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Preface
Originally, the goal of this thesis was to improve upon the efficiency of inference on temporal data.
Inference on image data tends to get slow, inference on video data is slower still. We started working
with Multi-Scale Dense networks early on to manifest some type of speedup on video inference and it
was during that time we encountered the counter-intuitive phenomenon now known as overthinking.
I must have done the experiments at least 5 times before I became convinced that my results were
correct. ”How can a network get worse results when spending more computation”. It made little sense
at first. However, once convinced that it was not just some consequence of my sloppiness, I actually
became rather invested in it and we changed course, trying to uncover the machinations underpinning
this strange occurrence.

The thesis ended up taking many twists and turns, some good, some less so. Nevertheless, I would
like to thank Jan for encouraging any and all scientific inquiries and tangents that we ended up going
on. Embodying a true researcher, Jan always motivates you to just try it; in the worst case you’ll
encounter some other line of reasoning to pursue. I would also like to thank Xin, my daily supervisor,
at times the voice of reason when my ideas were unreasonable. Her expertise did not end up aligning
with what we ended up researching, I’m therefore all the more grateful she helped me whenever I asked
her to. Finally, I would like to thank Peter, for taking time out of his schedule to be a part of the Thesis
Committee.

Damian Voorhout
Rotterdam, February 2022
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Abstract
Traditional convolutional neural networks exhibit an inherent limitation, they can not adapt their
computation to the input while some inputs require less computation to arrive at an accurate prediction
than others. Early-exiting setups exploit this fact by only spending as much computation as is necessary
and subsequently exiting the sample early. In an end-to-end trained convolutional neural network with
multiple classifiers, one might expect deeper classifiers to perform better in every circumstance than
shallow classifiers; deeper layers make use of the computation done by earlier layers after all. However,
this is not always the case and more computation can lead to worse results. This phenomenon, which has
been dubbed overthinking, has been documented in several traditional convolutional neural networks
with intermediate classifiers. It has been conjectured that it happens due to later classifiers making
use of more complex feature which benefit from a larger receptive field. These later classifiers then
claim to discern said features in regions of the image which do not contain them, effectively making the
classifiers misclassify images that can be classified correctly by shallow classifiers. However, we have
observed overthinking in Multi-Scale Dense networks, an end-to-end hand-tuned network optimized for
early-exiting for which the given argument in relation to the receptive field does not hold due to its
unique architecture. For this reason, in this thesis we attempt to explain overthinking in Multi-Scale
Dense networks. We show that in general there seems to be no connection between what a classifier in
a Multi-Scale Dense network learns and the data itself. This in turn suggests that overthinking does
not take place due to specialization of the classifiers. Instead, we offer up an alternative theory for
overthinking in the form of stochasticity inherent to the training process.
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1
Introduction

Deep neural networks have started to play an important role in several areas including natural language
processing [55, 10, 5] and computer vision [17, 28, 19, 52]. While mathematical constructs that underpin
deep learning have been known for decades, recent advancements in computing power have served as
a catalyst for the growth in this field of computer science. As computing power increases, more and
more deep and powerful models emerge including VGG [50], AlexNet [28], ResNet [17], DenseNet [19]
and GoogleNet [52]. These models serve as the de facto benchmark for future deep learning innovation.
Performing inference on some of the deepest models can take up to 10 milliseconds for ResNet-152 [4].
If we consider a setting where a large collection of samples need to be classified as is the case for many
indexing websites such as Google and Yahoo, saving even one-thousandth of a second per classified
sample can reduce the total computation time by almost 3 hours in the case of 10 million images. Note
that Google has likely indexed well over a dozen trillion images at this point if we consider the individual
frames uploaded to YouTube. Lowering the computational cost of inference translates directly into a
reduction in power consumption. A sizable body of work has already been dedicated to the optimization
of deep neural networks, ranging from knowledge distillation [40, 7] and parameter reduction [62, 37, 38]
to weight quantization [58, 13]. These type of methods are often model-agnostic and can even improve
performance. However, whether or not these methods are implemented, traditional deep neural networks
still have static computational graphs and fixed parameters. As a consequence, a static neural network
will always spend the same amount of computation if the input dimensions remain fixed. If the input
sample is hard to classify, we are perfectly happy to apply the full power of the network to maximize
the likelihood of it returning an accurate prediction. If on the other hand the input is easy, throwing
the full weight of a static deep neural network at the problem would be overkill. Spending unnecessary
computation increases both the network’s inference time and power consumption. Ideally, we would
have the network only spend as much computation as it needs to. This is the essence of early-exiting; the
input is processed iteratively until either the computational budget has been spent or the network has
become confident enough in its prediction. Not only do these type of dynamic networks enjoy an overall
reduction of computation, they are also compatible with existing efficiency optimization techniques and
more widely applicable in real world settings due to their flexibility.

There are two settings where dynamic neural networks have a distinct advantage over their static
counterparts: During anytime prediction where a network is asked to output a result at a moments
notice, and budgeted batch classification where a group of samples need to be processed within a
singular fixed computational budget. In the latter case, a dynamic network will be able to maximize
its performance by spending more of the budget on harder samples. Search engines indexing images is
an example of a budgeted batch classification scenario. For a real world example of anytime prediction,
think of self driving cars [3] where road signs need to be classified to potentially alter the vehicle’s
driving behaviour. Road signs can appear around corners, the car can be driving at various speeds and
there might be stochasticity in the speed with which signs are recognized in the first place. All these
variables lead to variability in time constraints imposed on the classification network of the vehicle.
Static networks will not be able to adapt to the changing circumstances, whereas dynamic networks
can.

Early-exiting can be implemented in several ways, where arguably the most straightforward way is

1



1.1. Research objectives 1. Introduction

by using a cascade of networks. In this method, several pre-trained models are figuratively stacked on
top of each other and each consecutive model is larger and more powerful than the previous one. If the
output from the first, most efficient model is deemed sufficient, the prediction is treated as the final
output of the network, otherwise the model next in line is invoked until the final model is reached. While
the simplicity of a cascade setup is certainly attractive, it suffers from computational redundancy as each
model has to start inference from scratch. For this reason, more nuanced early-exiting approaches have
emerged recently in the form of hand-tuned end-to-end networks optimized for early-exiting. These type
of networks contain multiple classifiers and each classifier makes use of computation that has already
been performed by the classifier that preceded it. One of the most innovative and high performing
architectures in this paradigm is the Multi-Scale Dense Network (MSDNet) [20].

Classifiers in an MSDNet share the majority of their parameters as each consecutive classifier makes
use of computation performed by previous layers. This is part of the reason why end-to-end trained
dynamic networks are preferred over model cascades. One might reasonably expect then that each
consecutive classifier performs better than the one before it and on average over a given test set this
is almost always the case; the average performance of individual classifiers in an MSDNet increases
monotonically. However, this is not necessarily the case for individual samples. It can happen that a
classifier later in the network misclassifies a sample, while an earlier classifier already managed to come
to the correct conclusion; more computation can lead to worse results. We refer to this phenomenon as
’overthinking’. In general, the set of samples a classifier at depth 𝑖 + 𝑘 gets correct is not a superset of
the set of samples that classifier 𝑖 gets correct even though the average performance of classifier 𝑖 + 𝑘
surpasses that of classifier 𝑖. This suggests a certain level of independence in each classifier despite
the overwhelming level of built-in dependencies inherent in MSDNet’s design philosophy. Early-exiting
enables an MSDNet to exploit this independence to an extent as the network will end up selecting the
most appropriate classifier for each input based on the confidence a classifier has in its prediction. A
higher confidence is correlated with higher accuracy and samples thus tend to exit at classifiers that are
likely to classify the sample correctly. As a consequence, early-exiting directly combats overthinking. It
is then maybe no surprise that the collective performance of all classifiers in an MSDNet surpasses that of
any individual classifier in the network. Understanding overthinking is closely tied to understanding why
some classifiers correctly classify particular samples and why other classifiers can not. This knowledge
can subsequently be used to improve upon existing early-exiting strategies, improving adaptive inference
performance and reducing computation of dynamic neural networks.

Any code that was used in relation to Multi-Scale Dense networks in this thesis is often based on
work done by the original authors. Their code can be found on their Github page1.

1.1. Research objectives
In this thesis we explore the concept of overthinking in the context of Multi-Scale Dense networks.
The goal is to gain insight in the phenomenon itself to potentially improve on early-exiting in dynamic
neural networks. To this end, we derive several research questions to structure our research around.

1. Can early-exiting in MSDNet be learned directly by means of a policy network?

2. Do classifiers in MSDNet end up specializing in specific subsets of the original dataset?

3. Are there any image statistics that can be used to discriminate between the subsets that classifiers
in an MSDNet end up learning?

4. What causes overthinking in MSDNets?

1.2. Contributions
The main contribution of this thesis is showing the potential absence of a connection between the input
data and what a classifier in an MSDNet ends up learning. This suggest that classifiers do not end up
specializing in specific subsets of the original datasets. It allows us to suggest a different potential cause,
namely that overthinking in MSDNets is caused by stochasticity inherent to its training process. To
guide the reader to this conclusion throughout this thesis we provide them with background information
and auxiliary findings. The literary contributions are as follows:
1https://github.com/kalviny/MSDNet-PyTorch
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1.3. Outline 1. Introduction

1. We provide the reader with a rough overview of the workings of deep neural networks, specifically
in the context of visual data.

2. We provide the reader with an overview of how adaptive inference can be performed in convolu-
tional neural networks. We go particularly in depth into the workings of early-exiting.

The main experimental findings can be summarized as follows:

1. We show that policy networks can be used to learn early-exit strategies in MSDNets if there is a
substantial presence of correlation between the data and what classifiers end up learning.

2. We show that in general, policy networks are unable to detect a correlation between the data and
what classifiers in an MSDNet end up learning.

Finally, there are auxiliary findings that are worth mentioning:

1. We show how overthinking can be reduced based on work from the original authors of the Multi-
Scale Dense network [34].

2. We show how the frequency domain is not a reliable indicator of sample difficulty and discrete
cosine transform analysis does not suffice as a discriminatory feature to separate the learned
subsets of classifiers in MSDNets.

1.3. Outline
We start the thesis off with a chapter explaining the basics of deep learning in chapter 2. The second
halve dives into convolutional neural networks which specialize in visual data. At the end we stress
the importance of the concept of the receptive field, which plays a fundamental role in this thesis.
Next, chapter 3 goes into the fundamentals of adaptive inference, the resulting computational settings
and early-exiting. Here, we also cover the workings of MSDNets in detail. The chapter ends with
an explanation of overthinking and a way to reduce it. Chapter 4 covers the main findings, in it we
explore the idea of classifiers in MSDNets specializing as a reason for overthinking. We describe the
experimental setup and show that the results suggest a lack of specialization. We conclude the chapter
with an alternative explanation of what might be causing overthinking in MSDNets. Finally, chapter 5
covers concluding remarks, limitations of the experiments and its results and possible future work.

3



2
Deep learning

Traditional programs are able to solve a great deal of complicated tasks and problems. Programmers
specify exactly what the program should do using both high and- low level specifications. This works
well for problems that have solutions that can either be expressed in rigorous mathematics or are clearly
definable by humans, such as figuring out what the closest bakery is to your location, or creating a traffic
light controller that minimizes the average wait time of motorists. Given a list of bakeries and their
distance to the relevant location we can easily determine what a solution should look like. Showing
that a traffic light controller is optimal is more involved, but we can all agree on whether an arbitrary
traffic light controller is valid or not given the appropriate constraints. The same can not be said for
other problems however. Take for example the classification of images where we want to know what
object or organism is depicted in the image. This is a trivial task for humans and it is certainly easier
than creating an optimal traffic light controller, we simply use our intuition and experience. Yet we
have a hard time coming up with a robust set of rules that govern our intuition: we do not know
exactly how we recognize a dog in an image, let alone be capable of putting it into a concrete set of
instructions that a computer could interpret. This is why machine learning has become exceedingly
popular over the last few decades, to deal with problems that have solutions that are hard to define.
Instead of creating detailed instructions for the computer to follow such as in traditional programs,
machine learning operates on the principle of trial and error. To go back to the problem of recognizing
a dog, by feeding the machine learning network examples of dogs the network will over time learn to
recognize dogs, without the need for any external specifications of what a dog looks like. Doing it
this way of not giving the network any information on dogs or what it should focus on is called deep
learning, a form of machine learning which is not dissimilar to the way we learn ourselves.

In this chapter we cover the basics of deep learning to give context to chapters to come. We do
so by first introducing the architecture behind basic neural networks and subsequently going over the
mathematics that underpin it. We follow up with how networks are penalized and trained with chapters
on loss functions and the backpropagation algorithm, respectively. Finally, the chapter concludes with
an explanation of how deep neural networks function in the context of images. We stress the importance
of the convolutional layer and the significance of the concept of receptive fields.

2.1. Single-layer perceptron
The most basic version of a neural network is a single-layer perceptron and can be used to approximate
a set of functions 𝑓∗, which is fairly limited as we will see. The network consists of an input layer
x = {𝑥1, 𝑥2, … , 𝑥𝑚} and an output layer ŷ = { ̂𝑦1, ̂𝑦2, … , ̂𝑦𝑛}. In the case of a single-layer perceptron
with a single output, as seen in Figure 2.1, the output is the result of a weighted combination of the
inputs plus an optional bias factor. The activation function then decides whether the neuron ̂𝑦 gets
activated, or ”fires”. The activation function in this example is the step-function that outputs 0 if the
weighted combination is less than 0 and 1 otherwise. The binary output represents whether the network
considers the input x to belong to a certain class or not.
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Figure 2.1: Single-layer, single class perceptron [24].

Training a single-layer perceptron is done by iteratively altering the weights based on different training
inputs:

1. Initialize the weights in the weight vector w = {𝑤1, 𝑤2, … , 𝑤𝑚} to 0.

2. For every sample 𝑗 in the training set 𝐷, where each sample consists of an input and desired
output, or target (x𝑗, y𝑗):

• Calculate the output of the network:

̂𝑦𝑗 = 𝑔(
𝑚

∑
𝑖=1

(𝑤𝑖𝑥𝑗,𝑖)) (2.1)

where 𝑔(𝑥) is the activation function.
• Update each weight w𝑖:

w𝑖_𝑛𝑒𝑤 = w𝑖_𝑜𝑙𝑑 + 𝑙𝑟(𝑦𝑗 − ̂𝑦𝑗)𝑥𝑗,𝑖 (2.2)

where 𝑙𝑟 is the learning rate.

Note that if the network correctly predicts the sample’s label, the weights are not updated. Step 2
can be repeated an arbitrary number of times or until a performance criteria is met. Each of these
repetitions is called an epoch.

As was said, the perceptron shown in this example will only be able to distinguish between 2 classes
as its output is binary. To increase the number of classes we can add neurons to the output layer from
ŷ = { ̂𝑦1} to ŷ = { ̂𝑦1, ̂𝑦2, … , ̂𝑦𝑛}, representing 𝑛 possible classes. Every input will then be connected
to each output neuron just as when there was only a single output neuron. Each of these connections
will also have its own respective weights. Training works the same way as in the single-class case. Each
output neuron is mapped to one of the classes in the dataset that it is supposed to learn and a neuron is
supposed to only output 1 if the input corresponds to the class the neuron represents. If so, its weights
are not updated, otherwise the weights are updated in the same way as we saw before. The downside
of using the step function in this case would be that multiple neurons are able to output 1 at the same
time, which is not a problem during training, but leads to ambiguity when the network is deployed. For
that reason it might be useful to use a different activation function that is continuous in nature. The
result of the network would then be the maximum output of all output neurons: ̂𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥(ŷ). This
strategy is also referred to as One-vs.-all as each neuron outputs its projected probability of the input
belonging to its corresponding class versus the input belonging to any of the other classes.

Single-layer perceptrons are only able to perfectly distinguish classes that are linearly separable,
meaning the classes in the dataset are separable by a hyperplane from the other classes. This limits the
number of functions 𝑓∗ they can approximate. To introduce non-linearity in a perceptron we have to
increase the number of layers, leading to multi-layer perceptrons.
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Figure 2.2: Result of applying the sigmoid function to a
weighted combination of input parameters x = {𝑥1, 𝑥2} [1].

Figure 2.3: Shows a decision boundary of 0.5 on a sig-
moidal shape [1].

2.2. Multi-layer perceptron
Single-layer perceptrons are only able to produce linear decision boundaries, regardless of whether the
activation function is linear or non-linear. This is because the result is a weighted combination of the
inputs and thus linear in the parameters. Applying a non-linear activation function such as a sigmoid
function:

𝑆(𝑥) = 1
1 + 𝑒−𝑥 (2.3)

adds a curvature to the resulting hyperplane. Figure 2.2 shows this in the case of a two-dimensional
input x = {𝑥1, 𝑥2}. However, as the network is used to classify inputs, a threshold needs to be decided
above which an input is considered to belong to class 𝐴 and class 𝐵 otherwise. This threshold is
depicted as a line in Figure 2.3 and acts as a boundary between the two classes. Altering the weights
would only stretch, squeeze and rotate the sigmoidal shape, but never contort the decision boundary.
Thus, the activation function does not influence the linearity of a single-layer perceptron.

To introduce non-linearity to a perceptron, and increase the set of functions it can approximate,
involves adding more intermediate neurons to the network between the input and output layers, called
hidden layers. A hidden layer is defined in the same way as the output layer: h = {ℎ1, ℎ2, … , ℎ𝑘},
except that they need not be the same length, i.e. 𝑘 ≠ 𝑛. In the case of a single hidden layer the result
of the network would be:

̂𝑦𝑛 = 𝑔(
𝑘

∑
𝑖=1

(𝑤𝑖,𝑛ℎ𝑖)) (2.4)

𝑤ℎ𝑒𝑟𝑒 ℎ𝑖 = 𝑔(
𝑚

∑
𝑗=1

(𝑤𝑗,𝑖𝑥𝑗)) (2.5)

In these formulas 𝑤𝑎,𝑏 refers to the weight between node 𝑎 and 𝑏. Where a node can be either an
input or a neuron. In essence, this says that in a multi-layer perceptron the output is a weighted linear
combination of the hidden layers, which in turn are weighted linear combinations themselves of either
another hidden layer or the input. If linear activation functions are used in multi-layer perceptrons it
can be shown this is no different than using a single-layer perceptron and the network will again not
be able to create non-linear decision boundaries. If on the other hand non-linear activation functions
are used in the hidden layers, the network is able to approximate any function given enough hidden
neurons. The proof for this is called the universal approximation theorem. If the network has more
than around three hidden layers, we usually refer to it as a deep network, hence the term deep learning.
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Figure 2.4: Shows the cross-entropy loss function in case of the
label being 1 or 0 [46].

Figure 2.5: Shows the sigmoid function squash-
ing inputs between 0 and 1.

2.3. Loss functions
In Equation 2.2 it was shown how a single-layer perceptron can be trained by iteratively updating the
individual weights based on whether the network provided the correct output. This approach is wholly
depended on the learning rate to determine the changes in the weights after each sample. A more
nuanced approach is to treat the outcome as a minimization problem where the goal is to minimize the
difference between the network’s predictions and the correct labels. Gradient descent algorithms and
its variants are widely used in deep learning to do exactly that:

𝜃𝑡+1 = 𝜃𝑡 − 𝛾∇𝜃ℒ(𝑓(x; 𝜃𝑡), y) (2.6)

the equation represents the updating of the weights of the whole network given a single input sample,
where 𝜃𝑡 are the network’s weights, in the context of deep learning often referred to as parameters, at
the current iteration 𝑡, 𝛾 the learning rate and 𝑓(x; 𝜃) the output of the network given an input vector
x parameterized by the weights. y is the vector to denote the correct class label, it is a vector and
not a scalar because it uses One-hot encoding which we will cover later. ℒ(⋅, ⋅) is the loss function
which determines the penalty that the network incurs when it misclassifies samples. The chosen loss
function can have a significant impact on the learning process of the network. Equation 2.6 has many
similarities to Equation 2.2 but instead of simply updating the weights according to the learning rate,
gradient descent updates the weights in line with the negative gradient −∇𝜃ℒ(⋅, ⋅) which is the vector
of all partial derivatives of the loss with respect to 𝜃.

One of the most commonly used loss functions in the context of classification is the cross-entropy
loss, shown here for a binary classification setting:

ℒ𝐶𝐸 = −𝑦𝑖𝑙𝑜𝑔( ̂𝑦𝑖) − (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − ̂𝑦𝑖) (2.7)

where 𝑦𝑖 is the correct binary label of the input and ̂𝑦𝑖 the prediction of the network. The advantage
of using a loss function like this instead of simply taking the difference between the network’s output
and the label as we saw in Equation 2.2 is that we can now penalize ’very bad’ outputs more than
’sort of bad’ outputs. Figure 2.4 illustrates this effect, the x-axis shows the output of the network for
a particular input sample and the y-axis the cross-entropy loss when the correct label is one or zero
respectively: if the network predicts an output close to zero while the correct label is one, the error
is much higher than if it had output a value near 0.5. The cross-entropy loss function also has better
defined gradients across the board, whereas the sigmoid function as shown in figure 2.5 has increasingly
smaller gradients as the output gets closer to zero or one while intuitively the gradient should be larger
when the output is very incorrect. Note that the sigmoid function, or similar continuous activation
functions, still often get used in the last layer of the network to squash the input between zero and one
which then get fed to the loss function. In intermediate layers the ReLU activation function and its
variants are a popular choice:
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Figure 2.6: Shows the ReLU activation function [47].

ℎ = 𝑚𝑎𝑥(0, 𝑎) (2.8)

where ℎ is the result of the hidden layer and 𝑎 = Wx + 𝑏, with 𝑎 being the weighted combination of
the layers’ weights W and the input vector x, plus an optional bias factor 𝑏. Figure 2.6 shows what
a ReLU activation looks like, the main advantages over something like a sigmoid function are the fact
that the gradient stays consistent when 𝑎 > 0 no matter how large 𝑎 becomes, whereas the gradients
in the sigmoid function start to become smaller and smaller as |𝑎| gets larger, also referred to as the
vanishing gradient problem. Secondly, ReLU introduces sparse results by setting every 𝑎 ≤ 0 result to
zero. This helps with stability during the learning process.

In the last section it was mentioned how the sample labels are binary, even when there are often
dozens of classes in a dataset. This is done by means of One-hot encoding, where given 𝑛 classes, the
label of an input sample is denoted by:

y = (0, … , 0, 1, 0, … , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Entry i is set to 1 to denote class i

(2.9)

In tandem with this approach, the network’s last layer will have 𝑛 neurons. Instead of applying the
sigmoid function to each neuron’s output, a generalization of the logistic function is applied which also
normalizes the outputs, called the softmax function:

ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( ̂𝑦1, ̂𝑦2, … , ̂𝑦𝑛) = 𝑒 ̂𝑦𝑖

∑𝑛
𝑗=1 𝑒 ̂𝑦𝑗

𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 (2.10)

here ŷ represents the final output of the network, a vector of length 𝑛 with values that add up to one.
̂𝑦𝑖 is the output of neuron 𝑖 in the final layer of the network. The value of each entry in ŷ after applying

the softmax function now denotes the probability the network assigns to the input belonging to that
class. Taking another look at the cross-entropy loss function ℒ(𝑓(x; 𝜃𝑡), y) it now becomes clear how
the output of the network ŷ = 𝑓(x; 𝜃𝑡) and the One-hot label encoding of the input sample y each sum
up to one and that the gradient of the cross-entropy loss increases when each entry of ŷ differs a lot from
y which happens most often when the network predicts the wrong label: 𝑎𝑟𝑔𝑚𝑎𝑥(ŷ) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥(y). In
conclusion, the network will adapt and alter its weight more when ŷ and y are more dissimilar, just as
intuition would dictate.

2.4. Backpropagation
Updating the weights of the network in the case of a single-layer perceptron was done by adding a
value to them proportional to the learning rate. When using gradient descent the weights move in the
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opposite direction of the gradient of the loss function. The gradient is a vector that denotes all partial
derivatives of the loss function with respect to each weight in the network:

∇𝜃ℒ(ŷ, y) =
⎡
⎢⎢⎢
⎣

𝜕ℒ
𝜕𝜃1𝜕ℒ
𝜕𝜃2
⋮

𝜕ℒ
𝜕𝜃𝑘

⎤
⎥⎥⎥
⎦

(2.11)

where ℒ(ŷ, y) is the loss function with as inputs the network’s output vector ŷ and the One-hot encoded
class label vector y. The gradient shows how much each weight contributes to the loss and the weights
are altered accordingly during gradient descent. To calculate each derivative we can treat a network as
a set of nested functions:

ℒ𝐶𝐸(ŷ, y) = −y𝑙𝑜𝑔(ŷ) − (1 − y)𝑙𝑜𝑔(1 − ŷ)
ŷ = 𝑔(z𝑙)

z𝑙 = 𝜃𝑙z𝑙−1 + 𝑏𝑙
z𝑙−1 = 𝜃𝑙−1z𝑙−2 + 𝑏𝑙−1

⋮ (2.12)

where 𝑔(⋅) is any activation function, z𝑙 the result of layer 𝑙, 𝜃𝑙 the weights at layer 𝑙 and 𝑏𝑙 the bias.
When applying the derivative to a set of nested functions the chain rule applies:

𝑓 (2)(𝑓 (1)(𝑥))′ = 𝑓 ′(2)(𝑓 (1)(𝑥))𝑓 ′(1)(𝑥) (2.13)

Using this logic it can be shown what the partial derivatives of Equation 2.12 with respect to 𝜃 and 𝑏
look like for the last layer 𝑙. For readability sake the equations are shown using Leibniz notation:

𝑑ℒ
𝑑𝜃 = 𝑑ℒ

𝑑ŷ
𝑑ŷ
𝑑z𝑙

𝑑z𝑙
𝑑𝜃𝑙

… (2.14)

𝑑ℒ
𝑑𝑏 = 𝑑ℒ

𝑑ŷ
𝑑ŷ
𝑑z𝑙

𝑑z𝑙
𝑑𝑏𝑙

… (2.15)

if both of these partial derivatives are calculated separately, many nested partial derivatives become
redundant as they have already been determined while calculating the other partial derivative. This
observation is the essence of the backpropagation algorithm; by starting the calculation of nested partial
derivatives from the back, i.e. from the input data, previous results can be reused for later calculations.
This method is a form of dynamic programming and speeds up the learning process drastically. Virtually
every deep learning library uses a heavily optimized version of the basics described here to alter the
network’s parameters during training. The only downside is that previously calculated results need to
be cached for later use, taking up large portions of memory.

2.5. Convolutions
The networks we have looked at in the previous sections are multi-layer perceptrons with fully connected
layers, also called dense connections, where every neuron in layer 𝑙−1 is connected with every neuron in
layer 𝑙. Such a network has no problem taking images as inputs and performing classification. However,
doing so with a fully connected network will lead to rather poor performance as a dense network is not
spatially invariant. To show this, we can consider an image as a matrix of values ℝ𝐻×𝑊×𝐶 with 𝑊 , 𝐻
and 𝐶 the width, height and number of image channels respectively. Each value dictates the intensity
of the pixel in that channel. When 𝐶 = 1 the image is in grey-scale. The input to a dense network
is in the form of a vector x, so a 1D matrix representing the image would have to be flattened into a
vector either horizontally or vertically when being fed to the network. Either way, the relevant spatial
information that is needed to classify the image is lost. Figure 2.7 shows what that would look like in
the case of a horizontal flattening of the input matrix.

Conversely, a convolutional layer looks at local regions of the image by means of a striding window.
During a convolution a window, also called a filter or kernel, is slid across the image transforming each
scanned region into a value. The window, which itself is a matrix, is parameterized and subsequently
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Figure 2.7: Shows how a one-dimensional image matrix is flattened horizontally to conform to the input of a fully connected
network. The relevant spatial information in the image is lost in the process [22].

learned during training. The goal of the window is to scan for features, the resulting matrix from the
convolution is for that reason called a feature map. An example of a convolution is shown in figure 2.8.

Figure 2.8: Shows the process of a convolution. 𝐼 is the image or feature map of the previous layer, 𝐾 the window and
𝐼 ∗ 𝐾 the resulting feature map [35].

The window 𝐾 moves from left to right and top to bottom. After each step, or stride, it performs a
convolution with the inputs. The result is a weighted combination of the inputs with the weights of
the window. In other words, each input value is multiplied with the value of the window in the same
position and summed up which results in the value depicted in green. Note that the resulting feature
map’s resolution is lower than the resolution of the input matrix because of the size of the filter. The
size of the step the filter takes each time, also called stride, in this example is one, increasing the stride
or increasing the size of the window lowers the resolution of the resulting feature map.

The network learns the parameters of the filters during training, intuitively the values of the resulting
feature maps represent a measure of the presence of useful features found in that part of the image. If
for example the network learns that straight lines are a good image statistic to classify the images in
the dataset and the resulting feature map has high values in the top left corner, it signifies there is a
strong straight line presence in that region of the image. Notice how this is invariant to the location
of the straight lines, if there were straight lines in the bottom right corner of the images, the resulting
feature map would show higher values in the bottom right corner.

By performing convolutions on previous feature maps, in figure 2.8 𝐼 would then not be the input
image but a feature map, the network can learn increasingly complex features. As a result, later feature
maps can ”see” more of the input image than earlier feature maps. Figure 2.9 illustrates this effect:
the green value in layer 2 contains information of the green region of layer 1. The yellow value in layer
3 contains information of the whole image, or feature map, of layer 1. This allows the filters in later
layers to learn more nuanced features as they are able to quite literally see the bigger picture. We say
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Figure 2.9: Shows how values of a feature map in later layers contain information from a larger resolution of the input as
earlier layers due to the sub-sampling nature of convolutions. In this example a value from layer 3 contains information
from all of layer 1, while a value from layer 2 only contains information from the green portion of layer 1 [36].

that the later layers have a higher spatial receptive field. In practice this leads to earlier feature maps
learning basic shapes, such as lines and corners, while later feature maps learn complex geometries such
as faces, ears, tires etc.

To get an understanding of what convolutions would look like from a architectural point of view,
figure 2.10 shows how the same image from figure 2.7 is fed to a convolutional layer in a neural network.
Instead of connecting every input to every neuron in the first layer, the neurons in a convolutional layer
are only connected to the inputs which the filter coincides with. In this case, the filter is 2 × 2 and the
stride is also 2. Notice also how each neuron shares the same parameters 𝜃𝑙 = (𝜃11, 𝜃12, 𝜃21, 𝜃22) as these
represent the 2 × 2 filter. The outcome of the neurons in turn represent the resulting 2 × 2 filter map.
This also demonstrates another key aspect of using convolutions as opposed to fully connected layers:
sparse connectivity. Overall, the convolutional layer uses significantly less parameters to perform its
function, namely 4 for the filter as opposed to 16 in the fully connected case of figure 2.7. While it
may seem that less parameters leads to less capacity and less expressive power, in reality every extra
parameter the network needs to learn requires more training data. This is what is known as the curse
of dimensionality: an increase in dimensionality, which in this case refers to an increase in parameters,
leads to sparsity of the available data requiring an exponential growth in data to counteract the effect.
In other words, the more complex the function is the more parameters are needed to represent the
function but also the more data is needed to learn said function. There is always a trade-off between
the capacity of a convolutional neural network (CNN) and computational cost of training and deploying
the network.

Figure 2.10: Shows how a one-dimensional image is fed to a convolutional layer with a filter of 2 × 2 and a stride of 2.
The inputs are grouped according to how the filter slides across the image. All nodes share the same 4 parameters which
represent the filter [22].
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One common way to reduce the number of parameters in a CNN and at the same time increase the
receptive field of a network is to introduce pooling layers. During pooling the feature maps are separated
in several sections which are subsequently reduced to usually a single value according to a non-linear
function. One of the most common pooling methods is max pooling, where the non-linear function is
simply the max function. An example of max pooling is shown in figure 2.11 where a filter of 2× 2 with
a stride of 2 is used. Max pooling is a form of non-linear down-sampling and it collapses the relevant
information to a lower resolution. The intuition behind it is that the resulting feature map retains
the relevant local spatial information while discarding less relevant information, effectively reducing the
number of parameters later in the network and increasing the receptive field of the resulting feature
maps.

Figure 2.11: Shows the max pool function of a 2 × 2 filter with a stride of 2 [6].

The architecture of a convolutional neural network can be viewed as a combination of two parts:
the feature extraction part and the classification part. Figure 2.12 shows the architecture of VGG16,
a powerful image classifying network. The feature extraction is done by the convolutional layers which
learn what features are relevant for the task at hand. These layers are comprised of the convolutional
layer itself, a ReLU activation function and batch normalization. The term ”layer” is overloaded in the
context of deep learning; often when referring to a convolutional layer, what is actually meant are the
convolutional layer, the activation function and batch normalization combined, in the image shown in
black. We will see later how the term layer can even include more elements. For now though, a number of
convolutional layers are usually followed by a pooling layer, shown in red. Several of these convolutional
layers and a pooling layer may be referred to as a block. Several blocks are stacked together to create
the feature extraction part of the CNN. The classification part, more conventionally referred to as just
the classifier, consists of several fully connected layers with intermittent ReLU functions, denoted by
the blue blocks in the image, and finally a softmax function shown in brown.

Figure 2.12: Shows the architecture of the VGG16 network. The white and red blocks represent the feature extraction
part of the network while the blue and brown blocks denote the classifier. The network takes images of 224 × 224 × 3 as
input and outputs a probability vector of 1000 classes [51].

Notice how the input images are 224 × 224 × 3 and every subsequent block down-samples the resolution
but increases the number of feature maps, starting at 64 and ending at 512. As the receptive field of
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the feature map grows, the complexity of the shapes the recognize increases and thus the number of
shapes they can represent grows as well. The earlier feature maps only represent a few basic shapes and
not many feature maps are needed to represent them. For this reason most modern CNN’s increase the
number of feature maps along the depth of the network. Finally, the softmax function at the end of the
classifier has a size of 1 × 1 × 1000 from which we can tell that the dataset the network is attempting
to classify contains 1000 classes. These one-dimensional architectures, where all information flow takes
place from left to right will henceforth be referred to as conventional or traditional convolutional neural
networks as opposed to dynamic neural networks, which we will discuss in the next chapter.
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3
Adaptive inference

Conventional neural networks have static computational graphs during inference, meaning the number of
parameters do not change during the use of the network. Consequently, the amount of flops used by the
network to come to a conclusion also does not change if the input dimensions stay consistent. While this
computational robustness has its advantages in certain scenarios, not every input is consistent in terms
of inference complexity. For this reason, performing adaptive inference on static neural networks, or in
other words, turning them into dynamic neural networks, can lead to a number of potential advantages.
The most notable favorable properties of dynamic networks are higher computational efficiency and
more lenient computational flexibility.

This chapter covers dynamic neural networks and the inference settings they can operate in. In
particular, we address how early-exiting works and the different ways it can be implemented, ending
on Multi-Scale Dense networks which are optimized for adaptive inference. At the end, we go over how
we define the concept of overthinking, what its consequences are and the motivation behind trying to
understand it. Finally, we show how overthinking can be reduced.

3.1. Inference setting
Dynamic neural networks, as opposed to static ones, can alter their parameters or architecture on the
fly. This allows them to selectively adapt to the complexity of the inputs during inference. By allocat-
ing less computation to less complex samples, dynamic networks can save time and resources on tasks
where static neural networks would spend a fixed amount of computation on each sample. Furthermore,
this computational adaptiveness leads to dynamic neural networks having the ability to be used in two
inference settings that are out of reach for static networks: anytime prediction and budgeted batch
classification. The goal in both settings is to maximize performance under a limited computational
budget.

Anytime prediction. During anytime prediction, the network is asked to output a prediction given
a finite positive computational budget 𝐵 that exists for each sample x of test set 𝐷𝑡𝑒𝑠𝑡. The budget is
only given during inference, varies from sample to sample and is non-deterministic. We can therefore
model the event of a sample and its respective budget as a joint distribution 𝑃((x, y), 𝐵). We assume
𝑥 and 𝐵 are not independent in most real life scenarios. As an example of such a situation, consider
a self driving car containing a system that classifies traffic signs while driving. As soon as the system
recognizes that a sign has appeared on the road in front of the car, the system will need to classify the
type of sign to potentially alter the car’s driving behaviour. If the system recognizes the appearance of
a sign that is far down the road while the car is going at a moderate speed, the computational budget
for the system to classify the sign is relatively high. Conversely, when the car is going fast down the
same road, or a sign is spotted to be close to the car already, the computational budget might become
significantly lower. The objective of the system is to output a prediction regardless of the computational
constraints. The budget in this example is correlated with x as the closer the sign is, the easier it is
to identify. At the same time, if a sign is close to the car it often needs to be identified quickly, so 𝐵
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would be small. We let the loss of a network given a budget be:

ℒ(𝑓(x, 𝐵), y) (3.1)

Where ℒ(⋅) is any appropriate loss function, 𝑓(x, 𝐵) the network’s prediction that depends not only on
the input x, but also the budget 𝐵 associated with x. y is the One-hot vector representing the sample’s
label. The goal of a network during anytime prediction is to minimize the expected loss under the joint
distribution of the input and its budget:

ℒ(𝑓) = 𝔼[ℒ(𝑓(x, 𝐵), y)]𝑃((x,y),B) (3.2)

In practice, this is done by taking the average loss over all samples from the test set distribution
𝑃((x, y), 𝐵) ∈ 𝐷𝑡𝑒𝑠𝑡.

Budgeted batch classification. During budgeted batch classification the network is tasked with
classifying all samples of a test set 𝐷𝑡𝑒𝑠𝑡 given a computational positive finite budget 𝐵. This budget
may be non-deterministic but is known in advance of inference. We denote the cumulative loss of the
learner over the whole test set as:

ℒ(𝑓(𝐷𝑡𝑒𝑠𝑡, 𝐵), 𝑌 ) (3.3)

where 𝐿(⋅) is any appropriate loss, 𝑓(𝐷𝑡𝑒𝑠𝑡, 𝐵) an array representing all outputs of the classifier 𝑓 over
test set 𝐷𝑡𝑒𝑠𝑡, 𝐵 the total computational budget granted to classify all samples and 𝑌 the label matrix
of all samples. If we assume |𝐷𝑡𝑒𝑠𝑡| = 𝑀 , the model ideally spends less than 𝐵

𝑀 of its computation on
’easy’ samples and more than 𝐵

𝑀 on ’hard’ samples.

3.2. Early-exiting
Perhaps the most intuitive way of reducing computation of a network in an adaptive inference setting
is to cut off inference of a sample as soon as the network is able to come up with a prediction with
sufficiently high confidence, called early-exiting. If we view convolutional neural network architectures
as a computational graph, the input data passes through a number of convolutional layers that look for
relevant features, these features are then passed on to one or more fully connected layers that determine
the likelihood of these features belonging to any of the relevant classes in the dataset. The idea is
to not apply every layer in the network on the input data in line with the complexity of the input
sample. If the input sample represents an ’easy’ canonical data point, the full capacity of the network
is not required to come to an accurate prediction. However, cutting of computation early leads to a
number of obvious architectural issues including the absence of a classifier halfway along the network
and the lack of sufficiently processed features to perform classification on. Not to mention the challenge
of determining when a classifier is confident in its prediction and computation should be terminated.
Inherently, early-exiting and traditional convolutional neural networks are at odds with each other;
CNNs represent a linear process of feature extraction and subsequent classification which is heavily
reliant on said features. Early-exiting interrupts this process and if implemented incorrectly can lead
to poor performance.

In this section we shed some light on how early-exiting can be implemented. Subsection 3.2.1
addresses the architectural challenges of implementing early-exiting in neural networks and also covers
some related work in this field. Subsection 3.2.3 discusses the second major challenge of early-exiting,
namely how to ascertain when a network has performed enough computation to reach a trustworthy
prediction. Finally, subsection 3.2.2 gives a detailed overview of how multi-scale dense networks operate,
the main early-exiting network archetype that underpins the research laid out in upcoming chapters.
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3.2.1. Architecture

Figure 3.1: Shows the cascade of two models, where model 1 is the efficient, smaller model. The router is the abstract
portrayal of some decision function that determines whether the output of model 1 suffices or if model 2 should be invoked.
The cascade can be extended with as many models as desired [16].

Adding early-exiting capabilities to a traditional static neural network comes with a number of hurdles
to overcome to maintain adequate performance in the face of limited computational budgets. It is
then maybe no wonder that early-exit precursors chose to avoid those complications. Arguably the
most straightforward way of acquiring early-exit abilities is by cascading several neural networks of
increasing depth and performance. In the case of two networks, inference is first done by the smaller,
efficient network. If the prediction of this network is deemed adequate, the prediction is returned as
the final output. Otherwise, inference is done using the deep and slow network and its prediction is
returned as the final result. Figure 3.1 shows an example of a two model cascade. In most cases the
smaller network suffices and the bigger network is only required for the more complex inputs [44]. This
scheme can be extended with multiple networks, where the inference is done by each model in a set order
from smallest network to hardest [56], or a more nuanced approach is taken and certain models can be
skipped if desired [4]. In the latter case a network choosing policy is trained to determine which network
should be used next for inference if the current one does not suffice. Determining when a prediction
suffices or when to perform extra inference is a non-trivial ordeal and is discussed in subsection 3.2.3.
Implementing early-exiting by means of cascading several networks avoids architectural complications
and can be done with virtually any CNN [28, 52, 50, 32, 17], granted they differ in performance and
efficiency enough to make it worthwhile. Also, we assume Pareto optimality when choosing the networks
for the cascade; if one of the networks is dominated in terms of both performance and efficiency, it adds
no benefit to being in the cascade and should be left out.

The simplicity of cascading networks is an attractive attribute, but it comes with a number of
notable downsides. The first being an excess of possible redundant computations. If the prediction
of model 1 is not considered accurate enough, the next model in line has to perform inference from
scratch. It is likely that both models will look for similar features in the input image, especially in
the early layers of the network. Think for example of simple geometry like lines, corners and basic
shapes. The second model may very well benefit from prior computation performed by the previous
model. Secondly, using fully fledged pre-trained models hinders the early-exiting granularity. To gain
a more fine grain early-exit granularity requires more, smaller networks that in terms of efficiency and
performance are closer together. While this can be problematic in and of itself as it depends on the
available models, it also runs directly contrary to the computational redundancy we just discussed. The
closer the chosen models lie in terms of efficiency and performance, the more overhead the cascade will
incur in the way of overlapping computations effectively reducing the ability of cascades to perform well
in budgeted batch settings.

Cascades are better suited for the anytime prediction setting, however also here does the lack of
early-exiting flexibility limit their use cases. Many practical instances require fine grain granularity when
it comes to early exiting. If we consider the case of self-driving cars again, there are an unbounded
amount of different budgets the early-exiting setup has to deal with as the speed of the car and distance
to the signs are continuous variables. During anytime prediction, the result of the cascade, and by
extent any early-exiting setup, can be described as follows:
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ŷ = 𝑚𝑖(x)
s.t. 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃(𝑀))

𝑇 (𝑚𝑖(x)) ≤ 𝐵 (3.4)

where ŷ = 𝑚𝑖(x) is the cascade’s output given by the prediction of model 𝑖 on input x. Model 𝑖 is the
model with the highest performance 𝑃(⋅) of all models in the cascade 𝑀 . Finally, this model’s efficiency
has to satisfy the budget constraint 𝐵. In other words, in practical instances, an early-exit setup will
output its best prediction that can be computed within the computational budget. If the cascade only
has a limited number of models, it can happen that the budget is slightly smaller than the budget
required to obtain a prediction from a well performing model, and the cascade has to make do with
the model that precedes it. This model may perform significantly worse while part of the budget is left
unused. For this reason, cascades depend heavily on how many pre-tained models it contains that fit
well together in terms of efficiency and performance to do well in an anytime prediction setting.

Figure 3.2: Shows the implementation of a convolutional neural network with several early-exit branches containing
intermediate classifiers. Each prediction is fed to a decision module which determines whether the next part of the
network should be invoked or to output the current prediction. Ideally, easier samples end up in earlier classifiers while
more computation is spend on harder samples [11].

Models in cascades can not make use of previous computations leading to large computational
overhead for every model invocation. This in turn prevents cascades from acquiring high early-exit
granularity. A way to reduce computational overhead for every subsequent prediction is to let every
subsequent classifier make use of previous computation. This naturally leads to a singular network
design with multiple intermediate classifiers, an interpretation of such a design can be seen in figure
3.2. Several branches are connected to a network backbone which is shared by each classifier. These
branches contain a number of extra convolutions, usually to downsample the feature maps and prepare
them for classification. After a classifier at the end of the branch has made a prediction, the decision
is made whether to accept the prediction or to proceed to the next classifier. When the prediction is
rejected, the next part of the backbone network including the upcoming classifier is invoked until either
the final classifier is reached or an adequate prediction is found. Note how the network computes only
as much as it needs to and previous convolutions are used to feed the next part of the network.

The earlier convolutional layers of any chosen backbone model tend to have a low receptive field and
as a consequence their derived features may not be suitable to attain high performance over a whole
dataset. However, this concept of intermediate early-exits operates under the assumption that many
datasets contain samples that can already be classified using features that are derived in those early
layers [54, 31, 25, 11]. As long as the branches themselves containing the classifier do not require too
much computational overhead, there is no harm checking if early and intermediate feature maps are
already suitable for classification. If so, significant computation can be saved, if not, later layers might
be able to come up with an accurate prediction regardless. The early-exit granularity is only limited by
how many layers the backbone network has as an exit-branch can be connected after each layer. While
this may not be ideal because of reasons related to training as we will see, it should be clear how we
now have more control over what the early-exiting strategy looks like as opposed to when using model
cascades.

Training a cascade of models involves training each model individually, as none of the models share
parameters. In a network with multiple classifiers, all classifiers share parameters. We can train each
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classifier in the network iteratively and individually, in that case the loss for each classifier would be:

ℒ𝐶𝐸(ŷ, y) = ℒ𝐶𝐸(𝑓𝑖(x; 𝜃𝑖), y) (3.5)

where ℒ𝐶𝐸(⋅) is the cross-entropy loss and 𝑓𝑖(x; 𝜃) the classifier at depth 𝑖 applied to the input using its
respective parameters 𝜃𝑖. After the parameters that are associated with classifier 𝑖 are updated, we can
do the same for classifier 𝑗 until we reach the final classifier. While this is a valid training scheme, the
classifiers share parameters and updating them in favor of one of the classifiers may hinder the progress
of another. A conflict in the optimization goal for the convolutional layers of the backbone will arise,
namely to create filters that look for discriminative features for a nearby classifier while simultaneously
maintaining information to create complex features for the later classifiers. It is therefore almost always
advantageous to update the parameters in favor of all classifiers at the same time by means of a weighted
cumulative loss function:

ℒ𝐶𝐸(ŷ, y) = ∑
𝑖

𝛾𝑖ℒ𝐶𝐸(𝑓𝑖(x; 𝜃𝑖), y) (3.6)

here the loss is a summation of the losses of each individual classifier’s prediction. 𝛾𝑖 is an optional
factor that can be used to penalize specific classifiers more than others. Training the network this
way changes the goal from maximizing the performance of each individual classifier in a vacuum to
maximizing the average performance of all classifiers at the same time. The network benefits in both
the anytime prediction and budgeted batch classification setting when jointly optimizing each classifier’s
subnetwork.

A vanilla backbone model with intermediate classifiers is already well suited for adaptive inference.
Some ’easy’ samples can be correctly classified with simple feature maps and a joint training scheme helps
update the parameters in favor of all classifiers simultaneously. However, even simple samples benefit
from more complex feature maps with larger receptive fields and classifiers do still tend to interfere
with each other to some extent when trained jointly. Subsection 3.2.2 addresses how improvements
can be made on the concepts laid out in this section, giving rise to hand-tuned end-to-end designed
early-exiting architectures such as that of the Multi-scale Dense Network.

3.2.2. Multi-Scale Dense Networks
Injecting traditional models with intermediate classifiers trained in a joint fashion instills them with
the ability to perform adaptive inference. Many datasets contain ’easy’ samples that can already be
correctly identified using primitive features present in the earlier stages of the network. However, if the
classifiers in the early layers had access to coarser features, i.e. features with a higher receptive field,
they would be more accurate in their predictions. While this may come across as stating the obvious,
implementing it in a resource-aware way to be used in an early-exiting setting is non-trivial. Secondly,
adding classifiers to regular networks can harm the effectiveness of classifiers positioned deeper in the
network. In the last section we discussed how jointly training the classifiers in networks reduces the
prevalence of optimization conflicts in the backbone network. In reality, earlier layers still tend to
collapse in favor of the nearest classifiers, forsaking deeper layers in the process. Multi-scale Dense
Networks (MSDNets) are an architectural archetype that address the lack of coarse level features in
the earlier layers and the interference of intermediate classifiers by introducing multi-scale feature maps
and dense connections, respectively [20]. MSDNets are considered state-of-the-art when it comes to
architectures that specialize in resource-aware adaptive inference [30, 16].

Multi-scale architecture. Conventional CNN’s process information from a fine to coarse scale. The
early layers only see local details in an image while later layers mainly see features with full spatial
context. In most state-of-the-art deep CNN’s, regional information is propagated slowly across the
spatial dimension of the feature maps in line with the growth of their receptive field. Forcefully increasing
the receptive field too fast may lead to loss of crucial information needed to construct complex features.
One school of thought suggests that the concept of a receptive field in the traditional, linear sense
is outdated [26, 21]. Instead, spatial information exchange that leads to spatial shift invariance can
be achieved with significantly fewer parameters if features maps of all scales could transfer information
directly as opposed to only along the depth of the network. Figure 3.3 shows how this concept relates to
standard CNNs. Scales normally represent the size of the feature maps and simultaneously its receptive
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Figure 3.3: Shows a conventional CNN at the top. Only the deeper layers have full receptive field and propagating
spatial information across feature maps takes many steps. The bottom shows the concept of a multigrid, or multi-scale,
implementation. Scales are no longer linked to the depth of the network, instead every layer contains several scales that
each contain information from every scale in the previous layer, incentivizing information transfer between coarse and fine
scales [26].

field. The deeper a layer is positioned, the larger its receptive field on average and the smaller the size
of the feature maps due to pooling operations. In multi-scale architectures, such as that of the multigrid
CNN, all feature scales are already present in every layer, turning the one-dimensional architecture into
a two-dimensional one. Depth now exists to exchange information between every scale and refine the
feature maps. Mutltigrid does so by means of a multi-dimensional convolution along the scales of the
scale pyramid. As each feature map in layer 𝑖 consists of information of every feature map of layer 𝑖−1,
this setup is reminiscent of an architecture with fully connected layers. Nevertheless, Multigrid uses
significantly fewer parameters while maintaining performance when compared to traditional state-of-
the-art CNNs.

Multi-scale setups have also been utilized in the research of shift invariance in CNNs [39] and the
image segmentation setting [64], where in the latter case they also made use of upscaling and downsam-
pling between feature maps in different layers. Taking the concept of multi-scale architectures to the
extreme leads to setups with a fractal design where instead of a hierarchical and targeted architecture
the network consists of many structured, interconnected, repeating convolutional layers that exchange
information by upscaling, downsampling, pooling and convolutions. These type of networks essentially
contain many different models within depending on which route is chosen through the network [48, 29].

Figure 3.4: Shows the architectural overview of a basic Multi-Scale Dense network. It represents features of every scale
along the depth of the network. All information flow is directed up the scales and deeper into the network. Classifiers are
attached to the coarsest feature maps which represent complex features. After every convolution, the result is added to
a concatenation, which is propagated along the depth of the network for every scale [20].

MSDNet employs a multi-scale setup not for the reasons we just covered, but specifically to maintain
coarse-level features during every stage of the network. Figure 3.4 shows what the architecture of a
MSDNet looks like. It is perhaps most similar to that of a Multigrid setup, but the main difference
is the insight of MSDNets that it only needs the most accurate features at the highest scale, as this
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is where the classifiers are connected to. Note that highest scale in this context means the coarsest
features, portrayed as the bottom row in the image, normally associated with the depth of the network
in traditional CNNs. Focusing predominantly on the coarsest features allows the information flow to
only be directed to the bottom right; there is never a flow of information upwards. The first layer of
the network is the only one that also includes direct vertical connections used for ’seeding’ every scale.
In many ways the first layer acts as a regular convolutional network with aggressive downsampling
capabilities. The initial scale representations are subsequently refined along the depth of the network.
Blue connections represent convolutions with a large stride that lead to downsampling of the result-
ing features maps; the first layers uses them to quickly present feature maps of every scale. The red
connections are regular convolutions with padding, which creates feature maps of the same size as the
input. It is worth mentioning that the classifiers denoted in figure 3.2.2 also contain convolutions to
downsample the feature maps and prepare them for classification.

Figure 3.5: Shows how feature maps are concatenated and propagated though the network. 𝑙 refers to the layer, 𝑠 the
scale and ℎ𝑠

𝑙 (⋅) and ℎ̃𝑠
𝑙 (⋅) to convolutions and strided convolutions, respectively. [… ] denotes the concatenation operator.

The information on the right shows horizontal and vertical concatenations to differentiate between the concatenation of
feature maps along the depth and scales, respectively. In reality, all concatenations take place along the channel dimension
of the feature maps. The size of the concatenation grows linearly when 𝑠 = 1 and according to 2𝑘(𝑙 − 1) when 𝑠 > 1 [20].

Dense connectivity. When attaching intermediate classifiers to existing state-of-the-art models, joint
optimization of the classifiers reduces the extent of earlier feature maps collapsing in favor of earlier
classifiers. However, even so, earlier classifiers tend to interfere with later classifiers. The creators of
MSDNet showed this by adding intermediate classifiers to both ResNet [17] and DenseNet [19]. The
final classifier loses significant performance when intermediate classifiers are added in both networks.
The effect is more pronounced when the first intermediate classifier is placed closer to the start of the
network. This suggests that convolutional layers will collapse to tailor to upcoming classifiers in close
proximity and not retain information that is needed to optimize the deeper layers. What is interesting
to note here is that this effect is stronger in ResNet than DenseNet. DenseNet introduces dense con-
nections, where layers belonging to the same block are all interconnected. So every convolutional layer
takes as input the concatenation of every preceding feature map in a given block, while simultaneously
feeding every successive layer, leading to 𝐿(𝐿+1)

2 connections instead of 𝐿 − 1 connections in a tradi-
tional layout. Dense connections improve information flow between layers which, among other benefits,
stimulates feature re-use and reduces parameters as fewer feature maps are needed per convolution.
The increased information flow is also most likely the cause for the reduced loss in performance for
later classifiers when intermediary classifiers are introduced. Dense connectivity makes it so early stage
feature map information still ends up in later layers as they bypass intermediary transformations, pre-
venting information loss due to the premature collapsing of feature maps. MSDNets implement dense
connectivity on a scale by scale basis as can be seen in figure 3.5. If 𝑠 > 1, the input to the convolution
ℎ𝑠

𝑙 (⋅) at scale 𝑠 and layer 𝑙 is the concatenation of all preceding feature maps {x𝑠
1, … , x𝑠

𝑙−1} with all
preceding feature maps of 𝑠 − 1 {x𝑠−1

1 , … , x𝑠−1
𝑙−1 }. This is visualized in the diagram with red and blue

respectively. Note that the feature maps of 𝑠−1 are again connected to and thus influenced by 𝑠−2. In
figure 3.4 dense connectivity is visualized with the dashed lines. Not every dense connection is visual-
ized as this takes place implicitly via recursive concatenations. In essence, each feature map at layer 𝑙 is
added to a concatenation that is propagated along every scale 𝑠: {x𝑠

1} −→ {x𝑠
1, x𝑠

2} −→ {x𝑠
1, x𝑠

2, x𝑠
3} −→ … .

x𝑠
0 is not added as it either does not exist at 𝑠 > 1 or it represents the input image at 𝑠 = 1. The

number of feature maps a convolutional layer takes in at layer 𝑙 and 𝑠 > 1 is equal to 2𝑘(𝑙 − 1) where
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𝑘 denotes the fixed number of output channels set for every convolution, also referred to as the growth
rate. Usually the number of channels in a deep neural network grows exponentially, as we saw in figure
2.12. Networks with dense connectivity on the other hand can inhibit the growth in channels hence the
reduction in parameters compared to other state-of-the-art models.

Figure 3.6: Shows a 3 block MSDNet with pruned subsections. The operations between blocks consist of 1×1 convolutions
[20].

To further reduce parameters, MSDNets omit scales when they no longer contribute significantly to
upcoming classifiers. Figure 3.6 shows what that would look like. Also, several layers are grouped
together to form a block. Blocks are connected by means of a 1 × 1 convolution that halves the number
of resulting feature maps. This has been shown to reduce computation without sacrificing performance
[17, 53].

3.2.3. Exiting policies
During adaptive inference, processed features make their way to intermediate classifiers in the case of
networks with early-exits, or to the final classifier of networks in the case of model cascades. Either
way, in a budgeted batch setting, a decision has to be made at each stage whether the prediction of
the current classifier suffices or if more computation is required to potentially reach a more accurate
verdict. If the decision rule is too tight, inaccurate predictions might get returned. If the decision rule
is too loose, unnecessary computation might be spent when previous classifiers already provided the
correct answer. There are several methods to decide when to early-exit, each with their own advantages
and shortcomings. In this section we will mainly focus on confidence based criteria as that is what we
will use in our experiments. We touch on policy networks in section 4.1 as we aim to create a similar
method to learn an early-exiting strategy directly.

Confidence based criteria rely on interpreting the output of the final layer of a classifier and compar-
ing it to a predefined confidence threshold. If the criterion exceeds the threshold, the sample is exited
at that classifier, otherwise computation resumes. As this is reminiscent of the stopping problem, some
tangential methods are more closely related to reinforcement learning, where some sort of halting score
is introduced [14, 12, 9, 15]. The halting score increases based on every prediction and when it crosses
1, the computation is stopped and the current classifier outputs its prediction. These type of methods
often introduce additional modules that need to be added to the network for them to function. Regular
confidence based criteria can be used without making changes to the network and are conceptually sim-
ple, making it a popular choice. The actual criterion used to determine the confidence of a prediction
varies. The most commonly used statistic, and the one we use, is simply the maximum value of the
softmax output [20, 61]:

z = 𝑓𝑖(x) 𝑖 ∈ {1, ..., 𝑛}
ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(z)

𝑐 = 𝑚𝑎𝑥(ŷ) (3.7)

where z is the output of classifier 𝑖, 𝑛 the total number of classifiers in the network and 𝑐 the measure
of confidence in the prediction between 0 and 1. Another measure of confidence is the entropy of the
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softmax output [60, 54]:

𝑐 = ∑
𝑗∈|ŷ|

𝑦𝑗𝑙𝑜𝑔(𝑦𝑗) (3.8)

where 𝑦𝑗 is the probability the classifier assigns to class 𝑗. High entropy indicates that the softmax
values differ greatly and the classifier has ended up with assigning a high probability to a single class.
Low entropy signifies that the classifier is unsure as class probabilities are closer in value. Lastly, a
measure that is sometimes used is the ratio between the highest and second highest softmax values [23,
2]. It aims to do the same as the entropy measure, but in a more concrete way.

Regardless of which confidence criterion is used, a confidence threshold 𝑡𝑖 needs to be determined
for each classifier 𝑓𝑖. Let 𝐶𝑖 denote the cost of invoking the network up to and including classifier 𝑖, 𝑞𝑖
the probability of a sample exiting at classifier 𝑖 and 𝐷𝑡𝑒𝑠𝑡 the test set. Note that ∑𝑖 𝑞𝑖 = 1. Given a
budget constraint 𝐵 during budgeted batch classification gives rise to the following inference constraint:

|𝐷𝑡𝑒𝑠𝑡| ∑
𝑖

𝑞𝑖𝐶𝑖 ≤ 𝐵 (3.9)

The goal is to find the thresholds such that this constraint is met. There are many sets of 𝑞𝑖 ∈ 𝑄 that will
satisfy the constraint. For this reason it is often easier to come up with several 𝑄 first and subsequently
calculate the associated budget on the validation set 𝐷𝑣𝑎𝑙. Given 𝑄, the resulting thresholds and the
budget associated with them can be stored in a lookup table. In a real life budget batch scenario, the
appropriate thresholds can then be picked that satisfy the budget constraint.

Algorithm 1 Pseudocode for the creation of confidence thresholds given a validation set 𝐷𝑣𝑎𝑙, a set of
classifiers in a network 𝐹 and a number of iterations 𝑖𝑡𝑒𝑟.

1: procedure createThresholds(𝐷𝑣𝑎𝑙, 𝐹 , 𝑖𝑡𝑒𝑟)
2: 𝑛 ←|𝐹 |
3: 𝑚 ←|𝐷𝑣𝑎𝑙|
4: 𝑇 [𝑛] ← [] ▷ Thresholds
5: 𝑄[𝑛] ← [] ▷ Exit probabilities
6: 𝐶[𝑛][𝑚] ← [] ▷ Confidence scores on all val samples for each classifier
7: for 𝑖 ← 1 to 𝑛 do
8: 𝐶[𝑖] ← 𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑖(𝐷𝑣𝑎𝑙)))
9: 𝑏 ← 20

10: for 𝑝 ← 1 to 𝑖𝑡𝑒𝑟 do
11: 𝑝 ← 𝑝/𝑏
12: 𝑄 ← 𝑒(𝑙𝑜𝑔(𝑝)∗{1,...,𝑛})

13: 𝑄 = 𝑄/𝑠𝑢𝑚(𝑄) ▷ ∑𝑖 𝑞𝑖 = 1
14: for 𝑖 ← 1 to 𝑛 do
15: 𝑚𝑎𝑥𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶′

𝑖⊂𝐶[𝑖],|𝐶′
𝑖 |=𝑄[𝑖]∗𝑚 ∑𝑐∈𝐶′

𝑖
𝑐 ▷ Select samples with largest confidence

until we reach exit quota 𝑞𝑖
16: 𝑇 [𝑖] ← 𝑚𝑖𝑛(𝐶[𝑖][𝑚𝑎𝑥𝑐]) ▷ Threshold is lowest confidence that still exits
17: if i < n - 1 then
18: 𝐶[𝑖 + 1] ← 𝐶[𝑖 + 1]\𝑚𝑎𝑥𝑐 ▷ Remove samples from eligible samples for up-

coming classifiers as they have already exited
at this classifier

19: return 𝑇

Algorithm 1 shows the pseudocode for the derivation of thresholds 𝑇 that we use whenever adaptive
inference is involved. First, the confidence scores of each classifier on every sample is computed on line
8, we then create an exit distribution 𝑄 by use of the following formula:

𝑞𝑖 = 𝑒𝑙𝑜𝑔(𝑝/𝑏)∗𝑖 (3.10)

where 𝑝 and 𝑏 are any positive integer. If 𝑝 < 𝑏 and given any 𝑣 < 𝑤, 𝑒𝑙𝑜𝑔(𝑝/𝑏)∗𝑣 > 𝑒𝑙𝑜𝑔(𝑝/𝑏)∗𝑤, conversely
if 𝑝 > 𝑏, 𝑒𝑙𝑜𝑔(𝑝/𝑏)∗𝑣 < 𝑒𝑙𝑜𝑔(𝑝/𝑏)∗𝑤. Lines 9 − 13 thus create a monotonic exit distribution for the classifiers
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that first decreases, making more samples exit at earlier classifiers, and later increases as 𝑝 grows,
making more samples exit at later classifiers. 𝑏 thus acts as a turning point and at 𝑝 = 𝑏, every exit
probability 𝑞𝑖 is equal. If 𝑖𝑡𝑒𝑟 is chosen to be very large, 𝑝 will eventually make it so nearly every sample
will exit at the final classifier only, effectively asymptotically approximating a single classifier scenario,
or an anytime prediction scenario where only the last classifier is used. If on the other hand 𝑏 is chosen
to be very large and 𝑝 is still small, nearly every sample will exit at the first classifier. From 𝑄 we can
then for each classifier find the 𝑞𝑖 ∗|𝐷𝑣𝑎𝑙| samples it had the most confidence in and act as if they exit at
that classifier, represented by lines 15 and 18, respectively. We set its confidence threshold to the lowest
confidence of that set so that later during the evaluation on the test set 𝐷𝑡𝑒𝑠𝑡 any sample that crosses
that threshold will exit via that classifier, shown on line 16. As we assume that 𝐷𝑣𝑎𝑙 and 𝐷𝑡𝑒𝑠𝑡 are from
the same distribution, this chosen threshold will approximate the exit probability 𝑞𝑖. The thresholds 𝑇
are returned, and we can calculate the budget that is associated with this 𝑇 by means of Equation 3.9
as we know the 𝑄 that was used to come up with the thresholds. We can also get the performance
of the network for the obtained thresholds in a budgeted batch classification setting by making the
test samples exit according to said thresholds. Algorithm 1 thus gives us a set of budget-performance
pairs which will serve as an indication of the performance of an early-exiting network in the context of
budgeted batch classification.

3.3. Overthinking

Figure 3.7: Shows anytime prediction and budgeted batch performance of applying a 5-block Multi-Scale Dense network
on the CIFAR100 test set. The upper bounds represent results obtained when applying a perfect early-exit strategy. The
oracle is clairvoyant and does not perform inference if no classifier can correctly classify the sample.

In subsection 3.2.1 we discussed how a setup with multiple classifiers would go about inference in an
anytime prediction setting. Subsection 3.2.3 explained the strategy for the budgeted batch setting.
We can show how these two metrics relate by applying an MSDNet on CIFAR100 [27], illustrated
in figure 3.7. Appendix A shows similar results obtained when applying MSDNets on video data,
it also describes the method used to prepare MSDNets for temporal data. The anytime prediction
values represent the performance of each individual classifier. Note that higher performance can be
obtained if instead of choosing the classifier whose computational requirements lies closest to the given
budget, the ’best’ classifier is picked based on confidence criteria. It is actually for this reason that
the network’s budgeted batch performance surpasses the that of the anytime prediction; early-exiting
prevents network overthinking. Overthinking takes places when a later classifier incorrectly predicts a
sample, while an earlier classifier already managed to come to the right conclusion. So even though
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the average performance of each successive classifier is monotonically increasing, this need not be the
case for individual samples; more computation can lead to worse results. More formally, we define
overthinking as follows:

𝑓𝑖(x; 𝜃𝑖) = y ∧ 𝑓𝑖+𝑘(x, 𝜃𝑖+𝑘) ≠ y 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ {1, … , 𝑛 − 𝑖} (3.11)

where 𝑓𝑖(x; 𝜃𝑖) is the output of classifier 𝑖 and 𝑛 the total number of classifiers in the network. In
the budgeted batch setting, the samples exit based on whether a classifier is confident in its current
prediction, not based on a classifiers average performance. Because samples exist on which the network
overthinks, not only flops can be saved by early exiting, but performance can be gained at the same
time. As a consequence, the budgeted batch performance of an MSDNet is greater than a weighted
combination of the average performance of individual classifiers. The early-exiting performance even
surpasses the average performance of the final classifier, while using significantly fewer flops. Inter-
estingly, because of the way the thresholds are chosen, the budgeted batch performance eventually
decreases and approximates the performance of the final classifier. This is due to the chosen exiting
distribution 𝑄 favoring the later classifiers as 𝑝 increases, as explained in subsection 3.2.3. Eventually,
all samples will exit at the final classifier as 𝑝 gets closer to 𝑖𝑡𝑒𝑟.

The ability to early-exit combats the overthinking phenomenon; in a way, exiting policies allow the
network to chose the classifier best suited for the current sample, instead of relying on performance
averages. Taking this to the extreme, figure 3.7 also shows the possible upper bounds in terms of
performance and efficiency when perfect early-exiting is applied. The oracle represents a method that
will always find the most efficient classifier that can correctly classify the sample and will not perform
inference at all when no classifier exists which can do so. The realistic upper bound represents the
same concept, except it is slightly less clairvoyant and will send a sample to the last classifier if no
classifier can correctly predict it. It shows that the collective performance of all classifiers far surpasses
the performance of the individual classifiers in the network and much is to be gained in terms of both
performance and efficiency if early-exiting accuracy improves. Much work has already been done to
increase the early-exiting accuracy of dynamic neural networks, some of which where briefly discussed
in subsection 3.2.3. However, to our knowledge, there is only one body of work that explicitly addresses
the concept of overthinking in an adaptive inference setting by Kaya et al [25]. Gaining a deeper
understanding of why overthinking takes place could give us the ability to exploit it, leading to an
increase in early-exiting accuracy and subsequently increasing the overall performance of the network
while simultaneously reducing its computational footprint.

Figure 3.8: Shows how in a traditional CNN with multiple classifiers, the final classifier will find complex, specific features
in images that do not contain them. Earlier classifiers, which make use of simpler features are able to classify the sample
correctly [25].

Kaya et al. study the overthinking phenomenon in the context of traditional CNNs injected with
intermediate classifiers. They note that the final classifier at times incorrectly classifies a sample while
an earlier classifier is able to return the correct result. As this is done with traditional CNNs, specifically
VGG, ResNet, Wide-ResNet [63] and MobileNet [18], they suggest the reason overthinking takes place
is due to the feature maps used by the latest classifier being too specific and detail oriented. Figure
3.8 shows heatmaps of what the respective classifiers take into account to come to a conclusion. The
simple features earlier classifiers make use of are present in the whole image, whereas the more complex
features which are a result of increased receptive field are sometimes mistakenly found in subregions
of images belonging to a different class. The final classifier assigns too much weight to these features

24



3.4. Reducing overthinking 3. Adaptive inference

which is visible in the heatmaps. In other words, final classifiers occasionally have tunnel vision which
leads them astray. Kaya et al. thus suggest there is a correlation between the spatial receptive field and
overthinking. Producing similar heatmaps using GradCam [49] for MSDNets however does not lead to
the same results as can be seen in figure 3.9. There seems to be no clear visual pattern that describes
what each classifier focuses on. This result is not unexpected as we know from subsection 3.2.2 that
MSDNets maintain complex features with full receptive field at every stage of the network. Overthinking
can thus not be explained from the perspective of the receptive field when it comes to MSDNets.

Figure 3.9: Shows an example of what classifiers focus on in a 10-block Multi-Scale Dense network. Each image also
shows the respective classifiers’ prediction and its softmax confidence in that prediction.

That being said, it does not rule out a correlation between the data and overthinking. There might very
well be image statistics that can be used to predict whether a sample will exit at a given classifier or
not. If it exists, it could provide us with insight on what each classifier focuses on and by extent what
overthinking is. Most of chapter 4 is dedicated to exploring this avenue of trying to explain overthinking
from the perspective of the data.

3.4. Reducing overthinking

Figure 3.10: Shows how classifier 1 and 2 of a Multi-Scale Dense network rank each sample of the CIFAR100 test set
according to confidence. When ISC is applied, these rankings become less dissimilar [34].

Part of overthinking is simply that neighbouring classifiers disagree on what the label of the input
sample ought to be. The more they disagree, the more likely it becomes that overthinking will occur. A
way to illustrate this disagreement is by obtaining the confidence two neighbouring classifiers have on a
set of samples, sort the confidences, and plot them against each other. The result is shown in figure 3.10
as the blue dots in the case of classifier one and classifier two of an MSDNet on CIFAR100 [27]. The
original authors of MSDNet propose several methods to increase the performance of classifiers in an
MSDNet that can be applied during the training process [34]. Two methods that are particularly of note
are Inline Subnetwork Collaboration (ISC) and One-for-all Knowledge Distillation (OFA). Both aim to
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improve collaboration between classifiers during the training process to incentive knowledge transfer.
The methods can be described as follows:

• Inline Subnetwork Collaboration. ISC adds connections between every classifier 𝑖 and clas-
sifier 𝑖 + 1. These connections can consist of several convolutional layers or simply the identity
function. In the latter case the results of classifier 𝑖 are transferred to the next classifier without
further alteration. The idea is that classifier 𝑖 + 1 can make use of what classifier 𝑖 thinks, instead
of just sharing the same parameters in the backbone of the network. This more direct connection
stimulates analogous thinking between adjacent classifiers.

• One-for-all Knowledge Distillation. OFA allows intermediate classifiers to directly learn from
the final classifier of the network. In general, we know that the final classifier performs best on
average due to its increased capacity. This knowledge transfer is thus a form of teacher parent
setup where the final classifier is the teacher who is trying to instill its knowledge into all other
classifiers in the network. The loss for each intermediate classifier 𝑖 becomes:

𝐿𝑖(y, 𝑓𝑖(x; 𝜃𝑖)) = 𝛼ℒ𝐶𝐸(y, ŷ) + (1 − 𝛼)𝐾𝐿𝐷𝑖 (3.12)

where 𝛼 determines how much OFA contributes to the total loss and 𝐾𝐿𝐷𝑖 refers to the Kullback
Leibler divergence between classifier 𝑖 and the final classifier 𝑘:

𝐾𝐿𝐷𝑖 = − ∑
𝑐∈y

𝑝𝑘(𝑐|x, 𝜃𝑘)𝑙𝑜𝑔( 𝑝𝑖(𝑐|x, 𝜃𝑖)
𝑝𝑘(𝑐|x, 𝜃𝑘) ) (3.13)

with 𝑐 is every class in y and 𝑝𝑖(𝑐|x, 𝜃𝑖) the probability classifier 𝑖 assigns to sample x belonging to
class 𝑐. In essence, 𝐾𝐿𝐷 describes how much two probability distributions differ, the probability
distributions in this case being the predictions of an intermediate classifier and the final classifier
on some sample. OFA stimulates intermediate classifiers to think more along the same line as the
final classifier of the network.

The effect of ISC applied to an MSDNet can be seen as the red dots in figure 3.10. The confidences of
the adjacent classifiers line up significantly more so than before. On top of that, the authors show that
this increases performance of individual classifiers by several percentage points in controlled settings,
suggesting that increased collaboration benefits classifiers in multi-exit networks.

Training methodology

Dataset 50 epochs 100 epochs 50 epochs and
50 epochs ISC + OFA

CIFAR100 17.93 18.45 14.33
SHVN 15.32 15.50 11.29

Table 3.1: Shows the percentage of samples the network overthinks on for the test set of the respective dataset. Lower is
better.

Considering the results of ISC, it begs the question whether more aligned confidences also results
in less overthinking. To this end, we compare training an MSDNet regularly versus training it using
ISC and OFA. When using the additional training techniques, we mostly follow the implementation of
the original authors by first training a network as normal, and only fine-tuning it using ISC and OFA.
The results are shown in table 3.1. It shows that overthinking can be reduced by introducing more
explicit collaboration between classifiers. In a way, ISC and OFA help classifiers fill their knowledge gaps
which they incur during training. It does however not explain why overthinking occurs and where this
independence comes from in the first place. In the following chapter we attempt to find an explanation
for overthinking itself.
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4
The cause of overthinking

With only few exceptions, the average performance of classifiers in dynamic neural networks that utilize
early-exiting increases monotonically in relation to their depth. This comes as no surprise as each
consecutive classifier has a higher capacity. However, considering individual samples, a later classifier
might misclassify a sample that an earlier classifier can classify correctly. We might expect that if any
classifier arrives at the correct prediction, any more computation would not lead to adverse effects.
However, this indeed tends to be the case for a significant portion of the test samples, about 18%
for CIFAR-100 for example. In general, the set of samples 𝑆𝑗 a classifier at depth 𝑗 gets correct is
larger than the set of samples 𝑆𝑖 a classifier at depth 𝑖 gets correct, where 𝑖 < 𝑗, yet 𝑆𝑖 ⊄ 𝑆𝑗. As a
consequence, the collective performance of all classifiers of the network greatly surpasses that of any
individual classifier of the network. Despite the inherent built-in dependencies that come with the
MSDNet architecture, these results suggest a certain level of independence between classifiers. In this
chapter we explore a possible explanation for this independence, namely that classifiers might specialize
in certain inputs. We do so by attempting to train a network to predict where a sample should exit in
a pre-trained MSDNet. If a separate network can do so successfully, it suggests there is a correlation
between the input data and what each classifier in an MSDNet has learned.

In this chapter we first explain policy networks in section 4.1, a concept that motivated the conse-
quent experiments. We then cover the overarching experiment setup in the introduction of section 4.2,
which we revise in subsection 4.2.1 in light of the initial results. In subsection 4.2.2 we show that the
experiment setup can successfully train a policy network to learn an early-exit strategy in MSDNets
when the dataset provides sufficient room for classifier specialization. In subsection 4.2.3 we show that
this does not hold in general. Finally, in section 4.3 we offer up a different theory for the occurrence of
overthinking considering the results of the preceding subsection.

4.1. Policy networks
Even though classifiers in an MSDNet share the majority of their parameters, overthinking suggests
that some level of independence among classifiers still exists. This independence is actually the reason
why MSDNets, and also other early-exiting networks, tend to perform better in an adaptive inference
setting than in a static inference setting; in the former setting the network is to some extent able to pick
the right classifier for any given input sample. This decision is often based off of some type of confidence
measure which in turn is correlated with performance. The fact that some of the earlier classifiers are
able to correctly classify samples that later classifiers can not despite their increased capacity, suggests
that these earlier classifiers might just be better at these type of inputs. This idea naturally gives
rise to a more general version of this line of inquiry: Do classifiers in a MSDNet specialize in certain
subtypes, classes or image statistics of a dataset to maximize performance? In other words, can we
find a correlation between the input data and a trained MSDNet? If such a correlation can be found,
it can provide insight into why overthinking takes place. This knowledge can subsequently be used to
exploit the independence between classifiers even further. Figure 3.7 showed what could potentially be
achieved if early-exiting performance of existing MSDNets were to improve.

To determine if a correlation exists between the input data and what an MSDNet learns, we will
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attempt to learn it directly with an independent network. A separate network that decides what dynamic
strategy should be used for the main inference network is also referred to as a policy network. Policy
networks have been used to learn which layers to activate in ResNets based on a given input: [8] by Chen
et al. and [59] by Wu et al. Note that policy networks themselves are convolutional neural networks.
Their policy network is trained using associative reinforcement learning where the reward is based on
minimizing active layers and maximizing performance of the main network. The policy network thus
learns to conditionally activate parts of the network that it thinks have the best chance of providing an
accurate result. Interestingly, Wu et al. conclude that their policy network will activate similar layers
for samples belonging to the same class. This means that it is able find a correlation between the input
data and parts of the inference network which might be biased toward specific classes. It can also be
described as a form of specialization. Furthermore, they note that later layers are more important than
early ones, likely due to later layers representing more complex and class specific features.

It seems that much of the success around policy networks is due to them being able to correlate the
input data to parts of the main network that represent similar features. ResNet, which both papers
used as their main network, is one-dimensional in its architecture. Feature maps become increasingly
more complex along the depth of the network. It is likely due to this fact that policy networks will
learn to ignore shallow layers and focus on deeper layers. Feature maps of an MSDNet do not grow in
complexity along the depth of the network, or at least not in the same way as in traditional networks.
In the same vain, the concept of a linear receptive field does not apply to MSDNets. It is for these
reasons that is hard to say if a policy network will have the same success in the context of MSDNets as
they do for traditional CNNs.

4.2. Experiment setup
We will take a different approach than Chen et al. and Wu et al. when it comes to training our
policy network. As we are generally not interested in saving computation, a reinforcement approach
is redundant. Instead, we aim to create a policy network that is able to predict which classifier of the
MSDNet is the first to accurately classify the input sample. Such a policy network, if it were perfect,
would be similar to the upper bounds depicted in figure 3.7.

Each experiment in the upcoming subsections, while similar, are slightly different in the way they are
executed as they take into account the lessons learned of previous experiments. However, it is prudent
to get across certain terminology that is relevant to each experiment as they each follow the same steps.
These steps use terminology that is overloaded, for this reason we will denote the terms with their own
syntax based on the context. Every experiment will perform the following 4 steps in order:

1. Choose a dataset 𝐷 that the MSDNet will train on.

2. Train an MSDNet 𝑀 on dataset 𝐷.

3. Create a dataset from 𝑀 containing pairs of samples (𝑑, 𝑙) with 𝑑 ∈ 𝐷 and 𝑙 representing the 𝑙𝑡ℎ

classifier in 𝑀 that is the first to correctly classify sample 𝑑. If no classifier is able to classify 𝑑
correctly, we do not include 𝑑 in the new dataset. We refer to this new early-exiting dataset as
𝐷𝑒𝑒.

4. Train a traditional CNN 𝑀𝑒𝑒 on 𝐷𝑒𝑒 to learn the early-exit strategy of 𝑀 . 𝑀𝑒𝑒 is thus the policy
network.

The goal of this process is to determine whether 𝑀𝑒𝑒 can be successfully trained. We consider this
to be the case if the performance of 𝑀𝑒𝑒 is higher than that of random guessing, or higher than if it
learns to always return the same answer. The reason for the latter is that we will see that 𝐷𝑒𝑒 is not
always balanced in terms of class labels, hence a network that is unable to learn anything meaningful
will often end up returning the class that occurs most often in the training set to minimize the loss. If
𝑀𝑒𝑒 performs well, it suggests there is a correlation between input data statistics and specific classifiers
in 𝑀 that are able to learn, and specialize in, said statistics. It should be noted that the decision rule in
step 2 for determining the labels of samples in dataset 𝐷𝑒𝑒 is somewhat arbitrary. As long as the label
is that of a classifier that correctly classifies the sample, 𝑀𝑒𝑒 will end up trying to learn the existence of
a connection between the input 𝑑 and what classifier 𝑙 in 𝑀 has learned. We will see that our strategy
for determining the label 𝑙 will vary over the course of the experiments to suit our purpose.
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For step 1 we choose several datasets each with different motivations, as will be described in their
respective subsections. The architecture for MSDNet 𝑀 in step 2 is the same for every experiment.
It consists of 5 blocks, each block is followed by a classifier, meaning the network has 4 intermediate
classifiers and 1 final classifier. The number of layers in each classifier grows linearly, the first block
only contains the initial unique downsampling layer and every subsequent block 𝑖 contains 𝑖 layers. We
will maintain 3 scales across the depth of the network to represent feature maps of multiple levels of
coarseness which output 6, 12 and 24 feature maps, respectively. Each layer in a block makes use of
3 × 3 convolutions, batch normalization, max pooling and ReLU activation functions. The classifiers
themselves use strided convolutions to downsample the input feature maps and a single fully-connected
layer as its output. The classifiers are optimized jointly according to Equation 3.6. For more information
on implementation specifics, we refer the reader to the Appendix of the MSDNet paper [20]. Each 𝑀
is trained for 200 epochs, starting off with a learning rate of 0.1 which decreases by a factor of 10 at
epochs 75 and 150. For 𝑀𝑒𝑒 we choose to use a version of ResNet [17] containing 34 layers. There are no
concrete requirements for 𝑀𝑒𝑒, it simply needs to have sufficient capacity while remaining manageable
training-wise. Each ResNet was trained for a maximum of 100 epochs, at times stopped early if no
progress was being made.

4.2.1. Initial experiments
Initially, we apply the strategy described in the introduction of ?? verbatim: We choose CIFAR-100
[27] as 𝐷, train our 𝑀 on it, create 𝐷𝑒𝑒 by selecting the first classifier of 𝑀 that is able to classify the
sample correctly as the label for the new samples and lastly train 𝑀𝑒𝑒 on 𝐷𝑒𝑒. Without belaboring the
point, using this strategy, 𝑀𝑒𝑒 does not end up learning anything meaningful. However, by doing so,
we uncover a variety of shortcomings in the basic strategy used which leave doubt in the veracity of the
outcome. To eliminate all doubt we make a number of changes to the experiment setup that we will
stick to for experiments to come.

The main issue that arises when the steps are applied without any further thought is that 𝐷𝑒𝑒 ends
up egregiously imbalanced. The reason for this is the high accuracy of every classifier in 𝑀 on 𝐷.
In general, the training accuracy of a network is far higher than its validation accuracy on either the
validation set or test set. This is because the latter 2 sets are left out of the training process. The
improved accuracy on the training set is thus due to overfitting. If we base the training set of 𝐷𝑒𝑒 on
that of the training set of 𝐷, selecting for the labels the first classifier in 𝑀 that correctly classifies
samples in 𝐷 will lead to a significant bias towards the first physical classifier in 𝑀 . If classifier 1 of
𝑀 has a training accuracy of 80%, 80% of samples in the training set of 𝐷𝑒𝑒 will be labeled as 1 as a
result. The imbalance will motivate 𝑀𝑒𝑒 to just return label 1 if it is unable to learn any correlations
that improve its performance beyond 80%.

Figure 4.1: (Left) Shows the class distribution of 𝐷𝑒𝑒 on CIFAR-100 when using the training set of 𝐷. (Right) Shows
the class distribution of 𝐷𝑒𝑒 on CIFAR-100 when using the validation set of 𝐷.

To start off, a straightforward way of tempering the imbalance is by using the validation set of 𝐷 to
create the training set of 𝐷𝑒𝑒. The average performance of classifier 1 on the validation set is noticeably
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lower than its performance on the training set, leading to a reduction in samples labeled 1 in 𝐷𝑒𝑒 and
consequently an increase in remaining labels. To illustrate the point, in the case of CIFAR-100, the first
classifier of 𝑀 reaches a performance of 75.05% on the training set and 60.93% on the validation set.
Figure 4.1 shows what effect this has on the distribution of 𝐷𝑒𝑒. Basing the training set of 𝐷𝑒𝑒 off of
the validation set of 𝐷 does however come with a non-trivial downside; the validation set of 𝐷 contains
only a fraction of the samples of the training set. Conventionally, roughly 10 − 20% of the samples in
the training set are set aside to be used as validation. We opt for 20%, leaving enough training samples
for the classifiers in 𝑀 to learn image statistics, if it exists, while at the same time granting 𝑀𝑒𝑒 plenty
of samples to prove it can find this correlation between classifiers and image statistics, again, if it exists.
The test set of 𝐷 is used to create the test set of 𝐷𝑒𝑒, we omit the creation of a validation set in 𝐷𝑒𝑒
to preserve as many samples for training 𝑀𝑒𝑒.

Figure 4.2: Shows the class distribution of 𝐷𝑒𝑒 on CIFAR-100 when using the validation set of 𝐷 and a score based
system with 𝜆 = 5, 10, 50 from left to right.

Secondly, we substitute step 2 of the process with a more nuanced approach. Instead of selecting the
first classifier that classifies sample 𝑑 correctly as the label, we assign each classifier a score according
to the following formula:

𝑠𝑐𝑜𝑟𝑒𝑖 = 1
𝜆𝑓𝑙𝑜𝑝𝑠𝑖(x)10−6 + 𝑐𝑜𝑛𝑓𝑖 (4.1)

The score is a weighted sum of the inverse of the flops used and the confidence of classifier 𝑖. When
given a sample input x, a classifier’s score is higher if it uses fewer flops and has a higher confidence
in its prediction. We use the maximum of the softmax score to determine confidence, as shown in
Equation 3.7. The label 𝑙 in step 2 of sample 𝑑 now becomes the classifier with the highest score:

𝑠𝑐𝑜𝑟𝑒′
𝑖 = {𝑠𝑐𝑜𝑟𝑒𝑖, if 𝑓𝑖(x, 𝜃𝑖) = y

0, otherwise
𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒′

𝑖
(… , 𝑠𝑐𝑜𝑟𝑒′

𝑖, … ) for 𝑖 ∈ 1, … , 𝑛 (4.2)

where a classifier only gets assigned a non-zero score if it is able to classify the sample correctly in
the first place. By altering 𝜆 we gain control over the label distribution of 𝐷𝑒𝑒. If 𝜆 is smaller, the
efficiency of the classifier is favoured and the average label value in 𝐷𝑒𝑒 becomes lower. Conversely,
if 𝜆 becomes larger, confidence becomes a more influential factor favouring later classifiers, raising the
average label value in 𝐷𝑒𝑒. Figure 4.2 illustrates this effect. While it may seem as if we are changing
the learning goal for 𝑀𝑒𝑒, remember that the labeling of 𝐷𝑒𝑒 is arbitrary to begin with. As long as
label 𝑙 represents a classifier that correctly classifies sample 𝑑, (𝑑, 𝑙) ∈ 𝐷𝑒𝑒 will represent a dataset that
contains information on the relation between samples and what classifiers in 𝑀 have learned. Also,
taking into account the confidence of a classifier when deciding on a label promotes the labeling of a
classifier that in a sense is most suitable for that sample. If 2 classifiers correctly classify a sample, we
might expect that the one with higher confidence has a stronger connection to that sample. In other
words, that sample might be a better representation of what the classifier with higher confidence ends
up learning, making it a more valuable asset than if the label were assigned to the other classifier.

Finally, even when using the validation set and a scoring method to create 𝐷𝑒𝑒, it often still ends
up imperfectly balanced. For this reason we will always make use of weighted learning, where a class
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dependent weight is used after the negative log likelihood is applied to the softmax output of the
classifier, which is just another way of referring to the cross-entropy loss in the case of multiple classes:

ℒ𝐶𝐸(ŷ, y) = −𝑤𝑦𝑙𝑜𝑔( 𝑒z𝑦

∑𝑛
𝑖 𝑒z𝑖

) (4.3)

where 𝑤𝑦 is the weight specific to class 𝑦 and z𝑦 the output of the classifier for class 𝑦. The weights
are determined for the training set before training starts. While the weights can take any value, we
will simply make them proportional to the occurrence of each class: If we consider an ordered array
containing the occurrences of each class in the training set and denote it with 𝐶𝑡𝑟𝑎𝑖𝑛, the weights
become 𝑤𝑦 = 𝑚𝑎𝑥(𝐶𝑡𝑟𝑎𝑖𝑛)

𝐶𝑡𝑟𝑎𝑖𝑛[𝑦] for 𝑦 ∈ {1, … , 𝑛}. In our case 𝑛 = 5 as 𝑀 contains that many classifiers.
Effectively, this discourages 𝑀𝑒𝑒 from simply returning the most common class by penalizing incorrect
classifications of minority samples more harshly.

After applying the new and improved concepts, we will end up with more balanced datasets and
more confidence in the outcome of the experiments as a result. It should be noted that these additions
and alterations to the initial experiment setup did not end up changing the outcome of the experiment
on CIFAR-100; 𝑀𝑒𝑒 still does not end up learning much of anything. However, the outcome now serves
as a more rigid result than the initial outcome. We will use the improved strategy in the subsequent
experiments as well. To prove that the improved setup does work, i.e. if a known separation in 𝐷 exists
by which classifiers will differentiate then 𝑀𝑒𝑒 will be able to pick up on it, we will create a specific
dataset called Max-Min MNIST.

4.2.2. Max-Min MNIST
In the previous subsection we showed how even using an improved experimental setup, 𝑀𝑒𝑒 will not be
able to distinguish anything of note within 𝐷𝑒𝑒 on CIFAR-100. This can however have any number of
reasons beyond the absence of an existing correlation between 𝐷 and the classifiers of 𝑀 . In other words,
it is hard to prove the absence of classifier specialization by means of a single negative experimental
result. It might be the case that our setup is simply not capable of uncovering classifier specialization
in general. In this subsection we will show that using our experimental setup we can successfully train
a policy network 𝑀𝑒𝑒 on 𝐷𝑒𝑒 if the data in 𝐷 is sufficiently different, which results in classifiers in 𝑀
learning distinguishable subsets of 𝐷. To do so we create a dataset called Max-Min MNIST (MMM)
based on the dataset used in [9].

Figure 4.3: Shows examples of samples from the Max-Min MNIST dataset. The labels for the medium and hard cases
are determined by subtracting the smallest digit from the largest digit in the image [9].

The core idea behind MMM is that it contains multiple levels of difficulty for each label. In this
case we make use of 3 levels: easy, medium and hard. Every sample consists of a black plane of 64 × 64
containing 1 or more 20 × 20 digits sourced from the original MNIST [33] dataset. Figure 4.3 shows
examples of each level. The easy case consists of single digits which are both sourced and placed
uniformly randomly in the plane. The medium case requires the network to recognize both digits and
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output the largest digit minus the smallest digit. The hard case asks the same of the network but
now with 4 digits. The levels exist in a 2:1:1 ratio for each label in both the training and test sets.
Furthermore, both sets are completely balanced in terms of class labels. There are a total of 100,000
training samples encompassing 10 classes, so there are 5000 easy samples and 2500 medium and hard
samples for each class. The training set consists of 18000 samples.

Figure 4.4: Shows the performance of each classifier in MSDNet 𝑀 on dataset Max-Min MNIST 𝐷 for each of the difficulty
levels when 𝑀 is trained for 5 and 200 epochs, respectively.

By using a dataset with baked in difficulty differentiation, we can enforce a specific type of special-
ization by exploiting the growth in capacity of each consecutive classifier in 𝑀 . Later classifiers are
better at classifying the harder samples than earlier classifiers. More importantly, the margin by which
later classifiers are better at harder samples is larger than in the case of easier samples. We can see this
effect in Figure 4.4. Both the earlier classifiers and later classifiers have almost perfect accuracy when
it comes to classifying easy samples, but there is a large difference in accuracy for the hard samples.
This effect becomes more pronounced when 𝑀 is only trained for a few epochs. For this reason we will
make use of the latter 𝑀 to enforce further differentiation.

Figure 4.5: Shows the sample distribution of the training set of 𝐷𝑒𝑒 obtained from applying the score method with 𝜆 = 5
on 𝑀. 𝑀 in this case is trained for only 5 epochs on MMM.

Now that we have trained our MSDNet 𝑀 on the MMM dataset 𝐷, we can apply the concepts of
the previous subsection to create 𝐷𝑒𝑒. The label distribution of 𝐷𝑒𝑒, as seen in Figure 4.5 now clearly
shows the baked in sample differentiation; because later classifiers are significantly better at medium
and hard samples than earlier classifiers, the score method will noticeably favour those classifiers for
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labeling. Conversely, as the performance of early and late classifiers on easy samples is similar, the
score method will favour earlier classifiers which are more efficient. Inherently this 𝐷𝑒𝑒 is not different
from the 𝐷𝑒𝑒’s we saw in the previous subsection, except for the knowledge that we now have about
the existing ’specialization’ within 𝑀 , namely that earlier classifiers ’specialize’ in easy samples, and
later classifiers ’specialize’ in medium and hard samples. We put specialize in quotation marks as its
a rather artificial form of specialization and not necessarily the type we expect to see often in a more
realistic scenario. Nevertheless, it is a form of specialization and we can train our 𝑀𝑒𝑒 on it.

Figure 4.6: Shows the performance of 𝑀𝑒𝑒 on the test set of 𝐷𝑒𝑒 for each label and respective levels.

The training set of 𝐷𝑒𝑒 contains roughly 15,000 samples, and the test set likewise. We train 𝑀𝑒𝑒 for
60 epochs as it makes no progress after that. The overall performance over the whole test set of 𝑀𝑒𝑒
is 51.83%. The breakdown of how it performs for each label and difficulty level is shown in Figure 4.6.
Several trends stand out, first of all, 𝑀𝑒𝑒 is clearly better at classifying samples at the tails of the label
distribution. Also, it is poor at recognizing exceptions such as early samples that should end up at the
final classifier, and medium and hard samples that should end up at intermediate classifiers. In general,
it seems to not be able to conceptualize the nuances of classifiers that lie somewhere in the middle of the
network. Naturally, as 𝑀 contains more classifiers, the performance of 𝑀𝑒𝑒 will go down if we strictly
look at the overall performance of it on the test set. Taking this into account and considering that
random guessing would have lead to a performance of 20%, and the most common label, being label
5, appears 27% of the time, a performance of 51.83% shows 𝑀𝑒𝑒 is clearly able to learn a correlation
between the data and classifiers of 𝑀 .

What image statistic 𝑀𝑒𝑒 uses to determine what classifier in 𝑀 the data belongs to is hard to say.
We introduced artificial complexity to 𝐷 according to what we consider to be more difficult to classify.
Figure 4.4 shows that networks in this case agree with our intuition; hard samples are more difficult
to classify than easy samples. What networks consider difficult and what sample complexity actually
entails is a study in and of itself. One school of thought suggests one image statistic that describes
complexity is how ’cluttered’ an image is [45]. This has, among other things, been studied in the context
of the learning order of networks [57, 43]. One measure of the ’clutterness’ of an image is how many of
the higher frequencies are needed to reconstruct the image within a given error bound when the image
is decomposed into its frequency components. An image can be transformed into the frequency domain
by using a Fourier transformation, but also by applying a Discrete Cosine Transformation (DCT) [41].
We explore the latter concept on several of the used datasets to see if the clutterness of an image serves
as an explanation not only for the discrepancy in difficulty in the MMM dataset, but also to see if it
can be used to explain specialization in MSDNets in general. An explanation of the method, as well as
the results can be found in Appendix A.

33



4.2. Experiment setup 4. The cause of overthinking

4.2.3. CIFAR100 and SHVN
With the results of 𝑀𝑒𝑒 on MMM we have effectively shown that our 4 step method of constructing a
policy network is capable of uncovering correlations between what classifiers in an MSDNet learn and
the data they were trained on. In this subsection we will show that this does not hold for conventional
datasets. Figure 4.6 illustrated how 𝑀𝑒𝑒 is better at differentiating samples that should go the first and
last classifier. ”When in doubt, send easy samples to the first classifier and hard samples to the last” is
a sensible motto a policy network might live by. For this reason we simplify the original classification
problem by only taking into account the first and last classifier of 𝑀 . We train 𝑀 as normal, but this
time when we give each classifier a score according to Equation 4.2 we only do so for classifier 1 and 5.
The other scores remain zero. This effectively turns the task of the policy network into one of binary
classification.

We revisit the CIFAR100 dataset, one of the most commonly used classification sets in computer
vision. It contains 100 classes consisting of 32×32 images of commonly found food, vehicles and animals.
We also perform the exact same experiment on the SHVN dataset [42]. SHVN, another popular image
dataset, consists of 32 × 32 images containing house numbers with labels 0 through 9. We choose
CIFAR100 because it is as popular as it is and it contains a decent amount of training samples, 50,000
to be precise of which we turn 20% into validation samples for 𝑀 . Having enough training samples
to turn into validation samples is important as we tend to lose sample volume when creating 𝐷𝑒𝑒;
remember that we only include 𝑑 ∈ 𝐷 into 𝐷𝑒𝑒 if at least 1 classifier in 𝑀 classifies it correctly. As a
result, small datasets on which 𝑀 performs poorly to begin with will lead to questionably small 𝐷𝑒𝑒’s.
SHVN contains even more samples, ∼75,000 training samples and ∼500,000 extra samples that can be
used as necessary. We supplement the validation and test set of SHVN with 25,000 samples each from
the extra set. The reason we also supplement the test set is because the extra set is considered easier
to classify. Remember that the validation set of SHVN will become the training set of 𝐷𝑒𝑒, if this only
contained easier extra samples it might hinder the ability of 𝑀𝑒𝑒 to do well on the test set which would
then only contain the harder samples.

Figure 4.7: Shows the sample distribution of the training
set of 𝐷𝑒𝑒 obtained by applying the score method with
𝜆 = 5 on 𝑀. 𝑀 in this is case is trained on CIFAR100.

Figure 4.8: Shows the performance of 𝑀𝑒𝑒 on the test set
of 𝐷𝑒𝑒 for both labels. 𝐷𝑒𝑒 is based on CIFAR100.

CIFAR100. Figure 4.7 shows the binary label distribution of applying the score method of Equa-
tion 4.2 on 𝑀 . 𝑀 in this case is an MSDNet trained for 200 epochs on the CIFAR100 training set. We
use 𝜆 = 5 to maintain a relatively balanced dataset. To the right of it, in Figure 4.8 we see the average
performance 𝑀𝑒𝑒 achieves on 𝐷𝑒𝑒. The average performance is 43.25%, well below the cutoff of ∼ 50%
we consider to be the threshold for having learned anything.

SHVN. Figure 4.9 shows the binary label distribution of the training set of 𝐷𝑒𝑒, it was created
using 𝜆 = 20. 𝑀 is trained for 200 epochs on the SHVN training set. In Figure 4.10 we see the average
performance 𝑀𝑒𝑒 achieves on 𝐷𝑒𝑒. The average performance is 49.92%; 𝑀𝑒𝑒 ends up returning labels
evenly, and thus randomly. Again, there is no indication of 𝑀𝑒𝑒 having learned anything.

Even in a binary classification setting, 𝑀𝑒𝑒 is seemingly unable to discover a connection between
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the data and the classifier in an MSDNet that is most suitable to classify it. 𝑀𝑒𝑒 either ends up along
a path where it performs worse than random guessing, as we saw in the case of CIFAR100, or ends up
randomly guessing in the case of SHVN. Either way, it becomes hard to argue that classifiers specialize
in any specific subsets of the dataset when the dataset is not tailor made to introduce specializations
as was the case with MMM. In the next section we offer up a different explanation for overthinking in
light of these results.

Figure 4.9: Shows the sample distribution of the training
set of 𝐷𝑒𝑒 obtained by applying the score method with
𝜆 = 20 on 𝑀. 𝑀 in this is case is trained on SHVN.

Figure 4.10: Shows the performance of 𝑀𝑒𝑒 on the test set
of 𝐷𝑒𝑒 for both labels. 𝐷𝑒𝑒 is based on SHVN.

4.3. Alternative explanation for overthinking
In this chapter we have attempted to directly learn early-exiting strategies in MSDNets by means
of a policy network. The idea is that if a policy network is capable of doing so, there must be a
relation between the data and what classifiers in an MSDNet have learned. Policy networks would
only be able to recognize these correlations if they are strong enough, in other words, if classifiers
in an MSDNet tend to specialize in specific subsets of the dataset. This in turn would explain the
overthinking phenomenon: Classifiers gravitate toward particular types of samples to maximize the
overall performance of the network. The results show that policy networks struggle to ascertain the
mentioned relations in conventional datasets. This suggests one of two things: a relation between the
data and classifiers in an MSDNet exists but can not be picked up by policy networks or the relation
does not exist to begin with. The latter in turn suggests that overthinking does not take place due to
specialization. We have seen that policy networks are able to pick up on data and classifier relations
when they are present in the case of a dataset like MMM, as was shown in ??. We thus consider the
likelihood of the former reason for the lack of success of policy networks in the context of MSDNets to
be relatively low.

As we know there are samples that only a subset of the classifiers in an MSDNet can classify correctly,
and as this does not depend on the data itself, it becomes more likely that it is the cause of stochasticity
within the learning process itself. During training we optimize the joint loss of all classifiers at the same
time. The joint loss does not take into account the collective performance of the network, it instead
tries to minimize the average loss of each of the classifiers. This in turn results in a lack of collaboration
between classifiers as we saw in section 3.4. Note that all of this is valid whether classifiers specialize
or not, classifiers could specialize by tunnel-visioning on specific samples, which could be caused by a
lack of collaboration. However, in the face of the results from this chapter, it seems more likely that
the difference in what classifiers learn is due to the stochasticity in the learning process itself. If the
network is in a particular state during training, the next training sample will cause the parameters of
the network to update. As the goal is to minimize the average loss, which loss gets minimized makes
no difference. Whether the loss of the final classifier becomes smaller, or the loss of the first classifier
is of no concern to the network. It could thus happen that updating the parameters will lead to one
of the classifiers not being able to classify the sample correctly, while the others can. So while there
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is no explicit collaboration taking place, joint optimization specifically favours the greater good. The
classifier that gets left behind in this example could be a classifier later in the network, resulting in
overthinking. Depending on the state of the network before the new training sample gets introduced,
the outcome of backpropagation can have different results. The learning order, so the order with
which samples are fed to the network during training might thus already have a noticeable influence on
the way overthinking is introduced in the training process. Hence the stochasticity; the training of a
convolutional neural network involves a variety of stochastic processes, from training order and batch
normalization to parameter initialization. It would be hard to tell which of these factors contribute and
with what magnitude. We leave this research tangent to further research.

36



5
Discussion

This thesis has attempted to find an explanation for the overthinking phenomenon that takes place
in Multi-Scale Dense networks [20]. In this chapter we will summarize the results and simultaneously
address their shortcomings and limitations. We will conclude the chapter with potential future work in
this regard.

5.1. Conclusions
Dynamic neural networks offer computational flexibility and adaptability as opposed to its static coun-
terparts. This allows them to perform adaptive inference in the form of budgeted batch classification
and anytime prediction: two computational settings which have real life equivalents in the form of image
indexing and self driving vehicles. One of the more common and arguably the most straightforward
way to instill a static network with adaptive capabilities is to add intermediate classifiers to it. Doing
so allows a network to choose which exit to use for a given sample. Chances are an intermediate clas-
sifier can already correctly classify the sample and no further computation is required. An end-to-end
trained network with multiple classifiers also does not suffer from redundant computation, as results
from a previous classifier can directly be used for the prediction for the classifier next in line. However,
implementing early-exiting naively into a traditional convolutional neural network will lead to poor
performance. For this reason, hand-tuned specialized early-exiting architectures have become popular
in recent years. Multi-Scale Dense networks is one of those architectures that has solved many of the
shortcomings of its early-exiting predecessors.

Any early-exiting setup, MSDNets included, suffer from a counter-intuitive phenomenon: More
computation does not guarantee better, or even equivalent, outcomes. While there is a monotonic
increase in the average performance of each consecutive classifier in an early-exiting setup, this does not
necessarily hold for individual samples. This phenomenon, which has been dubbed overthinking [25], was
first noticed in conventional convolutional neural networks such as ResNet [17]. The explanation offered
is that classifiers deeper in the network have access to more complex feature maps which the classifier
mistakenly finds in images that do not contain them. One of the main reason later classifiers have
access to complex feature maps is due to deeper layers having larger receptive fields. Shallow classifiers,
positioned earlier in the network will only have access to feature maps with small receptive fields and
it is exactly those primitive features that are required to accurately classify some samples. We showed
in section 3.3 that this explanation, while possibly correct, does not hold for the case of MSDNets.
The architecture of MSDNets and other multi-scale setups does not adhere to the conventional wisdom
about receptive fields and the way they grow along the depth of a network. Instead, by aggressive early
downsampling, every feature present in the largest scale of a multi-scale setup contains knowledge of
the full spatial representation of the input image. Consequently, every classifier, no matter its depth,
will have access to feature maps with full receptive field. Yet, overthinking still very much takes place
in MSDNets.

In section 3.4 we have shown how overthinking in MSDNets can be reduced by making use of con-
cepts brought forth by the original authors of MSDNet [34]. They showed how improving collaboration
between classifiers improves both their individual and collective performance. This increased collabora-
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tion in a way allows classifiers to fill each others knowledge gaps. Another consequence is that classifiers
start to think more along the same lines, effectively reducing the occurrence of overthinking. However,
this does not explain the underlying cause. Understanding why it does take place could provide insight
on how to improve early-exiting. Improved early-exiting in turn leads to reduced computation and
increased performance of dynamic neural networks.

Several works have shown that it is possible to train a separate policy network to dynamically alter
the structure of the inference network to maximize performance or reduce computation. Successful
conditional activation of parts of a network suggests that what these parts have learned is dependent
on particular image statistics of the dataset. This dependency can thus be learned by a policy network.
Their work focused on traditional convolutional neural networks and it is likely the policy network,
a convolutional neural network itself, is able to find a correlation between the depth of the inference
network and the input samples because what each feature map represents is highly correlated with its
depth. It learns for example that certain parts of the network are useful for certain classes. We say that
these parts specialize in those classes. Motivated by these works we attempted to determine whether
classifiers in an MSDNet also specialize in particular subsets of a dataset.

First, to prove that our setup worked, we trained a policy network to predict what classifier is most
suitable for classifying a given sample from the max-min MNIST (MMM) dataset. MMM contains
artificial subsets in the form of difficulty levels. Later classifiers are better at classifying the more
difficult samples, and early classifiers are more suitable for classifying the easy one. A policy network
is able to discern this relation and it manages to attain a performance of 51.83%. In Appendix A we
showed that the frequency domain is likely not a reliable indicator of the difficulty of a sample, nor
is it a discriminative feature that can be used to differentiate between the subsets that classifiers in
a MSDNet end up learning. Next, we attempted to train a policy network on more traditional visual
datasets in the form of CIFAR100 and SHVN. In this case, there was no sign that the policy network
is able to learn anything meaningful that enables it to reliably predict where a sample should end up
in the respective MSDNet. The negative results suggest that, in general, classifiers do not specialize in
specific subsets of the data. In light of these results, we offer an alternative possible explanation for
overthinking. Overthinking is introduced randomly into a network due to stochastic processes inherent
to training. As multiple classifiers are trained in joint fashion, the only goal is to maximize the average
performance of all classifiers. The training process does not discriminate between classifiers, if a single
classifier does not end up improving so the others can, then this is a desirable outcome. How the
parameters of a network update after seeing a training sample all depends on the state of the network
at that moment in time and many stochastic processes, such as the learning order, influence said state.

To conclude, we summarize our main findings and succinctly answer our initial research questions.

• Can early-exiting in MSDNet be learned directly by means of a policy network?
Yes, but only under rather serendipitous circumstances, as was the case in MMM. It seems there
needs to be inherent differentiation between subsets of the dataset.

• Do classifiers in MSDNet end up specializing in specific subsets of the original dataset?
There is no reason to think that they do, the policy network is unable to uncover any substantial
relations between the data and the classifiers of an MSDNet.

• Are there any image statistics that can be used to discriminate between the subsets that classifiers
in an MSDNet end up learning?
This question is to an extent already answered by the findings stated in the previous question.
To add to that, we know that the frequency domain and discrete cosine transform analysis do not
suffice as discriminatory features to separate the learned subsets of MSDNets.

• What causes overthinking in MSDNets?
Overthinking does not seem to be caused by specialization of classifiers in an MSDNet. Instead,
it seems more likely that it is caused by stochasticity inherent to the training process.

5.2. Limitations and future work
This thesis mainly ended up attempting to prove the absence of specialization of classifiers in MSDNets.
Proving the absence of something is often more difficult, if not impossible, as opposed to proving the
existence of a particular phenomenon. In the latter case you only need one instance to convincingly
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prove the hypothesis. An attempt to disprove the existence of anything often leaves something to
be desired; there is always another test that can be done or another experiment that can be run to
add more credibility to the findings. The field of deep learning often exacerbates this issue due to
its black box nature, hence the apparent reproducibility crisis. We have attempted to minimize the
room for interpretation of the results when disproving the existence of specialization by first showing
that the policy network setup functions, and subsequently by applying the exact same strategy to
conventional datasets. On top of that, we simplified the problem by reducing it to only two classifiers
of the MSDNet. All that being said, there is always cause for healthy skepticism and we have tried to
convey this sentiment with our verbiage, often using ’most likely’ and ’probably’ instead of ’definitely’
and ’guaranteed’. More concretely, when it comes to our policy network not finding any correlations
between the data and classifiers in an MSDNet, it does not guarantee directly that specialization does
not occur. It could be the case that specialization occurs but only to a non-noticeable degree. It
could also be that it does occur but stochasticity muddles the signs which make it impossible for our
policy network to pick up. Neither case is verifiable by our method, and should be kept in mind when
interpreting the results laid out in this thesis.

When it comes to our alternative explanation on what causes of overthinking, it is worth noting
that it assumes that specialization does not occur. Also, it is by all means simply a theory that seems
most likely given the circumstances; there seems to be no reason to assume that the data itself causes
specific overthinking and it happens in every early-exiting setup. This leaves us with the final horse of
the three horsemen: the training process. As we have not proven that this is indeed the case in this
thesis, we leave this as future work.

Finally, something that seems worth pursuing is research into training an early-exit setup specifically
for early-exiting. Joint optimization promotes the maximization of individual classifiers, but they lack
the ability to collaborate and coordinate well in an adaptive inference setting. Training the classifiers
specifically for something like budgeted batch classification might be worthwhile future work.
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A
The frequency domain as a discriminative

feature

Figure A.1: Shows the performance of 𝑀𝑒𝑒 on the test set of 𝐷𝑒𝑒 for each label and respective levels.

Every image can be decomposed into individual frequencies via frequency transformations. The original
image can be reconstructed by combining the individual frequencies again. On average, images consist
mostly of lower frequencies, meaning the majority of information contained in an image can be described
by these lower frequencies. Compression algorithms such as JPEG make use of this fact to compress
images; they discard information about higher frequencies which only account for a small percentage of
the image energy.

Discrete cosine transforms (DCTs), like Fourier transforms (FTs), transform a signal into the fre-
quency components. DCT only uses real numbers as opposed to FT. Given a 1 channel image 𝐼 in
ℝ𝐻×𝑊×𝐶 , we can denote a pixel in this image with 𝐼ℎ𝑤. The resulting frequency decomposition of this
image obtained by applying a 2D DCT is given by:

𝐹𝑣𝑢 = 1
4𝐶𝑣𝐶𝑢

𝑁−1
∑
ℎ=0

𝑁−1
∑
𝑤=0

𝐼ℎ𝑤𝑐𝑜𝑠(𝑣𝜋 2ℎ + 1
2𝑁 )𝑐𝑜𝑠(𝑣𝜋 2𝑤 + 1

2𝑁 ) (A.1)

𝐶𝑢, 𝐶𝑣 = {
1√
2 , if 𝑢 = 0

1, otherwise
(A.2)

where 𝐹𝑣𝑢 denotes a value, also called the coefficient, in the resulting matrix of 𝐹 . If the image is
𝐻 × 𝑊 , the resulting decomposition will also be 𝐻 × 𝑊 . Each coefficient in the decomposition denotes
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A. The frequency domain as a discriminative feature

the contribution of a vertical and horizontal cosine signal with frequency ℎ and 𝑤. If we consider an
8×8×1 image, a decomposition would look like figure A.1, with a weighted combination of each of those
frequencies you could reconstruct any 8×8×1 image. 2D DCT assigns weights to those frequencies that
show much they contribute to the original image. The top left coefficients represents lower frequencies,
whereas the bottom right coefficients represent the higher frequencies.

Figure A.2: Shows the performance of 𝑀𝑒𝑒 on the test set of 𝐷𝑒𝑒 for each label and respective levels.

When we apply 2D DCT to regular images and plot the corresponding coefficients in the form
of a heatmap you get what is depicted in figure A.2. First, it shows that the majority of the image
energy is present in the lower frequencies. Secondly, more ”cluttered” images on average tend to contain
more energy in the higher frequencies. Clutterness has also be associated with image complexity [45]
when studying the learning order of CNNs. The idea is that the more higher frequencies are needed
to reconstruct the image to a certain degree, the more cluttered and thus more complex the image is.
We use these concepts to determine whether DCT can be used to distinguish the learned subsets of
classifiers in an MSDNet.

We flatten the coefficient matrix resulting from applying a 2D DCT, horizontally. We then select
the first 𝑛 coefficients that add up to 98% of the total sum of coefficients, presented as a percentage
of the total number of coefficients. The higher the value is, the more high frequencies are needed to
reconstruct the image with sufficient accuracy. We do this for every subset of images each classifier
gets correct. The results are presented in figures A.3, A.4 and A.5. The datasets used are SHVN,
a subset of Imagenet called Imagenette1 and MMM, respectively. On SHVN and Imagenette we use
a 2-classifier setup, for MMM a 6-classifier. There does not seem to be a way to distinguish learned
subsets using DCT as the variance in the results is significantly larger than the differences themselves.
We therefor suggest that the frequency domain is likely not useful as a discriminatory feature to base
an early-exiting policy on.
1https://github.com/fastai/imagenette
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A. The frequency domain as a discriminative feature

Figure A.3: (SHVN). Shows the average percentage of
coefficients that are required to reconstruct the images of
the learned subset of each classifier with a 2% error rate. A
higher value indicates that the images are more cluttered.
The vertical bars represent the variance.

Figure A.4: (Imagenette). Shows the average percentage
of coefficients that are required to reconstruct the images
of the learned subset of each classifier with a 2% error
rate. A higher value indicates that the images are more
cluttered. The vertical bars represent the variance.

Figure A.5: (MMM). Shows the average percentage of coefficients that are required to reconstruct the images of the
learned subset of each classifier with a 2% error rate. A higher value indicates that the images are more cluttered. The
vertical bars represent the variance.
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Abstract

Dynamic neural networks are becoming more popular
as they are able to adapt to changing computational con-
straints. One of the more common paradigms in this regard
is early-exiting, a technique which allows networks to it-
eratively process the input until either the computational
budget has been spent or the network has become confi-
dent enough in its prediction. The average performance of
each classifier in such a setup increases monotonically as
their capacity grows, yet this does not have to hold for indi-
vidual inputs. Network overthinking has been documented
in several traditional convolutional neural networks with
added intermediate classifiers. One possible explanation
is that later classifiers make use of more complex features
due to the increased receptive fields which no longer repre-
sent easy samples. However, we have observed overthink-
ing in Multi-Scale Dense networks for which the given ar-
gument in relation to the receptive field does not hold due
to its unique architecture. This paper shows that policy net-
works are unable to successfully learn an early-exit strat-
egy for trained Multi-Scale Dense networks, suggesting a
lack of classifier specialization and subsequent correlation
between overthinking and the data. Instead, we offer up a
different theory, that overthinking in Multi-Scale Dense net-
works is caused by the inherent stochasticity of the learning
process.

1. Introduction
Convolutional neural networks (CNNs) have shown to

be exceedingly successful on a number of visual recogni-
tion tasks [11, 13, 18, 25]. State-of-the-art models, such as
ResNet [11], DenseNet [13] and GoogleNet [25], are deeper
than ever before to break performance benchmarks. How-
ever, with increased depth comes an increase in computa-
tion which limits their use cases in practical settings where
computational constraints play a role.

A sizable body of work has already been dedicated to the
optimization of deep neural networks, ranging from knowl-
edge distillation [3,22] and parameter reduction [20,21,32]

to weight quantization [8, 28]. These type of methods are
often model-agnostic and can even improve performance.
However, whether or not these methods are implemented,
traditional deep neural networks still have static computa-
tional graphs and fixed parameters. As a consequence, a
static neural network will always spend the same amount
of computation if the input dimensions remain fixed. Some
samples do however not need as much processing as oth-
ers for the network to come to an accurate prediction; some
samples are easier than others. Spending unnecessary com-
putation on easy samples increases both the network’s infer-
ence time and power consumption. Ideally, we would have
the network only spend as much computation as it needs to.
This is the essence of early-exiting; the input is processed
iteratively until either the computational budget has been
spent or the network has become confident enough in its
prediction. Not only do these type of dynamic networks en-
joy an overall reduction of computation, they are also com-
patible with existing efficiency optimization techniques and
more widely applicable in real world settings due to their
flexibility.

There are two settings where dynamic neural networks
have a distinct advantage over their static counterparts: Dur-
ing anytime prediction where a network is asked to output
a result at a moments notice, and budgeted batch classifica-
tion where a group of samples need to be processed within
a singular fixed computational budget. In the latter case, a
dynamic network will be able to maximize its performance
by spending more of the budget on harder samples. Search
engines indexing images is an example of a budgeted batch
classification scenario. For a real world example of any-
time prediction, think of self driving cars [1] where road
signs need to be classified to potentially alter the vehicle’s
driving behaviour. Road signs can appear around corners,
the car can be driving at various speeds and there might be
stochasticity in the speed with which signs are recognized
in the first place. All these variables lead to variability in
time constraints imposed on the classification network of
the vehicle. Static networks will not be able to adapt to the
changing circumstances, whereas dynamic networks can.

Classifiers in a multi-exit network have the advantage of
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Figure 1. Shows the heatmap of what classifiers focus on in a 10-block Multi-Scale Dense network in a case where it overthinks. The
image on the left shows the original input. Each heatmap also shows the respective classifiers’ prediction and its softmax confidence in that
prediction. There seems to be no pattern to what each classifier focuses on.

being able to make use of computation performed by previ-
ous classifiers. Deeper classifiers, with their increased ca-
pacity, therefore perform better than their shallower coun-
terparts on average. However, deeper classifiers can mis-
classify samples that shallower classifiers classify correctly.
This overthinking phenomenon has been documented in
multi-exit networks that use traditional convolutional net-
works as the backbone by Kaya et al. [15]. A potential
reason for this phenomenon occurring under these circum-
stances is that deeper classifiers make use of layers with
larger receptive fields. These layers thus represent more
complex features, features which are no longer suitable to
classify the easier samples of the dataset. The deeper classi-
fiers end up finding these complex features in samples that
do not contain them and subsequently assigning a high con-
fidence to them, leading to misclassification. These easy
samples can however be classified by shallower classifiers
which make use of more primitive feature maps. More com-
putation can thus lead to worse results. However, we have
observed overthinking taking place in Multi-Scale Dense
networks (MSDNets) [12], a hand-tuned end-to-end archi-
tecture optimized for early-exiting. Multi-scale architec-
tures do not conform to the common notion of how recep-
tive fields, and with it the complexity of the features, grow
along the depth of the network. Instead, aggressive down-
sampling in the first layer seeds every scale with feature
maps that differ in their size of receptive field. The high-
est scale contains the coarsest features that have full recep-
tive field and multi-scale architectures maintain these scales
along the depth of the network. For this reason, the argu-
ment for overthinking in relation to the receptive field does
not hold for MSDNets. Figure 1 shows an example of what
each classifier in an MSDNet focuses on in a case where it
overthinks. There seems to be no clear relation to be found
between the depth of an MSDNet and what a classifier at
that respective depth focuses on. This relation can be found
in multi-exit networks with a traditional backbone as was
shown by Kaya et al. due to the more linear nature of re-
ceptive fields in such networks.

Understanding overthinking is closely tied to under-

standing why some classifiers correctly classify particular
samples and why other classifiers can not. This knowl-
edge can subsequently be used to improve upon existing
early-exiting strategies, improving adaptive inference per-
formance and reducing computation of dynamic neural net-
works.

In this paper we show that a separate network can under
serendipitous circumstances learn to find a correlation be-
tween the data and what a classifier in an MSDNet learns,
but not in general. This suggests that classifiers in an MS-
DNet do not specialize in particular subsets of the dataset.
In other words, the overthinking patterns in MSDNets are
likely not tied to the data itself, suggesting instead that is
caused by stochasticity in the learning process.

We first train a policy network on Max-Min MNIST [5]
to show that policy networks can learn early-exit strategies
for MSDNets when the respective dataset leads to a strong
dependency between the data and the classifiers in the net-
works. We then show that this does not hold in general by
unsuccessfully training policy networks on CIFAR100 [17]
and the SHVN [23] datasets.

2. Related Work
Resource Efficient Neural Networks. Much of the
existing literature on reducing the computational burden
of deep neural networks has been focused on networks
after they have been trained. Knowledge can be distilled
from a larger network into a smaller network, effectively
reducing the number of parameters while maintaining
performance [3, 22]. Another way is to prune redundant
parameters directly by iteratively removing parameters
that contribute the least to the result [20, 21, 32]. A more
implementation focused method of reducing computation
is to collapse parameter data into a more primitive form by
means of quantization, effectively reducing computational
overhead [8, 28]. Most of these methods can be used in
tandem as well as with adaptive inference.

Adaptive Inference. Early-exiting in its most trivial form
can be performed by making use of two networks with vary-
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Training methodology

Dataset 50 epochs 100 epochs 50 epochs and
50 epochs ISC + OFA

CIFAR100 17.93 18.45 14.33
SHVN 15.32 15.50 11.29

Table 1. Shows the percentage of samples the network overthinks
on for the test set of the respective dataset. Lower is better. It
shows that using learning techniques which stimulate classifier
collaboration reduces overthinking.

ing capacity and computational requirements and turning
them into a model cascade. In most cases the smaller net-
work suffices and the bigger network is only required for
the more complex inputs [24]. This scheme can be extended
with multiple networks, where the inference is done by each
model in a set order from smallest network to hardest [27].
A more nuanced approach can also be taken and certain
models can be skipped if desired [2]. Model cascades can
be distilled down into a single network where the backbone
consists of any regular convolutional neural network and
any number of intermediate classifiers are added as early-
exits. This concept of intermediate early-exits operates un-
der the assumption that many datasets contain samples that
can already be classified using features that are derived in
those early layers [6, 15, 19, 26].

Information exchange that leads to spatial shift invari-
ance can be achieved with significantly fewer parameters
if features maps of all scales could transfer information
directly as opposed to only along the depth of the net-
work [14, 16]. Multi-Scale Dense networks make use of
these concepts to represent feature maps with maximum
receptive fields along every layer of the network [12]. Fur-
thermore, MSDNets make use of dense connections [13] to
prevent shallow feature maps from collapsing in favour of
intermediate classifiers. Together, these techniques allow
MSDNets to produce state-of-the-art results in the context
of adaptive inference.

Exiting Policies. Deciding when a sample should exit in a
multi-exit network is reminiscent of the stopping problem.
Many techniques for this reason make use of reinforcement
learning, where some sort of halting score is introduced
that weighs potential gain in performance versus the cost
of extra incurred computation [5, 7, 9, 10]. Another popular
method is to make use of confidence based criteria, if the
confidence of a classifier crosses a predetermined threshold,
the sample exits at that classifier. Measures of network con-
fidence include the maximum of the softmax [12, 31] and
the entropy [26, 30] of the output.

Chen et al. [4] and Wu et al. [29] show that policy net-
works are able to select layers of a ResNet that should be ac-
tivated to maximize inference performance and efficiency.

Wu et al. in particular note that the policy network selects
similar parts of the inference network for the same class,
signifying a relation between parts of the inference network
and the data. Motivated by these works we attempt to train
a policy network to learn to early-exit in MSDNets to de-
termine whether a deterministic relation exists between the
data and what classifiers in an MSDNet learn. Such an ex-
istence could in turn be an explanation for overthinking.

3. The Overthinking Phenomenon
Overthinking takes place when a classifier positioned

deeper in the network misclassifies a sample whereas a clas-
sifier placed before it can classify it correctly. More for-
mally we define overthinking as follows:

fi(x; θi) = y∧fi+k(x, θi+k) ̸= y where k ∈ {1, . . . , n−i},
(1)

where fi(x; θi) represents the prediction of the classifier
at depth i, parameterized by θi on input x. y is the label
vector of the input and n the total number of classifiers
in the multi-exit network. In general, the set of samples
Sj a classifier at depth j gets correct is larger than the set
of samples Si a classifier at depth i gets correct, where
i < j, yet Si ̸⊂ Sj . As a result, the adaptive performance
of a multi-exit network like MSDNet exceeds that of the
average performance of its individual classifiers. This
effect is shown in figure 2. The anytime prediction shows
the performance of each individual classifier, whereas the
budgeted batch performance indicates what the network
can achieve when it is allowed to early-exit. A sample exits
the network when the respective classifiers’ confidence
crosses a predetermined threshold. Early-exiting allows
the network to output a prediction before it has a chance
to overthink, directly combating the overthinking phe-
nomenon. This is why the budgeted batch performance is
larger than a weighted combination of individual classifiers.
If a perfect early-exiting strategy could be achieved, both
efficiency and adaptive performance of dynamic neural
networks would increase drastically, as indicated by the
upper bounds.

Reducing Overthinking. Krizhevskyet al. [17] showed
that improving collaboration between classifiers in a multi-
exit network improves their performance. They intro-
duce Inline Subnetwork Collaboration (ISC), a technique
that implements direct connections between classifiers, and
One-for-all Knowledge Distillation (OFA), a teacher par-
ent training technique where the final classifier acts as the
teacher for intermediate classifiers. We show that these
techniques can be used to reduce overthinking in MSDNets
by training a network conventionally for 50 and 100 epochs
and comparing the rate of overthinking when the network is
trained using the improved training techniques. We follow
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Figure 2. Shows anytime prediction and budgeted batch perfor-
mance of applying a 5-block Multi-Scale Dense network on the
CIFAR100 test set. The upper bounds represent results obtained
when applying a perfect early-exit strategy. The oracle is clairvoy-
ant and does not perform inference if no classifier can correctly
classify the sample. The performance of budgeted batch classifi-
cation surpasses that of anytime prediction due to early-exiting.

the convention of Krizhevskyet al. to only use the tech-
niques to fine-tune the network, which we do for the final
50 epochs of the training process. The results on the CI-
FAR100 [17] and SHVN [23] datasets can be seen in ta-
ble 1. So while increased classifier collaboration reduces
overthinking and increases performance, it does not explain
where overthinking and classifier independecy stems from
in the first place.

4. Method
To show that there are likely no relations between the

data and overthinking in MSDNets in general, we train a
policy network to directly learn an early-exit policy for the
respective MSDNet. We evaluate the policy network on
three datasets and show that in general, the policy network
is unable to successfully learn the early-exiting strategy of
an MSDNet.

Every experiment consists of the 4 following steps:

1. Choose a dataset D that the MSDNet will train on.

2. Train an MSDNet M on dataset D.

3. Create a dataset from M containing pairs of samples
(d, l) with d ∈ D and l representing the lth classifier

Figure 3. Shows the performance of a 5-classifier Multi-Scale
Dense network on Max-Min MNIST for each of its respective dif-
ficulty levels. The final classifier is significantly better at classi-
fying harder samples than shallow classifiers, whereas the perfor-
mance on easy samples is nearly identical.

in M that is most suitable to classify sample d. We call
this new early-exiting dataset Dee.

4. Train a traditional CNN Mee on Dee to learn the early-
exit strategy of M . Mee is thus the policy network.
Mee is subsequently evaluated on the test set of Dee.

For D we use Max-Min MNIST (MMM) [5], CIFAR100
and SHVN. We use the special dataset MMM to show that
the experiment setup is able to bring to light correlations
between learned subsets by classifiers of M and the data as
long as D allows for enough classifier specialization to be-
gin with. With the experiments on CIFAR100 and SHVN
we show that in more conventional datasets the policy net-
work is not able to learn of any such relations, even in a
simplified setting.

M consists of a 5-classifier MSDNet trained for 200
epochs with a learning rate of 0.1 which decreases by a fac-
tor of 10 at epoch 75 and 150. The network has 3 scales and
a linear growth in layers, we follow the conventions of [12]
when it comes to other architectural considerations.

Mee is a ResNet with 34 layers, trained with a learning
rate of 0.1 for 100 epochs which decreases tenfold at epoch
50 and 75. At times, training was cut short if no progress
was being made.

Creating Dee. The goal of Dee is to capture the specific
subsets that classifiers in an MSDNet learn. Every label l
ideally represents the classifier for whose learned subset the
sample d is most representative. As it often happens that
multiple classifiers in M can correctly classify the sample
d, choosing l becomes ambiguous. However, it can be ar-

4



Figure 4. Shows the sample distribution of the early-exiting train-
ing set obtained from applying the scoring method with λ = 5
on an MSDNet that was trained on Max-Min MNIST. As the fi-
nal classifier in the MSDNet is significantly better at classifying
harder samples than shallow classifiers, the scoring method labels
those samples accordingly.

gued that in such occasions, the classifier with the highest
confidence represents the classifier for which the sample is
most emblematic. We therefor make use of the following
scoring system to determine the labeling of Dee:

si =
1

λmi(x)10−6
+ ci for i ∈ 1, . . . , n. (2)

The score si each classifier i gets assigned is determined by
its confidence ci in its prediction and the amount of com-
putation mi(·) it requires to come to a conclusion on input
x in terms of MUL-ADDs. n is the total number of clas-
sifiers in the network. We use the maximum value of the
softmax output of a classifier’s prediction as a measure of
confidence. Taking into account the efficiency of each clas-
sifier is important to not skew the distribution of Dee too
much. Without it, most samples would be labeled accord-
ing to the last classifier in the network as it has the high-
est performance and confidence on average. γ allows us
to have more control over the distribution of Dee. We use
this to make Dee as balanced as possible. Each classifier i
only gets assigned a score if it is able to classify the sample
correctly in the first place. It gets assigned 0 otherwise:

s′i =

{
si, if fi(x, θi) = y
0, otherwise

for i ∈ 1, . . . , n, (3)

where s′i is the final score classifier i gets assigned. fi(x; θi)
represents the prediction of the respective classifier, param-
eterized by θi on input x. y is the label vector of the input.
If all classifiers are unable to correctly classify sample d, d

is left out of Dee as it does not represent any of the learned
subsets of the classifiers of M . The label then becomes the
classifier with the highest score:

l = argmaxs′i
(. . . , s′i, . . . ) for i ∈ 1, . . . , n. (4)

Despite using the scoring method to create the training and
test set of Dee, it often still ends up imbalanced. For this
reason, we will make use of weighted learning when train-
ing Mee:

LCE(ŷ, y) = −wylog(
ezy∑n
i e

zi
), (5)

where LCE(ŷ, y) is the cross-entropy loss between the pre-
diction ŷ and the label vector y, wy is the weight specific
to class y and zy the output of the classifier for class y.
The weights are determined for the training set before train-
ing starts. While the weights can take any value, we will
make them proportional to the occurrence of each class: If
we consider an ordered array containing the occurrences of
each class in the training set and denote it with Ctrain, the
weights become wy = max(Ctrain)

Ctrain[y]
for y ∈ {1, . . . , n}. In

our case n = 5 as M contains that many classifiers. Ef-
fectively, weighted learning discourages Mee from simply
returning the most common class by penalizing incorrect
classifications of minority samples more harshly.

For the training set of Dee we use the validation set of
D. We set aside 20% of training samples of D each time
for validation. The test set of Dee is created from the test
set of D. We omit the validation set for Dee to maximize
the amount of training samples.

5. Experiments
The policy network Mee is first trained on Max-Min

MNIST (MMM) [5] to show that it can pick up on clas-
sifier specialization when a data dependency is explicitly
introduced. We then show that without this explicit differ-
entiation, policy networks are seemingly unable to find any
correlation between the data and classifiers in am MSDNet
by evaluating the policy network on CIFAR100 [17] and
SHVN [23].

5.1. Evaluation on Max-Min MNIST

We first evaluate the performance of Mee that aims to
predict the early-exiting strategy of MSDNet M in the con-
text of the MMM dataset, a dataset consisting of 10 labels,
each with 3 difficulty levels. Figure 5 shows an example of
each of the difficulty levels. The performance of M on this
dataset can be seen in figure 3. The final classifier is signifi-
cantly better at classifying hard samples than the first classi-
fier, whereas their performance on easy samples is identical.
This discrepancy leads to a noticeable differentiation in the
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Figure 5. Shows examples of samples from the Max-Min MNIST
dataset. The labels for the medium and hard cases are determined
by subtracting the smallest digit from the largest digit in the image.

label distribution of Dee, as can be seen in figure 4. Dee

in this case thus suggests that easy samples resemble the
learned subsets of earlier classifiers more and medium and
hard samples resemble learned subsets of the last classifier
more, representing a form of classifier specialization.

The training set of Dee contains roughly 15,000 sam-
ples, and the test set likewise. We train Mee for 60 epochs
as it makes no progress after that. The overall performance
over the whole test set of Dee is 51.83%. The breakdown of
how it performs for each label and difficulty level is shown
in figure 6. Several trends stand out, first, Mee is clearly
better at classifying samples at the tails of the label distri-
bution. Also, it is poor at recognizing exceptions such as
early samples that should end up at the final classifier, and
medium and hard samples that should end up at intermedi-
ate classifiers. In general, it seems to not be able to concep-
tualize the nuances of classifiers that lie somewhere in the
middle of the network.

5.2. Evaluation on CIFAR100 and SHVN

From the results on MMM we can conclude that policy
networks are able to learn an early-exiting strategy for MS-
DNets in the case where classifier differentiation is intro-
duced artificially. We will now show that policy networks
are not successful at doing so when it comes to two, more
conventional, datasets: CIFAR100 and SHVN. To add ve-
racity to the results, we will simplify the task of the policy
network. We saw in the results of the policy network on
MMM that it is better at distinguishing samples that should
go to either the first or last classifier. We let Mee ignore
classifiers in the middle of the network and only focus on
the two classifiers on either end. Mee’s task thus effectively
turns into binary classification. More concretely, we change

Figure 6. Shows the performance of the Resnet34 policy network
on the test set of the Max-Min MNIST Dee dataset for each label
and respective difficulty levels. The policy network is better at
distinguishing samples that should go to the first or last classifier
than classifiers inbetween.

equation 3 to:

s′i =

{
si, if fi(x, θi) = y ∧ (i = 1 ∨ i = n)

0, otherwise

for i ∈ 1, . . . , n. (6)

Every test was executed on both datasets 3 times,
starting with learning rates 0.1, 0.01 and 0.001. Learning
rates were decreased by a factor of 10 at epochs 75 and 150.
We only discuss the results in the case where the learning
rate is 0.01 as the results for other learning rates are similar.

CIFAR100. Figure 7 shows the binary label distribution
of applying the scoring method on M . M in this case
is an MSDNet trained for 200 epochs on the CIFAR100
training set. We use λ = 5 to maintain a relatively balanced
dataset. The average performance Mee reaches on the test
set of Dee is 43.25%, well below the cutoff of ∼ 50% we
consider to be the threshold for having learned anything
which can be achieved by random guessing.

SHVN. Figure 8 shows the binary label distribution of the
training set of Dee, it was created using the scoring method
with λ = 20. M is trained for 200 epochs on the SHVN
training set. The average performance of Mee in this case
is 49.92%; Mee ends up returning labels evenly, and thus
randomly. Again, there is no indication of Mee having
learned anything.

Alternative Theory For Overthinking. In the case of CI-
FAR100 and SHVN, there is no sign that the policy network
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Figure 7. Shows the sample distribution of the training set of Dee

obtained by applying the scoring method with λ = 5 on M . M
in this is case is trained on CIFAR100. The lambda is chosen to
balance the dataset as much as possible. Internal classifiers are
ignored to simplify the subsequent learning process of Mee.

is able to learn anything meaningful that enables it to reli-
ably predict where a sample should end up in the respective
MSDNet. The negative results suggest that, in general, clas-
sifiers in MSDNets do not specialize in specific subsets of
the data. In light of these results, we offer an alternative pos-
sible explanation for overthinking. Overthinking is intro-
duced randomly into a network due to stochastic processes
inherent to training. As multiple classifiers are trained in
joint fashion, the only goal is to maximize the average per-
formance of all classifiers. The training process does not
discriminate between classifiers; if a single classifier does
not end up improving so the others can, then this is a de-
sirable outcome. How the parameters of a network update
after seeing a training sample all depends on the state of the
network at that moment in time and many stochastic pro-
cesses, such as the learning order, influence the state. This
would explain why a policy network is unable to pick up
on image statistics that tie learned subsets of classifiers in
MSDNets together; they are not deterministic and instead
caused by stochastic processes.

6. Conclusion
In this paper we have attempted to directly learn early-

exiting strategies in MSDNets by means of a policy net-
work. The idea is that if a policy network is capable of do-
ing so, there must be a relation between the data and what
classifiers in an MSDNet have learned. Policy networks
would only be able to recognize these correlations if they
are strong enough, in other words, if classifiers in an MSD-
Net tend to specialize in specific subsets of the dataset. This
in turn could explain the overthinking phenomenon: Clas-

Figure 8. Shows the sample distribution of the training set of Dee

obtained by applying the scoring method with λ = 20 on M . M
in this is case is trained on SHVN. The lambda is chosen to balance
the dataset as much as possible. Internal classifiers are ignored to
simplify the subsequent learning process of Mee.

sifiers gravitate toward particular types of samples to max-
imize the overall performance of the network. The results
show that policy networks struggle to ascertain the men-
tioned relations in conventional datasets. This suggests one
of two things: a relation between the data and classifiers in
an MSDNet exists but can not be picked up by policy net-
works or the relation does not exist to begin with. The latter
in turn suggests that overthinking does not take place due
to specialization. We have seen that policy networks are
able to pick up on data and classifier relations when they
are present in the case of a dataset like Max-Min MNIST.
We thus consider the likelihood of policy networks not be-
ing able to pick up on the data correlations for the lack of
success of policy networks in the context of MSDNets to
be lower than these relations not existing. However, the re-
sults can not guarantee directly that specialization does not
occur. It could be the case that specialization occurs but
only to a non-noticeable degree. It could also be that it does
occur but stochasticity muddles the signs which make it im-
possible for our policy network to pick up. Neither case is
verifiable by our method, and should be kept in mind when
interpreting the results laid out in this paper.

Finally, as policy networks seem in general unable to
ascertain the existence of classifier specialization, we of-
fered an alternative possible explanation for overthinking.
Overthinking is introduced randomly into a network due to
stochastic processes inherent to training. As we have not
proven this, we leave it as future work.
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