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Ideas alone have little value.

An innovation’s importance lies in its practical implementation.”

- Werner von Siemens, January 27, 1865
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Abstract

Cascading failures in power networks pose a significant threat, capable of escalating from isolated line

outages to extensive blackouts with severe economic and societal impacts. The topic presents a proba-

bilistic framework designed to assess and compute the risk of cascading failures within power network

and rank various cascade contingencies, utilizing the IEEE39 bus 10-machine New England Power

System. Using DigSILENT PowerFactory, a detailed contingency analysis was conducted, focusing

on line loading conditions following faults as a starting point. This approach operates under the founda-

tional assumption that cascading failures can be effectively modelled through the sequential analysis

of line contingencies. Central to this framework is assessing topological vulnerabilities in the grid and

determining frequently occurring outage patterns called probabilistic contingency motifs (PCMs). By

analyzing the characteristics of the grid, an impact metric is proposed using short-circuit analysis, elec-

trical distance and LODFs for the identified cascade contingency. The outage probabilities and the

proposed impacts are used to compute the risks of cascade cases.

After ranking based on their associated risks, high-risk contingencies are dynamically simulated through

time-domain simulations to assess dynamic security. This simulation approach validates the model’s

predictions and ensures that ranked contingencies reflect realistic cascades. Use cases can show that

the model will enable Transmission System Operators (TSOs) to implement preventive measures and

simulate corrective actions effectively. By systematically identifying and incorporating PCMs and lever-

aging grid topology, the model estimates the likelihood and impact of cascading events and delivers

actionable insights for improving power system robustness. Future work will expand the framework’s

scalability to larger and more complex networks and integrate real-time data streams to facilitate dy-

namic risk assessment and proactive mitigation strategies.
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1
Introduction

1.1. Background and Context

Electric power grids are critical infrastructures in modern society, where disruptions can lead to severe

societal and economic consequences. Cascading failures in these grids, wherein initial disturbances

propagate through dependent components, are among the primary causes of widespread blackouts.

This phenomenon has been responsible for some of the largest blackouts in history, such as the 2003

Northeast blackout in the United States and Canada and the 2012 blackout in India, which affected

hundreds of millions of people [1]. These events highlight the catastrophic social and economic im-

pacts of cascading failures, including disrupted critical infrastructure, billions in economic losses, and

compromised public safety. These failures typically originate from an initial disturbance or fault in elec-

trical components, compounded by human operator errors. Systematically identifying the root causes

of cascading failures in power systems continues to be a significant challenge.

These failures occur as a sequence of dependent events where the outage of one element leads to

redistributed power flows, overloading other components, and triggering subsequent failures. Renew-

able energy sources, while essential for sustainable development, introduce new challenges, such as

reduced system inertia, increased variability in power supply, and reliance on inverter-based distributed

energy resources (DERs). These factors increase the system’s vulnerability to cascades, as even mi-

nor disturbances can propagate rapidly through a highly interconnected grid. Addressing this requires

advanced models for grid-forming technologies and improved protection systems to prevent cascading

events. The study of cascading failures is, therefore, fundamental to safeguarding the stability and

reliability of critical infrastructure in a rapidly changing energy landscape. [2]

1
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The propagation of cascading failures in power grids highlights a critical vulnerability, where localized

disruptions escalate into widespread outages due to the interconnected nature of the grid. As observed

in Figure 1.1 from [3], the removal of even a single line lowers the critical loading threshold of the system

(lc) from 87% to 86%, showing the grid’s increasing susceptibility to cascading failures. With additional

line removals, lc decreases further, indicating earlier phase transitions and a higher risk of systemic

collapse.

Figure 1.1: The impact of line removal on lc vs RG, ρ , and µN−1 in IEEE 30 power system. The grid is attacked based on
betweenness centrality. [3]

These changes are reflected in spectral graphmetrics, effective graph resistance (RG), which increases

as electrical distances between buses grow, while algebraic connectivity (µN−1), defined as the second

smallest eigenvalue of the graph’s Laplacian matrix, decreases. Algebraic connectivity is a critical mea-

sure of the graph’s robustness, reflecting how well-connected the network is and its ability to maintain
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overall connectivity even when some connections are removed. A lower value of algebraic connec-

tivity signifies reduced network resilience, making the system more vulnerable to disconnections and

eventual cascades. This reduction shows a weaker topological cohesion, which describes the struc-

tural integrity of the network and its capacity to sustain efficient energy flow and coordination. Similarly,

the spectral radius (ρ), the largest eigenvalue of the graph’s Laplacian matrix, indicates the overall

”spread” of node interactions and the influence of the network’s structure on dynamic processes. It

remains stable initially but drops sharply with extensive line removals. This captures the cumulative im-

pact of topological degradation [3]. Together, these results emphasize the importance of understanding

and mitigating topological vulnerabilities. Preventing the progression of cascading failures from local

disruptions to global blackouts is crucial.

Preventing cascading failures is vital for safeguarding the stability and resilience of modern power

grids. Addressing topological vulnerabilities can stop local disruptions from escalating into widespread

blackouts. These efforts not only enhance reliability but also reduce economic losses, improve public

safety, and facilitate the seamless integration of renewable energy, fostering a future defined by stability

and sustainability.

1.2. Literature Review on Cascading Failures and Protection

This section shows the mechanisms behind failures, the progression of cascades, and protection strate-

gies currently in use. The N-1 contingency criterion is discussed in [4] as a cornerstone for assessing

power system stability, ensuring the system remains operational even if a single component fails. Math-

ematically, as per [5], the system must satisfy:

Ng∑
i=1

PGi = PD + Ploss, Pmin
Gi ≤ PGi ≤ Pmax

Gi , ∀ i (1.1)

V min
i ≤ Vi ≤ V max

i , Skm ≤ Smax
km (1.2)

where PGi is the real power generation at the i-th bus, PD is the total demand, Ploss is the total real

power loss, Vi is the voltage magnitude at the i-th bus, and Skm is the MVA power flow in branch km.

While the N-1 criterion provides a robust baseline for the Transmission System Operator (TSO) to act

on backup options, its limitations are evident when failures cascade, and the N-1 criterion is insufficient

by itself. The cascades often result from overloading due to power redistribution after failure, relay

miscoordination, or inadequate protection mechanisms such as load-shedding or islanding schemes.

The culmination of cascading failures is a blackout, characterized by widespread loss of power, crippling

critical infrastructure, and causing significant disruptions. Historical events described in [1], such as

the 2003 North American blackout, illustrate the devastating consequences of cascading failures and

highlight the need for enhanced predictive models and protective measures.
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1.2.1. Failure Escalation in Power Systems: Examples and Mechanisms

Modern power systems face a wide range of failure mechanisms, ranging from isolated events to contin-

uous disruptions that can compromise system stability. Understanding these mechanisms is crucial for

designing resilient power grids capable of mitigating disruptions and maintaining operational integrity.

Failures in power systems often stem from equipment malfunctions, overloading, or improper opera-

tion of protection devices. External factors, such as severe weather events or faults caused by animals

and tree contacts, can also trigger disruptions. For instance, an overloaded transmission line may trip

due to thermal stress, leading to further redistribution of power flows and reducing the system’s stabil-

ity margin. The failure of a component in a power network can be represented as an Element State

Transition (EST), shown in [6], where the state of an element changes due to its operational condition.

The element state si(t) is binary: si(t) = 0 represents a connected and operational element, while si(t)

= 1 indicates a tripped or disconnected element. The EST from 0 to 1 is significant in failures. The

transition between these states is governed by two rates. The disconnection rate λi(t) quantifies the

likelihood of an element failing, while the reconnection rate µi(t) represents the probability of restoring

the element to its functional state. These rates are influenced by factors such as equipment reliability,

system load, and protective relay settings. Failures may occur naturally due to equipment degradation

or externally through overloading. When an element’s load Lit exceeds its capacity Ci then λi(t) ̸= 0.

Figure 1.2: Description of failure in terms of state transitions [6]

Failures in power systems, whether localized or systemic, have significant consequences explained

in [7] that extend beyond the immediate loss of functionality. Improper relay operations, changes in

apparent impedance caused by converter-based generation, and latent or “hidden failures” (HFs) in

protection schemes can all trigger serious disturbances. Under faulted conditions, the behaviour of

Voltage Source Converter (VSC)-based High Voltage Direct Current systems deviates markedly from

that of conventional synchronous generators, as they limit fault current contributions to protect power

electronic components. The controlled current injection from VSC stations, which is often less than 1.15

p.u. modifies the positive and negative sequence fault currents. This altered fault signature confuses
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conventional distance protection. For example, when a single line-to-ground (SLG) fault occurs on a

transmission line connected to a VSC-based HVDC system, the positive, negative, and zero sequence

networks must be considered to accurately compute the apparent impedance seen by the relay. The

converter’s constrained current injection, particularly its limitation of positive sequence current and

suppression of negative sequence current, leads to atypical fault current waveforms. Analyzing an

SLG fault on phase-A, the positive sequence apparent impedance, Zapp
AG , can be expressed as:

Zapp
AG =

V R1
a

IR1
a + 3KItr0

(1.3)

Where V R1
a and IR1

a are, respectively, the phase-A voltage and current at the relay location, Itr0 is the

zero sequence current through the transformer neutral, and K is the zero sequence compensation

factor [8]. The faulted line’s apparent impedance calculation, which traditionally assumes a known

subtransient fault current magnitude and pattern, is complicated by the VSC’s restricted fault current

contribution. This current limitation, implemented to protect the converter’s power electronic devices,

alters the trajectory of the impedance locus in the R–X plane during a fault event. Furthermore, the

inability of the VSC station to provide adequate negative sequence current support due to the internal

control strategy that prioritizes balanced positive sequence current injection affects the relay’s inter-

pretation of the faulted condition. As a result, the relay may ’underreach’ or ’overreach’ its intended

protection zones, thus escalating a simple fault into a more severe event and leading to a cascade.

To understand how localized failures can develop into large-scale blackouts, deterministic power flow

equations and probabilistic models of event durations can be combined. In this approach, localized

failures are not seen as isolated incidents but as events within a probabilistic chain of state transitions.

By representing EST using a Markovian framework, the collective behaviour of the entire system is

analyzed in terms of failure propagation. An extended chemical master equation (CME) model is then

used to capture these dynamics. Considering τ as the time interval between two consecutive network

state transitions, the state transition probability density function (PDF), f(τ), represents the likelihood

that the next transition occurs within an infinitesimal time interval. This is because the system is mod-

elled in continuous time, where the interest is in the probability of the next transition occurring over an

arbitrarily small interval, allowing for precise modelling of the instantaneous behaviour of the system.

The equations from [6] demonstrate that the interval τ between state transitions follows an exponential

distribution, with a mean interval inversely proportional to λ∗(t1). Formally, the likelihood is expressed

in [6] as:

f(τ) = lim
dt→0

H(τ, dt)−H(τ, 0)

dt
= λ∗(t1)× e−Λ∗(t1)τ , (1.4)

where H(τ, dt) is the cumulative hazard function, which measures the accumulated likelihood of tran-

sitions up to time τ , and H(τ, 0) represents the hazard function at the starting point. Here, Λ∗(t1)

denotes the network’s overall failure rate at time t1, incorporating the contributions of all overloaded
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and vulnerable elements in the system. Mathematically, Λ∗(t1) is the sum of the individual EST rates:

Λ∗(t1) =

N∑
i=1

λi(t1), (1.5)

where λi(t1) is the individual state transition rate of the i-th element, and N is the total number of

elements in the network. This sum reflects the system’s overall overloading stress at time t1. The

cumulative distribution function (CDF), which gives the probability that the next state transition occurs

before t1 + τ , is:

F (τ) = 1− e−Λ∗(t1)τ . (1.6)

As the system becomes more stressed due to line overloads, hidden failures, or insufficient reactive

support, Λ∗(t1) increases, causing transitions to occur more frequently and accelerating the cascading

process. In essence, a higher Λ∗(t1) value means the system is more likely to experience rapid succes-

sive outages, pushing it closer to widespread instability and eventual large-scale service interruptions.

This highlights that Λ∗(t1) is a key measure for understanding the growth of cascading failures in a

power system and how increased stress on the system leads to more frequent failures and potentially

widespread cascades.

HFs described in [9] are permanent defects in protection schemes that remain latent until exposed by

a fault, which may then trigger a switching event such as a line outage. These defects significantly in-

fluence fault escalation by converting otherwise manageable faults into cascading disruptions. When a

relay with an HF misoperates, instead of isolating only the faulted component, it inadvertently removes

additional non-faulted lines from service. This unintended outage redistributes power flows, pushing

nearby lines closer to their limits, thereby increasing the likelihood of subsequent failures and exacer-

bating the cascading process, ultimately leading to complex chains of line tripping. Beyond identifying

the initiating scenarios, severity indexing provides a means to rank HF-driven disturbances numeri-

cally. The severity indices presented in [4] help operators pinpoint the most vulnerable relays or areas.

This information guides the implementation of protective measures such as self-checking digital relays,

adaptive logic modifications, or enhanced monitoring. By reducing HF probabilities and prioritizing pro-

tective measures according to their severity, TSO operators can mitigate the progression from initial

defects to large-scale blackouts.

1.2.2. Cascading Failure Dynamics: Modeling and Historical Perspectives

Cascading failures in power systems unfold through distinct phases, each characterized by specific

dynamics and challenges in [10]. Understanding these phases is crucial for developing effective mit-

igation strategies to enhance grid resilience. The initial stage of cascading failures is the precursor

phase, where components progressively fail as they reach their operational limits due to increasing

stress, such as voltage fluctuations, overloads, or equipment malfunctions. Prompt intervention is
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crucial to prevent disturbances from escalating into severe outages, enabling system operations to

implement control actions effectively. One of the primary mitigation techniques during this phase is

controlled islanding, where a strategic partitioning of the power grid into smaller, autonomous sections

occurs. This aims to isolate failure sections, preventing their propagation across the entire network.

Techniques such as density-based spatial clustering (DBSCAN) combined with non-linear program-

ming described in [11] have been proposed to identify coherent generator groups suitable for islanding.

Furthermore, a multi-layer spectral clustering approach in [12] enhances the accuracy of island for-

mation by analyzing the spectral properties of the grid’s adjacency matrix, thus minimizing the risk of

imbalanced load-generation ratios within the isolated sections. This is shown in Figure 1.3b, where

coherent generators are clustered in groups.

(a) DBSCAN Algorithm (b) Spectral Clustering Approach

Figure 1.3: IEEE 39-bus coherent grouping of generators and islanding boundaries applied with (a) DBSCAN algorithm [11]
and (b) Spectral Clustering Approach [12]

Load Shedding can be another critical mitigation strategy that can be used during the precursor phase.

It involves reducing the load in specific areas to prevent overloads and maintain system stability. Ma-

chine learning (ML) models have been developed to determine the optimal load-shedding amount,

ensuring minimal disruption while effectively stabilizing the grid. A deep neural network in [10] with

specialized loss functions can be used to predict the required load-shedding amount, capturing the

non-linear relationships during real-time operating states. The loss function used in this model is de-
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fined as:

L =
1

N

N∑
i=1

(yi − ŷi)
2
+ λ

M∑
j=1

w2
j (1.7)

where yi represents the actual load shedding amount, ŷi is the predicted amount by the neural network,

λ is the regularization parameter, and wj are the network weights. This formulation ensures that the

model not only minimizes prediction errors but also prevents overfitting by penalizing large weights.

Figure 1.4 in [13] illustrates the flowchart of the cascading failure process in power grids, highlighting

the steps involved in simulating and predicting cascading failures.

Figure 1.4: Flowchart of Cascading Failure Process [13]

The next phase is the Dispatching Phase, which refers to the real-time management of power gener-

ation resources to balance supply and demand. Effective dispatching is critical in maintaining system

stability and preventing the escalation of cascading failures. Then comes the Escalation Phase, where

cascading failures accelerate rapidly, leading to widespread outages and making blackout prevention

exceedingly difficult. The swift progression leaves minimal time for effective intervention, exacerbating

the impact on the power grid and society at large. Critical component failures often trigger this phase,

facilitating the spread of disturbances across the network. During this phase, the component failure

rate exponentially rises, overwhelming the control mechanisms. This phase gives us a sense of the

importance of rapid detection and automated response systems before the cascade spirals out of con-

trol. Finally, the Cascade Phase-out is reached, where the failure propagation reduces as a significant

portion of the grid’s components have already failed. During this phase, the system reaches a plateau

where the rate of new failures diminishes, and the remaining operational components attempt to sta-

bilize the grid. This phase represents the culmination of the cascading process, where the extent of

the blackout is determined. In this phase, recovery and restoration efforts are carried out. The focus

shifts to re-establishing critical infrastructure and restoring power to affected areas. Understanding
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the dynamics of the phase-out phase is essential for effective post-event analysis and for developing

strategies to enhance system resilience against future cascading failures.

Figure 1.5: Flowchart of cascading failure analysis based on different phases before, during, and after cascade. [10]

Analyzing the impact of power measurements on failure dynamics gives us an idea of how active and

reactive power measurements are crucial for monitoring the operational integrity and stability of power

systems. Active power (P ) and reactive power (Q) measurements obtained from Phasor Measure-

ment Units (PMUs) are utilized to detect and predict cascading failures in power grids with renewable

energy integration. Active power measurements provide real-time data on the balance between power

generation and consumption, enabling the identification of transmission line overloads that may lead

to component tripping. Reactive power measurements, on the other hand, are essential for maintain-

ing voltage stability across the network. Sudden fluctuations or deviations in Q can indicate voltage

instability, which is a precursor to voltage collapse and subsequent cascading outages. The interplay

between P and Q measurements allows for the early detection of imbalance and instability, facilitating

timely interventions to prevent the escalation of failures. For instance, the relationship between active

power flow and voltage angles can be expressed by the DC power flow equation:

Pij =
θi − θj
Xij

(1.8)

where Pij is the active power flow from bus i to bus j, θi and θj are the voltage angles at buses i and j,

respectively, andXij is the reactance of the transmission line connecting them. System operators mea-

sure voltage and current in real-time, from which power flows (P , Q) are computed. Monitoring these

parameters enables the detection of abnormal operating conditions that could contribute to cascading

failures, thereby enhancing the resilience and reliability of the power grid. By analyzing deviations in

voltage levels and current magnitudes, operators can assess risks related to voltage instability and ther-

mal overloading. This information helps prioritize intervention strategies, ensuring that control actions

are both timely and effective in preventing widespread outages.
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Historical Perspectives on Cascading Failures: Case Studies and Mitigation Strategies

Examiningmajor blackout events provides critical insights into the dynamics and vulnerabilities of power

transmission systems. The case studies in [14] show us the mechanisms that drive failures and evalu-

ate the effectiveness of various strategies. An in-depth analysis of cascading failures within the North

American power grid utilized a network efficiency framework to quantify system robustness. The results

demonstrated that the probability distribution of disturbances follows a power law with an exponent

close to -1.1. This finding suggests a low overload tolerance within the grid, where even minor distur-

bances can propagate, increasing power losses and reducing overall transmission efficiency. Figure

1.6 illustrates how the removal of nodes from the North American power grid, based on centrality mea-

sures such as betweenness and degree, impacts overall system stability. Centrality measures help

identify nodes that play a crucial role in facilitating power flow across the network.

• Betweenness centrality quantifies how often a node appears on the shortest paths between

other nodes in the network. A node with high betweenness acts as a critical connector, meaning

its failure can significantly disrupt power transmission and force inefficient rerouting.

• Degree centrality measures the number of direct connections a node has. Nodes with a high

degree serve as major hubs, and their removal can disconnect large portions of the grid.

The analysis categorizes nodes into three distinct classes:

1. Non-impact nodes (≈ 60% of the total): These nodes have low betweenness and low degree,

meaning they play a minimal role in power transmission. Their removal causes negligible or no

disruption to the grid.

2. Critical nodes: These nodes exhibit high betweenness and high degree, making them essential

for efficient power flow. Their removal leads to significant disruptions, with the extent of damage

depending on the system’s built-in tolerance levels.

3. Transition nodes: These nodes initially contribute to the tolerance-dependent damage curve,

meaning their removal weakens the grid to some extent. However, beyond a critical tolerance

level, removing additional transition nodes no longer causes further damage, suggesting redun-

dancy in the network structure.

This classification highlights the structural vulnerabilities of the power grid. While most nodes have

limited individual impact, a small subset of critical nodes disproportionately influences grid stability. The

presence of transition nodes suggests that strategic reinforcements or reconfigurations could enhance

the grid’s resilience, reducing the risk of cascading failures when key nodes are lost.

The graph from [14] reveals two primary behaviours: nodes whose removal causes no significant dam-

age and those that follow a universal damage-versus-tolerance curve, leading to substantial efficiency

losses. Additionally, a transition category is identified, where nodes shift from causing significant dam-

age to having a negligible impact as tolerance levels increase. It shows the vulnerability of the power
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Figure 1.6: Representative sample of node-dependent damage for different tolerance values [14]

grid to targeted failures of high-centrality nodes and emphasizes the necessity of identifying and rein-

forcing these critical components to prevent large-scale cascading failures.

The understanding of cascading failures was further expanded by compiling a comprehensive database

of European blackout events in [15], encompassing both continental and national scales. Their em-

pirical analysis revealed that cascading failures are the predominant threat to modern transmission

systems, with weather events being the most common initiators. The study identified significant corre-

lations between component failure rates and system demand, as well as wind speeds, emphasizing the

role of external factors in aggravating system vulnerabilities. Furthermore, the weaknesses in recovery

prioritization, where low-impact events disproportionately contribute to prolonged recovery times, are

highlighted.

From Figure 1.7 obtained from [15], the analysis of blackout events in the continental and national

datasets highlights key insights into failures and their impacts. (A and B) show the contribution of

different component sets to total failures, with the national dataset also indicating failure rates, distin-

guishing components owned by the national TSO (red line) and others (blue line). (C and D) focus

on the impact of demand not served (DNS), categorized by seasonality, event type, and main cause,

revealing conditions that intensify service disruptions. Finally, (E and F) examine recovery times, also

influenced by seasonality, event types, and root causes, providing a comprehensive understanding of

factors affecting system resilience and recovery. Beyond this, several other historical blackouts offer

additional perspectives. Notable instances include the Texas blackout of 2021 and the separations of
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Figure 1.7: Leading causes for blackout events and component failures in continental and national datasets [15]

the European synchronous area in January and July 2021. These events show how interconnected

networks can rapidly deteriorate under stress, leading to widespread power outages. For example,

the Texas blackout mentioned in [14] highlighted the susceptibility of power grids to extreme weather

conditions combined with high-demand scenarios.

The evolution of mitigation strategies against cascading failures has transitioned from primarily struc-

tural interventions to more sophisticated approaches that integrate both structural and temporal con-

siderations. An average network efficiency metric in [15] quantifies the impact of node removals, fa-

cilitating the identification of critical components whose failure would disproportionately affect system

performance. It measures how efficiently information (or, in this context, power) is transferred over

the network by averaging the inverse of the shortest path lengths between all pairs of nodes. Higher
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network efficiency indicates a more robust and resilient power grid, as the removal of nodes has a

diminished effect on the overall connectivity and performance of the system.

Network Efficiency (E) =
1

NGND

∑
i∈GG

∑
j∈GD

ϵij (1.9)

WhereNG andND are the number of generation and distribution parameters, ϵij is the efficiency of the

most efficient path between the generator i and the distribution substation j. This quantitative approach

supports targeted interventions, such as reinforcing high-load nodes or enhancing network redundancy.

Meanwhile, the integration of advanced technologies, including real-time monitoring systems, artificial

intelligence (AI), and machine learning (ML) algorithms, to predict and respond to potential cascading

failures is also employed. These findings highlight the utility of comprehensive blackout databases

and predictive analytics in identifying early warning signs and critical component correlations, enabling

proactive measures to be implemented before failures cascade through the network.

Modeling Cascading Failures, Traditional and Probabilistic Approaches

Effectively modelling cascades in power systems is crucial for understanding their dynamics and de-

veloping robust strategies. Traditional approaches for cascade modelling predominantly use network-

based models and dynamic models. Network-based models in [3] represent the grid as a complex

network where buses are the nodes and edges are transmission lines. This helps in analyzing the

grid’s structural properties and its susceptibility to cascades. Graph theory can be employed to in-

vestigate phase transitions, utilizing metrics such as effective graph resistance (RG), spectral radius

(ρ), and algebraic connectivity (µN−1) to assess grid robustness as mentioned earlier. A study on the

IEEE 118 bus system demonstrated that algebraic connectivity (µN−1) strongly correlated with critical

loading thresholds (lc), indicating that it is efficient in predicting the onset of phase transitions under

various conditions, including δ-based and betweenness centrality (CB)-based attacks. The effective

graph resistance is calculated as:

RG(u, v) = L+
uu + L+

vv − 2L+
uv (1.10)

where L+ is the pseudoinverse of the laplacian matrix L and provides a measure of connectivity be-

tween nodes u and v. This metric, along with others, enables the identification of critical components

whose failure can cause widespread outages.

Visualization of these relationships is depicted in Figure 1.8 from [3], which illustrates the correlation

between critical loading thresholds and spectral graph metrics.

Dynamic models use real-time operating conditions and topological changes within the power grid. Un-

like static network-based models, [16] shows that dynamic models use the temporal evolution of the

grid’s state, enabling the prediction of how initial disturbances propagate and evolve. An adaptive PMU-
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Figure 1.8: Critical loading threshold and spectral graph metrics for the IEEE-118 with test systems attacked with a
betweenness centrality strategy [3]

based Wide Area Backup Protection Scheme utilizes PMUs to provide real-time voltage and current

measurements. It also optimizes PMU placement to form Backup Protection Zones (BPZs). When a

fault occurs within a transmission network, the sum of zero- and positive-sequence currents entering

the affected BPZ increases significantly, and the algorithm first identifies the faulted BPZ by comparing

the measured currents against predefined adaptive thresholds. The faulted line and its precise location

within the BPZ are then determined using a linear least squares method whose mathematical formula-

tion involves constructing an observability function and solving for the unknown fault parameters using

Hu = m. H is a matrix composed of voltage and current measurements from PMUs, u is the vector of

unknown fault parameters, andm is the measurement vector. The solution yields the fault location and

the fault current. The integration of PMUs into the Wide Area Measurement System (WAMS) facilitates

the collection of high-frequency data. Simulation results from the WSCC 9-bus and IEEE 118-bus test

systems demonstrated the scheme’s effectiveness in identifying faulted zones and lines with limited

measurement points, highlighting its practical applicability in large-scale power systems.

Moreover, dynamic models can be augmented with stochastic and Monte Carlo simulations (MCS),

as explained in [17], to account for the probabilistic nature of cascading failures. These simulations
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allow for the assessment of various fault scenarios and their potential impacts on the grid, providing a

more comprehensive understanding of failure propagation under uncertainty. This MCS methodology

involves several key steps. Firstly, it generates numerous system states by simulating random combi-

nations of generation and transmission outages, capturing the inherent uncertainties and variabilities.

Secondly, for each generated scenario, the system’s frequency deviation is calculated by considering

the primary frequency control responses of generators and the frequency sensitivity of loads. This step

assesses the ability to restore generation and load balance following disturbances. Further, integrat-

ing MCS with DC OPF to evaluate the risk can be used. It serves as remedial action to minimize lost

load by adjusting generation dispatch and shedding loads where necessary. The simulation tracks the

amount of lost load (Expected Load Not Served, ELNS) and constructs the Complementary Cumula-

tive Distribution Function (CCDF) of blackout sizes. To accurately estimate the Probability Distribution

Function (PDF) and smooth the CCDF of the lost load data, the Gaussian Mixture Method (GMM) can

be applied. This combination of MCS and optimization provides a framework for evaluating blackout

risks, demonstrating that cascading outages significantly influence the distribution of blackout sizes.

The CCDF, used to evaluate the risk associated with lost load, is calculated using CDF (F (x)) and PDF

(f(t)) from the estimated PDF using the following equation:

CCDF = 1− F (x) = 1−
∫ x

−∞
f(t)dt (1.11)

Figure 1.9: The CCDF of lost load for IEEE-118 system with and without cascading [17]
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Figure 1.9 from [17] presents the CCDF of lost load data for the IEEE 118-bus test system, compar-

ing scenarios with and without cascading outages. In the absence of cascading failures, the CCDF

follows an exponential distribution, indicating that large-scale blackouts are relatively rare and their

probabilities decrease exponentially with increasing lost load. Conversely, when cascading outages

are incorporated into the model, the CCDF transitions to a power-law distribution in the tail region,

signifying a higher probability of substantial load losses. This shift underscores the profound impact

of cascading failures on system reliability by introducing dependencies between component outages,

allowing small initial disturbances to propagate and amplify, thereby increasing the likelihood of large-

scale blackouts. Overall, dynamic models that incorporate cascading outages and system responses

are essential for accurately assessing the risks of blackout.

Machine Learning Techniques in Cascading Failure Prediction

In recent years, ML has offered improved accuracy and adaptability and can efficiently process large-

scale datasets. One of the primary advantages is the predictive capability of ML models for fault de-

tection and classification, which are the initial causes of cascades. As per [18], a model such as the

Conformer Convolution-Augmented Transformer can effectively perform transmission line fault classifi-

cation by processing raw time series data directly, bypassing the need for manual feature extraction and

achieving a testing accuracy of 88.88%, outperforming the Extreme Learning Machine (ELM) model,

which can attain only 62% accuracy. Similarly, [19] suggests using Long Short-Term Memory (LSTM)

networks employed for fault direction estimation in Networked Distribution Systems (NDS), significantly

improving robustness and accuracy of fault detection compared to conventional Radial Distribution Sys-

tem (RDS) methods.

Figure 1.10: Structure of LSTM for fault current and direction determination [19]

Figure 1.10 illustrates an LSTM-based fault direction estimation system for power networks given in

[19] that uses features of the current waveform such as Cnorm, Polpu, Polhc to predict fault direction

and time of detection. It optimizes fault detection accuracy using time-series simulations and adaptive

learning, aiding in precise protection coordination.
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Figure 1.11: Comparison of cascading classes using various models and performance metrics [13]

Another significant advantage of ML techniques given by [20] is their ability to identify critical features

from raw data automatically, reducing the dependence on feature extraction. Deep Neural Networks

(DNNs) that detect and classify faults in 3-phase long transmission lines are utilized as the model in [21]

to process voltage and current measurements, effectively learning features without manual intervention.

Additionally, such models exhibit exceptional scalability and efficiency as they are integrated with meta-

heuristic techniques, such as theWild Horse Optimization (WHO), for fault detection, classification, and

localization in power grids to achieve high accuracy with minimal computational cost.

A cascading failure simulator framework usingMATPOWER in [13] generates extensive datasets based

on the IEEE 118-bus system, and ML models trained on these comprehensive datasets can effectively

predict and classify cascading failures with high accuracy. Here, the prediction of cascade consists of

three classes, no cascade, small cascade and large cascade, thereby making it a multi-class classifi-

cation problem.

Figure 1.11 in [13] compares various ML models using performance metrics and reveals that the clas-

sification of ”no cascade” scenarios gives a higher precision compared to ”high cascade” scenarios.

This is due to high cascade scenarios having fewer test samples than no cascade scenarios, show-

ing a limitation of ML models due to the limited availability of high cascade data and creating a class

imbalance. The next challenge is managing high-dimensional and complex datasets. As [10] sug-

gests, computational cost also poses a big challenge, particularly when training complex ML models

on large-scale power systems and the impact of cyber-attacks on ML models has not been explored

adequately. Lastly, the interpretability and trustworthiness of ML models remain significant considera-

tions, particularly in high-stake power system applications. Inaccuracies in power flow measurements

can lead to wrong fault classification and unstable responses, making robust data preprocessing and

noise mitigation necessary. An analysis in [22] shows that deep learning models, while powerful, often

operate as black boxes, making it challenging to interpret decision-making. As power grids evolve,

real-time conditions, such as changing grid topologies, generation variability, and diverse operations,

may vary significantly from the data used to train these models. This can lead to decreased accuracy

of prediction and reliability, undermining the potential benefits of these ML models predicting outages.

Probabilistic models, as suggested by [23], have emerged as essential tools in identifying blackouts due
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to cascades, offering frameworks that account for the inherent uncertainties and complex interactions

within power systems. Regeneration-based probabilistic models are designed to capture the stochastic

nature of cascading failures by leveraging critical parameters such as the maximum capacity of failed

lines (Cmax) and the grid-loading ratio (RD/G), defined as the ratio of total demand to total generation

capacity. These models partition the topological space of a power grid into similar classes, simplifying

the complex configuration space into manageable grid states defined by Cmax, F , where F represents

the number of outaged lines. This reduction in state-space complexity allows the model to scale to

large power grids, making it computationally feasible.

Figure 1.12: Average blackout size vs. maximum capacity of initial line failures for different grid-loading ratios and
Cascade-stability probability vs. Failures in the system [23]

The effectiveness of this probabilistic model for blackout given in [23] and illustrated in Figure 1.12

shows the average size of blackouts as a function of the maximum capacity of initial line failures for

various grid-loading ratios. The results show that higher Cmax, F values lead to larger blackouts, with

grid-loading ratios near maximum capacity multiplying the cascading severity. The cascade-stability

probability, Pstab(S,RD/G), quantifies the likelihood that a grid state S remains stable. Pstab follows a

bowl-shaped curve in the second image, indicating higher stability for grid states with very few or many

failed lines. In contrast, grid states with intermediate failure counts are more likely to transition to subse-

quent failures and decrease with increasing Cmax, showing a destabilizing effect of such high-capacity

failures. The model in [23] has used coupled differential equations to compute blackout probabilities

over time. These equations incorporate cascade-stability probabilities and transition rates between

grid states and reveal a two-phase failure process: an initial slow phase followed by rapid escalation,

consistent with observed real-world blackouts.

Probabilistic load flow analysis offers another approach to modelling cascading failures by assessing

the statistical properties of power flows under normal and perturbed grid conditions. This method uses

parameters such as mean, variance, skewness, and kurtosis to characterize the transition from stable

to unstable grid states. This framework captures cascading failures by analyzing line outages based on

their probability distribution function (PDF) and cumulative distribution function (CDF). In normal grid
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conditions, PLF assumes a Gaussian distribution for power flows. The transmission lines operate within

their installation capacity, and grid variables such as voltage, current, and power flow follow a stable

probability distribution. When a disturbance, such as a line tripping, occurs, the load is redistributed

among the remaining lines, often leading to overloads and further failures. Probabilistic models used

in the IEEE 30-bus system predict subsequent failures by analyzing shifts in statistical distributions

[24]. After the tripping of specific transmission lines, the power flow distribution shifts from Gaussian

to non-Gaussian, indicating increased load stress and system instability. The PDF shows a sharp rise

in load stress, with vulnerable lines having higher cumulative values. Higher-order moments, such

as skewness and kurtosis, increase significantly, signaling the onset of instability. When a line trips,

the PDF can exhibit a heavy-tailed distribution, and the CDF may reach unity, indicating the approach

of a blackout. This shift from Gaussian to non-Gaussian distributions is a key indicator of cascading

failures. Future applicationsmay integrate real-time data and topological features to enhance predictive

accuracy and resilience.

Integration of Dynamic Topological Changes

Dynamic topological changes in power grids are critical to addressing cascading failures and improving

resilience. It can be observed in [25] that the ability to adapt and optimize network topology dynamically

has profound implications for the stability, synchronization, and efficiency of power systems. Networks

with a higher topological disorder characterized by the presence of ”shortcut” links tend to exhibit two

contrasting behaviours. First, they are more robust in handling increased loads, reducing the likelihood

of cascading outages. Second, when failures do occur, these networks break apart more quickly com-

pared to regularly structured networks. Using synthetic small-world network models and IEEE 57 and

IEEE 118 bus test cases, a trade-off was identified between robustness to initial failures and vulnerabil-

ity to grid breakup. This trade-off was expressed through the clustering coefficient C and characteristic

path length L, which shows the network interconnectivity and average distance between nodes, re-

spectively. Simulations performed using DC Power Flows revealed that increasing ”shortcut” links in

a network reduces congestion but accelerates fragmentation once failures propagate. Dynamic mod-

elling was considered by applying the Kuramoto model to large-scale European power grids. The swing

equation, a second-order Kuramoto equation, was employed to study synchronization under various

topological configurations:

θ̈i + αθ̇i = Pi +
∑
j

Wij sin(θj − θi) (1.12)

where α is the damping parameter, Pi represents nodal power, and Wi,j defines the adjacency matrix

of the network. This model accounted for both local synchronization and global dynamics, identifying

weak nodes based on local order parameters ri:

ri =
1

Nneigh

∑
j

Aije
iθj (1.13)
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HereNneigh is the number of neighbours of node i, andAij is the adjacency matrix indicating the connec-

tion between nodes i and j. Thus, it is concluded in [26] that by adding bypasses or reinforcing critical

nodes with low synchronization, a significant improvement in grid stability near the synchronization

transition point can be obtained..

Figure 1.13: With the bypass algorithm, weak nodes (red) are reinforced by creating triangles with the two closest neighbors
(green) or doubling edges between neighboring weak nodes (blue links) as an example (left) and overall Europe (right) [26]

Weak nodes, shown in red in Figure 1.13, obtained from [26], are prioritized for reinforcement. For each

red (weak) node, its two closest neighbours (marked in green in the figure) are selected for intervention.

If the weak node has no other weak nodes in its immediate vicinity, a triangle is created by adding a

new edge (blue) between the two closest neighbours. This triangular structure enhances the local

clustering coefficient and provides alternative paths for power flow, reducing potential overloads. On

the other hand, if the weak node has two weak nodes neighbouring it, the edge connecting them is

doubled, giving parallel pathways (original grey link reinforced with a blue link). This ensures stability

during power redistribution under stress. By creating triangles or doubling edges at critical weak points,

the algorithm ensures robust synchronization and enhances overall grid resilience.

Braess’s Paradox, mentioned in [26], is a common and counterintuitive phenomenon in networked

systems where adding new links or increasing capacity in a network can degrade overall system per-

formance. In the context of power grids, this paradox manifests when additional links or modifications

aimed at improving connectivity inadvertently cause instability or promote cascading failures. Using

simulations of the European high-voltage power grid, the paradox was observed at lower coupling con-

stants (K), where the system’s power flow is limited and adding new links increases instabilities by

redistributing loads in non-optimal ways. When Wij in Equation 1.11 is modified to add new links, the

system dynamics deviate from optimal synchronization, particularly when operating away from critical

coupling thresholds. Exploring Braess’s Paradox in terms of spectral graph metrics on the IEEE 118

power system shows that increasing impedance values in specific transmission lines or introducing

new high-impedance links can lower the critical loading threshold (lc).
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Figure 1.14: Critical loading threshold and spectral metrics for the IEEE 118 with node significance-based attack [3]

Figure 1.14 from [3] shows Braess’s Paradox in action on the IEEE 118 system, where even the slight

topological adjustments caused significant shifts in lc. The addition of capacity to specific nodes caused

earlier phase transitions, reducing the grid’s ability to sustain power demand after cascades.

1.2.3. Cascade Protection Mechanisms: Preventive and Corrective Controls

To mitigate cascading risk, various protection mechanisms have been developed, broadly categorized

in [27] into preventive and corrective control strategies. Preventive control aims to enhance the robust-

ness of the system and prevent the initiation of cascade events, while corrective control focuses on

stopping the progression of cascades. Corrective Transmission Switching (CTS) is one of the viable

techniques for managing contingencies and preventing cascading failures in power systems. Conven-

tional CTS methods often rely on optimal formulations or heuristic approaches for solving the corrective

actions required to prevent cascading failures. However, in scenarios involving rapid failure propagation

where temperature relays actuate swiftly, there may not be sufficient time to implement these corrective

measures, making some solutions not useful in practical applications. To address this limitation, a mod-

ified optimal CTS can be used. This approach integrates generation re-dispatch and accounts for the

available correction time derived from a continuous temperature evolution model. It involves validating

CTS against the time constraints imposed by relay. Specifically, the temperature of transmission lines
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is modeled using a thermal inertia framework, governed by the differential equation:

dTo(t)

dt
= βI2 − α(To(t)− Tα) (1.14)

where To(t) is the temperature of line o at time t, I is the current, Tα is the ambient temperature with

α and β are coefficients representing heat dissipation and generation rates, respectively. [27] also

shows a modified optimal transmission switching (OTS) formulation with generation re-dispatch to miti-

gate post-contingency overloads and prevent cascading failures. By altering network topology through

corrective transmission switching (CTS), the approach redistributes power flows to maintain system sta-

bility. Validation methods ensure that the corrective actions are feasible within relay operation times,

enhancing resilience and cost-effectiveness.

Another method introduced in [28] is the Risk-Based Multi-Step Corrective Control (MSCC) method,

which is designed tomitigate cascading failures by dynamically adjusting nodal power injections through

generation rescheduling and load shedding. Unlike traditional Non-Recurring Corrective Control (NCC)

models that confine corrective actions to specific cascading steps, the MSCC approach distributes con-

trol efforts across multiple steps, enhancing both economic efficiency and operational resilience. The

MSCC model is grounded in a fault chain model combined with DC power flow equations, allowing for

the prediction and interaction with cascading failure processes over several steps. Through numerical

simulations on IEEE 39-bus and IEEE 118-bus systems.

Figure 1.15: Comparison of NCC and MSCC models in the IEEE-39 and IEEE-118 bus systems [28]

Figure 1.15 compares the NCC and MSCC models in terms of load-shedding and economic costs for

varying generator ramping coefficients (Vramp) in the IEEE-39 bus system. As Vramp increases, both load-

shedding and the objective function decrease due to improved generation dispatch. For Vramp < 0.18 in

[28], the MSCC model outperforms NCC, which fails to prevent cascading outages when Vramp < 0.11,

as critical branch loadings exceed limits despite adjustments. At higher Vramp, both models converge,

with no load shedding and equal objective values, highlighting the importance of fast-ramping units

for improved system flexibility and resilience. This analysis is extended to the IEEE-118 bus system,

where the removal of Branch 8–5 triggers cascading failures. MSCC achieves significantly lower ob-

jective values (91.66 vs. 2067.96) and prevents load shedding, while NCC incurs 17.63 MW of load
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shedding. In the second cascading step (k = 2), MSCC mitigates risks by removing Branch 100–103,

reducing the probability of cascading outages to 0.22 and alleviating overloading on other branches.

This demonstrates MSCC’s superior coordination in minimizing risks, costs, and disruptions compared

to NCC. Both studies emphasize the importance of integrating corrective measures with the dynamic

nature of cascading failures and emphasize the role of power flow redistribution and thermal relay

mechanisms in the propagation of cascades. In addition to these corrective strategies, understanding

common patterns of initial failures leading to cascading events and developing robust frameworks are

essential for comprehensive analysis.

1.2.4. Motifs and Probabilistic Frameworks for Risk Assessment

Use of PCMs

Risk assessment of cascading outages in power transmission systems is pivotal for enhancing system

reliability and preventing large-scale blackouts. Central to contemporary methodologies are the con-

cepts of PCM frameworksmentioned in [29], which collectively facilitate the identification and evaluation

of high-risk outage scenarios. Motifs are specific patterns of multiple line outages that recur with higher

frequency than expected under random conditions within a power network. They have been introduced

as a means to improve the efficiency and accuracy of contingency selection for risk assessment. By

analyzing historical outage data from large transmission systems such as the Bonneville Power Admin-

istration (BPA) and NewYork Independent SystemOperator (NYISO), [29] identified recurrent subgraph

patterns, which are referred to as motifs that significantly exceed their uniform probability assumptions.

For instance, analysis performed on the BPA network data highlighted that sub-graphs examples of

multiple line outages and certain 2-edge and 3-edge sub-graphs occur disproportionately often, indi-

cating inherent dependencies in the system’s physical or engineered structure. These motifs serve as

foundational elements in constructing a probabilistic model that accurately represents the likelihood of

various cascading outage scenarios.

Probabilistic frameworks help in the quantitative assessment of cascading outage risks by modelling ini-

tial uncertainties, cascade propagation, and impacts. In the context of PCMs, a probabilistic framework

can be used where the occurrence of specific motifs is incorporated into the risk assessment model.

This approach involves estimating the probability of each motif based on historical data and using these

probabilities to prioritize contingency lists for simulation. The probabilistic model leverages:

P (Sk,i | k) =
|Sk,i|(

N
k

) (1.15)

where P (Sk,i | k) denotes the probability of a particular subgraph pattern Sk,i occurring among all

possible k-edge subgraphs in a network with N nodes. Focusing on high-probability motifs enhances

the efficiency of risk assessments, enabling more targeted and resource-effective simulations. Fur-
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thermore, the importance of probabilistic approaches in capturing the stochastic nature of cascading

failures is highlighted, advocating for methodologies that can systematically incorporate historical data

and uncertainty quantification. PCMs align with these recommendations, offering a robust mechanism

for prioritizing and analyzing high-risk contingencies.

Risk Assessment in Cascading Outages

Risk assessment methodologies must account for the probability of initiating events. It is emphasized

in [30] that risk is defined as the product of the probability of an event and its associated impact cost.

Mathematically, the risk R(s) posed by contingency s, outage cost or impact C(s) and probability P (s)

is expressed as:

R(s) = P (s)× C(s) (1.16)

An approach to estimating system risk is to select a subset of all possible contingencies and simulate

each to estimate the resulting blackout. Aggregating system risk by summing individual risks can

mix low-probability, high-cost events with high-probability, low-cost events, making it more useful to

categorize risks by blackout size.

Moreover, there are various uses of risk assessment in the context of cascading outages. It aids in

making informed decisions regarding actions to mitigate system stress, whether in real-time opera-

tions, operational planning, or investment planning. System operators can leverage these risks to

predict and rank contingencies, which will be explored further in the thesis, enabling targeted mitiga-

tion measures such as adjusting protection settings or dispatching reserves. Additionally, [30] shows

the critical contingencies that need to be addressed to ensure that system reliability can be identified.

The PCM framework aligns with these uses by providing a structured and data-driven approach to iden-

tifying and prioritizing high-risk contingencies. This integration not only improves the accuracy of risk

assessments but also ensures that resources are allocated efficiently to address the most significant

threats to system reliability. Furthermore, leveraging motifs allows for a reduction in the computational

complexity associated with simulating all possible outage scenarios. Instead of exhaustively enumer-

ating every potential combination of line outages, PCMs prioritize those motifs that have historically

demonstrated higher probabilities of occurrence, and this strategic sampling conserves computational

resources while ensuring that the most critical and impactful outage scenarios are thoroughly analyzed.
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1.3. Research Direction and Contribution

The literature about cascading failure analysis is extremely vast and has been experimented on with

various techniques to improve accuracy. The review shows the overall progress of research till now,

and it is summarized using the following points:

• The underreach or the overreach of the relays from its intended protection zones or hidden failures

(HFs) can escalate even simple faults into continuous cascading scenarios.

• Techniques such as controlled islanding, DBSCAN with non-linear programming or a multi-layer

spectral clustering along with load shedding can be used to analyse and mitigate cascade by

leveraging the identification of cascade phase dynamics.

• Analyzing PMU on failure dynamics is crucial for monitoring the operational integrity and stability

of power systems. It can provide various targeted approaches for grid operators to prioritize

intervention strategies more effectively.

• Significant correlations between component failure rates, system demand, and external factors

like wind speeds highlight how these factors can worsen system vulnerabilities and trigger a

cascade leading to a blackout.

• ML techniques, such as LSTM-based fault direction and DNNs, can be used to predict and classify

cascading failures with high accuracy. But these techniques face the challenge of class imbalance

due to the limited availability of high cascade data and difficulty in interpreting decision making,

• Graph theory is one of the techniques to investigate cascades by utilizingmetrics such as effective

graph resistance (RG), spectral radius (ρ), diameter and algebraic connectivity (N1) to assess

grid robustness. These metrics enable the identification of critical components whose failure can

cause widespread outages.

• Probabilistic models have emerged as essential tools in identifying blackouts by using the cas-

cade contingency PDFs and CDFs, transition states and impact metrics to identify extreme vul-

narablity cases and pre-indicate the system operator of the presence.

This thesis proposes a risk metric-based ranking of N-k contingencies and the identification of critical

cascade contingency scenarios. The approach allows for swift contingency ranking without the need

for complex dynamic simulations or machine learning models, enhancing decision-making for Trans-

mission System Operators (TSOs) and improving grid reliability and resilience under various operating

conditions. Building on these conclusions, further research can explore promising methods for ana-

lyzing cascades. One approach involves pre-determining cascade contingency probabilities by first

performing a contingency analysis to identify critical cascade scenarios. This can then be followed by

identifying contingency motifs for each dispatch scenario and calculating the probabilities of these mo-

tifs to assess the likelihood of a cascade. Additionally, the development of an impact function could help

quantify the effects of specific cascade contingency scenarios, considering factors such as topological
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structure, line failures, and generator contributions.

We propose a PCM-based risk metric, calculated using a probabilistic model that incorporates cascade

contingency probabilities based on N − k contingency motifs, as described in [29]. These motifs repre-

sent frequent critical structural patterns in outage scenarios. The risk metric also includes a dynamically

developed cascade impact function that considers distribution factors, electrical distances, and gener-

ator short-circuit current contributions. This approach utilizes the grid’s topological data to predict the

risk and extent of cascading events and rank contingencies accordingly.

Key contributions of this work include:

• Identification of critical contingencies through contingency analysis, enabling the prioritization

of critical scenarios for further evaluation.

• Calculation of cascade probabilities based on contingency motifs, providing a clear measure

of the likelihood of cascading events in various system states.

• Development of a cascade impact function that quantifies the effect of specific contingencies

by considering distribution factors, electrical distances, and generator short-circuit contributions,

leading to more accurate risk predictions.

• Validation of the proposed risk metric by comparing the cascade impact function’s results with

dynamic RMS simulations, such as the assessment of rotor angle deviation in case of cascade

scenarios.

• Evaluation of the computational efficiency of the risk metric to ensure it is feasible for real-time

application in system operations.

• Comparison of risk rankings to demonstrate the ability of the proposed approach to produce

reliable and accurate cascade contingency rankings, which are essential for effective decision-

making.

• Analysis of generator dispatch and its impact on the variability of risk, ensuring that the model

can adapt to changing grid conditions and provide robust risk assessments.

• Development of a plot to help system operators quickly visualize high-risk scenarios, aiding

faster decision-making to mitigate cascading failures.

These contributions lay the foundation for a more efficient, reliable, and adaptable approach to assess-

ing cascading failures in power systems.
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1.4. Research Questions and Structure of the Thesis

Following the research direction mentioned previously, we can outline the main research question of

this thesis with several sub-questions:

How effectively can a probabilistic framework assess and rankN−k cascading failure risk by leveraging

contingency motifs and dynamic impact metrics?

• How can contingency motif subgraphs be identified and their probabilities be used to model and

predict cascading failures?

• How does the proposed impact metric correlate with traditional impact metrics when ranking con-

tingencies?

• How well does this risk-based probabilistic model’s ranking of cascading events align with the

rankings obtained by RMS simulation results in evaluating system security and resilience?

These questions outline the thesis, and they will be answered using the following structure.

We summarize the necessary theory for the thesis in Chapter 2, where we provide an introduction to

cascading failures in power systems, followed by an overview of contingency motifs and probabilistic

modeling techniques for N-k contingencies. We also introduce methods for risk assessment, including

conventional impact metrics. In Chapter 3, we present the risk estimation methodology, detailing the

probabilistic contingency model, the network structure-based probability analysis workflow, and the

novel dynamic impact metric developed in this thesis, along with its implementation to calculate the

risks for ranking cascading events. Chapter 4 focuses on case setup, simulations, and results, where

we analyze the performance and obtained rankings of our proposed framework compared to baseline

risk assessment methods. Finally, in Chapter 5, we provide a discussion and conclusion, addressing

the research questions and highlighting the significance of our findings.



2
Theory

2.1. Cascading Outages in Power Systems

Cascading outages in power systems have drawn significant attention because of the devastating costs

of large-scale blackouts. Unlike ordinary faults or single-element contingencies, cascading failures in-

volve a chain reaction of events where the tripping of one component (e.g., a transmission line or

generator) triggers additional stress and possible failures elsewhere in the system. During the last two

decades, major blackouts in North America, Europe, Asia and beyond have demonstrated the complex-

ity and unpredictability of these events [4]. The cascades consist of sequential outages where, in the

initial state, they start from the position of no contingency and then proceed to show an outage, transi-

tioning from N-1 (one line outage), potentially to N-2, N-3, and so on. For example, k = 2 corresponds

to pairs of lines outaged at once or an N-2 contingency, whereas k = 4 involves quadruples of outaged

lines or an N − 4 contingency scenario. At the occurrence of each step, additional stress is added to

the remaining lines, resulting in the tripping of the remaining healthy lines one by one. An ineffective

intervention or ignorance can significantly accentuate the occurrence of a cascade and eventually lead

to a system-wide blackout. The sequence shown below in Figure 2.1 shows the state transitions of

cascades.

State transition: No Contingency︸ ︷︷ ︸
Normal

−→ N − 1︸ ︷︷ ︸
1 outage

−→ N − 2︸ ︷︷ ︸
2 outages

−→ N − 3︸ ︷︷ ︸
3 outages

. . .

Various physical and operational circumstances can cause a cascade to spread, the major one being

28
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Figure 2.1: Sequence of cascade transition

the redistribution of power flows following the loss of a transmission line. When a line is lost due to a

short circuit, natural disaster, poor maintenance, or infrastructure failure, the power flow redistributes

across the grid to compensate. If this redistribution overloads other lines, it can trigger a cascading

failure, spreading disruptions further. This redistribution occurs according to Kirchoff’s current and

voltage laws. Further line failures or load shedding required are determined by checking if line limits

are violated. A key aspect of power redistribution during cascading failures is the non-monotonicity of

changes in line flows. Not all lines experience an increase in load; some may experience decreased

flows, while others may even exhibit a reversal in the direction of flow. This behavior is shown in [31] and

illustrated with two examples. The first example involves the impact of redistribution on adjacent lines.

When a line fails, the resulting redistribution of power flows can either increase or decrease loading

on nearby lines. If this redistribution causes new violations of operational limits, it can trigger further

failures, propagating the cascade. The second example involves load shedding, which is used as an

emergency action to relieve stress on the network. However, improper load-shedding can inadvertently

shift power flows in a way that increases stress on certain critical lines, particularly those connecting

multiple hubs within the network. Another way to quantify the redistribution of power flows is by using

line outage distribution factors (LODFs), which represent the sensitivity of line flows to outages. LODFs

are used in sensitivity analysis to assess the impact or cost of different cascade scenarios.

2.1.1. Overview and Mechanisms of Cascading

Cascades present multiple challenges, making their dynamics complex to study and even harder to

simulate. They can be triggered by various factors, including natural disasters, human errors, cyber

or physical attacks on power grids, or system failures. Here, the focus is on systemic failures, specif-

ically short circuits, to perform contingency analysis and gather outage data. Simulations are also

conducted using short circuits as failure events caused by systemic issues. One way to model external

disturbances in this context is through a short-circuit model. According to the N-1 security rule, a power

grid must remain electrically stable after the loss of any single component.

The cascade process, which is based on operational constraints and dynamics of the system, occurs in

phases such as initiation, slow cascade, fast cascade and blackout. The 2003 U.S.-Canada blackout

[32] was started by a single line trip due to contact with a tree, thereby triggering sequential overloads

and thermal failures, leading to a cascade that ultimately affected 50 million people. Similarly, the 2003

Italy blackout occurred because of the import of high power, where quick cascades occurred in the form

of multiple line trips, frequency collapse, and eventual islanding, highlighting the vulnerabilities of the

interconnected system. In both cases, the slow cascade phase started with an initiating event, such

as the loss of a network element, which led to power flow redistribution in the grid. This redistribution
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increased thermal stress on other elements, raising their failure probabilities.

Figure 2.2: An event tree explaining cascade phases [32]

In Figure 2.2, thermal instability marks the transition into the slow cascade phase, where events occur

on timescales ranging from tens of seconds to hours. During this phase, preventive actions by operators

compete with the occurrence of additional contingencies. Independent external events can also arise,

compounding cascades. Failures propagate gradually, resulting in minimal immediate impact on overall

power system stability. However, this makes it harder to detect potential instability from future failures.

Most of the failures in the slow cascade phase are often overlooked by operators, which diminishes

the likelihood of timely preventive action. Additionally, HFs can cause the incorrect operation of critical

equipment, such as circuit breakers. Such failuresmay function normally under stable conditions but fail

when stressed by a disturbance. If a transmission line trips, nearby lines connected to its terminals may

also become susceptible to misoperations or overloads to the redistribution of power flows. Overloaded

lines may heat up due to thermal effects, sag, and eventually come into contact with trees or the ground,

contributing to the cascade.

Gradual failure + hidden failures + overloads︸ ︷︷ ︸
Slow Phase

→ Rapid tripping + voltage collapse + instability︸ ︷︷ ︸
Fast Phase

Figure 2.3: Cascade phase transition

Without corrective control, the system may escalate into the fast cascade phase. The fast cascade

phase, characterized by electrical instability (e.g., protection system activations, angular instability)

and successive tripping of overloaded transmission lines, occurs on a much shorter timescale, ranging

from milliseconds to tens of seconds. The dynamic nature of this phase and extremely low time spans

such as milliseconds to tens of seconds, illustrated in Figure 2.2, makes TSO interventions ineffective,

resulting in widespread. However, TSOs can implement severe corrective actions, such as load shed-
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ding, to mitigate the risk of blackouts during the fast-cascade phase. Instability events such as voltage

collapse and frequency oscillations are observed in this phase. A generator tripping can cause this

instability, further disturbing the load-generation balance and worsening the cascade. While transmis-

sion lines can typically withstand overloads for extended periods, dynamic events such as large power

swings may trigger zone 2 or zone 3 protective relays. These relays, with short time delays, can trip

transmission lines so quickly that operators have no opportunity to reclose the lines or halt the cascad-

ing sequence As a result, failures propagate rapidly like falling dominoes, ultimately culminating in a

widespread blackout.

When a system facesmultiple line failures simultaneously in a cascade, particularly in the case of higher-

order contingencies, it becomes increasingly vulnerable to widespread disruptions. These can cause

large-scale load and generation shedding, further compromising the stability of the grid. Thus, they

often give rise to an N − k contingency scenario. The analysis of such a scenario helps in identifying

critical lines whose simultaneous failure could lead to the most severe consequences, prompting the

need for robust protectionmechanisms and resource allocation tomitigate the risk of cascading outages.

N − k contingencies, therefore, provide a foundation for assessing the vulnerability of the system to

cascading events.

2.1.2. N − k Contingency Analysis and its importance

Controlling the power flow redistribution is essential to enhance the capacity of the system and protec-

tion against disturbances. Contingency analysis is a critical process used in power system operations

to evaluate how the system behaves when a component (such as a generator, transmission line, trans-

former, or load) fails or experiences an outage. It is employed to understand power system behavior

during equipment outages, ensuring security against single-component failures. Various contingency

conditions can be analyzed, such as the loss of a generator, a transmission line, a transformer, or a

load. In this thesis, the focus is on the analysis of contingency when a transmission line is under outage.

N − 1 contingency analysis is a standard used by system operators to assess power system security.

According to this criterion, the power system must be capable of withstanding the failure of any single

component without violating the operational constraints of other components while continuing to sup-

ply both critical and non-critical loads. Contingency analysis models the effects of single or multiple

outages to predict the state of various system variables, such as voltage, load, and power flows. This

analysis is essential for evaluating the grid’s ability to maintain stability and supply power during critical

periods. Given the importance of grid security and reliability, system operators commonly apply N-1

contingency analysis to ensure that the grid can remain stable even after the loss of any individual com-

ponent. By simulating potential outages and analyzing the system’s response, operators can identify

vulnerabilities and prepare corrective actions to maintain reliable operation under stressed conditions.

Most of the time, theN−1 contingency of the system may not be sufficient as multiple failures can take
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place simultaneously. Here, the N − k contingency analysis comes into the picture, which considers

multiple component failures. The N − k contingency implies that the power system should be able

to withstand k-number of random/independent component failures without the violation of operational

constraints of remaining healthy components. For this reliability analysis of power systems, both de-

terministic and probabilistic approaches can be used. In the deterministic approach, the focus is on

analyzing specific events or worst-case scenarios. Each and every scenario is evaluated independently

of the other to determine its associated impact, answering the question, ”If event X occurs, what is the

outcome Y?” The results are then assessed to ensure that they are acceptable under all scenarios,

thereby identifying the most severe impacts. Deterministic methods rely on predefined criteria, such

as ensuring specific components do not fail under conditions like typical lightning surges, as specified

by standards. While deterministic criteria are simple to interpret and implement, their limitations are

increasingly evident. They often result in over-designed systems by neglecting economic factors and

risk considerations. For instance, questions such as ”Should a remote customer be connected with N1

redundancy, or would they accept some level of risk for a reduced cost?” or ”Is it necessary to connect

offshore wind farms with N1 redundancy, or can operational risks be managed during maintenance

under N0 conditions?” often arise.

Figure 2.4: Deterministic versus probabilistic reliability analysis in power systems [33]

In contrast, probabilistic approaches incorporate the likelihood of the occurrence of various events,

thereby allowing the analysis of a broader range of scenarios. Each scenario is assigned a probabil-

ity (p), and the outcomes are combined into probabilistic reliability indicators as shown in Figure 2.4.

This approach provides a more realistic analysis by capturing the variability of renewable generation,
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such as high-wind and low-load scenarios, since their variability can be included in the probabilities

by considering historical data. Considering the random nature of component failures in probabilistic

analysis can prove vital. For instance, all possible generator failures can be included, rather than only

worst-case scenarios like the loss of the largest unit. This approach addresses the shortcomings of

the deterministic methods mentioned above by balancing the reliability of the system with economic

(impact) considerations. For example, the approach allows system operators to make decisions by

evaluating trade-offs between reliability and cost, such as whether to install a spare transformer in a

substation or use underground cables instead of overhead lines. While deterministic criteria have histor-

ically proven effective for ensuring reliability and are widely prescribed in grid codes, they lack flexibility

and do not account for economic and risk-based insights. Probabilistic approaches are an extension

of deterministic methods and offer actionable reliability indicators that reflect real-world uncertainties.

2.1.3. Contingency and Power Flow Analysis procedure

Contingency analysis is best described in [34] as a systematic procedure used to determine possible

power system states after component or line failure. It is primarily performed in specialized software

within a power management system, which simulates hypothetical test cases that could result in power

flow, voltage, or limit/capacity violations in active and reactive power. If Pij is the power flow on the line

between buses i and j, Fmax,ij can be considered as the transmission capacity limit. Contingency anal-

ysis is thus performed on some or all potential outages occurring in the system. There are three major

steps to perform contingency analysis, as shown in [35]. These are contingency creation, contingency

selection, and contingency evaluation. Primarily, the goal is to reduce an extensive list of contingencies

by identifying those outages with serious limit violations. The individual outages are then evaluated by

analyzing the power flows.

Contingency creation is the first stage of power system contingency analysis. Let

E = {e1, e2, . . . , enL
}

Denotes the set of all transmission lines in the system. A contingency is defined as a subset of E ,

representing the components assumed to fail simultaneously. In the simplest single-outage scenario,

Csingle = {{e1}, {e2}, . . . , {enL
}},

While general multiple-outage contingencies appear in

C = {S ⊆ E}.

A quantitative measure δ(S) characterizes each contingency S by tracking an indicator, such as max-
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imum loading under that outage scenario. The extended contingency set pairs each subset S with its

associated metric:

Ĉ =
{
(S, δ(S))

∣∣∣ S ⊆ E
}
.

The last component of each pair, δ(S), is compared against a threshold Θ to determine whether further

analysis is required. The set of severe contingencies is given by

S =
{
(S, δ(S)) ∈ Ĉ

∣∣∣ δ(S) > Θ
}
.

A contingency (S, δ(S)) moves into detailed evaluation when its metric δ(S) exceeds the threshold Θ.

This approach provides a structured way to represent both the elements of each contingency and the

associated loading or voltage measure needed to assess system reliability.

Any contingency causing one or more limit violations is classified as severe. The last stage of contin-

gency evaluation is used to determine the extent of violations for these severe cases and to identify

if subsequent outages (based on new system conditions) must be considered. Detailed power flow

studies and short-circuit analyses are carried out here to confirm or quantify the violations [36]. The

analysis is performed by first conducting power flow studies and then simulating short circuits after sim-

ulating the removal of system components such as transmission lines. Power flow studies are essential

for assessing steady-state stability, ensuring that voltages and currents remain within acceptable limits.

Short circuit studies, on the other hand, are used for protection and coordination purposes. These

studies are typically performed after the power flow analysis, allowing for a more focused approach to

evaluating and improving protection strategies.

Power Flow analysis using Newton-Raphson method

Power flow analysis is an essential starting point before contingency analysis is performed. Power

flow involves determining the steady-state operating conditions of a power system, specifically the

voltage magnitudes, phase angles, active power (P), and reactive power (Q) at each bus in the network.

The Newton-Raphson (NR) method is one of the most widely used numerical methods for solving the

non-linear equations arising in power flow studies due to its robust convergence properties and high

computational efficiency. The power flow problem revolves around solving the non-linear algebraic

equations derived from Kirchhoff’s laws. The power injections at a bus i are given in terms of the

voltage |U | and the elements of the |Ybus| matrix:

Pi =

N∑
n=1

|Ui||Un|(Gincos(θi − θi) +Bincos(θi − θi)) (2.1)

Qi =

N∑
n=1

|Ui||Un|(Gincos(θi − θi)−Bincos(θi − θi)) (2.2)
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where forN number of total buses, Pi andQi are active and reactive power injections on bus i, |Ui| and

θi are the voltage magnitude and phase angle at bus i, Gin and Bin are the real and imaginary parts of

the Ybus matrix. The Ybus matrix, or the nodal admittance matrix, represents the relationship between

nodal voltages and injected currents. By applying Kirchhoff’s Current Law (KCL) at each node i,

Ii =

N∑
j=1

Yij Vj , (2.3)

where Ii is the net current injected at node i, Vj is the voltage at node j, and Yij are the elements of

the Ybus matrix. The diagonal elements (self-admittances) are

Yii =
∑
k ̸=i

yik + yshunti , (2.4)

indicating that each node’s diagonal entry is the sum of all admittances (including shunt components)

connected to that node. The off-diagonal elements (mutual admittances) are

Yij = − yij (i ̸= j), (2.5)

reflecting the negative of the admittance between nodes i and j. Each yij is typically derived from the

per-unit impedance zij of the branch connecting i and j:

yij =
1

zij
= gij + j bij . (2.6)

This structure produces a sparse matrix because Yij = 0 for buses i and j with no direct connection,

and it is usually symmetric under reciprocal network conditions (yij = yji). Thus, Ybus is both computa-

tionally efficient and serves as the foundation for describing how bus voltages and currents interact in

a power system..

Power flow analysis classifies buses into three types [37]. If the voltage magnitude at bus i is denoted

by |Ui| and its phase angle by θi, and Pi and Qi are the active and reactive power injections at bus i,

respectively. The Slack/Reference bus is

|U1| = V ∗
slack, θ1 = 0, (2.7)

where V ∗
slack is a specified reference voltage magnitude, and the angle is set to zero for a common

reference frame. The slack bus accounts for real and reactive power imbalances in the system, so P1

and Q1 are determined by the overall network solution rather than being specified. The PV/Generator

Bus is

Pi = P i, |Ui| = V i, (2.8)

where P i (active power) and V i (voltage magnitude) are specified. The unknown variables at this bus
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are Qi and θi, which the power flow equations solve for. The PQ/Load bus is

Pj = P j , Qj = Qj , (2.9)

where P j and Qj are known active and reactive power demands (loads). In this case, |Uj | and θj

remain unknown and must be determined by the power flow algorithm.

The Newton-Raphson method iteratively solves the power flow equations by linearizing them around

an operating point using a first-order Taylor series expansion [38]. The state vector is defined as

x =



θ2

θ3
...

θN

|Um1
|

|Um2 |
...


, (2.10)

where θi are the voltage angles at each bus (excluding the slack bus angle, typically θ1 = 0) and

|Umj
| are the voltage magnitudes of buses that are not fixed (e.g., PQ buses). In general, the exact

composition of x depends on which bus variables are already specified (slack or PV buses) versus

those that are unknown. The mismatch vector, h(x), is the difference between specified and calculated

power injections:

h(x) =

∆P

∆Q

 , ∆P = Pspecified − Pcalculated, ∆Q = Qspecified −Qcalculated. (2.11)

In each iteration k, the state vector is updated according to

x(k+1) = x(k) −
[
J
(
x(k)

)]−1
h
(
x(k)

)
, (2.12)

where

J(x) =
∂h(x)

∂x
(2.13)

is the Jacobian matrix of partial derivatives relating changes in the state variables to changes in the ac-

tive and reactive power mismatches. The Jacobian matrix is typically partitioned into four submatrices:

J(x) =


∂P

∂θ
∂P
∂|U |

∂Q
∂θ

∂Q
∂|U |

 , (2.14)
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reflecting the sensitivities of P and Q with respect to the angles θi and voltage magnitudes |Ui|. For

example, the partial derivative of the active power Pi at bus i with respect to the voltage angle θn of

bus n is given by:
∂Pi

∂θn
= |Ui| |Un|

[
−Gin sin(θi − θn) + Bin cos(θi − θn)

]
, (2.15)

where Gin and Bin are the real and imaginary parts of the Ybus matrix element connecting buses i

and n. Similar expressions apply for the other submatrices of J(x), ensuring that the Newton-Raphson

iteration captures how changes in voltage magnitudes and angles affect the calculated power injections.

The Newton-Raphson method converges quadratically, making it computationally efficient for large

networks. However, it requires an accurate initial guess for the state variables to ensure convergence.

The computational complexity arises from inverting the Jacobian matrix at each iteration, but this is

mitigated by efficient numerical techniques such as sparse matrix factorization (e.g., LU factorization

with pivoting) and optimized linear solvers that exploit the structure of power system matrices. Overall,

the NR method provides a robust framework for solving power flows with high accuracy and reliability.

Once the power flow analysis is complete and the steady-state operating conditions are determined,

contingency analysis can be applied by performing RMS simulations of short circuits and examining

system transients. The outcomes of these simulations reveal potential violations of system constraints

under fault conditions and estimate the probability of subsequent line outages or cascading events.

These insights form a natural bridge to the next phase of investigation, where probabilistic uncertainties

in multiple simultaneous outages are analyzed.

2.2. Probabilistic Modeling of N − k Outages

In the first step of contingency selection, each single-line outage c ∈ Csingle is assumed to be indepen-

dent, and each operating condition x ∈ X is equally likely. Under a uniform assumption,

P (c, x) =
1

|Csingle| · |X |
, (2.16)

where Csingle denotes the set of single-line outages, and X is a set of possible operating conditions

or time instants. For the example of an N − k contingency, the first outage is simulated and then the

second outage is simulated considering the absence of the first outaged component, the third outage

is simulated considering the absence of both the outaged components and so on. The definition of

multiple contingencies (N − k) varies across contexts, leading to different interpretations of k in N − k.

In this thesis, N − k specifically denotes a contingency involving the outage of k transmission lines.
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2.2.1. Subgraph representation of line outages

A convenient way to perform line outage simulations in a power transmission network is to view each

outage combination as a subgraph of the underlying network graph. In this framework, the network is

modelled as a graph G = (J,E), where for a graph G, the set of nodes/junctions (J) and edges (E)

corresponds to transmission lines. When N − k outages are represented by choosing k transmission

lines out of the E edges are outaged simultaneously. Suppose k is an integer satisfying 1 ≤ k ≤ |E|.

To capture a specific combination of k outaged lines, Ek,i is defined as

Ek,i = { e1, e2, . . . , ek} ⊆ E , (2.17)

where i indexes the different k-element subsets of E. Denoting by Jk,i ⊆ J the set of nodes (buses)

incident to the edges in Ek,i. Then the k-edged subgraph arising from these outaged lines is

sk,i =
(
Jk,i, Ek,i

)
. (2.18)

Here, i runs over all possible ways to choose k edges from E, so each sk,i is a subgraph containing

exactly k edges. Formally, let

Sk = { sk,i | i ∈ Ik} (2.19)

denote the collection of all edge-induced subgraphs of size k inG, where Ik is an index set enumerating

each distinct choice of k edges.

Two subgraphs are said to be isomorphic if there is a one-to-one relabeling of their nodes that preserves

adjacency. If two subgraphs sk,i and sk,j are isomorphic, they belong to the same isomorphism class.

Denoted here by Sk,α,

Sk,α (α ∈ Ak) (2.20)

the distinct isomorphism classes among the k-edged subgraphs, where Ak indexes these classes.

Each structural pattern Sk,α thus represents a unique configuration of k outaged lines in G, up to graph

isomorphism. In addition to the topological structure of each subgraph, the functional connectivity of

the network can be incorporated by utilizing an adjacency matrix that accounts for line loading. Let Pij

denote the power flow on the line between buses i and j, and let Fmax,ij be its transmission capacity. A

threshold parameter λ ∈ (0, 1), chosen by the operator to indicate an acceptable fraction of line loading,

is defined. The resulting adjacency matrix A is given by

Aij =


1, if 0 <

Pij

Fmax,ij
< λ,

0, otherwise.
(2.21)

An entry of Aij = 1 signifies that the line (i, j) remains in service and is not heavily loaded (i.e., it
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is below the threshold λ), whereas Aij = 0 indicates either an outaged line or one that exceeds the

permissible loading limit. The corresponding edges or elementsAij are effectively set to zero, capturing

the reduction in the network’s functional connectivity when multiple lines are outaged or heavily loaded.

2.2.2. Representation of subgraph patterns

Building on this functional representation of line loading, subgraph patterns provide a systematic view to

capture and categorize the network’s evolving structure under various outage scenarios. A contingency

motif is an outage subgraph set and refers to a recurring structural pattern that appears significantly

more often than other possible outages and depends on various factors, such as frequency of occur-

rence and number of failed components (k). Formally, sk,i is a subgraph formed by the outage of k

lines, where k is the number of edges in the subgraph and i indexes the various distinct subgraphs of

size k, then

Sk,i =
{
s
(1)
k,i , s

(2)
k,i , . . .

}
(2.22)

is the set of all subgraphs in the network that are isomorphic to sk,i. In a real power system, each

outage configuration involving k lines can be mapped to one such isomorphism class.

In general, whenever an N − k contingency occurs, it is visualized in the image by highlighting the

pattern with k transmission lines (edges). The examples provided below are representative patterns

Sk,i that may appear most in the network graph. These are the crucial contingencies in a cascade

from N − 1 to N − 5 because they are prioritized for detailed analysis. While the specific shapes and

isomorphism classes depend on the topology of G, the following common subgraph types are broadly

illustrative.

The mathematical descriptions in Table 2.1 represent different contingency patterns. S1,1 describes a

single edge (e) removal, where e ∈ E. For k = 2, S2,1 represents two edges sharing a common node,

i.e., (e1, e2) ∈ E where {e1, e2} share a node, whereas S2,2 corresponds to two edges that do not share

a node, meaning (e1, e2) ∈ E but {e1, e2} do not share a node. Moving to k = 3, S3,1 is a three-edge

star where all three edges meet at a single node, such that (e1, e2, e3) ∈ E and {e1, e2, e3} share a node.

S3,2 consists of two edges sharing a node while the third edge is disconnected, meaning (e1, e2, e3) ∈ E,

where {e1, e2} share a node, but e3 is disconnected. S3,3 forms a path where each edge shares a node

with the next, such that (e1, e2, e3) ∈ E, where e1 shares a node with e2, and e2 shares a node with

e3. S3,4 represents a closed loop or triangle, where (e1, e2, e3) ∈ E form a cycle. In contrast, S3,5

consists of three disconnected edges, meaning (e1, e2, e3) ∈ E, with no shared node among them. For

k = 4, S4,1 represents four edges meeting at a single node, meaning (e1, e2, e3, e4) ∈ E with all edges

sharing a node. S4,2 consists of three edges sharing a node while the fourth edge is either disconnected

or forms a small chain, i.e., (e1, e2, e3, e4) ∈ E. S4,3 consists of four edges with two common nodes,

where three edges share one node and the fourth shares another, meaning (e1, e2, e3, e4) ∈ E. S4,4

forms an open quadrilateral or 4-cycle, meaning (e1, e2, e3, e4) ∈ E where the edges form an open
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Pattern Visual Outages Description
k = 1: N-1 Contingency

S1,1 1 e ∈ E

k = 2: N-2 Contingency

S2,1 2 (e1, e2) ∈ E, {e1, e2} share a node

S2,2 2 (e1, e2) ∈ E, {e1, e2} do not share a node

k = 3: N-3 Contingency

S3,1 3 (e1, e2, e3) ∈ E, {e1, e2, e3} share a node

S3,2 3 (e1, e2, e3) ∈ E, {e1, e2} share a node, e3 disconnected

S3,3 3 (e1, e2, e3) ∈ E, e1 with e2, e2 with e3

S3,4 3 (e1, e2, e3) ∈ E, closed loop

S3,5 3 (e1, e2, e3) ∈ E, no shared node

k = 4: N-4 Contingency

S4,1 4 (e1, e2, e3, e4) ∈ E, all share a node

S4,2 4 (e1, e2, e3, e4) ∈ E, three share a node, e4 forms chain

S4,3 4 (e1, e2, e3, e4) ∈ E, three share a node, fourth shares another

S4,4 4 (e1, e2, e3, e4) ∈ E, open loop

S4,∗ - 4 Other subgraphs of four edges

Table 2.1: PATTERNS FOR N − k CONTINGENCY (LINE OUTAGE SUBGRAPHS)

loop. Finally, S4,∗ is an umbrella representation and includes all other possible four-edged subgraphs

that are not explicitly covered by S4,1 to S4,4. As k increases, the number of isomorphism classes

grows rapidly. The specific definitions of subgraphs with k > 4 are not considered due to their rare

occurrence and the system operator’s ability to spot a cascade before this and take appropriate action.

These subgraph patterns provide insights into how real outages tend to cluster around certain key

network features, such as single high-degree nodes (substations) or small loops, and can guide future

analysis to improve contingency screening.

An example of such subgraph patterns is illustrated in Figure 2.5. It can be observed from the IEEE

39-bus power network schematically shown in the image and used in this study. Substations (or buses)

correspond to the network nodes and are represented as blue circles with node numbers, and trans-

mission lines correspond to the edges represented as black lines connected to these blue nodes.

A k-edge subgraph in the IEEE 39-bus network is defined by choosing k edges (lines) and the incident

nodes. In Figure 2.5, the set of lines Line 01 − 02 and Line 01 − 39, which are lines between

buses 1, 2 and 1, 39, forms a two-edge subgraph. This corresponds to an N-2 contingency and is a

subgraph of pattern S2,1 . Similar examples of N-3, and N-4 are represented in pink and green in

figure 2.5 where the green one represents pattern S4,3 while pink represents S3,4 . Meanwhile,

purple (S3,1 ) and blue (S3,3 ) represent other types of subgraphs that can occur when an N-3
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Figure 2.5: IEEE 39-bus network with highlighted subgraphs illustrating examples of N − 2, N − 3 and N4 line outages (layout
is not geographic)

contingency happens.

In Figure 2.5, consider a subgraph induced by the edges Line 01 − 02, Line 01 − 39 and Line 02 − 03,

Line 02 − 04. These edges might be arranged in the same pattern as , yet they may differ in which

specific nodes of the IEEE39 system they connect.

2.2.3. Identification of an N − k cascade contingency motif

In this subsection, using the probabilities of patterns corresponding to cascading scenario, motifs will

be identified. The pattern of the outage is critical and needs to define the probability of the pattern Sk,i.

Uniform Probability

A simple baseline assumption is that, for a total number of buses N , there are
(
N
k

)
possible k-edged

subgraphs that can be formed, each corresponding to a potential set of transmission line failures. This

assumption follows from the idea that each subset of k lines is equally likely to be outaged or a uniform

distribution. This uniform probability of a specific subgraph occurring or punisk,i
is given by:

punisk,i
=

1(
N
k

) (2.23)
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When we group isomorphic k-edge subgraphs into a pattern Sk,i, the probability for a given pattern

under the uniform distribution is similarly defined. This reflects the equal likelihood of each pattern (or

isomorphism class) being selected when a failure scenario occurs.

Puni(Sk,i | k) =
|Sk,i|(

N
k

) (2.24)

|Sk,i| is used primarily as it is the number of distinct k-edged subgraphs in the isomorph class Sk,i.

Empirical Probability

In case of where the outage data, especially in [29], certain groups of transmission lines share the

same pattern frequently than the uniform assumption would suggest. The probability of the subgraph

can be estimated directly from the outage data using the two parameters nk and nk,i and is given as:

P (Sk,i|k) =
nk,i

nk
where

∑
i

nk,i = nk (2.25)

where nk is the count of total observed contingencies involving k lines and nk,i is the number of those

nk contingencies whose induced subgraph is sk,i. Topological and operational factors could increase

the probability of certain multi-line outages.

Adapting this idea to power grids, a motif is a k−edge subgraph (Sk,i) whose empirical probability (PSk,i
)

of occurrence exceeds its expected probability under the uniform assumption. If

P (Sk,i | k) > a× Puni(Sk,i | k) (2.26)

then Sk,i is a motif. The parameter a defines the threshold above which the observed occurrence

of a pattern is considered statistically significant when compared to its expected frequency under the

uniform baseline distribution. Bayesian hypothesis testing can determine if a subgraph falls under the

bracket of a motif. The problem for a is given as

H0 : P (Sk,i | k) ≤ a× P uni(Sk,i | k) (2.27)

versus H1 : P (Sk,i | k) > a× P uni(Sk,i | k) (2.28)

Rejecting H0 indicates that the pattern’s empirical frequency is unlikely to be explained by the uniform

baseline alone, i.e., the pattern is a genuine motif.
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2.2.4. Probabilities of multiple line outages

Out of all the motifs, certain subgraphs may be disconnected, indicating all those lines that do not share

a common bus and are sometimes separated by several nodes. Disconnected motifs can span differ-

ent physical regions of the network and, thus, have a larger diameter. The importance of disconnected

subgraphs lies in their role in understanding power system vulnerabilities. They can indicate weakly

connected regions of the grid, where failures may propagate differently compared to highly intercon-

nected areas. The diameter of a subgraph (dSk,i(Ex, Ey)) is the largest distance in the network which

separates the two lines x and y.

dSk,i(Ex, Ey) = max
x,y∈Sk,i

d(Ex, Ey) (2.29)

Now, this network distance is defined using nodes, where the distance between two lines in a discon-

nected subgraph is given by the number of lines connecting the nodes that link these lines [39]. Empiri-

cal studies in [46] show that the diameter of a subgraph in a network follows Zipf’s law, which describes

a power-law relationship between an element’s rank and its frequency. This means that the distribu-

tion of subgraph diameters exhibits a heavy-tail behavior, where smaller diameters are more common,

while larger diameters occur with lower probability. However, despite their rarity, high-diameter sub-

graphs do appear, indicating that line outages can occur far apart within the network structure. Most

of the multi-line outages occur among lines that are physically closer to one another because of the

topological properties. These are the patterns that are more likely to show up as motifs.

Probability of k line Outages - P (k)

An important part of themodel for determiningmulti-line outage probability is understanding P (k), which

represents the likelihood that exactly k transmission lines fail at the same time in an N −k contingency

event. In power grids, different k−line outages occur with varying frequency. For example, k = 1

or typical single-line outages are far more common than k = 4 or quadruple-line outages. Formally,

estimating the rate of each k-contingency in historical or simulated data gives us:

P (k) =
nk∑
l nl

(2.30)

where nk is the counted or estimated number of k-line outages and the denominator sums all the l−line

events considered. Thus,

P (k) =
nk

n2 + n3 + n4
, k = 2, 3, 4 (2.31)

The distribution for k is observed next, where a network is considered, and the outages are simulated

to estimate their probabilities.
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Probability of a pattern given k-line outages - P (Sk,i | k)

Within the network space, divided into k-line subgraphs, some of these subgraphs are motifs, denoted

as Sk,i. Mathematically, let Gk = {Ex ⊆ E | |Ex| = k} represent the set of all k-line subgraphs, where

Ex is a subset of k transmission lines from the set E = {e1, e2, . . . , enL
} in the network. Thus, the set

of all possible k-line subgraphs in the network is given by:

Gk = {Sk,i ⊆ E | |Sk,i| = k} (2.32)

The subgraph Sk,i is a subset of Gk, and it is characterized by its unique configuration in the network.

The probability of a pattern given k-line outages can be denoted as P (Sk,i | k), which is the empirical

probability dependent on the count of total observed contingencies involving k-lines and the number of

those contingencies whose induced subgraph belongs to the pattern sk,i. Mathematically, this can be

expressed as:

P (Sk,i | k) =
nk,i

nk
where

∑
i

nk,i = nk (2.33)

Probability of the contingency diameter given its pattern - P (d | Sk,i)

In addition to identifying whether a particular subgraph sk,i belongs to a specific pattern Sk,i, incorporat-

ing diameter information can enhance the probabilistic model. This modeling step refines the multi-line

outage representation by distinguishing not only whether lines fail in a given topological pattern but also

how widely separated those lines can be in the network. The diameter of a subgraph provides valuable

insight into the network’s structural properties, such as the maximum distance between any two lines

within the subgraph. This information is crucial because it helps quantify the spatial extent of the failure

and how it might influence the propagation of disruptions throughout the network. The diameter of a

subgraph (dSk,i(Ex, Ey)) is the largest distance in the network which separates the two lines x and y.

Hence, a disconnected subgraph has d > 1, while a fully connected subgraph has d = 1. Thus, it can

be assigned as,

P (d | Sk,i) = 1 for P (d | connected) (2.34)

Other patterns that are disconnected form multiple clusters of 1 or more lines in separate parts of

the network. In larger outages, some lines might be grouped around one substation, while others

are far away, leading to subgraphs with multiple components. In such cases, the diameter can vary

more widely. Empirically, to capture this variability, the P (d | disconnected) can be estimated from the

observed data on the disconnected subgraphs. Specifically if there areNdisconnected total disconnected
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subgraphs in the data and Ndisconnected,d of those have a diameter d then

P (d | disconnected) = Ndisconnected,d

Ndisconnected
(2.35)

P (d) can be the collection of all disconnected patterns.

Higher-order patterns denoted as Sk,∗ have a relatively low probability P (d | Sk,i) compared to the

others. This low probability often corresponds to rare occurrences, where the exact diameter d of a

subgraph is difficult to predict due to its infrequency. In these cases, it is practical to simplify the model

by treating these rare subgraphs similarly to connected ones, assigning a probability P (d | Sk,∗) = 1

to represent that they are likely fully connected or exhibit a near-fully connected structure. Since Sk,∗

rarely occurs, any small inaccuracy in the diameter calculations does not substantially affect the overall

outage distribution.

In summary, the diameter conditional distribution of a pattern Sk,i can be estimated by

P (d | Sk,i) =


1, Sk,i is connected subgraph,

P (d | disconnected), Sk,i is a disconnected subgraph,

1, Sk,∗ is rarely observed subgraph.

A probability of 1 indicates certainty, meaning the event always occurs. In this model, it reflects simplifi-

cations: for connected subgraphs, the diameter is fixed; for disconnected subgraphs and rare patterns,

it’s assumed deterministic based on observed behavior. Thus, assigning a probability of 1 helps simplify

the modeling process.

Probability of a contingency given its pattern and diameter (P (sk,i | Sk,i, d))

The assumption that an individual subgraph sk,i belonging to a specific pattern Sk,i with diameter d is

uniformly distributed can be expressed mathematically as:

P (sk,i | Sk,i, d) =
1

|Sd
k,i|

(2.36)

where |Sd
k,i| is the number of distinct k−edge subgraphs in pattern Sk,i with diameter d. This is an

approximate estimate gotten by enumerating or stochastically sampling subgraphs that meet the pattern

and diameter criteria, as directly calculating the exact probability distribution can be computationally

expensive and complex.

Total probability of a multi-line outage subgraph

The probability of a cascading failure involving multiple line outages can be formally expressed using

conditional probabilities. For a set of outages, the probability of a cascading failure, where the failure

of the first k − 1 lines causes the failure of the kth line, can be written as:
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P (Sk | Sk−1) = P ({ℓ1, ℓ2, . . . , ℓk} | {ℓ1, ℓ2, . . . , ℓk−1}) (2.37)

where Sk = {ℓ1, ℓ2, . . . , ℓk} is the event where kth line fails and Sk−1 = {ℓ1, ℓ2, . . . , ℓk−1} is the event

where the first k−1 lines fail. This conditional probability represents the likelihood of the k-th line failing

given that the first k− 1 lines have already failed, capturing the cascade effect where the failure of one

line increases the probability of subsequent failures. The probability of observing any particular k-line

subgraph sk,i in the network:

P (sk,i) = P (k, Sk,i, d, sk,i) (2.38)

= P (k)× P (Sk,i | k)× P (d | Sk,i)× P (sk,i | d, Sk,i) (2.39)

This systematically accounts for which pattern arises among the k−line outages and how far apart those

outaged lines are in the network (d). Thus, multi-line outage events can be precisely characterized and

modelled by partitioning the contingency space, first by k, then by pattern Sk,i, and finally by diameter,

including those that form motifs or span widely separated parts of the grid.

2.3. Risk Assessment of Cascading Events

The stochastic and sequential nature of these events, coupled with growing system stresses from

market dynamics, renewable integration, and operational policies, necessitates advanced techniques.

Effective risk analysis must address computational challenges, quantify initial probabilities, and analyze

the impact of failures to provide actionable insights. In real-time or near real-time operation, the risk

assessment informs critical actions such as imposing power transfer limits, arming or disarming system

integrity protection schemes, and adjusting relay settings to manage short-term risk while balancing

speed and accuracy. During operational planning, actions like dispatching reserves to alter power flows,

providing voltage support, warming up generating units, and preparing restoration plans can be made

using the risk rankings. Over longer timescales, risk assessment aids in infrastructure investments,

protection setting evaluations, regulatory adjustments, and system improvements.

The risk of a cascading outage is the expected value of impact considering two major factors: the

probability of a k-line outage (cascade) and the impact/cost associated with the outage. The cascade

impacts are estimated using time domain solutions of a disturbance. The risk assessment for cascad-

ing outages is crucial for enhancing the reliability of power systems. While security assessments, as

required by standards such as NERC PRC-023 and FAC-011-2, focus on ensuring that operating limits

are established to prevent cascading failures, they do not directly assess the associated risk value of

such events. As [30] suggests, current tools for assessing andmitigating the risks of cascading outages

are still underdeveloped.
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2.3.1. Overview of Risk in Power Systems

Risk in power systems is fundamentally concerned with the uncertainty of future events and the potential

impact of these events on the system performance. The challenge is the uncertainty of operation sce-

narios, where prospective scenarios are difficult to predict with certainty. Data on historical operations

offers a retrospective view, providing insights into past system behaviour, but is limited in predicting

future outcomes.

In the context of cascading failures, risk assessment involves understanding how initial failures, such as

generator outages or line faults, may propagate through the system, potentially leading to large-scale

outages. This requires amodel of the system and the events that could occur within it, with performance

measures incorporating the uncertainty inherent in future events to ensure reliability and system secu-

rity. Reliability in this context is the ability of the system to meet the load demand without failure, while

system security refers to the system’s capacity to respond to faults and disturbances. The concept of

risk arises from the possibility of failures within this system that may disrupt its functionality. With the

liberalization of energy markets, power systems have become more fragmented, with various actors

involved, including producers, consumers, transmission system operators (TSOs), and distribution sys-

tem operators (DSOs). Each of these actors may have different views on risk. For example, losing

stability is equivalent to a disruption in supply, which is prioritized by both the TSOs and consumers.

Understanding and managing risk in this context requires considering both the likelihood (probability)

of an event occurring and its potential impact, which can vary from load losses and system security

estimation to safety hazards or environmental consequences. In this context, where the perspective

of a TSO is taken into account, the risk of the cascade is represented as a product of the probability of

the occurrence of a particular cascade scenario and the impact that scenario causes:

Risk = Probability× Impact (2.40)

Since probability is dimensionless, the risk inherits the same units as the impact. As a result, risks can

be directly compared to other impact metrics without any unit conversion.

2.3.2. Calculating Impact Metrics

Impact, in the context of cascading failures in power systems, refers to the effects of a specific set

of line outages on the stability and performance of the grid. This impact metric can be assessed us-

ing key performance indicators such as generator short-circuit (SC) current contributions or peak rotor

angle deviations. Based on [40] and its emphasis on dynamic security metrics, a suitable impact met-

ric is proposed for estimating the risks using the probabilities and compared with another metric for

verification.



3
Methodology

3.1. PCM for N − k critical cascade risk rankings

The entire workflow is provided in Figure 3.1. First, a contingency analysis is performed to select

critical contingencies based on a threshold. The selected contingencies are checked for motifs based

on their uniform and empirical probabilities. By focusing on motifs, the most impactful and recurrent

patterns are prioritized, significantly enhancing the efficiency of risk assessment. Once the cascade

probabilities have been obtained, an impact function is formulated for each operating condition using

the ISC contributions of generators on the cascade, the electrical distance from the generators to fault

location calculated using the modified Z-Bus matrix and the LODF sensitivities obtained with power

flow redistribution. Both probability and impact are used to calculate risks of contingencies, which are

ranked, and the contingencies with high risk are selected to perform dynamic security assessments

and develop control strategies.

3.2. Network structure based probability analysis workflow

In [29], the authors perform a PCM analysis on the BPA transmission line network of 528 lines with

data obtained from historical outages. The outcome was to obtain the multi-line outage probability of

various k−edge subgraph patterns occurring in the network. This probability used various important

calculations such as the probability of k line outages - P (k), empirical probability of a pattern - P (Sk,i |

k), the probability that specific pattern Sk,i has diameter d - P (d | Sk,i) and the probability of specific

multiple contingencies given its pattern and diameter - P (sk,i | d, Sk,i). The probability was calculated

48



3.2. Network structure based probability analysis workflow 49

Figure 3.1: PCM Workflow
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as

P (sk,i) = P (k)× P (Sk,i | k)× P (d | Sk,i)× P (sk,i | d, Sk,i) (3.1)

However, to consider a subgraph pattern as a contingency motif, the authors use uniform probability -

Puni(Sk,i | k) and empirical probability - P (Sk,i | k). The empirical probabilities are compared to the

uniform probabilities, and only those subgraphs occurring in networks which have a higher empirical

probability by a factor of a, are considered PCMs.

P (Sk,i | k) > a · Puni(Sk,i | k) (3.2)

nk,i

nk
> a · |Sk,i|(

N
k

) (3.3)

The threshold factor a determines the deviation required for a pattern to be considered significant. Its

choice determines the selection of contingency motifs: higher values of a filter out less significant

patterns, while lower values include more patterns. This comparison highlights patterns that are not

random but instead represent topological dependencies in the grid, making them critical for analyzing

cascading failures. The objective here is to outline PCM formations with the help of graph theory and

network structure. The probabilistic analysis is performed using the NetworkX package in Python. It is

a Python package for the creation, manipulation, and study of complex networks of nodes and edges. It

is preferably used here as it excels in handling large-scale graph-based problems by supporting various

graph representations.

3.2.1. Performing contingency analysis

Power system contingency analysis plays a crucial role in assessing the resilience of the grid against

outages. Here, the DIgSILENT PowerFactory is used to perform contingency analysis [41], evaluating

the impact of line outages on system stability. The process begins with defining contingency scenarios,

where different levels of failures (N-1, N-2, N-3, etc.) are considered for E transmission lines in the

network.

N-1 contingency = {ei}, ei ∈ E

N-2 contingency = {ei, ej}, ei, ej ∈ E, i ̸= j

N-k contingency = {e1, e2, . . . , ek}, ei ∈ E, i = 1, 2, . . . , k

(3.4)

Each scenario is analyzed using power flow calculations to identify overloaded transmission lines and

quantify their loading percentages under contingency conditions. Once the contingency analysis is
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finished on the whole network, the results are extracted into a structured database. The database

records each affected transmission line along with its corresponding loading percentages (continuous

and short-term) and the contingency name, which encodes the sequence of outaged lines (1 line in

N-2, 2 lines in N-3 and so on). This structured dataset allows for a systematic evaluation of overloading

patterns across different contingency levels. The extracted information is then used to filter high-risk

scenarios based on continuous overloading thresholds, such as identifying components exceeding ω%

of their rated capacity.

The contingency database serves as the foundation for building a network representation of cascading

failures. Using the NetworkX package, a graph G = (J,E) is constructed, where J represents trans-

mission lines and E captures dependencies between contingencies. The connectivity of G is given by

the adjacency matrix A:

Aij =

1, (i, j) ∈ E

0, otherwise
(3.5)

Similarly, the contingency-line relationships are stored in the incidence matrix B:

Bik =

1, i ∈ k

0, otherwise
(3.6)

This network model represents the dependencies between affected components, enabling further iden-

tification and classification of contingency patterns.

3.2.2. Pattern Classification and identification of PCMs

The first step is to classify subgraphs within the network into various patterns (Sk,i) mentioned in the-

ory. Each subgraph represents a specific configuration within the network’s structure, such as indi-

vidual connections between specific nodes or common patterns. These patterns are identified within

the graph to analyze dependencies and interactions among the affected components. The transmis-

sion network, represented as a graph G = (J,E) with J nodes and E edges, is defined using the

function Graph() in the networkx package. k−edged subgraphs (sk,i) are extracted efficiently

with methods G.edge_subgraph(E) . Once these subgraphs are extracted, they are classified ac-

cording to predefined patterns based on their topological features. sk,i are then classified based on

their characteristics such as connectivity to assign them their respective subgraph name using var-

ious functions such as networkx.is_connected() to check if the subgraph is fully connected and

networkx.spring_layout() . After classifying the subgraphs sk,i into predefined patterns Sk,i, the

frequency of each pattern in the graph G is recorded. Let N(Sk,i) denote the number of occurrences
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of pattern Sk,i in G. Then, we define:

N(Sk,i) =
∑
s∈G

1(s ∼= Sk,i) (3.7)

where 1(s ∼= Sk,i) is an indicator function that equals 1 if the subgraph s is isomorphic to the pattern

Sk,i, and 0 otherwise. These counts N(Sk,i) serve as input for computations in subsequent steps.

Uniform Probability Calculation

The uniform probability calculation begins with determining the total number of possible k-edge sub-

graphs, denoted as Nk. The uniform probability of a specific k-edge subgraph sk,i occurring is given

by:

punisk,i
=

1

Nk
=

1(
N
k

) (3.8)

When considering isomorphic k-edge subgraphs grouped into subgraphs Sk,i, the probability of a given

subgraph under the uniform assumption is:

P uni(Sk,i | k) =
|Sk,i|
Nk

=
|Sk,i|(

N
k

) (3.9)

where |Sk,i| represents the number of distinct k-edge subgraphs belonging to the isomorphism class

Sk,i. This formulation ensures that each subgraph is weighted according to its occurrence frequency

while maintaining the uniform probability assumption. This approach reflects the assumption that any

subset of k edges is equally likely to be selected, leading to a uniform probability distribution over all

possible failure scenarios.

Empirical Probability Calculation

The empirical probabilities are determined by analyzing unique subgraphs containing k edges in the

network. The process begins by extracting all edges from the graph and generating combinations of

edges of size k using the itertools.combinations(edges, k) module in Python, where edges is the

list of all edges in graphG, obtained using G.edges() in NetworkX. To maintain uniqueness, each edge

is included in only one subgraph. Once the unique k-edge subgraphs are identified, each subgraph is

analyzed to determine its structural pattern based on node relationships. Patterns such as , ,

, , are used as reference structures. For each identified pattern Sk,i, the count of its unique

occurrences, nk,i, is determined. The empirical probability P (Sk,i | k) is then computed as:

P (Sk,i | k) =
nk,i

nk
(3.10)

where nk is the total number of observed patterns, calculated as the sum of all pattern counts in the sub-

graphs. In this context, a key distinction between empirical and uniform probabilities is the treatment

of subgraph occurrences. The empirical approach focuses on analyzing unique subgraphs without
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considering the sequence in which failures occur. In contrast, the uniform probability approach as-

sumes an equal likelihood of all possible failure sequences, considering the order in which edges may

be removed. This differentiation is crucial in interpreting the empirical results in contrast to uniform

expectations.

Hypothesis testing for identifying PCMs

According to Equations 2.27 and 2.28, hypothesis hypothesis-testing methodology to detect PCMs is

implemented programmatically. The null hypothesis H0 assumes that the probability of observing a

specific contingency pattern under empirical conditions is less than or equal to a uniform condition.

Conversely, the alternate hypothesis H1 is also defined. To implement this methodology programmati-

cally, a Boolean function is defined to evaluate whether a given subgraph satisfies the motif condition.

The function returns:

• True, if P (Sk,i | k) > a× P uni(Sk,i | k), indicating that the subgraph is statistically significant or a

PCM, rejecting H0 and accepting H1.

• False, otherwise, implying that the subgraph does not meet the significance criterion, failing to

reject H0.

This automated approach provides a reproducible and scalable framework for hypothesis testing across

various k-edge subgraph patterns in large networks. The output of the function can be represented as

a list of sets:

M = {Sk,i | P (Sk,i | k) > a× P uni(Sk,i | k)} (3.11)

or equivalently as a set of lines, where each line corresponds to a detected PCM.

3.2.3. Contingency enumeration and probability of line outages

The PCM setM is used further to determine the probability of k−line outages P (k) for each subset.

This is the first critical component in estimating the probability of multi-line outage estimation. It is

calculated using Equations

P (k) =
nk∑
l nl

(3.12)

where nk is the counted or estimated number of k-line outages and the denominator sums all the l−line

events considered. Thus,

P (k) =
nk

n2 + n3 + n4
, k = 2, 3, 4 (3.13)

Contingencies involving more than four line outages (k > 4) are excluded from the analysis due to their

very rare occurrence. In typical systems, the probability of such higher-order outages is extremely low

because the conditions required for multiple line failures are highly unlikely. This inherent rarity is a con-

sequence of the system’s robustness and the protective measures in place, which prevent widespread

disruptions. As such, excluding k > 4 from the analysis is justified in most practical scenarios.
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Pattern-based probability of contingency-diameter

The probability P (d | Sk,i) is implemented using the NetworkX library by differentiating between con-

nected and disconnected subgraphs. This is because, as explained earlier, this probability for a con-

nected subgraph pattern Sk,i ∈ SC is constant and directly taken to be 1 due to its diameter being

1. For disconnected subgraphs Sk,j ∈ SD, the diameter is calculated empirically. To achieve this, all

possible subgraphs with up to k edges are generated from the main network G using combinations of

edges. Subgraph connectivity is checked using networkx.is_connected(subgraph) . If the subgraph

is connected, no further processing is needed; otherwise, the subgraph’s diameter must be calculated.

For disconnected subgraphs, the diameter is determined by measuring the maximum shortest path

distance between any two edges in the subgraph. This process starts by considering all pairs of edges

in the subgraph and using networkx.shortest_path(G, source=node1, target=node2) to evaluate

the shortest path between their nodes. If no path exists between the nodes, networkx.NetworkXNoPath

exception is raised and caught, skipping the pair to prevent errors. For each pair of edges, the shortest

path is computed, and the length of the path (measured in terms of the number of nodes) is considered

the distance between the two edges. The smallest distance between any two nodes of an edge pair is

recorded, and the maximum of these minimum distances across all edge pairs is taken as the diameter

of the disconnected subgraph. The diameter d for a disconnected subgraph Sk,j is given by:

diameter(Sk,j) = max
ei,ej∈Sk,j

min
vi∈ei,vj∈ej

dist(vi, vj), (3.14)

where dist(vi, vj) is the shortest path between nodes vi and vj , and the minimum is taken over all edge

pairs ei, ej in the disconnected subgraph Sk,j . Finally, the probability P (d | disconnected) for each

diameter d is calculated by dividing the number of subgraphs with diameter d by the total number of

disconnected subgraphs. In mathematical form:

P (d | disconnected) = Nd

Ntotal
, (3.15)

where Nd is the number of disconnected subgraphs with diameter d, and Ntotal is the total number of

disconnected subgraphs.

Pattern and diameter based contingency probability

The primary assumption is that an individual subgraph sk,i belonging to a pattern group Sk,i with a

given diameter d is uniformly distributed. This can be expressed mathematically as:

P (sk,i | Sk,i, d) =
1

|Sd
k,i|

, (3.16)

The process begins by identifying disconnected subgraphs that match specific PCMs, such as S2,2

( ), S3,2 ( ), S3,5 ( ), and S4,2 ( ). The disconnected subgraphs with k ≥ 4 are not con-
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sidered due to their rare occurrence, cascade identification before this moment, and the fact that they

cannot be a PCM. This exclusion can be justified under any setup, especially in typical power sys-

tem networks, where subgraphs with high edge counts are less likely to form power system contin-

gency patterns. Additionally, these larger subgraphs are generally part of cascading events, which

are outside the scope of initial PCM identification. This is done using the following combinatorial ap-

proach: itertools.combinations(G.edges(), len(subgraph.edges())) , where a specific pattern

is targeted based on the number of nodes, edges, and the types of connections it possesses. For each

such pattern, the diameter is calculated as:

diameter(Sk,i) = max
ei,ej∈Sk,i

min
vi∈ei,vj∈ej

dist(vi, vj), (3.17)

The frequency of each diameter across the subgraphs is tracked. This frequency is the number of

distinct subgraphs for the pattern Sk,i with diameter d, denoted by |Sd
k,i|. The probability P (sk,i | Sk,i, d)

for each diameter d is the inverse of this frequency, expressed as:

P (sk,i | Sk,i, d) =
1

|Sd
k,i|

. (3.18)

These probabilities are computed for all diameters in the range of interest (typically from 2 to 11), as

diameters larger than these are of very rare occurrence in any typical power system network. Mathe-

matically, this can be represented as:

P (d | Sk,i) =
1

|Sd
k,i|

, for d ∈ {2, 3, . . . }. (3.19)

This probability distribution provides insight into the likelihood of specific contingency patterns occurring

in the system based on their diameter.

Multi-line outage probability or probability of a specific cascade scenario

Thus, using all four calculations, the multi-line probability for each specific PCM and for all diameter

values from dmin to dmax is calculated as - P (sk,i).

P (sk,i) =
nk∑
l nl
· nk,i

nk
· P (d | disconnected) · 1

|Sk
k,i|

(3.20)

This results in a matrix where for each type of subgraph pattern, the probabilities of outages for each

unique diameter value based on the diameter of that specific subgraph are obtained.
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3.3. Critical line impact assessment

This section provides the methodology for identifying the impact If of experiencing a contingency of

the selected critical lines using short circuit analysis and is aimed at identifying the potential risk of a

specific set of cascade line outages.

Figure 3.2: Flow of Impact If calculation using critical lines, SC-simulations and Zbus

The section shows systematic steps that provide a precise and quantifiable value of the impact If of

a cascade scenario. The method of calculating If is provided in Figure 3.2. Once critical lines are

identified using contingency analysis, simulated outages such as short circuit and switching events are

introduced into the network model within DigSILENT PowerFactory. Python scripts automate the pro-

cess of systematically removing these lines and performing short circuit analysis along with powerflows,

sensitivity analysis and electrical distance calculations for obtaining If and allowing for the examination

of various outage scenarios for various dispatch conditions.

3.3.1. Calculation of impact for risk

The assessment of the impact If of a specific fault or contingency scenario is a critical aspect of

power system stability analysis. In this work, we introduce a novel short-circuit-based impact factor

to measure and rank contingencies. Unlike traditional state-of-the-art metrics, our proposed approach

explicitly incorporates the contribution of each generator to the short-circuit current, weighted by its
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sensitivity and electrical distance from the fault location. This formulation provides a more intuitive and

physically meaningful measure of the system’s vulnerability to faults. To define If , we first consider

the Line Outage Distribution Factor (LODF), which quantifies the sensitivity of power flow redistribution

following a line outage. Given a fault at location f , If is computed by integrating the short-circuit

contributions of all generators. Each generator’s contribution is scaled according to its LODF sensitivity

(weight) and electrical distance from the fault. The formulation is expressed as:

Impactf =
1

Ng

Ng∑
g=1

(
LODFgf ×

ISC,gf
Dgf

)
(3.21)

If =
1

Ng

Ng∑
g=1

(
wgf ×

ISC,gf
Dgf

)
(3.22)

WhereNg is the total number of generators in the system, ISC,gf represents the short-circuit contribution

of generator g to the fault at location f ,Dgf denotes the electrical distance between generator g and the

fault location f and wgf = LODFgf is the weight assigned to each generator’s contribution based on its

sensitivity. The short-circuit currents are computed using standard fault analysis techniques, consider-

ing the network topology, impedance, and pre-fault operating conditions. The electrical distance Dgf

is typically determined based on impedance or Z-bus matrices, providing a measure of the strength

of the electrical connection between the generator and the fault. Normalization by Ng ensures that If
remains independent of system size, enabling fair comparisons across different power networks. This

is a significant advantage over conventional approaches that may inherently favor larger systems due

to their greater number of generators and overall short-circuit capacity. By incorporating both sensitivity

and electrical distance, our proposed metric provides a more comprehensive and physically meaning-

ful ranking of contingencies, allowing system operators to prioritize faults that have the most severe

impact on stability and reliability.

3.3.2. Generator short circuit contributions (ISC,gf )

A critical aspect of fault impact assessment in power systems is quantifying each generator’s short-

circuit (SC) contribution to a faulted location. Larger SC contributions lead to higher fault currents and

increased electrical stress on equipment. The magnitude of the SC current contributed by a generator

depends on its internal impedance, its electrical distance from the fault, and the network topology. For

a generator connected to bus g and a fault at location f , the SC current contribution is given by:

ISC,gf =
Eg

Zeq,gf
(3.23)

where Eg is the internal generator voltage considering transient reactance, and Zeq,gf is the equivalent
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impedance between generator g and the fault location f . The total fault current at f is the sum of

contributions from all Ng generators:

ISC,total,f =

Ng∑
g=1

Eg

Zeq,gf
(3.24)

To assess If , the absolute SC current values are combined with sensitivity factors (e.g., PTDF/LODF)

and electrical distance metrics derived from the Z-bus matrix introduced in further subsections. This is

performed over the list of branches and each line which can participate in the cascade and provides

an overview of how short-circuit faults affect the system, including the contributions from individual

generators and their relative impact based on their location in the network.

3.3.3. Weighting factors, LODF sensitivities (wgf )

To accurately estimate the overall If of generators on an outage, it is essential to account for varying

contributions. These can be captured using weighting factors derived from sensitivity metrics, such

as Line Outage Distribution Factors (LODFs), computed through load flows and contingency analysis.

LODFs are critical sensitivity metrics used to quantify how the power flow on other lines in the system

is redistributed when a specific transmission line is taken out of service. The LODF for a line l under a

contingency f is defined as:

LODFl→l′(f) =
∆Pl′(f)

∆Pl(f)
(3.25)

where ∆Pl′(f) is the change in power flow on line l′ due to the outage of line l, and ∆Pl(f) is the

change in power flow on line l due to the outage of line l. To compute the generator’s contribution to

the line’s power flow during the contingency, we use the LODF to adjust each generator’s contribution

based on how much the outage of line l affects the overall system. The active power contribution from

generator g flowing into line l under a contingency f , adjusted by the LODF for that line, is denoted as:

Pg→l(f) = Pg(f) · LODFl→l′(f) (3.26)

where Pg(f) is the active power output of generator g under the fault scenario f .

The weighting factor wgf for a generator g when a fault occurs at point f on a specific line l reflects its

relative contribution to the power redistribution during that contingency. This is calculated by dividing

the generator’s adjusted contribution by the total active power contribution from all generators to line l.

wgf =
Pg→l(f)∑Ng

g=1 Pg→l(f)
(3.27)
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This ensures that the weights are normalized:

Ng∑
g=1

wgf = 1 (3.28)

To calculate the If of all generators in the network for a specific fault scenario f , we integrate the con-

tributions of all generators in the system. The total short-circuit current contribution from all generators,

adjusted by the LODF weighting factors, can be expressed as:

Itotal(f) =

Ng∑
g=1

wgf · ISC,gf (3.29)

where ISC,gf is the short-circuit current contribution from generator g under the fault scenario f . This

method ensures that the operational dynamics of all generators are reflected accurately in If during

the contingency. Further, the electrical distance using the Zbus matrix is introduced.

3.3.4. Iteratively building the Zbus matrix

The bus impedance matrix (Zbus) represents impedances between nodes and is essential for under-

standing power network behaviour during faults, assessing stability, and modeling the network effi-

ciently. The Zbus represents the relationship between the voltage at each bus (node) and the currents

injected into the system. Each element (zij) in this matrix shows the equivalent impedance between

two buses. The Zbus matrix is essential for fault analysis, as it helps determine how faults propagate

through the system, and for stability analysis, as it reveals the system’s response to disturbances [42].

The Zbus matrix is obtained using prior information about the power system, such as the network layout

and the transmission line characteristics.

The complex impedance of each transmission line is extracted as Z = R+ jX from the network. Each

bus is represented in a vector E = [ e1, e2, ..., en ] to facilitate matrix computations. Given sorted line

data, a network graph G = (J,E) is constructed, with impedance weights Zij . The Zbus matrix is

iteratively built by processing edges in the order they appear in E, ensuring correctness in incremental

impedance updates. Each row corresponds to a bus index, ensuring unique references without explicit

numbering. The edge sequence is maintained in an ordered list to preserve consistency in updates.

Z-Bus Matrix Construction using Kron's reduction

The iterative construction of the Z-Bus matrix is done by progressively adding branches (transmission

lines) and updating impedance values. This iterative process is broken down into the following cases,

where each case represents a unique addition of an impedance element into the matrix.
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Algorithm 1 Z-Bus Matrix Construction using Kron’s Reduction

1: Input: G = (J,E), E = [ e1, e2, ..., en ]

2: Output: Zbus

3: Initialize: Zbus ← ∅

4: while ∃(i, j) ∈ E do
5: Select (i, j)→ Zij

6: if j = 0 then ▷ Case 1

7: Zbus ←
[
Zbus 0
0 Zij

]
8: else if j ∈ Zbus then ▷ Case 2

9: Zkk ← Zb + Zjj

10: Zbus ←
[
Zbus Z:,k

Zk,: Zkk

]
11: else if k ∈ N0 then ▷ Case 3

12: Zbus ←
[
Zbus Z:,k

Zk,: Zkk + Zb

]
13: Remove temporary bus p: Zbus ← Zbus − Z:,pZp,:

Zpp
▷ Kron’s Reduction for p

14: else ▷ Case 4

15: Zbus ←
[

Zbus Z:,l − Z:,k

Zl,: − Zk,: Zll + Zkk − 2Zlk + Zb

]
16: Remove temporary bus q: Zbus ← Zbus − Z:,qZq,:

Zqq
▷ Kron’s Reduction for q

17: end if
18: end while

1. Case 1 - New Bus Connected to the Reference Node: The first line is introduced with two

starting nodes. It forms a 1×1 matrix containing only its impedance value. This serves as the

foundation for expanding the matrix as new lines are added. When a new bus is connected to

the reference node through an impedance Zb, a new row and column are added to the existing

impedance matrix Zold.

Znew =

Zold 0

0 Zb


This maintains sparsity in the impedance matrix while initializing the connection of the new bus.

2. Case 2 - New Bus Connected to an Existing Bus: If a new bus is connected to an existing

bus k (which is not the reference), the impedance matrix is updated by adding a new row and

column at the end. The corresponding row and column values are extracted from the impedance

matrix for the existing bus k. With Zkk being the self-impedance of bus k before adding the new

bus, the self-impedance is updated as:

Znew
kk = Zb + Zkk
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The updated impedance matrix takes the form.

Znew =

Zold Z:,k

Zk,: Zb + Zkk


where Z:,k and Zk,: represent the respective full column and row of bus k in Zold.

3. Case 3 - Existing Bus Connected to the Reference Node: When an existing bus k is con-

nected to the reference node through Zb, a temporary new bus is added, which is later removed

using Kron reduction.

Znew =

Zold Z:,k

Zk,: Zkk + Zb


Then, Kron’s reduction given in [43] is applied by eliminating the newly introduced row and column,

modifying the impedance matrix accordingly and bringing it to the previous configuration as the

new node is not added. With Zpp as the impedance at the newly added node before elimination.

Z ′ = Znew −
Z:,pZp,:

Zpp

4. Case 4 - Existing Bus Connected to Another Existing Bus: If an existing bus k is connected

to another existing bus l via Zb, a temporary bus q is introduced to represent the connection. The

impedance matrix is first expanded as

Znew =

 Zold Z:,l − Z:,k

Zl,: − Zk,: Zll + Zkk − 2Zlk + Zb


where Zll, Zkk, Zlk represent the self and mutual impedances of buses l and k. Following this,

Kron reduction as explained in Case 3 is applied to eliminate the temporary bus q, refining the

impedance matrix.

Example of Kron’s Reduction:

Assuming the following initial impedance matrix Zold and the new connection where an existing bus k

is connected to the reference node:

Zold =

Z11 Z12

Z21 Z22


After adding bus k, the impedance matrix Znew becomes:

Znew =


Z11 Z12 Z1k

Z21 Z22 Z2k

Zk1 Zk2 Zkk + Zb


Where Z1k, Z2k, Zk1, Zk2 represent the impedance elements between the existing buses and the new
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bus k. When this bus k is removed using Kron’s reduction, the elements Z1k, Z2k, Zk1, Zk2 are elimi-

nated, and the values of the remaining impedance elements are adjusted. If we let Zkk and Zb be the

self-impedance and the impedance of the new connection, the final reduced matrix is obtained, and

the updated values represent the network’s impedance without the reference.

Z ′ =

Z11 +
Z1kZk2

Zkk
Z12 +

Z1kZk2

Zkk

Z21 +
Z2kZk1

Zkk
Z22 +

Z2kZk1

Zkk
− Z1kZk2

Zkk
+ Zb


In large-scale power systems, there may be numerous buses that are connected to a reference or

”dummy” node in Case 2 of the algorithm. Kron’s reduction allows us to eliminate such temporary

buses and simplify the impedance matrix.

The algorithm iterates through a predefined order of edges, classifying them into the above cases

based on bus connectivity conditions. It initializes the Zbus matrix with the first encountered impedance

and incrementally updates it by applying the corresponding case. The nodes are tracked in a list to

determine connectivity and decide the case for each new edge. The values from the matrix are used

to calculate the electrical distance used in If . The workflow in Python is in Appendix B.

3.3.5. Electrical distance between fault location and generator (Dgf )

A key differentiator in this approach is the use ofDgf in If . By dividing the SC contribution (wgf×ISCgf
)

by Dgf , If shows how the faults are present in-depth of the grid. This reduces the chance of overes-

timating the influence of a faraway generator and yields a more realistic sense of which generators or

lines truly drive cascading failures. Higher Dgf reduces the fault current contribution. Mathematically,

this distance can be found by examining entries of the system impedance matrix (Zbus) and through

line-by-line calculations of self and mutual impedance using matrix operations. The electrical distance

(Dgf ) of a generator bus g relative to a particular fault location f can be determined using Thevenin’s

equivalent impedance:

Dgf = Zgg + Zff − 2Zgf (3.30)

where Zgg is the self-impedance of the generator bus g and Zff is the self-impedance of the fault

location f , which is calculated from the modified Zbus matrix considering f as a new bus and following

the algorithm again. Both self-impedances are obtained from the diagonal elements of the new Zbus

matrix. Zgf is the mutual impedance between generator bus g and the fault location new bus f .

The line impedance of the fault location connecting bus i and j is defined as Zline, and the self and

mutual impedance of these buses is Zii, Zjj , and Zij obtained from the Zbus matrix. If p is the fractional

distance of the fault location from bus i towards bus j, the self-impedance at fault location f is

Zff = (1− p)2Zii + p2Zjj + 2p(1− p)Zij + p(1− p)Zline (3.31)
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This formula interpolates the impedance contributions from the buses and the line to the fault point

based on its location. For a fault at the midpoint (p = 0.5), the formula simplifies to

Zff =
1

4
(Zii + Zjj) +

1

2
Zij +

Zline

4
(3.32)

For calculating mutual impedance, we use the already existing mutual impedances between generator

bus g and the buses i and j, obtained from the modified Zbus matrix.

Zgf = (1− p)Zgi + pZgj (3.33)

For a fault at the midpoint (p = 0.5), the formula simplifies to

Zgf =
Zgi + Zgj

2
(3.34)

The formula arises from the concept that the fault location is effectively a new point on the line, and its

impedance contribution can be interpolated between the two endpoints (buses) of the line under fault.

Thus, electrical distance Dgf between fault location f on line l between bus i and j and generator g is:

Dgf = Zgg + (1− p)2Zii + p2Zjj + 2p(1− p)Zij + p(1− p)Zline − 2× Zgi + Zgj

2
(3.35)

3.4. Risk rankings and verification

The risk for fault at location f on line l defined as Rf of a specific contingency is then calculated by

multiplying the final multi-line probability for each specific contingency pattern (P (sk,i)) with the overall

impact If of that specific contingency scenario for fault at location f .

Rf = P (sk,i)× If (3.36)

Once the risks are calculated, each set of contingencies is ranked based on the risk value to identify

the most critical contingencies. This ranking is crucial in risk management as it allows TSO opera-

tors to prioritize resources and focus on the most critical issues first. High-risk contingencies often

require immediate attention and substantial mitigation strategies, whereas low-risk contingencies may

be monitored with minimal intervention. This methodology is widely applied in fields such as business

continuity planning, scenario analysis, and performance monitoring, helping TSOs allocate resources

efficiently and develop proactive strategies to reduce vulnerabilities. Resource allocation also heavily

relies on this ranked list, as it allows for the efficient distribution of limited resources. By focusing on

the highest-risk contingencies, TSOs can prevent potential disruptions from escalating into major is-

sues. Conversely, lower-priority risks can be addressed as needed, or preventive measures may be
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implemented to reduce their likelihood. Ultimately, ranking contingencies by their risk value supports

proactive decision-making, strengthens resilience, and ensures that efforts are concentrated where

they are most needed to protect the integrity and success of operations.

3.4.1. Verification of risks and associated contingency rankings

Figure 3.3: Verification after selecting critical contingency sets from risk rankings

Maximum Rotor angle deviation as a verification impact (∆θf )

While ISC,gf used for the formulation of If provides a steady-state, fault-current–based view of system

stress, there is a need for another metric that reflects the dynamic transient stability for verification.

This would allow the risk Rf to be compared and the effectiveness of the model to be analyzed. A

comparative analysis with an independent metric, such as maximum rotor angle deviation ∆θf , can

be performed. To compute this, a dynamic time-domain RMS simulation is conducted for each line

contingency, which models the system’s dynamic behaviour underN−k contingencies. The simulation

is configured with fault timing, including the fault occurrence time, location and outage time of the

line on which the fault occurs, and then k − 1 lines are sequentially switched to simulate cascading

failures. During the simulation, rotor angle trajectories of all generators are recorded. The deviation of

each generator’s rotor angle from the system’s centre of inertia (COI) is calculated, and the maximum

deviation is considered.

∆θmax,g = max{| θg,PF − θCOI : g ∈ {Ng}} (3.37)

where θg,PF is the rotor angle of generator g at a critical Post-Fault time, and θCOI is the Center of

Inertia angle of the system. θCOI reflects the weighted average rotor angle of all generators in the
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system and is calculated as:

θCOI =

∑Ng

g=1 Mg · θg∑Ng

g=1 Mg

(3.38)

where Mg is the inertia constant of the generator g, and Ng is the total number of generators in the

network.

To assess the transient stability impact with a fault at point f , a contingency-specific rotor angle impact

metric ∆θf is calculated by summing up the absolute values of maximum rotor angle deviations of all

generators.

∆θf =

Ng∑
g=1

(θmax,g) (3.39)

∆θf =

Ng∑
g=1

max{| θg,PF − θCOI : g ∈ {Ng}} (3.40)

Line Overloadings as a verification impact (ηf )

In cascading failure analysis, line overloads can play a crucial role in determining the propagation

of outages in a power system. The overload impact on subsequent transmission lines is evaluated

through sequential DC power flow simulations, where the outage of one line leads to redistribution of

power flows, potentially overloading other lines. If any line exceeds its continuous rating threshold

Pmax,lf , it is considered overloaded, and the percentage overloading is computed as:

ηf =
Plf

Pmax,lf
× 100% (3.41)

where Plf is the power on line l post-contingency and Pmax,lf is the continuous thermal rating of line.

The process is repeated iteratively for each newly failed line, and after each failure, power redistribution

is recalculated.

If in the model used to calculate Rf and the metrics such as ∆θf and ηf to verify the model effec-

tiveness provide complementary perspectives on system behaviour. If focuses on steady-state fault

severity by identifying lines experiencing high fault currents. It is critical for evaluating thermal and

mechanical stresses and for designing protection schemes. In contrast, ∆θf captures the dynamic,

transient behaviour of the system, providing insights into the likelihood of transient instability or syn-

chronization issues during contingencies. In k−line cascading failure scenarios modelled using N − k

contingency simulations, the twometrics may align or diverge. Compared to RMS simulations, ηf offers

significantly faster computation, making it feasible for large-scale system studies while still capturing

key overload propagation effects. This method provides a perspective on the sequential evolution of

failures, allowing for better predictive insights into cascading failures.
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3.4.2. Analyzing operator decision making

The R-based rankings of all contingency scenarios are obtained for different dispatch scenarios d.

These dispatches include generator power outputs and load active/reactive power values. A key chal-

lenge in this analysis is the high dimensionality of generator and load variables that need to be moni-

tored. To address this, Principal Component Analysis (PCA) is applied to reduce the dimensionality of

the dispatch-related variables while preserving the most significant variations.

Given a datasetX ∈ RD×N , whereD represents the number of dispatch scenarios andN is the number

of monitored variables (e.g., generator power outputs and load values), PCA is performed as follows:

1. Standardization: To ensure comparability across different variables, each column of X is stan-

dardized:

X̃id =
Xid − µd

σj
(3.42)

where µd and σd are the mean and standard deviation of the d-th dispatch.

2. Covariance Matrix Computation: The covariance matrix Σ of the standardized dataset is cal-

culated as:

Σ =
1

D
X̃⊤X̃ (3.43)

3. Eigenvalue Decomposition: The principal components are obtained by solving the eigenvalue

problem:

Σvk = λkvk (3.44)

where λk are the eigenvalues and vk are the corresponding eigenvectors.

4. Projection onto Principal Components: The original dataset is transformed into the new lower-

dimensional space using the top M eigenvectors (where M ≪ N ):

Z = X̃VM (3.45)

where VM is the matrix containing the top M eigenvectors corresponding to the highest eigen-

values.

In this study, PCA reduces the dispatch-related variables into two primary components:

• Principal Component 1 (PC1): Represents the overall dispatch behavior, capturing variations

in generator and load values.

• Principal Component 2 (PC2): Represents secondary variations in dispatch conditions.

The transformed dataset (Z ∈ RD×2) is then used for contour plotting, where the total risk Rsys is

interpolated over the new reduced space (PC1, PC2).



4
Simulation and Results

DigSilent 2024 offers PowerFactory, a powerful tool for simulating and analyzing power systems. Python

provides a flexible and efficient way to automate and extend these capabilities. By leveraging the

pfsim , a Python library specifically designed for interfacing with PowerFactory, users can automate

simulations and analyses efficiently. This integration allows users to perform tasks such as RMS simu-

lation, contingency analysis, short-circuit studies, and sensitivity analysis with enhanced flexibility and

repeatability. Python’s ability to handle large datasets and visualize results complements PowerFac-

tory’s simulation strengths, making it an ideal choice for creating scalable methodologies.

4.1. Simulating cascades and obtaining dynamic impact

The test network used in this study is the IEEE 39-bus system, also known as the 10-machine New

England Power System. This network consists of 39 buses, 10 generators, 46 transmission lines, and

19 loads, representing a realistic model of an interconnected power system. The system is widely

used for dynamic stability and contingency analysis due to its well-defined parameters and established

results. In this analysis, contingency scenarios are evaluated based on the number of cascading events

from N − 1 to N − k lines. The parameter k denotes the number of contingencies in a cascading

failure sequence. Empirical observations in the IEEE39 bus system indicate that scenarios with k > 4

have negligible probability due to the low likelihood of such extensive failures occurring in practical

power systems. Once p(sk,i) of various cascade contingency sets S are obtained as outlined in the

methodology, the next step is to determine the proposed impact I of each set. This is carried out using

PowerFactory, where each transmission line in the contingency set is subjected to a short circuit and

67
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switching action. The corresponding LODFs (wdf ) and short-circuit currents (ISC,gf ) are then computed

to quantify the severity of each scenario. Simeltaneously, Dgf is computed using (Zbus) matrix.

The selection of fault locations can be altered based on scenarios and the impact value will reciprocate

accordingly. The fault duration is determined according to standard protection system clearing times.

Following the short-circuit analysis, line impedance values are extracted, and themodifiedZbus matrix is

computed using Algorithm 1 in 3.3.4. This allows for the calculation of electrical distance df using equa-

tion 3.35, providing insights into how the topology of the system changes under different contingency

conditions. After obtaining the proposed impact metric, the risk associated with each contingency set is

calculated. These risks are then ranked, with the highest-risk scenarios selected for further validation.

The verification process includes dynamic RMS simulations to assess maximum rotor angle deviations

and overloading impact through sequential load-flow analysis. These steps ensure the robustness of

the risk ranking and provide a comprehensive understanding of system vulnerabilities.

4.1.1. Project activation and power system dispatch

ThePowerFactory project, study case, and related components are activated using the PowerFactorySim

object. With M as the instance of the PowerFactory application object, the following script ensures that

the IEEE 39-bus study case is activated and all relevant system components are retrieved:

1 # Activate the study case

2 M.study_case.Activate()

3

4 # Retrieve system components for IEEE 39-bus

5 generators = M.app.GetCalcRelevantObjects("*.ElmSym") # 10 generators

6 lines = M.app.GetCalcRelevantObjects("*.ElmLne") # 46 transmission lines

7 loads = M.app.GetCalcRelevantObjects("*.ElmLod") # 19 loads

8 buses = M.app.GetCalcRelevantObjects("*.ElmTerm") # 39 buses

9 transformers = M.app.GetCalcRelevantObjects("*.ElmTr2") # Transformers

10

11 # Retrieve short-circuit events and switching operations

12 evt_folder = M.app.GetFromStudyCase('IntEvt')

13 short_circuits = evt_folder.GetContents("*.EvtShc")

14 switches = evt_folder.GetContents("*.EvtSwitch")

15

16 MONITORED_VARIABLES = {'*.ElmSym': ['c:firot'], '*.ElmTerm':['m:Pgen']}

PowerFactory dynamically organizes IEEE 39-bus system components into predefined classes:

• Generators: M.app.GetCalcRelevantObjects('*.ElmSym') retrieves all 10 generators. Their

attributes, such as minimum power ( Pmin_uc ), maximum power ( Pmax_uc ), and initial power

( pgini ), are adjusted to simulate various dispatch scenarios.

• Transmission Lines: M.app.GetCalcRelevantObjects('*.ElmLne') retrieves 46 transmis-
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sion lines that define power transfer paths and are key for cascading failure analysis.

• Loads: M.app.GetCalcRelevantObjects('*.ElmLod') retrieves 19 loads, with real ( plini )

and reactive ( qlini ) power dynamically adjusted to ensure consistency with generator dispatch.

• Buses: M.app.GetCalcRelevantObjects('*.ElmTerm') retrieves all 39 buses, where genera-

tors, loads, and transmission lines interconnect.

• Transformers: M.app.GetCalcRelevantObjects('*.ElmTr2') fetches all transformers regu-

lating voltage and power transfer.

The IEEE 39-bus power flow analysis is executed using:

1 # Run Newton-Raphson power flow analysis

2 load_flow = M.app.GetFromStudyCase('ComLdf')

3 load_flow.iopt_net = 0 # AC load flow

4 load_flow.iopt_solver = 2 # Newton-Raphson method

5 load_flow.iopt_therm = 1 # Consider thermal limits

6 load_flow.Execute()

This simulation utilizes the Newton-Raphson method with a convergence tolerance of 10−6 per unit,

ensuring accurate voltage magnitudes, angles, power flows, and branch loading across all buses con-

nected to transmission lines. Thermal limits are enforced to monitor line capacity constraints.

4.1.2. Sensitivity Analysis

Sensitivity analysis provides insight into the redistribution of power flow across all transmission lines dur-

ing cascading failures by computing Line Outage Distribution Factors (LODF). For each generator in the

IEEE 39-bus system, the ComVstab object, obtained from M.app.GetFromStudyCase('ComVstab') ,

executes voltage stability analysis. This process assesses how bus voltages behave under different

loading conditions and contingency scenarios.

1 # Activate voltage stability analysis module

2 vstab = M.app.GetFromStudyCase('ComVstab')

3

4 # Enable LODF calculations

5 vstab.calcPtdf = 1

6

7 # Set contingency sensitivity calculation

8 vstab.isContSens = 1

9

10 # Execute analysis for k-line cascade scenario

11 vstab.Execute()

12

13 # Retrieve results

14 sensitivity_results = vstab.GetResults()
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The calcPtdf attribute is set to 1, enabling the calculation of LODF and contingency sensitivities for

each transmission line (wgf ). The internal contingency analysis is performed by setting the isContSens

attribute to 1, ensuring that sensitivity values are determined for the k − 1 lines in the k-line cascade

scenario.

4.1.3. Short Circuit analysis in PowerFactory and proposed impact

For each generator in the IEEE 39-bus system, the ComShc object is retrieved in Python to perform

short-circuit calculations in PowerFactory using M.app.GetFromStudyCase("ComShc") . This object

executes short-circuit analysis by applying faults to selected lines and computing the resulting short-

circuit currents. Predefined short-circuit fault events and switch operations used for component isolation

during simulations are retrieved using:

• Short-Circuit Events: evt_folder.GetContents('*.EvtShc') fetches predefined fault sce-

narios in the system.

• Switch Operations: evt_folder.GetContents('*.EvtSwitch') retrieves switches used for

isolating or reconnecting network components.

1 # Retrieve short-circuit calculation object

2 shcobj = M.app.GetFromStudyCase("ComShc")

3

4 # Select the faulted line for short-circuit analysis

5 shcobj.i_shcobj = M.app.GetCalcRelevantObjects("FaultedLine")[0]

6

7 # Set fault type and location

8 shcobj.iopt_shc = 3 # Three-phase short-circuit analysis

9 shcobj.ppro = 50 # Fault applied at 50% of the line length

10

11 # Execute short-circuit analysis

12 shcobj.Execute()

13

14 # Extract short-circuit current magnitude and angle for generators

15 generators = M.app.GetCalcRelevantObjects("*.ElmSym")

16 for gen in generators:

17 isc = gen.GetAttribute("m:I:bus1")

18 angle = gen.GetAttribute("m:phii:bus1")

19

20 # Retrieve predefined short-circuit events and switch operations

21 shc_events = evt_folder.GetContents("*.EvtShc")

22 switch_events = evt_folder.GetContents("*.EvtSwitch")

To set up the short-circuit analysis, several attributes are configured to define the fault conditions and

extract relevant results. The faulted line is selected based on the kth line in the k-line cascade scenario,

which is assigned to the short-circuit analysis object ( shcobj ). The fault type is specified by setting
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the attribute 3psc , which enables three-phase short-circuit calculations. Additionally, the fault location

along the transmission line is determined using the ppro parameter, which defines the percentage dis-

tance of the fault from the line’s starting point. Once the short-circuit analysis is executed, the symmetri-

cal short-circuit current magnitude (ISC,gf ) is extracted from the generator’s attribute m:I:bus1 , while

the fault current angle (Iϕ,gf ) is obtained from the attribute m:phii:bus1 . These extracted values of

ISC,gf , wgf combined with df is used to calculate impact I given in Equation 3.22.

4.1.4. RMS Simulations in PowerFactory and maximum rotor angle impact

The primary objective of the RMS simulation is to evaluate the changes in rotor angles, which are critical

for assessing the stability of the system during and after the cascade. To begin the simulation, the event

folder is retrieved from the study case using the M.app.GetFromStudyCase('IntEvt') command.

The system components, including the transmission lines involved in the cascade and the generators

whose impact needs to be evaluated, are initialized using their respective system classes. Specifically,

based on the line under cascade analysis, the short-circuit event and switching event are targeted by

setting the p_target attribute of the events to the specific transmission line. Once initialized, the RMS

simulation is executed using M.run_dynamic_sim() .

1 # Retrieve event folder and events

2 evt_folder = M.app.GetFromStudyCase('IntEvt')

3 shc_events = evt_folder.GetContents('*.EvtShc')

4 switch_events = evt_folder.GetContents('*.EvtSwitch')

5

6 # Initialize system components

7 generators = M.app.GetCalcRelevantObjects('*.ElmSym') # Generators

8

9 # Initialize load-flow and simulation conditions

10 M.initial_cond()

11

12 # Run RMS simulation

13 M.run_dynamic_sim()

14

15 # Get dynamic simulation results (e.g., rotor angle)

16 dynamic_results = M.get_dynamic_results()

17

18 # Extract rotor angle values

19 rotor_angles = [gen.GetAttribute('c:firot') for gen in generators]

20

21 # Calculate maximum rotor angle deviation

22 max_rotor_angle_deviation = numpy.max(numpy.abs(rotor_angles))

23

24 # Calculate overall impact

25 overall_rotor_angle_impact = sum(max_rotor_angle_deviation for _ in generators)
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After the simulation completes, results are collected using M.get_dynamic_results() . These re-

sults include the rotor angle θf for each generator in the system, indicated by the c:firot attribute

from PowerFactory. The absolute difference between the maximum and minimum rotor angle values

for each generator is calculated to obtain the maximum rotor angle deviation using the expression

numpy.max(numpy.abs(rotor_angles)) from the numpy library in Python. The maximum rotor angle

deviations are then summed up over all generators in the network to calculate the overall rotor angle

impact of the cascade scenario using the formula from Equation 3.40.

4.1.5. Cascade load flow and line overloading impact

The impact of line overloads is computed in a power system under contingency scenarios, particularly

by using PowerFactory’s load flow tools via Python.

The first step in the cascade sequential load-flow analysis involves applying specific dispatch values

iteratively to the system. For each generator G, PG and QG of specific dispatch d are assigned using

the pgini attribute, which represents the generator’s active power initial setting. Similarly, for each

load L, PL and QL values are assigned using the plini and qlini attributes, respectively. Once

all the dispatch values have been applied to the generators and loads, the load flow is executed using

PowerFactory’s ComLdf command, accessed via M.app.GetFromStudyCase("ComLdf") . The load

flow calculation ensures that the system is operating in a steady-state condition, and the results include

solutions on Plf , Clf , and Pmax,lf . Once the load flow is complete, the ηf for each line l are retrieved

using l.GetAttribute('m:loading') . The process is performed iteratively by disconnecting all lines

one by one in set S by setting the outserv attribute of each line in the contingency set to 1 and

executing the load-flow again.

1 # Retrieve the load flow object

2 load_flow_obj = M.app.GetFromStudyCase("ComLdf")

3

4 # Initialize system components (generators and loads)

5 generators = M.app.GetCalcRelevantObjects('*.ElmSym') # Generators

6 loads = M.app.GetCalcRelevantObjects('*.ElmLod') # Loads

7

8 # Assign dispatch values to generators and loads

9 for gen in generators:

10 gen.pgini = specific_dispatch_value_for_generator # Set generator active power

11 gen.qgini = specific_dispatch_value_for_generator # Set generator reactive power

12

13 for load in loads:

14 load.plini = specific_dispatch_value_for_load # Set load active power

15 load.qlini = specific_dispatch_value_for_load # Set load reactive power

16

17 # Execute the load flow calculation

18 load_flow_obj.Execute()
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19

20 # Retrieve the loading values for each line in the system

21 lines = M.app.GetCalcRelevantObjects('*.ElmLne') # Transmission lines

22 for line in lines:

23 line_loading = line.GetAttribute('m:loading') # Get the loading attribute

24

25 # Perform contingency analysis: disconnect each line one by one

26 for line in lines_in_contingency_set:

27 line.outserv = 1 # Disconnect the line

28 load_flow_obj.Execute() # Execute load flow again after disconnection

Once all the lines in a single contingency set from S are included, the ηf is considered for the system’s

overloading impact after that specific cascade contingency set.

4.2. Case Study Setup

4.2.1. Contingency analysis for critical line sets

Figure 4.1: Contingency scenarios with increasing k in
N-k cascades for IEEE39 bus network

To get the sets of critical lines, we perform the contin-

gency analysis described in 2.1.3 after choosing the

IEEE-39 bus test network as a first step to identify top

contingency sets S which are part of contingency line

set L following the condition of δ(S) > θ and of size

|S| = 1123 scenarios for N-2 cascade scenarios.

Although all the possible sets in a network can be con-

sidered, doing so can become computationally expen-

sive, particularly when considering higher-order cas-

cades (N-3 or beyond) due to the number of samples

rising exponentially, as shown in Figure 4.1 for the

IEEE 39-Bus system. As an example, the number of samples for different contingency orders is given in

Table 4.1. Before calculating the probabilities of contingency scenarios or motifs, it is best to choose a

few critical ones. The number of possible scenarios increases exponentially with network size, making

an exhaustive evaluation computationally impractical.

Contingency Order Number of Samples
N-2 46
N-2 1123
N-3 16902
N-4 178365
N-5 1533939

Table 4.1: CONTINGENCY SAMPLES FOR CASCADE ORDERS IN IEEE39 BUS SYSTEM
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Thus, a contingency analysis, helped with the use of a threshold valueΘ for overloading (δ(S)), ensures

that the analysis is computationally feasible and only top contingencies (over the threshold) are selected

for analysis. Here, Θ = 80% overloading threshold was chosen (δ(S) > 80%). The other method of

determining these contingencies involves solving power flow equations for each overloaded line, but

this is significantly slower for more extensive cascades.

Necessity of using contingency analysis

Figure 4.2: Heatmap of line loading under N − 2 contingency for IEEE39 network

The heatmap in Figure 4.2 represents the heatmap of N − 2 contingency sets under a given operating

condition. The x-axis corresponds to the next affected transmission line, while the y-axis represents the

initiating line failure. The color intensity indicates the degree of stress experienced by each line, with

darker regions signifying higher stress levels corresponding to loadings. The values in the heatmap

range from minimum to maximum overloading levels, computed for the selected operating condition.

This condition includes active and reactive power loads, such as Load 03 Active Power (706.03 MW),

Load 04 Active Power (312.78MW), Load 07 Active Power (532.26MW), Load 08 Active Power (324.45

MW), and Load 12 Reactive Power (226.47 MVAR), among others. The heatmap has more than θ >

80% of its area marked by a black border, emphasizing highly critical lines. Additionally, it is sorted
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based on the loading of affected lines, resulting in a visible gradient. Notably, a few lines, such as

Lines 21-22 and Lines 16-19, appear to be the most stressed in terms of overloading.

4.2.2. Probabilities of critical line sets

Once the critical line sets are identified, a probabilistic analysis is performed to determine the motif

probabilities. For this, the uniform (Puni(Sk,i | k)) using Equation 2.24 and empirical (P (Sk,i | k))

probabilities using Equation 2.25 are calculated. A hypothesis test is performed, given in Equations

2.27 and 2.28, to identify a motif. For motif Sk,i at depth k, a motif is identified based on this comparison.

This is illustrated in Table 4.2.

Sk,i |Sk,i| Puni(Sk,i | k) nk nk,i P (Sk,i | k) motif p-value

S2,1 57 0.108 17 7 0.412 true 0.

S2,2 504 0.955 17 10 0.588 false 1.

S3,1 22 0.004 11 2 0.182 true 0.

S3,2 1589 0.291 11 7 0.636 true 0.

S3,3 83 0.015 11 2 0.182 true 0.

S3,4 1 0.0002 11 0 0 false 1.

S3,5 4289 0.786 11 0 0.677 false 1.

S4,1 6 0.0001 8 0 0 false 1.

S4,2 579 0.014 8 1 0.125 true 0.

S4,3 77 0.0018 8 1 0.125 true 0.

S4,4 119 0.003 8 0 0 false 1.
others S4,∗ 40350 0.981 8 6 0.75 false 1.

Table 4.2: PROBABILITIES OF PATTERNS IN IEEE39 SYSTEM FOR IDENTIFIED CONTINGENCIES

Once the contingency motifs are identified, the probability of a specific contingency subgraph is calcu-

lated. Firstly, the probability of k line outages P (k) for k − line cascade is calculated using Equation

2.31. For S2,2 and S3,5, there is a significant discrepancy between uniform and empirical probabilities.

The deviation suggests that the uniform model overestimates these motifs. While hypothesis testing

fails, the probability of cascades containing S3,5 remains high, justifying its inclusion. However, ex-

cluding S2,2 may weaken the analysis, as its empirical probability, though lower than uniform, is still

notable. Secondly, the Table 4.3 shows the empirical probabilities of patterns or P(Sk,i | k), which is

the probability of a pattern given k-line outages. It was calculated earlier to identify the motif.

Thirdly, to calculate P(d | Sk,i), the diameters d of each disconnected pattern are identified, and P (d |

disconnected) is calculated using Equation 2.35. This is shown in Table 4.4. For connected patterns

P (s | connected), this value is 1, as suggested earlier in Equation 2.34.
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Sk,i S2,1 S2,2

P (Sk,i | k) 0.4118 0.5882
Sk,i S3,1 S3,2 S3,3 S3,4 S3,5

P (Sk,i | k) 0.1818 0.6364 0.1818 0 0.6770
Sk,i S4,1 S4,2 S4,3 S4,4 S4,5

P (Sk,i | k) 0 0.1250 0.1250 0 0.75

Table 4.3: DISTRIBUTION OF PATTERNS (EMPIRICAL PROBABLITIES) P (Sk,i|k) FOR IEEE39 NETWORK

Diameter d P (d | Sk,i)

2 0.0038
3 0.0285
4 0.1004
5 0.1999
6 0.2972
7 0.2324
8 0.1151
9 0.0225

Table 4.4: PROBABILITY P (d | Sk,i) FOR DISCONNECTED SUBGRAPHS FOR DIFFERENT DIAMETERS IN Sk,i for
IEEE39 NETWORK

Finally, the Table 4.5 shows the number of subgraphs of the network with a specific diameter. This

is used in Equation 2.36 to calculate the probability of a contingency given its pattern and diameter

(P (sk,i | Sk,i, d)).

d |S2,2| |S3,2| |S3,5| |S4,2|
2 79 82 2 20
3 102 329 189 115
4 106 379 648 156
5 93 328 1043 127
6 73 276 1216 103
7 36 134 792 42
8 13 52 340 14
9 2 9 59 2
10 0 0 0 0

Table 4.5: NUMBER OF DISTINCT SUBGRAPHS WITH DIFFERENT DIAMETERS IN Sk,i for IEEE-39 BUS

Equation 2.39 is used for the calculation of outage probability of a specific set P (sk,i) with a diameter

d and following a subgraph pattern sk,i. It is represented in the Table 4.6. The table shows that the

outage probability of motifs has a higher value compared to the outage probability of the non-motif

subgraph pattern.
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d s2,1 s2,2 s3,1 s3,2 s3,3 s3,4 s3,5 s4,1 s4,2 s4,3 s4,4

1 0.0034 0 0.0025 0 0 0 0 0 0 0 0

2 0 0.000013 0 0.0000091 0.00067 0 0.0004 0 0.0000053 0.00036 0

3 0 0.000078 0 0.000017 0 0 0.000031 0 0.0000069 0 0

4 0 0.00026 0 0.000052 0 0 0.000032 0 0.000018 0 0

5 0 0.0006 0 0.00012 0 0 0.00004 0 0.000044 0 0

6 0 0.0011 0 0.00021 0 0 0.000051 0 0.00008 0 0

7 0 0.0018 0 0.00034 0 0 0.000061 0 0.00015 0 0

8 0 0.0025 0 0.00043 0 0 0.00007 0 0.00023 0 0

9 0 0.0031 0 0.00049 0 0 0.000079 0 0.00031 0 0

10 0 0 0 0 0 0 0 0 0 0 0

Table 4.6: PROBABILITY OF OUTAGES (P (sk,i)) WITH DIFFERENT PATTERNS AND DIAMETERS (d)

The higher probabilities of motifs, along with the inclusion of s2,2 and s3,5 are highlighted in the table.

The Zipf distribution of diameters, as suggested previously, can be observed as having a heavy tail,

implying that large patterns are rare, but they do occur. The Complementary Cumulative Distribution

Function (CCDF) [44] plot in Figure 4.3 is a graph that visually demonstrates the Zipfian nature of cas-

cading failures. The Zipfian nature follows the relationP (r) ∝ r−α, where P (r) is the probability of

the r-th ranked event, and α is a positive exponent. The CCDF slowly decays as diameter increases,

showing that larger cascades are rare, but they do occur and exhibit a characteristic heavy-tailed dis-

tribution.

Figure 4.3: Complementary Cumulative Distribution Function (CCDF) Plot showing diameter distribution of cascade sets

An example of calculating the probability for a specific contingency line set is illustrated in Figure 4.4.

The process begins with STEP 1, where contingency analysis is conducted using continuous loading

as a threshold (θ > 80%) to determine whether the contingency set is critical. If deemed critical, STEP

2 involves checking whether the contingency subgraph qualifies as a motif. In STEP 3, the subgraph’s

diameter is computed, followed by STEP 4, where the pattern type sk,i is identified. Finally, in STEP 5,

the probability of the corresponding cascade outage P (sk,i) is determined for a motif.
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Figure 4.4: An example of probability of a specific line set from the cascade contingency list

4.3. Case Studies, simulations and results

4.3.1. CS1: Impact Metric

Once the probabilities for critical contingency scenarios in S are computed, the next focus will be on

computing the impact metric I for each scenario using the equation outlined in Equation 3.22. First,

the short circuit analysis is performed for each set in S to get ISC,gf using Equation 3.23, then the

sensitivity weights wgf using sensitivity analysis in PowerFactory is calculated using Equation 3.27

and the electrical distance Ddf is calculated using Equation 3.35.

CS1.1: Correlation of I with verification-impact ∆θf

This case study outlines the measure of the similarity of I with the verification-metric ∆θf calculated

using Equation 3.40 for each scenario in S. The scatter plot compares the I (X-axis) against ∆θf (Y-

axis) to assess the similarity of the proposed metric with dynamic simulation results for |S| scenarios

on specific operating conditions described in 4.2.1. Each point in the scatter plot is the combination of

normalized ∆θf and the mean I.
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Figure 4.5: Correlation plot between proposed impact I versus verification impact ∆θf

The scatter plot presented in Figure 4.5 plots the correlation coefficient CF between the short circuit im-

pact metric I, and the normalized maximum rotor angle impact,∆θf , obtained through RMS simulation.

The correlation coefficient is computed as:

CF =

∑
(Ii − Ī)(∆θf,i −∆θf )√∑

(Ii − Ī)2
√∑

(∆θf,i −∆θf )2
(4.1)

Quantifies the linear relationship between these two variables. A regression line has been fitted to

highlight the general trend. The graph, along with iterations of other dispatch cases, suggests that the

observed correlation ranges from negligible to very slight, depending on the case.
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CS1.2: Computational efficiency of I

Figure 4.6: Computational time comparison between I versus ∆θf

The cumulative execution time plot presented in Figure 4.6 illustrates the comparison of computational

time required for the proposed SCA-based impact metric I versus the RMS-basedmaximum rotor angle

deviation verification impact metric ∆θf across |S| contingency scenarios for a single dispatch case.

The x-axis represents the contingency index (downsampled for clarity), while the y-axis represents the

cumulative execution time (in seconds) on a logarithmic scale. The following observations and results

can be decided from the plot.

By comparing the average computation times, we find that calculating the proposed metric I takes

approximately 0.03066548 seconds, seconds on average, which is significantly faster than RMS simula-

tions for obtaining ∆θf , which have a mean computation time of 4.768355872 seconds per contingency.

4.3.2. CS2: Risk calculation and analysis

A total of |S| contingency scenarios are analyzed, and I and P (sk,i) are calculated for each contingency

scenario across D dispatch cases each represented by Dd where d = 1 to 450. Therefore, a total of
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D×|S| short-circuit simulations were executed, with I calculated for each simulation. Similarly, P (sk,i)

is obtained for each scenario from Table 4.6, depending on the subgraph pattern and diameter of that

scenario. The risk R is calculated for each scenario using Equation 3.36.

CS2.1: Comparing the effectiveness of risk metric

The verification impact metric ∆θf outlined in Section 3.4.1 is used as a standard test. A comparison

is made between the results obtained from the proposed risk R-based method, the verification impact

metric ηf , and random selection. The focus is on assessing whether theR-based metric offers a better

estimate compared to the overload-based ηf and the random selection method.

Each method identifies the top 10 contingencies S10 per Dd based on different selection criteria:

1. Risk-Based Selection (R-metric): For each dispatch Dd, the set of contingencies Sd

Sd = {s1, s2, . . . , s|Sd|}

is defined where |Sd| is the total number of contingencies in dispatch Dd. The risk for each

contingency si ∈ Sd is calculated using the risk R−method, yielding the set of risk values RFd:

RFd = {R1,R2, . . . ,R|Sd|}

Where Ri is the risk associated with contingency si, calculated using Equation 3.36 with the

given input parameters. The risks are then arranged based on their values, yielding the ordered

set Rordered
d :

RFordered
d = {Rordered

1 ,Rordered
2 , . . . ,Rordered

|Sd| }

The top 10 contingencies, based on the order of the risksR, are selected as the most hazardous.

The set of the top 10 contingencies S(d)R10 is given by:

S(d)R10 = {s(d)R1, s
(d)
R2, . . . , s

(d)
R10} ⊂ Sd

Where each s
(d)
Rz ∈ S

(d)
10 represents a selected contingency, and the corresponding risk value is

Rordered
z for each dispatch Dd. For each selected contingency s(d)Rz ∈ S

(d)
R10, the verification impact

∆θ
(d)
fz

is calculated using Equation 3.40, and the true impact for each selected contingency is

represented by the set:

T (d)
R10 = {∆θ

(d)
Rf1

,∆θ
(d)
Rf2

, . . . ,∆θ
(d)
Rf10
}

where each ∆θ
(d)
Rfz

represents the verification impact for the selected contingency sz for each

dispatch Dd

2. LineOverloading-BasedSelection: In Section 3.4.1, the line overloading-based selectionmethod

identifies the top 10 contingencies for a given dispatch Dd through sequential load-flow analysis.
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For each line l ∈ L, the overloading η
(d)
l is calculated using Equation 3.41 as

η
(d)
l =

P
(d)
l

P
(d)
max,l

× 100%.

The first contingency s
(d)
1 is selected based on the highest overloading, and its corresponding

impact is given by

η
(d)
f1

= η
(d)
l .

After simulating the fault and outage on the overloaded line, a new load-flow analysis is conducted

to identify the next most overloaded line. This process is repeated iteratively until the top 10

contingencies S(d)η10 are identified:

S(d)η10 = {s(d)η1 , s
(d)
η2 , . . . , s

(d)
η10} ⊂ Sd.

The overload impact for each selected contingency s
(d)
ηz ∈ S(d)η10 is calculated as

η
(d)
fz

=
P

(d)
lz

P
(d)
max,lz

× 100%.

The line overloading-impact set for the top 10 contingencies is represented by

ηF10
(d) = {η(d)f1

, η
(d)
f2

, . . . , η
(d)
f10
},

The corresponding verification impacts for these top 10 contingencies are calculated and given

as

T (d)
η10 = {∆θ

(d)
ηf1

,∆θ
(d)
ηf2

, . . . ,∆θ
(d)
ηf10
}

where each ∆θ
(d)
ηfz

represents the verification impact for the selected overloading-contingency sz

for each dispatch Dd

3. Random Selection: In this approach, 10 contingencies are randomly selected from Sd. These

contingencies are considered to be the most hazardous without any specific order or prioritization.

The process of selection is based on a random distribution, ensuring that every contingency

has an equal probability of being chosen. Let the set of all contingencies in dispatch Dd be

Sd = {s1, s2, . . . , s|Sd|}. The selection is done by choosing 10 contingencies randomly from Sd
using a uniform distribution. Mathematically, the randomly selected set S(d)random ⊂ Sd is given by:

S(d)random = {s(d)r1 , s(d)r2 , . . . , s(d)r10} where each rz ∈ {1, 2, . . . , |Sd|}.

The selection is based on a uniform distribution, ensuring that every contingency has an equal

chance of being chosen. Each contingency s(d)rz is randomly chosen without any preference, and
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their corresponding ∆θf are calculated using RMS simulation. These ∆θf for each selected

contingency s
(d)
rz are denoted ∆θ

(d)
rz , and the set for the top 10 contingencies is represented by:

T (d)
random = {∆θ(d)r1 ,∆θ(d)r2 , . . . ,∆θ(d)r10}.

Where each ∆θ
(d)
rz for the selected contingency s

(d)
rz is represented.

The goal for this case study is to evaluate and compare these three methods (risk-based (R), line

overloading-based (ηf ) and random selection (r)) based on key performance indicators such as Selec-

tivity, Coverage, Precision, Recall, and F1-score using ∆θf as the reference benchmark. The perfor-

mance metrics were calculated for each method against the true top 10 high-impact cases T (d)
true , which

are determined by ordering all contingencies obtained from the three selection methods based on ∆θf .

The combined set is given by:

T (d)
combined = T

(d)
R10 ∪ T

(d)
η10 ∪ T

(d)
random = {∆θ

(d)
1 ,∆θ

(d)
2 , . . . ,∆θ

(d)
30 }

From this combined set, the top 10 contingencies with the highest ∆θf values are selected as the true

high-impact cases:

T (d)
true = {∆θ

(d)
t1 ,∆θ

(d)
t2 , . . . ,∆θ

(d)
t10}, where ∆θ

(d)
tz are the zth highest-ordered values.

And the corresponding true order is:

S(d)true = {s
(d)
t1 , s

(d)
t2 , . . . , s

(d)
t10}, where s

(d)
tz are the zth highest-ordered contingency.

Method Precision (%) Recall (%) F1-score (%) Coverage (%) Selectivity (%)

Risk Model (R) 71.8960 71.4576 71.6761 71.4576 71.8960

Overloading-Based (ηf ) 89.3417 41.3763 56.5588 41.3763 89.3417

Random Selection (r) 23.9336 26.3937 25.1036 26.3937 23.9336

Table 4.7: PERFORMANCE METRICS OF CONTINGENCY SELECTION

The Table 4.7 presents the percentage selectivity, coverage, precision, recall, and F1-score for each

method. It is important to note that, although coverage and recall share the same numerical values in

this case, they are not inherently the same metric. Recall (RR) and Coverage (CR), in case of R are

given as

RR =
|S(d)R10 ∩ S

(d)
true|

|S(d)true|
CR =

|S(d)R10 ∩ S
(d)
true|

|S(d)R10 ∪ S
(d)
true|
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Similarly, Precision (PR) and Selectivity (SR), in case of R are given as

PR =
|S(d)R10 ∩ S

(d)
true|

|S(d)R10|
SR =

|S(d)R10 ∩ S
(d)
true|

|S(d)R10 − S
(d)
true|

Though they match in the N − 2 case case, as k increases for N − k cascade cases, recall remains

stable, but coverage tends to vary. Similarly, selectivity and precision also match in value but differ

conceptually. Precision diverges from selectivity due to increased false positives.

Figure 4.7: Confusion matrix comparison of Contingency Selection Methods

Figure 4.7 shows the confusion matrix comparing the positives and negatives of the ordered contin-

gency sets obtained from the three methods as S(d)η10, S
(d)
R10, S

(d)
random and the true-order of contingencies

in the set S(d)
true for a specific dispatch scenario d. The Overloading-Based Selection method achieves

the highest selectivity (89.34%), meaning it is highly confident about its chosen contingencies. However,

it has low coverage (41.37%), implying that many high-impact contingencies are missed. Furthermore,

it has the highest precision (89.34%) but a very low recall (41.37%), meaning it fails to capture many

actual high-impact contingencies. The proposed risk approach balances selectivity (71.89%) and cov-

erage (71.45%), indicating that it effectively captures more true high-impact contingencies while main-

taining good selectivity. It achieves a strong recall (71.45%) with good precision (71.89%), proving

to be the most reliable method in predicting high-risk cases. As expected, the random method per-

forms worst in both coverage (26.29%) and selectivity (23.933%), demonstrating that it is not a reliable

approach.

Table 4.8 summarizes the computational efficiencies of the three methods. The overloading-based

approach to get S(d)η10 is computationally expensive, requiring sequential power flow simulations to de-

termine overload propagation. In contrast, the risk model to get S(d)R10 calculates all risks R at once,
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Method Set Computation Time (s)

Risk Model (S(d)R10) 0.031

Overloading-Based (S(d)η10) 7.997

Random Selection (S(d)random) ≈ 0

Table 4.8: COMPUTATION TIME PER SCENARIO (N − 2) FOR DIFFERENT METHODS

making it significantly more efficient. Random selection is the fastest, with negligible computation time,

as it does not rely on complex calculations.

(a) Coverage vs Selectivity Trade-Off Curve (b) Precision-Recall-Coverage Trade-Off

Figure 4.8: Comparative Performance of Selection Methods for High-Impact Contingencies

The Coverage vs Selectivity trade-off curve in Figure 4.8a shows the relationship between two criti-

cal metrics for each selection method. The precision-recall coverage Trade-Off graph in Figure 4.8b

highlights how well each method balances precision, recall, and coverage.

CS2.2: Comparing the effectiveness of risk rankings

This study compares the rankings obtained using the risk-based metric S(d)R10 coming from the impact

I and contingency probabilities p(sk,i) with the rankings derived from true-impact (T (d)
Rfz

), particularly

from ∆θ
(d)
R10. By employing Spearman correlation coefficient (ρ), we evaluate how well the risk-based

ranking aligns with the chosen stability metric.

To validate the effectiveness of R-based ranking, two comparative approaches were undertaken:

1. Random 10 Contingencies: 10 randomly selected contingencies were analyzed using (∆θ
(d)
rs )

to get the ranking S(d)random .

2. Top 10 Risk-Based Contingencies: RMS dynamic simulations were performed on the top 10

ranked contingencies, and ranking pertaining to S(d)R∞′ is recorded in T
(d)
R10.

To assess the consistency between risk rankings (S(d)R10) and true-impact rankings (S(d)∆θf10
) which is

ranked contingencies of T (d)
R10, spearman correlation coefficients (ρ(d)10 were computed. Higher cor-

relations indicate that risk-based rankings align well with actual system behavior. Spearman’s rank
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correlation coefficient (ρ) measures the strength and direction of the association between two ranked

variables.

ρ
(d)
10 = 1−

6
∑10

i=1 rd
2
i

n(n2 − 1)
(4.2)

where rdi is the difference of rankings between each pair for a total of n observations. Non-linear

relationships are also captured, making it effective for ranking analysis.

(a) Correlation with Randomly selected 10 contingencies

(b) Correlation with top 10 risk-based contingencies

Figure 4.9: Distribution of Spearman Rank Correlation coefficient between R-based metric and ∆θ impact based metric for
random and top-10 ranked contingencies

1. Random 10 N-2 cascade contingencies: A histogram of Spearman correlations for randomly
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selected contingencies in Figure 4.9a demonstrates a wide distribution centered around zero.

The mean correlation coefficient for these cases is -0.08, with a standard deviation of 0.32. A

one-sample t-test against zero yielded a p-value of 0.187, indicating that there is no significant

correlation between risk and impact rankings in randomly chosen cases.

2. Top-10 R-Based N-2 Cascade Contingencies: A stark contrast is observed when analyzing

the correlation coefficient for the top 10R-based contingencies in Figure 4.9b. The distribution is

highly skewed toward values near 1.0, with a mean coefficient of 0.998 and a standard deviation

of 0.004. A t-test confirms statistical significance (p < 0.001), strongly supporting that risk-based

rankings provide a much stronger predictive power for ∆θf .

4.3.3. CS3: Effects on dispatch on system risk

This case study explores how different dispatch scenarios (d) impact system risk Rd
sys. The analysis is

based on dispatch data, where each scenario has a varied generator powers (PG), and active (PL) and

reactive (QL) powers of all the loads in the IEEE39 bus system is associated with a calculated Rd
sys.

The calculations performed for various dispatches(d) for N-2 contingency scenarios in the IEEE39 bus

system yield the risk of each contingency pair. From this, the combined system risk R(d)
sys for each

dispatch d is determined which is a comprehensive measure of grid vulnerability, computed by aggre-

gating individual riskR(d) components from two-line (N−2) cascade contingencies. For each dispatch

scenario (d),

R(d)
sys =

|S|∑
c=1

R(d) =

|S|∑
c=1

p(sk,i)c × I(d)c (4.3)

where p(sk,i)c is the probablity of contingency scenario c for a dispatch d and I(d)c is impact of contin-

gency c for dispatch d when |S| contingency scenarios are considered per dispatch.

CS3.1: Generator Dispatch and Variability in Risk

A parallel coordinate plot is used to study the variability of different generators with respect to total

system risk R(d)
sys. The plot connects multiple dispatch values (G01, G02, … G10) with corresponding

risk levels. Each line represents a single dispatch scenario (d), and colors are used to categorize low-

risk, medium-risk, and high-risk cases based on a Quantile-based discretization function. This function

partitions the dataset into three distinct risk categories using quantiles. Given a set of total system risk

R(d)
sys values across D different dispatch scenarios:

Rsys = {R(1)
sys,R(2)

sys, . . . ,R(D)
sys }

Where D is the total number of dispatch scenarios, quantile thresholds are defined as:

Q1 = Q(1/3), Q2 = Q(2/3)
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Q(p) represents the empirical quantile function, which returns the value below which a proportion p of

the data falls. The risk levels are then assigned as follows:

Low Risk: R(d)
sys ≤ Q1

Medium Risk: Q1 < R(d)
sys ≤ Q2

High Risk: R(d)
sys > Q2

Where each dispatch scenario d is categorized into one of these three bins. By applying this discretiza-

tion, we effectively divide the dataset into three equal-sized groups, ensuring a balanced classification

of risk levels. This approach helps in visualizing the distribution of system risk while preserving the

relative structure of the data.

Figure 4.10: Parallel Coordinate Plot: Generator Dispatch vs Risk Category

This visualization in Figure 4.10 highlights that Generator G01 exhibits the highest variability across

different risk levels and that Generator G05 shows the least variablity. This is likely due to its larger

capacity of G01, which allows for a wider range of dispatch values, leading to greater observed variation

and vice versa. To further investigate, an additional analysis can be conducted to explore how system

risk R(d)
sys varies with respect to system generation or by isolating the effect of a single generator.

CS3.2: PCA-Based Contour Plot for Quick Operator Decision-Making

In this study, as described in 3.4.2, PCA condenses all generator and load dispatch variables into two

principal components (PC1 and PC2), which represent a transformed version of the dispatch strategy.

By plotting system risk on a contour map in PCA space, operators can quickly check if a dispatch

scenario lies in a high-risk region (red zones) or low-risk region (blue zones). Notably, the contour
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cannot be accurately plotted using a convex optimization function, highlighting the necessity of this

methodology for effectively capturing and representing system risk.

Figure 4.11: PCA-Based Contour Plot: Risk Across Dispatch Scenarios

Figure 4.12: Contour Plot of Load 03 and 07 in IEEE39 bus network: Risk Across Dispatch Scenarios
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The contour plot in Figure 4.11 visualizesR(d)
sys across different dispatch scenarios using Principal Com-

ponent Analysis (PCA). The x-axis represents PC1, while the y-axis represents PC2, both derived from

dispatch data. The contour levels indicate varying risk levels, interpolated onto a balanced grid using

cubic interpolation. The color bar provides a reference for risk intensity.

The contour plot in Figure 4.12 represents the total risk levels based on active power dispatch (PL) at

two specific load points (Load 03 and Load 07). Similar to the previous plot, a cubic interpolationmethod

is applied to estimate risk values across the grid. The contour levels depict changes in system risk

R(d)
sys intensity, offering a structured visualization for assessing risk variations across different dispatch

scenarios.

CS3.3: Identifying Key Dispatch Factors Influencing Risk

To further quantify the impact of different dispatch variables on risk, a machine learning-based feature

importance ranking can be utilized. A Random Forest Regressor is trained on dispatch variables to

predict total risk, and the importance of each variable is extracted from this regressor.

Figure 4.13: Feature Importance Plot: Key Dispatch Factors Influencing Risk

The feature importance plot in Figure 4.13 visualizes the relative effect of various dispatch variables on

R(d)
sys, derived from feature importance indices. The variable names represent specific dispatch factors.

It raises the question of whether sensitivities in these variables could lead to larger steps or changes in

the risk levels, as observed in the contour plots. This highlights the importance of understanding how

changes in individual dispatch variables, as indicated by feature importance, may influence the broader

risk landscape depicted in the contour plots. The feature importance plot, therefore, offers insight into

which dispatch factors might warrant further investigation or closer monitoring to mitigate system risk

effectively.



5
Discussion and Limitation

In this chapter, the results gathered in the previous chapter are analysed and provided with some

interpretations. These interpretations can allow us to answer the thesis’s research questions, mention

the thesis’s limitations, and provide recommendations.

5.1. Interpretation of Results

5.1.1. Probability of a cascade contingency scenario

Given this exponential complexity, an initial contingency analysis is necessary to identify overloaded

components. By setting a threshold on the overloading levels, only the most critical lines are selected

for further analysis, significantly reducing computational effort while maintaining accuracy in cascade

modeling.

Motifs exhibit a higher probability of participating in a cascade compared to other subgraphs. This

trend is evident in the empirical probability results, where patterns with a higher presence in the net-

work correspond to higher empirical probabilities. Additionally, the heavy tail of the subgraph diameter

distribution reveals that as the diameter increases, especially from d = 6, the probability of discon-

nected subgraphs decreases quickly, yet remains nonzero. Notably, for the IEEE39 bus network, the

probability peaks at a diameter of 6, subtly indicating that cascades can propagate across distant lines

up to six edges apart rather than being restricted to directly connected elements. Cascades are not

solely localized events but can also involve spatially separated lines due to their higher prevalence in

the network. Table 4.5 further supports this by illustrating that disconnected subgraphs with diameters
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of 5 and 6 are the most frequently occurring in the network, thereby increasing their likelihood of being

involved in cascading failures.

The key findings in Table 4.6, which analyzes the probability of cascade propagation based on subgraph

patterns and their diameters, highlight an important trend: certain patterns have a high probability of

occurrence, while others are almost nonexistent. This supports the initial hypothesis that motifs are

expected to be higher in probability. Specifically, motifs play a dominant role in cascade propagation

and should be identified for further analysis or mitigation. Furthermore, as the cascade size increases,

patterns with larger diameters demonstrate a higher probability of occurrence. This can be attributed

to the network’s structural properties, where larger diameter subgraphs tend to appear more frequently

due to the sheer number of possible connections within a dense network. Moreover, as cascading fail-

ures progress, they are more likely to involve multiple paths and bypass direct connectivity constraints,

enabling failures to propagate along alternate routes. This aligns with the statistical distribution of sub-

graphs, where larger-diameter motifs inherently have a higher representation, thereby increasing their

likelihood of participating in cascades.

5.1.2. Effectiveness of dynamic impact metric

The first method to test for effectiveness is to show a correlation between the proposed impact metric

(I) and RMS-based Maximum rotor angle impact (∆θf ) for verification, which can be considered as

standard. The regression trend line in Figure 4.5 reveals a relatively very weak correlation. Despite

this, the proposed impact metric appears to effectively capture the severity of dynamic disturbances

under specific high-impact contingency conditions obtained through the proposed impact metric. This

can be especially beneficial in real-time monitoring and decision-making processes for power system

operators.

The proposed impact metric does not cover the entire system dynamics range, such as inertia, damping

coefficients, and pre-fault load flows, yet it can be valuable in some respects. It offers a practical way

to estimate the severity of disturbances, particularly in critical scenarios that lead to cascading failures.

These scenarios often form the foundation of large-scale system instability. While a more compre-

hensive analysis, which incorporates these additional system characteristics, would provide a fuller

understanding of rotor angle deviations and dynamic stability, the proposed metric is advantageous in

its ability to significantly reduce computational time. It provides a reasonable proxy for assessing the

impact of faults in cases where time-sensitive decisions are needed without compromising the overall

stability evaluation in these critical situations. Thus, while the proposed metric may not fully replace

more detailed stability analysis, it is a useful, computationally efficient alternative for assessing dynamic

impact in high-stakes fault scenarios.

The observations from the plot in Figure 4.6 highlight the computational efficiency and practicality of

the proposed impact’s computation time compared to traditional RMS-based simulations. Notably, the
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proposed impact computation line (represented in blue) consistently remains significantly below the

RMS-based maximum rotor angle impact computation line (depicted in red) across all analyzed contin-

gencies. This indicates that the proposed method provides a highly computationally efficient alternative

for assessing system impact, particularly in scenarios where rapid estimations are required. Despite the

clear advantage in computation speed, RMS-based simulations remain essential for detailed dynamic

stability analysis as they provide a more comprehensive assessment of system response, particularly

in capturing the full extent of rotor angle deviations following disturbances. However, the proposed

impact metric serves as an effective rapid estimation tool that allows system operators to efficiently pri-

oritize critical contingencies. By leveraging this metric, high-risk contingencies can be quickly identified,

and computational resources can be allocated more effectively, reserving detailed simulations only for

the most critical cases that require deeper analysis. A direct comparison of mean computation times

mentioned in the results further reinforces the efficiency of the proposed approach. This stark contrast

in computational time highlights the practical advantage of the proposed method, particularly in real-

time monitoring and contingency analysis. The ability to rapidly estimate impact using the proposed

metric makes it a valuable tool for system operators who require fast decision-making capabilities, es-

pecially in large-scale power networks where running full RMS simulations for every contingency may

be computationally intensive.

5.1.3. Implications of risk calculation and ranking

The results in Table 4.7 highlight the effectiveness of the risk-based method in identifying high-impact

contingencies, outperforming the random selection approach. The risk-based method achieves a pre-

cision of 71.89% and recall of 71.45%, demonstrating its ability to detect critical cascades. In contrast,

the random selection method, with a precision of 23.93% and recall of 26.39%, struggles to reliably

identify high-risk contingencies. Its low selectivity results in frequent misclassifications. The risk-based

method’s structured, probabilistic framework ensures a more precise identification of critical events,

reducing the likelihood of cascading failures and improving power system reliability.

Beyond outperforming random selection, the risk-based approach is also comparable to, and in certain

aspects superior to, the overloading-based selection method. The overloading approach exhibits high

selectivity (89.34%), meaning it is highly accurate in classifying severe cases. However, its recall is sig-

nificantly lower at 41.37%, indicating that it fails to capture a substantial number of critical contingencies.

This limitationmakes it less suitable for real-world applications, wheremissing critical contingencies can

have catastrophic consequences. The risk-based method, while slightly lower in selectivity, achieves

a much higher recall of 71.45%, ensuring a more comprehensive identification of contingencies. The

risk-based approach strikes a better balance by prioritizing the identification of high-risk contingencies,

reducing the likelihood of missed alarms. In practical scenarios, where avoiding missed alarms is criti-

cal, this method can ensure more reliable detection of critical cascades, enhancing the overall system’s

ability to mitigate potential cascades. Another key advantage of the risk-based method is its compu-
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tational efficiency as shown using the average computation times in results. The drastic reduction in

computational time makes the risk-based model particularly advantageous for time-sensitive grid oper-

ations, where rapid assessment and response are critical. The ability to provide fast and reliable results

without compromising accuracy makes the risk-based method not only a competitive alternative but a

preferred choice over the overloading-based approach.

The analysis of Spearman correlations between risk rankings and actual impact rankings in Figure

4.9 reveals a stark difference between randomly selected contingencies and those identified using the

risk-based method. The graph confirms that the random selection approach does not provide any

reliable predictive power in determining critical contingencies. The lack of correlation underscores the

inherent limitation of arbitrary selection, which fails to capture the underlying system vulnerabilities

and does not prioritize contingencies based on their potential impact. In stark contrast, a near-perfect

correlation suggests that the risk-based rankings are highly aligned with the dynamic rotor angle impact,

making them a far superior method for identifying critical contingencies. The ability to accurately rank

contingencies based on their potential impact provides grid operators with a powerful decision-making

framework, allowing for targeted mitigation strategies and enhanced resilience of the power system.

Operators should closely monitor the dispatches to ensure it does not exceed critical thresholds that

contribute to high-risk conditions. The contour plot in Figure 4.11 represents the risk associated with

different dispatch strategies. The dispatch scenario’s principal components can be projected onto this

plot, and if it falls into a red region, it indicates high system risk, whereas a dispatch falling into a blue

region signifies low system risk. This is particularly useful for real-time monitoring and quick operator

decision-making.

5.2. Answers to the Research Questions

How can contingency motif subgraphs be identified and their probabilities be used to model

and predict cascading failures?

Probabilistic Contingency Motifs (PCMs) are identified based on their shape and connection between

nodes. [29] discusses the identification of motifs using historical outage data. However, the unavailabil-

ity of such data in certain scenarios necessitates alternative approaches for modeling outage patterns,

with contingency analysis being a key method. Once contingency analysis provides critical cascade

scenarios for anN−k cascade, the empirical probabilities of subgraphs are compared to uniform prob-

abilities to check the motif. The probability of this motif P (Sk,i) is the probability that those transmission

lines participate in a specific cascade contingency scenario.

For an N − k cascade scenario with k − 1 lines already outaged, the probability of the kth line is

determined using the motif probability of k-line outages, probability of that cascade pattern given k-

line outages, probability of the subgraph diameter given for that cascade pattern and the probability
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of contingency for the specific pattern with the specific diameter. This probability of the kth line is the

overall cascade probability of the specific PCM with kth line as the next failure in the cascade.

How does the proposed impact metric correlate with traditional impact metrics when ranking

contingencies?

The proposed impact metric for cascades, derived from ISC of generators, using short-circuit analysis,

LODFs and electrical distance calculations, shows almost no correlation with impact metric based on

dynamic RMS simulations such as rotor angle deviations. This suggests the influence of additional

system parameters such as inertia, damping, and pre-fault load conditions while calculating the dynamic

impact. Despite this, the proposed metric effectively captures severe cascade contingencies when risk

rankings are analysed and is computationally extremely cheap. Thus, the proposed metric can serve

as a reasonable proxy.

The risk ranking comparison suggests that while traditional RMS-based simulations remain crucial for

detailed stability analysis, the proposed metric enables rapid pre-screening of contingencies, signifi-

cantly improving the efficiency of risk assessment. The computational efficiency of the metric further

strengthens its applicability.

How well does this risk-based probabilistic model’s ranking of cascading events align with the

rankings obtained by RMS simulation results in evaluating system security and resilience?

The risk-based probabilistic model demonstrates a strong alignment with the rankings derived from

RMS simulation results in evaluating system security and resilience. By leveraging a structured prob-

abilistic framework that integrates PCM probabilities with short-circuit impact, the model effectively

identifies high-risk contingencies. The comparison with overloading-based selection and random se-

lection highlights its superior balance between the precision of identification and sensitivity to high-risk

cascade scenarios. Unlike the random selection approach, which lacks systematic prioritization and

misclassifies contingencies, the risk model consistently captures critical contingencies with high relia-

bility.

The comparison of risk rankings with rankings obtained from maximum rotor angle impact further sup-

ports the model’s robustness. The Spearman correlation analysis reveals a strong association between

the rankings produced by the former risk-based method and actual system behavior, as measured by

the latter. This high correlation indicates that the probabilistic ranking method successfully reflects real-

world cascading effects for critical scenarios. The probabilistic model’s ability to prioritize contingencies

based on risk ensures that operators can effectively focus on the most hazardous scenarios, improving

decision-making in preventive and corrective actions.

Additionally, the risk-based method’s computational efficiency enhances its practical applicability for se-

curity assessments. Unlike overloading-based selection, which relies on iterative load-flow simulations



5.3. Limitations 96

and is computationally intensive as k increases for an N − k cascade, the risk-based approach com-

putes contingency probabilities in a single step. The impact calculations are also highly computable,

and this advantage allows for faster risk assessments. The model’s ability to balance computational

efficiency with accuracy in ranking cascading events makes it a valuable tool for improving system

resilience and risk-informed operational strategies.

5.3. Limitations

The risk-based model can outperform randomized selection and is comparable to overloading-based

impact (ηf ) and RMS simulation-based ∆θf in terms of providing a ranking of critical cascade contin-

gency scenarios. Although it is highly computationally efficient compared to both methods, several

limitations need to be overcome to effectively use the risk-based rankings.

Inability to calibrate motif frequencies for higher order cascades

The methodology is well-supported forN−2,N−3, and potentiallyN−4 outages, as these events that

occur frequently generate meaningful probability distributions. A central premise of motif-based outage

probability estimation is that one has access to a dataset of multiple-line outages from which to extract

frequent subgraph patterns. The nk,i for empirical probability (P (Sk,i | k)) calculation in Equation 2.25

for determining motifs is the number of observed k-line outages matching subgraph Sk,i. For larger k

(e.g., N-5 and beyond), the available data becomes sparse. If no historical cascade outage data exists,

then P (Sk,i | k) is effectively not defined, and it is difficult to estimate probabilities in an empirical, data-

driven way. This is why all outages with k > 4 are assumed to be of the same subgraph S4,∗ and this

pattern is not considered a motif.

Assumption of stationarity in outage patterns

The approach assumes that the historical outage patterns are representative of future outages. An

assumption that a stationary probability distribution of contingency motifs exists for the motifs is made.

However, power system configurations evolve due to grid upgrades, changing protection schemes,

and new operational systems. These changes may render past cascade probabilities, which have been

calculated based on outage data on the previous network configurations, inaccurate for risk estimation.

Static fault model for short-circuit contributions

Weuse generator short-circuit currents during the outage (ISC,gf ). However, these calculations assume

a static Thevenin equivalent of the network state. Real faults occurring as a part of cascades evolve

dynamically, with the tripping of protective relays, activation of reclosures and multiple simultaneous

faults. In practice, the time-domain progression of short-circuit currents and the transient response of

generators may alter the actual fault currents significantly as Zeq,gf varies throughout the fault due to

system reconfiguration. Relying on a single instance ISC may, therefore, underestimate or overestimate

the severity of a multi-line event, especially deeper into the cascade when topology has varied.
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Furthermore, the model treats sub-transient reactance X” among generators as homogeneous. Large

discrepancies in these reactances can cause ISC to concentrate disproportionately at certain fault

points, challenging the simplified notion in Equation 3.23 with a nominal value ofEg. In reality, generator

saturation levels, saliency effects, and exciter limitations, which tend to vary X”, could alter ISC .

Underrepresenting rare contingencies and preemptive actions

When ranking cascading events solely via a single measure of risk Rf = P (sk,i) × If , low-probability

but contingencies with moderate impact can overshadow high-impact cascade scenarios, which can

prove catastrophic but very high probabilities. Furthermore, without the uncertainty quantification of

risks, such as standard deviations or confidence bounds for both P (sk,i) and If , the resulting ranked

list can encourage over-reliance on point estimates. This can discourage consideration of scenarios

that have higher variance or occur in the tail and undermine the risk-informed decision-making process.

The ranking also does not account for the adaptive operator interventions or advanced digital protection,

which can isolate faults rapidly.



6
Conclusion

This thesis, titled ”Probabilistic Framework for Assessing Cascading Failures in Power Systems”, estab-

lished a probabilistic contingency motif (PCM) framework for modeling and predicting the probabilities

of critical cascade contingencies in transmission networks. It uses existing research on the identifica-

tion of contingency motifs by comparing empirical and uniform probabilities of subgraph patterns and

then calculating their probabilities using its subgraph type and its diameter. This probability is extended

to cascade probability with an assumption that forN−k cascade contingency and k−1 outages already

occurred, the multi-line motif probability or the probability of kth line outage is the probability P (sk,i) for

the cascade subgraph sk,i. Concurrently, an impact metric If for the fault at f on the kth line in cas-

cade calculated using the generator short-circuit currents (ISC,gf ), sensitivities using LODFs (wgf ), and

electrical distance (Dgf ) calculated using the modified Zbus matrix after fault occurrence is proposed.

It offers a fast-yet-robust measure of how severely each potential cascade may undermine network

stability. The impact and the probability are used to calculate the risk Rf of each cascade contingency.

Although this static Rf metric shows minimal correlation with maximum rotor angle deviation ∆θf , a

fully dynamic metric calculated using RMS simulations, it proves adequate as a computationally cheap

proxy due to its high correlation in rankings of critical cascade contingencies with the same metric.

While RMS simulations remain essential for in-depth transient and voltage stability assessment, the

proposed method can be utilized as a pre-screening mechanism, drastically reducing computational

expense. Consequently, the PCM approach offers a new technique for risk-informed operation, haz-

ardous cascade identifications and dispatch planning.
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6.1. Recommendations

A key area of future research involves improving the accuracy of cascade probability modeling by

incorporating dynamic and time-varying system conditions into the probability calculations. Rather

than assuming stationarity, one can develop parametric expressions for calculating probabilities which

depend on parameter ω, P (sk,i | ω) where ω is an umbrella variable corresponding to variations in

weather, load, equipment condition and others. There can also be an option to explore time-series

probabilistic models, P (sk,i | t) for calculating probabilities of critical cascade contingencies depen-

dent on schedules. Additionally, methods that explicitly capture multi-line correlations, such as partial

discharge, circuit breaker failures, or hidden failures, could yield more realistic joint distributions of out-

ages. Mathematically, this may be approached through a Bayesian framework to obtain the overall

marginal probability

P
(
sk,i) =

∫
P
(
sk,i, | ω

)
f(ω) dω (6.1)

ω represents one or more conditions or variables upon which the outage sk,i might depend, and f(ω)

represents the PDF describing the frequency of each state. Incorporating such conditions in near real-

time could significantly refine how probabilities scale across different dispatch scenarios.

Beyond probabilistic modeling, enhanced impact assessment can be pursued by merging short-circuit

methodologies shown in the thesis along with time-domain simulations. For example, ISC,gf could be

integrated into a transient stability method, allowing each outage scenario to trigger relay operations.

This can be supplemented with LODF with both linear and non-linear studies, iterative power-flow

calculations measuring line overloading and tracking how each subsequent tripping reconfigures the

network. Doing so would update the power flows and generator redispatch in real time, giving a more

precise representation of If . Furthermore, stochastic load variations or changes in sub-transient reac-

tances could allow for confidence intervals around both the probability and impact values, improving

the robustness of risk Rf .

Finally, ranking and R-based decision-making can benefit from multi-objective and tail-sensitive anal-

ysis. Future methods could incorporate risk-aversion methods or distributional ranking using priority

metrics. This can ensure that the scenarios residing in the tail still receive enough attention in system

planning and show up higher in risk rankings. Operator interventions such as remedial action schemes

or redispatch can be integrated directly into the ranking schemes so that the system can dynamically

mitigate the highly ranked contingency scenarios before they propagate deeper into the network. To-

gether, the refinements would enable a more holistic approach allowing an improved outage probability

modelling, refined impact calculation and sophisticated risk ranking and critical cascade prioritization

for diverse dispatch conditions.
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A
Electrical Distance Dgf from Zbus

1 import numpy as np

2 from scipy import sparse

3 import networkx as nx

4 import pandas as pd

5

6 def Case_1(Z_old, Zb):

7 """Case 1: Add impedance Zb from a new bus to reference."""

8 dim = Z_old.shape[0]

9 new_row = sparse.coo_matrix((1, dim), dtype=np.complex128)

10 new_col = sparse.coo_matrix((dim, 1), dtype=np.complex128)

11 return sparse.vstack([sparse.hstack([Z_old, new_col]), sparse.hstack([new_row, Zb])])

12

13 def Case_2(Z_old, Zb, node_idx):

14 """Case 2: Add impedance Zb from a new bus to an existing bus."""

15 new_row, new_col = Z_old.getrow(node_idx), Z_old.getcol(node_idx)

16 Zkk = Z_old.tolil()[node_idx, node_idx]

17 return sparse.vstack([sparse.hstack([Z_old, new_col]), sparse.hstack([new_row, Zkk + Zb])

])

18

19 def Case_3(Z_old, Zb, node_idx):

20 """Case 3: Add impedance Zb from a bus to reference."""

21 return kron_reduction(Case_2(Z_old, Zb, node_idx), Z_old.shape[0])

22

23 def Case_4(Z_old, Zb, node_l_idx, node_k_idx):

24 """Case 4: Add impedance Zb between two existing buses."""

25 Z_old_lil = Z_old.tolil()
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26 new_row, new_col = Z_old.getrow(node_l_idx) - Z_old.getrow(node_k_idx), Z_old.getcol(

node_l_idx) - Z_old.getcol(node_k_idx)

27 Zkk, Zll, Zlk = Z_old_lil[node_l_idx, node_l_idx], Z_old_lil[node_k_idx, node_k_idx],

Z_old_lil[node_l_idx, node_k_idx]

28 return kron_reduction(sparse.vstack([sparse.hstack([Z_old, new_col]), sparse.hstack([

new_row, Zkk + Zll - 2 * Zlk + Zb])]), Z_old.shape[0])

29

30 def kron_reduction(matrix, pivot_idx):

31 """Perform Kron's reduction to eliminate a row and column."""

32 matrix = matrix.tolil()

33 pivot_value = matrix[pivot_idx, pivot_idx]

34 dim = matrix.shape[0] - 1

35 reduced_matrix = sparse.lil_matrix((dim, dim), dtype=np.complex128)

36

37 for row in range(matrix.shape[0]):

38 if row == pivot_idx:

39 continue

40 reduced_matrix[row - (row > pivot_idx), :] = matrix[row, :] - (matrix[row, pivot_idx]

/ pivot_value) * matrix[pivot_idx, :]

41

42 return reduced_matrix

43

44 def construct_Zbus(graph, edge_order):

45 """Construct Zbus incrementally based on network connections."""

46 ref_node, nodes_used, first = -1, [], True

47 for node_a, node_b in edge_order:

48 weight = graph[node_a][node_b][0]['weight']

49 if first:

50 Zbus = sparse.coo_matrix((weight, (0, 0)), dtype=np.complex128)

51 nodes_used += [n for n in (node_a, node_b) if n != ref_node]

52 first = False

53 continue

54

55 if node_a == ref_node and node_b not in nodes_used or node_b == ref_node and node_a

not in nodes_used:

56 Zbus = Case_1(Zbus, weight)

57 elif node_a not in nodes_used and node_b in nodes_used:

58 Zbus = Case_2(Zbus, weight, nodes_used.index(node_b))

59 elif node_b not in nodes_used and node_a in nodes_used:

60 Zbus = Case_2(Zbus, weight, nodes_used.index(node_a))

61 elif node_a in nodes_used and node_b in nodes_used:

62 Zbus = Case_3(Zbus, weight, nodes_used.index(node_a))

63

64 nodes_used += [n for n in (node_a, node_b) if n not in nodes_used and n != ref_node]

65

66 return Zbus, nodes_used
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68 def create_zbus_line_data(lines):

69 """Convert line data to Zbus matrix representation."""

70 bus_index = {bus: idx for idx, bus in enumerate(set(branch[key] for branch in lines for

key in ['bus1', 'bus2']))}

71 return pd.DataFrame([{

72 'line': branch['loc_name'],

73 'sending_node': bus_index[branch['bus1']],

74 'receiving_node': bus_index[branch['bus2']],

75 'line_impedance': branch['R1'] + 1j * branch['X1']

76 } for branch in lines])

77

78 def process_zbus_data(lines):

79 """Compute Zbus matrix and return impedance values."""

80 impedance_data = create_zbus_line_data(lines)

81 impedance_data.replace({'sending_node': {0: -1}, 'receiving_node': {0: -1}}, inplace=True

)

82

83 sorted_data = impedance_data[impedance_data['sending_node'] == -1].iloc[:1]

84 remaining_data = impedance_data.drop(sorted_data.index)

85 visited_nodes = set(sorted_data[['sending_node', 'receiving_node']].values.flatten())

86

87 while not remaining_data.empty:

88 matching_rows = remaining_data[(remaining_data['sending_node'].isin(visited_nodes)) |

(remaining_data['receiving_node'].isin(visited_nodes))]

89 if matching_rows.empty:

90 break

91 sorted_data = pd.concat([sorted_data, matching_rows])

92 remaining_data = remaining_data.drop(matching_rows.index)

93 visited_nodes.update(matching_rows[['sending_node', 'receiving_node']].values.flatten

())

94

95 sorted_data['line_impedance'] = sorted_data['line_impedance'].apply(complex)

96 G_zbus = nx.MultiGraph()

97 edge_order = [(row['sending_node'], row['receiving_node']) for _, row in sorted_data.

iterrows()]

98

99 for _, row in sorted_data.iterrows():

100 G_zbus.add_edge(row['sending_node'], row['receiving_node'], weight=row['

line_impedance'])

101

102 Zbus, nodes_used = construct_Zbus(G_zbus, edge_order)

103 Zbus_array = Zbus.toarray()

104

105 bus_pairs = {int(bus): row['sending_node'] for _, row in impedance_data.iterrows() for

bus in row['line'].replace("Line␣", "").split("␣-␣")}

106

107 return pd.DataFrame([
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108 [bus_a, bus_b, Zbus_array[bus_pairs[bus_a] - 1, bus_pairs[bus_b] - 1]]

109 for bus_a in range(1, max(bus_pairs) + 1)

110 for bus_b in range(1, max(bus_pairs) + 1)

111 if bus_a in bus_pairs and bus_b in bus_pairs

112 ], columns=["Bus␣A", "Bus␣B", "Zbus_impedance"])

113

114 def find_distance(line, bus_name, Z_Bus_Values, percentage_distance=50):

115 """Compute electrical distance based on Zbus matrix."""

116 bus1, bus2 = map(int, line.loc_name.replace("Line␣", "").split("␣-␣"))

117 Z_line = line.GetAttribute('R1') + 1j * line.GetAttribute('X1')

118

119 def get_Z(bus_a, bus_b):

120 return Z_Bus_Values.loc[(Z_Bus_Values["Bus␣A"] == bus_a) & (Z_Bus_Values["Bus␣B"] ==

bus_b), 'Zbus_impedance'].iloc[0]

121

122 Z11, Z22, Z12, Z21 = get_Z(bus1, bus1), get_Z(bus2, bus2), get_Z(bus1, bus2), get_Z(bus2,

bus1)

123 Zb1, Zb2, Zbb = get_Z(bus_name, bus1), get_Z(bus_name, bus2), get_Z(bus_name, bus_name)

124

125 p = percentage_distance / 100

126 Zff = (1 - p)**2 * Z11 + p**2 * Z22 + 2*p*(1 - p) * Z12 + p*(1 - p) * Z_line

127 Zbf = (1 - p) * Zb1 + p * Zb2

128

129 return Zbb + Zff - 2 * Zbf



B
Impact weight wgf from LODFs

1 import os

2 import pandas as pd

3

4 def weights_from_LODF(M, Branch_list, n_loc):

5 """Find sensitivities using LODF (Line Outage Distribution Factors)."""

6

7 Branch_list = [branch.loc_name for branch in Branch_list]

8 sensitivities = pd.DataFrame(columns=["Generator"] + Branch_list)

9

10 for gen in M.app.GetCalcRelevantObjects('*.ElmSym'):

11 new_row = {"Generator": gen.loc_name}

12

13 # Run LODF calculation

14 com_vstab = M.app.GetFromStudyCase('ComVstab')

15 com_vstab.SetAttribute('iopt_method', 0)

16 com_vstab.SetAttribute('calcLODF', 1)

17 com_vstab.SetAttribute('p_bus', gen)

18 com_vstab.SetAttribute('isContSens', 1)

19 com_vstab.Execute()

20

21 # Get results

22 current_elmres = M.app.GetCalcRelevantObjects('*.ElmRes')[0]

23

24 if os.path.isfile("trial.csv"):

25 os.remove("trial.csv")

26

27 res_com = M.app.GetFromStudyCase('*.ComRes')
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28 res_com.SetAttribute('pResult', current_elmres)

29 res_com.SetAttribute('iopt_exp', 6)

30 res_com.Execute()

31

32 if os.path.isfile("trial.csv"):

33 trial = pd.read_csv("trial.csv")

34 new_row.update({branch: float(trial.loc[1, branch]) if branch in trial.columns

else 0 for branch in Branch_list})

35

36 sensitivities = pd.concat([sensitivities, pd.DataFrame([new_row])], ignore_index=True

)

37

38 return sensitivities
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