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Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time exten-
sions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is un-
decidable when both the future (Until, U) and the past (Since, S) modalities are used (denoted by MTL[U,S] and
TPTL[U,S]). In a classical result, the satisfiability checking for Metric Interval Temporal Logic (MITL[U,S]),
a non-punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. A
straightforward adoption of non-punctuality does not recover decidability in the case of TPTL[U,S]. Hence,
we propose a more refined notion called non-adjacency for TPTL[U,S] and focus on its 1-variable fragment,
1-TPTL[U,S]. We show that non-adjacent 1-TPTL[U,S] is strictly more expressive than MITL. As one of our
main results, we show that the satisfiability checking problem for non-adjacent 1-TPTL[U,S] is decidable
with EXPSPACE complete complexity. Our decidability proof relies on a novel technique of anchored inter-
val word abstraction and its reduction to a non-adjacent version of the newly proposed logic called PnEMTL.
We further propose an extension of MSO [<] (Monadic Second Order Logic of Orders) with Guarded Metric
Quantifiers (GQMSO) and show that it characterizes the expressiveness of PnNEMTL. That apart, we intro-
duce the notion of non-adjacency in the context of GQMSO (NA-GQMSO), which is a syntactic generaliza-
tion of logic Q2MLO due to Hirshfeld and Rabinovich and show the decidability of satisfiability checking for
NA-GQMSO.
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1 INTRODUCTION

Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are nat-
ural extensions of Linear Temporal Logic (LTL) for specifying real-time properties [5]. MTL
extends the Until (U) and Since (S) modalities of LTL by associating a timing interval with these.
aUrb describes behaviors modelled as timed words consisting of a sequence of a’s followed by a
b, which occurs at a time within (relative) interval I. However, TPTL uses freeze quantification to
store the current timestamp. A freeze quantifier (also called as Half Order Quantifiers [3]) with
clock variable x has the form x.p. When it is evaluated at a point i on a timed word, the times-
tamp 7; at i is frozen or registered in x, and the formula ¢ is evaluated using this value for x.
Variable x is used in ¢ in a constraint of the form T — x € I; this constraint, when evaluated
at a point j, checks if 7; — 7; € I, where 7; is the timestamp at point j.' For example, the for-
mula Fx.(a AF(b AT —x € [1,2] AF(c AT — x € [1,2]))) asserts that there is a point in the
future where a holds and in its future within interval [1, 2], b and ¢ occur, and b occurs before c.
This property is not expressible in MTL[U, S] [8, 39]. Moreover, every property in MTL[U, S] can
be expressed in 1 variable fragment of TPTL (1-TPTL[U, S]). Thus, 1-TPTL[U, S] is strictly more
expressive than MTL[U, S]. Unfortunately, both the logics have an undecidable satisfiability check-
ing problem, making automated analysis of these logics difficult (in full generality existence of a
sound and complete algorithm is impossible for such problems). It is possible to restrict certain
parameters of the behaviors and get terminating algorithms. But that would require prior infor-
mation about some parameters of the behaviors, which may not be always accessible. Moreover,
the complexity of the algorithm often depends on the value of these parameters. For example, if
we restrict the models to be k-bounded variable, i.e., models where the number of events within
any unit time interval is bounded by k,? then the satisfiability checking becomes decidable for
these logics [19] but the complexity of this problem depends on k. Moreover, this would require
access to this bound k, which is not the case, in general. Exploring natural decidable variants of
these logics has been an active area of research since their advent [4, 23, 25, 26, 42, 43, 46]. One
line of work restricted the logic to contain future only modality MTL[U] and 1-TPTL[U]. Both
these logics have been shown to have decidable satisfiability over finite timed words, under a
pointwise interpretation [22, 37].> The complexity, however, is non-primitive recursive. Moreover,
these problems become undecidable over infinite timed words. Obtaining an expressive fragment
with elementary complexity has been a challenging problem. One of the most celebrated such
logics is the Metric Interval Temporal Logic (MITL[U, S]) [1], a subclass of MTL[U, S] where
the timing intervals is restricted to be non-punctual, i.e., non-singular (intervals of the form (x, y)
where x < y). The satisfiability checking for MITL formulae is decidable with EXPSPACE complete
complexity [1]. While non-punctuality helps to recover the decidability of MTL[U, S], it does not
help in TPTL[U, S]. The freeze quantifiers of TPTL enable us to trivially express punctual timing
constraints using only the non-punctual intervals: For instance, the 1-TPTL formula x.(aU(a A
T —-xe€[l,00) AT —x € [0,1])) uses only non-punctual intervals but captures the MTL formula

Here, T is a special variable that stores the timestamp of the present point and x is the clock that was frozen when x.
was asserted.

?Bounded variability is usually defined on timed signals rather than timed words. But, every timed word can be equivalently
represented as timed signals. Moreover, the definition of bounded variability of Reference [19] for timed words boils down
to the above-mentioned restriction.

3While Reference [37] proves decidability of MTL[U] via reduction to 1-clock Alternating Timed Automata (1-ATA)
followed by proving decidability for emptiness checking problem of 1-ATA over finite models. The generalization of this
reduction is provided in Reference [22], where the authors prove a stronger result showing that 1-TPTL[U] with least
fix-point operator is expressively equivalent to 1-ATA over finite models.
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aUpy,11b. Thus, a more refined notion of non-punctuality is needed to recover the decidability of
1-TPTL[U, S].4

Contributions. With the above observations, to obtain a decidable class of 1-TPTL[U, S] akin
to MITL[U, S], we revisit the notion of non-punctuality as it stands currently. As our first
contribution, we propose non-adjacency, a refined version of non-punctuality. Two intervals I;
and I, are non-adjacent if the supremum of I; is not equal to the infimum of I,. Non-adjacent
1-TPTL[U, S] is the subclass of 1-TPTL[U,S], where every interval used in clock constraints
within the same freeze quantifier is non-adjacent to itself and to every other timing interval that
appears within the same scope. (W.l.o.g., we consider formulae in negation normal form only.) The
non-adjacency restriction disallows punctual timing intervals: Every punctual timing interval is
adjacent to itself. It can be shown (Theorem 3.2) that non-adjacent 1-TPTL[U, S], while seemingly
very restrictive, is strictly more expressive than MITL and it can also express the counting and the
Pnueli modalities [25]. Thus, the logic is of considerable interest in practical real-time specification
(see Example 3.1).

Our second contribution is to give a decision procedure for the satisfiability checking of non-
adjacent 1-TPTL[U, S]. We do this in two steps. (1) We introduce a logic PnEMTL that combines
and generalizes the automata modalities of References [27, 43, 46] and the Pnueli modalities of
References [25, 26, 42] and has not been studied before to the best of our knowledge. We show that
a formula in non-adjacent 1-TPTL[U, S] can be reduced to an equivalent formula of non-adjacent
PnEMTL (Theorem 5.16). (2) We prove that the satisfiability of non-adjacent PnEMTL is decidable
with EXPSPACE complete complexity (Theorem 8.1) by reducing it to an equisatisfiable EMITLg o
formulae (subclass of EMTL where the timing constraints are restricted to be of the form (0, u) or
(I, o) where I, u € N U {0}).

As our third and final contribution, we show that the logic PnEMTL is expressively equivalent
to an extension of MSO[<] (Monadic Second Order Logic of Orders) with Guarded Metric
Quantifiers (GQMSO). The latter is a versatile and expressive logic, allowing properties of real-
time systems to be defined conveniently. The use of Guarded Metric Quantifiers appeared in the
pioneering formulations of logics QMLO and Q2MLO (with non-punctual guards) by Hirshfeld
and Rabinovich [25] and it was further explored by Hunter (with punctual guards) [28]. We have
generalized these to an anchored block of guarded quantifiers with arbitrary depth. This pro-
vides the required power to obtain expressive completeness. We show this by providing effective
reductions from PnEMTL to GQMSO and vice versa. Unfortunately, the full PnEMTL, being a
syntactic extension of MTL[U, S], is clearly undecidable. As our final main result, we define the
non-adjacency condition, suitably applied to the logic GOMSO. We observe that the effective re-
ductions between GQMSO and PnEMTL preserve non-adjacency. From the previously established
EXPSPACE-complete decidability of non-adjacent PnEMTL, it follows that the satisfiability check-
ing for non-adjacent GQMSO is decidable.

The article is organized as follows: Section 2 introduces the models and logics LTL, MTL, and
TPTL. Section 3 introduces MTL extended with Pnueli automata modalities (PnEMTL) and
non-adjacent fragments of 1 —TPTL and PnEMTL. Section 4 introduces a novel notion of anchored
interval word abstractions that we use to abstract timed languages. Its theory is central in the re-
duction of any (non-adjacent) TPTL formula to an equivalent (non-adjacent) PnEMTL formula

“Even if we restrict the syntax to disallow Boolean expressions over constraints having a unique solution, it is possible to
get undecidability due to the power of freeze quantification. The main power of adjacency comes from the fact that it could
express the following kind of properties: a holds at the last/first point within the next/previous unit interval. For example,
x.[FfaAx € (0,1) A ®(x € (1, ))}] (symbol & stands for the next operator) specifies a holds at the last point in the
next unit interval. This property can then be used to encode runs of any arbitrary 2 counter machines. See Reference [35],
Chapter 3, Section 3.4, for more details.
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9:4 S. N. Krishna et al.

presented in Section 5. Section 6 introduces a new extension of MSO[ <] with Guarded Metric
Quantifiers (GQMSO) and its non-adjacent fragment (NA-GQMSO). As mentioned, this logic
is a natural syntactic generalization of QMLO and Q2MLO of Reference [26] and QkMSO of Refer-
ence [33]. In Section 7, we show that PnEMTL (and non-adjacent PnEMTL) is equivalent to GQMSO
(and non-adjacent GQMSO, respectively) by giving effective reductions in both directions. Finally,
Section 8 shows that satisfiability checking for non-adjacent PnEMTL and 1 — TPTL is decidable
with EXSPACE complete complexity. This, along with the reduction from non-adjacent GQMSO to
non-adjacent PnEMTL, implies that the satisfiability checking problem for non-adjacent GQMSO
is decidable. Finally, in Section 10, we conclude our article and discuss its place in the existing
literature. We finish by proposing a fundamental open question in timed logics.

Discussion and related work. Much of the related work has already been discussed. MITL with
counting and Pnueli modalities has been shown to have EXPSPACE-complete satisfiability [41,
42]. Here, we tackle more expressive logics, namely, non-adjacent 1-TPTL[U, S] and non-adjacent
PnEMTL. We show that the EXPSPACE-complete satisfiability checking is retained in spite of the
additional expressive power. These decidability results are proved by equisatisfiable reductions to
logic EMITLg « of Ho [27]. As argued by Ho, it is quite practicable to extend the existing model
checking tools like UPPAAL to logic EMITL, o, and hence to our logics, too.

Addition of regular expression-based modalities to untimed logics like LTL has been found to be
quite useful for practical specification; even the IEEE standard temporal logic PSL has this feature
[15, 18, 29]. With a similar motivation, there has been considerable recent work on adding regular
expression/automata-based modalities to MTL and MITL. Raskin as well as Wilke added automata
modalities to MITL as well as an Event-Clock logic ECL [43, 46] and showed its satisfiability check-
ing problem to be decidable. Krishna et al. showed that MTL[U, Sy p] (where U can use punctual
intervals but S is restricted to non-punctual intervals), when extended with counting as well as
regular expression modalities preserves decidability of satisfaction [31-33, 35]. Recently, Ferrere
in Reference [17] proposed a very neat extension of MITL, called Metric Interval Dynamic
Logic (MIDL), where the timing constraints appear within regular expressions as opposed to
modalities (LTL[U] extended with a fragment of timed regular (MIRE) expression modality). He
showed that satisfiability checking for MIDL is decidable with EXPSPACE complete complexity.
Moreover, Ho has investigated a PSPACE-complete fragment EMITL( o, and showed that this
fragment is surprisingly as expressive as the full logic EMITL [27]. Our non-adjacent PnEMTL is a
novel extension of MITL with modalities that combine the features of EMITL [27, 43, 46] and the
Pnueli modalities [25, 26, 42]. In terms of expressiveness, MIDL is also known to be strictly more
expressive than EMITL. However, the relation between non-adjacent PnEMTL and MIDL remains
open.

In terms of expressive completeness, Hirshfeld and Rabinovich [26] showed that MITL is
expressively complete to an extension of FO[<] with metric quantifiers (quantifiers guarded
with non-punctual timing constraints) where the subformulae within the scope of this metric
quantifier is restricted to have only one free variable. Moreover, its extension, Q2MLO (where the
subformulae within the scope of the metric quantifier can have no more than 2 free variables),
is expressively equivalent to MITL extended with Pnueli Modalities. Hunter [28] showed that
when one allows punctual guards in Q2MLO, one gets the complete first-order logic with distance
operator FO[<, +1] in continuous semantics. Inspired by these logics, Reference [33] proposed
its extensions with restricted form of second-order quantification giving Q2MSO or QkMSO and
allows punctuality. But these logics were restricted to reason about future time properties only,
to preserve the decidability. Our proposed logic GQMSO is a syntactic generalization of all these
logics.
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2 PRELIMINARIES

Let ¥ be a finite set of propositions, and let I' = 2% \ 0.°> A word over ¥ is a finite sequence
0 = 010y ...0,, Where o; € T. A timed word p over ¥ is a non-empty finite sequence p =
(01,171) ... (0n,7n) of pairs (0y,7;) € (' XxRyo); wherery = 0Oand r; < rjforalll1 <i<j<n
and n is the length of p (also denoted by |p|). The z; are called timestamps. For a timed or untimed
word p, let dom(p) = {i|1 < i < |pl|}, and o[i] denotes the symbol at position i € dom(p). The set
of timed words over X is denoted TX*. Given a (timed) word p and i € dom(p), a pointed (timed)
word is the pair p, i. Let Zint (Znat) be the set of open, half-open, or closed time intervals, such that
the end points of these intervals are in Z U {—o0, co} (N U {0, oo}, respectively).

2.1 Linear Temporal Logic

Formulae of LTL are built over a finite set of propositions ¥ using Boolean connectives and
temporal modalities (U and S) as follows: ¢ == a |T | ¢ A ¢ | =¢ | pUp | ¢S@, where a € 3. The
satisfaction of an LTL formula is evaluated over pointed words. For a word ¢ = 0103 ...0, € ¥*
and a point i € dom(o), the satisfaction of an LTL formula ¢ at point i in o is defined, recursively,
as follows:

(i) o,i|l=aiffa € oy,

(ii) o,i |= T iff i € dom(p),

(iii) o,i|F~piff o,i ¥ ¢

(iv) piE @1 Apaiffo,i = grando,i F ¢,

W) piE@ Ve iffo,il=@roro,i = @2,

i) 0,i |= p1U@yiftAj > i,0,j = ¢s,and o,k |= o1 Vi<k <],
(vii) 0,i |E ¢1Sez iff dj <i,0,j = @2, and o,k |E o1 Vj<k<i

Derived operators can be defined as follows: Fp = TU¢, and Gy = —-F-¢. Symmetrically, Pg =
TS¢, and H¢ = —=P-¢@. An LTL formula is said to be in negation normal form if it is constructed
out of basic and derived operators above, but where negation appears only in front of propositional
letters. It is well known that every LTL formula can be converted to an equivalent formula that is
in negation normal form.

2.2 Metric Temporal Logic (MTL)

MTL is a real-time extension of LTL where the modalities (U and S) are guarded with intervals.
Formulae of MTL are built from ¥ using Boolean connectives and time-constrained versions Uj
and S; of the standard U, S modalities, where I € I,,. Intervals of the form [x,x] are called
punctual; a non-punctual interval is one that is not punctual. Formulae in MTL are defined as
follows: ¢ == a |T |¢ A @ | =¢ | ¢Urp | ¢S;p, where a € X and I € I,4. For a timed word
p = (o1,71)(02,72) ... (O, Ty) € TE¥, a position i € dom(p), an MTL formula ¢, the satisfaction of
@ ataposition i of p, denoted p, i |= ¢, is defined below. We discuss the time-constrained modalities.

e p,i = oiUrpiff Aj>1i,p,j F @o, 75— €L,andp,k = o1 Vi<k<j.
o pi = iSrp2iffj <i,p,j |E @o,ti—1j€Landp,k E o1 Vj<k<i.
The language of an MTL formula ¢ is defined as L(¢) = {plp,1 |= ¢}. Using the above, we

obtain some derived formulae: the constrained eventual operator Fj¢p = TUj@ and its dual is
Gr¢ = —Fr—¢. Similarly Hre = TSr¢. The next operator is defined as ®;¢ = LUj¢. The non-strict

>We exclude this empty-set for technical reasons. This simplifies definitions related to equisatisfiable modulo oversampled
projections [35]. Note that this does not affect the expressiveness of the models, as one can add a special symbol denoting
the empty-set.
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9:6 S. N. Krishna et al.

versions of F, G are, respectively, defined as F¥¢ = ¢ V Fp and G¥¢ = ¢ A Go include the
present point. Symmetric non-strict versions for past operators are also allowed. The subclass of
MTL obtained by restricting the intervals I in the until and since modalities to non-punctual
intervals is known as Metric Interval Temporal logic and denoted by MITL[U, S]. We say that
a formula ¢ is satisfiable iff L(¢) # 0.

THEOREM 2.1. Satisfiability checking for MTL[U, S] is undecidable [4]. Satisfiability Checking for
MITL[U, S] is EXPSPACE-complete [1-3].

2.3 Timed Propositional Temporal Logic (TPTL)

The logic TPTL also extends LTL using freeze quantifiers. Like MTL, TPTL is also evaluated on
timed words. Formulae of TPTL are built from X using Boolean connectives, modalities U and S of
LTL. In addition, TPTL uses a finite set of real valued clock variables X = {x,...,x,}. Letv: X —
R represent a valuation assigning a non-negative real value to each clock variable. The formulae
of TPTL are defined as follows: Without loss of generality, we work with TPTL in the negation
normal form. ¢ i=a|—-a|T|L|x@|T—-xe€l|x-TellpAploVel|lpUp|pSe|Ge|Hoeo,
where x € X, a € %, I € Iiy. Here, T denotes the timestamp of the point where the formula is
being evaluated. x.¢ is the freeze quantification construct that remembers the timestamp of the
current point in variable x and evaluates ¢.

For a timed word p = (01,71)...(0n,7n), i € dom(p) and a TPTL formula ¢, we define the
satisfiability relation, p, i, v |= ¢ with valuation v of all the clock variables. We omit the semantics
of Boolean, U and S operators as they are similar to those of LTL.

e pi,vi=aiffaco;and p,i,v |= x.@iff p,i,v[x « ;] |= ¢,

e pi,viET—-x eliffr;—v(x)eLandp,i,viEx-Teliffv(x)—7; €1,
e p,i,v |E GoiftVj>i,p,j,v = ¢,and

o p,i,v |E HeiftVj <i,p,j,v E o.

Let 0 = (0,0,...,0) represent the initial valuation of all clock variables. For a timed word p and
i € dom(p), we say that p, i satisfies ¢ denoted p,i |= ¢ iff p,i,0 |= ¢. The language of ¢, L(¢p) =
{plp,1 |= ¢}. The Pointed Language of ¢ is defined as L,;(¢) = {p,i | p,i F ¢}. ATPTL formula
is said to be closed if every variable is quantified using freeze quantifier before it appears in a
clock constraint. For example, x.y.(aU(b A x € (1,2) Ay € (2,3))) is a closed formula while
x.(any € (2,3))Uy.(b Ax € (1,2)) is not closed (or open), as y is used in a clock constraint before
it is frozen. Note that for a closed formula, the satisfaction of the model is independent of the clock
valuation. In other words, if ¢/ is a closed formula, then either for every valuation v, p, i, v |= ¢; or
for every valuation v, p,i, v ¥ . Hence, for a closed formula i, we drop the valuation tuple while
evaluating for satisfaction as p, i, v |= ¢ for any valuation v, iff p,i,0 |= .

Logic 1-TPTL: The subclass of TPTL that uses only 1 clock variable (i.e., [X| = 1) is known
as 1-TPTL. As an example, the closed formula ¢ = x.(aU(bU(c AT — x € [1,2]))) is satisfied
by the timed word p = (a,0)(a,0.2)(b,1.1)(b,1.9)(c, 1.91)(c, 2.1), since p,1 |= ¢. The word p’ =
(a,0)(a,0.3)(b, 1.4)(c, 2.1)(c, 2.5) does not satisty ¢. However, p’, 2 |= ¢: If we start from the second
position of p’, then we assign v(x) = 0.3, and when we reach the position 4 of p” with 7, = 2.1,
we obtain T —x = 2.1 — 0.3 € [1,2]. Note that an MTL[U, S] formula can straightforwardly be
translated to an equivalent 1-TPTL[U, S] (closed) formula. Hence, by Theorem 2.1, we get that the
satisfiability checking for 1-TPTL[U, S] is undecidable.

Notation: Let x denote the unique freeze variable we use in 1-TPTL. All constraints in 1-TPTL
have the form T — x € I. (Note that x — T € I is equivalent to T — x € —I.) Thus, for 1-TPTL, let T
abbreviate T — x € I.
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2.4 Expressive Completeness and Strong Equivalence

Given any specification (formula or automaton) X and Y, X is equivalent to Y when for any pointed
timed word p,i, p,i = X &= p,i |= Y. We say that a formalism X (logic or machine) is
expressively complete to Y, denoted by Y C X, if and only if, for any formulae/automata Y € Y
there exists an equivalent X € X. X is said to be expressively equivalent to Y, denoted by X = Y,
when X € Y and Y C X.

3 INTRODUCING NON-ADJACENT 1-TPTL AND PNUELI EMTL

In this section, we define non-adjacent 1-TPTL. We also give a generalization of MTL called
PnEMTL and define its non-adjacent fragment. Let x denote the unique freeze variable we use
in 1-TPTL.

3.1 Non-adjacent 1-TPTL

Non-Adjacent 1-TPTL (NA-1-TPTL) is defined as a subclass of 1-TPTL where adjacent intervals
within the scope of any freeze quantifier is disallowed. Two intervals I1, I, € Z;,; are non-adjacent
iff sup(I;)#inf () Vv sup(l;) = 0. A set 7, of intervals is non-adjacent iff any two intervals in
I, are non-adjacent. It does not contain punctual intervals other than [0, 0], as every punctual
interval is adjacent to itself. For example, the set {[1,2), (2, 3], [5,6)} is not a non-adjacent set,
while {[0, 0], [0, 1), (3, 4], [5,6)} is. Let I,,, denote a set of non-adjacent intervals with end points
in Z U {—o0, co}. Consider the following example of a formula in non-adjacent 1-TPTL:

Example 3.1 (Non-adjacent 1-TPTL). An indoor cycling exercise regime may be specified as fol-
lows: One must slow-pedal (prop. sp) for at least 60 seconds but until the odometer reads 1 km
(prop. od1). From then onwards one must fast-pedal (prop fp) to a time point in the interval [600,
900] from the start of the exercise such that pulse rate is sufficiently high (prop ph) for the last 60
seconds of the exercise. This can be given by the following formula:

x.sp U [60,0) A odl A
(fp U ([600,900] A x.H([~60,0] = ph)) )
It can be shown that this formula cannot be expressed in logic MITL.
The freeze depth of a TPTL formula ¢, fd(¢) is defined inductively. For a propositional formula
prop, fd(prop) = 0. Also, fd(x.¢) = fd(¢) + 1, and fd(p1Up,) = fd(¢1Se2) = fd(p1 A @2) =
fd(p1 V @2) = Max(fd(¢1), fd(¢2)), fd(G (9)) = fd(H (¢)) = fd(g).

THEOREM 3.2. Non-adjacent 1-TPTL[U, S] is more expressive than MITL[U, S]. It can also express
the Counting and the Pnueli modalities of References [25, 26].

Proor. The straightforward translation of MITL into TPTL in fact gives rise to non- adjacent
1-TPTL formula, e.g., MITL formula aU[y 3 (bUy3, 4]c) translates to x. (aU([Z 3] Ax. (bU([3 4] Ac))).
It has been previously shown that F[x.(a A F(b A (1 2) AF(c A (1 2))))], which is in fact a formula
of non-adjacent 1-TPTL, is inexpressible in MTL[U, S] (see Reference [39]). The Pnueli modality
Pni(¢1, ..., ¢r) expresses that there exist positions iy < --- < i within (relative) interval I where
each i; satisfies ¢;. This is equivalent to the non-adjacent 1-TPTL formula x.(FUA Gy AF(I A ¢y A
F(...)))). Similarly, the (simpler) counting modality can also be expressed. O

3.2 Pnueli Automata Modalities

There have been several attempts to extend logic MTL with regular expression/automaton modal-
ities [17, 27, 32, 46]. One of the most general amongst these is Automata Modalities, proposed by
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Wilke [46]. MITL (or MTL) extended with these automata modalities was called EMITL (or EMTL,
respectively). We further generalize these automata modalities to give automata modalities of ar-
bitrary arity. We call these modalities as Pnueli Automata Modalities. The extension is in the same
spirit as the extension of future and past modalities to Pnueli future and Pnueli Past modalities in
Reference [26]. We call MTL extended with these Pnueli Automata Modalities as PnEMTL.
We now first introduce EMTL before introducing PnEMTL for the sake of readability. For any finite
automaton A, let L(A) denote the language of A.

3.2.1 MTL Extended with Automata Modalities, EMTL. Given a finite alphabet 3, formulae of
EMTL have the following syntax:
p==aleAe|=p| F1(A)(S) | Pr(A)(S) wherea € 3,1 € I, and A is an automata over 2° where S
is a set of formulae from EMTL. ¥; and P are future and past Automata Modalities, respectively.

Let p = (01,71),. .. (On, Tn) € TZ*, x,y € dom(p), x < yand S = {¢1,...,¢n} be a given set of
EMTL subformulae. Let S; be the exact subset of formulae from S evaluating to true at p, i, and let
Seg*(p,x,y,S) and Seg™(p, y, x, S) be the untimed words SySx+1 . .. Sy and 5,5, ... Sy, respec-
tively. Then, the satisfaction relation for p, i satisfying a EMTL formula ¢ is defined recursively
as follows:

e p,ip = F1(A)(S) iff Jip < iy < ns.t. [(r;, — 73, € 1) A Seg™(p, io, i1,S) € L(A)],
o p,ig = Pr(A)(S) iff Jip > iy > 1s.t. [(r;, — 7i; € L1) A Seg (p, io, i1,S) € L(A)].

Language of any EMTL formula ¢, L(¢) = {p | p,1 |= ¢}. The Pointed Language of ¢ is defined as
Lp:(@) = {p,i | p,i = ¢}. Logic EMITL is a sublogic of EMTL where only non-punctual intervals
are allowed along with the modalities ¥ a and . Similarly, EMITL,  is defined as a sublogic of
EMITL where the timing intervals associated with both the modalities is restricted to be either of
the form (0, u) or of the form (I, o) where [ and u are any non-negative integers.

THEOREM 3.3. Satisfiability Checking for EMITL is decidable [46] with EXPSPACE complete [17, 27].
Moreover, satisfiability checking for EMITLy « is PSPACE complete [27].

3.2.2 MTL Extended with Pnueli Automata Modalities, PnEMTL. PnEMTL is defined similarly as
EMTL. Given a finite alphabet X, formulae of PnEMTL have the following syntax:
pu=alpA| - |T11k,...,1k (AL, ..., A:)(S) | P}f’___’lk(Al, ooy Ar1)(S) wherea € 3,11, I, .. . I €
Toat and Ay, . . . Apyq are automata over 25 where S is a set of formulae from PnEMTL. F* and P*
are the new modalities called future and past Pnueli Automata Modalities, respectively, where k
is the arity of these modalities.

Let p = (01,71),...(0On,Tn) € T, x,y € dom(p), x < yand S = {¢1,...,¢n} be a given set
of PnEMTL formulae. Let Seg*(p, x,y,S) and Seg™(p, y, x, S) be as defined previously. Then, the
satisfaction relation for p, iy satisfying a PnEMTL formula ¢ is defined recursively as follows:

o poig BT (An A (S) iff Fig < iy S dp. .. Sk S st
AE (7, = Tiy € Ly) A Seg* (. iw—1, i, S) € L(Ay,)] A Seg™ (p, ig, n,S) € L(Ags1),
o poio EPL 1 (AL AL AR)(S) iff Fig 2 i 2 g 2 ik 2 Tt
/\ﬁ;:] [(Tio - Tiw € IW) A Seg_(P’ iW—l’ iW’S) € L(AW)] A Seg_(P, ik’ 1’ S) € L(Ak+1)'
Refer to Figure 1 for semantics of F .
Language of any PnEMTL formula ¢, as L(¢) = {p | p,1 |= ¢}. The Pointed Language
of ¢ is defined as L,:(p) = {p,i | p,i | ¢}. Given a PaEMTL formula ¢, its arity is the

maximum number of intervals appearing in any 7, % modality of ¢. For example, the arity of
o = 77]12 L (A1, A2,A3)(S1) A 50111 (A1,A2)(S2) for some sets of formulae Si, S, is 2. For the sake

of brevity, Tllk,...,Ik(Al’ ..., Ar)(S) denotes 7"[1"’_”,Ik(A1, ooy Ak, Ags1)(S) where automata Ag,yg
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Ay Ay Ak Ar1
NANNANANANANANANN i NANANNANANMANAS
i i1 Iy If-1 i

T, — T € L
Ti, = T; € I

1 |
I 1

Tioy — Ti S Ik_1

T, — 7 €I

Fig. 1. Figure showing semantics of Tlf I (A1, A2, A A1) (S).

accepts all the strings over S. We define non-adjacent PnNEMTL (NA-PnEMTL) as a subclass
where every modality Tk " and 7) e is such that {ly, .. ., Iy} is a non-adjacent set of intervals.

Note that EMITL of Reference [46] (and variants of it studied in References [27, 32, 33])
are special cases of the non-adjacent PnEMTL modality where the arity is restricted to 1 and
the second automata in the argument accepts all the strings. Hence, automaton modality of
Reference [46] is of the form 7{(A)(S) and Pr(A)(S). Following is an example of a specification
that could be naturally written as non-adjacent PnEMTL formula.

Example 3.4 (Non-adjacent PnEMTL). A sugar-level test involves the following: A patient visits
the lab and is given a sugar measurement test (prop sm) to get fasting sugar level. After this, she is
given glucose (prop gl) and this must be within 5 min of coming to the lab. After this, the patient
rests between 120 and 150 minutes and she is administered sugar measurement again to check
the sugar clearance level. Following this, the result (prop rez) is given out between 23 to 25 hours
(1,380, 1,500 min) of coming to the lab. We assume that these propositions are mutually exclusive
and prop idle denotes negation of all of them. This protocol is specified by the following non-
adjacent PNEMTL formula. For convenience, we specify the automata by their regular expressions.
We follow the convention where the tail automaton Ay, can be omitted in Fk.

m - (idle™) - (gl A ?-120 150] (gl (idle*) -sm),

2
7T[O,S], [1,380,1,500] gl ((—mez)) rez

For readability, the two regular expressions of the top F 2 are given in two separate lines. It states
that the first regular expression must end at time within [0, 5] of starting and the second regular
expression must end at a time within [1,380, 1,500] of starting. Note the nested use of ¥ to anchor
the duration between glucose and the second sugar measurement.

3.3 Size of Formulae

The size of a temporal logic formula can be measured as usual, using the parse tree of the formula,
or using the parse DAG (Directed Acyclic Graph) of the formula, where a syntactically unique
subformula occurs only once. The latter representation is more succinct and is used widely starting
from the classical LTL formula-to-automaton construction [14, 45]. For our results also, we will
use the notion of DAG-size of a formula.

The (DAG) size of a formula ¢ denoted by |¢| is a measure of how many bits are required to store
it in the DAG representation. The size of a TPTL formula is defined as the sum of the number of U,
S and Boolean operators and freeze quantifiers in it. For PnEMTL formulae, |op| is defined as the
number of Boolean operators and variables used in it. |(?}1k,~~~slk (Ars - s Akr1) ()] = Zpes(lol) +
|[A1] + - - + |Ak+1] + 2k X log(cmax) where |A| denotes the size of the automaton A given by the
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sum of number of its states and transitions and cmax denotes the maximum allowable value of the
constant used in the intervals I, . . ., I;..°

4 ANCHORED INTERVAL WORD ABSTRACTION

All the logics considered here have the feature that a sub-formula asserts timing constraints on
various positions relative to an anchor position; e.g., the position of freezing the clock in TPTL.
Such constraints can be symbolically represented as an interval word with a unique anchor po-
sition and all other positions carry a set of time intervals constraining the timestamp of the po-
sition relative to the timestamp of the anchor. See interval word « in Figure 2. We now define
these interval words formally. Let 7, C Zj,. An I,-interval word over X is a word x of the form
010 . .. op € (22V1anchiVL Y gych that:

(1) There is a unique i € dom(x) such that anch € o;. Such a position is called the anchor of x
and denoted by anch(x).

(2) Atall the points in k, at least one of the propositions from X holds. That is, for all i € dom(x),
o; N X is a non-empty set.

Let J be any interval in 7,. We say that a point i € dom(k) is a J-time-restricted point if and only
if, ] € o;. iis called time-restricted point if and only if either i is J-time restricted for some interval
Jin 7, or anch € a;.

From I, -interval word to Timed Words: Given a J,-interval word k = 0;...0, over X and a
timed word p = (0{,71) ... (0;,, 7). the pointed timed word p, i is consistent with « iff dom(p) =
dom(x) (i.e., m = n), i = anch(k), for all j € dom(k), O'j’ = og;jNXand, I € g; N1, implies
7; — 1; € I. Thus, k and p, i agree on propositions from ¥ at all positions, and the timestamp of
any position j in p satisfies every interval constraint in o; relative to 7;, the timestamp of anchor
position. Time(x) denotes the set of all the pointed timed words consistent with a given interval
word k, and Time(Q) = (J,ecq(Time(x)) for a set of interval words Q. Note that the “consistency
relation” is a many-to-many relation.

Example 4.1. Let « = {a,b,(-1,0)}{b, (-1,0)}{a, anch}{b,[2,3]} be an interval word
over the set of intervals {(-1,0),[2,3]}. Consider timed words p and p’ st p =
({a, b},0)({D}, .5), ({a}, .95)({b},3), p* = ({a,b},0)({b},0.8)({a},0.9)({b},2.9). Then, p,3 as

well as p’,3 are consistent with x while p,2 is not. Likewise, for the timed word p” =
({a, b},0), ({b},0.5), ({a}, 1.1)({b},3), p”’,3 is not consistent with k as 7; — 73 ¢ (—1,0), as also
Ty — 13 ¢ [2, 3]

Let 7,,1) C Iins. Letk = 0y ...0p and k’ = 0] ... 0,, be 7, and 7 -interval words, respectively.
k is similar to k', denoted by k¥ ~ x’ if and only if, (i) dom(x) = dom(x’), (ii) for all i € dom(x),
a; N X = b; N Z, and (iii) anch(x) = anch(kx’). Additionally, k is congruent to x’, denoted by x = «’,
iff Time(x) = Time(x’). That is, k and k” abstract the same set of pointed timed words.
Collapsed Interval Words: The set of interval constraints at a position can be collapsed into a
single interval by taking the intersection of all the intervals at that position giving a Collapsed
Interval Word. Given an J,-interval word k = 01...0y,, let I; = 0; N I,. Let ¥ = Col(x) be the
word obtained by replacing I; with (¢, I in 0}, for all j € dom(x). Note that k” is an interval word
over CL(Z,) ={I|lI = N I',I’ C 1, }. Note that, if for any j, the set I; contains two disjoint intervals
(like [1,2] and [3,4]), then Col(k) is undefined. It is clear that Time(x) = Time(x’). An interval
word « is called collapsed iff k = Col(k).

®Note that we assume that the constants are encoded in binary.
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K
{a,b,(=2,2)[-1,1]} {a,(-1,0)} {a,anch} {a.b, (1,10} {a. b [-1,1]} {0, (1. 1]}
cole) o S
{a,b,[-1,1]} {a,(~1,0)} {a,anch} {a,b,[-1,1]} {a,b,[-1.1]} {b,[-1,1]}
first(FL1)  first[(-1,0)], last(-L,0)] last(-1,1))
Norm(r) D D D
{a,b,[-1,1]} {a,(-1,0)} {a,anch} {a,b} {a,b} {6, [-1,1]}

first([1,1))  first[(-1,0)], last[(-1,0)] last([-1,1])

Fig. 2. Point within the triangle has more than one interval. The encircled points are intermediate points
and carry redundant information. The required timing constraint is encoded by first and last time-restricted
points of all the intervals (within boxes).

Normalization of Interval Words: An interval I may repeat many times in a collapsed inter-
val word k. Some of these occurrences are redundant, and we can keep only the first and last
occurrence of the interval without changing the set of pointed timed words consistent with it
hence giving a normalized form of k. See Figure 2. For a collapsed interval word k and any
I € I, let first(k,I) and last(x,I) denote the positions of first and last occurrence of I in k.
If k does not contain any occurrence of I, then both first(x,I) = last(x,I) = L. We define,
Boundary(x) = {i|i € dom(x) A AI € I, s.t. (i = first(x,I)Vi = last(x, ) Vi = anch(k))}.

The normalized interval word corresponding to x, denoted Norm(x), is defined as x,or =
oy ...y, such that (i) xpor ~ Col(x), (ii) for all I € CL(l,), first(x,I) = first(knor,I), last(x,I) =
last(kpor, ), and for all points j € dom(kye,) with first(kx,I) < j < last(k,I), j is not a I-time-
constrained point. See Figure 2. Hence, a normalized word is a collapsed word where for any
J € CL(I,) there are at most two J-time-restricted points. This is the key property that will
be used to reduce 1-TPTL to a (bounded arity) PnEMTL formulae. In what follows, for any in-
terval work x = 07...0y, for any point j € dom(k), k[j] = o;. Similarly, for any timed word
p=(0}11) . (0} Tm), for any j € dom(p), plj] = (},7;), pUi}(1) = o} and p[j1(2) = 1.

The proof follows from the fact that x = Col(kx) and, since Col(x) ~ Norm(k), the set of timed
words consistent with any of them will have identical untimed behavior. For the timed part, the
key observation is as follows: For some interval I € I, let i’ = first(k,I),j’ = last(x,I). Then,
for any p, i in Time(k), points i’ and j* are within the interval I from point i. Hence, any point
i’ <i” < j'is also within interval I from i. Thus, the interval I need not be explicitly mentioned at
intermediate points. Formally, the following two lemmas Lemma 4.2 and Lemma 4.3 imply Lemma
4.4. Lemma 4.2 shows k = Col(k). Lemma 4.3 implies that Col(x) = Norm(x).

LEMMA 4.2. Let k be an I,,-interval word. Then, x = Col(k).
Proor. A pointed word p, i is consistent with « iff

(i) dom(p) = dom(x),

(ii) i = anch(x),

(iti) for all j € dom(x), p[j1(1) = x[j] N 2 and

(iv) forall j # i, I € a;j N I, implies p[j](2) — p[i](2) € I.

(v) k¥ ~ Col(x), by definition of Col.
Hence, given (v), (i) iff (a) (ii) iff (b) (iii) iff (c) where:
(a) dom(p) = dom(x) = dom(Col(x)), (b) i = anch(x) = anch(Col(x)), (c) for all j € dom(k),
pl1(1) = k[j] N 2 = Col(x)[j] N X. (iv) is equivalent to p[j](2) — p[i](2) € N(x[j] N I,), but
N(x[j]1 N I,) = Col(x)[j]. Hence, (iv) iff (d) p[j](2) — p[i](2) € Col(x)[j]. Hence, (i), (ii), (iii), and
(iv) iff (a), (b), (c), and (d). Hence, p, i is consistent with « iff it is consistent with Col(x). O
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LEMMA 4.3. Let k and k' be I,-interval words such that x ~ . If for all I € I, first(x,I) =
first(x’,I) and last(k,I) = last(k’,I), then k = k’.

Proor. The proof idea is the following:

e As k ~ k’, the set of timed words consistent with any of them will have identical untimed
behavior.

e For the timed part, the key observation is as follows: For some interval I € I,, let i’ =
first(x,I), j’ = last(x, I). Then, for any p, i in Time(x), points i’ and j” are within the interval
I from point i. Hence, any point i’ < i”” < j’ is also within interval I from i. Thus, the
intermediate I-time-restricted points (I-time-restricted points other than the first and the
last) do not offer any extra information regarding the timing behavior. In other words, the
restriction from the first and last I restricted points will imply the restrictions offered by
intermediate I restricted points. Hence, their presence or absence makes no difference.

Both Lemmas 4.2 and 4.3 imply the following lemma, which will be used in the reduction of 1-TPTL
to PnEMTL:

LEMMA 4.4. k = Norm(k). Note, Norm(x) has at most 2X|I,,|> + 1 restricted points.
Let p = (a1, 71), - . . (an, 7,) be any timed word. p, i is consistent with « iff

(1) () dom(p) = dom(x),

(ii) i = anch(k),

(iii) for all j € dom(p), x[j]N % = a; and

(iv) for all j # i € dom(p), 7; — 7; € (I, N x[j]).

Similarly, p, i is consistent with k” if and only if

(2)(a) dom(p) = dom(k’),

(b) i = anch(x’),

(c) forall j € dom(p), if «’[j]N2 = a; and

(d) forall j # i € dom(p), 7; — 7; € (L, Nk’[j]).

Note that, as k ~ k’, we have, dom(x) = dom(x’), anch(x) = anch(x’), for all j € dom(x),
k[j] N2 = k’[j] N 2. Thus, 2(a) = 1(i), 2(b) = 1(ii), and 2(c) = 1(iii).

Suppose there exists a p, i consistent with « but there exists j* # i € dom(p), 7/ —7; ¢ I’ for some
I’ € ¥’[j']. By definition, first(x’,I") < j* < last(x’,I’). But first(x’,I’) = first(x,I’), last(x’,I") =
last(k,I"). Hence, first(k,I’) < j° < last(x,I’). As the timestamps of the timed word increases
monotonically, x < y < z implies that 7, < 7, < 7., which implies that 7, —7; < 7y - 7; < 7, — 75
Hence, Trist(ie, 17y — Ti < Tjr = Ti < Tast(, 1) — Ti- BUt Thirst(re, )y — 7 € I’ and Tiasie, 1y — 7i € I’, because
p is consistent with k. This implies that 7, — 7; € I’ (as I’ is a convex set), which is a contradiction.
Hence, if p, i is consistent with x, then it is consistent with k', too. By symmetry, if p, i is consistent
with «’, then it is also consistent with k. Hence, k = «’. O

We give a road map to the proofs of results in Figure 3. In summary,

1-TPTL < GQMSO = PnEMTL, (1)
NA-1-TPTL < NA-GQMSO = NA-PnEMTL. (2)

The logics in (1) all have undecidable satisfiability, whereas logics in (2) all have decidable satisfia-
bility. Specifically, NA-1-TPTL and NA-PnEMTLhave EXPSPACE-complete satisfiability checking.

5 1-TPTL TO PNEMTL

In this section, we reduce a 1-TPTL formula into an equivalent PnEMTL formula. First, we consider
1-TPTL formula in negation normal form with a single outermost freeze quantifier (call these
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Any NA-1-TPTL formula -
A le NA-1-TPTL
Sat. Check. for can be reduced to an nystl;nnf)ulea can be
NA-1-TPTL is equivalent PnEMTL formula reduced to an equivalent
EXPSPACE Complete. with at most exponential A d
. . . PnEMTL formula
Theorem 8.1. modalities and polynomial arity. ith ial
Theorem 5.16 with at most exponentia
- blow up. Theorem 5.15.
Sat. Check. for T
NA-PnEMTL is Any simple I,-NA-1-TPTL
EXPSPACE Complete. formula can be encoded
Theorem 8.1. using an LTL formula over
T I,,- interval words.
Sat. Check. for with linear blow up.
NA-GQMSO is Any NA-PnEMTL Section 5.1.1 and Theorem 5.2.
Decidable. formula can be reduced
Theorem 8.1. to an equisatisfiable
EMITLg o formula.
Theorem 5.16. Any LTL formula can be
reduced to an equivalent NFA
Sat. Check. for with atmost exponential blowup [20].
EMITLg s is in
PSPACE [27].

Timed Language encoded by any
NFA over I, interval words
is expressible by a PnEMTL formula
(NA)-GQMSO with modalities at most exponential
(NA)-GQMSO < and arity polynomial in the size of
= 1 (NA)-PRnEMTL. NFA. Theorem 5.9.
(NA)-PnEMTL. Lemma 7.3.

Th 1.
eorem 7 \ (NA)-GQMSO

o)
(NA)-PnEMTL.
Lemma 7.2.

Fig. 3. The above figure is a road map of all the main and intermediate results. An arrow from result A to
result B indicates that the proof of result B uses the result A. For definitions of GQMSO and NA-GQMSO,

please refer Section 6.

simple TPTL formulae) and give the reduction. More complex formulae can be handled by applying
the same reduction (shown below) recursively. For any set of formulae S, let \/ S denote \/¢s s.
This notation will be extensively used from this point onwards in all the succeeding sections, too.
A TPTL formula is said to be simple if it is in the negation normal form and of the form x.¢ where,
¢ is a 1-TPTL formula with no freeze quantifiers. Let ¥ = x.¢ be a simple TPTL formula. Let
I, ={I|T—-x e lorappearsin ¢} U{-I|x —T € I or appears in ¢} and let CL(Z,) = I,. We
construct a PnEMTL formula ¢, such that p,i = ¥ & p,i |= ¢. We break this construction into
the following steps:

(1) We construct an LTL formula « s.t. L(«) contains only 7, -interval words and p,i |= ¢ iff
p,i € Time(L()). Let A, be the NFA s.t. L(A,) = L(a) (constructed using Reference [20]).
We then construct NFA, A, over I, = CL(Z,) interval words from A, such that L(A) =
Col(L(Ag)). Note that |I,| < |Z,|%. Hence, p,i = ¢ iff p,i € Time(L(A)).
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(2) Let W be the set of all I, -interval words. We can partition W into finitely many types, each
type capturing a certain relative ordering between first and last occurrences of intervals from
I, as well as anch. Let 7 (I,)) be the finite set of all such types. For each type seq € 7 (I,),
we construct an NFA, Ageq, such that L(Aseq) = Norm(L(A) N Wyeq), where Wi is the set of
all the I, -interval words of type seq. Hence, Asq accepts only normalized interval words of
type seq.

(3) For every type seq, using the Asq above, we construct a PaEMTL formula ¢sq such that,
pri |E ¢seq if and only if p,i € Time(L(Aseq)). The desired ¢ = \seqer(1,) Pseq- Hence,
Lye(9) = Useqe‘T(Iv) Time(L(Aseq)) = Time(L(A)) = Ly (¥).

We suggest the reader to refer to our running example (Examples 5.1, 5.7, 5.8, 5.11, 5.14) for step-
by-step reduction of simple 1-TPTL formula to PnEMTL formula, Section 5.1. Example 5.1 gives
reduction from simple 1-TPTL formula, i, to an LTL formula, «, over interval words. Example 5.7
(Figure 4) gives the automaton, A, over interval words equivalent to « constructed in Example 5.1.
Example 5.8 (Figure 5) gives the construction of automaton, A, over collapsed interval words from
A, constructed in Example 5.7. Example 5.11 (Figure 6) gives the construction of a normalized
automaton, Aseq, for type one particular type seq from automaton A. Finally, Example 5.14 gives
a construction of PnNEMTL formula ¢seq equivalent to timed behaviors encoded by automata, Ageq.
Disjunctions over all possible types seq is the required PnEMTL formula ¢ equivalent to given
1-TPTL formula .

We give a running example (Examples 5.1, 5.7, 5.8, 5.11, 5.14) along with the construction to
facilitate readers in understanding the steps of the construction.

5.1 Simple TPTL to NFA over Interval Words

In this section, we elaborate the first step of the reduction.

5.1.1 Simple TPTL to LTL over Interval Words. Let y be any 1-TPTL formula without any freeze
quantifier. We define LTL(y) as an LTL formula obtained from y by replacing clock constraints
T-x € IwithIand x - T € I with =7 As above, ¥/ = x.¢. Consider an LTL formula a =
F[LTL(¢) A anch A =(F(anch) V P(anch))] A G(\/ %) over 3’ = X U I, U {anch}, (LTL(p) is well
defined, as ¢ has no freeze quantifier). Note that all the words in L(LTL(¢)) are 7, -interval words,
as subformula anch A —=(F(anch) V P(anch)) makes sure anch is true at exactly one point, i.e., the
point where LTL(¢) is asserted (condition (1) in definition of 7, interval word) and the conjunct
G(V Z) makes sure that there is no such point where only propositions from 7, U {anch} hold
(condition (2) in definition of 7, interval word).

m

Example 5.1. Let y = x.¢ where ¢ = [pa AF{bAx € (1,2) AF(c Ax € (0,3))} A(aAx
(=3,0)S(c Ax € (=3,0)} AG(¢a V @b V ¢c) NH(pa V @ V ¢c)], where ¢, = a A =b A =c, pp =
—aAbA=c,p. ==aA=bAc. Then, LTL(p) = [F{oa A F(pp A (1,2) A F(pe A (0,3)))} A {pa A
(-=3,0)S(¢c A (-3,0))} A anch A =(F(anch) v P(anch))] and a = [F{LTL(p) A G(V 2)}].

THEOREM 5.2. For any timed word p, i € dom(p), p,i |=y & p,i € Time(L(LTL(«))).
Proor. Note that for any timed word p = (01, 71) . . . (04, 7)) and i € dom(p), p,i,[x =1 7;] = ¢
is equivalent to p,i |= /. Moreover, it is straightforward that « accepts all (and only) those words

that are valid 7, interval words where the anchor point satisfies LTL(¢p). Let x be any 7, -interval
word over ¥ with anch(x) = i. It suffices to prove the following:

"Note, if I = [a, b), then —I = (=b, —al].
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(i) If x, i |= LTL(¢), then for all p € Time(k) p,i |= ¢.
(ii) If for any timed word p, p, i |= ¥, then there exists some 7, -interval word over ¥ such that
p,i € Time(x) and k, i |= LTL(¢).

Intuitively, this is because LTL(¢) is asserting similar timing constraints via interval words that
is asserted by ¢ on the timed words directly. Note, (i) and (ii) is implied by Lemma 5.6. Substitute
j=iandy = ¢ in Lemma 5.6. Hence, the above theorem can be seen as a corollary of Lemma 5.6
(below). O

We give some interesting properties of interval words in the next two propositions before
giving 5.6.

PROPOSITION 5.3. Let y be any subformulae of ¢. Let k,k’ be any I, -interval words such that
k" ~ x and foranyi € dom(k) k[i] C «’[i]. For anyj € dom(k), ifk,j |= LTL(y) thenx’,j |= LTL(y).

Proor. Note that y is in negation normal form. Hence, any subformulae of the form x € I
will never be within the scope of a negation. Hence, y can never have a subformulae of the form
=(x € I). This implies that LTL(y) can never have a subformulae of the form —I for any I € 7,.
We apply structural induction on depth of y. For base case, y is a propositional logic formula and
LTL(y) is also a propositional logic formula over ¥ and the statement holds trivially for any pair
of similar 7, -interval words.

Ify = x € I, thenLTL(y) = I.If k, j |= I, then I € k[j]. This implies that I € x’[j] (as k[j] € «’[j]).
Hence, ', j |= LTL(y). Let y be any formula such that the proposition is true for every subformula
of y (induction hypothesis). If y is of the form y; V y», and if k, j |= y, then k, j |= y; and k, j |= y,.
By induction hypothesis, k', j |= y; and k’, j |= y,. Hence, x’, j |= y. Similar argument holds if y is
of the form y; V ys.

If y is of the form y,Uy,. If k,j |= y, then (a)dj" > j such that k,j’ |= y2 and Vj < j” < j
K,j” [ y1. (a) along with the induction hypothesis implies, (b)3;j" > j such that k', j’ |= y and
Vj < j” <j «’,j" |= y1. (b) implies ', j |= y. For the case where y is of the form y;Sy,, Gy’ or
Hy’ similar argument holds. O

PROPOSITION 5.4. Letk, k’,x’” be I,-interval words such thatx ~ x’ ~ k" andk[j] = «’[j]Ux"'[j]
forany j € dom(x). Then, Time(x) = Time(x’) N Time(x"’).

Proor. We need to prove that p,i € Time(k) iff p,i € Time(x’) and p,i € Time(x”'). For any
p = (01,71)...(0n,7,) and i € dom(p), p,i € Time(x’) N Time(x") <= Vj € dom(p),o; =
KINZ =«"jlnX(@ask’ ~«")and r; —17; € [forallI € (x'[j]N L) U (k"[[]NT,)
Vj € dom(p),o; = k[j]NZ(ask ~ k" ~ k") and 7;—1; € I'foralll € (k[j]NT,)(as k[j] = k’[jJUx"[j])
& p,i€ Time(k). O

Before giving Proposition 5.6, We need to define the notion of canonical 7, interval word ab-
straction for a given pointed timed word p, i. Let p = (01, 11) . . . (04, Tn) and i € dom(p).

Definition 5.5 (Canonical Abstraction). An I, interval word k is a canonical 7, interval word
abstraction of p, denoted by Can(Z,, p, i), iff p,i € Time(k) and for any j € dom(p) and I € 1,
Iex[jliffr;—1; € L

Hence, « is the tightest abstraction of p,i with respect to the set of intervals 7. It is trivial
to observe that Can is a well defined function. We now present the main lemma, which implies
Theorem 5.2.

LEMMA 5.6. Lety be any subformula of ¢.

(i) For any I,-interval word k and j € dom(x), k,j |= LTL(y) implies for all p,i € Time(x),
p.J.[x=n] Fy.
Formal Aspects of Computing, Vol. 35, No. 2, Article 9. Publication date: June 2023.
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(ii) For every timed word p = (aj,11)...(an,7n) and j € dom(p), p,j,[x =: ;] |= y implies
K,j |= LTL(y) where k = Can(l, p, i).

Proor. We apply structural induction on y.
Base Case: For y = a or y = —a where a € X, (i) and (ii) trivially holds as for every interval
word k = o/ ...0, and timed word p = (01,71) ... 04, 74), p,i € Time(k) implies p and « agree
on the set of propositions from . That is, 6/ N % = ;. Moreover, for any propositional formulae
v» LTL(y) = y and the satisfaction of y only depends on the present point. Fory = T — x € I,
LTL(y) = I.
Proving (i): x,j |= LTL(y) would imply I € «[j]. Then, for any p = (01,71)...(0n, Tn), p,i €
Time(k) only if 7; — 7; € I, which implies that p, j, [x =: 7;] |= y.
Proving (ii): Consider any timed word p = (01,71) . . . (0, 7,) such that p, j, [x =: 7;] |= y. Then,
by semantics, 7; — 7; € I. By definition of canonical abstraction if x = Can(l,, p, i), then I € «[j].
Hence, k, j |= LTL(y). Similar argument holds for y = x — T € I. Note that we do not have to deal
withthecasey = =(T—x € I) (ory = =((x—T) € I)), as the given / and hence (all its subformula ¢
and y) are in negation normal form. This is an important observation, as the above lemma will fail
to hold for y = =(T — x € I). In this case, LTL(y) = —I. Hence, all the interval words x = o] ... 0,
will satisfy LTL(y) if I ¢ aj' . Note that this would not disallow Time(k) to contain a timed word
p = (01,71)...(0n, 1) such that 7; — 7; € I (where i is the anchor point of k). Just consider an
example where both cr]ffl and ajf 1 contain I but o does not. Hence, (i) fails to hold. Intuitively, this
is because the intervals in Interval words are only positive witnesses for their timing constraints.
That is, presence of an interval I implies the timing constraint corresponding to I but absence of
it does not imply negation of the timing constraint.
Induction: The induction case is trivial, as both the modalities of TPTL and LTL are identical with
exactly the same semantics. For the sake of completeness, we enumerate this trivial argument.
Let y be any arbitrary formulae such that lemma holds for every subformulae of y [Induction
Hypothesis]. We now show that the above lemma holds y, too.

e Case I: Suppose y = y1 A V2.
Proving (i): For any k, j |= LTL(y) = «,j |= LTL(y;1) Ak, j |= LTL(y,). This along with the in-
duction hypothesis (i.e., the lemma holds for y; and y;) implies, Vp = (01, 71) . .. (0n, T).p, i €
Time(x) — p,j,[x =2 ;] F y1and ¥p’ = (o], 7)) ... (0}, 7;).i € Time(x) — p’,j, [x = 7/] |
Y2. Which is equivalent to Yp = (01,71) ... (00, Tn).p,i € Time(x) = p,j,[x =: 1] = y.
Hence, (i) holds for y = y; A ys.
Proving (ii): Let p = (01, 71) . . . (0p, 7,,) be any arbitrary timed word and let i, j € dom(p) be
some arbitrary pair of points in p. Then, p,j, [x =: ;] EFy = p,j, [x =1l Ey1 Ap,j, [x =
7;] |= y2. This along with the induction hypothesis (i.e., (ii) holds for y; and y;) implies for
Kk = Can(ly, p, i), k,j |= LTL(y1) A k,j |= LTL(y2). Hence, k, j |= LTL(y).

e Case 2: Suppose y = y; V ¥a.
Proving (i): For any k, j |= LTL(y), k,j |= LTL(y1), or k, j |= LTL(y2). If « |= LTL(y;). Then,
every timed p = (01, 11) ... (0p, 7,,) where p, i € Time(k) is s.t. p, j, [x =: 7;] |= y1 (and hence
y) because (i) holds for y; by induction hypothesis. Similarly, if ¥ |= LTL(y). Then, every
timed p = (01,71) ... (0n, Tn) Where p,i € Time(k) is s.t. p,j, [x =: 7;] |F y2 (and hence y)
because (i) holds for y, (again by induction hypothesis). Hence, (i) holds for y, too.
Proving (ii): Suppose (ii) does not hold for y. This implies there exists a timed word
p = (01,71) ... (0n,7y) such that p,j,[x = ;] |E y1 V vy, for some i € dom(p) but for
k = Can(l,p,i), x,j [ LTL(y1) and k,j £ LTL(y;). This contradicts the induction
hypothesis.
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e Case 3: Suppose y = y;Uy,.

Proving (i): By semantics of U, for any «,j |= LTL(y) implies (a) 3j° > j such that
k,j’ |E LTL(yz) and ¥j < j” < j’. k,j” |= LTL(y1).% As (i) holds for y; and y, by induction hy-
pothesis, (a) implies that for any word p, i € Time(k), (b)3j* > jsuchthat p,j’, [x = ;] = y2
andVj < j” < j.p,j”,[x =: ;] | y1- Note that (b) iff p, j, [x =: ;] |= y. Hence, (i) holds for y.
Proving (ii): Let p = (01, 71) . .. (04, 7,,) be any arbitrary timed word and let i, j € dom(p)
be some arbitrary time points of p. Then, p, j, [x =: 7;] |= y, implies that there exists a point
Jj > jsuch that (c) p,j’,[x =: 7;] E yz and (d) for all j < j” < j p,j”,[x =: 7;] |= y1. Let
k = Can(l,, p, i). By induction hypothesis, (c) implies there exists a point j* > j such that
k,j |= LTL(y,) and (d) implies for all j < j” < j" k,j"" |= LTL(y1). Hence, «, j |= LTL(y).
Case 4: y = y1Sy,. This case is symmetric to Case 3 and can be argued similarly.

Case 5:y = G(y').

Proving (i): x,j = LTL(y) iff Vj* > j.x,j’ |= LTL(y’). By induction hypothesis, the lemma
statement holds for y’. Hence, for every p,i € Time(x), Vj’ > j.p,j’, [x =: 7;] |= y’. Hence,
p.J.lx=n] Fy.

Proving (ii): p,j, [x =: ;] = y. This implies Vj’ > j.p,j’,[x =: ;] = y’. By induction
hypothesis, if k = Can(Z,, p, i), then ¥j’ > j.k,j’ |= LTL(y’). Hence, «, j |= LTL(y).

e Case 6:y = H(y’). This case is symmetric to Case 5 and can be argued similarly. O

5.1.2 LTL to NFA over Collapsed Interval Words. It is known that for any LTL[U, S] formula,
one can construct an equivalent NFA with at most exponential number of states [20]. We reduce

the LTL formula & to an equivalent NFA A, = (Q, init, 2% §'.F ) over I,-interval words, where
S = ZZUIVU{anchI'

Example 5.7. Consider the LTL formula « from Example 5.1, Figure 4, is the automaton equiva-
lent to . Note that we constructed this automaton without using the procedure in Reference [20],
as o was not very complicated. But, in general, we need to rely on the procedure mentioned in
Reference [20]. Moreover, Figure 5 is the collapsed automaton, A constructed from automaton A,
in Figure 4.

From A, we construct an automaton A = (Q, init, 2%, §, F) s.t. L(A) = Col(L(A4)). Automaton
A is obtained from A, by replacing the set of intervals 7 on the transitions by the single interval
N L .Incase I}, I, € I s.t. [; NI = 0 (i.e,, with contradictory interval constraints), the transition
is omitted in A. Also, note that anch semantically implies interval [0, 0]. Hence, all the intervals
that contain [0, 0] along with the proposition anch are omitted from the transition labels, as those
intervals enforce redundant constraints (constraints that are already enforced by anch). Moreover,
if any transition label contains an interval I disjoint from [0, 0] appearing along with the propo-
sition anch, then the transition is omitted, as the presence of anch and I at any point j implies
contradictory timing constraints on j. Note that each transition of the collapsed automaton is la-
belled by letters of the form S or SU {anch} or SU{I} where S C ¥ and I € I, = CL(Z,). This gives
L(A) = Col(L(Ag)). This implies Time(L(A)) = Time(L(Ay)) = Time(L(a)) = Ly, (). Hence, from
this point onwards, we have language of collapsed I, (rather than 7,) interval words capturing the
semantics of the given TPTL formula, .

Example 5.8. Figure 5 is the collapsed automaton, A constructed from automaton A, in Figure 4,
as mentioned above.

In the upcoming Sections 5.2 and 5.3, we show that we can construct a PnEMTL formula ¢
using intervals in I, such that it accepts all the pointed timed words in Time(L(A)). In general,

8Note that, LTL(¢; U ¢2) = LTL(¢;) U LTL(¢2).
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fa(-3.0)}

—anch e (30,03} pEOLH0

{c.(=3,0)}

start —

{c.(-3,0),(1,2)}

(-3,0),(1,2), (0.3 {2.(:3.00(03)}

{a.(-3,0),(1,2)}

—anch

{c.(-3.0).(1.2). (0.3)}

{c.(-3.0).(1.2)}

(a)

—anch

Fig. 4. The automaton, A,, above is equivalent to LTL formula & from Example 5.1. For the sake of suc-

a,anch .
cinctness, g1« g2 denotes set of all transitions from g1 to g2 labelled by some subset of S =

{anch, a, b, c, (-3,0),(1,2),(0,3)} containing a and anch, and not containing b and c. Similarly, transition
labelled —anch denotes set of all the transitions labelled by some subset of S contains either a or b or c
exclusively.

the construction of PnEMTL formula from the NFA over collapsed interval words along with the
construction of NFA over collapsed interval words from NFA over interval words (construction of
A from A,) proves the following result:

THEOREM 5.9. Let L(A) be the language of any I, -interval words definable by any NFA A. We can
construct a PnEMTL formula ¢ s.t. p,i |= ¢ iff p,i € Time(L(A)). Moreover, the number of distinct
modalities is at most |A|, Number of Boolean operators is in O2F°WUAD and arity of ¢ is at most
2112 + 1.

5.2 Constructing Normalized Automata for Each Type Sequence

In this section, we elaborate on step 2 of the reduction. We discuss here how to partition W, the
set of all collapsed I, -interval words, into finitely many classes. Each class is characterized by its
type given as a finite sequences seq over I, U {anch}. For any collapsed w € W, its type seq
gives an ordering between anch(w), first(w,I) and last(w,I) for all I € I, such that, any I € I,
appears at most twice and anch appears exactly once in seq. For instance, seq = I1Jjanchl;l; is
a sequence different from seq’ = L1 hanchy];, since the relative orderings between the first and
last occurrences of I1, I, and anch differ in both. Let the set of types 7 (I,) be the set of all such
sequences; by definition, 7 (I,) is finite.

Intuition: For every type seq € 7 (I,), we construct an automaton Aseq that accepts the
normalization of all the words of type seq accepted by A (i.e., L(Aseq) = {Norm(w)|w € L(A) A w
is of type seq}. Hence, Useqer(1,) Time(L(Aseq)) = Time(Norm(L(A))) = Time(L(A)). Hence,
the union of all these newly constructed automata encodes the required timed languages. The
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—-anch’ {a.(-3.0)}

Uy,
(3.0} 2ty
start —( 9o q1

@ —anch’

® o D)

{e.(1,2)}

@ {c.(0.3)}
q4 q3

—anch’ —anch’

Fig. 5. The automaton, A, is collapsed version of A, in Example 5.7. Intuitively, we take intersection of all
the intervals appearing in a label of a particular transition. In case the intersection is empty, we delete
the transition. Following this, if anch appears along with an interval that does not contain [0, 0], then that
transition is deleted, as the constraint enforced by that interval is in contradiction with that enforced by anch.
Otherwise, the transition is retained by removing the interval from the label, as the constraint enforced by
the interval is already enforced by anch. Note that now —anch’ denotes set of all the transitions labelled by
some subset of S containing either a or b or ¢ exclusively. Moreover, the labels of these transitions contain
at most 1 interval.

motivation behind construction of such an automaton is as follows: Each of the words accepted
by Aseq for any seq € 7 (I,) has bounded number of (as [seq| < 2 X |I,| + 1) time-restricted
points. The main reason to do this is so we get automata (i.e., Aseq) with structure similar to that
shown in Figure 7. Such an automaton over I, -interval words can be factored at time-restricted
points and its corresponding timed language can then be expressed using a PnEMTL formula,
$seq» With arity bounded by the length of sequence seq. The construction of the required formula
will be presented in Section 5.3. Hence, restricting to only normalized words makes it possible to
construct a PnEMTL formula with bounded arity. Moreover, as 7 (I,,) is bounded, we can get a
bounded size formula, ¢ = Time(L(A)), by disjuncting ¢sq over all possible values of seq € 7 (I,).

Given w € W, let Boundary(w) = {iy, iz, ..., ix} be the positions of w that are either first(w, I)
or last(w, I) for some I € I, or is anch(w). Let W |Boundary(w) be the subword of w obtained by pro-
jecting w to the positions in Boundary(w), restricted to the subalphabet 2/* U {anch}. For example,
w = {a, 1 }{b, 1 }{c, I }{anch, a}{b, I} }{b, I }{c, I} gives W |Boundary(w) as l1loanchl;I,. Then, w is in
the partition Weeq iff W |Boundary(w)= seq. Clearly, W = Useqe7(1,) Weeq- Continuing with the ex-
ample above, w is a collapsed {11, I, }-interval word over {a, b, c}, with Boundary(w) = {1,3,4,5,7},
and w € Weq for seq = I1anchl; I, while w € Weq for seq” = I1I1anchly ;.

For type sequence seq = I, Iz, . . ., I, let Support(seq) give the set of intervals (including anch)
occurring in seq. Each such interval occurs 1 or 2 times. Let Idx(seq) = {1...k + 1}. We define
function Status(seq) : Idx(seq) — Support(seq) — {pre, mid, post} as follows: Let j € Idx(seq)
and I € Support(seq). Then, Status(j)(I) = pre if I does not occur in seq strictly before index j.
Also, Status(j)(I) = post if I does not occur in seq at or after index j. Finally, Status(j)(I) = mid
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if T occurs in seq both strictly before j and also at or after index j. For example, for seq =
anch I; I}, we have Status(2)(I;) = pre and Status(2)(l;) = pre and Status(2)(anch) = post.
Also, Status(4)(I;) = mid and Status(4)(Iz) = post.

Let seq be any sequence in 7 (I,). We construct an NFA, Aut.q, which recognizes exactly the
collapsed interval words, Wieq, of type seq. Automaton Autsq = (Idx(seq)), 1, 2% 5,, {Iseq| + 1}).
Its transitions are as follows: Let S C X, j € Idx(seq), I; be the jth element of seq and
I € Support(seq). Then,

e §5(j, S) = j. Call such transitions as unconstrained type transitions.

e 5,(j,SUI;) = j+ 1if Status(j)(I;) = pre. Note that if I; occurs exactly once in seq, then
the status changes from pre to post after the transition, and if it occurs twice, the status
changes from pre to mid after the transition. Call such transitions as progress transitions
(since j increments).

o If Status(j)(I;) = mid, then we have a non-deterministic choice of two transitions.

Choice 1: j + 1 € §,(j, S U I;). In this case, the status of I; changes from mid to post. Call this
also as progress type transition. It corresponds to accepting the second occurrence of I;.
Choice 2: j € 6,(j, S U I;). Call this transition as middle type of transition. This corresponds
to accepting a redundant middle occurrence of I; between its first and last occurrence.

e For I # I; if Status(j)(I) = mid, then 65(j,S U I) = j. This also represents a middle type
of transition where redundant middle occurrence of I is accepted. The position j in seq is
unchanged and the status of I remains mid after the transition.

® Autseq has no transitions other than given above.

The following proposition follows directly from the construction:
PROPOSITION 5.10. L(Autseq) = Weeq.

Given collapsed interval word automaton A = (Q, init, 2% 5, F) for the LTL formula as con-
structed above, the product automaton A,r,q = (A X Autsq) has the property L(Aproq) =
(L(A) N Wyeq). Thus, Aproq accepts the collapsed words belonging to the partition Wyeq and ac-
cepted by A. The automaton A,, ¢ has the form ((Q X Idx(seq)), (init, 1), 2% 5,,F X {Iseq| + 1}),
where J; is obtained by synchronous composition of § and §; as usual. Observe that in an accept-
ing run of Ayoq on a word w, the progress transitions increment the index component j of the
product state (g, j). These transitions occur exactly at Boundary(w) positions in the word and they
represent intervals in w that are retained in the normalized version of w. The middle type transi-
tions, which leave the index component j unchanged, correspond to redundant middle intervals
that do not occur in the normalized version of w.

To obtain the automaton Ay.q accepting normalized words corresponding to words accepted by
the product Ap,,4, we project out the redundant intervals in middle type transition in the automa-
ton A,,oq. Thus, Aseq has same states (including initial and final states) but its transition function
Jseq differs from the transition function d; of A,,q. Let Aseq = ((QXPos(seq)), (init, 1), 2> Oseqs FX
{|seq| + 1}). Its transitions are:

® 8seq((g.4),S) = 81((g. j), S. Thus, unconstrained transitions are identical to A, oq-

o If 51((q1,), S U {I}) = (q2,j + 1), then 6eq((q1,/),S U {I}) = (q2.j + 1). Thus, progress
transitions are identical to Ay oq.

o If5:((q1, /), SU{I}) = (g2, ), then Sseq((q1, ), S) = (g2, j). Thus, redundant interval in middle
transitions of A,,,4 are projected out.

The reader may notice the following features of Asq: Let I be any element of where I, U {anch}.
The only transitions with labels of the form S U {I} (these are called time-constrained transitions)
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fa fa
o 0
EET) B

{a}
% {a’(_S)O)} Q1 5 3

D

{b,(-3,0)}
{C=(_330)} g 9 {c}
(#2)

{c.(-3,0)

{c.,(0.3)} {b.(1.2)}

start —

{youe‘e}

{a} {a} {a}
{b} {b} {b}
{c} 1S {c}

Fig. 6. The automaton Aseq depicts the construction of Aseq from A (Example 5.8, Figure 5) for seq =
(=3,0)(-3,0)anch(1,2)(0, 3). Note that the transition from qo, 1 to qo, 2 is a progress transition. The behavior
of qo, 2 is identical to qo of A on reading {a} and {b}. On reading {c}, it either behaves like g on ¢ or like go on
{c,(-3,0)} as the Status(1, (=3,0)) = mid.

are the progress transition, and they occur in order specified by seq in any accepting run. All other
transitions are labelled with S € X. They are unconstrained. Hence, the automaton graph partitions
into disjoint subgraphs with only unconstrained transitions. These subgraphs are connected by
progress transitions. See Figure 7.

Example 5.11. Given automata A from Figure 5 in Example 5.8, we construct Asq for dif-
ferent type of sequences accepted by A. We illustrate the construction of Aseq Where seq =
(-3,0)(—3,0)anch(1, 2)(1, 2), in Figure 6.

From the construction of Ay, the following property clearly holds:
PROPOSITION 5.12. L(Aseq) = Normalize(L(A) N Weeq).

From the above proposition, it follows that (Jseqe7(1,) L(Aseq) = Norm(L(A)). Hence, using
Theorem 5.2, we get

U Time(L(Aseq)) = Time(Norm(L(A))) = Time(L(A)) = Ly ().
seqeT (1)

Hence, Aseq is the required Normalized Automata for type seq.

5.3 Reducing NFA of Each Type to PnNEMTL

Our next step is to reduce the NFAs A,.q corresponding to each type seq as constructed in the
previous step to a language equivalent formula of logic PnNEMTL. This is step 3 of the reduction.
The words in L(Aseq) are all normalized and have at most 2|I,,| + 1-time-restricted points. Thanks
to this, its corresponding timed language can be expressed using PnEMTL formulae with arity at
most 2|1, |.
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Fig. 7. Figure representing set of runs Ay anchi,l, of type Qseq where each S; C ¥ and each sub- automaton

U{I;
Qi has only transitions without any intervals. Here, Qseq = T1 T2 13Ty, for 1 < i < 4, T; = (pi- 1 —> } qi)»

I, = {anch}.

For each Ageq, we construct PAEMTL formula ¢seq such that, for a timed word p with i €
dom(p), pyl |= ¢5eq iff p,l S Time(L(Aseq)).

5.3.1 Important Notations. For any NFA, N = (St,3,i,Fin,A),q € Q F’ C Q, let N[q,F'] =
(St, 2, q, F’, A). For brevity, we denote N[q,{q’}] as N[q, ¢’]. We denote by Rev(N), the NFA N’
that accepts the reverse of L(N). The right/left concatenation of a € ¥ with L(N) is denoted N - a
and a - N, respectively.

LEMMA 5.13. We can construct a PnEMTL formula ¢seq with arity < 2|I,|+1 and size O(|Aseq] Iseqly
containing intervals from I, s.t. p,i |= Pseq iff p, i € Time(L(Aseq))-

Proor. Letseq =11 I, ... Iy, and I; = anch for some 1 < j < n.

Intuition: Note that we know the sequence, seq, of intervals that we will read. Moreover, this
sequence is of bounded size. Hence, any accepting run will pass through at most n transitions,
Ty, T, . .., T, labelled with some interval or anch. Thus, the part of accepting run between T; and
Ti+1 fori € {1,...,n—1} contains transitions labelled only by some non-empty subset of X. Hence,
the set of words read by runs between T; and T;.; for the set of runs passing through transitions,
T, Ty, ..., T,, can be expressed by an automaton, A;1, over alphabets in 27\ 0.

Proof: Before starting the proof, notice the structure of Aseq. The state space is partitioned in
to sets Qy, . .. Qp+1. Transitions within any partition Q; are unconstrained transitions. From any
state in Q; there are constrained transition on proposition containing interval I; that leads to some
state in Q;1. Hence, set of states in Q; are reachable exactly after i —1 time-constrained transitions.
LetT = 2> and Qseq = T; T ... T, be a sequence of time-constrained transitions of As.q where

S
forany 1 <i<n,T; =pi-1 — qi, 5] = S; UL}, Si € Z, we define Rqgeq as set of accepting runs
containing transitions Ty T, ...T,. Hence, the runs in Rqgscq are of the following form:
To1 Too .- Tome Tt Trn oo Taymy Toovee e Tn-11Tn-12- - Tn Toyr oo - Toa

where the source of the transition Ty ; is go and the target of the transition T,4; is any accept-
ing state of Asq. Moreover, all the transitions T;; for 0 < i < n,1 < j < n; are uncon-

strained transitions of the form (p’ Si; q’) where S;; € X and p’,q" € Q;;1. Hence, only
Ty, Ty, . .. T, are labelled by any interval from I,. Moreover, only on these transitions the posi-
tion counter (i.e., second element of the state) increments. Let A; = (Q;, 2%, gi_1, {pi_1} 2 0seq) =
Aseq[‘]iflapifl] for1 < i < nand Ay = (Onsts 22, qn» Fseqs 5seq) = A[gn, F]. Let (WQseq be

set of words associated with any run in Rgseq. In other words, any word w in ‘Wy,eq admits
an accepting run on Asq that starts from gy reads letters without intervals (i.e., symbols of the
form S C ) ends up at py, reads S], ends up at g; reads letters without intervals, ends up
at p1, reads S;, and so on. Refer to Figure 7 for illustration. Hence, w € Wpsq if and only if
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w € L(A1).5{.L(A2).S. -+ .L(An).S, . L(An+1). Let AL = Sgy - Ap - Sg for 1 < k < n + 1, with
So =Sns1 =€’ Letp = (b1,71) ... (bm,7m) be a timed word over T'. Then p, ij € Time(Wpseq) iff 3
1<ii<ip < <ij1<ij<ijp < Zip <mst /\i;ll[(l'ik = 7Tj; € Ii) /\Seg_(p, k1, ik, 1) €
L(Rev(A7))] A /\sz[(rik = 7i; € Ix) A Seg™(p, ik, ik+1,T) € L(AL)], where iy = 1 and iy = m.
Hence, by semantics of 7% and P* modalities, p,i € Time(Woseq) if and only if p,i |= ¢gseq
where ¢gseq = P}j_l,...’II(Rev(Ai), ceey Rev(AJ'.))(F) A 77[]':11n (A}+1’ ..., A7 )(T). Let State—seq
be the set of all possible sequences of the form Qseq. As Aseq accepts only words that have exactly
n time-restricted points, the number of possible sequences of the form Qseq is bounded by |Q]|".
Hence, any word p, i € Time(L(Aseq)) iff p, i [F ¢seq Where Pseq = V gseqestate—seq Paseq- Disjuncting
over all possible sequences seq € 7 (1), we get the required formula ¢ = \/seqe7 (1,) Pseq-

Example 5.14. As a continuation of our running example, we give a construction of PnEMTL
formula ¢seq for automaton Aseq from Example 5.11, Figure 6. Note that the accepting runs of the
automaton Ageq can either contain transition go, 1 — g2, 2 bypassing g1, 2 or pass via g1, 2. The
timed behaviors for the former (and latter) case can be captured by formula ¢; (and ¢,, respec-
tively), where ¢1 = a A ¢rur A Ppasi,1 and ¢z = a A drur A Ppase,1 Where,

Prur = 7"&2)’ (0’3)(a.2*.b, b.2*.c,c.2")(Z),
Ppast,1 = P(Zm)’(w)(a.a, a.a*.c,c.2*,3*)(2),
Ppast, = Vxelab.c) P(zo’s)’(o’3)(a.a, a.a*.c.X.x,x.2*)(2).

The a in blue is the a occurring at the present position (i.e., a that occurred along with the anchor
point in the interval word automata Aseq). Moreover, ¢seq = ¢1 V ¢s. O

The construction in Section 5.2, Proposition 5.12, and proof of Lemma 5.13 imply Theorem 5.9.
Note that, if ¢ is a simple 1-TPTL formula with intervals in 7, then the equivalent PnEMTL
formula, ¢, constructed above contains only interval in CL(Z,). Hence, we have the following
theorem:

THEOREM 5.15. For a simple non-adjacent 1-TPTL formula  containing intervals from I,,, we can
construct a non-adjacent PnEMTL formula ¢, s.t. for any valuation v, p,i,v |= ¢ iff p,i |= ¢ where,
|| = O(2F°1v¥D) and arity of ¢ is at most 2|1, |* + 1.

Proor. Let || = m,|Z,| = n.

e Construct an LTL formula a over interval words such that p,i |= ¢ if and only if p,i |=
Time(L(a)) as in Section 5.1.1 such that |a| = O(n).

e Reduce the LTL formula « to language equivalent NFA A’ using Reference [20]. This has the
complexity O(2"). This step is followed by reducing A’ to A over interval words over I, such
that L(A) = Col(L(A")). Note that |I,,| = |1,|?> = O(n?) Section 5.1.2.

e As shown in Section 5.2, for any type seq, we can construct Asq from A such that L(Aseq) =
Norm(L(Aseq) U Waeq) with number of states k = O(2Poly(m)y,

e As shown in Section 5.3, for any seq, we can construct ¢s.q using intervals from I, such that
P> i [ ¢seq iff p, i € L(Aseq). Note that Time(L(¢)) = Time(L(A)) = Useqe7 (1,) Time(L(Aseq))-
Note that |7 (I,)| < (n)z”2 = 0(2P°w()  Size of formula Pseq is (2™™) < 2m* Moreover,
the arity of the formula ¢s.q = 2 X [seq| = O(2 X [I,| + 1) (as each interval from I, appears
at most twice in seq, and anch appears exactly once) = O(n?). Hence, p, i |= ¢ if and only if
p,i |E ¢ where ¢ = \/seqer (1,) Pseq and the timing intervals used in ¢ comes from I,. Note

9We mention AL = Sk-1 - Ax - Sk instead of - Ag - Si due to the non-strict inequalities in the semantics of PhEMTL
modalities.
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that if 7 is non-adjacent, then I, is non-adjacent, too. Hence, we get a non-adjacent PnEMTL
formula ¢ the size of which is O(2F°/¥(™)) and arity is O(n?). O

The above theorem (Theorem 5.15) is lifted to a general (non-simple) 1-TPTL formula ¢ as
follows: Given a 1-TPTL formula i/ in DAG form, we first convert innermost simple sub-formulae

¢! to their equivalent PnEMTL formulae {;1. We substitute a fresh witness proposition a} in place
of ¢} giving formula Y' = ¢[a;/{!]. Superscript 1 states that we have eliminated depth 1 simple
subformulae. We repeat the procedure for 1! giving 1> where we introduce depth 2 witness
propositions a7 for depth 1 simple sub-formula {7 in y'. We recursively apply this procedure
till a purely propositional formula /¥ is obtained having 3 as well as witness variables. We

substitute top depth witness variable ai.‘ by equivalent PnEMTL formulae { l.k. This formula refers
to lower-level witness variables of the form aj. with [ < k. We recursively substitute these witness

variables by their equivalent PnEMTL formulae {Ajl, keeping the formula in DAG form. This

process is repeated till we obtain a pure PnEMTL formula l} without witness proposition, which
is equivalent to . Thus, we have the following result:

THEOREM 5.16. Any (non-adjacent) 1-TPTL formula i with intervals in I,, can be reduced to an
equivalent (non-adjacent) PnEMTL, ¢, with |¢| = 2P°WVD and arity of ¢ = O(|T,|?) such that

piEYifp,il=¢.

6 MSO WITH GUARDED METRIC QUANTIFIERS, GQMSO

In this section, we define an extension of MSO[<] with Guarded Metric Quantifiers (GQMSO).
The logic is a natural extension of QMLO and Q2MLO of Hirshfeld and Rabinovich where a single
metric quantifier is generalized to an anchored block of metric quantifiers of arbitrary depth. We
show that PnEMTL is expressively complete for this logic. We define non-adjacency restriction in
context of GOMSO and show that the non-adjacency is preserved while translating from PnEMTL
to GQMSO and vice versa. Hence, the reduction (from GQMSO to PnEMTL) also serves as a proof
of decidability for satisfiability checking of Non-adjacent GQMSO. This is by far the most general
fragment of MSO[<, +N] (syntactically) for which satisfiability checking is decidable. As a corol-
lary, we get that (non-adjacent) 1-TPTL is expressively complete for (non-adjacent) GQFO, the
first-order fragment of (non-adjacent) GQMSO.

6.1 GQMSO: Syntax and Semantics

We define a real-time logic GQMSO that is interpreted over timed words. It includes MSO[<] over
words with respect to some alphabet 3. This is extended with a notion of time-constraint formula
Y (t), where t is a free first-order variable. All variables in our logic range over positions in the
timed word and not over timestamps (unlike continuous interpretation of these logics). There are
two sorts of formulae in GQMSO that are mutually recursively defined: MSOYT and MSO (where
UT stands for untimed and T for timed). An MSOVT formula ¢ has no real-time constraints except
for the time-constraint subformula /(t) € MSO'. A formula 1/(¢) has only one free variable t
(called anchor), which is a first-order variable. {/(¢) is defined as a block of real-time-constrained
quantification applied to a GQMSO formula with no free second-order variables; it has the form
Qit1.Quts. ... Qjt;. P(t,t1,. .. t;) where ¢ € MSOUT. All the metric quantifiers in the quantifier
block constrain their variable relative only to the anchor ¢. The precise syntax follows below. !

10T Reference [33], a similar logic called QkMSO was defined. QkMSO had yet another restriction: It can only quantify
positions strictly in the future, and hence was not able to express past timed specifications.
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Remark: This form of real time constraints in first-order logic were pioneered by Hirshfeld and
Rabinovich [25] in their logic Q2MLO (with only non-punctual guards) and its punctual extension
was later shown to be expressively complete to FO[<, +1] by Hunter [28] over signals. Here, we
extend the quantification to an anchored block of quantifiers of arbitrary depth.

We have a two sorted logic consisting of MSOUY” formulae ¢ and time-constrained formulae 1.
Let a € 3, and let ¢, t’ range over first-order variables, while T range over second-order variables.
The syntax of ¢ € MSOVT is given by:

t=t' 1t <t'|Qa®) I T(t) | pAPI=¢|3t.g| AT | Y(2).

Here, /(t) € MSOT is a time-constraint formula whose syntax and semantics are given a little
later. A formula in MSOYT with first-order free variables ty, t1, . . . fx and second-order free vari-
ables Ti,...,T,, is denoted ¢(to,...tx, I1,. .., ;). The semantics of such formulae is as usual.
Let p = (01,71)...(0n,7,) be a timed word over X. Given p, positions iy, ...,i, in dom(p),
and sets of positions Ay, ..., A, with A; C dom(p), we define p, (ig, i1, ..., ik, A1s. .., Am) =
¢(to, t1y -« - tk, T1, - - ., Tpy) inductively in MSO[<].

o (P o, ik AL .. Ap) F i < tyiffiy <y,
o (p,ig, ...k, A1, ..., Am) E Qu(ty) iffa € o,
° (p, io,...,ik,Al,...,Am) |= ’I}'(tx) lﬁlx EAj,
o (p,io,...,ik,Al,...,Am) |= Ht/.d)(t(),...tk,t,,Tl,...,Tm) iff
(Pyigs - vrifs iy AL s Am) |E d(bo, - - ks ', Th, .. ., Tiy) for some i’ € dom(p).

The time-constraint formula /(t) € MSO" has the form: Q;;.Qxt;. . .. Qjtj. ¢(t, t1,...t;) where
t1,...,t; are first-order variables and ¢ € MSOVT. Each quantifier Q,t, has the form Jtyet+1,
or Vi, € t + I, for a time interval I, € I Qy is called a metric quantifier. Note that each
metric quantifier constrains its variable only relative to the anchor variable ¢. Moreover, {/(¢) has
no free second-order variables. The semantics of such an anchored metric quantifier is obtained
recursively as follows: Let

= .. [there exists i; such that 7;, € 7;, + I; and,
(p,io,il,...,ij_l) |= Eltj €t+lj.¢(t,t1,...,tj) lﬂ{ 7 Y o 4 },

(pyig,i1...1;) = @(t, tr, ..., 1))
for all ij such that 7;; € 7;, + I; implies,}
(p, io, i] e ij) |: ¢(t, t1, ey tj)
Note that metric quantifiers quantify over positions of the timed word, and the metric constraint is
applied on the timestamp of the corresponding positions. Each time-constraint formula in GQMSO
has exactly one free variable; variables t1, . . ., t; are called time-constrained in 1/(t). If we restrict
the grammar of a time-constrained formula /(t) € MSO! to contain only a single metric quantifier

(i.e., Qit1.9(t, t1)) and disallow the usage of second-order quantification, then we get the logic
Q2MLO of Reference [26].

(p, 10, i1y ,l‘jfl) = th el + Ij.¢(t, f1,... tj) lﬁ{

Example 6.1. Consider sequences over ¥ = {a, b} such that the event a is the last event in the
first unit interval. ¢ = At.[{Vt'.t <t'} A{Is €t +(0,1).Ys" € t + (0,1).(s = s" A Qq(s))}].

Example 6.2. Consider sequences over events X = {a, b} such that from every a there was a
positive even number of b’s in the previous unit interval. ¢ = Vt.Q,(t) — ¢(t) where ¥(t) =
[ty € t +[-1,0].3t; € t + [-1,0]¥¢ € t + [-1,0].y(t, tr, t;, ') where y(t,tp,t;, 1) =ty < ' <
tr A AXo.3Xe Xo(tr) A Xe(tr) AV Y. [{Qp (1) A Qp(t2) AVEs(ti < 13 < 12 = =Qp(13))} —
{(Xo(t1) A =X (t1) A Xe(t2) A =Xo(82)) V (Xe(t1) A =Xe(t1) A Xo(t2) A =Xo(t2))}]. Here, ¢ is a
formula of type MSOYT containing the subformula () of type MSO, which in turn contains the
formula y (¢, ¢, 1;,t") of type MSOYT.
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Note that, while GOMSO extends classical MSO[<], it is not closed under second-order quan-
tification: Arbitrary use of second-order quantification is not allowed, and its syntactic usage, as
explained above, is restricted to prevent a second-order free variable from occurring in the scope
of the real-time constraint (similar to References [23, 43, 46]). For example, 3X.3¢.[X(t) A 3t’ €
t+ (1,2)Qq4(t’)] is a well-formed GQMSO formula, while 3X.3t.3¢" € t + (1,2)[Qa(t') A X ()] is
not, since X occurs freely within the scope of the metric quantifier.

Example 6.3. We define a language Li,sterr Over the singleton alphabet 3 = {b} accepting words
satisfying the following conditions:

(1) One b with timestamp 0 at the first position. (Positions are counted 1, 2,3, . . .).

(2) Exactly two points in the interval (0, 1) at positions 2 and 3 with timestamps called 7, and
73, respectively.

(3) Exactly one b in [7, + 1, 73 + 1] at some position p. Other b’s can occur freely elsewhere.

The above language was proposed by Lasota and Walukiewicz [34] (Theorem 2.8) as an example
of language not recognizable by 1 clock Alternating Timed Automata but expressible by a Deter-
ministic Timed Automata with 2 clocks. Let S(u, v) be the FO[<] formula specifying the successor
relation (i.e., u = v + 1). This can be specified as the GQMSO formula ¥ = /5 A ¢35, where

(1) Let Posy (t) = =Aw.S(t, w), Pos;(t) = It’.S(¢t,t") APos;_1(t"). Hence, Pos;(t) holds only when
t =i, wherei € {1,2,3,4}.

(2) Let 4 = 3ty Posy(t)ATt, € t; + (0,1).3t3 € t; + (0,1).[Posy(t;) A Poss(ts) A =3t €
t1+ (0, 1).Posy(t)]. This states that exactly two positions exist in the initial unit time interval
(0,1). Let their timestamps be 7, and 73.

(3) Let yo(p) = [Tt € p+[-1,0).Poss(t) A -3t € p+(~1,0).Pos,(t) . This states that position
p lies within [z, + 1, 73 + 1].

(4) Y5 = Ap. [Y2(p) A(Vq.¥2(q) — (p = q))] states that there is exactly one position satisfying
property ;.

Metric Depth. The metric depth of a formula ¢ denoted (MtD(¢)) gives the nesting depth of time
constraint constructs and is defined inductively: For atomic formulae ¢, MtD(¢) = 0. MtD[¢; A
p2] = MD[g; V 2] = max(MtD[py], MtD[g,]) and MtD[At.¢(t)] = MED[~p] = MtD(p(1)).
MtD[Q1t; . .. Qjtj¢] = MtD[¢] + 1. For example, the sentence Yit3 Yt € ts+ (1,2) {Qa(t)— Tty €

+ [1,1] Qp(ty))} accepts all timed words such that for each a that is at distance (1,2) from
some timestamp t, there is a b at distance 1 from it. This sentence has metric depth two with
time-constrained variables t, ;.

6.2 GQMSO with Alternation Free Metric Quantifiers (AF-GQMSO)

We define a syntactic fragment of GQMSO, called AF-GQMSO, where all the metric quantifiers
in any anchored metric quantifier block only consist existential metric quantifiers. More precisely,
AF-GQMSO is a syntactic fragment of GQMSO where the time constraint /(t,) has the form 3t €

to+ L3 €tg+ .. Htj €to+1I. gty ty,...t;) with ¢ € MSOVT. Hence, there is no alternation
of metric quant1ﬁers within a block of the metric quantifier. Note that the negation of the timed
subformula is allowed in the syntax of GQMSO (and hence AF-GQMSO). Hence, alternation free

v ¢ formulae can also be expressed as equivalent -3 ¢ using AF-GQMSO. We now show that,
surprisingly, AF-GQMSO is as expressive as GQMSO.

THEOREM 6.4. The subclass AF-GQMSO is expressively equivalent to GOMSO.
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Proor. Let /(1) = Qit1.Qxts. ... Qjtj.¢(to, . . ., t;) be any GOMSO formula where every quan-
tifier Q;t; is of the form 3t; € ty + I; or Vt; € to + ;. Let I; = [l,u) (similar construction can be
given for all other type of intervals). We convert the innermost metric quantifier Q;t; to a non-
metric quantifier by adding (at most) four existential metric quantifiers at the top level of the form
3t} € to + (=00, 1).3t] € to+ [u, ). Ttfirrj € Ij. Ft1qr,j € Ij.. Intuitively, the variables ¢/ will take
the value of the last point within interval (—oo, [) from #y. Similarly, t]f ’ will take the value of the first
point within interval [u, oo) from t,. Moreover, variable tf;,;,j (t1ass,;) Will take the value of the
first (last, respectively) point within interval I; from t,. Hence, we can replace the quantifier Q;t;
with Atgirerj < t < tase,; if Q; is an existential metric quantifier and with Vif;rg, j < tj < tiar,;
if Q; is a universal metric quantifier. Hence, repeating the above steps for Q;_; ... Q;, we get a
AF-GQMSO with at most 4 existential metric quantifiers.

For 1 < I < j, Let ¢; be the subformula Q;t;.Q,t,. . .. Qjtj.¢(to, . . . , tj). Other types of intervals
can be handled similarly. We eliminate Q;t; as follows:

(1) If there is no point within [/, u) of o, then the sub- formulae ¢; vacuously evaluates to true
if Q; is a universal metric quantifier and evaluates to false if Q; is an existential metric
quantiﬁer. Ci = -t e Ij - Qit,.Qaty. . .. Qj_ltj_l.)/,
where y; = true in case Q; is a universal metric quantifier and y; = false otherwise.

(2) If there is a point in [l,u) from ¢;, then we add existential metric quantifiers ﬁtfi,st, j €
I jjtlast, ; € I;. (along with some more existential metric quantifiers) at the top level and
assert a formula that forces tf;,;, j to be the first point within interval [/, u) from t; and t;,, ;
to be the last. Then, the quantifier jtj €tlo+]; (V.tj € to +1I;) can be replaced by .t7;,5; ; <
tj < tiast,j (V-trirse,j < tj < tase,j» respectively). Let y; = Vigipss j <t < tase, jo(to, . . ., 1))
if Q; is a universal metric quantifier else y, = Jtrirsrj < tj < tiaer,j@(to, . . ., t;) otherwise.
Let S(,t") be the successor predicate that is true iff * = t + 1. It is routine to express such a
predicate in MSO[<]. Then, C; = Tt ety + Ij = Cy1 V Cyp V Cy 3V Cy g where:

e (1 covers the possibility that there are points that occur within interval (o, [) and [u, o)
from t,. Hence,

3t} € to + (=00, 1).Tt]’ € to + [u,0). (8], trirse, j)A
Co1 = Ipirsr,j € to + [Lu).Atyassj € to + [Lu). S(tiast,j» £/ )N
Qit1.Qsts. . .. Qj_ltj_l. Y2

e C,, covers the possibility where there is no point occurring within (—oo, [) but there are
points occurring within [u, o) from t,. Hence,

jt}l €ty + [u, OO) Vt.t > tfirst,j/\
Cz’z = Eltfirst,j €ty + [l, u).EItlast,j €ty + [l,u) S(tlast,js t;,)/\
Qit1.Qsts. . .. Qj_ltj_l. Y2

e (3 covers the possibility where there are points occurring within interval (—oo,[) but
there is no point within [u, o) from . Hence,

Ht}’ €1+ (_005 l) S(t],, tfirst,j)/\
Co3 = Apirsr,j € to + [Lu). Atyasej € to + [Lu). Vit < tigse, A
Qit1.Qsts. . .. Qj—ltj—1~ Y2

e (4 covers the possibility where there is no point occurring within interval (—co, /) and
[u, ) from t,. Hence,
C2’4 = Btfirst,j € tp + [l, u).3t1ast,j S Ij.Q1t1.ta2. .. .Qj_ltj_l.(vt.t > tfirst,j ANt <
tast,j N )/2)-

Hence, C; A C; is the required formula. Note that irrespective of Q; being a universal or exis-

tential quantifier, the new metric quantifiers that we add at the top level are only existential
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metric quantifiers. Hence, when we apply the above reduction for j steps, we will be able to
get rid of all the @, . .. Q; metric quantifiers (and hence the alternations within that block)
and end up getting formulae where each time-constrained subformula contains a block of at
most 4k existential metric quantifiers. ]

6.3 Non-Adjacent GQMSO (NA-GQMSO)

Any AF-GQMSO formula ¢ is said to be non-adjacent if and only if for every subformula ¢ of ¢
of the form §t1 et+1;.. .§tj € t+I;®(t, ty,...,t;), the set of intervals {I;, . .., I;} is non-adjacent.
Notice that NA-GQMSO is a syntactic subclass of AF-GQMSO. For example, 3t; € ty + (2,3)3t;. €
to+(3,4)[3t < ty A t3 € o+ (4,5)] is not non-adjacent, as intervals (2, 3) and (3, 4) appear within
the same metric quantifier block and are adjacent. However, b1 €ty + (2,3)Tt. € to + (4,5)[At <
to A Jts € ty + (3,4)] is non-adjacent, as {(1,2), (4,5)} and (2,3) is non-punctual (and hence non-
adjacent to itself). The formula in Example 6.3 is also an NA-GQMSO formula.

7 CLASSICAL LOGIC CHARACTERIZATION OF PnEMTL

In this section, we prove the following main theorem:
THEOREM 7.1. PnEMTL = GQMSO. Moreover, Non-adjacent PnEMTL = Non-adjacent GOMSO.
The theorem follows from Lemmas 7.2 and 7.3 given below.

LEmMmA 7.2. PnEMTL € GOMSO.

Proor. The key observation is that conditions of the form Seg(i, j, p,S) € L(A) can be equiva-
lently expressed as MSO[ <] formulae /4 (i, j) using Biichi Elgot Trakhtenbrot (BET) Theorem
[16, 30, 44]. Replacing the former with latter, we get an equivalent AF-GQMSO formula (which is
a syntactic subset of GQMSO), as shown below. We apply induction on modal depth of the given
formula ¢. For modal depth 0, ¢ is a propositional formula and hence it is trivially an AF-GQMSO
formula.

Let ¢ be a modal depth 1 formula of the form 7:11ka (A1, ..., Ar41)(Z). We can easily trans-

late the above to equivalent GQMSO formula 3t; € ¢t + I .. .§tj € t+1; ®(t, ty,...,t;), where
q)(t, Fyonny t]) = Elthrl ¢A1(t03 tl) A A lﬁAk (tkfl, tk) A ¢Ak+1 (tk, tk+1) A EP(tk+1). Note that the
GQMSO formula directly encodes the semantics of ¥ formula and hence their equivalence is
clear by construction. The P* modality is handled similarly. Also note that this reduction pre-
serves the non-adjacency. Dealing with Boolean operators is trivial, as the AF-GQMSO is closed
under Boolean operations.

For the induction step, we assume that the lemma holds for all the PnEMTL formulae of modal
depth < n.Let ¢ = 7:11k1k (A1, ..., Ax+1)(ZUS) of modal depth n. Therefore, S is a set of PnEMTL
formula with modal depth < n. We associate a unique new witness proposition with every sub-
formulae in S and replace all the subformulae in S by their corresponding witness propositions
getting a formula ¢’ of modal depth 1. As with the base case, we can construct an AF-GQMSO for-
mula /" equivalent to ¢’. By inductive hypothesis, every subformulae ¢; in S can be reduced to an
equivalent AF-GQMSO formula 1/;. We replace all the witnesses of ¢; by /; getting an equivalent
formulae i/ over X. Note that if formula ¢; in S are non- adjacent, then, by induction hypothesis,
equivalent ¢; are in NA-GQMSO formula. Similarly, if ¢’ is NA-PnEMTL formula, then ¢/’ is NA-
GQMSO formula. Hence, if ¢ in non-adjacent, then equivalent formula ¢ is non-adjacent, too. O

LEmMMA 7.3. GOMSO C PnEMTL.

Proor. It suffices to show AF-GQMSO C PnEMTL (thanks to Theorem 6.4). The proof is done
via induction on metric depth of the AF-GQMSO formulae.
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(Base case) Let (/(to) = At € to + 1 ... .ﬁtj €ty + Ij.o(to, th, . . ., ;) be any AF-GQMSO formula
of metric depth 1. Then, ¢(ty, t1,...,t;) is an untimed MSO formula over X; = X U {t;,...,t;}.
By Biichi Elgot Trakhtenbrot Theorem [16, 30, 44], we can construct a finite state automaton A,
accepting same models as ¢. Note that the alphabet of A; is 2*1. Every word a accepted by A; has
exactly one position i where t; € «[j]. Hence, with some abuse of notation, we can write o =
0 ® (ty0io, 1101y, ..., t;0i;) and o € 2%. By the semantics of GQMSO, any pointed word p, i |= 1/ (t))
iff diy, iz, ..., ijsuchthatr;—7;, € [A---A7i—1;; € [; and word untime(p) @ (todio, 11011, . . . , 1;0i;)
is accepted by A;. We modify A; to give an 7 Interval word automaton A; as follows: If label of
an edge is S C ¥, then we relabel it with S” € X U {anch, I, .. ., I;}, where anch replaces t, and
I; replaces t; in S. There is one-to-one correspondence between transitions of A; and A, where
presence of interval I; symbolically enforces the timing constraint. Hence, it is easy to see that
p,il=Y(ty) iff p,i € Time(L(A)).

By the construction given in Section 5, for any NFA A over I interval words, we can construct
a PnNEMTL formulae ¢(A) such that for any pointed timed word p, i, we have p, i € Time(L(A)) iff
p,i |= @. Hence, p,i |= ¢(ty) iff p,i€Time(L(A2)) iff p,i |= @(A2). Moreover, if ¢ is non-adjacent,
then 7 is non-adjacent and thus ¢ is in NA-PnEMTL.

(Induction step) Assume that the lemma holds for all formulas of depth less than n. Let i/(t,) be
any time-constraint formula of AF-GQMSO having metric depth n. With every timed subformulae
¥;(t) of i, we associate a witness proposition b; such that b; holds iff /; holds. Let W be the set of
witnesses. We replace each subformula 1/; (¢) of type MSOT with its corresponding witness getting
a formula ¢/’ (ty) of metric depth 1. As shown in the base case, we can construct a PnEMTL formula
¢’ equivalent to /' (t) containing symbols from > U W. Note that all subformulae 1/;(t,) of ¢ are of
metric depth less than n. Hence, by the induction hypothesis, we can construct a PnEMTL formula
¢; equivalent to ; (t,). Hence, the witnesses for i/; are also that for ¢;. Replacing the witnesses b;
with its corresponding PnEMTL formulae ¢;, we get the required PnEMTL formulae ¢. Also note
that if ¢/ is non-adjacent, then all its subformulae 1/; and formula ¢/’ are non-adjacent, too. This
implies that formulae ¢;, ¢’ and, hence ¢ are NA-PnEMTL formulae. We give a small toy example
as follows: In this example, we write a regular expression, in place of NFA wherever required, for
the sake of succinctness and readability.

Example 7.4. Consider a GQMSO formulae ¢/ (t) = A € t+(0,1)3ty € t+ (-1, 0)Veven.»(t, t1) A
Vodd.a(t,t2), wWhere Yepen b (%,Y)(Wodd.a(x,y)) is an MSO[<] formula that is true iff the
number of b’s (a’s, respectively) between x and y (including x and y) is even (odd, respec-

tively). The regular expression of the behavior starting from the beginning would be of the
form: (a+b)"-{(a+b),x € (-1,0)}- (b*.a.b*.a.b*)*-a-b*)-anch-(a"-b-a"-b-a")-{(a+Db),

x € (0,1))} - (ap)*. By PnEMTL semantics, ¢ = 7:(3 1)[(a*.b.a*.b.a*), (@ + b)*1({a,b}) A
P(lo 1)[(b*.a.b*.a.b*)*.a.b*), (a + b)*]({a,b}) when asserted on a point ¢ will accept the same
set of behaviors. O

8 SATISFIABILITY CHECKING FOR NON-ADJACENT PNEMTL

The main result of the section is as follows:

THEOREM 8.1. Satisfiability Checking for non-adjacent PnEMTL and non-adjacent 1-TPTL are de-
cidable with EXPSPACE complete complexity. Satisfiability checking for NA-GQMSO is decidable.

The proof is via a satisfiability-preserving reduction to logic EMITL « resulting in a formula
whose size is at most exponential in the size of the input non-adjacent PnEMTL formula. Satis-
fiability checking for EMITL, o is PSPACE complete [27]. This, along with our construction, im-
plies an EXPSPACE decision procedure for satisfiability checking of non-adjacent PnEMTL. The
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EXPSPACE lower bound follows from the EXPSPACE hardness of the sublogic MITL. The same
complexity also applies to non-adjacent 1-TPTL, using the reduction in the Section 5. This also
implies decidability for satisfiability checking of NA-GQMSO formulae, as they can be reduced
to equivalent non-adjacent PnEMTL formulae (see Lemma 7.3) for which satisfiability could be
checked using the following algorithm (reduction to equisatisfiable EMITL, o, formulae). But the
reduction in Lemma 7.3 incurs non-elementary blow-up. Hence, this results in a non-elementary
decision procedure. This is to be expected, as lower-bound complexity for satisfiability checking
for sublogic FO[<] is non-elementary.

We now describe the technicalities associated with our reduction. We use the technique of equi-
satisfiability modulo oversampling [31, 35]. Let ¥ and OVS be disjoint set of propositions. Given
any timed word p over X, we say that a word p’ over X U OVS is an oversampling of p if |p| < |p’|
and when we delete the symbols in OVS from p’, we get back p. Intuitively, OVS contains propo-
sitions that are used to label oversampling points only. Informally, a formulae « is equisatisfiable
modulo oversampling to formulae f§ if and only if for every timed word p accepted by f there ex-
ists an oversampling of p accepted by « and, for every timed word p’ accepted by « its projection
is accepted by p. Note that when |p’| > |p|, p’ will have some time points where no proposition
from X is true. These new points are called oversampling points. Moreover, we say that any point
i’ € dom(p’) is an old point of p’ corresponding to i iff i’ is the ith point of p” when we remove
all the oversampling points. For the rest of this section, let ¢) be a non-adjacent PnEMTL formula
over 3. We break down the construction of an EMITL o, formula ¢ as follows:

(1) Add oversampling points at every integer timestamp using ¢@.ys below.

(2) Flatten the PnEMTL modalities to get rid of nested automata modalities, obtaining an equi-
satisfiable formula ¢r;4;.

(3) With the help of oversampling points, assert the properties expressed by PnEMTL subfor-
mulae ¢7 of ¢rq, using only EMITLg o + Fpp (F; where I is restricted to be non-punctual)
modalities getting formula /. This is done recursively as follows: Using the oversampling
points:

(a) For every k > 1 arity PnNEMTL formula, construct an equivalent formula (for oversampled
models) xﬁj’f‘l with arity at most k — 1.
(b) For k = 1 arity formula construct an equivalent EMITL,, co + F,,, modality.

(4) Finally, in i/¢, only the F operators are timed with intervals of the form (I, u) where 0 < I <
u < oco. We can reduce these time intervals into purely lower bound ({l, o)) or upper bound
({0, u)) constraints using these oversampling points, by reduction similar to that appearing
in Reference [35], Chapter 5, Lemma 5.5.2, pp. 9091, getting formula of size O (cmax X [¢]).

Let Last = G1 and LastTS = GL V (LU() T). Last is true only at the last point of any timed
word. Similarly, LastTS, is true at a point i if there is no next point i + 1 with the same timestamp
7;. Let max be the maximum constant used in the intervals appearing in ¢. Let cmax = max + 1.

8.1 Behavior of Oversampling Points

We oversample timed words over X by adding new points where only propositions from Int holds,
where IntNX = 0. Given a timed word p over X, consider an extension of p called p’, by extending
the alphabet ¥ of p to X’ = 3 U Int. Compared to p, p” has extra points called oversampling points,
where —\/ % (and \/ Int) hold. These extra points are added at all integer timestamps in such a
way that, if p already has points with integer timestamps, then the oversampled point with the
same timestamp appears last among all points with the same timestamp in p’. We will make use of
these oversampling points to reduce the PnEMTL modalities into EMITL . These oversampling
points are labelled with a modulo counter Int = {intg, inty, . .., intcmax—1}- The counter is initialized
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to be 0 at the first oversampled point with timestamp 0 and is incremented, modulo cmax, after
exactly one time unit till the last point of p. Let i @ j = (i + j)%cmax. The oversampled behaviors
are expressed using the formula @ovs: {=F(o,1) \/ Int A Fpg 1)inte} A /\C’""‘X LgY{(int; AF(\/ 2)) —
(=F(0,1)(\V/ Int) AF(g 17 (intjg1 A (= \/ 2) ALastTS))}. to an extension p’ given by ext(p) = p”iff (i) p
can be obtained from p’ by deleting oversampling points and (ii) p” |= @ovs. Map ext is well defined
as for any p, p’ = ext(p) if and only if p’ can be constructed from p by appending oversampling
points at integer timestamps and labelling kth such oversampling point (appearing at time k — 1)
with intggcmax-

8.2 Flattening

Next, we flatten ¢ to eliminate the nested 77 m and SD " modalities while preserving satis-
fiability. Flattening is well studied [27, 31, 35 40] The 1dea is to associate a fresh witness vari-
able b; to each subformula ¢; that needs to be flattened. This is achieved using the temporal
definition, T; = G ((\V 2 A ¢;) < b;), and replacing ¢; with b; in ¢, ¢ = P[b;/¢;], where
G" is the weaker form of G asserting formula (within its scope) at the current point and all
the strict future points. Then, ¢ = ¢! A T; A \/ X is equisatisfiable to ¢. Repeating this across
all subformulae of ¢, we obtain ¢r1sr = ¢ A T over the alphabet X’ = ¥ U W, where W is
the set of the witness variables, T = A; T;, ¢, is a propositional logic formula over W. Each T;
is of the form G"(b; < (¢ A V Z)), where ¢y = T" n (A1, ..., Aut1)(S) (or uses ‘PI’?,...,I,])

and S C 3. For example, consider the formula ¢ = T(g D, 3)(.7(1,?(2,.?[3)({951,(;52}), where

o1 = P(o 2)(3.4) (A4, A5, Ag)(2), o = P(zl,z)(4,5)(A7’A8’A9)(Z) Replacing the ¢, ¢, modality with
witness propositions by, by, respectively, we get ¢, = 7'(3’1)(2’3) (A1, Az, A3)({b1,bo}) A T, where
T=G"b & (VEAP))AGY (b2 & (VZEA P2)), A1, Az, A are automata constructed from
Ay, Ay, As, respectively, by replacing ¢, by by and ¢, by b, in the labels of their transitions. Hence,
$r1ar = ¢+ A T is obtained by flattening the ?Tf___’lk, Plli__.’lk modalities.

8.3 Constructing Equisatisfiable EMITL, ., Formula

In this step, for every PNEMTL formula ¢ appearing in each T; = G (b; < (¢r AV Z)), we will

obtain an equisatisfiable EMITLy,c formula y/y. We use oversampling to construct the formula /¢

such that for any timed word p over %, i € dom(p), there is an extension p’ = ext(p) over an

extended alphabet X', and a point i’ € dom(p’) that is an old point corresponding to i such that

p,’ i"F lﬁf lﬁpal = ¢)f

Consider ¢7 = Thnln (A1, ..., Apt1)(S) where S € X’. Without loss of generality, we assume:
e [Assumption 1]: inf(l;) < inf(l;) < --- < inf(l,) and sup(l;) < --- < sup(l,). This

is w.Lo.g., since the check for A;;; cannot start before the check of A; in case of 7—”]1”
modality (and vice versa for #/' | modality) forany 1 <j < n.

oln

e [Assumption 2]: Intervals I, ... I,_1 are bounded intervals. Interval I, may or may not be
bounded. This is also w.l.o.g.'!

Let p = (01,71) ... (04, Tn) € TX", i € dom(p). Let p’ = ext(p) be defined by (o}, 7]) ... (0},,77,)
with m > n, and each 7 is a either a new integer timestamp not among {ry, ..., 7,} or is some 7,
where x is an old action point corresponding to y. Let i’ be an old point in p’ corresponding to i.
Let iy = i"and i/ ,, = |p’|. As mentioned above, we make use of these extra action points in p’ to
assert specification same as ¢ without using EMITL,, o, modalities (in case ¢y is arity 1 formula)

(Al’ .- 'sAk+1) = 7:

Unbounded intervals can be eliminated using '7‘- ol el [l cman) [, o0)

(A1, Ak+l) v F

< lia, (1, 00)[ I, 00)

|1 |2 Ik*Z*[IZ’OO)( Ts o+ v Ak*ls Ak Ak+l)-
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or using PnEMTL modality with strictly smaller arity. We first construct a formula ¢} in PnEMTL
such that p,i [= @7 iff p’,i" = ¢} Note that the satisfaction of ¢ is sensitive to these extra action
points of p’. Hence, p,i = ¢7 does not guarantee p’,i’ |= ¢y unless ¢y can be made to ignore
oversampling points while checking for satisfaction. We do this as follows: Forany 1 < j <n+1,
let A} be the automata built from A; by adding self loop on =/ % (oversampling points) and
§” =S U{=V X}. This self loop makes sure that A} ignores (or skips) all the oversampling points
while checking for A;. Hence, A; allows arbitrary interleaving of oversampling points while
checking for A;. We call such an NFA as NFA relativized w.r.t. . Thus, we have the following
proposition:

PROPOSITION 8.2 (RELATIVIZATION OF AUTOMATA MODALITIES). For any g,h € dom(p) with
g’, b’ being old action points of p’ corresponding to g, h, respectively, Seg*(p,g,h,S) € L(A;) iff
Seg®(p’,g',h',S U {=\/Z}) € L(A]) fors € {+,—}. Hence, p,i = ¢r iff p'.i’ |= gb} where i’ is
an old action point of p” corresponding to i and g{)f Fir AL ALD(ES).

From this point, we will work on eliminating PnEMTL modality from (;5} rather than ¢y, as
they are both equisatisfiable (if the former is restricted to be evaluated on models satisfying ¢, s,
i.e., oversampled models).

We present the reduction by applying induction on arity of the formula. That is, given a PnEMTL
formula of arity k, we construct a formula of arity at most k — 1 such that, for all timed words
P’ E @ous, for any old action point i’ of p’, p’,i’ |= qﬁj’, iff p’,i" |= ¢’J§‘l (Recursion Step). In other
words, qS]’, A @ous 1s equivalent to ng']f_l A @ous. Similarly, if qSJ’C has arity 1, then we reduce it to
an EMITL . formula, {7, such that ‘f’} A @ous is equivalent to ¢ A @ous (Base Step). We start
with the latter (Base step). That is, we assume that g{)} = F1, (A}, A})(S"), we construct a formula
Yy such that iy only contains EMITL o modalities. Before starting with the reduction, we state
some useful notations and lemma. For the sake of readability, from this point onward, we do not
explicitly mention set of formulae over which the automata modalities are being evaluated unless
it is not clear from the context. For example, ¢f T" (A’ s AL (SU(V 2 will be simply

written as ¢1,...,In(A,’ AL

8.3.1 Notations. Let A = (Q, qo, 2%, 8, F) be any NFA. For any q; € Q, Q2 € Q, A[q1, Q2] denotes
NFA (Q, q1, 2>,8,0,). For the sake of readability, we abuse this notation by denoting A[q1, {q2}]
as Alqi, qz] for any q2 € Q. Rev(A) denotes the NFA accepting the language that is reverse of
A. Similarly, A - X for any set of propositions X denotes an NFA (Q U f, qo, 229X, 8", { f}) where
8" = U {(g,X, f)lg € F}. In other words, A - X is an NFA that accepts all the words w - X
where w is accepted by A. Similarly, for any two automata A and A’, A - A’ denotes NFA con-
structed by concatenating A with A’. Let a ¢ X. We define A* = (Q, qo, ZZU{“},(S“,F) where

“={(qg,W,q"), (g, W U {a},q)I(q, W, q’) € 8}. Hence, for any g, h € dom(p), Seg”‘(p,g, h,%) €
L(A) & Seg™/~(p,g,h,ZU{a}) € L(A%). Hence, A, behaves exactly like A irrespective of the oc-
currence or absence of a at any point. Similarly, we define A/*5%:4@ = (QU F?, g, 2>V1a} §last.a pa)
where F* = {(q,1)|q € F}, §'%9 = § U {(¢,W,(¢’,1))I¢’ € FAa € WA (¢, W\ {a},q') € §%}.
In other words, L(A!%5%) = L(A%) N (Uywcx L((2%)* - (W U {a}))). Hence, the Al%5%¢ accepts ex-
actly those words w accepted by A whose last letter contains proposition a. Note that all these
operations result in an NFA that is linear in the size of the input NFA(s).

8.3.2 Lemma for Factoring Regular Languages As mentioned above, we fix ¢ =
Fr (A1, ...,Apt1) and d)f ?'" (A’, o ), where Aj,... A’ are NFA relativized

]19"'s|n

w.r.t. 2. The case ofP’: .1, modality can be handled symmetrically. We fix p = (01, 71) . . . (Oms Tm)

n+1
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A;linit, q]-{int;, ~\/Z} Rev(A[[q, f]) - {int, = \/ 2}
init q f
intj
e [ | | - ...
, | | \ ,
g c h
init Al f

Fig. 8. Figure for Lemma 8.3. For any word p’ satisfying ¢oys, checking whether pattern of satisfaction of
subformulae in $” between points g’ and h’ is accepted by A can be reduced to asserting untimed EMITL
formulae at g’ and h’. The behavior from g’ to ¢ is given by ¥ (A;[init, q].{intj, = \/ 2}) for some q € Q;
and the corresponding behavior from ¢ to b’ is given by P(Rev(A'k [g. f]) - {intj, =/ X}) for some final state
f € F;. Disjuncting over all possible (but finitely many) j € {0,cmax — 1}, ¢ € Q; and f € F;, we get the
required formulae.

and p’ = (0/,7])...(0,,,T,,) =ext(p).Letibe any arbitrary point of p and i’ be an old action point
of p’ corresponding to i. ij = i’. We first present a lemma that reduces the check for condition of
the form Seg*(p’,g’,h’,S") € L(A}) by asserting some EMITLg, o, formulae at g’ and A’ for any
i €{1,...,n+ 1}. For any ¢g’,h’ € dom(p), let us call segments of the form Seg*(p’,g’,h’,S’) or
Seg™(p’,g’,h’,S’) as Segments of p” over S”. Leti € {1,...,n + 1} be any integer.

Remark: As mentioned above, when A! is evaluated over segments of p” over §’, it skips all the
oversampling points. But note that the same A} when evaluated over segments of S” U {int;} for
some 0 < j < cmax skips all oversampling points except those labelled with int;. This is because
the transitions of A] are labelled using subformulae in S’ that do not contain any symbols from
Int. Hence, A} has no transition on symbol int;. Thus, Seg*(p’.g’,h',S’) € L(A] - {int;, = \/ 3}) iff
Seg®(p’,g’,h" —1,5’) € L(A!), none of the points between g’ to i’ — 1 are labelled with int; and
point h’ is labelled with proposition int;. Hence, h’ is the first point after g" where int; holds.

Let A: = (Qi, init;,S’, 0, Fl)

LEMMA 8.3 (FACTORING CHECK FOR REGULAR LANGUAGE). Let g’,h’ be any two points of p’
such that g < W', 7;, - rg', < cmax and |'1'g’,'| # [17],1. Then, Seg*(p’,g’,h’,S") € L(A)) iff

ST Vgeo, Vrerlp'sg' F ¥t (iiniti,q.j) A p', B | Y7 (i.q, f, ]), where y* (i, initi, q,j) =
F (Ailinit;, q].{int;, = \/ Z})(S" U {int;}) and ¢~ (i,q, f,j) = P(Rev(Al[g, f]).{int;, =\ Z})(S" U
{intj})].

Proor. Intuition: We encourage readers to look at Figure 8. As mentioned above, the main pur-
pose of this lemma is to reduce the checking of condition Seg*(p’,g’, h’,S") € L(A]) by asserting
some EMITL, ., formulae at g’ and h’. As p’ satisfies poys and 7;, — rg’, < cmax, all the oversampling
integer points between g’ and h’ are labelled with unique counters, as the counters increment at
every oversampling point modulo cmax. Hence, if the oversampling integer time point immedi-
ately after g’ is labelled int;, then no other point between g’ and h’ is labelled int;. Moreover, the
oversampling integer time point immediately after g’ (say, c) is labelled with a proposition int; iff
I'Tg’,'l %cmax = j. For checking Seg* (p’,g’,h’,S") € L(A}), we make use of this oversampling point
¢ to split the run(s) as follows:

(1) Checking the First Part: Concretely, checking for Seg*(p’,g’,h’,S’) € L(A]), we start at
g’ in p’, from the initial state init; of A;, and move to the state (say, g) that is reached at
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the closest oversampling point c. Note that we use only A; (without any —\/ X self loops)
to disallow occurrence of any oversampling point except at the last point. This ensures that
we end our run after reading the closest oversampling point c.

(2) Checking the Latter Part: Reaching g from init;, we have read a partial behavior between
g’ and c; this must be extended to check full behavior by starting from state g, continuing
from point ¢, with transition rules of A} and assert that we end at an accepting state after
reading the point h’. Note that we use A! instead of A; (used in the first part) to ignore the
oversampling points that could be encountered while checking the latter part, i.e., from
c to h’). Hence, starting from g’ with initial state of A}, we reach at the accepting state
of A} after reading point h’ iff we end at some state q after the end of checking the first
part while simulating A;, after which on simulating A} and continuing from state g, we
reach some accepting state of A} on reading till A’ and hence ending the check for the
second part.

Note that check for the first part ending at some state g can be characterized by p’,g" |=
F (A;linit, q].{int;, = \/ Z}). For reducing the check of latter part with a formula asserting at h’,
we start the check for automata in reverse. That is, we assert that: Starting from some final state
f from h’, if we simulate the A! in reverse direction till point ¢, then we should be able to reach
g. Note that the end point of the segment in EMITL, o, formula is within an existential quantifier.
Then, how do we make sure that we end our check at ¢? This can be done by asserting that the
check ends at the nearest point before h’ where int; holds first. As c is the only point between g’
and h’ where int; holds, we are sure to end at c. Hence, checking for latter part is equivalent to
check p’, b’ |= P(Rev(Allg, f1).{int;, = \/ 2})(S" U{int;}). Before starting the proof, we give a very
simple example that gives some intuition about the construction.

Example 8.4. Consider the formula ¢ = T(iz),(3,4) (Eveng, b*,X*), where Even, is an automaton
accepting strings containing even number of a’s. p, i satisfies ¢ if and only if there exist points i;
(within (1, 2) of i) and i, (within (3, 4) of i) such that there is an even number of a’s between i and
i1 and only b’s occur between i; and i,. Observe the following Figure 9. Consider p” = ext(p). Let
i’,i}, i, be the points of p’ corresponding to old action points i, i, i, of p, respectively. Now, we
can break the check between i’ and i] at the smallest integer oversampling point occurring after
i’ labelled int;. The number of a’s between i’ and i] (and hence number of a’s between i and i;) is
even iff the number of a’s between i’ and next occurring int; and the number of a’s between int;
and i] are either both odd or both even. Similarly, all points between i; and i, are labelled b iff at
all old action points between i; and nearest point x labelled int; (where j* € {0,...,cmax — 1}),
and continuing from x to i only b or int;» occurs where j” # j’. Hence, formula ¢ is satisfiable iff

the following formula  is satisfiable:

¥ = @ous N Vogj, jr <emax—1, 727 [F0,11(int;) = [{F(3,4)(P((b + intjr)".intj")} A {{F (Eveng.int;) A
F(1,2) (P (Eveng.intj) A F (b".intjg)} V F (Oddg.int;) A Fiq 5 (P (Odd,.intj) A F (b .int;))) 1]

Formal Proof: We argue for correctness as follows:

(1) Let ¢’ be any point between g’ and h’. Then, any accepting run from point ¢’ to h’ ending
at an accepting state f € F will pass through point ¢’ such that after reading the point ¢’
the run ends up at some state g. Thus, the behavior from ¢’ to ¢’ is given by all the runs
starting from init and ending at state q (hence in A’[init, q]). Similarly, the remaining part of
the run from ¢’ +1 to h’ is characterized by those continuing from q to f (hence, in Al(q, f)).
Disjuncting over all possible values of ¢ € Q and f € F, we get all the possible accepting
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Even, b*

Y
)
T+4
(b + il’ltj@3)*
Y
)
T T T T+4

intjg3

TS=r intj intjg1 intjg2

Fig. 9. Figure depicting the construction of equisatisfiable EMITL formula from non-adjacent PnEMTL for-
mula. TS stands for timestamp. Hence, 7 is a timestamp of point iy. At the top, we have timed word p and
the bottom part of the figure denotes p” = ext(p).

runs. Hence, Y¢'.g’ < ¢’ < h’, we have

Seg*(p’,g’,h',S) € L(A)) = \/ \/ Seg*(p’,g’,¢’,S’) € L(Al[init, q])
qeQi feF; (1)
ASeg*(p’, ¢’ + 1,K',S") € L(Al[q, f1).

(2) As h’é,] #[r;landg < h', 1, > [rg’,]. Moreover, as p’ |= @ovs, there is an oversampling
point ¢ with timestamp 7/ = h’g’,] where int; holds. Hence, by Equation (1) andas g’ < ¢ < I/,

we have

Seg*(p. g’ 1.S) € L(A]) v v Seg*(p’.g’.c,S'U) € L(A}[init, q])
q€Q; feF; (2)
ASeg*(p’,c+ 1,h',S") € L(Al[q, f]).

(3) As A} has a self loop over —'\/ X, the states do not change on reading (or not reading) the
oversampling point c. Hence, Seg*(p’,g’,c,S’) € L(A[q.Qr]) &= Seg™(p’.g".c—1,5") €
L(A}[g, Qr]). This implies:

Seg*(p’,g’,h',S’) € L(A)) \/ \/ Seg*(p’,g’,c —1,5") € L(A}[init, q])
q€Q feF ®3)
ASeg*(p’,c+ 1,h",S") € L(Allq, f])-

(4) By definition of Seg"™ and Seg~, Seg* (p’,c + 1,h’,S’) € L(Al[q, f]) < Seg (p’,h’,c+
1,5) € L(Rev(A{[f, q])). This, along with Equation (3), implies,

eg (p,g,h, e L(A) eg (p,g,c—1, € L(A:[init;,
Seg(p’,g',1',S") € L(A}) [Seg™ (0.9’ §') € L(A][init;, q])
q€Q; feF; (4)
ASeg™(p’,h',c+1,5") € L(Rev(A][q. f1)].
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(5) As p' |E @ovs- If j = [r_(;,'l%cmax, then point c is labelled with int;. Moreover, there is no
oversampling point between g’ and c¢. Hence,

Seg®(p’,g’,c—1,S") € L(A[init;,q]) & g’ <.

Seg™(p’.g'.c’.S" U{int;}) € L (A,-[initi,q] -{int;, \/ Z}).

Note that we use A; instead of A}, as A; will make sure that in the initial part from g" to ¢’ — 1
there is no oversampling point, as it has no self loops on =\/ 2. This will ensure that the ¢’
point is the very first oversampling point after g’. Hence, there is only one choice for ¢/, i.e.,

c. Moreover, concatenating {int;, \/ X} at the end makes sure that c is labelled as int;.
(6) Similarly,

®)

Seg™(p’,h',c+1,8") € L(Ajlg, f]) & A’ <N
Seg™(p’,h',c¢’,S" Ufint;}) € L (Rev (Allg, D - {intj, \/ 2})
As A does not contain symbols from Int, ¢’ is the nearest such point before A" where int;

holds. As 7}, - 7/, < cmax and the counters are incremented modulo cmax at integer times-

tamps by @05, if ¢ is labelled as int;, then there is no other point between g’ and b’ that will
be labelled int;. Hence, there is only one choice for ¢’, i.e., c.
(7) By semantics of ¥ and Equation (5), we have:

Seg®(p’,g',c—1,5") € L(Al[init;,q]) & p'.g EF (A,-[initi, q] - {intj, \/ 2}) (7)
Similarly, by semantics of  and Equation (6), we have:
Seg ™ (p'.h.c+1.8") € LA|[q. f]) < p". 0" = P (Rev(Ailg. f]) - {int;. v =), ®

(8) By Equations (4), (7), and (8) and disjuncting over all possible values of ¢ € Q; and f € F;, if
Jj= frg’,]%cmax, we have:

Seg" (0,9, 0.8 € LA) = \/ \/[p'.g' E ¢ (i initi, g, 1) A p's W Y (og f1). (9)

(6)

qeQ feF
Finally, disjuncting over all possible values of j € {0,...,cmax — 1}, we have the required
result:
cmax—1
Seg (09" WS e LAY =\ \/ \/Ip'.g' Ey*Ginitiq i) Ap' K EY (g D] (10)
J=0 q€QfeF O

We now start with the base case of the construction.

LEMMA 8.5 (BASE LEMMA). Ifgb} = 77(11 u>(A’,A§)(S’)(i.e., n = 1), then we can construct an
EMITLy, o formula Y such that p’,i’ satisfies g{)} if and only if it satisfies yr. Moreover, the total

number of operators (temporal and Boolean), N = O(cmax X |Aq| X |Aq] X |¢r]).
Proor. To reiterate the semantics of (;5}
piE ng} = Jij.y -1 €, uyASeg* (p’,ip,i1,S") € L(A))ASeg* (p’,ij,m’,S") € L(A}). (11)

e Case 1: /| =0 oru = oo.
Intuition: This case is straightforward. As we have only PnEMTL modality with unit arity
and the intervals are either of the form (0, u) or ([, c0), we can use an ¥,y EMITL o for-
mula to assert the check for Aj, which has a nested untimed EMITL formulae to check A;.
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Formal Construction and proof: In this case, we can trivially reduce ¢} into an equiv-

alent ¢ that is already in EMITLj . using nesting: yy = Fit.uy(A]24F) where f =
F (A} - Last)(S" U {Last}). By semantics of ¥ modality,

PLi Yy = Filay o € (Lu) ASeg (o, 11,11, 5 U (B, last)) € LA (1)
Moreover, by definition of Alast.a
P E Yy e 1 -t e (Lu) ASeg"(p',1',i],S) € LIAD) A psi] = B (13)
Note that

plitEB & Segt(p’,ij,m —1,5") € L(A}) (by semantics) < Seg®(p’,ij,m’,S’) € L(A;).
(14)
The equivalence in the right is due to the observation the last point is always an oversam-
pling point, as p’ |= @ovs, and A’ loops over oversampling points when evaluated on seg-
ments over S’ (hence, the set of states reached at m” — 1 and m are the same). By Equations
(14) and (13), we get p’, i’ |= ¢7} & p',i’ F Yr, where ¢ is an EMITL o, formula. Note
that in this case [{r| = O(|¢r).

e Case 2: (I, u) is a bounded interval where [ > 0. Hence, cmax > 1'1.’, - ri', >1.As rl.', - ‘L'l.’, >1
1

1

implies [ri’;'l + I'rl.’,'l, we can apply the Lemma 8.3. Let A; = (Q, init, 258, F).
Intuition: In this case, to check Seg*(p’, ig,i1,S’") € L(A]), we use Lemma 8.3, which gives
us EMITL, o ¥ formulae (of the form ¢/, as mentioned in Lemma 8.3) to be asserted at i’ and
¥ formulae of the form /™ to be asserted at i{. The former can be asserted directly, as i’ is the
present point. For asserting formulae at if, we jump from i’ to i using F; .,y modality and
assert the corresponding # modality. For checking A7, we assert formulae f, as constructed
in the previous case at i;.

Formal Construction and Proof:

cmax—1
Seg” (0", S) € LAD = \/ \/ \/[p'\g' 9" (Linit.q.i) n p B Iy (1. £
Jj=0 q€Q feF
(15)
Using Equations (15) and (14) in Equation (11), we get:
p i’ = qﬁ}, —
cmax—1
A1y — 1 € (Lu)A \/ v \/[p', it vt (Linit,q. ) A p i E Y (L, f )] A i B,
Jj=0 q€Q feF
(16)

where f is the same as one used in Equation (14). We can eliminate the quantifier guarded
by the timing constraint Eli;.ri; — 1y € (l,u) using F( ,, modality. Hence, by semantics of
Fiuy modality, if ¥ = V555" Vyeo Viyer ¥F(Linit,q,j) A FL (Y~ (Lg. f.)) A Bl then
by semantics of p’,i’ |= (]5} & p’,i’ F Y. Note that y/y contains only EMITL « and
Fnp modalities and hence is the required formulae. Also note that, as each /* (1, init, q, )
and ¥~ (1,q, f,j) formulae are of the size of O(¢r), we have [fy| = O(cmax X [Q;] X
[Fy| X 1¢rl). O

We now give the recursive reduction. We show that, given any non-adjacent PnEMTL formula
of arity k, we can construct an equisatisfiable formulae non-adjacent PnEMTL formula of arity
k =1 or less.
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LEMMA 8.6 (RECURSIVE REDUCTION LEMMA). If ¢} = 7—'[1" I (AL, .. A then we can construct

k+1)
an PnEMTL formula lﬁ}‘_l with arity at most k — 1 such that p’, i’ satisfies (/’Jf if and only if it satisfies

lﬁ}“l. Moreover, the total number of operators N = O(cmax X |Ag| X |[Ag| X [¢r]).

Proor. To rephrase the semantics of p’, i’ |= g{)} (by pushing Ji; | <. (T, -1/, € Iy inside):

k-1
P e=Al <l <<l /\(r, T, €lgnp’,ig \/ZASeg (o', zg 1-1g:S") € L(AY))
g=1
Adip_, < i]'c.(ri'; —1;, € I ASeg" (p, i1, i1, S") € L(AL)ASeg™ (p', iy, m",S") € L(AL,,).

(17)
Let A, = (Q,init,2%,8,F), Ir_1 = (-1, ux—1) and I = (i, ug).

e Case 1: [;_; and I are non-overlapping. That is, ug_; < I (strict < is implied by the fact

that the set of intervals {l;, ..., I} is non-adjacent). Hence, r, — 1, > 1 for any possible
k-1 k
value of il’C L and i].
— Case 1.1: I is bounded, i.e., uy # 0. Then, r, — 1/, < cmax holds.
k 1 k

Intuition: Refer to Flgure 10. Similar to case 2 of Lemma 8.5, we apply Lemma 8.3 to split
the check for Seg™(p’,i;_,,i;,S’) € L(A}) at the nearest oversampling point c after i; .
The first part of the check (from i, _, toc) can be asserted using the kth tail automata of
k — 1-ary PnEMTL formula, where the first k — 2 arguments are identical to that of QSJ’, The
second part of the check (from c to i} ) can be asserted in the reverse direction from i; by
jumping to it from i’ using F;, modality.

Construction: By Lemma 8.3,

cmax—1
Seg"(p’,i;_,ir,S") € L(A}) = \/ \/ \/p’, i, =3 Seg"(p’,ir_,.c".S")
Jj=0 q€Q feF (18)

€ L(A[init,q] - intj) A p" ip =¥ (k. q, f.])).
For the sake of brevity, we make following abuses of notation: For any NFA A and any
proposition int; € Int, A-{nt;, ~\/ X} is denoted by A-int;. Moreover, automata accepting
all possible behaviors over any given set of subformulae is denoted by X~*. Moreover,

dc’.Seg (p',ir_;.¢,S") € L(Ag[init, q] - int;) & Seg*(p’,i;_,,m’,S") € L(Ar[init,q] - int; - 7).

(19)
Hence, by Equations (17), (18), and (19), we have p’,i" |= ¢, <
cmax—1 k-1
o i \/ v \/ A< << i,’c_l./\(z'i’; —t) elgnpil \/2
j=0 qe€Q feF g=1
(20)

ASeg™ (p/, i;_l, i;,S') € L(A;)) ASeg™(p',ir_,»m’,S") € L(Ag[init,q] - int; - E*)}

A {Hil,c.(f;;( —1) €lp.pliip EYT(k,q. f.)) ASegt(p’ i, m’,S") € L(Ak+1)}]
By semantics of PnEMTL and EMITL logic, the above condition is equivalent to p’,i’ |=
vy =

cmax—1

\ O\ VURE AL AL Aclinit, gleinty S ALFL (97 (k,q, £ ) AF (AL, Last)]].
j=0 q€Q feF
(21)
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Fig. 10. Figure showing reduction of k-ary PnEMTL formulae to k — 1-ary PnEMTL formulae when il/c—l and
il’< are not within same integer time points (Case 1.1). The behavior from i’ to nearest oversampling point ¢
after i/ ip_, (labelled int;) is given by 7,1, (AL ..., Ag[init, q] - int;.X*), and the corresponding behavior
from c is glven by {F, (P(Rev(A’ [g, f]) -intj)) A ‘7‘_(Ak+1 Last)}, where g is any state of A;C reached when
read till int; and f is the final state that is reached when i]/C is read. Disjuncting over all possible (but finitely
many) j € {0,...,cmax — 1}, q € Q; and f € F;, we get the required formulae.

— Case 1.2: I is unbounded, i.e., u = oo. There are two possibilities. Either (1) i,’c occurs
within (I, [y + 1) from i’ or (2) i} occurs beyond timestamp [z}, + [ :
Possibility 1: i occurs within (l, lx + 1). Hence, 7, € (7], + I, 7], + It + 1). The case can
k

be handled using the following formulae:

1.2.1 k-1
) =% e 1,<lk,lk+l)(A1’ cos Aksr). (22)

l,..
This formulae now falls under case 1.1, as I and I;_; are non-overlapping and bounded
and, [ + 1 < cmax. Hence, it can be handled similarly. Let (/1-%! be the formula that we
get after applying the reduction as mentioned in case 1.1 on $1.2.1¢.
Possibility 2: 1'1.’;( > [z}, + li]. In this case, we use the oversampling point, c, at integer

timestamp [z, +I;] to break the check for Ay. Note that if the nearest oversampling integer
point next to i’ is labelled int;, then (by ¢oos), [7], + ] is labelled as int; where j* = j® .
Moreover, as the time difference between int;; and i’ is less than [ + 1 < cmax, there is
no other oversampling point between i’ and ¢ (hence, between i; | and c) with the same
label as int;. Hence, to assert Ay from i; _, to some point beyond c, we start with checking
for A} from i\ to ¢ reaching some state g and continuing the run from c to check for the
remaining part starting from q and ending up at some final state f at some point (i.e., the
required i”’) in the future of ¢ from where we again assert that the behavior till the end
of the word is accepted by A, | (in which case i”” becomes the required i;). This can be
expressed using the following formula:

cmax—1
Y22 = \/0 (Fo,pyint;) — {vav [FE L (Ar o Aoy Alinit, q] - inty, AL, £1+ Aga) }
J= qe eF

(23)
We encourage readers to refer to Figure 11. Hence, /12 = /121 v ¢/!-2-2 is the required formula
for this case. Note that Possibilities 1 and 2 are not disjoint. That is, there are positions of i;
that fall within both sets of possibilities. This simply means that there are models for which both
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int; I intjgl,
: Ak linit, q] : A [q, f] k+1
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Fig. 11. Figure showing reduction of k-ary PnEMTL formulae to k — 1-ary PnEMTL formulae when the
intervals I;_; and I are non-overlapping but I is unbounded (Case 1.2). In this case, we will not be
able to make sure that time difference between lk ; and il’< is bounded by cmax. This figure highlights
the reduction for only one of the possibilities (i; occurs after time [7/, + [;] and hence beyond [ time
from i’) of this case and hence gives one of the disjunct for required formula. The behavior from i’ to
oversampling point at time [7], + [ (say, c) is given by the part of the following formula colored blue
Fh, .. 1, (AL ... ,Al’c[init, q]- intj/,A]’c lq. f1- k+1) and the part beyond ¢ is given by the part of the for-
mula colored in red where j* = j @ I, q is any state of Ak reached when read till ¢ and f is the final state
that is reached when i/ is read. Disjuncting over all possible (but finitely many) j € {0,...,cmax—1},q € Q;
and f € F;, we get the required formulae.

Y121 y1-2-2 hold. Hence, the restrictions imposed by both these formulae might be redundant, but
together both these formulae cover all the possibilities for occurrence of i; .

e Case 2: [;_; and I overlap each other. That is, [ < uy_; (again, the strict < is due to the
fact that ([)} is a non-adjacent formula). Hence, it is possible that there is no oversampling
point between i), and i;, because of which we can not only rely on Lemma 8.3. There are
following subcases depending on how the intervals Ix_; and I overlap and whether I is
bounded or not:

— Case 2.1: I is bounded, lx_; = Iy and ug_; < ug. There are two possibilities based on the
relative positions of i, and i;.
Possibility 1: There 1s an oversamphng point between i; | and i;. As I is bounded,
the time difference between the former and the latter is bounded by cmax. Hence, us-
ing Lemma 8.3 and identical reasoning used in case 1.1, the same formula /! takes care
of this possibility.
Poss1b111ty 2: There is no oversampling point between i, and i;. If i | lies within I,
from i’, then 7/, <7} ] = [T, 1(timestamps of both the points have same integer parts)

< Ti, + l(property ofcelhng functlon) < 1), +1+ug—y (i, lies within Iy, of i) < 7], +ux

(up < uk_l and uy is an integer). Similarly, i; _, lies within I, and the i} occurs after i; _,
implies the time difference between i,’C and i’ is more than lx_; = [; units. Hence, (a) i;_,
within Iy, from i’, (b) i} occurs after i kv and (c) there is no oversampling point between
them, implies that i} is within I} from i’. We check this inline using the following k —1 ary
PnEMTL formula: (a) is checked using the last interval I;_y, (b) is asserted by concatenat-
ing Ar with A} | appearing in the last argument, and (c) is asserted by using Ay (which
disallows any oversampling points) rather than A for concatenation with A; | in the last

argument. Hence, the following formula covers this possibility:

¢2.1.2 7:[

We encourage the readers to go through Figure 12. Finally, the formula for this kind of
overlapping of Iy_; and Iy is ¢*! = ¢! v 212,

(AL AL AR AL (24)

I
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Fig. 12. Figure showing reduction of k-ary PnEMTL formulae to k — 1-ary PnEMTL formulae when the
intervals Ix._; and I are overlapping but I is bounded I = [;._; and up > ug_; (Case 2.1). Hence, in
this case, we will not be able to make sure that there is an oversampling point between i;._; and ig. This
diagram covers the situation where there is no oversampling point between i_ and ir. For the situation

where there is an oversampling point between these points, we can use the formula identical to case 1.1. If

il’c_1 is within I;_; and il’< occurs after that but before the next oversampling point (that is, the integer part

’
k-1

a point in the future ¢ before the next oversampling point such that the behavior from il’c_1 till that point

is given by Ay rather than A;C (as the former disallows occurrence of all oversampling points) and from ¢
onwards A;c+1 holds till the last point of the word. Then, ¢ is a valid candidate for the required il,c' Hence, we

remove the interval I from the given formula and replace the last argument A;<+1 by Ay - A;<+1‘

of their timestamps are same), then iy is within I.. Hence, we just need to check that from i __ there exists

— Case 2.2: I is bounded, ug_; = ug and [_; < l. This case is similar to the case above.
There are two possibilities as in case 2.1.
Possibility 1: There is an oversampling point between i;  and i, . Similar to case 1.1 and
2.1, 1! covers this possibility.
Possibility 2: There is no oversampling point between i; _, and i;. The argument here
is symmetric. But we just need to check i;’s position rather than i; _,.If i lies within Ix

from i’, then 1'1.';C 1 > I'T",LJ (timestamps of both the points have same integer parts) > Tl./;c -1
(property of floor function) > 7/, — 1 + I (i; lies within I of i') < 7/, + lx—1 (lk-1 < It and
lk-1 is an integer). Similarly, i; lies within Iy and the i | occurs before i; implies the
time difference between i; | and i’ is less than uy = ux_; units. Hence, (a) i occurring
within Iy from i’, (b) i _, occurs after i}, and (c) there is no oversampling point between
them, implies that i; | is within Ix_; from i’. We check this inline using the following
k — 1-ary PnEMTL formula: (a) is checked setting the last interval I, (b) is asserted by
concatenating A; _, with Ay in the second last argument, and (c) is asserted by using Ak
(which disallows any oversampling points) rather than A} for concatenation with A | in

the last but second argument. Hence, the following formula covers this possibility:

Yhrt = gkl (AL AL A AL, (25)

IR N |
Finally, the formula for this kind of overlapping between I;_; and Iy is /%2 = y1-1 v y2-2-2,
— Case 2.3: I is bounded, [_; < Ix and ux_; < ug. As above, there are two possibilities.
Possibility 1, when point i; _, and i; have an oversampling point in between them. This
possibility is identical to case 1.1 and hence 1/!-! covers it. For possibility 2, when both the
points are within same integer timestamps, consider the following: Let I’ = I_; N I =
(I, ur_1).'? Then, for possibility 2 to occur, either (a) i;_, occurs within I” from i’ or (b) i}
occur within I’ from i’, because if both of them do not occur within the intersection, then

12The left bracket will depend on interval Ij and the right will depend on I._;.
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there is at least one oversampling point between them (which is already covered by 1/!-1)).
Hence, it suffices to reduce arity of formula ¢** = ¢7> v ¢7- for this possibility where

?:I A2, I I (A/’ t ’A;c—l’ Alk’A;c+1) (26)

¢ Ik 2, -1, I’(Ai’ ce ’A/k—l’A;c’ A;ﬁ-l) (27)

Note that these k-ary PnEMTL formulae can be reduced individually, as ¢% falls under the
case 2.1, while ¢7-* falls under the case 2.2. Let /2~* and /}* be the formulae we get after
applying the reduction from cases 2.1 and 2.2 to the formulae ¢ and (/’)2'3, respectively.
Then, the required formula covering this case is /%3 = y11 v 23 v ¢
- Case24: I =l =land ug_; = ux = u. Let I[_; = (l,u) = I;..!* Like the previous sub-
cases, possibility in which there is an oversampling point between i} and i; _, is handled
by formula /!-!. There are two other possibilities.

Possibility 2: (a) There is no oversampling point between i; | and i, and (b)r, €

(rj, +1, L7} +ul). Note that (a) and (b) implies i; _, and i; are within (I, u) from i’. To éheck

(a), we nest a ¥ modality within the k — 1-ary PnEMTL formula asserting Ay instead of

A} from point i; _, in the kth argument of k — 1-ary PnEMTL formula (see formula F 7). To

check (e), we]ust have toassert thatif p’, i’ |= Fq 1) (int;), thenz', -t e (Lu)Ap',i;_| F
-1

—-F[O 1y(intjey, ) (again, see formula I}). Let I} = —F[q 1)(|nt]®uk) A F(Ax - k+1) and
S =S"UTj. Let S sets of subsets of S’ containing T}.
240 = \/ \/ Flo.p(int)) = FE71 L (AYL L ALLX - 39)(S7), (28)

XeS Jj=1

where A} = A'rj That is, the transitions of A} do not depend on the truth value of T;.

Possibility 3: ( ) holds and (c) 7], € (L7}, +ukJ 7/, + ug). Then, (a) and (c) implies i; land
k

i are within (I, u) from i’. Like the previous possibility, to check (a), concatenate A; | with
Ay instead of Al in the k—1th argument of k—1-ary PnEMTL formula. To check (c), we just
have to assert that if p’, i’ |= F[0, 1)(int;), then T"/L -1, € (Lu)Ap' i E Fon(intjew,)
(check F ). Let F’ = Fro,ny(intjeu,) A F(AL,), S =S"U l“j’. Let S’ sets of subsets of S”
containing I

k+1

cmax

’” I *
I//2 D = \/ AjeSc \/ [o,1)(int;) — Th, oI z,Ik(A ce Ak 'Ak]’X -2, (29)
XeS Jj=1

where A}’ —A g fori < k — 1. Let 24 = g1 v 240 v 24000
e Case 2.5: Ik is an unbounded interval. We break this case into two possibilities. (1) i; occurs
within J; = (e, up_1 +1).1 (2) i occurs within J; = [ux-1+1, c0). Hence, ¢} can be rewritten
as (;5}1 \Y% gb}z where for i € {1, 2},

d)},i = 7:[1k»---,1k—1,]i (A/’ o A;c—l’ A;c’ A;<+1) (30)

3The proof can be extended to handle other kinds of intervals similarly.
14uk_1 +1 < cmax.
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Note that ¢} | falls under case 2.3 if [y > lx_; and case 2.1 if [y = Ix_;. Moreover, ¢]’p , 18
within the case 1.2 and, hence, can be handled accordingly. Let lﬁfﬁ , and ybf’ , be the formulae
we get after applying corresponding reductions to ¢} , and ¢} ,» respectively. Then, Y2 =
ViV,

o Note that all other cases are disallowed by Assumptions 1 and 2.

Hence, the required formula ¢’J§’1 depends on the type of intervals Iy and I;_;. For example, if I}

is bounded and does not have an intersection with I;_;, then it falls within case 1.1 and /! is the
required PnEMTL. Moreover, note that the total number of operators (temporal, Boolean, etc.) in
PnEMTL and EMITLg o is O(cmax X [Qk| X [F| X |$r]). O

After recursively applying the above reductions, we get a formula /¢ that contains modalities
from EMITLg  and Fy, of the size in O((cmax x [¢f])") = O(I(j)flp"ly("’M)), where n is the arity
of ¢ and M is the number of bits required to store the constants of its timing interval.

8.4 Eliminating F ,, Modalities Where ! > 0 And u # o

Let I = (l,u) be any interval appearing in ¢’ where [ > 1 and u < oo (hence, u < cmax). Let
p’ = (o/,7])...(0,,,7,,) such that p’ |= @,us. In this section, given any formula of the form
Fr(a), we construct a specification 6(I, &) using « and modalities from MITL , such that, for any
i" € dom(p’), p',i" |= Fr(a) iff p’,i" |= 6(Fy, ). Notice that p’,i’ |= Fy(«) iff there exists a point
Jj > 1"suchthat 7] -7/ € (l,u) and p’,j |= a. Let ¢ be the nearest integer oversampling point after
i’. Let ¢’ be the integer oversampling point with timestamp [z], + 1. There are two possibilities,
depending on the occurrence of j.

Case 1: Either rj’ € (t}, + 1,7}, + [7]. This implies j occurs before c’. If int; is true at point c, then
int;g; is true at point ¢’. Moreover, ¢’ will be the very first point after i’ with int;g; counter value as
I < cmax. Hence, if j is any point in ([, c0) from i’ that occurs before ¢, then timestamp of j is within
(z, + L, [t} + I1]. This could be easily expressed using formula 6; (I, ) = ;?Z’Oax_l [Flo,1)(int;) —
(_'intj@lU<l’oo)a)]~

Case 2: Or rj’ € ([z, + 11,7/ + u). Hence, j occurs after ¢’. Notice that u is not greater than cmax.
Hence, all the oversampling points in (z},, 7}, + u) are labelled with unique counters as the counters
increment modulo cmax. Hence, the counter values at all the oversampling points between ¢ and
¢’ are different than the counter values (or labels) at all the oversampling points with timestamp
in ¢/, + 11, 7/, + u). More precisely, if ¢ is labelled with int;, then all the oversampling points within
(z/,, 7], +11] will be labelled with propositions in {int;e1, . . . intg; }, while the oversampling points
within ([}, +11, [z}, +u]) will be labelled with propositions from E = {int;g1, . . ., int;e,}. Hence,
any point within [0, ) of i” where F(o 1) \/ E holds, occurs within time ([}, + 1, 7/, + u). Hence, to
assert that j € ([7], + 1, 7/, + u), we construct formula 8;(I, &) = ‘1?2”03"_1 [Fro,1y(int;) = Fpo,u)(a A
Fro,n(V E))].

Hence, §(I, ) = 61(I,a) V 82(I, ) is the required formula free from any bounded interval
with non-zero lower bound (provided « is free from such intervals). Notice that size of §(I, @) =
O(cmax X |Fr(a)]).

Hence, when this step is applied to formula /s from the previous step, we get a formula 1//]2 in
EMITLg, o (MITLg,  is a sublogic of EMITLy, ). Moreover, in the DAG corresponding to i/ there
will be at most [/¢| Fp, operators. Hence, size of lﬁ} is O(|yr| x cmax) = O(|¢f|P"1y("’A’”).

Applying all the above steps to every PnNEMTL modality in ¢r4;, we get a formula ¢’ €
EMITL , that is equisatisfiable to ¢. Moreover, the size of ¢/’ is at most || times the size of
max lﬁ]ﬁ Hence, /' is of the size in O(|¢|Pov (M),
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8.5 Concluding Proof

The above three steps of construction show that:

e The equisatisfiable EMITL o, formula 1/ is of the size (O(|¢|7°!¥(=M) where n is the arity ¢
and M is the number of bits required to store the constants appearing in the timing intervals.
This is because reducing the arity of each subformula ¢ by 1 results in formula of O(cmax X
|¢¢|*) size. Hence, after recursively applying the reduction to get the final EMITLo 0 + Fyp
formula, we get a formula of the O((cmax X |$|>)") (|¢| > |¢¢1) size. Eliminating F, will
blow up the size by cmax. (i) Hence, the required formula is of O(cmax X (cmax X |$|*)™)
size. As cmax = 2M (M defined above), the size of the final required formula is bounded by
O(zpoly(n,M))'

e For a non-adjacent 1-TPTL formula y, applying the reduction in Section 5 yields ¢ of size (ii)
O(2P°lIr1) and, arity of ¢ = O(]y|?) and the set of constants remain the same. Note the set
of constants used in the timing interval of output formula ¢ is the same as that of y. Hence,
the number of bits required to store the constants in ¢ is (iii) M = O(|y|). Also, after applying
the reduction of Section 8 by plugging the value of |$| and its arity from (ii) and value of M
from (iii) in (i), we get the EMITLy, o, formula i/ of size O (2F°/¥(Iy N<Poly(n.M)y — o (aPoly(lv1)),

e By Lemma 7.3, given any formula y in NA-GQMSO, we can construct an equivalent formula
¢ in NA-PnEMTL (with non-elementary blow-up) that can then be analyzed for satisfaction,
as presented above. Hence, satisfiability for NA-GQMSO is decidable. Non-elementary lower
bound for NA-GQMSO is inherited by the subclass FO[<].

9 A NOTE ON INFINITE TIMED WORDS

Up until this point, we have restricted our models to be finite timed words. Let ¥ be any fi-
nite set of propositions. An infinite or w-timed word over ¥ is an infinite sequence of the form
(01,71)(02,72) ... where ¥ € N, ¢; is a non-empty subset of 3, 7y = 0 and i,j € Ni < j
implies 7; < 7. An w-timed word is said to be zeno if the limit of the sequence 71, 7,.. .,
is not infinite. This means there are infinite actions within a finite duration. For example,
(a,0)(a,0.5)(a,0.75)(a, 0.875) ... is a zeno timed word. It is a common practice in the literature
to restrict the models to non-zeno words, as physical systems do not exhibit zeno behavior: It
would take infinite amount of energy to carry out infinitely many actions in finite time. Hence, we
restrict ourselves to non-zeno models.'® The set of all non-zeno w-timed words over ¥ is denoted
by T2®. On closer inspection, it can be seen that all the results for finite timed words in the previ-
ous sections can be easily lifted to infinite timed words. We point out the required modifications
for this lifting. In the rest of this section, let p = (01, 71) . .. be any non-zeno w-timed word. Let A
be any Biichi Automata. Let L“ (A) denote the set all untimed w-words accepted by A.

9.1 Definition of Logics over Infinite Timed Words

The syntax and semantics for logic LTL, MTL, TPTL, and MSO remain the same. For EMTL and
PnEMTL, the following changes are required:

9.1.1 EMTL Extended with Biichi Automata Modalities. We extend EMTL with a new modality,
F “(A)(S), where A is a Biichi Automata modality over subformulae S. Intuitively, this modality
asserts that from the given point the suffix is accepted by A. Let S = {¢1, ..., ¢,}. Forany x € N, let
Sx be the exact subset of formulae in S that holds at point x of p. Then, for any i € N, Seg®”(p, i, S)
is an untimed w-word S;S;1 . ... Define p, i = 7« (A)(S) iff Seg®(p, i, S) € L(A).

5That is, language of any formula ¢ can only contain non-zeno timed words.
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9.1.2 PnEMTL Extended with Biichi Automata Modalities. Syntactically, in the modality
Tk(Al,...,AkH), Ar;1 is a Biichi Automata, while the rest Ay,...,Ar are classical non-
deterministic automata with reachability objective. The new semantics of the ?"11" ol modality
is as follows:

o poig BT (AL A (8) iff Fig < iy S dp . S g st
/\ii}:l [(Tiw - Tig € IW) A Seg+(P’ iw—lviw’ S) € L(AW)] A Segw(p, lk’S) € Lw(AkJrI)'

Intuitively, as the suffix from i onwards is infinite, it is natural to check the behavior in that region
by a Biichi Automaton. The syntax and semantics of the P{f ol modality does not change.

9.2 Anchored Interval Infinite Timed Words

As the name suggests, Anchored Interval w-words are o extension of interval words. For the sake
of completeness, we define these formally. Let 7, C . An 7, anchored w-interval word over X
is an w-word « of the form 010, ... € 22V{@nc¢hlVly gych that there is a unique point i € N where
anch holds. As before, this point is called an anchor point of k and denoted by anch(x). Moreover,
foreveryi € N,XNo; # 0. That is, at every point in k, at least one of the propositions from X holds.
Let p = (01, 71) ... be any w-timed word. p, i is consistent with an I, w-interval word k = o7 ... if
and only if for any j € N, G]f NX =07 -1 € Gj’ N 7, and i = anch(x). Let Time(k) be all the
non-zeno pointed w-timed word p, i consistent with x. In what follows, let x be an 7, w-interval
word. Let I € 7, be any interval of the form (I, u), where u # oco. If {j|I € k[j]} is an infinite set
(i.e., I occurs infinitely often in k), then we call k a Zeno Interval Word. The following proposition
is straightforward:

PRrROPOSITION 9.1. Ifk is a Zeno Interval Word and if p, i is consistent with k, then p is a zeno word.

This is because there will be infinitely many points jis p = (o1, 71) . . . such that 7; — 7; < u. This,
by definition, implies that p is a zeno word. Hence, if k is a Zeno Interval Word, then Time(x) is
an empty set. The definition of Collapsed w-Interval word is the same as Collapsed Interval words
appearing in Section 4. As the proof of Lemma 4.2 does not require « to be a finite word, it holds
for non-zeno w-interval words, too.

9.2.1 Normalization. For a collapsed non-zeno w-interval word x and I € 7, let first(x, I) and
last(k, I) denote the positions of first and last occurrence of I (as defined in Section 4). If I occurs
infinitely often, then last(x,I) is undefined. Norm(x) = oo, ... is an 7, w-interval word built
from « as follows:

e Reduction 1: For every unbounded interval I € Iv, delete all the occurrences of I except
the first one. Let this be denoted as R, (k)

e Reduction 2: For every unbounded interval I € Iv, delete all the occurrences of I except
the first and the last one.

For any non-zeno word k, unbounded interval I = ([, 00) € 7, and x € N, x = first(k, I) implies
for all p,i € Time(x) and y > x, 7, — 7; € I. Hence, any occurrence of interval I after its first
occurrence is redundant, as the same restriction is imposed by the first occurrence of I. Hence, we
have the following proposition:

PROPOSITION 9.2. For any non-zeno interval word k, ifk’ is obtained from k by applying Reduction
1 defined above, then k = k’.

Hence, for any collapsed word non-zeno k, k¢’ = Ry(k) will contain only finitely many time-
restricted points. As every interval 7 € 7, appears finitely often in x’, Lemma 4.4 is now applicable
for x’. Hence, by Lemmas 4.2, 4.4, and 9.2, we have, for any non-zeno word k, k = Norm(k).
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9.3 Translation from 1-TPTL to PnEMTL

All the reduction in Section 5.1.1, i.e., translation from simple TPTL formulae to LTL over interval
words, remains the same, as all the lemmas in that section hold for non-zeno infinite words, too.
Translation from LTL to Biichi Automata over Collapsed Interval Words remains the same, as those
techniques and results are standard for both finite and infinite timed words.

9.3.1 Partitioning of Interval Words. While the general idea of partitioning the Language of
NFA over the interval words into finitely many type sequences remains the same, we need to make
some changes to the construction from A to Autsq to incorporate Reduction 1 of normalization
of w-interval words. In particular, we need to make sure that the Status(I;) for any unbounded
interval I; € 1, does not change from mid to post. This is because we essentially want to erase
all the occurrences of I; after the first one. Hence, Choicel transition is deleted for unbounded
intervals in Autgeq.

9.3.2  Reducing NFA of Each Type to PnEMTL. Section 5.3 remains the same. All the automata
A; to Ag are automata over finite words (as the intervals only appear within the finite prefix of
accepted words). Automaton A, is a Biichi Automaton. Hence, in the PnEMTL formulae, the last
argument will be a Biichi Automaton, which is in agreement with the new syntax and semantics
introduced in Section 9.1.

9.4 Equivalence of PnNEMTL and GQMSO

Here, too, the existing reduction from PnEMTL to GQMSO and vice versa works. The only differ-
ence is, we need to use the standard Biichi Elgot Trakhtenbrot Theorem for infinite words.

9.5 Satisfiability Checking for Non-adjacent PnEMTL

This remains the same, too. The only difference is, wherever A, ;; appears, it is a Bichi Automaton.
As in the reduction mentioned in Section 8, A, 11 always appears as the last argument (or the tail
automaton) in the modalities of EMITL and PnEMTL in output and all the intermediate formulae.
This is in accordance with the new syntax and semantics of PnEMTL for infinite words, as men-
tioned in Section 9.1. And in the base case Lemma 8.5, Aj is a Biichi Automaton. We reduce the
logic to EMITLg, » extended with 7 “. On inspection of Reference [27], the ¥ “ modality could be
trivially reduced to Biichi Timed Automaton with size polynomial to that of the formulae. Hence,
the result.

10  CONCLUSION

We generalized the notion of non-punctuality to non-adjacency in logics TPTL and GQMSO. We
proved that satisfiability checking for the non-adjacent 1-variable fragment of TPTL is EXPSPACE
Complete. This gives us a strictly more expressive logic than MITL while retaining the satisfiabil-
ity complexity. We introduced a new logic called PnEMTL and used it to solve the satisfiability
checking problem for both non-adjacent 1-TPTL and GQMSO. The added expressive power over
MITL comes with a useful ability to specify complex sequences of timing constraints over regu-
lar behaviors (automata). All our results, including decidability, extend to infinite timed words, as
outlined in Section 9.

We believe that our logics and decidability results are useful for the specification and design
of real-time systems. In model-based temporal planning, timing constraints on events are speci-
fied using logical formulae. Satisfiability checking of such formulae return a model that essentially
gives a schedule meeting all the planning constraints. Several papers have investigated the use of
TPTL with past modalities in formulating time-line-based planning [9-11, 21, 36]. Our expressive
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logics subsume several of these, and they offer a possibility of modelling even more general tim-
ing constraints involving regular behaviors (see the example below). The satisfiability checking
method of this article potentially gives us a technique for automatic synthesis of plans. In another
line of work investigating top-down design of real-time systems, assumptions and commitments
over real-time systems are specified in a real-time logic. Moreover, design decisions (in the form
of desired constraints on the behavior of the system to be implemented) can also be encoded in
logic. Verification of this design step involves showing that the commitment is logically implied
by the conjunction of assumptions and design decisions (see References [13, 38] for early exam-
ples of this approach). Validity checking of logical formulae (equivalently, satisfiability checking
of negated formulae) permits automatic verification of such design decisions. However, an exper-
imental validation of usefulness of these methods for practical planning and verification remains
to be investigated.

Example 10.1. Consider a job (e.g., automated pizza-maker) containing some high-level activi-
ties (involving several sub-steps) given by a sequence of finite state automata Py, Py, ... P (e.g.,
kneading the dough, preheating oven, baking the pizza) that has to be performed in a given se-
quence atomically (i.e., without pre-emption). Each process Py has a deadline uy associated with
it. Now, we need to plan these processes such that the job is successfully completed within m time
units. Moreover, there are some extra restrictions specified by, for instance, an MITL formula ¢.
This could be done by finding a finite word satisfying the following formula:

8= Fiov ... 0ur) P> Pos - -, P, Finish) A g.

In case of GQMSO, the fact that the alternation of metric quantifiers in an anchored block can
be eliminated using extra non-metric quantifiers (see Theorem 6.4) is an interesting result, in our
opinion.

Finally, we pose the following open problems that we believe are fundamentally interesting and
worth solving:

e Is non-adjacent 1-TPTL strictly more expressive than MITL with Pnueli modalities
(and hence Q2MLO of Reference [26])? We conjecture a positive answer to the question.
More precisely, we conjecture that the property “within interval (1, 2) from the present point,
events a and b occur such that a is immediately followed by event b” is not expressible using
MITL with Pnueli modalities and hence in Q2MLO. But this is easily expressible in non-
adjacent 1-TPTL and hence in GQFO (first-order fragment of GQMSO) as follows: x.F(a A
T-xe(L,2)A®DBAT-x€(1,2))).

e How does the logic non-adjacent GQMSO compare with the class of two-way de-
terministic timed automata with reversal boundedness [3] and MIDL [17]? Is there
any natural subclass of timed automata corresponding to GQMSO? If yes, then it will be
the largest known subclass of timed automata (to the best of our knowledge) that is closed
under complementation. Ferrere in Reference [17] gives a very elegant extension of MITL
called Metric Interval Dynamic Logic (MIDL), where the timing constraints are associ-
ated with regular expressions (Metric Interval Regular Expressions) as opposed to the modal-
ities. While EMITL is a syntactic subclass of both non-adjacent PnEMTL and MIDL of Ref-
erence [17], there are still gaps in the expressiveness relationships amongst these logics.
Ferrére already proved that MIDL is strictly more expressive than EMITL with only future
automata modalities. However, (i) is EMITL with past modalities strictly included in non-
adjacent PnEMTL and (ii) how non-adjacent PnEMTL compares with MIDL of Reference [17]
(if you allow/disallow past operators in both logics) in terms of expressiveness is still open.

e Efficient Tool Development for NA-1-TPTL Satisfiability and Model Checking.
While we show that the satisfiability checking problem for NA-1-TPTL is in EXPSPACE, the
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algorithm is merely a proof-of-concept. We believe that in spite of the inherent worst-case
theoretical complexity of the problem, in practice, we can build scalable tools for automated
verification of NA-1-TPTL properties. Our decidability proof relies on the reduction of any
NA-1-TPTL formula to an equisatisfiable EMITL o, formula. Using techniques similar to
References [32] and [35], we can reduce EMITL, o, formulae to equisatisfiable MITL formu-
lae. This can then be followed by using scalable tools, such as MightyL [12] (automata-based
tool) and Reference [7] (SMT-based tool) for MITL satisfiability and model checking. Using
the reduction by Ho in Reference [27], we can also reduce this EMITL; ., formula to an
equivalent timed automata, which can be analyzed using scalable tools such as UPPAAL [6]
and TChecker [24]. A direct simpler reduction from the satisfiability checking problem of
NA-1-TPTL is also an intriguing open problem.

e We also leave open an exploration for a suitable definition for non-adjacency and its
satisfiability checking problem in the context of TPTL with multiple variables.
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