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Summary

During the past decades, events caused by extreme rainfall events have affected over a
billion people and have contributed to 80% of the total global economic damages caused
by all-natural hazards. Scientific evidence shows that changes in the rainfall patterns
due to climate change affects the distribution, frequency and magnitude of flood events.
Therefore, extreme rainfall’s spatial and temporal distribution plays a vital role in the
study of extremities. However, traditional rain-gauge measurements limit the analysis
of extreme rainfall systems at a finer scale. Satellite Precipitation Products (SPPs) are
an essential source of information for hydrological applications. Compared to in-situ
measurements, satellite products provide spatial variability. However, these rainfall
estimates from SPPs are subject to multiple systematic and aleatory errors that are
difficult to address.

In many hydrological applications, errors in SPP estimates are compared with pixel
values against the corresponding observed data. However, pixel-oriented approaches
are unable to capture critical systematic errors due to displacement and timing. Object-
based methods become an alternative way to improve SPP data based on the spatiotem-
poral structure of extreme rainstorm events. This research explores the analysis of the
spatiotemporal structure of extreme rainfall events in monsoonal environments. The
following objectives aim to understand SPP products’ error characteristics in space and
time for building a solid concept that contributes to hydrological extremes and their
areas of application for error correction. This research is carried out in two monsoonal
areas: the catchment of the Tiete river over the sub-catchments of Piracicaba, Capivari
and Jundiai Rivers, Brazil, and the Lower Mekong basin over Thailand.

An initial exploration analyzed the importance of extreme events’ temporal and
spatial characteristics in the performance of SPPs using an analytical approach. This
research evaluated the performance of four Near real-time Satellite precipitation prod-
ucts (NRT SPP) to estimate the spatial and temporal characteristics of several extreme
rainfall events: local and short duration, long-lasting, short and spatially extended,
and long-lasting and spatially extended extreme rainfall. The methodology used an
analytical approach to independently define and characterize extreme events’ spatial
and temporal composition. Results obtained demonstrated the importance of the spa-
tiotemporal component in the performance of NRT SPPs and the limitations of the
current rainfall analysis approach to describe the structure of extreme rainfall events.

A new spatiotemporal object-based rainfall analysis method was developed to ad-
dress the limitations of existing object-based approaches for describing the spatiotem-
poral structure of extreme rainfall events at the catchment scale. This method, Spa-
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tiotemporal Contiguous Object-based Rainfall Analysis (ST-CORA), analyses the struc-
ture of rainstorm events at the catchment scale based on the physical features in space
and time (volume, maximum rainfall, duration and spatial extension). This methodol-
ogy is applied over the Tiete River in Brazil to classify different types of extreme events
during monsoon seasons and evaluate the performance of SPPs for several rainstorm
events. Several comparisons between rainstorm events obtained from an NRT SPP
and gauge-corrected weather radar showed new insights to evaluate several sources of
error based on the spatiotemporal features of rain objects. These results pointed to
the need to evaluate how this satellite-based error for rainstorms could propagate in a
hydrological basin.

The evaluation of the hydrological response of two systematic satellite error sources
for rainstorm estimation was presented: location in space and time for displacement and
magnitude for volume. Using ST-CORA, error sources extracted from the CMORPH
SPP were propagated through a distributed hydrological model (Wflow) calibrated over
the sub-catchment of the Capivari River in Brazil. Results from different rainstorm
types showed that systematic errors sources due to location and magnitude from the
SPP affect the shape, phase and amplitude of the streamflow in the catchment.

The development of a spatiotemporal object-based bias correction method for rain-
storm detection is presented. This method, ST-CORAbico, compares the spatiotempo-
ral features from SPP and observed datasets to correct errors due to displacement and
volume. This methodology is applied over the Mekong basin in Thailand to correct the
Multi-satellitE Retrievals for GPM (GPM-IMERG) during monsoon seasons. Results
showed a considerable reduction in the bias and the total error of the GPM IMERG
SPP data.

A hybrid machine learning/object-based bias correction method for operational
purposes is proposed. This methodology combined the ST-CORAbico with a K-nearest
neighbour Machine Learning classifier to bias correct rainstorm events in the absence of
observed data. This hybrid approach called ST-kNNbico was tested over the Mekong
basin in Thailand to correct the monsoon season of 2018 based on historical data from
2014 to 2017. The results presented that ST-kNNbico effectively corrected bias and
the total error of the GPM IMERG SPP data without parallel observed data. These
results demonstrated the applications of hybrid spatiotemporal bias correction methods
for operational purposes.

Overall, this research provides a framework of spatiotemporal error analysis in
satellite-based precipitation products. Furthermore, the spatiotemporal object-based
rainfall analysis ST-CORA is currently incorporated into the operational rainstorm
tracker system for the Lower Mekong Basin (LMB) called Rainstorm Tracker (rainstorms-
servir.adpc.net). This system is designed to monitor and alert the severity of rainstorm
events over the LMB in near real-time and real-time.



Samenvatting

In de afgelopen decennia hebben rampen die veroorzaakt zĳn door regenval meer dan
een miljard mensen getroffen en bĳgedragen aan 80% van de totale wereldwĳde eco-
nomische schade van natuurrampen. Wetenschappelĳk bewĳs toont aan dat klimaat-
verandering de spreiding, frequentie en omvang van neerslagpatronen en daarmee de
omvang van overstromingen kan beïnvloeden. De verdeling van regenval over de tĳd en
ruimte (hierna: spatio-temporal) spelen daarom een cruciale rol in de studie naar ex-
tremen. Echter geven traditionele neerslagmetingen een te beperkt beeld van extreme
neerslag systemen op een precieze schaal. Op satelliet gebaseerde neerslag informatie,
ookwel Satellite Precipitation Products (SPP’s) zĳn een essentiële informatiebron voor
hydrologische toepassingen. Vergeleken met in-situ of lokale metingen bieden satel-
liet producten inzicht in de ruimtelĳke variabiliteit. Echter, neerslag inschattingen van
SPP’s zĳn onderhevig aan meerdere systematische en willekeurige fouten die moeilĳk
te verhelpen zĳn.

Bĳ veel hydrologische toepassingen worden fouten in SPP-schattingen vergeleken
met pixelwaarden tegen overeenkomstige waargenomen gegevens. Deze pixel gerichte
benadering kan echter geen kritische systematische fouten vastleggen als gevolg van
spatio-temporale veranderingen. Object-based methoden zĳn een alternatieve manier
om SPP-gegevens te verbeteren op basis van de spatio-temporele verdeling van neer-
slag. Dit onderzoek is gericht op een analyse van deze spatio-temporele structuur van
extreme neerslag in moessongebieden. De doelstellingen zĳn bedoeld om fouten van
SPP-producten in ruimte en tĳd te begrĳpen en om een solide concept te bouwen dat
bĳdraagt aan hydrologische extremen en hun toepassing voor foutcorrectie. Dit onder-
zoek is uitgevoerd in twee moessongebieden: het stroomgebied van de Tiete-rivier over
de deelstroomgebieden van de rivieren Piracicaba, Capivari van Jundiai in Brazilië en
het deelstroomgebied in de lagere Mekong bekken in Thailand.

In een eerste verkenning is het belang aangetoond van het analyseren van het
spatio-temporele domein bĳ extreme gebeurtenissen met SPP’s met behulp van een
analytische benadering. Dit onderzoek heeft de prestaties geëvalueerd van vier ‘near
real-time’ Sattelite Precipitation Products (NRT SPP) om de verschillende spatio-
temporele kenmerken van verschillende extreme neerslaggebeurtenissen in te schatten:
lokaal en van korte duur, langdurig, kort en een groot oppervlak, langdurig en een
groot oppervlak met extreme neerslag. Er is een analytische benadering gebruikt om
de ruimtelĳke en temporele samenstelling van extreme gebeurtenissen onafhankelĳk te
definiëren en karakteriseren. De resultaten toonden het belang aan van de ruimtelĳke
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en temporele componenten in de prestaties van NRT SPP’s en de beperkingen van de
huidige benadering van neerslag analyse om de structuur te beschrĳven.

In dit onderzoek is een nieuwe spatio-temporal object-based neerslag analyse ont-
wikkeld om de limieten van bestaande object-based aanpakken om spatiotemporele
structuren van extreme neerslag gebeurtenissen op stroomgebiedsniveau aan te tonen.
De methode, Spatiotemporal Continguous Object-based Rainfall Analysis (ST-CORA)
analyseert de structuur van een neerslaggebeurtenis op stroomgebiedsniveau gebaseerd
op de fysieke eigenschappen in ruimte en tĳd (zoals volume, maximale neerslag, duur
van de neerslag en ruimtelĳke extensie). De methode is toegepast op het Tiete stroom-
gebied in Brazilië om verschillende soorten extreme gebeurtenissen in moessonseizoen
te classificeren en te evalueren en aan te tonen wat de prestatie van SSP’s is voor
verschillende neerslag gebeurtenissen. Verschillende vergelĳkingen tussen neerslag ge-
beurtenissen uit een NRT-SSP methode en neerslagmeter-gecorrigeerde radarmetingen
hebben nieuwe inzichten in beeld gebracht om verschillende bronnen van fouten in
beeld te brengen van neerslaggebeurtenissen in het spatio-temporele domein. De re-
sultaten tonen aan satelliet-gebaseerde fouten in neerslaggebeurtenissen door kunnen
werken in een hydrologisch bekken.

Het evalueren van de hydrologische effecten van twee systematische satelliet fout-
bronnen voor het schatten van regenbuien zĳn in dit onderzoek gepresenteerd: de loca-
tie in ruimte en tĳd voor verplaatsing van de gebeurtenis en het volume van de gebeur-
tenis. Met behulp van ST-CORA zĳn foutbronnen uit de CMPORPH SPP gehaald
door middel van een gedistribueerd hydrologisch model (Wflow) welke gekalibreerd is
over het deelstroomgebied van de Capivari rivier in Brazilië. Het resultaat laat zien dat
verschillende neerslaggebeurtenissen met systematische fouten in locatie en grootte van
de SPP de vorm, fase en amplitude van de stroom in het stroomgebied beïnvloeden.

Een spatio-temporele object-based bias correctiemethode voor neerslag detectie is
gepresenteerd. De methode, ST-CORAbico vergelĳkt de spatiotemporal kenmerken
van SPP en waargenomen datasets naar gecorrigeerde fouten als gevolg van locatie en
volume van neerslag. Deze methode is toegepast op het Mekong-bekken in Thailand
om de ‘multi-satellite retrievals for GPM (GPM-IMERG) tĳdens het regenseizoen te
corrigeren. De resultaten laten een aanzienlĳk verminderde vertekening zien van de
totale fout van de GPM IMERG SPP-gegevens.

Een hybride machine-learning/object-based bias correctie methode voor operatio-
neel gebruik is daarnaast voorgesteld. Deze methode combineerd de ST-CORAbico met
de K-nearest neighbour Machine Learning classificatie methode om neerslaggebeurte-
nissen te corrigeren bĳ de afwezigheid van gemeten gegevens. Deze hybride benadering,
ST-kNNbico genaamd, is getest in het Mekong-bekken in Thailand waarmee de effec-
ten van het regenseizoen van 2018 gecorrigeerd zĳn op basis van historische data van
2014-2017. De resultaten lieten zien dat ST-kNNbico de fouten van de GPM IMERG
SPP effectief corrigeerde zonder parallel gemeten gegevens. Deze resultaten laten het
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effect zien van het toepassen van hybride spatio-temporele bias-correctiemethoden voor
operationele doeleinden.

Dit onderzoek biedt een raamwerk voor spatio-temporal fouten analyses in satel-
liet gebaseerde neerslag gebeurtenissen. Daarnaast is de spatio-temporale object-based
neerslag analyse ST-CORA inmiddels opgenomen in het operationele neerslag volgsys-
teem voor de Lagere Mekong Delta (Lower Mekong Delta) genaamd Rainstorm Tracker
(rainstorms-servir-adpc.net). Dit systeem is ontworpen om de ernst van neerslag over
de delta in bĳna real-time en real-time te bewaken en wanneer nodig te waarschuwen.





1
Introduction

1.1. Motivation
Extreme rainfall is one of the principal factors in triggering floods and landslides.
During the last decade, events caused by heavy rainfall have affected more people
than any other disaster. According to the EM-DAT (International Disaster Database),
extreme rainfall events have impacted around 3 billion people, constituting more than
60% of the total global economic damages resulting from disasters over the past 20 years
(CRED, 2015). Scientific evidence shows that one of the main consequences of climate
change is the intensification of the hydrological cycle (Allen and Ingram, 2002; Held
and Soden, 2006; Donat et al., 2016). Changes in the atmospheric temperature have
altered precipitation dynamics, leading to greater intensity and frequency of extreme
events. These changes are significant for monsoon climates, where extreme weather
patterns will have severe consequences for the region’s food security, infrastructure,
and people’s livelihoods.

Understanding the spatiotemporal features of extreme rainfall events are vitally im-
portant for effective flood disaster management. However, information on the dynamics
of rainstorm events is scarce due to the limited capability of rain gauge measurements
in accurately representing the fine-scale details of precipitation systems. Satellite-based
precipitation products have been revolutionary in hydrological applications, providing
uninterrupted quasi-global rainfall information at a high temporal and spatial resolu-
tion. Currently, there is a wide range of satellite-based precipitation products which
have arisen from the combination of multiple passive microwaves (PMW) and infrared
(IR) sensors carried by Geostationary-Earth-Orbiting (GEO) and Low-Earth-Orbiting
(LEO) satellites, respectively (e.g. Huffman et al., 2007; Joyce et al., 2004; Sorooshian
et al., 2000). IR sensors assess the rainfall via the cloud top temperature, while PMW
sensors analyse the clouds’ emission, absorption, and diffusion signals. The combina-
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tion of those operational instruments has allowed for greater accuracy in precipitation
estimation (Huffman et al., 2007).

Despite the availability of high-resolution rainfall data, numerous researchers have
shown that characterising small-scale variability of rainfall patterns is still challenging
(e.g. Grayson and Blöschl, 2001). Studies suggest that satellite errors tend to arise
from multiple factors such as the measuring devices (e.g. Hu et al., 2016; Qiao et al.,
2014), the size of the basin (e.g. Moazami et al., 2013), the climate regimes and sea-
sons (e.g. Thiemig et al., 2012; Sapiano and Arkin, 2009; Mei et al., 2014), and the
geographical conditions (e.g. Mei et al., 2016a; Dinku et al., 2007; Guo et al., 2015;
AghaKouchak et al., 2011). In the case of rainstorm events, errors are associated with
the capability of satellites in detecting heavy rainfall rates at low temporal resolutions
(e.g. AghaKouchak et al., 2011; Marra et al., 2017). These uncertainties have limited
the operational applications of satellite-based precipitation products at the catchment
scale.

1.2. Pixel-based andObject-basedmethods for extreme
rainfall error analysis

Satellite-based precipitation products are traditionally evaluated by comparing the in-
dividual pixels of the satellite with the corresponding observed data. Based on this
approach, the error is calculated using several numerical and categorical metrics, which
include the Root Mean Square Error (RMSE), Bias Correction Coefficient (r), Prob-
ability of Detection (POD), False Alarm Ratio (FAR), among others. While these
measurements emphasise the performance in terms of accuracy, such metrics do not
explicitly estimate errors associated with location, spatial representation and geomet-
ric patterns (Baldwin and Kain, 2006; Casati et al., 2008). These error types have
serious implications in the accuracy of the hydrologic response with regards to floods
(e.g Casse et al., 2015; Bitew and Gebremichael, 2011; Mei et al., 2016b; Vergara et al.,
2014; Yilmaz et al., 2005; Li et al., 2009).

In response to the limitations of traditional pixel-based approaches, various re-
searchers have proposed several spatial verification methods to characterise pattern
errors in rainstorm prediction (Ebert and McBride, 2000; Davis et al., 2009b; Wernli
et al., 2008). These ’non-traditional’ methods, in the field of forecast verification, avoid
the double penalties from point-to-point matches between the observed and estimated
fields (e.g. rainfall estimated but not observed and vice-versa). Methods are broadly
grouped into two categories: filtering and displacement Gilleland et al. (2009). Filter-
ing methods evaluate the rainstorm event at a coarser resolution to provide information
about the scale of the performance, e.g., (neighbour or fuzzy Roberts (2005); Marsigli
et al. (2006) and scale separation, Casati et al. (2004); Casati (2010); Mittermaier
(2006)). On other hand, displacement methods are able to evaluate the rainstorm
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configuration as an interconnected mass figure (e.g., Object-based Ebert and McBride
(2000); Davis et al. (2009b); Wernli et al. (2008) and field transformation methods Keil
and Craig (2007, 2009a)).

Among the available spatial verification methods, object-based approaches have
been used in hydrology to analyse and correct several systematic errors of rainstorms
detected by satellite due to location, rotation, intensity, and shape (e.g. Skok et al.,
2009; Li et al., 2015a, 2016). Feature or object-based methods base the rainstorm
analysis on the structural properties of the rainstorm fields. Several studies have
shown the capabilities of these methods in characterising and correcting displacement
errors of high-resolution satellite-based products in areas with extreme conditions, such
as monsoonal environments (e.g. Demaria et al., 2011; Li et al., 2014; Le Coz et al.,
2019). Despite the applicability of object-based methods for error analysis of satellite-
based precipitation products, these methods are constrained by the two-dimensional
analysis of rainstorms. This approach presents challenges in describing the temporal
and spatial evolution of the rainstorm events, however, extreme rainfall analysis for
flood estimation requires a better understanding of the capabilities and limitations of
satellites to estimate the temporal and spatial structure of rainstorm events.

1.3. Spatiotemporal perspective to analyse the error in
extreme rainfall

Several efforts have been made for characterising the dynamic nature of precipitation
systems, especially for Numerical Weather Prediction models events (e.g. Clark et al.,
2014; Prein et al., 2017a; Li et al., 2020a; Sellars et al., 2013, 2015; Prein et al., 2017b).
Examples in remote sensing data can be found in the PERSIANN CONNected pre-
cipitation objECT (CONNECT) Dataset Sellars et al. (2013). This global inventory
uses a spatiotemporal object-based approach to describe the four-dimensional prop-
erties of Mesoscale Convective Systems (MCS) (e.g., average intensity, starting and
ending location (latitude and longitude), duration (h) and event speed (km/h)). These
spatiotemporal approaches are generally set up at a regional scale for analysing the cli-
matology of large scale precipitation systems such as typhoons, hurricanes, cold fronts,
among others. (e.g. Sellars et al., 2015; Prein et al., 2017b). At catchment scale,
spatiotemporal methods have the disadvantage of false merging small precipitation
systems during the segmentation process (Chang et al., 2016). These storm events are
significant in tropical monsoonal climates, where cell convective storms are responsible
for extreme flash flooding causing major human and economic damage.

In general, spatiotemporal object-based methods provide a unique perspective of
the physically-based features of the storm events. Based on this analysis, errors due
to displacement in space and time between the satellite and the observations can be
identified while providing object properties (e.g. orientation, magnitude, duration,
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extension) as additional attributes for evaluation. However, the evaluation of these
systematic errors is limited by the use of subjective approaches in which the perfor-
mance of precipitation datasets can be evaluated by comparing the storms features
against reference data (e.g. Clark et al., 2014; Pinto et al., 2015). The lack of charac-
terisation of satellites’ error for storm detection brings several challenges in reducing
systematic error in satellite-based products. Developing a method to efficiently reduce
the error in satellite incorporating the elements of the spatiotemporal analysis is one
of the significant challenges for an accurate storm prediction, especially for operational
applications.

1.4. Research questions
This research aims to analyse the spatiotemporal error dynamics of storm events esti-
mate by satellite. This objective is to integrate the development of a methodology to
analyse the spatiotemporal structure of storm events at catchment scale and a method
for reducing systematic error in satellites.

To achieve this aim, we formulate the following research questions:

1. How vital is the spatiotemporal dynamics of extreme rainfall events in satellite
performance regarding the error?

2. How can spatiotemporal rainstorm dynamics be integrated into error estimation?

3. What is the effect of spatiotemporal errors on the hydrological response?

4. How can spatiotemporal error information be used to improve bias correction of
satellite data?

5. How can artificial intelligence be used to improve spatiotemporal bias correction
methods in operational applications?

1.5. Scientific relevance
The accuracy of satellite-based products for rainstorm prediction is crucial for many
meteorological and hydrological applications. For instance, systematic errors in pre-
cipitation measurements can lead to overestimating or underestimating the flood pre-
diction in the catchment. Similarly errors associated with intensity, satellite-based
estimates also contain errors due to displacement and time. However, the analysis and
reduction in the types of error are poorly studied. This dissertation bridges this gap
by developing a methodology to evaluate satellites’ spatiotemporal characteristics of
rainstorm events. In this methodology, components of pattern recognition approaches
are implemented in a multidimensional framework to identify the primary sources of
systematic errors in satellites. Based on this physically-based approach, gaps in bias
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correction schemes are also addressed by developing a spatiotemporal method to reduce
several systematic errors in rainstorm prediction detected by satellites. This approach
incorporates machine learning technologies for correcting satellite-based products used
in operational applications.

1.6. Scientific contributions
The scientific contributions can be summarised as follows:

• A new method (M1) is developed for analysing the spatiotemporal structure
of rainstorm events at catchment scale. This method is implemented over
several monsoonal environments to analyse the regional climatology of the rain-
storm events and evaluate the accuracy of satellite-based precipitation products.
Further developments address the limitations in object-based approaches by in-
corporating a probabilistic rainstorm segmentation algorithm. This approach
overcomes the model sensitivity for segmenting sub-rainstorm events inside large
convective systems.

• A new bias correction method (M2) is developed to reduce several sources
of systematic error in satellites for rainstorm prediction. This method uses the
spatiotemporal features of the rainstorm from M1 to correct two types of error:
displacement in space and time and volume. The limitations for applications in
disaster management are discussed.

• A machine learning implementation (M3) of the bias correction method M2

was developed to reduce error due to displacement and volume in the absence of
measured data. This method addresses the use of object-based bias correction
methods for operational applications.

• An in-depth hydrological study was conducted, aimed at evaluating the hy-
drological impact of several sources of error in satellites for rainstorm event es-
timation. Based on the spatiotemporal error analysis obtained by M1, location
and magnitude error sources are subtracted from a near-real-time satellite-based
precipitation product and used as forcing for a distributed hydrological model.
Results revealed that error sources in satellites due to location and magnitude
affect different components of the catchment streamflow. The main source of
this error is conditioned by different types of rainstorm events.

The methods developed in this research were applied to satellite-based precipitation
products. However, multiple grid-based measurements and weather model outputs can
also be incorporated to verify the accuracy of rainstorm prediction at the catchment
level.
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A better analysis of the physically-based features of rainstorm events detected by
satellites creates new opportunities for supporting disaster management strategies as-
sociated with extreme rainfall. The further development of a system based on the
spatiotemporal object-based rainfall analysis to improve the decision-making process
of flash flood warning systems in the Lower Mekong Basin have been undertaken. This
system, called ’Rainstorm Tracker’, is being developed under the SERVIR-Mekong
program to monitor and evaluate the severity of rainstorm events with the potential
to trigger flash floods. Preliminary results and more information about the project is
available at the following link: http://rainstorms-servir.adpc.net.

1.7. Outline
The outline of the dissertation is divided into nine chapters as follows:

Chapter 2 reviews the theoretical background of the research based on the analysis
of three components. First, remote sensing technologies for measuring precipitation
are analysed, describing the most common satellite products used in hydrology. The
second component reviews existing methodologies for evaluating errors for rainstorm
prediction and new approaches using object-based methods. The third component
presents a brief description of the bias correction methods used to reduce systematic
errors in rainfall.

Chapter 3 presents a general description of the two monsoonal study areas used for
the development of the proposed methods: The tropical catchment of the Tiete river in
Brazil and the Lower Mekong Basin in Thailand (Isan area). This chapter explores the
physical, geographical and atmospheric characteristics of the study areas and discusses
the factors that make the areas prone to extreme rainfall. In the Tiete river, the area
is analysed according to three different domains: the first domain corresponds to the
sub-catchments of the rivers, Piracicaba, Jundiai, and Capivari used in chapter 4; the
second domain is the catchment of Tiete river used for the development of method
M1 in chapter 5, and finally the sub-catchment of the Capivari river used for the
hydrological study presented in chapter 6.

Chapter 4 deals with an evaluation of different near-real-time satellite-based pre-
cipitation products for extreme rainfall prediction using an analytical approach. The
advantages and disadvantages of current methods to analyse rainstorms are discussed,
and the opportunities to develop new methodologies for spatiotemporal rainstorm anal-
ysis.

Chapter 5 describes the development of the method to analyse the spatiotemporal
dynamics of rainstorm events M1. Two applications of this method are shown to classify
different types of rainstorms and validate a satellite-based product for rainstorm events.

Chapter 6 presents the use of M1 to evaluate the hydrological impact of two
systematic error sources: location and magnitude. For this aim, the study uses the

http://rainstorms-servir.adpc.net
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distributed hydrological model wflow developed by Deltares to represent the rainfall-
runoff model of the Capivari river. The model calibration and validation are presented
as well as the results obtained from the evaluation.

Based on M1 and the error analysis previously described, Chapter 7 introduces
the development of the spatiotemporal object-based bias correction method, M2, for
the reduction of error due to displacement and volume. This method is applied over the
Lower Mekong Basin in Thailand to correct the near real-time satellite-based product,
GPM IMERG, from NASA.

Chapter 8 describes the use of M2 for correcting rainstorm events in the absence
of in-situ data. The method, M3, uses a machine learning approach to identify matches
in historical rainstorm events to correct the events detected by satellite-based GPM-
IMERG. The limitations and prospects for operational purposes are discussed.

Chapter 9 summarises the main findings, existing challenges, limitations and
further developments. In addition, chapter 9 details an additional implementation
use-case of M2 under the SERVIR-Mekong program, which supports decision-making
regarding flash flood warning systems in the Lower Mekong Basin.





2
Theoretical background:

Precipitation measured from satellite

This chapter presents the theoretical background of the remote sensing technologies used
to measure rainfall and reviews existing methods to evaluate and correct systematic er-
rors in satellites for rainstorm prediction. The first section evaluates the existing
rainfall analysis methodologies, particularly satellite-based approaches for near-real-
time (NRT) rainfall prediction. The most common NRT satellite-based datasets used
in hydrology are also outlined in this section. The second section reviews existing
methodologies for evaluating errors in rainstorm prediction. Spatial object-based veri-
fication methods are discussed as well as new approaches that incorporate the temporal
dimension of rainstorm analysis. In the final section, methodologies for rainfall bias
correction are presented. Limitations and opportunities for operational purposes are
also discussed.

Figure 2.1: GPM satellite mission architecture. NASA (2014)
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2.1. Introduction
An accurate observation of rainfall is a key factor to describe the water cycle process
over land. A study suggests that the spatiotemporal dynamics of measured rainfall
can explain almost 70-80% of the terrestrial water cycle variability (Syed et al., 2004).
A wide range of instruments is available to measure rainfall with different spatial and
temporal scales. Ground monitoring networks (e.g., rain gauges and weather radars)
are traditionally used in many hydrological early warning systems. For instance, rain
gauges are relatively cheap, easy to maintain, and offer a direct estimation of rainfall at
a single point (Sinclair and Pegram, 2005). On the other hand, weather radars provide
a continuous estimation of rainfall with high spatial and temporal resolution at the
regional scale (Maggioni et al., 2016a). However, such data is affected by limitations
in the precipitation measurement. Rain gauges are prone to human errors during
the data acquisition process. In addition, the spatial representation depends on the
network density and assumptions in the interpolation techniques. Limitations in the
radar-based methods involve errors in the reflectivity rain rate (Z–R) relationship,
problems with ground clutter, signal attenuation and beam blockage, among others
(e.g. Hasan et al., 2014; Kirstetter et al., 2012; Liu et al., 2015; Uijlenhoet and Berne,
2008).

Over the past decades, earth observation systems have become crucial in estimating
rainfall in catchments (e.g AghaKouchak and Nakhjiri, 2012; Azarderakhsh et al., 2011;
Kidd et al., 2009; Pan et al., 2010). Satellite-based precipitation products (SPPs) pro-
vide uninterrupted quasi-global information with high spatial and temporal resolution.
The use of these products for estimating rainfall in extreme conditions presents new
opportunities to support disaster management on a global scale. This is especially the
case in poorly gauged basins, where SPPs might be the only data source for predicting
flow downstream with enough lead time to initiate a response Maggioni and Massari
(2018).

Despite multiple advances in satellite rainfall monitoring, products are still subject
to errors from multiple sources (e.g. Hu et al., 2016; Qiao et al., 2014; Thiemig et al.,
2012; Mei et al., 2016a). With extreme rainfall estimations, SPPs still present numerous
challenges resulting from errors in detecting the magnitude, the position and the timing
of the rainstorm event. Errors due to displacement and timing are crucial in evaluating
the impact of flow in a catchment. However, these errors are poorly evaluated. Spatial
verification methods have recently been used in hydrology to analyse the structure of
rainstorm events. Defining a rainstorm as an object presents new opportunities to
evaluate the complete structure of rainstorm events in both space and time.
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2.2. Satellite precipitation measurement
Satellite precipitation products are derived from a large constellation of operational sen-
sors, including Low-Earth-Orbiting (LEO) and Geostationary-Earth-Orbiting (GEO)
satellites, as well as from observing spectral ranges (visible (VIS), infrared (IR), Passive
Microwave (PMW) and Active Microwave (AMW)). Retrieval techniques from satellite
methods present several strengths and weaknesses for retrieving precipitation above the
surface. For instance, VIRS and IR sensors carried by GEO satellites provide help-
ful information about the characteristics of the cloud brightness temperature observed
from space with a rapid temporal update cycle (e.g. 30 mins or lower). However, cloud
top temperature and height measurements are not always well correlated with surface
rainfall. Unlike VIS and IR sensors, PMW and AMW sensors from LEO satellites can
penetrate clouds, providing a more direct physical connection with the raindrops, snow
and ice. Despite the low temporal and spatial resolution, this direct measurement of
the hydrometeor profiles allows for quantitative precipitation detection in the lower
atmosphere and the surface. Table 2.1 summarises the different methods to retrieve
rainfall from satellites.

Table 2.1: Summary of satellite methods for the retrieval of rainfall, modified from Ferraro
and Smith (2013)

Observation
Spectrum

Satellite
type

Sensor example Advantages Caveats

Visible
(VIS)

GEO
LEO

GOES, Imager
AVHRR

Cloud type, Cloud
evolution

Cloud tops, Indirect
rain rate.

Infrared (IR) GEO
LEO

GOES, Imager
AVHRR

Cloud temperature
Cloud evolution

Cirrus contamina-
tion, Indirect rain
rate.

Passive
Microwave
(PMW)

LEO SSM/I. AMSR-
R, TMI, GPM

Direct measure of
rain, especially over
oceans

limited temporal
and spatial resolu-
tion, Indirect rain
rate in land.

Active Mi-
crowave
(AMW)

LEO TRMM PR,
CloudSat, CPR,
GPM

Direct measure of
vertical structure of
rain

Narrow swath
width, limited tem-
poral resolution,
Rain rate sensitiv-
ity/saturation.

2.2.1. VIS/IR based satellite precipitation products

Multiple precipitation products have been developed to observe cloud physics for mea-
suring rainfall. SPPs based solely on VIS/IR sensors are characterised by a high
temporal and spatial resolution with low latency. One of the most common IR-based
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SPPs is the Precipitation Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks (PERSIANN) (Sorooshian et al., 2000). This product uses a
cloud classification procedure using an Artificial Neural Network (ANN) to derive rain-
fall rates at 0.04° each half-hour. Input data from PERSIANN are brightness tempera-
ture measurements obtained from IR sensors of the NOAA’s Geostationary Operational
Environmental Satellites (GOES), Meteosat 5 and 7 geostationary meteorological satel-
lites (GMS). PERSIANN data includes three different versions, namely PERSIANN,
PERSIANN-CDR and PERSIANN-CCS. PERSIANN and PERSIANN-CDR (Climate
Data Record) incorporate quality controlled input data to derive rainfall available at
two days and three months latency, respectively. Meanwhile, PERSIANN-CCS (Cloud
Classification System) is available in near real-time with a latency of 1 hour. Recently
Nguyen et al. (2020) presented the quasi-real-time PERSIAN Dynamic Infrared Rain
Rate (PDIR-Now) dataset. This new dataset aims to improve the PERSIANN-CCS
dataset providing hourly precipitation estimates at 0.04° × 0.04° spatial resolution
with a short latency (15–60 min). This short latency makes it suitable for operational
monitoring in many hydrometeorological applications.

Similar to PERSIANN-CCS, other near-real-time SPP approaches have been de-
veloped using VIS/IR sensors to support early warning systems and heavy forecast
efforts. The Hydro-Estimator (Hydro) developed by Scofield and Kuligowski (2003)
uses the infrared cloud top brightness temperature information from GEOS as primary
information to estimate rainfall rates with 0.04° spatial resolution every 15 minutes.
The methodology is based on the automatic precipitation estimation algorithm, NES-
DIS Vicente et al. (1998). Non-detected factors in the IR sensor such as moisture
availability, evaporation, orographic modulation and thermodynamic profile effects are
corrected using atmospheric information from the Global Forecast System (GFS). Due
to the high resolution and low latency (10 min), the hydro-estimator has been widely
used as the primary input in many flash flood early warning systems around the world,
including the CAFFG System in Central America, the TerraMA2 in Brazil and The
Flash Flood Guidance System (FFGS) implemented in more than 65 countries around
the world.

2.2.2. IR/PMW based precipitation products

Multi-Sensor Global Precipitation products use the superior sampling obtained from
GEO satellites combined with the vertical profile measurements of the hydrometeor
from LEO satellites to create a more reliable rainfall dataset. The advantages and
disadvantages of VIS/IR sensors discussed so far can be optimised by combining the
GEO-IR estimates with LEO-PMW sensors. Several techniques have been developed
to merge IR and PMW measurements optimally. For example, the Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) developed
by Huffman et al. (2007) uses PMW data from the TRMM mission and other sensors
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(SSM/I, AMSU, MHS) to calibrate IR estimates from GEO satellites by extrapolating
rainfall measurements when the PMW data is not available. This combination increases
the temporal sampling up to 3 hours with 0.25° x 0.25° spatial resolution and improves
the performance compared to IR-based measurements. The latency of TMPA near-
real-time (TMPA-RT) version 7* ranges between 6 and 9 hours. After two months,
a scientific version of the TMPA data is released, incorporating rain gauge data to
correct the SPP data.

The Climate Prediction Centre Morphing Method (CMORPH) developed by Joyce
et al. (2004) uses a different approach to combine PMW and IR data for estimating
rainfall. This SPP data uses IR data only to generate the atmospheric motion vector of
two successive IR images. Then, the generated motion vectors are used to propagate the
rainfall fields from diverse PWM data such as the TMI, SSM/I, AMSU-B and AMSR-
E. This technique, also known as the MORPHING technique, provides high-resolution
data at 0.0727°(8km) spatial resolution generated every 30 minutes. Version 1.0 of
CMORPH is available in three different versions: raw CMORPH (CMORPH-RAW);
CMORPH bias-corrected (CMORPH-CRT); and a gauge-satellite blended product,
CMORPH-BLD. CMORPH in near real-time corresponds to the raw version and is
available up to 4 hours after the measurement.

The deployment of more robust satellite missions has presented an opportunity
to develop multiple SPP datasets. This is the case of the NASA/JAXA Global Pre-
cipitation Mission (GPM). This mission was launched in 2014 upon the success of
the TRMM mission after more than 20 years of operational service. The GPM mis-
sion is composed of an international network of satellites for the global observation of
rain and snow (Figure 2.2). The Core Observatory of GPM consists of an advanced
radar/radiometer system that extends the capability to measure light rain (< 0.5 mm
hr-1), solid precipitation and the microphysical characteristics of precipitating particles
(NASA, 2014).

Several techniques have been developed under the GPM mission to retrieve pre-
cipitation rates. The Integrated Multi-satellitE Retrievals for GPM (GPM-IMERG),
developed by the US GPM Science Team (Huffman et al., 2015), combines informa-
tion from multiple infrared, passive-microwave, and satellite-radar sensors to provide
rainfall estimations at 0.1-degree spatial resolution every half-hour. GPM-IMERG
computes Early, Late, and Final runs. The first two runs are near real-time versions
of IMERG and are available at 4-6 hours and 18 hours latency, respectively. In the
Early version, rainfall estimations are propagated forward while the Late has both
forward and backward propagation allowing the incorporation of climatological gauge
data. The final version is obtained three months after the measurements. In this run,
GPM-IMERG ingests the monthly rainfall analysis from the Global Precipitation Cli-
matology Centre (GPCC; Schneider et al. (2008)). This version is used for scientific
purposes, as it is considered to be the most reliable version (Huffman et al., 2015).
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Figure 2.2: GPM constellation program. Credits: NASA (2015)

On the other hand, the GPM Science team from the Japan Aerospace Exploration
Agency (JAXA) developed the Global Satellite Mapping of Precipitation (GSMaP;
Aonashi et al. (2009)). This product was created under the GPM mission, combining
multiple IR and PWM sensors to derive half-hour precipitation quasi global maps at 0.1
x 0.1 spatial resolution. The methodology uses a similar approach to the one developed
in CMORPH, in which IR sequential images are used to derive the motion field. How-
ever, a Kalman filter approach is used as a blending methodology. GSMaP product is
available as standard (GSMAp MVK) and gauge-adjusted product (GSMaP Gauge),
near real-time (GSMaP NRT) and near real-time adjusted (GSMaP Gauge NRT),
real-time product (GSMaP NOW) and reanalysis product (GSMaP Gauge RNL). The
latency of the GSMaP products is three days for the standard product and up to half
an hour for the real-time version. Using GsMAP, nowcasting approaches have been
created at the quasi global scale. The GSMaP RIKEN (GSMaP RNC) developed by
(Otsuka et al., 2019) is an extrapolation-based nowcasting system designed to ingest
GSMaP for predicting rainfall up to 6 hours in advance. The methodology applies
the motion vector technique to sequential GSMaP NRT images, and then an ensemble
Kalman filter is used to blend the nowcast rainfall data in real-time. GSMaP RNC has
been available since 2016 with 0.1 x 0.1 degrees spatial resolution, updated hourly.

2.2.3. Validation of SPP

Benchmarking SPPs against ground-based measurements are an important requirement
for validating the rainfall retrieval in a particular area. A large number of studies have
focused on comparing the performance of SPPs in different environments and climates
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(e.g. Sapiano and Arkin, 2009; Ebert et al., 2007; Guo et al., 2015; Dinku et al., 2010).
Maggioni et al. (2016b) presents a comprehensive review of SPP validation studies
across different regions around the world. At the same time, Sun et al. (2018) anal-
ysed the performance of SPPs around the world compared with gauge and reanalysis
rainfall datasets. Overall, SPPs have an important advantage in providing precipita-
tion data with a high temporal and spatial resolution (almost) anytime and (almost)
everywhere. This is especially important in more remote, inaccessible areas such as
oceans, mountains, forests and deserts.

However, due to the indirect nature of measurements, SPPs are affected by several
errors and uncertainties due to several factors, including the topography, seasonality,
climatology, and sensor type. For example, several studies have shown that SPPs
present several challenges when detecting rain in complex areas where the precipitation
is dominated by the topography and the high variability of rainfall fields (Derin and
Yilmaz, 2014). In terms of seasonality and climatology characteristics, several studies
showed a good performance in warm conditions and over tropical and equatorial regions
(e.g. Ebert et al., 2007; Dinku et al., 2010), contrasted by a weak detection in semiarid
areas and winter conditions. (e.g. Kidd et al., 2012; Peña-Arancibia et al., 2013).
The type of used sensor retrieval plays an important role in the performance of the
SPPs. IR sensors generally miss light precipitation and orographic events, while PWM
retrieval algorithms typically underestimate orographic precipitation, especially in the
cold seasons (Derin and Yilmaz, 2014).

2.2.4. Extreme precipitation and hydrologic validation

The performance of SPPs in extreme conditions plays an important role in areas of
hydrology such as flood monitoring and risk management. Capturing rainstorm events
from extreme rainfall requires synchronicity between the event and the time that the
satellite overpasses (Prat and Barros, 2010). Many studies have used the growing length
of satellite records to analyse the statistical distribution of extreme long-term rainfall.
Prat and Nelson (2020) described recent studies on the long-term evaluation of SPPs.
’Extreme’ has several definitions, including being defined according to percentiles (75th,
90th, 95th and above) (e.g. AghaKouchak et al., 2011; Boers et al., 2013; Ringard et al.,
2015), as well as thresholds for daily rainfall (above 20mm, 500mm, 100mm) (e.g. Tan
and Santo, 2018; Gao and Liu, 2013; Miao et al., 2015). These studies conclude that
there is no ideal SPPs for extreme prediction. SPPs tend to underestimate extreme
precipitation values with a lower performance at the higher threshold or percentile
values AghaKouchak et al. (2011); Gao and Liu (2013); Breña-Naranjo et al. (2015).

Short-term extreme event prediction, commonly associated with hydrometeorologi-
cal extremes, represent a real challenge for SPP techniques. In operational applications,
an accurate representation of those events demands the description of both location
and spatial extension at high temporal and spatial resolutions. This is particularly
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important in monsoonal environments, where convective rainstorm events are highly
localised during a short period. Several studies have evaluated the ability of SPPs to
represent the dynamics of extreme events at several temporal and spatial samplings.
For example, Mehran and AghaKouchak (2014) evaluated the temporal capability of
three NRT SPPs to estimate heavy precipitation rates over the United Stated at dif-
ferent temporal accumulations (3, 6, 12 and 24 h). This study showed that at high
temporal resolutions (3h), none of the SPPs was able to represent heavy rainfall ac-
curately. However, the performance increases at higher temporal accumulations. On
the other hand, Habib et al. (2012) evaluated the spatial sampling of CMORPH for
detecting more than 130 rainfall events in southern Louisiana, United States. The
results showed that events estimated by satellites contain higher levels of random er-
rors at finer resolutions, reducing over coarser resolutions. While temporal and spatial
sampling can result in errors, the performance of the SPPs are directly related to the
type of precipitation system.

In addition to the evaluation of SPPs from an atmospheric perspective, extreme
validation includes evaluating the hydrological response in terms of the flood. Hydro-
logical validation focuses on examining the ability of SPPs to predict floods in a partic-
ular catchment. This process requires a hydrological model that faithfully captures the
runoff generation and the streamflow interaction. Several studies have evaluated the
performance of SPPs used in hydrology at different scales: a global (Revilla-Romero
et al., 2015; Dottori et al., 2016; Beck et al., 2017), mesoscale and large-scale river
basins (Falck et al., 2015; Mazzoleni et al., 2019; Dembélé et al., 2020) or a medium
and small catchment scale (Li et al., 2009; Casse et al., 2015; Bitew and Gebremichael,
2011; Mei et al., 2016b; Vergara et al., 2014). In a review presented by (Maggioni
and Massari, 2018), it is argued that the bias in the forcing precipitation varies from
minor to major issues in the flood prediction due to multiple factors including, the
type of SRP sensor; the precipitation type; the geomorphological conditions; and the
hydrological model formulation. The implementation of SPPs in operational hydrolog-
ical applications requires quick observation updates that consider additional rainfall
information to correct the rainfall data and reduce the inherent bias of SPP datasets
(Serrat-Capdevila et al., 2014; Maggioni and Massari, 2018).

2.3. Error analysis in satellite precipitation data
The International Precipitation Working Group (IPWG)1 is an international scientific
community created to promote standards for satellite precipitation measurement and
successive validation and verification of SPP datasets (Kidd et al., 2008). Based on an
extensive set of surface reference datasets (radar and rain gauge) distributed in several
1The International Precipitation Working Group (IPWG) was endorsed during the 52nd session of
the WMO Executive Council in 2000, which encouraged the Coordination Group for Meteorological
Satellites (CGMS) to participate in the formation of the IPWG
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areas worldwide, the IPWG validation and verification program provides a visual and
statistical analysis of daily satellite/model precipitation data in near real-time. These
statistics involve standard (bias, Root Mean Square Error (RMSE); correlation coef-
ficient) and categorical (probability of Detection (POD); False Alarm Ratio (FAR);
Critical Success Index (CSI)) error score metrics. While these measurements provide
helpful information about the accuracy and skill of SPPs in a clear, simple way, met-
rics are limited due to the skewness of the precipitation intensities (Kidd et al., 2020).
In extreme rainfall detection, the point-to-pixel comparison of standard and categor-
ical scores do not consider important intrinsic structural features of rainstorm event
data such as location, spatial representation and geometrical patterns (Baldwin and
Kain, 2006; Wilks, 2011). For instance, SPP rainstorm events with corrected size and
structure can be over-penalised by slight displacement in space. This is known as the
”double penalty”.

In response to the limitations of ”traditional” verification methods, spatial verifi-
cation metrics, emerging from weather forecasting, have become an alternative way
to evaluate rainfall data in extreme conditions (e.g. Skok et al., 2009; Li et al., 2015a,
2016). This approach considers the spatial features of rainfall fields to evaluate the per-
formance of satellites. Errors can be analysed in physical terms based on their nature
(e.g. displacement, volume, and pattern). Spatial methods can be broadly grouped
into neighbour or fuzzy (Roberts, 2005; Marsigli et al., 2006), scale separation (Casati
et al., 2004; Casati, 2010; Mittermaier, 2006), object-based e.g., Ebert and McBride
(2000); Davis et al. (2009b); Wernli et al. (2008), and field transformation (Keil and
Craig, 2007, 2009a). The first two categories can be described as spatial filtering meth-
ods, in which the verification statistics are evaluated at coarser resolutions to provide
information about the scale of the performance. Object-based and field transforma-
tion are considered displacement verification methods when estimated rainfall fields,
defined as an object, are spatially manipulated (displacement, rotation, scaling, among
others) to try and fit the observed value.

2.3.1. Object-Based Analysis

In nature, an object can be identified by summarising all intrinsic characteristics. A
plant, for instance, could be identified in an image by observing characteristics such
as colour, size, shape, among others. Similar to our eyes registering all this infor-
mation to decide what type of plant we are observing, object-based methods analyse
the information of a physical process to understand its characteristics and examine
their relationships. Object-based or object-oriented analysis is defined as the study of
the statistics of the population of objects. The analysis could be incorporated into a
group of images or gridded data to describe an object with low computational com-
plexity (Blaschke et al., 2004). In the literature, object-based methods have been used
for many purposes, from investigating terrain morphology and detecting its changes
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(Blaschke, 2010; Desclée et al., 2006; Yu et al., 2010; Amatya et al., 2021) to evaluating
the performance of climatic models (Davis et al., 2009b; Grams et al., 2006). In atmo-
spheric sciences, object-based models are widely used for monitoring and nowcasting
precipitation systems (Dixon and Wiener, 1993; Han et al., 2009; Johnson et al., 1998)
and the spatial verification of weather products (Ahijevych et al., 2009; Brown et al.,
2004; Davis et al., 2009b; Ebert and McBride, 2000; Li et al., 2020b). In the latter case,
multiple spatial verification methods have been proposed to evaluate model accuracy
in terms of spatial pattern, intensity, and displacement, such as the contiguous rain
area (CRA) (Fig. 2.3) (Ebert and McBride, 2000), object-based diagnostic evaluation
(MODE) (Davis et al., 2009b), and structure, amplitude, and location (SAL) (Wernli
et al., 2008). Gilleland et al. (2009) discussed the capabilities of spatial object-based
verification methods in proving information on structure errors of rainfall estimation
at multiple scales.

Figure 2.3: Schematic diagram of a contiguous rain area. The arrow shows the level of
displacement between the observed and predicted rainfall fields. Modified from Ebert et al.
(2007)

Advances in high-resolution satellite rainfall detection have led to deploying these
methods for evaluating the accuracy of satellite rainfall products at large scales. For
instance, Skok et al. (2009) implemented the MODE method to analyse the properties
and spatial distribution of the rainfall systems from PERSIAN and TMPA version 7
over the equatorial Pacific Ocean. Additionally, Demaria et al. (2011) used the CRA
method to identify systematic errors in South America using TMPA, PERSIANN, and
CMORPH. Li et al. (2015a) developed an object-based approach to validate satellite-
based rainfall products against ground observations. This method was later applied
by Li et al. (2016) for evaluating three high-resolution satellite precipitation prod-
ucts (PERSIANN, CMORPH, and TMPA) in the United States. One of the main
advantages of these methods compared to traditional gridded-based approaches was
incorporating new information about errors in shape, orientation, and displacement
into rainfall analysis.
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2.3.2. Spatiotemporal Object-Based Methods

Object-based methods have in common a 2D approach to identify rainfall objects in
space (latitude, longitude). The evolution of rainfall systems in time is analysed sim-
ply through a connectivity or “tracking” function (e.g., overlapping, centroid displace-
ment). Once the attributes of two pairs of consecutive objects are defined in space, the
function identifies the likelihood that both rainfall systems belong to each other (Fig.
2.4). However, rainfall systems are often characterised by evolution in time as well as
spatial structure (Davis et al., 2009a). Integrating the temporal dimension into the
object-based analysis marks a fundamental challenge to rainfall systems analysis.

Figure 2.4: Rainstorm event tracking based on centroids. The arrows represent vector
motions of rainfall fields a, b, c, d, and e in time steps t1, t2, t3. Colours describe the
rainstorm object geometry. Modified from Liu et al. (2016)

Spatiotemporal object-based methods are currently developed to identify and com-
pare the temporal and spatial evolution of rainfall systems. Advances in “big data”
analysis have given a new perspective to analyse rainfall systems in space and time.
This new approach transforms gridded rainfall values into a spatiotemporal dimen-
sional grid (latitude, longitude, time) as volumetric pixels or “voxels.” The algorithm
identifies objects in space and time connected by a common attribute to obtain a 4D
object (latitude, longitude, time, and intensity). Several features can be identified from
the object type, such as volume area, duration, average speed, and centroid, among
others.

In the literature, there are a couple of examples of this method. For example,
Sellars et al. (2013) created PERSIANN-CONNECT, a 4D rainfall dataset created
from the high-resolution PERSIANN satellite-based rainfall data to identify the char-
acteristics of rainfall systems at a large scale. This dataset is stored in a PostgreSQL
database and can be easily consulted at http://connect.eng.uci.edu/. Another example
developed by this approach is the spatiotemporal verification method MODE Time-
Domain (TD) (Davis et al., 2009a), an object-based verification method created to
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evaluate the forecast from high-resolution numerical weather prediction (NWP) mod-
els. MODE-TD follows the same methodology of the spatial verification MODE but
incorporates temporal evolution in the precipitation system. This method has been
used in diverse atmospheric applications (Clark et al., 2014; Prein et al., 2017b; Ayat
et al., 2021).Mittermaier and Bullock (2013) compared MODE and MODE-TD meth-
ods over the United Kingdom for evaluating the spatial and temporal characteristics
of cloud cover forecast from km-scale NWP models. This comparison showed notable
differences between the two methods. The inclusion of the time dimension provided
a different perspective on the verification; however, the choice of method-specific pa-
rameters plays a critical role in identifying rainfall objects over time.

2.4. Error correction methods

The inherent bias of satellite products can be reduced by combining the SPP-based data
with ground measurements. It is shown that bias correction methods significantly im-
prove the SPP-forced hydrologic model performance in several regions around the world
(Serrat-Capdevila et al., 2014). For instance, products such as the Climate Hazards
Group Infrared Precipitation with Station data (CHIRPS, Funk et al. (2015)) or Multi-
Source Weighted-Ensemble Precipitation (MSWEP, Beck et al. (2016)) databases demon-
strate that merging multiple satellites, reanalysis, and gauge-based rainfall dataset
strengthens the performance of each product (Beck et al., 2017).

Bias correction approaches are designed to use ground-based rainfall measurements
to reduce the systematic bias of SPP data and other precipitation datasets, including
Global Circulation Models (GCM) and Regional Climate Models (RCM). Multiple bias
correction methods have been developed for precipitation data, including simple linear
and scaling methods, probabilistic distribution maps and machine learning approaches.
Other methods use physically-based approaches to correct rainfall data in extreme
conditions. The characteristics of these methods are described below.

2.4.1. Linear and scaling methods

These methods correct the mean bias of SPPs using the ratio factor (linear or scal-
ing) calculated from the relationship between the SPP and the ground-based reference
data (Lenderink et al., 2007; Teutschbein and Seibert, 2012; Fang et al., 2015). This
additive or multiplicative factor is applied uniformly or spatially distributed (using a
spatial interpolator) over the rainfall field. The simplicity of these methods allows the
incorporation of additional components (e.g. sequential time windows and topographic
clusters) to analyse temporal and orographic effects in the error correction (Gumin-
doga et al., 2019). However, these methods do not correct the bias in the standard
deviation.
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2.4.2. Probabilistic methods

Probabilistic distribution mapping methods correct the mean and the standard devi-
ation of the precipitation data by matching the distribution of the satellite for the
ground data. Methods such as the Distribution Transformation (DT) (Bouwer et al.,
2004) or the Gamma Quantile mapping (GQM) (Piani et al., 2010) have the flexibility
to correct data without parallel reference data. This process facilitates the analysis in
future rainfall simulations (e.g. for climates projections in GCM and RCM) or when
ground data is not yet available (e.g.in real-time monitoring in SPPs), Yuan et al.
(2019); Tong et al. (2020). While these methods have been successfully applied in
multiple fields, errors are corrected just as a function of the rainfall intensity values.
Other approaches use multivariate distribution techniques such as N-dimensional dis-
tribution methods (e.g. Dekens et al., 2017; Cannon, 2016, 2018) or Copulas Functions
(e.g. Vrac and Friederichs, 2015; Kim et al., 2019) to correct the distribution and the
spatial and temporal dependence of the rainfall data. However, the quality of the bias
correction is limited by the referenced data as well as the physical process described
by the SPP Hempel et al. (2013).

2.4.3. Machine Learning methods

Machine learning methods have been relatively recently explored in correcting the sys-
tematic error in SPPs. Machine learning technology has been revolutionary in many
fields of remote sensing, including land-use change detection (Cao et al., 2019), flood
monitoring (Corzo and Solomatine, 2007; Kişi, 2007; Zhao et al., 2019), precipitation
nowcasting (Moon et al., 2019), among others. Methods such as Support Vector Re-
gressions, K-near Neighbours, Decision Trees, Artificial Neural Networks have been
implemented over several types of rainfall data sets against ground data to reduce the
systematic errors in the measurement (e.g. Moghim and Bras, 2017; Kolluru et al.,
2020; Chaudhary and Dhanya, 2020; Le et al., 2020). Based on their flexibility to in-
gest large amounts of data, ML-based bias correction approaches can handle multiple
physiography and atmospheric variables to create SPP merged products. For example,
the Machine Learning–based Precipitation Ensemble Technique (MLPET) proposed by
Bhuiyan et al. (2019) combines daily soil moisture, terrain elevation, and atmospheric
variables (temperature and humidity) with multiple global precipitation data sets.

Advanced deep neural network (DNN) approaches can directly analyse complex re-
lationships of raw satellite data when correcting errors. For instance, Tao et al. (2016)
use a Stacked Denoising Autoencoder (SDAE) to correct bias and false alarms of the
PERSIANN-CCS data over the central United States. SDAE uses the cloud imagery of
the IR satellites to reproduce the estimated difference between the SPP and the ground
data and then reduce it from the original data. Recently (Le et al., 2020) applied a
2-dimensional convolutional neural network called the convolutional autoencoder (Con-
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vAE) to correct pixel-by pixel satellite data in space and time. This method was applied
to correct PERSIANN-CDR against grid-based rain gauged dataset APHRODITE 2

Results over the Mekong basin region showed that the ML method overcomes proba-
bilistic methods, especially during extreme conditions. While these methods have per-
formed well when describing distribution trends and spatial relationships, ML methods
are limited by the physical constraints of the rainfall dynamics. ML models are only
trained by the available data without any scientific principles or laws. This limitation
may bring physically unrealistic predictions for several scientific problems (Corzo Perez,
2009; Wang et al., 2020).

2.4.4. Physically-based bias correction methods

Physically-based bias correction methods offer an integrated approach to describing
extreme rainfall dynamics and correcting the main error components (volume dis-
placement and timing). Available methodologies use spatial verification methods to
match SPP rainfall events (defined as a object) with respect to gridded-based ground
data (e.g. Skok et al., 2009; Li et al., 2015a, 2016). Several systematic errors can
be corrected, including location, rotation, intensity, and shape. For instance, Demaria
et al. (2011) used the object-based method, Contiguous Rainfall Analysis (CRA, Ebert
and McBride (2000)), to correct the location error of CMORPH, PERSIANN, and the
TMPA datasets over the Plata basin. Recently, Le Coz et al. (2019) used the field
transformation method, called Feature Calibration and Alignment technique (FCA),
to correct the error due to location in the GPM-IMERG late version over Sub-Saharan
Africa. The application of these methods has been useful for correcting the displace-
ment errors when the grid resolution is high, and the rainstorm event is small while
preserving the higher spatial variability of SPP rainstorms. One important shortcom-
ing of physical correction methods is the two-dimensional analysis of rainstorm events.
In addition, the bias correction depends on a parallel grid-based data set to match the
satellite event. As previously discussed, the inclusion of the temporal data into the
spatial verification method will contribute to a complete diagnosis of the temporal and
spatial evolution of the rainstorm events. Under this concept, other sources of error,
such as displacement and rotation time, can be evaluated.

2.5. Bias correction for operational purposes
Methods for bias correction methods face several challenges in operational applications
when observed measurements are absent or not yet available. A parallel observed
2APHRODITE (Asian Precipitation-Highly Resolved Observational Data Integration towards Eval-
uation of Water Resources) is a grid-based dataset created by the Research Institute for Human-
ity and Nature (RIHN) and the Meteorological Research Institute of Japan Meteorological Agency
(MRI/JMA). APHRODITE is available at 0.25 x 0.25 from 1998 to 2015 over three domains: Mon-
soon Asia, the Middle East and Russia
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data is essential in bias correction to estimate the discrepancies of the SPP data.
However, based on the assumption that the error structure in the past determines its
configuration in the future, probabilistic and Machine Learning approaches to overcome
this limitation by using observed historical data. These methods are found not only
in operational applications but also for the correction of forecast data from General
Circulation Models. For instance, probabilistic mapping methods such as the Gamma
Quantile Mapping uses observed historical data as reference to calculate the empirical
cumulative distribution function (CDF) (e.g. Hashino et al., 2007; Piani et al., 2010;
Zhao et al., 2017). Machine Learning methods include historical data in the training
phase to correct SPP as well forecast data Gagne et al. (2014); Zarei et al. (2021); Tao
et al. (2016); Le et al. (2020).

As opposed to probabilistic and machine learning approaches, the dependency of
simultaneous observed data is the limiting factor of physically-based bias correction
methods for operational applications. Available implementations using methods such as
Contiguous Object-based Rainfall analysis methods or transformation methods relied
on both SPP and observed data which is not always available, to correct errors due to
displacement and volume (e.g. Demaria et al., 2011; Le Coz et al., 2019).

Combining the physical understanding offered by object-based bias correction meth-
ods with the operability of probabilistic or machine learning methods to work without
parallel-ground data can increase the performance of independent bias correction meth-
ods. In remote sensing, Object-based Image Analysis methods (OBIA) are combined
with ML models to improve classification accuracy in diverse areas, including urban
planning (Wang et al., 2021), vegetation and agricultural mapping (Heumann, 2011;
Duro et al., 2012; Zhang et al., 2018), natural hazards detection (Aksoy and Ercanoglu,
2012; Li et al., 2015b) among others. In comparison with pixel-based approaches, ma-
chine learning methods incorporated with OBIA reflect the human understanding of
the real world based on the explicit knowledge of the object to classify in multiple
dimensions. Further implementations of both physically-based and machine learning
bias correction methods as a hybrid approach provide a promising alternative to reduce
systematic errors in SPP data due to displacement and volume.

2.6. Conclusions
In this chapter, we introduced the main characteristics of the Satellite Precipitation
Products (SPPs) and the methods used for analysing and correcting errors for rain-
storm prediction. The algorithms and the temporal and spatial attributes of each SPP
product were described based on the type of sensor retrieval used to measure rainfall.
We only focused on the most common NRT satellite-based data sets used in hydrology.

The research presented in this dissertation will be based on a spatiotemporal
method to analyse and correct rainfall events detected by satellites. The methods de-
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veloped are conceptualised using rainstorm events as a multidimensional object. Such
conceptualisation allows satellite errors in rainstorm prediction and their hydrological
impact to be evaluated by analysing the complete structure of the event in space and
time. The bias correction method developed using the proposed approach will consider
the primary systematic sources of error to reduce the bias of SPPs. Real-time appli-
cations are also considered by combining the spatiotemporal bias correction method
with a machine learning approach. Applications of this method are discussed when
observed data is not readily available.



3
Study areas: Extreme rainfall in

monsoon environments

This chapter describes the physical, geographical and atmospheric characteristics of
the two monsoonal study areas selected to develop the proposed methodologies - the
catchment of the Tiete River in Brazil (chapter 4-6 ) and the Lower Mekong Basin
Thailand (chapter 7,8). Both topical catchments are characterised by extreme rainfall
conditions triggering landslides and extreme flash flood events. In both areas, the
rainstorm analysis is focused on the monsoon season. In the Tiete area, the period
covers the South American monsoon season from December to February. While in the
Lower Mekong Basin, the period spans the Asian summer monsoon season, which runs
from June to October.

Figure 3.1: Global monsoon regions and study areas. Monsoon land areas (dark grey);
dry lands (light grey); Tiete river (red rectangle) and Lower Mekong basin (blue rectangle).
Modified from Zeng and Zhang (2020)
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3.1. Introduction
According to the latest Intergovernmental Panel on Climate Change (IPCC) Report
(Masson-Delmotte et al., 2021), the observed changes from the global surface temper-
ature are leading to the increment in the frequency and intensity of rainfall, specially
marked in monsoon environments. Nearly two-thirds of the world’s population live in
monsoon areas. Many of these societies living in developing countries rely on rain-fed
agriculture for their subsistence. As a result, any disruption to the amount, timing and
location of monsoon rain will dramatically impact the development of these societies.

Extreme rainfall arises from inter-and extra-tropical climatic conditions in mon-
soon regions triggering devastating landslides and floods. According to the Emergency
Disasters Database (EM-DAT), from 1990 to 2019, Asia and America ranked first and
second, respectively, as the two highest impacted regions in the world due to rain-
storms and floods (ADRC, 2021). In 2019 alone, events during the Asian summer
monsoon season affected almost 56 million people in Asia and cost around 51 thou-
sand million dollars in economic damage. Meanwhile, extreme rainfall that occurred
during the South American monsoon season, exacerbated by climatic oscillations such
as the El Niño–Southern Oscillation (ENSO), triggers severe floods in the tropical west
coast and south-eastern regions of South America with marked socioeconomic effects
across countries like Brazil, Uruguay and northern Argentina (Cai et al., 2020). Due to
this ongoing problem, the role of the scientific community is key to understanding the
causes of error in SPPs and reducing the systematic error arising from the prediction
of extreme rainfall.

This research focuses on two areas localised South America and the East Asian
summer monsoon - the Tiete river in Brazil and the Lower Mekong Basin. The Tiete
river basin has a high population density and is home to several of the region’s most
significant cities, such as the metropolitan Sao Paulo and Campinas. On the other
hand, the Lower Mekong Basin, which spans Vietnam, Myanmar, Cambodia, Lao PDR
and Thailand, is one of the richest and diverse areas in the region. Both areas are highly
prone to natural hazards triggered by extreme rainfall events. This chapter describes
the physical, geographical and atmospheric characteristics of the two monsoonal study
areas and the domains used across this dissertation.

3.2. Tiete river system
This system is influenced by the convective precipitation band of the South Atlantic
Convergence Zone, one of the most distinctive features of the South American Monsoon
System Boers et al. (2013). During the Austrian summer season corresponding to
December to February, the catchment experiences extreme climatological conditions
due to low-altitude humid air fluxes that transport large amounts of rain from the
tropical Atlantic Ocean to the continent. These conditions make the area prone to
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landslides and flash floods (Sprissler, 2011). In this research, the analysis made over
the Tiete river is divided into three different domains (Figure 3.2): the Tiete river;
the sub-catchments of the Piracicaba, Jundiai and Capivari rivers; and finally, the
catchment of the Capivari river used for the hydrological analysis. The physical and
geographical characteristics for each domain will be briefly described below.

Figure 3.2: Tiete river system: a) Tiete river domain; b) Piracicaba, Capivari and Jundiai
rivers domain; c) Capivari river

3.2.1. Tiete river

The Tiete river is part of the Paraná River basin, one of Brazil’s central river systems
and the second-longest river in South America, after the Amazon river. This river starts
its journey at the eastern source in the São Paulo Metropolitan Region and flows 1,100
km backwards the Atlantic Ocean, where it joins the Paraná river. The total surface
area of the basin is 72,000 km2, in which 70% of its territory is affected by industries
and agricultural activities Barrella and Petrere Jr (2003). The average rainfall ranges
between 1,200 and 3,000 mm per year (Marcuzzo, 2020). The Tiete river is the primary
source of energy for the state. The cascade reservoir system located across the river
provides energy and water to the metropolitan area of Sao Paulo city, the highest urban
centre in the country and one of the most populous cities in the world (Milano et al.,
2018). The Tiete river is the domain for developing the spatiotemporal object-based
rainfall method ST-CORA presented in chapter 5. The domain of this study comprises
the area covered by the weather radar of the station Barau, located in the middle of
the Tiete basin.

3.2.2. Piracicaba, Capivari and Jundiai rivers

The catchment areas of the Piracicaba, Capivari and Jundiai rivers, or PCJ, are among
the Tiete river’s administrative regions. This area is one of the most important indus-
trial and economic centres accounting for 5.8% of Brazil’s GNP. The PCJ covers a
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drainage area of 14,138 km2 with an elevation ranging from 436 to 2,074 AMSL dis-
tributed across three zones: upper altitude zones, located on the east side and in a
small area near to Corumbataí; intermediate or middle altitude zones, mainly located
in the central part; and low altitude zones, located in the western part, where the rivers
flow to the Tietê River. This area is particularly vulnerable to extreme rainfall events
due to the higher population living in flood-prone areas Pompermayer et al. (2003);
de Moraes Gonçalves et al. (2015). Between 2000 and 2011, natural hazards related
to heavy rainfall affected more than 26,000 inhabitants. In this research, the PCJ is
studied in chapter 4 to evaluate NRT SPP for extreme rainfall event prediction.

3.2.3. The subcatchment of Capivari river

The catchment of the Capivari river is used in Chapter 6 to evaluate the hydrological
response of several systematic errors in SPPs for the prediction of rainstorm events.
The drainage area is 1655 km2, and the elevations range from 400 to 1000 m above
sea level. This subcatchment can be subdivided into three geographic zones: upper,
middle, and lower. Elevated areas characterise the upper area with a semi-urbanised
distribution. These zones end at the Campinas streamflow station located on the east
part of the city of Campinas. The middle zone is located at the stream gauge Monte
station and is covered by the urban area of Campinas city, which is the main urban
centre of the catchment. Finally, the lower zone covers the streamflow outlet to the
Tiete River and corresponds to rural and semi-rural areas of lower elevations.

3.3. Lower Mekong basin system

The Mekong basin system is one of the largest rivers in the world and the longest river
in Southeast Asia. In the Lower Mekong Basin, the river flows across Thailand, Viet-
nam, Lao PDR, Cambodia, and Myanmar, covering a total drainage area of 184.000
km2. During the period between June and October, the hydroclimate of the basin is
dominated by the covariability of the two subsystems of the Asian Summer Monsoon
season - Indian summer monsoon (ISM) from the west, and the east, the Pacific East
Asian summer monsoon (EASM) (Delgado et al., 2012; Yang et al., 2019). The con-
fluence between the widespread and extended rains of ISM and the localised rainfalls
generated by the EASM system trigger intense flash floods and landslides in the basin
(Joy, 2012). In this research, we evaluated the Lower Mekong basin region located in
Thailand. According to the Mekong River Commission (MRC), floods in this region
have cost around 127 million US$ in damages and impacted more than 900 thousand
people between 1980 and 2008 (Joy, 2012).
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3.3.1. Lower Mekong basin in Thailand

This area is located in the northeastern region of Thailand corresponding to the Isan
region (Figure 3.3). The geomorphological conditions are flat lowland and plateau areas
(below 250 m) with soft and intermediate slopes. The primary land use of the area
is predominantly rural, and the majority of its population belong to the agricultural
sector. According to Sondergaard et al. (2016), the Isan is the region with the lowest
income in the country. This socioeconomic situation incorporates additional challenges
for dealing with floods. In this research, this area is used in Chapters 7 and 8 to
develop the spatiotemporal bias correction method and the operational bias correction
approach using machine learning.

Figure 3.3: Digital elevation of the Lower Mekong Basin in Thailand. Red rectangle
corresponds to the study area in the Isan region. Red dots represent the hourly rain gauge
stations from www.thaiwater.net. Blue line represents the Lower Mekong river network.

3.3.2. Tiete river versus the Lower Mekong basin

The Tiete and the Lower Mekong Basin (LMB) present multiple similarities and es-
sential differences in hydroclimatologic and socioeconomic factors. In terms of hy-
droclimatology, both regions present similar circulation patterns from the east of the
boundary. This warm and moist environment coming from the Atlantic Ocean and
the South China Sea to the Tiete river and the LMB, respectively, generates high
convective rainstorm events during monsoon seasons (Zhou and Lau, 1998). The short

www.thaiwater.net
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and localised life cycle of these events represents an important challenge for measuring
rainfall from satellites.

Regarding socio-economic factors, both regions present remarkable differences in
terms of economy and demographic distribution. Tiete river is mainly an industrial
hub in the region with high urbanisation along the river. On the other hand, the LMB
is primarily dominated by the agriculture sector and therefore, its population is mainly
rural. As mentioned above, both areas share a common history associated with flood
events due to extreme weather. Devastating flood events have impacted the lives of
millions of people living in both areas.
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This chapter explores the performance of the four Near real-time Satellite precipita-
tion products (NRT SPP) to estimate different rainstorm events types in a subtropical
catchment in south-eastern Brazil. (1) local and short duration, (2) long-lasting, (3)
short and spatially extent, and (4) spatially extent and long-lasting extreme rainfall
events are classified using an analytical approach based on the temporal and spatial
characteristics of extreme values. This extreme value is evaluated at different threshold
levels (75th, 90th, and 95th). NRT SPPs are evaluated against in-situ data from the
thirteen hourly Automatic Weather Stations during the monsoon seasons from 2007 to
2014. Results show that the product performance highly depends on the spatiotemporal
characteristics of rainfall events. All four NRT SPP tend to overestimate intense rain-
fall in the study area, especially in high altitude zones. CMORPH had the best overall
performance to estimate different types of extreme spatiotemporal extreme events. The
advantages and disadvantages of available rainstorm analysis methods are discussed as
well the opportunities of new technologies to understanding the spatiotemporal features
of rainstorm events estimated by SPP.

This chapter is partly based on the publication: Laverde-Barajas, M., Corzo Perez, G. A., Dalfré Filho,
J. G., & Solomatine, D. P. (2018). Assessing the performance of near real-time rainfall products to
represent spatiotemporal characteristics of extreme events: case study of a subtropical catchment in
south-eastern Brazil. International journal of remote sensing, 39(21), 7568-7586.
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4.1. Introduction

The distribution and intensity of extreme rainfall play an important role in the hydro-
logical cycle. Characteristics of rainfall events such as magnitude, duration and spatial
extent determine the level of damage associated with natural hazards. In this context,
an accurate representation of the temporal and spatial components of extreme rainfall
is crucial for the correct assessment of water resource availability and predict potential
water-related risks (Thiemig et al., 2012).

During the last two-three decades, earth observation systems are providing an im-
portant input to the weather monitoring and forecasting systems (e.g. Kidd et al.,
2009; Pan et al., 2010; Azarderakhsh et al., 2011). Satellite-based rainfall products
provide uninterrupted global information with an up to 0.5 hours intervals and up to
8 km spatial resolution (e.g. Huffman et al., 2007; Joyce et al., 2004; Sorooshian et al.,
2000). Despite the multiple advantages of satellite-based products, several studies have
shown errors in satellite rainfall estimations related to the measuring devices (e.g. Hu
et al., 2016; Qiao et al., 2014), the size of the basin (e.g. Moazami et al., 2013), the
climate regimes and seasons (e.g. Thiemig et al., 2012; Sapiano and Arkin, 2009; Mei
et al., 2014), and the geographical conditions (e.g. Mei et al., 2016a; Dinku et al., 2007;
Guo et al., 2015; AghaKouchak et al., 2011). For extreme rainfall detection, uncer-
tainties associated with the capacity of detecting heavy rainfall rate at short temporal
resolutions (e.g. AghaKouchak et al., 2011; Marra et al., 2017) have limited their use
in operational applications.

Several studies have evaluated the behaviour of satellite-based products to represent
the spatial and temporal characteristics of extreme events. Temporal capabilities of
different NRT satellite products have been investigated by Mehran and AghaKouchak
(2014) across the United States. Analysing heavy rainfall at different temporal accu-
mulations, the authors indicated that all high temporal resolution products (3-hourly)
presented problems for estimating high rainfall rates.Gebregiorgis and Hossain (2015)
analysed the spatial performance of different NRT products around the world. Based
on error variance models, they showed how diverse geophysical settings impact the
products’ performance. In the case of South America, just a few studies have analysed
the performance of satellite-based rainfall products in estimating the spatiotemporal
characteristics of extreme rainfall. Ringard et al. (2015) evaluated four satellite-based
rainfall products against in situ measurements over French Guiana and North Brazil.
Dividing the study area into six climatic zones and analysing daily and monthly rainfall
data, their analysis showed that estimates of low-intensity rainfall have relatively high
accuracy, while convective-type rainfalls were poorly estimated by satellite products.
Boers et al. (2015) analysed the spatial characteristics of extreme events estimated by
two satellite-based products and one re-analysis dataset over the South American mon-
soon system. Using the complex networks theory, these researchers found substantial
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differences in estimating the extreme rainfall patterns between the different rainfall
products, especially in the South-East of Brazil.

For hydrological applications, rainfall analysis needs a better understanding of how
the characteristics of an extreme event (intensity, duration and spatial distribution)
are represented by different datasets. The main objective of this study is to eval-
uate the performance of the four near-real-time (NRT) satellite-based rainfall prod-
ucts to represent different extreme rainfall events (ERE). The raw version of Climate
Prediction Centre (CPC) Morphing algorithm (CMORPH; Joyce et al. (2004)), the
Tropical Rainfall Measuring Mission, Multisatellite Precipitation Analysis in real-time
(TMPA-RT; Huffman et al. (2007, 2010)), the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks - Global Cloud Classification Sys-
tem (PERSIANN-GCCS; Sorooshian et al. (2000)) version 7 and the Hydro-Estimator
(Hydro; Scofield and Kuligowski (2003)) are compared against an Automatic Weather
Station network (AWS; Brunini (2017)) during the core of monsoon seasons (Decem-
ber, January, February) from 2007 to 2014. The spatiotemporal analysis focuses on
the four different extreme event types proposed by Boers et al. (2015).

4.2. Rainfall Products

The four NRT satellite-based rainfall products are evaluated on seven monsoon sea-
sons from a common analysis period from December 2007 until February 2014. This
selection is based on the following criteria: (1) good correlation in previous studies over
the region; (2) good spatial and temporal resolution; (3) operation in NRT or ”early
run” satellite products. It is to highlight that the NRT are referred to non-gauge cor-
rected rainfall estimations, which are available soon after their generation; (4) common
covering period over the monsoon seasons; (5) their free access and publication. The
latency of these rainfall products ranges from 1 to 18 hours. Within the products eval-
uated, two products combine passive microwave and infrared sensors (IR-PMW) and
two use infrared sensors to estimate rainfall (IR). The use of IMERG SPP data which
is the natural replacement of the TMPA, was not considered in this study because,
by the time of the analysis, available records of this product started from April 2014.
However, further studies can analyse this dataset SPP based on a reprocessed version
of IMERG from 2000 to the present (released in 2019).

Considering each product has different spatial and temporal resolutions, rainfall
products with spatial resolution finer than 0.25° were up-scaled by aggregation in
which the products are averaged to larger scales for matching the spatial resolution of
the referenced dataset. However, it is noted the data aggregation can introduce further
uncertainties derived from the assumptions used in the aggregation algorithm (Gebere
et al., 2015). Aggregated rainfall data in space and time has its own contribution to the
total error since the lack of knowledge of the rainfall process at different spatial scales



34
4. Space-time error analysis for extreme rainfall events detected by

satellites

will further propagate errors in the data. A comparison of SPP at several temporal and
spatial scales is recommended in areas with the variability of rainfall is high, however,
this study just focuses on the errors of SPP for extreme events predictions.

Table 4.1: NRT satellite-based rainfall products used

Product Provider Spatial coverage Temporal coverage Type Spatial and temp res.
CMORPH V1.0 Raw NOAA-CPC 60°N–60°S Since 1 January 1998 IR-PMW 0.07°approx./3 h
TMPA-RT NASA/JAXA 50°N–50°S Since 1 January 1998 IR-PMW 0.25°/3 h
PERSIANN-GCCS UC Irvine 60°N–60°S Since 1 March 2000 IR 0.04° approx./0.5 h
Hydro-Estimator NOAA/NESDIS 90°N–90°S Since 1 January 2007 IR 0.04°/15 min

4.3. Study area and reference data
This study is applied in the tropical catchments of the Piracicaba, Capivari and Jundiai
rivers (PCJ) in Brazil described in Chapter 3 (Figure 3.2b). We analysed climatic con-
ditions during the core of monsoon in South America from December to February from
2007 to 2014. The reference data is based on 13 Automatic Weather Stations (AWS)
observations provided by the Integrated Centre of Agrometeorological information CI-
IAGRO (Brunini, 2017). These stations are part of a dense network of hourly real-time
information for agrometeorological monitoring in the PCJ catchment. The data were
quality controlled to reduce possible errors and noise in the measurements. In the first
part, we compared the product at the point-based location-scale to avoid taking inter-
polation errors into account. However, in the following parts, we used an interpolated
gridded data to represent the spatial representation of the referenced data. Hourly
AWS measurements were interpolated using the Inverse Distance Weighted method
(IDW) (Wackernagel, 2013) set to 0.25° × 0.25° from 2007 to 2014.

4.4. Methodology
The methodology involves three parts: First, we analyse the spatial error distribution
at different high intensities levels between satellite-based rainfall products and AWS
gauges during monsoon seasons. In the second part, we evaluate the performance of
the products to identify different extremes rainfall events (ERE) types. In the third
part, we assess the sensitivity of the event-based performance to different intensity
rainfall thresholds.

4.4.1. Spatial error distribution of intense rainfall

The spatial error of satellite products is analysed on a point-cell basis for the three
intervals: above the 75th percentile (strong rainfall), above the 90th (extreme rainfall),
and above the 95th (most extreme rainfall). This method compares the grid points of
satellite products and the reference data with the nearest rain gauges values (Thiemig
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et al., 2012; Dembélé and Zwart, 2016). However, in the areas where two or more
stations lie in a cell, rainfall values are compared using the average-point measurements
to the cell (Thiemig et al., 2012). In these cases, the spatial rainfall variability will
be limited by the product resolution which may lead to an under or overestimation
(Peleg et al., 2018). For this analysis we used three widely-used statistical measures
to quantify the errors: the correlation coefficient (r) to analyse the linear correlation
between the satellite products and AWS measurements, the Root Mean Square Error
(RMSE) to evaluate the magnitude error, and the relative bias (Bias) to evaluate the
systematic bias of the products (Li et al., 2014) (Eq.4.1 - 4.3).

r =

N∑
i=1

(Psati −Psat )(Pr e fi −Pr e f )√
N∑

i=1
(Psati −Psat )2

√
N∑

i=1
(Pr e fi −Pr e f )2

(4.1)

RMSE =
√√√√ 1

N

N∑
i=1

(Psati −Pr e fi )2 (4.2)

Bi as =

N∑
i=1
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N∑
i=1

Pr e fi

∗100 (4.3)

where n is the number of samples; Psat are the satellite-based measurements and
Pr e f is the reference value, Psat and Pr e f are the mean of the satellite measurements
and the reference values.

4.4.2. Performance in detecting different extreme rainfall events
in spatiotemporal context

The performance of NRT products to represent rainfall events is evaluated considering
temporal and spatial characteristics. For intense rainfall considered as extreme (above
90th percentile), we defined different ERE types according to the classification proposed
by Boers et al. (2015). This methodology defines four types of rainfall events defined
by their duration and spatial extension:

a. Local and short extreme events (LSE), which are only determined by their high
magnitude.

b. Local and long-lasting extreme events (LLE) which are characterised by the long
duration and high magnitude.

c. Spatially extensive extreme events (SEE), which are identified by their extension
and high magnitude. In this study, unlike proposed by Boers et al. (2015), SEE
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is composed of events (connected) with a high magnitude. This was done to
analyse the spatiotemporal behaviour at the same threshold.

d. Spatially extensive and long-lasting extreme events (SLE) which are determined
by their high magnitude, long duration and wide extension.

To identify the classes of EREs the following procedure is used:

1. Estimate the temporal duration of each event, by employing a running-mean
filter to the gridded rainfall time series at time step i:

P̃i =

N∑
s=−w

Pi−s

2w +1
(4.4)

where Pi is the filter input and P̃i is the filtered rainfall value. This method uses
the moving average period defined as 2w+1. w is the width of the running-mean
filter given by table 2.

2. Considering Pi and P̃i to be samples of rainfall intensities, compute the pth
percentile of these samples (for rainfall above 0.2 mm). Rainfall events are defined
as time steps i for which Pi and P̃i are above a threshold T p , depending on the
type of event (strong, extreme, most extreme) (Table 2).

ei :=
1, if Pi |P̃i > T p .

0, otherwise.
(4.5)

where ei is a binary event indicator associated with the time step i . T p is the
threshold corresponding to the pth percentile.

3. To identify the spatial extent of extreme rainfall, we employed the so-called con-
nected component labelling method to group similar rain cells into homogeneous
groups (Szeliski, 2010; He et al., 2017). This method connects cell values identi-
fied as an event in each time step as object pixels. This spatial type of event eq

i

is defined by the size of its connected label relative to the spatial threshold Sq
i

(Boers et al., 2015).

eq
i :=

1, if C q
i > Sq .

0, otherwise.
(4.6)

where C q
i is the group of connected cells (considered as events) at each time step,

is the spatial threshold in space. Considering the hydro-meteorological scales of
rainfall systems observed in the region, we defined extensive events as events
with an area bigger than 2° Œ 2° (Sq

i = 8 cells; each of 0.25° Œ 0.25°).
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Taking into account the characteristics of ERE, we defined the spatial and temporal
components of each ERE type. Table 4.2 shows the components of each type of ERE.
It should be noted that these four classes are not mutually exclusive, so one event may
be classified into two or more types of ERE.

Table 4.2: Spatial and temporal characteristics of each ERE type

ERE type Magnitude Temporal (w) Spatial (q)
LSE T 75, T 90, T 95 - -
LLE T 75, T 90, T 95 2 -
SEE T 75, T 90, T 95 - 8 cells
SLE T 75, T 90, T 95 2 8 cells

Considering the magnitude, duration and spatial extension of the reference dataset
during monsoon seasons, we analysed the frequency and spatial patterns for all types
of ERE. To avoid double-counting of EREs, we separated join extreme rainfall events
selecting the inter-arrival time of each type of event (e.g. Dunkerley, 2008, 2010). By
concept, LSE and SEE events usually range between 3 to 6 hours, while LLE last for
9-15 hours and SLE event ranges from 6 to 12 hours.

The capabilities of the NRT satellite-based rainfall products for each ERE type
are evaluated based on four skill score metrics proposed by AghaKouchak and Mehran
(2013); Wilks (2011). The Frequency Bias Index, Probability of Detection, False alarm
ratio, and Critical Success Index is used to evaluate the performance concerning rainfall
events, as presented in equations 4.7 - 4.10:

a. Event-based Frequency Bias Index (EFBI): indicates the level of underestimation
or overestimation of an event “e”. Its ranges from 0 to infinity with a perfect
score of 1. I represent the indicator function of number exceedances.
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(4.7)

b. Event-based Probability of Detection (EPOD): is defined as the ratio of the
correct detections of “e”. It ranges from 0 to 1, with a perfect score of 1.

EPOD =
N∑

i=1
I (Psati |Psati ∈e & Pr e fi

∈e)

N∑
i=1

I (Psati |Psati ∈e & Pr e fi
∈e)+

N∑
i=1

I (Psati |Psati ∉e & Pr e fi
∈e)

(4.8)

c. Event-based False alarm ratio (EFAR): represents the ratio of the incorrect de-
tections belonging to the event “e”. Its ranges from 0 to 1 with a perfect score
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of 0.
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d. Event-based Critical Success Index (ECSI): Corresponds to the combination of
EPOD and EFAR to identify the overall performance skill of ERE. Its ranges
from 0 to 1, with 0 as the perfect score
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4.4.3. Event-based performance for different rainfall intensities

The sensitivity of the event-based performance at different intensity rainfall thresholds
is evaluated in the third part of the methodology. Following the process described in
section 4.2, we compared the products’ performances for rainfall events defined above-
defined above T 75, T 90, T 95 percentiles. For each satellite product, the performance is
evaluated using EFBI, EPOD, EFAR, ECSI scores.

4.5. Results and discussion

4.5.1. Error distribution of SPP at high-intensity levels

Figure 4.1 shows the spatial location of errors of the satellite products, compared to the
reference AWS data during monsoon seasons from 2007 to 2014. Figures 2a-c present
the spatial distribution of r , RMSE and Bias, Figures 2d shows the cross-correlation
between the satellite products and the reference data over the study area. According to
the results, satellite products had problems for the high altitude zones. CMORPH was
the product with the lowest quantitative errors, indicated by the highest correlation
(mean r 0.65), and the lowest magnitude error and the systematic bias (mean RMSE
0.58 mm hour-1, Bias 4.5%). For TMPA-RT and PERSIANN-GCCS, errors were
generally high for elevated altitude zones. TMPA-RT presented a better correlation
and lower Bias than PERSIANN-GCCS, however, the error magnitude was higher.
Hydro was the product with the highest error over the whole study area with r and
RMSE values of around 0.33 and 1.16 mm hour-1 respectively, and a Bias higher than
40%.

Concerning the measurement of the error at different rainfall levels, Figure 4.2
shows the r , RMSE and Bias errors of NRT products above 75th, 90th and 95th
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percentiles thresholds: error increases with an increase of rainfall intensity. CMORPH
and TMPA-RT had the lowest errors at high intensities. CMORPH presented the
highest correlation coefficient dropping from 0.4 at T 75 to 0.2 at T 95 while TMPA-RT
had the lowest overestimation increasing from 25% at T 75 to 38% at T 95. In contrast,
PERSIANN-GCCS and Hydro have the highest errors (the lowest correlation and high
overestimation).

Figure 4.1: Spatial distribution of (a) r; (b) RMSE; (c) Bias errors and (d) scatterplot of
the mean rainfall of (i)CMORPH, (ii) PERSIANN-GCCS,(iii)TMPA-RT (iv) Hydro, during
monsoon seasons from 2007 to 2014

Figure 4.2: Quantitative errors of satellite rainfall products versus AWS measurements
above different rainfall thresholds.(a) r ; (b) RMSE; (c) Bias
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4.5.2. Performance of satellite-based products to represent differ-
ent ERE types

Local and short extreme events (LSE):
The performance of satellite-based products in terms of EFBI, EPOD, EFAR and
ECSI for LSE events is shown in Figure 4.3. In general, performance is not very
high, especially at high altitude zones. CMORPH showed better performance (low
EFBI and EFAR). TMPA-RT showed the best EPOD and together with CMORPH
had the better ESCI score distributed mainly in the middle and low altitude zones.
PERSIANN-GCCS and Hydro had a poor score for LSE detection, being the products
with the lowest performance for LSE.

Figure 4.3: Performance of NRT products in estimating LSE events

Local and long-lasting extreme events (LLE):
Figure 4.4 presents the performance of satellite products for LLE events. When the
extreme rainfall events are longer in time, TMPA-RT and CMORPH slightly under-
estimated LLE events as opposed to Hydro and PERSIANN-GCCS, which tend to
overestimate them. Compared with the short duration events, satellite products per-
formed better in detecting LLE events, with higher EPOD detection and fewer EFAR
estimations. CMORPH had a better EPOD score while TMPA-RT had a better score
in false alarm estimations. Overall, CMORPH presented the highest performance for
LEE events with a mean ESCI of 0.23, followed by TMPA-RT and PERSIANN-GCCS.
Hydro is the product with the lowest performance for LSE.

Spatially extensive extreme events (SEE):
Performances for SEE events is presented in Figure 4.5. The results show the limited
capacity of satellite products to detect this type of extreme event. Hydro was highly
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biased over the whole catchment while PERSIANN-GCCS and TMPA-RT were biased
mainly over lower altitude areas. On the other hand, CMORPH was unbiased in lower
zones but underestimates over the elevated areas. Regarding the capacity to detect
SEE events, TMPA-RT is better, with a high EPOD score over lower zones. CMORPH
had the lowest number of false alarm detections with an EFAR value around 0.6. In
general, TMPA-RT had the best performance for SEE events with a mean ECSI of
0.2, followed by CMORPH with a mean ECSI of 0.15, PERSIANN-GCCS with mean
ECSI of 0.14 and finally Hydro with ESCI of 0.1.

Figure 4.4: Performance of NRT products in estimating LLE events

Figure 4.5: Performance of NRT products in estimating SEE events
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Long-lasting and spatially extensive extreme events (SLE):
Figure 4.6 shows the performance of satellite products for the SLE events, and one
can see the products’ higher performance. CMORPH and TMPA-RT were slightly
unbiased while Hydro and PERSIANN-GCCS were marginal biased, mainly in low
and middle altitude zones. In comparison, CMORPH was slightly better in EPOD
and together with TMPA-RT, showed the lowest false alarm score.

In terms of ECSI, CMORPH had the best performance for detecting SLE events
with a mean ECSI value of 0.3 distributed over middle and high altitude zones. In
contrast, Hydro was the product with the lowest score with a mean ECSI of 0.15.

Figure 4.6: Performance of NRT products in estimating SLE events

Event-based performance at different rainfall intensity thresholds
To analyse the influence of the intensity threshold on the evaluation of satellite perfor-
mance, Figure 4.7 shows the comparison between the skill scores for each type of event
and the rainfall intensity threshold defined as strong, extreme and most extreme rain-
fall (above T 75, T 90 and T 95 respectively). Lines show the average values in the whole
area, while the shaded regions enveloping them represent the dispersion between the
25 and 75% percentiles. Downward- and upward-pointing triangles are the minimum
and maximum score levels for each product.

Results show that the performance of the evaluated SPP is reduced under high-
intensity levels of rainfall. During the evaluated period, the bias of the SPP had a
significant increment at higher thresholds. Hydro had the most considerable increment,
especially LSE and SEE events. Short duration rainfall events were more difficult to
estimate than extensive and long-duration events accurately. In the case of EPOD, the
performance of SPP marginally decreased for high-intensity events.

EFAR results steadily increased as the event threshold increased, showing a consid-
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erable deterioration EFAR scores at higher thresholds. Overall, the capacity of estimat-
ing different rainfall events in terms of ECSI showed that long temporal rainfall events
score for all products had a steep drop (50 % approximately), except TMPA-RT, which
score also dropped but just marginally. ECSI score for short duration events dropped
around 30% for all products, demonstrating low sensitivity at higher intensities.

Figure 4.7: The performance of the four products for EREs of different intensities. Lines
are 50% percentiles; shaded ranges - the 25% and 75% percentiles. Downward- and upward-
pointing triangles are the minimum and maximum score level for each product

4.6. Conclusions
In this chapter, we evaluated the performance of four NRT satellite-based products for
representing different types of EREs in the subtropical catchment of the Piracicaba,
Capivari and Jundiai rivers in Brazil. CMORPH, PERSIANN-GCCS, TMPA-RT and
Hydro were compared against hourly rain gauge information from AWS during mon-
soon seasons from 2007 to 2014. The applied methodology identified the spatiotemporal
characteristics of extreme rainfall events, classifying them as four EREs according to
their magnitude, duration and spatial extent. We analysed the errors at different rain-
fall intensities, the performance to detect different extreme events, and the sensitivity
of the performance at different thresholds.

We can conclude that all products tend to overestimate rainfall over the study area.
CMORPH had the lowest quantitative error in r , RMSE and Bias at the point-based
location. However, TMPA-RT showed lower Bias at high intensities levels. On the
other hand, Hydro was the product with the highest error over the whole study area.

The performance of the NRT rainfall products depends on the spatiotemporal char-
acteristics of rainfall events. In general, the short duration events are more difficult
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to predict than the long ones. For all ERE types, the study showed that CMORPH
and TMPA-RT products exhibited the best performance while PERSIANN-GCCS and
Hydro displayed the lowest. TMPA-RT had the best EPOD detections for short tem-
poral events in the same way as CMORPH in spatially extensive events. CMORPH
presented the lowest false alarm detections in short-duration events and together with
TMPA-RT had the lowest EFAR for spatially extensive events. For ECSI, CMORPH
showed the highest performance of all satellite products.

It has been found that the performance of the product is strongly affected by the
intensity of rainfall events: the bias increases with intensity. Concerning the capacity
to predict different types of events, in most of the rainfall products, the performance of
correct estimations marginally decreased, while the frequency of incorrect estimations
considerable increased for high-intensity rainfalls. In general, the performance of all
products decreased at high rainfall for all types of events.

The results show the importance of taking into account the spatiotemporal charac-
teristics for product verification. Even though the methodology analyses the character-
istics of the extreme event using a pixel-based approach, the results show an interesting
evaluation of the capabilities of NRT to estimate different EREs. Further research will
incorporate new verification methods such as feature-based to analyse the spatiotem-
poral structure of extreme events. These methods can be easily applied to evaluate the
capabilities of products at different resolutions without using up-scaling techniques,
which may contribute to the product error. Another further approach can be the se-
lection of an optimal combination of products. The technology of fuzzy committees
models (e.g. Fenicia et al., 2007; Kayastha, 2014) could be a possible candidate for
this.
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Spatiotemporal Object-Based

method for rainstorm analysis

This chapter proposes a spatiotemporal object-based method to analyse the structure
of rainstorm events in space and time at a catchment scale. This method, called
Spatiotemporal Object-based Contiguous Rainfall Analysis or ST-CORA, uses a mul-
tidimensional connected-component labelling algorithm to cluster convective rainfall
regions as a 4D rainstorm event object (longitude, latitude, time, rainfall intensity).
Several features can be extracted from this rainstorm object, such as volume, area, du-
ration, orientation, speed, among others. The methodology is applied to the subtropical
catchment of the Tiete River to identify and classify different types of extreme events
during monsoon seasons and verify a Near-Real time satellite-based product. Results
show the importance of spatial and temporal structures in the comparison of products
for real-life events. This method also provides insights to understand better the rainfall
concentration (location) of events and their dynamic over catchments.

This chapter is partly based on the publication: Laverde-Barajas, M., Corzo, G., Bhattacharya,
B., Uijlenhoet, R., & Solomatine, DP (2019). Spatiotemporal analysis of extreme rainfall events
using an object-based approach. In Spatiotemporal Analysis of Extreme Hydrological Events (pp.
95-112). Elsevier.
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5.1. Introduction

Satellite-based precipitation information has become an important input in water man-
agement, flood monitoring, and forecast systems. Multiple products derived from
Infrared and Passive Microwave satellite-sensors have provided high-resolution precip-
itation data in near and real-time (e.g. Huffman et al., 2007, 2015; Nguyen et al., 2020;
Joyce et al., 2004; Nguyen et al., 2020). Despite recent advances in earth observation
systems, numerous researchers have shown that characterising small-scale variability
of rainfall patterns is still challenging Grayson and Blöschl (2001). Continuous veri-
fication statistics traditionally characterises Grid-based studies to analyse the rainfall
dynamic and evaluate product quality. While these measurements provide useful in-
formation in terms of correlation, metrics do not consider important intrinsic features
of rainfall data such as location, volume, and type of event.

Object-based methods are an alternative approach to analysing rainfall. This
methodology evaluates rainfall estimation based on the structural properties of rainfall
fields. Based on this method, a rainfall event can summarise all intrinsic attributes and
statistics representing space and time. Different authors have demonstrated the use
object-based methods to evaluate the performance of satellite-based products Davis
et al. (2009a); Ebert and McBride (2000); Li et al. (2015a); Skok et al. (2009). Object-
based methods in space and time are becoming a powerful tool to analyse the complete
structure of large-scale rainfall systems such as events like typhoons, hurricanes, or cold
fronts and evaluate their prediction (e.g. Davis et al., 2009b; Sellars et al., 2013; Mit-
termaier and Bullock, 2013). However, in the case of small-scale (catchment-scale)
convective systems, this analysis is challenging (Sillmann et al., 2017). Floods caused
by this type of event, e.g. mesoscale and rainstorm-scale rainfall events, produce ex-
treme flash flooding, causing major human and economic damage. Understanding
rainfall dynamics plays an important role in hydrological applications. The variation
in shape and location of rainfall events affects the runoff volume over the catchment
(e.g Arnaud et al., 2002; Foufoula-Georgiou and Vuruputur, 2001; Haile et al., 2011).

A new object-based method is proposed to analyse the spatiotemporal structure
of extreme rainfall events at the catchment scale. The Spatiotemporal Object-based
contiguous Rainfall Analysis method (ST-CORA) enables the feature extraction of
different types of rainfall fields from satellite products through a multidimensional
connected component labelling algorithm. This research describes the innovative ap-
plication of a spatiotemporal object-based method to analyse extreme rainfall events at
the catchment scale, using a subtropical catchment of the Tiete River, Brazil, to iden-
tify extreme rainfall events and the evaluation of near-real-time (NRT) satellite-based
products.
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5.1.1. ST-CORA description

ST-CORA is a spatiotemporal object-based method designed to analyse the spatiotem-
poral features of different rainstorm events at catchment scales (duration, spatial
extent, magnitude, and centroid). This method uses a multidimensional connected-
component labelling algorithm to detect regions with similar features in space and
time. The error verification for SPP allows the error decomposition in displacement,
volume and pattern error. The methodology for error verification is composed of three
steps briefly described below.

5.1.2. Identification of spatiotemporal convective objects

In the first step, spatiotemporal rainfall objects are built using a multidimensional
connected-component labelling algorithm (Sedgewick, 1998; Acharya and Ray, 2005).
This algorithm groups connected voxels (used in 3D instead of pixels) into a disjoint
object, assigning a unique identifier (label). This operation is realised for binary infor-
mation of “effective rainfall” voxels S[x, y, t ] (1 = “true” or 0 = “false”), segmented by
rainfall intensity threshold (Eq. 5.1). The choice of intensity threshold is defined by
the user. By default this threshold is 1 mm/h (e.g. Ebert, 2005):

S[x,y,t ] :=
1, if Rx,y,t ≥ IT.

0, otherwise.
(5.1)

where Rx,y,t is the rainfall voxel, and IT is the rainfall intensity threshold. Once
all S[x,y,t ] voxels have been determined, the connected-component labelling algorithm
identifies spatiotemporal convective objects as follows:

1. Scan all voxels in a neighbour system (from top to bottom and left to right)
assigning preliminary labels to S[x,y,t ] as:

c(S[x,y,t ]) =
{

N[x,y,t ] ∈αs : SC R = SN
}

(5.2)

where c(S[x,y,t ]) is the preliminary label, Ss ,SN are the properties of the voxel
S[x,y,t ] and its neighbours N[x,y,t ], respectively, and vs is the neighbour system in
space and time (Fig. 5.1).

2. If a neighbour has more than two c(S[x,y,t ]), it is assigned the lower label recording
the label equivalences in a union-find table.

3. Resolve the table of equivalences classes using the union-find algorithm (Sedgewick,
1998).

4. Make a second iteration relabelling c(S[x,y,t ]) on the resolved equivalences classes.
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Figure 5.1: Neighbour system in space and time (26 voxel neighbours)

After the connected-component labelling algorithm is applied, ST-CORA applies
two additional algorithms: a size filtering for noise removal and morphological closing
to delineate the 4D object. A size-filtering algorithm removes objects lower than a size
threshold T defined as noise. The selection of T is defined based on the spatial and
temporal resolution of the rainfall product (default six voxels). The second algorithm
solves false merging resulting from the labelling component algorithm. A morphological
closing algorithm divides or merges convective objects with low or robust connectivity
(Fig. 5.2). This algorithm uses a dilation erosion process similar to the one employed in
object-based algorithms to separate zones with a weak connection in weather radar (e.g.
Han et al., 2009). For dilation, boundaries of convective objects are expanded, while for
erosion, those boundaries are removed. This procedure performs first a morphological
dilation followed by erosion to delineate the convective object.

Figure 5.2: Morphological closing

5.1.3. Selection of extreme rainfall events

In the second step, extreme convective events are identified based on the critical mass
threshold. This parameter corresponds to the minimum volume of rainfall (km3) nec-
essary to be considered as an extreme event Grams et al. (2006). The value of the
critical mass threshold is defined by the user and is typically obtained depending on
the maximum extension, and the convective object volume (e.g. Demaria et al., 2011).
Once all rainfall events are identified, a descriptive statistical algorithm calculates di-
verse characteristics such as the total volume of the rainstorm event (m3), maximum
intensity (mm/h), maximum area (km2), rainstorm duration (h), and weighted cen-
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troid (latitude, longitude, time). This algorithm organises the event properties in a
data structure (N x d DataFrame) for easy analysis and visualisation (Fig. 5.3).

Figure 5.3: Example of a rainfall object. Rainfall event over the subtropical catchment of
the Tiete River, Brazil (24 Feb 2008)

5.1.4. Classification of extreme event

The last step corresponds to the classification of extreme rainfall events by hydrome-
teorological criteria. Based on three main characteristics of extreme events (maximum
area, duration, and volume of rainfall) (Fig. 5.4), four types of rainfall events are iden-
tified: local and short extreme events (LSE); local and long-duration extreme events
(LLE); spatially extensive extreme events (SEE); and long-duration and spatially ex-
tensive extreme events (SLE). SEE, and LSE are events with a slow or fast motion,
which are extended over large areas (long-lived) (e.g., mesoscale level). LSE and LLE
are associated with small convective systems with a slow or fast movement, which
contains a large amount of rainfall falling over a reduced area (short-lived) (e.g., a
city, small draining catchment), for example, convective rainstorms and rainfall cells,
among others.

Figure 5.4: Spatiotemporal characteristics of extreme rainfall
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5.1.5. Spatiotemporal verification

Several error metrics can be applied to rainfall objects to evaluate the performance
of satellite products starting from standard verification methods such as continuous
statistics (e.g., mean error, RMSE, correlation coefficient) and categorical verification
metrics (e.g., BIAS, POD, FAR) to most sophisticated diagnostics verification methods
such as error decomposition (Ebert and McBride, 2000), correspondence ratio (Sten-
srud and Wandishin, 2000), or displacement and amplitude score (Keil and Craig,
2009b). This method can be used for identification at different resolutions and scales.

5.2. Applications over the Tiete river, Brazil
The study site for this research is the subtropical catchment of the Tiete River (Fig.
5.8). The area is part of the Parana River basin, one of Brazil’s central river systems.
Due to the location, the area is strongly impacted by inter-and extratropical climatic
conditions, e.g., the South American monsoon system (Boers et al., 2013). This factor
makes the area prone to severe landslides and flash floods (Sprissler, 2011). This
research analyses the climatic conditions during the monsoon core in South America
from December to February from 2007 to 2017.

Near real-time satellite rainfall information from CMORPH (Joyce et al., 2004)
is used for the study. The selection of this dataset responds to a previous study in
the area made by Laverde-Barajas et al. (2017), where this dataset showed superior
performance in estimating different types of rainfall events. CMORPH is used at 8
km (0.0727 degrees) with half-hour temporal resolution (1 h aggregated). Ground
measurement is obtained by the weather radar station Bauru (CAPPI 3.5) from the
Sao Paulo State University Faculty of Sciences. Ground measurements used have a
spatial resolution of 1k (0.01 degrees) every 15 min (aggregated to 1 h).

5.2.1. Rainstorm identification

ST-CORA requires the definition of two parameters: the convective threshold and
the critical mass threshold. The definition of convective threshold is critical in the
definition of rainfall systems. Several studies in spatial verification have found that
reduction of this threshold allows the incorporation of small systems with the deficiency
of creating unrealistic rainfall objects (Demaria et al., 2011). In this study area, it was
observed that the parameter of the best fit is 1 mm/h. The critical mass threshold value
is defined by the relationship between rainfall systems’ maximum area and volume. In
the Tiete River catchment, it is found that convective systems larger than 5000 km2

(8% of the population) contribute almost 90% of the rainfall during the monsoon season
(Table 5.1). This area corresponds to a total volume of around 0.14 km3 (Fig. 5.5).
Based on this result, a critical mass threshold of 0.1 km3 was selected. By applying this
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method over hourly information from CMORPH in the catchment area, 694 extreme
rainfall events were identified during the monsoon season from 2007 to 2017. For each
rainfall event, several descriptive characteristics were extracted. These include volume,
intensity, maximum area, duration, and weighted centroid.

Figure 5.5: Relationship between maximum event area and total rainfall volume.

Table 5.1: Contribution of the Rainfall Fields Into Total Amount of Water During the
Monsoon Season

Rainfall features Rainfall contribution (%) Population fraction (%)
Size range 75-500 km2 1% 55%
Size range 500-2.000 km2 5% 28%
Size range 2.000 - 5.000 km2 8% 8%
Size range 5.000 - 10.000 km3 11% 3%
more than 10.000 km2 76% 5%

5.2.2. Spatiotemporal features of extreme rainfall events

Figure 5.6 presents the histograms of extreme rainfall systems in terms of total volume,
maximum rainfall, duration, and maximum extension (area). According to the results,
the total volume of the rainfall presented a positively skewed distribution commonly
associated with these systems. On the other hand, maximum rainfall values of the
events followed a normal distribution ranging from 5 to 50 mm/h with a median value
of 30 mm/h. Concerning spatiotemporal characteristics, rainfall events are frequently
longer in time (mean = 14 h STD = 6 h), typically varying between 8 and 18 h.
In space, the maximum extension of the events ranges between 6000 and 12,000 km,
covering between 4% and 8% of the total catchment area.
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Figure 5.6: Histograms of rainfall events characteristics. Rainfall Volume, Maximum
rainfall, Duration and Spatial extension

Based on the temporal and spatial characteristics of extreme rainfall systems, Fig.
5.7 presents the classification of extreme rainfall systems according to volume, dura-
tion, and maximum extension. In the study area, long-duration events are considered
systems with a duration longer than 12 h, while spatially extensive events present a
maximum extension of larger than 100 × 100 km2. According to the results from 694
events, 314 (45.3%) are SLE events, 188 (27.1%) are LSE events, 133 (19%) are SEE
events, and 59 (8.4%) are LLE events.

Figure 5.7: Classification of extreme rainfall events.LLE, Local and long-duration extreme
events; LSE, local and short extreme events;SEE, spatially extensive extreme events; SLE,
long-duration and spatially extensive extreme events
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5.2.3. Application for satellite-based rainfall products verification.

The capacities of this methodology for product verification are evaluated for two types
of extreme rainfall systems. The first event is an LSE event that occurred on February
12, 2011, between 16:00 and 21:00 h, causing several flash floods in the southeastern
part of the Tiete River (IMPACT). The second event is an SLE event over the region
between January 11 and 12, 2011. This rainfall event was one of the most critical
extreme events in the area, where the extreme rainfall triggered massive floods and
landslides over important cities of the state. Thirteen people lost their lives, and
thousands lost their homes and other buildings (NOAA, 2011). NRT satellite-based
information from CMORPH is compared against weather radar located in the study
area. Both products are compared based on their main characteristics (maximum,
volume, duration, and area), and their performance was evaluated grid to grid in terms
of the level of displacement (concerning the weighted centroid), RMSE, and correlation
coefficient. In this latter case, weather radar was upscaled to match the grid size of
the satellite product.

Figure 5.8: Spatiotemporal verification for local and short extreme rainfall events.
CMORPH, Climate prediction centre morphing technique; NRT, near-real time.

Figure 5.8 displays the verification used for the LSE event of February 12, 2011.
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The results showed a high rainfall concentration over the southeastern part of the re-
gion in both products. CMORPH product and the weather radar objects presented
similar structures in terms of shape but had essential differences in terms of magni-
tude. CMORPH tended to underestimate the magnitude of the extreme event and the
total volume of the system. The characteristics in space and time presented a slight
displacement to the northwest in space and a displacement in time of 1 h. Radar
and CMORPH products covered similar extensions (8974 and 8036 km2); however,
CMORPH had a short duration (7 and 6 h). Based on two continuous verification
metrics, CMORPH had a maximum correlation (shifted) of 0.16 and RMSE of 5.5
mm/h.

Verification of the SLE event on January 11 2011, is presented in Fig. 5.9. Accord-
ing to the results, CMORPH was able to capture important characteristics of extreme
events. In the case of magnitude, both 4D objects presented similar characteristics.
Maximum rainfall value was slightly overestimated ( 5 mm/h), as was volume ( 0.4
km3). In the case of space and time characteristics, CMORPH presented a considerable
shift to the northwestern part of the catchment. The maximum extension estimated
covers 403,200 km2 being greater than the radar estimate (323,500 km2).

Figure 5.9: Spatiotemporal verification for long-duration and spatially extensive extreme
rainfall events. CMORPH, Climate prediction centre morphing technique; NRT, near-real
time.
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On the other hand, the verification of the SLE event on January 11, 2011, is pre-
sented in Fig. 5.9. According to the results, CMORPH was able to capture essential
characteristics of extreme events. In the case of magnitude, both 4D objects presented
similar characteristics. Maximum rainfall value was slightly overestimated ( 5 mm/h),
as was volume ( 0.4 km3). In the case of space and time characteristics, CMORPH
presented a considerable shift to the northwestern part of the catchment. The maxi-
mum extension estimated covers 403,200 km2, being more significant than the radar
estimate (323,500 km2).

In both cases, the rainfall event had a duration of 16 h over the area. Evaluation
in a gridded-based approach displayed a maximum correlation of 0.175 and an RMSE
of 7.36 mm/h.

5.3. Conclusions
Object-based methods offer a unique perspective to analyse rainfall systems, providing
a complete picture of the dynamics of rainfall fields. In this research, the analysis of
rainfall events at the catchment scale further analyses extreme events in space and time.
This method provides a complete diagnosis of extreme events identifying a large number
of characteristics such as volume, area, duration, orientation, and speed, among others.
The proposed methodology is very flexible and could be applied to different regions
through the adjustment of two parameters: the convective threshold and the critical
mass threshold. These parameters are susceptible, and they can be fundamental in the
analysis. This method opens the door to discoveries in hydrological sciences toward
understanding rainfall dynamics over catchments in extreme conditions. Possible new
developments could lead to a better understanding of the flood generation process,
evaluating the relationship between rainfall patterns and runoff. This methodology can
induce new ways of describing flood events based on the spatiotemporal characteristics
of rainfall events. Additionally, other remote sensing products may be evaluated using
this approach, for instance, the Global Precipitation Measurement satellite product
from NASA/JAXA (Huffman et al., 2015), among others. This method could be used
to evaluate the capabilities of high-resolution rainfall products over a determined area.





6
Hydrological response of

satellite-based error sources for
extreme rainfall events

This chapter uses the ST-CORA method to evaluate the hydrological response of two
systematic satellite error sources for rainstorm estimation: location in space and time
for displacement and magnitude for volume. Both error sources from the Near Real-
time (NRT) CMORPH product are subtracted based on gauged-adjusted weather radar
and used as input forcing for hourly calibrated distributed hydrological model set up in
the Capivari catchment, Brazil. Due to location and magnitude, synthetic rainstorm
scenarios are created by adjusting the shift and intensity distribution of the SPP rain-
storm object concerning the radar data. Two types of rainstorm events in the study
area are evaluated: a short-lived and a long-lived rainstorm. The results indicate that
the spatiotemporal characteristics obtained by ST-CORA reflect the primary source of
errors of the CMORPH rainstorm detection. It is found that location is the primary
source of error for the short-lived rainstorm event, while volume is the primary source
in the long-lived rainstorm event. The subtraction of both errors leads to an essential
reduction of the simulated streamflow in the catchment.

This chapter is partly based on the publication: Laverde-Barajas, M., Perez, GC, Chishtie, F.,
Poortinga, A., Uijlenhoet, R., & Solomatine, DP (2020). Decomposing satellite-based rainfall er-
rors in flood estimation: Hydrological responses using a spatiotemporal object-based verification
method. Journal of Hydrology, 591, 125554
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6.1. Introduction

The spatiotemporal characteristics of rainstorm events, such as magnitude, duration
and spatial extent, are some of the main triggering factors of flooding. In conjunc-
tion with intrinsic characteristics of the catchment, changes in the rainstorm structure
can dramatically impact the severity of flood damage (e.g. Saulnier and Le Lay, 2009;
Bui et al., 2014; Viglione et al., 2010). Therefore, an accurate representation of rain-
storm dynamics is crucially vital in disaster preparedness and response (Phongsapan
et al., 2019). However, the high spatial and temporal variability of rainstorm events
in prominent monsoon regions still makes the estimation challenging.

A great deal of effort has been made to provide rainfall measurements with high
spatial and temporal resolution. Recently, satellite-based precipitation products (SPP)
have widely used in hydrological applications for overcoming the lack of spatial repre-
sentation of rain-gauges (e.g. Artan et al., 2007; Su et al., 2008; Stisen and Sandholt,
2010; Nikolopoulos et al., 2013). Despite numerous advances, satellite products are
subject to several systematic and random errors from multiple sources (e.g Hu et al.,
2016; Qiao et al., 2014; Dinku et al., 2010; Guo et al., 2015; Mei et al., 2014; Sapiano
and Arkin, 2009; Thiemig et al., 2012; Poortinga et al., 2017). These errors have sev-
eral implications in relation to their input for modelled flood response (e.g Casse et al.,
2015; Bitew and Gebremichael, 2011; Mei et al., 2016b; Vergara et al., 2014; Yilmaz
et al., 2005; Li et al., 2009).Maggioni and Massari (2018), analysing the lessons from
using satellite precipitation products for riverine flood modelling around the world,
argued that the performance of SPP-forced hydrological model depends on several fac-
tors including: the type of SPP sensor; the precipitation type; the geomorphological
conditions; and the hydrological model formulation.

Several analytical methods have been used to analyse the error decomposition
in satellites and evaluate the spatiotemporal dynamics in terms of streamflow (e.g.
Viglione et al., 2010; Mei et al., 2017a,b). However, the error decomposition is limited
by the configuration of the hydrological model. In contrast to analytical methods,
rainfall object-based methods represent the cells and integrate spatiotemporal infor-
mation from an event as an interconnected mass figure characterising the rainstorm
events. These object-based methods offer an alternative way to analyse the error in
rainstorm events (e.g Skok et al., 2009; Li et al., 2015a, 2016). These methods, ap-
plied in hydrological modelling, can evaluate the impact of several systematic SPP
errors in forecasted streamflow, independently of the model configuration. For exam-
ple, Demaria et al. (2011) used the Contiguous Rainfall Analysis (CRA, Ebert and
McBride (2000)) to evaluate the hydrological impact of location errors presented in
TMPA,CMORPH and PERSIANN SPPs. The analysis showed that errors due to lo-
cation represented more than 65% of the total errors affecting the streamflow peak,
thus also its volume.
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Important challenges in object-based methods arise from the effect of displacements
calculated in space and time. The two-dimensional approach of existing methods limits
the description of the rainstorm event in space and time. Several researchers have
Incorporated the temporal domain into object-based spatial methods to identify the
main feature of convective rainstorm events in space and time. (e.g. Davis et al.,
2009a; Mittermaier and Bullock, 2013; Sellars et al., 2013; Laverde-Barajas et al.,
2019). Recent methods such as the Spatiotemporal Contiguous Object-based Rainfall
Analysis (ST-CORA, Laverde-Barajas et al. (2019)) have been applied to evaluate the
errors from NRT SPP for predicting rainstorms at catchment scale.

In this study, we used the ST-CORA method to evaluate the hydrological impact
of two systematic error sources in the near real-time CMORPH for rainstorm event
estimation: the error due to location and magnitude. Synthetic rainstorm scenarios,
created by the subtraction of location and magnitude error sources, are propagated
through the distributed hydrological model wflow-sbm Schellekens (2018) in the sub-
tropical catchment of the Capivari River, Brazil. The model is calibrated at an hourly
scale during 2016 using a gauge-corrected weather radar as reference data. Two types
of rainstorm events are analysed: local and short events (short-lived rainstorms) and
long duration, spatially extensive, extreme events (long-lived rainstorms). This ap-
proach can better understand the hydrological response to systematic errors in SPPs,
especially in extreme conditions.

6.2. Methodology

6.2.1. Rainfall object estimation, ST-CORA

ST-CORA is a spatiotemporal object-based method developed by Laverde-Barajas
et al. (2019) to analyse the spatiotemporal characteristics of different rainstorm events
at catchment scale (duration, spatial extent, magnitude, and centroid). This methodol-
ogy uses a multidimensional connected-component labelling algorithm to detect regions
with similar features in space and time. Spatiotemporal rainstorm event objects are
defined based on two parameters: the rainfall intensity threshold (I T ) and the Critical
Mass Threshold (C MT ). I T defines the common intensity threshold for associating
neighbouring groups of voxels (volume representation of a pixel). Based on the sensi-
tivity analysis made by Laverde-Barajas et al. (2019) in the region, we selected an I T

of 1 mm/h and a C MT of 0.01 3 to identify and segment extreme convective objects.
After obtaining the convective rainfall object, ST-CORA applies two error filtering
algorithms to remove small noisy objects and solves the false merging errors from the
connected-component labelling algorithm (Ceperuelo et al., 2006; Han et al., 2009). In
this study, we defined noise to objects lower than four connected voxels in space and
time (voxel = 0.1◦/hour ).
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Following hydrometeorological and dynamical criteria to classify severe rainfall
events proposed by (Molini et al., 2009, 2011; Boers et al., 2015), we classified rainstorm
events in two groups depending on the maximum area, the rainstorm duration and the
volume of rainfall: small convective systems with a short duration (short-lived) and
long duration systems extended over large areas (long-lived). Short-lived events as ex-
treme convective objects with a duration of less than 12 hours and spatial distribution
greater than 86 x 86 km2 Laverde-Barajas et al. (2018, 2019)

Spatiotemporal error analysis using ST-CORA
The error analysis for rainstorm detection using ST-CORA compares the spatiotempo-
ral features detected by SPP against grid-ground data used as reference. Several error
metrics can be evaluated based on this comparison. In this study, we used the error
decomposition from the Contiguous Rainfall Analysis method (CRA) developed by
Ebert and McBride (2000). This method analyses the spatial elements of the SPP er-
ror, decomposing the total error into displacement, volume and pattern error as shown
below.

MSEtot al = MSEdi spl acement +MSEvolume +MSEpat ter n (6.1)

Where
MSEdi spl acement = MSEtot al −MSElocati on (6.2)

MSEvolume =
(
Y −O

)2
(6.3)

MSEpat ter n = MSElocati on −MSEvolume (6.4)

Where MSElocati on is calculated as the mean square error of the spatial shifted
SPP, and Y and O are the mean satellite and observed values after the shift. In the
context of satellite-based rainfall data, MSEdi spl acement and MSEvolume are considered
as systematic errors, while MSEpat ter n corresponds to intrinsic random errors in the
measurements, which are calculated as the residual error of systematic errors (Hoffman
et al., 1995; Ebert and Gallus, 2009). It is important to highlight that systematic
errors integrate random errors due to non-corrected values from location and magnitude
subtraction. In this research, we considered non-corrected errors as part of pattern
errors in the rainstorm event.

6.2.2. Systematic error source subtraction

The use of ST-CORA allows for the temporal and spatial description of rainstorm
events and identifies the primary sources of error in the measurement. Once the main
rainstorm characteristics are identified (volume, maximum intensity, max area and
duration), we subtracted location error as the primary source in displacement and
magnitude as the main volume source by the following approach.
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Location subtraction
In this research, we used the Principal Component Analysis method (PCA) proposed by
Johnson and Hebert (1999) to remove the shifting and orientation effects of the satellite
rainstorm in space and time (Grams et al., 2006) (Fig.6.1). PCA is a statistical method
that describes the pattern of multi-variable data based on orthogonal variables called
principal components (Abdi and Williams, 2010). Based on an ellipsoid wrapped over
the object with weighted-centroid (W C ), the methodology calculates the eigenvectors
of the object (Fig.6.1a). These vectors describe the orthogonal basis in space and
time, in which the object position is described (Johnson and Hebert, 1999). Location is
subtracted by finding the best match between the observed and the satellite rainstorm.
Location error subtraction first removes the shifting effect by matching the weighted-
centroids of both objects in space and time, and then the orientation is adjusted by
rotating the temporal eigenvector in the direction of the observed vector (Fig. 6.1b,
c).

Figure 6.1: Scheme of object matching for location subtraction. a) eigenvectors of a
compressed the rainstorm object b) weighted centroid and eigenvector matching. c) shifted
rainstorm object

Magnitude subtraction
The magnitude subtraction statistically adjusts all moments (quantiles) of the intensity
probability distribution function for the satellite rainstorm for the observed rainstorm.
In this case, the adjusted satellite rainstorm intensity distribution should reflect the
function of the observed rainstorm. Several methodologies have been developed to
equalise the histograms and remove the bias from the estimated data (e.g Cannon
et al., 2015a; Themeßl et al., 2012; Teng et al., 2015). For this research, we selected the
extensively used Empirical Quantile Mapping method (EQM) (Themeßl et al., 2012).
This method adjusts all moments of the cumulative probabilistic function (ecd f s) of
the satellite’s intensity for the observed data. The relationship between the ecd f for
observed (ecd fobs) and the satellite (ecd fsat ) is based on the following equation:



62
6. Hydrological response of satellite-based error sources for extreme

rainfall events

EGM = ecd f −1
obs(ecd f −1

sat (Is)) (6.5)

where Is is the intensity rainstorm distribution detected by the satellite.
Once the magnitude error source is subtracted, the volume equation, Eq. 6.3, can

be reformulated to included the magnitude subtraction as follows:

MSEvolume = MSEtot al −MSEmag ni tude (6.6)

6.2.3. Evaluation of the hydrological response

Synthetic scenarios, created by the individual subtraction of location and magnitude
error sources from rainstorm events detected by satellites, are propagated through a
hydrological model to evaluate the error response in terms of streamflow. The hydro-
logical response is evaluated by comparing simulations from satellite scenarios against
simulations from observed rainfall. We used several metrics to analyse the shape, phase
and amplitude of the streamflow along the catchment. These metrics include the cor-
relation coefficients (r ), Root Mean Square Error (RMSE), the Mean Absolute Peak
Time. Error (M APT E) (Ehret and Zehe, 2011), Percentage Peak Effect index (PPE)

and the Percentage Volume Effect (PV E) (Bennett et al., 2013).

r =

N∑
t=1

(Qr ad ,t −Qr ad )(Qsat ,t −Qsat )√
N∑

t=1
(Qr ad ,t −Qr ad )2

√
N∑

t=1
(Qsat ,t −Qsat )2

(6.7)

RMSE =
√√√√ 1

N

N∑
t=1

(Qr ad ,t −Qsat ,t )2 (6.8)

M APT E = 1

N

N∑
t=1

|Pr ad ,i −Psat ,i | (6.9)

PPE = Qr admax −Qsatmax

Qr admax

∗100 (6.10)

PV E = Vr ad −Vsat

Vr ad
∗100 (6.11)

Here, Qr admax and Qsatmax are the maximum discharge simulated by the radar (ref-
erenced value), and the satellite discharge values (original, location and magnitude)
for each discharge station. Pr ad ,t and Psat ,i are the peak times and Vr ad and Vsat are
the simulated total volume based on the radar and the satellite, respectively.

The streamflow error variation between CMORPH and the location and magnitude
scenarios for the short- and long-lived rainstorms is evaluated by the following equation:
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Er r or var i ati ont =
Qsat ,t −Qr ad ,t

Qp
∗100 (6.12)

where Qp is the maximum discharge value reached in all rainstorm scenarios.

6.3. Study area and data available
The study area corresponds to the subtropical catchment of the Capivari River in
south-eastern Brazil. In chapter 3 is presented a description of this area. We selected
two rainstorm event types based on the Integrated Disaster Database system from
the National Civil Protection Secretary (S2ID, SEDEC (2013)). The first event is a
short-lived rainstorm that occurred on 1 January 2011. The second event is a long-
lived rainstorm that took place between 3 and 5 January 2012. Both events drastically
impacted the region, causing several flash floods and landslides in the catchment.

6.3.1. Rainfall data

In this study, we used the CPC MORPHING product (CMORPH) developed by the
NOAA Climate Prediction Centre (Joyce et al., 2004). This data combines Passive
Microwave and Infrared sensor information to produce high-resolution data every 30
minutes. We selected the Near-real-time version of CMORPH NRT due to superior
performance for extreme rainfall estimation in the study area (Laverde-Barajas et al.,
2018). We used CMORPH 1.0 raw version at an 8x8 km scale (0.727 degrees) and
30-minute resolution (1h aggregated).

Ground measurements were obtained from the Bauru weather radar station (Bauru
CAPPI 3.5 km) from the Faculty of Science, Sao Paulo State University, located at
22° 21’ 28” S latitude, 49° 01’ 36” W longitude (Fig. 3.2c). This radar provides
information at 1km2 spatial resolution every 15 minutes. Weather radar rainfall data
was gauged adjusted at hourly scale using eight automatic ground stations from the
Integrated Centre of Agrometeorological information (CIIAGRO, Centro Integrado de
Informações Agrometeorológicas) applying the reduction of the mean-field described
in Amorati et al. (2012) (Eq. 6.13)

Rmer g ed = RF, (6.13)

where, R is hourly rainfall field and F is the weighted correction factor with temporal
averaged windows, ∆t , calculated as follows:

logFt =

t∑
τ=t−∆t

Nτ∑
i=1

log10

(
Gi ,t
Ri ,t

)
t∑

t−∆t
Nτ

, (6.14)
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where, Gi and Ri are the Automatic Weather Stations (AWS) and radar measurements
at gauge i , respectively. A three-hour temporal window, ∆t , is considered for the
logFt . In order to reduce the effect of differences in the spatial resolution (Peleg et al.,
2018), we scaled up weather radar data by the mean aggregation to match the spatial
resolution of the CMORPH dataset.

6.4. Capivari model
We used the distributed hydrological model wflow-sbm (version 2018.1) to represent
the rainfall-runoff process in the Capivari River. This model was developed by project
Deltares OpenStreams (Schellekens, 2018) based on the topog-sbm model (Vertessy and
Elsenbeer, 1999). The wflow-sbm simulates the hydrological routing through a gridded
mesh into a GIS environment called PCRaster-Python (Wesselung et al., 1996).

The representation of the hydrological cycle within wflow-sbm is divided into the
three main routines: interception, soil, and water surface. Wflow-sbm simulates in-
terception using the analytical Gash model (Gash et al., 1995). This model calculates
the actual evapotranspiration of the canopy based on the Potential Evapotranspira-
tion (PET), soil water content and land cover type. The soil routine runs per grid
cell through the topog-sbm model. This model is a simple bucket scheme designed to
transfer the water infiltration process into a saturated (S) and unsaturated store (U S).
The S and U S interaction is based on the exponential decay of the saturated hydraulic
conductivity with depth below the soil surface (Ksat) (Schellekens, 2018). The surface
water routine uses the kinematic wave algorithm to simulate the river drainage and
overland flow. The runoff is calculated per grid cell as the sum of residual rainfall wa-
ter from the interception and soil routines and the horizontal and vertical interaction
between cells estimated in the routing process.

6.4.1. Model setup

For each rainfall data product, we setup the wflow-sbm model in a 1km x 1km grid
integrating several static and dynamic inputs. Static inputs are integrated by i) the
Digital Elevation Model from the Shuttle Radar Topography Mission (SRTM) version
3.0 (Van Zyl, 2001); ii) land use map extracted from the Brazilian land use map of
the National Institute of Geography and Statistics (IBGE, 2017) for 2014; and iii) the
soil type map, extracted from the FAO Digital Soil Map of the World (DSMW-FAO,
1960).

In addition to the rainfall data, dynamic inputs are hourly air temperature (T )

in degree Celsius and potential evapotranspiration (PET ) maps based on the AWS
from CIIAGRO. PET is calculated using the method of Abtew (1996) recommended
by Tangune and Escobedo (2018) for the study area. This method calculates PET in
mm/h using the air temperature and solar radiation as
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PET = 0.53

2.501−0.002361T
Rs, (6.15)

where Rs is the solar radiation data from AWS. Hourly T and PET data were interpo-
lated using the Inverse Distance Weight method (IDW-2). This method is widely used
in meteorology, and it was selected for providing reliable hourly information based
on the total number of available stations Chung and Yun (2004); Chen et al. (2019).
However, it is noted that interpolation methods are subject to several sources of uncer-
tainty due to the spatial sampling and geomorphological conditions in the catchment.
These uncertainties include the misrepresentation between meteorological variables and
elevation DeGaetano and Belcher (2007).

6.4.2. Model calibration and validation

Wflow-sbm requires 15 input parameters to be calibrated in the study area (exclud-
ing the input snow parameters). We calibrated the Capivari hydrological model us-
ing hourly discharge data from the Early Warning Flood System of Sao Paulo state
(SAISP) available in the area, with the upper zone calibrated based on the Campinas
station between January and October 2016. In the middle zone, the model was cali-
brated based on the Monte station between July and October 2016. In the absence of
hourly discharge data in the lower zone, the model was calibrated based on a virtual
discharge point in the outlet area calculated using the spatiotemporal linear estimator
proposed by Paiva et al. (2015):

Q̂(So , to) =
N∑

i=1
λi Q(Si , ti ) (6.16)

Here, Q̂ is the virtual station at location Si , Q are Campinas and Monte discharges
and λ = [λ1...λn]T is the set of weights for each measurement. For the study area, λ
represents the relative drainage area of each discharge point. All areas were validated
during November and December 2016.

The calibration process started by adjusting the input parameters to the most
realistic interval, and then we selected the most sensitive ones using a Monte Carlo
Analysis. Table 6.1 shows the most sensitive input parameters in the Capivari model.
Using the Augmented Lagrangian Harmony Search Optimizer (ALSHO, (Geem et al.,
2001)) from Perez et al. (2012), we calibrated the model for the three zones, from
upstream to downstream, using the Nash-Sutcliffe efficiency (N SE , Nash and Sutcliffe
(1970) as the objective function defined as:

N SE = 1−

N∑
i=1

(Qobs,i −Qsi m,i )2

N∑
i=1

(Qobs,i −Qsi m)2

(6.17)
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Where Qobs and Qr ad are the model’s observed and simulated streamflow, respec-
tively, using the gauge-corrected weather radar as the input.

Model calibration and validation were additionally compared with the Root Mean
Square Error (RMSE) (Eq. 6.8) and correlation coefficient (r ) (Eq. 6.7). Table 6.1
describes the model performance over the three zones based on N SE , RMSE , R. Model
results displayed satisfactory results for estimating hourly streamflow along the catch-
ment with N SE ranging between 0.6/0.5 and 0.8/0.6 in calibration/validation and
having a correlation coefficient higher than 0.76 and RMSE lower than 20 mm on the
evaluated areas.
Table 6.1: Performance criteria of model calibration and validation at different stations
based on NSE, RMSE and R

Station Campinas Monte Outlet
Calibration Validation Calibration Validation Calibration Validation

NSE 0.78 0.54 0.61 0.58 0.73 0.52
RMSE 3.52 2.57 6.17 8.99 16.23 19.98
R 0.89 0.76 0.81 0.77 0.91 0.72

6.5. Results

6.5.1. Spatiotemporal errors of satellite-based CMORPH

Detecting systematic errors in satellite-based rainstorm events using ST-CORA
Figure 6.2 presents the object structure and rainstorm properties of the reference radar
and the satellite-based CMORPH identified by ST-CORA for the short-lived rainstorm
event that occurred on 1 January 2012 and the long-lived rainstorm event that occurred
between 3 and 5 January 2011. Figure 6.2 a,b present rainstorm objects of the radar
and satellite-based CMORPH for the short-lived event, while figures 6.2 d,e show the
object structures for the long-lived event. Figures 6.2 c, f present the comparison of
the scatter plots and the spatiotemporal properties of both objects for both rainstorm
events.

According to the results, radar and CMORPH exhibit similar spatiotemporal struc-
tures but differ in the object’s magnitude and location. CMORPH performance for the
short-lived event showed an underestimation of high-intensity rain rates (Fig. 6.2c).
However, the total rainstorm volume was higher compared to the rainstorm detected
by the radar. The spatiotemporal properties are characterised by a mismatch in the
orientation of the CMORPH event. In time, both objects presented the same duration
(7h), while in space, CMORPH had the most considerable extension. The satellite
performance for the long-lived event displayed a low scatter correlation, overestimat-
ing both the total rainstorm volume and the maximum volume intensity. Regarding
the spatiotemporal characteristics, CMORPH and the weather radar shared the same
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orientation but differed in the maximum extension and the duration of the rainstorm.
CMORPH event was more extended with a longer duration (1 hour) than the weather
radar rainstorm.

Figure 6.2: Object structure and rainstorm properties of the reference Radar and the
satellite-based CMORPH identified by ST-CORA. a), b), c) short-lived rainstorm and d), e),
f) long-lived rainstorm events

One of the main aims of an object-based approach is to decompose the total error
into the sum of individual errors due to displacement, volume and pattern. The results
obtained for the short-lived event indicate the pattern (aleatory error) of the primary
error source (83%) followed by displacement (13%). In the long-lived rainstorm, volume
and displacement contributed 47% and 50% of the total error, respectively.

Satellite error subtraction
After the rainstorm objects were identified, the satellite estimates due to location and
magnitude were subtracted in the satellite data to create synthetic rainstorm scenar-
ios. To illustrate the spatial distribution of the rainstorm scenarios over the Capivari
catchment, Figure 6.3 presents the total rainstorm maps and the rainfall accumulation
over the river streams based on radar CMORPH and synthetic rainstorm scenarios for
the short-lived rainstorm. In contrast, figure 6.4 describes the corresponding maps for
the long-lived rainstorm event.
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Figure 6.3: Total event maps and rainfall accumulation by RADAR, CMORPH and syn-
thetic rainstorm scenarios for short-lived rainstorm

The results for the short-lived rainstorm scenario highlights the overestimation
of CMORPH in the upstream area of the catchment. The location error scenario
displaced the rainstorm event to the northwest of the catchment, smoothing the rainfall
excess of the rainstorm event. Due to the magnitude scenario, the rainstorm scenario
considerably reduced the overestimation in CMORPH, decreasing the total volume in
the upstream area. The scenario for the long-lived rainstorm event (Figure 6.4) showed
a significant rainfall overestimation in the northwestern part of the catchment, affecting
the middle and lower areas. The location scenario slightly adjusted the rainstorm event
in the northwest, reducing the rainfall excess of the upstream area. However, this
scenario still overestimated rainfall in the middle part of the catchment. Lastly, the
magnitude rainstorm error scenario effectively reduced extreme rainfall, overestimating
rainfall over the catchment at small scales.

6.5.2. Hydrological impact

The hydrological response of systematic error due to location and magnitude was anal-
ysed over three zones along the catchment: Upper (Campinas), Middle (Monte), and
Lower (Outlet). Figures 6.5 and 6.6 present the hydrological effect of systematic errors
in CMORPH for the short- and long-lived scenarios using the hydrological simulation
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based on the radar rainstorm for reference. Hydrographs have been normalised for the
peak volume, Qp , and the peak time, tp , according to (Q −Qmi n)/Qp and t/tp for
a better description of the hydrological impact. Table 6.2 summarises the evaluation
of hydrological impact to the location and the magnitude scenarios in the streamflow
along the catchment-based on r , RMSE , M APT E , PPE and PV E .

Figure 6.4: Total event maps and rainfall accumulation by RADAR, CMORPH and syn-
thetic rainstorm scenarios for long-lived rainstorm

The results for the short-lived rainstorm event (Fig. 6.5) suggest that the overes-
timation of CMORPH in the rainfall rainstorm consequently increased the streamflow
volume over the catchment. The upper and lower areas, corresponding to Campinas
and Monte, showed an overestimation in the total volume of the rainstorm of 70% and
40%, respectively, due to the considerable overestimation of the peak flow. On the
contrary, in the Outlet area, the level of overestimation was minimal, just 3% of the
volume. Regarding the systematic errors, both scenarios decreased the streamflow vol-
ume and slightly increased the streamflow correlation over the catchment. The location
scenario presented a significant decrease in RMSE in Campinas and Monte. However,
the RMSE was high in the Outlet area due to underestimating 4% of the streamflow
volume. Regarding the hydrological effect in the temporal response of the rainstorm,
location and magnitude scenarios impacted the peak delay of 1 hour at Monte and 1
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to 3 hours at Outlet.

Figure 6.5: hydrological response for short-live rainstorm. Upper plots represent the rainfall
hietograms and lower plots represent the corresponding discharges for Campinas, Monte and
outlet zones

The hydrological response for the long-lived rainstorm event (Fig. 6.6) is marked
by the significant effect of the rainfall overestimation by CMORPH over the catchment.
CMORPH systematically over-predicted streamflow in Campinas, Monte and Outlet
by 138%, 86% and 26%, respectively. The systematic error scenarios reduced the
peak flow excess and consequently the RMSE in Campinas and Monte. However, the
location did not affect the Outlet volume streamflow error. The location scenario had
an essential impact in Campinas, displaying the smallest RMSE and the higher r .
On the other hand, The magnitude scenario was more relevant in Monte, especially in
Outlet, which had a small RMSE and higher r . For MAPTE, the hydrological response
showed a systematic delay of the peak in CMORPH as much as 3 hours in Monte and
1 hour in Outlet. The location scenario did not seem to impact time delay, but the
magnitude scenario exhibited a 1-hour additional delay in Monte and zero delays in
Outlet.

Figure 6.6: hydrological response for long-lived rainstorm. Upper plots represent the rainfall
hietograms and lower plots represent the corresponding discharges for Campinas, Monte and
outlet zones
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Table 6.2: Hydrological response evaluation for short and long-lived rainstorm at Campinas,
Monte and Outlet zones corresponding to Original, Location and Magnitude scenarios

rainstorm type Statistical index Campinas Monte Outlet
org location magnitude org location magnitude org location magnitude

R 0.964 0.991 0.986 0.974 0.974 0.994 0.997 0.995 0.996
RMSE (mm) 4.99 0.89 2.92 7.03 2.17 3.39 5.91 11.70 12.08

Short-lived rainstorm MAPTE (h) 0 0 0 0 1 1 1 3 1
PPE (%) (64.40) (13.80) (43.20) (44.88) (4.63) (30.38) 2.63 13.53 12.36
PVE (%) (68.59) (6.26) (34.78) (41.84) (9.23) (18.80) (2.67) 3.47 3.89

R 0.938 0.961 0.938 0.992 0.993 0.991 0.996 0.990 0.999
RMSE (mm) 12.60 6.16 8.79 25.69 16.84 11.31 73.71 71.71 18.90

Short-lived rainstorm MAPTE (h) 0.00 0.00 0.00 3.00 3.00 4.00 1.00 1.00 0.00
PPE (%) (118.58) (64.76) (77.62) (111.54) (74.15) (43.21) (49.46) (51.99) (9.83)
PVE (%) (137.92) (59.06) (99.22) (86.40) (51.86) (41.94) (26.22) (22.76) (7.97)

6.5.3. Streamflow error comparison

Figure 6.7 describes the dispersion of the error variation corresponding to CMORPH
and location and magnitude streamflow scenarios for short-lived (Fig 6.7a) and long-
lived rainstorm (Figure 6.7b) events. Boxes represent the error variation dispersion
between 25-75 percentiles, and dots represent values outside the 99.9% percentile
(backlines). The positive percentile represents flow overestimation, while the negative
percentile represents underestimation. Based on the results, overestimation prevails
for both rainstorm events over the catchment. The location scenario displayed the
lowest error variation (closest to zero) in the short-lived rainstorm, while the magni-
tude scenario showed the slightest variation in the long-lived rainstorm. These results
demonstrate that the error due to location in CMORPH had a dominant influence
on the hydrological response of short-lived rainstorm events. Meanwhile, error due
to magnitude had a more considerable influence on the hydrological response of the
long-lived rainstorm event.

6.6. Discussion
In the previous sections, we showed the evaluation of the impact of two systematic
sources of error in CMORPH on the hydrological response in the Capivari catchment,
Brazil. By using the ST-CORA method, we described the spatiotemporal characteris-
tics of two meteorological rainstorm events. Differences between physical properties of
observed and estimated objects allowed for the subtraction of two types of error: due
to location and magnitude. Corresponding systematic scenarios were later propagated
through a calibrated hydrological model to evaluate the individual hydrological impact
of each source of error. In comparison to analytical approaches, this method analyses
the error decomposition independently of the hydrological model configuration.

The results indicate that CMORPH overestimates the total volume of both rain-
storm events, in agreement with multiple findings in South America (Ebert et al., 2007;
Demaria et al., 2011; Laverde-Barajas et al., 2018). Aleatory errors exhibited an im-
portant error component in CMORPH, especially in the short-lived rainstorm event,
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representing almost 85% of the total error. Regarding systematic errors, the location
was the primary source of error for the short-lived rainstorm events, while magnitude
had a more significant influence on the long-lived rainstorm event. Concerning the
rainstorm structure, errors CMORPH for the short-lived event is mainly attributed
to the description of the rainstorm orientation. In the case of the long-lived event,
those are mainly focused on the spatiotemporal dimension of the rainstorm. Despite
that, these results do not represent the general performance of CMORPH for different
rainstorm types. These findings provide a framework to analyse the systematic error
as a function of the type of rainstorm event.

Figure 6.7: Boxplots of the error distribution contribution for the original CMORPH event
and location and magnitude stream-flow scenarios. a) short-lived rainstorm b) long-lived
rainstorm

Regarding the hydrological response, the systematic overestimation by the satellite
consequently leads to a significant excess in the streamflow over the catchment. Errors
in CMORPH due to location had a more substantial effect on the short-lived rainstorm,
mainly delaying between 1 to 3 hours the time of the flow peak along catchment. In
the analysis, the RMSE for location decreased by 70% and 80% RMSE in the upper
and middle zones, respectively. Results in the long-lived event showed that location
subtraction had a low influence on the hydrological response. For this event, the
location subtraction slightly reduced the streamflow volume in Campinas and Monte,
corresponding to elevated medium altitude areas and delaying the 1-hour peak flow
of the streamflow in the Outlet area. On the other hand, Errors in CMORPH due
to volume were more critical for the long-lived rainstorm. In all three zones, the
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reduction in rainfall volume directly impacted the decrease in streamflow excess. This
reduction was significant in Campinas and Monte, slightly affecting the peak time of
the streamflow in both areas. For the short-live event, the volume scenario marginally
reduced the streamflow in all three areas, and it had a negligible impact on the delay of
the peak flow in Monte. These results suggest that there is a strong correlation between
systematic errors inside satellite-based products and the streamflow properties, which
are also found in similar studies using analytical approaches (e.g. Zoccatelli et al., 2011;
Mei et al., 2017a)

We acknowledge certain limitations in the presented study. Firstly, the error in
the hydrological model was not considered as an integral part of this research. Errors
associated with modelling the rainfall-runoff process were reduced by using an intense
optimisation process to calibrate the hydrological model over the catchment. Another
limitation arises from the sensitivity rainfall intensity threshold and the Critical Mass
Threshold for identifying and segmenting rainstorm objects. The characterisation pa-
rameters used in ST-CORA have potential implications for the rainstorm definition
and segmentation. Laverde-Barajas et al. (2019) showed the sensitivity analysis of the
Critical Mass threshold used for delineating the rainstorm object. Further studies could
delineate the rainstorm event based on segmentation algorithms, such as multi-variable
kernel segmentation or convolutions methods for considering the four dimensions of the
rainfall object.

6.7. Conclusions
This chapter used the spatiotemporal object-based verification method, ST-CORA, to
evaluate the hydrological impact of location and magnitude errors in CMORPH for
rainstorm estimation. The results were obtained using a calibrated hydrological model
of the Capivari river to reveal the primary sources of systematic errors for short-lived
and long-lived rainstorm events. The most important conclusions of this study include
the following:

1. Rainstorm events described as objects using ST-CORA provided a unique per-
spective to characterise the main spatiotemporal characteristics of the rainstorm
in the catchment. Based on this information, differences between satellite and
observed objects are calculated by separating the total error into three types:
displacement, volume and pattern.

2. This study established location as the primary source of systematic error in
the short-lived rainstorm, while volume was identified as the primary source in
long-lived rainstorm events. These errors significantly impacted the shape phase
and amplitude of the streamflow hydrograph. In the short-lived rainstorm, the
subtraction of location error positively affected the error reduction in the upper
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and middle zones. In the long-lived rainstorm, the subtraction of magnitude
error in the rainstorm event lead to an error reduction over all three zones in the
catchment.

3. This study presented a better understanding of the spatiotemporal characteristics
of the systematic errors in satellites for rainstorm estimation and the impact on
the hydrological response. However, errors relating to the hydrological model
need to consider the potential ”equifinality” of the optimal parameters used in
the model.

4. Further research will incorporate the ST-CORA to improve the accuracy of
satellite-based products in rainstorm detection. Location and magnitude er-
ror subtraction methods can be incorporated into bias correction approaches for
reducing the systematic error of near-real-time satellite products in space and
time. Additional satellite-based rainfall datasets can also be evaluated using the
methodology, for example, the GPM-IMERG satellite-based product (Huffman
et al., 2015) or the Climate Hazards Group Infrared Precipitation with Station
datasets (CHIRPS) (Funk et al., 2015).
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for rainstorms detected by satellite

This chapter presents the Spatiotemporal Contiguous Object-based Rainfall Analysis
for Bias Correction (ST-CORAbico). This method corrects errors in satellites due to
displacement and volume in space and time. ST-CORAbico uses ST-CORA incorpo-
rated with a multivariate kernel density rainstorm segmentation to identify the main
features of the rainstorm event. Displacement and volume are corrected by adjusting
the spatiotemporal structure and the intensity distribution, respectively. ST-CORAbico
was applied in the Lower Mekong basin in Thailand to correct short and long-lived
rainstorm events detected by GPM-IMERG early version during the monsoon seasons
from 2014 to 2017. The performance is compared against two widely used probabilistic
methods. The results showed that ST-CORAbico considerably reduced RMSE and bias
of GPM-IMERG due to displacement and magnitude outperforming both probabilis-
tic approaches. This spatiotemporal bias correction method offers a new approach to
enhance the accuracy of satellite-derived information for near real-time estimation of
rainstorm events.

This chapter is partly based on the publication: Laverde-Barajas, M., Corzo, G. A., Poortinga, A.,
Chishtie, F., Meechaiya, C., Jayasinghe, S., Towashiraporn P., Markert A., Son L.H., Sothea K.,
Boonya-Aroonnet S., Chaowiwat W., R. U. Uijlenhoet, and Solomatine, D. P. (2020). ST-CORAbico:
A spatiotemporal object-based bias correction method for rainstorm prediction detected by satellite.
Remote Sensing, 12(21), 3538.
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7.1. Introduction

Advances in near real-time rainstorm prediction using remote sensing have offered var-
ious opportunities for effective disaster management. Satellite-based measurements
enable monitoring the dynamic of extreme rainfall events with high temporal and spa-
tial resolution at a quasi-global scale. However, this information is subject to several
sources of systematic and random errors that require correction (e.g Thiemig et al.,
2012; Guo et al., 2015; Kimani et al., 2017). A wide range of bias correction methodolo-
gies has been developed to improve the performance of SPP, leveraging ground-based
observations. Several examples include linear scaling, local intensity scaling, the power
and distribution transformation methods, and Gamma Quantile mapping (e.g Tesfa-
giorgis et al., 2011; Vila et al., 2009; Habib et al., 2014). These methods all adjust SPP
as a function of rainfall intensity values, ignoring important systematic errors, such as
those that are caused by displacement and timing.

In the field of weather forecasting, displacement error in rainstorm prediction has
been taken using spatial verification methods into account (Ebert and McBride, 2000;
Davis et al., 2009b; Wernli et al., 2008). These ”nontraditional” methods do not rely on
point-to-point matches between the observed and estimated fields for avoiding double
penalties (e.g. rainfall estimated but not observed and vice versa) that are commonly
found in traditional approaches. Several studies have used spatial verification meth-
ods to analyse and correct the systematic error of SPP based on the characteristics
of matched rainstorm objects, such as location, rotation, intensity, and shape (Skok
et al., 2009; Li et al., 2015a, 2016). These methods have been useful for correcting
the displacement errors when the grid resolution is high and the rainstorm event is
small while preserving the higher spatial variability of SPP rainstorm (e.g. Demaria
et al., 2011; Le Coz et al., 2019). However, these methodologies are constrained by the
two-dimensional analysis of the rainstorm event.

The spatiotemporal analysis can provide a much deeper analysis on aspects of the
entire life-cycle of the rainstorm event, including time, speed, evolution, among others.
In the literature, error analysis using spatiotemporal approaches has been useful to
evaluate the performance of several spatial rainfall products. For example, Clark et al.
(2012, 2014) used the Object-Based Diagnostic Evaluation time-domain (MODE-TD;
Bullock (2011)) to evaluate the convection-allowing forecast from the Weather Fore-
cast Model over the United States. Recently, Laverde-Barajas et al. (2020b) used
the Spatiotemporal Contiguous Rainfall Analysis (ST-CORA; Laverde-Barajas et al.
(2019)) in the Southeast region of Brazil for analysing the error composition of the
CMORPH SPP and evaluated the individual hydrological response of two systematic
error sources: location and magnitude. This study demonstrated the importance of
spatial and temporal rainstorm characteristics to analyse the main systematic error
sources in SPP.
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Spatiotemporal rainstorm analysis incorporated into bias correction methods is vi-
tal to reduce several sources of systematic error in SPP. In this study, we present
a spatiotemporal object-based bias correction method to reduce several systematic
errors in rainstorm events estimated by satellite. The method, called Spatiotempo-
ral Contiguous Object-based Rainfall Analysis for Bias Correction (ST-CORAbico),
uses the main rainstorm characteristics of satellite and observed events detected by
the ST-CORA method to remove errors due to displacement in space and time and
volume. This method is evaluated over the lower Mekong Basin in Thailand to cor-
rect several rainstorm event types in the Integrated Multi-satellitE Retrievals for GPM
(GPM-IMERG) early version during the monsoon seasons from 2014 to 2017. The per-
formance of ST-CORAbico is compared against two widely used probabilistic methods
– Distribution Transformation and Gamma Quantile Mapping.

7.2. Study Area and Data Available

The study site selected for this research is the Lower Mekong basin area located in
Thailand (Isan)(Figure 3.3). During the months from May to October, this area is
highly impacted by heavy rainstorm events triggering flash floods and landslides (Del-
gado et al., 2012; Yang et al., 2019). The period evaluated corresponds to four years
of monsoon periods (Jun to Oct) from 2014 to 2017. The Near real-time Integrated
Multi-satellitE Retrievals for GPM (GPM-IMERG; Huffman et al. (2015)) early ver-
sion. This version was selected because it is the lowest latency data product available
(4 - 6 six hours), a crucial aspect of operational applications. In this study, we evalu-
ated the early run of GPM-IMERG version V06B at a half-hourly temporal resolution
(1 hourly aggregated). This GPM-IMERG version have recently incorporated several
changes in maximum sensitivity rain rates of the algorithm from 110 mm/h to 200
mm/h impacting in the estimation of intense rainfall (Tan et al., 2019).

Ground measurements were obtained from a dense network of 138 rain gauge sta-
tions from the Thailand Integrated Water Resource Management System, operated by
the Hydro-Informatics Institute (HII) in Thailand. Data were quality controlled by
mirroring the density distribution functions of neighbouring stations to remove outlier
values considered as noise. These observations were then further interpolated using
the Ordinary Kriging interpolator from Software (2012) at 0.1 degrees for each hour
to match the spatial and temporal resolution of the GPM-IMERG data. This method
was selected due to the moderated topographic conditions of the study area and the
density of the rain gauge measurements. Rain gauge data were interpolated using an
exponential variogram with a sill of 1.14 (mm2/h2), a range of 4.4 km and a nugget
of 0.66 (mm2/h2). It must be noted that interpolation methods for rainfall data are
subject to uncertainty, e.g., Ly et al. (2012); Li and Heap (2014); however, in our case,
a dense and optimal rain gauge distribution can reduce the level of uncertainty from
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the interpolation method (Chen et al., 2008b).

7.3. Methodology
ST-CORAbico was developed to analyse the spatiotemporal characteristics of rain-
storm events and bias correct the primary sources of systematic error in satellites.
Figure 7.1 shows the methodology of ST-CORAbico. In this section, we describe the
elements for rainstorm analysis and bias correction in ST-CORAbico.

Figure 7.1: Diagram of the Spatiotemporal Contiguous Object-based Rainfall Analysis for
bias correction (ST-CORAbico) method. Grey boxes represent the input and output prod-
ucts while white boxes describe the methodological process for rainstorm analysis and bias
correction components.

7.3.1. Rainstorm Analysis

In the rainstorm analysis, ST-CORAbico uses ST-CORA to analyse the spatiotemporal
characteristics of the rainstorm events observed and detected by satellites. This process



7.3. Methodology 79

requires the definition of the spatial and temporal domain in order to reduce the
computational time of ST-CORA. We applied a spatiotemporal searching algorithm
to predetermine the region of analysis in ST-CORA. This algorithm uses the spatial
searching algorithm concept that was proposed by Guttman (1984) to index areas with
rainfall information in both datasets. The indexing is made in a two-dimensional space
compressing the latitude and longitude dimensions using a maximum intensity value
as a reference. Once the spatiotemporal domain is defined, we use ST-CORA in the
observed and SPP dataset to identify rainstorms in the rainfall data. In this study, ST-
CORA incorporates a multivariate kernel density function for rainstorm segmentation.

RainstormSegmentation using ST-CORAwithMultivariate Kernel Density Seg-
mentation
ST-CORA was applied to analyse the spatiotemporal characteristics of rainstorm
events at the catchment scale (duration, spatial extent, magnitude, and centroid).
This method enables the feature extraction of different rainstorm event types, classified
based on hydrometeorological criteria. ST-CORA uses a multidimensional connected
labelling component algorithm to associate connected voxels in space and time (a vol-
ume generalisation of pixels) into a disjoint object labelled with a unique classifier.
Bethel et al. (2012) found that object segmentation while using image thresholding,
such as the connected component labelling method, has limitations for edge detection
in data with unknown topology. In the original ST-CORA, a size-filtering algorithm
and morphological closing method are incorporated to remove small noisy objects and
a false merging effect, respectively. However, this process is based on a binary object
not taking into account the intensity value of voxels. To overcome this limitation,
we have incorporated a Multivariate Kernel Density Estimation (KDE) approach to
segment rainfall objects when considering their four dimensions. This method assumes
a non-parametric probability density distribution technique for d-dimensional data.
Notably, KDE has been widely used in many fields for image detection and object
tracking, e.g.,(Chen et al., 2008a; Pereira et al., 2017; Wang et al., 2017; Zivkovic and
Van Der Heijden, 2006; Berjón et al., 2018). Multivariate kernel density is estimated
at point x from a random sample X1, X2, ...Xn from a density function f .

f̂K (x) = 1

n

n∑
i=1

Kh (x −xi ) (7.1)

where K corresponds to the kernel function and h is the bandwidth matrix. Choos-
ing the bandwidth matrix can be restricted to a class of positive diagonal matrices
(Hyndman et al., 2004). In the literature, there are several bandwidth methods selec-
tion methods for kernel density estimation (Hyndman et al., 2004; Zhang et al., 2006).
For this approach, we use the standard reference rule-of-thumb proposed by Henderson
and Parmeter (2012). This method estimates the bandwidth while assuming that the
density distribution function follows a Gaussian distribution.
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The process of edge detection using KDE is based on the Edge Detection by Density
method that was developed by Pereira et al. (2017). This process evaluates the mul-
tivariate density distribution of the density of a four-dimensional (4D) rainfall object
(Figure 7.2), and segments the object based on the density threshold, u. This threshold
identifies the rainstorm edges that are lower than a probability percentage. This pa-
rameter is calculated by analysing the relationship between threshold delineation and
the connected intensity value. We found that the 25th distribution percentile for u

threshold showed promising results for rainstorm segmentation over the Lower Mekong
Basin, especially for intense rainstorm events, characteristic of monsoon environments.

Spatiotemporal rainstorm event objects are defined based on two parameters: the
rainfall intensity threshold I T for rain object identification and the Critical Mass
Threshold (C MT ), which is defined as the minimum volume of rainfall (km3) nec-
essary to be considered as rainstorms (Grams et al., 2006). The value of C MT is
calculated locally based on the sensitivity between the spatial extent and the total
object volume (Steiner et al., 1995; Demaria et al., 2011). In this analysis, we also
incorporated the sensitivity of C MT to the maximum intensity of the rainstorm to
evaluate the response of intense rainstorm events in the study area. Based on the
sensitivity analysis of those parameters, we selected I T = 1mm/h to define rainfall
objects (Ebert and Gallus, 2009) and C MT = 0.01 km3 for rainstorm events with a
maximum intensity greater than 10 mm/h. In the study area, these events correspond
to rainfall objects bigger than 2000 km2.

Figure 7.2: Multivariable kernel density of a rainstorm object in space and time. Example
for the rainstorm event 2014-07.
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Matching process
As a result of ST-CORA, multiple rainstorm events are identified in both observed and
satellite data sets. However, it is necessary to determine the observed and estimated
rainstorm matches. We used the Intersection-over-Union measure (IoU) to evaluate
the level of similarity between predicted and observed data. IoU is defined as the ratio
between the size of the intersection and the union of both objects represented by the
following equation:

I oU = T P

F P +T P +F N
(7.2)

where T P represents true positives, and F P and F N are false positives and nega-
tives, respectively. The selection of the intersection rate value determines the level of
matching between objects. If the values are too low; multiple objects will be indexed
with the same object. On the other hand, high values indicate that the object does not
have any match. We found the I oU value to be 30 percent in the selected study area,
which is a good balance for matching the observed and satellite rainstorm events.

rainstorm Classification
Once all of the rainstorm events are identified, ST-CORA classifies rainstorm events
into two types: small convective systems with a short duration (short-lived) and long
duration systems extended over large areas (long-lived) (Molini et al., 2009, 2011). We
used an unsupervised K-means cluster analysis method to classify short- and long-lived
rainstorm events based on the four main rainstorm characteristics (duration, spatial
extent, maximum intensity, and total volume). This method divides n observations
into k clusters in which each observation is a member of the cluster that minimises the
objective function J , as follows:

J =
k∑

j=1

n∑
i=1

∥X(x,y,z,c)
j
i −C j∥2 (7.3)

where X is the rainstorm with dimensions x, y, z,c corresponding to the rainstorm
characteristics duration, spatial extent, maximum intensity and total volume, respec-
tively. C is the centroid of the cluster k, and the absolute number represents the
minimum Euclidean distance to C .

7.3.2. Bias Correction

Bias correction is the second component of the ST-CORAbico method. This compo-
nent is based on the systematic error source extraction for SPP that was proposed by
Laverde-Barajas et al. (2020b). Based on the error decomposition for rainstorm esti-
mation defined by Ebert and McBride (2000), satellite error is composed of systematic
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and aleatory errors due to displacement, volume, and pattern, as:

Etot al = Edi spl acement +Evolume +Epat ter n (7.4)

where displacement and volume represent the systematic errors and pattern is the
aleatory error calculated as follows:

Edi spl acement = Etot al −Eshi f ted (7.5)

Evolume = Etot al −Emag ni tude (7.6)

Epat ter n = Eshi f ted −Evolume (7.7)

In Equation (7.5) and (7.6), location is the primary source of error due to dis-
placement, while the magnitude is the corresponding source of error for volume. Using
the error subtraction from Laverde-Barajas et al. (2020b), ST-CORAbico corrects dis-
placement and volume error using the following process:

Displacement Correction:
Displacement correction corresponds to removing the shifting effect of the estimated
rainstorm. In this step, the Principal Component Analysis method (PCA, Johnson
and Hebert (1999)) is used in order to obtain the weighted centroid and orthogonal
variables (eigenvectors, eigenspace) of the SPP rainstorm and reference data (Figure
7.3a). Once the geometric properties of the objects are obtained, the weighted centroid
is matched, and the object is rotated accordingly to fit the eigenvectors of the reference
rainstorm data.

Figure 7.3: ST-CORAbico systematic error subtraction. (a) In error correction, rainstorm
centroid and eigenvectors derived from principal component of GPM-IMERG are fitted to the
observed event; and, (b) magnitude subtraction using both satellite and observed empirical
distribution functions, with respect to intensity.

Volume Correction:
Volume correction corresponds to the subtraction of the magnitude source of error
of the SPP. Using the statistical Empirical Quantile Method (EQM) Themeßl et al.
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(2012), magnitude error is subtracted by adjusting all moments of the empirical cu-
mulative distribution functions (ecd f s) of the SPP in terms of intensity, with respect
to the reference data (Figure 7.3b). EQM builds the ecd f for the observed (ecd fobs)

and the satellite (ecd fsat ) while using the intensity rainstorm distribution Is , as:

EQM = ecd f −1
obs(ecd fsat (Is)) (7.8)

7.3.3. Evaluation of ST-CORAbico

The evaluation was done by comparing the bias-corrected results with two widely used
probabilistic bias correction methods the Distribution Transformation (DT) method
and the Gamma Quantile Mapping (GQM). The DT method was initially developed
for the statistical downscaling of climate model data Brown et al. (2004). The method
corrects the mean and difference in variation of the SPP by matching the satellite and
the observed distribution based on Equation (7.9):

DT = (S AT (t )−µsat )DTτ+τsat ∗DTµ (7.9)

where µ and τ are the mean and standard deviation of the observed and satellite,
respectively. DTµ and DTτ are the mean and standard deviation ratio between the
observed and satellite data at time t .

The Gamma Quantile Mapping method uses the same methodology as the Empir-
ical Quantile mapping method (eq. 7.8), based on the assumption that both observed
OBS and satellite S AT intensity follows a gamma distribution (Piani et al., 2010).
DT and GQM are implemented for each time step in order to correct the rainstorm
event. The bias correction performance is evaluated based on three widely used error
metrics: the Root Mean Square Error (Equation (7.10)) for evaluating the magnitude
error, the bias level (Equation (7.11)) to evaluate the systematic bias, and the corre-
lation coefficient (Equation (7.12)) in order to analyse the linear correlation between
the observed and the bias-corrected rainstorm event.

RMSE =
√

1
N

N∑
i=1

(OBSi −S ATi )2 (7.10)

Bi as =

N∑
i=1

(S ATi −OBSi )

N∑
i=1

(OBSi )

(7.11)

r =

N∑
i=1

(S ATi −S AT )(OBSi −OBS)√
N∑

i=1
(S ATi −S AT )2

√
N∑

i=1
(OBSi −OBS)2

(7.12)
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where OBS represents the rainfall values of the reference rain gauge data, and S AT

are the satellite and the bias-corrected rainstorm obtained with each method.

7.4. Results

7.4.1. Rainstorm analysis

We identified 120 rainstorm events observed and estimated by GPM-IMERG at an
hourly scale for 2014-2017 monsoon seasons. Figure 7.4 shows the scatter plot of the
main rainstorm characteristics (total volume, duration, spatial extent, and maximum
intensity) and classification between short- and long-lived rainstorm events using the k-
means cluster analysis. For all events, 68 rainstorms (56%) were classified as short-lived
rainstorms while 52 (44%) of rainstorms were classified as long-lived events. Short-lived
events had a duration that ranged between three and 17 h, with a maximum spatial
extent of 42 thousand km2. Long-lived events ranged between 18 and 31 h and covered
between 54 and 110 thousand km2. In terms of total volume and maximum intensity,
short-lived events have a total volume of up to 0.15 km3 with low and intense rainstorms
ranging from 3 to 82 mm/h. On the other hand, long-lived rainstorms comprise medium
and high-intensity events with a total volume ranging from 0.27 to 0.65 km3. Table 7.1
describes the observed rainstorm characteristics for short and long-lived event types.

Table 7.1: Rainstorm characteristics for short- and long-lived event types.

rainstorm Type Statistics Duration (h) spatial Extent (km2) Maximum Intensity (mm/h) Total Volume (km3)
mean 9 15,097 33.0 0.04

Short-lived rainstorm min 3 1900 3.6 0.01
max 17 42,300 82.0 0.15
mean 18 54,400 71.4 0.27

long-lived rainstorm min 10 24,300 31.6 0.07
max 31 110,600 100.0 0.64

Figure 7.4: Short- and long-lived cluster analysis classification for observed events during
monsoon season 2014-2017.
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7.4.2. Bias Correction

We selected a short-lived and a long-lived rainstorm to describe the workflow for dis-
placement and volume correction made by ST-CORAbico. Figures 7.5 and 7.6 present
the bias correction steps for each rainstorm event type. Panel (a) shows the spatial dis-
tribution of the observed and satellite events and the bias-corrected satellite rainstorm
events obtained from the correction of location and magnitude errors in ST-CORAbico.
Panel (b) describes the displacement and volume corrections. Panel (c) presents the
four-dimensional (4D) spatiotemporal evolution of the observed and satellite as well
as the bias-corrected rainstorm (time in the z-axis). Panel (d) shows the bias and
RMSE. Statistics as well the scatter and correlation between the observed rainstorm
and original and bias-corrected satellite events.

Figure 7.5: Performance of ST-CORAbico for a short-lived rainstorm event (2014-08-27).
(a) total events for observed, satellite and ST-CORAbico; (b) volume, displacement correction
maps; (c) four-dimensional (4D) spatiotemporal evolution (lat, lon, time, intensity); and, (d)
bias, RMSE statistics, and scatter and correlation between observed and estimated rainfall
values.

Both examples (Figures 7.5 and 7.6) show the importance of bias correction. In both
the short and long-lived event scenarios, GPM-IMERG had a longer duration with a
larger footprint. However, the long-lived event presented a better spatial agreement
than the short-lived event. In terms of magnitude, GPM-IMERG considerably overes-
timated the total volume and rainfall intensity of the rainstorm. Overall, the perfor-
mance of GPM-IMERG shows a positive bias and high RMSE, mostly being caused
by an excess of rainfall. The correlation coefficients for short- and long-lived event
scenarios were 0.7 and 0.5, respectively.

The corrections in displacement and volume made by ST-CORAbico displayed
notable changes in the satellite rainstorm structure. In both scenarios, RMSE and
bias mainly were reduced by correction due to volume, contributing 40 to 60% of the
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RMSE reduction and around 70% of the total bias reduction for both events. Displace-
ment correction had an essential impact on the reorientation of the satellite rainstorm.
The individual correction contributed to 5% of the RMSE correction and 10% reduc-
tion of the total bias for the short-lived event. In the case of the long-lived scenario,
displacement correction contributed almost 15% of the RMSE reduction and 20% of the
total bias reduction. In terms of the correlation coefficient, displacement and volume
correction made by ST-CORAbico showed a marginal impact on the spatial correla-
tion for the short-lived events. For the long-lived scenario, this did not impact the
spatial correlation.

Figure 7.6: Performance of ST-CORAbico for a long-lived rainstorm event (2014-07-
21). (a) total events for observed, satellite and ST-CORAbico; (b) volume, displacement
correction maps; (c) 4D spatiotemporal evolution (lat, long, time, intensity); and, (d) bias,
RMSE statistics and scatter and correlation between observed and estimated rainfall values.

Figure 7.7 presents the performance of ST-CORAbico for short- and long-lived
rainstorm events. This figure describes the density distribution of RMSE (a-b), bias
(c-d), and correlation coefficient (e-f) of the short- and long-lived rainstorms estimated
by GPM-IMERG, ST-CORAbico, and the individual corrections due to displacement
and volume. It was found that ST-CORAbico has a smaller error distribution in
RMSE and bias for short- and long-lived rainstorm events compared with the origi-
nal GPM-IMERG. The correction mainly causes this error reduction due to volume.
Displacement correction was an important factor in reducing the bias, especially for
long-lived rainstorm events. The results from the correlation coefficient showed that
ST-CORAbico had a marginal effect on the spatial correlation of the rainstorm event.
Overall, it was found that ST-CORAbico considerably reduced the systematic error
of GPM-IMERG.
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Figure 7.7: Satellite and bias corrected error distribution for short and long-lived events
during monsoon seasons 2014–2017: (a,b) RMSE; (c,d) bias; and, (e,f) correlation coeffi-
cient.

7.4.3. Model Comparison

ST-CORAbico was compared with the Distribution Transformation method (DT) and
the Gamma Quantile Mapping (GQM) method. Using the short- and long-lived rain-
storm scenarios that are presented above, Figure 7.8 presents the spatial differences
and linear correlation between the total observed rainstorms and the bias-corrected
events obtained by ST-CORAbico, DT, and GQM. The results for both rainstorm
event scenarios showed that ST-CORAbico had the lowest spatial difference among
the evaluated methods. For the short-lived rainstorm scenario, ST-CORAbico dis-
played the highest correlation coefficient (r: 0.41) and the lowest RMSE and bias
(RMSE: 4.05 mm; bias: 0.74) when compared with DT (r: 0.40; RMSE: 5.4 mm; bias:
1.17); and, GQM (r: 0.39 RMSE: 6.09mm and bias: 1.5). In the case of the long-
lived rainstorm, ST-CORAbico and DT showed a notable error reduction compared
to the GQM method that showed the biggest differences. For this rainstorm scenario,
ST-CORAbico had the best performance (r: 0.71 RMSE: 18.02 mm; bias: 0.09), fol-
lowed by DT (r: 0.68, RMSE: 23.0 mm; bias: 0.32), and finally GQM (r: 0.62, RMSE:
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43.77 mm; bias: 0.97).
Figure 7.9 presents the comparison between ST-CORAbico, DT, and GQM for

short- and long-lived rainstorm events. The boxplots show the distributions of the
RMSE (Figures 7.9a,b), the bias (Figures 7.9c,d), and the correlation coefficient (Fig-
ures 7.9d,f) between the 25% and 75% percentiles for the original GPM-IMERG and
the different bias correction methods. The dots represent the individual error for each
rainstorm event. In comparison with the two probabilistic methods, we found that
ST-CORAbico consistently had the lowest RMSE and the lowest bias for both short-
and long-lived rainstorm events. ST-CORAbico and DT had a lower impact on the
correlation coefficient, especially for short-lived events.

Figure 7.8: Comparison between ST-CORAbico vs Distribution Transformation (DT) and
Gamma Quantile Mapping (GQM).

7.5. Discussion
ST-CORAbico is a spatiotemporal object-based bias correction method designed to
reduce the displacement and volume systematic errors of rainstorm events detected by
SPP. In comparison to spatial object-based bias correction methods, e.g., Demaria et al.
(2011); Le Coz et al. (2019), the inclusion of the temporal component of the rainstorm
event reduced additional error effects due to timing and orientation, improving the
efficiency of the bias correction.

This research incorporated a multivariate kernel distribution algorithm into ST-
CORA to segment the rainstorm event using the four dimensions of the rainstorm
event. In comparison to binary segmentation in the previous version, ST-CORA with
KDE segmentation was able to delineate intense rainstorm events by removing unreal
rainstorm configurations due to false merging and false separation of rainstorms due
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to the multidimensional connected labelling component algorithm. Based on the KDE
threshold delineation and the connected intensity analysis, we found those rainstorm
events segmented by the 25th percentile of the distribution showed a good result for
segmenting intense rainstorms with a solid connection—however, further improvement
is required.

Figure 7.9: Comparison between the satellite GPM-IMERG (red), ST-CORAbico (blue),
Distribution Transformation (green) and Gamma Quantile Mapping (grey) error dispersion
during monsoon seasons 2014–2017. (a,b) RMSE; (c,d) bias; and, (e,f) correlation coeffi-
cient.

The implementation of ST-CORAbico described the individual error correction
due to displacement and volume. Results in the Lower Mekong basin indicated that
volume errors were the primary error correction, primarily resulting from the high
overestimation of GPM-IMERG. These results agreed with multiple findings regarding
hourly GPM-IMERG in monsoonal areas (Oliveira et al., 2016; Tang et al., 2016).
Overall, volume and displacement errors effectively contributed to reducing bias and
RMSE, demonstrating the importance of reducing both of these systematic errors in
satellite correction.

We acknowledge certain limitations of the study. Firstly, the uncertainty arising
from the spatial interpolation method used for rain gauge values was not fully addressed
in this research. Volume and especially displacement corrections in ST-CORAbico can
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be affected by the type of interpolation methods used to represent the spatiotempo-
ral distribution of the observed rainstorm. A dense rain gauge network can reduce
the level of uncertainty; however, it is essential to evaluate the impact of the type
of interpolation method on the performance of ST-CORAbico, as mentioned above.
Another limitation arises from the sensitivity of I oU percentage to match observed
and estimated rainstorm events. Higher levels do not always correspond to similar
events, which affects the bias correction. This process required an in-depth sensitiv-
ity analysis of I oU in order to reduce the automatic rainstorm matching. Additional
analysis is required to identify why there is a strong correlation between observed and
predicted rainstorms in a spatiotemporal environment. In this study, we validated
the performance of ST-CORAbico by comparing its performance against two widely
used probabilistic methods. However, error metrics were calculated using the observed
values, as there is no independent validation dataset available. Further implementa-
tions should consider an independent dataset to validate the error correction of the
ST-CORAbico method.

This study was conducted in collaboration with the SERVIR-Mekong project and
the Mekong River Commissions (MRC). SERVIR-Mekong is harnessing space and
geospatial technologies to help decision-makers and critical civil society groups inte-
grate geospatial information into their decision-making, planning, and communication.
The application of this methodology can be used for various scientific purposes, includ-
ing flood risk and water management. More specifically, the methodology enhances the
input rainfall data, which are a crucial component of flood and drought early warning
systems, landslide monitoring, as well as other water-related decision support systems.
Future work will include integrating machine learning technologies for near real-time
bias correction of rainfall data when field data are scarce. In this regard, machine
learning models will be trained and optimised using legacy field data and deployed in
a near-real-time basis.

7.6. Conclusions

We proposed a new spatiotemporal bias correction method for rainstorm prediction
detected by satellites. The method, called Spatiotemporal Contiguous Object-based
Rainfall Analysis for bias correction (ST-CORAbico), analyses the main spatiotempo-
ral characteristics of the observed and estimated rainstorm events to correct systematic
error sources due to displacement and volume. This methodology has two main ele-
ments: rainstorm analysis for the segmentation and classification of rainstorm events;
and bias correction for correcting errors due to displacement and volume. In the
rainstorm analysis, we applied the ST-CORA method with a multivariate kernel seg-
mentation in order to identify the spatiotemporal structure of the rainstorm event.
This method was applied over the Lower Mekong basin in Thailand to correct the
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GPM-IMERG Early version during the monsoon seasons from 2014 to 2017. The per-
formance of ST-CORAbico was evaluated against the Distribution Transformation and
the Gamma Quantile Mapping methods based on reducing RMSE, bias, and correla-
tion coefficient. The results were divided by classifying the rainstorm events into short-
and long-lived rainstorm events while using the k-means cluster analysis method.

We classified 68 rainstorms (56%) as short-lived rainstorms and 52 (44%) as long-
lived events. The results of both rainstorm event types showed that ST-CORAbico
reduced the RMSE and bias of GPM-IMERG. Volume correction was the primary
error source due to the overestimation present in GPM-IMERG. Location error was
most important in the reduction of the bias. ST-CORAbico displayed a marginal
impact on the spatial structure of the satellite-derived rainfall, showing the original
structure of the rainfall data.

The comparison of ST-CORAbico with the Distribution Transformation and the
Gamma Quantile Mapping methods showed that ST-CORAbico had the lowest RMSE
and the lowest bias in both short and long-lived events. In terms of the correlation
coefficient, ST-CORAbico and DT had a lower impact on the correlation coefficient,
especially for short-lived events.

ST-CORAbico improves the accuracy of satellite-derived near real-time information
on rainstorm events. It can be used in various flood monitoring and water management
applications.





8
Hybrid Machine

learning/object-based approach to
correct satellite data for operational

purposes

Operational physically-based bias correction methods present several challenges when
ground measurements are not yet available. This chapter presents an approach that
combines the spatiotemporal object-based bias correction method with a machine learn-
ing classifier to reduce systematic errors of near real-time satellite-based precipitation
products without corresponding rain gauge data. This hybrid approach corrects errors
due to displacement and volume of satellite precipitation products using information
from similar historical events identified by a K-nearest neighbour ML classifier. The
proposed methodology is applied over the Lower Mekong Basin in Thailand to correct
rainstorm events detected by GPM-IMERG early version during the monsoon period of
2018 based on historical monsoonal rainstorm information from 2014 to 2017. The per-
formance for different rainstorm events types is compared against two probabilistic and
ML-based bias correction methods. The results show that the operational ST-CORAbico
improved the RMSE and bias without corresponding rain gauge data. Compared with
both operational bias correction methods, this new approach provided a better descrip-
tion of most of the spatiotemporal features of the corrected rainstorms. The performance
of this approach prompts more attention of researchers to using machine learning for
operational error correction.

This chapter is partly based on the publication: Laverde-Barajas, M., Corzo, G. A., Poortinga, A.,
Chishtie, F., Meechaiya, C., Jayasinghe, S., ... Solomatine, D. P. .Hybrid Machine learning/object-
based approach to correct satellite data for operational purposes. In preparation.
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8.1. Introduction

Physically-based bias correction approaches have a significant advantage over tradi-
tional approaches for correcting errors in Satellite-based Precipitation Products (SPP)
due to intensity and reducing errors due to location, rotation, and shape. However,
the dependence on the corresponding ground data, which is not always available, make
them unsuitable in operational applications. Probabilistic and machine learning ap-
proaches have overcome this limitation using historical ground-based information to
correct SPPs. Distribution mapping methods such as the Gamma Quantile Mapping
use the empirical cumulative distribution function (CDF) from historical ground-based
intensity values as a reference to correct SPPs operationally. These methods are not
only suitable for operational bias SPP bias correction but also the correction of forecast
data from General Circulation Models and (e.g. Hashino et al., 2007; Piani et al., 2010;
Zhao et al., 2017). On the other hand, machine learning methods such as K-Nearest
Neighbour, Random Forest and Neural networks use historical data for their training
from different sources (ground-based rainfall, soil moisture and topographic) to correct
the rainfall data (e.g. Gagne et al., 2014; Yang and Luo, 2014; Kumar et al., 2019;
Zarei et al., 2021; Tao et al., 2016; Le et al., 2020).

Both methods share a standard limitation to understand the physical dynamics of
a rainstorm event. While probabilistic bias correction approaches are prone to mislead
the physical trends of the rainfall data (Cannon et al., 2015b), ML methods do not
consider the physical laws of the rainfall to train the model (Corzo Perez, 2009; Wang
et al., 2020). As a result, combining physical and ML learning bias correction methods
can solve both the lack of the corresponding ground data and the limited capacity to
understand the details of the phenomenon’s physics, respectively.

This study uses the recently developed spatiotemporal object-based bias correction
method, ST-CORAbico, combined with an ML k-nearest neighbours classifier to bias
correct SPP rainstorm events in operational applications without the corresponding
rain gauge data. This hybrid approach corrects errors due to displacement and volume
of the satellite using the information from similar historical rainstorm events identified
by the kNN classifier. The kNN classifier identifies the closest historical event based
on six spatiotemporal features of the rainstorm detected by the satellite: centroid (lat,
long), maximum intensity and spatial extension, duration and total volume. Once the
historical event is identified, we use ST-CORAbico to correct the satellite’s systematic
errors based on the observed historical data. This method is applied over the Lower
Mekong Basin in Thailand to correct the integrated Multi-satellite Retrieval for GPM
(GPM-IMERG; Huffman et al. (2015)) early version during the monsoon season of
2018 based on the historical rainstorms database from 2014 to 2017. The performance
to correct different rainstorm event types is compared against two operational bias
correction methods - the probabilistic Gamma Quantile mapping and Machine learning-



8.2. Study area and Available Data 95

based K-nearest Neighbour Machine.

8.2. Study area and Available Data
The study area corresponds to the region of the Lower Mekong Basin (LMB) that covers
Thailand. In chapter 3, the main physical, geographical and atmospheric characteris-
tics of this area are described in detail. We evaluated the bias correction of rainstorm
events detected by the GPM-IMERG early version during the monsoon event of 2018
based on a historical rainstorms database obtained by Laverde-Barajas et al. (2020a).
This data set is comprised of an analysis of 120 observed and satellite-based events
that impacted the study area during the monsoon seasons from 2014 to 2017 using
the Spatiotemporal Object-based Contiguous Rainfall Analysis method (ST-CORA;
Laverde-Barajas et al. (2019)). Five different spatiotemporal features were identified
in each event (duration, spatial extent, magnitude, and centroid). In chapter 7, we
have described this database and the observed data used for this analysis.

8.3. Methodology
The methodology is composed of a hybrid rainstorm analysis and spatiotemporal bias
correction. Figure 8.1 illustrates the schematics of the proposed method. In the follow-
ing subsection, we will describe the main elements for each methodological component.

8.3.1. Hybrid rainstorm analysis

This component combines the object-based rainstorm analysis method used in ST-
CORAbico called ST-CORA with a machine learning-based k-nearest neighbours clas-
sifier (kNN). ST-CORA (Laverde-Barajas et al., 2019) describes the spatiotemporal
features of the satellite-based rainstorm event while the kNN classifier uses this infor-
mation to identify the historical rainstorm event with the closest features.

Object-based analysis using ST-CORA with KDE
We used ST-CORA with KDE segmentation to analyse the spatiotemporal features
of rainstorm events detected by the GPM-IMERG early version. This method is an
updated version of the original ST-CORA presented in chapter 5 to segment rainstorm
events in 4-Dimensions (lat, long, time, intensity) (Laverde-Barajas et al., 2020a). The
methodology combines the multidimensional connected-component labelling algorithm
to identify rainfall objects in space and time with a multivariate Kernel Density Esti-
mation algorithm to segment rainstorm events based on the probability distribution of
the rainfall object. A detailed description of this method is presented in chapter 7.

The implementation of ST-CORA starts by defining the spatiotemporal temporal
domain for searching rainfall objects. The definition of this domain is used to reduce
the computational time of ST-CORA. However, in operational bases, the temporal
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domain is associated with the temporal searching windows near real-time. In this
study, we defined the temporal domains during the monsoon season of 2018 using the
spatiotemporal searching algorithm implemented in ST-CORAbico. This algorithm
compresses the latitude and longitude dimensions of the SPP data to index areas with
rainfall information concerning time.

Figure 8.1: Scheme of the operational ST-CORAbico

ST-CORA with KDE is composed of two main processes - spatiotemporal rainfall
object extraction and rainstorm identification. In the first process, spatiotemporal
rainfall objects are defined based on the rainfall intensity threshold (I T ) and percentage
threshold for KDE (u). I T identifies the threshold of the voxel to be considered as
”effective rainfall”. In contrast, u is the threshold percentage of the KDE to segment the
rainfall object in 4D. On the other hand, rainstorm events are identified based on the
Critical Mass Threshold (C MT ). This parameter corresponds to the minimum volume
required by the rainfall object to be considered an extreme event. Laverde-Barajas
et al. (2020a) incorporated maximum intensity of the rainstorm (M I ) as a threshold
to evaluate the response of intense rainstorm events. Based on the rainstorm analysis
made by Laverde-Barajas et al. (2020a) in the Lower Mekong basin in Thailand during
the monsoon seasons from 2014 to 2017. The parameters of ST-CORA with KDE used
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in this research are I T= 1mm/h, u= 25th, C MT= 0.01 km3 and M I= 10 mm/s.
Once all events are identified, the last step of ST-CORA corresponds to the classi-

fication of several rainstorm event types following hydro-meteorological and dynamic
criteria (Molini et al., 2011). According to this principle, rainstorm events can be
classified into short and long-lived events based on their main spatiotemporal char-
acteristics. Laverde-Barajas et al. (2020a) implemented a K-means cluster analysis
method to classify short and long-lived rainstorm events based on the four rainstorm
features (duration, spatial extent, maximum intensity, and total volume). Based on
this analysis over the Thailand area of the LMB, short-lived events are considered
convective systems with duration ranging between three and 17 h, with a maximum
spatial extent of 42 thousand km2. In comparison, long-lived events corresponded to
extensive extreme precipitation systems with a duration ranging between 18 and 31
h and covered between 54 and 110 thousand km2. This study used those ranges to
identify short and long-lived rainstorm events in the study area.

Machine learning-based analysis
In the absence of a corresponding observed data, the machine learning-based k-Nearest
Neighbour classifier (kNN) analyses the spatiotemporal features of historical rainstorms
detected by satellites to estimate a corresponding observed event for bias correction.
The kNN classifier is one of the most widely used ML methods for classification due to
its low complexity and fast implementation. One advantage of kNN is that it does not
need any training data points for model generation, making it faster in the learning
phase.

The kNN algorithm is designed to find the object with the k nearest neighbour
pattern based on the distance between the features of query object QO and all training
objects T O (figure 8.2). An object is classified based on the distance between points
located in a multidimensional space. k = 1 is the number of nearest neighbours. If k = 1,
the object is classified as the closest train object. Several distance metrics can be used
to calculate the distance between points (e.g. Hamming, Euclidean, and Manhattan
distance measures). We used the the Euclidean distance metrics in ’n’-Dimensional
space, which is defined as:

D2
i j =

n∑
v=1

(Xvi −Xv j )2 (8.1)

Where the ’n’-dimensions represent the number of object features, and Xvi and
Xv j are also the query and the train object values, respectively. In a high dimensional
representation of the kNN, one of the common challenges is ensuring the diversity of
the feature selection (e.g. for avoiding the redundancy or overlap among features) (Li,
2009). The selection of the number of rainstorms features to train the kNN classifier
is based on six spatiotemporal features to represent the position, geometry and mag-
nitude of rainstorms detected by GPM-IMERG - centroid longitude and latitude for
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the position, duration ad maximum extension for geometry and total volume and max-
imum intensity for magnitude. We standardised the values of the feature to remove
the scale effect caused by the use of multiple features with different units using the
following equation:

Xst and ar di sed = X −µ

σ
(8.2)

where X is the rainstorm feature and µ, and σ are the mean and the standard
deviation, respectively. The kNN classifies each SPP rainstorm assigning them a unique
label identifier number. Once trained, kNN identifies the historical satellite-based
event with the closest spatiotemporal features to the query rainstorm extracted by
ST-CORA. The corresponding observed event is used to correct the systematic errors
due to the displacement and volume of the SPP rainstorm event.

Figure 8.2: Scheme of the machine learning-based k-Nearest Neighbour classifier (kNN)
algorithm

8.3.2. Spatiotemporal bias correction

Once both the satellite event and its corresponding historical observed rainstorm are
identified by the object-based/machine learning method, we used the spatiotemporal
bias correction applied in ST-CORAbico to correct the primary sources of systematic
error in the SPP IMERG data. This bias correction approach uses rainstorm error
decomposition defined by Ebert and McBride (2000) to correct two systematic sources
- displacement and volume. ST-CORAbico independently corrects both systematic
errors via individual subtraction of the errors due to location for displacement and
magnitude for volume by the following process:

Displacement correction
This correction corrects the shifting of the rainstorm event detected by the SPP. The
methodology analyses the Principal Components (weighted centroids and eigenvectors
and eigenspace orthogonal variables) of both objects to fit the geometric characteristics
of the SPP event concerning the observed data. The process first matches the weighted
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centroid and then uses the eigenvectors to rotate the SPP in space and time. In
contrast, in ST-CORAbico, where timing shifting can be addressed, this displacement
correction only uses the weighted centroid and the eigenvectors in space.

Volume correction
Volume correction corresponds to the subtraction of the magnitude source due to
the inherent bias of the satellite rainstorm. For ascertaining this systematic error,
ST-CORAbico adjusts all moments of the satellite cumulative probabilistic function
(ecd f s) in terms of intensity using the statistical Empirical Quantile Method (EQM)
Themeßl et al. (2012) concerning the reference data. EQM models the ecd f for ob-
served (ecd fobs) and the satellite (ecd fsat ) data using the intensity rainstorm distri-
bution Is as:

EGM = ecd f −1
obs(ecd f −1

sat (Is) (8.3)

8.3.3. Performance evaluation

The performance of the proposed methodology is evaluated against a single kNN ma-
chine learning and probabilistic Gamma Quantile Mapping approach operational bias
correction approaches. The single kNN method follows the same methodology used in
the machine learning-based rainstorm analysis previously described. This method uses
the information from the historical rainstorm database to search for the observed event
with the closest spatiotemporal features to the SPP rainstorm. Compared with the
hybrid ST-kNNbico method, this classification approach uses the observed correspond-
ing object as the bias-corrected rainstorm instead of using it for further correction. We
trained the KNN classifier based on six standardised spatiotemporal features detected
by GPM-IMERG: centroid (longitude, latitude), duration, total volume, maximum
rainstorm extension and intensity. We used the Euclidean distance metric to identify
the rainstorm with the nearest neighbour pattern (k=1).

The operational Gamma Quantile method adjusts all moments of the gamma distri-
bution function of the query rainstorm event estimated by SPP based on the quantile-
quantile relationship between historical observed and estimated cumulative probabilis-
tic functions (cd f ). There are several statistical transformation functions for modelling
the quantile-quantile relationship (Gudmundsson et al., 2012). In this study, we ap-
plied the non-parametric transferring function solved in Equation 8.3. Based on the
rainstorm event classification for GPM-IMERG obtained by Laverde-Barajas et al.
(2020a), the performance of the operational bias correction methods is evaluated for
short and long-lived events using three error metrics: the Root Mean Square Error
for magnitude error (RMSE), the level of bias (BIAS)and the correlation coefficient to
analyse the linear correction between the observed and the bias-corrected rainstorm
events.
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8.4. Results
Based on the observed and satellite rainstorm database obtained by Laverde-Barajas
et al. (2020a) during the monsoon seasons from 2014 to 2017, the performance of the
hybrid bias correction method ST-KNNbico is evaluated during the monsoon season
of 2018. This section will describe the performance of this method for correcting
systematic errors in GPM-IMERG due to displacement and volume and the comparison
against two operational bias correction approaches for short and long-lived rainstorm
event types.

8.4.1. Systematic bias correction in the absence of a matched ob-
served data

During the monsoon season of 2018, 47 rainstorm events from GPM-IMERG were iden-
tified by ST-CORA with KDE. For each rainstorm event, the ML composed identified
the event with the closest spatiotemporal features to correct errors due to displacement
and volume. Figure 8.3 describes the bias correction made by the hybrid ST-kNNbico
method for one rainstorm event detected by GPM-IMERG using a historical observed
rainstorm event estimated by the machine learning k-NN classifier. Panels (a) and (b)
show the total rainfall event and the 4D rainstorm evolution of the satellite IMERG
and the bias-corrected rainstorm event, including the individual corrections due to dis-
placement and volume. On the other hand, panels (c) and (d) present the real and the
kNN observed event used to correct the SPP-based rainstorm. This example shows that
ST-kNNbico improved several features of the SPP-based rainstorm event. In terms of
performance, RMSE and BIAS were considerably reduced. However, it is noted that
the bias correction led to a negative bias due to the rainstorm underestimation.

Figure 8.4 shows the comparison between the RMSE, BIAS and r for the events
from GPM-IMERG and the metrics obtained by ST-kNNbico and the individual cor-
rections due to displacement and volume. According to the results, ST-kNNbico ef-
fectively reduced the RMSE and bias for all evaluated events. Errors due to volume
had a significant influence on the correction of the rainstorm events. In the case of
displacement, the individual correction had a marginal effect on the spatial correlation
of the rainstorm event.

8.4.2. Performance comparison

Figure 8.5 shows the differences between the spatiotemporal features from the observed
events and the features detected by GPM-IMERG and the operational bias correction
methods ST-kNNbico, the single Machine learning-based kNN classifier (kNN) and
the operational Gamma Quantile Mapping (GQM). The results show that all methods
could improve the rainstorm characterisation in the absence of corresponding observed
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Figure 8.3: Description of error correction and performance of ST-KNNbico for correcting
a rainstorm event over the Mekong basin in Thailand during 19 Sept 2018. (a) satellite-
based IMERG rainstorm; (b) bias corrected rainstorm with the individual correction due to
displacement and volume; (c) corresponding historical event identified by the kNN method;
(d) real observed event; subindexes (i) and (ii) are Total rainfall map and 4D rainstorm
evolution of the rainstorm event respectively

data. ST-kNNbico had the lowest difference in the total volume and the maximum
spatial extension among the evaluated methods. It is found that all bias correction
methods tended to underestimate the maximum intensity of several rainstorm events.
kNN was the method with the lowest difference, followed by the GQM and the ST-
kNNbico. The differences in duration showed that ST-kNNbico and GQM did not
correct the errors due to timing, while kNN showed an underestimation in the duration
of the rainstorm events.

The performance of each bias correction method for short- and long-lived rainstorm
events is presented in Figure 8.6. Boxplots describe the mean error and distribution
between the 25% and 75% percentiles for RMSE (Figures 8.6a,b), BIAS (Figures8.6c,d),
and the correlation coefficient (Figures8.6a,b). Dots show the performance of each
rainstorm event. Short- and long-lived events showed that the hybrid ST-kNNbico
method had the lowest RMSE and bias among the evaluated methods. The single kNN
displayed a lower RMSE and BIAS than GQM for the long-lived events. However,
in short-lived events, GQM showed a better performance than kNN for RMSE and
BIAS. In terms of the correlation, bias correction methods displayed a reduction in
correlation coefficient, especially for short-lived events. In comparison, GQM has the
highest correlation coefficient for both rainstorm events types followed by ST-kNNbico
and finally, the single kNN method.
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Figure 8.4: Comparison between the RMSE, BIAS and r for the events from GPM-IMERG
and the metrics obtained by ST-kNNbico and the individual corrections due to displacement
and volume

Figure 8.5: Differences between the observed and satellite-based spatiotemporal features of
rainstorm events obtained by GPM IMERG (blue), ST-kNNbico (orange), single kNN (green)
and GQM (red) methods.

8.5. Discussion

The development of this hybrid object-based Machine-learning bias correction method
addressed the limitations of current physically-based methods when corresponding ob-
served information is not available. Results from correcting multiple rainstorm events
based on historical information indicated that ST-kNNbico can be helpful in opera-
tional applications or when practical information is not yet available.

The performance of ST-kNNbico over the Mekong basin in Thailand during the
monsoon season of 2018 showed that displacement and volume corrections made by
this method not only improved several spatiotemporal features of the rainstorm events
detected by GPM-IMERG but also substantially reduced the RMSE and the level of
BIAS of the SPP data. However, it is found that some mismatches in the location of
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Figure 8.6: Performance of GPM-IMERG(blue) ST-kNNbico (orange), single kNN (green)
and GQM (red) for short- and long-lived rainstorm events. (a,b) RMSE; (c,d) bias; and,
(e,f) correlation coefficient

observed events led to reducing the correlation coefficient of the SPP event.
Overall, compared to the machine learning-based kNN classifier and the operational

GQM, this hybrid approach showed a better performance for short and long-lived
rainstorm events. In general, accounting for the total volume and the spatial extension
of the rainstorm event were positively impacted the performance of the bias correction
methods. However, all evaluated methods tended to underestimate the maximum
intensity of the rainstorms. Regarding improvements in the duration, ST-kNNbico
and the GQM consider the error due to timing, and the single KNN did not capture
the total duration of the rainstorms.

We acknowledge further limitations in the proposed framework. Firstly, it is noted
that the bias correction with k-NN is based on the assumption that past error structure
determines its future configuration. In this sense, the capability of this method is lim-
ited to the number and diversity of the historical database of corresponding observed
and SPP rainstorm events. Our research was based on 120 pairs of observed and SPP
events analysed by Laverde-Barajas et al. (2020a) in the study area. However, it is
recommended that a more extensive inventory is required to improve the performance
of the ST-kNNbico method. Second, the user-defined formula to identify the param-
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eters for rainstorm identification and segmentation in object-based approaches could
be subjective, leading to imprecise rainstorm extractions. For this reason, a sensitivity
analysis of the model parameters is fundamental for implementations in new areas.

Further analysis could enhance the machine learning component of ST-kNNbico by
using more robust methods such as deep learning methods or incorporating a prob-
abilistic analysis to identify the occurrence of matched corresponding observed rain-
storms derived from multiple configurations of the rainstorm event (e.g. Johnson and
Wang, 2012). Additional research lines could be pursued by applying this method into
blending techniques for rainfall forecasting (e.g. rank-based quantile mapping approach
in CHIRPS-GEFS, Shukla et al. (2020) ) to improve the accuracy of global models for
extreme weather forecasts.

8.6. Conclusions
We have proposed a hybrid object-based/Machine-learning bias correction method for
rainstorm detection to correct systematic errors due to displacement and volume in
the absence of a corresponding observed data. This method called ST-kNNbico incor-
porates a hybrid machine learning-based k-near Neighbour classifier into the recently
developed Spatiotemporal Object-based bias correction method, ST-CORAbico, for
reducing systematic errors in rainstorm events in SPPs using historical data. The
performance for correcting 47 short-and long-lived rainstorm events across the Lower
Mekong Basin in Thailand, detected by GPM-IMERG during the monsoon of 2018
based on the historical monsoonal rainstorm information from 2014 to 2017, was eval-
uated.

The results show that this method substantially reduced the RMSE and bias derived
from systematic errors due to displacement and volume. Errors due to volume had the
most considerable influence on the SPP correction. However, in terms of the correction
due to displacement, several mismatches between observed events led to a marginal
reduction in the correlation coefficient of the SPP, especially for short-lived rainstorm
events. Compared to the two operational bias correction approaches, ST-kNNbico had
superior performance in reducing RMSE and BIAS for short and long-lived rainstorm
events, while GQM had the highest coefficient correlation among evaluated methods.
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This concluding chapter summarises the main findings of the previous chapters based
on the research questions presented in Chapter 1. Following this summary, the chapter
discusses the methodological approaches used in this dissertation, outlining the tech-
nology developed in future research lines. The chapter ends by describing a further
development of the spatiotemporal object-based methodology for rainfall analysis (ST-
CORA with KDE) for the NASA/USAID SERVIR-Mekong program to monitor the
severity of rainstorm events for the Lower Mekong Basin and generate alerts.

9.1. Conclusions
The development of this dissertation is framed according to five research questions.
Below, we discuss how the research outputs address these questions.

The first question was: how important are the spatiotemporal dynamics of extreme
rainfall events in satellite performance, with regards to error? In Chapter 4, we ad-
dressed this question by evaluating the performance of multiple near real-time SPPs
to represent the spatial and temporal characteristics of extreme rainfall. This research
demonstrated that spatiotemporal characteristics are a vital determining factor in the
overall performance of the SPP data. It was found that short temporal and spatial ex-
treme rainfall systems had more significant errors than extensive and lengthy duration
events. Comparisons between VIS/IR and IRW/PMW satellites revealed the role of
the type of retrievals in the accuracy to estimate extreme rainfall events. IRW/PMW-
based SPP displayed a superior performance than VIS/IR-based SPP mainly due to
the additional information of the hydrometeor provided by the PWM sensors.

In addition, we discussed the limitations of pixel-based approaches to analyse the
spatial and temporal evolution of extreme precipitation events detected by SPP data
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and to evaluate the performance in near real-time applications.
The second question was: how can spatiotemporal rainstorm dynamics be inte-

grated into error estimation? This question was answered in Chapter 5. The Spa-
tiotemporal Object-based Rainfall Analysis method, ST-CORA, addresses the limi-
tations of pixel-based approaches to analyse the dynamics of extreme precipitation
events in space and time. This physically-based approach provides a complete analysis
of rainstorm events characterising many features such as volume, extension, duration,
intensity, orientation, and speed. With ST-CORA, the performance of multiple gridded
rainfall products can be evaluated by comparing individual features between observed
and estimated events or directly measuring the level of error by using standard and
categorical metrics. Applications of this method for error verification can be seen in
Chapter 6 using the error decomposing proposed by Ebert (2005) to analyse the SPP
error due to displacement, volume and displacement. In Chapter 7 and 8, an updated
version of ST-CORA is presented incorporating a 4D analysis using the Multi-variable
Kernel Density Estimation function algorithm (KDE) to improve the segmentation of
rainstorm events at catchment scale.

The third question was: what is the effect of spatiotemporal errors on the hydrolog-
ical response? In Chapter 6, we answered this question by evaluating the hydrological
impact of systematic error sources (location and magnitude) from different rainstorm
event types detected by the SPP CMORPH. Using the catchment of Capivari river as
the study area, the hydrological responses for short and long-event rainstorm scenarios
revealed that error sources due to location and magnitude from the SPP affect the
shape, phase and amplitude of the streamflow in the catchment. In the short-lived
rainstorm event, the error extraction due to location had a significant impact on re-
ducing the streamflow error, while in the long-lived event, the error extraction due to
magnitude led to an error reduction in the streamflow. These results demonstrated
the deficiencies of satellites to estimate high convective rainstorm events and the vital
role of the take into account the spatial and temporal error dynamics in SPP on the
hydrological response.

The fourth question was: how can spatiotemporal error information be used to
improve bias correction of satellite data? Chapter 7 addressed this error by developing
the spatiotemporal object-based bias correction method for rainstorm analysis called
ST-CORAbico. This method is designed to correct errors due to displacement and
volume for rainstorm events detected by SPPs. This method evaluated in the Lower
Mekong Basin in Thailand substantially reduced the RMSE and bias for several short-
and long-lived rainstorm events, with a marginal impact on the correlation coefficient of
the SPP data. Compared to two probabilistic bias correction methods, the distribution
transformation method and the Gamma Quantile Mapping method, ST-CORAbico had
the highest performance during the monsoon season from 2014 to 2017.

The fifth question was: how can artificial intelligence improve spatiotemporal bias
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correction methods in operational applications? Chapter 8 answered a common chal-
lenge of object-based operational approaches when a parallel observed data set is not
available. The hybrid object-based/Machine-learning bias correction method called
ST-kNNbico was developed to correct systematic error due to displacement and volume
for rainstorm events detected by SPPs using observed historical data. This approach
applied to the Lower Mekong basin in Thailand showed that ST-kNNbico could be
useful in operational applications or when practical information is unavailable. During
the monsoon season of 2018, this method overcame other operational bias correction
approaches by improving several spatiotemporal features of the rainstorm events de-
tected by GPM-IMERG and substantially reducing the RMSE and the level of bias of
the SPP data. However, it is essential to note that some mismatches in the location
of historical data led to a reduction in the correlation coefficient of the SPP rainstorm
event.

9.2. Reflections

The definition of rainstorm events

There is no universal definition of an extreme rainfall event. The term ’extreme rainfall
system’ or ’rainstorm event’, like other environmental processes, has a statistical and
physical definition based on the field of knowledge that surrounds it. In hydrology, for
instance, this term is associated with a statistical concept defining ”extreme rainfall
events” as individual local weather variables exceeding critical levels on a continuous
scale. In meteorology, on the other hand, the definition is more associated with the
physics of the phenomenon. Under this concept, extreme events are defined according
to extreme meteorological conditions derived from changes in atmospheric variables
such as wind speed, moisture pressure, and temperature, among others (Stephenson
et al., 2008).

Statistical and physical approaches have in common the selection of a threshold
to identify a critical or extreme meteorological condition. However, both concepts
differ in the method to calculate it. While in statistics, the definition of a extreme
value is calculated by a punctual factor derived from statistical parameters such as
percentiles (e.g AghaKouchak et al., 2011; Ringard et al., 2015; Boers et al., 2013) or
the occurrence of rainfall (e.g. Gao and Liu, 2013; Miao et al., 2015; Tan and Santo,
2018). In physics, extreme conditions are calculated based on the rainfall system
attributes(e.g. rate, magnitude, timing, spatial scale) since one number cannot fully
describe the multidimensional nature of extreme events (Stephenson et al., 2008).

With satellite-based precipitation products for hydrological applications, the need
to combine both approaches to define extreme rainfall events has become more relevant
to understanding water-related disasters such as floods and landslides. Under hydrom-
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eteorological criteria, physics can analyse the multidimensional structure of rainfall
systems, while statistics can evaluate population attributes of extreme conditions.

Potential 2D, 3D and 4D object-based methods to analyse rain-
storm events

Object-based methods have shown to be effective in analysing the physical dynam-
ics of extreme precipitation systems based on their characteristics in space and time.
Throughout this dissertation, rainstorm events have been analysed using 2D, 3D and
4D object-based methods. In Chapter 4, extreme rainfall events detected by differ-
ent NRT SPPs were evaluated in space and time using a 2D object-based algorithm.
First in space, analysing the spatial extension of extreme rainfall patterns and sub-
sequently in time, evaluating the temporal aggregated composition of rainfall in 2D.
This methodology provided valuable information regarding the importance of the spa-
tiotemporal components in the performance of NRT SPPs. However, it also showed
several limitations for analysing the configuration of rainfall events.

Based on the limitations of 2D object-based approaches, chapter 5 incorporated
the temporal component of precipitation systems to develop the Spatiotemporal Con-
tiguous Object-based Rainfall Analysis method (ST-CORA). This 3D object-based
methodology uses a multidimensional connected-labelling component to analyse the
features of rainstorm events detected by satellites. In ST-CORA, issues in the connected-
labelling component algorithm due to noisy data and false merging objects are ad-
dressed by incorporating several morphological image processing algorithms. Nonethe-
less, existing gaps in the algorithm to segment rainstorm objects using binary infor-
mation remained open.

Object-based methodologies in 2D and 3D rely on a connected labelling component
algorithm to group similar pixels in space and time. However, it is found that managing
precipitation systems with unknown topology in a binary domain limit the detection of
edges for segmenting the rainfall object. In order to overcome this constraint, Chapter
7 incorporated a Multivariate Kernel Distribution Estimator algorithm (KDE) into
the ST-CORA method. This algorithm analyses the 4-dimensional properties of the
rainfall object to segment the rainstorm event. This approach showed that the inclusion
of this probabilistic approach was able to delineate rainstorm events more effectively
by removing unreal shapes and false merging. Further developments could incorporate
several optimisation methods to calibrate the parameters used in ST-CORA with KDE
in other study areas.
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9.3. Practical implementation: the Rainstorm Tracker
System

The Rainstorm Tracker System is an operational rainstorm analyser tool developed to
monitor and alert the severity of rainstorm events over the Lower Mekong basin in near
real-time and real-time. The rainstorm tracker relies on a peer-reviewed spatiotemporal
rainstorm recognition method called the Spatiotemporal Object-based Rainfall Anal-
ysis method (ST-CORA). This method uses a 4D object-based recognition approach
to track and evaluate the severity of rainstorms detected by satellites. This tool uses
the information from different satellite-based rainfall products to identify the main
features of rainstorm events in two operational modes: near-real-time (4-6 hours) and
real-time (30-60 min). The level of severity of each rainstorm event is calculated based
on the maximum intensity and total volume (Figure 9.1).

Figure 9.1: Levels of rainstorm intensity based on the extremal analysis of maximum
intensity and total volume; a) severity scale; b) display of rainstorm warnings per country
in the rainstorm tracker system

The Rainstorm Tracker is powered by the spatiotemporal rainstorm recognition
method called the Spatiotemporal Object-based Rainfall Analysis method (ST-CORA).
This method is developed by Laverde-Barajas et al. (2019) to analyse the main char-
acteristics of the rainstorm events at the catchment scale. In Laverde-Barajas et al.
(2020a), this method was successfully implemented over the Lower Mekong area in
Thailand, incorporating a new multivariate probabilistic algorithm for rainstorm seg-
mentation. Figure 9.2 presents the methodology steps of the rainstorm tracker using
ST-CORA with KNN method, which can be summarised as follows:

1. Spatiotemporal Continuous Rainfall Analysis (ST-CRA): a multidimensional con-
nected labelling component is implemented to identify convective rainfall systems
in space and time.

2. Probabilistic rainstorm segmentation (KDE): rainstorm events are segmented
using a multivariate edge detection based on Kernel Density Estimation (KDE).

3. Multi Threshold analysis: this process is applied to identify sub-rainstorm events
over large convective systems.
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Figure 9.2: Processes of ST-CORA with KDE: a) Spatiotemporal Continuous rainfall Anal-
ysis; b) Probabilistic rainstorm segmentation; c) Multi-threshold analysis; and c) rainstorm
track detection for characterization of rainstorms/extreme events using 4D object detection.

4. Rainstorm track detection: definition of the rainstorm track using the skeletal
structure of the rainstorm event.

The geospatial information and the description of each rainstorm event are avail-
able through the web interface http://rainstorms-servir.adpc.net. In this portal,
stakeholders can visualise and animate the spatial and temporal evolution of rainstorms
in real and near-real-time. Figure 9.3 shows the interactive platform of the Rainstorm
Tracker. The characteristics of the platform include: i) near-real-time and real-time
monitoring; ii) filtering based on area, date, Storm severity, total volume, duration and
max intensity; iii) Severity of the rainstorm; iv) Description of the main spatiotempo-
ral features of the rainstorm; v) Download rainstorm event in format .png of the total
storm event map and the raster file in format netCDF.

Figure 9.3: Visualisation of the interactive platform of the Rainstorm tracker System

The Historical information of the rainstorm event during monsoon season using the
final version of GPM IMERG. Figures 9.4 presents the spatiotemporal features of two
rainstorm events types over the Lower Mekong Basin in October 2020. Figure 9.4a

http://rainstorms-servir.adpc.net
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displays a mesoscale precipitation system over southeastern Asia, while Figure 9.4b
shows a local rainfall rainstorm over Bangkok Thailand

In August of 2021, the Rainstorm Tracker System became fully operational.

Figure 9.4: Spatiotemporal features of two types of rainstorm events over the Lower Mekong
Basin in October 2020: a) Mesoscale precipitation system; b) rainstorm event over Bangkok,
Thailand.
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