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Abstract—A hybrid neural network model, comprising of a
convolutional neural network and a multilayer perceptron net-
work, has been developed for day-ahead forecasting of regional
scale wind power production. This model requires operational
weather forecasts as input and also has the capability to ingest
data from ensemble forecasts. Even though the training of the
model requires significant computational cost, the actual fore-
casting can be done within a few minutes on any recent personal
computer. The proposed model has demonstrated noteworthy
performance at a recent international forecasting competition.

Index Terms—convolutional neural network, deep learning,
multilayer perceptron, numerical weather forecasting, wind en-

ergy

I. INTRODUCTION

Over the past few decades, numerous physics-based and
data-driven wind power forecasting approaches have been
proposed in the literature [1]-[3]. With the advent of deep
learning and other statistical learning techniques in recent
years, there has been a tremendous surge in the development
of more sophisticated wind power forecasting frameworks
(see [4], [5], and the references therein). In order to assess
the relative performance of some of these new-generation
approaches, the organizing committee of the 17" International
Conference on the European Energy Market (EEM20) crafted
a regional scale wind power forecasting competition (https:
/leem?20.eu/forecasting-competition/).

The participants of the EEM20 competition were chal-
lenged with a total of six forecasting tasks. For each task,
the participants were given gridded meteorological data from
operational weather forecasts and were asked to forecast two-
months of wind power production for four price regions
over Sweden. During the competition, we formulated the
estimation of wind power from concurrent meteorological data
as a regression problem and developed a new hybrid neural
network model. Our methodology is fundamentally different
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from the conventional time-series-based approaches. In the
following sections we elaborate on the available input data,
the proposed methodology along with selected results.

II. DESCRIPTION OF DATA

The organising committee of the EEM20 forecasting com-
petition supplied the participants with two years (2000-2001)
of wind power production and meteorological datasets for
the development of machine learning-based forecast models
as well as their validations. In addition, they provided the
geographical locations of the wind turbines over Sweden and
their basic characteristics. In the following sub-sections, we
briefly elaborate on these datasets.

A. Wind Power Production Dataset

The granularity of this dataset is hourly and it includes
aggregated wind power production from four price regions
(called SE1, SE2, SE3, and SE4). Prior to the start of the
competition, the power production data for the year 2000
were released to the participants for the creation of the initial
frameworks for forecast models. Throughout the competition,
a few days after the completion of each forecast task, the
associated power data were also released to the participants
for model validation and/or further tuning of their models.

B. Wind Turbine Dataset

This particular dataset contains a few attributes of 4004
wind turbines which were operational during 2000-2001. In
the top panel of Fig. 1, their locations have been marked out.
The rated capacities of these turbines vary greatly — from
10 kW to 4.2 MW. Furthermore, a significant number of wind
turbines came online during the years of 2000 and 2001; the
resultant changes in the total installed capacities of the four
price regions are documented in the bottom panel of Fig. 1.

Notably, some of the values of this dataset appeared to be
rather spurious. For example, hub-heights (and rotor diam-
eters) of 1 m do not seem to be realistic even for micro
wind turbines. Since the competition participants were not
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Fig. 1. The locations of the installed wind turbines are shown in the top
panel. The red, blue, green, and purple points represent turbines from the
price regions SE1, SE2, SE3, and SE4, respectively. In the bottom panel, the
temporal changes of installed wind power production capacities in the four
price regions from the start of year 2000 are documented.

allowed to use any external data sources, we did not make any
attempt to correct these outliers. Furthermore, the competition
organizers acknowledged other discrepancies with the turbine
dataset (https://eem20.eu/forecasting-competition/):

“This record is quality check [sic] as good as we
could but there might be discrepancies compared to
reality. For example, according to the Swedish Wind
Power Association there were 4099 wind turbines in
Sweden constituting 8984 MW of installed capacity.

In the record provided there are only 4004 wind tur-
bines constituting 8640 MW of installed capacity.”
It is needless to say that such data quality problems may have
impacted the performance of all the forecast models to some
degree.

C. Numerical Weather Prediction (NWP) Dataset

Gridded fields of various meteorological variables (e.g.,
10 m zonal and meridional velocity components, 2 m air
temperature, wind gust, cloud cover) are included in this
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Fig. 2. An illustrative example of a numerical weather prediction model-
generated spatial field of wind speeds at an elevation of 10 m above the
land/sea surface. The data are extracted from ensemble member #1 and
represent the wind field in our domain of interest at 18 UTC on January
7%, 2000.

weather model-generated dataset. As with the power pro-
duction dataset, the organising committee released the NWP
data for the year of 2000 prior to the commencement of the
competition. During the competition, for each forecast task,
the required NWP data were released a few days in advance.
It should be noted that this specific dataset is solely used as
primary input by the participants and not for model validation.

The NWP dataset was originally produced by the Norwegian
Meteorological Institute (aka MET Norway) as part of their
routine operational forecasting. They utilised the HARMONIE
model [6] with a spatial resolution of 10 km over a compu-
tational domain covering Scandinavia and the Nordic Seas.
The forecast data were output every hour. Due to the inherent
chaotic nature of the atmosphere, the accuracy of the NWP
models (including HARMONIE) tend to decrease with the
increasing prediction horizon. To quantify the uncertainty
and the predictability of weather forecasts, MET Norway
created a 10-member ‘ensemble’ of weather forecasts. The
first ensemble member (henceforth, E1) represents the control
forecast which utilised the best available initial conditions (IC)
and boundary conditions (BC) from a global model. The other
nine forecasts were generated by perturbing the IC/BC with
the aid of the Scaled Lagged Average Forecasting (SLAF)
approach [7]. A detailed description of the current version of
MET Norway’s forecasting system can be found in [8].

An illustrative example of the gridded 10 m wind speed is
shown in Fig. 2. Here, we plot the forecast values from E1 for
a specific time instant (18 UTC) on January 7", 2000. On that
day, a cold front passed through Sweden and created strong
localised wind ramps. The complexity of the near-surface
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wind speed patterns across the four price regions are clearly
noticeable in Fig. 2 and underscores the inherent challenge in
wind power forecasting for all these regions using a single
machine learning-based model.

III. FEATURE ENGINEERING & FEATURE SELECTION

Broadly speaking, feature engineering involves extracting
useful information from the raw input data in order to enhance
the overall predictive capability of data-driven forecast models.
There is a consensus in the machine learning community
that feature engineering and feature selection are crucial steps
in the model development process [9]. There exist numer-
ous generic approaches for input data transformation and/or
pruning of unwanted input. In this study, we do not opt
for any sophisticated machine learning approach for feature
engineering and feature selection; instead, we employ domain
knowledge (i.e., meteorology and wind energy) and simple
physics-based approaches for these tasks as elaborated below.

A. Vertical Extrapolation of Wind Speeds

The NWP dataset only provides zonal (U;() and meridional
(Vo) velocity components at 10 m height. For wind power
forecasting, a more desirable input variable would be wind
speeds at turbine hub-heights (H; unit = m). In lieu of such
data, we first compute wind speeds at 10 m height (W) from
Uyp and Vig. Subsequently, we use the following power-law

relationship:
H [e%
Wi = Wi (10> ) ey

where, Wy are wind speeds at hub-height. The exponent « is
called the shear exponent and it depends on surface roughness,
local orography, and atmospheric stability [10].

Based on the limited NWP input data available to us, it
was not possible for us to extract either a roughness map or
any spatio-temporally varying stability metric (e.g., Obukhov
length). Thus, we assumed « to be a constant, equal to 0.3,
irrespective of location and time. Since wind farms in Sweden
are often located in close proximity of forests, selection of
such a high value for « is a physically meaningful choice.

B. Effects of Elevation & Temperature on Air Density

Wind power production (P) is linearly dependent on ambi-
ent density of air (p). Since p is inversely proportional to air
temperature (T; unit: K), we used a non-dimensional correc-
tion factor (273.15/T) in our computations. Furthermore, air
density more-or-less exponentially decreases with increasing
elevation. To capture such an effect, we used the following
simple formulation [11]:

2+ H >
)

H) = -
p(z+H) Poexp( T

where, z is the height of the terrain, with respect to the
mean sea level (MSL), at the location of a particular wind
turbine. Since H represents the hub-height (above ground
level), (z + H) is the total height from MSL. Air density at
MSL is denoted by pg. The so-called scale height of density
(Hy) is assumed to be equal to 8550 m [11].

2

C. Conversion to Wind Power

Given hub-height wind speeds (Wp), one can estimate
wind power production values for a specific turbine if the
manufacturer’s power curve is available. Since we were not
privy to such detailed information, we opted for a generic
power curve depicted in Fig. 3. This normalised power curve
(fpc) roughly represents the IEC (International Electrotech-
nical Commission) class 1 turbines [12] and is used here to
compute a first guess power production (Prg) as follows:

273.15 H
Prg = Prfpc(Whr) [( T )GXP <—ZI—; )} )

where, Pr is the rated capacity of a wind turbine. The
correction terms, in the square bracket, are described in the
previous sub-section.
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Fig. 3. Idealized power curve (fpc) for IEC class 1 turbines [12]. The cut-in
and cut-out wind speeds are 3 m s~1 and 25 m s!, respectively.

D. Gap Filling of Data

In the wind turbine dataset, 30 turbines did not have any
information on hub-heights. We assumed that hub-heights and
rater power capacity are proportional to each other, and in
turn, used linear interpolation to estimate the missing H values
based on Pg. Terrain height (z) for a few turbine locations (79
to be specific) were also missing in the dataset. We set z = 0
(i.e., mean sea level) as a crude approximation. Lastly, the
NWP data were missing for three days: May 14" of 2000,
September 26" of 2000, and July 30" of 2001. These dates
were excluded from the forecasting competition as well as
from this study.

E. Feature Selection

In our modelling approach, we only used the NWP-
generated wind speeds and temperature fields. Based on wind
power meteorology literature, we do not expect other avail-
able meteorological variables (e.g., wind gusts, cloud cover,
relative humidity) to modulate wind power production in any
significant manner. Thus, guided by our domain knowledge,
we decided not to include them in our forecast model.

IV. A HYBRID NEURAL NETWORK

In this study, we have developed a Hybrid model compris-
ing of a Convolutional neural network (CNN) model and a
Multilayer perceptron (MLP) model, which we dub the HCM
neural network model, for wind power forecasting (refer to

Authorized licensed use limited to: TU Delft Library. Downloaded on November 11,2020 at 10:20:21 UTC from IEEE Xplore. Restrictions apply.



SeparableConv2D

kernel (3x3x2x1)
bias (1x1x2x32)
bias (32)
activation = relu
batch_input_shape = null, 169, 71, 2

separable_conv2d_1_input

Flatten

?x169x71x2

Dropout

Dense

kernel (383968x16)
bias (16)

=relu

filters = 32
kernel_size = 3, 3
padding = same

dense_2_input

units = 16 Dense

Concatenate kernel (32x4)
bias (4)

ivation = relu
units = 4

kernel (5x16)
bias (16)

=relu
batch_input_shape = null, 5
units =16

Fig. 4. A schematic of the proposed HCM neural network model. The upper branch represents the CNN model. Whereas, the lower branch corresponds to

the MLP model. This schematic is generated using the Netron code [13].

Fig. 4). Our rationale behind such an unorthodox architecture
is as follows: for the sake of simplicity, we wanted to have a
single forecast model for the entire domain of interest instead
of multiple models, each focusing on a different part of the
domain. Above, in Fig. 2, it was highlighted that wind speeds
over this domain exhibit significant spatial variability. From
the contemporary deep learning literature involving meteoro-
logical applications [14]-[16], it became quite clear that the
CNN model is the most promising candidate to capture such
intricate spatial patterns. On the other hand, based on our past
research in a different application arena [17], we anticipated
the MLP model to better capture the temporal trends in the
increasing installation capacities in the four price regions.

A. Convolutional Neural Network

As mentioned earlier, we have computed time-dependent, 2-
D fields of 10 m wind speeds from the provided NWP dataset.
We denote these fields as W7, (z,y,t), where the superscript
i represents the ensemble members ranging from 1 to 10. In
this study, we have utilised wind speed data from the first
ensemble member (W, (z,y,t)). In addition, we have created
a median wind speed field (Wfo5 O(x,y,t)) based on the output
from all the ensemble members. Henceforth, for brevity, we
will simply denote these spatio-temporally varying wind speed
fields as W7, and Wfé’ % and drop their functional dependence
on x, ¥y, and t.

The spatial dimensions of both W, and ng’ 0 are: 169x71.
These two fields are input as two separate channels to a 2-
D convolutional layer (SeparableConv2D); the input layer is
called separable_conv2d_I_input in Fig. 4. The Separable-
Conv2D layer consists of 32 feature maps each with filter
size of 3x3. After flattening, the SeparableConv2D layer is
connected to a dropout layer for regularization. Thereafter, the
dropout layer is connected to a fully connected dense layer
with 16 neurons. The rectifier linear unit (ReLU) is used as
the activation function for all layers in this network.

B. Multilayer Perceptron Network

The input data generation for the MLP required a few steps:

1) for a given turbine, identify the nearest NWP grid-point
to its location;

2) using the W7, value from that NWP grid-point, estimate
W%I by invoking (1);
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Fig. 5. Measured (Pp) versus first guess power (Pr¢) production for the
SE4 price region. These data correspond to the training period of January 1,
2000 — October 31, 2001.

3) using the air temperature (73) value of the NWP grid-
point in conjunction with the values of z, and H,
calculate the density corrections;

4) compute the value of Pr¢ by using (3) along with W},
and the density corrections as input;

5) repeat the previous steps for all the 4004 turbines and
for all time instances;

6) based on these time series, compute the aggregated Prg
time-series for each price region.

The first guess power production (Pr¢) time-series from the
four price regions are used as four inputs of the MLP network.
A comparison of Prg against measured power production
(Po) is shown in Fig. 5. In order to capture the diurnal cycle
of wind speeds, time (UTC) is used as the 5" input for the
MLP network. These five input nodes, called dense_2_input
in Fig. 4, are connected to a fully connected dense layer with
16 neurons. Similar to the CNN model, the ReLLu activation
function is used here as well.

C. Combination of CNN & MLP

The last layers of the CNN model and the MLP model
are combined together before connecting to the output layer.
By construction, both the CNN and MLP models have equal
numbers of nodes (i.e., 16) in the final layer so that they
contribute somewhat equally in the forecast process. The
output layer contains four nodes, each containing the measured
wind power production values from one of the price regions.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 11,2020 at 10:20:21 UTC from IEEE Xplore. Restrictions apply.



TABLE I
SUMMARY OF WIND POWER FORECASTS USING THE HCM NEURAL NETWORK MODEL

Runs Type CNN Channels Training Period Forecast Period Pinball Score (MW)
C4 | Competition | W], WP January 1, 2000 — June 30, 2001 July 1 — August 31, 2001 41.96
R4-A Reforecast 110 January 1, 2000 — June 30, 2001 July 1 — August 31, 2001 40.77
R4-B Reforecast Wllo, Wlpg’ 0 January 1, 2000 — December 31, 2000 July 1 — August 31, 2001 45.84
R4-C Reforecast WllO January 1, 2000 — December 31, 2000 July 1 — August 31, 2001 45.71
C5 Competition W1107 W1p05 0 January 1, 2000 — August 31, 2001 September 1 — October 31, 2001 51.77
R5-A Reforecast 110 January 1, 2000 — August 31, 2001 September 1 — October 31, 2001 50.98
R5-B Reforecast Wll07 W1p05 0 January 1, 2000 — December 31, 2000 September 1 — October 31, 2001 59.82
R5-C Reforecast Wllo January 1, 2000 — December 31, 2000 September 1 — October 31, 2001 58.87
Co6 Competition Wllo, Wlp[;r’ 0 January 1, 2000 — October 31, 2001 November 1 — December 31, 2001 66.28
R6-A Reforecast 110 January 1, 2000 — October 31, 2001 November 1 — December 31, 2001 63.43
R6-B Reforecast W1107 ng’ 0 January 1, 2000 — December 31, 2000 | November 1 — December 31, 2001 77.37
R6-C Reforecast Wll0 January 1, 2000 — December 31, 2000 | November 1 — December 31, 2001 71.74

The HCM network uses Keras [18] and Tensorflow [19]
packages. Due to the space limitation, we are unable to
provide more technical details of the CNN and MLP models.
Interested readers are encouraged to check the textbook [20]
for in-depth theoretical understanding. For more practical
knowledge, please refer to [21] and [22].
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Fig. 6. Measured (black line) and the HCM model-based forecast (blue
shaded area) time-series of wind power productions for SE1 (top panel), and
SE2 (bottom panel) price regions. The blue shaded area includes 10 to 90
quantiles of the forecasts. These forecasts were made during the competition
as part of Task #6 covering November 1%' — December 31%, 2001.

D. Training, Validation, and Testing

During the training phase, the total training data are split
into two parts. The first 90% of the data are directly used
for optimising the network parameters. The HCM network
contains a total of 6.14 million parameters. The popular
ADAM algorithm is used as an optimizer in conjunction with
the mean absolute error as a loss function. The last 10% of
the data are used for the computation of validation errors.
Via monitoring the evolution of this error, an early stopping
strategy is used to avoid overfitting of the network. Typically,
40-50 epochs are needed for convergence.

The forecasting competition required various quantiles of
wind power productions as output. For this purpose, we made
use of a Monte Carlo-type approach and created one hundred
separately tuned HCM networks for each forecast task. Note
that each HCM network has identical architecture; however,
the sequential ordering of the training data was randomised
for all of them. As a result, each HCM network converged
with different sets of optimized parameters. Using one hundred
HCM networks, we forecast one hundred realizations of the
wind power production values. Based on these realizations, we
compute the required quantiles.

V. RESULTS: COMPETITION & REFORECASTS

During the EEM20 forecasting competition, the HCM
model fared reasonably well and achieved an overall third
rank. Two representative forecasts by the HCM model are
shown in Fig. 6. After the competition, we are making several
reforecasts and trying to further improve the model. Some
of the results from these reforecasts, as well as from the
competition, are tabulated in Table I.

Following the protocols of the EEM20 competition, the
pinball loss function ( [23], [24]) is utilized to compute the
forecast errors. For each forecasting task, the errors are first
computed for each price region separately. Then, they are
averaged and reported on the last column of Table I. By inter-
comparing the results from various runs in Table I, the positive
impacts of input data from longer training periods become
clear. It also becomes evident that the addition of I/leo5 0 as
a CNN input channel deteriorates the model performance.
This outcome is somewhat counter-intuitive and needs further
investigation.

VI. CONCLUDING REMARKS

At the initial stages of the EEM20 forecasting competition,
we were making use of the wind speed values from all the
ten ensemble members. However, to reduce computational
costs, we later decided to only use W7, and Wlpg’ O fields as
inputs. Validation errors from a few trial runs were used for
the identification of the ‘best’ ensemble member (i.e., E1). In
our future work, we will investigate if wind data from all the
ensemble members can improve the forecast scores.
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Currently, we are also in the process of coupling the HCM
network with the ERAS reanalysis data [25]. In comparison
to the NWP forecasts, the reanalysis data tend to be more
accurate due to extensive assimilation of diverse observational
data. By using such accurate meteorological data as input, we
hope to disentangle the input error from the HCM modelling
error.

CODE AND DATA AVAILABILITY

All the Jupyter notebooks and forecasts generated during
the EEM20 competitions are publicly available at https://doi.
org/10.5281/zenodo.3987741. We will also upload the HCM
model-generated reforecast data on to this repository.
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