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Widespread acceptance and utilisation of composite laminates requires confidence in their load­

bearing capacity. The ability to accurately predict the stiffness and strength of laminates composed of 

glass-fibre reinforced polyester (GRP) is necessary for a sound design when laminates are used in 

structural applications. 

In this paper an easily accessible computational tool has been described that is able to deal with the 

phenomenon of progressive failure. Because loading in structural applications is merely biaxial, we 

designed experiments to test the biaxial capacities of GRP-Iaminates. The final computational results 

show an excellent agreement with the biaxial test results. 
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1 Introduction 

One of the reasons that fibre-reinforced composite applications in building engineering are lagging 

behind other disciplines (like aeronautical engineering and mechanical engineering) is the lack of 

familiarity of many building engineers with the potential of fibre reinforced composites for 

structural applications. 

Although present design codes often refer to the Tsai-Wu criterion, the additional advantages of 

anisotropy are hardly taken into account and no design tools are available to optimise the com­

position of multidirectional laminates. An approach where a laminate is considered failed after the 

first layer has failed, will not lead to the application of a sound safety-factor. This will inevitably 

lead to improper laminate design and uneconomical use of material. 

In order to contribute to filling the above-mentioned gap, we have developed a computational tool 

supported by experiments that enables us to analyse the development of stresses and strains in 

glass-fibre reinforced polyester (GRP) laminates beyond the level of first-ply failure up to ultimate 

laminate failure. This approach may be referred to as progressive failure analysis. 

The experiments on biaxial specimens have been simulated by the finite element method using the 

Ansys finite element package. An easily accessible computing method is developed in order to 

predict ultimate failure and at the same time giving good insight into the type of failure and the 

critical locations. The parameters used in the computational procedures will be adapted to a value 

for which a satisfactory result is achieved for different types of testing. 
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Since the Tsai-Wu failure criterion uses second and fourth order tensors, the linear treatment of 

stresses and strains in laminates using tensor-notation is summarised in chapter 2. 

In chapter 3, the biaxial test set-up is described, while in chapter 4 the computational and 

experimental results are compared. 

Finally, the design of a vertical storage vessel is worked out in chapter 5, as an example of the 

versatility of the proposed computational procedure. 

2 Analysis of composite laminates 

200 

Most of the structural elements or laminates made of fibrous composites consist of several distinct 

Jayers of unidirectional laminae. Each lamina is usually made of the same constituent materials 

(e.g. resin and glass). However, an individual layer may differ from another layer in relative 

volumes of the constituent materials, type of reinforcement used, and, more particularly, orien­

tation of fibres with respect to common reference axes. Analysis and design of any structural 

element will require a complete knowledge of the properties of individual layers and a lamination 

theory. We will use the classical lamination theory, where the constitutive behaviour of laminates is 

studied exclusively in the plane of the laminate. The reason for this is the fact that no delamination 

effects have been encountered in the experiments described in chapter 3. 

z 
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Fig. 2.1 Schematic view of uni-directionallamina and co-ordinate system. 

A multidirectional laminate consists of layers with different fibre directions. 

A single-layer composite represents a basic building block for laminate constructions and therefore 

attention is given to the properties and behaviour of unidirectional composites. A schematic view of 

a unidirectional lamina is depicted in Figure 2.1. The x-axis of the layer coordinate system is orien­

tated along the fibres, while the z-axis is perpendicular to the plane of the layer. The depicted axes 

in the laminate plane are often referred to as Land T. 

First, linear elastic behaviour is assumed, but this can easily be extended to non-linear material 

behaviour by substituting the appropriate relation between stresses and strains. 



2.1 Constitutive equations of the unidirectional lamina 

The constitutive equations, which describe the relationship between stresses and strains, will be set 

up by means of tensors, and not based on matrix calculation methods, which is common practice in 

the literature. The method based on tensors is straightforward and therefore easy to handle; on the 

other hand, special attention has to be given to the translation from tensor-elements into 

engineering constants. 

The general linear 3-dimensional stress-strain relationship is governed by the stiffness tensor CijkJO or 

it's inverse: the flexibility (compliance) tensor SijkJO according to Equation (2.1) and Equation (2.2). 

Cijk1 and Sijkl are fourth rank tensors and O'ij and Ekl are second rank (3 x 3) tensors. The indices refer 

to the co-ordinate axes (1 = x) etc. and adopt values i, j, k, 1=1...3. 

(2.1) 

(2.2) 

In both equations, the Einstein-convention is valid, thus summation over the repeated indices has to 

be performed. Choosing the co-ordinate system parallel to the material symmetry axes, the material 

tensors can be simplified, because then there is no relation between normal stresses and shear 

strains or between normal strains and shear stresses (special orthotropy). 

For the orthotropic unidirectional layer, the fully worked-out equations, related to the principal 

material axes of the unidirectional layer, are expanded in Equation (2.3). 

In order to define the coefficients of the stiffness tensor and the compliance tensor in terms of the 

engineering elastic constants E, v and G, a conversion to engineering notation has to be made. 

The conventions that have to be used are listed in Table 2.1. 

5 1111 51122 51133: 0 0 0 0 0 0 

52211 52222 5 2233 , 0 0 0 0 0 0 

53311 53322 53333' 0 0 0 0 0 0 
-0 - -0- - -0- :S23~3-5;3;2- 0- -6- -6 --6 
o 0 0: 53223 5 3232 0 0 0 0 e 0'32 (2.3) 

000 o 0 51313 51331 0 0 

o 0 0 0 0 53113 53131 0 0 

o 0 0' 0 0 0 0 51212 51221 

000 o 0 0 0 52112 52121 0'21 
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Table 2.1 Tensor versus contracted and engineering notation for stresses and strains. 

Stresses Strains 

Tensor Contracted Engineering Tensor Contracted Engineering 
notation notation notation notation notation notation 

an a l al I'll 1'1 EI 

a22 a2 a2 t?2 E2 E2 

a33 a3 a3 ~3 ~ E3 

a23 = a32 a4 r 23 = r 32 E23 = ~2 ~ £4 l123 

a13 = a31 as r13 = r 31 E13 = E31 ~ £5 l Y:t3 

al2 = a21 a6 r l2 = r 21 E12 = E21 ~ £6 l Y:t2 

Using the contracted notation, Equation (2.2) can be rewritten as: 

(2.4) 

The elements of the flexibility tensor Sijkl can be expressed in the engineering constants. Special 

attention has to be given to the expression of the shear coefficients, illustrated by Equation (2.5) to 

Equation (2.7). 

It follows from E12 = t?1 (by definition) that and 51212 = 52112 and 51221 = S2121' 

Because of Maxwell symmetry: SI221 = 52112' so S1212 = SI221 = 52112 = S2121' SO, Equation (2.5) and 

Equation (2.6) can be converted to engineering notation as follows: 

(2.5) 

(2.6) 

(2.7) 

1 
from which it can be seen that the engineering shear modulus G12 = 4--' and that GI2 = G21' etc. 

S1212 

The full compliance tensor in material symmetry directions expressed in the engineering constants 

can be written according to Equation 2.8. 
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(2.8) 

It can be derived from symmetry that Sijkl = Sklij' This relation can be used for instance to express the 

minor Poisson's ratios into the major Poisson's ratios, for instance: 

Application of the full tensor notation, with coefficients using four indices in the case of a fourth 

order tensor, is necessary in order to transform stresses and strains in terms of a rotated co-ordinate 

system, see Equation (2.10). 

The stiffness tensor of the unidirectional lamina is the inverse of the flexibility tensor. 

The stiffness tensor of a multi-directional laminate will be determined by addition of the stiffness 

components of the composing layers. The procedure that has to be followed will be explained in 

general in the next section. 

The corresponding treatment for the stiffness tensor Cijk1 is very similar. 

2.2 Analysis of multi-directional laminates 

Structural composites usually consist of several anisotropic plies bonded together at different 

orientations, because a unidirectional laminate is not very effective due to the low strength and 

stiffness perpendicular to the fibre direction. 

The stiffness tensor C of a multi-directional laminate can be found by adding (proportional with 

thickness) the stiffness tensors of the composing layers; the stiffness tensor for each layer must 

therefore be transformed to the same co-ordinate axis. Because the compliance tensor in the fibre 

direction is related to the engineering constants according to Equation (2.8), these tensors have to be 

transformed to the same direction, and subsequently be inverted to the stiffness tensor for that 

particular direction. 
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Finally, considering the individual thickness of the composing layers, the stiffness tensors of the 

individual layers can be added, resulting in the stiffness tensor of the multi-directional laminate: 

(2.9) 

The procedure described above is based on the condition that the strain conditions are the same for 

each individual layer. 

The compliance tensor Sijkl of the laminate can be derived by inverting the stiffness tensor Cijkl• 

With the compliance tensor in fibre direction as a starting-point, the coefficients of the compliance 

tensor in an arbitrary direction can be determined following the general rotation equation for fourth 

order tensors: 

(2.10) 

where aim etc. are the cosine of the angle between the i-axis after rotation, and the m-axis before 

rotation. To evaluate the tensor-equation, the 'Einstein' -convention, meaning summation over the 

repeated indices has to be used again. 

In the particular case of a plane stress situation, the stress-strain relationship for the engineering 

constants can be expressed in a 3 x 3 matrix according to Equation (2.11) in any arbitrary direction. 

At the same time, we switch to contracted indices of the coefficients of the flexibility matrix and of 

the extensional stress and strain components. 

(2.11) 

For each individual layer of a multidirectionallarninate, the compliance tensor will be determined 

in a particular direction by using the rotation angle of that layer. The coefficients of the compliance 

tensor are thereby expressed along the axes of material symmetry. 

By way of example we will work out this procedure for a balanced cross-ply laminate (symmetric 

lay-up and equal thickness in both fibre directions) loaded in the 45°-direction as shown in 

Figure 2.2. 

2 2 

x=I x=I 

layer 1 layer 2 

Fig. 2.2. Unidirectional laminae. 



This will result in a relationship between the shear modulus of the individual layer GLT and the 

modulus of elasticity (Ex) and the Poisson's ratio of the cross-ply laminate in the 45° direction (vxy )' 

In terms of the rotation angle e, 511 and 521 can be expressed as follows, using Equation (2.10): 

Clearly, the expressions for 511 and 512 yield the same result for el = +45° and e2 = -45°. 

It follows from Equation (2.12) and Equation (2.13) that in the directions rotated over 45° 

(coinciding with the xy-system) for both layers: 

Subtraction of the two equations above results in: 

This can be rewritten in engineering constants: 

So, for symmetric (+45°, -45°) laminates, Equation (2.17) can be used to determine the shear 

modulus, if Ex and Vxy are known. 

The laminate strains {e} at any distance from the middle surface are given by: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where {eo} represents the midplane (membrane) strain and "'" ~ and ~y are the components of 

curvature. 

For laminates with a non-symmetric stacking order, the forces and moments on a unit square out of 

the flat shell can be defined as: 

(2.19) 

where: 
h/2 

f c~(l,z,z2)dz (2.20) 

-h/2 
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are the extensional, coupling and bending laminate stiffness-tensors. Nand M are the resultant 

force and moment vectors acting per unit of length of the laminate, i.e., 

~hl2 

It is worthwhile to note that, analytically, the composing layers of a laminate are assumed 

homogeneous. 

(2.21) 

2.3 Failure mechanics of an orthotropic layer 

2.3.1 T s a i - W u fa i I u r e c r i t e rio n 
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To predict failure in an orthotropic layer, use can be made of a number of failure criteria. 

We will use the Tsai-Wu failure criterion to predict not only first-ply failure, but ply failure in each 

stage of damage. After initiation of failure, the deformation properties will be changed but the 

material will still be capable to carry a considerable load. 

A very general failure criterion can be postulated by a power-function of the cubic, quadratic and 

linear scalar products: 

(2.22) 

where 0", (i,j,k = 1 ... 6) is a general 3-dimensional state of stress and F'jk' F'j and F, are tensors using 

the contracted notation (see Table 2.1). The orientation of the co-ordinate axes may be chosen 

arbitrary. 

The Tsai-Wu failure criterion is a simplified case of the general criterion, where the cubic term has 

vanished and the exponents for the quadratic and linear terms are set to unity, resulting in: 

(i,j=1...6) (2.23) 

The strength of an orthotropic or transversely isotropic ply under plane stress relative to the 

symmetry-axes 1-2 should be unaffected by the direction or sign of the shear stress component. 

Thus, all terms in Equation (2.23) containing first-degree shear stress must be deleted from the 

equation. From this symmetry-consideration it follows that the strength parameters F16' F26 and F6 

equal zero. 

The general criterion can now be expanded to: 

1 (2.24) 

where ((11,(12,0"6) is a limit stress situation related to the symmetry directions. 



Fi and Fij can be expressed in the unidirectional critical stresses which can be derived from uniaxial 

experiments: 

where Xt and Xc represent the tensile and compressive strength in the 1-direction, Yt and Y, the 

tensile and compressive strength in the 2-direction, respectively, and S represents the shear 

strength. 

The coefficient F12 of the second term in Equation (2.24), interpreting the interaction of the 

extensional stresses, can be written as F12 = F;2JFll F12" with F;2 dimensionless. 

The stress envelopes represented by Equation (2.24) will be closed, if the following condition for F;2 

is satisfied: -1 :::; F;2 :::; l. 

It is worthwhile to note that the expressions Fi and Fij are related to the orthogonal material 

directions. To determine the values for Fi and Fij in other directions, the tensors have to be 

transformed to those directions. 

By way of example, the permissible load space typical for unidirectional laminates is depicted in 

Figure 2.3 for fibre directions 81 = 0° and 82 = 15°. 

0"2 100 

-1000 

Fig.2.3 Tsai-Wu failure curves for a unidirectional composite with fibre direction 81 = 00 or 82 = 150 . 

(stresses in MPa). 

2.3.2 Puc k ' s c r i t e rio n 

Failure in composite laminates is complicated because fibres and matrix has its own failure 

behaviour and characteristics. Puck's criterion comprises failure phenomena in both constituents. 

Considering physical failure phenomena occurring in unidirectional fibre reinforced materials, 

there are two different types of failure, namely: 

- Fibre failure in tension and in compression (micro-buckling) respectively 

- Matrix failure and matrix-fibre bond failure, for which the Von Mises criterion can be applied 
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For a unidirectional laminate with fibres in the x-direction under general loading (0) 0Y' 'l"xy), the 

stresses in the matrix material are: 

(2.25) 

(2.26) 

(2.27) 

Substituting these values in the Von Mises criterion yields: 

(2.28) 

Because EfIEm»l, the first and the last term can be neglected, and we obtain Puck's criterion for 

fibre failure and matrix failure respectively: 

(2.28a) 

ax + 'l"xy < 1 ( )2 ( )2 
cryu 'X'xyu-

(2.28b) 

We will apply a modified Puck's criterion as a selective tool to determine analytically the type of 

failure in a ply of a multidirectional laminate. 

2.4 Progressive damage model 
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The mechanisms for damage progression and accumulation in laminated composites containing 

stress concentrations are extremely complicated. They are a combination of matrix cracking, 

fibre / matrix splitting, fibre breakage and delamination, etc. It is also critical in the design of a 

composite to be able to select criteria that can appropriately handle damage phenomena and to 

predict residual strengths of the laminates after they have been preloaded beyond the initial failure 

level. 

Our approach is to use the Tsai-Wu criterion to find the critical stress combination in a multi-layer 

laminate. This failure criterion will be applied to the actual material constitution, taking into 

account the degraded material properties like stiffness and strength. 

The computed stresses are used to determine the mode of failure. 

The stress level relative to the ultimate stress in the fibre direction and perpendicular to the fibres, 

defined through III and II2 in Equation (2.29) and Equation (2.30), has to be compared. (Notice the 

differences for tensile and compressive stresses) 



To determine the type of failure, 

IT _ (}I 
1-­Xt 

(2.29) 

(2.30) 

The selective criterion that we will use resembles Puck's criterion, except that only one particular 

type of failure can occur simultaneously at a specific load level. For this purpose, we use the 

multiplying factor f3 as a selective parameter. If ITI > f3. IT, we will assume fibre failure occurs. In the 

opposite case (ITI S f3 . IT2), we will assume matrix failure occurs. 

A proper value for parameter f3 will be determined in accordance with the experimental results. 

The procedure to analyse progressive failure consists of a number of sub-procedures that has to be 

followed: 

i. Generation of a finite element model 

ii. First solving step and determination of first-ply failure 

iii. Modification of elements and repeated solving steps 

iv. Output of results 

The first important step is the generation of the finite element model in Ansys 5.3, the choice of type 

of element (she1l9I), the element key options (element geometry, number of layers, output options, 

etc.) and the definition of material properties. 

Most important for the proposed procedure of analysing progressive failure are the degraded 

properties of the applied materials in different stages of damage. Because we will apply classical 

lamination theory, we can restrict the material properties to the in-plane stiffness, Poisson's ratios 

and strengths for the following material types: 

Material-I is undamaged material. 

Material-2 is damaged by matrix failure along the direction of the fibres. The properties in the fibre 

direction are not changed compared with material-I, and perpendicular to the fibres we will reduce 

stiffness to zero. 

Material-3 is defined as completely failed: the stiffness equals zero and the strength values are set 

values that are one order of magnitude greater. This means that when applying the Tsai-Wu failure 

criterion to the failed layer, failure will not be found again for the same layer. 

First, a unit load is applied to the finite element model. After the problem has been solved, the 

inverse safety factor g3 = 1/ Sf is determined for each element, according to the Tsai-Wu failure 

criterion. The inverse of the determined maximum for g3 equals the minimum safety factor of the 

laminate. The unit load multiplied with this value for the safety factor, is the load that has to be 

applied to the structure in order to find a critical value for the Tsai-Wu criterion. Therefore, at this 

level of loading first-ply failure will computationally occur. 

A reiterative procedure will be followed to accomplish a gradually degrading of the model until 

ultimate failure will have been reached. 
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The stresses in the integration points of the critical element layer are used as input for the Tsai-Wu 

criterion. The stresses in the normative integration point are used as input for the modification 

procedure. 

Dependent on the actual material number of the critical layer and the result of the comparative 

criterion based on Equation (2.29) and Equation (2.30), the material will be modified. 

The adjusted finite element model will be solved first in order to determine the external loading that 

has to be applied to reach the next occurrence of a critical layer. At the same time, the condition of 

external loading equal to or greater than external loading in the previous solving step must be 

fulfilled. 

Solving the model with this external loading followed by material modification concludes the 

iterative solving procedure. 

3 Biaxial test set-up 
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Because of the experimental potential of the laboratory, we have chosen a test set-up based on the 

flat plate method, where loading can be applied in two mutually perpendicular directions. 

A variety of biaxial states of stress (in the tension-tension stress space) can be achieved by rotating 

the principal material axes with respect to the loading directions. 

The flat plate specimen is often a square plate, subjected to tension-tension loading on its sides 

introduced via fibreglass tabs. 

Testing a specimen based on a square plate turned out to be unsuccessful. Premature failure of the 

tabs occurred in the transition region of loading and in the corners of the specimen. 

To avoid these problems, the specimen geometry has been changed to the geometry depicted in 

Figure 3.1. 

Outside the inner circular area (with a 100 mm diameter), extra laminate thickness was applied, 

enabling the introduction of heavy loads via the pinholes. 

Preliminary experiments on a specimen provided with a stress coating at the inner circular part of 

the specimen (shaded area in Figure 3.1), showed that a homogeneous stress field had been 

established in the main part of that area. 

Despite this specimen configuration, failure was still initiated at the outside corners. Applying edge 

reinforcements, such as attached aluminium plates, could not solve this problem. 

The solution was to apply a small hole in the centre of the specimen. The radius of the hole was 

chosen small enough so as not to disturb too much the stress-homogeneity of the centre area. 

Moreover, we achieved with the small radius that the stresses along the edge of the hole are of a 

higher level than at the outside edges of the corner regions. 

A specific advantage of testing notched biaxial specimen is that a particular laminate lay-up under 

investigation is loaded with a great variety of states of stress. 

The most critical combination of the state of stress and the orientation of the laminate with respect 

to the edge of the hole will result in initiation of failure. 
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Fig. 3.1 Biaxial loaded specimen. 

Order of magnitude of ultimate F x is approximately 50 kN. 

The test set-up consists of two perpendicular intersecting loading-frames. One of the frames is 

suspended from a four-meter high portal, allowing horizontal displacements. These horizontal 

displacements will cause reaction forces at the clamped specimen due to gravity. However, because 

of the height of the suspension portal and the limited displacement, the reaction forces are negligi­

ble. 

In each frame, a hydraulic closed loop system has been installed, consisting of a hydraulic jack and 

a load cell. Both systems are controlled with one function generator allowing for a constant loading 

ratio. The signal of the load cells is generated by built-in strain gauges. These strain gauge readings 

are subsequently used for recording the exact loads applied to the specimen and as feedback signals 

for controlling the pressures by means of the servo-hydraulic system used. 

In order to avoid out-of-plane bending of the specimen during loading, the laminate should be 

symmetric with respect to the stacking sequence. To avoid in-plane rotation, the direction of 

loading was restricted to the symmetry directions of the laminate. 

The biaxial tests have been performed in a load-controlled manner, while the ratio of forces in both 

the x- and y-direction was kept constant. 

Strain values were monitored by means of strain gauges in symmetry directions, applied as close as 

possible to the edge of the hole. The local material stresses can be derived from the appropriate 

material stiffness, determined by uniaxial tests. 

Because of good agreement between the measured strains and average computational results over 

the length of the strain gauges, the use of strain gauges was abandoned later. 
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Fig.3.2 Biaxial loading frames. 

The main part of the experimental research is the biaxial loading of specimens with a variety of 

laminate lay-ups: type A, B, C, D, E and F (see Table 3.1). 

All these laminates are composed of eight layers, consisting of unidirectionally reinforced 

glass-fibre polyester. 

Table 3.1 Survey of laminate types. 

Type laminate lay-up 

A (+45°,0°, -45°, 0°)5 (s = symmetrical) 

B (+45°, -45°, 0°, OO)s (Type A and type B are identical 
except for the stacking sequence) 

C (+45°, -45°, +45°, -45°)5 

D (0°,0°,0°,0°)5 

E (90°,90°,90°,90°)5 

F (0°,90°,0°,90°)5 

The biaxial test results are summarised in Table 3.2 for laminate type A; individual test results are 

grouped together in the order of a decreasing Fyi Fx-ratio. 

The values of the forces Fx and Fy listed are the values registered at ultimate failure. Parameter 

ex (0 < ex < 1) equals the Fyi F x-ratio. So, ex measures the extent of the bi-axiality of the loading. 



Table 3.2 Biaxial test results and group averages for type A laminate. 

Group IX Average Fx [kN] Average F y [kN] 

Al 0.976 25.420 24.S10 

A2 0.492 45.030 22.175 

A3 0.453 47.260 21.410 

A4 0.410 53.0S0 21.770 

A5 0.374 51.200 19.170 

A6 0.334 49.923 16.705 

A7 0.254 52.000 13.210 

AS 0.103 43.560 4.477 

A9 0.07S 40.750 3.175 

A10 0.055 42.620 2.330 

4 Computational versus experimental results 

The final goal of our approach is to be able to reliably predict the behaviour of multi-layer 

composites under various loading conditions. To that end, we have developed a computational 

tool, enabling the establishment of a sound and optimal design for composite laminates. The central 

issue of the computational tool is the monitoring of successive failure of separate layers according 

to the Tsai-Wu criterion. 

The proposed procedure has been simulated with the Ansys finite element package. The computa­

tional method as developed, implicitly needs a number of parameters that have to be set to proper 

values in order to follow the results of the biaxial experiments as closely as possible. 

The dimensioning of the biaxial specimen was realised in such a way that ultimate failure initiated 

at the inside hole of the central circular area of the specimen. Within a test series with the same type 

of laminate and loading ratio in the x- and y-direction, little scatter was found in the ultimate 

loading data where final rupture was reached. So the conclusion is justified that the test set-up, as 

well as the specimen configuration, are representative. 

Moreover, we observed no delamination phenomena along the edge of the inside hole despite the 

fact that failure initiated at this location. 

From these facts, it may be concluded that there is a minimal effect of normal out-of-plane stresses 

at the edge of the hole. Therefore, we think the application of classical lamination theory is justified 

for our specimen dimensions, choice of material and test set-up. 

The main objective is to find out, whether the described computational method is capable of 

simulating the mechanical behaviour of multi-layer composites in laboratory testing and of finding 

the most appropriate parameters. 
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In order to achieve this goal, the proposed computational procedure will be performed for a 

number of laminate types and different loading ratios in the two loading directions, coinciding with 

the variations applied during biaxial testing. 

The results will be used as a reference for the input parameters involved in the prediction of 

different stages of damage, such as first-ply failure, first-fibre failure and ultimate laminate failure. 

The analyses are performed on a precise model of the biaxial specimen. The mesh refinement that 

we used is high enough to get reliable results within an acceptable computation time. 

The main parameters involved in the computational analyses can be divided into model 

parameters, analysis parameters and material parameters: 

1. Model parameters: 

® refinement of the finite element mesh, parameter mf 

Q element type, she1l91 

2. Elastic material properties of undamaged and damaged material: 

@ material type number 1 is undamaged 

3 material type number 2 failed by matrix cracking 

$ material type number 3 failed by fibre breakage 

3. Failure criterion parameters: 

@ material strength properties (X" Y" 56 etc.) 

• further coefficients F, and F'j in the Tsai-Wu failure criterion 

- F, and F'j are derived directly from the material strength properties 

- F12 can be adopted for the different types of materials used in the analyses 

* F12 (1) for material type number 1 (undamaged) 

* F12 (2) for material type number 2 (matrix failure) 

4. Selective parameters: 

• parameter /3, to decide which type of failure is assumed to occur 

o Output parameter fl.f! deCiding whether ultimate failure has been reached 

The material strength and stiffness properties are treated here as parameters, because certain 

adjustments with respect to the experimentally determined values are justified in view of the 

limited accuracy of the experimental data. Moreover, the experimental setting for the biaxial testing 

(force-controlled) differed from the procedure for obtaining the uniaxial strength data 

(displacement-controlled). 

The computational results for the successive loading steps have been evaluated by counting the 

elements where matrix failure or fibre failure did occur. From these numbers, the development of 

damage can be resolved. 

One of the major output parameters that we use, is the total number of layers in which fibre failure 

does occur. An extra-ordinary increase of the total number of layers with fibre failure will be 



considered as ultimate laminate failure (ULF). Parameter I1.ff is defined as the value taken for this 

extra-ordinary increase. 

There is of course a direct relation between the area covered by elements where fibre failure will 

occur and the mesh refinement (defined by parameter mf). With a higher mesh refinement, more 

elements will fail at the same time within a comparable area. This will effect both the number of 

elements where first-fibre failure did occur and the increase of the number of elements that failed 

through fibre failure. 

We use the initial uniaxial strengths and the average stiffness to compute all types of biaxial testing 

with different values for the parameters mf, f3, FI2 (1) and FI2 (2). 

As an example, the comparison between computational and experimental results for laminate 

type A are depicted in Figure 4.1 for a specific combination of parameters. 

Ultimate F(x) [NJ 
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n 10000 t--- --------

1-----1 
1------ ,----- 1---- ,------- - --I I--- I---

I 0 
A1 A2 A3 A4 A5 I A6 A7 A8 A9 A10 

I~ a 0.976 0.492 0.453 0.410 0.374 I 0.334 0.254 0.103 0.078 0.055 

IOAnsys 50710 I 47588 
I-----------

25020 47446 45709 48047 48788 43509 42328 41126 

~Experiment 53080 J 51~~~ 
--I----

25420 45030 47260 52000 _4~5~lJ..L40750 ' 42620 ---

Fig. 4.1 Bar graph comparing computational and experimental results for parameter set: f3 ~ 20, FI2 (1) ~ 0, 

FJ2 (2) ~ 0, mf~ 3, I1.ff~ 3. (a~ F/F) 

These results show that our computational tool is able to follow the deformation and progressive 

failure behaviour of composite laminates. 

In order to illustrate the agreement between computational and experimental results, both results 

(taken from the biaxial experimental result of a particular test) are compared with respect to the 

evolution of the tensile force Fx as a function of the strain in the x-direction. 
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Fig. 4.2 Comparing Ansys computational and experimental results for a specific biaxial test ( a = 0.49). 

For this comparison, we adopt the average strain computed at the integration points coinciding 

with the area of the attached strain gauges as the computational strain. 

The agreement between the experimental results and the corresponding computational analysis is 

remarkably good, as illustrated in Figure 4.2. The Ansys analysis was performed up to a level where 

the overall computational damage is very high. At this level, the material in the computational 

model is still capable to transfer loads carried by the remaining intact part of the structure. The real 

specimen, however, will fail immediately at this point, because of the limitations of force-control in 

the closed loop testing circuit. 

5 Design of a vertical storage vessel 

216 

As an example of the importance of progressive failure analysis, we consider a cylindrical storage 

vessel in a GRP-laminate (thickness t). 

The cylindrical shell is clamped to a bottom plate. 

All problems of symmetrical deformation of circular cylindrical shells can be reduced to the 

integration of Equation (5.1). 

(5.1) 

3 

where K = E t 2 is the flexural rigidity of the shell, and Z the pressure normal to the surface of 
. 12(1- v) 

the cylmder. 

For a shell with constant thickness and using the notation 

Ji,4 = Et 
4iK 

(5.2) 
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Fig. 5.1 Vertical storage vessel loaded with internal hydrostatic pressure. 

Equation (5.1) can be presented in the simplified form: 

(5.3) 

This is the same equation as obtained for a prismatic bar with a flexural rigidity K, supported by a 

continuous elastic foundation and submitted to the action of a load of intensity Z. The spring 

constant of the elastic foundation is 

k = §.!. 2 . 
a 

An approximation of the elastic solution can be found assuming a constant pressure equal to the 

pressure at bottom level (Po = pgh) and so neglecting the height dependency of the hydrostatic 

pressure. 

The general solution of Equation (5.3) can be written as: 

With edge conditions: (y = 0; w = 0) and (y = 0; ~; = 0) it follows: 

A = _E!! '2. w = !! k Aj£., 4 

so the general solution is: 

w = _poJ2 e -AY sin(lty + !!) + E!! 
k 4 k 

(5.4) 

(5.5) 
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Substituting this solution for w in the expression for the bending moment: 

2 

My = _Kd W 
dy2 

it follows that: 

M PoJ2 -Ay . (, 71:) 
y = 2Jc2 e sm ICy - 4 

The solutions in Equation (5.5) and Equation (5.7) are valid for isotropic materials. 

In order to determine the general solution for an anisotropic material, the coefficients in the 

differential equation have to be adapted. 

The expressions for Ky and Ie can be rewritten as: 

Ky = 
1 Ey t3 

and Ie = 
Ext 

12(1_ v~x) 2 a 

So: 

Jc4 = Ie Ext 
4K 1 Eyt3i 

3---2-
(1- vyx ) 

and 

3Ex(1- v~x) 

Jc= 
4 Ey 

Jllt 

The height of the bottom area where the bending stresses are not negligible, depends on the 

thickness and the composition of the laminate used. 

(5.6) 

(5.7) 

(5.8) 

In order to show the effects of the choice of a laminate, we will apply a laminate similar to type A in 

the x-direction (design I) and in the y-direction (design II), respectively. 

For the initial design, eight layers of 0.5 mm thickness are applied with laminate lay-up 

(0°, +45°, -45°, OO)s. 

The elastic constants for laminate design I and design II are, respectively: 

design I: Ex = 17216 MFa, Ey = 7860 MFa and Vyx = 0.236. 

design II: Ex = 7860 MPa, Ey = 17216 MFa and Vyx = 0.517. 

The results of my (bending moment per unit of width) for both laminate types have been depicted in 

Figure 5.2. 

In Figure 5.3, the radial displacement is depicted for Po = 0.05 MPa. 

From the distribution of my and u, it may be concluded that for heights beyond 500 mm the 

influence of the edge has disappeared. 



We will confine the progressive failure analysis to the bottom area of the vessel where the edge 

disturbances are clearly not negligible. 

my [N/mm'] 

501 

y[mm] 

-50 

-100 

-150 

Fig.5.2 Bending moment distribution in bottom area for a type A laminate applied in the x-direction 

(design I), and in the y-direction (design II). 

u, [mm] 

------ design 11 
----~--

2 

design I 

01--------.---- ------------.-------- y [mm] 
100 200 300 400 500 

Fig.5.3 Radial displacement in bottom area for a type A laminate applied in the x-direction (design I), and 

in the y-direction (design II). 

A progressive failure analysis has been performed on the finite element model of a small vertical 

cut-out of the cylindrical vessel. 

The lowest area (h' up to 500 mm) is provided with elements suited to progressive failure analysis. 

The elements in higher regions will not be allowed to degrade during the analysis. 

The results of two analyses (design I and design II, respectively), expressed in the minimum and 

maximum moments, are depicted in Figure 5.4 for increasing hydrostatic pressure: 

Pprogressive np = 
Po 

(5.9) 

The increase of the moment during the progressive failure development is quite different for both 

laminate types. 
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For design II we see a considerable increase of my (max) and my (min) when first-ply failure occur; 

this increase is not present in the analysis at the first-ply failure level for design I. 

Defining FPF as the value where first-ply failure occurs and FFF as first-fibre failure, the FFF / FPF 

quotient can be used as a measure for the failure capacity above the level of first-ply failure. 

The FFF/FPF quotient is dramatically low for design II (4.88/3.43 = 1.4) compared with design I 

(9.69/2.92 = 3.3). 

These results will clearly lead to a drastic difference with respect to the required vessel thickness for 

both designs (in favour of design I). 

Investigation of other than the used stacking sequences in a type A laminate and other laminate 

compositions, of course, could lead to an even more favourable result. 

More generally, the example shows that the use of the progressive failure analysis has the potential 

of resulting in an optimal laminate design. 
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400r-_u , 
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200
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6 Conclusions 

We have developed a finite element computational tool for simulating progressive failure and 

ultimate performance of laminates, based on the deformation and failure mechanisms per 

unidirectional layer. 

The reliability of this computational tool is verified by biaxial experiments on glass-fibre polyester 

laminates. Despite the use of a rather simple procedure to select the type of failure that will occur at 

any stage of loading, the computational procedure proved capable of reasonably predicting 

ultimate failure. 

Referring specifically to the results of a biaxial test session where strain gauges were used 

(Figure 4.2), the agreement between the experiment and the computational analysis was 

remarkably good for a final set of parameters. 

Successive failure stages were computed for various laminate types and loading ratios using several 

parameter combinations. 

The best agreement between the computational and the experimental results for different loading 

ratios is achieved for a specific laminate with three fibre directions (type A) and with the following 

set of parameters: mf = 3, f3 = 20, F12 (1) = 0 and F12 (2) = o. 
The computational agreement for laminates with less than three fibre directions is not perfect. 

The computational results over-estimate the experimental results. A major reason for this is quite 

likely the harmful effect of transverse inter-laminar stresses near the edge of the centre hole, where 

failure is initiated. These stresses have to be quantified yet in order to proof the statement above. 

It may be stated, however, that laminates with more than two fibre directions will be applied quite 

generally in structural applications that are subjected to a biaxial state of stress. Thus, the deviation 

for two-directional laminates is not too relevant. 

The chosen mesh refinement will certainly affect the overall result of a progressive failure analysis. 

There will be an optimal mesh refinement for any structure, correlated with the available 

computation time and the aimed exactness of the solution. 

Our aim has been to show that our finite element computational tool, using the Tsai-Wu failure 

criterion for the unidirectional layer, is able to follow the deformation and progressive failure 

behaviour of composites. The comparison between experimental and computational results shows 

that we have been successful in that respect. 
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List of Symbols 

a 
aiml etc. 

Cijk1 

Cijkl 

Cij' Cij 
C ijk1 

Cijk1 

Cw Cij 

Ex' Ey 
E1' EL 
E2! Er 
Ef 

Em 

F x' Fy 

FW Fi 

G12, GLr 
Ie 
K 

Kx' Ky 
mf 

my 
Mx,My 

Sijkl 

Sijkl 

sij' 5ij 

S 

Sf 

Sijkl 

Sijkl 

Sij,Sij 

t 

tk 

U 

UXI Uy 

Vf 

Vm 
XI 
X, 
Yt 

Y, 
ex; 

f3 
!:iff 

Eij 

ci 

8 

Ill'IT2 

Cylinder radius 

Cosine 

Stiffness tensor elements 

Transformed stiffness tensor elements 
Stiffness tensor elements, contracted notation 

Stiffness tensor 

Transformed stiffness tensor 

Stiffness tensor, contracted notation 

Modula of elasticity (multidirectional laminate ) 
Modulus of elasticity in the fibre direction (unidirectional layer) 

Modulus of elasticity perpendicular to the fibre direction (unidirectional layer) 
Modulus of elasticity of fibre material 

Modulus of elasticity of matrix material 

Forces in the x- and y-direction 
4th and 2nd-order strength tensor (contracted notation) 

Shear modulus of unidirectional layer in the symmetry direction 

Elastic spring constant 
Flexural rigidity (isotropic) 

Flexural rigidity (anisotropic) 

Mesh frequency 
Bending moment per unit of width 

Bending moments 

Flexibility tensor elements 
Transformed flexibility tensor elements 

Flexibility tensor elements, contracted notation 

Shear strength of unidirectional layer 
Safety factor 

Flexibility tensor, compliance tensor 

Transformed flexibility tensor 
Flexibility tensor, contracted notation 

Laminate thickness 

Thickness of layer Ie 
Subscript (ultimate) 

Displacement in the x-direction, etc. 

Volume fraction of fibres 
Volume fraction of matrix 

Tensile strength of unidirectional layer in the fibre direction 

Compressive strength of unidirectional layer in the fibre direction 

Tensile strength perpendicular to the fibre direction (unidirectional layer) 

Compressive strength perpendicular to the fibre direction (unidirectional layer) 
Loading ratio in biaxial testing 

Selective parameter 

Computational parameter 

Strain tensor 
Strain tensor (contracted notation) 

Rotation angle 

Level of stresses in stress criterion 



K 

(Jxul Gyu 

Txyu 

vij 

~3 

Curvature 
Stress tensor 

Stress tensor (contracted notation) 

Ultimate (yield) stress in the x-direction (anisotropic), etc. 

Ultimate (yield) shear stress 
Poisson's ratio 

Inverse strength ratio 
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