

Design of a

Supply Chain Coordination

System-of-Systems

Applied to offshore wind power park

maintenance

Applied to offshore wind power parks

G.J. Frijters

2

3

Design of a Supply Chain Coordination

System-of-Systems

Applied to offshore wind power park maintenance

By

G.J. Frijters

Master Thesis

in partial fulfilment of the requirements for the degree of

Master of Science

in Mechanical Engineering

at the Department Maritime and Transport Technology of Faculty Mechanical, Maritime and Materials

Engineering of Delft University of Technology

to be defended publicly on Monday December 20, 2021 at 01:30 PM

Student number: 4029488

MSc track: Multi-Machine Engineering

 Report number: 2021.MME.8576

Supervisor: Dr. ir. W.W.A. Beelaerts van Blokland Faculty 3ME

Thesis committee: Dr. ir. D. Schott, Faculty 3ME

Dr J.M. Vleugel Faculty 3ME

MSc. A. Beije Director BlockLab

 Date: December 6, 2021

An electronic version of this thesis is available at http://repository.tudelft.nl/.

It may only be reproduced literally and as a whole. For commercial purposes only with written authorization of Delft

University of Technology. Requests for consult are only taken into consideration under the condition that the

applicant denies all legal rights on liabilities concerning the contents of the advice.

http://repository.tudelft.nl/

4

Preface
Since the emerge of Bitcoin I got intrigued by the fundamental concept of achieving trust among

distributed systems, without the need of a central trusted party. Not only the technological ingenuity

and its brilliant way of incentivizing perpetuation of the network, but also the fair distribution of

power appealed to me. In an increasingly digitalised, automated world where machines take centre

stage, I could see the potential of blockchain technology.

Although driven by many legitimate reasons, the hesitancy for enterprises to adopt this great new

technology always surprised me. How could I transfer the potential that I saw to others? As in most

cases, hesitancy is partially fuelled by a lack of understanding. A great way to increase understanding,

and to fulfil my own eagerness for creativity, is to showcase the capabilities of blockchain technology

through an effective, well-researched application of it. I only had to find the right use case.

Due to the energy transition towards renewable energy and suitability of the Netherlands for

offshore wind energy, research into lowering the cost of offshore wind energy became a relevant

topic. Influential to the cost of energy is the operational performance of an offshore wind power

park. In a series of highly automated processes for the mobilization of the maintenance supply chain,

the coordination and contracting of suppliers for scheduled maintenance operations is performed

manually. Crucial to this labor intensive process is inter-company communication and processing of

commercially sensitive maintenance schedules, asset or resource availability schedules, price rates

and business proposals. This was the application I was looking for. Leveraging blockchain technology

for trustworthy automation of communication and sensitive information processing between

distributed supply chain systems, with the goal to increase operational efficiency.

It took me a while to find the right approach for this research project, but with the gained knowledge

and end result I can look back with great satisfaction. I have learned a lot about offshore wind

industry, blockchain technology, scientific design research, and myself. I would like to thank both Dr.

Ir. W.W.A. Beelaerts van Blokland and MSc A. Beije for their relentless support, wisdom and

guidance. Additionally, I would like to thank MSc A. Beije for the opportunity and the resources made

available for me to perform this research. I would like to thank blockchain engineer Hamza Suwae for

his time and deep technical programming knowledge that helped me achieve feasibility of the

developed designs for this research. Finally, I thank my family, and especially my girlfriend

Antoinette, for their love and caring that kept me going.

Wout (G.J.) Frijters

Rotterdam, December 2021

5

Summary
Due to the European Union renewable energy targets for 2030 and beyond, increasing trends of

installed offshore wind energy production capacity and increasing wind turbine size emerge.

Therefore, the offshore wind maintenance demand increases and becomes increasingly more

complex. The most applied maintenance strategy is reliability-centred maintenance, which is a form

of preventive maintenance that uses prediction models to determine future ocean and weather

states and asset health states. Based on those predictions, maintenance demand is scheduled. The

processes that lead up to the generation of the maintenance schedule ranging from asset condition

monitoring, to data analysis, to future state predictions, to maintenance scheduling are currently

highly automated. The last part of the maintenance organisation cycle, matching and contracting of

maintenance supply for the demand is currently still done manually via email and phone. Offshore

wind maintenance operations predominantly are multi-party operations, requiring vessels, teams of

technicians, spare-parts and ports supplied by the WPP itself, shared WPP inventory, third-party

service providers and OEMs. The increasing maintenance demand puts a lot of pressure on the

already complex task of the Asset Manager that is processing all this information and communication

manually.

The problem that is preventing automation of the matching and contracting process, is the lack of a

system of demand and supplier systems, that processes commercially sensitive information, such as

maintenance demand schedules and supplier availability schedules, in a trustworthy privacy

preserving manner.

The main research question for this design research therefore becomes:

How to design a technical feasible decentralized system-of-systems that enables automated matching

and contracting of maintenance supply for scheduled demand through privacy preserving processing

of commercially sensitive data?

Automating the matching and contracting of maintenance supply with demand is believed to have

multiple benefits. First, elimination of the human information processor leads to more information

being processed for better and faster results, and less errors. Second, it prepares the offshore wind

industry for data-driven concepts such as Industry 4.0, and autonomous maintenance organisation.

Third, process lead times and process labour times are heavily reduced, leading to faster

maintenance mobilization for failing assets and reductions in labour costs, that both result in

increased revenue for the WPP.

The theoretical framework for this design research is therefore; systems-of-systems theory,

blockchain technology and systems engineering methodology. Via an elaborate system-of-systems

design process, a design for a decentralised system-of-systems shall emerge trusted with, and

capable of automating between networked supplier and demand systems while processing sensitive

data through privacy preserving, cryptographic methods.

The design approach followed is based on the agile blockchain application engineering method

“ABCDE, complemented with Baseline Protocol design features and design principles of system-of-

systems theory. Working closely together with a blockchain developer from BlockLab, regular

consults with lead developers and system architects of the Baseline Protocol, and programming to a

minimum working s-o-s instance, a technical feasible design is achieved.

The developed s-o-s design consists of three systems; Demand System, Supplier System and

Blockchain System cooperating automatically via the designed Workflow. For the s-o-s, the Workflow

and the three individual systems detailed design were developed.

6

As expansion of the system-of-systems theoretical framework, an additional definition layer was

introduced by the researcher to describe the smallest, passive pieces of data that are consumed and

exchanged in the decentralised information processing system-of-systems, defined as “Data

Objects”. Easily distinguishable from other system elements, Data Objects usually are used as unique

identifiers such as serial numbers, blockchain addresses or hashes, but could also represent

templates for data structures such as JSON schemas. Think of them as the nuts, bolts, pulleys or

gears in a mechanical system, the smallest passive parts universally used to enable cooperation

between other parts.

Validity of the S-o-s design was proven by means of a case study for a large WPP, with an assumed

supply chain of on average four potential suppliers for each of the eight maintenance operation

requirements. The designed automated matching and contracting Worklow was compared to the

current manual matching and contracting process. Based on activity lead time data of two

undisclosed process analyses from BlockLab, the automated Workflow unlocked a matching and

contracting process lead time reduction of 56% and a labour process time reduction of 98%.

The novelty of this research in the unprecedented design of a decentralised system-of-systems for

automated matching and contracting of maintenance supply for scheduled maintenance demand. In

addition to the extension of system-of-systems theory, by the additional definition layer of Data

Objects, that is the academic contribution of this design research.

7

Table of Contents

Preface .. 4

Summary ... 5

List of Figures ... 9

List of Tables .. 10

Chapter 1: Introduction .. 11

1.1 Offshore wind power ... 11

1.2 Offshore wind maintenance organisation ... 12

1.3 Problem definition ... 15

1.4 Envisioned solution ... 16

1.5 Research objective and research questions .. 18

Chapter 2: Research design ... 19

2.1 Literature analysis ... 19

2.1.1 Systems and systems-of-systems theory ... 19

2.1.2 Blockchain information technology ... 23

2.1.3 System-of-systems design methods ... 35

2.1.4 System-of-systems theory extension ... 39

2.2 Research approach .. 40

2.2.1 Design scope ... 40

2.2.2 Design approach ... 42

2.3 Answers to research questions ... 43

Chapter 3: Design of decentralised System-of-Systems .. 44

3.1. Define the goal of the system-of-systems .. 44

3.2 Identify the actors ... 44

3.2.1 Human Roles ... 44

3.2.2 External systems ... 46

3.2.3 Actor overview ... 46

3.3 Define initial system-of-systems architecture on high-level ... 47

3.4 Define user stories for the system-of-systems .. 48

3.4.1 User Stories for the demand side Asset Manager .. 49

3.4.2 User Stories for the supply side Planner .. 50

3.5 Define initial system-of-systems Workflow on high-level ... 51

3.6 Design the Blockchain System ... 53

3.6.1 Review actors and user stories ... 56

8

3.6.2 Elements design.. 56

3.6.3 Data objects design .. 58

3.7 Design the Demand and Supplier System ... 59

3.7.1 Design of the Demand System ... 59

3.7.2 Design of the Supplier System .. 64

3.8 Design integration - final s-o-s architecture and Workflow .. 66

3.8.1 Design of the s-o-s architecture ... 66

3.8.2 Design of the s-o-s Worfklow ... 68

3.9 Coding and testing of the System-of-Systems ... 70

3.10 Answer to research questions ... 71

Chapter 4: Case Study ... 72

4.1. Introduction .. 72

4.1. Business case .. 72

4.2 Case study assumptions .. 73

4.3. Case study data .. 74

4.4 Case Study Results ... 75

4.5 Answer to research questions ... 76

Chapter 5: Discussion ... 77

5.1 Design verification ... 77

5.2 Design validation ... 79

5.3 Design implications.. 79

Chapter 6: Conclusion and recommendations ... 80

6.1 Conclusion ... 80

6.2. Recommendations for further research ... 83

Bibliography ... 84

Appendices .. 85

Appendix A – Detailed Design Iterations ... 85

Appendix B – zk-SNARK program for Verifier Contract ... 89

Appendix C – Detailed program of MO Extraction Module .. 90

Appendix D – Detailed program of Commit Generator .. 90

Appendix E – Detailed program of Matching Module ... 90

Appendix F – Detailed program of Availability Module .. 90

Appendix G – System-of-systems Workflow design on element level .. 90

Appendix H – Research paper “Design of a Supply Chain Coordination System-of-systems” 90

9

List of Figures
Figure 1: Graphical representation of Offshore Wind Power Park. a) Offshore wind turbine, b) Array

cables, c) Export cables, d) Transformer station, e) Converter station, f) Meteorological mast 11

Figure 2: Arbitrary example of an automatically generated daily maintenance schedule 13

Figure 3: Current state WPP maintenance organisation process, with indication of process

automation .. 14

Figure 4: Overview of manual interactions of an WPP asset manager with WPP maintenance suppliers

 ... 14

Figure 5: Undesirable, conventional, centralised approach to automate between supply chain

systems .. 16

Figure 6: Envisioned, decentralised, approach to automate between supply chain systems, allowing

for multiple demand and supplier systems. .. 16

Figure 7: Current and further research objectives for maintenance organisation 18

Figure 8: Layered definition framework for describing systems ... 20

Figure 9: Graphical clarification of subsystems and aspectsystems [7] .. 20

Figure 10: Simplest scheme of a time-dependent system .. 21

Figure 11: S-o-s added as top to the definition framework for describing systems and s-o-s.............. 22

Figure 12: The Internet and its system-of-systems properties[8] ... 23

Figure 13: Schematic representation of a state transition in the Bitcoin system [9] 24

Figure 14: A chain of blocks containing transactions. Each block represents a saved state of the

system. [9] ... 26

Figure 15: The mining process. .. 26

Figure 16: CIA security triad model ... 27

Figure 17: Enterprise blockchain use-case breakdown ... 31

Figure 18: Enterprise blockchain protocol breakdown ... 31

Figure 19: Graphical representation of ERP systems in a Workgroup connected through the Baseline

Protocol ... 34

Figure 20: Original V-model by Paul Rook[17] .. 35

Figure 21: Summary of the ABCDE design process. The circles represent the sprint meeting, SPM =

Sprint Planning Meeting, SRM = Sprint Review Meeting [17] ... 37

Figure 22: S-o-s three-dimensional definition framework, each side of pyramid represents an

individual system in the s-o-s .. 39

Figure 23: Extended definition framework for identifying and describing System-of-Systems parts .. 39

Figure 24: System-of-systems definition framework .. 40

Figure 25: Visualisation of the three systems that make up the envisioned s-o-s, within the theoretical

framework ... 40

Figure 26: Visualisation of the total scope of the s-o-s design, within the theoretical framework 41

Figure 27: Identified system-of-systems actor overview, subdivided in human roles and external

systems .. 46

Figure 28: Initial s-o-s architecture design that supports all varieties of supply chain configuration .. 47

Figure 29: Graphic illustration of s-o-s pyramid in colour, including the Demand (grey), Supplier

(green) and Blockchain (blue) system and the s-o-s Workflow (white) .. 51

Figure 30: Initial design of automated system-of-systems Workflow, on high-level. Manual interaction

is indicated with the hand cursor. Note that multiple Demand and Supplier systems could be involved

in the system-of-systems. ... 52

Figure 31: Blockchain System theoretical framework for reference .. 53

Figure 32: Graphic representation of system architecture for Blockchain System, with zoomed in

node and displayed interactions between the subsystems and elements ... 54

https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712254
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712254
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712255
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712255
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712256
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712256
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712257
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712259
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712265
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712266
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712267
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712268
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712269
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712269
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712270
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712273
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712274
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712279
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712279
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712281

10

Figure 33: Demand System theoretical framework for reference .. 59

Figure 34: Demand System - final design .. 63

Figure 35: Supplier System theoretical framework for reference .. 64

Figure 36: Supplier System - final design .. 66

Figure 37: S-o-s architecture – final design ... 67

Figure 38: Final s-o-s Workflow design, on system level .. 69

Figure 39: Swimlane diagram of activities related to the supplier matching and contracting 73

List of Tables
Table 1: Typical maintenance operation requirements for each failure type 12

Table 2: Blockchain classes .. 28

Table 3: All blockchain categories [13] .. 29

Table 4: On-chain components of Baseline Protocol .. 32

Table 5: Off-chain components of Baseline Protocol .. 33

Table 6: Overview of maintenance supply chain participants and the human roles that interact with

the s-o-s. .. 45

Table 7: Defined user stories for the s-o-s from the perspective of the demand side Asset Manager 49

Table 8: Additional defined user stories for the s-o-s, from the perspective of the supply side Planner

 ... 50

Table 9: User story coverage by initial Workflow ... 51

Table 10: Overview of most essential items in Blockchain System, subdivided on detail level 53

Table 11: Overview of design iterations related to the Blockchain System .. 55

Table 12: Data accessibility and insight for emitted Commit hashes on public Ethereum network 57

Table 13: Inputs for the hash formulation scheme used for the Verifier smart contract 57

Table 14: Overview of the designed data objects ... 58

Table 15: Overview of most relevant items in Demand System, subdivided on detail level 59

Table 16: Overview of the design iterations related to the Demand System 60

Table 17: Demand System - final design system breakdown .. 62

Table 18: Overview of relevant items in Supplier System, subdivided on detail level 64

Table 19: Supplier System - final design system breakdown .. 65

Table 20: Workflow worksteps, Commits, messages and explanation ... 68

Table 21: Overview of system-of-systems components and their representation in the coded design

verification ... 70

Table 22: Annual failures and maintenance support vessels for WPPs at the Dogger bank 72

Table 23: Assumed MO requirements per type of WT failure .. 73

Table 24: Process activity lead time determination and reasoning .. 74

Table 25: Results and improvements on process lead time and labour time for manual and

automated scenarios. .. 75

Table 26: Evaluation of the user stories .. 78

https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712283
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712285
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712287
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712289
https://wfproductsnl-my.sharepoint.com/personal/wout_wfproducts_nl/Documents/Thesis_BlockchainBasedSupplyChainNetwork_FINALTHESIS.docx#_Toc89712290

11

Chapter 1: Introduction
This introductory chapter introduces the research area and motivation in the first paragraph. The

second paragraph zooms in on the context of this research. In the third paragraph, the discovered

problem shall be defined, that will be addressed in this research. In the fourth paragraph, a solution

direction for the defined problem is presented and explained. In the fifth and final paragraph the

main research question and associated sub-questions are presented.

1.1 Offshore wind power
The European energy system is undergoing a transition supporting the fulfilment of the objectives of

the Paris Agreement and the European Green Deal. One of the key elements in these climate change

combatting policies is the complete decarbonization of the energy sector by 2040. Offshore wind

power is one of the attractive renewable energy sources for replacement of the current polluting

sources. In 2020, roughly 22 GW of energy generating capacity was installed in European waters,

which is projected to grow more than a tenfold for 2050, varying between 230 and 380 GW. On top

of this, the average size of an offshore wind turbine is increasing as well. Larger turbines generate

more energy and run more efficient[1].

Figure 1: Graphical representation of Offshore Wind Power Park. a) Offshore wind turbine, b) Array cables, c) Export cables,
d) Transformer station, e) Converter station, f) Meteorological mast

These developments bring new challenges. With the offshore capacity and turbine size growing

rapidly Transmission System Operators (TSOs) and Wind Power Park (WPP) operators are faced with

an increasing maintenance demand and complexity. Operating and maintaining the remotely

located, difficult to access, assets is already a big challenge, which also requires much more effort to

plan logistics needed to support these activities. Since current state-of-the-art wind turbines do not

measure the condition of all critical components, unscheduled maintenance will still be needed. In

order to ensure reliable operation and high level of platform and WPP availability, optimisation is

needed based on the inputs from all stakeholders. Since communication is the key to success,

development of the information flow between TSOs, WPP owners and other stakeholders can help

achieve ambitious goals from European regulation while insuring lowest cost possible for end users.

Compared to onshore, operation and maintenance (O&M) processes are more complex since both

transition systems and connected wind turbines are not as easily accessible as the assets on the land.

Maritime operations are a major contributor to O&M costs of offshore wind power parks. WPP

operators and TSOs therefore aim at keeping the number of visits to wind turbines and support

systems to a minimum. The impact of O&M costs and costs per maritime operation (trip) is set to

12

increase with increasing distance of WPPs from the shore as only possible option for further offshore

capacity integration into the existing system. A list of the planned WPPs until 20301 shows that the

possible near shore locations in the Dutch part of the North Sea are exhausted and further offshore

locations are currently under development. The Dutch wind energy industry has recognised the

important role of O&M logistics in their wind energy R&D agenda2, beacon 37.

Currently O&M logistics is done in a similar way as for the traditional oil and gas offshore sector,

where a central party links the request for maritime operators with the suppliers of material,

components and personnel. At present, coordination of the logistics is done by a human, which is

already a large and complex task. With the vast increase in number of offshore wind installations,

there’s an immediate need for digitization of supply chain processes because it will become

impossible to do this manually. Asset owners call for an increased highly automated process making

use of the digitisation of the supply chain and data sharing triggered by data from condition

monitoring. In order to automate this process, the demand, supply and execution sides in the logistic

chain all need to be digitised from end to end, creating an end-to-end digital supply chain network.

One of the key performance indicators for WPP is wind turbine downtime, and is for multiple reasons

an unwanted situation. Primarily because downtime prevents WPPs from making optimal use of the

wind to produce energy and secondly because asset owners are contractually bound to deliver a

certain level of energy. Although downtime cannot be eliminated, condition monitoring should make

unplanned downtime due to component failure a thing of the past. Currently applied maintenance

strategy is to perform planned maintenance that is scheduled based on predictive models, which can

be improved with joint logistic planning by TSOs and WPPs. When all maintenance is foreseen in

either of the scenarios, it is possible to align maintenance tasks on assets of different owners.

1.2 Offshore wind maintenance organisation
Offshore wind maintenance operations (MO) require four essential categories of assets and

resources to enable execution, namely spare-parts,

technicians, vessels and a port for on- and

offloading. A typical WPP owns at least a few crew

transfer vessels (CTV), a small dock, a warehouse

containing an inventory of frequently needed WT

spares and employs a team of wind turbine

technicians. Such a configuration enables the WPP

to execute most recurring, minor maintenance

tasks efficiently, that typically account for 80% of

the total maintenance demand [2]. The remaining

20% of the maintenance demand are major repairs

and replacements, which require more resources

and specialised assets. Owning these is

economically inefficient due to low utilization and

are therefore usually outsourced, or shared by

multiple WPPs. Table 1 gives an overview of the

typical MO requirements for different types of

failures.

1 https://windopzee.nl/onderwerpen-0/wind-zee/waar/
2 TKI Wind op Zee, The Netherlands’ Long-Term Offshore Wind R&D Agenda, October 2019, Utrecht, The Netherlands

Table 1: Typical maintenance operation requirements
for each failure type

https://windopzee.nl/onderwerpen-0/wind-zee/waar/

13

It’s clear that these resource intensive operations require many different involved parties, that need

their assets and resources available at the same time, and need to be mobilized fast in order to limit

the energy production downtime of the wind turbine.

So, how is this supply chain mobilized after an occurring failure? Due to their remote and hard to

access locations, current state offshore wind turbines are smart assets equipped with condition

monitoring systems and communication systems, also known as supervisory control and data

acquisition (SCADA) systems. These systems gather data from sensors all over the wind turbine’s vital

components and send the data to onshore analysis systems. The data is automatically being analysed

and together with ocean and weather data applied to a parametric model of the wind turbine. With

this model a prediction is determined on future health states of the wind turbine. Of course, a

sudden unforeseen failure is also detected and immediately influences the current health state of a

wind turbine. All the current and future predicted health states of each wind turbine in the WPP,

together with the ocean and weather predictions form the input for an automatically generated

maintenance schedule, according to the research of Stock-Williams [3]. This schedule describes a

prioritized list of which turbines need what maintenance within a predicted optimal time window of

low wind speeds for safe operation and production loss restriction. An arbitrary example of such a

schedule is pictured below.

Figure 2: Arbitrary example of an automatically generated daily maintenance schedule

Based on the automatically generated maintenance schedule by the Asset Management System

(AMS), the asset manager starts planning the prioritized maintenance operations [3]. First, suppliers

of the right assets and resources need to be sourced and matched to each requirement of the

maintenance operation. Those suppliers could be company departments of the WPP, a shared pool

of resources between WPPs, or an external party. The asset manager finds this information in the

WPP ERP system. Next, the asset manager calls or emails each supplier to request their availability

and quotation within the scheduled time window, and for the estimated lead time. From the original

equipment manufacturer (OEM) a spare-part is needed to be available prior to the scheduled time

window. From both the vessel suppliers and the technician suppliers we need to know when their

vessels and technicians are available within the optimal time window for the given lead time. And

from the port we need to know when a berth is available for loading and offloading at the beginning

and at the end of the MO within the scheduled time window. Once the asset manager has received

enough replies from suppliers, he continues with the complex task of finalizing the MO planning.

This task includes:

• Finding overlap in the received supplier availabilities

• Within overlap, determine the earliest possible date of MO execution to limit downtime

• According earliest date, calculate all possible supplier subsets

• Selecting most suitable supplier subset according the WPP preferences

• Contracting the selected suppliers

14

All these activities are currently done manually by the asset manager and his team. Once the

maintenance planning is finalized, preparation for the MO can begin. Unavailable spare-parts are

manufactured, whereafter transported to the port of assembly. From the port, the vessels with

technicians and spare-parts sail together to the WPP for execution of the maintenance operation.

The current state maintenance organisation process as described in this section is illustrated on a

high level in figure 3, with an indication of the level of process automation.

Figure 3: Current state WPP maintenance organisation process, with indication of process automation

The automated processes in the current state maintenance organisation are internal processes of the

WPP. The currently manual supplier matching and contracting process is the first process where the

information of external parties is involved. For every single scheduled MO, it’s necessary for all these

parties to exchange commercially sensitive information in order the finalize the MO planning. The

sensitive information here is the scheduled maintenance demand of the WPP and the asset or

resource availability calendar of each supplying party, which both give an indication about company

performance. The maintenance demand schedule, the asset and resource availability schedules, and

the related cost information are the most essential pieces of information to finalize the maintenance

planning. All these pieces of information reside in the company ERP systems of the maintenance

supply chain members, including the maintenance demand parties such as the WPPs and TSOs.

The workload and complexity of the supplier

matching and contracting process becomes

even more clear when zooming in, which is

visualised in figure 4. The figure gives an

overview of all potential suppliers a WPP asset

manager needs to manually interact with in

order to fulfil the requirements of a particular

MO. The suppliers above are usually either

internal WPP company departments or shared

resource pools of multiple WPPs. The

suppliers below are usually externally

contracted.

The workload of a matching and contracting

process lies in the amount of information

transactions per MO, and the resulting

amount of information to be processed for

every MO. The complexity comes first from

matching the right suppliers to specific MO

requirements, and second from processing of

Figure 4: Overview of manual interactions of an WPP asset
manager with WPP maintenance suppliers

15

all received availability and cost data to determine the final MO planning, with respect to the

scheduled time window and estimated MO lead time, and the WPP optimisation preferences.

In the context of WPP operational performance it is important that maintenance is performed

according schedule, because the schedule is optimised to limit wind turbine downtime, thus

maximizing WPP performance. To support all sorts of MOs, including for sudden failures, it is

therefore important that the lead time of the supplier matching and contracting process is as short as

possible.

1.3 Problem definition
To achieve the renewable energy targets in the European Green Deal, plans are made to increase the

installed offshore wind capacity in European water by a tenfold within the coming thirty years.

On top of that, the average size of offshore wind turbines increases because of cost-effective energy

production. This results in more complex, multi-party maintenance operations with the need for

more specialised, typically outsourced, equipment.

And, because near shore locations are exhausted, WPPs are located further away from shore. This

results in longer transit times leaving less in the given time window for actual maintenance, but also

in more variations in the maintenance supply chain setup.

Summed up the European offshore wind maintenance supply chain is subject to increasing

maintenance operation complexity, for which the demand is about to grow by a tenfold in the next

thirty years. The automated processes in the maintenance organisation can easily accommodate this

upscaling, but are the manual processes ready for it?

Because of both the high capital and operational expenses of offshore wind maintenance assets and

resources, available maintenance assets and resources will become scarce while in increasing

demand. This puts tremendous pressure on the already complex job of the asset manager and his

team. To be able to accommodate the increasing demand and complexity while complying to the

maintenance schedule, they are forced to increase the supply chain size. This leads to more manual

information transactions and more information being manually processed for each scheduled MO,

within a similar amount of time.

One way of solving this is simply to add more human information processors, but that would

negatively influence the WPP operational performance due to the increased costs. Additionally,

limitations of the human as information processor are expected to lead to sub optimal solutions for

the matching and contracting of suppliers for every MO.

To accommodate the tenfold increase of maintenance demand and complexity, while complying to

the maintenance schedule, without negatively impacting the WPP operational performance, the

solution has to be found in automated computerised information processing. Since the maintenance

demand schedules, availability schedules and cost information reside in company ERP systems of the

supply chain parties, an automated matching and contracting system of connected ERP systems

could potentially be a solution. However, the crux of the matter is that we’re dealing with

commercially sensitive maintenance demand schedules and asset/resource availability schedules of

supply chain parties that don’t necessarily trust each other with that data. Business managers are

logically hesitant about integrating their protected ERP systems with a system that consists of

varying, unfamiliar supply chain parties on the basis of commercially sensitive data. This is not only a

problem specific to the offshore wind industry, but for every industry that has to plan multi-party

maintenance operations for a scheduled demand.

16

The generic underlying problem for the given context is:

 A lack of a secure system of connected systems that enables trustworthy data processing for

automated matching and contracting of maintenance supply for scheduled demand.

1.4 Envisioned solution
Before presenting the envisioned solution, the

conventional approach for the defined problem

is discussed. Because the main problem owner is

the dominant supply chain party that is in need

to maintain their assets, they usually develop a

centralised system themselves for which every

supply chain party has to integrate with. This

centralised system will be hosted on the

premises of the demand party or in a cloud

environment owned by companies such as

Google or Amazon.

This setup is problematic for a few reasons. First

of all, there is one dominant party in control over

the automated supply chain system. This gives

the dominant party the ability to control over

access to the system, and control over the

automated processes executed by the system

and the connected supplier systems.

Second, the dominant party together with the cloud provider has in theory access to all the data

processed by the system. The centralised system becomes a data lake full of commercially sensitive

data, which is highly undesirable in an era where data is seen as the world’s new most valuable

resource.

Third, every demand party shall have to develop and host their own system meaning that every

supplier has to integrate with every demand system they supply to. The amount of work and effort to

manage all those separate integrations already defeats the efficiencies gained through automation,

especially from the perspective of the

supplier.

Considering the reasoning above, the

envisioned solution has to be decentralised

of nature, allowing for peer-to-peer

exchange of sensitive data that is similar to

the current state manual phoning and

emailing. The envisioned solution should

also include a secure trustworthy way of

enabling process automation between

distrusting party systems. Ideally it also

allows for multiple demand and supplier

systems, and easy integration of new supply

chain parties. The envisioned solution is

visualised in figure 6. One innovative

Figure 5: Undesirable, conventional, centralised approach to
automate between supply chain systems

Figure 6: Envisioned, decentralised, approach to automate
between supply chain systems, allowing for multiple demand
and supplier systems.

17

technology famous for its decentralise nature and ability to create trust among systems is blockchain

technology. Blockchain technology gained popularity through the economic application called

Bitcoin, developed by pseudonymous Satoshi Nakamoto in 2008 [4].

The applicability of the technology to supply chains is well described in the book of Vyas, Beije and

Krishnamachari (2019), where real world examples of supply chain issues justify the application of

blockchain [5]. In comparison with described centralised systems, blockchain technology increases

supply chain resilience because it removes the presence of a central authority, and thus a central

point of failure. It provides a tamper-proof transaction ledger, and it provides trusted transactions

based on algorithmically enforced rules without human intervention. Via encryption it allows for

secure peer-to-peer data exchange while preserving the privacy of that data on a shared, public

network.

Open source blockchain technology offers data security and cost-effective transmission of

transactions in peer-to-peer networks with no central system. Removing the need for an information

broker or numerous system integrations with every party in the supply chain. Therefore, it allows for

a single, and direct business-to-business integration with all supply chain parties through one single

system integration.

Blockchain allows for full transparency and traceability of transactions within a supply chain, which

increases supply chain visibility and the ability to track provenance. Besides meeting with increased

customer demands, this also aids in solving disputes between parties and increases the quality of

delivered services because company underperformance becomes visible for the supply chain.

The use of smart contracts, which are computerized transaction protocols that execute terms of the

contract, allow for real-time settlement of information and financial, and automation of these flows.

Because blockchain provides a single validated consensus-based source of truth – the shared ledger –

every connected party has access to an efficient and effective flow of data, which is proven to be

essential for efficient supply chain coordination and responsiveness.

Taking all into consideration, blockchain technology is determined to be a useful tool for developing

a solution to the defined problem. Through a single system integration taking part in a system of

connected systems that allow for, via smart contracts automated, peer-to-peer exchange of

encrypted sensitive data. Dominant parties, sensitive data risks, human processors and manual

information transactions are eliminated; while increasing the supply chain’s resilience,

responsiveness, service quality and visibility. Blockchain also allows for automated financial

settlement in digital currencies, that could lead to autonomous operation and coordination scenarios

as envisioned in future data-driven concepts such as Industry 4.0 and Supply chain 4.0.

Not only in theory, but also in practise blockchain proves to be a useful tool for automating the

supply chain information flow. The Naviporta platform includes a blockchain based digital notary, to

notarise the ownership state and transfers of shipping documents. The platform reduces end-to-end

documentation processing from 5-10 days to less than 24 hours3. The Tradelens platform leverages

blockchain to track and share valuable shipping related events, that can lead to millions of dollars on

operational savings for large and medium sized LSPs4. Twelve of the largest Coca-Cola bottlers use

blockchain to transparently streamline cross-organizational transactions. For the entire supply chain,

they are expecting $100 million in annual operational savings5. These cases will be further elaborated

on in the next chapter.

3 https://naviporta.com/
4 https://www.tradelens.com/
5 https://provide.services/news/baselining-the-north-america-coca-cola-bottling-supply-chain

18

1.5 Research objective and research questions
The determined objective for this research is to design a secure, decentralised system of connected

systems to automate the supplier matching and contracting process for scheduled maintenance

operations. The designed system-of-system shall take over all the necessary information transactions

between supplier and demand systems, and associated information processing in order to

accommodate the expected tenfold growth of offshore wind maintenance demand and complexity,

while complying with the maintenance schedule and keeping operational expenses low.

Due to its merits, blockchain technology is selected as suitable technology to be included in the

design of the envisioned solution. The designed system-of-systems shall push the automation level of

maintenance organisation one step further. And precisely because of the use of blockchain

technology, real-time financial settlement becomes possible, which opens the door to autonomous

operation in a machine-to-machine economy. How the automation level is expected to shift with

current and further research is illustrated in figure 7.

The main research question that is determined for this research is:

How to design a technical feasible decentralized system-of-systems that enables automated matching

and contracting of maintenance supply for scheduled demand through privacy preserving processing

of commercially sensitive data?

The answer to this question is found through answers of the following research sub-questions:

1. What is the theoretical framework to define and describe envisioned system-of-systems?

2. What is the most suitable design method for envisioned system-of-systems?

3. How will the design be verified?

4. How will the design be validated?

5. What are the activities automated by envisioned system-of-systems in current state matching

and contracting process?

6. What are relevant KPIs for the automated process?

7. What are the implications of the final design?

8. How is trustworthy processing of sensitive data enabled?

Figure 7: Current
and further
research objectives
for maintenance
organisation

19

Chapter 2: Research design
In chapter 2 the overall research design for this design research is explained. It starts with an

elaborate study of literature relevant to the research context and defined research questions.

Through the literature analysis, it is expected that the necessary theoretical foundation, design

methods and design process requirements are found to help answering the main research questions.

The chapter concludes with a determined research approach, including a design scope and design

approach, followed by the answering of some research questions.

The three sections that form this research design chapter are:

• 2.1 Literature analysis

• 2.2 Research approach

• 2.3 Answers to research questions

2.1 Literature analysis
Because the objective of this research is to design a decentralised automated system-of-systems,

literature is analysed on the topics of system and system-of-system theory, blockchain technology

and system engineering methods. This section should give all the tools needed for the design process

of the envisioned system-of-system.

The end of this section unveils a theory gap in the system-of-systems theory, that was discovered

after analysing all mentioned literature.

The four sections in this literature analysis section are:

• 2.1.1 Systems and system-of-systems theory

• 2.1.2 Blockchain technology

• 2.1.3 System-of-system design methods

• 2.1.4 System-of-Systems theory gap

2.1.1 Systems and systems-of-systems theory

The first topic for which literature is analysed is systems and system-of-systems theory. This section

should give us the terminology, properties and design principles for system-of-systems necessary to

develop the envisioned system-of-system design.

The notion of holism, the concept that ideas, people or things must be considered in relation to the

thing around them to be fully understood led to the development of System Theory. The first effort

to capture the concept in terms and definitions was made by Ackoff, of the University of

Pennsylvania, in 1971 [6]. The word “system” is a very general term derived from the Greek verb

meaning “to compile”, of which many definitions reside in literature. Veeke, Ottjes and Lodewijks,

developers of the “Delft Systems Approach” concluded the existing definitions lacked a crucial

element, namely the perspective of the researcher. They provided the following definition of a

system [7]:

A system is, depending on the researcher’s goal, a collection of elements that is discernible within the

total reality. These discernible elements have mutual relationships and eventually relationships with

other elements from the total reality.

A system is composed of elements, which are the smallest parts considered by the researcher in view

of his goals. Elements can be both material and non-material. Materialized elements are defined as

concrete, meaning they exist and are tangible. The opposite of concrete elements are abstract

elements, which are separated from the material; intangible.

20

The interaction between elements are referred to as relationships. In an abstract system, these are

conceptual interactions. In a concrete system, there is dynamic exchange. Elements influence each

other either mutually or one-sided. Characteristics of one element can influence or initiate values of

characteristics on another element, meaning that non-existent characteristics with value 0 could be

influenced to have a certain value so that a non-existent characteristic becomes present.

The total reality in which the system, and all other systems, elements and relationships, exists is

defined as the universe. As the system definition describes, a system is a group of elements

distinguished by the researcher. The elements of that system have inter-relationships, but also

relationships with other elements within that universe.

The elements in the universe that directly influence the values of characteristics of the system

elements is defined as the environment. When a company is considered as a system, the society can

be seen as a higher-level system that influences the elements of the company and therefore is a

definite part of the system’s environment.

In order to obtain a clearer insight into complex systems, it is extremely useful to differentiate the

system into subsystems and aspectsystems. As a system is built from elements and relationships, it

can be described through the lens of the elements or through the lens of relationships.

A subsystem is a partial collection of elements in the system whereby all the original relationships

between these elements remains unchanged, and completely conforms to the definition of a system.

A fuel system can be regarded as a subsystem of a car. So, a top-level car system can be subdivided

into partial collections of subsystems, such as the fuel (sub)system, the engine, the bodywork

subsystem. The subsystems are a partial collection of elements such as springs, bolts, shafts. A

pyramid can be used to place the partial collections into a layered graphical definition framework,

where each layer represents a collection of the layers below. For now, the pyramid lacks a later to be

added top.

Figure 8: Layered definition framework for describing systems

An aspectsystem is a partial collection of the relationships whereby all the original elements remain

unchanged. The relationships within an aspectsystem are usually of a single type. Examples of

aspectsystems are:

• Thermodynamic aspectsystem; such as the conversion

of chemical energy into kinetic energy, resulting in heat

transfer and material expansion

• Tribology aspectsystem; the mutual friction of moving

parts and the lubrication required

• Economical aspectsystem; the cash flows or the value-

added flows within a company

A graphical clarification on sub- and aspectsystems is provided

in figure. Figure 9: Graphical clarification of
subsystems and aspectsystems [7]

21

A system also can have a state, which is the value of the properties at that time in the system. An

event occurs when the value of the property of an element changes. When one event leads

inevitably to other events, this is referred to as activity.

Sometimes not only the value of the properties but also the relationships within the system change,

which is called a changing structure. The opposite is called an unchanging structure.

Another distinction can be made in terms of static or time-dependent systems. In a static system, we

find elements and relationships but no events. In a time-dependent system, events and activities

must take place to fulfil certain functionalities. In time-dependent systems processes can occur, that

transform an input into an output through throughput. For these processes permanent elements

and temporary elements can be distinguished.

Figure 10: Simplest scheme of a time-dependent system

A process is a series of transformations that occur during throughput, which result in a change of the

input elements in place, position, from, size function, property or any other characteristic. Through a

process, a system fulfils its function in the environment. The fulfilment of that function in the

environment is the system’s goal.

System-of-Systems Theory

To have the ability to describe even more complex systems, a class of systems that are built from

components which are large-scale systems in their own right, systems theory was expanded to

eventually form the system-of-systems theory. Although commonly used, there was no widespread

agreement on the exact meaning of the term System-of-Systems (S-o-s). Maier was the first in 1998

to examine the meaning of it in detail [8]. He proposes to define collaboratively integrated systems

as “System-of-Systems” with two distinguishing characteristics for applying the term. If a system

meets these characteristics it can be considered as an S-o-s.

A system-of-systems is an assemblage of components which individually may be regarded as systems,

and which possesses two addition properties:

• Operational independence of the components: if a S-o-s is disassembled into its components

systems the component systems must be able to usefully operate independently. That is, the

components fulfil customer-operator purposes on their own.

• Managerial independence of the components: the component systems not only can operate

independently, they do operate independently. The component systems are separately

acquired and integrated but maintain a continuing operational existence independent of the

system-of-systems.

Now that a definition of s-o-s is established, let’s combine the s-o-s Theory of Maier with the Systems

Theory in our layered definition framework for describing systems and s-o-s. Since s-o-s are a

collection of individually identifiable systems, s-o-s form the top of the pyramid.

22

Figure 11: S-o-s added as top to the definition framework for describing systems and s-o-s

Now that a definition of s-o-s is established, let’s look at some of the architectural principles that

Maier identified to give the definition more body. He derived these principles, which originally were

published as heuristics, from observed successfully developed s-o-s.

The first principle is the principle of stable intermediate forms, that originated from civil

construction. It was recognized that it is desirable for a building to be self-supporting at many stages

during its erection. This heuristic is applicable to s-o-s as well, as complex systems will develop and

evolve within an overall architecture much more rapidly if there are stable intermediate forms than if

there are not.

The second principle is policy triage, which gives guidance in selecting and supporting components

for s-o-s. In essence it comes down to choosing very carefully what to try and control in a s-o-s

design, since all systems should be able to operate and to be managed independently. Attempting to

overcontrol will fail for lack of authority, and undercontrol will eliminate the system nature of the

integrated system.

The third principle is leverage at the interfaces. Derived from the combination of two heuristics:

“The greatest leverage in system architecting is at the interfaces. The greatest dangers are also at the

interfaces”. Again, the operational and managerial independence of the individual systems in an s-o-s

leaves that there’s nothing else to architect but the interfaces. The architecture of an s-o-s design are

the interfaces. The internet is the interfaces, the Internet Protocol (IP). Applied to the example of an

integrated air defence system, the s-o-s that combines all the independent systems is the command,

control and communication network. It is basically the glue that combines the individual pieces.

The fourth and last principle is the principle of ensuring cooperation. “If a system requires voluntary

collaboration, the mechanism and incentives for that collaboration must be designed in.” The cost

and benefits of system collaboration should be superior to the costs and benefits of independent

operation, because in an s-o-s the independent systems choose actively, to some degree, if they

want to participate or not. If no collaboration is incentivized and occurring, it is not a system-of-

systems.

Maier provides multiple examples where his definition and principles are applied to. The internet is

one of the examples that perfectly fits his theory.

23

Figure 12: The Internet and its system-of-systems properties[8]

2.1.2 Blockchain information technology

The second topic for which literature is analysed is blockchain technology. A fundamental

understanding of the innovative technology has to be achieved in order to be able to use it for a

system-of-systems design. It is also important that the merits and demerits are well understood.

First, fundamentals are discussed, followed by classifications and interesting applications, therefore

the structure of this section is as follows:

• 2.1.2.1 Blockchain fundamentals

• 2.1.2.2 Enterprise blockchain applications

• 2.1.2.3 Baseline Protocol

2.1.2.1 Blockchain Fundamentals

It started when the anonymous Satoshi Nakamoto released Bitcoin and its whitepaper in 2008 [4].
Cryptographic tools and the internet enabled the creation of a system to transfer value over the
internet without the need for a trusted third party, i.e. financial institutions. According Nakamoto,
the current way of electronic payments was inefficient because banks have to facilitate reversible
transactions when disputed. The costs of mediation, and the cost of employing all the middlemen,
limits the minimum transaction size and thus blocking the use of very small and quick payments. In
the context of Industry 4.0s machine-to-machine interaction this is already a great loss. Additionally,
the reversibility of transactions spreads the need for trust to all people handling the transactions,
making the system information heavy and less secure. It also disables services that require
irreversible transactions, such as in automated systems. As Nakamoto stated, “what is needed is an
electronic payment system based on cryptographic proof instead of trust, allowing any two willing
parties to transact directly with each other without the need for a trusted third party. Transactions
that are computationally impractical to reverse would protect sellers from fraud, and routine escrow
mechanisms could easily be implemented to protect buyers.” The proposed solution to the double-

24

spending problem is using a peer-to-peer distributed timestamp server to generate computational
proof of the chronological order of transactions. The system is secure as long as honest nodes
collectively control more computing power than any cooperating group of attacker nodes.
That whitepaper became the foundation for a disruptive, unprecedented technology that is now
defined as blockchain technology. Blockchain is often used interchangeably with distributed ledger
technology, but it’s only a type of distributed ledger. A distributed ledger is a database of replicated,
shared and synchronized digital data that is geographically spread across multiple locations. It
provides for an auditable history of information and is visible to anyone in the network. Distributed
ledgers have, like blockchain, a mechanism of reaching consensus among the nodes. What makes
blockchain unique is that is organizes data in blocks and updates the entries using an append-only
structure. The following sections will further elaborate on the technology that Nakamoto laid the
ground work for.

In order to help place the information below into context, a boiled down explanation of blockchain
technology is provided. First, it is important to define the public ledger as a record-keeping system. It
holds the list of all addresses in the network and their respective holdings together with the
generated blocks. A block is a set of mutations (i.e. transactions) that transition the ledger from one
state to the other. In that respect, a blockchain system is described as:

• A distributed peer-to-peer network of nodes, that can be full or light;

• Where each node holds a (partial) copy of the shared append-only ledger;

• That is formed and continuously growing by validated transactions among actors in the
network, that are combined into blocks. Also, a reference to the previous block is added;

• Facilitated by the full nodes that provide computing power for the processing and validation
of these transactions;

• After validation, the full node – or validator – broadcasts the block of transactions
throughout the network;

• Via a consensus mechanism, automated network-wide agreement is reached about which
block of transactions complies with the rules of the mechanism, and thus is the right one to
add;

• After which the transactions in the block are applied to the entries of each individual copy of
the existing ledger. The chain of blocks represents all the mutations done on the genesis
version of the ledger, hence the term “blockchain”.

Transactions

Vitalik Buterin, the founder of Ethereum, which is the second generation blockchain that

incorporates the use of smart contracts, clearly explains that from a technical perspective, the Bitcoin

ledger can be seen as a state transition system [9]. One state consists of the ownership status of all

existing Bitcoins, where a “state transition function” takes the state and a transaction and outputs a

new state, as schematically pictured below.

Figure 13: Schematic representation of a state transition in the Bitcoin system [9]

25

The new state is the updated Bitcoin ledger, showing the updated ownership status of all existing
Bitcoins. In a standard banking system, the state is represented by the balance sheet. When
someone wishes to transact, the state function reduces their account balance and increases the
account balance of the receiving party. The state in Bitcoin is the collection of all unspent transaction
outputs, or UTXO, with each UTXO having a denomination and an owner. The owner is defined by a
20-byte address which is the cryptographic public key. A transaction has inputs of one or more
references to an existing UTXO, and a cryptographic signature produced by the private key
associated with the owner’s address. The transaction also has one or more outputs, with each output
containing a new UTXO to be added to the state. Basically, the state of the ledger is updated with
new address containing unspent Bitcoin and cleared of addresses that have spent their Bitcoin. The
state transition function can be roughly described as [9]:

APPLY(S, TX) -> S’ =

1. For each input in TX:
a. If the referenced UTXO is not in S, return an error.
b. If the provided signature does not match the owner of UTXO,

return an error.

2. If the sum of the denominations of all input UTXO is less than the
sum of the denominations of all output UTXO, return an error.

3. Return S with all input UTXO removed and all output UTXO added.

Step 1a prevents transaction senders from spending coins that do not exists. Step 1b prevents
transaction senders from spending other people’s coins. Step 2 enforces conservation of value and
step 3 returns the new state as ownership status.

Consensus

Because of the decentralized nature of the state transition machine, there has to be a way to reach

agreement on the order of all transactions being done to prevent double spending from happening.

In centralized systems, the company or person in control has gained the trust to decide on the

correct order of transactions. However, Bitcoin was purposely designed to eliminate centralized

control so the no single party could grab the power of the system. So how does a decentralized

system become trustworthy? First, it is made extremely difficult and costly to tamper with the

system. Second, by incentivizing good faciliatory behaviour. That is rewarding So how does a

decentralized system reach agreement on the order of transaction? The state transition system

needs to be combined with a consensus system for everyone to agree on the order of transactions.

Nowadays, many different consensus systems exist of which the most common are; proof of work

(PoW), proof of stake (PoS), delegated proof of stake (DPoS), proof of burn (PoB), Practical Byzantine

Fault Tolerant (PBFT) or Raft [10][11].

In the Bitcoin system, consensus is reached through proof-of-work, by a process called mining. Nodes

in the network, also known as miners, continuously attempt to produce packages of transactions

called blocks. For each new block, a computationally intensive puzzle needs to be solved. The

network is set to produce roughly one block every 10 minutes, with each block containing a

timestamp, a nonce, a hash of the reference to the previous block and a list of all the transactions

that have taken place since the previous block. Miners are increasing the nonce x until H(x)<y, where

H is a secure hash function and y is a target hash. When y gets smaller, more hashes need to be

calculated before finding the right x, that is the puzzle to be solved. All miners are simultaneously

computing hashes until someone finds the correct one. Once a miner finds a solution for on for x, all

the transactions since the last block are combined in the new block and the block is broadcasted to

26

the network. Eventually, a large ever-growing chain of interrelated blocks is created that constantly

updates to represent the latest state of the Bitcoin system as pictured below.

Figure 14: A chain of blocks containing transactions. Each block represents a saved state of the system. [9]

Any other miner who receives the broadcasted will verify if the block is correct and the transactions
are valid through the process described below. If the block is found to be correct, the new block is
added to their copy of the blockchain. And the process restarts.

Check if block is valid =

1. Check the existence and validity of the previous block referenced by
the proposed block.

2. Check that the timestamp of the block is greater than that of the
previous block and less than 2 hours in the future.

3. Check that the proof of work on the block is valid.
4. Let S[0] be the state at the end of the previous block.
5. Suppose TX is the block’s transaction list with n transactions. For

all I in 0…n-1, set S[i+1]= APPLY(S[i], TX[i]). If any application

returns an error, exit and return false.

6. Return True, and register S[n] as the state at the end of this block.

The order in which the miner includes transactions in the block
is very important, because when transaction B spends a UTXO
created by transaction A, then transaction A has to be placed
before B and not otherwise. If the miner includes B before A,
the block gets rejected. Every miner creates and proposes
blocks which are broadcasted throughout the network, but only
the correct one will eventually be added to the blockchain.
The miner that found the correct block is rewarded with an
amount of Bitcoin, which gradually decreases with the
network’s age. He is also rewarded with the transaction fees
paid for every transaction in the block. Because of this
economic incentive, it is interesting for miner to facilitate the
Bitcoin network. And, moreover, it becomes far more lucrative
to simply comply and facilitate than to perform undermining
behaviour. The mining process is schematically pictured in
figure 15.
In a situation where two miners produce a correct block at the
same time, a natural fork of the chain is formed. However, the
chain that is subjected to the most computational power shall
finally prevail and the forks shall be blended with the dominant
chain again.

Figure 15: The mining process.

 27

Security

The security of blockchains comes from their decentralized,

immutable and tamper-proof features. To assess the current

state of the security, the CIA security triad model is used. The

model is composed of three areas: confidentiality, integrity

and availability.

Confidentiality
According to the National Institute of Standards and
Technology (NIST), confidentiality in information technology
means “the property that sensitive information is not disclosed
to unauthorized individuals, entities, or processes”6.
Current blockchain technology prevents this in three ways. First, in private, or permissioned,
blockchains authentication and authorization controls could be set up to prevent unwanted parties
from network access [12]. Second, end-to-end encryption of the blocks is provided in certain
blockchains, meaning that the data contents of a block remain fully encrypted while in transit. So
even when the data is flowing through an untrusted network, it remains confidential. And third, by
the use of private and public encryption keys. The endpoints of the transaction, the users, both own
a pair of public and private keys. If user A wants to send data to user B, he creates a transaction to
the public key (recipient address) of user B and he signs the transaction with his own private key.
Only those who hold the private keys of the involved public keys are authorized to decrypt and see
the data of that transaction.

Integrity
The NIST describes integrity as “guarding against improper information modification or destruction,
and includes ensuring information non-repudiation and authenticity”. For information systems it is of
extreme importance that data always remains consistent and integer during lifetime. Regardless of
the stage the data is in; in transit, work or rest storage, data integrity can be assured by for example
encryption, hash comparison, or digital signing. Blockchains provide data consistency and integrity in
two ways. First, the blocks and transactions are interrelated by incorporating the hash of a previous
block into the hash of a new block combined. That interrelated chain combined with a large
incentivised decentralized network prevents improper information modification or destruction.
Second, every transaction added to the blockchain is digitally signed and timestamped so it can be
traced back to a specific time period and the involved parties can (only) be identified by their public
key. In this manner, it is assured that someone cannot duplicate the authorship of a transaction they
originated. The traceability increases the integrity of the blockchain as fraudulent transactions are
associated to a user’s public key. With every new block addition, the global state of the ledger
changes and the previous state is hashed and stored in the new block, resulting in a fully traceable
history log. The ease of auditability provides a level of transparency and increased security for
involved parties.

Availability
Availability is defined by the NIST as “ensuring timely and reliable access to and use of information”.
Because of decentralization and operating on a peer-to-peer network, blockchain is highly accessible
and operational resilient. If part of the network is down or under attack, those nodes could be made
redundant and business could continue as normal. So even when a node goes offline, all the
information can be accessed at the next nearest node. Also, the decentralization provides no single
point of failure. However, treats definitely exist.

6 Source: https://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

Figure 16: CIA security triad model

https://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

 28

A well-known attack on the availability of an internet service is a DDoS attack, where a server is
overloaded with requests that it becomes inaccessible. Given that blockchains are distributed
platforms, a DDoS attack on a blockchain is much harder and more costly to do. One way is to send a
lot of empty transactions to overload the network, although it would cost the attacker a lot of
transaction fees. Nevertheless, Ethereum suffered from a DDoS attack in 2016 and the Bitcoin
network in 2014, so adequate protection measures are still necessary. And because of the growing
base of unsecure installed IoT devices, online availability of DDoS malware and the availability of
even higher bandwidth speeds, DDoS attacks will remain a persistent treat [12].
Another major issue would be a global internet outage, even for public blockchains. Therefore,
private blockchains need to ensure that their network is sufficiently distributed globally and resilient
with no single point of failure.

Scalability
As of today, blockchain scalability remains an issue that needs to be resolved to reach widespread
adoption. For most computer systems, scalability refers to the system’s capability to handle a
growing amount of work. If it can’t handle the growing amount of work by simply adding additional
resources, the system has a limited scalability. In blockchains, scalability is generally simplified as the
transaction throughput per second (TPS) it can handle, while remaining secure and accessible. At
time of writing Bitcoin handles on average 7 TPS and Ethereum reaches 15 to 25 TPS, which is in
sharp contrast with payment provider Visa’s 1700 TPS7. There are blockchains in existence with a
much higher throughput, like the Ripple blockchain, which tested at 1500 TPS but lack on other
essential features. Blockchain’s scalability is limited in a couple of ways:

• Limited block size, that caps the maximum amount of data in a block

• Increasing size of the blockchain, that requires increasing hardware capabilities

• Response time

• Transaction fees, that increase with the amount of traffic on the blockchain

• High electricity usage for PoW consensus based blockchains, such as public Ethereum

Blockchain classifications

As already mentioned in the material above, blockchains can be classified as either permissioned or

permissionless. On top of that there are additional distinctions to be made. Blockchains can be

classified based on access to the blockchain data and access to transaction processing, which lead to

the following class definitions [13].

Class Definition

Public blockchain A public blockchain is a blockchain, in which there are no restrictions on
reading blockchain data and submitting transactions for inclusion into the
blockchain. Published data may however be encrypted.

Private blockchain A private blockchain is a blockchain, in which direct access to blockchain data
and submitting transactions is limited to a predefined list of entities

Permissionless blockchain A permissionless blockchain is a blockchain, in which there are no restrictions
on identities of transaction processors, those are users that are allowed to
create blocks of transactions

Permissioned blockchain A permissioned blockchain is a blockchain, in which transaction processing is
performed by a predefined list of subjects with known identities.

Table 2: Blockchain classes

7 https://hackernoon.com/who-scales-it-best-blockchains-tps-analysis-pv39g25mg

https://hackernoon.com/who-scales-it-best-blockchains-tps-analysis-pv39g25mg

29

The classes above do not provide sufficient coverage of the different categories of blockchains in

existence, further detailing gives the following republished table complemented with examples of

existing projects.

 Access to transaction processing:

Access to
transactions:

Permissioned Permissionless

Public Public read access but permissioned
network facilitation (e.g. Internet, Corda)

Existing cryptocurrencies (e.g. Bitcoin) and
smart contract platforms (e.g. Ethereum)

Regulated Direct read / transaction creation access
for clients (e.g. Hyperledger Fabric)

Ability to create transactions can be
regulated (e.g. stablecoins such as USDC,
built on Ethereum)

Private Access limited to transaction processors;
benefits of blockchain technology are
diminished (e.g. Hyperledger Fabric)

Not applicable

Table 3: All blockchain categories [13]

Whether a blockchain is either permissioned or permissionless makes a lot of difference in terms of

security, scalability, customizability and operational effort. In permissionless setups, anyone can use

and/or facilitate the network. This comes with the advantages that most users or applications don’t

have to spend effort on hardware and running the network. The networks are usually huge,

geographically decentralized and subject to algorithmic consensus, making them secure but slow.

The downside is that the permissionless network isn’t owned by anyone, merely facilitated by a large

group of pseudo-anonymous validators that have to vote on updates and decisions concerning the

network, which limits the scalability and customizability. On the other hand, permissioned networks

only have a few facilitators which makes them much faster and scalable, but therefore lack the

decentralization and the security that comes with it. Permissioned blockchains are regarded as

suitable for enterprise applications, where permissionless blockchains are usually regarded as most

suitable for public and government applications.

2.1.2.2 Enterprise blockchain applications

Now that a fundamental understanding is reached about blockchain technology merits, demerits and

capabilities, let’s look at some examples of implemented enterprise blockchain applications

specifically applied to multi-party business processes, to see what it can deliver in practise.

Naviporta

Co-founded by Blocklab, Naviporta focusses on the digitalization of documentation required for

logistics and customs processes for international shipments, and the necessary accompanied system

integrations. Their goal is to seamless integrate the physical, information and financial flows, for

which they created an open and neutral platform to exchange assets and information in a digitally

trusted and secured way8. The platform provides for real-time and end-to-end visibility of containers,

access to real-time validated information for supply chain participants and authorities, and

immutably record what has been done by whom via the digital notary. The digital notary, built on the

open-source public Ethereum blockchain, also allows for notarisation of shipping documents like

eCMR and bill-of-lading. Their solution is expected to reduce end-to-end documentation processing

time from 5-10 days to less than 24 hours, and with a large 50% industry-wide adoption could

potentially save $4 billion per year9.

8 https://naviporta.com/
9 https://naviporta.com/2021/05/ebl-trial-rotterdam-singapore-naviporta/

https://naviporta.com/
https://naviporta.com/2021/05/ebl-trial-rotterdam-singapore-naviporta/

30

Tradelens

Where Naviporta focusses on the digitalization of logistics and customs required documentation for

shipments, Tradelens focusses on sharing of all the valuable events and information around these

shipments such as events regarding consignment, transport equipment, shipments and transport

plans. A permission matric and blockchain are utilized to ensure every party in the interconnected

ecosystem of supply chain partners has access only to their information and a secure audit trail of all

transactions, enabling unprecedented collaboration and sharing of data. They use the IBM blockchain

platform that is based on the open-source permissioned Hyperledger Fabric blockchain, where the

network validators are known and certified. Currently they have 2.4 billion events tracked, 22 million

documents published and 46 million containers processed on their platform. For medium sized

logistic service providers using Tradelens, yearly operational savings can run over $1 million10.

CONA

For the twelve largest Coca-Cola bottlers in North America representing over 500 bottling sites, a

supply chain platform was created by CONA Services together with Provide Services11. In 2019, the

first set op bottlers adopted a Hyperledger Fabric platform to streamline the relationship between

franchised bottling companies to make cross-organization supply chain transactions frictionless and

transparent. To extend the use-case from the internal network to a larger audience, they utilize the

Baseline Protocol to establish a “bottling harbour” enabling a low-barrier network onboarding

process for bottling suppliers and other external suppliers.

The relationship between buyers and suppliers results in referencing business objects like Request,

Proposal, Purchase Order, Delivery, Invoice and Payment, but lead to various to coordination and

integration challenges:

• Undesired and unnoticed changes on Purchase Orders may lead to a buyer receiving the

wrong delivery;

• Deliveries may be different from orders due to manual errors on supplier’s side;

• All process required documentation and information needs to be repeatedly distributed

manually, by email for example;

• Small participants (without ERP) are prevented from integrating with the ecosystem due to

technical and cost barriers.

Digitalization of these business objects should eliminate - among others - complex disputes,

information asymmetry, redundant manual data distribution and manual errors. The Baseline

Protocol proves to be an outstanding technical backbone for the desired solution by:

• Using public Ethereum blockchain as an always-on, pay-per-use frame of reference;

• Keeping enterprise data in traditional systems of record;

• Enabling complex, private, interorganizational business process automation;

• Providing extensibility for Decentralized Finance and asset tokenization use-cases;

• Is openly-governed open source, on its way to become an OASIS standard.

The expected results of the platform are $650 million of tokenized invoice value 2021, $100 million in

yearly operational savings and supply chain dispute reduction of 97%.

10https://www.tradelens.com/
11 https://provide.services/news/baselining-the-north-america-coca-cola-bottling-supply-chain

31

2.1.2.3 Baseline Protocol

Inspired by the CONA business case, where supply chain ERP systems are connected together via a

common frame of reference – i.e. public Ethereum network – to streamline and digitalise common

business practices, this section analyses the Baseline Protocol in detail.

As of this moment, there are quite some projects focussed on merging multilateral enterprise

processes with blockchain technology. The University of Cambridge analysed live projects in a second

global enterprise blockchain benchmark study [14], which gives a clear view of the current landscape

supported by the figures below. The dominant use-case, although fragmented, for these networks

appears to be supply chain tracking. The main supported protocol framework for these applications

is Hyperledger Fabric. For 72% of all live projects, cost reduction is the predominant objective,

followed by respectively hybrid objectives (14%) and novel market models (8%). What is interesting

to observe is the dominant projects represented in figure 22 are permissioned regulated blockchain

networks, also known as consortium

blockchains. Stellar on the other hand has features from both type of systems. Any node may enter

the network permissionless without having to pass through a central gatekeeper. However, for a

node being able to validate transactions it is obliged by the consensus protocol to share the same

network state value as the majority of the nodes, which can be regarded as the permission part.

It is no coincidence that permissioned regulated blockchains are in favour for enterprise applications.

In comparison to public blockchains, they allow for consortium control over features like governance,

ledger transparency, network updates, and transaction cost. A risk with this type of setup is that the

number of independent nodes can be or become very small, to a point where it defies the main

principle of blockchain; decentralisation. A disadvantage of this type of setup is that it requires the

participants to run the entire digital infrastructure themselves. This forces them to get

knowledgeable about the technology; purchase and install the needed hardware; operate, monitor,

and maintain the software and hire software engineers. For the majority of SMEs, especially those

not operational in the IT domain, such an investment is infeasible from a business perspective.

What the Baseline Protocol sets apart is that it’s a set of configurable, mainly open-source,

techniques that include the public permissionless Ethereum blockchain, specifically designed to

baseline different systems of record, such as ERP, CRM and other internal systems. Because it

includes the relative mature Ethereum blockchain, it is at the upper boundary of decentralisation and

cryptographical trustworthiness, and allows for business logic executed by smart contracts.

Additionally, the existing hardware and digital infrastructure can be utilized on a pay-per-use manner

because the (fluctuating) transaction costs are the only cost for operating on the network, allowing

Figure 18: Enterprise blockchain protocol breakdown Figure 17: Enterprise blockchain use-case breakdown

32

for SMEs to be included into the system.

A business process is considered baselined when two or more systems store data and run business in

a verified state of consistency, enabled by using a network as the common frame of reference. The

ability to connect different ERP systems, on a trustworthy pay-per-use network that allows for

involvement of SMEs, while most of the business logic being automated and enforced by smart

contracts can be a major relief within the current contractually rigid context of offshore wind

maintenance.

The components that together form the Baseline Protocol are divided in on-chain and off-chain

components. On-chain components are the smart contracts that, once deployed, reside on the

blockchain network and are executed by the Ethereum Virtual Machine. The off-chain components

facilitate the ability to perform a multilateral business process enforced by these on-chain

components. The on-chain components are:

On-chain BP
components

Function

OrgRegistry
contract

“Rolodex”contacts list of involved participants

Shield
contract

Gatekeeper that calls the Verifier contract if a participant listed in the OrgRegistry sends a
proof. Also holds a fingerprint of the current state of the Merkle Tree

Verifier
contract

On-chain component of the ZeroKnowledge-service that a baseline proof verification is only
deposited on the network if involved counterparties have performed the Workflow Step
consistently and have adhered to the rules of any previous Workflow Step

Table 4: On-chain components of Baseline Protocol

The off-chain components that facilitate operations with on-chain components are listed in the table

below. BP leverages best in class open-source products for the implementation of these components,

for example the utilization of NATS as messenger service.

Off-chain BP
components

Function

Messenger
service

Decentralised private automatable messaging between participants, ideally sends data point-
to-point without intermediate storage, able to specify different participants and workflow
steps, balance between liveness and security, and handle long session management.

ZK service Privacy tool to provide zk-SNARK functionalities (Zero Knowledge Succinct Non-interactive
Argument of Knowledge). Zk-SNARKS are mathematical concepts and tools to establish zero
knowledge verification of succinct proofs, which convert logical statements to arithmetic
circuits, that are then leveraged to generate proofs. It allows to prove logical statements
without disclosing any information and yet proving the validity of the proof. The service
provides functionalities to convert business logic into arithmetic circuits, create Verifier
contracts and generate proofs that are to be verified in the Verifier contract. In essence it
converts business logic into unrecognizable complex mathematical tests (Verifier contract)
and answers (proof).

ERP
connector

Component that integrates existing ERP systems and their user interfaces with the BP
components. It allows for data exchange between the ERP and BP components, and a BP UI
through the existing enterprise software eliminating the need for a separate system for
employees to work with.

33

Items below aren’t represented in literature’s component list, but are considered to play a vital role and are
also included in the example reference implementations Radish34 and BRI-1. Purpose of BP is to provide a
framework for building baselined offerings, therefore, the components below have been included.

Blockchain
client

Component that integrates the (Ethereum) blockchain with the off-chain components and
allows for the ability to perform transactions and smart contract function calls, but also
listens to the Verifier contract for emitted verifications and manages the associated
commits.

Identity
Service

Service that provides for verifiable off-chain digital identities and signatures in order for
participants to be able to digitally sign legal documents

Databases One database is used to store general BP process data such as messages, attachments,
documents etc. received through the Messenger service. Another database is used to store a
complete copy of the Merkle Tree that holds the commits emitted by the Verifier contract.
Important to note that each connected participant holds a similar local copy of the Merkle
Tree, and the fingerprint of it is stored and updated in the on-chain Shield contract

Table 5: Off-chain components of Baseline Protocol

Baseline process

The first step in baselining is setting up the Workgroup [15]. The Workgroup is the group of all the

counterparties involved in a shared business process, which is usually the case in supply chains or

consortia. When baselining a supply chain, each participant has to be added to the Workgroup. The

business process they all perform together is called the Workflow. The Workflow consists of minor

and major Worksteps, which are the separate steps that together form the entire business process

the supply chain performs. After each successfully verified Workstep, an event notification shall be

broadcasted throughout the network and a Commit (receipt of the verified Workstep) shall be stored

locally in each system. Commits allow each connected system to keep up with the state of the

Workflow. Let’s take an international shipment as example. Two counterparties make an agreement

on the purchase of a certain item. That item has to be picked up by a truck, transported to a harbour,

loaded onto a vessel, offloaded at the import harbour, go through an import customs check, picked

up by a truck again and eventually delivered to the receiving party of the trade. The Workgroup

involved in the shared business process of executing this shipment is at a minimum: two businesses

involved in the trade, two trucking companies, one carrier company, one customs agency, and two

sea terminal operators. The Workflow they together perform is the execution of the shipment. Some

of the major Worksteps involved in this Workflow are the signing of the business deal, the pick-up of

the item and the delivery of the item.

From a detailed technical perspective, the baseline process goes as follows. One initiating party sets

up the Workgroup by either:

• Adding an entry to an existing OrgRegistry smart contract on the Mainnet;

• Selecting existing entries on a universal OrgRegistry;

• Creating a new OrgRegistry and adding entries to it.

The OrgRegistry can be regarded as a corporate phone book, where each entry represents a

connectable business entity with their contact details.

The next step is to establish point-to-point connectivity with the counterparties in the Workgroup by

obtaining their endpoint for the OrgRegistry and send an (email) invitation to each counterparty. The

invitation contains a JSON Web Token, that takes care of the configuration of the counterparty’s

system. Now the counterparties are connected securely.

The following step is to set up a Workflow. A Workgroup may run one or more Workflows, that

contains one or multiple Worksteps. As the Workflow represents the shared business process, the

business logic and rules have to be included in the Workflow. For secure and consistent execution of

34

the Workflow, major Worksteps need to be verified by a trusted party. The inputs for a major

Workstep usually are commercially sensitive information, like the combination of a purchase order

and an invoice that acts as proof of a business agreement. For a trusted party, that is the public

blockchain, to have the ability to verify executed Worksteps without revealing the commercially

sensitive inputs zero-knowledge circuits and proofs are used. The busines logic for a Workstep is

transformed into a mathematical zero-knowledge circuit, the counterparty that wants to prove the

execution of a Workstep has to enter parameters into the circuit, and generate and provide a zero-

knowledge proof.

Once the business logic is rendered mathematically, the smart contract that guard and verify the

Workflow can be deployed. As mentioned, first an OrgRegistry contract is deployed. Second, a

Verifier contract will be deployed that is able to verify zero-knowledge proofs of a counterparty as

proof of a successfully executed Workstep. After each successful verification, the Verifier contract

emits a verified event and connected systems will store a Commit in their local MerkleTree. Third, a

Shield contract is deployed that authorizes OrgRegistry registered parties to send proofs to the

Verifier contract and holds a fingerprint copy of the MerkleTree that is held locally at each connected

system. The smart contracts act as an authority party protecting and enforcing the connected parties

to comply with the shared business logic they agreed upon.

Now that the WorkGroup, Workflow and decentralized enforcers of the Workflow are established, it

is time to become operational and run the Worksteps. Applying it to the example of a shipment again

and on figure 19 below; Counterparty 1 and 2 make a trade, share an invoice together and send a

zero-knowledge proof of that invoice to the Verifier contract on the Mainnet. The system of trucking

company Counterparty 3 receives in real-time a valid verification of that invoice, but not the invoice

or the content itself. The trucking company automatically knows about the trade and knows that he

can prepare to pick-up some item at Counterparty 1. The trucking company, Counterparty 3,

prepares a transport order and sends the original document to Counterparty 1 and subsequently

sends a zero-knowledge proof of the transport order to the Verifier on the Mainnet, after which all

connected systems - and in particular receiving Counterparty 2 – are made aware in real-time about

the upcoming transport of the first segment of the shipment. All these activities are supported and

executable while operating through their existing ERP systems.

Figure 19: Graphical representation of ERP systems in a Workgroup connected through the Baseline Protocol

 35

To conclude on the Baseline Protocol; it’s a pay-per-use infrastructure because no hardware has to

be acquired while making use of open-source software. It facilitates operation through existing ERP

systems and other systems of records. It can be integrated with any level of system, from the

advanced SAP to Google Sheets. It allows for business process automation and real-time notification

for all participants, secured and enforced by smart contracts, while sensitive data never leaves the

premises of a participant.

2.1.3 System-of-systems design methods

This section describes the relevant literature that is analysed to determine the right design method

for the envisioned system-of-systems. First is looked at the well-known system engineering method,

followed by a more specialised, agile, blockchain system engineering method.

The determined research problem identifies a lack of a secure system-of-systems for automated

matching of maintenance demand with supply. In the previous section was concluded that

blockchain technology potentially is an enabler for the envisioned process automation between

multiple participants in a supply chain, and it also might fulfil the role of the entity that processes

sensitive data in a trustworthy and securely manner. The systems to be connected in this context are

information systems such as the Asset Management System of the WPP, the ERP systems of both the

WPP and the ERP systems supply chain participants, and the blockchain system itself.

A key requirement for the final design is feasibility, so the selected design method should aim for a

feasible output. The method should also be suitable for the domain of information systems in order

to have a smooth and fit for purpose design process. Since the limited resources for this research, the

method should apply an agile approach to get the best result within a short timeframe.

2.1.3.1 Systems Engineering

The first design method that is taken into consideration is the Systems Engineering (SE) method. The

International Council on Systems Engineering defined SE as:

“..a transdisciplinary and integrative approach to enable the successful realization, use, and

retirement of engineered systems, using systems principles and concepts, and scientific,

technological, and management methods.” 12

As the definition states, the comprehensive SE method takes many disciplines into account to

address the entire lifecycle of an engineered

system. The dominant model for systems

engineering is the V-model, derived from

the linear Waterfall Model and proposed by

Paul Rook in 1986 [16]. The original model

was designed for software development,

but went through minor changes to adapt to

modern technologies and different domains.

Since its inception the model is adopted by

governments, militaries, space agencies and

technology industry leaders all over the

world to develop their multidisciplinary

systems.

12 https://www.incose.org/about-systems-engineering/system-and-se-definition

Figure 20: Original V-model by Paul Rook[17]

36

The key development phases in the V-model as described by Rook are:

1. Requirement specification phase: a complete, validated specification of the required

functions, interfaces and performance of the product.

2. Structural design phase: complete, verified specification of the overall hardware-software

architecture, control structure and data structure for the product.

3. Detailed design phase: complete, verified specification of the control structure, data

structure, interface relations, sizing, key algorithms and assumptions for each program

component.

4. Code and unit test phase: complete, verified set of program components.

5. Integration and unit test phase: a properly functioning software product.

6. Software acceptance test phase: an accepted software product handed over to the

customer.

7. Maintenance phase: a fully functioning update of the software product.

8. Project termination phase: a completed project history document benchmarking the initial

goals and plans to the actually realized goals and plans

9. Product phase-out: a clean transition of the functions performed by the product to its

successors (if any).

Although the SE method is very suitable for this research, due to its level of abstraction it is deemed

somewhat unpractical to result in a feasible design. Additionally, there is a lack of agility because of

the phased and sequential approach.

2.1.3.2 Agile Block Chain Dapp Engineering (ABCDE)

An even more suitable design method than the SE method is the “agile block chain DApp engineering

method”, or the ABCDE method. It is deemed more suitable because the method is specifically

developed out of a lack of disciplined, organised and mature development process for blockchain

based products. On top level the method contains similar design steps as the proven SE method,

therefore it can be regarded as a practical implementation of the SE method, specifically applied to

blockchain based systems.

The ABCDE method was proposed in 2019 by Marchesi et al. [17] for the trending area in software

development of decentralized applications, or “Dapps”, that typically run on a blockchain. The

researchers included agile practices, because they are suited to develop systems whose

requirements are not completely understood at the beginning, or tend to change. This also applies to

the development of the design for a novel, unprecedented s-o-s where this research is aiming for.

Additionally, according the researchers ABCDE is based on Scrum, and is therefore iterative and

incremental.

The comprehensive ABCDE design process is captured in the following illustration:

37

Figure 21: Summary of the ABCDE design process. The circles represent the sprint meeting, SPM = Sprint Planning Meeting,
SRM = Sprint Review Meeting [17]

A detailed explanation of every step in the ABCDE method is given below.

1. Goal of the system: write down a short description of the goal of the system and display it for

the whole team. The idea is borrowed from Scrum practices and a practice in object-oriented

analysis.

2. Find the actors: identify the actors who will interact with the system. The actors are human roles

and external systems or devices.

3. User stories: the system requirements are expressed as user stories regardless of the technical

implementation, to be able to follow the classical agile approach for project management in

Scrum. It might be useful to use a UML Use Case diagram to graphically show the relationships

among the actors and user stories.

4. Divide the system in two subsystems: first the blockchain system, that is predominantly

represented by the smart contracts running on the blockchain. Second, the App system, that is

the external “off-chain” system that interacts with the blockchain.

At this stage, an architecture of the whole system and a data model should be drafted. The guideline

is that the smart contracts (SCs) should manage the data and processing that need to be transparent

and immutable for the DApp to be trusted by its actors.

38

5. Design of the smart contract (SC) system: a multi staged step about designing the SCs, through

iterations that include coding and delivering increments of SCs.

5.1. Replay step 2 and 3 by focusing only on actors directly interacting with the SCs.

5.2. Define broadly the SCs composing the SC subsystem. For each SC, state its responsibilities to

store information and to perform computations, and the related collaborations with other

SCs.

5.3. Define the flow of messages and cryptocurrency transfers among the SCs.

5.4. Define in detail the data structure of each SC, its external interface and the relevant events

that can be raised by it.

5.5. Define the internal, private functions and modifiers – special functions that usually test the

preconditions needed before a function can be safely executed.

5.6. Define tests and perform the security assessment practices.

6. Coding and testing the SC system: following the agile approach, the SC system is built and tested

incrementally. Activities for this step are:

6.1. Incrementally write and test the SCs.

6.2. Perform security assessment and gas optimization.

6.3. Write automated Unit Tests and Acceptance Tests for the SCs and user stories implemented.

7. Design of the app system: the app system interacts with the users and devices, send messages to

or listen to events from the blockchain, and can manage its own databases.

7.1. Redefine the actors and the user stories for the app system.

7.2. Design the high-level architecture for the app system, including server and client tiers, and

detail the way it accesses the blockchain.

7.3. Define the UI of the app system.

7.4. Define how the app system is decomposed in modules, their interfaces and the flow of

messages between them.

7.5. Perform a security assessment of the app system.

8. Coding and testing the app system: In parallel to the SC system, the app system is built and

tested incrementally using the same approach of the SCs development. Activities for this step

are:

8.1. Incrementally write and test the app system.

8.2. Perform security assessment and gas optimization.

8.3. Write automated Unit Tests and Acceptance Tests for the user stories implemented.

9. Integrate, test and deploy the combined DApp system: to integrate the two separately designed

systems, the system must be deployed into a local or a testnet blockchain, and integration tests

must be run to check whether all the components interact together as expected.

The similarities between the SE method and the ABCDE method are the following. ABCDE step 1 – 3

are a more practical implementation for SE step 1. After ABCDE step 4 similar progress is made to SE

step 2. ABCDE then splits up the on-chain and off-chain system, so ABCDE step 5 and 7 are similar to

SE step 3. ABCDE step 6 and 8 represent SE step 4, and ABCDE step 9 is similar to SE step 5.

39

2.1.4 System-of-systems theory extension

After analysing the literature on system-of-systems theory, blockchain technology and system design

methods, a lack in available definitions was discovered for describing and distinguishing parts of an s-

o-s. The established definition framework can be viewed as a pyramid, where every layer defines

increasingly smaller parts of an s-o-s. The operational success of each layer depends on the presence

of vital parts in the layer below. A road logistics system-of-systems consists of a road system, vehicle

systems and warehousing systems; all operated and managed independently. The road system does

not function without its street lighting subsystem. And the lighting subsystem does not function

without its LED elements. Every present system in an s-o-s can be described by one side of the

pyramid, meaning that an s-o-s consisting of N systems can be described by a N-sided pyramid as

illustrated in figure 22.

Figure 22: S-o-s three-dimensional definition framework, each side of pyramid represents an individual system in the s-o-s

According the theory of “Delft Systems Approach” [7], the smallest distinguishable parts of an s-o-s

are the elements. This level of detail is sufficient for most physical s-o-s, however for s-o-s that

include some form of collaborative information processing, a definition is lacking. What lacks is a

definition to describe the smallest, passive, standardized pieces or structures of data that are

required to be consumed by other parts of the s-o-s for its operational success. That distinguishable

group of s-o-s parts is defined as “Data Objects”, which is an

additional definition layer at the bottom of the s-o-s definition

framework as illustrated in figure 25. Data objects mostly appear in

the form of template data structures or unique identifiers. Data

objects are among the smallest parts of an s-o-s, usually only a few

characters long. They are passive because they have no in- or output,

they cannot execute a function. They are standardized because they

are consumed by various elements and component systems that

make up a s-o-s, and without them the s-o-s is unable to operate

properly.

Returning to the road logistics s-o-s example, part of the road system

are the standardized road and traffic signs. They’re small relative to the size of the s-o-s, passive,

standardized and consumed by elements of the vehicle systems. Without them, the road logistics s-

o-s would be useless because the vehicle systems can’t navigate. In a supermarket s-o-s, or a

warehousing s-o-s data objects appear for example as product/price tags and aisle numbers.

For this research the distinguishable data objects, vital to the operational success of the envisioned s-

o-s, are the templates for the maintenance and availability schedules, smart contract and wallet

addresses, hashes, Commit hash templates, and other data structures. Since its importance to the

operational success, data objects need to be thought of and designed separately, and therefore

deserve their own definition in the s-o-s framework of identifying and describing s-o-s parts.

Figure 23: Extended definition framework
for identifying and describing System-of-
Systems parts

40

2.2 Research approach
Now that the theoretical and design framework for this research is determined and explained, the

research approach shall be defined in this section. First, the identified main research question is

revisited:

How to design a technical feasible decentralized system-of-systems that enables automated matching

and contracting of maintenance supply for scheduled demand through trustworthy processing of

sensitive data?

Because this is a design research for the development of a system-of-systems design, the research

approach consists of a detailed design scope and a design approach. The design scope shall explain

what is exactly designed for the system-of-systems that enables automated matching and

contracting of maintenance supply for scheduled demand. The design approach shall describe the

exact approach taken to come up with a technical feasible design.

2.2.1 Design scope

According the definition framework of systems-of-systems theory, the design scope for this research

shall consist of developing designs for the three separate systems that

together form the system-of-systems:

• Demand system, which is a generic system for the

maintenance requiring asset owners

• Supplier system, which is a generic system for suppliers in the

maintenance supply chain

• Blockchain system, which is the system that enables

decentralized process automation and trustworthy

management of sensitive data

The designs for each of these systems shall be in Unified Modelling

Language (UML) format and supporting graphical representations. For

each system design, subsystems shall be defined and specific elements and data objects shall be

designed, all in order to develop a technical feasible s-o-s design that is able to achieve its goal.

The envisioned three-system s-o-s design captured in the theoretical framework can be visualised as

a three-sided pyramid as shown below.

Figure 25: Visualisation of the three systems that make up the envisioned s-o-s, within the theoretical framework

Figure 24: System-of-systems definition
framework

41

Additional to the individual system designs, a design has to be created for the s-o-s part that forces

these systems to operate together and act as one. Since this is a design for a decentralised s-o-s, with

no central overarching system at the top, the s-o-s design is actually the automated information

sharing process (the Workflow) that operates on element level in the s-o-s. So the final piece of the

design scope is the design of:

• Demand and supply matching system-of-systems, top level architecture and automated

Workflow that enforces the connected systems to operate as one on element level.

The Workflow design shall be in UML supported by a graphical illustration of the top-level

architecture of the s-o-s. The start of the Workflow begins with a machine-readable maintenance

schedule and ends when suppliers are secured for the scheduled maintenance operations. Since the

Workflow operates on element level, the total s-o-s design can be visualised as shown below. It’s also

important to notice that the top of the pyramid, to represent the s-o-s, has been removed. Because

the design is about a decentralised system-of-systems no dominant central system is positioned on

top of the others. The design is about facilitating equal collaboration between connected systems to

reach a common goal. Collaboration between the systems of these supply chain participants and

competitors is only possible when the processing of commercially sensitive data happens in a secure

and trustworthy manner, which is hardly possible with a centralised system-of-systems owned by

one party.

Figure 26: Visualisation of the total scope of the s-o-s design, within the theoretical framework

42

2.2.2 Design approach

This section elaborates on the approach taken to develop the designs for the s-o-s, and its internal

systems, elements and data objects to achieve a technical feasible s-o-s design that enables

automated matching of maintenance demand with supply.

For the design approach, the agile blockchain application engineering method ABCDE [17] shall be

followed closely, merged with some Baseline Protocol design steps [15], while taken into

consideration the s-o-s design principles of Maier [8]. The merged design approach followed for this

research is defined below.

1. Define the goal of the s-o-s (ABCDE step 1)

2. Identify the actors (ABCDE step 2)

3. Define initial s-o-s architecture on high-level (BP design feature)

4. Define User Stories of the s-o-s (ABCDE step 3)

5. Define initial s-o-s Workflow on high-level (BP design feature)

6. Split the s-o-s in blockchain and non-blockchain systems (ABCDE step 4)

7. Design the blockchain system (ABCDE step 5 and 6)

8. Design the demand and supplier systems (ABCDE step 7 and 8)

9. Design integration for final s-o-s architecture and Workflow (ABCDE step 9)

As mentioned, for each of these steps the design principles from Maier for s-o-s shall be considered.

This means at first, each of the separate systems shall be a stable intermediate form. Second,

according policy triage we will only focus on what we should influence. Third, leverage at the

interfaces leads to special focus on the interfacing blockchain system and the Baseline Protocol

elements. And last, the s-o-s design should incentivize, and therefore ensure cooperation between

the individual systems.

The technical feasibility of all designs is achieved by working together with a blockchain developer,

Hamza Suwae, from BlockLab on the design iterations. The designs are being built through coding

and testing, whereby the technical feasibility of the designs is being verified. The code is not included

in the scope of this research, it will merely be used as a tool to verify the feasibility. On top of that,

occasional virtual meetings will be held with core Baseline Protocol developers and architects for

additional feasibility verifications, and for help when the development progress gets stuck. The

people we’ll consult with are:

• Sam Stokes – Software architect at ConsenSys

• Kyle Thomas – CEO and founder of Provide Services (known from the Baseline Cona

implementation)

• Daven Jones – Product owner Provide

• Brian Chaimberlain – Software Engineer

Additional verification shall be done through evaluation of achievement of the defined user stories

and through evaluation of compliance with the system-of-system design principles as defined by

Maier [8].

The validity of the design shall be determined through the evaluation of its performance in a case

study in an offshore wind industry context. For the case study, KPIs shall be defined by which the

performance is compared for the current state manual process and the automated s-o-s design.

43

2.3 Answers to research questions
The following research questions have been answered in this chapter.

1. What is the theoretical framework to define and describe envisioned system-of-systems?

The combination of:

• The Delft System Approach, by Veeke, Ottjes and Lodewijks [7]

• Systems-of-systems theory by, Maier et al. [8], with the proposed extension of data objects

to distinguish the smallest standardized passive, consumable, pieces or structures of data

• Bitcoin: a peer-to-peer electronic cash system, by Nakamoto [4]

• A next-generation smart contract and decentralized application platform, by Buterin [9]

gives all the necessary theoretical fundamentals to understand, define and describe the envisioned

system-of-systems. “System-of-system theory” for understanding the concept, the properties and the

design principles of system-of-systems. The “Delft System Approach” for defining the characteristics,

surroundings and components of a system. “Bitcoin: a peer-to-peer electronic cash system” as

introduction to the fundamentals of blockchain technology, and “A next-generation smart contract

and decentralized application platform” as introduction to the fundamentals of smart contracts.

2. What is the most suitable design method for envisioned system-of-systems?

The design method determined as most suitable for the envisioned system-of-systems is a

combination of the system engineering inspired ABCDE method of Marchesi et al. [17], combined

with design features of the Baseline Protocol [15] for designing the shared, multi-party supply chain

Workflow that shall me executed automatically. Top level design steps of the merged design method

are:

1. Define the goal of the s-o-s (ABCDE step 1)

2. Identify the actors (ABCDE step 2)

3. Define initial s-o-s architecture on high-level (BP design feature)

4. Define User Stories of the s-o-s (ABCDE step 3)

5. Define initial s-o-s Workflow on high-level (BP design feature)

6. Split the s-o-s in blockchain and non-blockchain systems (ABCDE step 4)

7. Design the blockchain system (ABCDE step 5 and 6)

8. Design the demand and supplier systems (ABCDE step 7 and 8)

9. Design integration for final s-o-s architecture and Workflow (ABCDE step 9)

3. How will the design be verified?

Verification of the design shall be done through:

• Teaming up with blockchain engineer to program functionalities to test feasibilities

• Regular consults with lead developers and architects of the Baseline Protocol for the design

iterations

• Evaluation of compliance with the defined User Stories from the ABCDE method

• Evaluation of compliance with the system-of-system architectural principles according the

system-of-systems theory

4. How will the design be validated?

Through a case study where the performance of current state manual coordination and contracting

on process KPIs is compared to the performance of the new designed automated scenario.

44

Chapter 3: Design of the System-of-Systems
This chapter describes the development process of the system-of-systems design and the individual

system designs. The chapter is subdivided in paragraphs according the design approach defined in

section §2.2.2. First the s-o-s goal, actors and user stories are defined. Then the system designs for

the Blockchain, Demand, and Supplier System are presented, followed by the final s-o-s architecture

and Workflow design.

3.1. Define the goal of the system-of-systems
The first step in the ABCDE method is to provide a short definition for the goal of the s-o-s, and

visualise it in the workplace. The goal is to address the problem as defined in section §1.2, which

states a lack of a secure system of connected systems for the automated matching and securing of

maintenance demand with supply.

More specifically, in section §1.2 was revealed that the input for maintenance sourcing is the

automatically generated maintenance schedule. The maintenance schedule is a prioritized list of

scheduled maintenance operations that states for each maintenance operation which offshore wind

turbines are involved, what type of maintenance they require, an estimated lead time for the

operation, and a time window for predicted optimal ocean and weather conditions. The schedule is

generated by the automated scheduling module of the asset management system, but could also be

determined manually by the asset manager. Section §1.2 also revealed that, once the maintenance

supply was secured, automated routing optimisers calculate the optimal routing for the vessels

travelling to and within the WPP. This marks the end of the maintenance operation planning

procedure, whereafter the physical preparation and execution of the maintenance operation follow.

Additionally, since this system-of-systems is designed to be used in a real-world enterprise setting, it

should provide asset managers the ability to include certain selection preferences when

automatically sourcing for maintenance supply.

Taking the above into consideration, the goal of the system-of-systems is defined as:

Automatically match, contract and coordinate the right maintenance resources for each prioritized

maintenance operation as presented in the maintenance schedule, with respect to the given time

window and preferences of the asset manager, to ensure maintenance operation feasibility.

3.2 Identify the actors
The task here is to identify all the actors that will interact with the s-o-s. Actors could be human

roles, and external systems or devices that exchange information with the system. The envisioned

system should be able to interact with each connected supplier in the maintenance supply chain,

represented by their operational planner through their ERP system. The Baseline Protocol shall be

used to enable this interaction, with the Ethereum blockchain as common frame of reference

between the connected systems.

3.2.1 Human Roles

The identified human roles at the WPP that will be interacting with the system are:

• WPP asset integrity manager
The asset integrity manager is responsible for planning, budgeting and forecasting costs

associated with the maintenance and service of the turbine and balance of plant. They work

closely with the operations and maintenance manager [18]. They are the main decision

makers with regard to insourcing, outsourcing and resource allocation.

• WPP site supervisor

The site supervisor manages the day-to-day activities of a team of wind turbine technicians.

45

They ensure work is completed in line with health and safety regulations, prepare daily

reports and plan annual service and maintenance schedules [18]. They manage the wind

turbine technician allocation for the wind farm, whether employed by the turbine OEM, wind

farm itself, or a third-party service provider.

• WPP warehouse manager

The warehouse manager plans daily operations of the warehouse, interfaces with clients and

ensures safety procedures are followed [18]. They manage the wind farm spare part

inventory, containing frequently used items. Expensive and low-frequently spares are directly

purchased and supplied by wind turbine OEMs.

• WPP marine coordinator

The coordinator manages the movement of personnel and the operations of vessels. This

includes checking and tracking vessel certifications, monitoring weather, emergency

response planning and liaising with interested parties, such as Maritime and Coastguard

Agency [18].

The equivalent of the above roles also exists outside of the WPP, at locations that manage a shared

WPP inventory, at OEMS, and at third party service providers. Technicians could also be supplied by

turbine OEMs under a service agreement, or by third party providers, or from a shared WPP crew.

Spare-parts are usually supplied by turbine OEMs during the typically 5-year warranty period,

whereafter they are sourced from own or shared inventory or third-party supplier. The case for

vessels is that smaller vessels (CTVs) are usually owned by the wind farm or shared across multiple

wind farms. Depending on the configuration of the site and the distance to shore, some wind farms

also own a Service Operation Vessels. Additional to the maintenance resources above, offshore

maintenance operations also require a dock or berth to load and offload the vessels that support the

MO. Overall, the offshore wind maintenance supply chain is organised in a variety of configurations,

mostly depending on WPP size, distance to shore and proximity to other WPPs.

The envisioned s-o-s should be generic and applicable to all sorts of WPP maintenance supply chain

configurations; therefore, an overview is created of all the potentially involved participants and their

human representative.

Side Generalised supply
chain role

Human role Source of supply Range of
instances

Demand Asset owner Asset manager Offshore wind power park One multiple

Supply

Technician supplier Planner

WPP own technician team

One or multiple
WPP shared technician team

OEM

Third-party technician supplier

Spare-part supplier Planner

WPP own inventory

One or many
WPP shared inventory

OEM inventory

Third-party spare-part supplier

Vessel supplier Planner

WPP own fleet

One or many WPP shared fleet

Third-party vessel supplier

Port Planner

WPP own dock

One or a few WPP shared dock

Third-party dock provider
Table 6: Overview of maintenance supply chain participants and the human roles that interact with the s-o-s.

46

3.2.2 External systems

The external systems interacting with the envisioned system-of-systems are identified in this section.

The first interaction is with the system that outputs the maintenance schedule, the automated

maintenance scheduler that is part of the WPP asset management system. As mentioned in section

§3.1, it should also be possible to upload maintenance schedules created otherwise, given formatted

correctly. Second, maintenance operations in the schedule should be matched with detailed lists of

required resources for the operation. These lists could be found in a maintenance database, asset

management system or ERP system. Third, each required resource should be matched with potential

capable suppliers found in the WPP’s ERP system. Fourth, for every listed potential supplier, the

envisioned s-o-s needs to collect availability and cost information. This information usually resides in

secure ERP systems of the suppliers. Large enterprises have the financial resources to operate on

expensive ERP systems, such as SAP or Microsoft Dynamics. Companies with less financial resources

such as SMEs, might manage their asset planning on a simple spreadsheet such as Google Sheets or

Microsoft Excel. Fifth, all these systems are supposed to interact with each other through the

envisioned system-of-systems, enabled by the Baseline Protocol technology stack and the Ethereum

blockchain system.

3.2.3 Actor overview

To conclude on the sections above, an overview of the identified and generalised actors is pictured

below. In terms of human roles, the s-o-s interacts with one or multiple asset managers and with one

or multiple supplier’s planners. In terms of external systems, the s-o-s interacts with one or multiple

asset management systems, one or multiple demand side ERP systems, one or multiple supply side

ERP systems and a single blockchain system that facilitates the process automation.

Figure 27: Identified system-of-systems actor overview, subdivided in human roles and external systems

47

3.3 Define initial system-of-systems architecture on high-level
This design step is incorporated from the Baseline Protocol and its design method. According the

method, the first thing to do is defining is the Workgroup. The Workgroup is the group of supply

chain participants that want to baseline their systems for the execution of the multilateral Workflow.

Different from the previous step, the Workgroup is defined on enterprise level instead of individual

actor level, from the perspective of interaction with the shared process instead of interaction with

the system-of-systems.

For the merged design methodology applied in this research, the Workgroup definition step is

extended a little to already reveal some structure between the supply chain participants, their

operating systems and the external systems. Although on a high, abstract level this initial system-of-

systems architecture is useful to keep in mind for development of the following design steps.

What we know so far, is that our system-of-systems includes three main systems; a demand side

system, a supply side system, and a blockchain system. The blockchain system is supposed to be the

binding system that enforces collaboration between all sorts of configurations of connected demand

and supplier systems. The demand system is supposed to interact with the asset management

system and the ERP system as defined in section §3.2.3. The supplier system is supposed to interact

with the ERP system on the supply side. The ERP connector in the Baseline Protocol elements allow

for operation through ERP system, so both the asset manager and the supplier’s planner shall

interact with our system-of-systems through their ERP systems.

Figure 28: Initial s-o-s architecture design that supports all varieties of supply chain configuration

48

The initial s-o-s architecture design is illustrated in figure 28. The to be designed system-of-systems is

captured within the dotted line. Within the s-o-s three separate systems can be distinguished; the

grey demand system, the green supplier system and the blue blockchain system. As we can see the

ERP systems here are included in the defined demand and supplier systems as they function a vital

role in the interaction between the human roles and the system-of-systems. This also complies with

the property of operational and managerial independence, according the system-of-systems theory

as described in section §2.1.1.2.

3.4 Define user stories for the system-of-systems
The next design step in our chosen method is to define user stories for the human roles interacting

with the s-o-s. The stories are written according the guidelines of M. Cohn [19], which describe the

following properties for good user stories:

• Independent: limit dependencies between stories.

• Negotiable: stories are short descriptions of functionality, for which the details have to be

negotiated between development team and customer.

• Valuable to users or purchasers: each story must be valued by either the user or the

purchaser of the system.

• Estimable: able to estimate the amount of time it takes to develop a story.

• Small: stories should be comprehensible and plannable

• Testable: stories must be written so as to be testable in order to prove a successful

development.

Although there are no end users involved in this research, the user stories shall reflect common

business practices regarding matching, sourcing and contracting of suppliers for multilateral

operations. The working experience of the researcher, myself, is valuable for defining the user

stories. I worked as a project manager for the construction and installation of large LED displays that

were used for advertisement purposes. These displays were installed on buildings, in sport facilities,

next to highways, and on Ferris wheels. For each installation my task was to request supplier

availabilities and plan the multilateral operation involving parties such as; internal and external

technicians, the production facility, traffic control, crane operators, ground workers, municipalities,

customers. Although the context is different, on a fundamental level the process steps are similar.

Additionally, as the s-o-s is highly automated, most user stories are supposed to be performed by the

envisioned s-o-s instead of actual users. The user stores are defined from the perspective of the two

identified human roles in section §3.2.1, the asset manager and the planner. Automated user stories

shall be described as to be executed by the s-o-s, but always from a user’s perspective.

On top of the user stories, also constraint stories shall be defined. Constraint stories are performance

related, instead of function related, and state certain performance or security requirements from a

logic business practice perspective.

49

3.4.1 User Stories for the demand side Asset Manager

The following user stories are constructed for the asset manager. The first step is the ability to

provide the system with a maintenance schedule. This maintenance schedule should be machine-

readable; therefore, it shall be digital and have a uniform structure. User stories attributed to the “s-

o-s” should be read as: “The Asset Manager wants the s-o-s to..”.

Story ID: User stories for demand side Asset Manager

US1 Story: Asset Manager or Asset Management System can submit a machine-
readable maintenance schedule of a specific predefined extension

Notes

US2 Story S-o-s stores the high prioritized, unplanned maintenance operations listed
on the maintenance schedule for further processing

Notes How MOs are prioritized depends on AMS or Asset Manager

US3 Story S-o-s can match potential suppliers from ERP system to fulfil the execution
of the stored maintenance operations

Notes

US4 Story S-o-s requests availability and cost information from the Supplier System
for each matched potential supplier for the MO

Notes

US5 Story S-o-s proposes the optimal subset of matched available suppliers according
the set preferences of the Asset Manager

Notes

US6 Story S-o-s presents prefilled templated business proposals for each supplier in
the chosen supplier subset, to enable the Asset Manager to review and edit
certain terms of the proposal

Notes

US7 Story All users can sign, edit and send business proposals to relevant connected
parties via the s-o-s

Notes

US8 Story S-o-s must notify Asset Manager of state and outcome of pending business
proposals and update maintenance schedule accordingly

Notes:

US9 Story Asset Manager can start and stop the system at any time and continue
supplier sourcing for maintenance operations the traditional manual way

Notes

CS1 Story: S-o-s should be able to support supply chains in order of magnitude of 100
members

Notes

CS2 Story: The S-o-s setup and integration of new members should take maximum 8
manhours of work

Notes As a measure of acceptable cost and time

CS3 Story: System should reduce the amount of manual labour performed on the
sourcing process by at least 80%

Notes

CS4 Story: System should be easy to use and understandable for the average office
worker

Notes
Table 7: Defined user stories for the s-o-s from the perspective of the demand side Asset Manager

50

3.4.2 User Stories for the supply side Planner

The following user stories are constructed from the perspective of the Planner at the supply side.

Most of the functionalities are already captured on the demand side, where the demand side wants

the supply side to be enabled to reach the common goal of matching maintenance demand with

supply. The stories defined from the perspective of the Planner are more related to security and

protecting against unnecessary data mining.

Story ID: User stories for supply side Planner

US10 Story: S-o-s is able to verify if a cost and availability data request from the
Demand System is valid and prevent unnecessary data harvesting

Notes

US11 Story: Planner can disconnect from the automated information sharing Workflow
at any time he pleases, while still be able to continue to business in the
traditional manual way

Notes

US12 Story: S-o-s can present supplier incoming business proposals to enable review,
editing, signing, declining, and sending of handled proposal

Notes Story is large because of overlap with US6

CS5 Story: S-o-s must equal the level of security of typical business IT applications

Notes
Table 8: Additional defined user stories for the s-o-s, from the perspective of the supply side Planner

51

3.5 Define initial system-of-systems Workflow on high-level
Through the combination of the goal of the s-o-s, the initial s-o-s architecture, and the user stories,

the initial s-o-s Workflow can be designed. The Workflow is the automated multilateral business

process executed with each connected system in order to reach the defined goal; the matching and

contracting of maintenance demand with supply. Due to the decentral character of our s-o-s, the

Workflow operates on the element level of the individual systems that make up the s-o-s. Returning

to the pyramidic illustration of the s-o-s in figure 29, the individual systems are now coloured

according the colour scheme used in section §3.3 while the Workflow in coloured white.

The swimlane diagram in figure 30 on the next page shows the design for the initial Workflow. Each

activity is marked with a number, and the manually executed activities are additionally indicated with

a handshaped cursor. The coverage of the user stories by the Workflow is shown in table 9.

The initial s-o-s Workflow design starts with the intake of the maintenance schedule by the Demand

System. After the system matches potential suppliers to each MO requirement, availability and cost

information is requested from each matched Supplier System. The Blockchain System shall validate

and register the request on the public network, whereafter the Supplier system is allowed to

calculate and return the supplier availability and cost information for the given time window. From

the returned availabilites, the Demand system calculates overlapping supplier availability to be able

to meet all MO requirements. Once the MO is determined to be feasible, the Demand System selects

and proposes the optimal supplier subset to the Asset Manager. After confirmation, the Demand

System fills templated business proposals and allows the Asset Manager to review, edit, sign and

send the proposals. The Blockchain System validates and registers the proposals before the Supplier

System notifies the Planner. The Supplier System allows the Planner to review, edit, sign or decline

the proposal. In case the Planner confirms the proposal by setting his signature, the business

proposal technically become a double signed business agreement. The Blockchain System again

validates and registers the business agreement, while the agreement is returned to the Demand

System. Due to the fact that availability and cost information is known at setup of the business

proposals, the chances of supplier confirmation are much higher. In case a supplier declines the

offer, the Demand System picks another available supplier from earlier calculations and restarts the

contracting process.

User story Activity

US1 1

US2 2

US3 3

US4 4,6,7,8

US5 9,10

US6 11,12

US7 13,15

US8 N.a.

US9 N.a.

US10 5

US12 15

CS1, CS2, CS3, CS4, CS5 N.a.

Table 9: User story coverage by initial Workflow

Figure 29: Graphic illustration of s-o-s pyramid in colour, including
the Demand (grey), Supplier (green) and Blockchain (blue) system
and the s-o-s Workflow (white)

52

Figure 30: Initial design of automated system-of-systems Workflow, on high-level. Manual interaction is indicated with the
hand cursor. Note that multiple Demand and Supplier systems could be involved in the system-of-systems.

53

3.6 Design the Blockchain System
This section describes the development of the

design for the Blockchain System within the

system-of-systems. According the ABCDE

design method, it is the first system that has to

be designed. The design work on the

Blockchain System is rather limited because the

infrastructure is already covered by the

Ethereum public network. While most of the

elements, i.e. the smart contract, and the data

objects are already defined and partly designed

in the Baseline Protocol. The interaction

between the smart contract is also defined by the Baseline Protocol, therefore the only pieces that

have to be designed in the Verifier smart contract and the Commits that are released and

broadcasted after a successful verification. The table below gives an overview of the most essential

items on each detail level of the system, and if an item is in the design scope.

Level of detail Items Instance Design scope Part of

Blockchain
subsystems

Network Internet protocol No Internet

Nodes Networked hardware (i.e. computers) No Internet

Virtual machine Ethereum Virtual Machine No Ethereum

Ledger Ethereum blockchain No Ethereum

Consensus
mechanism

Proof of Work No Ethereum

Blockchain
elements

Transactions Regular (value) transactions No Ethereum

Contract deployment transactions No Ethereum

Smart contracts OrgRegistry No Baseline Protocol

Shield No Baseline Protocol

Verifier Yes Baseline Protocol

Data structures Merkle Tree (stores Commits) No Baseline Protocol

Blockchain
data objects

Commits To be defined Yes Baseline Protocol

Addresses Wallet addresses No Ethereum

Smart contract addresses No Ethereum
Table 10: Overview of most essential items in Blockchain System, subdivided on detail level

Because the Blockchain System design incorporates the Ethereum blockchain and Baseline Protocol

items and interactions, the system architecture and the interaction within the Blockchain System are

already defined. The system architecture together with the interactions is pictured on the next page

in figure 32. The Blockchain System is a network of nodes, i.e. Demand and Supplier systems, taking

part in the decentralised Ethereum public network amongst other unrelated nodes. Within that

network three smart contracts are deployed; the OrgRegistry, the Shield and the Verifier. Section

§2.1.2.2.1 elaborated on these smart contracts, therefore only the interactions within the Blockchain

System shall be described here.

1. A node (e.g. the Demand System) generates a cryptographically secure proof of an executed

Workstep in the Workflow. Additionally, the node prepares a hash (Commit) of the valuable

information associated to that Workstep. The node sends both proof and Commit to the

Shield contract.

2. The Shield contract authenticates the sender by searching for his address in the list of

connected participants in the OrgRegistry contract. If the address is found, the Shield

forwards the received proof to the Verifier contract.

Figure 31: Blockchain System theoretical framework for reference

54

3. The Verifier contract receives the proof of the Shield contract and calculates if the proof is

correct and in compliance with the cryptographically transformed business logic stated in

the Verifier contract.

4. When the proof is correct, the Verifier contract emits a successful event, which is

intercepted by the Shield contract.

5. The Shield contract releases the Commit, earlier received by the sender node, and updates

his storage of Commits (i.e. the MerkleTree). The nodes that are configured to listen to the

Shield contract (nodes listed in the OrgRegistry) intercept the Commit and store it in their

local MerkleTree data storage. This way, each connected system in the network is

automatically and continuously updated with Commits.

A verified event is proof of a verifiably executed Workstep, and the broadcasted Commit is the hash

of the original relevant data related to that Workstep. Which means that the systems in possession

of the original data can easily hash that data and compare it to the Commit broadcasted in the

network. The connected Demand and Supplier systems listed to the Shield contract and update their

local MerkleTree of Commits accordingly. This way the system-of-systems automatically synchronizes

the state of the Workflow with each system while preserving data privacy on a public network, and

only the interacting parties in possession of the original data can verify if the broadcasted Commit is

a correct representation of the original data.

Figure 32: Graphic representation of system architecture for Blockchain System, with zoomed in node and displayed
interactions between the subsystems and elements

 55

The Blockchain System design, of which most design effort went in to the Verifier contract, went

through five design iterations, which are summarized below and explained in detail in Appendix A.

Design
Iteration

Summary

1 Due to the limitations of the Zokrates toolbox, the Verifier is not able to calculate variable
outputs and handle multi-party inputs, therefore the idea of calculating multi-party availability
date ranges on submitted availability schedules became infeasible. Concluded was not to
calculate supplier availability with the Verifier contract.

2 The idea of having multiple Verifier contracts dedicated specifically to each important
Workstep was discarded due to high operational costs and due to highly complex routing of
data flows between all systems and their elements. Concluded was to use one Verifier contract
dedicated to the Workflow for each individual maintenance operation

3 Having one Verifier contract deployed for each maintenance operation was still deemed
complex in data routing and also leads to high operational costs because of expensive contract
deployment costs, therefore was concluded to use one generic reusable Verifier contract that
covers all Workflows for demand and supply matching for all possible maintenance operations

4 The initially determined hashing algorithm used for the multi-stage data hashing scheme in the
Verifier contract was the widely used SHA256, due to the high cost of this hashing operation
on the Ethereum blockchain, the long processing times and the enormous amount of
outputted lines of code for the Verifier contract, it was concluded to use the far more efficient

Pedersen hashing algorithm13.

5 To prevent unlimited data mining from the Demand Systems, a Genesis Commit was added to
the initial set of Commits. Letting the Verifier contract publish any kind of Commit costs
transaction and calculation fees. The Genesis Commit is added to mark the start of the
automated Workflow, meaning that the Demand System first has to make expenses before it
can request any data from the Supplier Systems.
Additionally, a Selection Commit was added to mark the end of the supplier matching and
selection process. Via the Selection Commit Supplier Systems are notified about their selection
and already can block their availability schedules before entering the contracting part of the
Workflow to decrease the chance of sudden unavailability.

Table 11: Overview of design iterations related to the Blockchain System

13 https://zokrates.github.io/toolbox/stdlib.html

 56

3.6.1 Review actors and user stories

Zooming in on the Blockchain System, the only actors it has to serve are the connected Demand- and

Supplier systems. The Demand Systems are chosen to be the main system interacting with the Shield

contract, because they are in need of maintenance so it’s only fair they pay the cost for using the

blockchain infrastructure. Only when cancelling an ongoing matching and contracting process, a

Supplier System has to communicate with the Blockchain System. Due to the public nature of the

network, the Shield contract possibly has to deal with unsolicited or malicious interaction with an

external node. This security issue is covered by the way the interaction between the Shield,

OrgRegistry and Verifier smart contract is arranged in the Baseline Protocol. The reviewed user

stories below are specifically focussed on the Verifier smart contract and the Commit data objects,

because those are the only items that need to be designed. The user stories are setup in

consideration of the best practices, limitations and requirements of the Zokrates toolbox14, which is a

toolbox for Ethereum smart contracts that use zk-SNARKs for privacy preserving data processing.

User stories specifically for the Verifier contract

1. Able to verify various types of Workstep execution proofs in one permanently reusable

Verifier smart contract

2. Able to protect against unnecessary data mining of Demand Systems (in line with US10)

3.6.2 Elements design

Verifier smart contract

A crucial piece of the Blockchain System design is the element Verifier smart contract. The function

of the Verifier is to act as an automated trusted third party that verifies data that proofs the

execution of a Workstep in the Workflow. Besides the manual confirmation and signing actions,

verified events emitted by the Verifier contract trigger subsequent Worksteps at connected systems

in our s-o-s, thus automate collaboration between counterparty systems that don’t necessarily trust

each other. It is important to note that the design for the smart contract is actually design of the

arithmetic circuit that is able to verify business logic of a Workstep. This arithmetic circuit is

transformed cryptographically in to a data privacy preserving zkSNARK verification scheme that will

be deployed as a Verifier smart contract on the public Ethereum network.

Taking into consideration of the above design iterations, the idea for the Verifier contract design is to

verify proof of correct formulation of the data related to a certain Workstep. The data related to this

proof is hashed in a multi-stage hashing operation that outputs one single hash; the Commit hash

which is emitted after a successful verification by the Verifier. First of all, participants have to be in

possession of the correct formulation scheme in order to be able to regenerate emitted Commits

that end up in each local MerkleTree storage of each connected system. This is a secure method of

Workflow state synchronization between connected systems on a public network. Every node in the

public network is able to intercept the emitted Commits, but only the supply chain participants are

able to regenerate those Commits with the formulation scheme in order to synchronize their systems

and verify compliance to the business logic. However, within our supply chain sensitive bilateral

business data related to a Workstep also has to remain private for the two involved parties, as they

don’t want other supply chain participants to have full insight into their business agreements. This

protection is provided by hashing commercially sensitive inputs (or documents) in the formulation

scheme, so only the parties in possession of the original data can verify the emitted Commits.

14 https://zokrates.github.io/

57

Table 12 gives an overview of which parties can access and learn from the emitted Commits on the

public network.

Data on public
network

Data accessibility Data insight Reasoning

Emitted Commit
hash

Whole public network None Impossible to decrypt formulation
scheme of data and hashes

Supply chain
participants in public
network

Workflow state and
MO ID

Unsensitive supply chain data and
hashed sensitive data used as input
for the formulation scheme, to
rebuild and verify the Commit hash

Two supply chain
participants in public
network involved in
bilateral Workstep

All data; Workflow
state, MO ID, involved
suppliers, business
proposals, business
agreements

Unsensitive data and sensitive data
used as input for formulation
scheme, to rebuild and verify
Commit hash

Table 12: Data accessibility and insight for emitted Commit hashes on public Ethereum network

The following inputs are defined for the hash formulation scheme. Details on the formulation scheme

used for the arithmetic circuit that serves as base for the Verifier smart contract are provided in

Appendix B.

Input name Description Data relevance and
insight

Format

State One of the 5 states of the Workflow Supply chain Non-negative
integer value

MJ ID Maintenance operation ID Supply chain Non-negative
integer value

SupplierID Involved supplier in bilateral Workstep Involved maintenance
demand party and
supplier

Non-negative
integer value

DocHash1,
DocHash2

Two parts of the Pedersen hash of the
Business proposal document from the
Demand System to the Supplier System

Involved maintenance
demand party and
supplier

Non-negative
integer value

ContractHash1,
ContractHash2

Two parts of the Pedersen hash of the
Business agreement document
between the Demand System and the
Supplier

Involved maintenance
demand party and
supplier

Non-negative
integer value

LC1, LC2 Two parts of the Commit hash last
added to the MerkleTree locally stored
in each connected system

Supply chain Non-negative
integer value

NC1, NC2 Two parts of the newly generated
Commit hash to be added to the local
MerkleTree (the output of the
formulation scheme) in each connected
system after successful verification.

Depending on the
Workstep, either supply
chain or involved
maintenance demand
party and supplier

Non-negative
integer value

Table 13: Inputs for the hash formulation scheme used for the Verifier smart contract

58

3.6.3 Data objects design

Commits

Now that the design for the Verifier contract is finished, the emitted Commits can be designed. The

Commits are emitted after each successfully verified Workstep to synchronise the connected

systems, and function as a fingerprint of the data associated to that particular Workstep. Commits

could be seen as process state markers for the demand and supply matching Workflow for a

particular maintenance operation. The five defined Commits are:

Commit
name

Workflow
State

Description Function

Genesis
Commit

1 Marks the start of the
maintenance demand and
supply matching Workflow for a
particular MO.

Automated Workflow start notification and
monetized protection against free data
mining of Demand System, covers US10.

Selection
Commit

2 Marks the end of calculating
overlapping supplier availability
and supplier selection for the
MO, and marks the start of
supplier contracting phase

Automated notification that available
suppliers are selected for the MO, incentive
for them to block their availability schedules
for the determined MO time window.

Business
proposal
Commit

3 Marks a single business proposal
successfully proposed to a
selected supplier

Registered proof of business proposal from
demand party to supply party

Business
agreement
Commit

4 Marks a single business
agreement successfully

Registered proof of bilateral business
agreement between demand and supply
party

Finalization
/
cancelation
Commit

5 Marks the end of a matching and
contracting Workflow for an MO,
either due to successful match of
maintenance demand and
supply, or due to cancelation of
one of the suppliers

Automated notification of successfully
executed Workflow, whereafter preparation
for the MO starts. Or, automated notification
of cancelation of Workflow, which restarts a
new matching and contracting Workflow for
the particular MO.

Table 14: Overview of the designed data objects

59

3.7 Design the Demand and Supplier System
This section describes the designs and the development process for the Demand and Supplier

Systems synchronised by the Blockchain System, according the ABCDE design method. Both system

designs should adhere to the system-of-systems requirements and design principles as stated in

section §2.1.1. The Demand and Supplier systems share many similar subsystems, elements and data

objects in order to be synchronised through the Blockchain System, except for a few elements and

data objects specifically designed to enable the user stories defined for each. Both systems include

the existing ERP system where they are operated through, and elements from the Baseline Protocol.

3.7.1 Design of the Demand System

The Demand System is the initiator for the automated

maintenance demand supply matching and contracting

Workflow, executed for each prioritized maintenance

operation presented in the maintenance schedule. Within

the boundaries of the WPP digital infrastructure, the

system includes the demand side ERP system,

communicates with the Asset Management System and is

operated by the Asset Manager. In the system-of-systems

context it communicates with the Blockchain System and

the connected Supplier Systems. Similar to the design

development for the Blockchain System, let’s start with an

inventory overview of relevant items for the Demand

system.

Level of detail Items Instance Design
scope

Part of

Demand
System
subsystems

ERP system SAP, Microsoft D365, Excel No Digital infrastructure asset
owner

To be defined To be defined Yes Design research

Demand
System
elements

Messenger service NATS No Baseline Protocol

Zeroknowledge
service

Zokrates toolbox No Baseline Protocol

ERP connector SAP connector, D365 connector No Baseline Protocol

Blockchain client Geth No Baseline Protocol

Vault service Provide Vault No Baseline Protocol

Blockchain
database

MerkleTree (local) No Baseline Protocol

To be designed To be designed Yes Design research

Demand
System data
objects

Maintenance
schedule

Machine-readable offshore
wind turbine maintenance
schedule

No Asset management system

To be designed To be designed Yes Design research
Table 15: Overview of most relevant items in Demand System, subdivided on detail level

The Asset Manager interacts with the Demand System through the existing ERP system via the ERP

connector provided by the Baseline Protocol. The Demand System also has to fetch a lot of supplier

information from the ERP system to match them to MO requirements. The Demand System interacts

with the Supplier Systems directly via the Messenger service, and indirectly via the Blockchain

System through the blockchain client, both provided by the Baseline Protocol. The Zeroknowlegde

service is used to create the Verifier contract and the cryptographically secure and abstract

Zeroknowledge proofs (ZKPs) of the data related to important Worksteps in the Workflow, that are

being send to the Verifier contract. Through the Vault service an Asset Manager is able to digitally

Figure 33: Demand System theoretical framework for
reference

60

sign and verify signatures on business proposals and business agreements. The remaining elements

and data objects in support of the goal of the system-of-systems and the user stories have to be

designed.

An overview of the design iterations the Demand System went through is shown in the table below.

Detailed descriptions are provided in Appendix A.

Design
Iteration

Summary

6 To limit communication with the database, and to make communication between system
elements and external systems more efficient; the choice was made to include a JSON data
object “MO object” to store all the MO related data.

7 A crucial functionality for the connected systems is to be able to regenerate Commits based on
the MO data a system received through the Messenger service, and to be able to compare the
regenerated Commit with the Commit emitted by the Shield contract that was stored in the
local MerkleTree. This is how each connected system automatically verifies the data used for
Workflow synchronization. Therefore, a new system element had to be designed: Commit
Generator

8 The data used in in- and outbound communication via the Messenger service required a lot of
formatting. Instead of doing all the formatting at the respective element, decided was to add a
new system element “Data Formatter”

Table 16: Overview of the design iterations related to the Demand System

3.7.1.1 Review actors and user stories

Zooming in on the Demand System, the actors it has to serve are the Asset Manager, the Blockchain

System and the Suppliers System. Although the user stories are defined for the s-o-s, the Asset

Manager operates on the Demand System, therefore all the defined user stories US1 – US9 in table 7,

for the Asset Manager have to be covered, for the most part, by the Demand System.

3.7.1.2 Elements design

MO Extraction Module

US1 and US2 address the ability to automatically open and read maintenance operation schedules

from a certain location, and select and store prioritized MOs for further processing. To enable this

ability an element called “MO Extraction Module” was designed. The assumption is that either the

Asset Manager or the AMS generate an MO schedule and store it at a certain location in the ERP

system. For each MO schedule stored in the ERP system, the MO Extraction Module extracts relevant

MO data and store it into an MO object dedicated to each prioritized individual MO. The most

important parameters to store are:

• MO ID

• Estimated MO lead time

• Optimal MO time window

• MO requirements, either obtained via an MO code in the AMS or included in the MO

schedule

Additionally, the MO Extraction module was designed to enable US3, the matching of potential

suppliers to MO requirements found in an MO object. For each MO requirement, the Matching

Module searches the ERP system for suppliers capable of providing the MO requirement, for example

the need for a heavy lifting vessel, and lists those suppliers in the MO object.

Program details of the MO Extraction Module is found in Appendix C.

Commit Generator

The next step, US4, would be to request the availability of the potential suppliers for the determined

61

MO time window. The design of the Blockchain System revealed that a Genesis Commit had to be

published first, to protect the Supplier Systems from unnecessary data mining from the Demand

System. A system element had to be designed to enable the ability of generating Commits in order to

pass them to the Shield contract, and to be able to verify a Commit pushed to each MerkleTree. The

designed “Commit Generator” has to main functionalities:

• Generate Commits that together with Zeroknowledge Proofs (ZKProofs) are send to the

Shield contract in order to synchronize the state of the Workflow with other connected

systems. Commits are generated from data in MO objects received from a local database.

• Verify Commits that are newly added to the MerkleTree in the Blockchain database. First,

generate a Commit out of the data in the MO object received through the Messenger

service. Take the latest Commit addition from the MerkleTree, and compare both Commits. If

the Commits are equal, the data received from the Messenger service is trustworthy and

exactly matches the data used in the verified Workstep. If the Commits are unequal, there is

data asymmetry in the system-of-systems and an exception should be raised.

Program details of the Commit Generator are found in Appendix D.

Workflow Database

To cover US2 and support the other elements, the need for a Workflow database was determined.

This database stores the MO objects and other Workflow related data objects and metadata.

Matching Module

According US5, once the Demand System has received above threshold number of Supplier System

replies on the availability and cost information request, the Demand System is expected to propose

an optimal subset of available suppliers capable of executing the maintenance operation. This seems

easily calculated, but it is actually quite a complex computation. An optimal MO time window can

span for example 10 days, and an MO lead time can for example be 2 days. Supplier availability can

be fragmented within that 10 day time window, and vary for each supplier. A supplier can, for

example, be available on day [1, 2, 5, 8,9,10]; therefore, this supplier’s availability for the 2 day MO

operation is [1,2], [8,9] and [9,10]. The Matching Module is designed to calculate the optimal subset

of suppliers according the following logic:

1. Wait until number of Supplier System responses is above threshold. A Supplier System only

gives a response to the availability request if they are available for the MO lead time in the

MO time window.

2. Out of all the Supplier availabilities, calculate the day of earliest convenience in the MO time

window that all MO requirements are met by at least one supplier.

3. Based on that determined day, generate all possible supplier subsets chronologically and

calculate the total costs of each subset. Costs are calculated by summing up the product of

supplier rate times the MO lead time.

4. Select and propose the supplier subset according the set preferences of the Asset Manager,

for example the cheapest subset or the earliest available one.

Program details of the Matching Module are found in Appendix E.

Data Formatter

The need for the Data Formatter originated out of the internal communication with the Messenger

service, as design iteration 8 describes. Data for the in- and outbound messages for other connected

systems needed to be transformed for further processing in the system itself.

62

3.7.1.3 Data objects design

MO object

Both US2 and design iteration 6 lead to the design of the data object “MO object”. The MO object is a

JSON schema type of data storage object, that is easily passed around and processed by system

elements. It contains the following fields of data for each individual maintenance operation:

• MO ID

• State

• Wind Turbine IDs

• MO lead time

• MO time window

• MO code; reference for type of maintenance operation

• MO description

• MO requirements

• Matched potential suppliers

• Calculated day of earliest convenience

• Generated supplier subsets

• Selected supplier subset

• Business proposals per selected supplier

• Business agreements per selected supplier

• Commits related to the MO

3.7.1.4 Demand System – final design

Putting all the defined and designed pieces from the above section together, we arrive at the final

design of the Demand System as pictured in figure 34. The figure shows the total Demand System

design, the identified subsystems, the designed elements and the data flow between the elements. A

complete breakdown of the system is given in the table below.

Level of detail Items Instance Design
scope

Part of

Demand System
subsystems

ERP system SAP, Microsoft D365,
Excel

No Digital infrastructure asset
owner

Security subsystem N.a. Yes Design research

Communication subsystem N.a. Yes Design research

Workflow Support subsystem N.a. Yes Design research

Demand System
elements

Messenger service NATS No Baseline Protocol

Privacy service Zokrates toolbox No Baseline Protocol

ERP connector SAP connector, D365
connector

No Baseline Protocol

Blockchain client Geth No Baseline Protocol

Vault service Provide Vault No Baseline Protocol

Blockchain database MerkleTree (local) No Baseline Protocol

MO Extraction module N.a. Yes Design research

Commit Generator N.a. Yes Design research

Workflow database N.a. Yes Design research

Matching Module N.a. Yes Design research

Data Formatter N.a. Yes Design research

Demand System
data objects

Maintenance schedule
template

Machine-readable
offshore wind turbine
maintenance schedule

No Asset management system

MO object N.a. Yes Design research

Table 17: Demand System - final design system breakdown

63

Figure 34: Demand System - final design

64

3.7.2 Design of the Supplier System

The design development of the Supplier System within

the system-of-systems is described in this section. The

first goal of the Supplier System is to serve the Demand

System with product, asset or workforce availability and

cost information, required for automated matching and

contracting of maintenance demand with supply. The

second goal for the Supplier System is to support the

contracting process for every selected supplier to

perform in the maintenance operation. Apart from

some special features, the Supplier System design quite

similar to the Demand System design. Let’s start with an

overview of the most relevant items, shown in the table below.

Level of detail Items Instance Design
scope

Part of

Supplier
System
subsystems

ERP system SAP, Microsoft D365, Excel No Digital infrastructure
supplier

To be defined To be defined Yes Design research

Supplier
System
elements

Messenger service NATS No Baseline Protocol

Zeroknowledge
service

Zokrates toolbox No Baseline Protocol

ERP connector SAP connector, D365 connector No Baseline Protocol

Blockchain client Geth No Baseline Protocol

Vault service Provide Vault No Baseline Protocol

Blockchain
database

MerkleTree (local) No Baseline Protocol

To be designed To be designed Yes Design research

Supplier
System data
objects

Availability
schedule template

Machine-readable
asset/product/workforce
availability template

No ERP system

To be designed To be designed Yes Design research
Table 18: Overview of relevant items in Supplier System, subdivided on detail level

On receiving an availability request of a Demand System through the Messenger service, the Commit

Generator first fetches the latest Commit out the Blockchain database and compares it to the

Commit generated from the data sent with the availability request. Once the request is verified, a to

be designed module should calculate the supplier’s availability based on the received MO time

window, MO lead time and supplier availability calendar that resides in their ERP system. The

determined availability is then returned to the requesting Demand System for further processing. If

the Demand System publishes a Selection Commit that includes a certain supplier, that supplier

knows he is selected to proceed in the contracting process and therefore can block his availability.

Eventually the Supplier System receives a business proposal via the Messenger Service, the Commit

Generator verifies the business proposal with the Commit in the Blockchain database again, and lets

the supplier’s Planner review the proposal via the ERP system. In the case the Planner agrees with

the business proposal, he puts his signature, the second signature, on the proposal via the Vault

service. The business proposal has now become a bilateral signed business agreement. Supplier

System then creates a new Commit out of the business agreement, and a ZKProof via the Privacy

Service and sends both data objects via the Blockchain Client to the Shield contract. The original

business agreement is sent to the Demand System via the Messenger service.

Figure 35: Supplier System theoretical framework for
reference

65

Because the design iterations for the Blockchain System and the Demand System ironed out all the

flaws in the initial designs, no additional design iterations had to be made for the Supplier System.

3.7.2.1 Review actors and user stories

The actors directly interacting with the Supplier System will, as previously identified, be the Planner,

the Blockchain System and the Demand System. Regarding the user stories, US10 to US12 were

specifically designed for the Planner, and thus for the Supplier System. Additionally, to enable US4

for the Demand System, the Supplier System should also be able to support that one.

3.7.2.2 Elements design

Availability Module

To enable US4, the Availability Module was designed to return first days of availability for the span of

MO lead time, within the date range of the MO time window. It calculates the availability from the

asset/product/workforce availability schedules in the ERP system. Because it is undesirable to

disclose commercially sensitive information, the Supplier System only returns the first days on which

the supplier is available for the MO lead time, instead of sending the availability calendar spanned

according the MO time window.

Program details of the Availability Module are found in Appendix F.

3.7.2.3 Data objects design

No specific data objects had to be designed. The Supplier System uses the already designed MO

object and Commits, on top of the out-of-scope availability calendar.

3.7.2.4 Supplier System – final design

Putting together the pieces of the above sections and elements and data objects of the already

designed Demand System, we arrive at the final design for the Supplier System, as shown in figure

36. A complete system breakdown is presented in the table below.

Level of
detail

Items Instance Design
scope

Part of

Supplier
System
subsystems

ERP system SAP, Microsoft D365,
Excel

No Digital infrastructure
supplier

Security subsystem N.a. Yes Design research

Communication subsystem N.a. Yes Design research

Workflow Support subsystem N.a. Yes Design research

Supplier
System
elements

Messenger service NATS No Baseline Protocol

Privacy service Zokrates toolbox No Baseline Protocol

ERP connector SAP connector, D365
connector

No Baseline Protocol

Blockchain client Geth No Baseline Protocol

Vault service Provide Vault No Baseline Protocol

Blockchain database MerkleTree (local) No Baseline Protocol

Data Formatter N.a. Yes Design research

Commit Generator N.a. Yes Design research

Workflow database N.a. Yes Design research

Availability Module N.a. Yes Design research

Supplier
System
data
objects

Availability calendar Machine-readable
asset/product/workforce
availability calendar

No ERP system

MO object N.a. Yes Design research
Table 19: Supplier System - final design system breakdown

66

Figure 36: Supplier System - final design

3.8 Design integration - final s-o-s architecture and Workflow

3.8.1 Design of the s-o-s architecture

For the final s-o-s architecture design, the system designs of the Blockchain, Demand, and Supplier

systems are integrated into one system-of-systems design, as illustrated in figure 37. The design

allows for multiple Demand Systems and Supplier Systems, in varying configurations, to collaborate

on the designed s-o-s Workflow with the goal to match and contract supply for each scheduled MO.

The s-o-s allows for multiple Demand Systems to initiate and run Workflows simultaneously for

varying configurations of Supplier Systems. A Workflow is initiated by feeding a maintenance

schedule to a Demand System. From there, the Workflow is executed by elements of all three of the

component systems.

Synchronization of involved systems to a Workflow state occurs via the distribution of Commits and

p2p messages. All connected systems receive the Workstep finalizing Commits of all Workflows in

their Blockchain Database via the blockchain network. However, only the involved systems also

receive a Commit related message via the peer-to-peer Messenger Service. These messages contain a

topic, recipients, payload data and Commits as reference. Based on the type of message, first a

Commit is generated based on the message payload data that is compared to the Commit received in

the Blockchain database to verify the validity of the message and data. If successfully verified, the

Messenger Service forwards the data to the subsequent system elements according the Workflow.

67

3.8.1.1 Initialisation

To initialize current s-o-s, a group of supply chain participants (Workgroup) comes together for the

design of one or multiple Workflows. For each Workflow, they design and program generic Workstep

verification logic that supports the entire Workflow.

Once approved by the Workgroup, a Workgroup

admin is appointed to deploy the Shield,

OrgRegistry and Verifier contract. After each

participant in the Workgroup has downloaded and

installed either the Demand or Supplier system,

they send their blockchain addresses and

messenger service IDs to the admin. The admin

adds the blockchain addresses of the Workgroup

participants to the OrgRegistry contract, and adds

participant IDs to the messenger service.

Afterwards, the admin generates a JSON web token

(JWT) of his system configuration and via email

distributes the JWT to the participants for them to

configure their systems. Now the s-o-s is initialized

and ready to run Workflows with the connected

systems of the Workgroup.

3.8.1.2 Adding and removing participants

When a new participant is involved in the supply

chain, all that needs to be done is for that

participant to download and install their system of

choice. The participant creates a blockchain address

and messenger service account, which are shared

with the admin. The admin adds the participants

blockchain and messenger service details,

generated a JWT and emails it to the other

participants for them to update their system

configuration.

Figure 37: S-o-s architecture – final design

68

3.8.2 Design of the s-o-s Worfklow

Inspired by the initially designed Workflow and the goal defined for the s-o-s, the final Workflow

design is presented in this section. The Workflow ensures the collaboration between systems in the

s-o-s for the purpose of achieving its goal of contracting suppliers for every MO requirement, for

each scheduled MO, for the given MO time window and lead time. Synchronization to the state of

the Workflow occurs through the published Commits by the Blockchain System, as explained in the

Blockchain System design. The Commits are a result of verified executed Workstep by one of the

involved systems in the Workflow. Since the Workflow is executed in a decentralised manner,

multiple systems executed the Worksteps. The topic of the p2p messages tells these systems what to

do with the payload data. The five designed Commits designed for the Blockchain system, the

Workstep they represent, the related p2p messages and an explanation is given in the table below.

Work
step

Commit Related P2P
message
(topic)

Message payload Explanation

1 Genesis Availability
request

State (Workstep number),
MO ID, Supplier ID, MO
description, MO time
window, MO lead time,
Commit hash

After linking suppliers to each MO
requirement for a particular MO, a
Demand System first creates a Genesis
Commit, whereafter the availability
request follows to all linked suppliers.
Commit is also protection against data
harvesting. This marks the beginning of
the workflow.

2 Selection Supplier
selection

State (Workstep number),
MO ID, Supplier ID

Once asset manager confirms selected
optimal supplier subset, a Selection
Commit is published as an incentive for
each requested supplier to either
block/unblock their
asset/product/resource availability.

3 Business
proposals

Business
proposal

State (Workstep number),
MO ID, Supplier ID,
business proposal
document and hash

Once asset manager has reviewed and
signed business proposals for every
supplier for the MO, each of the
proposals is notarized on the blockchain
via this Commit

4 Business
agreements

Business
agreement

State (Workstep number),
MO ID, Supplier ID,
business proposal hash,
business agreement
document and hash

Once a supplier reviewed and signed a
business proposal, the resulting business
agreement is notarized on the blockchain
via this Commit

5 Finalization /
cancelation

Finalization /
Cancelation

State (Workstep number),
MO ID, Supplier ID

Once all suppliers are successfully
contracted, a Final Commit is published
so that each supplier knows preparation
for MO can begin. Likewise, if one
participant publishes a Cancelation
Commit all participants know that the MO
is (temporary) cancelled.

Table 20: Workflow worksteps, Commits, messages and explanation

Based on the above Workflow expressed in Worksteps, and in support of the goal of the s-o-s the

final Workflow design is presented in figure 38. The scoped Workflow design on element-level can be

found in the Appendices, however due to its size it was condensed to a system-level Workflow in the

figure. As intended, the Workflow is predominantly automated. The only remaining manual activities

are marked with a hand cursor. Data objects specifically designed for each system are also presented

in the figure.

69

Figure 38: Final s-o-s Workflow design, on system level

70

3.9 Coding and testing of the System-of-Systems
Coding and testing of the design for the system-of-systems was determined not to be a deliverable in

the design scope. However, to prove and verify the feasibility of the design we programmed a

minimal, but working instance of the system-of-systems. The entire codebase is found via the

following Github link: https://github.com/Meuko/baseline-ganache/tree/master/examples/bri-

1/base-example, apart from the Shield and OrgRegistry contract:

https://github.com/Meuko/baseline-ganache/tree/master/examples/bri-2/contracts/contracts.

For the coding, we took into consideration one Demand System, one Supplier System and the

Blockchain System, which were all created as individual Docker containers on one local machine.

Roughly we created 2000 lines of new code in a total time span of 150 hours. The table below shows

all the s-o-s components and how they were represented in the minimally coded version of the s-o-s

design.

 System System level Item Representation

Blockchain system

Subsystems

Network Ganache

Nodes
Docker container (Demand System)

Docker container (Supplier System)

Virtual Machine EVM

Ledger Ganache

Consensus Mechanism Ganache

Elements

Transactions Ganache

Smart contracts

Shield contract

Verifier contract

OrgRegistry

Data structures MerkleTree

Data Objects Commits Genesis Commit

Demand System

Subsystems

ERP system Local file location

Security subsystem Security subsystem

Communication subsystem Communication subsystem

Workflow subsystem Workflow subsystem

Elements

Messenger service NATS

Privacy service Zokrates

ERP Connector None

Blockchain Client Ganache

Vault service None

Blockchain database MongoDB

Commit Generator Commit Generator

Workflow database None

MO Extraction module MO Extraction module

Matching Module Matching Module

Data Formatter Data Formatter

Data objects
Maintenance schedule Text file

MO object MO object

Demand System

Subsystems

ERP system Local file location

Security subsystem Security subsystem

Communication subsystem Communication subsystem

Workflow subsystem Workflow subsystem

Elements

Messenger service NATS

Privacy service Zokrates

ERP Connector None

Blockchain Client Ganache

Vault service None

Blockchain database MongoDB

Commit Generator Commit Generator

Workflow database None

Data Formatter Data Formatter

Availability Module Availability Module

Data objects
Availability calendar Text file

MO object MO object

Table 21: Overview of system-of-systems components and their representation in the coded design verification

https://github.com/Meuko/baseline-ganache/tree/master/examples/bri-1/base-example
https://github.com/Meuko/baseline-ganache/tree/master/examples/bri-1/base-example
https://github.com/Meuko/baseline-ganache/tree/master/examples/bri-2/contracts/contracts

71

3.10 Answer to research questions
The following research questions have been answered in this chapter.

5. What are the activities automated by envisioned system-of-systems in current state matching

and contracting process?

• Linking suitable suppliers in ERP system to each MO requirement for each scheduled MO

• Creating and distributing availability and cost requests to each linked suitable supplier

• On supplier side, calculating and returning supplier asset/resource/product availability based

on MO time window and MO lead time

• Finding overlap in received supplier availabilities for every MO requirement within MO time

window, and determine earliest date of feasible MO execution

• Calculating all possible available supplier subsets and propose the best option according

given WPP optimisation preferences, for determined MO execution date

• Entering supplier and MO information in templated business proposals and handling the

distribution of them

7. What are the implications of the final design?

Developed s-o-s design supports any type of supply chain configuration, and any type of

maintenance strategy. It allows for multiple Demand and multiple Supplier Systems to collaborate,

using an existing pay-per-use digital infrastructure. The s-o-s is operated through existing company

ERP systems, and can be used in parallel to current state manual operations. Since the ERP connector

integrates with a broad range of ERP systems, from Microsoft Excel to SAP, even SMEs can

participate in the automated workflow. The main bottleneck for adoption is expected to be company

holding of and payment with digital currencies, although that also opens the door to immediate

financial settlement, decentralized finance (DeFi) and compatibility with machine-to-machine and

autonomous operation concepts such as Industry 4.0

8. How is trustworthy processing of commercially sensitive data enabled?

Privacy preserving processing of commercially sensitive data is achieved through the following:

• Local processing of maintenance and availability schedules, whereafter minimally disclosing
results are shared directly with involved supply chain participants via p2p messenger service.

• All data, including the business proposals and agreements, processed by Blockchain System
first undergoes local cryptographic hashing and zero-knowledge proof transformation before
submitted on the public network.

72

Chapter 4: Case Study
This chapter describes how the developed system-of-system design performs in a case study, to

evaluate the validity of the design.

4.1. Introduction
To validate the developed system-of-systems design for automated matching and contracting of

maintenance supply for the demand, its performance is evaluated through a case study. A

comparison shall be made between current manual matching and contracting process and the

automated matching and contracting process enabled by the s-o-s. The key performance indicators

for the process, and this case study, is the total process lead time and the total amount process

labour, expressed in time. Process lead time is important because shortening the time between

(upcoming) asset failures and maintenance execution decreases wind turbine downtime, thus

increases energy production and WPP revenue. Process labour time is important for operational

expenses, less labour spent on the WPP life cycle long matching and contracting process results in a

decrease of operational expenses, thus increases WPP revenue.

The selected business case is matching and contracting maintenance suppliers for the annual

maintenance demand of four neighbouring WPPs located at the Dogger bank in the North Sea. The

maintenance demand data is used from a maintenance logistics optimisation research by Steendijk

and Beelaerts van Blokland [20], on the grouped WPPs in the Dogger bank. Process activity data is

used from two internal process analyses performed by BlockLab. One analysis is focussed on the

process lead times, subdivided on activity level, for multi-party information exchange required for

international shipments. The second analysis focusses on process lead times, on activity level, related

to the information exchange for export processes from the Netherlands to the United Kingdom.

4.1. Business case
At the Dogger bank, four large WPPs are being developed, namely Dogger Bank Creyke Beck A & B

and Dogger Bank Teesside A & B. Both Creyke Beck WPPs consist of 300 offshore wind turbines and

the Teesside WPPs both consist of 200 turbines. The sites are located very closely to each other

relative to their distance to shore, therefore they could easily be maintained as a whole. Also,

because of their large distance to shore, the WPPs are configured to have their own fleet of

maintenance support vessels. The table below provides a combined overview of annual wind turbine

failures and maintenance support vessels for each individual WPP and the group total. The annual

wind turbine failures are based on failure data from Carroll et al. [2].

 Creyke Beck A Creyke Beck B Teesside A Teesside B Total WPP group

Wind turbines 300 300 200 200 1000

Minor failures 1853.4 1853.4 1235.6 1235.6 6178

Major failures 318.6 318.6 212.4 212.4 1062

Major
replacements

79.2 79.2 52.8 52.8 264

Large vessels 3 3 3 3 12

Small vessels 13 13 11 11 48

Crane vessels 2 2 2 2 8
Table 22: Annual failures and maintenance support vessels for WPPs at the Dogger bank

The goal of the case study is to determine the process lead time and process labour time for the

process of matching and contracting maintenance supply for each type of failure in the table, and

calculate the annual savings of the designed automated process on the current manual process.

73

First, all the high-level activities for the contracting and matching

process need to be mapped, which is done in figure 39. Second, for

each type of failure needs to be determined how much capable

suppliers are potentially matched and how much suppliers are

actually needed to execute the maintenance. Third, for each activity

the lead time and labour time needs to be determined for the

manual and automated scenario. And last, the findings are applied

on the Dogger bank business case to calculate the process lead time

and labour time for both the manual and automated scenario.

4.2 Case study assumptions
For each type of failure has to be assumed what the number and

type of MO requirements is in order to determine the number of

supplier interactions. The assumptions are based on the MO

requirements stated in the research of Carroll et al. [2]

Type of failure MO requirements

Minor failure

A small vessel

A team of WPP technicians

A set of WPP inventory spare-parts

Major failure

A small vessel

A large vessel

A team of WPP technicians

A set of WPP inventory spare-parts

An OEM spare-part

A Port

Major replacement

Multiple small vessels

A team of WPP technicians

A team of OEM technicians

A large vessel

A crane vessel

A set of WPP inventory spare-parts

An OEM spare-part

A Port
Table 23: Assumed MO requirements per type of WT failure

The other assumptions made are:

• There are in total four vessel suppliers in the maintenance

supply chain, namely the four individual WPPs.

• There are four WPP technician suppliers, namely the four

individual WPPs.

• There are four WPP inventory spare-part suppliers, namely the

four individual WPPs.

• There are three OEM spare-part suppliers for each kind of OEM

provided spare-part, e.g. turbine blades, gearboxes.

• There are three OEM technician suppliers per OEM provided

spare-part, e.g. gearbox specialists.

• There are five ports, where a large or crane vessel could be

loaded and unloaded with large spare-parts and maintenance

equipment.

Figure 39: Swimlane diagram of activities
related to the supplier matching and
contracting

74

• The total response time for an availability request, or business proposal, of all suppliers

combined will be set to 24 hours.

• For both the availability request and the business proposal, a response rate of 100% is assumed.

That means all requested potential suppliers have some availability within the presented MO

time window, and all suppliers that received a business proposal confirm the proposal 100% of

the time. Both assumptions are reasonable because most suppliers offer various assets, and the

business proposals are set up with availability and cost knowledge, leading to very high chance of

acceptance.

Summarizing on the assumed supply chain size and configuration, for each type of failure the total

amount of potential suppliers and required suppliers are:

• Minor failure: 12 potential suppliers, 3 required suppliers

• Major failure: 24 potential suppliers, 6 required suppliers

• Major replacements: 31 potential suppliers, 8 required suppliers

4.3. Case study data
The activity lead time data used for the process lead time and labour time calculations, is determined

and reasoned in the table below. The activity IDs match with the activities in the swimlane process

diagram of figure 39. Additionally, two variables are introduced:

• N_pot = Number of potential suppliers for the MO

• N_req = Number of required suppliers for the MO

Activity ID Manual scenario:
lead times
[minutes]

Automated
scenario:
lead times
[minutes]

Reasoning

1 1 0 Similar to activity 8 and 9 “info collect” in Blocklab analyses

2 1 0 Similar to activity 8 and 9 “info collect” in Blocklab analyses

3 1 0 Similar to activity 8 and 9 “info collect” in Blocklab analyses

4 5*N_pot 0 Similar to 4 and 31 “request document” in BlockLab analyses

5-8 1440 0 As assumed

9 10*N_pot 0 Similar to activity 2 “system input” in BlockLab analyses, but per
potential supplier

10 10 1 Similar to activity 2 “system input” in BlockLab analyses

11 5*N_req 1*N_req Similar to activity 16 “invoicing” in BlockLab analyses, per
required supplier

12 5 1 Similar to activity 18 “share documentation” in BlockLab analyses

13-16 1440 1440 As assumed

17 1*N_req 0 Similar to activity 8 and 9 “info collect” in Blocklab analyses, per
required supplier

18 5 0 Similar to activity 18 “share documentation” in BlockLab analyses

Total 2903 + 15*N_pot +
6*N_req

1442+N_req

Table 24: Process activity lead time determination and reasoning

In the bottom row of Table 24, matching and contracting process lead time formulas are determined

for both the manual scenario and the system-of-systems automated scenario. The process labour

time formulas for the Asset Manager are easily derived from those, because the waiting times need

to be excluded from both.

75

Process lead time formulas:

• Manual scenario: t_lead_man = 2903 + 15*N_pot + 6*N_req [minutes]

• Automated scenario: t_lead_auto = 1442 + N_req [minutes]

Demand side process labour time formulas:

• Manual scenario: t_labour_man = 23 + 15*N_pot + 6*N_req [minutes]

• Automated scenario: t_labour_auto = 2 + N_req [minutes]

4.4 Case Study Results
The derived formulas for the matching and contracting process lead time and labour time are applied

to calculate the lead and labour times per failure type and for both the manual and automated

scenario. The results of that calculation are found in table 25 below.

Process lead time [m] Process labour time [m]

Failure type Manual
scenario

Automated
scenario

Time
reduction

Manual
scenario

Automated
scenario

Time
reduction

Minor failures 3101 1445 53.4% 221 5 97.7%

Major failures 3299 1448 56.1% 419 8 98.1%

Major replacements 3416 1450 57.6% 536 10 98.1%

Table 25: Results and improvements on process lead time and labour time for manual and automated scenarios.

A solid lead time reduction is achieved by the automated s-o-s for each failure type. As expected, the

time reductions increase with the total number of involved suppliers for a maintenance operation.

The time reductions on process labour time by the automated s-o-s are extreme. Although extreme,

the results are explainable. For every activity in the matching and contracting process, the

automated s-o-s either eliminates the labour or hugely decreases the amount of labour. Summing up

all those savings plausibly lead to the extreme results.

In one year, the four combined WPPs at the Dogger bank, totalling up to 1000 offshore wind

turbines, have to find the supply for the maintenance demand of 6178 minor failures, 1062 major

failures and 264 major replacements. Currently, under the made assumptions, the manual

maintenance supply matching and contracting process for each maintenance operation took on

average 54.4 hours of lead time, and 6.5 hours of Asset Manager’s labour time. The total annual

process labour time for the Dogger bank WPPs amounts to 32530 hours.

For similar maintenance demand, the developed automated system-of-systems design decreased the

process lead time on average 56% to 24.1 hours, and decreased the Asset Manager’s process labour

time on average 98% to 0.13 hours. The total annual process labour time for the Dogger bank WPPs

operating on the new system-of-systems amounts to only 700 hours. Under the assumption of an

hourly rate of €80 for an Asset Manager, the new system-of-systems saves annually 31830 process

labour hours, or €2.5 million on process labour cost.

76

4.5 Answer to research questions
The following research questions have been answered in this chapter.

6. What are relevant KPIs for the automated process?

For both the current state manual process, and the novel designed automated process, the

determined KPIs are process lead time and process labor. Process lead time influences the speed of

maintenance mobilization, that limits OWT downtime. Process labor reflects the amount of manual

work in the process, negatively impacting information processing speed, solution quality, and overall

WPP operational performance.

77

Chapter 5: Discussion
This chapter reflects on the developed system-of-system design. First the verification of the design is

discussed, then the design validation and finally the implications of the design.

5.1 Design verification
The developed system-of-systems design is verified in three ways. First shall be verified if the s-o-s

still suits the theoretical definitions and architectural principles as developed by Maier. Second,

design verification on the basis of programming shall be discussed. And last, the s-o-s design is

verified through evaluation of enabling the defined user stories.

Maier describes two important properties of the component systems that make up a system-of-

systems; operational independence and managerial independence. Operational independence

means that if the s-o-s would be disassembled, the component systems must be able to fulfil

customer-operator purposes on their own. To some extend this is true for the developed s-o-s,

although each system will lose some of its functionalities. The Blockchain System is operated and

managed on its own, but it lost the functionality of synchronizing connected systems for automated

maintenance demand supply matching. The Demand System and Supplier System remain operated

and managed individually, but in terms of functionality fall back to an ERP system with blockchain

and peer-to-peer system communication connectivity.

In regard of the four design principles, the development of the system-of-systems design meets them

all. First of all, all individual systems are set up as stable intermediate forms, independent of each

other. The second principle of policy triage was met because the included existing components such

as the ERP systems, Baseline Protocol elements and the Ethereum blockchain network were left

unaltered. For the s-o-s design, elements and data objects were only added, or were given content in

case of the Verifier contract. The third principle “leverage at the interfaces” was met through

elaborate iterative design of the interfacing Blockchain System, and in particular the Verifier

contract. The Blockchain System, together with the Messenger service can be seen as the interface

between all the connected Demand and Supplier systems. For the Messenger service, the data object

“MO Object” was developed for efficient and easy transport of MO related data. The fourth and last

principle of “ensuring cooperation” is arguably met through the design of the automated Workflow.

Technical cooperation is not ensured by the Workflow, but incentivized cooperation on entity level is.

For all parties, it is much more efficient and cost-effective to operate via the s-o-s design instead of

the current manual operations. Besides that, although the Blockchain System can be seen as merely

the enabler of automated cooperation between Demand and Supplier Systems, all three systems are

of equal importance of the system-of-systems, and the s-o-s would be useless without one of them.

The second design verification is made through evaluation of the programming. Although we only

programmed a bare essential implementation of the s-o-s, on one single machine, it was exactly this

process that got to the crucial details to enable the automated Workflow. Without it, the design

would just be a conceptual, potentially infeasible, design. Now we are sure that the designed

automated Workflow completely works in an operational enterprise setting.

The last design verification is through evaluation of enabling the defined user stories. Although not

all user stories were specifically designed for, via literature on existing components included in the

design, we can assume that they shall be enabled in a finalized enterprise ready instance of s-o-s. The

user stories and the evaluation to what extend they are achieved are captured in the table on the

next page.

78

User story Enabled via Evaluation

US1 MO Extraction Module Technically completely enabled by the MO Extraction module

US2 MO Extraction Module,
Workflow database

Technically completely enabled by the MO Extraction module
and the MO object stored in the Workflow database

US3 MO Extraction Module,
and ERP system, ERP
connector

Matching suppliers to requirements technically enabled by the
Extraction Module. Communication with an ERP system
theoretically enabled by the ERP connector, however was not
designed and programmed in detail.

US4 Messenger service,
Blockchain System,
Commit Generator, ERP
system, ERP connector,
Privacy Service

Technically enabled with a dummy ERP system. Theoretically the
ERP connector should enable communication with the ERP
system.

US5 Matching Module, ERP
System

Technically enabled by the Matching Module with a dummy ERP
system. Theoretically enabled if the ERP connector and ERP
system allow to search on supplier services and capabilities

US6 Workflow database, ERP
system, ERP connector

Theoretically enabled via document templates in the Workflow
database that are filled with MO Object data, presented to the
user via the ERP system and the ERP connector

US7 ERP system, Vault service,
Messenger Service,
Privacy Service

Theoretically enabled, the Vault service is used for signing, the
ERP system and ERP connector for visualisation and control, the
Messenger service for distribution.

US8 ERP system, ERP
connector

Not enabled. Theoretically, notifications and maintenance
schedule updates are enabled by the ERP system and connector,
but no system element was specifically designed for this.

US9 ERP system, ERP
connector

Theoretically enabled, there are multiple ways of stopping the
automated Workflow; via a programmable button in the UI,
simply start working the manual way, delete the s-o-s code.

US10 Blockchain system,
Commit Generator,
Privacy service, Messenger
service

Technically completely enabled. Privacy service generates
ZKProof for Genesis Commit, publish Commit via Blockchain
System, send relevant data via Messenger service and let
Commit Generator verify request

US11 ERP system, ERP
connector

Theoretically enabled, there are multiple ways of stopping the
automated Workflow; via a programmable button in the UI,
simply start working the manual way, delete the s-o-s code.

US12 Workflow database, ERP
system, ERP connector

Theoretically enabled via document templates in the Workflow
database that are filled with MO Object data, presented to the
user via the ERP system and the ERP connector.

CS1 Blockchain System Technically completely enabled. Theoretically maximum size of
the supply chain is related to the maximum number of
transactions per time unit the used blockchain platform can
process.

CS2 S-o-s, Baseline Protocol Technically completely enabled, a new user only has to
download and install the software for either the Demand or
Supplier system. Via a JSON Web Token, the user’s system is
completely configured according the s-o-s settings.

CS3 S-o-s Technically completely enabled, results of the Case Study
revealed a 80% labour reduction is achieved.

CS4 S-o-s Theoretically enabled. The s-o-s is operated through an existing,
and thus familiar, ERP system. The user only has to be able to do
a few manual actions which can be enabled via an easy to use UI.

CS5 S-o-s, Blockchain system Theoretically enabled. Both by the Blockchain System and how
the s-o-s is designed, it is extremely hard to act maliciously.

Table 26: Evaluation of the user stories

79

5.2 Design validation
The validity of the design is evaluated through the results of the case study. Purely on the basis of the

results, the design achieved its goal of automating the matching and contracting of maintenance

supply with demand to ensure operational feasibility. While doing so, it proved to unlock

tremendous time savings in terms of process lead time and process labour time, on average

respectively 56% and 98%. Particularly the latter 98% savings in process labour time is almost too

good to be true. Considering the fact that the automated system-of-system design eliminates many

manually executed process activities and hugely decreases the amount of labour for the remaining

activities, makes the 98% labour time savings more plausible. It could be argued that mistakes have

been made in determining the process activity lead times, however their values are based on

elaborate process analyses that include a total breakdown of timed activities related to the

information exchange in international shipment processes and export processes from NL to the UK.

On top of that, each determined activity lead time can be logically justified. For additional validation,

annual WPP maintenance simulations could be executed with varying supply chain sizes,

configurations, and supplier availabilities.

5.3 Design implications
From a practical business perspective, how should the design be regarded? The design is a pay-per-

use system-of-systems that automates the processes of matching potential suppliers to maintenance

operation requirements; requesting their availability and cost information; aggregating received

supplier availabilities to find overlap within the scheduled time window; selecting suppliers for the

MO according set preferences, and facilitates the contracting process via preparation of templated

business proposals, their distribution, and digital signing.

Because of the pay-per-use infrastructure, no large capital investments have to be done in additional

hardware. Also, because the ERP connectors are supposed to connect with every level of enterprise

management system, from advanced SAP and Dynamics365 to simple Google Sheets or Excel, the s-

o-s allows for participants with limited financial resources, such as SMEs, to be involved in the

automated Workflow.

The s-o-s consists of maintenance Demand Systems and maintenance Supplier Systems, that use the

Ethereum public blockchain network and a peer-to-peer messenger service to synchronize the state

of the Workflow between systems of the supply chain participants. Using the Ethereum blockchain

means that for every verification of an executed Workstep, and thus the publication of a Commit, a

transaction fee has to be paid in digital currencies. This is considered to be the main obstacle for

adoption of developed design.

Commercially sensitive data never leaves the enterprise premises. All sensitive data processing

happens locally, whereafter only minimally disclosing pieces of availability data, or cryptographically

transformed Workflow data are shared in the system-of-systems.

The s-o-s is operated through the user interface of existing ERP systems, meaning that no additional

system needs to be operated and employees remain operating on the systems they trust and are

familiar with.

The integration of new supply chain participants is quick and easily done by simply installing the

Demand or Supplier System software and configure the system through a JSON Web Token sent by

the s-o-s admin via email. The new participant only needs to create a public blockchain address and a

messenger service ID. The admin adds the blockchain address to the OrgRegistry contract, while the

other participants add the new messenger service ID to their respective systems. Hereafter, the new

participant is fully integrated in the s-o-s and is enabled to collaborate in the automated Workflow.

80

Chapter 6: Conclusion and recommendations

6.1 Conclusion
Because of the renewable energy targets of the European Union, installed offshore wind capacity is

projected to grow over a tenfold of current capacity for 2050. Therefore, the offshore wind

maintenance demand, and its supply chain in terms of number of available suppliers, assets,

resources, and products, has to increase proportionally. On top of that, due to energy production

optimisation, the average size of an offshore wind turbines increases. Larger wind turbines consist of

larger, heavier parts that have to be maintained at higher altitudes, which increases the MO

complexity and the number of requirements needed to successfully execute a maintenance

operation. Because both the number of MOs and the number of MO requirements increases, the

amount of communication and information processing for coordinating these operations also

increases.

To achieve the renewable energy targets, it is important that the cost of offshore wind energy is kept

low and competitive. The price of offshore wind energy relies heavily of the operational performance

of a WPP. OWT downtime and O&M costs are dominant factors that have a negative influence on the

operational performance of a WPP. To keep OWT downtime and O&M cost low, it is of importance

that maintenance is mobilized as quickly as possible, and in a cost-effective manner.

For current state maintenance mobilization, MOs are scheduled automatically, whereafter asset

management teams have to manually match, contract and coordinate a variety of suppliers for each

MO. Key activities in this complex process are:

• Linking suitable suppliers to each MO requirement;

• Requesting their cost and availability for MO lead time within the scheduled time window;

• Finding overlap in supplier availabilities for MO lead time and scheduled time window;

• And contracting them for feasible MO execution.

Key pieces of information for these activities are the commercially sensitive maintenance and

availability schedules, all residing in supply chain participant ERP systems. Key performance

indicators for this process are process lead time and process labor. Lead time is important to the

maintenance mobilization speed that limits OWT downtime. Process labor reflects the amount of

manual work in the process, negatively impacting information processing speed, solution quality, and

overall WPP operational performance.

To accommodate the huge increase in MOs and related information processing, manual execution of

the matching, contracting and coordination of suppliers for each MO is considered to be a

bottleneck. The human information processor has limited capacity that shall result in slower and less

cost-effective maintenance mobilization, which are both important to the WPP operational

performance. To overcome this bottleneck, the solution is found in designing an automated system-

of-systems consisting of maintenance demand and supplier systems, that together execute a

matching, contracting and coordination workflow for each scheduled MO. Since the workflow

requires trustworthy collaboration of many independently owned ERP systems and secure processing

of commercially sensitive information, blockchain technology selected as part of the solution. As a

result, the following research question was defined.

81

How to design a technical feasible decentralized system-of-systems that enables automated matching

and contracting of maintenance supply for scheduled demand through privacy preserving processing

of commercially sensitive data?

Through the answering of a series of sub-questions, the answer to the defined research question was

found.

1. What is the theoretical framework to define and describe envisioned system-of-systems?

System-of-systems theory as defined by Maier and Veeke et al., and blockchain technology as

described by Nakamoto and Buterin. S-o-s theory is proposed to be extended with an additional

definition for describing passive, standardized, pieces of information consumed by other parts in the

s-o-s, that can be separated from the element class. These pieces of information are defined as “Data

objects”, and are vital to the operational success of an s-o-s. In this research data objects appear in

the form of data structure templates (schedule templates, hash (Commit) designs, MO Object) or as

unique identifiers (hashes, blockchain addresses). In physical systems, they appear as serial numbers,

stickers, tags, and general signalling.

2. What is the most suitable design method for envisioned system-of-systems?

A design method based on the agile blockchain system engineering method “ABCDE” of Marchesi et

al. complemented with Baseline Protocol design features of defining the Workgroup and design of

the Workflow.

3. How will the design be verified?

Design verification comes from:

• Teaming up with experienced blockchain engineer to program core functionalities.

• Compliance to architectural principles of s-o-s theory.

• Evaluation of realisation of defined user stories as part of the ABCDE method.

• Regular consults with lead developers and solution architects of BP

4. How will the design be validated?

Through a case study where its performance in terms of process lead time and process labor, is

compared to current state matching, contracting and coordinating suppliers for scheduled

maintenance demand. After definition of the process activities, formulas are defined to calculate

lead time and process labor in both current state and designed automated scenario. Activity lead

time data needed to develop the formulas comes from two process analyses for information

exchange related to international transport. For a maintenance demand based on the work of Carroll

et al. and an assumed supply chain size for the four WPPs located in the Dogger Bank, the impact on

lead time and process labor for three types of maintenance operations is calculated.

5. What are the activities automated by envisioned system-of-systems in current state matching and

contracting process?

• Linking suitable suppliers to each MO requirement for each scheduled MO

• Creating and distributing availability and cost requests to each linked suitable supplier

• On supplier side, calculating and returning supplier asset/resource/product availability based

on MO time window and MO lead time

82

• Finding overlap in received supplier availabilities for every MO requirement within MO time

window, and determine earliest date of feasible MO execution

• Calculating all possible available supplier subsets and propose the best option according

given WPP optimisation preferences, for determined MO execution date

• Entering supplier and MO information in templated business proposals and handling the

distribution of them

6. What are relevant KPIs for the automated process?

For both the current state manual process, and the novel designed automated process, the

determined KPIs are process lead time and process labor. Process lead time influences the speed of

maintenance mobilization, that limits OWT downtime. Process labor reflects the amount of manual

work in the process, negatively impacting information processing speed, solution quality, and overall

WPP operational performance.

7. What are the implications of the final design?

Developed s-o-s design supports any type of supply chain configuration, and any type of

maintenance strategy. It allows for multiple Demand and multiple Supplier Systems to collaborate,

using an existing pay-per-use digital infrastructure. The s-o-s is operated through existing company

ERP systems, and can be used in parallel to current state manual operations. Since the ERP connector

integrates with a broad range of ERP systems, from Microsoft Excel to SAP, even SMEs can

participate in the automated workflow. The main bottleneck for adoption is expected to be company

holding of and payment with digital currencies, although that also opens the door to immediate

financial settlement, decentralized finance (DeFi) and compatibility with machine-to-machine and

autonomous operation concepts such as Industry 4.0

8. How is trustworthy processing of commercially sensitive data enabled?

Privacy preserving processing of commercially sensitive data is achieved through the following:

• Local processing of maintenance and availability schedules, whereafter minimally disclosing
results are shared directly with involved supply chain participants via p2p messenger service.

• All data, including the business proposals and agreements, processed by Blockchain System
first undergoes local cryptographic hashing and zero-knowledge proof transformation before
submitted on the public network.

After combining the answers to all sub-questions into on, the answer to defined research question is:

By following a design approach based on ABCDE method, complemented met Baseline Protocol
design features, described and guided by an extended theoretical framework of system-of-systems
theory a s-o-s design can be developed for automated matching of maintenance demand with supply.
Technical feasibility is ensured through programming of core functionalities and consulting experts.
Automation is enabled through a designed s-o-s workflow executed by designed Demand and Supplier
Systems, enforced by Blockchain System. Privacy preserving processing of sensitive information is
enabled by local processing of all sensitive data and only sharing minimally disclosing results directly
peer-to-peer, or cryptographically transformed on the blockchain network.

Limitations to this research is the lack of involvement of WPP asset managers or suppliers in the
offshore wind maintenance supply chain, therefore the defined user stories and their evaluation are
solely based on the working experience of the researcher. Also, the resulting impact of the design on

83

process lead time and process labor are based on a single case study, for which the supply chain size
was assumed and only a happy flow was considered.

The academic contribution of this research is the addition of the definition of “Data Objects” to the s-
o-s theory for defining and describing vital, standardized, informational parts of an s-o-s that are
consumed by other parts of the s-o-s. The industry contribution is a novel generic s-o-s and workflow
design for automated decentralised contracting and coordination of suppliers for scheduled
operations, that supports any size, type and configuration of supply chain.

6.2. Recommendations for further research
Based on the limitations of this research and the implications of the developed design, the

recommendations for further research are given in two categories. First, routes to improve the

current research are recommended. Second, recommendations on how to extend and increase

adoption of current research are presented.

Recommendations to improve current research:

• Inspire asset managers and supply chain participants with developed novel s-o-s architecture

and automated workflow, and involve them in the development of additional user stories

and workflows. Then, perform research into advanced applications of zero-knowledge proofs

to enable and further extend developed user stories and workflows.

• Research into methods of automated searching in digital records of supplier information with

the goal to link their offered assets, products and resources to detailed maintenance

operation requirements for a large variety of maintenance operations.

• Perform quantitative simulations on WPP annual operational performance, for differently

located WPPs, and sized and configured supply chains to determine the best applicability of

developed s-o-s design.

Recommendations to extend current research and increase adoption:

• Theoretically, with current state automated maintenance scheduling, developed design for

automated contracting and coordination, and financial settlement in digital currencies, OWTs

could be enabled to control, order and pay for their own maintenance. It would be

interesting to research autonomous operation scenarios and their requirements, that could

be enabled with current research.

• Research on the feasibility of

maintenance operation

marketplaces enabled by

developed s-o-s design, and its

impact on the maintenance

industry.

84

Bibliography
[1] R. Wiser, M. Hand, J. Seel, and B. Paulos, “Reducing Wind Energy Costs through Increased

Turbine Size: Is the Sky the Limit? Berkeley Lab study,” 2016.

[2] J. Carroll, A. Mcdonald, and D. Mcmillan, “Failure Rate , Repair Time and Unscheduled O & M
Cost Analysis of Offshore Wind Turbines,” Wind Energy, vol. 19, no. 6, p. 214, 2015.

[3] C. Stock-Williams and S. K. Swamy, “Automated daily maintenance planning for offshore wind
farms,” Renew. Energy, vol. 133, no. April, pp. 1393–1403, 2019.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[5] N. Yvas, A. Beije, and B. Krishanamchari, Blockchain and the supply chian. 2019.

[6] R. L. Ackoff, “Towards a system of systems concepts,” Manage. Sci., vol. 17, no. 11, 1971.

[7] H. Veeke, J. Ottjes, and G. Lodewijks, The Delft Systems Approach, vol. 53, no. 9. 2008.

[8] M. W. Maier, “Architecting Principles for Systems-of-Systems,” Syst. Eng., vol. 1, no. 4, 1999.

[9] V. Buterin, “A next-generation smart contract and decentralized application platform,”
Etherum, no. January, pp. 1–36, 2014.

[10] S. S. Panda, B. K. Mohanta, U. Satapathy, D. Jena, D. Gountia, and T. K. Patra, “Study of
Blockchain Based Decentralized Consensus Algorithms,” in IEEE Region 10 Annual
International Conference, Proceedings/TENCON, 2019, vol. 2019-Octob, no. December, pp.
908–913.

[11] M. Du, X. Ma, Z. Zhang, X. Wang, and Q. Chen, “A review on consensus algorithm of
blockchain,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC
2017, 2017, vol. 2017-Janua, pp. 2567–2572.

[12] E. Piscini and L. Kehoe, “Blockchain & Cyber Security. Let ’ s Discuss,” 2018.

[13] J. Garzik and Bitfury Group, “Public versus Private Blockchains Part 1: Permissioned
Blockchains,” https://bitfury.com/docs/page:3, vol. 1. pp. 10–11, 2015.

[14] M. Rauchs, A. Blandin, K. Bear, and S. McKeon, “2nd Global Enterprise Blockchain Benchmark
Study,” 2019.

[15] Baseline Protocol Community, “Baseline Protocol,” https://docs.baseline-protocol.org/, 2020.
.

[16] P. Rook, “Controlling Software Projects.,” Softw. Eng. J., vol. 1, no. 1, pp. 7–16, 1986.

[17] L. Marchesi, M. Marchesi, and R. Tonelli, “ABCDE -Agile Block Chain dApp engineering,” arXiv,
vol. 1, no. November, 2019.

[18] Green Port Hull; BVG Associates, “Job Roles in Offshore Wind,” 2017.

[19] M. Cohn, User Stories Applied for Agile Software Development. 2009.

[20] J. Steendijk and W. W. A. Beelaerts van Blokland, “Optimization of Maintenance Operations
for Offshore Wind Farms,” in Hamburg International Conference of Logistics (HICL) – 28, 2019,
no. September, pp. 55–82.

85

Appendices

Appendix A – Detailed Design Iterations
Design Iteration 1: Element adjustment: Output of verifier contract

Before Use Verifier Contract to calculate the availability of a supplier after receiving the
Time Window and Task Length input of the WPP and the Availability Calendar
input of the supplier.

Reasoning Good way to use sensitive data because is only handled by associated party and
pseudo-anonymously given to trustworthy contract on decentralized network

Involved user story US4: Ability to request supplier availability

Problem Zeroknowledge Proof-based Verifier Contract is only able to calculate if a given
input is either true or false. It cannot be used as a general calculator that
outputs any unknown result from given inputs. Additionally, the Verifier
Contract only takes the input given by a single party.

When was problem
encountered

Tests in Remix (online IDE, also for testing smart contracts) with simplified initial
contract design revealed that the output of the calculation inside the contract
always has to be known upfront. Therefore, an unknown output can never be
calculated.

How solution was
presented

Additional detailed analysis of Zeroknowledge-Proof literature and examples,
complemented with various tests in Remix together with Hamza(online IDE, also
for testing smart contracts)

After Do the availability calculation off-chain, outside of verifier contract as it is unable
to provide the necessarily functionalities. Led to the design of the availability
module

Design Iteration 2: Element adjustment: Generic verifier contract per MO

Before Create unique verifier contract for each individual work step in order to verify
compliance with specific work step related business logic

Reasoning Splitting up verification for each individual work step keeps the verification
scheme simple and maximises security as more process details can be taken into
account.

Involved user story US4, CS4, CS5

Problem Managing the routing of the work step data to the related verifier contract is
very hard and not incorporated in Baseline Protocol. Additionally, each
deployment of a contract adds significantly to the operational costs

When was problem
encountered

When brainstorming about the routing to the various contracts and the absence
of routing information in the Baseline literature

How solution was
presented

Discussions on the matter in the Baseline Slack with Sam Stokes and Brian
Chaimberlain led to the insight that it is more economical to deploy only one
contract and more simple too, as it would become very complex to create a
mechanism that is able to listen to a contract deployer, determine which
contract belongs to which workstep and to update the smart contract routing of
each connected system in the network. It would also lead to the need of a
human or automated contract deployer for each MO.

After Design a Verifier Contract that is generic and able to verify the logic of each work
step

86

Design Iteration 3: Element adjustment: Reusable generic verifier contract

Before Create generic verifier contract for each individual MO to verify compliance with
the MO related business logic

Reasoning Splitting up verification for each MO maximises security as more MO details can
be taken into account.

Involved user story CS4, CS5

Problem Routing, design and deployment of an MO-related Verifier Contract increases
operational costs, design complexity and process labour

When was problem
encountered

In the discussions with the Baseline developers regarding previous iteration.

How solution was
presented

In the discussions with Sam Stokes and Brian Chaimberlain about the Verifier
Contract setup they gave the advice that it was best practise to just create one
reusable generic verifier contract as it make the system design much less
complex and cheaper to operate

After Design a generic Verifier contract that is reusable for all the handled MOs

Design Iteration 4: Element adjustment: Verifier contract hashing algorithm

Before The Verifier Contract was designed to verify the proof of correct formulation of a
multi-stage hashing operation, where two initial batches of combined data are
hashed separately, whereafter the resulted hashes are combined and hashed
again for the final result. The security layers to protect the sensitive business
data are as follows;

1. Sensitive data, such as business proposals or contracts, are hashed first.
Only the suppliers involved in the MO are in possession over this shared
data with the WPP

2. Those hashes are combined with less sensitive data, such as company
names, and are hashed again according a generic formula only the
supply chain members know of. The resulting hash is used as
Commitments, which will be emitted on the public network after
successful verification. Reconstruct the original data from a multi-
staged hashing operation is currently impossible.

3. The final security layer is the Verifier Contract itself. To be able to
generate a successful verification (i.e. proof of compliance and
execution with the process), one first has to get possession of the right
data, then has to get possession over the generic formula and
formulate the multi-staged hashing operation the right way. From that
combination of data and hashes, a Zero-knowledge proof (zk-SNARKS)
has to be generated via a generic arithmetic circuit only possessed by
the supply chain members. That ZKP has to be fed to the Verifier
Contract via an Ethereum address that is listed in the OrgRegistry
Contract which holds the addresses of all the connected supply chain
members.

In summary: a correctly formulated ZKP representation of a combination of data
and hashes is only allowed to be send to the Verifier Contract by an OrgRegistry
listed address, and by successful verification a process step-related Commitment
– also built from a correctly formulated combination of hashes and data - is
emitted on the public network.
The hashing algorithm used for these operations is the SHA256 algorithm, which
produces a 32-character fixed length 256-bit hash.

Reasoning Well-known, widely used and secure hashing algorithm.

Involved user story CS5

Problem Using SHA256 for multi-stage hashing operations in an on-chain Verifier Contract
resulted in unnecessary long processing times, therefore expensive operations,
and extreme code bloat when deploying the contract on the network.

87

When was problem
encountered

During deployment and testing of the Verifier Contract.

How solution was
presented

Discussions with Hamza revealed he was aware of the fact that within the
Baseline Protocol development community they were also looking at
alternatives for the slow and expensive SHA256 hashing algorithm. One of the
promising alternatives was the Pedersen algorithm, which was known for its
efficiency and therefore very suitable for use in zk-SNARKS circuits.

After The SHA256 hashing algorithm in the formula was replaced with the Pedersen
hashing algorithm, which turned out to be a factor of 10 to 100 times faster

Design Iteration 5: Added data objects: Genesis Commit and Selection Commit

Before The initial set of Commits consisted of the Availability, Proposal, Contract, and
Final Commit.

Reasoning The initial set covers all the essential process steps that occur in the sourcing
and contracted process, therefore it seemed sufficient

Involved user story US4, US10, CS5

Problem Iteration 4 led to the unlimited ability for the WPP to request availability data
from the suppliers, as the Availability Module can be requested on demand by
the WPP. Additionally, lead time in-between the supplier selection and the
actual distribution of a business proposal could cause a supplier to become
unavailable again by external business requests.

When was problem
encountered

Trough Iteration 4, the problem of unlimited data mining came in existence. The
insight for impermanent availability of the supplier came through a realization in
one of our calls with the Baseline developers

How solution was
presented

It was my own idea to add a Genesis Commit to mark the start of a new sourcing
process for an MO and simultaneously act as a monetized motivation (in terms
of transaction costs) for a data request. The solution to claim the availability for
a supplier by notification about their selection came as an idea in the meeting
with Kyle and Daven

After The Availability Commit was replaced by the Genesis Commit as a monetized
motivation to perform a single availability request, that is automatically
authorized by system of the supplier. The Selection Commit is also incorporated
and will be published after the most optimal set of suppliers is selected by the
system to perform the MO. Backed by this commitment, a supplier can safely
clear his Availability Calendar until he receives a business proposal from the WPP

Iteration 6: Added data object: MO data object for MO data storage

Before Initial idea was to hold a database in each system to store process and MO
related data, that could be retrieved whenever needed.

Reasoning Provision of necessary, basic functionalities

Involved user story US1-US10

Problem Such a configuration results in a lot of requests to the database, and also made
management and ordering of the database unnecessary complex

When was problem
encountered

During integrated testing we found that we needed to add a lot of effort to store
and retrieve the right data at each intermediate step

How solution was
presented

Hamza proposed to combine all the various data objects into one major object
where all the data related to one MO, is stored and passed around between the
system elements

After For each MO handled by the system, a MO specific data object is continuously
populated with MO related data throughout the entire process. That object can
be easily shared with connected suppliers through the messenger service, in
order for the suppliers to have the right data to reconstruct passed Commits

88

Iteration 7: Added element: Commit Generator

Before To be able to verify the correctness of published Commitments, the idea was to
use the Commitment Manager which is a part of the standard components of
the Baseline Protocol

Reasoning As an essential feature of the protocol, functionality should be provided to verify
published commitments

Involved user story US4, US10, CS3, CS5

Problem Commitment Manager does not provide the functionality of verification of
Commitments

When was problem
encountered

During a virtual run through the process, realized was that there is no function
that provides verification of commitments that reached the local Merkle Tree

How solution was
presented

We came up with the simple solution to create an off-chain copy of the Verifier
Contract in order to be able to regenerate the published Commitments

After A Commitment Generator was created and added to each system stack to
enable verification of published Commitments. The system of a supply chain
member is now able to automatically generate a Commitment based on data
received in the MO data object. Whereafter the resulting Commitment can be
compared to the original one published on the network and stored in each
Merkle Tree

Iteration 8: Added element: Data Formatter

Before Data formatting, if required, will be done at the particular system element when
it is needed, or at its predecessor.

Reasoning The expected amount of formatting is considered rather limited

Involved user story US1-US10

Problem It turned out that in- and outbound communication via the messenger service
required a lot of reformatting each time, affecting various components that
interact directly with the messenger service. Message payload data needs to be
mapped and stored in the right field of the MO data object and vice versa

When was problem
encountered

During integrated testing we found out that we needed to add a lot of mapping
and formatting code at each element interacting with the messenger service

How solution was
presented

In discussions with Hamza on how to handle this problem

After An element called Data Formatter was added to each system stack for the
mapping and formatting of in- and outbound data from the MO object to the
messenger service and vice versa

89

Appendix B – zk-SNARK program for Verifier Contract
Program function: Verify proof of correct hash formulation of a variety of inputs.
Program language: Zokrates’ DSL (Domain specific language)
Link: https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-
example/src/zkp/src/stateVerifierP.zok

import "hashes/pedersen/512bit" as pd

import "utils/pack/u32/pack128" as pack128

import "utils/pack/u32/unpack128" as unpack128

def main(private field State, private field MJ_ID, private field

 SupplierID, private field DocHash1, private field DocHash2, private

 field ContractH1, private field ContractH2, private field LC1,

 private field LC2, private field NC1, private field NC2) -> (field,

 field):

 field a = if (State == 1 || State == 2 || State == 5) && ContractH1 ==

 State && ContractH2 == State && SupplierID == State && DocHash1 ==

 State && DocHash2 == State then 0 else 1 fi

 field b = a * ContractH1

 field c = a * ContractH2

 field d = a * SupplierID

 field e = a * DocHash1

 field f = a * DocHash2

 field g = if (State == 3 || State == 4) && DocHash1 != ContractH1 &&

 DocHash2 != ContractH2 then 1 else 0 fi

 field h = g * b

 field k = g * c

 u32[16] preHash1 = [...unpack128(State), ...unpack128(MJ_ID),

 ...unpack128(d), ...unpack128(LC1)]

 u32[16] preHash2 = [...unpack128(e), ...unpack128(f), ...unpack128(h),

 ...unpack128(LC2)]

 u32[8] Hash1P = pd(preHash1)

 u32[8] Hash2P = pd(preHash2)

 u32[16] NewHash = [...Hash1P[0..4], ...Hash1P[4..8], ...Hash2P[0..4],

 ...Hash1P[4..8]]

 u32[8] NewHashP = pd(NewHash)

 field[2] NewHashField = [pack128([...NewHashP[0..4]]),

 pack128([...NewHashP[4..8]])]

 assert(NewHashField[0] == NC1)

 assert(NewHashField[1] == NC2)

 return MJ_ID, State

https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/zkp/src/stateVerifierP.zok
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/zkp/src/stateVerifierP.zok

90

Appendix C – Detailed program of MO Extraction Module
To save space, only a link to the location of the program is provided.

https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-

example/src/mods/extract/extract.ts

Appendix D – Detailed program of Commit Generator
To save space, only a link to the location of the program is provided.

https://github.com/Meuko/baseline-

ganache/blob/158713d7e57a88ba40c7d8621b47e04951d3172f/examples/bri-1/base-

example/src/index.ts#L874

Line 874 – line 1040

Appendix E – Detailed program of Matching Module
To save space, only a link to the location of the program is provided.

https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-

example/src/mods/allign/allign.ts

Appendix F – Detailed program of Availability Module
To save space, only a link to the location of the program is provided.

https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-

example/src/mods/avail/avail.ts

Appendix G – System-of-systems Workflow design on element level
See attached PDF.

Appendix H – Research paper “Design of a Supply Chain Coordination System-of-

systems”
See attached PDF.

https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/extract/extract.ts
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/extract/extract.ts
https://github.com/Meuko/baseline-ganache/blob/158713d7e57a88ba40c7d8621b47e04951d3172f/examples/bri-1/base-example/src/index.ts#L874
https://github.com/Meuko/baseline-ganache/blob/158713d7e57a88ba40c7d8621b47e04951d3172f/examples/bri-1/base-example/src/index.ts#L874
https://github.com/Meuko/baseline-ganache/blob/158713d7e57a88ba40c7d8621b47e04951d3172f/examples/bri-1/base-example/src/index.ts#L874
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/allign/allign.ts
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/allign/allign.ts
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/avail/avail.ts
https://github.com/Meuko/baseline-ganache/blob/master/examples/bri-1/base-example/src/mods/avail/avail.ts

1

Design of a Supply Chain Coordination

System-of-Systems

Ir. G.J.W. Frijters

Dept. Maritime and Transport

Technology

Delft University of Technology

Delft, The Netherlands

g.j.frijters@gmail.com

Dr. Ir. D. Schott

Sect. …..Dept. Maritime and Transport

Technology

Delft University of Technology

Delft, The Netherlands

w.w.a.beelaertsvanblokland@tudelft.nl

Dr. Ir. W.W.A. Beelaerts van Blokland

Dept. Maritime and Transport

Technology

Delft University of Technology

Delft, The Netherlands

d.l.schott@tudelft.nl

Dr. J.M. Vleugel

Dept. Transport and Planning

Delft University of Technology

Delft, The Netherlands

j.m.vleugel@tudelft.nl

A. Beije, MSc

 Director Blockchain

Fieldlab B.V. (BlockLab), co-

author of “Blockchain and

the supply chain”

Rotterdam, The Netherlands

aljojsa@blocklab.nl

Abstract—The renewable energy targets agreed upon in the

Paris Agreement and European Green Deal lead to an enormous

expected growth of currently installed offshore wind energy

production capacity in European waters. Over a tenfold of the

current capacity is planned to be installed before 2050. In

support, due to efficiency, the size of offshore wind turbines also

increases. Therefore, the number of offshore wind maintenance

operations and their complexity is expected to grow. Asset

managers are burdened with the complex manual task of finding

supply for the increasing maintenance demand, to ensure

performance of the wind power park and compliance with

power purchase agreements. The current state matching and

contracting of suppliers is a manually executed step in a series

of automated maintenance planning steps, that requires the

processing of commercially sensitive information. Manual

execution is determined to be a bottleneck for effectively

accommodating the increased maintenance demand and

complexity. Solution quality, process lead time and process

labor are expected to be improved when automating the human

information processor. This paper describes the design process

of an automated decentralized supply chain planner, that

transforms the maintenance schedule into a feasible, definitive

maintenance planning, by matching and contracting suppliers

for scheduled maintenance operations and determine its

definitive date, while By following a design approach based on

the ABCDE – agile blockchain Dapp engineering method,

merged with Baseline Protocol design features, a system-of-

systems architecture and automated system-of-systems

Workflow was designed, verified and validated.

Keywords—Offshore wind maintenance, decentralized supply

chain planning, blockchain technology, Baseline Protocol,

system-of-systems, ABCDE – agile blockchain Dapp engineering

I. INTRODUCTION

The European energy system is undergoing a transition
supporting the fulfilment of the objectives of the Paris
Agreement and the European Green Deal. One of the key
elements in these climate change combatting policies is the
complete decarbonization of the energy sector. Offshore wind
power is one of the attractive renewable energy sources for
replacement of the current polluting sources. In 2019, 20 GW
of energy production capacity was installed in European
waters, which is projected to grow more than a tenfold for
2050, targets varying between 230 and 450 GW [1].

Additionally, wind experts forecast continued evolutionary
growth in average offshore wind turbine (OWT) size, because
it helps lowering the cost of wind energy [2]. A low cost of
wind energy is important for the renewable energy transition.

Due to the growing OWT size, larger and more specific
assets are required for offshore maintenance operations [3],
while simultaneously the demand for these maintenance
operations increases with the installed energy production
capacity. The growth trends combined lead to an increase of
multi-party maintenance operations, that need to be planned.

The current maintenance strategy of choice for the
remotely located OWTs is sensory-based predictive
maintenance, because its goal is to optimise the energy
production plan and economic maintenance plan [3]. The
predictive maintenance strategy is an advanced and highly
automated strategy, that includes the automated scheduling.
Based on the outcome of weather and asset health prediction
models, fed with actual weather and condition monitoring
data, maintenance schedules are automatically generated on a
daily basis [4]. Afterwards, the manual execution takes over,
where the asset manager analyses the maintenance schedule
and starts searching for suppliers of assets and resources for
each requirement per maintenance operation, by phone or
email [4]. Depending on the configuration of an offshore wind
power park (WPP), maintenance assets and resources are
supplied by the WPP itself, a shared pool of nearby WPPs, or
by an external supplier, that all are part of the offshore wind
maintenance supply chain. Regardless of the supplier, an asset
manager has to manually communicate over the availability
and cost information of each maintenance requirement to
ensure feasibility of the scheduled maintenance operation. A
high-level view of the maintenance organisation activities and
the level of process automation is illustrated in figure 1 on the
next page.

A. Problem Definition

Manual matching and contracting of suppliers for each
requirement for each scheduled maintenance operation is
believed to be a bottleneck in accommodating the huge

mailto:g.j.frijters@gmail.com
mailto:w.w.a.beelaertsvanblokland@tudelft.nl
mailto:d.l.schott@tudelft.nl
mailto:j.m.vleugel@tudelft.nl
mailto:aljojsa@blocklab.nl

2

expected increase of demand for multi-party maintenance
operations, while maintaining the WPP’s operational
performance. The average number of human interactions per
operation, and the total number of operations increases, while
available lead time remains constant. Speed and capacity
limitations of the human information processor are expected
to lead to sub-optimal solutions for the energy production plan
and economic maintenance plan. Therefore, the solution is
searched in digital automation of the supplier matching and
contracting process, similar to the preceding maintenance
organisation activities.

The difficulty with matching and contracting of suppliers,
is that it requires the processing of commercially sensitive
information, i.e. maintenance demand schedules, supplier
asset or resource availability schedules and their cost rates.
These schedules are typically stored in protected company
ERP systems. Company security officers are not keen on
automating multi-party supply chain processes on the basis of
exchanging commercially sensitive information from their
protected ERP systems. The problem is that there is a lack of
a system of connected systems that enables trustworthy
processing of private data to automate the final stage of
maintenance operation planning; the matching and contracting
of suppliers for maintenance operations.

B. Envisioned Solution

The conventional solution is to design a centralised
system, owned by a dominant supply chain participant or
external service provider, that hosts the system on their own,
or in a cloud based infrastructure. This is considered
undesirable for a number of reasons:

• Single point of failure for system that supports multi-
party supply chain operations.

• Control over automated supply chain process for
single dominant supply chain participant, cloud
provider, or external service provider.

• Potential access to an abundance of commercially
sensitive supply chain data for the parties that own
and host the system.

• Numerous system integrations to setup and maintain
between suppliers and every WPP that develops their
own centralised system.

 Because of forementioned reasons, the envisioned
solution shall include the use of an innovative technology
known for its ability to automatically achieve decentralised
consensus over a shared object, between distrusting systems

in a public peer-to-peer network; blockchain technology [5].
Since the emergence of Bitcoin in 2008, blockchain
technology has gained popularity due to its unique capabilities
as a decentralised digital currency. Ethereum, a second
generation blockchain, allows for deployment of
automatically enforced programmable contracts called “smart
contracts” [6]. Smart contracts combine protocols with user
interfaces to formalize and secure algorithmically specifiable
relationships over computer networks [7]. Meaning business
logic can be programmed into, and enforced by smart
contracts.

The applicability of blockchain technology to supply chain
processes is covered in the work of [8]. By removing the
single point of failure and the presence of a central authority,
supply chain resilience increases. Public blockchain networks
offer data security and cost-effective transmission of
transactions in peer-to-peer networks, allowing for single, one
time system integration for direct business-to-business
interaction. Public blockchains are transparent and publicly
accessible, therefore increasing the supply chain visibility and
traceability. And, via the use of smart contracts real-time
settlement and automation of the information and financial
flow is enabled. The resulting efficient and effective data flow
is proven to be essential for efficient supply chain
coordination and responsiveness [8].

Not only in theory is the applicability of blockchain
technology to supply chain processes validated, also in
practise. Successful examples such as Naviporta [9],
TradeLens [10] and the North-America Coca-Cola bottling
supply chain [11] all show that an effective application of
blockchain can reduce process lead times and labour costs,
specifically for supply chain coordination processes that
involve a high amount of intercompany communication and
data processing.

Taking the features of blockchain technology into
consideration, the envisioned solution is expected to
effectively apply the technology by:

• using the public network as a single-integration
common frame of reference for connected supply
chain systems;

• using smart contracts to enable decentralised supply
chain process automation between connected
systems.

Assumed is that the commercially sensitive maintenance
demand and maintenance supply schedules of all participants
in the offshore wind maintenance supply chain are stored in

Figure 1: High-level view of OWT maintenance organization activities, with indication of automation level

3

company ERP systems. By designing a system that connects
these systems and force them to cooperate in an automated
data exchange workflow, while remaining the data privacy,
most of the manual coordination can be eliminated for each
scheduled maintenance operation. This is expected to result in
less manual communication for the entire maintenance supply
chain, less manual coordination and associated data
processing for the WPPs, and faster secured and more cost-
effective supply for the maintenance demand. Therefore, the
envisioned solution (see figure 2) helps the WPPs maintain
their operational performance by finding maintenance supply
for rapidly increasing demand while respecting the energy
production optimised maintenance schedule.

Because business managers are still hesitant to adopt
blockchain based enterprise solutions, technical feasibility
and data privacy for the developed design is considered
important. The main research question that is answered in this
research is determined to be:

How to design a technical feasible decentralized system-of-

systems that enables automated matching and contracting of

maintenance supply for scheduled demand through privacy

preserving processing of commercially sensitive data?

II. RESEARCH METHODOLOGY

This research is approached from a system engineering

perspective. Therefore, to answer the research question, first

a literature analysis is performed into the subjects of systems-

of-systems theory, blockchain technology and systems

engineering. The result of the analysis is used to determine a

definition framework and a design approach to create a

technical feasible design. The design shall be validated via a

case study, which is explained in a separate section.

A. Literature analysis

The Delft Systems Approach was developed as an

extension to existing systems theory, which lacked the

perspective of the researcher [12]. The Delft System

Approach provides tools to identify, define and describe parts

and properties of a system. A system is composed of

elements, which are the smallest identifiable parts. The

interaction between elements is referred to as relationships.

Subsystems are partial collections of elements whereby all

the original relationships between these elements remains

unchanged. A system can have a state, which is the value of

all its properties at a given time. An event occurs when the

value of a property of an element changes. And when one

event leads inevitability to other events, this is referred to as

activity.

Maier was the first researcher in 1998 to examine, the then

commonly used term, system-of-systems and the meaning of

it in detail [13]. He defines collaboratively integrated systems

as “systems-of-systems” (s-o-s), given it includes two

distinguishable characteristics:

A system-of-systems is an assemblage of components

which individually may be regarded as systems, and which

possesses two additional properties:

• If disassembled, the component systems must be

able to usefully operate independently.

• Managerial independence of component

systems, meaning they are separately acquired,

integrated, and maintained.

Moreover, Maier identified four architectural principles

to give the definition more body. The first principle is the

principle of stable intermediate forms for component

systems, that originated from civil engineering. The second

principle is policy triage, which forces to think very carefully

what to control in an s-o-s design, while respecting the s-o-s

properties. The third principle is leverage at the interfaces,

meaning to focus on the interfaces between the operational

and managerial independent components. The last principle

is ensuring cooperation between the component systems of

an s-o-s. Definitions for each granularity level of s-o-s

components can be captured in a pyramid, as illustrated in

figure 3. S-o-s are made out of systems, that consist of

subsystems, that consist of elements.

Figure 3: Definitions for describing s-o-s components at different

granularity levels

The second subject of literature analysis is blockchain

technology. The essentials and applicability to supply chain

processes are already given, so remaining relevant features

and projects are explained here.

For this research it is important to know that a blockchain

technology consists of a peer-to-peer network of nodes that

all possess a ledger, also they possess the tools to gain

consensus among nodes, in a decentralized manner, about the

actual state of the ledger. The ledger can be regarded as a

record of which blockchain addresses own which digital

tokens. Other than that, smart contracts are also represented

by a blockchain address and can fed with data via a

Figure 2: Visualization of envisioned peer-to-peer supply chain

system-of-systems interaction for maintenance supply chain

coordination.

4

blockchain transaction. The smart contract then automatically

executes the programmed set of rules and the broadcasted

output will be used to update the ledger accordingly. On a

public network, transactions and the state of the ledger is fully

transparent. Transactions are captured in blocks, which are

added to an immutable append-only chain of blocks. Once

deployed on the network, smart contracts are just as

immutable except for what the programmed functionalities

allow for.

While analyzing literature on blockchain technology, the

Baseline Protocol was encountered. Set up as an Oasis open-

source project, the Baseline Protocol (BP) is combines

advances in cryptography, messaging, blockchain technology

to deliver secure and private business processes, event

ordering, data consistency, and workflow integrity at low cost

[14]. It is a middleware that connects ERP systems to a

common frame of reference; the public blockchain network.

In the BP, the following elements are included; an ERP

connector, privacy service to work with zkSNARKS, peer-to-

peer messenger service, vault service to digitally sign

documents and a blockchain client to communicate with a

blockchain network. BP elements placed on the blockchain

are: a Shield smart contract that acts as gatekeeper and

workflow state synchronizer, a OrgRegistry smart contract

that holds a list of involved supply chain participants and their

blockchain addresses, and a Verifier smart contract that is

able to verify received zero-knowledge proofs according

zkSNARK transformed business logic. With these elements,

BP synchronizes connected systems to the current state of a

workflow (shared business process) they execute together. A

connected system creates a zero-knowledge proof out of the

data of an executed workstep, and send the proof to the Shield

contract. The Shield contract verifies if the sending address is

listed in the OrgRegistry, and if so it forwards the proof to the

Verifier contract. Once the proof is verified, the Shield

contract emits a successful event and broadcasts a Commit to

the connected systems, that are now enabled to update their

state of the workflow. A Commit is a hash combination of

data that proves the execution of a workstep, that is used as

message to update the state of the workflow in the network.

Zero-knowledge proofs (ZKP) are a family of probalistic

protocols, first described in 1989[15]. They are defined as

proofs that convey no additional knowledge other than the

correctness of the proposition in question, which makes them

extremely useful to perform computations on sensitive data

on a public network. One particular family of ZKP is

described as zero-knowledge succinct non-interactive

arguments of knowledge, a.k.a. zkSNARKS. It is an efficient

application of ZKP, particularly useful in systems where

running computations is costly. They are non-interactive

because it allows for a verifying party to include the

verification scheme into, for example, a smart contract that is

deployed on the blockchain network [16]. A proving party

can at any time upload a ZKP to verify its correctness and

compliance to the programmed scheme. The Ethereum

blockchain is one of the early adoptors of zkSNARKS, and

ZoKrates is the toolbox that shall be used to develop these

data privacy preserving verification schemes [16].

The third and final subject analysed in literature is

systems engineering, with the goal to provide the necessary

design methods for developing an s-o-s. First was looked at

the widely adopted V-model, proposed by Rook in 1986 [17].

Although originally created for software development, the

model was and is applied for the development of high-end

systems in any domain. It’s a comprehensive design method

that addresses the entire lifecycle of an engineered system,

including maintenance and product phase-out. For this

research a more agile and suitable implementation of the V-

model was searched for, that predominantly focusses on the

design phase of the system.

During analysis, the Agile Block Chain Dapp

Engineering (ABCDE) method was encountered. Created by

Marchesi et al. [18], the method was specifically developed

out of a lack of disciplined, organized and mature

development processes for blockchain based products. Agile

practices were included to cope with misunderstood or

changing system requirements, which can be the case for

developing novel system designs as in this research. The

iterative and incremental approach of Scrum is also included

in the method, to speed up the development and increase the

quality of the design. According the method first, the goal of

the system, the actors and user stories are defined. Then the

design phase is split into development of first the blockchain

parts, and second the non-blockchain (“off-chain”) parts.

Those parts are programmed and tested, and are integrated in

a final design synthesis. All of the design steps in the ABCDE

method are similar to first steps until the maintenance phase

as described in the V-model.

B. System-of-systems theory extension

Via the literature analysis it was discovered that an

additional system part distinction can be made for

information processing s-o-s. According the system and s-o-

s theory, the definition “Elements” is used to described the

smallest parts of a system. However, standardized, passive

objects of data consumed by the other elements in the s-o-s,

can be distinguished from this group. These parts shall be

defined as “Data objects” and are vital to successful operation

of an information s-o-s, and therefore also need to be

designed separately. In the context of this research the data

objects are the maintenance and availability schedule

templates, Commit hashes, blockchain addresses, message

structures and other data structures (e.g. JSON schemes). Not

only in information s-o-s data objects can be distinguished

from the elements, in physical s-o-s data objects appear in the

form of serial numbers, tags, stickers, and general signaling

etcetera. The definition is therefore considered to be generic

applicable to all kinds of s-o-s and is proposed to be added as

an extra definition granularity level for describing parts of a

s-o-s, illustrated in figure 4.

Figure 4: Proposed additional definition granularity layer "Data

objects" for describing system-of-systems parts

5

C. Design approach

Via the literature analysis, an approach is determined to

develop the design of the envisioned system-of-systems. The

ABCDE method will be the main design method,

complemented with design features of the Baseline Protocol.

The merged design method is determined to be:

1. Define goal of s-o-s (ABCDE step 1)

2. Identify actors (ABCDE step 2)

3. Define initial s-o-s architecture (BP design feature)

4. Define user stories (ABCDE step 3)

5. Define initial workflow (BP design feature)

6. Split design on blockchain (ABCDE step 4)

7. Design blockchain system (ABCDE step 5 and 6)

8. Design off-chain systems (ABCDE step 7 and 8)

9. S-o-s design integration (ABCDE step 9)

The scope of the design is an element level s-o-s

architecture design and a shared workflow design executed

by elements of the component systems, both in UML format.

The envisioned supply chain coordination process involves

three distinguishable systems; the maintenance demand

system in possession of the maintenance schedule, the

maintenance supply system in possession of the availability

schedules, and the blockchain system that enforces the two

other systems to cooperate via the automated workflow.

Therefore, the three component systems of the s-o-s that are

separately designed are:

• (Maintenance) Demand system

• (Maintenance) Supplier system

• Blockchain system

The determined design scope can be captured in the

definition pyramid for s-o-s (see figure 4). Since the scope

includes three component systems, the definition pyramid

becomes a three-sided pyramid where each side represents

one system. The data objects consuming workflow that forces

s-o-s elements to cooperate, can be visualized in the heart of

the pyramid on element level. For each of the component

systems; subsystems are defined, elements are defined and

designed, and data objects are defined and designed. The

complete design scope is visualized in figure 5.

Verification of the design is done via four methods. First,

by teaming up with a blockchain developer at BlockLab and

programming essential functionalities, technical feasibility of

the design is ensured. Second, lead developers and system

architects of the Baseline Protocol are regularly consulted

during the design process resulting in design iterations. Third,

an assessment on the realization of defined user stories is

performed. Fourth and last, compliance to s-o-s properties

and architectural principles is assessed.

The design is validated via a case study on coordination

process lead time and labor time. Lead time is important

because fast maintenance mobilization limits OWT

downtime, and it is considered an indication of process

efficiency. Process labor time is important as a measure of

automation level, and potential operational cost reductions.

How the impact of developed design on these two parameters

is measured is explained in the next section.

D. Case study

The business case selected for this case study is

coordination of the annual maintenance demand for the group

of four WPPs at Dogger Bank, namely Creyke Beck A and

B, and Teesside A and B. Together they consist of 1000

OWTs. The supply chain size and maintenance demand, that

determines the amount of communication and information

processing for maintenance coordination, is based on the

work of Steendijk and Beelaerts van Blokland [19]. The

annual failure rates that generate the scheduled maintenance

demand is based on the research of Carroll et al. [20],

resulting in 6178 minor failures, 1062 major failures and 264

major replacements for the 1000 OWTs. Due to the large

distance to shore, each of the four WPPs owns a fleet of large,

small and crane vessels, a warehouse for high-frequent spare-

parts and employs teams of OWT technicians. To complete

the case study, the following assumptions are made:

• WPPs let other WPPs charter their vessels.

• WPPs outsource their OWT technicians to each other.

• WPPs sell each other spare-parts from their warehouses.

• For any MO, always one supplier will be able to supply

any MO requirement in order to fulfil the demand.

• All possible MO required assets and resources are

registered in ERP systems.

Furthermore, it’s assumed that there are 3 original equipment

manufacturers (OEM) and 5 ports located in the Dogger Bank

service area. An overview of the assumed supply chain size

is given in table 1.

Type of MO MO requirements
No. of

suppliers

Minor failure

Small vessel (e.g. CTV) 4

Team of OWT technicians 4

OWT spare-parts 4

Major failure

Small vessel (e.g. CTV) 4

Team of OWT technicians 4

OWT spare-parts 4

Large vessel (e.g. SOV) 4

OEM spare-part 3

Port of loading/unloading 5

Major
replacement

Small vessel (e.g. CTV) 4

Team of OWT technicians 4

OWT spare-parts 4

Large vessel (e.g. SOV) 4

OEM spare-part 3

Port of loading/unloading 5

Team of OEM technicians 3

Crane vessel (e.g. HLV) 4

Table 1: Assumed requirements per type of MO and assumed no. of

available suppliers in service area.

Figure 5: Visualization of design scope for envisioned s-o-s

6

To assess the impact of the designed s-o-s, formulas to

calculate the process lead time and process labor time for

each type of MO are derived for both the current state

manual coordination process and the designed automated

workflow. Values for coordination process activity lead

times come from two undisclosed internal process analyses

performed at BlockLab. One analysis measures the process

activity lead times of the communication and information

processing for international shipment of a logistics service

provider. The other analysis measured similar activity lead

times for an NL to UK import process. One constant that has

to be assumed for these formulas is the supplier response

time, which is set to 24 hours. Process activities that are

completely automated by the developed design are assumed

to have no lead time and labor time.

III. FINDINGS

Implementation of the described design approach led to

research findings that are explained in this section. The first

finding is the extension of the s-o-s theory with an additional

definition for describing and distinguishing system parts, data

objects. The second finding is the scoped set of system and s-

o-s designs, including blockchain, demand and supplier

system designs, and the final s-o-s architecture and s-o-s

workflow design. The last finding is the impact of the

designed s-o-s on lead time and amount of labor spent on the

coordination process.

A. System-of-systems theory extension

As explained earlier in section II-B, via this research it

was discovered that an additional layer of definition

granularity is needed to properly describe information s-o-s,

and to some extend s-o-s in general. “Data objects” are the

smallest, standardized parts in an s-o-s, consumed by other s-

o-s elements. They’re vital to its operational success. For this

research the data objects are the maintenance and availability

schedule templates, Commit hashes, blockchain addresses,

and other data structures (e.g. JSON schemes). In physical

systems, they appear as serial numbers, stickers, tags, and

general signaling. Some examples are; numbered buttons on

a remote in a home entertainment s-o-s, or road signs in

transport s-o-s, and the aisle number markings in a

warehousing s-o-s.

B. System design: Blockchain System

According the applied design method, the Blockchain

System is the first component system to be designed. Its main

goal is to securely synchronize the connected demand and

supplier systems to the actual state of the workflow that is

initiated for every MO. Second, it protects the Supplier

Systems from Demand System data harvesting.

The final design for the Blockchain System, achieved

through 5 documented design iterations, is illustrated in

figure 6. What specifically is designed for the Blockchain

System is the element Verifier contract, and the data objects

Commits. The function of each Commit is explained in the

final s-o-s design.

The design exploits the existing Ethereum blockchain

infrastructure, which means it is a pay-per-use, always

accessible and fully decentralized infrastructure that securely

synchronizes the Demand and Supplier Systems. The

synchronization mechanism is adopted from the BP, and

works as follows:

1. One of the connected systems in the network

executed a workstep in the workflow on their system,

and synchronizes the network. The system creates a

verifiable ZKProof of the data that proofs the

execution of the workstep, and the Commit message

that is used to synchronize the other systems in the

network. Both are sent to the Shield contract.

2. Upon receival of the ZKProof and the Commit, the

Shield contract verifies if the sending address is listed

as supply chain participant in the OrgRegistry

contract

3. If so, the Shield contract forwards the ZKProof to the

Verifier contract.

4. The Verifier contract verifies the ZKProof for correct

formulation of hashed workstep data in privacy

preserving manner (detailed program in Appendix

A). If correct, the Verifier contract emits a verified

event to the Shield contract.

5. The Shield contract, where each of the connected

systems is listening to, broadcasts the Commit

throughout the network. Each system stores the

Commit in their respective blockchain database.

Now the entire supply chain network is validly

synchronized to the actual state of the workflow, in a

secure, data privacy preserving manner.

Figure 6: Blockchain system design illustrated via an arbitrary

supply chain network of demand and supplier systems

C. System design: Demand System

The Demand System is designed for the asset managers

searching for supply for scheduled maintenance demand. The

goal of the Demand System is to automatically match

suppliers to each requirement of scheduled MOs and to allow

for standard business procedure of proposing and negotiating

business agreements between two supply chain participants,

while remaining synchronized to running workflows in the s-

o-s. The final design, illustrated in figure 7, was reached

7

through 3 documented design iterations. Specifically

designed for the Demand System are the elements MO

Extraction Module, Matching Module, Commit Generator,

Data Formatter, and Workflow Database. The designed data

objects vital to the operational success of the system are the

maintenance schedule template, MO objects for efficient

distribution of MO related data. The remaining elements are

adopted from BP.

The Demand System achieves its goal through multiple

steps. First, it automatically links suitable suppliers in the

ERP system to each MO requirement for each MO in the

maintenance schedule. Second, it automatically sends out

availability and cost requests for the given time window and

MO lead time, via the Messenger Service to the suitable

suppliers. Third, supplier availability overlap and

determination of the earliest day of feasible MO execution is

calculated from the received availabilities. Feasible MO

execution means at least one supplier for each MO

requirement is available. Based on the earliest day, all

possible supplier subsets are generated and according the set

WPP optimization preferences, an optimal supplier subset is

selected. Fourth, for the selected suppliers, the Demand

System automatically prepares business proposals that only

have to be reviewed and signed by the asset manager before

distribution. Once all required suppliers have signed the

busines proposal, all suppliers are contracted for the

particular MO and is ready for execution. The Demand

system is operated through existing company ERP systems

and is able to support multiple workflow execution.

D. System design: Supplier System

The Supplier System is designed for the asset, resource

and product planners in the maintenance supply chain. The

goal of the Supplier System is to allow for assets, resources

or products to be automatically matched to MO requirements

and to allow for standard business procedure of negotiation

and acceptance of business proposal.

The final design, illustrated in figure 8, was achieved

without any design iteration. Because most elements could be

adopted from previous designs, only the Availability Module

had to be specifically designed.

Figure 7: Demand System design, including high level data flow

and subsystem definition
Figure 8: Supplier System design, including high level

data flow and subsystem definition

8

The Supplier System achieves its goal via multiple steps.

First, after receiving an availability request via the Messenger

Service, the system takes the associated Commit in the

Blockchain Database and compares it to a Commit generated

from data in the received MO Object. If equal, the Supplier

System has received a validated request and allows the

Availability Module to calculate and return the

asset/resource/product availability for given time window

and MO lead time, from the availability schedule in the ERP

system. If the supplier eventually gets selected by the

Demand System, the system allows for standard business

procedure negotiation of the terms of received business

proposals, where every proposal or agreement is registered as

Commit on the blockchain. The Supplier System is protected

from free data harvesting because for every executable

availability request, first a Commit has to be published on the

blockchain. Commits are only published after successful

verification of the ZKProof, which costs about 1.6 million

gas, or 8 times the cost of a regular token transaction on

Ethereum [16].

E. S-o-S Design: Architecture and Workflow

The three designed systems; Blockchain System, Demand

System and Supplier System, are integrated in the final s-o-s

architecture design as illustrated in figure 9. The s-o-s allows

for multiple Demand and Supplier Systems, collaborating

simultaneously on different uniform workflows, with the goal

to automatically match and contract suppliers to every MO

requirement in every scheduled MO. The Blockchain System

enforces collaboration between all connected Demand and

Supplier systems on the workflows, and controls the

legitimate synchronization via publishing Commits on the

network. The underlying message and data of each Commit

reaches the right systems via the Messenger Service peer-to-

peer network. The only manual interaction in the s-o-s is

giving confirmation on the selected supplier subset, and

reviewing and digitally signing of business proposals, all

other manual communication and information processing is

done by the s-o-s.

The final uniform workflow that is executed by various

combinations of systems of supply chain participants, for the

matching of MO demand with supply, is explained on a high-

level in table 2 on next page. A detailed workflow, on element

level can be found in TU Delft repository.

F. Case Study

As explained earlier, through a case study the developed

design can be validated. Its performance in terms of process

lead time and amount of process labor is compared to the

current state manual coordination. The determined formulas

for the key performance indicators are:

Process lead time:

• LT_cur_state = 2903 + 15*N_suit + 6*N_req [min]

• LT_sos_design = 1442 + N_req [min]

Amount of process labor:

• PL_cur_state = 23 + 15*N_suit + 6*N_req [min]

• PL_sos_design = 2 + N_req [min]

Figure 9: Final supply chain coordination s-o-s architecture

design. Colored items are the designed systems according design

scope

9

W.S. Commit P2P

message

Explanation

1 Genesis Availability

request

After linking suppliers to each

MO requirement for a particular

MO, a Demand System first
creates a Genesis Commit,

whereafter the availability

request follows to all linked
suppliers. Commit is also

protection against data

harvesting. This marks the
beginning of the workflow.

2 Selection Supplier

selection

Once asset manager confirms

selected optimal supplier subset,
a Selection Commit is published

as an incentive for each

requested supplier to either
block/unblock their

asset/resource availability.

3 Business

proposals

Business

proposal

Once asset manager has

reviewed and signed business
proposals for every supplier for

the MO, each of the proposals is

notarized on the blockchain via

this Commit

4 Business

agreements

Business

agreement

Once a supplier reviewed and

signed a business proposal, the
resulting business agreement is

notarized on the blockchain via

this Commit

5 Finalization

/

cancelation

Finalization /

Cancelation

Once all suppliers are

succesfully contracted, a Final

Commit is published so that
each supplier knows preparation

for MO can begin. Likewise, if

one participant publishes a
Cancelation Commit all

participants know that the MO

is (temporary) cancelled.

Table 2: High-level workflow design, in worksteps with related

Commits and messages

Where,N_suit is the total number of suitable suppliers

capable to supply for the particular MO, and N_req is the

required number of suppliers for a feasible MO execution.

Based on assumed supply chain size of the Dogger

Bank, the following results are obtained from the case study.

Case study results: process lead time

MO type Current state

[min]

S-o-s design

[min]

Reduction

Minor failure 3101 1445 53.4%

Major failure 3299 1448 56.1%

Major
replacements

3416 1450 57.6%

Table 3: Case study results on coordination process lead time

Case study results: amount of process labor

MO type Current state

[min]

S-o-s design

[min]

Reduction

Minor failure 221 5 97.7%

Major failure 419 8 98.1%

Major

replacements
536 10 98.1%

Table 4: Case study results on amount of process labor

IV. CONCLUSION

For the conclusion of this research, the defined research

question is revisited:

How to design a technical feasible decentralized system-of-

systems that enables automated matching and contracting of

maintenance supply for scheduled demand through privacy

preserving processing of commercially sensitive data?

Mentioned s-o-s is designed with the merged design

approach as described in section II-C, which consists of the

ABCDE method complemented with the two Baseline

Protocol design features, and guided by architectural

principles from system-of-systems theory. For the developed

designs, existing Ethereum blockchain infrastructure, BP

elements and their synchronization mechanism were adopted.

To fulfil the goal of the s-o-s and component Blockchain,

Demand and Supplier Systems; additional elements and data

objects had to be designed. For the ability to define and

describe all vital parts of the s-o-s, the systems-of-systems

theory definition framework was extended with an additional

definition for passive, standardized, pieces of information

consumed by the other s-o-s parts. These pieces of

information are defined as “Data Objects” and are vital to the

operational success of an s-o-s. This is also the academic

contribution of this research, next to the novel generic

decentralized s-o-s design for supply chain coordination.

Technical feasibility was ensured by programming and

testing of essential functionalities. Automated matching and

contracting of supply is enabled through the Blockchain

System enforced workflow. Privacy preserving processing

of commercially sensitive data is achieved through the

following:

• All sensitive data processing happens on client side,

after which only minimal disclosing results are

returned directly via a p2p messenger service.

• Sensitive data as input for the Blockchain System is

also first cryptographically transformed in either a

ZKProof or a Commit hash, before the data leaves

the system.

Design verification was performed through regular

consults with lead developers and solution architects of BP

that led to the 8 documented design iterations, and

assessment of compliance with defined user stories and s-o-s

architectural principles. For the user stories, 9/17 were

technically enabled, 7/17 theoretically enabled and 1/17 not

enabled. Regarding architectural principles, all four were

met. Stable intermediate forms are the component systems,

policy triage is applied by only adding complementing

elements, leverage is applied at the interfaces because most

effort went into the Blockchain System design, that also

ensures cooperation together with the workflow.

Design validation was performed through a case study

based on the maintenance supply chain of four combined

WPPs at the Dogger Bank. On average, coordination

process lead time was reduced by 56% by designed s-o-s,

which is beneficial for increasing maintenance demand and

OWT down time. The amount of process labor was reduced

by 98% on average, which is beneficial for solution quality

and for overall operational performance.

10

V. APPENDICES

A. Proof of correct formulation program as input for zero-

knowledge proof mechanism used in Verifier contract

VI. REFERENCES

[1] BVG-Associates, “Our energy, our future,” 2019.

[2] R. Wiser, M. Hand, J. Seel, and B. Paulos, “Reducing Wind

Energy Costs through Increased Turbine Size: Is the Sky

the Limit? Berkeley Lab study,” 2016.

[3] Z. Ren, A. S. Verma, Y. Li, J. J. E. Teuwen, and Z. Jiang,

“Offshore wind turbine operations and maintenance: A

state-of-the-art review,” Renew. Sustain. Energy Rev., vol.

144, no. March, 2021.

[4] C. Stock-Williams and S. K. Swamy, “Automated daily

maintenance planning for offshore wind farms,” Renew.

Energy, vol. 133, no. April, pp. 1393–1403, 2019.

[5] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash

System,” 2008.

[6] V. Buterin, “A next-generation smart contract and

decentralized application platform,” Etherum, no. January,

pp. 1–36, 2014.

[7] N. Szabo, “Formalizing and securing relationships on

public networks,” First Monday, vol. 2, no. 9, pp. 1–27,

1997.

[8] N. Vyas, A. Beije, and B. Krishnamachari, Blockchain and

the supply chain - concepts, strategies and practical

applications. 2019.

[9] Port of Rotterdam, “Singapore and Rotterdam successfully

complete trial with electronic bill of lading,”

https://www.portofrotterdam.com/en/news-and-press-

releases/singapore-and-rotterdam-successfully-complete-

trial-with-electronic-bill-of. .

[10] TradeLens, “An interconnected ecosystem of supply chain

partners,” https://www.tradelens.com/. .

[11] Kyle Thomas and P. Services, “Baselining the North

America Coca-Cola Bottling Supply Chain,”

https://provide.services/news/baselining-the-north-

america-coca-cola-bottling-supply-chain. .

[12] H. Veeke, J. Ottjes, and G. Lodewijks, The Delft Systems

Approach, vol. 53, no. 9. 2008.

[13] M. W. Maier, “Architecting Principles for Systems-of-

Systems,” Syst. Eng., vol. 1, no. 4, 1999.

[14] Baseline Protocol Community, “Baseline Protocol,”

https://docs.baseline-protocol.org/, 2020. .

[15] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge

complexity of interactive proof systems,” SIAM J.

Comput., vol. 18, no. February, 1989, pp. 186–208, 1989.

[16] J. Eberhardt and S. Tai, “ZoKrates - Scalable Privacy-

Preserving Off-Chain Computations,” Information Systems

Engineering, TU Berlin. pp. 1–8, 2018.

[17] P. Rook, “Controlling Software Projects.,” Softw. Eng. J.,

vol. 1, no. 1, pp. 7–16, 1986.

[18] L. Marchesi, M. Marchesi, and R. Tonelli, “ABCDE -Agile

Block Chain dApp engineering,” arXiv, vol. 1, no.

November, 2019.

[19] J. Steendijk and W. W. A. Beelaerts van Blokland,

“Optimization of Maintenance Operations for Offshore

Wind Farms,” in Hamburg International Conference of

Logistics (HICL) – 28, 2019, no. September, pp. 55–82.

[20] J. Carroll, A. Mcdonald, and D. Mcmillan, “Failure Rate ,

Repair Time and Unscheduled O & M Cost Analysis of

Offshore Wind Turbines,” Wind Energy, vol. 19, no. 6, p.

214, 2015.

import "hashes/pedersen/512bit" as pd

import "utils/pack/u32/pack128" as pack128

import "utils/pack/u32/unpack128" as unpack128

def main(private field State, private field MJ_ID,

private field SupplierID, private field DocHash1,

private field DocHash2, private field ContractH1,

private field ContractH2, private field LC1,

private field LC2, private field NC1, private field

NC2) -> (field, field):

field a = if (State == 1 || State == 2 ||

State == 5) && ContractH1 == State &&

ContractH2 == State && SupplierID == State

&& DocHash1 == State && DocHash2 == State

then 0 else 1 fi

 field b = a * ContractH1

 field c = a * ContractH2

 field d = a * SupplierID

 field e = a * DocHash1

 field f = a * DocHash2

field g = if (State == 3 || State == 4) &&

DocHash1 != ContractH1 && DocHash2 !=

ContractH2 then 1 else 0 fi

 field h = g * b

 field k = g * c

u32[16] preHash1 = [...unpack128(State),

...unpack128(MJ_ID), ...unpack128(d),

...unpack128(LC1)]

u32[16] preHash2 = [...unpack128(e),

...unpack128(f), ...unpack128(h),

...unpack128(LC2)]

 u32[8] Hash1P = pd(preHash1)

 u32[8] Hash2P = pd(preHash2)

u32[16] NewHash = [...Hash1P[0..4],

...Hash1P[4..8], ...Hash2P[0..4],

...Hash1P[4..8]]

 u32[8] NewHashP = pd(NewHash)

field[2] NewHashField =

[pack128([...NewHashP[0..4]]),

pack128([...NewHashP[4..8]])]

 assert(NewHashField[0] == NC1)

 assert(NewHashField[1] == NC2)

 return MJ_ID, State

Supplier System 1 to NSupplier System 1 to NWF SystemWF System

ERP SystemERP System Extraction moduleExtraction module Alignment and selectionAlignment and selection
Commitment

generator

Commitment

generator
AMSAMS Privacy servicePrivacy service VaultVault

Mongo DB (Merkle

Tree)

Mongo DB (Merkle

Tree)
Blockchain clientBlockchain client Messenger serviceMessenger service Shield contractShield contract OrgReg contractOrgReg contract Verifier contractVerifier contract Messenger serviceMessenger service Blockchain ClientBlockchain Client

Mongo DB (Merkle

Tree)

Mongo DB (Merkle

Tree)
VaultVault

Commitment

Generator

Commitment

Generator
Availability ModuleAvailability Module ERP SystemERP System

F
a
se

F
a
se

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

Generation of

MJ schedule

MJ schedule

Read MJ

schedule

Create

templated data

object for each

high priority

item

MJ data

object

Copy MJ data

from schedule

to data object:

-MJ-ID

-WT-ID

-MJ-code

-Timewindow

-Tasklength

Find MJ-code in

maintenance DB
Maintenance DB

MJ-code

Store

descriptions and

requirements in

MJ data object

-Descriptions

-Requirements

MJ data

object

For each MJ

requirement

request

potential

suppliers

Return lists of

suppliers+data

for each MJ

requirement

Store supplier

data in MJ data

object and add

state=Genesis

MJ data

object

Construct “MJ

Genesis”

commitment

from MJ data

object data

Genesis

commitment

Collect Genesis

Commitment

and proofPoints

Push collected

data to Shield

contract

Receive data

from WF

address

-proofPoints

-Commitment

Verify if WF

address is in

OrgReg

Check WF

address and

authorizations

in registry and

return

Verify if sender

is Shield

contract

Receive

approval for WF

address posting

Genesis

commitment

Push Genesis

commitment

and proofPoints

Verify if sender

is Shield

contract

Verify ZKP proof is

valid

Emit succesful

event and

commitment

SUCCES

Listening and

interscepting

emitted events

from Verifier

contract

Commitment

If event is

succesful push

commitment to

Merkle Tree

Commitment

Merkle Tree

-Genesis Commitment

Store

commitment in

Merkle Tree

C
o

m
m

it
m

e
n

t

Commitment

Listening and

interscepting

emitted events

from Verifier

contract

If event is

succesful push

commitment to

Merkle Tree

Commitment

Merkle Tree

-Genesis Commitment

Store

commitment in

Merkle Tree

C
o

m
m

it
m

e
n

t

Commitment

Collect MJ-ID,

Genesis

commiment,

state “Genesis”,

0 and

artithmetic

circuit

Baseline DB

Arithmetic circuit

Compute

Witness

Data + arithmetic circuit

Proving

key

Witness
Witness

proofPoints

[a,b,c]

P
R

IV
A

C
Y

 S
E
R

V
IC

E

Collect data for

availability request:

-Contact addresses of

all listed suppliers

Message data:

-Genesis commitment

-MJ-ID

-State “Genesis”

-Task length

-Time window

Dispatch availability

and cost information

request to all listed

suppliers

Listen and

authenticate

inbound

messages

Availability request

Forward

message data to

availability

module

Perhaps in a MJ message

object?

Receive and

store data from

request

Message data

Reconstruct

commitment

from message

data

Message

data

Genesis

commitment

Verify

reconstructed

commitment with

latest commit in

Merkle Tree

Merkle Tree

-Genesis Commitment

Genesis

commitment

Get asset/

resource

availability

calander

Validated

request

Receive request

and return

availability

calander

Availability

calander

For given Task

length and Time

window,

calculate

availability and

cost

Forward

availability and

cost information

Availability

Cost

Listen and

authenticate

inbound messages

Availability

Cost

Receive and store

returned Availability

and Costs from each

supplier in MJ data

object

Wait until

replier treshold

is reached

MJ data

object

Ava, cost

Calculate earliest

day on which at

least 1 supplier for

each MJ

requirement is

available for given

Task length

Calculate all possible

supplier subsets

based on that day

and store in MJ

object

Start day

Calculate optimal

subsets based on set

preferences and

store in MJ object

MJ data

object

-Start day

-Supplier subsets

-Optimal subsetsPresent result of

sourcing

process to WF

Asset Manager:

top 3 subsets

Top 3

Supplier subsets

Blockchain System

Populate

templated

business

proposals with

supplier data

WF Asset

Manager selects

subset to

proceed with

WF Asset

Manager

reviews/edits

proposals and

signs proposal

Digitally sign

and store

business

proposal

Business proposal

Construct

Proposal

commitment

from MJ data +

proposal

Proposal

commitment

Signed business proposal

Vault

-Single singed proposals

-Double signed contracts

Signed business

proposal

Collect MJ

object data,

Proposal

commitment,

state “Proposal”,

and artithmetic

circuit

Compute

Witness

Data + arithmetic circuit

Generate Zero-

knowledge

Proof with

provingkey

Witness
Witness

proofPoints

[a,b,c]

Collect Proposal

Commitment

and proofPoints

Push collected

data to Shield

contract

Receive data

from WF

address

-proofPoints

-Commitment

Verify if WF

address is in

OrgReg

Check WF

address and

authorizations

in registry and

return

Verify if sender

is Shield

contract

Receive

approval for WF

address posting

Proposal

commitment

Push Proposal

commitment

and proofPoints

Verify if sender

is Shield

contract

Verify is ZKP proof

is valid

Emit succesful

event and

commitment

SUCCES

Listening and

interscepting

emitted events

from Verifier

contract

Commitment

If event is

succesful push

commitment to

Merkle Tree

Commitment

Merkle Tree

-Genesis Commitment

-Proposal Commitment

Store

commitment in

Merkle Tree

C
o

m
m

it
m

e
n

t

Commitment

Collect data for

proposal message:

-Supplier messenger

address

-Proposal document

-Proposal commitment

Dispatch business

proposal

-Proposal commitment

-proofPoints

Listen and

authenticate

inbound

messages

Forward

business

proposal and

commitment

commitment

generator

Reconstruct

commitment

from business

proposal data

object

-Signed business proposal

-Porposal commitment

Determine

 proposal or MSA

commitment by

length

Verify if

proposal

commitment is equal

to Merkle Tree

commitment

Notify Supplier

about inbound

proposal

Review proposal and

edit or sign and

accept

Listening and

interscepting

emitted events

from Verifier

contract

If event is

succesful push

commitment to

Merkle Tree

Merkle Tree

-Genesis Commitment

-Proposal commitment

Store

commitment in

Merkle Tree

Merkle Tree

-Genesis Commitment

-Proposal commitment

Sign business

proposal

document and

store contract

Sign and accept

Vault

-Single singed proposals

-Double signed contracts

Double signed

businss

contract

Forward double

sign business

contract

Business contract

Listen and

authenticate

inbound messages

Business contract

Verify supplier

signature on

business contract

Business contract
Construct BC

commitment

BC

commitment

Collect MJ

object data, BC

commitment,

state “Contract”,

and artithmetic

circuit

Compute

Witness

Data + arithmetic circuit

Generate Zero-

knowledge

Proof with

provingkey

Witness
Witness

proofPoints

[a,b,c]

Collect BC

Commitment

and proofPoints

Push collected

data to Shield

contract

-BC commitment

-proofPoints

Business contract

Receive data

from WF

address

-proofPoints

-Commitment

Verify if WF

address is in

OrgReg

Check WF

address and

authorizations

in registry and

return

Verify if sender

is Shield

contract

Receive

approval for WF

address posting

Genesis

commitment

Push proofPoint

and BC

commitmnent

Verify if sender

is Shield

contract

Verify if ZKP proof

is valid

Emit succesful

event and

commitment

Listening and

interscepting

emitted events

from Verifier

contract

If event is

succesful push

commitment to

Merkle Tree

Commitment

Merkle Tree

-Genesis Commitment

-Proposal Commitment

-BC commitment

Store

commitment in

Merkle Tree

C
o

m
m

it
m

e
n

t

Commitment

Listening and

interscepting

emitted events

from Verifier

contract

If event is

succesful push

commitment to

Merkle Tree

Commitment

Merkle Tree

-Genesis Commitment

-Proposal Commitment

-BC Commitment

Store

commitment in

Merkle Tree

C
o

m
m

it
m

e
n

t

Commitment

Commitment

A
M

S

E
R

P
 S

Y
S

T
E
M

E
X

T
R

A
C

T
IO

N
 M

O
D

U
L
E

A
L
IG

N
M

E
N

T
 A

N
D

S
E

LE
C

T
IO

N

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

Generate Zero-

knowledge

Proof V
A

U
L
T

M
E
R

K
L
E
 T

R
E
E

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

S
H

IE
L
D

 S
E
R

V
IC

E

O
rg

R
e

g
 c

o
n

tr
a
ct

V
e
ri

fi
e
r

c
o

n
tr

a
ct

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

M
E
R

K
L
E
 T

R
E
E

V
A

U
L
T

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

A
V

A
IL

A
B

IL
IT

Y

M
O

D
U

L
E

E
R

P
 S

Y
S

T
E
M

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

P
R

IV
A

C
Y

 S
E
R

V
IC

E

A
M

S

E
R

P
 S

Y
S

T
E
M

E
X

T
R

A
C

T
IO

N
 M

O
D

U
L
E

A
L
IG

N
M

E
N

T
 A

N
D

S
E

LE
C

T
IO

N

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

V
A

U
L
T

M
E
R

K
L
E
 T

R
E
E

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

S
H

IE
L
D

 S
E
R

V
IC

E

O
rg

R
e

g
 c

o
n

tr
a
ct

V
e
ri

fi
e
r

c
o

n
tr

a
ct

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

M
E
R

K
L
E
 T

R
E
E

V
A

U
L
T

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

A
V

A
IL

A
B

IL
IT

Y

M
O

D
U

L
E

E
R

P
 S

Y
S

T
E
M

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

P
R

IV
A

C
Y

 S
E
R

V
IC

E

A
M

S

E
R

P
 S

Y
S

T
E
M

E
X

T
R

A
C

T
IO

N
 M

O
D

U
L
E

A
L
IG

N
M

E
N

T
 A

N
D

S
E

LE
C

T
IO

N

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

V
A

U
L
T

M
E
R

K
L
E
 T

R
E
E

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

S
H

IE
L
D

 S
E
R

V
IC

E

O
rg

R
e

g
 c

o
n

tr
a
ct

V
e
ri

fi
e
r

c
o

n
tr

a
ct

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

M
E
R

K
L
E
 T

R
E
E

V
A

U
L
T

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

A
V

A
IL

A
B

IL
IT

Y

M
O

D
U

L
E

E
R

P
 S

Y
S

T
E
M

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

P
R

IV
A

C
Y

 S
E
R

V
IC

E

A
M

S

E
R

P
 S

Y
S

T
E
M

E
X

T
R

A
C

T
IO

N
 M

O
D

U
L
E

A
L
IG

N
M

E
N

T
 A

N
D

S
E

LE
C

T
IO

N

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

V
A

U
L
T

M
E
R

K
L
E
 T

R
E
E

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

S
H

IE
L
D

 S
E
R

V
IC

E

O
rg

R
e

g
 c

o
n

tr
a
ct

V
e
ri

fi
e
r

c
o

n
tr

a
ct

M
E
S
S

E
N

G
E
R

 S
E
R

V
IC

E

B
LO

C
K

C
H

A
IN

 C
L
IE

N
T

M
E
R

K
L
E
 T

R
E
E

V
A

U
L
T

C
O

M
M

IT
M

E
N

T

G
E

N
E
R

A
T

O
R

A
V

A
IL

A
B

IL
IT

Y

M
O

D
U

L
E

E
R

P
 S

Y
S

T
E
M

	SwimlaneBaseline.vsdx
	Pagina-1

