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Abstract

Radio astronomy image formation can be treated as a linear inverse problem. How-
ever, due to physical limitations, this inverse problem is ill-posed. To overcome the
ill-posedness, side information should be involved. Based on the sparsity assumption of
the sky image, we involve `1-regularization. We formulate the image formation problem
into a `1-regularized weighted least square (WLS) problem and associate each variable
with one regularization parameter. We use Bayesian learning to learn the regularization
parameters from data by maximizing the posterior density. With the iterative update
of the regularization parameters, the solution is updated until convergence of the reg-
ularization parameters. We involve a stopping rule based on the noise level to improve
the computational efficiency and control the sparsity of the solution. We compare the
performance of this Bayesian learning method with other existing imaging methods
by simulations. Finally, we propose some future research directions in improving the
performance of this Bayesian learning method.

v



vi



Acknowledgments

I would like to thank my supervisor prof.dr.ir. A.J. van der Veen for his guidance
and encouragement throughout this thesis project. I would like to thank dr.ir. S.
Naghibzadeh for the inspiration she gave me at the beginning of this thesis project and
her suggestions when I was lost. I would like to thank dr.ir. A. Sardarabadi for his
patient and selfless help when I was stuck in troubles. Without them, neither could I
finish this thesis project nor could I know how scientific research should be. Last but
not least, I would like to thank my parents for their continuous support.

Yajie Tang
Delft, The Netherlands
15 October 2019

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Radio Interferometric Imaging . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-Art Imaging Algorithms . . . . . . . . . . . . . . . . . . . 2

1.3 Research Goals and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data Model 5

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Opertators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Matrix Product Relations . . . . . . . . . . . . . . . . . . . . . 6

2.2 Measurement Model of Radio Interferometric Imaging . . . . . . . . . . 7

2.2.1 Conventional Measurement Model . . . . . . . . . . . . . . . . . 7

2.2.2 Array Processing Model . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Interpretations of the Measurement Model . . . . . . . . . . . . . . . . 12

2.3.1 Fourier Transform Relationship . . . . . . . . . . . . . . . . . . 12

2.3.2 Non-Uniform and Sparse Sampling . . . . . . . . . . . . . . . . 13

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Problem Formulation 15

3.1 Ill-posedness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Estimation Problem Formulations and Regularizations . . . . . . . . . 18

3.2.1 Beamforming-Based Estimation . . . . . . . . . . . . . . . . . . 18

3.2.2 Least Square Estimation . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . 19

3.2.4 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Proposed Solution Method 23

4.1 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Bayesian Inference Framework . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



5 Bayesian Learning Method 27
5.1 Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Determination of the Mode . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Variational Approximation . . . . . . . . . . . . . . . . . . . . . 30

5.2 Stopping Rule and Algorithm Summary . . . . . . . . . . . . . . . . . 31
5.3 Implementation and Computational Complexity . . . . . . . . . . . . . 32
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Simulations and Experiment Results 35
6.1 One-Dimensional Simulation . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Two-Dimensional Simulation . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 Reconstruction Results and Performance Summary . . . . . . . 37
6.2.2 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusions and Future Work 43
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A EM Algorithm 47
A.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B Convergence Analysis of the Optimization Method Based on Auxiliary
Function 49
B.1 Monotonic Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Global Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C Minimization of the KL-Divergence 51

x



List of Figures

1.1 Big Bang and expansion of the universe (Image courtesy of NASA Jet
Propulsion Laboratory) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 A two-element interferometer . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Coordinate system of baselines and sources . . . . . . . . . . . . . . . . 9
2.3 Grid on image plane and uv plane . . . . . . . . . . . . . . . . . . . . . 12

3.1 SVD result of a one-dimensional case . . . . . . . . . . . . . . . . . . . 16
3.2 PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Dirty image of point source and extended source in one dimension . . . 18

5.1 The iteration process to minimize f(σ) via auxiliary function . . . . . . 29

6.1 One-dimensional simulation . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 One-dimensional reconstruction . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Two-dimensional simulation . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Two-dimensional reconstruction . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Bayesian learning reconstruction with zero initial regularization parameters 41
6.6 Objective function value with zero initial regularization parameters . . 42

xi



xii



List of Tables

6.1 Performance summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii



xiv



Introduction 1
Everything in the world begins with the Big Bang around 13.8 billion years ago. Fig-
ure 1.1 shows the expansion process of the universe since the Big Bang. Astronomers are
always expecting to unravel the history and depict the future of the universe. Engineers
have been making effort to offer astronomers observational information to reveal the
mysteries of the universe. The radio emissions in the universe carry much information
of the early stage of the universe. To extract the information hidden in the radio emis-
sions, a more accurate picture of the universe in radio frequencies is required, which
promotes the development of more and more powerful radio telescopes. Along with
the development of telescopes, radio interferometric imaging methods are continuously
proposed and improved.

Figure 1.1: Big Bang and expansion of the universe (Image courtesy of NASA Jet
Propulsion Laboratory)

In this introduction chapter, we introduce what is radio interferometric imaging. We
also introduce some state-of-the-art methods of radio interferometric imaging. Based
on the background of radio astronomy imaging and existing methods, we propose our
research goals.

1.1 Radio Interferometric Imaging

The formation of images of the sky in radio frequencies are important to astronomers,
since the images can provide much quantified information for studying the celestial
objects and phenomenas. The interferometric imaging aims at estimating the intensity
and Direction of Arrival (DoA) of the celestial signal. With the measured correlations,
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this imaging problem can be transferred into an inverse problem: inverting the measured
correlation data into the pixel intensities of the sky image. The relation between the
intensities and correlations is stated in a linear equation as:

r̃ = Mσ + e, (1.1)

where r̃ denotes the measured correlation data, σ denotes the pixel intensities over
the field of view (FoV), M denotes the system matrix and e denotes the noise. More
explanations of this linear equation will be presented in the next chapter.

1.2 State-of-the-Art Imaging Algorithms

Existing radio astronomy imaging methods can be divided into three categories: (i)
greedy sparse reconstruction methods such as CLEAN (ii) methods based on convex
optimization such as MEM and SARA; (iii) projection-based algorithms such as PRI-
FIRA [1].

CLEAN is a classical method of deconvolution in radio astronomy [2]. It imposes
a sparse prior by assuming that the radio sky is an almost empty field with a small
number of point sources. These point sources are found iteratively and are subtracted
from the residual map. The final result is the sum of the point ”CLEAN” components
reconvolved with a ”CLEAN” beam. Variants with different strategy of searching the
point sources have been developed [3]. Furthermore, variants have been developed to
improve deconvolution results of extended structures [4].

Another common method is the maximum entropy method (MEM) [5]. The MEM
regularizes the ill-posed problem via an entropic prior σ log(σ). While CLEAN of-
ten struggles to reconstruct extended structures, MEM struggles to reconstruct point
sources.

We look for a sparse solution of the radio astronomy imaging. The `0 constraint
leads to a sparse solution due to the nonzero support it presents. This constraint can
be weakened to an `1 constraint which still leads to a sparse solution but is much
easier to solve due to the convexity of the `1-norm. A more general regularization form
‖ΨTσ‖1 can be adopted, where Ψ is an overcomplete dictionary. The sparsity averaging
reweighted analysis (SARA) is a method defined in this framework [6]. The algorithm
relies on the conjecture that cosmic signals are synchronously sparse in multiple bases,
particularly the Dirac basis, wavelet bases, or in their gradient, so that promoting
average signal sparsity over multiple wavelet bases presents an extremely powerful prior.

PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) is a new method
that embodies the Bayesian-based regularization into the linear model via right pre-
conditioning and solves the resulting system via projection onto Krylov subspaces [7].
The preconditioner can be beamforming-based estimation such as MVDR dirty image
[8]. An outer loop can be defined to apply generalized reweighted prior-conditioning.
This algorithm can well resolve diffuse and compact sources.
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1.3 Research Goals and Tasks

Various imaging methods are being proposed which rely on accurate modeling of the
radio sky to guarantee high reconstruction quality. Modeling of point sources is fairly
easy while no straightforward model of the extended emissions can be presupposed.
Bayesian learning opens the doors to adaptive modeling of the extended emissions
where the model has to be learned from the data. Bayesian learning treats model
parameters as random variables. In Bayesian learning, parameter estimation amounts
to computing posterior distributions for these random variables based on the observed
data. We would like to derive an automated accurate model and take into account the
trade-off between the estimation accuracy and the computational complexity.

The tasks of this project can be divided into the following steps: (i) deriving our
model based on Bayesian framework; (ii) designing the regularized imaging problem
according to the derived model; (iii) designing an efficient method to solve the resulting
problem; (iv) using simulations to compare our algorithm with state-of-the-art methods.

1.4 Outline

My thesis report is organized as follows. In Chapter 2, we introduce the interferometric
measurement model that is widely used in astronomy, and we also employ the signal
processing data model. In Chapter 3, based on the measurement model developed in
the previous chapter, we analyze the ill-posedness of this problem and introduce some
common formulations of this problem. In Chapter 4, we reformulate the problem and
propose our Bayesian learning framework. We further compare our framework with
PRIFIRA. In Chapter 5, we introduce the details of our Bayesian learning method. In
Chapter 6, we compare our method with other existing methods by simulations. In
Chapter 7, we draw conclusions of this project and present some future work.
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Data Model 2
In this chapter, we introduce the data model of radio interferometric imaging. We
start by introducing some important symbols, operators and matrix product relations,
which are widely used in this chapter and the rest of this report. Then, we intro-
duce the measurement model of radio astronomy. We first employ the conventional
measurement model which astronomers are familiar with. Furthermore, we explain the
radio interferometric imaging problem in terms of array processing and attain our array
processing model which is the basis of the rest of this report.

2.1 Notations

We use similar representations to what Sardarabadi used in [9] and what Naghibzadeh
used in [1]. The representations and corresponding interpretations are listed as follows.

2.1.1 Symbols

a,A: plain lowercase and uppercase letters denote scalars
A: calligraphic letters denote continuous functions
A: calligraphic boldface letters denote operators
a: boldface lowercase letters denote column vectors
A: boldface uppercase letters denote matrices
ai: for a matrix A denotes the ith column of A
ai,j/aij/Aij: for a matrix A denotes the i, jth entry
1: vector with all the elements equal to 1
I: identity matrix
IP : P × P identity matrix
ei: the ith column of the identity matrix
0: vector with all the elements equal to 0
j: square root of −1
R: blackboard bold letter R denotes the set of real numbers
Rm×n: denotes the set of real-values m by n arrays
C: denotes the complex numbers
Cm×n: denotes the set of complex-values m by n arrays
N (·): denotes the null space of a matrix
R(·): denotes the range of a matrix

2.1.2 Opertators

E{·}: expectation operator
Cov{·}: covariance
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(·)T : transpose operator
(·)∗: complex conjugate operator
(·)H : Hermitian Transpose operator
(·)−1: inverse operator
(·)†: Moore-Penrose psuedo-inverse operator
‖a‖p: p-norm of vector a defined as ‖a‖pp =

∑
|ai|p

‖A‖F : Frobenius norm of matrix A defined as ‖A‖F =
√∑∑

|ai,j|2
trace(A): computes matrix the sum of the diagonal elements of A
det(A): the determinant of matrix A
vect(A): stacks the columns of matrix A to form a vector
vectdiag(A): stacks the diagonal elements of matrix A to form a vector
diag(a): takes the vector a as the diagonal elements to form a diagonal matrix
diag(A): = diag(vectdiag(A)
⊗: Kronecker product
◦: Khatri-Rao product
�: Hadamard product
∗: convolution
∈: belongs to

2.1.3 Matrix Product Relations

The Kronecker product is defined as

A⊗B =

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

 . (2.1)

The Khatri-Rao product is defined as

A ◦B =
[
a1 ⊗ b1 a2 ⊗ b2 · · ·

]
, (2.2)

where ai and bj denote the ith and jth column of A and B, respectively. The
Hadamard product is defined as

A�B =

a11b11 a12b12 · · ·
a21b21 a22b22 · · ·

...
...

. . .

 , (2.3)

which is the element-wise product of A and B.
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The following properties are useful in the rest of this report:

(BT ⊗A) vect(X) = vect(AXB)

(B ⊗A)H = (BH ⊗AH)

(B ⊗A)−1 = (B−1 ⊗A−1)
(BT ◦A)x = vect(A diag(x)B)

(BC ⊗AD) = (B ⊗A)(C ⊗B)

(BC ◦AD) = (B ⊗A)(C ◦B)

(BHC �AHD) = (B ◦A)H(C ◦B)

vectdiag(AHXA) = (A∗ ◦A)H vect(X)

.

2.2 Measurement Model of Radio Interferometric Imaging

There are two models of interferometric imaging: (i) developed in the conventional
radio astronomy; (ii) constructed in the array processing framework. The latter is the
basis of our work.

2.2.1 Conventional Measurement Model

Let us consider an interferometer composed of a pair of antennas as shown in Figure 2.1
and consider this interferometry working with a narrow observing frequency band cen-
tered at f . The unit vector s denotes the direction vector towards the celestial source.
The intensity of the source is represented by a function of s as I(s). The location
difference between the two antennas is represented by b. The time delay of the celestial
signal arriving on two antennas is τ = sT b

c
, where c denotes the speed of light. Then

the output of a complex correlator is the power received per unit bandwidth from an
element of the celestial source as

V12 = A(s)I(s)e−j2πfτds

= A(s)I(s)e−j2πs
T b/λds,

(2.4)

where A(s) denotes the reception pattern, and λ denotes the observing wavelength.
The baseline vector can be defined here as bλ = b

λ
.

Since the sources are so far away from the earth that we can assume that those
sources are placed in an imaginary sphere called ”celestial sphere” [1]. Then the total
response is obtained by integrating over the solid angle subtended by the source as

V(bλ) =

∫
4π

A(s)I(s)e−j2πs
T bλdΩ. (2.5)

Here, the correlation output V(bλ) is known as ”visibility” in radio astronomy. V(bλ)
is a function of baseline and baseline depends on the observing frequency. The solid
angle 4π means that the whole sphere is observed. A Fourier Transform relationship

7



Figure 2.1: A two-element interferometer

between the intensity distribution of celestial sources and the correlation measurements
has been built through this equation.

To further determine the measurement equation, a FoV is always defined and a
Cartesian coordinate system is employed as shown in Figure 2.2. Two parallel planes,
image plane and uv plane are defined. The location of a point in FoV is defined by
l and m components, which are the direction cosines. The location of a baseline is
defined by u and v components. The size of a FoV is represented by the values of l and
m. An auxiliary axis n can be introduced here as n =

√
1− l2 −m2. Now, (2.5) can

be rewritten as

V(u, v, w) =

∫
l

∫
m

A(l,m)I(l,m)e−j2π[ul+vm+w(n−1)]dldm

n
, (2.6)

where V(u, v, w) is the visibility, I(l,m) is the source intensity distribution and A(l,m)
is the reception pattern.

In practice, discrete samples of the continuous function V are collected by the in-
terferometer. Radio interferometric imaging is to reconstruct the image over the FoV
based on these discrete samples. To obtain more samples, the earth’s rotation can be
used to collect time-dependent measurement data, which is called ”earth rotation syn-
thesis” [10]. Furthermore, different frequency band can be chosen to obtain different
data sets. Here, we consider one frequency band and one snapshot. After discretizing
(2.6), stacking the two-dimensional image grid into one dimension and omitting the
constant terms, we can obtain the discrete linear measurement model as

r = Mσ, (2.7)

where,

r =


V(u1, v1, w1)
V(u2, v2, w2)

...
V(uK , vK , wK)

 (2.8)

8



Figure 2.2: Coordinate system of baselines and sources

,

σ =



I(l1,m1)√
1−l21−m2

1
I(l2,m2)√
1−l22−m2

2

...
I(lQ,mQ)√
1−l2Q−m

2
Q

 , (2.9)

and

mk,q = e−j2π[uklq+vkmq+wk(
√

1−l2q−m2
q−1)], (2.10)

the (k, q)th entry of the kernel matrix M .
Actually, the measured visibility contains noise and quantization error. The noise

is caused by the interference in propagation, inherent noise of device, etc. The addi-
tional visibility caused by this noise is represented by rn here and can be removed by
calibration process. The quantization error is caused by discretizing the integral (2.6).
The error is represented by e here. The measurement equation comes down to

r̂ = Mσ + e+ rn. (2.11)

If we remove the contribution of noise by calibration, we can obtain the same measure-
ment equation as we mentioned in Chapter 1:

r̃ = Mσ + e. (2.12)

We will introduce the distribution of e in the next section.
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2.2.2 Array Processing Model

In the previous section, a measurement model is attained through analyzing interfer-
ometry’s measurement principle and finding the relationship between image plane and
uv plane and discretizing the resulting equation. In this section, we discuss how to
attain the measurement model from the point of view of array signal processing. The
model we introduce here is the same with the one in [7].

Celestial signals arrive on each antenna with different time delays due to the place-
ment of each antenna. The analog signals are digitized and partitioned into narrow
frequency sub-bands. Once the narrow-frequency-band condition holds, the time de-
lays can be substituted by complex phase shifts [11]. Even though the celestial sources
are stationary, the relative positions between sources and antennas change with the ro-
tation of earth. To correct this effect, the received data are divided into short snapshots
and there are N samples in each snapshot. If we assume there are P antennas, sampled
output data of one time snapshot and one frequency band can be stacked into a P × 1
vector xk[n], where n = 1, 2, · · · , N represents the sample index and k = 1, 2, · · · , K
represents the time snapshot and frequency band index. If we assume there are Q
independent sources sk,q[n], with q = 1, 2, · · · , Q, arriving on the antennas, they can be
stacked into a Q× 1 vector sk[n]. We assume independent receiver noise nk,p[n] where
p = 1, 2, · · · , P , and stack the noise into a P × 1 vector nk[n]. We assume the celestial
source sk,q[n] and receiver noise nk,p[n] are both zero-mean wide sense stationary (WSS)
white Gaussian random processes sampled at Nyquist rate [12].

The output of the antenna array is

xk[n] = Aksk[n] + nk[n], (2.13)

where Ak is a P × Q matrix called array response matrix. The (p, q)th entry of Ak

represents the delay of the qth source impinging on the pth antenna:

ap,q =
1√
P
e−j

2π
λ
yTp zq , (2.14)

where the scaling 1√
P

guarantees ‖aq‖ = 1 with aq as the qth column of Ak. In

(2.14), λ denotes the corresponding wavelength of observing frequency f , yp denotes
the coordinates of the pth antenna in the uv plane and zq denotes the coordinates of
the qth pixel in the image plane.

We can consider only one time snapshot and one frequency band here without loss
of generality [7]. Assuming the sources and noise are uncorrelated, the sources are
mutually uncorrelated and the noise of different receivers are mutually uncorrelated,
then the covariance model can be defined and calculated as

R : = E{x[n]xH [n]}
= ARsA

H +Rn,
(2.15)

where the covariance matrix of signal Rs = diag (σ) with σ = [σ2
s,1, σ

2
s,2, · · · , σ2

s,Q]T ,

and the covariance matrix of noise Rn = diag (σn) with σn = [σ2
n,1, σ

2
n,2, · · · , σ2

n,P ]T . In

10



practice, it is not possible to obtain the true correlation since the number of samples
is finite. We can use the received available data to estimate the covariance matrix as

R̂ =
1

N

N∑
n=1

x[n]xH [n]. (2.16)

To attain an linear measurement model for the radio interferometric imaging prob-
lem, we vectorize the covariance model (2.15) as

r = (A∗ ◦A)σ + rn

= Mσ + rn,
(2.17)

where r = vect (R) and rn = vect (Rn) = (I ◦ I)σn. σ denotes the pixel intensities in
the FoV. M is the system matrix of this linear model and each entry of M is related
to one baseline and one source as

mij,q = a∗iqajq

=
1

P
ej

2π
λ
(yi−yj)zq ,

(2.18)

where yi and yj are the position of the ith and jth antenna, respectively.
We can also vectorize the estimate covariance matrix to obtain

r̂ = vect (R̂). (2.19)

The noise covariance matrix Rn can be known from the calibration procedure, and we
can use it to do a correction of the unwanted contribution of the noise power as

R̃ = R̂−Rn. (2.20)

Vectorizing the above equation and introducing an error item e caused by the finite
sampling, we can obtain

r̃ = r̂ − rn
= r + e− rn
= Mσ + rn + e− rn.

(2.21)

As a result, the measurement equation is attained as

r̃ = Mσ + e, (2.22)

where e is zero-mean and the covariance of e is

Ce = E{(r̂ − r)(r̂ − r)H}

=
1

N
(RT ⊗R).

(2.23)

e is usually assumed to be zero-mean complex Gaussian distributed as e ∼ CN (0,Ce)

[13], where Ce can be estimated using R̂.
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Figure 2.3: Grid on image plane and uv plane

The assumption of zero-mean Gaussian distribution of the sample error e is true
only under two conditions: (i) the sample number N is large enough; (ii) the receiver
noise is much stronger than the celestial signal s. Since under these two conditions,
the covariance of r̂ is independent on the mean of r̂, then we can assume a zero-
mean Gaussian distribution of r̂. Furthermore, under the above conditions, we can
approximate the covariance to Ce ≈ 1

N
(RT

n ⊗Rn) [12]. If the receiver noise is spatially

white, i.e., Rn = σ2
nI, then the covariance can be further approximated to Ce ≈ σ4

nI
N

[12]. The above assumptions usually hold in radio astronomy imaging problem.

2.3 Interpretations of the Measurement Model

In this section, we make some further interpretations of the measurement model to see
how physical limitations affect imaging, and what role the system matrix M plays.
These are the preparations for the next chapter.

2.3.1 Fourier Transform Relationship

For radio interferometric imaging problem, the Fourier Transform takes place between
the image plane and the uv plane. If we consider image pixels and measurements are
placed uniformly on rectangular grid, the Discrete Fourier Transform (DFT) relation-
ship can be shown as Figure 2.3. In Figure 2.3, ∆l and ∆m represent the size of each
image pixel, lmax and mmax determine the size of the FoV, ∆u and ∆v can be regarded
as the minimum baseline length, and umax and vmax denote the maximum baseline
length.
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According to the Nyquist-Shannon sampling rule, there should be

∆l ≤ 1

2umax
,

∆m ≤ 1

2vmax
.

(2.24)

The lower bound of the image pixel size is determined by the maximum baseline length.
Therefore, if we aim at reconstructing a point source perfectly, an infinitely large aper-
ture is required which is impossible. To make up the physical limitation, side informa-
tion should be involved.

2.3.2 Non-Uniform and Sparse Sampling

Here we restate the explanation Naghibzadeh made in [1] to see what a role M plays
besides Fourier Transform operator.

If vector y contains all the samples and Φ denotes a sparse sampling matrix, the
sub-sample vector is

x = Φy. (2.25)

According to the covariance model (2.15), the correlation can be presented as

Ry = E{yyH}
= FRsF

H ,
(2.26)

where Rs = diag(σ) and F is the DFT matrix. Then we go back to the correlation of
x to obtain

Rx = E{ΦyyHΦh}
= ΦFRsF

HΦH .
(2.27)

Vectorizing the above equation, we obtain the noiseless measurement model of sub-
sampling as

r = (Φ∗ ⊗Φ)(F ∗ ◦ F )σ

= (Φ∗F ∗ ◦ΦF )σ,
(2.28)

Comparing the above equation with (2.22), we find that system matrix M plays the
role both of baseline sampling operator and Fourier Transform operator. In practice,
the sampling is sparse and non-uniform. Therefore if we consider reconstructing the
sky image by direct back-projection as σ̂ = MH r̃, we will obtain a bad result.

2.4 Conclusions

We started from illustrating the two-element interferometer, to conclude that the mea-
sured visibility is related to the source intensity distribution via Fourier Transform. To
further define the imaging problem, we introduced the image plane and uv plane estab-
lished in a Cartesian coordinate system. Then we moved to establish the measurement
model in the array processing framework by defining the covariance model. Finally, we
discussed the potential difficulties in image reconstruction due to physical limitations.
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Problem Formulation 3
The radio interferometric imaging problem is a linear inverse problem, estimating pixel
intensities σ from the measured and calibrated correlations r̃ with the known system
matrix M as stated in (2.22). Due to physical limitations such as the size of aperture,
some information is lost and contaminated unavoidably. Therefore, this inverse problem
is ill-posed. To modify the ill-posedness, side information is required, and we consider
regularization.

3.1 Ill-posedness Analysis

A well-posed problem should have the properties: (i) a solution exist; (ii) the solution
is unique; (iii) the solution’s behavior changes continuously with the initial conditions.
In this section, we analyze how these properties of well-posedness are violated in radio
interferometric image reconstruction from the point of view of linear system and Fourier
Transform. We use some analysis methods that Naghibzadeh used in [1].

3.1.1 Linear System

The image reconstruction problem is a linear inverse problem with M as the system
matrix. If M ∈ CP 2×Q is a wide matrix, i.e., P 2 < Q, the system is underdetermined.
In general there would be infinitely many solutions. This contradicts with the second
property of well-posedness. To obtain a unique solution, side information on σ should
be involved. If M is a tall matrix, i.e., P 2 > Q, we still cannot say that the inverse
problem is well-posed, since we are not sure that a stable solution can be attained with
perturbations.

A method to evaluate how good or bad is the behavior of the system matrix M
against perturbations is to study the condition number of the matrix [14]. The condition
number is defined as

cond(M) =
ς1
ςρ
, (3.1)

where ς1 and ςρ are the largest and smallest singular value of M , respectively. A
large condition number means that the matrix is ill-conditioned. The Singular Value
Decomposition (SVD) of M ∈ CP 2×Q is

M = UΣV H

=

ρ∑
i=1

uiςiv
H
i ,

(3.2)
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(a) Antenna placement (b) Singular value spectrum

Figure 3.1: SVD result of a one-dimensional case

where U = [u1,u2, · · · ,uP 2 ] and V = [v1,v2, · · · ,vQ] contains the left and right
singular vectors, respectively, the diagonal matrix Σ contains the singular values on
the diagonal in descending order and ρ denotes the rank of M .

Here we use a simple case to show the singular value spectrum of M . We do a
one-dimensional experiment with 15 irregularly placed antennas (P = 15) and 201
pixels (Q = 201) (P 2 > Q). The corresponding antenna placement and SVD result
are shown in Figure 3.1(a) and Figure 3.1(b), respectively. According to the singular
value spectrum, many small singular values are close to zero, which means that the
condition number computed as (3.1) is very large. Therefore, M is ill-conditioned and
small perturbations will affect the solution.

Therefore, this linear inverse problem is ill-posed. We need side information to
obtain a unique solution or suppress the effect of perturbations.

3.1.2 Fourier Transform

One straightforward reconstruction method is back-projection since the measurements
and the pixel intensities are Fourier Transform pairs. If we assume a noiseless case,
i.e., e = 0, we reconstruct the sky image as

σ̂ = MH r̃

= MHMσ.
(3.3)

However, as we mention in Section 2.3.2, M is not only a Fourier Transform operator
but also a sampling operator. The image reconstructed in this way is called ”dirty
image” actually, and MHM can be regarded as a convolution operator. The dirty
image is obtained by taking inverse Fourier Transform of the product of the continuous
visibility function with the sampling function as

ID(l,m) ≈
∫
u

∫
v

V(u, v)S(u, v)ej2π(ul+vm)dudv, (3.4)
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Figure 3.2: PSF

where S(u, v) is the sampling function. The dirty image can be regarded as the convo-
lution result of the true image and the inverse Fourier Transform of S(u, v):

ID(l,m) = I(l,m) ∗B(l,m), (3.5)

where I(l,m) is the true image and B(l,m) is the inverse Fourier Transform of S(u, v),
called dirty beam. Therefore, if we consider reconstructing the sky image through
Fourier Transform, we should pay attention to the affect of sampling. The limited
lengths of baselines act as a truncation on the spatial frequency signals (visibility),
which leads to leakage effect in the reconstructed image. Leakage effect means that a
single space component produces a set of components. Sparse sampling can be regarded
as a low sampling frequency, which leads to aliasing effect. Aliasing effect means that
a set of space components fold back onto a single component [15].

According to (3.4), when we set the visibility function to the constant 1, we obtain
the dirty beam. Therefore, the dirty beam can be computed as

b = MH1. (3.6)

The dirty beam can also be regarded as the impulse response of an imaging system,
which is called Point Spread Function (PSF) [16]. As Naghibzadeh mentioned in [1],
any two imaging systems with the same PSF are equivalent, thus we can evaluate the
quality of an imaging system via evaluating the PSF. Furthermore, we evaluate the
back-projection results of a point source and an extended source in noiseless case as
Naghibzadeh did.

The PSF of the image system described in Section 3.1.1 is shown in Figure 3.2.
We can observe conspicuous side lobes of the PSF. The reconstructed images of point
source and extended source obtained by back-projecting are shown in Figure 3.3. The
dirty image of the point source can be regarded as the PSF shifting to the position
where the source is. The existence of side lobes makes the background dirty and the
resolution is much lower than we expect. The extended source is much overestimated,
even the values of side lobes are higher than the source. If there is noise, it will be
amplified as well.
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(a) Point source (b) Extended source

Figure 3.3: Dirty image of point source and extended source in one dimension

Utilizing Fourier Transform is not a proper way to reconstruct the sky image since
the information lost in sampling is not taken into account. The above simple one-
dimensional experiment proves that direct back-projection will lead to a bad result. To
improve the reconstruction quality, side information should be considered.

3.2 Estimation Problem Formulations and Regularizations

As we discussed in the previous section, this radio interferometric imaging problem is an
ill-posed inverse problem. To attain a stable and unique solution, we need involve side
information, or additional constraints. Here we apply regularization to the objective
function. In this section, we introduce different formulations of the intensity estimation
problem, and consider involving regularization with some of these formulations. We
restate the estimation methods discussed in [7].

3.2.1 Beamforming-Based Estimation

We first introduce the estimation methods based on beamforming. Given the available
estimate of the covariance matrix R̂ and the noise covariance matrix obtained from the
calibration procedure, the estimate is presented as

σ̂i = wH
i (R̂−Rn)wi, i = 1, · · · , Q, (3.7)

where σi represents the intensity of the ith pixel and wi is a beamformer. The estimate
obtained via Matched Filter (MF) beamforming is

σ̂MF,i = aHi (R̂−Rn)ai, (3.8)

where the beamformer is set as wi = ai. This estimate can be rewritten as

σ̂MF = MH r̃, (3.9)
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which is the estimate of dirty image (we call it dirty image in the rest of this report).
The estimate obtained via Minimum Variance Distortionless Response (MVDR) beam-
forming is

σ̂MVDR,i =
aiR̂

−1
(R̂−Rn)R̂

−1
ai

(aHi R̂
−1
ai)2

=
1

aHi R̂
−1
ai
− aiR̂

−1
RnR̂

−1
ai

(aHi R̂
−1
ai)2

.

(3.10)

where the beamformer is set to wi = R−1ai
aHi R

−1ai
, and R is substituted by the estimate R̂.

As stated in [17], without considering the correction by subtracting Rn, there should
be

0 ≤ σtrue ≤ σMVDR ≤ σMF . (3.11)

3.2.2 Least Square Estimation

Formulating the estimation as a Least Square (LS) problem is a straightforward way.
We make no additional assumptions on the sources in this simple method. The LS
problem is stated as

σ̂ = arg min
σ
‖r̃ −Mσ‖22. (3.12)

The corresponding normal equation is

MHMσ̂ = MH r̃, (3.13)

where the LHS represents the convolution of the pixel intensities with the beam pattern,
while the RHS is exactly the dirty image.
MHM is usually ill-conditioned in radio interferometric imaging, due to the nearly

parallelity of the columns of M [7]. Furthermore, MHM is often non-invertible.
Therefore, additional assumptions are required to obtain a unique and stable solution.
A regularized LS problem can be stated as

σ̂ = arg min
σ
‖r̃ −Mσ‖22 + τR(σ), (3.14)

where τ is the regularization parameter and R(·) is the regularization operator. The
choice of τ is important since it adjusts the importance of the penalty term. If τ is too
small, the corresponding small weight put on the penalty term would lead to overfitting
of the model to the data. Conversely, if τ is too large, underfitting would be caused.
There are many possibilities for R(·), e.g., ‖σ‖22 or ‖σ‖1. `1 regularization favors sparse
solutions while `2 regularization favors evenly distributed solutions.

3.2.3 Maximum Likelihood Estimation

As described in Section 2.2.2, the noise e in (2.22) follows a zero-mean complex Gaussian

distribution with the covariance matrix as Ce = 1
N

(R̂
T
⊗ R̂). We consider using the
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Maximum Likelihood Estimation (MLE) to formulate this problem. The likelihood
function is

p(r̃|σ) =
1

πP 2 det(Ce)
exp

{
−(r̃ −Mσ)HC−1e (r̃ −Mσ)

}
, (3.15)

Maximizing this likelihood function can be transformed into minimizing the cost func-
tion

J(σ) = (r̃ −Mσ)HC−1e (r̃ −Mσ). (3.16)

The resulting minimization problem is

σ̂ = arg min
σ
‖Γ(r̃ −Mσ)‖22, (3.17)

where C−1e = ΓHΓ. This problem can be regarded as a Weighted Least Square (WLS)
problem [12]. The difference between WLS and LS is that WLS takes the possibility
that measurements may not be equally reliable due to different noise levels into account.
The normal equation is

MHC−1e Mσ̂ = MHC−1e r̃, (3.18)

where MHC−1e M is often non-invertible. To solve this problem properly, a regulariza-
tion term is involved. The regularized problem is

σ̂ = arg min
σ
‖Γ(r̃ −Mσ)‖22 + τR(σ), (3.19)

3.2.4 Bayesian estimation

Another estimation method based on probabilistic assumptions is the Maximum A
Posteriori (MAP). For MAP estimator, an assumptions on σ should be involved, in
other words, the prior distribution p(σ) should be offered. Thus, pixel intensities σ are
treated as random variables in MAP while they are treated as deterministic values in
MLE. Regularization is involved through including the prior distribution. The MAP
estimation problem is established by maximizing the posterior as

σ̂ = arg max
σ

p(σ|r̃)

= arg max
σ

p(r̃|σ)p(σ)∫
p(r̃|σ)p(σ)

dσ

= arg max
σ

p(r̃|σ)p(σ).

(3.20)

The established maximization problem (3.20) is just a starting point of involving
extra information of the unknown σ. The key is how to design informative priors.
There are different types of priors such as smoothness priors which usually lead to
Gaussian prior model, sparsity-promoting priors which include `p-priors (0 ≤ p ≤ 1),
etc. [18]. In the following, we will give the examples of Gaussian prior model and
Laplace prior model.
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If we assume that σ follows a Gaussian distribution with mean µσ and covariance
Cσ, σ ∼ N (µσ,Cσ). As a result,

p(σ) ∝ exp

{
−1

2
(σ − µσ)TC−1σ (σ − µσ)

}
. (3.21)

Furthermore,

ln p(σ|r̃) ∝ −(r̃ −Mσ)HC−1e (r̃ −Mσ)− 1

2
(σ − µσ)TC−1σ (σ − µσ). (3.22)

With factorizing the covariance as C−1σ = LTL, (3.22) is expressed as

ln p(σ|r̃) ∝ −‖Γ(r̃ −Mσ)‖22 −
1

2
‖L(σ − µσ)‖22. (3.23)

With a more general regularization parameter τ , the MAP estimation problem is for-
mulated as a minimization problem as

σ = arg min
σ
‖Γ(r̃ −Mσ)‖22 + τ‖L(σ − µσ)||22. (3.24)

(3.24) is the basis of the imaging method PRIFIRA.
If we assume an independent Laplace prior distribution as

p(σi) =
βi
2

exp {−βi|σi − µσ,i|} , βi > 0, i = 1, 2, · · · , Q, (3.25)

where µσ,i is the location parameter and βi is the scale parameter. Then the prior
distribution of σ is

p(σ) =
1∏Q
i=1 βi

exp

{
−

Q∑
i=1

βi|σi − µσ,i|

}
=

1

det(B)
exp {‖B(σ − µσ)‖1} ,

(3.26)

where B = diag(β) with β = [β1, β2, · · · , βQ]T , and µσ = [µσ,1, µσ,2, · · · , µσ,Q]T . The
logarithm of the posteriori distribution is

ln p(σ|r̃) ∝ −‖Γ(r̃ −Mσ)‖22 − ‖B(σ − µσ)‖1. (3.27)

With a regularization parameter, the resulting minimization problem is

σ = arg min
σ
‖Γ(r̃ −Mσ)‖22 + τ‖B(σ − µσ)‖1. (3.28)

Compared to the Gaussian distribution, the Laplace distribution has fatter tails which
leads to a sparser solution.

Bayesian inference provides a flexible way of incorporating extra information to
supplement the noisy data by modeling the pixel intensities as random variables [18].
After determining the type of prior, we should move further to determine the variables
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which the prior depends on. A complete hierarchical Bayesian model is involved. Now
the posterior density can be stated as

p(σ,θ|r̃) ∝ p(θ)p(σ|r̃,θ), (3.29)

where θ denotes the variables such as β and µσ which the prior depends on. θ is called
hyperparameter and p(θ) is called hyperprior [19]. There are three ways to proceed the
estimation [18]. The first one is to marginalize the posterior density w.r.t σ as

p(θ|r̃) =

∫
p(σ,θ|r̃)dσ, (3.30)

maximize this marginal density w.r.t θ and maximize the posterior density p(σ,θ|r̃)
with θ fixed. The second way is to marginalize the posterior density w.r.t θ as

p(σ|r̃) =

∫
p(σ,θ|r̃)dθ, (3.31)

and then estimate σ using this posterior density. Another way is to regard (σ,θ) as
a pair of unknowns, and maximize the posterior density p(σ,θ|r̃) w.r.t both of them.
We will choose the first way and the details will be stated in the following two chapters.

3.3 Conclusions

In this chapter, we first analyzed why this image reconstruction problem would be an ill-
posed inverse problem. No matter this linear measurement system is overdetermined or
underdetermined, we cannot assure a stable unique solution. If we consider the inverse
problem from the point of view of Fourier Transform, it is still ill-posed due to sampling
deficiencies. Then we introduced some common formulations for this imaging problem
and involve regularization in some of these formulations. Finally, we introduced the
hierarchical Bayesian model.
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Proposed Solution Method 4
In the previous chapter, we introduced some formulations to involve the prior distribu-
tion of the pixel intensities as regularization and introduced the hierarchical Bayesian
model. In this chapter, we formulate the radio interferometric imaging problem into a
sparsity-promoting WLS problem and relate it to Laplace prior model. We introduce
the Bayesian inference framework to solve the imaging problem. We also discuss the
similarities and differences between this method and PRIFIRA.

4.1 Problem Reformulation

The universe is dark with stars sparsely distributed in it. Therefore, we can involve
the sparsity of σ as the prior knowledge. With the prior knowledge of the noise level,
the problem becomes finding a sparse solution for the WLS problem (3.17). Adding
a sparsity regularization term to the objective function is a widely used approach for
enforcing sparse solutions. The natural choice of the sparsity regularization term is
the `0 norm of σ which counts the nonzero elements. However, with `0 norm, the
optimization problem is hard to solve. A relaxed sparsity regularization should be
considered. `1 norm is an appropriate option since it is convex. With `1-regularization,
the objective function is convex, thus we have many possible optimization methods to
solve it. We write the regularized problem as

σ = arg min
σ
‖Γ(r̃ −Mσ)‖22 + β‖σ‖1, (4.1)

where β is the regularization parameter. β is not determined and there are two methods
for determining it. One is heuristic approach [20] and another one is cross-validation
[21]. Both of these methods have their limitations and do not involve the definition of
the optimal sparsity. Therefore, we consider defining the optimal sparsity and inferring
the regularization parameter directly from the data. Furthermore, we can associate
each variable with one regularization parameter to promote the optimal sparsity as

σ = arg min
σ
‖Γ(r̃ −Mσ)‖22 +

Q∑
i=1

βi|σi|, (4.2)

Comparing the above formulation with (3.28), we find that the above estimation
problem can be attained by MAP estimation with independent zero-mean Laplace prior
distributions. Therefore, we can infer the regularization parameters βis and estimate
the pixel intensities σ in a Bayesian inference framework.
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4.2 Bayesian Inference Framework

Given the hyperparameters β = [β1, β2, · · · , βQ]T , the joint posterior density is

p(σ,β|r̃) ∝ p(β)p(σ|r̃,β). (4.3)

We adopt the first way we mentioned in Section 3.2.4 to solve the estimation problem
as follows:

1. Marginalize the posterior density p(σ,θ|r̃) w.r.t σ as p(β|r̃) =
∫
p(σ,β|r̃)dσ.

2. Maximize the above marginal likelihood p(β|r̃) w.r.t β as β̂ = arg maxβ p(β|r̃).

3. Estimate σ by maximizing the posterior density p(σ,θ|r̃) with fixed β obtained
from step 2.

We can easily find that the above step 3 is equivalent to solving (4.2).
Since p(β|r̃) ∝ p(r̃|β)p(β), if we choose a non-informative hyperprior, maximizing

p(β|r̃) is equivalent to maximizing p(r̃|β). p(r̃|β) is usually more computable. Since
β denotes scale parameters, a proper hyperprior is Gamma distribution [18]:

p(β) =

Q∏
i=1

Gamma(βi|a, b)

=

Q∏
i=1

Γ(a)−1baβa−1i e−bβi ,

(4.4)

where Γ(·) is the ”gamma function”. To make these hyperprior non-informative, i.e.
flat distribution, we set a and b to small values, e.g. x = y = 10−4 [19].

Therefore, the problem comes down to estimating hyperparametes from data by
maximizing the marginal likelihood p(r̃|β). We call this procedure as ”Bayesian learn-
ing” and call this pixel intensity estimation method as ”Bayesian learning method”.
We will introduce the details of Bayesian learning method in the next chapter.

4.3 Discussions

Usually, values of β which maximize p(r̃|β) cannot be obtained in closed form. Instead,
we iteratively reestimate them. Once we obtain the new estimate of β, we can obtain
the new estimate of σ by solving (4.2). We can summarize this iterative procedure as

σ̂(k) = arg min
σ
‖Γ(r̃ −Mσ)‖22 + ‖B(k)σ‖1. (4.5)

where k denotes the iteration number and B(k) = diag(β(k−1)).
Here we briefly introduce the similar iterative procedure of IR1-PRIFIRA in [7]:

σ̂(k) = arg min
σ
‖Γ(r̃ −Mσ)‖22 + τ‖W (k)σ‖22, (4.6)
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where k is the iteration number and the iteratively updated weight matrix W (k) =

diag

([√
1

σ̂
(k−1)
1

,
√

1

σ̂
(k−1)
2

, · · · ,
√

1

σ̂
(k−1)
Q

]T)
.

If we compare Bayesian learning method with IR1-PRIFIRA, we find that both
of them solve the estimation problem with parameters obtained from the previous
iteration. While Bayesian learning method solves a actual `1-regularized problem,
IR1-PRIFIRA solves an approximate `1-regularized problem. While Bayesian learn-
ing method associates each |σi| with one regularization parameter βi, IR1-PRIFIRA
associates every |σi| with the same parameter τ . Therefore, we look for a better per-
formance of Bayesian learning method due to its accuracy and generalization.

4.4 Conclusions

We reformulated the problem as a regularized WLS problem with `1-norm regulariza-
tion. We involved Bayesian framework to obtain the regularization parameters from
data and estimate the image. We also compared Bayesian learning method with IR1-
PRIFIRA due to their similar iterative procedure.
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Bayesian Learning Method 5
The proposed solution method from Chapter 4 is further developed into our Bayesian
learning method in this chapter. We introduce the iterative learning procedure of the
regularization parameters in detail. We restate our problem here as

σ̂ = arg min
σ
‖Γ(r̃ −Mσ)‖22 +

Q∑
i=1

βi|σi|, (5.1)

where the regularization parameters βis are attained via Bayesian learning iteratively.

5.1 Bayesian Learning

We estimate the regularization parameters β from data by maximizing the marginal
likelihood p(r̃|β). Since β cannot be obtained in closed form, we iteratively reestimate
them. This iterative learning procedure is accomplished via EM algorithm.

5.1.1 EM Algorithm

As we described in Section 4.2, if the hyperprior distribution p(β) is flat, we can
estimate β by maximizing the marginal likelihood p(r̃|β). We take logarithm of the
marginal likelihood and present the estimation as

β̂ = arg max
β

ln p(r̃|β). (5.2)

Here we involve the hidden variables σ to present the marginal likelihood as

p(r̃|β) =

∫
p(σ, r̃|β)dσ

=

∫
p(r̃|σ)p(σ|β)dσ

=

∫ ∏Q
i=1 βi

πP 2 det(Ce)2Q
exp

{
−‖Γ(r̃ −Mσ)‖22 −

Q∑
i=1

βi|σi|

}
dσ.

(5.3)

There is no close form for the above integral, thus we consider involving the EM algo-
rithm to maximize the marginal likelihood iteratively [19]. The intuition behind EM
algorithm is to create a lower bound of ln p(r̃|β) (E-step) and then push the lower
bound to increase ln p(r̃|β) (M-step) [21]. The detailed derivation processes of the E-
step and M-step are presented in Appendix A. The two resulting steps are as follows:

E-step: Z(k)(σ) = p(σ|r̃,β(k−1)), (5.4)
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M-step: β
(k)
i =

1∫
Z(k)(σ)|σi|dσ

, (5.5)

where k denotes the iteration number and the distribution Z(σ) is formulated as

Z(σ) =
p(σ, r̃|β)∫
p(σ, r̃|β)dσ

=
exp

{
−(r̃ −Mσ)HC−1e (r̃ −Mσ)−

∑Q
i=1 βi|σi|

}
∫

exp
{
−(r̃ −Mσ̃)HC−1e (r̃ −Mσ̃)−

∑Q
i=1 βi|σ̃i|

}
dσ̃

.

(5.6)

The problem now is how to compute Z(σ). Since there is no close form of Z(σ), we
are forced to adopt some approximation for Z(σ). To obtain an approximate posterior
Z(σ), we consider expressing the logarithm of the joint density p(σ, r̃|β) in terms of
a second-order Taylor approximation around its mode, i.e., its most likely value, σMP

[22]. The mode is defined as

σMP = arg max
σ

Z(σ)

= arg min
σ

(r̃ −Mσ)HC−1e (r̃ −Mσ) +

Q∑
i=1

βi|σi|

= arg min
σ
r̃HC−1e r̃ − 2MHC−1e r̃ +MHC−1e M +

Q∑
i=1

βi|σi|.

(5.7)

To proceed, we need compute the mode of Z(σ).

5.1.2 Determination of the Mode

Given that pixel intensity values are nonnegative and real, and term r̃HC−1e r̃ can be
ignored, the minimization problem in (5.7) can be transformed to

σMP = arg min
σ�0

f(σ)

= arg min
σ�0

1

2
σTQσ + bTσ

(5.8)

where Q = 2MHC−1e M ∈ RQ×Q and b = −2MHC−1e r̃ + β ∈ RQ×1. Since Q is a
positive semidefinite matrix, this problem is a nonnegative quadratic convex problem.
We will not solve this problem by taking the derivative w.r.t σ and setting it to zero,
because it is improper to compute the inverse of a large-scale matrix Q. To save
memory, we consider just involving the matrix-vector product of Q in computational
process rather than Q itself. Projected gradient descent method may be an option,
but it involves choosing an appropriate step size. In the rest of this section, we will
introduce an optimization method based on constructing auxiliary function, which is
inspired by the multiplicative update method in [23]. Only matrix-vector product is
involved and no heuristic or free parameter is involved.
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Figure 5.1: The iteration process to minimize f(σ) via auxiliary function

The coefficient of the quadratic term of the above problem can be rewritten as

Q = 2N(AHR̂
−1
A)∗ � (AHR̂

−1
A). (5.9)

As a result, each element of Q is nonnegative. Accordingly, we construct our auxiliary
function on vectors σ and σ̃ of which every element is nonnegative:

g(σ, σ̃) =
1

2

∑
i

(Qσ̃)i
σ̃i

σ2
i + bTσ. (5.10)

There are two properties of this auxiliary function: (i) f(σ) ≤ g(σ, σ̃); (ii) f(σ) =
g(σ,σ). With the iteration process σ̃ ← arg minσ g(σ, σ̃), the solution will converge to
the global minimum of f(σ), which exists due to the convexity of f(σ). The iteration
procedure is shown in Figure 5.1. The convergence of this method is demonstrated in
Appendix B.

It can be easily found that this auxiliary function is coordinate-wise separable, thus
we can take the first derivative w.r.t each element and set it to zero to attain the
minimizer of the current auxiliary function:

σi = −bi
σ̃i

(Qσ̃)i
, i = 1, 2, · · · , Q. (5.11)

Considering that σi and σ̃i are both nonnegative, if the result obtained in (5.11) is
negative (bi > 0), it should be projected onto the feasible set. In this case, to guarantee

that g(σi, σ̃i) with nonnegative coefficients (bi > 0, (Qσ̃)i
σ̃i

> 0) is minimal in the feasible
set, the negative result should be projected to zero. The update rule is

σ
(k+1)
i = σ

(k)
i

−bi + |bi|
2(Qσ(k))i

. (5.12)
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This proposed optimization method can be efficiently and easily implemented, since
there is no need to choose extra parameters such as step size and no need to store
a potentially large-scale matrix Q. In addition, this method can guarantee the non-
negativity of the solutions.

5.1.3 Variational Approximation

After computing σMP , Z(σ) should be approximated around this mode. As we men-
tioned in Section 5.1.1, we approximate Z(σ) by expressing the corresponding joint
density p(σ, r̃|β) in a second-order Taylor expansion, which is called Laplace approxi-
mation [22]. However, we should note that when σMP

i = 0, the nonnegative constraint
should be active.

The solution σMP partitions the elements of the vector σ into two subsets σI and
σJ with components i ∈ I such that (σMP )i = 0, and components j ∈ J such that
(σMP )j > 0. Here, we use a factorial approximation method inspired by [24]. The
distribution Z(σ) is approximated as a factored form:

Z(σ) ≈ ZI(σI)ZJ(σJ). (5.13)

Reconsidering the formulation of Z(σ) in (5.6) and let

F (σ) = (r̃ −Mσ)HC−1e (r̃ −Mσ) +

Q∑
i=1

βi|σi|

= r̃HC−1e r̃ +
1

2
σTQσ + bTσ.

(5.14)

−F (σ) can be approximated by a second-order Taylor polynomial near σMP as

−F (σ) =− F
(
σMP

)
− (∇F (σ)|σMP )

(
σ − σMP

)
− 1

2

(
σ − σMP

)T (∇2F (σ)|σMP

) (
σ − σMP

)
.

(5.15)

Since the first derivative (∇F (σ)|σMP )J = 0, we can represent ZJ(σJ) as

ZJ(σJ) ∝ exp

{
−1

2

(
σJ − σMP

J

)T
QJJ

(
σJ − σMP

J

)}
, (5.16)

where QJJ is the sub-matrix of Q as (QJJ)mn = QJ(m),J(n) Since σJ � 0, there
is no need to consider the nonnegative constraints. Now, according to the above
equation, ZJ(σ) can be approximated properly by Gaussian distribution as ZJ(σJ) ∼
N (σJ |σMP

J ,Q−1JJ).
Since the first derivative (∇F (σ)|σMP )I 6= 0 and σMP

I = 0, ZI(σ) can be approxi-
mated as follows with nonnegative constraints:

ZI(σI) ∝ exp

{
−
(
QσMP + b

)T
I
σI −

1

2
σTIQIIσI

}
, σI � 0, (5.17)

where QII is the corresponding sub-matrix of Q.
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According to the naive mean-field approximation [25], ZI(σI) can be approximated
further by factorial exponential distribution [26]:

ẐI(σI) =
∏
i∈I

1

µi
e−σi/µi , σI � 0. (5.18)

The mean field parameters µ are obtained by minimizing the KL-divergence [21]:

min
µ�0

∫
σI�0

ln
ẐI(σI)

ZI(σI)
ẐI(σI)dσI . (5.19)

This integral can yield a minimization problem as

min
µ�0

−
∑
i∈I

lnµi + b̂
T
µ+

1

2
µT Q̂µ, (5.20)

where b̂ =
(
QσMP + b

)
I

and Q̂ = QII + diag(QII). The details about how this min-
imization problem is obtained is displayed in Appendix C. To solve this minimization
problem, we can construct an similar auxiliary function as:

g(µ, µ̃) =
1

2

∑
i∈I

(Qµ̃)i
µ̃i

µ2
i + b̂

T
µ−

∑
i∈I

lnµi. (5.21)

To optimize g(µ, µ̃), we take the first derivative with respect to µi and set it to be zero.
The iterative update rule is

µ
(k+1)
i = µ

(k)
i

−b̂i +

√
b̂2i + 4(Q̂µ(k))i/µ

(k)
i

2(Qµ)
(k)
i

. (5.22)

Now, the distribution Z(σ) is approximated as ZJ(σJ)ẐI(σI), then the mean of σ
under this distribution, i.e., σ̄i =

∫
Z(σ)σidσ, is given by

σ̄i =

{
σMP
i , i ∈ J
µi, i ∈ I.

(5.23)

The update rule of β in (5.5) is given by:

βi =
1

σ̄i
. (5.24)

5.2 Stopping Rule and Algorithm Summary

We have introduced the details of how to obtain the regularization parameters β via
Bayesian learning. If we compare the problem determining the mode σMP (5.7) with
the problem estimating the image (5.1), we find they are equivalent. Therefore, we can
obtain the estimate σ̂ when determining the mode σMP of Z(σ).
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We allow iterative procedure of Bayesian learning to continue until it converges.
When it converges, we will obtain the optimally sparse solution. However, the solution
will become sparser and sparser as the importance of the regularization term grows.
This may cause underfitting, i.e., the model depends on the sparsity assumption too
much while ignoring the data.

To avoid the underfitting, we can set a stopping criteria. We use a similar method
setting the stopping rule to the method in [7], based on comparing the residual with
the sample error. According to the Morozov discrepancy principle, when we have the
knowledge of the noise level, the regularized solution should be as close to the data as
the noise level permits [27]. This principle in our case can be stated as

‖Γ(r̃ −Mσ̂)‖22 = ‖Γe‖22. (5.25)

We take expectations of both sides of the above equation to obtain:

E{‖Γ(r̃ −Mσ̂)‖22} = E{‖Γe‖22}
= E{(Γe)HΓe}
= trace(Cov{Γe})
= trace(IP 2×P 2).

(5.26)

Therefore, we can allow the iteration to continue until
‖Γ(r̃−Mσ̂)‖22−P 2

P 2 ≤ ε, where ε is
set according to the noise level to prevent the final regularized solution from being too
far away from the data.

We summarize the our estimation method based on Bayesian learning as

1. Initialize the regularization parameters β.

2. Determine the mode σMP by solving the minimization problem (5.7) (estimate σ̂
is also attained in this step);

3. Approximate the distribution Z(σ) ≈ ẐI(σI)ZJ(σJ);

4. Calculate the mean σ̄ under the distribution Z(σ) using (7.1);

5. Update β using (5.24);

6. Go back to step 2 if the stopping rule is not satisfied.

5.3 Implementation and Computational Complexity

For ease of computation, we first use Cholesky decomposition as R̂
−1

= LHL. Then
we can express the involved matrix-vector multiplication as [7]

Qx = 2MHC−1e Mx

= 2M̄
H
M̄x,

(5.27)
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where M̄ = Ā
∗ ◦ Ā with Ā = N

1
4LA. (5.27) can be further expressed as

M̄x = vect(Ā diag(x)Ā
H

) = y,

M̄
H
y = vectdiag(Ā

H
Y Ā),

(5.28)

where y = vect(Y ).

The computational complexity of M̄x and M̄
H
y are both O(P 2Q), where P is

the number of antennas and Q is the number of sky image pixels. Therefore, the
complexity of this Bayesian learning method is O(2T1T2P

2Q), where T1 is the outer
iteration number of learning β and T2 is the inner iteration number of solving the
nonnegative quadratic problem. In practice, T1 and T2 are small.

5.4 Conclusions

We introduced our proposed method based on Bayesian learning in detail. We involved
the framework of EM algorithm to iteratively estimate the regularization parameters.
Since there was no close form for the distribution in the E-step (5.4), we chose to
approximate it around its mode via variational approximation. After updating β ac-
cording to the M-step (5.5), the new regularization parameters were attained. We could
iteratively attain the regularized solution via this Bayesian learning method.
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Simulations and Experiment
Results 6
In this section, we test our proposed method on one-dimensional noisy simulated data,
two-dimensional noisy simulated data. We also compare the reconstruction results with
other important methods of radio astronomy imaging.

6.1 One-Dimensional Simulation

We test the Bayesian learning method and compare it with MVDR-PRIFIRA and IR1-
PRIFIRA on one-dimensional case with P = 10 antennas and Q = 201 pixels. The
antennas are placed non-uniformly, and the placement is shown in Figure 6.1(a).The
observing frequency is set to 80 MHZ, and the frequency-dependent baseline locations
are shown in Figure 6.1(b). The source shown in Figure 6.1(c) contains an extended
source and point source, since one source is wider than the main beam while another
one is narrower than the main beam [28]. The noise covariance is set to Rn = 100I.

Figure 6.1(d) shows the covariance matrix R̂. From the figure of covariance matrix,
we find that the noise n is dominant, which means that we can assume that e follows
a complex Gaussian distribution. The SVD spectrum of M is shown in Figure 6.1(e),
accordingly, M is ill-conditioned. The PSF of this imaging system is shown in Fig-
ure 6.1(f), and we can observe side lobes clearly.

The reconstruction results are shown in Figure 6.2. The dirty image and MVDR
dirty image are shown in Figure 6.2(a). Figure 6.2(b) shows the reconstruction result
of our Bayesian learning method, here the iteration number is 3. Figure 6.2(c) and
Figure 6.2(d) show the reconstruction results of MVDR-PRIFIRA and IR1-PRIFIRA,
respectively. We set the iteration number of MVDR-PRIFIRA to 5, and we set the outer
iteration number of IR1-PRIFIRA to 20. From the reconstruction results we can see
that each pixel value of MF dirty image or MVDR dirty image is higher than the source,
and the extended source is particularly overestimated. The point source is recovered
well by the Bayesian learning while the edge of extended source becomes sharper and the
reconstruction result is sparser. The MVDR-PRIFIRA can reconstruct the extended
source well, but cannot reconstruct the point source and some reconstructed pixel values
are negative. The IR1-PRIFIRA recovers the point source to some extent but the point
source is widened and is underestimated. The IR1-PRIFIRA causes sharper edge of
the extended source than the MVDR-PRIFIRA.

6.2 Two-Dimensional Simulation

We test the Bayesian learning method on two-dimensional noisy data using the config-
uration of the core stations of the LOFAR as the antenna placement and an image of
the W28 supernova remnant as the test image [7]. There are P = 273 antennas and
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(a) Antenna placement (b) Baseline location

(c) Source (d) Covariance matrix

(e) Singular value spectrum (f) PSF

Figure 6.1: One-dimensional simulation

Q = 84681 image pixels. We only consider single frequency sub-band and single snap-
shot. The antenna placement is shown in Figure 6.3(a). The observing frequency is set
to 58.975 MHz. The frequency-dependent uv coverage is shown in Figure 6.3(b). Each
pixel value in the test image is normalized by the maximal pixel value. The test image
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(a) Dirty image (b) Bayesian learning

(c) MVDR-PRIFIRA (d) IR1-PRIFIRA

Figure 6.2: One-dimensional reconstruction

is shown in Figure 6.3(c). The receiver noise is white Gaussian noise and the covariance
is set to Rn = 4I. This noise level is set according to the noise level of a real data
set as introduced in [29]. The sample number is N = 105. The covariance matrix R̂
is shown in Figure 6.3(d). The figure of covariance matrix demonstrates that the noise
n is dominant which means that we can assume a Gaussian distribution of the noise
e. The PSF of this imaging system is shown in Figure 6.3(e). Dirty image and MVDR
dirty image are shown in Figure 6.3(f) and Figure 6.3(g), respectively. Comparing the
structures of test image with the main beam of PSF, we find that there are both ex-
tended sources and point sources in the test image. Due to the limited aperture size,
leakage effect will be conspicuous in the direct back-projected reconstruction, thus, we
can see many side lobes in the PSF and the dirty image. Both MF beamforming and
MVDR beamforming overestimate the pixel values.

6.2.1 Reconstruction Results and Performance Summary

We compare the reconstruction result of our Bayesian learning methods with the results
of following state-of-the-art methods: the CLEAN with a Gaussian main beam , the
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(a) Antenna placement (b) uv-coverage

(c) Test image (d) Covariance matrix

(e) PSF

ADMM with an `1-regularization, the SARA, the Richard-Lucy, the LSQR, the MVDR-
PRIFIRA and the IR1-PRIFIRA. The reconstruction results are shown in Figure 6.4
in logarithmic scale.

Figure 6.4(a) and Figure 6.4(b) show that Richardson-Lucy and ADMM both cause
many point-like residuals in the background, which makes it difficult to distinguish
the point sources from the artifacts. Figure 6.4(c) shows that LSQR leads to many
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(f) Dirty image (g) MVDR dirty image

Figure 6.3: Two-dimensional simulation

Iteration number Reconstruction time (s) ‖σ̂ − σ‖1 ‖σ̂ − σ‖2
Bayesian learning 2 138.69 90.45 2.10

ADMM 115 128.18 93.26 1.85

CLEAN 5000 70.46 118.69 2.79

LSQR 4 5.77 367.33 3.67

MVDR-PRIFIRA 3 7.62 102.24 2.54

IR1-PRIFIRA 13 32.62 82.67 2.20

SARA 200 372.57 105.33 2.86

Richardson-Lucy 200 353.72 80.27 2.23

Table 6.1: Performance summary

side lobes in the reconstructed image, thus the weak sources are mixed with the side
lobes. Figure 6.4(d) shows that the reconstructed image of CLEAN is composed of
points, which means that the CLEAN is not suitable for the reconstruction of large-scale
sources. Figure 6.4(e) shows that SARA causes many artifacts in the background which
are similar to the weak extended sources. Figure 6.4(f) shows that MVDR-PRFIRA
relatively well reconstructs the extended sources, but underestimates some point sources
and leads to a smooth reconstruction. Figure 6.4(g) shows that IR1-PRIFIRA results
in a sharper and sparser reconstruction than MVDR-PRIFIRA. Figure 6.4(h) shows
that our Bayesian learning method causes a sharp and sparse reconstruction. We can
still see a shape of the weak extended sources but the sources are composed of many
discrete parts.

In addition to observing the reconstructed images directly, we can evaluate the
reconstruction quality in terms of `1 error and `2 error. We can make a performance
summary table similar to what Naghibzadeh did in [7]. Table 6.1 shows the iteration
number, the reconstruction time, the `1 and `2 error. To be noted, the results of
Bayesian learning and PRIFIRA we compare here are not the convergent results. The
results are attained when the corresponding stopping rules are satisfied.
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(a) Richardson-Lucy (b) ADMM

(c) LSQR (d) CLEAN

(e) SARA (f) MVDR-PRIFIRA

6.2.2 Further Analysis

As we mentioned in the previous section, the Bayesian learning result we compare with
other methods is not a convergent result. In this section, we will show the convergent
result and make further analysis about the result.

We initialize β to zero first. The corresponding reconstruction results of 2 iterations
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(g) IR1-PRIFIRA (h) Bayesian learning

Figure 6.4: Two-dimensional reconstruction

(a) 2 iterations (b) 15 iterations

Figure 6.5: Bayesian learning reconstruction with zero initial regularization parameters

(not convergent) and 15 iterations (convergent) are shown in Figure 6.5. We also

show the value of the objective function ‖Γ(r̃ −Mσ)‖22 +
∑Q

i=1 βi|σi| and the value
of the WLS part ‖Γ(r̃ −Mσ)‖22 of each iteration in Figure 6.6. From Figure 6.5,
we can see that the result of 15 iterations is sparser than the result of 2 iterations.
Figure 6.6 illustrates that the estimation result converges after around 9 iterations,
and the objective function reaches the highest value at the second iteration. To be
noted, the initial values of the regularization parameters β are zero. Therefore, the
solution of the first iteration is the solution of the WLS problem. If we compare the
objective value of the WLS part ‖Γ(r̃ −Mσ)‖22 with the expectation of the square
norm of the whitened noise E{‖Γe‖22} as we mentioned in Section 5.2, we find these
two values are the closest at the second iteration. Therefore, the solution moves from
the WLS solution to a regularized solution that is as close to the data as the noise
level permits, and keeps moving away from fitting to the data. As the iteration number
increases, more and more importance is put on the regularization term and the solution
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(a) Objective function value of the WLS part (b) Objective function value

Figure 6.6: Objective function value with zero initial regularization parameters

become sparser and sparser until convergence. Underfitting may occur in this process,
thus we involve stopping rule to prevent this. The stopping rule can be regarded as
another regularization term besides the `1-regularization term. `1-regularization term
helps us select some solutions from all the possible solutions, and the stopping rule
makes the further selection.

6.3 Conclusions

We tested the Bayesian learning method by one-dimensional and two-dimensional sim-
ulations and compared the reconstruction results with other imaging methods. We
further showed how the stopping rule controlled the solution.
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Conclusions and Future Work 7
7.1 Conclusions

Radio interferometric imaging is to reconstruct the sky image over the field of view
based on the measured correlation data. By employing the array processing frame-
work, a linear data model is attained. Accordingly, radio interferometric imaging is
regarded as a linear inverse problem. However, due to the limited aperture size and
sparse sampling, this inverse problem is ill-posed. To obtain a unique and stable solu-
tion, side information should be offered, here we involved regularization. Based on the
sparsity assumption and prior knowledge of the noise, we reformulated the problem into
a weighted least square problem with `1-regularization. We employed Bayesian frame-
work to solve this problem. We proposed our Bayesian learning method to learn the
regularization parameters from data and to update the image estimate correspondingly
until the convergence of the regularization parameters. Our Bayesian learning method
is based on an EM algorithm framework. We employed an optimization method based
on constructing auxiliary functions and an variational approximation method to com-
pute the distribution in the E-step of the EM algorithm. We involved a stopping rule
to prevent the solution from being too sparse to fit to the data. The reconstruction
results attained by our Bayesian learning method are comparable with other existing
radio astronomy imaging methods.

Compared to conventional `1-regularization with only one regularization parameter,
our regularization is generalized to the case that each variable is associated with one
regularization parameter. Compared to common approaches such as heuristics and
cross-validation to determine regularization parameters, we used the Bayesian learning
to infer the parameters from data by maximizing the posterior distribution of the
regularization parameters. Compared to the efficient imaging method PRIFIRA in
which the exact objective function obtaining the final solution is hard to be determined,
our Bayesian learning method can clearly reveal the objective function which the final
solution comes from. Moreover, in PRIFIRA, the nonnegativity of image pixel values
is not taken into account, but in our Bayesian learning method, we involve nonnegative
constraints.

Our Bayesian learning method provides a good option for sparse radio astronomy
image models. It converge very quickly to the sparse optimal solution. Moreover, it is
allowed to stop at a earlier point to control the sparsity of the solution. It can recover
point sources very well and profile some extended sources. To be noted, it can cause
discontinuity of extended sources and cannot recover weak extended sources. These
may be overcome by involving mixture prior models on the pixel values.
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7.2 Future Work

This Bayesian learning method can also be tested on real data. However, due to the
absence of ground truth, the reliability of the reconstruction should be evaluated by a
proper method.

We set the stopping rule based on the noise level. However, this may be unreliable
due to the uncertainty of scaling. A more reliable stopping rule can be proposed.

In our formulation, each variable is associated with one regularization parameter,
which implies that the image pixel values follow independent zero-mean Laplace dis-
tributions. In the future work, the mean of the Laplace distribution can be discussed
and generalized.

Moreover, instead of the independent Laplace distributions, other prior distributions
such as Chi-square distribution can be assumed. We can even propose a mixture of
different distributions to recover both point sources and extended sources properly.

Due to the existence of large-scale matrix, the computation of our Bayesian learning
method is not fast sufficiently. Strategies to speed up the computation is required for
future work. One possibility is to combine the Krylove-based method with our Bayesian
learning method but the nonnegativity constraints should be involved.
r̃

σ̂
+τR(σ)

‖Γ(r̃ −Mσ̂)‖22 +

Q∑
i=1

βi|σ̂i| (7.1)
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EM Algorithm A
To create the lower bound, ln p(r̃|β), a distribution Z(σ) over the hidden variables
σ is defined. With this distribution, the logarithm of the marginal likelihood can be
rewritten as

ln p(r̃|β) = ln

∫
Z(σ)

p(σ, r̃|β)

Z(σ)
dσ. (A.1)

For any concave function such as logarithm function, the Jensen’s inequality holds as

f(E{x}) ≥ E{f(x)}. (A.2)

The equality hold when f is affine or x is constant. According to (A.1) and (A.2), the
lower bound is presented as

ln p(r̃|β) ≥
∫
Z(σ) ln

p(σ, r̃|β)

Z(σ)
dσ. (A.3)

The EM algorithm works iteratively by two steps: (i) E-step finds a tight lower bound
of ln p(r̃|β); (ii) M-step forces ln p(r̃|β) to increase by maximizing the lower bound.

A.1 E-step

In the kth iteration, to ensure that the lower bound is tight, the lower bound should be
equal to ln p(r̃|β(k−1)). The equality between ln p(r̃|β(k−1)) and the lower bound holds

if p(σ,r̃|β(k−1))

Z(k)(σ)
is a constant. Therefore, Z(k)(σ) is chosen as

Z(k)(σ) =
p(σ, r̃|β(k−1))∫
p(σ, r̃|β(k−1))dσ

=
p(σ, r̃|β(k−1))

p(r̃|β(k−1))

= p(σ|r̃,β(k−1)).

(A.4)
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A.2 M-step

After we find Z(k)(σ), we should maximize the lower bound over β as

β(k) = arg max
β

∫
Z(k)(σ) ln

p(σ, r̃|β)

Z(k)(σ)
dσ

= arg max
β

∫
Z(k)(σ) ln p(σ, r̃|β)dσ

= arg max
β

∫
Z(k)(σ) ln[p(r̃|σ)p(σ|β)]dσ

= arg max
β

∫
Z(k)(σ)

[
Q∑
i=1

(ln βi − βi|σi|)

]
dσ

(A.5)

To maximize the final resulting cost function in (A.5), we take the derivative of the
cost function over βi as

∂J(β)

∂βi
=

∫
Z(k)(σ)

(
1

βi
− |σi|

)
dσ. (A.6)

Setting (A.6) equal to zero, we obtain

βi =
1∫

Z(k)(σ)|σi|dσ
. (A.7)

48



Convergence Analysis of the
Optimization Method Based
on Auxiliary Function B
We demonstrate here that this auxiliary-function-based optimization method converges
monotonically to the global minimum of f(σ) referring to [23].

B.1 Monotonic Convergence

The auxiliary function is constructed around the current estimate of the minimizer.
Subsequently, the next estimate is attained by minimizing this auxiliary function, which
can be regarded as setting an upper bound on the cost function f(σ). Letting this
iteration continues, we will find a stationary point or a local minimum of f(σ). If those
two properties stated in Section 5.1.2 hold, this process would not increase the value
of f(σ) due to:

f(σ(0)) = g(σ(0), σ(0)) ≥ g(σ(1), σ(0)) ≥ f(σ(1))

f(σ(1)) = g(σ(1), σ(1)) ≥ g(σ(2), σ(1)) ≥ f(σ(2))

...

(B.1)

Therefore, what we should prove here is that the property f(σ) ≤ g(σ, σ̃) holds,
which is equivalent to

σTQσ ≤
∑
i

(Qσ̃)i
σ̃i

σ2
i . (B.2)

We involve a diagonal matrix K of which each entry is

Kij = δij
(Qσ̃)i
σ̃i

, (B.3)

where δij is the Kronecker delta function. If (K − Q) is positive semidefinite, the
inequality (B.2) holds. For any vector x ∈ RQ×1, we can apply a coordinate-wise
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scaling as xiσ̃i, and then

(x� σ̃)T (K −Q)(x� σ̃) =
∑
i,j

xiσ̃i(Kij −Qij)xjσ̃j

=
∑
i,j

[δij(Qσ̃)ixixjσ̃j −Qijxixjσ̃iσ̃j]

=
∑
i,j

(Qijσ̃iσ̃jx
2
i −Qijxixjσ̃iσ̃j)

=
1

2

∑
i,j

Qijσ̃iσ̃j(xi − xj)2

≥ 0.

(B.4)

Therefore, (K −Q) is positive semidefinite, which means that inequality (B.2) holds
as we expect.

B.2 Global Convergence

A mapping M is defined in this iterative optimization procedure, M : σ(k) → σ(k+1).
A sequence of estimates are generated as {σ(1),σ(2), · · · }. The corresponding sequence
of cost function value {f(σ(1)), f(σ(2)), · · · } is monotonically decreasing and is bounded
below the global minimum of f(σ). When the iteration number k increase to infinity,
the sequence of {f(σ(1)), f(σ(2)), · · · } converges. What we should prove here is that it
converge to the global minimum.

We briefly introduce the proof procedure here and the details can be seen in [23].
It is demonstrated firstly that any limit point of the sequence {σ(1),σ(2), · · · } must
be a fixed point of the mapping M. It is shown secondly that there is no convergent
subsequences of M with spurious fixed points as limit points. Finally, the result of
subsequence convergence is extended and it is proved that the sequence {σ(1),σ(2), · · · }
converges to the global minimizer.
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Minimization of the
KL-Divergence C
Here we introduce how to obtain the minimization problem (5.20) by minimizing the
KL-divergence as (5.19).

In (5.19), ∫
σI�0

ẐI(σI) ln ẐI(σI)dσI

=
∑
i∈I

∫
σi≥0

Ẑi(σi) ln Ẑi(σi)dσi

=
∑
i∈I

∫ ∞
0

(− lnµi −
σi
µi

)
e
− σi
µi

µi
dσi

= −
∑
i∈I

(lnµi + 1)

, (C.1)

and ∫
σI�0

ẐI(σI) lnZI(σI)dσI

=

∫
σI�0

ẐI(σI) ln
exp
{
−
(
QσMP + b

)T
I
σI − 1

2
σTIQIIσI

}
ZI

dσI

= − lnZI −
∫
σI�0

ẐI(σI)

[(
QσMP + b

)T
I
σI +

1

2
σTIQIIσI

]
dσI

= − lnZI −
∑
i∈I

(
QσMP + b

)
i

∫ ∞
0

Ẑi(σi)σidσi

− 1

2

∑
i∈I,j∈I

Qij

∫ ∞
0

∫ ∞
0

Ẑi(σi)Ẑj(σj)σiσjdσidσj

= − lnZI −
∑
i∈I

(
QσMP + b

)
i
µi −

1

2

∑
i∈I,j∈I

Qijσiσj,

(C.2)

where ZI is the normalization to ensure that
∫
σI�0

ZI(σI)dσI = 1, and µi is the mean

of σi under the distribution Ẑi(σi). Combining (C.1) and (C.2), we can obtain the
minimization problem as (5.20).
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