
Can we extract a relevant, available, and self-contained core of the Maven
ecosystem?

Extracting the pillars of the community, and their dependencies.

Mathijs van der Schoot

Supervisor(s): Sebastian Proksch

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Mathijs van der Schoot
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Casper Poulsen



Abstract

The Maven ecosystem, with an emphasis on Maven
Central, contains a plethora of toy-projects. This
paper addresses this problem by formulating a core
containing the pillars of the Maven ecosystem, such
that it can be exploited for research concerning li-
brary quality. The construction of said core is done
by analyzing the availability, relevance and depen-
dencies of packages in the Maven ecosystem. It
involves answering questions regarding the distri-
bution of library usages, the dependencies of popu-
lar libraries and the effect of a usage threshold fil-
tering mechanism. We found the popular libraries
to be utilized to an incredible extend, while their
less popular counterparts are seldom, if ever, used.
Delving into the creation of a core reveals its non-
trivial nature, requiring intricate knowledge of the
Maven dependency mechanism and its accompany-
ing tools to construct. This paper explores the com-
plexities, nuances and considerations involved.

1 Introduction
The Maven ecosystem and the public repositories it contains
stand as keystones for Java developers, serving as epicenters
for the exchange of Java libraries. At the heart of each li-
brary is its build file, called the POM. This file is not only
instrumental in outlining the library’s construction but more
notably specifies the dependencies it relies on. These depen-
dencies intricately interweave to form elaborate and complex
dependency trees. These complex structures have captured
the attention of researchers and has been the topic of many
academic articles.

This paper is on extracting a subset of the dependency trees
in the Maven ecosystem, for analysis purposes. Qualitative
analysis for example, such that developers have assurance
that the libraries in the subset are up to standard and can be
safely included as a dependency in their project. With this
goal in mind, we set the principles we want to adhere. The
packages should be available, because packages broken for
any reason are not useful for analysis. The packages should
be relevant, because irrelevant ones are infrequently used
which consequently means any analysis on them is irrelevant.
Many packages on Maven Central are what we consider ’toy-
projects’, and should therefore be excluded from the subset.
Lastly, we want the subset to be self-contained. This means
every package in it can only depend on other packages in the
subset, not on any outside it. It is an important principle, be-
cause analysis on the subset should include all dependencies
involved. We explore the considerations it demands and the
nuances of a self-containing clause in relation to the Maven
dependency mechanism. We call the final subset, the ’core’ of
the Maven ecosystem, as it will contain the popular packages,
which stand as pillars in the community. While the core we
create might be useful to many, the main purpose of this paper
is not to construct such a core, but to construct a method to do
so. This means other researchers or individuals can take the
method and modify it to their own needs, using the insights

from this paper. We can now define the research question:
can we construct a method to extract an available, relevant
and self-contained core of the Maven ecosystem? We explore
this question, with the creation of a core for qualitative anal-
ysis as tool to do so.

Prior research has been done on extracting a curated set of
Java libraries. BlackBurn et al. have created the DaCapo set
for benchmarking purposes[1]. This is unlike our goal, but
it still worth mentioning as it is the first commonly used cu-
rated set of Java libraries for research purposes. Tempero et
al. have laid the initial foundation for curated sets of Java
applications for empirical analysis with their Qualitas Cor-
pus[2]. This set is meant for analysis of bodies of code as
well as the comparison core metrics. Dietrich et al. have
made a similar contribution by forming a set of 76 executable
Java libraries[3]. The major requirement for inclusion in the
set was that the package was executable, so dynamic analysis
could be performed. These works set out to create a curated
set of libraries such that future research on them is replicable
and produces stable results. This is different from our paper,
because we are focussed on the process of creating such a cu-
rated set, with an emphasis on dependency tree’s and library
relevance. Furthermore, these works have resulted in sets of
hundreds of carefully picked and analyzed libraries; but we
do not care for the libraries themselves. We simply care for
their position in the grander Maven ecosystem, and their re-
lation to others.

Libraries.io1 is a project, somewhat similar to ours. It maps
projects and their dependencies, so developers can discover
and compare libraries and monitor the existing dependencies
they use for their projects, through notifications. It is a helpful
tool for developers to maintain the health of their dependency
tree, and useful for quality assurance purposes. However, it
is different from ours, because we attempt to create a core
within the ecosystem, for future research. The purpose and
end result differs from Libraries.io in many ways, but might
be complimentary as well. However, that depends on how the
core is used.

While the end result is now quite clearly described, we also
wish to answer some sub-questions regarding dependency
tree’s and dependency problems, in order to make informed
decisions regarding the core. These sub-questions are as fol-
lows:

1. How are usages of libraries distributed?
2. How common are libraries that are isolated to their

own group?
3. What is the effect of a usage threshold filter on a self-

contained core?
4. How frequently do relevant packages rely on irrele-

vant ones?
Sub-question 1 asks after the dependents of libraries. What is
noticeable when browsing through mvnrepository.com is the
vast variance in usages between different libraries, especially
visible in on popular page[4]. We wish to analyze this phe-
nomenon, in order to dissect the relevant and popular from
the irrelevant and unused.

1https://libraries.io/



Sub-question 2 is after artifacts that are only depended on
by artifacts within their group. In this context, group meaning
artifacts with the same Maven group ID. Such libraries may
have many usages, but only by libraries from the same devel-
opers. Therefore, these libraries do not satisfy the relevance
clause and should not be included in the core.

Sub-question 3 is an important stepping stone towards the
final goal of this paper. Because we will be excluding in-
frequently used libraries from the core, we construct a usage
filter and need to explore its effect on the core, with various
usage thresholds.

Sub-question 4 delves into the dependencies of so-called
relevant packages. What we consider relevant will be dis-
cussed in a later section, but simply put, this sub-question
asks after which dependencies important packages rely on.
This question is in relation to sub-question 3, because we
are interested in how many popular/relevant packages are re-
moved by a usage threshold filter, because they depend on
unpopular/irrelevant packages. Such packages would be re-
moved from the core due to the self-contained clause.

In order to answer these questions, the paper is divided into
6 sections. After this introduction, section 2 will discuss the
methodology. It contains the steps taken and most of the con-
siderations involved. Section 3 contains the results, meaning
answers to the research sub-questions and the final decisions
regarding the core. Section 4 is about some considerations
regarding responsibility in research and section 5 is a discus-
sion of the methods used, and their accompanying threats to
the generalizability and validity of this research. It will also
contain some suggestions for further research into this topic.
At last, section 6 concludes this paper, it gives a quick sum-
mary and touches on interesting findings.

2 Methodology
An integral part of this research is the application maven-
explorer2. We will give a concise summary of the major com-
ponents of the application, but we highly advise using it for
yourself, in order to get a good grasp on the research dis-
cussed in this paper. Furthermore, this paper discusses some
aspects of Java and Maven in detail, but assumes the reader
understands the fundamentals a priori.

2.1 The Maven dependency mechanism
Maven has many mechanisms to include and manage depen-
dencies, such as scope, exclusions and version ranges. One
could write a thesis on this topic, but only some are important
for this research.

The version range mechanism allows a developer to specify
a dependency version such as: [1.5,); meaning, any version
from 1.5 onwards. This is resolved to the most recent version.
In a dependency tree, it is possible for multiple versions of the
same package to occur. This could lead to runtime issues or
Java classpath conflicts, so Maven employs a heuristic called
’dependency mediation’ to resolve this. It chooses the version
nearest to the root node in the dependency tree. Lastly, Maven
supports optional dependencies and dependency exclusions.

2https://github.com/cops-lab/maven-explorer

These are mechanisms to omit certain packages from the de-
pendency tree.

These are some important mechanisms that dictate what
the final dependency tree of a project looks like. They are
important to our research, yet we are mostly interested in
the output rather than the methods that produce the output.
For more information on these topic, visit the Apache Maven
website [5]. The one mechanism that does have a direct influ-
ence on this research and the creation of our core, is depen-
dency scopes. Each dependency specified in a POM file is
noted with any of the following scopes: ’compile’, ’runtime’,
’test’, ’provided’, ’system’ or ’import’. The latter is depreci-
ated and occurs little, but such dependencies are still required
to run the project and therefore do not get special treatment.
The first 2 scopes are always transitively included in the JAR
file and are required to run the application. The ’test’ scoped
dependencies are only required for testing purposes and are
therefore not required to run the main application, nor are
they transitively included, nor do they occur in the resulting
JAR file. ’Provided’ and ’system’ dependencies are required
to run but assumed to be provided by the Java environment
and are therefore never included in a JAR file. However, they
are required to run a project, whether they are transitive de-
pendencies or not. In summary, all scopes except ’test’ are
required to execute a project and are therefore important for
the ’self-contained’ clause of the research question. For refer-
ence, note that a list including non-required dependencies is
often much larger, because of many non-transitive dependen-
cies and optional dependencies. This paper is focussed only
on the required dependencies.

2.2 Software
We implemented a small pipeline to construct the final data
set. It starts with maven-explorer, whose output is fed into the
Maven dependency plugin, whose output we use to generate
a dependency graph. This section of the paper discusses the
pipeline in detail, such that any reader could reproduce the
setup.

Maven-explorer
The maven-explorer application simply downloads and an-
alyzes packages it finds in Maven Central indices3. These
indices are files denoting the changes to the Maven Central
repository for a single week. We use these indices because
they are unbiased. An index simply lists packages chrono-
logically, without any knowledge of relevance or availability.
Maven-explorer extracts the package coordinates it finds in
the indices and processes them. During processing, it de-
tects whether there is an issue with the package. These is-
sues are discussed further in section 2.3. The maven-explorer
application is utilized through a Docker composition called
depgraph-deployment4. It starts with Maven Central index
323, which is week 46 of 2015, and continues to subsequent
indices, chronologically. It processes all packages it finds,
along with their dependencies. All transitive dependencies
are included as well, regardless of exclusions, optional depen-
dencies and scopes. Moreover, dependencies whether tran-

3https://repo.maven.apache.org/maven2/.index/
4https://github.com/fasten-project/depgraph-deployment



sitive or not, are prioritized over packages found in the in-
dices. This means any dependencies are processed before in-
dex packages are.

Maven dependency plugin
The second part of our pipeline is the Maven dependency plu-
gin5. This plugin has many capabilities, one of which is pro-
ducing a dependency list through the command: ’mvn depen-
dency:resolve’. When executed in a directory containing a
POM, this command will print all dependencies needed for
the execution of the current directory’s project. This is more
nuanced than one might think. Depending on various factors,
the output of this command is vastly different. There are 2
methods to execute it: on the POM file of the target library,
or on a constructed POM file with a single dependency on the
target library. The first method will include test dependencies,
provided & system dependencies and optional dependencies.
An issue with this method is that optionality is not always
given, only in some cases. The cases in which it is given are
not documented in any way, nor discussed on any online fo-
rums to the best of our knowledge. An example is commons-
logging:commons-logging:1.1.3, which does not denote any
dependencies as optional, and org.springframework:spring-
context:3.2.14.RELEASE which does. Both contain optional
dependencies according to the POM’s, but they are noted as
optional only by the latter. The second method only prints
compile and runtime dependencies. It does not print provided
or system dependencies, as Maven is not concerned with such
dependencies, only the end-user is.

We end up with one method that does not reliably print op-
tional dependencies, and another method that does not print
provided and system dependencies. Attempts at merging the
two methods in order to have the best of both has not borne
fruit. Likely the only way would be to generate the effective
POM with ’mvn help:effective-pom’ and analyze it. Note that
the effective pom is needed rather than a plain POM file, be-
cause of the parent POM and the import scope mechanisms.
We attempted this, and merged the results into the output of
the second method. It failed, and likely requires intricate and
undocumented knowledge of the Maven dependency mech-
anism, to do this correctly. It is certainly possible because
Maven is open source[6], but it is not viable for this research.

We will also not merge the results from the first method
with the results from the second method because the output
of the first method does not specify optionality consistently.
It would still be a perfectly valid way to create a core. In-
cluding the full list in the core, in order to do analysis on all
of them is certainly a reasonable option. However, because
they are often left unused by dependents and we did not want
to include excess dependencies, we decided to exclude op-
tional dependencies from the core. It forces us to only use the
second method. Provided and system dependencies are not
present in its output. System dependencies are uncommon,
but provided ones are not.

To execute this method, we put a library’s identifying GAV
coordinate into the template POM file, and use a simple bash
script to navigate to the template POM and execute the com-

5https://maven.apache.org/plugins/maven-dependency-plugin/

mand. Its output can now be used to generate a dependency
graph.

Graph
The output format of the dependency:resolve command is
quite trivial. It is a text file, where every new line is a depen-
dency. Transitivity of dependencies is disregarded, because
a required dependency is required regardless of transitivity.
For each library, we now know the required compile and run-
time dependencies, regardless of depth. Optional dependen-
cies are not included and dependency exclusions are taking
into account. This means that for every library, we know all
libraries it depends on, if it is included as a dependency it-
self (as explained in the previous section). We can now easily
parse the data and turn it into a graph structure.

Most nodes in the graph are libraries that have not been
fed into dependency:resolve itself, but exist because they
are dependencies of libraries that have been fed into de-
pendency:resolve. Such nodes have a status: incomplete.
Throughout the rest of this paper, keep in mind that incom-
plete nodes have no known dependencies themselves, be-
cause they have not been processed. The difference between
complete and incomplete nodes is significant, thus it will
be clearly noted which node statuses apply to which results
throughout this paper.

2.3 Data set

Maven-explorer Dependency:tree Graph

Processed Successful Processed Successful Complete Total

302,450
100%

267,271
88%

54,795
18%

47,152
16%

47,152
16%

109,429
36%

Table 1: This table details the number of packages throughout the
pipeline. ’Processed’ is an application’s input, ’successful’ is an ap-
plication’s successfully processed output. ’Complete’ denotes the
graph nodes with status: complete. ’Total’ is the total number of
nodes in the graph, regardless of status.

Table 1 denotes the data set throughout the pipeline. The
data set is fed from left to right, each step removing some
part of the data set, except the right-most column. Maven-
explorer outputs about 12% less than the input due to prob-
lems that arise when finding and analyzing packages. It might
be an invalid POM file, or the JAR file cannot be found or
any one of many other possible issues. Many libraries out-
put by maven-explorer are not input to dependency:resolve.
The reason is that maven-explorer is relatively quick, but the
dependency:resolve plugin is not. We have a time constraint
that does not allow for all maven-explorer output packages to
be processed by dependency:resolve as well. The set of li-
braries input into dependency:resolve is simply a random set
of 54,795 libraries, picked from the successfully processed
packages from maven-explorer. Dependency:resolve outputs
about 2% less than its input. This is due to a variety of
problems, among which are artifacts stored in non-HTTPS
repositories, missing child-modules and unresolvable plug-
ins. These libraries are likely still executable, but we simply
ignore packages home to such problems, because we believe
it does not pose a major threat to the generalizability of our



data. These problems may skew the data in a minor way, but
due to time constraints, we deemed it not worth addressing.

2.4 Extracting packages
The research question dictates libraries in the core have to be
available, relevant and self-contained.

Availability
Firstly, we define availability to be libraries who have been
successfully processed by the dependency:resolve command.
This command traverses all required compile and runtime de-
pendencies, downloads the POM’s and analyzes them. There
is no guarantee that the packages that we consider unavailable
are not executable. As mentioned, errors with plugins and ar-
tifact repositories occur in this part of the pipeline and that
does not mean they cannot be executed. Luckily, the pipeline
we set up does guarantee the converse: that all libraries in the
graph, including their required dependencies, are available.

Relevance
In order to find relevant packages, we use the in-degree met-
ric. In the context of this research, this means usage count.
This metric is simple, yet rather effective in discerning the
relevant from the irrelevant. We present a filter to omit the
irrelevant based on an in-degree threshold. A problem with
this metric is the possibility of isolated libraries, which is the
topic of research sub-question 2. These are packages which
are only depended on by other packages in their group. Such
libraries might have a large in-degree metric, and yet are un-
used by other developers, thus we consider them irrelevant. If
a library is transitively depended on, through another library
in their group, we do not consider it isolated. They will be
further analyzed in section 3.2. Most important is that the
in-degree metric does not count dependents from the same
group. Consequently, the usage threshold filter only counts
dependents from other groups. As side note, many other met-
rics besides in-degree are viable for our use-case, some of
which are briefly discussed in section 5, but time constraints
prohibit us from using them. We can now define relevance as
the following: packages that are not filtered out by the usage
threshold filter are relevant.

We opt to include incomplete packages into the final self-
contained core. Excluding such libraries significantly reduces
the data set, and leaves out many prominent packages in the
ecosystem. We want the core to contain relevant packages, so
omitting many prominent ones would be destructive.

Self-containing
Lastly, the self-contained clause. We define a self-contained
set of libraries to be a set where all libraries it contains, also
contains its dependencies. A factor to take into account is
that this holds transitivity. This results in an unfortunate and
complicated edge case. For explanatory purposes, we give
example scenario, figure 1. Using this example, we can see
that if library A and all its required dependencies pass a us-
age threshold filter, library A is not necessarily self-contained
because library B is dependent on Cv2, which does not pass
the usage threshold. This situation is possible due to multi-
ple versions in a dependency tree as given in the example, but

Figure 1: A possible scenario of relationships between libraries A,
B and C version 1 and version 2. The circle denotes some usage
threshold filter.

also due to exclusions. This means library A has a direct de-
pendency on library C version 1, and as per example, only a
transitive dependency on library C version 2. From this fol-
lows that while A is not dependent on Cv2, A is still left out
of the core because its dependency B is. Depending on the
purpose of the core, one can handle this in various ways. At
the cost of the self-contained clause, we could disregard the
fact that B is technically not in the core. This means for the
purposes of library A, library B is in the core, while in fact it
is not. If we would want to do analysis on library A and its
dependents, this would be fine. However, it would invalidate
any analysis on library B, because it leaves out its dependency
Cv2. The manner in which our core is constructed, is to leave
out library A. We want every library in our core to be valid
for analysis. Note that this is a choice based on the use-case
of the core. We want an analysis on our core to be a complete
analysis of all compile and runtime dependencies involved.

There is still a major edge case to account for: the incom-
plete nodes, because we do not know the dependencies of
such nodes. In the example, this problem would occur when
library B is incomplete. We would be aware of Cv1, but not of
Cv2, which (without our knowledge) does not pass the thresh-
old. Almost all nodes in the data set are either incomplete or
dependent on an incomplete node, which means that for al-
most all nodes, we cannot know for certain whether they are
entirely self-contained.

There are various solutions to this problem. Our chosen
solution is assuming the dependencies of incomplete nodes
all pass the usage threshold. This is a false assumption, yet
becomes truer for higher usage threshold values. As given in
the results section, highly used libraries tend to only depend
on other highly used libraries. This means that incomplete
nodes that have a large in-degree, likely also have dependen-
cies with a large in-degree. Furthermore, note that the incom-
plete libraries themselves are still subject to a usage threshold
filter, only their dependencies are not. Another possible solu-



tion would be, if library B in figure 1 is incomplete, to exclude
B from the core without excluding A. This is again at the cost
of the self-contained clause, but we will not have to make
false assumptions as is the case for the chosen solution. We
did not opt for this solution because it excludes incomplete
libraries from the core; the problem being that most popular
libraries are incomplete, but we do want the popular libraries
in our core.

Summing it up, the libraries in our core adhere to the fol-
lowing principles:

• Available: maven-explorer and the dependency:resolve
command do not detect any errors.

• Usage threshold: the packages have at least some num-
ber of usages by libraries outside its group.

• Self-contained: if the core contains a package, all non-
test dependencies of said package are also in the core.

– Regardless of status: both complete and incom-
plete packages will be in the core.

– Incomplete assumption: dependencies of incom-
plete libraries are assumed to conform to the above
principles.

These principles are certainly not set in stone. The purpose
of the core has great influence on the principles it should con-
form to, such that the principles change per use-case.

3 Results
We have subdivided the data set by status and isolation. The
following sections of the paper will use different subsets, thus
the reader should take note which set is referenced.

3.1 Usage distribution
Figure 2 shows a histogram of library usages and conse-
quently answers research sub-question 1. Note that this his-
togram includes all nodes, regardless of status and isolation.
That is why such a significant number of libraries are de-
pended on once, because non-isolated nodes are depended on
at least once. This histogram is only up to 30 usages and
3,624 libraries in the data set have usages above that. Those
packages could be considered popular, an argument strength-
ened by the fact that the sum of their usage counts accounts
for 66.7% of all usage relationships. This is in direct cor-
relation to what we expect after mvnrepository.com. Both
show that the popular libraries are used to an incredible ex-
tend while the rest is on average used rarely. Table 2 gives
the 10 most popular packages. Note that our data set does
not contain test dependencies. This is quite clear from the
fact that JUnit is not on our list, while it is vastly more used
than any other library, as shown on Mvnrepository. It is also
noticeable how Mvnrepository gives a rather steep decline of
usages on the top 10 most popular libraries page, which is
not the case for us. Furthermore, our list contains packages
that do not occur in the Mvnrepository top 10. It is not doc-
umented how Mvnrepository calculates dependent count, but
we calculate the count transitively, which is likely the rea-
son for both disparities. A good example is the ’aopalliance’
package, which is the most popular in our dataset. It is used

heavily because it is depended on by the Spring framework
packages, among others, which are used heavily used them-
selves. However, Mvnrepository only reports it to be used by
925 packages, as of Januari 28[7]. A final note to make is that
8 of these 10 most popular libraries have status incomplete.
This is due to the fact that the 47 thousand complete libraries
have been picked at random from the 267 thousand packages
that maven-explorer output.

Figure 2: Histogram of library dependents. It only includes all li-
braries with less than 30 usages.

Group Artifact Version Dependents
aopalliance aopalliance 1.0 5,456

javax.inject javax.inject 1 5,299

commons-logging commons-logging 1.1.1 5,109

org.slf4j slf4j-api 1.7.12 4,444

commons-io commons-io 2.4 4,256

com.google.guava guava 18.0 3,731

commons-codec commons-codec 1.6 3,363

commons-collections commons-collections 3.2.1 3,332

org.slf4j slf4j-api 1.7.7 3,098

commons-lang commons-lang 2.6 3,024

Table 2: The 10 most used libraries in the data set. Includes all
nodes.

3.2 Isolated libraries
Table 3 shows the number of libraries that are not isolated,
meaning, used at least once by libraries outside their group. It
is noticeable how only 7,232 of the 47,152 complete packages
are not isolated, this is about 15.3%. The complete packages
are chosen at random, so this statistic reflects on the Maven
ecosystem as a whole. It supports the ’toy project’ hypothesis,
mentioned in the introduction.

3.3 Usage threshold filter
Table 4 shows the effect of a usage threshold filter on the data
set. The chosen thresholds are quite low because the lower



Regardless of status Complete

Regardless of isolation 109,429 47,152

Not isolated 40,257 7,232

Table 3: This table shows how many nodes are not isolated. The
middle row is purely for reference, the numbers it contains can be
found in table 1.

thresholds already remove many libraries. Furthermore, the
data set is not large enough for larger thresholds to give valu-
able results; the discussion section will elaborate on this. As
mentioned, the usage threshold filter only counts different-
group-usages. The core will contain incomplete packages as
well, but the table also gives the filter results for only com-
plete packages. It is noticeable how a threshold of 1 gives
such a steep decline for complete packages. Again, this is
representative of the whole Maven ecosystem. Using this ta-
ble, the threshold to construct the core is chosen in a later
section.

Regardless of
status Complete

0 109,429
100%

47,152
100%

1 40,144
37%

7,119
15%

2 25,559
23%

4,656
10%

5 14,124
13%

2,542
5%

10 8,747
8%

1,527
3%

50 2,390
2%

415
1%

Table 4: The number of libraries remaining after applying a usage
threshold filter. The top-most threshold of 0 means no filter. The
percentages in a column are relative to the 0 threshold value in the
column.

Table 5 shows how many of the 1,000 most popular com-
plete packages make it through the various usage threshold
filters, this excludes test dependencies. This answers research
sub-question 4, because it shows how many of the 1,000
most popular packages rely on irrelevant packages. At every
threshold, the 1,000 most popular packages are not reduces as
much as the rest of the data set, when comparing with table 4.
This tells us that it is common for popular packages to mostly
rely on other popular packages. The most noticeable facet of
this table is the results for a threshold of 50; it is a rather steep
decline from a threshold of 10. It shows that while popular

packages rely on often used packages, they do not always rely
on the most popular packages.

Threshold 0 1 2 5 10 50

Remaining
packages 1,000 980 974 963 949 415

Table 5: This table gives the usage threshold filter results for the
1,000 most used complete packages.

3.4 A relevant, available and self-contained core
For our purposes, we opt for a usage threshold of 10. Ac-
cording to table 4 and 5, a threshold of 10 reduces the data
set by 92%, but only reduces the 1,000 most popular pack-
ages by 5%. It leaves 8,747 packages, containing almost all
popular ones. It is a number that is small enough for qual-
itative analysis, but large enough for developers to have all
dependencies they need. Table 6 shows the top 10 most used
packages that are discarded because of the current threshold,
per threshold. It shows that with a threshold of 50, the dis-
carded packages are much more popular than for a threshold
of 10. Therefore, we think that for our use-case, a threshold
of 10 is reasonable. But as explained, the core we create is
not of much significance. The optimal threshold is different
each each use-case.

4 Responsible Research
Producing results in a reproducible manner is crucial to re-
search. This paper is mostly about the methodology to create
a core, but the results presented in the section after this should
still be reproducible. Firstly, maven-explorer gives consistent
results, because it functions in a deterministic manner. Know-
ing the starting index as well as the number of processed
packages gives a consistent data set. Secondly, the depen-
dency:tree command is conversely not deterministic. Besides
the fact that its input is a random set from the maven-explorer
output, it also processed version ranges. This can result in
disparities, which will be discussed further in section 5. The
creation of the dependency graph is deterministic, as well as
the results extracted from it.

This research requires the storage and analysis of much
data. The data is publicly available and most projects contain
a license in some way. Many have a reference to a license in
the POM file and/or in the code repository. However, this is
irrelevant to us. We do not incorporate anything into a project
of our own much less publish it. It is therefore legal to use in
this research.

5 Discussion and future work
5.1 Threats to validity
We wish for the methods discussed in this paper to be gener-
alizable to the whole Maven ecosystem, but there some im-
pediments to discuss first. Starting with the packages’ release
times, which are concentrated around 2015/2016, as visible
in figure 3. This is due to maven-explorer, which starts with
an index in 2015 and slowly progresses chronologically. This



To threshold 1 To threshold 2 To threshold 5 To threshold 10 To threshold 50
156 org.kaazing:community.license:2.17 128 org.glassfish.web:javax.servlet.jsp:2.3.2 108 org.opensaml:opensaml:2.6.1 97 com.force.api:force-partner-api:24.0.0 711 org.sonatype.plexus:plexus-sec-dispatcher:1.3

82 org.kaazing:net.tcp:1.1.0.9 96 org.eclipse.jetty:jetty-jsp:9.2.10.v20150310 67 org.apache.velocity:velocity-tools:2.0 70 com.101tec:zkclient:0.3 136 org.apache.maven.wagon:wagon-http-shared:2.8

82 org.kaazing:net.api:1.1.0.9 39 org.fusesource.leveldbjni:leveldbjni-linux64:1.5 65 sslext:sslext:1.2-0 57 org.webjars.bower:jquery:3.7.1 134 org.apache.maven.wagon:wagon-http-lightweight:2.8

74 org.codehaus.plexus:plexus-i18n:1.0-beta-7 27 org.json4s:json4s-native 2.10:3.2.5 52 org.apache.stanbol:org.apache.stanbol.enhancer.engines... 43 org.jboss.weld:weld-api:1.1.Final 132 com.sun.jersey:jersey-json:1.9

57 org.codehaus.plexus:plexus-velocity:1.1.7 27 org.http4s:http4s-websocket 2.11:0.1.3 42 org.apache.camel:camel-core:2.15.5 43 org.apache.camel:camel-core:2.14.4 130 org.apache.maven:maven-settings-builder:3.3.3

54 org.wildfly.swarm:config-api-runtime:0.3.27 25 org.apache.neethi:neethi:2.0.4 36 org.apache.openejb:javaee-api:6.0-6 39 io.airlift:slice:0.10 117 org.mobicents.diameter:jdiameter-ha-impl:1.7.0.58

52 org.wildfly.swarm:config-api:0.3.27 22 org.springframework:spring-beans:4.3.2.RELEASE 36 org.apache.camel:camel-core:2.14.3 27 com.vaadin:vaadin-sass-compiler:0.9.12 109 org.jboss.resteasy:resteasy-jaxrs:3.0.8.Final

52 org.wildfly.swarm:config-api-modules:0.3.27 22 com.amazonaws:aws-java-sdk-core:1.10.41 33 org.apache.openwebbeans:openwebbeans-impl:1.2.7 25 org.apache.metamodel:MetaModel-full:4.3.3 95 org.mobicents.cluster:cache:1.14.0.FINAL

51 org.wildfly.swarm:config-api-runtime:0.3.25 19 org.openrdf.sesame:sesame-util:2.8.3 29 org.apache.openwebbeans:openwebbeans-ee-common:1.2.7 24 com.amazonaws:aws-java-sdk-core:1.10.39 92 com.typesafe.play:twirl-api 2.11:1.1.1

51 org.webjars.bower:angular:1.8.3 18 org.jboss:jboss-common-core:2.5.0.Final 29 org.apache.openwebbeans:openwebbeans-web:1.2.7 23 com.thinkaurelius.titan:titan-core:0.5.0 84 org.apache.maven.reporting:maven-reporting-api:3.0

Table 6: The top 10 most used packages, discarded because of the usage threshold filter. Example: the ”To threshold 5” column displays the
top 10 most used packages that passed the filter with a threshold of 2, but not with a threshold of 5. The number in the column left of the ID’s
are the number of usages.

poses the problem that our core is unusable for many pur-
poses, because the packages it contains are dated. However,
the methods used to extract our core are likely perfectly valid
for the extraction of a modern core. There is a possibility that
this is not the case, which is if the Maven ecosystem or stan-
dard practices regarding dependencies have vastly changed.
For example, if the distribution of package usage as given
in figure 2 has changed. While we cannot be certain of any
such macro changes in the ecosystem, we feel it improbable
of changes large enough to invalidate this research.

Figure 3: Release date histogram of the complete libraries in the
dataset.

Many results given in this paper would be different if gen-
erated on the whole Maven ecosystem, rather than a subset.
The inclusion of incomplete nodes into our data has skewed
the statistics calculated on the data in a significant way. In-
complete nodes are referenced at least once, while complete
nodes are not. This means the average usage count of libraries
in the data set is relatively high, a phenomenon visible in ta-
ble 4. There, complete nodes in the right-most column are
rarely used by libraries outside their group, which is not true
for the full data set, in the middle column. The created core
includes such incomplete nodes because we want it to contain
popular libraries, but should be left out if it is supposed to be
generalizable to the Maven ecosystem. Another facet to take
note of is the effect of data set size. Depending on the size of
the desired core and its contents, the filtering threshold could
be increased. The larger the size of the initial data set is, the

higher the usage counts. Many results are given in percent-
ages, which does mean that it should be generalizable to data
sets of different sizes.

A small note to make is why we use maven-explorer, and
why it could be omitted. We use the application to analyze in-
dices, download POM files and analyze them for errors. How-
ever, we could have downloaded the POM files ourselves, and
the errors are also detected by dependency:resolve. We have
used maven-explorer for simplicity reasons. Our time con-
straint does not incorporate a large margin for error, making
it quite beneficial to have a section of the pipeline that we
don’t need to develop from scratch. However, the cost is that
the release dates of the packages in the data set are quite far
in the past. We recommend future research to avoid using
maven-explorer, to allow for more flexibility.

The Maven ecosystem is continuously changing, which
can complicate the reproduction of our results. Fortunately,
Maven has a policy dictating that uploaded artifacts are im-
mutable. In combination with the fact that the Maven Cen-
tral indices do not change, one could relatively consistently
reproduce the results presented in this paper. The only is-
sue would be version ranges, or the depreciated ’LATEST’
or ’RELEASE’ version tags. The dependency:resolve com-
mand, resolves dependencies with such version inputs to the
most recent version conforming to the range or tag. From this
follows that a newly published version can change the depen-
dency graph. This is certainly a threat to the reproducibility
of our results and can regrettably not be countered.

A purpose of this paper is to find a core of popular pack-
ages. However, our analysis is based on the dependency rela-
tions between public Maven artifacts. There are often many
more personal or profession projects that have not been pub-
lished to a public repository. As example would be Github’s
2022 study, which notes that many more developers public to
private repositories rather than public ones[8]. The omittance
of private repositories can certainly skew the data, which we
actually noticed. According to a 2020 JVM ecosystem sur-
vey by Snyk, the Spring framework is utilized by 60% of the
software professionals in the survey[9]. However, in the list
of most used packages in our data set, the first Spring frame-
work package is only in the 118th place, which is much lower
than we expect after reading the Snyk survey. If such per-
sonal or professional project were included in the data set, it
would certainly change table 2 and table 4. Unfortunately, we
can only use public data for our research, so a solution to this
problem does not exist.



5.2 Reflection
We have discussed many possibilities and edge cases in the
creation of a core in Maven central. Most notably, the self-
contained clause has many facets worth noting, and there does
not exist a single correct interpretation. The choice on op-
tional dependencies, exclusions and scope have a large im-
pact of the final core, especially when taking transitively of
dependencies into account.

We failed to include provided and system dependencies in
the dependency graph, because of the semantics of the Maven
dependency plugin as well as a lack of time. However, when
performing analysis on packages in the Maven ecosystem,
such dependencies are in fact relevant for analysis, because
they are required to run the projects that depend on it. They
do have a separate role in the ecosystem. They are meant
to be added manually to the runtime classpath, often through
OS environment variables. The exact setup is chosen by the
user, which means it is not strictly part of the dependency
tree. However, this is a somewhat ambitious assertion. We
attempted to include the provided and system dependencies
through analysis of the effective POM’s. However, we aban-
doned the idea upon encountering discrepancies with the ac-
tual POM files. The time constraint did not allow us to further
research the topic.

The answers to the research sub-questions have resulted in
the statistics and information needed in finding a core. How-
ever, they show much more. We have seen that the gap be-
tween the popular and unpopular libraries is vast, 3,624 or
3.3% of the libraries in the data set account for two thirds of
the total dependency relations. This figure supports the ’toy
project’ hypothesis, but note that it does not speak to the qual-
ity of the Maven ecosystem. One might be quick to think that
the toy projects are likely of unsound quality, but this does
not have to be the case. Lima and Hora found in their 2020
paper that popular projects have a higher code quality than
others[10], but also found that they are more likely to intro-
duce breaking changes. This poses the question, are popular
libraries advantages to use?

Throughout the research we have depended on in-degree
centrality to lead to answer. However, many more central-
ity metrics are possible, and some are just as- or more viable
for this use-case. We have experimented with PageRank[11],
and noticed some results are fairly similar. The top 1,000
of both metrics overlap with 67.5%. A PageRank threshold
filter is certainly possible, but requires a study into the al-
gorithm and the significance of its results. The metric most
commonly referred to with libraries is usage count, such as
on Mvnrepository and the Sonatype website6; so usage count
is most tangible. This, along with a time constraint motivated
our choice for usage count.

5.3 Future research
Usage count sufficed for this paper, but is still quite limiting.
It is possible that other centrality metrics uncover interesting
anomalies regarding dependencies. A future research topic
would be mapping the Maven ecosystem in terms of various

6https://central.sonatype.com/

centrality metrics. Using graph theory to uncover the multi-
faceted dependency networks underlying the Maven ecosys-
tem. This paper touches the surface, but there is likely much
more to discover.

This paper has worked on deducing a set of libraries for
qualitative analysis on dependencies. However, we have
never defined qualitative analysis. Numerous tools are avail-
able for assessing code cleanliness, documentation, and bugs.
However, the outcomes of such analyses do not provide in-
sight into whether incorporating it as a dependency is a wise
decision. An interesting question for future research would
be: what software measurements are relevant to decide on
the inclusion of a dependency? The topic of software quality
is already widely explored, but the aforementioned research
question is after the quality and evolution of dependencies, in
order to decide on the inclusion of a dependency.

Another interesting subject of research would be whether
the methods presented in this paper are equally valid for other
code ecosystems; NPM for example. NPM also functions
based on a build file, so dependency tree generation is pos-
sible, but there are some important differences. Due to the
nature of Javascript, it does allow multiple versions of the
same package in the dependency tree, and does not support
provided or system dependencies. Differences such as these
require the core creating methodology to be adapted. Analyz-
ing and comparing its results to the results in this paper would
be an interesting inquiry.

6 Conclusion
The Maven ecosystem, with an emphasis on Maven Central,
contains a plethora of toy-projects. Developers want the de-
pendencies they use to be reliable and continuously main-
tained, which means toy-projects should often be avoided.
This paper addressed this problem by formulating a method-
ology to create a core of the Maven ecosystem such that it
can be analyzed for library quality and consequently used by
developers to have guarantees about the quality of their de-
pendencies.

In our dependency graph of compile and runtime depen-
dencies, we found that two thirds of all dependency relations
are towards 3.3% of the libraries. We found that 85% of the
libraries are isolated to their own group and only 5% are used
more than 5 times by libraries outside their group.

A self-contained clause for the creation of a core is a com-
plicated process when using existing tools. Creating a new
tool is even more complicated, because the Maven depen-
dency mechanism is no trivial system. To create a core, ana-
lyze the use-cases and simplify the process accordingly.

References
[1] S. M. Blackburn, R. Garner, C. Hoffman, et al.,

“The DaCapo benchmarks: Java benchmarking devel-
opment and analysis,” in OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Appli-
cations, Portland, OR, USA: ACM Press, Oct. 2006,
pp. 169–190. DOI: http : / / doi . acm . org / 10 . 1145 /
1167473.1167488.

https://doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/http://doi.acm.org/10.1145/1167473.1167488


[2] E. Tempero, C. Anslow, J. Dietrich, et al., “The quali-
tas corpus: A curated collection of java code for empir-
ical studies,” Dec. 2010, pp. 336–345. DOI: 10.1109/
APSEC.2010.46.

[3] J. Dietrich, H. Schole, L. Sui, and E. Tempero, “Xcor-
pus - an executable corpus of java programs,” JOUR-
NAL OF OBJECT TECHNOLOGY, vol. 16, 4 Aug.
2017, ISSN: 1660-1769. DOI: 10 .5381 / jot .2017 .16 .
4.a1..

[4] Mvnrepository, Maven repository: Top projects at
maven repository, Accessed: 2023-12-09. [Online].
Available: https://mvnrepository.com/popular.

[5] T. A. S. Foundation, Introduction to the dependency
mechanism, Accessed: 2023-12-24, 2002. [Online].
Available: https : / / maven . apache . org / guides /
introduction/introduction-to-dependency-mechanism.
html.

[6] A. S. Foundation, Maven, https://github.com/apache/
maven.

[7] F. R. Olivera, Introduction to the dependency mech-
anism, Accessed: 2024-01-28, 2006. [Online]. Avail-
able: https://mvnrepository.com/artifact/aopalliance/
aopalliance.

[8] GitHub, The global developer community, Accessed:
2023-12-09, 2022. [Online]. Available: https : / /
octoverse.github.com/2022/developer-community.

[9] Snyk, Jvm ecosystem report 2021, Accessed: 2023-12-
09, 2021. [Online]. Available: https://snyk.io/reports/
jvm-ecosystem-report-2021/.

[10] C. Lima and A. Hora, “What are the characteristics
of popular apis? a large-scale study on java, android,
and 165 libraries,” SOFTWARE QUALITY JOURNAL,
vol. 28, no. 2, pp. 425–458, Jun. 2020, ISSN: 0963-
9314. DOI: 10.1007/s11219-019-09476-z.

[11] S. Brin and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” COMPUTER NET-
WORKS AND ISDN SYSTEMS, vol. 30, no. 1-7,
pp. 107–117, Apr. 1998, 7th International World Wide
Web Conference, BRISBANE, AUSTRALIA, APR
14-18, 1998, ISSN: 0169-7552. DOI: 10.1016/S0169-
7552(98)00110-X.

https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.5381/jot.2017.16.4.a1.
https://doi.org/10.5381/jot.2017.16.4.a1.
https://mvnrepository.com/popular
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://github.com/apache/maven
https://github.com/apache/maven
https://mvnrepository.com/artifact/aopalliance/aopalliance
https://mvnrepository.com/artifact/aopalliance/aopalliance
https://octoverse.github.com/2022/developer-community
https://octoverse.github.com/2022/developer-community
https://snyk.io/reports/jvm-ecosystem-report-2021/
https://snyk.io/reports/jvm-ecosystem-report-2021/
https://doi.org/10.1007/s11219-019-09476-z
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X

	Introduction
	Methodology
	The Maven dependency mechanism
	Software
	Maven-explorer
	Maven dependency plugin
	Graph

	Data set
	Extracting packages
	Availability
	Relevance
	Self-containing


	Results
	Usage distribution
	Isolated libraries
	Usage threshold filter
	A relevant, available and self-contained core

	Responsible Research
	Discussion and future work
	Threats to validity
	Reflection
	Future research

	Conclusion

