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ABSTRACT  

Mechanical resonance properties of porous graphene resonators were investigated by 

simulation studies. The finite element method was utilized to design the porous graphene 

membrane pattern and to calculate the mechanical resonance frequency and quality factor. The 

changes in the resonance frequency and quality factor were systematically studied by changing 

the size, number, and relative location of pores on the graphene membrane. Mass loss and 

carbon-carbon bond break were found to be the main competing parameters for determining its 

mechanical resonance properties. The correlation between the geometry and the damping effect 

on the mechanical resonance of graphene was considered by suggesting a model on the 

damping factor and by calculating the membrane deflections according to the pore location. 

Based on the simulation results, an optimal porosity and porous geometry were found that gives 

the maximum resonance frequency and quality factor. Suspended graphene with various 

number pore structures was experimentally realized, and their mechanical resonance behaviors 

were measured. The trend of changes in resonance frequency and quality factor according to 

the number of pores in the experiment was qualitatively agreed with simulation results.  

 

  

  



INTRODUCTION 

Since graphene was exfoliated from graphite flakes [1], an enormous amount of studies have 

been reported on the physical properties and applications [2-4]. Its two-dimensional nature 

offers a lot of interesting quantum mechanical phenomena, such as the quantum Hall effect [5], 

valley states [6], quantum electron optics [7], and so on. Graphene receives anew spotlights as 

it recently showed superconductivity and Mott insulator states [8], which are unexpected and 

emerging phenomena, from bilayer graphene with a specific twisted angle. Besides the 

aforementioned phenomena, which mainly originate from electrical properties, graphene also 

has superior mechanical properties with high strength, high flexibility, and light mass [9]. 

However, the research on graphene-based mechanical or electromechanical systems has been 

relatively less investigated than electrical studies. 

Nanoelectromechanical systems (NEMS) combine mechanical and electrical degrees of 

freedom with nanoscale, which enables higher sensitivity than other electrical devices as they 

utilize two orthogonal information, that is, mechanical and electrical information [10]. 

Graphene can be one of the best candidate materials for NEMS since it has good electrical 

conductivity as well as high mechanical strength [11]. Recent reports showed that it was 

possible to achieve a ‘quantum mechanical’ phenomena [12] and an ultra-sensitive mechanical 

measurement [13] using graphene-based nanoelectromechanical devices. To improve the 

device performance of graphene NEMS, it is necessary to increase the mechanical resonance 

frequency and quality (Q) factor. However, it was found from the previously reported works 

that the resonance frequency and Q factor of graphene nanomechanical resonator, realized in 

experiments, were much less than theoretically estimated values [14]. 

We have especially focused on the effect of damping on the graphene resonator, which is a 

crucial factor in degrading the mechanical performances of devices. In the case of the 

microelectromechanical system (MEMS), there have been many trials to solve this issue. One 



of the most suitable methods is defining a porous structure on the MEMS resonator [15-17]. 

The hole patterns on the resonator material help the Q factor increase by reducing the damping 

parameter, and the resonance frequency increases by reducing the effective mass. In this work, 

we adapted the above-mentioned idea of MEMS to the graphene nanomechanical resonator. 

Graphene resonators with various porous patterns were designed, and their mechanical 

resonance properties were studied by the finite element method. Based on the modeling and 

simulation work, the optimal geometry of the graphene resonator could be suggested. The 

graphene resonator with hole structures was realized by nanofabrication. The measured 

mechanical properties of graphene resonators in experiments were qualitatively consistent with 

the simulation results.  

  

SIMULATION METHOD AND RESULT 

COMSOL Multiphysics with finite element analysis is used for simulating porous graphene 

geometry. This method assumes that the structure under test consists of small pieces, and the 

equations of motion on each piece are integrated and formulates into one equation. Then, a 

numerical analysis of the equation is conducted for determining the significant features of 

mechanical behavior on the entire structure. To study the resonance behaviors of porous 

graphene resonators, we used the structural mechanics module of COMSOL Multiphysics, 

which is customized to analyze the mechanical properties of structures, such as stress, strain, 

stiffness, flexibility, and the mechanical resonance frequency. The radius, position, and the 

number of pores at the membrane were varied as the control parameters in this simulation while 

the size of the graphene membrane was set to 8 μm × 8 μm. These parameters affect the spring 

constant and mass of the membrane, and, consequently, the resonance frequency and Q factor 

of graphene resonator were changed. 



Firstly, we calculated the porosity-dependent mechanical resonance frequency of the 

graphene membrane. For an initial condition to study the effect of porosity, we selected a 3 × 

3 array of pores and kept the distance between the centers of each pore to be 2 μm as shown in 

Figure 1(a). Then we changed the radius of the pores to modulate the porosity of the membrane. 

Figure 1(b) shows the simulation result of the resonance frequency changes as the porosity 

varies from 1% to 31%. The red dot indicates the resonance frequency of the graphene 

membrane with no pore. Once a pore structure with 1% of porosity is defined, the resonance 

frequency suddenly dropped to around 45% of the initial value, which implies that a few defects 

on the graphene surface could give a significant reduction of its mechanical strength. It is 

considered for understanding this result on porosity-dependent resonance frequency that there 

are two main competing aspects to determine the resonance frequency of the porous membrane. 

First, the number of defects, which arises from the broken carbon bonding increases when the 

size of the pore becomes larger. Therefore, the stiffness caused by Young’s modulus (E) of the 

graphene membrane is weakened so that the resonance frequency could be reduced. Second, 

the void of carbon atom increases when the size of the pore becomes larger. As a consequence, 

the effective mass (m) of the resonator decreases so that the resonance frequency could be 

enhanced. 

The relationship between mass density (𝜌) and the Young’s modulus (E) to the mechanical 

resonance frequency (f) of a membrane can be presented as the following equation [14], 

𝑓0 = 𝛼√
𝐸

𝜌

𝑡

𝐿2
 

where t and L are thickness and suspended length of the graphene membrane,  is the clamping 

coefficient, E is Young’s modulus, 𝜌 is the mass density. Since we defined the circular pores 

on the graphene membrane, the size of the void area, which is directly related to the loss of 

effective mass, is proportional to the square of the radius of each pore.  



On the other hand, the broken carbon bonding by void area reduces the spring constant of 

the membrane. The broken carbon bonding appears at the circumference of pores. 

Consequently, the Young’s modulus of the graphene membrane, which is proportional to the 

spring constant, is decreased by increasing the circumference of the pore as the void area 

enlarged [18-20]. 

 

According to the above-mentioned condition, the effective mass and Young’s modulus can 

be presented with a radius as follows.  

𝑚∗ = 𝑚0(1 −
𝜋𝑟2

𝐴
) 

𝐸∗ = 𝐸0(1 − 𝛽2𝜋𝑟) 

where A is 64 𝜇𝑚2 in our model, β is a proportional constant for decreasing Young's modulus. 

The inset of Figure 1(b) plots the resonance frequency changes depending on the radius of 

the pore on the membrane. It reveals that the effect of mass reduction is more dominant than 

that of stiffness weakening as the radius of the circular hole increases. The two-dimensional 

geometry of graphene could give a more dramatic effect of mass reduction to the resonator 

compared to MEMS resonators that have bulky three-dimensional structures. 

Overall, the simulation results on the porosity dependence of resonance frequency can be 

understood as follows. Upon the porous defects being created on the graphene, a significant 

amount of resonance frequency value of the membrane is dropped down. The reduction rate of 

the mass is more sensitively affected than that of stiffness to the graphene membrane so that 

the resonance frequency is gradually increased until 25% of porosity. From the porosity range 

higher than 25% (a shaded area in Fig 1(b)), the frequency is found to drop again, which is 

considered due to the failure of stiffness maintenance by too many defects on the membrane. 



This reflects that there is a certain limit of porosity to increase the resonance frequency of the 

graphene resonator. 

More systematic simulation work was performed to determine the Young’s moduli of the 

membrane with different geometries. Figure 2 is the simulation result of resonance frequency 

on graphene membranes according to the number of pores while keeping the porosity constant. 

Figure 2(a) shows the geometry of the membrane defined for this simulation study. The number 

of arrays was increased by keeping the distance between the pores constant. In the case of 2, 3, 

5, and 6 pores, which cannot be defined by a specific design rule, the pores were positioned 

with a distance of 2 µm apart from the center of the membrane. 8 and 12 pores, in particular, 

the pore(s) positioned at the center of the membrane was (were) omitted for convenience of 

simulation. 

Figure 2(b) shows the calculated mechanical resonance frequency with the porosity of 5, 10, 

15, and 20%, respectively. The resonance frequency decreases as the number of pore increases 

for all porosity cases. Since the porosity of the membrane was kept constant for each simulation, 

the resonance frequency lowering as an increasing number of pores originated not from the 

mass change but from the suppression of Young’s modulus. The sum of circumference of pores 

with radius r is calculated to be 2𝜋𝑛𝑟 according to the number (n) of pores. Since the amount 

of broken carbon bonding is proportional to the circumference of pores as it was modeled in 

the previous section, the Young’s modulus of membrane reduced with increasing pore numbers. 

Although the overall tendency of frequency decrease follows the number of broken carbon 

bonding, there are some noticeable fluctuations on the pore number dependent resonance 

frequency curves at the simulation result. This implies that the resonance frequency of our 

membrane structure can be affected by the geometry of pores as well. 

 To verify the effect of the geometrical factor of pores on the mechanical properties of the 

membrane, we investigated the change in the resonance frequency by rotating the array of pores 



as shown in Fig. 3. A hexagonal array of pores was defined on the membrane, and the resonance 

frequency was calculated by rotating the array with 45 and 90 degrees in counter-clockwise. 

The simulation result under this condition shows that, in the case of a square membrane as 

shown in Fig. 3(a), the resonance frequency fluctuates up to 15% higher than the initial position 

of pores by merely rotating the pore array pattern as indicated by black squares in Fig 3(c). As 

the pore array pattern rotates, the distance between the edge of the membrane and each pore 

changes. Accordingly, changes in the mass distribution due to repositioning of the pores appear 

to be sensitive to the resonant behavior of the rectangular membrane. To complement our 

deduction, we simulated the resonance frequency of a circular membrane with the same 

hexagon array of pores as shown in Fig. 3(b). Since the distance between the pore and circular 

membrane edge is constant in all rotational angles, no frequency change appeared at this 

configuration as indicated by red dots in Fig 3(c). To summarize the simulation results, the 

mass and stiffness changes due to the porosity and the number of pores are the main competing 

parameters to determine the resonance frequency of the graphene membrane. In addition to this, 

the variation of the geometric structure of pores can give a meaningful fluctuation to the 

resonance frequency. 

Secondly, we investigated the dependence of the Q factor on the geometry of pores. Since a 

capacitive force (Fc) is applied to drive the mechanical resonance of graphene in our 

experimental system and phenomenological damping (𝛾𝑑�̇�) can be introduced to our system, 

the equation of motion for our graphene membrane with effective mass meff and spring constant 

k can be introduced as follows: 

𝑚𝑒𝑓𝑓�̈� = −𝑘𝑥 − 𝛾𝑑�̇� + 𝐹𝑐 

(−𝜔2𝑚+ (1 + 𝑖𝛾)𝑘)�̃� = �̃� 

The damping will be relieved where the pores exist on the membrane so that the dissipation 

of resonance can be reduced by increasing the porosity of the membrane. It should also be 



noted that the amount of damping is strongly affected by the geometry of pores since the 

vibrational velocity of the resonator depends on the position on the graphene membrane. Figure 

4 (a) shows the cross-section view of displacement of the graphene membrane on resonance. 

The amplitude and vibrational velocity of the membrane becomes maximum (or minimum) at 

the center (or edge) of the suspended membrane. Thus, the closer the pores were placed to the 

center of suspended graphene, the more damping effect can be compensated. Since the 

vibrational amplitude is much smaller than the suspended length of the membrane (𝑧 ≪ 𝑙 in 

Fig. 4(a)), we assume that the vibrational amplitude velocity has linear variation along the 

suspended graphene. By considering the damping of the membrane according to the position 

of each pore, the geometry dependent damping effect on the porous graphene structure can be 

applied to our simulation. According to the above-mentioned description, the position-

dependent damping parameter at given porosity P can be expressed as 

𝑃 ×
1

𝑁
∑

𝑑𝑛
𝑟𝑛

𝑁

𝑛=1

 

where N is the total number of pores, r is suspended length from center to the edge crossing 

pore, d is the distance from the pore to the edge of the suspended membrane indicated in Fig. 

4(b). 

For example, if we consider a porous membrane as shown in Figure 4(b), the amount of 

damping at the dashed circle can be expressed as 𝑃 ×
1

5
× 5 ×

2.5

4
. When this dashed area 

becomes a pore, the calculated amount of damping will be relieved, which affects the initial 

damping loss factor (𝛾𝑖). Therefore, the mechanical resonance behavior of porous graphene can 

be simulated by considering the finally derived damping loss factor (𝛾𝑓), which is formulated 

as follows: 



𝛾𝑓 = 𝛾𝑖(1 − 𝑃
1

𝑁
∑

𝑑𝑛
𝑟𝑛

𝑁

𝑛=1

) 

While varying the porosity from 5% to 20%, we calculate the Q factor and resonance 

frequency of graphene resonator according to the geometry of pores on the membrane. The 

initial damping coefficient 𝛾𝑖 was set to 0.6 so that around 182 of the Q factor of graphene 

resonator without pore structure can be obtained by simulation. This value is matched to our 

previously reported experimental measurements on the resonance frequency of graphene 

resonator with a low vacuum condition (~10-4 torr) [18,19]. 

 

For finding the optimal geometry of pores, which gives high Q factor value, a deflection of 

graphene membrane in z-direction according to the pore position was studied. The position of 

a pore, as indicated with red circle in Fig 4(c), with 500 nm diameter is placed on the membrane 

and the vibrational displacement in z-direction was calculated. Figure 4(c) shows the mapping 

result on the ratio of the average value of membrane deflection between nonporous (Z0) and 

porous (Z) as scanning the position of a pore. It was found that the deflection of the membrane 

was more suppressed when a pore was created at the center of the membrane. Since the 

deflection of the membrane is related to the damping factor, this result means that more Q 

factor increase can be expected by placing the pores on the central area of the membrane, which 

is consistent with our suggested modeling. On the other hand, the average deflection value was 

even increased when the pores were created on the edge of the membrane. This result suggested 

that there is an optimal positioning of the arrangement of pores of which gives lower damping 

factors. Also, the deflection mapping result tells that the circular arrangement of pores looks 

more efficient to increase the Q factor of the graphene membrane.  

 



Table 1 shows the simulation results of the mechanical resonance frequency and Q factor of 

the graphene membrane with various porous geometries after applying the damping loss factor 

at each pore position. The highest Q factor value was found at 20% of porosity with three 

circular pores surrounding the center of the membrane. The maximum value of resonance 

frequency also appears at 20% of porosity. 

 

 

EXPERIMENTAL 

The mechanical properties of suspended graphene resonator devices were investigated to 

compare the simulation results. Graphene flakes for the resonator device were produced by a 

mechanical exfoliation method. The nanoscale pore structures were defined on top of the pre-

deposited graphene flakes using electron beam lithography followed by oxygen plasma etching. 

Figure 5(a) shows an optical microscope image of an exfoliated graphene with porous hole 

patterns. The graphene flake with pore structure was transferred to the target substrate, where 

a trench and a bottom electrode were fabricated. PMMA was used as a transfer media on this 

process. After positioning the graphene flake, an excessive dose of the electron beam (~ 15,000 

C/cm2) was exposed to the PMMA layer around the trench structure, forming a locally cross-

linked PMMA to clamp the ends of the graphene. Figure 5(b) and (c) show the schematics and 

optical image of the device structure and scanning electron microscope image of a graphene 

resonator device, respectively. The diameter of each hole is kept to be 500 nm, and the number 

of pores on the suspended graphene area was varied by 1, 4 (22), 9 (33), and 16 (44). The 

resonance behavior of the suspended porous graphene structure was measured by the laser 

interferometry method [20, 21]. 

Figure 6 shows the measurement results of the mechanical resonance of 4 graphene devices, 

which were successfully fabricated, with a various number of pores. Both of the resonance 



frequency and Q factor value increases and shows the maximum value on the membrane with 

22 pore structures, then the frequency decreases. The practically measured frequency and 

estimated Q factor values did not perfectly follow the ideal numbers from the simulation works 

since there should be unavoidable error sources on the graphene devices such as defects on 

graphene, residues on the surface, ripples in the suspended membrane, initial tension on the 

devices and so on. However, even though a small number of devices with several error factors, 

the experimental results of the graphene resonator are qualitatively consistent with simulation 

work.  

 

SUMMARY 

In summary, the mechanical resonance properties of the porous graphene membrane were 

studied by the finite element method, and the simulated results were compared with 

experimental test devices. The mechanical resonance frequency of the membrane was 

calculated by varying the porosity of the graphene membrane, the number of pores, and the 

geometry of pore patterns. Mass loss and carbon-carbon bond break are two main competing 

parameters for determining resonance frequency values. The Q factor of suspended graphene 

membrane depends on the position and geometry of the pore structures as well as porosity. It 

was found that mechanical resonance properties of the two-dimensional graphene membrane 

were more sensitively modified by creating pore structures compare to three-dimensional 

MEMS structures. Based on the simulation results, a geometry of surrounded circular pores 

with 20% of porosity provides the maximum resonance frequency and Q factor to the 

suspended graphene membrane. Based on the modeling, suspended graphene with a various 

number of pore structures was realized in the experiment, and their mechanical resonance 

behaviors were measured. The tendency of frequency and Q factor variation according to the 

pore numbers in the experiment qualitatively agrees with simulation results. 
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FIGURES 

 

 

Figure 1. (a) The Geometry and the mechanical resonance mode of a suspended graphene 

membrane. The suspended area of membrane is 8  8 µm2, and the distance between the centers 

of each pore is 2 m. (b) Porosity dependent mechanical resonance frequency. The inset graph 

in (b) shows the porosity dependent resonance frequency, effective mass, and Young’s 

modulus changes calculated by the suggested model. 

 

  

(a)

(b)

8 µm

2 µm

2 µm

8 µm

r

0 5 10 15 20 25 30

2

4

6

8

10

12

14

16

18

 

 

f 
(M

H
z
)

Porosity (%)

(b)
1/m* (1/pg) E* (TPa)f (MHz)

0.5 1.0 1.5 2.0
4.0

4.4

4.8

5.2

r (m)

20

22

24

26

0.450

0.452

0.454

0.456



 

 

Figure 2. (a) Schematic design of porous geometry on graphene membrane. (b) Resonance 

frequency of membrane according to the number of pores varies at a given porosity. 

 

  



 

 

Figure 3. The geometry of square membrane (a), and circular membrane (b) for studying 

rotation dependent mechanical resonance frequency variation. There were changes only in the 

square membrane. (c) Simulation results on the variation of mechanical resonance frequency 

by rotating position of pores for both cases. 

 

  



 

 

Figure 4. Cross-sectional (a) and top (b) view of graphene membrane in the 1st resonance mode 

with 5 % of porosity. z is the vibrational displacement of the membrane, and l is the cross-

sectional length of the square membrane. The length of the straight line from the center of the 

membrane to the edge of the pore is r, and the length from the center of the pore to the edge of 

the membrane is d. (c) Deflection ratio between nonporous (Z0) and porous (Z) membrane 

depending on the position of a single pore.  

 

 

  



 

 

 

Figure 5. (a) The optical microscope image of exfoliated monolayer graphene with pores. (b) 

A schematic of a suspended graphene resonator device (top) and the optical microscope image 

of suspended graphene transferred on the trench substrate. (c) Scanning electron microscope 

image of graphene resonator device with 2 × 2 pore structures. The scale bar shows 10 m.  

 

 

  



 

 

 

Figure 6. Measurement results of the mechanical resonance frequencies of four graphene 

resonator devices with a various number of pores.  

 

 

 

  

 

  



TABLE 

 

 

Table 1. Simulation results on the resonance frequency and Q factor of graphene membrane 

by generating pore structures with various geometry, porosity, and number of pores. 

Geometry 

          

Porosity [%] 0 5 10 10 10 15 15 20 20 20 

No. of pores 0 5 4 5 12 4 6 3 5 6 

f [MHz] 9.41 8.29 9.82 9.49 7.86 14.6 14.86 16.11 15.36 12.93 

Q factor 181.82 187.54 193.94 193.57 192.27 200.65 196.55 211.39 207.77 202.02 

 

 

 


