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Abstract

Fog plays a major role in chain collisions. Proper fog detection is essential for the Dutch
road authority to anticipate foggy weather conditions. Dozens of stations in the Nether-
lands can measure fog. However, fog can be a very local phenomenon. Therefore, more
local measurements are needed. There are about 5,000 traffic cameras in the Netherlands.
Several studies on detecting fog on traffic cameras have been done. The most successful
studies used machine learning classification models to detect fog. The biggest challenge
they face is the extreme imbalance, limited diversity, and limited accuracy of the dataset.
Obtaining adequate precision is one of the primary challenges since the extreme imbal-
ance of the dataset significantly impacts precision. The main objective of this research
is to improve the dataset and investigate many machine learning configurations. Another
objective is to examine the possibilities of generating synthetic data.

This thesis uses a clever (re)labeling method, significantly improving the dataset’s qual-
ity. However, it turned out that the dataset still has its limitations. A large portion of false
positives are caused by labeling errors. After comparing several machine learning models,
it follows that a 9-layer ResNET model is optimal. Adding more layers will not result in
better performance. Unexpectedly, initializing ResNET with pre-trained weights actually
decreases performance. In addition, the effect of oversampling and/or using a weighted
binary cross-entropy loss is investigated. Just oversampling leads to overfitting, but using
a weighted binary cross-entropy loss isn’t ideal either. The best performance is achieved
by combining weighted binary cross-entropy loss with oversampling. Decision threshold
optimization substantially improved the results. The experiments allowed for selecting
the ideal configuration, which substantially increased performance. The best-performing
configuration achieved a strong correlation in the Matthews correlation coefficient.

Finally, the possibilities of generating synthetic data are investigated. ADASYN and
SMOTe seem attractive at first sight, but from a recent study, it follows that they don’t
work better than random oversampling. One of the most promising ideas for generating
synthetic data is to add fog to clear images. In this thesis, a conceptual algorithm is
designed to add artificial fog to clear images. Most generated images look convincing, but
there is much room for improvement.
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Chapter 1

Introduction

This research is in cooperation with the Royal Netherlands Meteorological Institute (KNMI)
and Delft University of Technology and is written to finish a Master of Science in Applied
Mathematics. KNMI is a national research institute in the Netherlands. Their main re-
search areas are weather, climate, air quality, and seismic activity.

Fog plays a major role in chain collisions. In January 2019, for instance, more than
20 vehicles crashed due to dense fog in Texas (Maxouris, 2019). Likewise, in Sao Paulo,
Brazil, a chain collision involving more than 300 vehicles occurred in 2011 due to heavy
fog (Sheth, 2019).

"The definition of fog is a visible aggregate of minute water particles near the Earth’s
surface that reduces horizontal visibility below 1 km (5/8 mile)" (U.S. Department of
Commerce & Administration, 2017). Fog is called dense when the visibility is reduced to
less than 250 meters; it is called light fog when the visibility is more than 250 meters but
less than 1,000 meters. KNMI is mainly interested in detecting dense fog.

Compared to crashes in clear visibility conditions, crashes in foggy weather usually
involve more vehicles and serious injuries (Wang, Liang, & Evans, 2017). Accidents due to
fog especially occur in the winter months, in the early morning, and rural areas (Abdel-
Aty, Ekram, Huang, & Choi, 2011). In addition, (Cavallo, Colomb, & Doré, 2001) found
that their study participants perceived a lead car to be 60 percent farther away in foggy
weather conditions than in clear weather conditions. These crash statistics motivate further
research into predicting fog.

The amount of fog can be measured by the visibility. The visibility can be expressed
in MOR (Meteorological Optical Range), defined as the distance required to reduce the
intensity of a light source to 5 percent of its original value (Wauben & Roth, 2016). KNMI
uses forward scatter sensors to determine the atmospheric extinction σ. The visibility
(MOR) can be calculated by MOR = ln(0.05)/σ. The disadvantage of these sensors is
that they are quite expensive, and the number of sensors in the Netherlands is limited.
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Furthermore, fog can be a local phenomenon; therefore, more local measurements are
needed to get full coverage of the country.

The Dutch road authority owns about 5,000 traffic cameras, which can be used to mea-
sure visibility. In 2016, the visibility can be estimated using the landmark discrimination
and contrast reduction method (Wauben & Roth, 2016). This method is designed for fixed
cameras, but the cameras of the Dutch road authority can tilt, pan, and zoom. Therefore,
a more advanced approach is needed. In 2018, convolutional deep neural networks were
used to improve the detection further (Molleman, 2018).

The most significant problem is the extreme imbalance, limited diversity, and limited
accuracy of the dataset. Only 0.7 percent of the images contain light fog, and only 0.2
percent contain dense fog. Currently, this problem is solved using a weighted cross-entropy
loss (Molleman, 2018). The camera images are labeled using the visibility sensors of six
measurement stations. In total, there are 25 measurement stations. If the camera is within
a radius of 7.5 km of a measurement station, it will get a label based on the visibility
measurement of the measurement station. For this reason, a limited number of traffic
cameras are currently being used to create the dataset. This means a decrease in the
diversity of the dataset. The diversity is slightly increased by randomly cropping and
flipping the images. Another problem is that the test dataset does not represent the real
world. The Dutch road authority uses tilt, pan, and zoom, which makes it sometimes
almost impossible to determine if fog is present. Even for a human annotator, it is hard to
determine. Therefore, the test dataset used in (Molleman, 2018) mainly contains images
that give a clear overview. In addition, the test dataset is balanced, which is not an
accurate representation of the real world.

In another study, fully connected neural networks were used to detect fog on traffic
cameras (Andrea Pagani & Wauben, 2018). This paper uses a random split to get a
training, validation, and test dataset. Therefore, the test dataset has the same imbalance
as the training dataset. Also, in this paper, the main problem they encounter is the
extreme imbalance, limited diversity, and limited accuracy of the dataset. For this reason,
the dataset will also be one of the main challenges in this thesis.

1.1 Research objectives

The main objective of this research is to improve fog detection on camera images using
machine learning techniques. The research objectives are divided into three categories: the
dataset, the machine learning model, and synthetic data.
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Figure 1.1: Locations of MOR-visibility sensors. The numbers on the map represent the
visibility measurement in meters at that given time.

1.1.1 Dataset

The method used by (Molleman, 2018) to create the dataset isn’t perfect and is prone to
labeling errors. In addition, the labeled dataset created by (Molleman, 2018) isn’t available
anymore and therefore has to be recreated. KNMI provided images taken from the traffic
cameras and measurements from MOR-visibility sensors. However, traffic cameras and the
measurements from MOR-visibility sensors are not at the same location. Therefore, in
order to create a labeled dataset, the measurements and the images taken from the traffic
cameras must be combined somehow. In addition, the quality of the labeled dataset has
to be evaluated. The research objectives concerning the dataset can be summarized in the
following two research questions:

• Research Question 1: How can we create a properly labeled dataset?

• Research Question 2: What is the quality of this dataset?

1.1.2 Machine Learning Model

In order to get a proper understanding of the performance of several machine learning
models on the dataset, several machine learning models will be tested in several configura-
tions. Is a sophisticated model needed, or is a simpler model sufficient or even better? In
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addition, some research on how to validate the models has to be done. A standard method
to validate machine learning models does not exist. The research objectives concerning the
machine learning models can be summarized in the following two research questions:

• Research Question 3: How do we evaluate the performance of a machine learning
model?

• Research Question 4: How do several machine learning models and configurations
perform on this dataset?

1.1.3 Synthetic Data

One of the main interests of KNMI is to investigate the possibility of improving the dataset
by augmenting it with synthetic data. This is because the current dataset has limitations.
Firstly, there is a large imbalance in the dataset. Secondly, the labeling method used by
(Molleman, 2018) is prone to errors. Can we use synthetic data to create a better dataset?
The research objectives concerning synthetic data can be summarized in the following two
research questions:

• Research Question 5: What are the possibilities for generating synthetic data?

• Research Question 6: Is it possible to improve the performance of the neural
network by augmenting the dataset with synthetic data?

1.2 Outline of Report

In this section, the overall structure of the report is described. In Chapter 2, the literature
study is described. The literature study looks for other studies about imbalanced datasets
and synthetic data. The fundamentals of neural networks are explained in Chapter 3.
In addition, the neural network ResNET is explained and reviewed. In Chapter 4, the
method for creating a labeled dataset is explained. In addition, the quality of the resulting
dataset is reviewed. In Chapter 5, we explain how the experiments are done and how the
models are validated. In Chapter 6, the results of the experiments are evaluated. What are
the reasons that one configuration works better compared to another? In Chapter 7, the
conclusion and the recommendations for future work are given. In the conclusion, we will
determine if we achieved the research objectives in Section 1.1. In Appendix A, thoughts
and findings on adding artificial fog to clear images are described. A conceptual method
is proposed for the addition of fog to clear images.



Chapter 2

Related Work

The main focus of this literature study is finding other research about synthetic data and
imbalanced datasets concerning machine learning. We focus on synthetic data because
it is one of the main interests of KNMI. We focus on imbalanced datasets because the
imbalanced dataset is one of the main challenges in this research.

In (Buda, Maki, & Mazurowski, 2018), several convolutional neural networks (CNN)
are trained using several configurations and using several image classification datasets.
The goal is to compare several methods that deal with imbalanced datasets. The following
methods are compared:

• Random minority oversampling

• Random majority undersampling

• Two-phase training with pre-training on a randomly oversampled dataset

• Two-phase training with pre-training on a randomly undersampled dataset

• Optimizing the decision threshold

• Oversampling and optimizing the decision threshold

• Undersampling and optimizing the decision threshold

Two-phase training means that the neural network is first trained on a balanced dataset.
A balanced dataset is achieved by oversampling the minority class or undersampling the
majority class. In the second phase, the network will be trained on the unmodified, im-
balanced dataset. The learning rate in the second phase is multiplied by 10−1, so the
learning rate in the second phase is smaller compared to the first phase. Optimizing the
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decision threshold means that they choose an optimal decision threshold using the valida-
tion dataset. They show that oversampling does not result in overfitting with convolutional
neural networks. In addition, they show that oversampling in combination with optimizing
the decision threshold results in the best performance.

In (Chawla et al., 2002), they use synthetic data to augment an imbalanced dataset. It
is one of the best-known papers about synthetic data. The paper has been cited over 23,000
times. The algorithm is called SMOTe (Synthetic Minority Over-sampling Technique). The
algorithm is oversampling the minority class by generating synthetic data. The algorithm
is designed to improve the performance of machine learning models on imbalanced datasets.
They show in an experiment that SMOTe, in combination with undersampling performs
better than plain undersampling. Undersampling means removing data points from the
majority class to balance the dataset. In Algorithm 1, the complete SMOTe algorithm is
given.

Algorithm 1 SMOTe
Set k and N according to preference
Let Dsynthetic

minority be the empty set
Let Dminority the set of all data points from the minority class
Take a random sample Dsample

minority ⊂ Dminority of size N
for d ∈ Dsample

minority do
Calculate the k-nearest neighbours of d
Let V be the set of k vectors from d to every nearest neighbor
for v ∈ V do

Take k ∈ (0, 1) randomly and add the synthetic data point d+ k · v to Dsynthetic
minority

end for
end for
The set Dsynthetic

minority now contains all the synthetic data points generated by the SMOTe
algorithm

Later, another algorithm is proposed for generating synthetic images for the minor-
ity class. The algorithm is called ADASYN (Adaptive Synthetic Sampling Approach for
Imbalanced Learning) (Haibo He et al., 2008). This algorithm is inspired by the SMOTe
algorithm. The idea is that ADASYN will differentiate between minority samples that are
easy to learn and those that are difficult to learn. If a minority sample is difficult to learn,
more synthetic data points are generated around that minority data point. A minority
sample is considered difficult to learn if the k-nearest neighbors of that minority sample
contain many majority samples. Intuitively, this means that the minority sample is close
to the decision boundary, which makes it difficult to differentiate between a majority and
a minority sample. In Algorithm 2, the complete algorithm for ADASYN is given.

In some sense, ri is the factor that determines how difficult it is to learn the minority
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Algorithm 2 ADASYN
Choose β ∈ (0, 1], which is the balance level after generating and augmenting the dataset
with synthetic data. β = 1 means the dataset will be balanced completely.
Let Dsynthetic

minority be the empty set
Let Dtraining, Dminority and Dmajority be all the data points of the training dataset, all
the data points in the minority class and all the data points in the majority class.
Let m be the number of data points in Dtraining and let mminority and mmajority be the
number of minority data points and the number of majority data points.
Define G = (mmajority −mminority)β, which is the number of synthetic data points that
have to be generated.
for xminority ∈ Dminority do
Calculate the k-nearest neighbors of xminority
Define ri = ∆i/k, where i ∈ {1, · · ·mminority}, ∆i is the number of neighbors that are
from the majority class.

Define r̂i =
mminority∑

i=1

ri (normalization)

Define gi = r̂i · G, where gi is the number of synthetic data points that have to be
generated for that minority instance
for i ∈ {1, · · · , gi} do
Randomly pick a minority data point xneighborminority from the k-nearest neighbors of
xminority
Randomly pick λ ∈ (0, 1)

Add xminority + (xminority − xneighborminority)λ to Dsynthetic
minority

end for
end for
Dsynthetic
minority now contains all generated synthetic minority data points

data point. From the experiment in (Haibo He et al., 2008), it follows that the ADASYN
algorithm is a slight improvement over the SMOTe algorithm. However, from a more recent
paper, it becomes clear that SMOTe and ADASYN don’t do better than random oversam-
pling (Elor & Averbuch-Elor, 2022). They even argue that not oversampling in combination
with threshold optimization is preferred because it performs similarly to oversampling in
most cases. However, for two models, no oversampling with threshold optimization actually
results in worse performance. They argue that this only happens if the model is a "weak
classifier". In all other cases, oversampling, SMOTe, ADASYN, and no oversampling with
threshold optimization perform similarly. No oversampling without threshold optimization
performs the worst in all cases. This implies that just oversampling should be sufficient
since it did well in all cases in their experiment. In this report, we will use oversampling
as one of the methods to compensate for the class imbalance of the dataset.

An idea to create synthetic data is to add fog to non-foggy images. This would be
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convenient since foggy images are very rare, but we have many clear images. There is one
paper where this is investigated. In (Sakaridis, Dai, & Van Gool, 2018), the possibility
of adding artificial fog to clear images is investigated. Their motivation is primarily to
improve semantic segmentation in foggy circumstances. They are able to improve semantic
segmentation using synthetic data. However, in this paper, stereoscopic images are used.
In other words, the images contain a depth map. The images provided by KNMI don’t
contain a depth map. They use something called the image formation model, which is also
used in many papers about image dehazing ((Berman, Treibitz, & Avidan, 2016), (Cai,
Xu, Jia, Qing, & Tao, 2016), (Fattal, 2015), (He, Sun, & Tang, 2011), (Omer & Werman,
2004), (Ren, Pan, Zhang, Cao, & Yang, 2020), (Schechner, Narasimhan, & Nayar, 2001),
(Schechner, Narasimhan, & Nayar, 2003), (Swami & Das, 2018), (Xu, Guo, Liu, & Ye,
2012)). The image formation model is given in Equation (2.1).

I(x) = t(x) · J(x) + [1− t(x)] ·A (2.1)

x is the pixel coordinate, I(x) is the hazy image, J(x) is the clear image, A is a color
representing the so-called atmospheric light, which is basically the color of the fog, and
t(x) is the transmission map. The transmission map is given in Equation (2.2).

t(x) = e−βd(x) (2.2)

β is the attenuation coefficient of the atmosphere and d(x) is the depth map. In
the image formation model, β depends on the wavelength. Usually, this dependency is
neglected to reduce the number of unknowns.

This image formation model could also be used to add fog to clear images if we find a way
to estimate the parameters. Many papers about image dehazing have already developed
methods to extract the parameters from foggy images. Although we are interested in doing
the opposite (adding fog to images), there might be some interesting ideas we could use in
those papers. In Appendix A, the possibility of adding fog to clear images using the image
formation model is investigated.

Another interesting research area is domain adaptation ((Ben-David et al., 2010),
(Mansour, Mohri, & Rostamizadeh, 2009), (Cortes & Mohri, 2014), (Cortes, Mohri, &
Medina, 2019), (Germain, Habrard, Laviolette, & Morvant, 2015), (Zhang, Liu, Long, &
Jordan, 2019), (Ganin et al., 2015), (Ben-David & Urner, 2014), (David, Lu, Luu, & Pal,
2010), (Ben-David & Urner, 2012)). Usually, it is assumed that the source and target
datasets are drawn from the same probability distribution. However, this is not always the
case. The data from the training dataset might be collected in different circumstances. Is
it still possible to learn something if the source and the target distribution are (slightly)
different? These are questions that researchers within the research area of domain adap-
tation try to answer. In (Johnson-Roberson, Barto, Mehta, Sridhar, & Vasudevan, 2016),
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a neural network is trained on images of the game Grand Theft Auto 5 to detect cars. He
tested the network on real-world images. The accuracy is not high < 70%, but he showed
that it is definitely possible to use 3D-rendered images for this application. This is an
example where the source and target datasets are drawn from different probability distri-
butions. In our case, if we generate synthetic data points, the synthetic data points will be
drawn from a different probability distribution. Therefore, domain adaptation seems like
an interesting research area for this thesis. However, the research area is very theoretical,
and most papers don’t have any practical applications.



Chapter 3

Neural Networks

In this chapter, the fundamentals of neural networks are explained. In addition, the neural
network ResNET is explained and reviewed. A neural network in machine learning is a
model inspired by the biological brain. The brain consists of neurons that can communicate
with other neurons through synapses. Neurons are cells in the brain that can receive and
send electrical signals. Synapses are the connections between neurons that allow a neuron to
send signals to another neuron. The first computational neuron was introduced by Warren
McCulloch and Walter Pitts (McCulloch & Pitts, 1943). This type of computational
neuron only works with binary inputs. In (Rosenblatt, 1957), a new type of computational
neuron is introduced called a perceptron. A block diagram of the perceptron model is
depicted in Figure 3.1. In Equation (3.1), the corresponding mathematical expression is
given. a1, · · · , an are the inputs. w1, · · · , wn are the weights that must be determined. b
is the bias that has to be determined.

Figure 3.1: Perceptron model of Frank Rosenblatt
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output =

0

(
n∑
i=1

aiwi

)
+ b < 0

1 otherwise
(3.1)

The perceptron is still the basic building block of modern artificial neural networks.
However, there are some minor modifications. For example, in modern artificial neural
networks, the step function is swapped for a different increasing function. In addition, in
modern neural networks, multiple layers of multiple perceptrons are used. The details of
more modern neural networks are explained in the following sections.

3.1 Fully Connected Layers

Usually, a fully connected neural network is illustrated as (artificial) neurons with connec-
tions between them. Every neuron is basically the perceptron from Equation (3.1), but
the step function might be swapped for a different function. In Figure 3.2, an example
of such a model of a neural network is depicted. A neural network consists of an input
layer, hidden layers, and an output layer. A hidden layer is a layer in between the input
layer and the output layer. This neural network has only one hidden layer. However, in
practice, a neural network can have more than 100 hidden layers.

Figure 3.2: Illustration of a fully connected neural network
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Let L ∈ N be the number of layers of the neural network. For l ∈ {0, ..., L}, we have
the following equation:

al = σ(Wlal−1 + bl) (3.2)

al is a vector representing the input or output of the layer, so a0 is the input vector of
the neural network, and aL is the output of the neural network. Let nl ∈ N be the number
of neurons in layer l ∈ {0, ..., L}. Wl is a nl×nl−1 matrix, and the values in the matrix are
called weights. bl is a vector of length nl, and the values in this vector are called biases.
The weights and biases will be estimated during the training phase of the neural network.
The starting values for the weights and biases are randomly selected or copied from an
existing trained neural network. σ() is called the activation function. The activation
function is a non-linear function with the purpose of creating a non-linearity in the system.
Without this non-linearity, a multi-layer neural network would be linear and equivalent to
a one-layer neural network. In order to stack layers and create more complexity in the
network, non-linearities are needed. Usually, a rectified linear unit (ReLU) is used for the
activation function. In Equation (3.3), the definition of a ReLU from R→ R is given.

σ(x) =

{
x x ≥ 0

0 x < 0
(3.3)

For convenience, we assume that the derivative of the ReLU at 0 is equal to 0. In
Equation (3.4), the definition of the ReLU from Rn → Rn is given.

σ(x) =

σ(x1)
...

σ(xn)

 (3.4)

Another popular activation function is the sigmoid function. Contrary to the ReLU,
the output of the sigmoid function is a number between 0 and 1. For this reason, a sigmoid
function is usually used in the last layer of the neural network to ensure the outputs are
numbers between 0 and 1. In Equation (3.5), an expression for the sigmoid is given.

σi =
1

1 + e−xi
(3.5)

Another interesting activation function is the softmax function. The output of the
softmax function will be a non-negative vector that sums to 1, so the output can be seen
as a probability distribution. For this reason, a softmax function is usually used in the last
layer to ensure the neural network’s output can be seen as a probability distribution. In
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Equation (3.6), the expression for the softmax function is given.

σi(x) =
exi∑n
j=1 e

xj
(3.6)

i ∈ N is the class index.

3.2 Cost Function

The cost function is a measure of the error the neural network makes. In regression, the sum
of squared errors can be used as a cost function. Let K be the number of output variables,
let ŷ = [ŷ1, ..., ŷK ]T be the output vector of the neural network, and let Y = [y1, ..., yK ]T

be the actual value. The sum of squared errors is then defined as:

C(ŷ,y) = −
K∑
k=1

(yk − ŷk)2 (3.7)

Another common loss function is the cross-entropy loss. This loss function is usu-
ally used for classification problems. In (Simard, Steinkraus, & Platt, 2003), they show
that for classification problems, a cross-entropy loss leads to faster training and improved
generalization compared to a sum-of-squared error loss.

A categorical cross-entropy loss is usually used in categorical classification problems,
where only one class can be true simultaneously. For instance, take the MNIST dataset
(Deng, 2012), which contains images of single-digit handwritten numbers. Every image is
part of a particular class (0, 1, · · · , 9), but an image is never part of two classes because
every image only contains one number. For the cross-entropy loss, it is necessary that the
sum of y1, ..., yk and ŷ1, ..., ŷk is equal to one and that they are positive real numbers. In
this case, y will be one-hot encoded. The activation function for the last layer is usually a
softmax function to ensure that the output is non-negative and that the sum of ŷ1, ..., ŷk
equals one. The expression for the cross-entropy loss is given in Equation (3.8).

C(ŷ,y) = −
K∑
k=1

yk log ŷk (3.8)

A binary cross-entropy loss can be used for binary classification problems where more
than one class can be true simultaneously or if there is only one class. For instance, a
dataset might contain pictures of cats and dogs, and the goal is to determine if a cat
and/or a dog is in the image. Some images might not have any cats or dogs, and others
might have a cat and a dog. Therefore, an image can be part of two classes simultaneously
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or not be part of any class. In Equation (3.9), an expression for the binary cross entropy
loss is given. In this case, the activation function for the last layer is normally a sigmoid
function to ensure the neural network outputs are between 0 and 1. Unlike the regular
cross-entropy loss in Equation (3.8), the sum of y1, ..., yk ∈ {0, 1} or ŷ1, ..., ŷk ∈ (0, 1)

doesn’t have to be equal to one. This makes sense because multiple classes can be true
simultaneously. For instance, an image could contain a dog and a cat. Every ŷi could be
seen as a separate probability for that given class to be true.

C(ŷ,y) = −
( K∑

k=1

yk log ŷk + (1− yk) log(1− ŷk)
)

(3.9)

3.3 Backpropagation

Backpropagation was proposed in 1974 (Werbos & John, 1974). It speeds up the train-
ing phase of neural networks. Backpropagation is an efficient way of calculating all the
gradients of the cost function with respect to the weights and biases. In other words, we
want to know ∂C

∂wl
ij

and ∂C
∂blj

for every bias and weight. We can just calculate ∂C
∂wl

ij
and ∂C

∂blj

for each weight and bias separately, but this will result in a lot of repetitive calculations,
which is inefficient. Backpropagation is an algorithm to calculate all the weights and biases
without repetitive calculations. For backpropagation, the cost function has to fulfill two
assumptions:

1. The cost function can be written in the following form: C(ŷ,y) =
∑K

k=1C(ŷk, yk)

2. The cost function should be a function of the outputs of the neural network and the
labels only.

This explanation of backpropagation is taken from (Nielsen, 2019). Define:

zl = Wlal−1 + bl (3.10)

Define for neuron j ∈ N and layer l ∈ {1, · · · , L}:

δlj =
∂C

∂zlj
(3.11)

Calculating δLj yields using ∂aLk
∂zLj

= 0 for j 6= k:

δLj =
∑
k

∂C

∂aLk

∂aLk
∂zLj

=
∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′(zLj ) (3.12)
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Therefore:

δL =


∂C
∂aL1

σ′(zL1 )
...

∂C
∂aL

nL
σ′(zLnL)

 = ∇aLC � σ′(zL) (3.13)

Where � is the Hadamard product (elementwise multiplication). Writing δl in terms
of δl−1 using the chain rule yields:

δlj =
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
= (3.14)

∑
k

δl+1
k

∂zl+1
k

∂zlj
=

∑
k

δl+1
k

∂

∂zlj

(∑
i

wl+1
ki a

l+1
i + bl+1

k

)
=

∑
k

δl+1
k

∂

zlj

(∑
i

wl+1
ki σ(zli) + bl+1

k

)
=∑

k

δl+1
k wl+1

kj σ
′(zlj)

Therefore:

δl =

 δ
l
1
...
δl
nl

 = ((Wl+1)Tδl+1)� σ′(zl) (3.15)

With Equation (3.13) and Equation (3.15) we can calculate δl for all l ∈ {0, · · · , L} of
the neural network. Writing ∂C

∂wl
ij
and ∂C

∂blj
in terms of δlj using the chain rule yields:

∂C

∂wlij
=
∑
k

∂C

∂zlk

∂zlk
∂wlij

=
∂C

∂zli

∂zli
∂wlij

= δlia
l−1
j (3.16)

∂C

∂blj
=
∑
k

∂C

∂zlk

∂zlk
∂blj

=
∂C

∂zlj

∂zlj
∂blj

= δlj (3.17)

Using Equation (3.16) and Equation (3.17), we can calculate all the gradients of the cost
function with respect to the weights and biases. The complete backpropagation algorithm
is given in Algorithm 3.
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Algorithm 3 Backpropagation
for l = 1 · · ·L do
Calculate zl = Wlal−1 + bl and al = σ(zl)

end for
Calculate δL = ∇aLC � σ′(zL)

for l = L− 1, L− 2 · · · 1 do
Calculate δl = ((Wl+1)T δl+1)� σ′(zl)

end for
The gradients can now be calculated with ∂C

∂wl
ij

= δlia
l−1
j and ∂C

∂blj
= δlj

It is called backpropagation because δ1 · · · δL are calculated backwards (first δL then
δL−1 and so on).

3.4 Optimization algorithm

The goal of the optimization algorithm is to minimize the cost function. In this paragraph,
we will explain the most common optimization algorithms. Let ŷ1, · · · , ŷN be the outputs
of the neural network. Let y1, · · · ,yN be the corresponding labels. The neural network
should learn to predict the labels. N is the number of samples in the dataset.

3.4.1 Gradient Descent

One iteration of gradient descent is defined by:

W = W − η

N

N∑
n=1

∇WC(ŷn,yn) (3.18)

b = b− η

N

N∑
n=1

∇bC(ŷn,yn) (3.19)

The downside of plain gradient descent is that the gradient of the cost function has to be
calculated for every sample in the entire dataset for each iteration. This is computationally
very expensive and will use a lot of memory. Therefore, plain gradient descent is not feasible
in large deep learning projects.

Stochastic Gradient Descent and Mini-batch Gradient Descent

Stochastic gradient descent aims to be computationally less expensive by calculating the
gradient of the cost function only for a single sample of the dataset. The algorithm is
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defined in Algorithm 4. One epoch means iterating one time over the whole dataset, so
epochs in Algorithm 4 is the number of iterations over the entire dataset.

Algorithm 4 Stochastic Gradient Descent
Initialize the weights, biases, and learning rate η
for j = 1 to j = epochs do
Shuffle the dataset
for i = 1 to i = N do
W = W − η∇WC(ŷi,yi)

b := b− η∇bC(ŷi,yi)

end for
end for

A compromise between plain gradient descent and stochastic gradient descent would be
mini-batch gradient descent. Mini-batch gradient descent will calculate the gradient based
on a batch of the dataset instead of one sample. The algorithm is defined in algorithm 5.
In most papers, when they mention stochastic gradient descent, they actually mean mini-
batch gradient descent. Mostly, this is easy to understand because when they define a
batch size, it becomes clear they mean mini-batch gradient descent.

Algorithm 5 Mini-batch Gradient Descent
Initialize the weights, biases, the learning rate η and the batch size p.
for j = 1 to j = epochs do
Shuffle the dataset
Divide the dataset into M batches of data.
for i = 1 to i = M do

W = W − η
p

k=p∑
k=1

∇WC(ŷk
i ,y

k
i )

b = b− η
p

k=p∑
k=1

∇bC(ŷk
i ,y

k
i )

end for
end for

3.4.2 Momentum

Momentum is used to speed up convergence by adding a fraction of the previous update
vector. If the previous update was in the same direction as the current update, momentum
will cause acceleration in that direction. In Equation (3.20), the expression for one update
of mini-batch gradient descent with momentum is given. γ ∈ [0, 1] is a parameter that has
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to be set depending on the amount of preferred momentum. The default value for γ is 0.9.

vt = γvt−1 − η
p

k=p∑
k=1

∇WC(ŷk
i ,y

k
i )

W = W + vt

(3.20)

Momentum will make sure the step size will accelerate if the directions of the gradients
of the previous and current steps agree.

3.4.3 RMSprop

RMSProp is an unpublished optimizer that Geoffrey Hinton has introduced in his lecture
slides (Hinton, 2012). With RMSprop, the gradient is divided by the square root of the
moving averages of the squared gradients. In Equation (3.21), the expression for one update
of mini-batch gradient descent with RMSprop is given. The hyperparameter β ∈ (0, 1) has
to be set. The standard value for β is 0.9. The idea of RMSprop is to decrease the step
size in directions where the gradient oscillates too much.


gt = 1

p

k=p∑
k=1

∇WC(ŷk
i ,y

k
i )

vt = βvt−1 + (1− β)g2t

W = W − η√
vt
gt

(3.21)

3.4.4 Adam Optimizer

Adam optimizer is inspired by momentum and RMSprop (Kingma & Ba, 2014), but it is not
a generalization of the two optimizers. The name Adam is derived from adaptive moments.
In (Kingma & Ba, 2014), they show that Adam converges faster than other optimizers like
RMSprop. For this reason, this optimizer will be used for all the experiments in this report
(see Section 5.4 for the full motivation). In Equation (3.24), the algorithm Adam is given.
p is the batch size. mt is the term that is inspired by the momentum optimizer. vt is the
term that is inspired by RMSprop. The default setting for β1 is 0.9, and the default setting
for β2 is 0.999. m̂t and v̂t are mt and vt with bias correction applied. A bias correction
is needed since m0 = v0 = 0. In Equation (3.22) and Equation (3.23), the bias correction
terms are derived.
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E[mt] = (3.22)
β1E[mt−1] + (1− β1)E[gt] =

β2
1E[mt−2] + β1(1− β1)E[gt] + (1− β1)E[gt] =

β2
1E[mt−2] + (1− β2

1)E[gt] =

β3
1E[mt−3] + (1− β3

1)E[gt] =

βt1E[m0] + (1− βt1)E[gt] =

(1− βt1)E[gt]

=⇒ m̂t =
mt

1− βt1

E[vt] = (3.23)
β2E[mt−1] + (1− β2)E[g2t ] =

β2
2E[mt−2] + β2(1− β2)E[g2t ] + (1− β2)E[g2t ] =

β2
2E[mt−2] + (1− β2

2)E[g2t ] =

β3
2E[mt−3] + (1− β3

2)E[g2t ] =

βt2E[m0] + (1− βt2)E[g2t ] =

(1− βt2)E[g2t ]

=⇒ v̂t =
vt

1− βt2

When t becomes large, the effect of the bias correction will be negligible since βt1 → 0

and βt2 → 0 when t → ∞. In the final equation, we update Wt. η is the learning rate.
The default setting for the learning rate is 0.001. ε is a small hyperparameter to prevent
division by zero. The default setting for ε is 10−8.



gt = 1
p

k=p∑
k=1

∇WC(ŷk
i ,y

k
i )

m0 = v0 = 0

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt

1−βt
1

v̂t = vt
1−βt

2

Wt = Wt−1 − η m̂t√
v̂t+ε

(3.24)
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3.5 Convolutional Layer

The first convolutional neural network was proposed in 1980 (Fukushima, 1980). Nowa-
days, convolutional neural networks (CNN) are really common. For convolutional layers,
Equation (3.2) is replaced by Equation (3.25).

alc = σ

( ∑
k∈Kc

l ,d∈N,d≤Cl

al−1d ∗ k + blc

)
(3.25)

alc ∈ R2 where c ∈ N is the channel and l ∈ N is the layer. Cl is the number of channels
in layer l. For instance, for RGB images, C0 = 3, since there are three input channels (red,
green, and blue). blc ∈ R2 is the bias for layer l and channel c. In most implementations
of convolutional layers, there is no bias. Kc

l is the set of all kernels for output channel c in
layer l. Kernels are sometimes also called filters. One kernel is a n · n matrix with n ∈ N.
n is usually chosen to be 3, 5 or 7. The number of kernels in layer l equals Cl−1 · Cl. The
size of alc is usually called the feature map size. A feature map is the output of one kernel
applied to the previous layer’s output.

In Equation (3.25), ∗ is a (strided) convolutional operator. In Equation (3.26), the
expression for a (strided) convolution is given. s is called the stride, which is the step size;
hence the word "strided" in the name. The stride is used for downsampling if needed.
Downsampling means decreasing the size of the feature map.

a ∗ k(i, j) =
∑
m

∑
n

a(m,n) · k(m− s · i, n− s · j) (3.26)

In Figure 3.3, the operation of the strided convolutional operator is illustrated. The
stride is two, and the kernel size is 3 · 3. During this operation, the feature map decreases
from 7 · 7 to 3 · 3.
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Figure 3.3: Illustration of the operation of a convolution operator in deep learning. For
instance, for red, we have 2 · 2 + 1 · 1 + 3 · 4 + 4 · 1 + 2 · 1 + 4 · 2 + 2 · 1 + 2 · 1 + 4 · 2 = 43.
During this operation, the feature map size decreases from 7 · 7 to 3 · 3.
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In order to prevent the image from shrinking, padding is usually used. Zero padding is
the most common method. For instance, if the image is 7 · 7 and the kernel size is 3 · 3, the
images are padded with zeros on each side to make the image 9 · 9. Therefore, the output
becomes 7 · 7 after a convolutional layer with stride one.

3.6 Pooling Layers

Pooling layers can be used to decrease the size of the feature map. Commonly used pooling
layers are average pooling and max-pooling. Pooling layers have the same sliding window
approach as in Figure 3.3, but instead of elementwise multiplying with a kernel, we take
the average for average pooling or the maximum for maximum pooling. For pooling, a
stride and a pool size have to be specified. In Figure 3.4a, maximum pooling is illustrated,
and in Figure 3.4b, average pooling is illustrated. The stride is two, and the pool size is
3 · 3. This is done for every channel of the image. Therefore, the number of channels will
stay the same, but the feature map size will decrease.
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(a) Illustration of max-pooling. Dur-
ing this operation, the feature map size
decreases from 7 · 7 to 3 · 3.
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(b) Illustration of Average-pooling.
During this operation, the feature map
size decreases from 7 · 7 to 3 · 3.

Figure 3.4: Illustration of Max-pooling and Average-pooling
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3.7 Residual Neural Networks

ResNET (He et al., 2015) is a state-of-the-art neural network that won the ILSVRC 2015
in scene classification, object detection, and object localization. In addition, ResNET won
the MS COCO 2015 challenge in object detection and segmentation. Therefore, ResNET
has shown better performance compared to other neural networks. This is the main reason
that ResNET will be used in the experiments of this report (see Section 5.1 for a full
motivation). ResNET is a modified version of a convolutional neural network where they
added "shortcut connections". The last layer of ResNET is fully connected. One building
block of this network is illustrated in Figure 3.5.

Figure 3.5: (He et al., 2015) ResNET Building Block

This neural network is designed to avoid the degradation problem, which means that
stacking more layers will eventually lead to lower accuracy. In (He et al., 2015), they show
in several experiments that ResNET is less prone to the degradation problem. In addition,
this neural network solves the so-called vanishing gradient problem. The vanishing gradient
problem means that the gradient in some nodes becomes very small, preventing the node
from changing its value. The "shortcut connection" in Figure 3.5 transfers the gradient
into the next layer.

Some architectures used to train on 224x224 RGB images from ImageNet are illustrated
in Figure 3.6. In Figure 3.6 (left), the VGG-19 architecture is illustrated. Note that the
computational complexity of this network is high because of the extra fully connected layers
at the bottom and because of the higher number of channels, while the feature map size is
also larger. In Figure 3.6 (middle), the "plain" neural network is illustrated, which is the
architecture used as a baseline to test the effectiveness of the extra "shortcut connections".
In Figure 3.6 (right), the "residual" neural network is illustrated, which has the extra
"shortcut connections".
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Figure 3.6: (He et al., 2015) left: VGG-19 architecture (19.6 billion FLOPS); middle: 34-
layer "plain" (3.6 billion FLOPS); right: 34-layer "residual" (3.6 billion FLOPS). A block
with "7x7 conv, 64" means a convolutional layer with kernel size 7x7, 64 channels, and
stride 1. "/2" means that the stride is 2, which will half both dimensions of the feature
map. The feature map size is the size of alc in Equation (3.25). The dotted line indicates
that both feature map dimensions are halved using a convolutional layer with stride 2
and kernel size 1x1. On the left of the figure, one dimension of the feature map size is
given. For instance, "output size 28" means the feature map size is 28x28. For every
convolutional layer, zero padding is used to prevent the feature map from shrinking. After
every convolutional layer, batch normalization is applied.
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The ResNET architecture is partly inspired by the VGG-16 architecture used in (Simonyan
& Zisserman, 2014). The VGG-16 architecture and ResNET are both based on the follow-
ing design rules:

• Most convolutional layers have filters of size 3x3.

• If the number of channels doubles, both feature map dimensions will be halved.

• If the number of channels remains the same, the feature map size will remain the
same.

Some differences between the VGG architecture and ResNET are:

• ResNET uses batch normalization after each convolution, which VGG lacks (Ioffe &
Szegedy, 2015).

• VGG-16 uses a higher channel count at each feature map size; for example, when the
feature map size is 56, the number of channels for VGG-16 is 256, while the number
of channels for ResNET is 64. The lower channel count for ResNET decreases the
complexity of the network.

• VGG-16 uses more fully connected layers at the output of the neural network com-
pared to ResNET. Less fully connected layers at the output will lead to lower com-
plexity.

• ResNET uses "shortcut" connections.

In (He et al., 2015), they show that ResNET performs better than the VGG architec-
ture.

In (He et al., 2015), a 20-layer, 32-layer, 44-layer, 56-layer, 110-layer, and a 1,202-layer
version of the "plain" and "residual" neural networks are trained on the CIFAR-10 dataset.
The CIFAR-10 dataset consists of images of size 32x32 in different classification categories.
The architecture has the same design rules as the architectures from Figure 3.6. See (He
et al., 2015) for the exact architecture. In (He et al., 2015), they show that the "residual"
neural network is less prone to the degradation problem since stacking more layers does
lead to better accuracy in contrast to the "plain" neural network. However, the accuracy
reduces slightly if the number of layers in the "residual" neural network is 1,202. The
results for the CIFAR-10 dataset are illustrated in Figure 3.7.

In (He et al., 2015), they also experimented using the ImageNet classification dataset.
However, ImageNet contains larger images (224x224 after cropping) compared to the im-
ages in the CIFAR dataset, which increases the computational complexity. In order to
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Figure 3.7: (He et al., 2015) Results CIFAR dataset

reduce the computational complexity of the experiments using ImageNet, they use a dif-
ferent building block for the residual neural network when the number of layers is greater
than or equal to 50. They call this the bottleneck building block, which is illustrated in
Figure 3.8. The idea is that the first 1x1 convolutional layer reduces the number of channels
while the second 1x1 convolutional layer increases the number of channels to the original
number. The experiments using ImageNet did get similar results as in Figure 3.7.

Figure 3.8: (He et al., 2015) left: example of a regular building block for ResNET; right:
bottleneck building block

In (He et al., 2015), they used mini-batch gradient descent with batch size 256. They
start with a learning rate of 0.1; every time the loss plateaus, the learning rate is divided
by 10. They used about 60 iterations in total for each experiment.



Chapter 4

Dataset Creation and Analysis

KNMI provided images taken from the traffic cameras. Every 10 minutes, an image is
taken from 319 traffic cameras from May 2017 until August 2019. In addition, KNMI
provided data stored in a SQL database. The SQL database consists of the following data:

• Longitude and latitude of 319 of the traffic cameras and of the measurement stations

• Measurement data from the measurement stations, which consists of wind speed,
relative humidity, temperature, dew point, and MOR-visibility. The database will
return "None" if the corresponding sensor is missing.

• Data from the HARMONIE weather model of KNMI (Bengtsson et al., 2017)

• Image features like saturation, brightness, and smoothness

We are only interested in the MOR-visibility measurements because they are a measure
of the amount of fog. In Figure 1.1, the locations of the MOR-visibility (meteorological
optical range) sensors are depicted. There are more than 10 million images. In order to
label the images efficiently, it would be convenient to label them automatically based on
the measurements of the MOR-visibility sensors. When visibility is below 250 meters, it is
called dense fog; when visibility is between 250 meters and 1,000 meters, it is called light
fog (Wauben & Roth, 2016). KNMI is particularly interested in dense fog. Hence, for the
purpose of this project, images with a visibility of less than 250 meters will be called foggy,
while images with a visibility of more than 250 meters will be called clear.

4.1 Automatic Labeling Process

In order to label the images, the measurement data taken from the measurement stations
and the camera images have to be somehow combined. In (Andrea Pagani & Wauben,

26
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2018), they developed an algorithm to label the images. Let rmeteo be a distance in kilome-
ters (km). In (Andrea Pagani &Wauben, 2018), they consider rmeteo = 7.5 and rmeteo = 2.5.
Every image taken by a camera within a rmeteo km radius will be labeled "foggy" if the
MOR-visibility sensor measures visibility below 250 meters, and the image will be labeled
"clear" otherwise. The images taken from cameras outside the radius are removed from
the dataset. In Algorithm 6, the algorithm is given for clarity. In Figure 4.1, the process
is illustrated for rmeteo = 7.5. Near Deelen is a measurement station with a MOR-visibility
sensor.

Algorithm 6 Automatic Labeling
for every image do
Find the closest MOR-visibility sensor
if The distance to the MOR-visibility sensor is less than rmeteo then
if The visibility measured by the closest MOR-visibility sensor is less than 250
meters then
Add the label "foggy" to the image.

else
Add the label "clear" to the image.

end if
else
Disregard image

end if
end for

If rmeteo = 2.5, only 25 cameras are used for the dataset. The other cameras are
disregarded since there is no MOR-visibility sensor within a 2.5-kilometer radius. If rmeteo =

7.5, 127 cameras are used for the dataset. Having only 25 camera locations for the dataset
is quite limited. For this reason, rmeteo = 7.5 is chosen in this project.

The resulting dataset consists of 5,138,393 clear-labeled images and 15,086 foggy-labeled
images. Therefore, only 0.29% is labeled "foggy", which means there is a significant im-
balance. In addition, the automatic labeling process is prone to labeling errors because fog
can be a local phenomenon.

4.2 Dataset Statistics

This section will analyze the number of faulty images and the classification errors. In
Figure 4.2, two examples of those faulty images are illustrated. On the other hand, some
images are mislabeled. In order to get a clear understanding of the number of images
that are faulty or mislabeled, we take a random sample of 200 foggy-labeled images and
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MOR-visibility sensor
Camera

7.5km

Legend

Figure 4.1: Illustration of the automatic labeling process. There is a weather station near
Deelen equipped with a MOR-visibility sensor. Every image taken by a camera within a
rmeteo km radius will be labeled "foggy" if the MOR-visibility sensor measures visibility
below 250 meters, and the image will be labeled "clear" otherwise. The images taken by
the cameras outside of the radius will be removed from the dataset. The locations of the
cameras on this map are for illustrative purposes only. The actual locations of the cameras
are different.

a random sample of 200 clear-labeled images. In Table 4.1, the dataset statistics from
the random samples are given. A large percentage of the randomly selected foggy-labeled
images have incorrect labels. About 4% of the images are black with the text "No Stream"
in the middle. The images with the text "No Stream" will be filtered out using a Python
script. There aren’t any foggy images in the random sample of clear-labeled images. This
is expected because the majority of the photos are clear; hence, even if every image were
labeled "clear", the label accuracy for the clear-labeled images would still be quite high.

No Stream Dirt on lens Wrong label
Statistics of foggy-labeled images 4% 0% 24%
Statistics of clear-labeled images 3.5% 0% 0%

Table 4.1: Dataset Statistics
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(a) Dirt on lens (b) No Stream

Figure 4.2: Examples of faulty images in the Dataset

4.3 Relabeling

Table 4.1 indicates that about 24 percent of foggy-labeled images have incorrect labels.
In addition, all of the clear-labeled images from the random sample are correctly labeled.
There are about 15,000 foggy-labeled images. In order to increase the label accuracy, the
foggy-labeled images are manually relabeled. The resulting dataset will have proper label
accuracy. A convenient Python script is used for the relabeling process. The code shows
the images one by one. Under the image, there are three buttons named "foggy", "clear",
or "cannot say". After examining the image, the user has to choose and press one of the
three buttons. The labels are stored in a list and saved to a file. In this way, the images
can be relabeled efficiently. The resulting dataset has about 10,000 foggy-labeled images,
so about 5,000 foggy-labeled images were wrongly labeled. In Figure 4.3, random foggy-
labeled images and random clear-labeled images are shown from the resulting dataset.

Foggy Images Clear Images

Figure 4.3: Examples of Images in the Resulting Dataset



Chapter 5

Experimental Setup

5.1 Models

In the experiments, several models with different configurations will be compared. It will
be interesting to compare several configurations of the neural network ResNET (He et al.,
2015) because this neural network has proven to deliver the best performance in several
challenges (ILSVRC 2015 in scene classification, object detection, and object localization;
MS COCO 2015 challenge in object detection and segmentation). In addition, ResNET is
less prone to the vanishing gradient problem and the degradation problem (see Section 3.7
or (He et al., 2015)). Compared to other deep learning challenges, the fog detection
problem is more straightforward since there is only one class. For instance, ImageNET
has 1,000 object classes. To limit the computational burden, the configurations used in
this experiment are ResNET18 and ResNET34 (the number in the name is the number
of convolutional layers the neural network has). In addition, a 9-layer version of ResNET
is introduced called ResNET9 because it will be interesting to see how neural networks
with fewer layers perform compared to those with more layers. In Figure 5.1, a block
diagram of ResNET9 is illustrated. ResNET9 is ResNET18 with nine layers removed.
ResNET34 is illustrated in Figure 3.6. Logistic regression will be implemented to measure
how convolutional neural networks compare to simpler models. In short, the following
models will be compared in the experiments:

• Logistic Regression

• ResNET9

• ResNET18

• ResNET34

30
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(b) ResNET18

Figure 5.1: Block diagram of ResNET9 and ResNET18. A block with "7x7 conv, 64"
means a convolutional layer with kernel size 7x7, 64 channels, and stride 1. "/2" means
that the stride is 2, which will half both dimensions of the feature map. The feature map
size is the size of alc in Equation (3.25). The dotted line indicates that both feature map
dimensions are halved by using a convolutional layer with stride 2 and kernel size 1x1. For
every convolutional layer, we use zero padding to prevent the feature map from shrinking.
Note that the last layer is swapped from a fully connected layer with 1,000 neurons to
a fully connected layer with one neuron since, in our problem, there is only one class.
In addition, the softmax activation function in the last layer is swapped with a sigmoid
activation function because there is only one class. After every convolutional layer, batch
normalization is applied.
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5.2 Preprocessing

Several preprocessing techniques will be applied to increase generalization performance
and improve convergence. A good generalization performance means that the model will
still perform well on images it hasn’t seen before. In other words, the model has bad
generalization performance if it shows good performance on the training dataset but bad
performance on the test dataset. The images in the dataset are resized from 480x384 to
105x84 before doing the preprocessing operations. The following operations are applied to
each image before training:

• Random crop to 80x64

• Random horizontal flip

• Adding Gaussian noise with a mean of 0 and a standard deviation of 0.03. In Fig-
ure 5.2, the effect of Gaussian noise is illustrated.

(a) Picture without Gaussian Noise (b) Picture with Gaussian Noise

Figure 5.2: Illustration of the effect of the Gaussian noise that is added

In this way, every training iteration will have slightly different data (note that one
iteration processes the whole dataset once). All these operations are methods to increase
generalization performance (Shorten & Khoshgoftaar, 2019). In addition, adding noise is
a regularization technique (Bishop, 1995). In (Shijie, Ping, Peiyi, & Siping, 2017), it is
shown that flipping and cropping increase the performance of image classification tasks.

In order to improve convergence, the data will be normalized before training (LeCun,
Bottou, Orr, & Müller, 2012). The normalization method is straightforward. The mean
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and the variance are calculated for the complete training dataset, and every image will be
pixelwise normalized using Equation (5.1).

output =
input−mean

std
(5.1)

5.3 Compensating for dataset imbalance

In order to compensate for the large class imbalance, several techniques will be compared.
Firstly, a weighted binary cross-entropy loss will be used. This loss function is also used in
previous research about fog detection (Molleman, 2018). In Equation (5.2), an expression
is given for the weighted binary cross entropy loss. yn ∈ {0, 1} is the label, and xn ∈ (0, 1)

is the model output. In Figure 5.3, the loss is plotted for wn = 1. The weight will be
set to wn = yn · cf + (1 − yn), where c is the number of clear-labeled images and f is the
number of foggy-labeled images. This weight is proposed in the documentation of the loss
function (Paszke et al., 2022). The loss gives the foggy-labeled images a larger weight to
compensate for the class imbalance.

C = − 1

N

N∑
n=1

wn(yn log(xn) + (1− yn) log(1− xn)) (5.2)
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Figure 5.3: Binary Cross Entropy Loss
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Secondly, a study on oversampling the foggy-labeled images will be done. The original
dataset contains 0, 2 percent foggy-labeled images. The batch size is set to 256; there-
fore, many batches will have zero foggy-labeled images. The foggy-labeled images will
be duplicated such that 5 percent is foggy-labeled. In this way, every batch will have 13

foggy-labeled images on average. Oversampling will be combined with a weighted binary
cross-entropy loss to compensate for the remaining imbalance.

From (Buda et al., 2018), we know that oversampling could lead to better results.
Therefore, in another experiment, the dataset will be oversampled such that 50 percent is
foggy-labeled. This will be combined with a regular binary cross-entropy loss.

The following experiments will be done:

• No oversampling combined with a weighted binary cross-entropy loss

• Oversampling foggy-labeled images such that 5 percent is foggy-labeled combined
with a weighted binary cross-entropy loss

• Oversampling foggy-labeled images such that 50 percent is foggy-labeled combined
with a regular binary cross-entropy loss

5.4 Optimizer

Adam optimizer is used for all models because it has been demonstrated to have good
performance and fast convergence (Kingma & Ba, 2014). Several studies showed that
stochastic gradient descent has better generalization performance but slower convergence
(Wilson, Roelofs, Stern, Srebro, & Recht, 2017). A good generalization performance means
that the model will still perform well on images it hasn’t seen before. In other words, the
model has bad generalization performance if it shows good performance on the training
dataset but bad performance on the test dataset. In (Zhou et al., 2020), they show that
stochastic gradient descent will converge to flatter minima compared to adaptive optimizers
like Adam. However, to reach these flatter minima, more iterations are needed, which will
take a significant amount of time. In addition, since 3-fold cross-validation will be used (see
Section 5.5), this effect will only be magnified. Furthermore, several models with several
configurations need to be compared, which will further increase training time. For this
reason, Adam optimizer is chosen for all the experiments. The learning rate is set to 0.001

and β1 = 0.9, β2 = 0.999 which are the default settings. The batch size is set to 256, which
is the same batch size used in (He et al., 2015). A smaller batch size might lead to slower
training, but a larger batch size requires more memory.
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5.5 3-Fold Cross-Validation

With 3-fold cross-validation (James, Witten, Hastie, & Tibshirani, [2013]), the dataset
will be divided into three equally-sized disjoint subsets. Let’s call the three equally-sized
disjoint subsets subset 1, subset 2, and subset 3. 3-fold Cross-Validation consists of three
iterations, hence the 3-fold in the name. In the first iteration, subset 1 is used as a validation
dataset; in the second iteration, subset 2 is used as a validation dataset; and in the third
iteration, subset 3 is used as a validation dataset. The other two sets are used for training.
In this way, the entire dataset can be used for validation. In Figure 5.4, this principle is
illustrated.

Validation/Test

Training

Training

3 equally-sized disjoint sets

Iteration 1

Iteration 2

Iteration 3

Training Training

Training

Training

Validation/Test

Validation/Test

Figure 5.4: Illustration of 3-fold cross-validation

In the following experiments, a slight modification is made to this algorithm. In the
validation stage, the validation dataset is split into two equally-sized disjoint sets. Firstly,
the first set is used for the validation and fitting of hyperparameters, and the second set
is used for testing the model with the hyperparameters. Secondly, the second set is used
for the validation and fitting of hyperparameters, and the first set is used for testing the
model with the hyperparameters. In this way, the entire dataset is used for testing the
model after all iterations.

The dataset consists of 127 different cameras in various locations in the Netherlands. In
order to make a split, the camera locations will be divided between the three subdatasets.
This is to ensure the validation/testing iteration can detect if the model doesn’t generalize
well over different camera locations. This is significant because the Netherlands is home to
roughly 5,000 traffic cameras, and this dataset only contains a small percentage of those.

In Figure 5.5, the number of foggy-labeled images is counted for every camera location
and plotted in a histogram. Note that 46 camera locations have barely any foggy-labeled
images in them. Therefore, doing a random split might result in one subdataset having a
lot of foggy-labeled images while another subdataset has barely any foggy-labeled images.
In order to prevent that, the camera locations are ranked by the number of foggy-labeled
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Figure 5.5: Distribution of foggy-labeled images between the different camera locations.
For instance, the first bin indicates that about 46 camera locations have fewer than 19
foggy-labeled images.

images in descending order. The first camera location in this ranked list goes to Set 1, the
second camera location in this ranked list goes to Set 2, the third camera location in this
ranked list goes to Set 3, the fourth location in this ranked list goes to Set 1, and so on.
In this way, every set will get approximately the same number of foggy-labeled images. In
Figure 5.6, the number of foggy-labeled images for every camera location in these sets is
plotted in histograms. Note that the histograms in Figure 5.6 look similar to the histogram
in Figure 5.5, which is preferable since every set is a better representation of the entire
dataset. For the test/validation stage, the subset has to be split again into a test and
validation set. This split is done in the same way.
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(a) Set 1
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(b) Set 2
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(c) Set 3

Figure 5.6: Subset distributions of foggy-labeled images between the different camera lo-
cations. For instance, in the leftmost graph, the first bin indicates that about 15 camera
locations have fewer than 19 foggy-labeled images.



5.6. Verification Measures Chapter 5. Experimental Setup

5.6 Verification Measures

A commonly used tool to show the performance of a model is the confusion matrix. A
confusion matrix is illustrated in Table 5.1. The confusion matrix consists of four values
from which many verification measures are derived. The false negatives are sometimes
called the type I error, and the false positives are sometimes called the type II error. This
is terminology from statistical hypothesis testing.

Predicted Label
0 1

True Label
0 True Negatives (TN) False Positives (FP)
1 False Negatives (FN) True Positives (TP)

Table 5.1: Confusion Matrix illustration

Accuracy is likely the most well-known performance indicator. In Equation (5.3), an
expression for the accuracy is given. The accuracy isn’t working well if the dataset is
heavily imbalanced. For instance, in our case, labeling all images "clear" would not be
preferable, but the accuracy would be 0.998.

Accuracy =
Number of correctly predicted examples

Number of examples
=

TP + TN

TP + TN + FP + FN
(5.3)

Several basic classification metrics can be derived from the values in Table 5.1. The
expressions of these metrics are given in Table 5.2.

Metric/Name Expression

Recall, True Positive Rate (TPR) or Sensitivity TP
TP+FN

Specificity or True Negative Rate (TNR) TN
TN+FP

Precision or Positive Prediction Rate (PPR) TP
TP+FP

Negative Prediction Rate (NPR) TN
TN+FN

Table 5.2: Basic Classification Metrics

Recall shows the performance of the images that are foggy-labeled. Not detecting fog
could result in dangerous traffic situations if traffic control decides to rely on this model.
For this reason, having a low recall is essential. Specificity shows the performance of clear-
labeled images. Precision shows the fraction of correctly predicted images, given that the
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model predicts the image as foggy. Precision is highly dependent on the imbalance of the
dataset. For instance, precision will decrease if the dataset consists mainly of negative
instances and vice versa. We have mainly negative examples, which means it might be
challenging to get low precision. For completion, the negative prediction rate (NPR) is
included in Table 5.2. The NPR shows the fraction of correctly predicted images, given
that the model predicts the image as clear. The NPR isn’t used often in literature. It
is, just like precision, highly dependent on the imbalance of the dataset. If the dataset
consists mainly of negative instances, the NPR will increase, and vice versa.

The F1 score is the harmonic mean of precision and recall (Chinchor, 1992). In Equa-
tion (5.4), the F1 score is defined. Optimizing recall often leads to low precision, but
optimizing precision often leads to low recall. The downside of this measure is that it
completely ignores the true negatives. In addition, it is not invariant to class swapping.

F1 = 2
Precision · Recall
Precision + Recall

(5.4)

Another interesting metric is the Mathews correlation coefficient (MCC) (Matthews,
1975). This metric uses all the values in the confusion matrix in Table 5.1. In Equa-
tion (5.5), an expression for MCC is given.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(5.5)

MCC can be derived by calculating the sample Pearson’s correlation coefficient (Pearson,
1895) between the labels and the predictions. Let y1, · · · yN ∈ {0, 1} be all the predictions.
Let ŷ1, · · · ŷN ∈ {0, 1} be the corresponding labels. In Equation (5.6), the sample Pearson’s
correlation coefficient is given.

r =

N∑
n=1

(yn − ȳ)(ŷn − ¯̂y)√(
N∑
n=1

(yn − ȳ)2
)(

N∑
n=1

(ŷn − ¯̂y)2
) (5.6)

Where ȳ = 1
N

∑N
n=1 yn and ¯̂y = 1

N

∑N
n=1 ŷn. Note that:
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N∑
n=1

yn · ŷn = TP (5.7)

N∑
n=1

yn = TP + FP (5.8)

N∑
n=1

ŷn = TP + FN (5.9)

ȳ =
1

N
(TP + FP ) (5.10)

¯̂y =
1

N
(TP + FN) (5.11)

y2n = yn (5.12)
ŷ2n = ŷn (5.13)

N = TP + FP + TN + FN (5.14)

Rewriting the numerator of Equation (5.6) using Equations (5.7) to (5.14) yields:

N∑
n=1

(yn − ȳ)(ŷn − ¯̂y) =

(5.15)
N∑
n=1

ynŷn − yn ¯̂y − ȳŷn + ȳ ¯̂y =

TP − (TP + FP )
1

N
(TP + FN)− (TP + FN)

1

N
(TP + FP )+

1

N
(TP + FP )(TP + FN) =

TP − 1

N
(TP + FP )(TP + FN) =

(TP + FP + TN + FN) · TP − (TP + FP )(TP + FN)

TP + FP + TN + FN
=

TP 2 + TP · FP + TP · TN + TP · FN − TP 2 − TP · FN − TP · FP − FP · FN
TP + FP + TN + FN

=

TP · TN − FP · FN
N

Rewriting the number under the square root in Equation (5.6) using Equations (5.7)
to (5.14) yields:
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( N∑
n=1

(yn − ȳ)2
)( N∑

n=1

(ŷn − ¯̂y)2
)

= (5.16)

( N∑
n=1

(yn − 2ynȳ + ȳ2)

)( N∑
n=1

(ŷn − 2ŷn ¯̂y + ¯̂y2)

)
=(

TP + FP − 2(TP + FP )2
1

N
+

1

N
(TP + FP )2

)
·(

TP + FN − 2
1

N
(TP + FN)2 +

1

N
(TP + FN)2

)
=(

TP + FP − 1

N
(TP + FP )2

)(
TP + FN − 1

N
(TP + FN)2

)
=

1

N2

(
(TP + FP )(TP + FP + TN + FN)− (TP + FP )2

)
·(

(TP + FN)(TP + FP + TN + FN)− (TP + FN)2
)

=

1

N2
(TP + FP )(TN + FN)(TP + FN)(TP + FP )

Substituting Equation (5.15) and Equation (5.16) in Equation (5.6) will give Equa-
tion (5.5). MCC will return a value between −1 and 1. 1 means that the model didn’t
make any errors. −1 means the model does the exact opposite, so it miss-classifies every
image. 0 is the same as random guessing.

In (Chicco & Jurman, 2020), MCC is compared to the F1 score, and the conclusion is
that the MCC is superior. They argue that the F1 score can lead to misleading results
in cases of class imbalance. According to this research, MCC solves this issue since it is
invariant to class swapping. They argue that MCC is independent of the ratio of positive
and negative cases in the overall dataset. However, this seems to be incorrect. In Equa-
tion (5.17), we multiply all positive cases in Equation (5.5) with some m ∈ N. However,
the end result is still dependent on m; therefore, MCC is dependent on the ratio of the
positive and negative cases.

m · TP · TN − FP ·m · FN√
(m · TP + FP ) · (m · TP +m · FN) · (TN + FP ) · (TN +m · FN)

= (5.17)

√
m

TP · TN − FP · FN√
(m · TP + FP ) · (TP + FN) · (TN + FP ) · (TN +m · FN)

In (Chicco, Tötsch, & Jurman, 2021), they compare MCC to balanced accuracy, book-
maker informedness, and markedness. They conclude that MCC is more reliable. In
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addition, they conclude MCC is more informative and truthful if the positive and negative
classes of the dataset have the same importance in the analysis and if correctly classifying
the existing ground truth data instances has the same importance as making correct pre-
dictions in the analysis. They show that MCC can be written as Equation (5.18). This
shows that MCC only shows high values if all metrics in Table 5.2 are high at the same
time.

MCC =
√
TPR · TNR · PPR · NPR−

√
(1− TPR) · (1− TNR) · (1− PPR) · (1− NPR)

(5.18)

If one or more values in Table 5.2 are close to one, the value under the second square root
is (almost) negligible in Equation (5.18). In our case, the NPR is most likely already close
to one since it benefits from the class imbalance (TN>>FN in most cases because of the
class imbalance). This would mean that MCC can be approximated with Equation (5.19).

MCC ≈
√
TPR · TNR · PPR (5.19)

In (Redondo et al., 2020), they compare MCC to other measures, including the F1-
measure. In order to compare the measures, they generate several confusion matrices
with different properties (positively imbalanced, negatively imbalanced, balanced, high
FN, etc.). They show that MCC performs well in all cases.

A common tool to test the performance is the ROC curve (receiver operating charac-
teristic) (Fawcett, 2006). The area under the ROC curve is called AUC (area under the
curve). The method was initially developed for military radar technology, hence its name.
Later, the ROC curve was used in many other sciences like psychology, medical science
(Swets, Dawes, & Monahan, 2000), and machine learning. The ROC curve is a graph
with recall and 1− specificity for every possible threshold. In Figure 5.7, an example of a
ROC curve is illustrated. AUC is the area under the orange curve, which is 0.93 in this
case. A perfect ROC curve would touch the upper left corner of the graph (TPR = 1 and
FPR = 0). The dotted blue line is the same as random guessing.

AUC and the ROC curve can measure the separability between the two classes. In
other words, if there exists a threshold that separates the classes properly, AUC will be
high. The downside of the ROC curve is that it is more difficult to interpret compared to,
for instance, MCC, which will give a number between −1 and 1. For this reason, AUC
is often used to compare models. AUC is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
instance. This is equivalent to the Wilcoxon-Mann-Whitney statistic (Mann & Whitney,
1947). However, AUC has received some criticism (Lobo, Jiménez-Valverde, & Real, 2008).
AUC is designed as a decision threshold invariant measure. However, a decision threshold
will be chosen, which will be part of the model and influence the performance.
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Figure 5.7: Example of a ROC curve for logistic regression. AUC is 0.93 here.

5.6.1 Conclusion

MCC has demonstrated superior performance with imbalanced datasets when compared
to other measures (Chicco & Jurman, 2020) (Redondo et al., 2020) (Chicco et al., 2021).
One of the main advantages of MCC is that it is unforgivable because it simultaneously
requires high recall, specificity, precision, and a high negative prediction rate. A second
advantage is that it is invariant to class swapping. The fact that MCC is unforgivable and
invariant to class swapping sets it apart from other measures described in Section 5.6.

For this reason, MCC will be used to compare the models. In addition, recall, specificity,
and precision will be included to provide more clarity. For instance, if MCC shows a weak
correlation, these basic measures can provide more insight into the reason for the weak
correlation.
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5.7 Decision Threshold Optimization

The model’s output is a number between 0 and 1. Larger values reflect the model’s in-
creased confidence in the presence of fog and vice versa. In order to make a prediction
about fog, a particular decision threshold has to be set. If the model output exceeds the
decision threshold, the prediction is foggy, and vice versa. Usually, the decision threshold
is set to 0.5. However, it is possible to tweak the decision threshold to a desired value.
In Section 5.5, we already took into account being able to set hyperparameters using the
validation stage in cross-validation. From various literature, we know that optimizing the
decision threshold can improve the results ((Elor & Averbuch-Elor, 2022), (Buda et al.,
2018), (Schisterman, Perkins, Liu, & Bondell, 2005)). The main goal will be to maximize
MCC. In addition, we don’t want recall to become too low. A low recall means that fog
will often not be detected. This could result in dangerous traffic situations if traffic control
decides to rely on this model. We will try to improve the results by optimizing the decision
threshold in Section 6.1.2.



Chapter 6

Experiments

In this chapter, several models will be compared with different configurations as described
in Chapter 5. We use 3-fold cross-validation as described in Section 5.5. In the case of
decision threshold optimization, the decision threshold hyperparameter is set during the
validation stage of the process. The results described in this chapter are the results of the
final testing stage. For reference, all confusion matrices for all experiments are given in
Appendix B.

The negative prediction rate (NPR) is greater than 0.999 for all experiments in this
chapter. Therefore, we can approximate Equation (5.18) with Equation (6.1).

MCC ≈
√
TPR · TNR · PPR (6.1)

Equation (6.1) has almost the same expression as the geometric mean between recall
(TPR), specificity (TNR), and precision (PPR). The only difference is that Equation (6.1)
contains a square root instead of a cubic root. From Equation (6.1), it is clear that
MCC will give equal weight to these three measures. However, these three measures are
not of equal importance. For this reason, these three measures will also be evaluated
independently in this chapter. As described in Section 5.6, recall is the most important
measure, followed by precision and specificity.

If we minimize recall, then we minimize the type I error. The model makes a type I
error when it is foggy, but the model predicts that it is clear. Recall can be seen as the
probability that the model predicts a foggy-labeled image correctly. Recall is considered
important since not detecting fog could result in dangerous traffic situations if traffic control
decides to rely on this model.

Specificity and precision are both related to type II errors. In other words, if we
minimize precision or specificity, we also minimize type II errors. The model makes a
type II error when it is clear, but the prediction of the model is foggy. Specificity can be
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seen as the probability that the model correctly predicts a clear-labeled image. Precision
can be seen as the probability that the model is correct, given that the prediction of the
model is foggy. For instance, if precision is 0.1 and the model prediction is foggy, the
probability that the label is actually foggy is 0.1. Precision is directly dependent on the
class imbalance and is, for this reason, difficult to optimize (often FP>>TP because of the
class imbalance). High precision mostly implies high specificity because, for high precision,
FP needs to be low. In addition, TP is a low number because of class imbalance, and TN
is mostly a high number because of class imbalance.

6.1 Experiments

Firstly, the goal of the experiments is to compare the performance of different models.
What is the optimal number of layers? Will adding more layers result in better perfor-
mance? Secondly, we want to investigate the effect of oversampling compared to using a
weighted binary cross-entropy loss. Oversampling is just duplicating the foggy-labeled im-
ages of the dataset before preprocessing is applied. The preprocessing stage is explained in
Section 5.2. The preprocessing stage can be seen as a basic data augmentation technique.
Oversampling is intriguing since one of the goals of this thesis is to augment the dataset
with synthetic data. Therefore, we can compare basic oversampling with augmenting the
dataset with synthetic data. In Appendix A, a conceptual algorithm is given to add fog to
clear images. Unfortunately, training on synthetic images has not been done due to time
limitations. Thirdly, the goal is to investigate the effect of decision threshold optimization.
The effect of decision threshold optimization is analyzed in Section 6.1.2.

The weights of the neural networks in this section are initialized with weights from
pre-trained neural networks on ImageNet. Note that no pre-trained version of ResNET9 is
available because this version of ResNET has been proposed in this thesis. In Section 5.1,
the architecture of ResNET9 is given. ResNET9 is basically ResNET18 with nine layers
removed. For ResNET9, the pre-trained weights of ResNET18 are taken. Initializing the
neural network with weights from a pre-trained neural network is also known as transfer
learning (Bozinovski, 2020). In Section 6.2.1, the effect of the pre-trained weights compared
to random weights is investigated by an additional experiment. Additionally, the effect of
taking the fast Fourier transform (FFT) as an additional preprocessing step is investigated.
The results of this experiment are analyzed in Section 6.2.2.

6.1.1 Oversampling vs Weighted Binary Cross Entropy Loss

The first goal of this experiment is to compare the performance of the different models.
The second goal is to compare oversampling to a weighted binary cross-entropy loss.
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No oversampling

In this experiment, the foggy-labeled images of the dataset are not oversampled. Instead,
a weighted binary cross-entropy loss is used. In Equation (5.2), the weighted cross-entropy
loss is defined. The weighted cross-entropy loss will compensate for the imbalance. In
Table 6.1, the results of these experiments are given. LR stands for logistic regression,
and MCC stands for Matthews correlation coefficient. From Table 6.1, we can conclude
that logistic regression performs the worst and that ResNET9 performs the best. Adding
more layers doesn’t result in better performance. In fact, ResNET18 and ResNET34 are
performing slightly worse than ResNET9. MCC suffers from low precision, which is why
it shows a weak correlation. In Figure 6.1, the loss during training is plotted. The loss
for the ResNET models is decreasing steadily. It seems that the loss didn’t completely
converge after ten iterations. However, the loss appears to be very close to convergence.
The loss for ResNET9 is lower than the loss for ResNET18 and ResNET34 on the training
dataset. This perfectly reflects the results in Table 6.1.

Setting Recall Specificity Precision MCC
LR 0.8739 0.7368 0.0066 0.0619
ResNET9 0.9340 0.9825 0.0969 0.2978
ResNET18 0.8676 0.9829 0.0923 0.2797
ResNET34 0.9097 0.9819 0.0917 0.2857

Table 6.1: Foggy-labeled images are not oversampled in this experiment. A weighted binary
cross-entropy loss is used. Models are compared with basic measures from Table 5.2 and
MCC. The highest score has a bold font in each column.

1 2 3 4 5 6 7 8 9 10
iteration

10 1

1.25 × 10 1

1.5 × 10 1

1.75 × 10 1

2 × 10 1

2.25 × 10 1

2.5 × 10 1

2.75 × 10 1

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.1: Loss during training for ResNET
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Foggy-Labeled Images Oversampled to 5 Percent

In this experiment, the minority class of the dataset is oversampled such that 5 percent
of the dataset is foggy-labeled. The remaining imbalance is compensated with a weighted
binary cross-entropy loss. In Table 6.2, the results of these experiments are given. Logistic
regression does slightly worse compared to the previous experiment. However, the ResNET
models are doing better than the previous experiment. ResNET9 shows the best perfor-
mance again, and precision increases to 0.23. ResNET18 and ResNET34 seem to favor
recall over precision. Figure 6.2, the loss during training is illustrated. The loss decreases
steadily during training. It seems that the loss did not completely converge yet. However,
the loss seems to be very close to convergence.

Setting Recall Specificity Precision MCC
LR 0.8587 0.7196 0.0061 0.0575
ResNET9 0.9045 0.9941 0.2338 0.4582
ResNET18 0.9530 0.9800 0.0875 0.2855
ResNET34 0.9559 0.9861 0.1213 0.3379

Table 6.2: Foggy-labeled images are oversampled such that 5 percent is foggy-labeled. A
weighted binary cross-entropy loss is used. Models are compared with basic measures from
Table 5.2 and MCC. The highest score has a bold font in each column.

1 2 3 4 5 6 7 8 9 10
iteration

3 × 10 2

4 × 10 2

6 × 10 2

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.2: Loss during training for ResNET
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Foggy-Labeled Images Oversampled to 50 Percent

In this experiment, the minority class of the dataset is oversampled such that 50 percent is
foggy-labeled. Since the training dataset is already balanced, a regular binary cross-entropy
loss is used in this experiment. In Table 6.3, the results of these experiments are given.
Logistic regression in this experiment favors specificity and precision a bit more compared
to the previous experiments. Logistic regression still performs worse compared to the
models using ResNET. Compared to the previous experiments, the ResNET models favor
recall over specificity and precision. In Figure 6.3, the loss during training is depicted. The
loss during training for ResNET18 and ResNET34 is consistently lower than the loss for
ResNET9, but ResNET18 and ResNET34 perform worse than ResNET9 on the validation
dataset. This is a sign of overfitting. The loss did not completely converge yet, but it
seems close to convergence.

Setting Recall Specificity Precision MCC
LR 0.8082 0.7963 0.0079 0.0670
ResNET9 0.9890 0.9479 0.0367 0.1854
ResNET18 0.9847 0.8480 0.0128 0.1032
ResNET34 0.9443 0.7461 0.0074 0.0708

Table 6.3: Foggy-labeled images are oversampled such that 50 percent is foggy-labeled.
Models are compared with basic measures from Table 5.2 and MCC. The highest score has
a bold font in each column.

1 2 3 4 5 6 7 8 9 10
iteration

10 2

4 × 10 3

6 × 10 3

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.3: Loss during training for ResNET
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6.1.2 Decision Threshold Optimization

All the experiments described above use a decision threshold (T) of 0.5. In other words,
if the neural network outputs a value larger than 0.5, it will classify the image as foggy,
and if the output is smaller or equal to 0.5, it will classify the image as clear. However,
it is possible to optimize this decision threshold (T) by choosing a decision threshold (T)
in the validation stage. In the experiments, recall and specificity are generally high, but
precision is underperforming. As a result, MCC shows a weak correlation. In this section,
we are trying to optimize performance by choosing a different decision threshold. One
option would be to maximize Equation (6.1). We know that specificity is mostly close to
one, and optimizing precision will result in a specificity that is even higher. Therefore,
we can approximate MCC with Equation (6.2). This approximation enables us to use the
built-in function (sklearn.metrics.precision_recall_curve) in scikit-learn (Pedregosa et al.,
2011), which outputs precision and recall for every decision threshold. This makes it easy
to implement.

MCC ≈
√
TPR · PPR (6.2)

Therefore, the decision threshold that maximizes Equation (6.2) is given by Equa-
tion (6.3).

T = argmax
Thresholds

TPR · PPR (6.3)

Equation (6.2) does give equal weight to precision and recall. However, in this particular
problem, recall is more important. For this reason, a second function is proposed for the
optimization of the decision threshold. In Equation (6.4), the expression is given for this
function. Precision is penalized by taking the square root.

T = argmax
Thresholds

TPR ·
√

PPR (6.4)

To get a better understanding, precision and recall are plotted for every possible decision
threshold for ResNET9 in Figure 6.4. The foggy-labeled images are oversampled such that
5 percent is foggy-labeled. Every dot corresponds to a particular decision threshold. The
black dot corresponds to a decision threshold of 0.5; the red dot corresponds to the decision
threshold in Equation (6.3), and the yellow dot corresponds to the decision threshold in
Equation (6.4). From Figure 6.4, it is clear that Equation (6.4) indeed favors recall more
than precision compared to Equation (6.3).
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Figure 6.4: Precision-Recall Curve for ResNET9. Foggy-labeled images are oversampled
such that 5 percent is foggy-labeled. A weighted binary cross-entropy loss is used. The
precision-recall curve plots precision and recall for every possible decision threshold. Every
blue dot corresponds to a certain decision threshold. The red dot is the decision threshold
that satisfies Equation (6.3). The yellow dot is the decision threshold that satisfies Equa-
tion (6.4). There are six graphs because we must fit the decision threshold six times. This
is because we use the algorithm described in Section 5.5.

This process is repeated for every model and setting. In Table 6.4, Table 6.5 and
Table 6.6 the results for the decision threshold optimization are given. The results from
Section 6.1.1 are also included for comparison. Overall, optimizing the decision thresh-
old will increase precision, specificity, and MCC but decrease recall. In most cases, this
trade-off will depend on the user’s preference. For logistic regression, precision increases
slightly after decision threshold optimization but remains very low. For all other models,
performance increases substantially. Mostly, MCC shifts from a weak correlation (<0.4)
to an average correlation (0.4<MCC<0.6). Precision improves substantially. However,
since it is a trade-off, recall decreases. Especially if we use decision threshold optimization
using Equation (6.3) (T1). For this reason, optimizing the decision threshold using Equa-
tion (6.4) (T2) seems most preferable. A combination between oversampling (till 5%) and
a weighted binary cross entropy loss still shows the overall best performance after applying
decision threshold optimization. The overall best-performing model is still ResNET9 after
optimizing the threshold.
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No Oversampling

Setting Recall Specificity Precision MCC
LR 0.8739 0.7368 0.0066 0.0619
LR with T1 0.7140 0.8427 0.0090 0.0682
LR with T2 0.8716 0.7665 0.0074 0.0673
ResNET9 0.9340 0.9825 0.0969 0.2978
ResNET9 with T1 0.6278 0.9977 0.3548 0.4706
ResNET9 with T2 0.7508 0.9961 0.2800 0.4570
ResNET18 0.8676 0.9829 0.0923 0.2797
ResNET18 with T1 0.5424 0.9973 0.2908 0.3956
ResNET18 with T2 0.6747 0.9952 0.2193 0.3827
ResNET34 0.9097 0.9819 0.0917 0.2857
ResNET34 with T1 0.6155 0.9971 0.2968 0.4258
ResNET34 with T2 0.7311 0.9952 0.2344 0.4121

Table 6.4: Foggy-labeled images are not oversampled. Models with decision threshold
optimization compared with basic measures from Table 5.2 and MCC. T1 means that the
decision threshold is optimized using Equation (6.3). T2 means that the decision threshold
is optimized using Equation (6.4). The highest score has a bold font in each column.

Foggy-Labeled Images Oversampled to 5 Percent

Setting Recall Specificity Precision MCC
LR 0.8587 0.7196 0.0061 0.0575
LR with T1 0.6995 0.8204 0.0078 0.0604
LR with T2 0.8389 0.6977 0.0055 0.0522
ResNET9 0.9045 0.9941 0.2338 0.4582
ResNET9 with T1 0.6770 0.9982 0.4287 0.5376
ResNET9 with T2 0.7925 0.9969 0.3368 0.5153
ResNET18 0.9530 0.9800 0.0875 0.2855
ResNET18 with T1 0.7585 0.9936 0.1928 0.3803
ResNET18 with T2 0.8168 0.9922 0.1737 0.3745
ResNET34 0.9559 0.9861 0.1213 0.3379
ResNET34 with T1 0.6944 0.9979 0.4013 0.5267
ResNET34 with T2 0.8079 0.9967 0.3268 0.5125

Table 6.5: Foggy-labeled images are oversampled such that 5 percent is foggy-labeled.
Models with decision threshold optimization are compared with basic measures from Ta-
ble 5.2 and MCC. T1 means that the decision threshold is optimized using Equation (6.3).
T2 means that the decision threshold is optimized using Equation (6.4). The highest score
has a bold font in each column.
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Foggy-Labeled Images Oversampled to 50 Percent

Setting Recall Specificity Precision MCC
LR 0.8082 0.7963 0.0079 0.0670
LR with T1 0.7504 0.8185 0.0082 0.0658
LR with T2 0.8617 0.7532 0.0070 0.0637
ResNET9 0.9890 0.9479 0.0367 0.1854
ResNET9 with T1 0.6414 0.9969 0.2962 0.4343
ResNET9 with T2 0.7660 0.9950 0.2346 0.4221
ResNET18 0.9847 0.8480 0.0128 0.1032
ResNET18 with T1 0.6194 0.9963 0.2540 0.3949
ResNET18 with T2 0.7514 0.9939 0.1978 0.3835
ResNET34 0.9443 0.7461 0.0074 0.0708
ResNET34 with T1 0.5511 0.9964 0.2370 0.3596
ResNET34 with T2 0.6974 0.9928 0.1630 0.3348

Table 6.6: Foggy-labeled images are oversampled such that 50 percent is foggy-labeled.
Models with decision threshold optimization are compared with basic measures from Ta-
ble 5.2 and MCC. T1 means that the decision threshold is optimized using Equation (6.3).
T2 means that the decision threshold is optimized using Equation (6.4). The highest score
has a bold font in each column.

6.2 Additional Experiments

6.2.1 Transfer Learning

In Section 6.1, the weights of the neural networks are taken from pre-trained neural net-
works trained on ImageNET. In this way, the pre-trained neural network already knows
what a car looks like, for instance. Therefore, the hypothesis is that this could lead to
better performance because the neural network has already learned things. This idea is
known as transfer learning (Bozinovski, 2020). Remark that ResNET9 was initialized with
the weights of ResNET18. This is possible because ResNET9 is basically ResNET18 with
nine layers removed.

The goal of this experiment is to investigate the effect of transfer learning. Did ini-
tializing the weights of a pre-trained neural network improve performance? To test if the
pre-trained weights improve performance, the same experiments have been done with ran-
dom weights. The results from this experiment are compared to the values in Section 6.1.
The experiments where the foggy-labeled images are oversampled to 50 percent are not
executed because there was not enough time left within the project. In Table 6.7 and
Table 6.8, the results of these experiments are given.
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No oversampling

For ResNET9, the results are very similar to those presented in Section 6.1.2. However,
for ResNET18 and ResNET34, the results seem to be consistently better than the results
presented in Section 6.1.2. Although the difference is small, it might not be random. The
loss in Figure 6.5 is generally slightly higher than in Figure 6.1. This might indicate that
initializing the weights with pre-trained weights decreases generalization performance. In
other words, it increases performance on the training dataset but decreases performance
when the model is evaluated on a different dataset.

Setting Recall Specificity Precision MCC
ResNET9 0.9194 0.9853 0.1115 0.3173
ResNET9 with T1 0.6123 0.9978 0.3547 0.4647
ResNET9 with T2 0.7346 0.9961 0.2758 0.4485
ResNET18 0.8839 0.9869 0.1196 0.3224
ResNET18 with T1 0.5912 0.9973 0.3084 0.4255
ResNET18 with T2 0.7467 0.9948 0.2241 0.4072
ResNET34 0.9278 0.9820 0.0937 0.2918
ResNET34 with T1 0.6204 0.9975 0.3296 0.4507
ResNET34 with T2 0.7508 0.9954 0.2452 0.4273

Table 6.7: Foggy-labeled images are not oversampled. The models are initialized with
random weights. Models compared with basic measures from Table 5.2 and MCC. T1
means that the decision threshold is optimized using Equation (6.3). T2 means that the
decision threshold is optimized using Equation (6.4). The highest score has a bold font in
each column.

1 2 3 4 5 6 7 8 9 10
iteration

10 1

2 × 10 1

3 × 10 1

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.5: Loss during training for all ResNET models
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Foggy-Labeled Images Oversampled to 5 Percent

ResNET9 generally scores a bit lower on recall in this experiment but higher on all the other
measures. For ResNET18, precision doubles compared to the results in Table 6.5 but recall
is slightly lower. Initializing with random weights increases performance for ResNET18
substantially. For ResNET34, the performance seems to have increased slightly. Without
decision threshold optimization, precision increased from 0.12 to 0.16, but recall decreased
slightly. After threshold optimization, recall is generally higher, but precision is slightly
lower. Overall, performance did improve slightly for ResNET34. Overall, initializing with
random weights enhances performance.

The fact that initializing the weights with pre-trained weights has a generally negative
effect on the validation performance of the model was unexpected. At the same time, the
loss in Figure 6.6 is generally slightly higher compared to the loss in Figure 6.2. This might
indicate that initializing the weights with pre-trained weights decreases generalization per-
formance. In other words, it increases performance on the training dataset but decreases
performance when the model is evaluated on a different dataset.

Setting Recall Specificity Precision MCC
ResNET9 0.8714 0.9954 0.2768 0.4896
ResNET9 with T1 0.6777 0.9983 0.4417 0.5460
ResNET9 with T2 0.7551 0.9975 0.3811 0.5352
ResNET18 0.9275 0.9930 0.2112 0.4408
ResNET18 with T1 0.7102 0.9980 0.4211 0.5457
ResNET18 with T2 0.8071 0.9970 0.3527 0.5322
ResNET34 0.9504 0.9901 0.1622 0.3904
ResNET34 with T1 0.7215 0.9978 0.3923 0.5309
ResNET34 with T2 0.8136 0.9966 0.3217 0.5102

Table 6.8: Foggy-labeled images are oversampled such that 5 percent is foggy-labeled. The
models are initialized with random weights. Models compared with basic measures from
Table 5.2 and MCC. The highest score has a bold font in each column.

1 2 3 4 5 6 7 8 9 10
iteration

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.6: Loss during training for all ResNET models
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6.2.2 Fast Fourier Transform

This experiment investigates the effect of the fast Fourier transform (FFT). The FFT is
calculated for every image in the preprocessing stage. In Table 6.9, Figure 6.7, Table 6.10
and Figure 6.8, the results for this experiment are given. Logistic regression does perform
poorly because recall is very low. Intuitively, this is a bad sign because, apparently, a
simple model cannot capture the information anymore after doing the FFT. The models
using ResNET are doing a lot better. The models seem to favor precision a little bit more
over recall compared to the experiments in Section 6.1. However, doing an FFT generally
doesn’t seem to improve performance. The best-performing model is again ResNET9, with
the foggy-labeled images, oversampled such that 5 percent is foggy-labeled. Here, precision
is 0.259, but recall is 0.817. Without the FFT, precision would be 0.234, and recall would
be 0.905. In some sense, this is a trade-off, but for this particular use case, the numbers
without the FFT are better because recall is more important than precision.

No oversampling

Setting Recall Specificity Precision MCC
LR 0.2621 0.9979 0.1996 0.2270
LR with T1 0.5606 0.9931 0.1401 0.2776
LR with T2 0.7138 0.9848 0.0863 0.2447
ResNET9 0.8597 0.9896 0.1420 0.3469
ResNET9 with T1 0.5796 0.9973 0.3009 0.4161
ResNET9 with T2 0.7367 0.9945 0.2116 0.3929
ResNET18 0.7974 0.9879 0.1170 0.3025
ResNET18 with T1 0.5390 0.9963 0.2257 0.3469
ResNET18 with T2 0.6831 0.9931 0.1654 0.3338

Table 6.9: Foggy-labeled images are not oversampled. The FFT is calculated for every
image in the preprocessing stage. Models compared with basic measures from Table 5.2
and MCC. The highest score has a bold font in each column.

1 2 3 4 5 6 7 8 9 10
iteration

2 × 10 1

3 × 10 1
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ResNET9
ResNET18

Figure 6.7: Loss during training for ResNET
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Foggy-Labeled Images Oversampled to 5 Percent

Setting Recall Specificity Precision MCC
LR 0.0891 0.9993 0.2017 0.1329
LR with T1 0.5244 0.9936 0.1414 0.2698
LR with T2 0.6825 0.9841 0.0795 0.2293
ResNET9 0.8172 0.9953 0.2593 0.4586
ResNET9 with T1 0.6421 0.9980 0.3964 0.5033
ResNET9 with T2 0.7518 0.9967 0.3148 0.4851
ResNET18 0.8025 0.9941 0.2134 0.4119
ResNET18 with T1 0.5902 0.9978 0.3519 0.4544
ResNET18 with T2 0.7324 0.9959 0.2646 0.4386
ResNET34 0.8591 0.9892 0.1377 0.3414
ResNET34 with T1 0.6083 0.9970 0.2897 0.4182
ResNET34 with T2 0.7254 0.9949 0.2210 0.3985

Table 6.10: Foggy-labeled images are oversampled such that 5 percent is foggy-labeled. A
weighted binary cross-entropy loss is used. The FFT is calculated for every image in the
preprocessing stage. The models are initialized with random weights. Models compared
with basic measures from Table 5.2 and MCC. The highest score has a bold font in each
column.

1 2 3 4 5 6 7 8 9 10
iteration

10 1
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6 × 10 2

lo
ss

ResNET9
ResNET18
ResNET34

Figure 6.8: Loss during training for ResNET
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6.3 Mislabeled images

The dataset is not perfect. As a result, errors in the dataset in conjunction with class
imbalance could also be to blame for the resulting low precision. The percentage of mis-
labeled clear-labeled images should be low because we did not find any mislabeled images
in the sample of 200 clear-labeled images in Chapter 4. However, since there are about 5
million clear-labeled images and 10,000 foggy-labeled images, there will be a lot of false
positives if a small percentage of the clear-labeled images are foggy. A lot of false positives
will result in low precision. In other words, if specificity is, for instance, 0.99, then there
are about 50,000 false positives, and precision will be lower than 10,000

50,000+10,000
= 0.167.

For the true negatives, we already know that there are barely any mislabeled images
(see Chapter 4). In addition, the foggy-labeled images are labeled by hand and should not
have too many mistakes. For this reason, we will limit our investigation to the effect of
mislabeled images on false positives in this section.

We do this by carefully checking each image individually and estimating if the visibility
is below or above 250 meters. This is done by considering several key facts:

• The length of every line on the road is 3 meters, and the distance between the lines is
9 meters. Therefore, every line accounts for 12 meters. If we can count 20 consecutive
lines on the image, then the visibility is definitely above 250 meters. This is because
20 consecutive lines account for 240 meters, and some lines will be out of sight.

• In most locations, the distance between the lampposts is about 50 meters.

If there is doubt, we will compare the image to the location on Google Maps. For
some images, the camera is zoomed in quite far, which means it seems more foggy than it
actually is. An example of this is given in Figure 6.9.

For this experiment, we will only consider ResNET9 initialized with random weights.
The foggy-labeled images are oversampled such that 5 percent of the dataset is foggy-
labeled. We use this configuration because it has the best overall performance in the
experiments. We consider a decision threshold of 0.5, the decision threshold provided by
Equation (6.3) (T1), and the decision threshold provided by Equation (6.4) (T2). It is
quite time-consuming to determine if the visibility is higher or lower than 250 meters.
Therefore, only 100 images for each decision threshold are checked.

Setting Percentage incorrect 95% CI
No decision threshold optimization 25 [17.5, 34.3]
Decision threshold optimization (T1) 41 [31.9, 50.8]
Decision threshold optimization (T2) 41 [31.9, 50.8]

Table 6.11: Statistics of mislabeled images in the false positives for ResNET9 from a
random sample of 100 images. CI stands for confidence interval. The confidence interval
is estimated using the Wilson method (Wallis, 2013).
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Figure 6.9: Image with a visibility of more than 250 meters. The camera is zoomed in,
making it appear more foggy than it actually is. The matrix boards on the right are 250
meters away from the camera and are clearly visible. Therefore, the visibility is above 250
meters, and the image should be labeled as "clear".

From the estimated percentage and their confidence interval in Table 6.11, we can
calculate the performance based on the confidence interval. A confidence interval is used
because a random sample of 100 images is quite small and prone to randomness. In
Table 6.12, the performance metrics are given based on the confidence interval. All three
metrics increased after the correction. The results are substantially better. Precision
becomes substantially better. MCC shifts from an average to a strong correlation (>0.6).

Setting Recall Specificity Precision MCC
ResNET9 [0.9080, 0.9278] [0.9962, 0.9970] [0.4033, 0.5248] [0.6037, 0.6965]
ResNET9 with T1 [0.7468, 0.7754] [0.9988, 0.9992] [0.6198, 0.7253] [0.6795, 0.7492]
ResNET9 with T2 [0.8240, 0.8491] [0.9983, 0.9988] [0.5785, 0.6955] [0.6894, 0.7677]

Table 6.12: Corrected performance confidence intervals for ResNET9.



6.4. Discussion and Conclusion Chapter 6. Experiments

6.4 Discussion and Conclusion

6.4.1 Weighted binary cross entropy loss vs Oversampling

Oversampling the dataset such that 50 percent of the images are foggy-labeled seems to
result in overfitting, which causes worse performance. Only about 6,700 foggy-labeled
images are in the training dataset in each cross-validation iteration. In addition, there are
only about 82 different locations in the training dataset in each cross-validation iteration.
Therefore, the model might remember certain images or characteristics of the location
to get high performance on the training dataset. However, only using a weighted cross-
entropy loss doesn’t seem ideal either. More than half of the batches during training
don’t contain any foggy-labeled images. In addition, if a batch contains one foggy-labeled
image, the loss contribution of that one image will get multiplied by about 500 (since 99.8
percent of the dataset is clear-labeled). Some batches will have two or more foggy-labeled
images because the images are randomly picked. Therefore, the loss and the gradient will
oscillate from batch to batch. Adam optimizer has the property to decrease the step size
in directions where the gradient oscillates too much. This is most likely the reason that
no oversampling performs worse compared to oversampling the foggy-labeled images to 5
percent. Oversampling the foggy-labeled images to 5 percent such that every batch has
around 13 foggy-labeled images seems to solve this problem. Oversampling the foggy-
labeled images to 5 percent in combination with a weighted cross-entropy loss appears to
be a nice balance between the two extremes. Another way to solve this problem might be
to use a different optimizer, like mini-batch gradient descent.

6.4.2 Transfer Learning

Initializing the weights of a pre-trained neural network to improve performance seems
like a good idea. In addition, if it doesn’t help, it won’t hurt, right? The results of the
experiment in Section 6.2.1 indicate otherwise. The performance of the models on the
validation dataset is actually slightly better and sometimes even substantially better. In
addition, the loss during training is slightly lower. Is this a coincidence? Well, it might
not be. A similar phenomenon happens in a comparable experiment. In (Ash & Adams,
2020), three ResNET18 models are compared. The models are trained on the CIFAR-10
dataset. This dataset contains images labeled in ten separate classes. The first model is
trained on 50% of the data. The second model is trained on 100% of the data. The third
model is initialized with the weights of the first model and trained on 100% of the data.
The third model performs worse on the test dataset when compared to the second model.
However, the loss during training is the same between the second and third models. They
conclude that the hot start decreases the generalizability of the model. In other words,
on the training dataset, both models achieve the same performance. However, when the
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model is evaluated on a different dataset, like the test or the validation dataset, the model
with the hot start performs worse.

6.4.3 Dataset quality

The dataset isn’t perfect. This will have a negative effect on the model’s performance.
However, even worse, it makes validating and testing the model more challenging. Are the
errors caused by a bad model, or are they caused by mislabeled images? From Section 6.3,
it becomes clear that the imperfections in the dataset have a significant contribution to the
results. In other words, low precision is partly caused by mislabeled images in the dataset.
The imbalance of the dataset magnifies this effect. If we correct these results, MCC shifts
from an average correlation (0.4<MCC<0.6) to a strong correlation (MCC>0.6).

6.4.4 Decision Threshold Optimization

After training, the model can be further tweaked by choosing a decision threshold. The
selection of the decision threshold is a trade-off between recall and precision. In our case,
precision was underperforming, which resulted in a weak correlation (MCC<0.4). Decision
threshold optimization was able to improve precision substantially. In addition, MCC shifts
from an average correlation (0.4<MCC<0.6) to a strong correlation. However, the only
way to achieve that is to lower recall by about 10 or 20 percent. Therefore, it is a trade-off.
However, the resulting model with decision threshold optimization is definitely preferable.



Chapter 7

Conclusions and Recommendations for
Future Research

We formulated several research questions in Section 1.1. In this section, we will reflect
on these research questions and determine if this thesis succeeded in answering them. In
addition, we will make recommendations for future research in this chapter. The first two
research questions concerning the dataset are:

• Research Question 1: How do we create a properly labeled dataset?

• Research Question 2: What is the quality of this dataset?

In Chapter 4, we created a labeled dataset with a low labeling error. The relabeling of
the foggy-labeled images did increase the quality of the dataset compared to previous re-
search ((Molleman, 2018), (Andrea Pagani & Wauben, 2018)). However, from Section 6.3,
it becomes clear that the labeling errors in the false positives significantly affect the results.
Although the percentage of labeling errors in the clear-labeled images is very low (< 0.1%)
because the dataset is very imbalanced (0.2%/99.8%), the effect gets magnified. Mainly,
precision suffers, which causes MCC to suffer too. Specificity and recall aren’t affected
because they are class imbalance invariant measures.

One interesting subject for further research is improving the dataset even further. For
instance, one way to do this is to relabel the false positives. There are about 10,000
false positives (for ResNET9 with a dataset where 5 percent is foggy-labeled because of
oversampling, initialized with random weights and T1). However, it might be possible to
take a subset of those 10,000 false positives to limit the amount of work. For instance, the
images can be ranked based on model output since the model outputs a number between
0 and 1 (or a number between −∞ and +∞ if the last activation function of the neural
network is removed). In some sense, a higher model output means the model is more
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certain about an image. Therefore, it is possible to relabel the images where the model
is most certain. In this way, the model will improve because the quality of the dataset
will increase. In addition, even more importantly, the validation and testing of the model
improve. The next two research questions concerning the machine learning models are:

• Research Question 3: How do we evaluate the performance of a machine learning
model?

• Research Question 4: How do several machine learning models and configurations
perform on this dataset?

In Section 5.6, we studied various verification measures. The verification measure we
chose is MCC. MCC is unforgivable because it simultaneously requires high recall, speci-
ficity, precision, and a high negative prediction rate. In addition, it is invariant to class
swapping. The fact that MCC is unforgivable and invariant to class swapping sets it apart
from other measures described in Section 5.6. MCC enabled us to evaluate the performance
of the machine learning models effectively.

After comparing several machine learning models and configurations, we can conclude
several things:

• Just oversampling leads to overfitting. Especially for models with more layers (ResNET18,
ResNET34).

• Just using a weighted binary cross-entropy loss isn’t ideal either. See Section 6.4.1
for an explanation.

• Combining oversampling (till 5%) with a binary cross-entropy loss is a nice balance
between the two extremes. This will result in the best performance.

• Initializing weights with pre-trained weights results in worse performance. See Sec-
tion 6.4.2 for an explanation.

• Threshold optimization does increase performance in all experiments. In addition,
it enables tweaking the model according to preferences after training. It is a trade-
off between recall and precision. Therefore, implementing threshold optimization is
highly recommended.

• ResNET9 performs best in all experiments. Adding more layers results in worse or
similar performance. Logistic regression doesn’t work very well because the model
doesn’t seem to be sophisticated enough.

• Using the fast Fourier transform (FFT) in the preprocessing stage generally decreases
performance.
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Threshold optimization was able to improve precision substantially. Although it will
decrease recall, it is a trade-off. The results after threshold optimization are definitely
preferable. One question someone might ask is if the same could be achieved differently. In
this research, we completely compensated for the class imbalance with a weighted binary
cross-entropy loss and/or oversampling. This will put a lot of weight on the foggy-labeled
images, which is suitable for achieving high recall, but this might also be part of the reason
that precision is underperforming. An idea for further research might be to investigate the
effect of decreasing the compensation for the class imbalance.

Not oversampling with a weighted binary cross entropy loss combined with Adam op-
timizer does seem to underperform in the experiments. The hypothesis is that this could
be prevented with a different optimizer like mini-batch gradient descent (Section 6.4.1 for
an explanation). An idea for future research is to investigate if this is the case.

Overall, the experiments allowed for selecting the ideal configuration, substantially
increasing performance. The best-performing configuration achieved a strong correlation
in the Matthews correlation coefficient.

The next two research questions concerning the synthetic data are:

• Research Question 5: What are the possibilities for generating synthetic data?

• Research Question 6: Is it possible to improve the performance of the neural
network by augmenting the dataset with synthetic data?

The literature study shows that it is possible to generate synthetic data using SMOTe
(Chawla et al., 2002) or ADASYN (Haibo He et al., 2008). However, the same literature
study shows that SMOTe and ADASYN usually don’t do better than just plain oversam-
pling (Elor & Averbuch-Elor, 2022). Therefore, we decided not to use SMOTe or ADASYN.

Another idea that came to mind during this research was to add artificial fog to clear
images. In Appendix A, a conceptual idea for such an algorithm is proposed. Most
synthetic foggy images in Figure A.3 already look convincing, but there is much room
for improvement. Unfortunately, there was not enough time during this thesis to test the
synthetic images. An idea for future research is to see if the neural network can learn
anything from these synthetic images.



Appendix A

Adding Artificial Fog

One of the research objectives is to investigate the possibility of augmenting the dataset
with synthetic data. This chapter describes thoughts and findings on adding artificial fog
to clear images. A conceptual method is proposed for the addition of fog to clear images.
The haze model used in this method is given in Equation (A.1) (Middleton, 2019). This
model has been used in many papers about image dehazing until today.

I(x) = t(x) · J(x) + [1− t(x)] ·A (A.1)

x is the pixel coordinate, I(x) is the hazy image, J(x) is the clear image, A is a color
representing the so-called atmospheric light, which is the color of the fog, and t(x) is the
transmission map. The transmission map is given in Equation (A.2).

t(x) = e−βd(x) (A.2)

Here β is the attenuation coefficient of the atmosphere, and d(x) is the depth map.
In the image formation model, β depends on the wavelength. Usually, this dependency is
neglected to reduce the number of unknowns.

Firstly, we have to estimate atmospheric light. The idea is that we extract atmospheric
light from all foggy images in the dataset. In this way, we can make a distribution of all
atmospheric lights and randomly pick one for our algorithm. In most literature, the color
of the most haze-opaque region of a foggy image is used as A or as A’s initial guess. The
method for estimating the atmospheric light described in (He et al., 2011) assumes that the
atmospheric light is constant, the sky is visible, and the image has no saturated pixels. In
this case, just the pixel with the highest intensity can be used as the atmospheric light. In
our case, most images do not contain any regions where the sky is visible. Therefore, this
assumption is generally not true. There are also more sophisticated methods to estimate
atmospheric light from foggy images ((Tan, 2008), (Fattal, 2008)). Secondly, we have to
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estimate the depth map. This is the most difficult to estimate. A simple way to estimate the
depth map is to use the same depth map for every image. For almost all images, the depth
at the bottom of the image is lower, and the depth gradually increases when moving to the
top of the image. Suppose we have an image with a horizon and a flat grassland without
any objects. We assume the depth map is only dependent on the vertical coordinate. In
addition, we assume that the camera has no fish-eye effect in the horizontal direction. The
image should look something like the image in Figure A.1.

Figure A.1: Horizon image. The green rectangle is the flat grassland, and the blue rectangle
is the sky

The depth above the horizon is infinite. In Figure A.2, a simplified optical camera
model is illustrated. We will use this model to estimate the depth below the horizon in
Figure A.1.

F

y

a

d

θ

Camera Sensor

h

hhorizon

Figure A.2: Simplified optical camera model. The image in this camera model is one-
dimensional (a line) because we assume that the depth map depends only on the vertical
coordinate. For simplification, the camera is parallel with the grassland in this figure. F
is the focal length of the camera. The bold line is the camera sensor, which captures the
image upside down. y is the vertical coordinate of the image. The bottom line is the
grassland. We are interested in the distance d.
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From Figure A.2 it follows that:

hhorizon − y
h

=
F

a
(A.3)

Therefore:

a =
Fh

hhorizon − y
(A.4)

In addition, we know that cos(θ) = a
d
≈ 1 because we assumed that the height of the

camera is much smaller than the depth in the image. Therefore, θ is small. From this, it
follows that a ≈ d. Therefore, we get the following:

d(y) =
Fh

hhorizon − y
(A.5)

For simplicity, it is assumed that Fh is a constant. However, the focal length F is
dependent on the amount of zoom. The height h of most cameras is the same.

This depth map is a huge oversimplification, but it gives us a slightly better under-
standing of depth in images. This depth map enables us to make an educated guess. In
Equation (A.2), we have the constant β, so we can combine those two constants: η = α ·β.
Therefore, we get the following:

t(x) =

{
e
−η 1

hhorizon−y y < hhorizon

0 y ≥ hhorizon
(A.6)

The horizon has to be chosen. It seems that for most images, the horizon is close to
the upper boundary of the image. Therefore, choosing hhorizon to be equal to the height
of the image might be a good educated guess. In addition, η has to be chosen such that
the visibility of the image is below 250 meters. It is probably a good idea to introduce
random perturbations to the parameters so that not every depth map is identical. It is
also possible to add perturbations to the angle of the horizon. A conceptual algorithm is
given in Algorithm 7.

With this conceptual algorithm, it is possible to add artificial fog. In Figure A.3,
images with artificial fog are depicted to give an idea of what the algorithm can do. The
atmospheric light is chosen such that it looks good because there was not enough time
in the project to estimate the atmospheric light for all foggy-labeled images. In addition,
perturbations to the atmospheric light are added.

In the simplified model from Equation (A.6), we only have to estimate the horizon
height hhorizon and η. For this, we had to assume that cos(θ) = a

d
≈ 1 and that the

focal length F is a constant. However, if we find a way to estimate F , another model
might be better. If we estimate the transmission map without this assumption, we get
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Algorithm 7 Concept algorithm Artificial Fog
Let Xclear be a set of clear images
Let Xsynthetic be the empty set
Estimate Atmospheric light for every foggy-labeled image and add them to a list Alist

Choose η in Equation (A.6) such that the images look convincingly foggy (< 250meter).

for X ∈ Xclear do
Add some perturbations to the chosen parameters in Equation (A.6) and calculate the
transmission map t(y)

Choose an atmospheric light randomly from the list Alist

Use Equation (A.1) to add fog to the clear image
Add the image with synthetic fog to Xsynthetic

end for
The set Xsynthetic now contains synthetic foggy images.

Equation (A.7).

t(x) =

e
−κ 1

sin arctan

(
hhorizon−y

F

)
y < hhorizon

0 y ≥ hhorizon

(A.7)

Where κ = β · h. The model in Equation (A.7) should be slightly more realistic, but
we have to estimate one more parameter, which is very challenging.

A.1 Discussion and Conclusion

Most images from Figure A.3 already look convincing. However, there is much room for
improvement. Firstly, the depth map for every image is the same at the moment, which
is not realistic. This is partly the reason some images look more foggy than others. If
the camera is tilted downward, the image appears more foggy. On the other hand, if the
camera is tilted upward so the sky is visible, the image appears less foggy. This is because
the horizon is fixed at the moment. One improvement to the algorithm would be if we
were able to estimate the horizon. Another improvement would be if we could somehow
estimate the focal length F because this enables us to use Equation (A.7). However, this
is very challenging. In addition, it is assumed that the ground is a flat plane without any
objects at the moment, which is not realistic either. In order to solve this, we have to use a
completely different model for the depth map estimation. One option would be to train a
neural network on the KITTI dataset (Geiger, Lenz, Stiller, & Urtasun, 2013) to estimate
the depth map. The KITTI dataset contains dash cam images with a depth map. However,
the height of the camera is completely different compared to traffic cameras, which might
be a problem.
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Figure A.3: Illustration of the effect of adding artificial fog to images. Images are randomly
picked. The first and third columns contain the original clear-labeled images, and the
second and fourth columns contain the same images with artificial fog. The images are of
the same resolution as those used for training. η = 40. The horizon hhorizon is chosen to be
one pixel above the image. The atmospheric light is chosen such that it looks good because
there was not enough time to fully implement Algorithm 7. In addition, perturbations to
the atmospheric light are added.



Appendix B

Confusion Matrices

B.1 Pre-trained Weights

Confusion matrices for all the experiments described in Section 6.1.1 and Section 6.1.2.
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B.2 Random Weights

Confusion matrices for all the experiments described in Section 6.2.1
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Confusion matrices for all the experiments described in Section 6.3.
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