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ARTICLE

Transition from simple to complex contagion
in collective decision-making
Nikolaj Horsevad 1✉, David Mateo 2, Robert E. Kooij3,4, Alain Barrat 5,6 & Roland Bouffanais 1✉

How does the spread of behavior affect consensus-based collective decision-making among

animals, humans or swarming robots? In prior research, such propagation of behavior on

social networks has been found to exhibit a transition from simple contagion—i.e, based on

pairwise interactions—to a complex one—i.e., involving social influence and reinforcement.

However, this rich phenomenology appears so far limited to threshold-based decision-making

processes with binary options. Here, we show theoretically, and experimentally with a multi-

robot system, that such a transition from simple to complex contagion can also bed observed

in an archetypal model of distributed decision-making devoid of any thresholds or non-

linearities. Specifically, we uncover two key results: the nature of the contagion—simple or

complex—is tightly related to the intrinsic pace of the behavior that is spreading, and the

network topology strongly influences the effectiveness of the behavioral transmission in ways

that are reminiscent of threshold-based models. These results offer new directions for the

empirical exploration of behavioral contagions in groups, and have significant ramifications

for the design of cooperative and networked robot systems.
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Complex systems, be them natural or artificial, operate on
the basis of particular connectivity between constituting
elements, which orchestrates the execution of specific

dynamical processes. Such a high-level abstraction encompasses
wildly different systems giving rise to a range of emergent
behaviors, such as fish schooling1–3, social opinion formation4,
disease spreading5, cascading failures in power grids6,7, target
tracking by swarm robotic systems8,9, etc. Such collective
dynamics have been found to be crucially dependent on the
underlying network topology2,3,5,10–15, which conditions the
efficient transmission of behavioral change.

The propagation of state changes within a social system—or
an engineered networked one—has been acknowledged to be
akin to a contagion process, which can be either “simple” or
“complex”13,16–19. With a simple contagion, the behavior pro-
pagates through a single exposure or interaction. On the other
hand, if social reinforcement is required—following Centola and
Macy’s definition13: “if its transmission requires an individual to
have contact with two or more sources of activation”—the con-
tagion is said to be complex.

Numerous models of behavioral propagation in networked sys-
tems (including social ones) have been considered over the years.
Threshold models have been the predominant modeling framework
used to characterize a wide range of complex contagion processes,
such as the adoption of technological innovations4 or preventative
health measures20, and the spread of misinformation on social
media19,21 (Note that complex-like contagions are also observed
with stochastic models of epidemic-like processes22–25). The
growing interest in threshold models can be traced to their math-
ematical simplicity, their paradigmatic nature and their success in
modeling the spread of behaviors in various social settings4,13,16,26.
These deterministic models assume that agents can be in two states
(inert or activated), and that a particular agent becomes activated if
a fraction of its neighbors (in the network sense) larger than a given
threshold are themselves activated17,27. These threshold models
perfectly fit Centola & Macy’s original definition of a complex
contagion, whereby a transition from simple to complex contagion
takes place when increasing the threshold beyond a value corre-
sponding to having more than one activated neighbor13,16,17.
However, the key concept of activation may not be as straightfor-
ward when considering models lacking a threshold, which can
become an issue when trying to use the existing definition of a
complex contagion.

Here, we show theoretically and experimentally that such a
transition from simple to complex contagion, as originally iden-
tified in threshold-based models, can also be exhibited by another
general class of collective decision-making processes; specifically,
a class of models based on consensus and devoid of any thresh-
olds or nonlinearities. Using a new way of characterizing complex
contagions, we uncover their existence in consensus-based
dynamics. Specifically, we shed a new light on some funda-
mental mechanisms underpinning networked systems, which
may support the study of a vast range of collective behaviors in
both the animal and social worlds.

Unsurprisingly, the network topology plays a pivotal role in
this study2,3,10–13,15,16. It is known that it strongly affects both
spreading types in threshold models, albeit in fundamentally
different ways. While simple contagions are enhanced by short
network distances5, complex ones are amplified by high levels of
clustering4,5,14,16. Within the framework of threshold models, the
behavior or state being transmitted is of a binary nature: “active”
or “inactive”. This simplification clearly facilitates the tracking of
behavioral cascades from a source (or multiple sources) to the
entire system (or parts of the system). This feature serves well the
purpose of studying collective decision-making processes invol-
ving two options, such as voting, adoption of innovations, binary

opinion dynamics4,20. However, numerous collective decisions
are more complex and involve a continuum of options rather
than just a binary set28–30. A full understanding of the influence
of network metrics on consensus-based decision-making invol-
ving behavioral propagation and/or external perturbations to the
consensus is lacking. Such knowledge would help gain insight
into the disturbed collective dynamics of social and animal
groups, e.g., when responding to a predator’s attack or to mis-
leading information on social networks.

Biologists have indeed recently acknowledged the profound
similarities between human and animal social behaviors. For
instance, Sosna et al. recently reported a study on the “fear
response” of a school of fish collectively making fast decisions
under risky conditions3. They found that the properties of the
network (their “social connectivity”) are the primary factors
responsible for the high collective responsiveness of the school in
terms of the number of behavioral cascades and their sizes.
Furthermore, Firth18 has made the case that complex contagions
might be key to explaining some specific collective animal
dynamics, especially those with socially transmittable behaviors.
In the case of direct behavioral transmission in mobile animal
groups—schooling fish, flocking birds, swarming insects31–34—a
full understanding of the nature of the propagation is still
lacking2,3. The markedly fast spread of behaviors within animal
groups—such as waves of response, evasive maneuvers in schools
of fish2,3,11,35, and collective turns in flocks of starlings36—has
been a source of inquiry for a long time35. Recent large-scale
empirical evidence with fish and birds have revealed the intricate
patterns of interaction among individuals2,3,36–39, which under-
pin the behavioral cascades throughout the group. A key element
to these inter-agent interactions is alignment—metric or topolo-
gical—that introduces a consensus component to the collective
decision-making process. Unlike binary threshold-based models,
such orientation consensus-based ones do not lend themselves
well to the tracking of behavioral cascades given the nonbinary
nature of the state variable. Moreover, as with all ethological
results, even if it is possible to modify the interaction among
agents in some ways3, it is virtually impossible to fully control all
aspects of it.

However, biologists have started using robotic agents in place
of animals to be able to measure and quantify some features of
interest40,41. Hence, by following a similar approach with a
multirobot system, one could compare the effectiveness of the
social transmission of information when changing the local
interaction rule, i.e., when changing the topology of the interac-
tion network.

Here, we specifically consider a collective decision-making
process reminiscent of a group escape response. Using the
leader–follower consensus (LFC) dynamics—a particular instance
of the general control-theoretic framework of the Taylor
model30,42,43—we are able to study the behavioral contagion
within a group of networked agents driven by a single leader
acting as a stimulus of tunable frequency11,12. With this linear-
time-invariant (LTI) dynamics, by varying the network topology
—specifically the clustering coefficient, average shortest path, and
Kirchhoff index—we observe that slow-paced (resp. fast-paced)
stimuli propagate in ways reminiscent of a simple (resp. complex)
contagion. Furthermore, we uncover a transition from simple to
complex contagion when varying the pace of the stimulus—i.e, its
frequency. This transition is made apparent by measuring the
effectiveness of the behavioral propagation—quantified here by
means of the collective frequency response12—when varying the
topological features of the interaction networks (e.g., clustering
coefficient, average shortest path, etc.). In addition, using a
robotic experimental test-bed comprising ten networked agents
performing an angular heading consensus similar to those
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observed in collective turns of flocking starlings39, we unam-
biguously confirm that the behavioral propagation has the fea-
tures of a complex contagion when driven by fast-paced stimuli.

These results have far-reaching implications for several rea-
sons. First, they extend the concept of transition from simple to
complex contagion—heretofore limited to binary threshold-based
models16,17—to the continuous class of consensus-based models.
It is worth highlighting that the original linear threshold model
(LTM) with binary options has been extended to a continuous
threshold model (CTM) of cascade dynamics, which involves
nonlinearities and a threshold44. However, no evidence of a
transition from simple to complex contagion has been reported
for the CTM. Second, these results reveal that the nature of the
contagion—simple or complex—is directly related to the type of
behavior spreading, and more specifically to the pace of its
intrinsic dynamics—e.g., slow external perturbations vs. collective
startle response. Lastly, the insights gained from this study could
offer new directions for biologists and social scientists to explore
and experiment with animal and human groups respectively.
They could also be harnessed to improve the design and
robustness of engineered networked systems (e.g., internet of
things, sensor networks, swarm robotics).

Results
Polarization speed in threshold models. Complex contagions
have been originally uncovered and studied using the archetypal
LTM13,16,17,27, where nodes become active when the fraction of
their active neighbors crosses a certain threshold θ. Specifically,
the LTM dictates that for any agent i, the binary state variable si(t)
is updated according to

siðt þ 1Þ ¼
1 if hsjðtÞij�i

> θ;

0 otherwise;

(
ð1Þ

where 〈⋅〉j~i is the average over all neighbors of i (“Methods”).
Significant attention has been dedicated to understanding the
interplay between θ and network topology for global cascades
to occur (i.e., yielding an activation of 99% of nodes)13. It has
been repeatedly reported that complex contagions spread “faster
and further”16,20 on highly clustered networks, as compared
to simple contagions13,16,45. It is worth stressing that the inves-
tigation of this important statement remains limited to the
long-termdynamics of global cascades46. On the other hand,
the early dynamics of contagion affecting a smaller fraction of

nodes—say cascades of 30% activated nodes, which is still mac-
roscopic—has been relatively overlooked. There has been no
attempt to relate the actual speed of contagion with the transition
from simple to complex contagion for incomplete—i.e., non-
global—cascades. This speed of contagion, also known as diffu-
sion speed, is the number of infected nodes per unit time and is
increasingly recognized as an important indicator of the con-
tagion dynamics11,46–49.

A useful metric to analyze this is given by the so-called
polarization speed v= (P(t)− P(0))/t at instant t, where P(t)
measures the polarization of the system (“Methods”). This
quantity gives an indication of the speed at which a random
activator node and its neighbors can activate a given fraction of
nodes (here 30%; “Methods” and Supplementary Fig. S1 for other
fractions)11,17,22,27. Here, we consider this polarization speed,
which is identical to the average speed of diffusion considered in
ref. 46 and is also somehow related to the concepts of spreading
speed, half prevalence time, or time until half the network is
infected48,50,51, and we study how it relates to some network
descriptors used for the study of the spread of misinformation in
temporal network epidemiology52.

Following in the footsteps of Centola & Macy, we use their
version of the LTM16 to study the transition from simple to
complex contagion. Simple contagions are observed in LTMs with
low thresholds θ, which lead to an increased spreading rate on
networks with smaller values of the average shortest path ℓ5,45. As
θ increases, the contagion becomes complex and for the spreading
process to endure, the network must possess a sufficiently high
value of the clustering coefficient C13,17. Here, we consider the
classical small-world Watts–Strogatz (WS) networks5, which are
constructed on the basis of a single free parameter, namely the
rewiring probability p. By varying p, we can effectively tune C, ℓ,
or the Kirchhoff index Rg of the network (“Methods”). The
Kirchhoff index Rg ¼ N∑N

i¼2 λ
�1
i , is a distance metric based on

the eigenvalues 0= λ1 < λ2 <⋯ < λN of the Laplacian matrix53

(“Methods”).
The variations of the polarization speed v with θ are reported

in Fig. 1. At a low threshold, the polarization speed increases
when ℓ decreases (and C decreases as well), which is characteristic
of simple contagions (Fig. 1a). At higher θ values, this trend is
inverted and we retrieve the well-known complex contagion
phenomenology in which v increases with C (and also with ℓ).
These trends can also be appreciated by observing the particular
network topology corresponding to the purple curve (high C, ℓ

Fig. 1 Linear threshold model on WS networks of N= 10, 000 nodes, with fixed average degree 〈k〉= 16 and uniform threshold θ. Initially, a single
randomly selected seed node and its neighbors are activated. a Average polarization speed v when the cascade size is 30% active nodes on the network,
with lines stopping prematurely if the fraction is never reached, shown for a representative set of network metrics (Supplementary Fig. S1 for other cascade
sizes). The WS rewiring probability p is used to generate network samples having specific values of χ∈ {C, ℓ, Rg}. b Spearman’s correlation coefficients rs
between the polarization speed v and each network property χ∈ {C, ℓ, Rg}.
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and Rg) in Fig. 1a. It goes from producing the worst-performing
simple contagion (out of the four topologies considered here) at
low θ, to generating the best performing complex contagion at
higher threshold values. As expected, the transition region
corresponds to intermediate values of the threshold such that
the ordering of the different networks does not reveal an
unambiguous simple or complex contagion. It is worth noting
that highly clustered networks can sustain a complex contagion at
higher thresholds compared to the more rewired networks, which
lack ample clustering to sustain spreading13.

To analyze this transition, we calculate Spearman’s correlation
coefficient rs between the polarization speed v and each network
metric χ∈ {C, ℓ, Rg}, for each threshold value θ (“Methods” and
Supplementary Fig. S2). There is a marked transition from
rs ≈−1 for θ < 0.1, to rs ≈+1 when θ > 0.28 (Fig. 1b). These
thresholds mark the cutoff of purely simple and complex
contagion—used to draw the shaded regions in Fig. 1a—with
the transition region in between experiencing a more complex
interplay of the network parameters and the resulting polarization
speed. Note that the correlation between the three network
parameters and the polarization speed are extremely similar,
owing to the well-known fact that the WS network model has
only one free parameter (the rewiring probability p; see ref. 5).
These results are in good agreement with other observations of
this transition5,16,17,45, thereby suggesting that v, characteristic of
the early contagion dynamics, is both an adequate and effective
indicator of the nature—simple or complex—of the behavioral
propagation.

Transition from simple to complex contagion in consensus
models. In the previous section, we showed that with the classical
LTM, the transition from simple to complex contagion can be
analyzed and understood from a new angle—the speed of con-
tagion—using v as an indicator of such speed. The question now
is whether such a transition can be observed with other collective
decision-making processes that do not involve binary state vari-
ables with cascades of changes, nor nonlinear mechanisms
/thresholds. Specifically, we consider the canonical linear time-
invariant Taylor model30,42,43, which has been widely used to
characterize a vast breadth of collective behaviors1,11,37,38,54,55

and decision-making30,56. In the Taylor model, the agents (nodes)
seek to reach a consensus by performing some average of their
own state along with those of their neighbors in the network
sense. However, flocking birds and schooling fish in the wild
seldom reach a complete consensus given their incessant collec-
tive maneuvering: the convergence to a stationary state clearly
does not apply to their dynamics. This is even more true when
these animal groups are dealing with predator attacks or other
external perturbations. Indeed, accumulating empirical evidence
shows that swift behavioral propagation is the true hallmark of
collective behavior, rather than high consensus or polarization37.
It can therefore be said that although consensus is at the root of
their collective actions, these systems effectively tend to operate
away from consensus11,12.

Considering the particular Taylor model corresponding to the
LFC dynamics, one can drive the system away from consensus by
imposing a given dynamics to the “leader” (also known as
“stubborn”, “zealot”, “informed” agent in some contexts30). The
leader’s behavior then propagates to the neighboring agents, and
further to the entire system, thereby determining the emergent
collective response. From the control-theoretic perspective, this
leader introduces a time-varying input signal into the system.
However, this behavioral propagation intricately depends on the
network topology, as well as on the leader–follower consensus
dynamics considered. Here, we consider N agents with state

variable xi(t) seeking to follow the arbitrary trajectory x0ðtÞ ¼
uðtÞ ¼ sinωt of the leader agent i= 0, by means of the following
linear distributed consensus:

dxi
dt

¼ ∑
N

j¼1
wijxjðtÞ þ wi0uðtÞ; ð2Þ

where wij is a weight related to the interaction between agents i
and j (“Methods”). The collective frequency response of the
system, H2(ω) (Eq. (7) in “Methods”), can be interpreted as the
number of agents that are able to respond or follow the leader’s
behavior, as a function of its frequency ω11,57.

The LFC dynamics at low frequency (ω→ 0) has been
comprehensively studied. For instance, it is well known that the
collective response increases as ℓ decreases14,43,58. This phenom-
enology is analogous to that of a simple contagion (cf. the
increase of the polarization speed v as ℓ decreases for the LTM at
low threshold θ, Fig. 1a). Given the transition from a simple to a
complex contagion when increasing θ in the LTM, one is
naturally led to consider the possible existence of a transition in
the LFC when increasing the frequency ω of the leader’s
dynamics.

To investigate if the LFC indeed exhibits such a transition, we
follow the same approach as for the LTM. We analyze the
collective response on networked systems having 240 nodes with
a fixed average degree of 〈k〉= 16. Using the same family of
small-world WS networks5 (“Methods”), we are able to compute
analytically H2(ω) (Fig. 2a) for the same values of the clustering C
as the ones previously used for the LTM (Fig. 1). It is worth
adding that similar results are obtained with a family of scale-free
networks (Supplementary Fig. S4). Unsurprisingly, at low
frequency (ω≲ 10−2), we observe a phenomenology consistent
with a simple contagion, namely H2 increases as ℓ decreases.
Upon increasing ω, this trend is reversed and H2 grows with C in
ways that are reminiscent of a complex contagion. However, to
ascertain that this phenomenology is indeed a transition from a
simple to a complex contagion, one has to verify that the simple
contagion at low frequency is driven by ℓ or Rg, while the complex
one at high frequency is controlled by C. To this aim, we calculate
the Spearman’s correlation coefficient rs between H2 and
χ∈ {C, ℓ, Rg} (Fig. 2b). For these three network metrics, rs exhibits
a clear sigmoidal trend from −1 at low frequency to +1 at high
frequency. This trend echoes the one observed with the LTM
when varying θ (Fig. 1b), with a transition region in the middle.
Let us note that the important element here is the presence of a
transition regardless of the actual values of the upper (resp. lower)
bound of the simple (resp. complex) contagion region. Although
beyond the scope of this study, a thorough analysis of the
profound nature of this transition—e.g., cross-over, phase
transition—might help in systematically defining the extent of
this transition region.

However, we are still unable to conclude that C is fully
responsible for the observed trend at high frequency with the
LFC, although this fact is well known for the LTM at high θ. To
reach this conclusion, we have to address a well-known structural
constraint with the WS networks, namely the fact that they
are constructed by means of a single parameter—the rewiring
probability p5,59. This is clearly visible in the insert of Fig. 2b,
where C monotonically increases with Rg and ℓ (see Supplemen-
tary Fig. S9). To overcome this issue, we include additional
WS networks—with different values of the average degree—
and select a subsample of these networks having uncorrelated
network metrics (“Methods” and insert of Fig. 2c). Given this
extended network sampling, we need to account for the effects of
degree variations12,53,60, and as such we impose a normalization
procedure (overbar notation) for all quantities of interest: �H2, �C, �‘
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and �Rg (“Methods”). Using this methodology, we obtain the

following key result: at low frequency, �H2 is highly (negatively)
correlated with �Rg and practically uncorrelated with �C, while the
opposite is true at high frequency. This unambiguously confirms
our hypothesis that the consensus-based behavioral propagation
at low (resp. high) frequency is of the simple (resp. complex)
contagion type.

It is worth emphasizing that the only commonality between the
LTM and the LFC is that both constitute a collective decision-
making protocol exhibiting a transition from simple to complex
contagion. Although there are obvious similarities between the
phenomenology of this transition in both cases, as illustrated by
the behavior respectively of the polarization speed (Fig. 1) and of
the collective response (Fig. 2), we do not seek here to establish
any formal equivalence between their respective control para-
meters (θ for the LTM and ω for the LFC).

Complex contagion with networked robots governed by non-
linear heading consensus. The theoretical result described above,
concerning the canonical LFC, is compelling in several ways.
First, it reveals the existence of a transition from simple to
complex contagion in the absence of threshold-based mechan-
isms. This transition in the behavior of consensus-based decision-
making processes occurs when varying the inherent pace of the
behavior that is propagated through the system. Second, it has
significant ramifications for the understanding of some collective
behaviors subjected to external fast-pace perturbations, e.g., fol-
lowing a predator’s attack leading to collective evasive maneuvers
by schools of fish or flocks of birds. As recently stressed by
Firth18, the profound nature of these socially transmittable
behaviors has yet to be fully understood. Firth makes clear that
the concept of complex contagion has been relatively overlooked
by biologists, although it might help explain a vast breadth of

collective animal behaviors18. In addition, there has been emer-
ging evidence of complex contagion in some schooling behaviors
of golden shiners exhibiting highly clustered interaction
networks2. As already mentioned, dealing with wild animal
groups is not only challenging from the practical standpoint, but
it also restricts the ability to analyze the influence of the deeply-
ingrained nature of the interaction among agents.

The use of robotic systems—in lieu of biological ones—has
been considered to overcome some of these challenges and to
offer a new toolkit to deepen our understanding of collective
animal behaviors40,41. Although simulations offer unique ways to
systematically analyze algorithms of collective dynamics, they
inevitably reduce the fidelity of the model to achieve computa-
tional tractability. Indeed, the simulation-reality gap in robotics is
known to be exacerbated with multirobot systems61. For instance,
simulations can fail to adequately capture: (1) the complex
physical interactions among agents, (2) the inherent variability
among units forming the group, and (3) the fine details of real-
world settings in which the agents are embedded. As a matter of
fact, achieving high-fidelity simulations often requires the input
or feedback from physical experiments.

Data gathered in robotico, with a highly controllable and
controlled environment, enable a rapid investigation of a number
of hypotheses about collective behaviors. In turn, the outcome of
such investigations can serve biologists to identify new directions
to explore, test and validate with empirical data. Following this
strategy, we use a networked robotic system to assess various
socially transmittable behaviors when changing the topology of
the interaction network in the presence of a collective decision-
making with a nonlinear component. It is worth stressing that the
results obtained with the LFC (Fig. 2) are for a linear system
dynamics, yet they reveal a surprisingly complex phenomenology.
Nonetheless, some collective decision-making processes among
moving animals are based on a consensus associated with the

Fig. 2 Leader–follower consensus model on WS networks of N= 240 nodes. The collective response is averaged over all nodes as the leader. a Collective
response H2, for a subset of the networks with average degree 〈k〉= 16; b, c Spearman’s correlation coefficient rs between the collective response �H

2
and

normalized network metrics �χ 2 f�C; �‘; �Rgg. b Networks with average degree 〈k〉= 16. c Networks with degrees 〈k〉∈ {4, 6,…, 32}, limited to a range of
uncorrelated network parameters. Note that the inserts show the distribution of the normalized clustering coefficients �C and Kirchhoff indexes �Rg used to
compute rs (Supplementary Figs. S5–S6). The purple points in the inserts are for networks with 〈k〉= 16, while those in green in panel c are for other values
of 〈k〉. The red box in the insert of panel c highlights the dots corresponding to the subsample of networks used to generate the Spearman’s correlation
coefficient in panel c, with rsð�C; �RgÞ � 0:03 (Supplementary Fig. S3 for other possible subsampling of networks).
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direction of travel, and are inherently nonlinear. Such nonlinear
interactions among conspecifics have recently been shown to be
responsible for sudden directional switches in groups of pigeons62.

Therefore, we carried out a series of experiments on nonlinear
leader–follower heading consensus with a collective of ground
robots where each one aligns its direction of travel with that of
their neighbors in the network sense (“Methods”). As a
consequence, changing the structure of the interaction network
—and in particular its properties such as χ∈ {C, ℓ, Rg}— modifies
the nature of the neighborhoods involved in the nonlinear heading
consensus. This type of collective decision-making—closely related
to Vicsek’s canonical model of collective motion63—bears some
resemblance with the Taylor model analyzed previously. However,
a physical embodiment of such a complex system involves
significant deviations from the ideal scenario corresponding to the
theoretical calculations obtained for the LFC. For instance, while
the dynamics of the robots are ultimately governed by physical
processes that are continuous in time, the units sense each other’s
state using asynchronous, discrete communications with stochas-
tic delays and communications dropouts12.

The networked robotic system comprises ten robots (one
leader and nine followers, “Methods”) equipped with a “swarm-
enabling” unit—providing on-board data-processing, computing
and distributed communication capabilities—that allows the
system to perform a collection of decentralized cooperative
control strategies64. The leader continuously rotates at a fixed
frequency ω in the range 0.03 Hz < ω ≤ 0.3 Hz. Each robot,
including the leader, periodically transmits its heading informa-
tion to its direct neighbors as per the specific network topology
considered. Three distinct topologies ("Random”, “Ring”, and
“Caveman” as shown at the bottom of Fig. 3) are selected on the
basis that they have the same average degree 〈k〉= 4, yet notably
different clustering coefficients C (“Methods”).

It is worth highlighting that this experimental setup and
methodology are identical to the one reported in ref. 12, except for
the fact that different network topologies are considered here.
According to the analysis of the LFC, the collective response of
this networked robotic system is expected to go down when
increasing the frequency ω of the leader agent. This appears
clearly in Fig. 3a for all three networks considered. The decrease
in the collective response is essentially the same at low frequency
(ω ≤ 0.06 Hz) for all cases. Above that frequency however, we
observe a strong difference between all three topologies in the

range 0.06 Hz ≤ ω ≤ 0.2 Hz. This intermediate range of frequen-
cies shows a rich collective behavior since the dynamics of the
leader is rather “fast” thereby preventing any form of heading
consensus to be achieved. This places us in a regime similar to
that of animal groups dealing with fast-paced perturbations.
Beyond 0.2 Hz, the highest collective response, achieved with the
“Caveman” network, experiences a sharper decline, which we
suspect would go down to the same low level as for the “Random”
and “Ring” networks at higher frequencies. Unfortunately,
increasing the frequency above 0.3 Hz is not possible in practice
due to a limit in the achievable rotation frequency of the leader.

To compensate for this experimental limitation, we perform
simulations of the leader–follower nonlinear heading consensus
dynamics with 9+ 1 agents by integrating the system of Eq. (14)
(Fig. 3b). Unsurprisingly, these simulations show higher levels of
collective response at low frequency, compared to the experi-
mental ones, as they correspond to an idealized communication
between agents. In addition, the frequency at which the
differences between the different networks become apparent is
higher in the simulation case with respect to the experimental
one. Finally, we can reach a higher frequency in the simulations
than in the experiments, and the results do show the expected
merging of the three collective responses at the highest frequency
values (that were not reached in Fig. 3a).

Following the analytical results with the LFC (Fig. 2), we are
able to further analyze the robotic experiments. The complex
contagion induced by the leader unit to the nine followers is
clearly visible in the intermediate frequency range 0.06 Hz ≤ ω ≤
0.2 Hz. The results are indeed in excellent agreement with the
complex contagion phenomenology studied previously in much
larger networks (“complex” hatched region of Fig. 2a). When the
robotic units are interconnected by means of the most clustered
network (“Caveman”), the behavioral spread is the most effective
and the collective response the highest. On the other hand, when
decreasing the clustering between robotic units—from “Cave-
man” to “Ring” and ultimately to “Random”—the effectiveness of
the spread of the leader’s behavior is reduced, and so is the
ensuing collective response at the group level.

We note on the other hand that, given that the experiment is
limited to ten robotic units with an average degree 〈k〉= 4, the
diameters and Kirchhoff indices for all three networks are small.
Therefore, the simple contagion process at low frequency
(ω ≤ 0.06 Hz) is simply too rapid and no meaningful distinction

Fig. 3 Experimental analysis with a leader–follower networked robotic system networked by means of three topologies: “Random”, “Ring”, and
“Caveman” with 〈k〉= 4 and 9+ 1 agents (“Methods”). The graphs represent the network topologies used in the series of experiments, with the selected
leader node depicted in yellow: a Experimental results of angular consensus dynamics (mean value and associated standard deviation; “Methods”),
b simulation results of the nonlinear angular consensus dynamics.
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between the considered topologies can be observed experimen-
tally (Fig. 3a).

Discussion
In summary, we have shown theoretically and experimentally that
complex contagions are more general and prevalent than ori-
ginally thought, and that transitions from simple to complex
contagion are not limited to threshold-based models. Instead, our
results suggest that such a transition might be a general feature in
some classes of collective decision-making processes.

Network science has been instrumental in uncovering the
existence of complex contagions by Centola & Macy13,16 in the
social sciences. Since these seminal works, complex contagions
have been observed in other spreading dynamics over complex
networks, including epidemic-like stochastic models22–25. How-
ever, and as already mentioned, the study of the transition from
simple to complex contagion has still been limited to the original
LTM used by Centola & Macy, as well as social network
experiments with binary options in decision-making. Hence, our
discovery of this very transition within a fully linear decision-
making protocol devoid of any thresholds greatly expands the
relevance of this phenomenon to a vast breadth of collective
decision-making processes beyond the social sciences, and
including collective animal behavior and collective robotics.

At this point, it is critical to realize that ascertaining the exact
nature of a contagion—simple or complex—remains challenging.
Because of that, some scientists still cautiously use the term
“complex contagion” or even refer to it obliquely: e.g., “complex
contagion flavor”65. Even with the full details of: (1) a given
collective dynamics—e.g, linear threshold dynamics for a given
value of θ, or a leader–follower consensus dynamics for a given
value of ω—as well as (2) the interaction network topology
among agents, one is lacking a definite way of characterizing the
behavioral contagion. This work offers a key conceptual advance
in overcoming this challenge. Indeed, the network-based classi-
fication proposes to vary the topology with the goal of either
increasing or reducing both the clustering coefficient C and the
Kirchhoff index Rg. In the event that the effectiveness of the
behavioral propagation is found to be positively correlated with C
and uncorrelated with Rg, then the contagion is complex. Con-
versely, if a behavioral propagation is negatively correlated with
Rg and uncorrelated with C, then it can be classified as a simple
contagion (Fig. 2c). It is therefore worth stressing that this
complex networks characterization of simple/complex contagions
is agnostic to the actual details of the collective decision-making
process. In all cases investigated here, the simple or complex
nature of a behavioral propagation is determined by the value of a
control parameter of the dynamical process taking place at the
node level: e.g., the threshold θ for the LTM and the inherent pace
of the behavior ω for the LFC. The proposed characterization
allows us to identify the intervals of the control parameter asso-
ciated with simple or complex contagions, with a transition
region in between (Figs. 1 and 2).

Despite the apparent relative simplicity of this complex net-
works characterization of contagions, one should not under-
estimate the associated practical challenges for scientists studying
a specific collective decision-making dynamics among humans,
within animal groups, or with networked robots. Varying the
network topology might not always be achievable as previously
stressed in the case of flocks of birds or schools of fish. This
approach was central to Centola’s study of humans involved in an
online social experiment, in which the topology of the social
network was controlled and manipulated20. This groundbreaking
experiment has been made possible thanks to the emergence of
online social networks and related technology. Clearly, such an

approach could not be considered and implemented with animal
groups. However, as our networked robotic experiment shows,
the use of artificial agents mimicking animal behaviors offers a
new toolkit to analyze and gain insight into collective animal
behavior. With this approach, one can carry out the proposed
complex networks characterization and ascertain the nature—
simple or complex—of the behavioral propagation. Last but not
least, one can also modify the triggering behavior—in our
experiment, the stimulus associated with the frequency of the
leader—to possibly uncover a transition from simple to complex
contagion. Such an approach opens new doors toward under-
standing the mechanisms underpinning such collective behaviors.

Given how ubiquitous collective decision-making is in human
societies, animal groups, and networked multiagent systems, these
new results will have profound ramifications for our under-
standing of numerous phenomena in these fields. The importance
of these results goes beyond the class of consensus-based
protocols considered here, although studying a second-order
leader–follower consensus66 with an underdamped dynamics
seems like a natural extension to this work given its acknowl-
edged relevance to collective information transfer in flocks of
birds36,37. The novelty of these results effectively has implications
for a vast breadth of collective decision-making protocols invol-
ving a continuum of options to choose from. Firth18 recently
speculated the importance of complex contagions in animal social
networks and behavioral contagions. Interestingly, Rosenthal
et al.2 had the intuition that complex contagions occur in schools
of golden shiners owing to the high levels of clustering exhibited
by their network of interaction. This led them to consider a
(fractional) threshold-based model—generating complex con-
tagions—to characterize behavioral cascades in this particular
schooling setting2. While Rosenthal et al. limited their work to
threshold-based models to analyze this phenomenon, our results
would allow their study to be expanded upon, as the decision-
making process in golden shiners is clearly based on a continuum
of options. From the same research group and with the same
animal groups, Sosna et al. provided additional empirical evi-
dence about the importance of the topology of the interaction
network on collective responsiveness3. They also speculate that
the fish might actively control their interactions to achieve a
higher collective responsiveness3. Our results offer a theoretical
backing to this idea, and it might provide biologists with new
directions to explore and experiment.

Besides shedding a new light on our understanding of collective
behaviors, these results have also clear implications for the design
of man-made networked systems: e.g., Internet of Things, multi-
robot systems, dynamic sensor networks. Finally, we hope the
present analysis of these rich phenomena of transition from simple
to complex contagion will be extended to more complex networks,
including heterogeneous, temporal, and/or multilayer networks.

Methods
Linear threshold model. The LTM is a binary-option model of collective decision-
making widely used in the study of complex contagion13,16. As described in
refs. 16,17,27, it consists of a connected network of N nodes, with each node i
characterized by a state variable with two possible discrete values si(t)∈ {0, 1}—
inactive or active—and a fixed threshold value θi∈ [0, 1]. At t= 0, all nodes start in
the inactive state except for a random seed node l and its neighbors, denoted by
{j ∣ j ~ l}, whose state is set to active. Whenever the fraction of an agent’s neighbors
that are in the active state is larger than or equal to the agent’s threshold θi, that
node will switch to the active state, i.e., si(t+ 1)= 1 when 〈sj~i(t)〉 ≥ θi. The LTM
dynamics on a given network can be characterized by the average polarization or
activity, defined as PðtÞ ¼ hsiðtÞifi¼1;¼ ;Ng, and the associated polarization
speed11,46

vðtÞ ¼ PðtÞ � Pð0Þ
t

; ð3Þ

which effectively is the average propagation speed until instant t.
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Note that when P(t)= 1, all nodes are in the active state, and a global cascade
has taken place. Particular emphasis has been put on characterizing which network
topologies lead to global cascades for certain values of θi13,16,17, and the realization
that complex contagions spread faster on networks with high levels of
clustering16,20,45. However, numerous empirical observations attest that behavioral
cascades are rarely global: evasive maneuvers in schooling golden shiners involve
10–30% of the individuals2 and the adoption of new health behavior in an online
social network experiment only reached 30–60% of participants20. Since complex
contagions exhibit faster spreading in their early stage of propagation20,45 that in
their late near-global stage, we focus here on the early dynamics of the cascade and
therefore consider the polarization speed v(tf) for which 30% of the nodes are
activated, i.e., for the smallest time tf where P(tf) > 0.3 (Supplementary Fig. S1 for
other cascade sizes).

To study the transition from simple to complex contagion with the LTM, we
consider fairly large networks of N= 104 nodes, with identical thresholds θi= θ ∀ i,
in order to ensure that the active state propagates for long enough at low values of
θ. We let the active state propagate from a randomly selected seed node and its
neighbors until the system reaches an equilibrium where P(tend+ 1)= P(tend). In
our analysis, we only consider networks where P(tend) is at least as large as the
desired cascade size, and we omit from our analysis the simulations where the
active state failed to propagate.

Leader–follower consensus model. The leader–follower consensus model
(LFC)11,12,42—a particular version of the Taylor model30—is commonly used by
the control community to study opinion dynamics and formation control. Here, N
identical agents perform a distributed consensus protocol on their state variable
xi(t), and one particular agent i= 0—the leader—follows an arbitrary trajectory
x0(t)= u(t) instead. The dynamics of this linear system is governed by the fol-
lowing set of first-order ODEs:

dxi
dt

¼ ∑
N

j¼1
wijxjðtÞ þ wi0uðtÞ; ð4Þ

where wij= ω0(aij/ki− δij) is the inter-agent consensus protocol weight for the
interaction between agents i and j. The natural response frequency ω0 is assumed to
be the same for all agents. The degree of agent i is given by ki ¼ ∑N

j¼0 aij , and the
adjacency matrix entry is aij= 1 if agent i is connected to j and 0 otherwise—
classically δij is the Kronecker delta. The solution to Eq. (4) in the frequency
domain can be expressed in matrix form as12

XðωÞ ¼ ðjωI�WFÞ�1WLuðωÞ; ð5Þ
with I the appropriately sized identity matrix, WF ¼ ðwijÞN ´N

¼ ω0LG where LG is
the grounded Laplacian matrix42 and WL ¼ ðwi0Þfi¼1;¼ ;Ng is the consensus pro-
tocol between the N followers and the leader i= 0. The frequency response of the
multiagent system measures the ability of the agents to follow the leader’s trajec-
tory, u(t), and can be expressed in the frequency domain as the transfer function
along the jω axis in the s-plane12,67

HðωÞ ¼ δX
δu

� �
ðωÞ ¼ ðjωI�WFÞ�1WL; ð6Þ

with the entries of the vector H ¼ ðhiÞfi¼1;���;Ng corresponding to the individual
agent’s frequency response. It is clear from Eq. (6) that the response function has a
nontrivial dependency on the topology of the agents’ connectivity through the
adjacency matrix, and therefore the entries of WF and WL. We define the collective
frequency response of the system as12

H2ðωÞ ¼ HyðωÞHðωÞ ¼ σ2ðωÞ; ð7Þ
with † being the adjoint matrix operator and σ being the singular value of the
system with a single leader—classically used in the analysis of multiple-input and
multiple-output (MIMO) systems. When all agents in the system perfectly follow
the leader’s behavior the response reaches its maximum value, H2=N. Thus the
quantity H2/N can be interpreted as the fraction of agents in the system following
the leader. It is worth stressing that since H2 is not constant under leader selection,
the results we present in this paper are obtained by averaging over all possible
leader placements in the network.

To study the transition from simple to complex contagion in the LFC, we
consider networks of N+ 1= 240 agents. This is significantly smaller than for the
LTM, but the LFC shows a much higher sensitivity to variations in the network
metrics, which yields a range of H2 large enough to perform our analysis, even with
relatively small network sizes.

Networks and metrics. To study the influence of the network topology on the
behavioral propagation in the LTM and the LFC, we use the small-world
Watts–Strogatz (WS) network model5. These networks enable us to vary key
network metrics by changing a single parameter, namely the rewiring
probability5 p. To quantify the generated network topologies, we use the following
metrics: the clustering coefficient C, the average shortest path ℓ and the Kirchhoff
index Rg defined below. We use an average degree 〈k〉= 16 for Figs. 1 and 2a, b to
ensure high levels of C before rewiring60 and a large range in ℓ and Rg.

Clustering coefficient. To measure the level of community structure, and thus the
potential for reinforcement of the behavior that is propagating, we use the average
of the local clustering coefficient as defined in ref. 5, and we simply refer to it as
“clustering coefficient” or C throughout the paper.

Average shortest path. The shortest path between a given pair of nodes is the
minimum number of hops needed to connect the two. The average shortest path is
the average between all pairs of nodes. It is well known that for WS networks,
decreasing the distance between nodes both increases the effectiveness of simple
contagion5,16 and the time it takes to reach consensus14.

Kirchhoff index. The Kirchhoff index Rg—also known as the resistance distance—is
a distance metric obtained by replacing every connection with a 1Ω resistor and
averaging the resistance between all node pairs53, thus considering all paths on thep
network. Further, Rg is directly related to the eigenvalues 0= λ1 < λ2 <⋯ < λN of
the Laplacian matrix53 and can be expressed as

Rg ¼ N ∑
N

i¼2

1
λi
: ð8Þ

The cohesion of the follower states—under a white noise disturbance—can be
measured by the H∞-norm of the dynamics of Eq. (4)—which is H2(ω= 0)—and it
has been proven that maximizing the cohesion is done by minimizing the
Kirchhoff index Rg42,43.

Correlations. We consider Spearman’s rank correlation rs to investigate the impact
of network metrics on a given collective behavior. We use the rank correlation due
to the expected nonlinear relationship between the performance of the collective
behavior and network metrics for both the LTM and LFC12,14 (Supplementary
Figs. S2, S5, and S6 for point distributions). The Spearman’s correlation is defined
by

rs ¼
covðrgX ; rgY Þ

stdðrgX ÞstdðrgY Þ
; ð9Þ

with rgX being the rank of the metric, cov(X) and std(X) the covariance and
standard deviation, respectively.

Given the fact that the WS networks are generated by varying one single free
parameter (the rewiring probability p), the associated network metrics are
inevitably correlated. As a consequence, we are unable to distinguish the individual
effects of each network metric for a given average degree 〈k〉 (insert of Fig. 2b). To
overcome this, we generate networks of different average degrees k∈ {4, 6,…, 32},
and consider a sampled set of these networks for which C and Rg vary
independently of each other (insert of Fig. 2c). However, as shown in refs. 11,12, the
collective frequency response H2 is notably influenced by the degree distribution,
and so are the network metrics considered χ∈ {C, ℓ, Rg}14,53,60. To account for that
degree dependency, we normalize all quantities involved, with the normalized
quantity denoted by an overbar. First, the normalized collective frequency response
is given by

�H2ðω; k; pÞ ¼ H2ðω; k; pÞ
H2ðω; k; pmaxÞ

; ð10Þ

in which pmaxðω; kÞ is the rewiring probability that yields the largest H2(ω, k, p).

Note that �H2ðωÞ≤ 1. Second, the normalized clustering coefficient is defined as

�Cðk; pÞ ¼ Cðk; pÞ
Cðk; p ¼ 0Þ ; ð11Þ

such that for any k the most clustered networks, obtained for p= 0, have �C ¼ 1
(Supplementary Fig. S5). Third, since the distance metrics also change with
〈k〉14,53, we introduce the following normalized distance metrics

�‘ðk; pÞ ¼ ‘ðk; pÞ
‘ðk; p ¼ 1Þ ; ð12Þ

�Rg ðk; pÞ ¼
Rg ðk; pÞ

Rg ðk; p ¼ 1Þ ; ð13Þ

which are based on the smallest distances, obtained with p= 1.
From all the networks generated with different p and 〈k〉, we construct a sample

that almost fully decorrelates the clustering coefficient and the Kirchhoff index: i.e.,
such that rsð�C; �Rg Þ � 0 (insert of Fig. 2c, and Supplementary Fig. S3 for other
subsamples of networks).

Nonlinear heading consensus experiments. To empirically measure the collec-
tive response—with differently paced leaders—we use the same experimental
multirobot setup as ref. 12 with N= 10 robotic units (called “eBots”) commu-
nicating by means of their so-called “swarm enabling unit”64. These ground
differential-drive robots are collectively moving about a two-dimensional domain
(Supplementary Fig. S10). The motion of the units is the superposition of a
translational motion and a rotational one. In this setup, the leader agent undergoes
a constant rotational motion such that its heading αL(t) is governed by dαLðtÞ

dt ¼ ω,
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with ω denoting the frequency of the leader. Its “leader” status comes from the fact
that its behavior does not depend on the follower agents. Note that the agents have
no way of distinguishing the leader from any other agent in the system.

The robot’s heading is the only state variable driven by the robot’s controller
regardless of the speed. Specifically, the NF= 9 follower eBots seek to align their
heading αi(t) with that of their neighbors αj~i(t). The nonlinear heading consensus
algorithm determines a target heading α for each unit according to

αi ¼ hαij�i ¼ arctan
∑j�i sin αj
∑j�i cos αj

 !
; ð14Þ

where j ~ i denotes the set of topological neighbors of i in the network sense, and
〈⋅〉 is an angular average. The nonlinear heading consensus (14) is identical to the
one considered in Vicsek’s model63 except for the fact that we use a static
topological neighborhood while a metric one was originally considered in ref. 63.
Each follower unit updates its target heading αi asynchronously every ΔT= 0.1 s.
The nonlinear heading consensus algorithm used in the experiments is a discrete-
time equivalent of

dαi
dt

¼ ω0ðhαij�i � αiÞ; ð15Þ

with ω0ΔT≫ 1 and for times t≫ ΔT. Here, ω0 is the natural frequency of angular
rotation of the eBots. The information of each neighbor’s state is also updated with
the same sampling rate, but not necessarily concurrently with each other or with
the update of Eq. (14).

The robots are interconnected according to three fixed network topologies with
〈k〉= 4 due to size limitations of the network N= 10, namely: the connected
caveman network59 (for maximal clustering coefficient), a k-regular random
network (for low values of C), and the 1D ring lattice (WS networks with p= 0
offering an intermediate level of C). These three fixed network topologies provide a
wide range of values for the clustering coefficient as shown in Fig. 3.

Each run of the experiment starts at t= 0 with all eBots aligned with the leader:
i.e., αi(0)= αL(0)= 0 ∀ i. Each run lasts for a duration of T= 10 min to make sure
the leader performs a meaningful number of rotations for all frequencies
considered. The capacity of the NF followers to maintain their heading aligned with
that of the leader is measured by the empirical collective response12

H ¼ ∑
NF

i¼1

1
T

Z T

0
cosðαiðtÞ � αLðtÞÞdt; ð16Þ

which is averaged over three repeated runs, for each angular speed of the leader
considered.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Information. Additional data related to this paper may be requested
from the authors.

Code availability
All codes developed for this study are available at https://github.com/Horsevad/
Simple_to_complex_contagion_in_collective_decision-making.
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