
Accumulus
Resource Measurement in a Virtu-
alized Container Environment

D. G. P. Tadema
Y. O. U. P. Mickers

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

ii

Version Date Reviewers Remarks
0.1 22 December 2016 Authors First draft (no complete report yet).
0.2 5 January 2017 Authors Version created for Nerdalize internal use.
0.3 11 January 2017 Authors Version handed in for revision.
0.4 11 February 2017 dr. ir. A. Iosup Incorporated first feedback by dr. ir. A. Iosup.
0.5 25 February 2017 dr. ir. A. Iosup Second hand-in for revision.
1.0 6 March 2017 dr. ir. A. Iosup Final report.
1.1 6 March 2017 dr. ir. A. Iosup Final report (minor improvements).
1.2 7 March 2017 dr. ir. A. Iosup Final report (minor improvements).

Table 1: Versioning.

Accumulus
Resource Measurement in a Virtualized Container

Environment

by

D. G. P. Tadema
Y. O. U. P. Mickers

in partial fulfillment of the requirements for the degree of

Bachelor of Science

in Computer Science

at the Delft University of Technology,

to be defended publicly on Friday March 10th, 2017 at 12:00 AM.

Supervisor: dr. ir. A. Iosup TU Delft
dr. M. de Meijer, Nerdalize

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This thesis would not have been possible without the help of many people. A few of those people we
would like to mention in particular, to show our appreciation of their support throughout the process.
First of all Alexandru Iosup for his guidance and feedback on matters both conceptual and otherwise.
We thank Mathijs de Meijer for his excellent mentorship and helping us deal with hurdles along the
way. Ad van der Veer for his help with the Go programming language. All employees at Nerdalize for
creating an inspiring environment conducing creativity. A final thanks to everyone at the Distributed
Systems group and the Nerdalize employees for their suggestions after the trial presentations.

D. G. P. Tadema
Y. O. U. P. Mickers
Delft, March 2017

ii

Contents

1 Introduction 1
1.1 Context. 1
1.2 Problem Statement . 1
1.3 Approach . 2
1.4 Main Contributions . 2
1.5 Structure . 3

2 Background 4
2.1 Concepts . 4
2.2 Technologies . 5

3 Problem Analysis 9
3.1 Problem Definition . 9
3.2 User Stories . 10
3.3 Requirements . 10

4 The Research Process 13
4.1 Research . 13
4.2 Development Tools . 14
4.3 Systems . 16
4.4 Chosen Development Tools . 18
4.5 Chosen Systems . 19

5 The Development Process 21
5.1 SCRUM. 21
5.2 Go. 22
5.3 Continuous Integration . 22
5.4 Unit Testing . 22
5.5 SIG Code Review . 22

6 Design of Accumulus, a Monitoring and Cluster Analysis System 24
6.1 Architecture Overview . 24
6.2 Accumulus . 25
6.3 SQL Mechanism . 26
6.4 Heapster . 28
6.5 Influx . 28
6.6 Processors . 29
6.7 Grafana . 29
6.8 Possible Extensions . 30

7 Experimental Testing and Validation 32
7.1 Accuracy Evaluation . 32
7.2 Basic Validation . 35
7.3 Overhead. 38
7.4 Scalability Evaluation . 39

8 Discussion & Future Work 47
8.1 Discussion. 47
8.2 Future Work. 48

9 Summary & Conclusion 51
9.1 Summary . 51
9.2 Conclusion . 51

iii

iv Contents

A Sprint Plans 53
A.1 Sprint 1 . 54
A.2 Sprint 2 . 55
A.3 Sprint 3 . 56

B Research Report 57

C Project Proposal 101

D Requirements 106

Bibliography 108

1
Introduction

1.1. Context
Computers are used almost everywhere in today’s world, and since the 2000’s we have seen a shift
from computations done on a local level to computations done in centralized data centers. A recent
development is the shift from grids and data centers to clusters, where thousands of computers are
connected via a network and can work together on a task [1].

Computers have certainly enabled us to solve problems previously deemed infeasible and improved
our lives in countless ways, but their increased usage comes at a cost. At the moment, estimates hold
data centers accountable for 2-3% of the worldwide energy consumption. A number that is expected
to grow significantly in the coming years, with data centers surpassing the airline industry in CO2
production [2]. As such, it is vital to make the use of computation power more sustainable.

One of the companies that are trying to achieve this is Nerdalize, who uses the heat produced by
servers to provide houses with warm water and central heating. In participating households, the boiler
will be replaced by a computing unit developed by Nerdalize. Such a decentralized cloud has lower
operational cost than centralized competitors as the high cost of housing and cooling are mitigated [3].

Nerdalize is also trying to solve other issues in cloud computing. One of these problems is vendor lock-
in, which it wants to solve by combining their cloud with other clouds to create a so-called multi-cloud,
a single heterogeneous architecture that uses multiple infrastructure providers. A multi-cloud solves
the issue of vendor lock-in, while also addressing geo-diversity [4].

While doing this Nerdalize is also coming up with solutions for the relative intransparent pricing models
cloud providers currently offer. Cloud costs are hard to estimate beforehand, which is potentially scaring
away customers. Earlier research has partly alleviated this problem [5], but billing is currently still done
on a per-instance basis, instead of on the actual resources used.

1.2. Problem Statement
Currently, most cloud providers bill their customers for the resources and instances they reserve or
based on the number of times their function is called and the time taken by each called function [6].
These pricing models, however, vary between providers and machines as shown in Figure 1.1, and it
is hard to forecast performance on a specific instance. As a result, the market for cloud computing is
far from transparent. Nerdalize aims to make cloud computing more of a commodity. One aspect of
this is how customers are charged. In the future, Nerdalize wants to shift from a per instance to a per
job billing model. New problems arise in such a billing model, resource usage needs to be accurately
tracked and be available to the user to get insight into the performance and cost of their job.

To charge customers on a per job basis a system is needed that accurately measures the resources used
by a job with minimal overhead. While this task is relatively easy on a single computer, determining

1

2 1. Introduction

these metrics for a job which is split across multiple computers (each of which might also be working
on several other jobs at the same time) brings several complications. Some research has already been
done in this field [7–10]. This has lead to some great systems for resource monitoring, but they do not
meet Nerdalize’s requirements. Most of them are not customer oriented, nor do they take into account
the power used by the servers performing the jobs. The developed system should also work across
multiple clusters and should be able to specify on which hardware the resources were used. Finally,
the system should also be scaleable, as it will eventually work with multiple clusters, each containing
many nodes.

A system that

Figure 1.1: Pricing of different providers [11].

1.3. Approach
The goal of this project is to create a system that can accurately measure resource use and estimate
the accompanying costs in a container-based cloud system and make this information available to both
the user and the cluster service provider. The development will start with two weeks of research,
during which will be researched how cloud providers calculate costs and how resource usage can be
accurately measured, especially in set-ups relying on Docker and Kubernetes. During the research,
a preliminary design for a system will also be created. The five weeks after the research period will
be used to design and implement a system that can help Nerdalize and others to accurately calculate
the resource usage and thus the costs of jobs on a cluster infrastructure. The last three weeks of the
project are used to test and validate the built system and write a thesis report.

One of the resource monitoring systems that was found during the research phase, Heapster, is already
focused on Kubernetes clusters and will therefore be taken as a starting point. It will be extended with
the desired functionality, such as the monitoring of resource consumption across multiple clusters and
adding tags to the consumed resources specifying the hardware on which they were used.

1.4. Main Contributions
In this thesis, we present Accumulus, a system for cluster resource usage monitoring. Accumulus
consists of multiple components, The main component that collects information from all the clusters,
and a software stack to collect the metrics within the individual clusters.

1. A dynamic tagger for Heapster that allows additional tags to be added to measurements via an
SQL database.

2. A package written in Go () to work with time series database that offers concurrent querying,
writing, and syncing between different instances of a time series database.

3. Accumulus, a system to do multi-cluster monitoring of Kubernetes clusters.

4. Processors that can combine metrics and be used to calculate combined metrics such as power
consumption and operational cost.

1.5. Structure 3

5. An evaluation of Heapsters accuracy and the scaling capabilities of Accumulus. Experimental work
validates the Accumulus system and shows it can scale to clusters containing over a thousand
nodes.

1.5. Structure
This Report is structured as follows: Relevant concepts found in cloud computing are explained in
Section 2.1, Section 2.2 gives an overview of technologies used in the field of cloud computing and.
Chapter 3 presents the main problem and high-level goals of the project. Section 3.3 defines a set
of requirements created from the obtained user stories, which a system solving this problem has to
fulfill. Chapter 4 describes our research process. The research done during the project is described in
Section 4.1. Section 4.2 lists considered development strategies, programming languages and tools.
The choices are explained and supported in Section 4.4. many existing solutions for resource monitoring
already exist; Section 4.3 goes into detail and Section 4.5 explains which system was chosen as a
starting point, also explaining this choice. Chapter 5 then goes into detail on how the development
strategies and tools selected in Section 4.4 were applied during the implementation. Chapter 6 covers
the design and implementation of our system. And explains the role of each element. Chapter 7 shows
how the system will be tested and validated, and the results of those experiments. The implications of
our system and future work are discussed in Chapter 8. Lastly, Chapter 9 summarizes this thesis and
gives a final conclusion.

2
Background

This chapter is used to present background information related to the Accumulus project. In particular
desired prior knowledge about concepts and technologies is described in Section 2.1 and Section 2.2
respectively.

2.1. Concepts
This section defines some of the concepts in the field of distributed computing.

2.1.1. Virtual Machine
A virtual machine is a machine level virtualization method that provides an isolated environment that
simulates a different system or architecture. This allows a single machine to run multiple different
operating systems [12].

2.1.2. Container
A container is an operating-system level virtualisation method that provides an isolated environment,
simulating a closed system running on a single host. It gives the user the ability to have an environment
to run applications with the necessary resources and environment configuration.

Containers are comparable to VMs (Virtual Machines), in that they are meant to decrease the prob-
lems often associated with deploying software on different servers or computers. They both do this
by packaging all dependencies in a single environment, which can then be deployed across several
computers.

The main difference is that VMs simulate a complete OS (operating system), with each VM having its
own kernel, filesystem, and virtual hardware. Containers, on the other hand, run on a shared OS and
Kernel, as seen in Figure 2.1. Each container has its own isolated userspace but they share system
resources. As a result, containers are often much smaller (MB’s compared to GB’s) and much faster to
start-up [13].

2.1.3. Cloud
A cloud is a group of computers that work together connected by a network, usually acting as a single
system or offering a single service. Users do not directly control the hardware, but instead rely on
third-parties to fulfill their computation needs. The complex back-end of a cloud is often hidden from
users and managed by cluster orchestration software such as Kubernetes or Openstack. [15]

4

2.2. Technologies 5

Figure 2.1: VM’s versus Containers [14].

2.1.4. IaaS
Infrastructure as a Service is one of the service models used in cloud computing. Just like other
cloud service models, IaaS offers access to computing resource in a virtualised environment. In the
case of IaaS, the computing resource provided is specifically that of virtualised hardware, in other
words, computing infrastructure. This includes virtual server space, network connections, bandwidth,
IP addresses and load balancers. [16]

The cloud provider is responsible for maintaining the hardware infrastructure. The client, on the other
hand, is given access to the virtualized components in order to build their own IT platforms.

2.2. Technologies
In this section technologies used in cloud computing are explained.

2.2.1. Docker
Docker is an open-source container implementation. It offers both Linux (CoreOS) and Windows con-
tainers. Docker utilizes resource isolation via Linux kernel isolation technologies (cgroup and names-
paces). They provide a great isolation for many applications. However, they do pose some risks in the
case of multi-tenant environments. All containers on the same host share the same Linux kernel with
that host [17].

Nerdalize will tackle this problem by creating a cluster for each customer, this way customers will never
be able to access data belonging to other customers, thus ensuring security.

2.2.2. Kubernetes
Kubernetes is an open source system for automating deployment, scaling, and management of con-
tainerized applications or jobs on multiple hosts [18]. Kubernetes offers scheduling, replication control,
and load balancing. It uses a state aware replication controller to handle failing machines or applica-
tions.

Nerdalize offers a cloud service for running compute-intensive workflows, with Kubernetes being used
to manage the containers that make up such a workflow. Their in-house built workflow scheduler
Flower [19] is used to ensure the workflow is executed in the right order and minimal heat is wasted.

6 2. Background

A short description of several important Kubernetes concepts follows now and an overview of how
these work together is shown in Figure 2.2.

Node

Nodes are the workers in a Kubernetes cluster, as they execute the computations assigned to them. A
node cannot consist of several computers, although a computer can host several nodes if desired.

Pod

Kubernetes works with pods, with a pod being an atomic unit containing one or more tightly coupled
containers. Pods cannot be split over multiple motherboards as the containers in a pod is run on a
single node.

Service

A pod is mortal, as they can be terminated by the scheduler if deemed necessary. As such, they cannot
be relied on by external processes. The solution is found in a service, which is offered together by a
collection of pods, thereby providing a reliable interface for communication [20].

Job

A job is the terminating counterpart of a service. A job creates one or more pods and ensures that a
specified number of them successfully run. As pods successfully complete, the job tracks the successful
completions. When the specified number of completions is reached, the job itself is complete. Jobs
are useful for running workloads and batch jobs.

Figure 2.2: A Kubernetes cluster.

2.2. Technologies 7

Resource Requests and Limits

Kubernetes’ scheduling is affected by two metrics, being the amount of CPU and memory. Aside from
these metrics, cluster owners can use ”Opaque Integer Resources” to define custom metrics. This is
still in alpha as of yet. Kubernetes has notions of limits and requests for all metrics, with limits and
requests being set per container. The resource limits and requests of a pod are easily determined, by
simply summing those of all underlying containers.

Resource requests come into play before a pod is run and determine where the pod will be run.
Whenever a pod is created, the scheduler will look for a suitable node for the pod to run on. Suitable
here is defined as having the amount of available CPU and memory exceed the amount requested.

Resource limits, on the other hand, are important during a pod’s execution. Whenever the memory
used by a container exceeds the limit set, the container will be terminated. Whether the container will
be restarted is determined by the ”restartable” flag of the container. A container may or not be allowed
to exceed the CPU limit set for extended periods of time, but will not be terminated for exceeding it.
It follows naturally that a container’s resource limit must exceed its resource request [21].

(Persistent) Volumes and Persistent Volume Requests

On-disk files within a container cannot be shared between containers and are not durable. As such, they
are lost whenever the container crashes. A solution to both these problems is found within Volumes,
whose lifetime is equal to the pod enclosing them. A Volume subsystem provides storage to a single
pod, independent of the underlying storage systems used, which are often vendor specific (e.g. Azure’s
file system or AWS elastic block store).

Volumes still seize to exist whenever their owning pod ends. As such, they are not suitable for sharing
data within a job or even to save the output data. For this, a PersistentVolume is needed, which again
provides storage independent of the underlying storage system used.

A PersistentVolumeClaim is the storage equivalent of a pod. Where a pod requests and consumes
computing resources from the available nodes, PersistentVolumeClaims consume storage on Persis-
tentVolumes [22].

2.2.3. Go
Go is a programming language developed by Google in 2009 [23]. It is chosen as the programming
language for this project mainly because both Docker and Kubernetes are written in it and because
several employees of Nerdalize are already well-versed in it. For a more extensive motivation, we would
like to refer you to Section 4.4.

2.2.4. Cloudbox
The Cloudbox is developed by Nerdalize and serves as a housing for the computers, offering both
physical security and ease of maintainability. It will be placed in people’s homes and will provide hot
water to the homeowner while providing compute for Nerdalize’s customers. Inside the Cloudbox is
space for 3 compute modules (initially one slot will be kept empty), each featuring 2 motherboards.
The motherboards have 2 CPUs with 10 cores each, giving the Cloudbox a maximum of 120 cores.

2.2.5. NCE
The Nerdalize Cloud Engine is the main product Nerdalize is building, it will be a platform that allows
engineers and users to communicate with Nerdalize’s cloud infrastructure. It will eventually offer three
ways to communicate with the Nerdalize cloud, a command line interface, an API, and a graphical user
interface. With this Nerdalize aims to make running jobs as simple as possible. The NCE will handle
authentication, data set storage, queueing of jobs, and control over workflows.

8 2. Background

2.2.6. Heapster
Heapster is an open source tool for Container Cluster Monitoring and Performance Analysis [24]. It
is written in Go and is compatible with Kubernetes version 1.0.6 and up. Heapster measures various
resource statistics on Container and Pod level and provides aggregate statistics for node and cluster
levels. Those statistics can be stored in various back-ends, with the default being InfluxDB.

3
Problem Analysis

This chapter creates a definition of the problem Nerdalize has. From this definition, a problem statement
is derived and the main question which will be answered during the project is formulated. Section 3.2
lists user stories which give a description of the system from the end users perspective. In Section 3.3,
requirements are defined, categorized, and ranked according to the amount of priority they deserve.

3.1. Problem Definition
Nerdalize is building its main product, the Nerdalize Cloud Engine (NCE). Their Cloud strives to be
competitively priced, which they want to accomplish by placing their servers in homes with central
heating. By cooling the server and reusing the heat to heat the home there is no need for expensive
air-conditioned server space.

They also strive to make cloud computing more of a commodity market. To reach this goal they want
to be more transparent in how they charge customers, this is done is two ways. First, Nerdalize wants
to give the customer more insight in their resource usage, second, they want to charge their customers
on a per job basis. In order to do this, they need a system that accurately measures resource use in
a cluster. Resource measurement on a single system is trivial, but jobs on cloud services are run on a
great variety of machines. Nerdalize’s case has the additional difficulty of their machines being installed
in houses where they are not easily accessible.

The high-level goals of this project are:

1. Research how to measure resource usage on a Kubernetes cluster.

2. Research the current resource measurement systems Kubernetes offers (Heapster).

3. Build a system to measure and aggregate the resource use of an NCE job.

4. Extend the system to include the heat and power usage statistics of Cloudboxes.

5. Design an API to make statistics available to users and the Nerdalize system.

6. Design a simple GUI that shows these statistics.

7. Validate the built system against its requirements

From this problem definition, we are able to derive a problem statement. The statement is based on
the problem definition by Nerdalize and the academic requirements specified by TU Delft. The derived
statements differ from the original definition in that they are more concise and more abstract, omitting
implementation details.

1. How can the resource usage of a job running on a container-based cloud be measured?

2. Can power consumption and heat production be measured on container or pod level?

3. Can charging users on a per job basis make pricing more transparent?

9

10 3. Problem Analysis

3.2. User Stories
An interview with Nerdalize uncovered three actors

• Nerdalize Compute Billing
Financial department that needs billing information to send invoices to customers.

• Nerdalize Compute Sales
Sales department that charges customers for compute resources with a particular pricing model.

• NCE User
Users of the Nerdalize Compute Engine

For each actor several user stories are given, for consistency they are all in the form of As <actor>, I
want to <function or requirement> in order to <reason>

1. As the Nerdalize Billing Dept., I want to have data on resource usage in order to bill the
customers.

2. As theNerdalize Sales Dept., I want to have data on resource usage in order to implement
my billing models.

3. As the NCE User, I want to read accurate resource consumption per cluster, namespace,
label, node, and container in order to see my resource usage (and thereby expenses).

4. As the NCE User, I want to read accurate resource consumption per cluster, namespace,
label, node, and container in order to have feedback on the performance of my jobs
thus allowing me to optimize for runtime or cost.

5. As the NCE User, I want to read accurate predicted resource consumption per cluster,
namespace, label, node, and container in order to see my expected resource usage
(and thereby expenses).

3.3. Requirements
In this section, the requirements distilled from the user stories and the interviews are enumerated and
prioritized.

3.3.1. Functional Requirements
Based on the collected user stories we created the following functional requirements. They are priori-
tized using the MoSCoW model

Must Haves

1. The system measures accurately and with an overhead that is 10% or less.

2. The system can run without any manual interference needed.

3. The system measures the usage, request, and limit of all required metrics.

4. The system records the machine and job metrics belong to.

5. Measurements are retrievable via an API.

Should Haves

6. The system measures the usage, request, and limit of all optional metrics.

7. The system differentiates between internal peering and outward internet network traffic.

8. Local measurements are sent at short intervals in order to analyze resource usage on failing
nodes.

9. The system uses retention policies to reduce storage usage.

10. Collected measurements are stored centrally for historic and billing purposes.

3.3. Requirements 11

Could Haves

11. The system also measures network traffic between Cloudboxes.

12. The system can make predictions on resource use of a job that is running.

13. Resource usage is not only accessible via the API but can also be viewed in a GUI.

14. The system generates a report when a job is finished.

Won’t Haves

15. The system is integrated with the Nerdalize Cloud Engine’s user interface.

3.3.2. Metrics
For the purpose of clarity, the used metrics are explained in-depth here instead of in the MoSCoW-
model.

For every pod, it is also important to register the instance on which it was used. This is to be able
to determine for example whether RAM usage was DDR3 or DDR4 and on what type of CPU the CPU
time was used. For more advanced cost analysis nodes could even indicate whether the energy they
received was useful to them (i.e. was the heated water likely to be used soon). This draws interesting
parallels with an earlier research project done at Nerdalize [19].

CPU Time Usage

It should be known how much CPU time is spent on a certain job. A distinction should be made between
CPU time reserved, and actual time used (as a reserved CPU does not consume energy and therefore
has a different cost profile).

RAM Usage

Both the reserved RAM and the total amount of RAM used should also be measured. Contrary to the
CPU use, reserved RAM is equivalent to RAM actually used, as reserved RAM is unusable by other jobs
and does not differ in any way.

Disk I/O and Space

For disk usage, it is important to know both the total amount written and read from the disk (I/O) and
the total amount of space reserved/used on the hard drive by a job. A separation should be made
between local disk usage and central disk usage.

Network Traffic

In network traffic, three separations can be made. First of all, there is the traffic inside the Nerdalize
network (e.g. Cloudboxes’ local drives receiving their data from the central server or Cloudboxes
peering data to each other). Secondly, there is the traffic through the Internet Exchange, where
internet companies can send their data directly to each other by using the Border Gateway Protocol
instead of the ”regular” internet (e.g. exchanging traffic with selected cloud providers). Finally, there
is the normal internet traffic, which would be the most expensive form.

Uptime

It is also important to know the total uptime of a machine, this allows users to see when machines are
added or removed from their cluster and allows Nerdalize to see when Cloudboxes go offline. Measuring
this metric also allows Nerdalize to refund resource usage on a failed Cloudbox.

12 3. Problem Analysis

Heat (optional)

Nerdalizes Cloudbox produces heat that can be used to warm houses. Although currently not planned
it is a possibility that in the future Nerdalize may want to charge households for generated heat. In
this case, it is important to have statistics on how much heat a job produced and how much of this
heat is used. Nerdalize may then chose to discount jobs which created useful heat.

Privacy-related issues require special care here. From the test setup in Nerdalize’s office building, it
already became apparent that possibly sensitive information could be retrieved from the temperature
measurements.

Power (Optional)

Like heat, power is another real-world factor participating and should be taken into account in the cost
analysis. Privacy is less of an issue here, as power consumption is dictated by computation need and
to a lesser extent by the homeowner. However, power consumption could still reveal heat consumption
to some extent, therefore requiring some care.

3.3.3. Non-functional Requirements
Apart from the functional requirements, the interviews have uncovered several non-functional require-
ments

Performance

The developed system may only impose a very small overhead on the jobs that need to be run in
the cloud. If the overhead is too large, the system effectively becomes useless, as it will introduce a
computational, and therefore monetary burden far outweighing the benefits.

Accuracy

A measuring system is only useful if its measurements are accurate. In Nerdalize’s case, this is defined
as having measured values deviate less than 10 percent from the actual value. For a more in-depth
discussion about accuracy, we would like to refer you to chapter 6.

Open Source

The developed system or parts of it could be available as open source. This is required to collaborate
with (experienced) people from the Kubernetes community who may help out with difficult design
decisions and provide valuable feedback. It also allows other people to report bugs in the system
and collaborate code or documentation speeding up development. The most interesting part for this
approach will be the resource measuring part of our system as it will most likely be based on the open
source software Heapster.

Maintainability

Maintainability measures the ease with which developers are able to make changes to the system.
This is important because when the project is finished, less time is available to maintain the system.
If it is easily maintainable and open source, other developers are able to take over without having to
extensively study the code. This is beneficial to Nerdalize and other users of the system as it is more
likely kept up to date.

Flexibility

As the field in which Nerdalize is operating is relatively new, it is bound to change quickly. Both
Kubernetes and Docker are under heavy development, in which the direction that will be taken is not
always clear yet. As such, the entire project needs to be setup in such a way that any changes can be
conducted easily and without requiring major revisions to the code.

4
The Research Process

This chapter is used to describe the research process. In particular, it discusses how the the research
was performed in Section 4.1, which development tools were considered in Section 4.2, and which
already existing systems were considered in Section 4.3. Section 4.4 presents the chosen development
tools, while Section 4.5 presents the chosen systems.

4.1. Research
In this Section, the research processes that were used to gather necessary information for the de-
sign and implementation of our system are described. Subsection 4.1.1 and Subsection 4.1.2, which
respectively describe the processes before the project started and the processes during the project.

4.1.1. Before the Project
Two weeks before the official start of the project a meeting with Nerdalize took place in which the
subject of the project was decided. Mathijs from Nerdalize explained several of the technologies in use
at Nerdalize and that the would need to get familiar with. None of the project members had any prior
knowledge of the container ecosystem and distributed systems in general. To get familiar with Docker
two books were read.

Kubernetes is the system Nerdalize uses to manage their clusters, to get familiar with Kubernetes books
were read and a tutorial provided on the Kubernetes website was followed.

Go is the language Docker and Kubernetes are written in and is also used by a lot of Nerdalize’s systems.
Videos were watched about Go and tutorials were done to get a better understanding of Go and its
concepts.

4.1.2. During the Research Phase
Most of the research was done in the first two weeks of the project as a clear view of the project
was needed. In this research phase and throughout the project multiple types of research were used:
interviews, literature studies, digital media, and running test systems.

Interviews

During the project multiple interviews with different people from Nerdalize took place. Those interviews
helped to get a better view of the requirements for the system and getting familiar with how Nerdalize
organizes their cloud infrastructure. An overview is shown in Table 4.1.

In an interview with Mathijs, the planned structure and architecture of the Nerdalize Cloud Engine was
discussed and all systems in the NCE were explained. This showed where our system would be and
how it should integrate.

13

14 4. The Research Process

A second interview with Thirza from the Nerdalize billing department was more focused on what the
billing department of Nerdalize needs and how our system can provide this information. This helped
with selecting a set of metrics for the system.

The third interview with Boaz from Nerdalize’s sales department gave insight in how Nerdalize wants
to sell cloud computing and which data is necessary for doing so. This interview also sheds light on
how usage date could be shown to the end user which is useful when designing a GUI for the system.

In another interview, Nerdalizes network engineer helped define the network metrics that are available
and how they could be measured. The conclusion of this interview was that not all initially selected
network metrics can be measured, thus a smaller set of metrics was selected for the project.

A second interview with Mathijs showed the preliminary architecture design. This allowed flaws to be
discovered and improvements to be made. The improved preliminary architecture design addresses
issues with data security and moved more functionality to a central core.

Name Specialization within Nerdalize Experience
Mathijs CTO 15 years of experience with software engineering

4 years with cloud computing
Thirza Billing 2 years of billing experience
Boaz Sales 5 year
Tim Network 10 years of networking experience

8 of which in data centers

Table 4.1: People interviewed throughout the project.

Literature Study

A literature study was done for two main reasons. Background knowledge on container infrastructure
and clusters had to be acquired. Sources for this information were scientific papers and books. Fur-
thermore, related work had to be surveyed to find ways in which problems have been solved before
by existing resource measuring systems. Sources for the related work were project homepages and
repositories.

Digital Media

The featured videos on Go’s homepage were used to get familiar with some of Go’s concepts such as
subroutines and reflection. Other forms of digital media used were slide shows and online articles.

Running Test Systems

During the last week of the research phase of this project, a local Kubernetes cluster was set up
with Minikube [25]. This cluster was used to get a better view of how Kubernetes works and which
features are already offered by Heapster. This was extremely useful as it helped us understand how
Heapster and InfluxDB work together (InfluxDB working as a sink for Heapster with Heapster pushing
the metrics), which metrics are collected and which are missing from our system. Later in the project
a Kubernetes cluster will be set up on Google cloud this cluster was used for deployment, testing and
debugging the system

4.2. Development Tools
In this section, several development tools are described and compared. The eventual choices are
detailed in Section 4.4.

4.2.1. Development Strategies
In this section, different development strategies that were considered for the project are explained.
For the development strategy, there are two requirements. The development strategy needs to be

4.2. Development Tools 15

able to cope with requirements volatility as Nerdalize is still developing their main product and not all
requirements are clear yet. Second, the development strategy needs to work well for a system that
consists of many decoupled software products.

Waterfall

The waterfall model is a sequential design process, used in software development processes, in which
progress is seen as flowing steadily downwards through the phases of conception, initiation, analysis,
design, construction, testing, production, implementation and maintenance. Despite the development
of new software development process models, the Waterfall method is still a dominant process model.

SCRUM

Scrum is both an iterative and incremental software development framework. It defines a flexible
development strategy.

A key principle of SCRUM is requirements volatility. Scrum recognizes that the customers can change
their minds about what they want and need, and that unpredicted challenges cannot be easily ad-
dressed in a traditional predictive or planned manner. As such, Scrum adopts an evidence-based
empirical approach. It accepts that the problem cannot be fully understood or defined, focusing in-
stead on maximizing the team’s ability to deliver quickly, to respond to emerging requirements and to
adapt to evolving technologies and changes in market conditions.

XP

Extreme programming (XP) is a software development methodology which is intended to improve soft-
ware quality and responsiveness to changing customer requirements. As a type of agile software de-
velopment, it advocates frequent ”releases” in short development cycles, which is intended to improve
productivity and introduce checkpoints at which new customer requirements can be adopted.

Other elements of extreme programming include: programming in pairs or doing extensive code re-
view, unit testing of all code, avoiding programming of features until they are actually needed, a flat
management structure, simplicity, and clarity in code, expecting changes in the customer’s require-
ments as time passes and the problem is better understood, and frequent communication with the
customer and among programmers. The methodology takes its name from the idea that the beneficial
elements of traditional software engineering practices are taken to ”extreme” levels.

4.2.2. Programming Languages
In this section, some of the programming languages that were considered for the project are outlined.
As a monitoring system needs to run in real time, one requirement for the programming language is
performance. A second requirement is that the language has to offer tools to run concurrent, as the
system will need to process data of multiple clusters at the same time.

C(++)

Ever since its appearance in 1983, C(++) has been used in an incredible number of applications. Its
low-level nature with corresponding memory management makes it ideal for performance-critical and
real-time purposes. However, despite several revised standards, the language is starting to show its
age and can be considered verbose, meaning it the amount of code needed is often high compared to
implementations in other languages.

Go

Go is an open source programming language developed by Google. It offers a modern language with
interesting concepts such as channels and concurrency and an innovative approach to interfaces and
reflection. It can be considered a good fit for this project due to the fact that both Kubernetes and
Docker are written in it. Grafana, Prometheus (partly), InfluxDB and Chronograf are also written in Go,
enabling easier integration.

16 4. The Research Process

Python

Python is a high-level interpreted dynamic programming language. While most implementations tend
to be slow compared to compiled programming languages, developing applications is often much faster,
making it ideal for rapid prototyping. Being one of the most popular languages available today, there
is a very large and active community, with a wealth of libraries available. Graphite and the Graphite
webapp are both written in Python.

4.2.3. Repository
In order to collaborate on the code, a repository with version control is needed to ensure functions that
are developed separately can be integrated with minimal effort. Multiple solutions were considered.

GitHub

GitHub is the most well-known repository service with over 14 million users. It offers a Git based
distributed version control and has several collaboration features such as bug tracking, feature requests,
task management, and wikis for every project.

GitLab

GitLab is an open source repository manager, like Github it offers collaborative features but unlike
GitHub, it has an integrated build system, offers free private repositories, and can be self-hosted.

4.3. Systems
There are already many systems to provide some of the functionality a resources monitoring system
needs. In this section, the commonly used systems in distributed computing are outlined.

4.3.1. Data Retrieval and Storage
Data retrieval and storage are considered together, as most systems offer them in an integrated fashion.

Graphite

Graphite is a monitoring tool to store numeric time-series data, offering an SQL-like language for
querying the stored data. It consists of Carbon, a service for collecting time-series data, Graphite-
web, offering a user interface and a possibility to render graphs and Whisper for storing data. Besides
Whisper (a local file-based time-series database), data can also be stored in Ceres (a distributable
time-series database) or even InfluxDB.

InfluxDB

InfluxDB is an open-source time series database developed by InfluxData and written in Go [26]. Data
is grouped as measurements, which are comparable to tables in traditional relational databases. A
measurement consists of a range of timestamps, each holding multiple key-value pairs. Some remarks
can be made about the relative non-scalability of the system (horizontal scaling is only possible in
the commercial version), something that could cause problems in the future. However, as InfluxDB
is currently one of the fastest-growing databases, we expect that solutions have emerged from the
community by that time.

Prometheus

Prometheus is an open-source time series database originally developed at SoundCloud, largely writ-
ten in Go. It ”works well for recording any purely numeric time series. It fits both machine-centric
monitoring as well as monitoring of highly dynamic service-oriented architectures”. However, ”If you
need 100% accuracy, such as for per-request billing, Prometheus is not a good choice as the collected
data will likely not be detailed and complete enough.” [27].

4.3. Systems 17

Ganglia

Ganglia is a scalable distributed monitoring system for high-performance computing systems such
as clusters and Grids. It is based on a hierarchical design targeted at federations of clusters. It
leverages widely used technologies such as XML for data representation and RRDtool for data storage
and visualization. It is currently in use on thousands of clusters around the world and can scale to
handle clusters with 2000 nodes [28]. Ganglia is however not meant as a user-facing system, and
even though it is aimed at clusters, it does not work well in a containerized environment.

Nagios

Nagios is open source software for monitoring systems, networks, and infrastructure. It saw its first
release in 1999 and is still actively developed. Nagios is however not aimed at clusters [8] and as such
the setup process for Kubernetes would be complex. For this reason, other options are preferred.

MonALICA

MonALICA is a globally scalable framework of services to monitor and help manage and optimize the
operational performance of Grids, networks and running applications in real-time. However, since it
is aimed more at operational performance than resources utilization measurement, other options are
preferred [29].

Relational Database Management Systems (RDBMS)

Besides time series databases, several RDBMS with SQL-support (MySQL, SQLite, and PostgreSQL)
were also considered. Despite not being tailored to time series, which will form the majority of the
data and therefore dictate most of our needs, they are true and tested systems that have been applied
to solve largely divergent problems.

4.3.2. Data Visualization
Having a GUI (and therefore data visualization) is a could have of the system and it is still unclear
in the research phase whether the project will eventually feature one. Nevertheless, it is good prac-
tice to already take into account possible techniques and frameworks in order to simplify eventual
implementation, either during the project or in the future.

Grafana

Grafana is an open-source time series metric analytics and visualization suite. It offers built-in support
for various time series databases, including Graphite, InfluxDB, and Prometheus. It is written in Go.

Chronograf

Chronograf is an open-source time series visualization application, developed by InfluxData (the com-
pany behind InfluxDB). It is part of the TICK stack shown in Figure 4.1, which is meant to manage
time series data [30]. It consists of Telegraf (data collection from different sources), InfluxDB (stor-
age of the data), Chronograf (visualization) and Kapacitor (monitoring and detecting anomalies in the
data, alerting based on triggers). Due to the tight integration (in the figure it can be seen that every
element directly relies on InfluxDB), it is only viable as an option if InfluxDB is chosen (using Graphite
is possible, but only through the use of an InfluxDB, introducing unnecessary complexity/work).

Graphite Web App

The Graphite web app is part of the Graphite suite, dealing with data visualization. It is implemented
as a Django webapp, using Cairo for vector rendering. Analogous to Chronograf, considering it is only
interesting if Graphite is chosen for data retention.

18 4. The Research Process

Figure 4.1: The TICK stack.

4.4. Chosen Development Tools
It this section the chosen tools for development such as the development strategy, programming lan-
guage, and testing tools are explained and the choice for them is supported by arguments and the
requirements set in Section 4.2.

4.4.1. Development Strategy: SCRUM
For the development strategy, Waterfall was deemed inadequate for this project as some of the require-
ments might change during the project, due to the relatively new and flexible nature of the company
and its software stack.

Furthermore, SCRUM was chosen over Extreme Programming. While both strategies have similar
philosophies, both parties have more experience with SCRUM. Several concepts of Extreme Program-
ming are still considered useful, though, such as pair programming. The sprint duration was set at 2
weeks, meaning there will be 3 sprint reviews (20 January, 3 February, and 17 February). Furthermore,
there will also be a sprint meeting on every Friday in order to monitor the progress and to react timely
in the event of problems. The sprint plans for the sprints are shown in Appendix A and an overview
of all sprints is given in Table 4.2. SCRUM’s short sprints also allow for concurrent work to be done on
multiple decoupled software products and thus fulfills the requirements set for a development strategy.

Weeks Main activity
0 1-2 Acquire background information, gather requirements, create preliminary design
1 3-4 Development
2 5-6 Development
3 7-8 Development and Validation
4 9-10 Writing final report and prepare for demo and presentation

Table 4.2: Overview of sprints.

4.5. Chosen Systems 19

4.4.2. Programming Language: Go
Go was chosen over both C++ and Python, due to the ease of integration with Kubernetes and Docker
and its abundance within Nerdalize. Apart from this, its harmony with the rest of the stack can be
considered a key factor in the choice. Go also offers good performance and great tools for concurrency,
one of requirements set in Section 4.2.2.

4.4.3. Development Environment
Repository: GitLab

Since both GitHub and GitLab offer almost the same features our choice for GitLab was made because
GitLab was the preferred tool within the Nerdalize company. This means that experienced colleagues
can help with setting up the repository.

Test System: Minikube

To test code on a running system Minikube was used. Minikube sets up a local Kubernetes cluster
which allowed to deploy code locally making it easier to debug.

4.4.4. Code Quality: GitLab CI
To ensure each build has good code quality we will use GitLab CI. Continues integration will test the code
both functionally as non-functionally. The choice for GitLab CI was made because it is an integrated
part of GitLab and it has features that other CI tools don’t offer, such as continuous deployment. An
overview of how this was used in the project is available in section 5.3.

Testing: Unit Tests

Go offers an integrated testing package that offers unit testing, benchmarking and code coverage [31].
it will be used to ensure the written code behaves the way it is designed to. Section 5.4 further explains
how this is done in the project.

Formatting: GoFmt

GoFmt automatically formats Go code, this ensures that all Go code has the same format making it
easier to write, read and maintain [32]. As a result of this, there is no need for automated testing code
style.

Documentation: GoDoc

GoDoc automatically generates documentation on Go code based on comments in packages and func-
tion.

4.5. Chosen Systems
This section goes in to detail on which systems where chosen as a starting point and the reasons they
where chosen.

4.5.1. Data Collection: Heapster
Heapster was chosen for data collection as it offers a good starting point. Heapster uses cAdvisor, a
tool that measures the resource usage and performance of containers, and runs it within a Kubernetes
cluster collecting measurements from all containers. Heapster also collects additional statistics from
Kubernetes itself. It aggregates this data and makes it available via REST endpoints. Heapster, however,
does not support all the necessary statistics as all network traffic is treated equal and monitoring of
disk I/O also seems to be lacking.

20 4. The Research Process

4.5.2. Data Retrieval and Storage: InfluxDB (and SQL)
As we tend to steer away from reinventing the wheel, RDBMS was not be considered for the primary
data due to the relatively convoluted set-up that would be required. Prometheus, InfluxDB and to a
lesser extend Graphite seem to offer solutions to many of our problems and promise to do so right
out-of-the-box, while also enabling a better representation of our data. Ganglia, and MonALISA were
also considered, but they are outdated and do not integrate with Kubernetes out of the box.

InfluxDB was also chosen due to the experience already obtained by the employees and because
integration would be easier with Nerdalize’s existing systems, which also rely on InfluxDB. As at this
moment it cannot be accurately predicted whether InfluxDB will suffice for Nerdalize’s needs in the
future, the system will be built as modular as possible, enabling a relatively easy switch to another
database.

However, a RDBMS will still be used, mostly for the secondary data (E.g. client information, relating
jobs to clients or storing specifications of all systems). Because most modern languages (including Go)
allow communication with RDBMS’s supporting SQL through a uniform interface, choosing a specific
RDBMS is not necessary at this point in time, as they can be changed with very little effort.

4.5.3. GUI: To Be Determined
The GUI would ideally be integrated with the rest of Nerdalize’s GUI. However, as Nerdalize recently
attracted a new employee to enhance their GUI experience, the used frameworks and set-up might
change in the near future. This means that, while not ideal, the exact set-up of a (possible) GUI will
fall out of the context of this project.

4.5.4. Data Visualization: Grafana or Chronograf
By choosing InfluxDB we are able to stay partly agnostic in our data visualization, giving us a fallback
in case things go south. Having several options can be considered good practice, further emphasizing
InfluxDB as a good choice. Apart from this, the choice also depends on the details of the GUI, which
are not yet available at the time of writing.

5
The Development Process

This chapter is used to describe the development of the system. In particular, it discusses how the
chosen development strategy was used in Section 5.1, the way several of Go’s concepts were used in
Section 5.2, how continuous integration was used in Section 5.3, and how unit testing was done in
Section 5.4. Lastly, Section 5.5 explains why no SIG review took place for this project.

5.1. SCRUM
During the project, the SCRUM design strategy was used. The project started with two weeks of
research, after which the first sprint plan and a backlog were made. During our sprints we didn’t follow
a strict schedule for sprint reviewing and planning, this resulted in sprint meetings that were postponed
and a backlog that was not used to its full potential. The small team size, however, made it possible
to discuss plans quickly and stay on track. In a larger team the problems would have been worse, so
in SCRUM was not used optimally.

5.1.1. Sprint 1
During the first sprint an architecture design was created, halfway into the sprint Nerdalize made some
large decisions and part of the architecture design had to be changed, something that interfered with
the sprints planned. Nerdalize also started a new sprint in their software team. However, this helped us
as the daily sprint meetings were a good moment to discuss progress and ask for help when problems
were encountered. At the end of the first sprint, a working system was not realized yet. However, the
final architecture design was presented, which was met with constructive criticism.

5.1.2. Sprint 2
In the second sprint, the implementation of all the parts of the system could be started. The choice
was made to work on two different components and integrate them at the end of the sprint, which
was a good decision as both components required much prior knowledge to get started on. During this
sprint, the choice for Helm [33] to manage application deployments on Kubernetes was made. At the
end of the sprint, a demo was given at Nerdalize.

5.1.3. Sprint 3
The last sprint consisted of integrating all separate parts of the system and solving all problems that
arose when the system was deployed on a Google Kubernetes cluster. In this sprint, the focus was more
on the user facing side of the system, such as the dashboards and API. Problems were encountered
with the testability of our code.

21

22 5. The Development Process

5.2. Go
One of the reasons Go was chosen as the programming language was the way Go handles the concept
of concurrency. Within Accumulus this was used at multiple places in the code. Deploying clusters
happens in a Go subroutine, as does the syncing of Influx databases and the processors. In order to
ensure everything happens in the right order waitgroups were used, while thread safety is guaranteed
by using mutexes. An example of both is shown in Figure 5.1, in lines 73-75 we see how a mutex is
used to claim writing rights on a set of points, line 79 calls functions in concurrent subroutines and
uses a waitgroup (lines 78 and 84) to ensure all of them are finished before returning.

Figure 5.1: Concurrency example.

5.3. Continuous Integration
In order to ensure high code quality, GitLab was chosen for continuous integration. However, due to
the complicated setup of the system and the difficulties of running a Kubernetes cluster within a CI
environment this was time-consuming. In the end, the choice was mode to not do integration tests
as setting up a cluster and deploying the code every time commits were made took over 20 minutes,
while the complicated state of the systems was hard to capture in automated testing.

Future work could improve on this by using GitLabs continuous deployments to automatically build and
deploy new builds on test clusters in order to monitor them, possibly using dedicated Kubernetes CI
solution such as Jenkins or Fabric8.

5.4. Unit Testing
Since problems with the CI already arose and no prior experience with testing in Go was present, the
code was designed without testing in mind. This choice resulted in code that could not effectively be
tested by Go’s testing suite, which was partially solved by writing end-to-end test. While this was not
necessarily the best way to test the code, they at least cover large parts of the code and offer some
way to test the code’s behaviour.

Future work could improve on this by introducing interfaces so functions are easily mocked and unit
tests can be created without relying on dependencies such as Influx or Heapster.

5.5. SIG Code Review
In order to get feedback on the structure our code was send to the Software Improvement Group [34].
Due to the nature of our project (which was largely in development operations) and the separate
software components, the SIG determined that a review of the code at that time was not feasible. This
was due to the absence of automated Go analysis at their end, and having our system spread across

5.5. SIG Code Review 23

a modified Heapster instance, a central Accumulus application, some shell scripting and several Helm
deployment scripts for both.

6
Design of Accumulus, a Monitoring

and Cluster Analysis System

This chapter describes each part of Accumulus in detail, roughly in chronological order. Section 6.1
gives an architectural overview of Accumulus as a whole and describes how the Accumulus ecosystem
is deployed, both in the client and the central cluster. In Section 6.2, Accumulus Core and how it
relates to other components is described in more detail. The SQL database and the database syncing
mechanism between core and client cluster is explained in Section 6.3. Section 6.4 then goes into detail
on how Heapster was extended to attach extra tags to all measurements. Next, Section 6.5 describes
the design and implementation of the Influx syncing mechanism that was implemented for collecting
data from the client clusters. Section 6.6 explains how processors are used on the InfluxDB in the core
cluster to calculate certain metrics. How the data collected by Accumulus is visualized is explained in
Section 6.7 Lastly, Section 6.8 details possible extensions to Accumulus and alternative setups.

6.1. Architecture Overview
The designed system will consist of different components, which are:

• An extended version of Heapster

• InfluxDB

• Grafana

• Accumulus Core

• An SQL database

A complete overview of the architecture is shown in Figure 6.1. This system is split into two parts, an
instance of the client part will run in every client cluster, while the core part runs in a central location and
is responsible for deploying the client part in each cluster. The central part connects to all user clusters
to collect compute resource data, while it pushes data from processors (such as power consumption
and the cost of the resources used so far) to the client clusters. This set-up is chosen in order to
enforce that no sensitive data is stored in the client cluster, while also ensuring the client cluster is still
monitored if the connection with the core is lost. An added benefit is that the client has access to high-
resolution compute resource data if needed, without putting any stress on the centralized application
or requiring a very large central storage capacity.

6.1.1. Central Cluster Ecosystem
In the leader cluster, 3 pods are running. The central Accumulus instance, an InfluxDatabase and
a Grafana pod (the latter is not required for a correct working of the system, but included for data
visualization). Services are also running, exposing the InfluxDatabase, Grafana, and the Accumulus

24

6.2. Accumulus 25

Nerdalize CoreNerdalize User Cluster

Kube System

Host Host

Accumulus
GUI

Heapster +

Accumulus
core

Tags

Accumulus
GUI

SQL Heat, Power
and network

data

User Nerdalize

Figure 6.1: An overview of the system architecture.

API. A service account and a secret (containing a Docker key) on which it relies are also deployed for
access to the containers hosted in a private Docker repository.

6.1.2. Client Cluster Ecosystem
In each follower cluster three pods will be deployed; A modified instance of Heapster, an InfluxDatabase
and a Grafana pod. Again services are set up to expose Influx and Grafana to the user. The same
set-up relying on a secret and a service account is used here to retrieve the images from a private
docker repository. Finally, a configmap is deployed, carrying the text files which will be converted to
the database used by the modified Heapster.

6.1.3. Installation
The deployments themselves rely on Helm, a Kubernetes package-manager. In order to prepare the
leader cluster for installation, a Tiller-pod (Helm’s client-side) should be installed. This can be done by
calling ”helm init” on a CLI with access to the desired cluster. Once a Tiller pod is ready, the central
Accumulus instance can be installed from the ”Charts” found under ”etc/Helm”. The central instance
takes care of the installation on the follower clusters, also relying on Helm. New client clusters are
added by calling <IP of the Accumulus-pod>:8080/accumulus/clusters/add/<clustername>. For the
client installation, the central Accumulus instance first tries to install Tiller, after which the other ”Chart”
under ”etc/Helm” is used.

6.2. Accumulus
An instance of Accumulus Core will run in the central Nerdalize cluster. Accumulus Core is responsible
for the connection between the customer cluster and the Nerdalize core cluster and fulfills three main
functions; deployment, collection, and processing.

26 6. Design of Accumulus, a Monitoring and Cluster Analysis System

User CLI InfluxAccumulus

Helm Accumulus
Core

User Cluster

Manager Processor Central
InfluxDB

Helm install
Deploy

Create

AddCluster()
Create

Deploy
accumulus/start

Start()
Query()

Process()

Result

Heapster
InfluxDB

AddDownsample()

Write()

Write()

Query()

Result
Write()

accumulus/stop Stop()

Active object

Synchronous call

Asynchronous call

Object

Object lifeline

Figure 6.2: Sequence diagram of the deployment and functions of the Accumulus core.

6.2.1. API
The API is the main way to interact with Accumulus, with it clusters can be added and removed and
the system can be stopped and started. The endpoints supported by the API are listed in Table 6.1

Endpoint function
/accumulus Shows the current status of the system
/accumulus/start Starts the manager
/accumulus/stop Stops the manager
/accumulus/clusters gives back a list of clusters
/accumulus/clusters/add/[name] Adds the cluster from the Kubectl file to accumulus
/accumulus/clusters/remove/[name] Removes the cluster from accumulus
/accumulus/clear Clears all data in accumulus

Table 6.1: The Accumulus API.

6.2.2. Manager
The manager is responsible for collecting and processing all the data from follower clusters. On regular
intervals, it queries all user clusters for new measurements which it then stores in the central Influx-
Database. This database is then used by processors that are added to the manager, those processors
generate extra metrics such as power usage and cost by correlating the data to external metrics. Last
the manager syncs the generated metrics back to the right follower clusters. Figure 6.2 shows how
the Accumulus is deployed and uses a manager.

The manager is built in such a way that if something goes wrong it will be tried again in the next tick,
as such it doesn’t matter if the network drops or a query doesn’t return a result.

6.3. SQL Mechanism
The SQL database running in the core cluster currently contains information on all Cloudboxes (and
in the future possibly also about jobs, clusters, and customers). While in theory, it’s not possible for

6.3. SQL Mechanism 27

clients to access nodes or information outside their assigned namespace(s), Kubernetes is not built for
multi-tenancy, so this security can not (yet) be considered rigid. As such, and because the data can be
considered sensitive (the locations and the total number of Cloudboxes, customer information etc.), it
is distributed on a need-to-know basis to the customer clusters on start-up.

The distribution is done by exporting the schema of the master database and its contents to text files
using the SQLite3 CLI. The content is exported using queries, allowing for flexible rules regarding the
exact information exported. The text files are then sent to the cluster using a Configmap, as Kubernetes
does not allow any other way to initialize a pod with different files.

During start-up, the modified Heapster will use the text-files and rebuild an SQLite3 database from
them. Once again, the SQLite3 CLI is used for this. The SQL database is used by Heapster and the
usage of the standard Go SQL interface makes the database back-end completely interchangeable.

In Heapster, a simple cache is included, in which every metric requested for a host is cached, signifi-
cantly reducing the traffic to the SQL database. When the cache is invalidated, it is completely purged
and will be rebuilt by the following queries. While this is not the most efficient cache invalidation
method, it is deemed sufficient for this project as a complete cache rebuild (for large clusters having
1000’s of nodes) takes less than a second on modern machines and cache rebuilds are expected to
be very rare. In fact, they should only happen if information for a node is entered incorrectly in the
central database, or when a node receives different hardware. Node removal or addition will not lead
to an invalid cache, as in the first case the cached data is simply no longer requested, while in the
latter case the value will be cached the next time it gets queried.

Figure 6.3: Overview of the SQL database initialization mechanism.

28 6. Design of Accumulus, a Monitoring and Cluster Analysis System

6.4. Heapster
For this project, Heapster is extended so additional tags can be added to metrics. An overview of extra
tags is shown in Table 6.2. Heapster will use the SQL Database to look up the right data, for example
relating resources to the hardware they were used on, and adding the Cloudbox id.

Tag Metrics Reason
Cloudbox id All metrics Needed to separate measurements for different clusters and

to estimate power use and heat production
Cluster id All metrics Needed to link metrics back to a customer
Cpu type Pod and node Gives the user insight into his performance on the type of cpu

And gives Nerdalize data on Cpu usage
Ram type Pod and node Gives Nerdalize data on ram usage
Disk type Pod and node Gives the user insight into his performance on the type of disk

And gives Nerdalize data on ram usage

Table 6.2: Tags on metrics and reason for these tags.

To add this functionality to Heapster a new package was created, in this package two files are present;
the tagger handles tagging and caching, and the SQLSyncer builds the database from files. Thanks
to this approach only 3 lines had to be added to Heapsters original code, making this extension easily
maintainable.

6.5. Influx
InfluxDB will be used for storing time series data. There are multiple instances of InfluxDB, one in each
customer cluster and a central instance for long term storage and historic searching. The instances
in the customer clusters will keep precise data. InfluxDB down-samples this precise data to a lower
resolution, which will be collected by the central Accumulus instance. InfluxDB can also use retention
policies to reduce disk usage by only keeping data for a certain time.

In order for Accumulus to sync between and operate with Influx databases, the InfluxSync package
was built. InfluxSync offers a comprehensive set of functions seen in Figure 6.4 to query, write and
sync influx and uses its own InfluxPoint datatype for this.

InfluxDatabase

- client: influxdb.Client
- database: string

+ NewDatabase(ip, user, password, database) InfluxDatabase
+ CreateClient(ip, user, password) Client
+ Init()
+ Delete()
+ Clear()
+ Downsample(database)
+ SyncTo(InfluxDatabase, filter)
+ GetTables() []string
+ GetTable(table) InfluxTable
+ QueryTime(value, table, filter) Time.time, error
+ Query(value, table, filter, group) map[string][]InfluxPoint, error
+ Write(BatchPoints) error

InfluxTable

- database: string
- table: string

- newTable(InfluxDatabase, table) InfluxTable
+ SyncTo(InfluxTable, filter)
+ QueryTimes(value, table, group) map[string]Time.time, error
+ QueryTime(value, filter) Time.time, error
+ Query(value, filter, group) map[string][]InfluxPoint, error
+ Write(data) error

InfluxPoint

+ Tags map[string]string
+ Values map[string]interface{}
+ Timestamp Time.time

+ NewPoint(data, columns)

Figure 6.4: Diagram of the core database classes in our system.

6.6. Processors 29

6.5.1. Databases and Tables
InfluxSync has a datatype for both databases and tables, a database object holds an Influx Client to
communicate with the Influx instance and a string that contains the name of its database within that
Influx instance. By calling GetTables() the names of all tables in the database can be retrieved, an
InfluxTable object can then be retrieved by calling GetTable(name).

The InfluxDatabase object also has functions to clear its content or add a downsample query to it. On
its creation, it will also create its database in Influx if it does not exist yet.

6.5.2. Querying and Writing
InfluxSync offers two main forms for querying, a regular query and a time query. The regular query can
be invoked by calling Query(select, where, group) on a table object, with select containing the values
you want to query and where the filter, it returns the result in a map, with the results of grouping as
keys.

6.5.3. Syncing
Syncing happens per table with the assurance that the tables will be equal after a successful sync. A
sync first queries the last synced data point then queries all points after that point from the source
table and writes them to the sink table. InfluxSync does this concurrently to reduce the network delay.
A sync for an entire database is also done per table, however, there is the SyncToFull() function that
does it for the entire database in a single query.

6.6. Processors
Accumulus has support for flexible processors, which get called with the core database as a parameter.
They can then perform operations on this database and create or change metrics. 2 processors are
developed for Accumulus, a power processor, and a cost processor. Processors run in the central cluster,
as they handle sensitive data which is not allowed to exist in the client cluster.

6.6.1. Power
The power processor gets the power consumption from Cloudboxes from Nerdalizes system, then it
calculates a distribution over nodes. Every node gets a split of the total power consumption based on
a known idle consumption and the node utilization. The processor then splits the power consumption
over each pod running on the node, all pods get an equal part of the nodes idle consumption and the
remainder is distributed based on CPU time used by pods, a common metric used to approximate power
draw [35]. A more detailed analysis of the model the power processor uses is given in Section 7.1.3

6.6.2. Cost
The cost processor is a simple mapping processor, it has a defined ”realistic” cost for each resource
and calculates the operational cost for each pod, node, namespace, and cluster. By customizing this
function to Nerdalize’s billing model when they switch to per resource billing, the user can get a clear
estimate of the total cost of his project, sub-projects, and pods.

6.7. Grafana
For Accumulus we created custom Grafana dashboards shown in Table 6.3, those offer a clear view
of the data collected and generated by Accumulus, different dashboards are created for the user and
administrators. If users want even more insight they can also create their own dashboards. An example
of one of the dashboards is shown in Figure 6.5

Grafana is a dashboard application for time series, it visualizes time series data. Heapster comes with
its own version of Grafana, which has pre-configured dashboards for both cluster and pod performance.

30 6. Design of Accumulus, a Monitoring and Cluster Analysis System

Grafana will be used for visual representation of the data, both the customer and Nerdalize will have
their own Grafana interface and the possible GUI that may be developed will most likely also use
Grafana to render graphs.

User Dashboard Usage
Client Cluster Overview Shows cost estimate and overall utilisation
Client Application View Shows the usage of indiviual applications

and is useful for analyzing performance
Nerdalize Master Overview Can show the total revenue and profit Nerdalize makes,

and the utilisation of their servers
Nerdalize Client Overview Gives nerdalize a closer look at a certain client,

an be used to analyse their usage patterns
and help them improve their application

Table 6.3: Grafana dashboards.

Figure 6.5: The Application view dashboard.

6.8. Possible Extensions
Currently, Accumulus is running in a simple single leader setup. In this section, two alternative archi-
tectures are proposed.

6.8. Possible Extensions 31

6.8.1. Multiple Leaders
Since the central Accumulus instance will check for an existing installation of the modified Heapster
before installing one, an architecture having multiple leaders can easily be established. This can be
used in high-availability setups and for meeting data replication requirements. The only modification
needed for such an architecture is ensuring that the heat and power data is only pushed to the follower
cluster by one leader at the same time.

6.8.2. Multilevel Aggregation
In case the number of follower clusters becomes too high for a single leader, a multilevel architecture
with several leaders following a super leader can be envisioned. In such a cluster, the usage data prop-
agates upwards until reaching the highest level leader, where it will be stored in the central database.
This set-up is easily realized by exposing the leader’s database using the same service as used for
the follower’s database. The super leader will then automatically start treating the leader as if it were
one of its followers, pushing power and cost data while pulling usage data. Installation in the follower
clusters will still be done by the leaders, although the modular approach would easily allow this to be
done by the super leader (remember, a leader will always check whether Heapster has already been
installed) or the super leader could defer this to the leaders.

Figure 6.6: Comparison of the current setup (A), a setup having multiple leaders (B), and a multilevel setup (C).

7
Experimental Testing and Validation

A measuring system system is useful only if it satisfies two conditions. The system needs to be accurate,
which will be discussed in Section 7.1, and the system needs to have a small overhead, which will be
experimentally verified by the experiments proposed in Section 7.3. A additional constraint in this case
is scalability, which is discussed in Section 7.4.

7.1. Accuracy Evaluation
A measurement system is not useful if the measurements are inaccurate. Therefore the system needs
to be tested for accuracy on all metrics it collects. Section 7.1.1 shortly talks about compute resources,
Section 7.1.2 explains how power consumption and heat production of a Cloudbox is measured. Lastly
Section 7.1.3 goes into detail on the accuracy of the model for the power processors we built for
Accumulus.

7.1.1. Compute Resources
Heapster receives its measurements directly from cAdvisor and as such, Accumulus’ accuracy for re-
source usage depends entirely on that of cAdvisor. cAdvisor collects its measurements directly from
the kernel and OS. Because of this these measurements can be assumed accurate enough by doing a
basic validation with a known impact on the system. The experiment and results for this validation are
covered in Section 7.2.

7.1.2. Power and Heat
The Cloudbox contains a class B electrical energy meter, which is legally required to have a measurement
error of less than 2 percent over the temperature range where Nerdalize is operating in [36].

All of the power consumed by the compute modules is transferred to the water, with the exception of
the heat lost to the surroundings, meaning an upper bound can be given for the error with which the
created (useful) heat is estimated. No useful heat is created if the water in the boiler already has the
maximum temperature, something which is easily measured.

The actual heat used by the homeowner is more complicated and can only be inferred by the mea-
surements from two temperature sensors (10K NTC with a B constant of 3435 K), one in front of the
heating area and one after. However, for our system the heat used by the home owner is at this
moment irrelevant.

7.1.3. Power Model
The power consumption is split over pods and containers in a Cloudbox. To do this the power processor
uses a model to distribute the power, this is done by the CPU time used by pods and containers.

32

7.1. Accuracy Evaluation 33

In Figure 7.1 the results of putting different loads on an actual Cloudbox are shown. This data was
gathered by running stress [37] for 10 minutes. From this data, we can see that CPU power draw is
almost linear between a load of 2 to 20 Cores, after which only a slight increase from hyperthreading
is seen. The standard deviation in this experiment was low and when hyperthreading the deviation
disappears as the meter starts reporting the system to be using a constant amount of power, because of
this low deviation we shortened the rest of our experiments on power usage to 2 minutes. In Figure 7.2
the deviation 𝐷 between just CPU load and CPU plus RAM load is displayed. Figure 7.2 also shows
that RAM usage only accounts for up to 2.5% of the total power usage of the system. In Figure 7.3
the deviation 𝐷 of the estimated power draw by the processor from the actual power consumption of
the Cloudbox is shown. From all this information we can conclude that the deviation depends on the
function, RAM use and the deviation of the meter 𝐷 . The maximum total deviation is the given by:

1 − ((1 − 𝐷) ∗ (1 − 𝐷) ∗ (1 − 𝐷)) (7.1)

When done for all measurements with linear interpolation this gives the graph shown in Figure 7.4,
showing that if the load on a machine in a Cloudbox exceeds 12.5% the processor is accurate within
10%.

Other factors such as network traffic and the temperature of the machine also play a role the power
usage of the Cloudbox. However, according to [35] the overhead of switches and network traffic falls
in a small dynamic range and can therefore be accounted for as base load. For the temperature, this
is not the case, but within Nerdalizes application of high compute cloud most machines will be under
a constant load and as such their temperature will be constant.

This means that the created power processor is accurate as long as there is a significant load on the
system. Furthermore, since the measurements are split over the Cloudbox the total will always add
up, so the only case in which the processors accuracy is critical is if multiple users are running on the
same Cloudbox.

Figure 7.1: Measured Cloudbox power usage.

34 7. Experimental Testing and Validation

Figure 7.2: Measured Cloudbox power usage when using RAM.

Figure 7.3: The deviation of the processor function against the actual power draw of a Cloudbox.

7.2. Basic Validation 35

Figure 7.4: The maximal deviation of the processor.

7.2. Basic Validation
To validate the basic working of the system, Nerdalize has requested some smoke tests. In those
experiments, stress tests will be used to cause a predictable load on the system. Accumulus should
then show the expected values for the load. To do this test a small application with a REST API was
created, this application can stress the CPU, RAM, network, and disk. The possible endpoints are shown
in Table 7.1.

endpoint function
/stress shows if the application is running
/stress/CPU/cores Starts a number of CPU threads calculating sqrt(random).
/stress/RAM/size Generates a array of the give size in megabytes.
/stress/disk/size Writes a file of given size to disk.
/stress/net/n Requests the Go network package page n times.

Table 7.1: Stressload.

Table 7.2 shows the resources that are tested and the expected loads that Accumulus should measure.
The test results are shown in Figures 7.5, 7.6, 7.7 and 7.8. From the CPU test, we can see that stressing
a single core results in an average of 986 millicores used, a deviation of less than 2% of the expected
load. The dual core stress test has a higher deviation but this was expected as the test setup had
only 2 cores. In the RAM test, we also see a small overhead, other test showed that this is due to Go
and the way Go manages its memory. The disk test shows that the measured use exactly matches the
expected use. Lastly, the network test shows the received network traffic from requesting a web page
for 5 minutes, the measured value is slightly higher than the expected value due to headers and other
overhead not accounted for in the expected value.

So the results of the basic validation test show that Heapster and thereby Accumulus is accurate.

36 7. Experimental Testing and Validation

Resource Test program Expected result
CPU Single core stress test 1000 millicores used
CPU Dual core stress test almost 2000 millicores used
RAM Generate 10Mb array 10Mb RAM used
RAM Generate 20Mb array 20Mb RAM used
RAM Generate 50Mb array 50Mb RAM used
RAM Generate 100Mb array 100Mb RAM used
Disk Write 20Mb file 20Mb disk used
Disk Write 40Mb file 40Mb disk used
Disk Write 80Mb file 80Mb disk used
Disk Write 120Mb file 120Mb disk used
Network Request Go web page 11Mb network rx

Table 7.2: Basic validation test parameters.

Figure 7.5: Measured CPU usage.

7.2. Basic Validation 37

Figure 7.6: Measured RAM usage.

Figure 7.7: Measured disk usage (blue) on left axis, measured increase after writing file (red) on right axis.

38 7. Experimental Testing and Validation

Figure 7.8: Measured network traffic.

7.3. Overhead
Overhead is another important factor in measuring systems. This section explains the experiments
testing the overhead in Section 7.3.1, while the results are discussed in Section 7.3.1.

7.3.1. General Setup
In the overhead test, the performance of a cluster with three different setups is measured. Once on a
bare Kubernetes cluster, once on a cluster with vanilla Heapster deployed and once on a cluster with our
version of Heapster deployed, which syncing to a central Accumulus instance. On each cluster, several
benchmarks are run, after which their duration is compared. The slowest 10% of each cluster are not
taken into account, in order to minimize outliers. Nerdalize has labeled this experiment interesting, as
it is very close to their intended use case.

The test load consisted of running 100 containers containing a ray-tracer. It was run on a cluster
consisting of 6 instances of N1-standard-1 in the GKE.

7.3.2. Results

Setup Average fastest 90 % Total average Standard deviation
Bare 00:06:40 00:06:52 00:01:40
Heapster 00:06:34 00:07:00 00:01:48
Accumulus 00:07:00 00:07:15 00:01:32

Table 7.3: Results of the overhead test for a bare Kubernetes cluster, one with only Heapster and one with a modified Heapster
syncing to a central instance.

From the results, it is visible that a cluster containing a synced Heapster is only 5% slower than a
bare Kubernetes cluster. However, the fact that a cluster containing only Heapster is faster than a

7.4. Scalability Evaluation 39

bare cluster, combined with the relatively large standard deviation in all three tests shows that more
extensive tests are needed in order to arrive at a solid conclusion.

7.4. Scalability Evaluation
As mentioned the developed system should be scalable, which is experimentally tested in this sec-
tion. The general setup of the experiment is discussed in Section 7.4.1, the effect of the number of
pods/containers on the resource consumption in Section 7.4.2, the effect of the number of nodes on
the resource consumption in Section 7.4.3, and the effect of the number of clusters on the resource
consumption in Section 7.4.4. The results are then discussed in Section 7.4.5.

7.4.1. General Setup
In the scalability tests, a cluster is monitored by our modified Heapster. Heapster is deployed twice,
one instance is synced to the central Accumulus, while the other is not. This is to measure the effect of
the syncing on the resource consumption. 3 variables will be varied and their effects on the resource
consumption will be measured by Heapster itself. The variables are the number of pods/containers
inside a cluster, the number of nodes in a cluster and the number of client clusters that sync to the
central Accumulus instance. Due to the duration of the tests and their accompanying costs, each test
could only be run once. As such, there is no data available regarding statistical deviations.

Figure 7.9: Scalability test setup, also showing the three parameters to be varied (pods/containers, nodes, and client clusters).

For each test, we wait until at least 90% of the expected containers is running (in order to account for
failing containers), after which it is given 3 additional minutes to completely reach steady-state. The
measurement then lasts 10 minutes, where every minute the total usage is measured by Heapster.

To minimize the interference between the different parts of the system, both versions of Heapster run

40 7. Experimental Testing and Validation

on their own node, as do the test load and any system pods which run inside the Kubernetes cluster.
The only exceptions are system pods which have to run on every node, in our case Kube-proxy and
Fluentd Cloud Logging.

All of the scalability measurements were done inside the europe-west-1d availability zone of the Google
Container Engine, with a standard cluster consisting of nodes using the Haswell architecture with one
virtual CPU each (N1-standard-1). The test pods consisted of 20 containers each (because of limitations
in the Kubernetes scheduling, which would not allow more than 110 pods on a single node). The test
container would retrieve at random intervals the HTML from one of 10 pre-defined web pages and
write it to disk to simulate some network and disk usage.

7.4.2. Containers vs Resource Usage
This is the only test in which another instance than N1-standard-1 was used. This was done because
the number of containers needed would not fit on such an instance, so instead an N1-standard-16 was
used for the test load. All other instances were kept N1-standard-1.

From the Graphs 7.10 and 7.11, it can be inferred that both the CPU load and the RAM used scale
linearly with the number of pods/containers, which is good news for the scalability. It can also be
seen that the synced version causes significantly more CPU load and RAM usage, mainly in the Influx
database pod, which is also responsible for the majority of the resource usage. Grafana was not used
during the tests, and it is good to see its resource use was negligible.

7.4.3. Nodes vs Resource Usage
Test were run for 1, 2, 3, 4, 5, 6, and 8 nodes, each running 10 pods (200 containers). Originally
testing with 10 nodes was also planned, but this was eventually deemed unnecessary and thereby cut
to save on costs.

From the graphs 7.12 and 7.13, we can see similar results for the nodes as for the pods. RAM and
CPU usage scale linearly, with the synced instance using significantly more than the unsynced instance,
mainly at the Influx database pod, which is also responsible for the majority of the resource usage.
Grafana was not used during the tests, and it is good to see its resource use was negligible.

Interesting to note is the RAM use of the synced Influx instance at 8 nodes, which is actually lower
than the RAM use at 6 nodes. We expect this to be due to the fact that the instances used only had
3.75 GB of RAM and therefor either garbage collection, cache purging or some similar mechanism took
place in the Influx database pod. This might indicate that the system is able to run on instances having
less RAM than what would be expected from the linearly scaling graphs.

7.4.4. Clusters vs Resource Usage
In this test, the focus is on the resource usage behaviour of the central Accumulus instance. While
we see a linear scaling pattern for the RAM usage, the CPU usage unfortunately seems to follow a
less favourable scaling pattern. This is mainly due to the Influx database pod, as the CPU use of both
Grafana and the Accumulus pod seem to scale linearly.

7.4.5. Scalability conclusion
From the container test and the node test it can be seen that the system scales well with the cluster
size, while the cluster test shows that this is less so with the number of clusters to be synced. The
majority of the resource usage stems from the Influx database pod, both in the client’s Heapster part
and the central Accumulus instance. As Influx database supports multi-core setups, it is trivial to scale
the application further by simply adding more cores. There is even a decentralized version of InfluxDB
available, allowing for even larger systems, but the downside is that this is proprietary at the time of
writing.

Another remark that can be made is the fact that these tests were run on regular HDD’s instead of
SSD’s. Seeing that the majority of the resource use stems from Influx database, we expect significant

7.4. Scalability Evaluation 41

Figure 7.10: Containers in cluster vs CPU utilization for an unsynced (top) and synced (bottom) instance of Heapster.

42 7. Experimental Testing and Validation

Figure 7.11: Containers in cluster vs RAM usage for an unsynced (top) and synced (bottom) instance of Heapster.

7.4. Scalability Evaluation 43

Figure 7.12: Nodes in cluster vs CPU utilization for an unsynced (top) and synced (bottom) instance of Heapster.

44 7. Experimental Testing and Validation

Figure 7.13: Nodes in cluster vs RAM usage for an unsynced (top) and synced (bottom) instance of Heapster.

7.4. Scalability Evaluation 45

Figure 7.14: Clusters synced vs CPU utilization of Accumulus (top) and clusters synced vs RAM usage of Accumulus (bottom).

46 7. Experimental Testing and Validation

speed-ups if SSD’s are used.

The scalability tests also showed some issues with the syncing mechanism, as the Influx database of
a synced instance used up to 20 times as much CPU as that of an unsynced instance. We expect this
penalty to stem from the fact that InfluxDB is optimized for writes, not reads (which are done during
the syncing). Seeing that practically the same data is written in both the client database and the central
database (excluding a possible downscaling of the data), this performance penalty should be easy to
tackle. A naive solution would be to have Heapster write to two sinks, once to the local Influx database
and once to the central Influx database.

Another issue that showed was the non-linear scaling with the number of clusters in the central Accu-
mulus instance (or more precisely, its use of the Influx instance). We expect this issue to stem from
the implementation details of the use of Influx database, as the amount of data does grow linearly with
the number of clusters and should therefore result in linearly scaling resource usage at the InfluxDB
pod.

Interesting to note as well is that all these conclusions stemmed from Accumulus system itself. This
shows that performance problems and scalability issues are easy to locate in a micro-service architec-
ture monitored by Accumulus. In fact, using Accumulus’ cost processor, it should also be possible to
calculate the costs of each issue on a yearly basis, thereby aiding the decision of whether development
hours should be spent on fixing it.

8
Discussion & Future Work

In this chapter the project itself is discussed in Section 8.1, while Section 8.2 gives some possible
directions for future research.

8.1. Discussion
This section discusses our experiences with doing this project and several of the challenges that were
encountered.

8.1.1. Main Challenges
During the project, many challenges were encountered, in this section those challenges and how they
were dealt with is covered.

Inexperience With Docker

Docker has become the standard container platform, it makes it easy to develop applications that can
run anywhere. Packaging Docker containers, however, can be a hassle, the code needs to be compiled
for the right operating system (Linux) and dependencies need to be packaged as well. After packaging
moving the containers requires using a repository. As we had no prior experience with Docker this did
cause issues.

Difficulty of Setting up Clusters

Setting up and having interaction between several clusters proved difficult, mainly due to different
authentication mechanisms in use. During week 3 of the development, the decision was made to use
Helm instead of the Kubernetes Go client to get the cluster in the desired state, which simplified the
process significantly. Testing cluster setup in an automated way turned out to be time-consuming
though, also because most CI tools were focused on having a single cluster (which is the intended use
case of Kubernetes under normal conditions). It was eventually abandoned, meaning testing had to
be done by hand.

8.1.2. Programming Language Experiences
Most of the Accumulus codebase is written in Go. Go is a young programming language developed
by Google, dating back to only 2012. This section reflects on Go to give some insight in working with
this new language. Writing Go is similar to writing C. Although its syntax is similar to that of C, it has
more modern features such as garbage collection, dependency management, and built-in concurrency
control. Go has no classes and instead uses structs, interfaces, and methods to organize code.

47

48 8. Discussion & Future Work

Working with Go was generally received favourably. It is very easy to create scalable concurrent
programs in Go because of the ease of creating threads, called Go routines. Inter-thread communication
is convenient using channels. The fact that Go is verbose also helped us as it makes code easily
readable. Some other elements of Go were harder to work with, problem were mainly encountered
with dependencies and race conditions, with some of these issues taking nearly a day to find and fix.

8.1.3. Changing requirements
During the project Nerdalize made many big decisions on how they want to provide their cloud service,
these changes also impacted the project, requiring a redesign of the architecture and a change in
requirements. Nerdalize initially wanted a system for billing purposes, however, they later changed the
requirements so the system could be used for both monitoring and billing. This system could then give
the user insight in his resource consumption and cost.

8.1.4. Ethical Considerations
In this section the ethical implications of Accumulus are discussed. For this, three ethical aspects
applicable to Accumulus are considered, being confidentiality, privacy and transparency.

Confidentiality

Resource usage metrics can give insight in the sort of application running, as such this information
is sensitive and it would be unethical to reveal this information to others. Accumulus handles this by
only storing this information in the user’s cluster and the central cluster, ensuring this information is
inaccessible to other customers. As these metrics are collected with a time interval of 1 minute, their
resolution can be considered to coarse for the cloud provider to infer anything about the specifics of
the client’s applications. The cloud provider still gets the names of the containers running in the client
cluster, but if this is considered an issue it is relatively simple to give them randomized names.

The cloud provider on the other hand also has information they do not want to share but which is still
necessary to process resource usage metrics. Accumulus has two ways of dealing with this data. The
first is the SQL sync which ensures only data relevant to a cluster is available in a client cluster. The
second is the central processing, because metrics are processed centrally the processors can contain
company secrets and use sensitive data to process metrics without this data and secrets being at risk.

Privacy

A factor which is specific to Nerdalize’s case is the privacy of the home owners. As mentioned under
3.3.2, the temperature measured by the Cloudbox could be used to infer information about the habits
of the home owner, posing a privacy concern. As such it must be ensured that this information is
inaccessible by Nerdalize’s customers, which is done by processing this information in the central cluster.

Transparency

In cloud computing, the customer should always have a certain level of trust in the cloud provider, as it
is often impossible to check if the provider delivered what he promised. While this issue is not solved by
Accumulus, it should be trivial for the client to see whether or not the provider is altering the measured
values. The customer can simply install his own version of Heapster and see if its measurements match
those on the bill.

8.2. Future Work
In this section possible future work is discussed.

8.2. Future Work 49

8.2.1. Testing in Production
The design and implementation described in Chapter 6 and the experimental work discussed in Chap-
ter 7 describe the current state of Accumulus well. Accumulus has proven to be a working system,
being able to monitor large clusters. It should however be noted that Accumulus is a proof of concept
system and has not yet run in production environments. This section describes how Accumulus can be
tested in a more realistic environment.

Since Kubernetes offers control over nodes, a good way to test Accumulus would be to deploy it on an
actual cluster in use, while running it in its own namespace. This way it will not impose an additional
load on the user’s applications and could be left out for billing. This way Nerdalize or other cloud
providers could experiment with different billing models and see if Accumulus supports them well.
When successfully tested, the system could then be used in production by automatically deploying it
on new clusters.

8.2.2. API Usage
As the used compute resources and their costs are available in near real-time via the API, programs
could use this to analyze their own behavior and respond to this, enabling real-time optimization. This
would be akin to the current shift towards a ”smart power grid” (where resources are used much more
efficiently),

Relatively simple implementations would be to schedule resource-intensive tasks during off-peak hours,
choose a particular implementation based on the relative cost of RAM and CPU, or to increase caching
when RAM gets cheaper. Since the database also includes the hardware specifications, systems could
calculate the difference between different set-ups, enabling them to pick the most cost or speed efficient
one. This would especially be interesting in a more heterogeneous ecosystem (such as a multi-cloud),
where different cloud providers provide vastly different set-ups, possibly offering more exotic hardware
such as ARM processors and GPUs (or even FPGAs and ASICs), instead of x86 based architecture.

8.2.3. Processors
Currently, there are two processors included in Accumulus, one calculating the costs based on the
compute resource usage input, and one calculating the power usage of each process based on the CPU
time used by the entire Cloudbox. Due to the flexible set-up, it is possible to add more processors or
to replace the current ones with more accurate models.

The cost processor is currently using a very simple unit-pricing model, where every compute resource
has a fixed price. A simple extension would be to increase the price during certain peak hours and to
start charging different prices for different types of hardware. More rigorous data analysis combined
with predictive models could be used to create a pricing model maximizing the profits for Nerdalize.
Such a model would most likely also include incentives for clients to do computations during off-peak
hours, in order to achieve a greater utilization of the hardware.

The processor calculating the power is currently based on a model consisting of two separate parts,
being the fixed base power consumption (which is taken from a Cloudbox with all motherboards idling),
and the variable power consumption which is split over processes according to the CPU time used. A
slightly more accurate model could have two base consumptions, one per Cloudbox and one per moth-
erboard, as there is no fixed amount of motherboards per Cloudbox. Other models might introduce
other variables into the calculation, such as internet usage (which starts using significant power at
speeds over 10 GB/s), or the temperature of the Cloudbox (as the PSU’s loss increases with its tem-
perature). Another improvement could be made in handling motherboards that are hyper-threading,
which uses relatively less power.

A processor which could be added would be the heat actually used by the home owner. For this, extra
sensors are most likely necessary within the Cloudbox, as currently only two temperature sensors (one
before and one after the heating element) are installed. This processor could be used to bill customers
for the warm water they’ve used if this is desired.

50 8. Discussion & Future Work

8.2.4. Alarms And Triggers
Grafana includes alert functionality, which can show a notification within the GUI based on certain
rules. These rules could be set to trigger on a certain degree of utilization of some resource, if data
has not arrived for a certain amount of time, or based on spikes in the internet traffic indicating anoma-
lous behavior (such as (D)DoS attacks). Grafana also supports sending notification via e-mail, Slack,
PagerDuty or using custom webhooks. This last option would allow for further automated responses
to triggers, such as dynamically rescaling the cluster based on node utilization or rescheduling certain
tasks during busy hours.

An option that seems to allow for even more flexible rules, while also promising a wider range of
responses is Kapacitor, which is part of the TICK stack mentioned under research. As Accumulus uses
InfluxDB as the database, it should be trivial to plug an instance of Kapacitor into the database, enabling
its functionality.

9
Summary & Conclusion

In this chapter, a summary of the entire project is given and a conclusion is presented.

9.1. Summary
In this thesis we presented Accumulus, a Monitoring and Cluster Analysis System developed to monitor
Kubernetes clusters. The processes used to create Accumulus, the research, design, and implemen-
tation were covered, while experimental work was presented to show the scalability and accuracy of
Accumulus.

The development of Accumulus started with two weeks of research. During these weeks several of
Nerdalize’s employees were interviewed. Besides interviews, a literature study was conducted to gather
knowledge about Go, Kubernetes, and Docker. The seven weeks after the research period were used
to design and implement Accumulus. To manage the product development, the AGILE development
methodology Scrum was used. In order to make working as a team easier, GitLab was used for version
control. The last week of the project was spent on finishing this thesis and preparing a demo.

The design of Accumulus has led to a fully functional cluster monitoring system with flexible processors
that can be used to get insight in the resource usage and the accompanying costs for both the end
user and the cloud provider. Accumulus monitors CPU, RAM, disk, and network usage and presents
those metrics as visual graphs and numbers to users. The processors can generate additional metrics
such as power use, heat generation, CO2 savings, and cost.

To verify the accuracy and scaling capabilities of Accumulus, a series of experiments was conducted.
The basic validation experiment shows that Accumulus is accurate enough for both user and billing
purposes. The scaling experiment shows that Accumulus can scale to over 1000 nodes when Accumulus
and the InfluxDatabase are run on sufficient hardware and several caveats are taken into account.
Overall, the Accumulus project delivers promising results in production-like settings.

9.2. Conclusion
The research questions presented at the beginning of this thesis can now be answered:

1. How can the resource usage of a job running on a container-based cloud be mea-
sured?
To measure resource usage on a cluster we designed and implemented Accumulus, Accumu-
lus measures CPU, RAM, disk and network usage via Heapster, and those metrics available in a
central InfluxDatabase.

2. Can power consumption and heat production be measured on container or pod level?
From our experimental work, we learned that a function with a good model for power consumption

51

52 9. Summary & Conclusion

based on CPU usage can give an accurate approximation of the power used by containers and
pods. Accumulus comes with a processor that does this for Nerdalize’s Cloudbox.

3. Can charging users on a per job basis make pricing more transparent?
If the pricing model of the cloud provider can be translated into a processor for Accumulus the
user can get a real-time view of the cost of his job, making the pricing transparent. Acculumus
has a processor with a simple unit-pricing model that calculates the cost, this processor can be
adapted to fit other billing models.

In Section 3.3 we listed a set of requirements for our system, Table 9.1 shows the requirements and
indicates which requirements are met. Requirement 7 was not met as this would not be possible in an
efficient manner with the current setup of Nerdalize’s network.

Priority Met Description
1 must Yes The system measures accurately and with an overhead that is 10% or less.
2 must Yes The system can run without any manual interference needed.
3 must Yes The system measures the usage, request, and limit of all required metrics.
4 must Yes The system records the machine and job metrics belong to.
5 must Yes Measurements are retrievable via an API.
6 should Partial The system measures the usage, request, and limit of all optional metrics.
7 should No The system differentiates between internal peering

and outward internet network traffic.
8 should Yes Local measurements are sent at short intervals

in order to analyze resource usage on failing nodes.
9 should Yes The system uses retention policies to reduce storage usage.
10 should Yes Collected measurements are stored centrally for historic and billing purposes.
11 could Yes The system also measures network traffic between Cloudboxes.
12 could Yes The system can make predictions on resource use of a job that is running.
13 could Yes Resource usage is not only accessible via the API

but can also be viewed in a GUI.
14 could Yes The system generates a report when a job is finished.
15 wont No The system is integrated with the Nerdalize Cloud Engine’s user interface.

Table 9.1: Accumulus requirements and indications which requirements are met.

A
Sprint Plans

53

54 A. Sprint Plans

A.1. Sprint 1
 Sprint 1

161/160 hours
162/160 hours

11/13 com
pleted

✓
User Story

Task
A

ssigned To
Estim

ated Effort
Priority

A
ctual Effort

N
otes

x
A

s a developer I w
ant a code repository so i can easily

collabborate and have version control
Set up git repository

Diony
4

A
4

Tw
o gitlab repositories have been set up

x
A

s a developer I w
ant to do integration testing to ensure

all softw
are com

ponents integrate w
ell

Set up continuous integration
Youp

6
A

24
Setting up continuous integration took longer than expected due to
the com

plicated environem
ent w

e need for testing

x
A

s a developer I w
ant a kubernetes cluster to test and run

m
y system

 on
Set up a kubernetes cluster

Both
2

A
6

Setting up a kubernetes cluster on google cloud took longer as w
e

had to aw
ait approval from

 the com
pany, clusters cost m

oney

x
A

s a developer I w
ant to test m

y code
Set-up unit testing fram

ew
ork and create a unit test

Youp
8

A
10

W
e had no experiance w

ith gitlab's integrated CI, because of this
setting up unit testing took longer

x
A

s a developer I w
ant a test w

orkload w
ith a predictable

load to validate the accuracy of m
y system

Create a test job for personal testing
Diony

4
B

4
test job is w

riten in go and has a predictable resource load.

x
A

s a developer I w
ant to be able to quickly depoy m

y
code

Set up deploym
ent file for Kubernetes for autom

atic
testing

Youp
14

B
16

a sm
all issue w

ith authentication took aditional tim
e

x
A

s a developer I w
ant to have a clear m

odel of w
hat I'm

going to create

Create m
odel and docum

ent it
Both

16
A

20
A

 lot of im
portant decisions w

here m
ade at nerdalize during

this sprint, as such our architecture design changed m
ultiple

tim
es

x
A

s a developer I w
ant to be able to correlate data (e.g.

specifications and client data)
Set up SQ

L database and populate it
Youp

8
B

2
Done, nerdalize already has a system

 that contains this inform
ation

x
A

s a user I w
ant to see the resource use of jobs running on

kubernetes
M

onitor CPU, RA
M

, disk and netw
ork use

Diony
25

B
20

A
ll m

etrics are alerady available in heapster w
ith the exception of

Disk IO
, w

e found a sollution for this but have problem
s

im
plem

ented it.

x
A

s a user i w
ant to be able to select m

etrics based on tags
such as m

achine id and the job they belong to
Split resource usage correctly using tags

Diony
30

A
12

M
ost of the tags are in place. Som

e tags rely on our architecture
design and have not been im

plem
ented due to the changes in this

design

x
A

s a developer I w
ant to know

 w
hich netw

ork statistics are
available

Investigate possibilities for netw
ork usage m

onitoring
Diony

12
C

8
In a m

eeting w
ith nerdalize's netw

ork engineer w
e discoverd that

not all netw
ork statistics w

e w
ant are available, a new

 set of
m

etrics w
as selected.

As a user I w
ant to know

 how
 m

uch pow
er m

y cluster
consum

ed and how
 m

uch heat this provided
Store pow

er and heat consum
ption

Both
16

B
4

A change in architecture design changed the w
ay w

e w
ant to do this,

w
e did how

ever research how
 this can be done and now

 have acces
to the right database.

As the billing departm
ent, I w

ant m
y billing softw

are to be
able to receive usage data

Design API for querying data
Diony

16
B

10
Changes in our architecture design caused the API part of our
project to be deprioritised as both influx and grafana have a good
API and w

ill contain all neccesary data in our new
 design.

As a student I w
ant to deliver a w

ell w
riten research report

W
rite research report

Both
-

B
8

Due to late feedback on our first draft w
e still had to w

ork on the
research report

M
ain Problem

s Encountered
1

Changes in architecture design

A lot of im
portant design decisions w

here m
ade by nerdalize during this sprint, those decisions had a lot of influence on

how
 the environm

ent our system
 needs to run in looks, as such w

e had to m
ake changes to our architecture design.

8
W

e redesigned our architecture design tw
ice and discused it w

ith
m

ultiple m
em

bers of nerdalize

2
Inexperience w

ith G
itlab CI and Kubernetes authentication

m
echanism

s

Inexperience w

ith the G
itlab CI resulted in a long setup process for our CI, in the end w

e had to do a step back and do
less thorough integration testing as setting up a cluster every tim

e the code has to be tested w
as not deem

ed viable.
6

W
e tried to get CI w

orking on a very com
plex set up, in the end w

e
shouldn't have invested as m

uch tim
e in this.

Figure A.1: Sprint 1

A.2. Sprint 2 55

A.2. Sprint 2

 Sprint 2
154/160 hours

185/160 hours
14/15 com

pleted

✓
User Story

Task
A

ssigned To
Estim

ated Effort
Priority

A
ctual Effort

N
otes

x
A

s a developer I w
ant to have a clear vision of w

hat I need
to do

Sprint review
 and planning

Both
2

A
2

x
A

s a custom
er I w

ant to be able to autom
ically deploy

H
eapster on (new

) clusters
M

ake Cluster startup function
Youp

16
A

25
Eventually the decision to use H

elm
 (a Kubernetes package)

instead of program
m

ing the logic ourselves

x
A

s a custom
er, I w

ant H
eapster to add tags according to

m
y current ecosystem

Setup central SQ
Lite file

Youp
6

A
4

x
A

s a custom
er, I w

ant H
eapster to have inform

ation on the
nodes the cluster consists, w

ithout having to include all
data

M
ake SQ

L Sync logic
Youp

20
B

30
Various problem

s w
ere encountered by initializing containers

using several files

x
A

s a custom
er, I w

ant H
eapster to add tags according to

m
y current ecosystem

Create database schem
a

Youp
4

A
2

x
A

s a custom
er I w

ant the com
m

unication w
ith m

y cluster
to be secure

Research authentication m
echanism

s
Youp

10
A

10

As a developer I w
ant to test and deploy m

y code in an
autom

atic m
anner

Set-up CI
Youp

12
A

The idea turned out to be too tim
e-consum

ing w
ith m

inim
al benefits.

A
s such, the idea w

as abandoned

x
A

s A
ccum

ulus I w
ant to be able to pull and push data

betw
een databases

M
ake pushing and pulling of influxdb data possible

Diony
8

A
12

Took longer than expected: The available A
PI did not contain all

neccesary fucntions.

x
A

s A
ccum

ulus I w
ant data to be dow

nsam
pled before it is

stored in the core
A

dd continuous query to dow
nsam

ple data
Diony

4
4

4
W

e found a w
ay to do everything w

ith a single dow
nsam

ple query

x
A

s A
ccum

ulus I w
ant to have the heat and pow

er m
etrics

of cloudboxes available
Pull heat and pow

er m
etrics in central Influx

Diony
2

B
4

Took longer, as for our test cluster this data is not available and
thus has to be sim

ulated

x
A

s a developer I w
ant to know

 how
 cost and pow

er
usage are distributed over the com

ponents of a
cloudbox

Research the cost and pow
er usage of a cloudbox

Diony
4

B
2

Since a cloudbox w
as not avaiable at the tim

e w
e used som

e
random

 generated values and estim
ates to test w

ith

x
A

s a user I w
ant to see how

 m
uch pow

er m
y jobs have

cost
Create a pow

er processor
Diony

8
B

12
W

riting a function to structure the data in a good w
ay took

som
e tim

e as our influx functions w
ere not flexible enough yet

x
A

s A
ccum

ulus I w
ant to have all m

etrics tagged w
ith

the cloudbox and hardw
are they are m

easured on
Tag all m

etrics w
ith the cloudbox and specs

Diony
10

A
8

D
one w

ith the exception of the sql connection

x
A

s A
ccum

ulus I w
ant to store m

etrics for billing and
historical purposes on a central D

B
Sync Influx databases

Diony
10

A
16

Took m
ore tim

e due to a lot of refactors to m
ake the functions

m
ore versatile

x
A

s a Developer I w
ant to show

 m
y system

 to the client so I
can collect feedback

Prepare dem
o

Both
10

C
8

Dem
o w

as recieved really w
ell, good feedback w

as given

x
A

s a student i w
ant to deliver a w

ell w
ritten thesis report

W
ork on the thesis report

Both
30

B
30

M
ain Problem

s Encountered
1

Understanding how
 H

eapster w
orks took a lot of tim

e

H
eapster is a com

plex piece of softw
are w

ith support for a lot of sinks and sources, as such understanding how
 it w

orks
took a lot of tim

e, in the end w
e got a clear view

 of how
 the parts relevant to our project w

orked
8

2
The code w

e w
ere w

riting for the cluster startup function turned out to look a lot like H
elm

As such, w
e decided to sw

itch to H
elm

, a decision w
hich is likely to save us tim

e in the future

10

Figure A.2: Sprint 2

56 A. Sprint Plans

A.3. Sprint 3
 Sprint 3

146/160 hours
92/160 hours

8/15 com
pleted

✓
User Story

Task
A

ssigned To
Estim

ated Effort
Priority

A
ctual Effort

N
otes

x
A

s a developer i w
ant to have a clear vision of w

hat i need
to do

Sprint review
 and planning

Both
2

A
2

x
A

s a user i w
ant to see the cost of applications and m

y
cluster

Create a cost processor
Diony

8
B

6
For now

 a sim
ple unit cost m

odel is used based on the current cost
of a Cloudbox

As a user i find it interesting to see how
 m

uch co2
em

m
ission i saved by running on a Cloudbox

Create a CO
2 processors

Diony
4

C

x
A

s a user I w
ant to be able to deploy A

ccum
ulus

Create a helm
 deploym

ent for A
ccum

ulus-central
Youp

4
B

4

x
A

s a user I w
ant to have a sane codebase

Clean-up deploym
ent procedure

Youp
4

A
4

x
A

s a cloud provider i w
ant A

ccum
ulus to install everything

on user cluster i add
Create a deploym

ent function for user clusters
B

As a student i w
ant to deliver a w

ell w
riten thesis report

Finish the thesis report
Both

36
A

x
A

s a user i w
ant the calculated pow

er usage tho be
accurate

Do tests to verify the accuracy of the pow
er processor

Diony
4

B
4

The test confirm
ed our hypothesis that CPU is a good

m
easurem

ent for pow
erusage, and our processor should be

accurate enough.

x
A

s a user i w
ant A

ccum
ulus to be accurate

D
o sm

oketests to verify that heapster is accurate
D

iony
2

B
3

The tests show
 that heapster and Cadvisor are accurate enough for

both m
onitoring and billing purposes

As a developer i w
ant to know

 the effects of Accum
ulus on

a user cluster
Test the overhead Accum

ulus has on a cluster
Youp

20
A

15

x
A

s a developer i w
ant to know

 how
 w

ell m
y softw

are
scales

Test the scalabilty of A
ccum

ulus and H
eapster

Youp
20

A
35

Several problem
s w

ere encountered w
ith the tests, leaving

som
e of their data useless

A
s a developer I w

ant to give a dem
o

Create dem
o

Both
12

A
15

A
s a student i w

ant to give a good presentation for m
y

bachelor thesis defence
Prepare a presentation

Both
12

A

As a student i w
ant to defend m

y bachelor thesis
Prepare for the defence

Both
16

A

Create all dashboards
Diony

2
B

x
A

s a developer i w
ant m

y code to be tested w
ell

W
rite tests for our code

Both
12

B
4

Due to inexperiance w
ith G

o and testing code in G
o our code is not

really testable

M
ain Problem

s Encountered
1

Testing go code

W
e Delayed testing our code because w

e w
here inexperianced w

ith testing in G
o, due to this the w

riten code is not
testable.

-

Figure A.3: Sprint 2

B
Research Report

57

Accumulus
Resource Measurement in a Virtu-
alized Container Environment

D. G. P. Tadema
Y. O. U. P. Mickers

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

ii

Version Date Reviewers Remarks
0.1 22 December 2016 Authors First draft (no complete report yet).
0.2 5 January 2017 Authors Version created for Nerdalize internal use.
0.3 11 January 2017 Authors Version handed in for revision.
0.4 11 February 2017 dr. ir. A. Iosup Incorporated first feedback by dr. ir. A. Iosup.

Table 1: Versioning

Accumulus
Resource Measurement in a Virtualized Container

Environment

by

D. G. P. Tadema
Y. O. U. P. Mickers

in partial fulfillment of the requirements for the degree of

Bachelor of Science

in Computer Science

at the Delft University of Technology,

Supervisor: dr. ir. A. Iosup TU Delft
dr. M. de Meijer, Nerdalize

An electronic version of this thesis is available at http://repository.tudelft.nl/. Version 1.2
07-02-2017 (Improvements after first revision by dr. ir. A. Iosup)

Contents

1 Introduction 1
1.1 Context. 1
1.2 Problem Statement . 1
1.3 Approach . 2
1.4 Structure . 2

2 Background 3
2.1 Concepts . 3

2.1.1 Virtual Machine. 3
2.1.2 Container . 3
2.1.3 Cloud . 3
2.1.4 IaaS. 3

2.2 Technologies . 4
2.2.1 Docker . 4
2.2.2 Kubernetes . 4
2.2.3 Go. 6
2.2.4 Cloudbox. 6
2.2.5 NCE. 6
2.2.6 Heapster . 7

3 Problem Analysis 8
3.1 Problem Definition . 8
3.2 User Stories . 9
3.3 Requirements . 9

3.3.1 Functional Requirements . 9
3.3.2 Metrics . 10
3.3.3 Non-functional Requirements . 11

4 The research and development process 12
4.1 Research . 12

4.1.1 Before the Project. 12
4.1.2 During the Research Phase . 12

4.2 Development . 13
4.2.1 Development Strategies . 13
4.2.2 Programming Languages . 14
4.2.3 Repository . 15

4.3 Systems . 15
4.3.1 Data Retrieval and Storage . 15
4.3.2 Data Visualization . 16

4.4 Development - Chosen Development Tools. 17
4.4.1 Development Strategy: SCRUM . 17
4.4.2 Programming Language: Go . 17
4.4.3 Development Environment . 18
4.4.4 Code Quality: GitLab CI. 18

4.5 Development - Chosen Systems . 18
4.5.1 Data Collection: Heapster. 18
4.5.2 Data Retrieval and Storage: InfluxDB (and SQL) 18
4.5.3 GUI: To Be Determined . 19
4.5.4 Data Visualization: Grafana or Chronograf 19

ii

Contents iii

5 Preliminary Design of Accumulus, a Monitoring and Cluster Analysis System 20
5.1 Architecture Overview . 20

6 Validation 23
6.1 Accuracy . 23

6.1.1 Compute Resources . 23
6.1.2 Power and Heat . 23

6.2 Basic Validation . 23
6.3 Overhead. 24

6.3.1 Overhead of Accumulus in a Timed Benchmark 24
6.3.2 Overhead of a Monitored Accumulus Instance 24
6.3.3 Difference in Overhead Based on Interval Length. 24

6.4 Scalability . 24

A Appendix A: Sprint Plans 26
A.1 Sprint 1 . 27
A.2 Sprint 2 . 28

B Project Proposal 29

C Requirements 34

Bibliography 36

1
Introduction

1.1. Context
Computers are used almost everywhere in today’s world, and since the 2000’s we have seen a shift
from computations done on a local level to computations done in centralized data centers. A recent
development is the shift from grids and data centers to clusters, where thousands of computers are
connected via a network and can work together on a task[1].

While computers have certainly enabled us to solve problems previously deemed infeasible and im-
proved our lives in countless ways, their increased usage comes at a cost. At the moment, estimates
hold data centers accountable for 1-2% of the worldwide energy consumption. A number that is ex-
pected to grow significantly in the coming years, with data centers surpassing the airline industry in
CO2 production[2]. As such, it is vital to make the use of computation power more sustainable.

One of the companies that are trying to achieve this is Nerdalize, who uses the heat produced by
servers to provide houses with warm water and central heating. In participating households, the boiler
will be replaced by a computing unit developed by Nerdalize. Such a decentralized cloud has lower
operational cost than centralized competitors as the high cost of housing and cooling are mitigated[3].

Nerdalize is also trying to solve other issues in cloud computing. One of these problems is vendor lock-
in, which it wants to solve by combining their cloud with other clouds to create a so-called multi-cloud,
a single heterogeneous architecture that uses multiple infrastructure providers. A multi-cloud solves
the issue of vendor lock-in, while also addressing geo-diversity [4].

While doing this Nerdalize is also coming up with solutions for the relative intransparent pricing models
cloud providers currently offer. Cloud costs are hard to estimate before-hand, which is potentially
scaring away customers. Earlier research has partly alleviated this problem [5], but billing is currently
still done on a per-instance base, instead of on the actual resources used.

1.2. Problem Statement
Currently, most cloud providers bill their customers for the resources and instances they reserve or
based on the number of times their function is called and the time taken by each called function[6].
These pricing models however vary between providers and machines as shown in figure 1.1, and it is
hard to forecast performance on a specific instance. As a result, the market for cloud computing is
far from transparent. Nerdalize aims to make cloud computing more of a commodity. One aspect of
this is how customers are charged. In the future, Nerdalize wants to shift from a per instance to a per
job billing model. New problems arise in such a billing model, resource usage needs to be accurately
tracked and be available to the user to get insight into the performance and cost of their job. To charge
customers on a per job bases a system is needed that accurately measures the resources used by a
job with minimal overhead. While this task is relatively easy on a single computer, determining these
metrics for a job which is split across multiple computers (each of which might also be working on

1

2 1. Introduction

several other jobs at the same time) brings several complications. Some research has already been
done in this field [7–10]. This has lead to a some great systems for resource monitoring, but these
are not customer oriented, nor do they take into account the power used by the server performing the
jobs.

Figure 1.1: Pricing of different providers[11].

1.3. Approach
The goal of this project is to create a system that can accurately measure resource use in a container-
based cloud system and make this information available to both the user and the cluster service provider.
The development will start with two weeks of research, during which will be researched how cloud
providers calculate costs and how resource usage can be accurately measured, especially in set-ups
relying on Docker and Kubernetes. During the research, a preliminary design for a system will also be
created. The five weeks after the research period will be used to design and implement a system that
can help Nerdalize and others to accurately calculate the resource usage and thus the costs of jobs
on a cluster infrastructure. The last three weeks of the project are used to test and validate the built
system and write a thesis report.

1.4. Structure
This Report is structured as follows: Relevant concepts found in cloud computing are explained in
2.1, section 2.2 gives an overview of technologies used in the field of cloud computing and. Chapter 3
presents the main problem and high-level goals of the project. 3.3 defines a set of requirements created
from obtained user stories, which a system solving this problem has to fulfill. Chapter 4 describes
our process of research and development. The research done during the project is described in 4.1.
Section 4.2 lists considered development strategies, programming languages and tools. The choices
are supported in 4.4. A lot of existing solutions for resource monitoring already exist; section 4.3 goes
into detail and section 4.5 explains which system was chosen as a starting point, also explaining this
choice. Chapter 5 describes a preliminary architecture design of the system and explains the role of
each element. Lastly, Chapter 6 shows how the system will be tested and validated.

2
Background

2.1. Concepts
This section defines some of the concepts in the field of distributed computing.

2.1.1. Virtual Machine
A virtual machine is a machine level virtualization method that provides an isolated environment that
simulates a different system or architecture. This allows a single machine to run multiple different
operating systems. [12]

2.1.2. Container
A container is an operating-system level virtualisation method that provides an isolated environment,
simulating a closed system running on a single host. It gives the user the ability to have an environment
to run applications with the necessary resources and environment configuration.

Containers are comparable to VMs (Virtual Machines), in that they are meant to decrease the prob-
lems often associated with deploying software on different servers or computers. They both do this
by packaging all dependencies in a single environment, which can then be deployed across several
computers.

The main difference is that VMs simulate a complete OS (operating system), with each VM having its
own kernel, filesystem, and virtual hardware. Containers, on the other hand, run on a shared OS and
Kernel, as seen in figure 2.1. Each container has its own isolated userspace but they share system
resources. As a result, containers are often much smaller (MB’s compared to GB’s) and much faster to
start-up[13].

2.1.3. Cloud
A cloud is a group of computers that work together connected by a network, usually acting as a single
system or offering a single service. Users do not directly control the hardware, but instead rely on
third-parties to fulfil their computation needs. The complex back-end of a cloud is often hidden from
users and managed by cluster orchestration software such as Kubernetes or Openstack.[15]

2.1.4. IaaS
Infrastructure as a Service is one of the service models used in cloud computing. Just like other
cloud service models, IaaS offers access to computing resource in a virtualised environment. In the
case of IaaS, the computing resource provided is specifically that of virtualised hardware, in other

3

4 2. Background

Figure 2.1: VM’s versus Containers[14].

words, computing infrastructure. This includes virtual server space, network connections, bandwidth,
IP addresses and load balancers. [16]

The cloud provider is responsible for maintaining the hardware infrastructure. The client, on the other
hand, is given access to the virtualised components in order to build their own IT platforms.

2.2. Technologies
In this section technologies used in cloud computingg are explained.

2.2.1. Docker
Docker is an open-source container implementation. It offers both Linux (CoreOS) and Windows con-
tainers. Docker utilizes resource isolation via Linux kernel isolation technologies (cgroup and names-
paces). They provide a great isolation for many applications. However, they do pose some risks in the
case of multi-tenant environments. All containers on the same host share the same Linux kernel with
that host[17].

Nerdalize will tackle this problem by creating a cluster for each customer, this way customers will never
be able to access data belonging to other customers, thus ensuring security.

2.2.2. Kubernetes
Kubernetes is an open source system for automating deployment, scaling, and management of con-
tainerized applications or jobs on multiple hosts[18]. Kubernetes offers scheduling, replication control,
and load balancing. It uses a state aware replication controller to handle failing machines or applica-
tions.

Nerdalize offers a cloud service for running compute-intensive workflows, with Kubernetes being used
to manage the containers that make up such a workflow. Their in-house built workflow scheduler
Flower[19] is used to ensure the workflow is executed in the right order and minimal heat is wasted.

A short description of several important Kubernetes concepts follows now and an overview of how
these work together is shown in figure 2.2.

2.2. Technologies 5

Node

Nodes are the workers in a Kubernetes cluster, as they execute the computations assigned to them. A
node cannot consist of several computers, although a computer can host several nodes if desired.

Pod

Kubernetes works with pods, with a pod being an atomic unit containing one or more tightly coupled
containers. Pods cannot be split over multiple motherboards as the containers in a pod is run on a
single node.

Service

A pod is mortal, as they can be terminated by the scheduler if deemed necessary. As such, they cannot
be relied on by external processes. The solution is found in a service, which is offered together by a
collection of pods, thereby providing a reliable interface for communication[20].

Job

A job is the terminating counterpart of a service. A job creates one or more pods and ensures that a
specified number of them successfully run. As pods successfully complete, the job tracks the successful
completions. When the specified number of completions is reached, the job itself is complete. Jobs
are useful for running workloads and batch jobs.

Figure 2.2: A Kubernetes cluster

6 2. Background

Resource Requests and Limits

Kubernetes’ scheduling is affected by two metrics, being the amount of CPU and memory. Aside from
these metrics, cluster owners can use ”Opaque Integer Resources” to define custom metrics. This is
still in alpha as of yet. Kubernetes has notions of limits and requests for all metrics, with limits and
requests being set per container. The resource limits and requests of a pod are easily determined, by
simply summing those of all underlying containers.

Resource requests come into play before a pod is run and determine where the pod will be run.
Whenever a pod is created, the scheduler will look for a suitable node for the pod to run on. Suitable
here is defined as having the amount of available CPU and memory exceed the amount requested.

Resource limits, on the other hand, are important during a pod’s execution. Whenever the memory
used by a container exceeds the limit set, the container will be terminated. Whether the container will
be restarted is determined by the ”restartable” flag of the container. A container may or not be allowed
to exceed the CPU limit set for extended periods of time, but will not be terminated for exceeding it.
It follows naturally that a container’s resource limit must exceed its resource request. [21]

(Persistent) Volumes and Persistent Volume Requests

On-disk files within a container cannot be shared between containers and are not durable. As such, they
are lost whenever the container crashes. A solution to both these problems is found within Volumes,
whose lifetime is equal to the pod enclosing them. A Volume subsystem provides storage to a single
pod, independent of the underlying storage systems used, which are often vendor specific (e.g. Azure’s
file system or AWS elastic block store).

Volumes still seize to exist whenever their owning pod ends. As such, they are not suitable for sharing
data within a job or even to save the output data. For this, a PersistentVolume is needed, which again
provides storage independent of the underlying storage system used.

A PersistentVolumeClaim is the storage equivalent of a pod. Where a pod requests and consumes
computing resources from the available nodes, PersistentVolumeClaims consume storage on Persis-
tentVolumes [22].

2.2.3. Go
Go is a programming language developed by Google in 2009. [23] It is chosen as the programming
language for this project mainly because both Docker and Kubernetes are written in it and because
several employees of Nerdalize are already well-versed in it. For a more extensive motivation, we would
like to refer you to section 4.4.

2.2.4. Cloudbox
The Cloudbox is developed by Nerdalize and serves as a housing for the computers, offering both
physical security and ease of maintainability. It will be placed in people’s homes and will provide hot
water to the homeowner while providing compute for Nerdalize’s customers. Inside the Cloudbox is
space for 3 compute modules (initially one slot will be kept empty), each featuring 2 motherboards.
The motherboards have 2 CPUs with 10 cores each, giving the Cloudbox a maximum of 120 cores.

2.2.5. NCE
The Nerdalize Cloud Engine is the main product Nerdalize is building, it will be a platform that allows
engineers and users to communicate with Nerdalize’s cloud infrastructure. It will eventually offer three
ways to communicate with the Nerdalize cloud, a command line interface, an API, and a graphical user
interface. With this Nerdalize aims to make running jobs as simple as possible. The NCE will handle
authentication, data set storage, queueing of jobs, and control over workflows.

2.2. Technologies 7

2.2.6. Heapster
Heapster is an open source tool for Container Cluster Monitoring and Performance Analysis. It is written
in Go and is compatible with Kubernetes version 1.0.6 and up. Heapster measures various resource
statistics on Container and Pod level and provides aggregate statistics for node and cluster levels.
Those statistics can be stored in various back-ends, with the default being InfluxDB.

3
Problem Analysis

This chapter creates a definition of the problem Nerdalize has. From this definition, a problem statement
is derived and the main question which will be answered during the project is formulated. Section 3.2
lists user stories which give a description of the system from the end users perspective. In section 3.3,
requirements are defined, categorized, and ranked according to the amount of priority they deserve.

3.1. Problem Definition
Nerdalize is building its main product, the Nerdalize Cloud Engine (NCE). Their Cloud strives to be
competitively priced, which they want to accomplish by placing their servers in homes with central
heating. By cooling the server and reusing the heat to heat the home there is no need for expensive
air-conditioned server space.

They also strive to make cloud computing more of a commodity market. To reach this goal they want
to be more transparent in how they charge customers, this is done is two ways. Firstly Nerdalize wants
to give the customer more insight in their resource usage, second, they want to charge their customers
on a per job basis. In order to do this, they need a system that accurately measures resource use in
a cluster. Resource measurement on a single system is trivial, but jobs on cloud services are run on a
great variety of machines. Nerdalize’s case has the additional difficulty of their machines being installed
in houses where they are not easily accessible.

The high level goals of this project are:

1. Research how to measure resource usage on a Kubernetes cluster.

2. Research the current resource measurement systems Kubernetes offers (Heapster).

3. Build a system to measure and aggregate the resource use of a NCE job.

4. Extend the system to include the heat and power usage statistics of Cloudboxes.

5. Design an API to make statistics available to users and the Nerdalize system.

6. Design a simple GUI that shows these statistics.

7. Validate the built system against its requirements

From this problem definition, we are able to derive a problem statement. The statement is based on
the problem definition by Nerdalize as well as the academic requirements specified by TU Delft. The
derived statements differ from the original definition in that they are more concise and more abstract,
omitting implementation details.

1. How can the resource usage of a job running on a container-based cloud be measured?

2. Can power consumption and heat production be measured on container or pod level

3. Can charging users on a per job basis make pricing more transparent?

8

3.2. User Stories 9

3.2. User Stories
An interview with Nerdalize uncovered three actors

• Nerdalize Compute Billing
Financial department that needs billing information to send invoices to customers.

• Nerdalize Compute Sales
Sales department that charges customers for compute resources with a particular pricing model.

• NCE User
Users of the Nerdalize Compute Engine

For each actor several user stories are given, for consistency they are all in the form of As <actor>, I
want to <function or requirement> in order to <reason>

1. As the Nerdalize Billing Dept., I want to have data on resource usage in order to bill the
customers.

2. As theNerdalize Sales Dept., I want to have data on resource usage in order to implement
my billing models.

3. As the NCE User, I want to read accurate resource consumption per cluster, namespace,
label, node and container in order to see my resource usage (and thereby expenses).

4. As the NCE User, I want to read accurate resource consumption per cluster, namespace,
label, node and container in order to have feedback on the performance of his jobs thus
allowing him to optimize for runtime or cost.

5. As the NCE User, I want to read accurate predicted resource consumption per cluster,
namespace, label, node and container in order to seemy expected resource usage (and
thereby expenses).

3.3. Requirements
3.3.1. Functional Requirements
Based on the collected user stories we created the following functional requirements. They are priori-
tized using the MoSCoW model

Must Haves

1. The system measures accurately and with an overhead that is 10% or less

2. The system can run without any manual interference needed

3. The system measures the usage, request and limit of all required metrics.

4. The system records the machine and job metrics belong to.

5. Measurements are retrievable via an API.

Should Haves

6. The system measures the usage, request and limit of all optional metrics..

7. The system differentiates between internal peering and outward internet network traffic.

8. Local measurements are send on short intervals in order to analyse resource usage on failing
nodes.

9. The system uses retention policies to reduce storage usage.

10. Collected measurements are stored centrally for historic and billing purposes.

10 3. Problem Analysis

Could Haves

11. The system also measures network traffic between Cloudboxes.

12. The system can make predictions on resource use of a job that is running

13. Resource usage is not only accessible via the API but can also be viewed in a GUI.

14. The system generates a report when a job is finished.

Won’t Haves

15. The system is integrated with the Nerdalize Cloud Engine’s user interface.

3.3.2. Metrics
For the purpose of clarity, the used metrics are explained in-depth here instead of in the MoSCoW-
model.

For every pod, it is also important to register the instance on which it was used. This is to be able
to determine for example whether RAM usage was DDR3 or DDR4 and on what type of CPU the CPU
time was used. For more advanced cost analysis nodes could even indicate whether the energy they
received was useful to them (i.e. was the heated water likely to be used soon). This draws interesting
parallels with an earlier research project done at Nerdalize[19].

CPU Time Usage

It should be known how much CPU time is spent on a certain job. A distinction should be made between
CPU time reserved, and actual time used (as a reserved CPU does not consume energy and therefore
has a different cost profile).

RAM Usage

Both the reserved RAM and the total amount of RAM used should also be measured. Contrary to the
CPU use, reserved RAM is equivalent to RAM actually used, as reserved RAM is unusable by other jobs
and does not differ in any way.

Disk I/O and Space

For disk usage, it is important to know both the total amount written and read from the disk (I/O) and
the total amount of space reserved/used on the hard drive by a job. A separation should be made
between local disk usage and central disk usage.

Network Traffic

In network traffic, three separations can be made. First of all, there is the traffic inside the Nerdalize
network (e.g. Cloudboxes’ local drives receiving their data from the central server or Cloudboxes
peering data to each other). Secondly, there is the traffic through the Internet Exchange, where
internet companies can send their data directly to each other by using the Border Gateway Protocol
instead of the ”regular” internet (e.g. exchanging traffic with selected cloud providers). Finally, there
is the normal internet traffic, which would be the most expensive form.

Uptime

It is also important to know the total uptime of a machine, this allows users to see when machines are
added or removed from their cluster and allows Nerdalize to see when Cloudboxes go offline. Measuring
this metric also allows Nerdalize to refund resource usage on a failed Cloudbox.

3.3. Requirements 11

Heat (optional)

Nerdalizes Cloudbox produces heat that can be used to warm houses. Although currently not planned
it is a possibility that in the future Nerdalize may want to charge households for generated heat, in this
case, it is important to have statistics of how much heat a job produced and how much of this heat is
used. Nerdalize may then chose to discount jobs which created useful heat.

Privacy-related issues require special care here. From the test setup in Nerdalize’s office building, it
already became apparent that possibly sensible information could be retrieved from the temperature
measurements.

Power (Optional)

Like heat, power is another real-world factor participating and should be taken into account in the cost
analysis. Privacy is less of an issue here, as power consumption is dictated by computation need and
to a lesser extent by the homeowner. However, power consumption could still reveal heat consumption
to some extent, therefore requiring some care.

3.3.3. Non-functional Requirements
Apart from the functional requirements, the interviews have uncovered several non-functional require-
ments

Performance

The developed system may only impose a very small overhead on the jobs that need to be run in
the cloud. If the overhead is too large, the system effectively becomes useless, as it will introduce a
computational, and therefore monetary burden far outweighing the benefits.

Accuracy

A measuring system is only useful if its measurements are accurate. In Nerdalize’s case, this is defined
as having measured values deviate less than 10 per cent from the actual value. For a more in-depth
discussion about accuracy we would like to refer you to chapter 6.

Open Source

The developed system or parts of it could be available as open source. This is required to collaborate
with (experienced) people from the Kubernetes community who may help out with difficult design
decisions as well as provide valuable feedback. It also allows other people to report bugs in the system
and collaborate code or documentation speeding up development. The most interesting part for this
approach will be the resource measuring part of our system as it will most likely be based on the open
source software Heapster.

Maintainability

Maintainability measures the ease with which developers are able to make changes to the system.
This is important because when the project is finished, less time is available to maintain the system.
If it is easily maintainable and open source, other developers are able to take over without having to
extensively study the code. This is beneficial to Nerdalize as well as other users of the system as it is
more likely kept up to date.

Flexibility

As the field in which Nerdalize is operating is relatively new, it is bound to change quickly. Both
Kubernetes and Docker are under heavy development, in which the direction that will be taken is not
always clear yet. As such, the entire project needs to be setup in such a way that any changes can be
conducted easily and without requiring major revisions to the code.

4
The research and development

process

4.1. Research
In this section, the research processes that were used to gather necessary information for the design
and implementation of our system are described. This section is split up in Section 4.1.1 and Section
4.1.2, which respectively describe the processes before the project started and the processes during
the project

4.1.1. Before the Project
Two weeks before the official start of the project a meeting with Nerdalize took place in which the
subject of the project was decided. Mathijs from Nerdalize explained several of the technologies in use
at Nerdalize and that the would need to get familiar with. None of the project members had any prior
knowledge of the container ecosystem and distributed systems in general. To get familiar with Docker
two books were read.

Kubernetes is the system Nerdalize uses to manage their clusters, to get familiar with Kubernetes books
were read and a tutorial provided on the Kubernetes website was followed.

Go is the language Docker and Kubernetes are written in and is also used by a lot of Nerdalize’s systems.
Videos were watched about Go and tutorials were done to get a better understanding of Go and its
concepts.

4.1.2. During the Research Phase
Most of the research was done in the first two weeks of the project as a clear view of the project was
needed. In this research phase multiple types of research were used: interviews, literature studies,
digital media, and running test systems.

Interviews

During the project multiple interviews with different people from Nerdalize took place. Those interviews
helped to get a better view of the requirements for the system as well as getting familiar with how
Nerdalize organizes their cloud infrastructure. An overview is shown in table 4.1.

In an interview with Mathijs, the planned structure and architecture of the Nerdalize Cloud Engine was
discussed and all systems in the NCE were explained. This showed where our system would be and
how it should integrate.

12

4.2. Development 13

A second interview with Thirza from the Nerdalize billing department was more focused on what the
billing department of Nerdalize needs and how our system can provide this information. This helped
with selecting a set of metrics for the system.

The third interview with Boaz from Nerdalize’s sales department gave insight in how Nerdalize wants
to sell cloud computing and which data is necessary for doing so. This interview also sheds light on
how usage date could be shown to the end user which is useful when designing a GUI for the system.

In another interview, Nerdalizes network engineer helped define the network metrics that are available
and how they could be measured. The conclusion of this interview was that not all initially selected
network metrics can be measured, thus a smaller set of metrics was selected for the project.

A second interview with Mathijs showed the preliminary architecture design. This allowed flaws to be
discovered and improvements to be made. The improved preliminary architecture design addresses
issues with data security and moved more functionality to a central core

Name Specialization within Nerdalize Experience
Mathijs CTO 15 years of experience with software engineering

4 years with cloud computing
Thirza Billing 2 years of billing experience
Boaz Sales 5 year
Tim Network 10 years of networking experience

8 of which in data centers

Table 4.1: People interviewed throughout the project

Literature Study

A literature study was done for two main reasons. Background knowledge on container infrastructure
and clusters had to be acquired. Sources for this information were scientific papers and books. Second
related work had to be surveyed to find ways in which problems have been solved before by existing
resource measuring systems. Sources for the related work were project homepages and repositories.

Digital Media

The featured videos on Go’s homepage were used to get familiar with some of Go’s concepts such as
subroutines and reflection. Other forms of digital media used were slide shows and online articles.

Running Test Systems

During the last week of the research phase of this project a local Kubernetes cluster was set up with
Minikube[24]. This cluster was used to get a better view of how Kubernetes works and which features
are already offered by Heapster. This was extremely useful as it helped us understand how Heapster
[25] and InfluxDB work together (InfluxDB working as a sink for Heapster with Heapster pushing the
metrics), which metrics are collected and which are missing for our system. Later in the project a
Kubernetes cluster will be set up on Google cloud this cluster will be used for deployment, testing and
debugging the system

4.2. Development
4.2.1. Development Strategies
In this section, different development strategies that were considered for the project are explained.
For the development strategy, there are two requirements. The development strategy needs to be
able to cope with requirements volatility as Nerdalize is still developing their main product and not all
requirements are clear yet. Second, the development strategy needs to work well for a system that
consists of many decoupled software products.

14 4. The research and development process

Waterfall

The waterfall model is a sequential design process, used in software development processes, in which
progress is seen as flowing steadily downwards through the phases of conception, initiation, analysis,
design, construction, testing, production, implementation and maintenance. Despite the development
of new software development process models, the Waterfall method is still a dominant process model.

SCRUM

Scrum is both an iterative and incremental software development framework. It defines a flexible
development strategy.

A key principle of SCRUM is requirements volatility. Scrum recognizes that the customers can change
their minds about what they want and need, and that unpredicted challenges cannot be easily ad-
dressed in a traditional predictive or planned manner. As such, Scrum adopts an evidence-based
empirical approach. It accepts that the problem cannot be fully understood or defined, focusing in-
stead on maximizing the team’s ability to deliver quickly, to respond to emerging requirements and to
adapt to evolving technologies and changes in market conditions.

XP

Extreme programming (XP) is a software development methodology which is intended to improve soft-
ware quality and responsiveness to changing customer requirements. As a type of agile software de-
velopment, it advocates frequent ”releases” in short development cycles, which is intended to improve
productivity and introduce checkpoints at which new customer requirements can be adopted.

Other elements of extreme programming include: programming in pairs or doing extensive code re-
view, unit testing of all code, avoiding programming of features until they are actually needed, a flat
management structure, simplicity, and clarity in code, expecting changes in the customer’s require-
ments as time passes and the problem is better understood, and frequent communication with the
customer and among programmers. The methodology takes its name from the idea that the beneficial
elements of traditional software engineering practices are taken to ”extreme” levels.

4.2.2. Programming Languages
In this section, some of the programming languages that were considered for the project are outlined.
As a monitoring system needs to run in real time one requirement for the programing language is
performance, a Second requirement is that the language has to offer tools to run concurrency as the
system will need to process data of multiple clusters at the same time.

C(++)

Ever since its appearance in 1983, C(++) has been used in an incredible number of applications. Its
low-level nature with corresponding memory management makes it ideal for performance-critical and
real-time purposes. However, despite several revised standards, the language is starting to show its
age and can be considered verbose, meaning it the amount of code needed is often high compared to
implementations in other languages.

Go

Go is an open source programming language developed by Google. It offers a modern language with
interesting concepts such as channels and concurrency and an innovative approach to interfaces and
reflection. It can be considered a good fit for this project due to the fact that both Kubernetes and
Docker are written in it. Grafana, Prometheus (partly), InfluxDB and Chronograf are also written in Go,
enabling easier integration.

4.3. Systems 15

Python

Python is a high-level interpreted dynamic programming language. While most implementations tend
to be slow compared to compiled programming languages, developing applications is often much faster,
making it ideal for rapid prototyping. Being one of the most popular languages available today, there
is a very large and active community, with a wealth of libraries available. Graphite and the Graphite
webapp are both written in Python.

4.2.3. Repository
In order to collaborate on the code, a repository with version control is needed to ensure functions that
are developed separately can be integrated with minimal effort. Multiple solutions were considered.

GitHub

GitHub is the most well-known repository service with over 14 million users. It offers a Git based dis-
tributed version control. And has several collaboration features such as bug tracking, feature requests,
task management, and wikis for every project.

GitLab

GitLab is an open source repository manager, like Github it offers collaborative features but unlike
GitHub, it has an integrated Build system and offers free private repositories and can be self-hosted.

4.3. Systems
There are already a lot of systems to provide some of the functionality a resources monitoring system
needs. In this section, the commonly used systems in distributed computing are outlined.

4.3.1. Data Retrieval and Storage
Data retrieval and storage are considered together, as most systems offer them in an integrated fashion.

Graphite

Graphite is a monitoring tool to store numeric time-series data, offering an SQL-like language for
querying the stored data. It consists of Carbon, a service for collecting time-series data, Graphite-
web, offering a user interface and a possibility to render graphs and Whisper for storing data. Besides
Whisper (a local file-based time-series database), data can also be stored in Ceres (a distributable
time-series database) or even InfluxDB.

InfluxDB

InfluxDB is an open-source time series database developed by InfluxData and written in Go[26]. Data
is grouped as measurements, which are comparable to tables in traditional relational databases. A
measurement consists of a range of timestamps, each holding multiple key-value pairs. Some remarks
can be made about the relative non-scalability of the system (horizontal scaling is only possible in
the commercial version), something that could cause problems in the future. However, as InfluxDB
is currently one of the fastest-growing databases, we expect that solutions have emerged from the
community by that time.

Prometheus

Prometheus is an open-source time series database originally developed at SoundCloud, largely writ-
ten in Go. It ”works well for recording any purely numeric time series. It fits both machine-centric
monitoring as well as monitoring of highly dynamic service-oriented architectures”. However, ”If you
need 100% accuracy, such as for per-request billing, Prometheus is not a good choice as the collected
data will likely not be detailed and complete enough.”[27]. Whether this also applies in our case still
requires further research.

16 4. The research and development process

Ganglia

Ganglia is a scalable distributed monitoring system for high-performance computing systems such
as clusters and Grids. It is based on a hierarchical design targeted at federations of clusters. It
leverages widely used technologies such as XML for data representation and RRDtool for data storage
and visualization. It is currently in use on thousands of clusters around the world and can scale to
handle clusters with 2000 nodes.[28]

Nagios

Nagios is open source software for monitoring systems, networks, and infrastructure. It saw its first
release in 1999 and is still actively developed. Nagios is however not aimed at clusters[8], as such the
setup process for Kubernetes would be complex. For this reason, other options are preferred.

MonALICA

MonALICA is a globally scalable framework of services to monitor and help manage and optimize the
operational performance of Grids, networks and running applications in real-time. However, since it
is aimed more at operational performance than resources utilization measurement, other options are
preferred[29].

Relational Database Management Systems (RDBMS)

Besides time series databases, several RDBMS with SQL-support (MySQL, SQLite, and PostgreSQL)
were also considered. Despite not being tailored to time series, which will form the majority of the
data and therefore dictate most of our needs, they are true and tested systems that have been applied
to solve largely divergent problems.

4.3.2. Data Visualization
Having a GUI (and therefore data visualization) is a could have of the system and it is still unclear
in the research phase whether the project will eventually feature one. Nevertheless, it is good prac-
tice to already take into account possible techniques and frameworks in order to simplify eventual
implementation, either during the project or in the future.

Grafana

Grafana is an open-source time series metric analytics and visualization suite. It offers built-in support
for various time series databases, including Graphite, InfluxDB, and Prometheus. It is written in Go.

Chronograf

Chronograf is an open-source time series visualization application, developed by InfluxData (the com-
pany behind InfluxDB). It is part of the TICK stack, which is meant to manage time series data [30]. It
consists of Telegraf (data collection from different sources), InfluxDB (storage of the data), Chronograf
(visualization) and Kapacitor (monitoring and detecting anomalies in the data, alerting based on trig-
gers). Due to the tight integration, it is only viable as an option if InfluxDB is chosen (using Graphite
is possible, but only through the use of an InfluxDB, introducing unnecessary complexity/work).

Graphite Web App

The Graphite web app is part of the Graphite suite, dealing with data visualization. It is implemented
as a Django webapp, using Cairo for vector rendering. Analogous to Chronograf, considering it is only
interesting if Graphite is chosen for data retention.

4.4. Development - Chosen Development Tools 17

Figure 4.1: The TICK stack

4.4. Development - Chosen Development Tools
4.4.1. Development Strategy: SCRUM
For the development strategy, Waterfall was deemed inadequate for this project as some of the require-
ments might change during the project, due to the relatively new and flexible nature of the company
and its software stack.

Furthermore, SCRUM was chosen over Extreme Programming. While both strategies have similar
philosophies, both parties have more experience with SCRUM. Several concepts of Extreme Program-
ming are still considered useful, though, such as pair programming. The sprint duration was set at 2
weeks, meaning there will be 3 sprint reviews (20 January, 3 February, and 17 February). Furthermore,
there will also be a sprint meeting on every Friday in order to monitor the progress and to react timely
in the event of problems. The sprint plan for the first sprint is shown in appendix A and an overview
of all sprints is given in table 4.2

Table 4.2: Overview of sprints

Weeks Main activity
0 1-2 Acquire background information, gather requirements, create preliminary design
1 3-4 Development
2 5-6 Development
3 7-8 Development and Validation
4 9-10 Writing final report and prepare for demo and presentation

4.4.2. Programming Language: Go
Go was chosen over both C++ and Python, due to the ease of integration with Kubernetes and Docker
and its abundance within Nerdalize. Apart from this, its harmony with the rest of the stack can be
considered a key factor in the choice. Go also offers good performance and great tools for concurrency,
requirements set in section 4.2.2 .

18 4. The research and development process

4.4.3. Development Environment
Repository: GitLab

Since both GitHub and GitLab offer almost the same features our choice for GitLab was made because
GitLab was the preferred tool within the Nerdalize company. This means that experienced colleagues
can help us set up our repository.

Test System: Minikube

To test code on a running system Minikube was used. Minikube sets up a local Kubernetes cluster
which allowed to deploy code locally making it easier to debug.

4.4.4. Code Quality: GitLab CI
To ensure each build has good code quality we will use GitLab CI. Continues integration will test the code
both functionally as non-functionally. The choice for GitLab CI was made because it is an integrated
part of GitLab and it has features that other CI tools don’t offer, such as continuous deployment.

Testing: Unit Tests

Go offers an integrated testing package that offers unit testing, benchmarking and code coverage[31].

Formatting: GoFmt

GoFmt automatically formats Go code, this ensures that all Go code has the same format making it
easier to write, read and maintain[32]. As a result of this, there is no need for automated testing code
style.

Documentation: GoDoc

GoDoc automatically generates documentation on Go code based on comments in packages and func-
tion.

4.5. Development - Chosen Systems
4.5.1. Data Collection: Heapster
For data collection, we will further investigate Heapster, as it offers a good starting point. Heapster uses
cAdvisor, a tool that measures the resource usage and performance of containers, and runs it within
a Kubernetes cluster collecting measurements from all containers. Heapster also collects additional
statistics from Kubernetes itself. It aggregates this data and makes it available via REST endpoints.
Heapster, however, does not support all the necessary statistics as all network traffic is treated equal
and monitoring of disk I/O also seems to be lacking.

4.5.2. Data Retrieval and Storage: InfluxDB (and SQL)
As we tend to steer away from reinventing the wheel, RDBMS will not be considered for the primary
data due to the relatively convoluted set-up that would be required. Prometheus, InfluxDB and to a
lesser extend Graphite seem to offer solutions to many of our problems and promise to do so right
out-of-the-box, while also enabling a better representation of our data. Ganglia, and MonALISA where
also looked at but they are outdated, and do not integrate with k8s out of the box.

InfluxDB was also chosen due to the experience already obtained by the employees and because
integration would be easier with Nerdalize’s existing systems, which also rely on InfluxDB. As at this
moment it cannot be accurately predicted whether InfluxDB will suffice for Nerdalize’s needs in the
future, the system will be built as modular as possible, enabling a relatively easy switch to another
database.

4.5. Development - Chosen Systems 19

However, an RDBMS will still be used, mostly for the secondary data (E.g. client information, relating
jobs to clients or storing specifications of all systems). Because most modern languages (including Go)
allow communication with RDBMS’s supporting SQL through a uniform interface, choosing a specific
RDBMS is not necessary at this point in time, as they can be changed with very little effort.

4.5.3. GUI: To Be Determined
The GUI would ideally be integrated with the rest of Nerdalize’s GUI. However, as Nerdalize recently
attracted a new employee to enhance their GUI experience, the used frameworks and set-up might
change in the near future. This means that, while not ideal, the exact set-up of our (possible) GUI will
be determined at a later point in this project.

4.5.4. Data Visualization: Grafana or Chronograf
By choosing InfluxDB we are able to stay partly agnostic in our data visualization, giving us a fallback
in case things go south. Having several options can be considered good practice, further emphasizing
InfluxDB as a good choice. Apart from this, the choice also depends on the details of the GUI, which
are not yet available at the time of writing.

5
Preliminary Design of Accumulus, a

Monitoring and Cluster Analysis
System

According to the requirements specified in chapter 3 a preliminary design was created. This chapter
gives both an overview of the architecture of the system and shows how the components work together
as a system.

5.1. Architecture Overview
The designed system will consist of different components, which are:

• An extended version of Heapster

• A mechanism to partially transfer SQL databases

• Accumulus

• Accumulus GUI

A complete overview of the architecture is shown in figure 5.1. This system is split in two parts, an
instance of the client part will run in every client cluster, while the core part runs in a central location
and is responsible for deploying the client part in each cluster. The central part connects to all user
clusters to collect compute resource data, while it pushes data about the heat and power usage to
the client cluster. This set-up is chosen in order to ensure that no sensitive data is stored in the client
cluster.

Heapster

For this project, Heapster will be extended so additional tags can be added to metrics. An overview
of extra tags is shown in table 5.1. Heapster will use an SQL Database to look up the right data, for
example relating resources to the hardware they were used on, and adding the Cloudbox id. This
database will be created when the cluster is started and only contain information of machines in the
cluster, this is to prevent the customer from getting access to information such as the size of the
company. Heapster collects metrics each interval and stores those measurements in InfluxDB.

InfluxDB

InfluxDB will be used for storing time series data. There are multiple instances of InfluxDB, one in each
customer cluster and a central instance for long term storage and historic searching. The instances
in the customer clusters will keep precise data. InfluxDB down-samples this precise data to a lower

20

5.1. Architecture Overview 21

Nerdalize CoreNerdalize User Cluster

Kube System

Host Host

Accumulus
GUI

Heapster +

Accumulus
core

Tags

Accumulus
GUI

SQL Heat, Power
and network

data

User Nerdalize

Figure 5.1: Overview of system architecture

Tag Metrics Reason
Cloudbox id All metrics Needed to estimate power use and heat production
Cluster id All metrics Needed to link metrics back to a customer
Cpu type Pod and node Gives the user insight into his performance on the type of cpu

And gives Nerdalize data on cpu usage
Ram type Pod and node Gives Nerdalize data on ram usage
Disk type Pod and node Gives the user insight into his performance on the type of disk

And gives Nerdalize data on ram usage

Table 5.1: Tags on metrics and reason for these tags

resolution, which will be collected by the central Accumulus instance. InfluxDB can also use retention
policies to reduce disk usage by only keeping data for a certain time.

Grafana

Grafana is a dashboard application for time series, it visualises time series data. Heapster comes with
its own version of Grafana, which has preconfigured dashboards for both cluster and pod performance.
Grafana will be used for visual representation of the data, both the customer and Nerdalize will have
access to this interface and the possible GUI that may be developed will most likely also use Grafana
to render graphs.

Accumulus

An instance of Accumulus will run in the Nerdalize core. Accumulus is responsible for the connection
between the customer cluster and the Nerdalize core cluster and fulfills three main functions, deploy-
ment, collection, and processing. Accumulus’ deployment part will deploy the Accumulus components
on new or existing customer clusters. The collection part will collect down-sampled data from all client
clusters for billing and analytic purposes. Finally, the processing part collects the power usage and
heat production data from each Cloudbox and splits them over the compute modules in a Cloudbox.

22 5. Preliminary Design of Accumulus, a Monitoring and Cluster Analysis System

Accumulus GUI

Accumulus GUI is a graphical user interface aimed at the end user, in this interface the user can see
his total resource usage and get an estimation of the cost and the ammount of CO2 emission saved.

SQL

The SQL database running in the core cluster contains information on all clusters, Cloudboxes, jobs, and
customers. As this data can be considered sensitive (the locations and total number of Cloudboxes,
customer information etc.), it is distributed on a need-to-know basis to the customer clusters. This
means that a cluster only has (partial) information on the Cloudboxes running inside the cluster.

6
Validation

The developed system is useful only if it satisfies two conditions. The system needs to be accurate,
which will be discussed in chapter 6.1, and the system needs to have a small overhead, which will be
experimentally verified by the experiments proposed in 6.3.

6.1. Accuracy
A measurement system is not useful if the measurements are inaccurate. Therefor the system needs
te be tested for accuracy on all metrics it collects.

6.1.1. Compute Resources
Heapster receives its measurements directly from cAdvisor and as such, Accumulus’ accuracy for re-
source usage depends entirely on that of cAdvisor. cAdvisor collects its measurements directly from
the kernel and OS, because of this these measurements can be assumed accurate enough by doing a
basic validation with a known impact on the system.

6.1.2. Power and Heat
The Cloudbox contains a class B electrical energy meter, which is legally required to have a measurement
error of less than 2 per cent over the temperature range where Nerdalize is operating in[33].

All of the power consumed by the compute modules is transferred to the water, with the exception of
the heat lost to the surroundings, meaning an upper bound can be given for the error with which the
created (useful) heat is estimated. No useful heat is created if the water in the boiler already has the
maximum temperature, something which is easily measured.

The actual heat used by the home owner is more complicated and can only be inferred by the mea-
surements from two temperature sensors (10K NTC with a B constant of 3435 K), one in front of the
heating area and one after. Whether this is enough for a precise estimate is still being discussed with
Nerdalize.

6.2. Basic Validation
To validate the basic working of the system, Nerdalize has requested some smoke tests. In those
experiment stress tests will be used to cause a predictable load on the system. Accumulus should then
show the expected values for the load. Table 6.1 shows the resources that are tested and the expected
loads that Accumulus should measure.

23

24 6. Validation

Resource Test program Expected result
CPU Single core stress test 1000 millicores used
CPU Dual core stress test 2000 millicores used
RAM Generate 512Mb array 512Mb ram used
Network Request 1Mb file from internet 1Mb network rx

Table 6.1: Basic Accuracy Validation.

6.3. Overhead
As stated, one of the non-functional requirements was an overhead of less than 10%. In section 6.3.1
and 6.3.2, two experiments for validating this are proposed. In section 6.3.3, an experiment for relating
the checking interval to the total overhead is proposed.

6.3.1. Overhead of Accumulus in a Timed Benchmark
The goal of the experiment is to get insight in the overhead caused by Accumulus, compared to a bare
Kubernetes cluster and a Kubernetes cluster running an unmodified version of Heapster. This is done
by running one or several benchmarks, after which the total time required to finish the benchmark is
noted. This is repeated a number of times for several cluster sizes, in order to get insight in the effect
of the cluster size and average the influence of non-deterministic effects. A full table of tests is shown
below

Benchmark Cluster Size Configuration Expected result
Benchmark Single node Bare Kubernetes baseline
Benchmark Single node Heapster increased from baseline
Benchmark Single node Accumulus increased from Heapster
Benchmark 5 nodes Bare Kubernetes baseline
Benchmark 5 nodes Heapster increased from single node Heapster
Benchmark 5 nodes Accumulus increased from 5 nodes Heapster
Benchmark 25 nodes Bare Kubernetes baseline
Benchmark 25 nodes Heapster increased from 5 node Heapster
Benchmark 25 nodes Accumulus increased from 25 node Heapster

Table 6.2: Overhead of Accumulus in a Timed Benchmark.

6.3.2. Overhead of a Monitored Accumulus Instance
The goal of the experiment is also to get insight in the overhead caused by Accumulus. This time, a
cluster will perform a workload, and be monitored by an unmodified version of Heapster, and Accumu-
lus. Both instances will monitor each other, and we will verify that they measure the same utilisation,
then the overhead of Accumulus can be seen by comparing measurements between Heapster and
Accumulus.

6.3.3. Difference in Overhead Based on Interval Length
In this experiment, the influence of the measuring interval on the overhead will be determined. For
this, a benchmark is run in a Kubernetes cluster with Accumulus deployed, noting the time it takes
to finish the benchmark. The benchmark is then run again with different values for the measuring
interval, in order to see its effect. Again, each measuring interval is run several times to minimize the
effect of non-deterministic behavior. A full overview of the diferent intervals that will be tested is shown
in table 6.3

6.4. Scalability

6.4. Scalability 25

Benchmark Cluster Size measurement interval Expected result
Benchmark 5 nodes every minute baseline
Benchmark 5 nodes every 30 seconds 2x baseline
Benchmark 5 nodes every 15 seconds 4x baseline
Benchmark 5 nodes every 5 seconds 12x baseline
Benchmark 5 nodes every second 60x baseline

Table 6.3: Difference in Overhead Based on Interval Length.

A
Appendix A: Sprint Plans

26

A.1. Sprint 1 27

A.1. Sprint 1

 Sprint 1
161/160 hours

140/160 hours
11/13 com

pleted

✓
User Story

Task
A

ssigned To
Estim

ated Effort
Priority

A
ctual Effort

N
otes

x
A

s a developer i w
ant a code repository so i can easily

collabborate and have version control
Set up git repository

Diony
4

A
4

Tw
o gitlab repositories have been set up

x
A

s a developer i w
ant to do integration testing to ensure all

softw
are com

ponents integrate w
ell

Set up continuous integration
Youp

6
A

24
Setting up continuous integration took longer than expected due to
the com

plicated environem
ent w

e need for testing

x
A

s a developer i w
ant a kubernetes cluster to test and run

m
y system

 on
Set up a kubernetes cluster

Both
2

A
6

Setting up a kubernetes cluster on google cloud took longer as w
e

had to aw
ait approval from

 the com
pany, clusters cost m

oney

x
A

s a developer i w
ant to test m

y code
Set-up unit testing fram

ew
ork and create a unit test

Youp
8

A
10

W
e had no experiance w

ith gitlab's integrated CI, because of this
setting up unit testing took longer

x
A

s a developer i w
ant a test w

orkload w
ith a predictable

load to validate the accuracy of m
y system

Create a test job for personal testing
Diony

4
B

4
test job is w

riten in go and has a predictable resource load.

x
A

s a developer i w
ant to be able to quickly depoy m

y
code

Set up deploym
ent file for Kubernetes for autom

atic
testing

Youp
14

B
16

a sm
all issue w

ith authentication took aditional tim
e

x

A
s a developer I w

ant to have a clear m
odel of w

hat I'm

going to create
Create m

odel and docum
ent it

Both
16

A
20

A
 lot of im

portant decisions w
here m

ade at nerdalize during
this sprint, as such our architecture design changed m

ultiple
tim

es

x
A

s a developer I w
ant to be able to correlate data (e.g.

specifications and client data)
Set up SQ

L database and populate it
Youp

8
B

2
Done, nerdalize already has a system

 that contains this inform
ation

x
A

s a user i w
ant to see the resource use of jobs running on

kubernetes
M

onitor CPU, RA
M

, disk and netw
ork use

Diony
25

B
20

A
ll m

etrics are alerady available in heapster w
ith the exception of

Disk IO
, w

e found a sollution for this but have problem
s

im
plem

ented it.

x
A

s a user i w
ant to be able to select m

etrics based on tags
such as m

achine id and the job they belong to
Split resource usage correctly using tags

Diony
30

A
12

M
ost of the tags are in place. Som

e tags rely on our architecture
design and have not been im

plem
ented due to the changes in this

design

x
A

s a developer i w
ant to know

 w
hich netw

ork statistics are
available

Investigate possibilities for netw
ork usage m

onitoring
Diony

12
C

8
In a m

eeting w
ith nerdalize's netw

ork engineer w
e discoverd that

not all netw
ork statistics w

e w
ant are available, a new

 set of
m

etrics w
as selected.

As a user i w
ant to know

 how
 m

uch pow
er m

y cluster
consum

ed and how
 m

uch heat this provided
Store pow

er and heat consum
ption

Both
16

B
4

A change in architecture design changed the w
ay w

e w
ant to do this,

w
e did how

ever research how
 this can be done and now

 have acces
to the right database.

As the billing departm
ent, I w

ant m
y billing softw

are to be
able to receive usage data

Design API for querying data
Diony

16
B

10
Changes in our architecture design caused the API part of our
project to be deprioritised as both influx and grafana have a good
API and w

ill contain all neccesary data in our new
 design.

As a student i w
ant to deliver a w

ell w
riten research report

W
rite research report

Both
-

B
15

Due to late feedback on our first draft w
e still had to w

ork on the
research report

M
ain Problem

s Encountered
1

Changes in architecture design

A lot of im
portant design decisions w

here m
ade by nerdalize during this sprint, those decisions had a lot of influence on

how
 the environm

ent our system
 needs to run in looks, as such w

e had to m
ake changes to our architecture design.

25
W

e redesigned our architecture design tw
ice and discused it w

ith
m

ultiple m
em

bers of nerdalize

2
Inexperiance w

ith G
itlab CI

Inexperiance w

ith the G
itlab CI resulted in a long setup process for our CI, in the end w

e had to do a step back and do
less thorough integration testing as setting up a cluster every tim

e the code has to be tested w
as not deem

ed viable.
-

Figure A.1: Sprint 1

28 A. Appendix A: Sprint Plans

A.2. Sprint 2
 Sprint 2

116/160 hours
96/160 hours

12/12 com
pleted

✓
User Story

Task
A

ssigned To
Estim

ated Effort
Priority

A
ctual Effort

N
otes

x
A

s a developer i w
ant to have a clear vision of w

hat i need
to do

Sprint review
 and planning

Both
2

A
2

x
A

s A
ccum

ulus i w
ant to deploy the neccesary

applpications on every new
 cluster

M
ake Cluster startup function

Youp
14

A

x
Setup central SQ

L server
Youp

6
A

x
A

s H
eapster i w

ant to know
 w

hich nodes belong to w
hich

cloudbox and w
hat hardw

are that cloudbox has
M

ake SQ
L Sync logic

Youp
10

B

x
A

s A
ccum

ulus i w
ant to be able to pull and push data

betw
een databases

M
ake pushing and pulling of influxdb data possible

Diony
8

A
12

Took longer than expected: The available A
PI did not cantain all

neccesary fucntions.

x
A

s A
ccum

ulus i w
ant data to be dow

nsam
pled before it is

stored in the core
A

dd continuous query to dow
nsam

ple data
Diony

4
4

4
W

e found a w
ay to do everything w

ith a single dow
nsam

ple query

x
A

s A
ccum

ulus i w
ant to have the heat and pow

er m
etrics

of cloudboxes available
Pull heat and pow

er m
etrics in central Influx

Diony
2

B
4

Took longer, as for our test cluster this data is not available and
thus has to be sim

ulated

x

A
s a developer i w

ant to know
 how

 cost and pow
er

usage are distributed over the com
ponents of a

cloudbox
Research the cost and pow

er usage of a cloudbox
Diony

4
B

2

x
A

s a user i w
ant to see how

 m
uch pow

er m
y jobs have

cost
Create a pow

er processor
Diony

8
B

12
W

riting a function to structure the data in a good w
ay took

som
e tim

e as our influx functions w
ere not flexible enough yet

x
A

s A
ccum

ulus i w
ant to have all m

etrics tagged w
ith

the cloudbox and hardw
are they are m

easured on
Tag all m

etrics w
ith the cloudbox and specs

Diony
10

A
8

D
one w

ith the exception of the sql connection

x
A

s A
ccum

ulus i w
ant to store m

etrics for billing and
historical purposes on a central D

B
Sync Influx databases

Diony
10

A
16

Took m
ore tim

e due to a lot of refactors to m
ake the functions

m
ore versatile

x
A

s a Developer i w
ant to show

 m
y system

 to the client so i
can collect feedback

Prepare dem
o

Both
10

C
8

Dem
o w

as recieved really w
ell, good feedback w

as given

x
A

s a student i w
ant to deliver a w

ell w
riten thesis report

W
ork on the thesis report

Both
30

B
30

Figure A.2: Sprint 2

B
Project Proposal

29

Nerdalize Super Charge

Function-as-a-Service Cloud Resource Consumption Measurement
System for a Distributed Cluster

a TU Delft Computer Science Bachelor Project Proposal

TL;DR

Nerdalize is a cost and energy efficient cloud provider that heats homes with
the waste heat of its servers. It wants to sell cloud in a Function-as-a-Service
model and needs a system that can measure actual resource consumption on a
distributed container cluster.

What does Nerdalize do?

Nerdalize heats homes by placing servers into fiber connected homes. Nerdalize
sells the server capacity as cloud services at significant lower cost than anyone
else. The home owner can save ~€200 euro/year on his energy bill and the world
saves ~3.5 tons of CO2 per household per year. Here is a man with a fantastic
british accent explaining the basics.

Nerdalize earns its moneys by being a cloud provider and is currently focusing
on the High Throughput Compute market for SMB’s, scientists and engineers.
We can already beat the major cloud providers like Google, Amazon and Azure
at their own game on a small scale. Our goal is deploying the Nerdalize system
over 105 homes in the next 3 years and turn our continent into a distributed,
energy efficient datacenter.

To make this possible we have some really smart people working on building the
best tech we can imagine. Some of the things we’ve built so far include:

• Computing-as-a-Service a new user friendly way to run High Through-
put Computing workloads for scientists and engineers. The backend is
writting using goa and the frontend uses electron.

• Cloud Benchmarker the world’s first (and so far only) system that
benchmarks actual costs for actual (docker packaged) workloads across
all major cloud providers. Enabling us to predict project costs and turn-
around time. It was written mostly in Python, interfacing with influxdb
and uses terraform.

• KaaS (Kubernetes-as-a-Service) a serverless AWS lambda based sys-
tem for spinning up Kubernetes clusters across different cloud providers.
It uses DynamoDB and a lot of Go code.

1

• gitbits a git based, content addressable, deduplicated, encrypted and ef-
ficient large file transfer method that punches through corporate firewalls.
Written in Go.

• Nerdalize Compute Module an extremely energy efficient server cool-
ing system based on passive full immersion 2-phase cooling which makes
us the most energy efficient cloud provider in existence.

• Nerdalize CloudHeater and CloudBox server heating systems that
heat your room, your house or your domestic hot water. Including our
custom designed measurement and control systems PCB’s and monitoring
system using influxdb and grafana

• Nerdalight our own 10Gbps Fiber-to-the-Home network infrastructure
that connects our heating systems into a high performance cluster

Problem Description

Currently most cloud providers charge their customers in a pay-per-claimtime
cost model. The customer claims a particular instance type (e.g. a GCE n1-
standard-16 instance) and pays for the time this machine was reserved for use
the customer.

The instance type usually defines a particular Virtual Machine (VM) configu-
ration. For example the n1-standard-16 GCE instance type is a VM with 16
vCPU’s and 60GB of RAM Memory. A network attached persistent disk can
be allocated to such an instance. Network throughput to and from this machine
is capped and usually there is a charge per GB egress.

Thus an instance type can be viewed as a collections of Big4 (Processing, Mem-
ory, Storage and Network) resources that are reserved for use by a customer.

When the customer orders his VM the cloud provider locates a physical machine
that can supply these resources and boots the Virtual Machine on it, which
claims the resources for use by the customer.

If the customer underutilizes the resources his VM provides these resources
cannot be easily distributed to other VMs:

• the GBs of RAM a customer’s VM is not using cannot be allocated to
another VM

• the VM is allocated vCPU cores (hyperthreads) that cannot be used by
other VM’s or processes

• the VM’s disk space is reserved and cannot be shared with other VM’s or
customers

This leads to less than optimal resource utilization on the infrastructure of
the cloud provider. Nonetheless these resources do have capital and operation
expenses and these costs must be recuperated or the Cloud Provider will soon
find itself out of business. This means customers pay for unused resources, the

2

cloud provider has a lower return on investment on its infrastructure and a
whole lot of energy is wasted keeping all those underutilized machines running.

We should do this much, much better! Luckily we have a plan!

Nerdalize runs Kubernetes clusters on its distributed server fleet. Our customers
execute computationally intensive bag-of-task type workloads consisting of many
tasks on these clusters. Each task is a Docker container with certain resource
requests and resource limits that is placed by the Kubernetes scheduler on a
physical machine. A container behaves very much like an OS-process in the
sense that it can share CPU cores, RAM Memory, persistent storage and network
resources dynamically on a very granular level.

Nerdalize is building a Function-as-a-Service computational system and needs
a system that can accurately measure resource consumption.

Challenges in this project will include:

• eliciting the information requirements of cluster users, Nerdalize Opera-
tors, Billing and Sales people.

• understanding modern process container resource models
• understanding modern container orchestration schedulers (like kuber-

netes)
• defining the to-measure resources, their units and measurement methods
• validating that measurement methods are accurate and reliable
• implementing a system that measures resource consumption and deploying

it on a live cluster

Challenges this project can include:

• learning a whole swath of modern cloud technologies including: Go, In-
fluxDB, grafana, Kubernetes, Docker, Terraform, Ansible, etcd, YAML

• working with a group of highly motivated, experienced people who’s
skillsets range from discounted cashflow modelling through thermody-
namic simulations to

• open sourcing part or whole of the implementation
• publishing a blog post about the project through Google’s
• beating your supervisor on the foosball table

How can Nerdalize help you?

• we pay you a monthly internship stipend
• we have an ad libitum stroopwafel policy
• psychological warfare at the foosball
• watch a growing startup from the inside
• flexible working times

3

What we expect from you

• a commitment to do something awesome at very high quality. We’ll push
you to go the extra mile.

• English proficiency (spoken and written)
• come work in our office, it’s fun!

4

C
Requirements

34

SuperCharge Functional Requirements

discussion draft v 20161221

Actors

Nerdalize Compute Billing
Financial dept. that needs billing information to send invoices to customers.

Nerdalize Compute Sales
Sales dept. that charges customers for compute resources with a particular pricing model.

Nerdalize Compute Engine API
User facing API that shows resource utilization and cost to user:

User Stories

The Nerdalize Compute Engine API wants to:

• read accurate historical [resource/cost] consumption per [cluster/per user/per project/per work-
load/per job] to inform the user of his pas resource consumption

• read accurate current [resource/cost] consumption rate per [cluster/per user/per project/per work-
load/per job] to inform the user of his burn rate

• predict accurate future [resource/cost] consumption rate per [cluster/per user/per project/per
workload/per job] to allow the user to predict his resource consumption, project turnaround time
and total project cost.

The Nerdalize Compute Billing Dept. wants to:

• have sufficient information for billing purposes

The Nerdalize Compute Sales Dept. wants to:

• have flexibility for different billing models
• have the data support their current billing model

1

Bibliography

[1] E. A. Brewer, Lessons from giant-scale services, IEEE Internet Computing 5, 46 (2001).

[2] A. Vaughan, How viral cat videos are warming the planet, (2016).

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, The cost of a cloud: research problems in
data center networks, ACM SIGCOMM computer communication review 39, 68 (2008).

[4] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, A federated multi-cloud paas infras-
tructure, in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on (IEEE, 2012)
pp. 392–399.

[5] M. Cilissen, M.H.J. Van Elsas, Design of a performance benchmarker for fully distributed iaas
clouds, (2015).

[6] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, Cloud computing pricing models: a survey,
International Journal of Grid & Distributed Computing 6, 93 (2013).

[7] M. L. Massie, B. N. Chun, and D. E. Culler, The ganglia distributed monitoring system: design,
implementation, and experience, Parallel Computing 30, 817 (2004).

[8] W. Barth, Nagios: System and network monitoring (No Starch Press, 2008).

[9] X. Zhang, J. L. Freschl, and J. M. Schopf, A performance study of monitoring and information
services for distributed systems, in High Performance Distributed Computing, 2003. Proceedings.
12th IEEE International Symposium on (IEEE, 2003) pp. 270–281.

[10] M. Mansouri-Samani and M. Sloman, Monitoring distributed systems, IEEE network 7, 20 (1993).

[11] Nerdalize, Example benchmark report, (2016).

[12] S. U. Mendel Rosenblum and VMWare, The reincarnation of virtual machines, (2004).

[13] A. Hassain, Performance of docker vs vm’s, (2014).

[14] D. Inc., What is docker? (2016).

[15] Q. F. Hassan, Demystifying cloud computing, (2011).

[16] Interoute, What is iaas? (2017).

[17] T. Bronchain, How hypernetes brings multi-tenancy to microservice architectures, (2015).

[18] The Kubernetes Authors, Kubernetes: Production-grade container orchestration, (2016).

[19] R. Carosi and B. Mattijssen, Flower, (2016).

[20] The Kubernetes Authors, Reference documentation: Services, (2016).

[21] The Kubernetes Authors, Managing compute resources, (2017).

[22] The Kubernetes Authors, Volumes, (2017).

[23] J. Kincaid, Google’s go: A new programming language that’s python meets c++, (2009).

[24] Minikube, Minikube, (2016).

[25] Heapster, Heapster, (2017).

36

Bibliography 37

[26] InfluxData, Key concepts, (2016).

[27] Prometheus, Prometheus - overview, (2016).

[28] Ganglia, Ganglia monitoring system, (2005).

[29] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, Monalisa: A distributed moni-
toring service architecture, arXiv preprint cs/0306096 (2003).

[30] InfluxData, Introducing the tick stack, (2016).

[31] The Go Programming Language, Package testing, (2012).

[32] The Go Programming Language, Go fmt your code, (2013).

[33] The European Union, Directive 2004/22/ec of the european parliament and of the council of 31
march 2004 on measuring instruments, (2004).

C
Project Proposal

101

Nerdalize Super Charge

Function-as-a-Service Cloud Resource Consumption Measurement
System for a Distributed Cluster

a TU Delft Computer Science Bachelor Project Proposal

TL;DR

Nerdalize is a cost and energy efficient cloud provider that heats homes with
the waste heat of its servers. It wants to sell cloud in a Function-as-a-Service
model and needs a system that can measure actual resource consumption on a
distributed container cluster.

What does Nerdalize do?

Nerdalize heats homes by placing servers into fiber connected homes. Nerdalize
sells the server capacity as cloud services at significant lower cost than anyone
else. The home owner can save ~€200 euro/year on his energy bill and the world
saves ~3.5 tons of CO2 per household per year. Here is a man with a fantastic
british accent explaining the basics.

Nerdalize earns its moneys by being a cloud provider and is currently focusing
on the High Throughput Compute market for SMB’s, scientists and engineers.
We can already beat the major cloud providers like Google, Amazon and Azure
at their own game on a small scale. Our goal is deploying the Nerdalize system
over 105 homes in the next 3 years and turn our continent into a distributed,
energy efficient datacenter.

To make this possible we have some really smart people working on building the
best tech we can imagine. Some of the things we’ve built so far include:

• Computing-as-a-Service a new user friendly way to run High Through-
put Computing workloads for scientists and engineers. The backend is
writting using goa and the frontend uses electron.

• Cloud Benchmarker the world’s first (and so far only) system that
benchmarks actual costs for actual (docker packaged) workloads across
all major cloud providers. Enabling us to predict project costs and turn-
around time. It was written mostly in Python, interfacing with influxdb
and uses terraform.

• KaaS (Kubernetes-as-a-Service) a serverless AWS lambda based sys-
tem for spinning up Kubernetes clusters across different cloud providers.
It uses DynamoDB and a lot of Go code.

1

• gitbits a git based, content addressable, deduplicated, encrypted and ef-
ficient large file transfer method that punches through corporate firewalls.
Written in Go.

• Nerdalize Compute Module an extremely energy efficient server cool-
ing system based on passive full immersion 2-phase cooling which makes
us the most energy efficient cloud provider in existence.

• Nerdalize CloudHeater and CloudBox server heating systems that
heat your room, your house or your domestic hot water. Including our
custom designed measurement and control systems PCB’s and monitoring
system using influxdb and grafana

• Nerdalight our own 10Gbps Fiber-to-the-Home network infrastructure
that connects our heating systems into a high performance cluster

Problem Description

Currently most cloud providers charge their customers in a pay-per-claimtime
cost model. The customer claims a particular instance type (e.g. a GCE n1-
standard-16 instance) and pays for the time this machine was reserved for use
the customer.

The instance type usually defines a particular Virtual Machine (VM) configu-
ration. For example the n1-standard-16 GCE instance type is a VM with 16
vCPU’s and 60GB of RAM Memory. A network attached persistent disk can
be allocated to such an instance. Network throughput to and from this machine
is capped and usually there is a charge per GB egress.

Thus an instance type can be viewed as a collections of Big4 (Processing, Mem-
ory, Storage and Network) resources that are reserved for use by a customer.

When the customer orders his VM the cloud provider locates a physical machine
that can supply these resources and boots the Virtual Machine on it, which
claims the resources for use by the customer.

If the customer underutilizes the resources his VM provides these resources
cannot be easily distributed to other VMs:

• the GBs of RAM a customer’s VM is not using cannot be allocated to
another VM

• the VM is allocated vCPU cores (hyperthreads) that cannot be used by
other VM’s or processes

• the VM’s disk space is reserved and cannot be shared with other VM’s or
customers

This leads to less than optimal resource utilization on the infrastructure of
the cloud provider. Nonetheless these resources do have capital and operation
expenses and these costs must be recuperated or the Cloud Provider will soon
find itself out of business. This means customers pay for unused resources, the

2

cloud provider has a lower return on investment on its infrastructure and a
whole lot of energy is wasted keeping all those underutilized machines running.

We should do this much, much better! Luckily we have a plan!

Nerdalize runs Kubernetes clusters on its distributed server fleet. Our customers
execute computationally intensive bag-of-task type workloads consisting of many
tasks on these clusters. Each task is a Docker container with certain resource
requests and resource limits that is placed by the Kubernetes scheduler on a
physical machine. A container behaves very much like an OS-process in the
sense that it can share CPU cores, RAM Memory, persistent storage and network
resources dynamically on a very granular level.

Nerdalize is building a Function-as-a-Service computational system and needs
a system that can accurately measure resource consumption.

Challenges in this project will include:

• eliciting the information requirements of cluster users, Nerdalize Opera-
tors, Billing and Sales people.

• understanding modern process container resource models
• understanding modern container orchestration schedulers (like kuber-

netes)
• defining the to-measure resources, their units and measurement methods
• validating that measurement methods are accurate and reliable
• implementing a system that measures resource consumption and deploying

it on a live cluster

Challenges this project can include:

• learning a whole swath of modern cloud technologies including: Go, In-
fluxDB, grafana, Kubernetes, Docker, Terraform, Ansible, etcd, YAML

• working with a group of highly motivated, experienced people who’s
skillsets range from discounted cashflow modelling through thermody-
namic simulations to

• open sourcing part or whole of the implementation
• publishing a blog post about the project through Google’s
• beating your supervisor on the foosball table

How can Nerdalize help you?

• we pay you a monthly internship stipend
• we have an ad libitum stroopwafel policy
• psychological warfare at the foosball
• watch a growing startup from the inside
• flexible working times

3

What we expect from you

• a commitment to do something awesome at very high quality. We’ll push
you to go the extra mile.

• English proficiency (spoken and written)
• come work in our office, it’s fun!

4

D
Requirements

106

SuperCharge Functional Requirements

discussion draft v 20161221

Actors

Nerdalize Compute Billing
Financial dept. that needs billing information to send invoices to customers.

Nerdalize Compute Sales
Sales dept. that charges customers for compute resources with a particular pricing model.

Nerdalize Compute Engine API
User facing API that shows resource utilization and cost to user:

User Stories

The Nerdalize Compute Engine API wants to:

• read accurate historical [resource/cost] consumption per [cluster/per user/per project/per work-
load/per job] to inform the user of his pas resource consumption

• read accurate current [resource/cost] consumption rate per [cluster/per user/per project/per work-
load/per job] to inform the user of his burn rate

• predict accurate future [resource/cost] consumption rate per [cluster/per user/per project/per
workload/per job] to allow the user to predict his resource consumption, project turnaround time
and total project cost.

The Nerdalize Compute Billing Dept. wants to:

• have sufficient information for billing purposes

The Nerdalize Compute Sales Dept. wants to:

• have flexibility for different billing models
• have the data support their current billing model

1

Bibliography

[1] E. A. Brewer, Lessons from giant-scale services, IEEE Internet Computing 5, 46 (2001).

[2] A. Vaughan, How viral cat videos are warming the planet, (2016).

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, The cost of a cloud: research problems in
data center networks, ACM SIGCOMM computer communication review 39, 68 (2008).

[4] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, A federated multi-cloud paas infras-
tructure, in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on (IEEE, 2012)
pp. 392–399.

[5] M. Cilissen, M.H.J. Van Elsas, Design of a performance benchmarker for fully distributed iaas
clouds, (2015).

[6] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, Cloud computing pricing models: a survey,
International Journal of Grid & Distributed Computing 6, 93 (2013).

[7] M. L. Massie, B. N. Chun, and D. E. Culler, The ganglia distributed monitoring system: design,
implementation, and experience, Parallel Computing 30, 817 (2004).

[8] W. Barth, Nagios: System and network monitoring (No Starch Press, 2008).

[9] X. Zhang, J. L. Freschl, and J. M. Schopf, A performance study of monitoring and information
services for distributed systems, in High Performance Distributed Computing, 2003. Proceedings.
12th IEEE International Symposium on (IEEE, 2003) pp. 270–281.

[10] M. Mansouri-Samani and M. Sloman, Monitoring distributed systems, IEEE network 7, 20 (1993).

[11] Nerdalize, Example benchmark report, (2016).

[12] S. U. Mendel Rosenblum and VMWare, The reincarnation of virtual machines, (2004).

[13] A. Hassain, Performance of docker vs vm’s, (2014).

[14] D. Inc., What is docker? (2016).

[15] Q. F. Hassan, Demystifying cloud computing, (2011).

[16] Interoute, What is iaas? (2017).

[17] T. Bronchain, How hypernetes brings multi-tenancy to microservice architectures, (2015).

[18] The Kubernetes Authors, Kubernetes: Production-grade container orchestration, (2016).

[19] R. Carosi and B. Mattijssen, Flower, (2016).

[20] The Kubernetes Authors, Reference documentation: Services, (2016).

[21] The Kubernetes Authors, Managing compute resources, (2017).

[22] The Kubernetes Authors, Volumes, (2017).

[23] J. Kincaid, Google’s go: A new programming language that’s python meets c++, (2009).

[24] Heapster, Heapster, (2017).

[25] Minikube, Minikube, (2016).

108

https://people.eecs.berkeley.edu/~brewer/Giant.pdf
https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas
https://www.microsoft.com/en-us/research/wp-content/uploads/2009/01/p68-v39n1o-greenberg.pdf
http://hal.univ-lille3.fr/file/index/docid/694700/filename/paper.pdf
http://repository.tudelft.nl/islandora/object/uuid%3Ac7e2d0a4-f0e9-4317-9fc2-5d0bc63b48b3
http://repository.tudelft.nl/islandora/object/uuid%3Ac7e2d0a4-f0e9-4317-9fc2-5d0bc63b48b3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.642.6573&rep=rep1&type=pdf
https://www.ece.cmu.edu/~ece845/docs/massie04.pdf
https://books.google.nl/books?hl=en&lr=&id=xFArj2MDYGwC&oi=fnd&pg=PA5&dq=nagios+distributed+monitoring&ots=XAUiNORVn2&sig=YVWxhiEAizgoWRiBshXh45jIDJM#v=onepage&q&f=false
https://benchmarks.nerdalize.com/nerdalize/example-1799wed5ojxcko4k
http://queue.acm.org/detail.cfm?id=1017000
http://www.slideshare.net/Flux7Labs/performance-of-docker-vs-vms
https://www.docker.com/what-docker
http://static1.1.sqspcdn.com/static/f/702523/10181434/1294788395300/201101-Hassan.pdf?token=6HVCXruz66nfCpLk
http://www.interoute.nl/what-iaas
http://thenewstack.io/hypernetes-brings-multi-tenancy-microservices/
http://kubernetes.io/
blob:http://repository.tudelft.nl/d503b9d2-b525-451f-b925-9036ea06dee2
http://kubernetes.io/docs/user-guide/services/
https://kubernetes.io/docs/user-guide/compute-resources/
https://kubernetes.io/docs/user-guide/volumes/
https://techcrunch.com/2009/11/10/google-go-language/
https://github.com/kubernetes/heapster
https://github.com/kubernetes/minikube

Bibliography 109

[26] InfluxData, Key concepts, (2016).

[27] Prometheus, Prometheus - overview, (2016).

[28] Ganglia, Ganglia monitoring system, (2005).

[29] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, Monalisa: A distributed moni-
toring service architecture, arXiv preprint cs/0306096 (2003).

[30] InfluxData, Introducing the tick stack, (2016).

[31] The Go Programming Language, Package testing, (2012).

[32] The Go Programming Language, Go fmt your code, (2013).

[33] Kubernetes, Helm, (2017).

[34] Sig, (2017).

[35] X. Fan, W.-D. Weber, and L. A. Barroso, Power provisioning for a warehouse-sized computer, in
ACM SIGARCH Computer Architecture News, Vol. 35 (ACM, 2007) pp. 13–23.

[36] The European Union, Directive 2004/22/ec of the european parliament and of the council of 31
march 2004 on measuring instruments, (2004).

[37] A. Waterland, stress, (2014).

https://docs.influxdata.com/influxdb/v1.1/concepts/key_concepts/
https://prometheus.io/docs/introduction/overview/
http://ganglia.info/
https://arxiv.org/pdf/cs/0306096
https://www.influxdata.com/use-cases/introducing-the-tick-stack/
https://golang.org/pkg/testing/#pkg-overview
https://blog.golang.org/go-fmt-your-code
https://github.com/kubernetes/helm
https://www.sig.eu/about-us/
http://www2.schneider-electric.com/resources/sites/SCHNEIDER_ELECTRIC/content/live/FAQS/274000/FA274619/en_US/CELEX-32004L0022-en-TXT.pdf
http://www2.schneider-electric.com/resources/sites/SCHNEIDER_ELECTRIC/content/live/FAQS/274000/FA274619/en_US/CELEX-32004L0022-en-TXT.pdf
http://people.seas.harvard.edu/~apw/stress/

	Introduction
	Context
	Problem Statement
	Approach
	Main Contributions
	Structure

	Background
	Concepts
	Technologies

	Problem Analysis
	Problem Definition
	User Stories
	Requirements

	The Research Process
	Research
	Development Tools
	Systems
	Chosen Development Tools
	Chosen Systems

	The Development Process
	SCRUM
	Go
	Continuous Integration
	Unit Testing
	SIG Code Review

	Design of Accumulus, a Monitoring and Cluster Analysis System
	Architecture Overview
	Accumulus
	SQL Mechanism
	Heapster
	Influx
	Processors
	Grafana
	Possible Extensions

	Experimental Testing and Validation
	Accuracy Evaluation
	Basic Validation
	Overhead
	Scalability Evaluation

	Discussion & Future Work
	Discussion
	Future Work

	Summary & Conclusion
	Summary
	Conclusion

	Sprint Plans
	Sprint 1
	Sprint 2
	Sprint 3

	Research Report
	Project Proposal
	Requirements
	Bibliography

