d2(a,b,c) ≥ 0, then ∆2(a,b,c) ≥ 0. This can be done by taking partial derivatives of
d2(a,b,c). The partial derivative to b is

∂d2(a,b,c)

∂b
= 8(b −a)+ c(4+2a2 −2ab −ac).

We can show that ∂d2(a,b,c)
∂b ≥ 0. First of all 8(b −a) ≥ 0 and secondly

c(4+2a2 −2ab −ac) ≥ c(4+0−2−1) = c ≥ 0.

With a similar argument, we also have

∂d2(a,b,c)

∂c
= 8(b −a)+b(4+2a2 −2ac −ab) ≥ 0.

Since the partial derivatives of d2(a,b,c) to b and c are positive, d2(a,b,c) is an increasing function
in b and c. So we can conclude d2(a,b,c) ≥ d2(a, a, a) = 0 and consequently ∆2(a,b,c) ≥ 0.

The last thing to show is ∆2(a,b,c) ≥ 0. We consider two separate cases: tAB (b,c, a) ≥ 1 and
tAB (b,c, a) ≤ 1.

If tAB (b,c, a) ≥ 1, then Q(b,c, a) = c+2
4 and

∆2(a,b,c) = q(a,c,b)− c +2

4
= (P2(a,b,c))2

32b(4−ac)
≥ 0.

If tAB (b,c, a) ≤ 1, then

∆2(a,b,c) = q(a,c,b)−q(b,c, a) = (b −a)d3(a,b,c)

8ab(4−ac)(4−bc)
,

where
d3(a,b,c) =−4a2 −4ab −4b2 +8ac +8bc +a2bc +ab2c −4c2 −2abc2.

In Appendix A we show that the following optimisation problem:

min
a,b,c

d3(a,b,c)

s.t. P1(a,b,c) ≤ 0

0 ≤ a ≤ b ≤ c ≤ 1,

has the optimal objective function value d3 = 0.

■

4-3 β-Density Functions

With the β-distribution, we use the signal space S = [−1,1]. A juror i has a ability level ai ∈ [1,∞),
and his probability density function is:

fi (si ) = ai

2

(
1+ si

2

)ai−1

if nature is A

gi (si ) = ai

2

(
1− si

2

)ai−1

if nature is B ,
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Figure 4-2: Example of the beta distribution functions f (s) with different a.

His cumulative distribution function is:

Fi (si ) =
(

1+ si

2

)ai

if nature is A

Gi (si ) = 1−
(

1− si

2

)ai

if nature is B.

Examples of the beta distribution functions for different ability levels are shown in Figure (4-2).
The advantage of using beta density functions over the linear densities, is that we can model very
competent jurors. With a prior πi = 1/2, the probability that i gives the correct verdict goes to one
as the ability level goes to infinity, while in the model with linear densities, the best juror is only
correct with probability 3/4.

Similar to the previous section, we have three jurors i , j and k, where i and j are the initial jurors,
and k is the tiebreaker. The ability levels for i , j and k, are a, b and c respectively. The private
signals corresponding to each juror are si , s j and sk . The initial juror’s prior are πi =π j =π0 = 1/2.
An initial juror, for example i , believes the probability that nature is A, is:

P (A|si ) = π0 fi (si )

π0 fi (si )+ (1−π0)gi (si )

= (1+ si )a−1

(1+ si )a−1 + (1− si )a−1 (4-14)

For the lowest ability level, a = 1, we have that P (A|si ) = 1/2, and in such case, the juror will ran-
domly select between A and B with equal probability.

When the initial jurors vote for the same state, then we are done, and that state is the final verdict.
If they vote opposite to each other, the casting juror has to make the final call. The tiebreaker’s
updated prior, when i votes A, and j votes B , is:
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πAB (a,b,c) = π0 (1−Fi (0))F j (0)

π0 (1−Fi (0))F j (0)+ (1−π0) (1−Gi (0))G j (0)

= 2a −1

2a +2b −2

Note the following facts:

πAB (a,b,c)



= 1/2, if a = b,

< 1/2, if a < b,

> 1/2, if a > b,

→ 0, as b →∞,

→ 1, as a →∞.

Similarly, we can find that the prior is updated to πB A = 1−πAB , when i votes B , and j votes A.

The probability that the tiebreaker believes that nature is A, is:

P (A|i votes A, j votes B , sk ) = πAB fk (sk )

πAB fk (sk )+ (1−πAB ) gk (sk )
.

When the tiebreaker has the lowest ability, c = 1, then his posterior is the same as his prior. Which
means that he follows the juror with the highest ability.

For c > 1, there is some threshold tAB , such that

P (A|i votes A, j votes B , sk ) > 1/2,

for sk > tAB . This threshold is:

tAB (a,b,c) =
(

1−πAB
πAB

) 1
c−1 −1(

1−πAB
πAB

) 1
c−1 +1

=
(

2b−1
2a−1

) 1
c−1 −1(

2b−1
2a−1

) 1
c−1 +1

.

4-3-1 Quality of Verdict

The quality Q is the probability that a correct verdict is given. We want to know for jurors with
different abilities, which role assignment maximises Q.

Let us denote the cumulative distribution function of the best initial juror as F (s) and G(s). When
c = 1, then that quality is the probability that the best initial juror gives the correct verdict:

Q(a,b,c) =π0 (1−F (0))+ (1−π0)G(0)

= (1−F (0))

=
(

1

2

)max(a,b)

.
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Table 4-1: Quality comparison for different tiebreakers. Abilities are sorted as a ≤ b ≤ c.

Ability levels (a,b,c) Q (b,c, a) Q (a,c,b) Q (a,b,c)

(1.0, 1.1, 2.3) 0.66267 0.79180 0.79180
(3.2, 4.1, 4.6) 0.98770 0.98867 0.98749
(2.1, 2.2, 2.3) 0.88060 0.88115 0.88052
(1.0, 1.6, 3.3) 0.78646 0.89797 0.89735
(1.4, 2.5, 3.9) 0.90663 0.94385 0.93426
(1.9, 3.3, 4.3) 0.95969 0.96985 0.96117
(2.6, 4.4, 5.0) 0.98753 0.98936 0.98647
(2.8, 3.8, 4.3) 0.98047 0.98234 0.98011
(3.9, 4.7, 4.9) 0.99430 0.99443 0.99417
(1.4, 2.1, 2.8) 0.85401 0.87868 0.86611

When c > 1, the quality is:

Q(a,b,c) =q(a,b,c)

= (1−Fi (0))
(
1−F j (0)

)
+ (1−Fi (0))F j (0)(1−Fk (tAB ))

+Fi (0)
(
1−F j (0)

)
(1−Fk (−tAB ))

=2−a−b

−(
2a −1

) 1(
2b−1
2a−1

) 1
1−c +1


a

−
(
2b −1

) 1(
2b−1
2a−1

) 1
c−1 +1


a

+2a+b −1

 ,

where we have used the fact that qA = qB ≡ q .

For jurors with different ability levels, we want to know which juror should be the casting juror, if
we want to maximise the quality of the final verdict. We perform a numerical experiment where
we randomly select 100000 ability sets (a,b,c), in the interval [1,20]. When we compute and com-
pare qualities for different casting juror roles, it turns out that the median ability juror should be
the tiebreaker. See Table 4-1 for a couple of examples. Note that the quality is the highest when
the median ability juror is the tiebreaker. Based on the numerical results, we give the following
conjecture:

Conjecture 3. For β-density functions, the quality is maximised when the median juror has the
casting vote i.e., for 1 ≤ a ≤ b ≤ c:

∆1(a,b,c) =Q(a,c,b)−Q(a,b,c) ≥ 0

∆2(a,b,c) =Q(a,c,b)−Q(b,c, a) ≥ 0.

4-4 Gaussian Signals

We will now study a model with Gaussian densities. When nature is A, then the signals are Gaussian
distributed with mean 1 and when nature is B , the mean is -1. The juror’s ability is represented by
the variance, where jurors with higher ability have lower variance.
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-6 -4 -2 2 4 6
s

0.4
f(s)
g(s)

Figure 4-3: Example of probability density functions f (s) and g (s)

Let the signal space be S = R. Juror i has an ability level ai ∈ (0,∞) and his signal is a random
variable Si , with distribution:

Si ∼N (1, a2
i ), if nature is A

Si ∼N (−1, a2
i ), if nature is B.

The density and cumulative distribution functions, when nature is A, are denoted as fi (si ) and
Fi (si ) respectively. When nature is B , these are denoted as gi (si ) and Gi (si ). An example plot is
given in Figure 4-3. Note that higher ability jurors have a lower ai . This is different compared to
the models with linear and β density functions, where higher ai represent better jurors.

Let πi be i ’s prior probability that nature is A. The probability that nature is A, when i receives a
realisation si of his random signal is:

P (A|si ) = f (si )πi

πi f (si )+ (1−πi )g (si )
.

We can see that P (A|si ) is strictly increasing in si , because

gi (si )

fi (si )
= e

−4si
2a2

i

is strictly decreasing in si . This means that there exists some threshold ti , such that P (A|ti ) = 1/2
and the juror would believe that P (A|si ) > 1/2, if si > ti .

Same as before, we have three jurors i , j and k, with abilities a, b and c respectively. Jurors i and j
are the initial jurors, and k is the casting juror.

The initial jurors have a prior πi = π j = π0 = 1/2, so their thresholds are ti = t j = 0, and they vote
A, if their signals are higher than the threshold and they vote B otherwise.
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In case the initial jurors vote opposite to each other, then k has to break the tie. When i votes A,
and j votes B , then the tiebreakers updated prior is:

πAB (a,b) = π0(1−Fi (0))F j (0)

π0(1−Fi (0))F j (0)+ (1−π0)(1−Gi (0))G j (0)
.

=
(
erfc

(
1p
2a

)
−2

)
erfc

(
1p
2b

)
(
erfc

(
1p
2a

)
−2

)
erfc

(
1p
2b

)
+

(
erfc

(
− 1p

2a

)
−2

)
erfc

(
− 1p

2b

)
Note the following facts:

πAB



→ 1−Fi (0) as b →∞
→ F j (0) as a →∞
→ 0 as b → 0

→ 1 as a → 0

= 1/2 if a = b

> 1/2 if a < b

< 1/2 if a > b.

(4-15)

The casting voter’s threshold is:

tAB (a,b,c) = c2

2
ln

(
1−πAB (a,b)

πAB (a,b)

)
,

where the following facts are true:

ti


= 0, if πAB = 1

2

→−∞, as πAB → 1

→∞, as πAB → 0

→ 0, as c → 0.

Similarly, we can show that πB A = 1−πAB , and tAB = −tB A . The probability a correct final verdict
is given, is:

Q(a,b,c) =qA

=(1−Fi (0))(1−F j (0))

+ (1−Fi (0))F j (0)(1−Fk (tAB ))

+Fi (0)(1−F j (0))(1−Fk (−tAB )),

where we have used the fact that qA = qB .

When we have 3 jurors with different abilities, we want to know in which order they should vote to
maximise the probability of having the correct verdict. The order of the first two jurors does not
matter, so we only want to know who should be the tiebreaker: the worst-, median-, or best juror.

With Matlab, we generate random abilities that are uniformly selected in [0,100]. We simulate
1000000 random ability sets (a,b,c), and we compare the qualities with different tiebreakers. From
the numerical results, it turns out that the median ability juror should have the casting vote. Based
on the numerical results, we propose the following conjecture:
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Table 4-2: Quality comparison. Example with 10 different set of jurors. The abilities (a,b,c) are
ordered so that a ≤ b ≤ c.

(a,b,c) Q (a,b,c) Q (a,c,b) Q (c,b, a)

(23.5, 73.0, 94.5) 0.51699 0.51704 0.51334
(2.9, 38.9, 75.4) 0.63540 0.63540 0.57549

(17.2, 17.2, 63.8) 0.52632 0.52823 0.52823
(15.9, 21.1, 98.3) 0.52541 0.52755 0.52539

(3.7, 5.3, 95.1) 0.60582 0.61217 0.59945
(1.0, 77.9, 97.0) 0.83790 0.83790 0.67355

(41.0, 51.5, 61.8) 0.51206 0.51219 0.51199
(8.7, 79.8, 89.7) 0.54580 0.54580 0.52763
(6.4, 23.9, 85.6) 0.56219 0.56220 0.54212

(64.7, 78.0, 79.2) 0.50819 0.50820 0.50816

Conjecture 4. For jurors with abilities a ≤ b ≤ c, where lower values represent more reliable jurors,
the quality Q is maximised when the median ability juror has the casting vote i.e.,

∆1(a,b,c) =Q(a,c,b)−Q(b,c, a) ≥ 0

∆2(a,b,c) =Q(a,c,b)−Q(a,b,c) ≥ 0.

4-4-1 Looking at the limit case.

We can confirm that Conjectures 3 and 4, are true in the limit case. We will look at the case with
Gaussian densities. The case with β-densities is similar.

Regarding ∆1(a,b,c), the qualities have to following limits:

lim
a→0

Q(a,c,b) =1 (4-16)

lim
a→0

Q(b,c, a) =(1−F j (0))(1−Fk (0))

+ (1−F j (0))Fk (0)

+F j (0)(1−Fk (0)) (4-17)

=P ( atleast one initial juror votes A |A).

The limit a → 0, means that juror i is very good. In Equation (4-16), when i is an initial juror,
then the probability that A will be selected, goes to one. Even if the other initial juror votes B , the
casting juror will follow juror i . In Equation (4-17), when i has the casting vote, there remains the
possibility that both initial jurors vote B , and the very good juror is not used at all. That is why
(4-17) is never better than (4-16).

Regarding ∆2(a,b,c), we have to following limits:

lim
c→∞Q(a,c,b) =1

2
(1−Fi (0))+ 1

2

[
(1−Fi (0))(1−F j (tAB ))+Fi (0)(1−F j (−tAB ))

]
(4-18)

lim
c→∞Q(a,b,c) =(1−Fi (0)) (4-19)

=P ( juror i votes A |A).
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Here juror k, with ability c, is very bad. If a very bad juror is a the casting voter, then he will always
follow the best juror. We can see in (4-19), that the quality is just the probability that the best juror is
correct. In (4-18), the last term is one half times the quality in the advisor-decider mechanism. An
advisor-decider mechanism is always at least as good as a single juror mechanism; A single juror
mechanism is the same as an advisor-decider mechanism, with a very bad decider, who always
follows the advisor, or a very bad advisor, who is no better than a coin flip. This implies that (4-18)
is at least as good as (4-19).

4-5 Conclusion

In this chapter we studied the casting vote scheme problem, with 3 jurors. We wanted to find out,
who should have the casting vote, when jurors have different abilities. We gave the results of Alpern
and Chen [1] for linear density functions, where the median ability juror should be the tiebreaker.
We wanted to know if these results holds true for a more general class of density functions, defined
in Definition 4.1. Based on numerical results, the median ability juror should also have the casting
vote for β- and Gaussian density functions. We have shown that the result is true in the limit case,
and it is quite intuitive to understand. We conjecture that this is true for any density function
satisfying 4.1.

Master of Science Thesis Nam Dang



50 Three Member Casting Vote Scheme

Nam Dang Master of Science Thesis



Chapter 5

Conclusions and Future Research

We have started off by covering the mechanism design problem on preference voting. The problem
in many elections is that voters are incentivised to vote strategically, instead of voting their true
preference. Arrow’s theorem and the Gibbard-Satterthwaite theorem, tells us that it is impossible
the find such mechanisms. The only voting mechanisms that are Pareto efficient, independent of
irrelevant alternatives and incentive compatible are dictatorships.

We have introduced the three juror casting vote model of [1], and covered the paper’s result that for
signals with linear densities, the median ability juror should have the casting vote. We wanted to
find out, if the results can be generalised for other probability density functions. we hypothesised
that this is true for densities satisfying 4.1, and tested it on β- and Gaussian density functions. For
both densities, numerical results suggest that the median juror should have the casting vote. We
have shown that this is true in the limit case, when non-median jurors are very bad or very good.
We conjecture that the median ability juror should be the casting juror for any density, satisfying
Definition 4.1.

Based on the model in [1], we have created an advisor-decider problem. We want to know what
the optimal role assignment is, when jurors have different ability levels. We have proved that the
best juror should be the decider for random signals with linear density functions. Numerical com-
putations suggest that is also true for Gaussian- and β-density functions. We conjecture that this
is true for any density function that satisfy Definition 3.1.

The conjectures are still an open problem for future research. Another thing we could look at is
larger juror sizes, but results in [1], suggest that it is probably difficult to find general results. They
looked at larger juror sizes, where the abilities are evenly spaced on the ability interval e.g., for five
jurors the abilities are: (a1, a2, a3, a4, a5) = (0.1,0.3,0.5,0.7,0.9). For five jurors, the second worst ju-
ror should have the casting vote, and for higher number of jurors, numerical computations suggest
that the worst should have the casting vote. Intuitively, this makes sense, since for higher number
of jurors, there is a higher probability that the majority decision is already reached, before the cast-
ing juror can vote. It would be interesting to see if this is also true for other ability distributions.

Alpern and Chen also looked into three juror roll call voting in [2], with discrete signals and abil-
ities. It would be interesting to do an analysis on that with continuous signals and abilities and
other probability density functions.
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Appendix A

Proof d3(a,b,c) ≥ 0

Let

d3(a,b,c) =−4a2 −4ab −4b2 +8ac +8bc +a2bc +ab2c −4c2 −2abc2

P1(a,b,c) =abc −4a −2b −2c

We want to find the solution of:

min
a,b,c

d3(a,b,c)

s.t. P1(a,b,c) ≤ 0

0 ≤ a ≤ b ≤ c ≤ 1,

and show that the global optimal value for d3(a,b,c) is at least zero.

A local minima needs to satisfy the Karush–Kuhn–Tucker (KKT) conditions:

f1(a,b,c,λ1,λ2,λ3) = 2abc −8a +b2c −2bc2 +λ1(bc −4)−4b +8c −λ2 +λ3 =0 (A-1)

f2(a,b,c,λ1,λ3,λ4) = a2c +2abc −2ac2 +λ1(ac −2)−4a −8b +8c −λ3 +λ4 =0 (A-2)

f3(a,b,c,λ1,λ4,λ5) = a2b +ab2 −4abc +λ1(ab +2)+8a +8b −8c −λ4 +λ5 =0 (A-3)

P1(a,b,c)λ1 = (abc −4a −2b +2c)λ1 =0 (A-4)

aλ2 =0 (A-5)

(b −a)λ3 =0 (A-6)

(c −b)λ4 =0 (A-7)

(1− c)λ5 =0 (A-8)

λ1, . . . ,λ5 ≥0 (A-9)

0 ≤ a ≤ b ≤ c ≤1 (A-10)

P1(a,b,c) = abc −4a −2b −2c ≤0. (A-11)

For more information on non-linear optimisation, see [11]. We are going to cover the following
cases:
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1. b = c and a = 0

2. b = c and 0 < a = b

3. b = c and 0 < a < b

4. b < c and a = b

5. b < c and a < b

Case: b = c and a = 0. All KKT conditions are satisfied for 0 ≤ b ≤ 1, λ1 = λ3 = λ4 = λ5 = 0 and
λ2 = 4b −b3 ≥ 0.

Case: b = c and 0 < a = b. First of all, a > 0, implies λ2 = 0. For 0 < a = b = c, we have that
P1(a,b,c) = a3 −4a < 0, so λ1 = 0. The KKT conditions are then satisfied, if:

0 <a = b = c ≤ 1

λ3 =a
(
4−a2)

λ4 =2a
(
4−a2)

λ5 =0.

Case: b = c and 0 < a < b. First of all, a > 0, implies λ2 = 0, and a < b, implies λ3 = 0. We
have that P1(a,b,c) = −4a + ab2 < 0, so λ1 = 0. Substituting λ1, λ2, and λ3 into (A-1), we get
2ab2 −8a −b3 +4b = (

b2 −4
)

(2a −b) = 0, and the only feasible solution is:

a = b/2. (A-12)

Substituting λ1 and λ3 into (A-2), we get:

λ4 = 4a −a2b. (A-13)

Substituting (A-12) and (A-12), into (A-3), we get:

λ5 = b3 −2b < 0,

which contradicts (A-9). A KKT point cannot satisfy 0 < a < b = c.

Case: b < c and a = b. Since b < c, we have that λ4 = 0. If a = 0, then P1(0,0,c) = 2c > b = 0. This
excludes the possibility that a = 0, which implies λ2 = 0. Substituting a = b and λ2 = λ4 = 0 into
(A-1) and (A-2), we get:

f1(a, a,c,λ1,0,λ3) =3a2c −2ac2 −12a +8c +λ1(ac −4)+λ3 = 0

f2(a, a,c,λ1,λ3,0) =3a2c −2ac2 −12a +8c +λ1(ac −2)−λ3 = 0.

The above equations imply λ1 =λ3.
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In case P1(a, a,c) = 0, then c = 6a
a2+2 . It is straightforward to check that the following point is a KKT

point:

(a,b,c) =
(

a, a,
6a

a2 +2

)
λ1 =λ3 = 8a −2a3

a2 +2
λ2 =λ4 =λ5 = 0,

where 0 < a < 3−p
7.

In case P1(a, a,c) < 0, then c < 6a
a2+2 and λ1 = 0. Substituting a = b, λ1 = λ2 = λ3 = 0 into (A-1), we

get:
f1(a, a,c,0,0,0) =−12a +8c +3a2c −2ac2 = 0.

The solutions for c are c = 4/a and c = 3a/2, where only c = 3a/2 is feasible. Substituting a = b,
c = 3a/2, λ1 =λ4 = 0, into (A-3), we get:

f3(a, a,3a/2,0,0,λ5) =−4a3 +4a +λ5 > 0.

A KKT point cannot satisfy P1(a, a,c) < 0.

Case: b < c and a < b. Since b < c and a < b, we have that λ3 = λ4 = 0. We cannot have a = 0,
since P1(0,b,c) = 2c −2b > 0, so this implies λ2 = 0. Substituting λ2 = λ3 = λ4 = 0 into (A-1) and
(A-2), we get:

f1(a,b,c,λ1,0,0) =2abc −8a +b2c −2bc2 +λ1(bc −4)−4b +8c = 0

f2(a,b,c,λ1,0,0) =a2c +2abc −2ac2 +λ1(ac −2)−4a −8b +8c = 0

It is required that f1(a,b,c,λ1,0,0) = f2(a,b,c,λ1,0,0) = 0, and that is only if:(
4−2c2) (b −a)+ c

(
b2 −a2)+λ1 (c(b −a)−2) = 0 (A-14)

For the case P1(a,b,c) < 0, we have λ1 = 0. Equation (A-14) is then:(
4−2c2) (b −a)+ c

(
b2 −a2)> 0,

since b > a, so there is no KKT point for P1(a,b,c) < 0.

For the case P1(a,b,c) = 0, we have that:

cP1=0(a,b) = 4a +2b

2+ab
. (A-15)

Equation (A-14) implies:

λ1(a,b,c) =−c
(
b2 −a2

)+ (
4−2c2

)
(b −a)

c(b −a)−2
(A-16)

Substituting (A-16) into (A-1) and (A-2), we get

f1(a,b,c,λ1,0,0) = f2(a,b,c,λ1,0,0) = (bc −4)
((

a2 −4
)

c +b(6−ac)
)

ac −bc +2
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We have that f1(a,b,c,λ1,0,0) = f2(a,b,c,λ1,0,0) = 0, if:

c f1=0(a,b) = 6b

−a2 +ab +4
. (A-17)

We have cP1=0 = c f1=0, when:

b = b̂(a) = a2 +
p
−15a4 +60a2 +4−2

4a
. (A-18)

Substituting (A-18), into (A-17), we get:

ĉ(a) ≡ c f1=0(a,b(a)) =
6
(
a2 +

p
−15a4 +60a2 +4−2

)
a

(
−3a2 +

p
−15a4 +60a2 +4+14

) (A-19)

Since ĉ(a) ≤ 1, we need to have that:

0 < a ≤
3
√

2
(p

3666−54
)

32/3
− 5 22/3

3
√

3
(p

3666−54
) +2. (A-20)

Substituting (A-18) and (A-19) into (A-16), we get:

λ̂1(a) ≡λ1
(
a, b̂(a), ĉ(a)

)
. (A-21)

Substituting (A-21), (A-18) and (A-19) into (A-3), we get:

f̂3(a) ≡ f3
(
a, b̂(a), ĉ(a), λ̂1(a),0,λ5

)
.

It can be shown that f̂3(a) > 0, for λ5 ≥ 0 and a satisfying (A-20). There is no KKT point for
P1(a,b,c) = 0, and there is no KKT point for the overall case b < c and a < b.

Conclusion All local minimum solutions (a∗,b∗,c∗) are in the set:

Smin = {(0,b,b) : 0 ≤ b ≤ 1}∪ {(a, a, a) : 0 < a ≤ 1}∪
{(

a, a,6a/
(
a2 +2

))
: 0 ≤ a ≤ 3−p

7
}

.

For every (a∗,b∗,c∗) ∈ Smin, we have that d3 (a∗,b∗,c∗) = 0.
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