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Prior-Guided Deep Interference Mitigation
for FMCW Radars

Jianping Wang
and Yang Yang

Abstract—1In this article, the interference mitigation (IM)
problem is tackled as a regression problem. A prior-guided deep
learning (DL)-based IM approach is proposed for frequency-
modulated continuous-wave (FMCW) radars. Considering the
complex-valued nature of radar signals, a complex-valued con-
volutional neural network, which is different from the conven-
tional real-valued counterparts, is utilized as an architecture
for implementation. Meanwhile, as the desired beat signals of
FMCW radars and interferences exhibit different distributions
in the time—frequency domain, this prior feature is exploited
as a regularization term to avoid overfitting of the learned
representation. The effectiveness and accuracy of our proposed
complex-valued fully convolutional network (CV-FCN)-based IM
approach are verified and analyzed through both simulated
and measured radar signals. Compared with the real-valued
counterparts, the CV-FCN shows a better IM performance with a
potential of half memory reduction in low signal-to-interference-
plus-noise ratio (SINR) scenarios. The average SINR of interfered
signals has been improved from —9.13 to 10.46 dB. Moreover,
the CV-FCN trained using only simulated data can be directly
utilized for IM in various measured radar signals and shows a
superior generalization capability. Furthermore, by incorporating
the prior feature, the CV-FCN trained on only 1/8 of the full data
achieves comparable performance as that on the full dataset in
low SINR scenarios, and the training procedure converges faster.

Index Terms— Complex-valued convolutional neural network
(CNN), deep learning (DL), frequency-modulated continuous
wave (FMCW), interference mitigation (IM), prior feature.

I. INTRODUCTION

REQUENCY-modulated continuous-wave (FMCW)
radars are widely used for automotive radar, vital sign
detection, smart building surveillance, weather monitoring,
and so on. With the rapid expansion of the applications,
the mutual interference among FMCW radars as well as
surrounding wireless devices becomes an increasingly severe
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problem, which would mask weak targets, degrade target
detection and even cause ghost targets.

A number of methods have been proposed for FMCW radar
interference mitigation (IM), including radar system coordi-
nation, radar system/waveform design, and signal processing
approaches. Radar system coordination can operate at both
the transmitter (Tx) and receiver (Rx) ends [1], which may
introduce an additional communication module in the radar
system. On the other hand, a new radar system/waveform
can be designed (e.g., phase-coded linear-frequency-modulated
continuous waveform [2]) to prevent the mutual interference.
However, this method would increase the complexity of the
radar system. Besides, the interference can also be suppressed
in the RX end by applying signal processing approaches to
received radar signals. The signal postprocessing methods do
not require modification of the radar system and can be directly
applied on existing FMCW radar systems. Due to this fact,
in this article, we mainly focus on signal processing methods
for FMCW radar IM.

The traditional signal processing approaches to IM can
be further classified into four categories: 1) zeroing and
reconstruction [3], [4], [5]; 2) estimation and subtraction [6],
[7], [8]; 3) estimation and separation [9], [10], [11]; and
4) digital beamforming [12]. For category 1), the interference-
contaminated samples in the acquired radar signals are
first detected and then zeroed out to suppress interferences.
To overcome the power loss of targets’ signals caused by
zeroing, the samples of desired targets’ signals in the zeroing
region can be reconstructed by the iterative fast Fourier
transform (FFT)-based recovery method [3], amplitude cor-
rection (AC) [4], signal model-based extrapolation [5], and
so on. However, when a very large portion of signal sam-
ples are contaminated by interferences, zeroing suppresses
not only interferences but also causes severe loss of useful
signals, which would significantly deteriorate the accuracy
of recovered targets’ signals with the reconstruction algo-
rithms. In category 2), interferences are estimated through
parameter estimation [6], or utilizing interference symmetry
[7], or wavelet transform-based approach [8], and only the
reconstructed interference components are subtracted from
received signals. On the other hand, the desired targets’ signals
can be reconstructed and separated from interferences by
determining the minimum of the magnitude [9]. Also, the
difference of sparsity between interference and desired targets’
signals is observed in the range-Doppler (RD) domain [10]
and Q-factor wavelet transform domain [11], which enables
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Fig. 1. Signal processing flow of our proposed approach for FMCW radar IM.

the sparsity-based nonlinear signal separation to remove the
interference. Besides, in multiantenna systems, the interfer-
ences from certain directions can be mitigated by nulling
through beamforming [12]. Nevertheless, the targets’ signals
scattered from the same directions are also suppressed.

Recent development in deep learning (DL) has shown
its ability in feature extraction, and DL-based approaches
are increasingly used for various signal processing problems
[13], including IM for radar signals. In [14], [15], and [16],
a simple convolutional neural network (CNN) is used to
suppress the interference and noise by operating on the RD
maps for FMCW radars. Meanwhile, more complex network
structures, including fully convolutional network (FCN) [17],
autoencoder [18], [19], U-Net [20], and generative adversarial
network (GAN) [21], are exploited to process the frequency
spectra or the RD maps of radar signals. In the time domain,
recurrent neural networks (RNNs) can be implemented to
process signal samples with memory ability [22], [23]. These
approaches extract the feature of interferences and subtract it
from received radar signals. Similarly, in [24], the CNN and
residual network (ResNet) are built to detect and remove the
interference components, respectively, for synthetic aperture
radars (SARs). Different from the methods mentioned above,
GAN can also be used to recover the missing targets’ signals
after interference detection and zeroing [25]. In addition,
it is a good idea to combine the neural network with the
traditional optimization algorithm [26], which achieves better
performance and faster processing time.

Compared with the traditional signal processing methods,
the DL-based approaches can extract a mapping between
interfered signals and their clean references from a training
dataset and show an appealing performance in complex inter-
ference scenarios even when a proper analytical signal model
is unavailable. However, the lack of a large dataset of radar
signals collected in various scenarios makes it hard to acquire
satisfactory results for existing DL-based approaches. In addi-
tion, a small number of training data would easily lead to the
overfitting problem, in which situation the features extracted
by the network would be significantly affected by noise.
Besides, the total parameters of the network may exceed the
capacity of existing small memory-constrained radar sensors.

Generally, beat signals of FMCW radars are acquired as
complex-valued samples with I/Q Rxs. The existing DL-based
IM approaches all handle the real and imaginary parts of
complex-valued samples as independent components with
real-valued neural networks. Thus, the implicit relationship
between the real and imaginary parts of radar signals was
neglected, which may cause the loss of the phase information

needed in further signal processing steps, such as classification
and tracking. On the other hand, complex-valued CNN handles
complex-valued data with standard algebraic rules of complex-
valued numbers, which can achieve better performance than
the real-valued counterparts [27], [28], [29]. Its potential for
faster learning, easier optimization, and better generaliza-
tion performance has received increasing attention in various
domains [30], [31].

Considering the complex-valued nature of beat signals of
FMCW radars, an IM approach based on complex-valued
CNNs is proposed in this article (see Fig. 1). The proposed
approach operates on the spectrogram in the time—frequency
(t—f) domain. Moreover, the different r—f distribution of
desired signals and interferences is exploited as a prior feature
for regularization on top of the mean square error (mse) loss
function, which would accelerate training and reduce the sizes
of training datasets needed. The contributions of this article are
summarized as follows.

1) A complex-valued FCN (CV-FCN)-based IM approach
is proposed. By using complex-valued convolution and
the activation function complex rectified linear unit
(CReLU), a better IM performance is achieved in low
signal-to-interference-plus-noise ratio (SINR) scenarios
with a potential of half memory reduction compared
with the real-valued counterparts.

A prior-guided loss function is proposed by accounting
for both data consistency between labels and the recov-
ered r— f spectra and the expected prior frequency-sparse
feature of the recovered spectrogram. A hyperparameter
is used for trading off between the data consistency and
the expected prior feature of the recovered spectrogram.
The overfitting problem can be avoided by adjusting the
hyperparameter, and the networks can be trained with a
smaller dataset and faster convergence.

The proposed IM approach can process radar signals
with an arbitrary length in a sweep by splitting the short-
time Fourier transform (STFT) spectrum into a combi-
nation of small matrices with certain overlap between
adjacent data blocks to keep phase continuity.

Trained with only synthetic radar signals, the proposed
approach can be directly utilized to IM for interfered
radar signals collected in four dynamic scenarios. The
generalization performance greatly improves by using
complex-valued representation and incorporating prior
feature.

The remainder of this article is organized as follows.
Section II presents the signal model of interfered FMCW
radars. Section III elaborates the prior-guided IM approach

2)

3)

4)
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based on CV-FCNs. The setups of numerical simulations for
data synthesis and experimental measurements are described
in Section IV. After that, the experimental results of the
proposed method on the simulated and measured radar signals
are presented in Sections V and VI. Finally, conclusions are
drawn in Section VII.

II. SIGNAL MODELING AND ANALYSIS

Dechirping Rx is widely used for FMCW radar systems due
to its low sampling frequency requirement to analog-to-digital
converters (ADCs). After dechirping, the acquired beat signals
contaminated by interferences can be written as [5]

y(0) =s@) + f(1) +n) (1

where n(t) represents the thermal noise and measurement
errors. s(t) is the desired beat signals and f(¢) denotes the
interferences, which are explicitly given by

N
s(t) = Zak exp [j27t (—fcrk — Kot + lKr,f)} 2)
k=1 2
M
f@) =7y [p*m > fo (r)] 3)
m=1
where j is the imaginary unit and 0 < t < T, with sweep
duration Tyy. f. is the center frequency, K is the chirp rate
of the FMCW waveform, and 7; is the time delay of the
scattered signal from the kth target relative to the transmitted
one. p*(¢) is the reference signal used for dechirping, f;,(¢)
denotes the mth interference, and F;, is the low-pass filtering
(LPF) operator.

In practice, the interference component f(¢) could result
from aggressor FMCW radars or other neighboring wireless
devices. As analyzed in [5], the interferences can be generally
classified into four categories: 1) interference signal with the
same chirp rate as the victim FMCW sweep; 2) interference
signal with different chirp rate; 3) CW interference; and
4) transient interference. For case 1), if the beat signals
resulting from interferences fall in the effective bandwidth of
the LPF, it, similar to real targets’ signals, would result in
horizontal lines along the time axis in the 7—f diagram; thus,
it would cause ghost targets, degrading the probability of target
detection and the false alarm rate. It is difficult to mitigate
this kind of interference in the time or frequency domain,
and this problem may be solved by utilizing phase-modulated
FMCW waveforms or IM in the space domain. Mitigation of
this kind of interference is out of the scope of this article.
For cases 2)—4), the interferences lead to (superposition of)
inclined thick lines in the r—f diagram, which are different
from the targets’ signals. Therefore, without loss of generality,
we consider interferences of case 2) for demonstration in this
article. Note that the proposed approach is also applicable to
handle interferences in cases 3) and 4).

Fig. 2 shows the ¢—f diagram of an interference-
contaminated beat signal, where the horizontal lines along the
time axis are the spectra of targets’ signal components, while
the inclined thick lines are the interferences. The interferences
show different distributions determined by their amplitudes,
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Fig. 2. t—f diagram of beat signal contaminated by mutual interferences.
chirp rates, duration times, and time delays relative to the
reference signal for dechirping. Moreover, due to the positive
time delay caused by wave propagation, the spectra of targets’
beat signals always exist in negative frequency (if the sweep
slope of the victim radar is positive and vice versa). In contrast,
the spectra of interferences spread in both positive and negative
frequencies in the r—f spectrum. Considering the different
temporal and spectral features of targets’ beat signals and
interferences, it is natural to investigate possible approaches
to mitigate the interferences in the - f domain by processing,
for instance, the STFT spectrum.

Based on the different distributions of interferences and
targets’ beat signals in the t—f spectrum, the IM problem can
be tackled as a two-step interference detection and suppression
problem by using the positive—frequency spectrum to detect
whether interferences exist or not. Besides, the CNN has
shown its attractive performance in both interference detection
and mitigation problems [24]. As a result, detecting and
mitigating the interferences are addressed by exploiting an
end-to-end neural network in this article.

III. PRIOR-GUIDED DEEP IM

In this section, some basic modules used in the complex-
valued CNN are first reviewed. Then, the CV-FCN architecture
and the prior-guided loss function proposed for FMCW radar
IM are introduced, followed by the detailed description of the
training procedure.

A. Complex-Valued Modules

A complex-valued CNN is generally composed of various
complex-valued modules, including complex-valued convolu-
tion, complex-valued activation functions, and complex batch
normalization [30].

To take advantage of the existing DL platform developed
for real-valued NNs (e.g., TensorFlow [32]), a complex-valued
convolution can be implemented by explicitly performing real-
valued convolutions among the real and imaginary parts of
the related terms. Specifically, the complex-valued convolution
between a complex filter W = A + jB and a complex vector
h = x + jy can be expressed as

Wixh=(Axx—Bxy)+ j(Axy+Bxx) )

where A and B are real-valued matrices and x and y are real-
valued vectors.
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Fig. 3. (a) Proposed CV-FCN architecture. It uses the complex-valued activation function CReLU and the complex-valued convolution operation

(ComplexConv), where the kernel size is 3 x 3 and the number of filters is x except for the last layer. (b) Proposed RV-FCN architecture for comparison. It
uses traditional real-valued ReLU and the convolution operation (Conv), where the kernel size is 3 x 3 and the number of filters is 2x except for the last

layer.

Similar to the activation functions for real-valued CNNs,
complex-valued activation functions introduce nonlinearity to
complex-valued CNNs to increase their representation capa-
bilities [30], [33], [34]. CReLU is one of the most popular
activation functions used in complex-valued CNNs [30], which
is implemented by using traditional real-valued ReLU on both
real and imaginary parts of a complex-valued input and is
expressed as

&)

where 9t(x) and J(x) extract the real and imaginary parts
of a complex number x, respectively. Compared with other
complex-valued activation functions (e.g., zZReLU [34] and
modReLU [33]), CReLU generally achieves the best perfor-
mance in inverse problems; thus, it is utilized in this article
as well.

CReLU(z) = ReLU(M(2)) + jReLU(3(z))

B. Network Architecture

The IM problem can be tackled as a regression problem.
Considering the complex-valued nature of FMCW radar sig-
nals in the —f domain, a CV-FCN architecture is designed
for IM with the basic complex-valued modules [see Fig. 3(a)].
The proposed CV-FCN is composed of complex convolutional
layers except for the last convolutional layer, followed by
the complex-valued activation function CReLU. In the last
convolutional layer, only one filter is used to produce the
output.

The t—f spectrum of the interfered radar signal is set as the
network’s input, and its counterpart of the associated reference
(i.e., the clean signal) is used as the label. Since the existing
DL platforms do not support the complex-valued input data,
the real and imaginary parts of input samples are separated into
two channels. Meanwhile, square kernels with size 3 x 3 are
used to deal with the 2-D input samples. To keep the shape of
the output 7—f spectrum same as that of the input and process

the edge information of each feature map, zero padding is used
in the complex convolutional layers.

C. Loss Function

The mse between the outputs of the network and the related
labels is generally used as a loss function in DL-based IM
approaches [35]. However, the performance of the network
trained with the mse as the loss function is limited by the size
of the training dataset. With the increase of the network’s total
parameters and training iterations, the overfitting problem is
inevitable, making it challenging to extract critical features.
Moreover, due to the lack of labeled real interfered radar
signal datasets in practice, synthetic data are commonly used
for training. However, synthetic data are generally generated
with analytical models derived based on certain assumptions
(e.g., perfect radar system and frequency-independent scatter-
ing property of targets) for simplification, which may make
the synthetic training dataset impractical to contain all the
features of radar data acquired in various realistic scenarios.
Consequently, the performance of the networks trained with
the mse using only simulated radar signals would degrade
when utilized to real data. To avoid the overfitting problem
and improve the generalization of the trained network for IM
in real data, explicitly incorporating the prior information to
guide the network training would be of great benefit.

As shown in Section II, the interferences lead to time-
varying beat frequencies after dechirping, while the beat
frequencies of targets’ signals are constant. The projection of
the interference on the frequency axis is a line, while the pro-
jections of targets’ beat signals on the frequency axis are some
points. Namely, interferences and targets’ beat signals show
different sparsities along the frequency axis (i.e., different
sparsities in the range profiles). To exploit these different prior
features of interferences and targets’ beat signals, we introduce
the L,; norm of the recovered r—f spectrogram (i.e., the
output of the proposed neural network) as a regularization term
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for the NN training on top of the traditional mse. Then, the
complete loss function is expressed as

18.8) = ||S — 8% + 212 ©6)

M
~ N ~
ISl20 =D 4[> 155l )
j=1

where || X|| r and || X]|,; represent the Frobenius norm and L, ;
norm of a matrix X, respectively. S € CM*V is the matrix
of the recovered spectrum in the 7—f domain with the row
and column related to the frequency and time dimensions,
respectively, and S € CM*V is the label. ||S — S||% denotes
the traditional mse, and ||S||2,1 characterizes the prior feature.
A is a hyperparameter used to make a tradeoff between the
mse (i.e., data consistency) and the prior feature. By properly
tuning A, the trained CV-FCN fuses the prior information and
the features extracted from the labeled data, which improves its
generalization capability. Note that when 4 = 0, the proposed
loss function (6) becomes the mse.

Due to the introduced regularization term [|S||,,;, the over-
fitting problem can be avoided as much as possible. Moreover,
as the regularization term ||S||2,1 provides solid expert knowl-
edge, it boosts the convergence rate of the network training
(i.e., the network can be trained with fewer iterations) and
significantly reduces the size of the dataset needed for training.

D. Training Setup

Before being fed into the network, the complex-valued
input samples are normalized. Specifically, the normalization
method can be described as

_ Y(m, n)
Y(m,n) =K ®)
maX11§m5M|Y(m, n)l,
<n<N

where Y is the matrix of the STFT spectrum of beat signals
contaminated by interferences and m and n are the row and
column indices of an entry of the matrix, respectively. Due
to the large amplitude difference between targets’ signals and
interferences in low SINR scenarios, K is a constant used
to scale the normalized data to a proper range of values,
which may affect the performance of trained NNs due to their
nonlinearities. In this article, an empirical value K = 103 is
used in the experiments. After IM with the network, the output
can be rescaled to recover the ¢—f spectrum of a signal based
on (8).

For the NN training, the complex weight initialization
strategy [30] was used to initialize the parameters of complex
convolutional layers, and the Adam optimizer was adopted
with a fixed learning rate of 0.001 and 32 input samples per
batch. The training procedure was ended after 100 epochs
when good convergence was observed. Moreover, the code was
implemented using Keras and TensorFlow tools, and all the
models were trained on a single NVIDIA Tesla V100 graphics
processing unit (GPU).

IV. DATASETS

In this section, the setups of numerical simulations for data
synthesis and experimental measurements are first introduced,
and then, the data split approach to long-time sequence
processing is presented.

5118316
TABLE I
PARAMETERS OF THE VICTIM RADAR
Parameter Value Parameter Value
Center frequency 3GHz Moving speed 30m/s
Duration of a sweep Tew 400 ps Window type Hamming
Bandwidth 40 MHz Window length 256
Chirp rate K 0.1 MHz/pus  Overlap length 255
Sampling frequency 12 MHz FFT points 256
Maximum detection distance 8 km
TABLE 11
PARAMETERS OF THE TARGETS AND INTERFERENCES!

Parameter Val Parameter of Val

of Targets alue Interferences alue

Number u{0,20} Number u{1,20}

Distance U(8,8000) m  Amplitude? U(0,3)

Amplitude>  ¢(0, 3) Center frequency 3 GHz

Phase U(0,2m) Chirp rate U(—2K,2K)

Velocity U(0,80)m/s  Duration U0, Tsw)

Delay time u (75” , %)

1 U means the uniform distribution.
2 Note that the amplitude is a relative value instead of a true value.

A. Radar Signals Synthesis

Due to the difficulties in acquiring both interfered radar
echoes and their related references in practice, especially for
dynamic scenarios, in this article, we use synthetic FMCW
radar signals for training of the proposed neural network and
then employ both synthetic and measured data for test.

For data synthesis, a victim FMCW radar with the para-
meters described in Table I was considered. To emulate the
scenarios with various scatterers and different interferences,
each parameter of targets and interfering signals was randomly
chosen from a uniform distribution U[a, b] (or U(a, b)) in a
closed (or open) interval for continuous variables or discrete
uniform distribution U/{a, b}, where a and b define the bounds
of the interval. The detailed intervals of the values of the
parameters of targets and interfering signals are shown in
Table II, where K and Ty, refer to the chirp rate and sweep
duration of the victim radar in Table I. Moreover, complex
white Gaussian noise was added to synthetic signals to account
for system noise and measurement errors. To characterize the
interference-contaminated signals in the presence of complex
white Gaussian noise, signal-to-noise ratio (SNR) and SINR
are used as metrics. To be consistent with the real-world
scenarios, the minimum value of SINR is set to —40 dB. The
SNR ranges from —20 to 20 dB with a step size of 5 dB.
For each value of SNR, the SINR must be lower or equal
to it, i.e., the range of SINR varies with SNR and can be
divided into 4-12 intervals with a step size of 5 dB. Then,
totally 72 combinations of the value of SNR and the interval
of SINR are acquired. For each combination, 60, 20, and
20 samples were randomly generated for training, validation,
and testing, respectively. Consequently, we obtained a training
set of 4320 samples, a validation set of 1440 samples, and a
testing set of 1440 samples.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:42:41 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. t—f diagrams of (a) simulated radar signal and (b) its label.

TABLE III
PARAMETERS OF THE PARSAX RADAR

Parameter Value
Center frequency 3.315 GHz
Duration of a sweep Tsw 1ms
Transmitted power 20dBm
Bandwidth 30 MHz
Chirp rate K 30 MHz/ms
Sampling frequency 400 MHz

After synthesizing the time-domain radar signals according
to the setups described above, their 7—f spectra are generated
through the STFT by using a 256-point hamming window with
a hop size of one for signal segmentation and 256-point FFT
for spectrum calculation (see Table I). The t—f spectra of
the associated clean targets’ signals are also obtained as the
corresponding labels. An example is shown in Fig. 4.

B. Experimental Measurements

The experimental data used in this article were col-
lected with the full-polarimetric PARSAX radar in TU Dellft,
Delft, The Netherlands, which has two orthogonally polarized
transmitting channels and four receiving channels for full-
polarimetric signal acquisition. The parameters of this radar
are listed in Table III.

The two orthogonally polarized transmitting channels were
used to simultaneously transmit different signals: horizon-
tally polarized (H-pol) channel for a fixed FMCW signal
and the vertically polarized (V-pol) channel for an arbitrary
FMCW-type waveform with various chirp rates, time duration,
bandwidth, and time delay relative to the beginning of the
signal in the H-pol channel. The full-polarimetric signals
scattered from the illuminated scene arrive at the receiving
antenna at the same time. After passing through an orthomode
transducer, the H-pol (i.e., HH and VH) and V-pol (.e.,
HV and VV) scattered signals can be separated. However, the
HH and VH (correspondingly HV and VV) signals inevitably
interfere with each other at the receiving channels. As the HH
(correspondingly VV) signals are generally much stronger than
the VH (correspondingly HV) signals, the interference impact
of HH (VV) on the VH (HV) is generally much severer. Thus,
the acquired HV signals are used to construct the experimental
dataset.
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t-f diagram of interfered signal
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Fig. 5. Measured radar signals collected in the street with traffic flow.
(a) Camera visual image. (b) t—f diagram.

The radar data were measured by illuminating four scenes:
an industrial chimney, a rotating wind turbine, a street with
traffic flow, and A13 highway with traffic flow in Delft.
In total, 500-sweep radar data were collected with various
interferences for each sweep. As an example, Fig. 5 shows
the street scenario at a time instant and the r—f diagram of
the acquired signal. As the experimental measurements were
taken in wild scenarios, it is impractical to acquire the related
references with our radar system, which is generally the case
in practice. Thus, the associated references of the acquired
experimental data are unavailable for supervised learning of
the NNs. As a result, the experimental data are only used for
testing of the trained neural networks in this article.

C. Data Split

In principle, the shape of the STFT spectra of radar signals
is determined by the number of sampling points in a sweep and
parameters of the STFT algorithm, but most CNNs can only
process input samples of specific shapes. In order to process
radar signals of a larger size in the /—f domain, the matrix of
the STFT spectrum can be split into a combination of smaller
matrices before being fed into the network, which is shown in
Fig. 6. The data splitting with certain overlap between adjacent
data blocks aims at keeping phase continuity of the recovered
signals obtained with the trained NNs. In our experiments, the
overlap size of adjacent data blocks N, is set to 8, and the
shape of the input samples (i.e., M x M) is 256 x 256.

V. SIMULATION RESULTS

In this section, the prior-guided deep IM approach is demon-
strated and analyzed using synthetic FMCW radar signals.
First, the performance metric used for quantitative evaluation
of IM performance is presented. Then, the optimal network
architecture based on the CV-FCN is obtained by grid search
using the mse as the loss function, including the kernel size,
number of filters in each convolutional layer, depth of the net-
work, and additional residual connection. Next, the CV-FCNs
are compared with the real-valued counterparts over a range of
network depths to examine the superiority of complex-valued
representation. After that, the prior-guided loss function is
used to retrain the neural network optimized through the grid
search method, and its effects on the training convergence and
the size of the required training dataset are investigated as well.
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Fig. 6. Data split approach to process the r—f spectra of interfered signals
with different shapes, where M and N are the sizes of the column and row
related to the frequency and time dimensions, respectively, and N, is the
overlap size of adjacent data blocks along the time dimension.

Finally, the proposed approach is compared with the state-of-
the-art IM approaches.

A. Performance Metrics

To quantitatively evaluate the performance of different IM
methods, the SINR of a recovered radar signal relative to
its clean reference and the correlation coefficient p were
introduced, which are defined as

B IIs!13
SINR = 101g( ——= 9)
15 — 113
§fs
pss = ————— (10)
5 sl - 11811,

where § is the recovered signal in the time domain, s is
the corresponding reference, and |[x||, denotes the L, norm
operator of a vector X.

The SINR can not only measure the remaining interferences
and noise in the recovered signal but also evaluate possible
signal distortion. Meanwhile, the correlation coefficient char-
acterizes the similarity of the recovered signal and its clean
reference in terms of waveform (via its modulus |p|) and the
phase difference between them (via its argument Zp).

Besides, we also utilized the detection rate to quantitatively
evaluate the target detection performance after IM. The cell-
averaging constant false alarm rate (CA-CFAR) detector and
the peak grouping algorithm [36] were used for detection. The
false alarm rate was fixed to 1 x 1074,

B. Network Architecture Optimization

To find an optimal CV-FCN architecture for the proposed
IM approach and the following comparative experiments,
parameter search is performed using the mse as the loss
function.

Inspired by some traditional CNN architectures such as
VGGNet [37] and DnCNN [38], three types of potential
CV-FCN architectures, denoted as Types I-III, are consid-
ered: in Type I, the number of filters in each convolutional
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layer is fixed to constant except for the last layer, while in
Types II and III, the number of filters is doubled (such as
VGGNet) [37] or halved (such as DnCNN) in each convolu-
tional layer, respectively. For Type I architecture, the number
of filters in each convolutional layer was set to 8, 16, or 32,
while the Type II (or Type III) networks with 2, 4, and 8 (or
64, 32, and 16) filters in the first layer were considered. Then,
the CV-FCN networks of the three types with depth ranging
from 4 to 12 and the kernels of size 3 x 3 and 5 x 5 were
studied. However, due to the limited GPU memory size, the
depths of networks up to 7 for Type II and 6 for Type III
are considered. Thus, more Type I cases are presented. The
comparison results are shown in Fig. 7, where the horizontal
and vertical axes indicate the number of total parameters and
the evaluation results of recovered signals.

According to Fig. 7, the CV-FCNs with Type I architecture
obtain better results. For Type II, it was generally constructed
with pooling layers or strides to extract high-level features.
However, the pooling operation may result in signal distortion
and is not utilized in the CV-FCN. Thus, the high-level
features are not extracted as the VGGNet [37], and the
Type II architecture did not show better results. Based on
the conclusion, the CV-FCNs (Type I) with different total
parameters are compared. The features of targets’ beat signals
and interferences in the r—f domain are relatively simple,
and using a larger number of filters or a deeper network is
unnecessary. The maximum average SINR is obtained using a
model (Model A) with eleven layers, where each convolutional
layer consists of 16 filters with kernel size 3 x 3 except for the
last layer. Moreover, we compared the CV-FCNs (Type I) with
kernels of 3 x 3 (Model A) and 5 x 5 (Model B). Although the
number of total parameters in Model B triples, it leads to an
average SINR of 0.31 dB lower than that of Model A. Thus,
the kernel size of 3 x 3 is used in the following experiments.

Furthermore, residual connection was introduced to promote
better backpropagation of gradient, avoiding the problems of
gradient diminishing and explosion during training of a neural
network [39]. To examine the effect of residual connection for
complex-valued IM networks, an additional residual connec-
tion is added between the input and output of the CV-FCN
(Type 1), resulting in a complex-valued ResNet (CV-ResNet).
According to Fig. 8, the CV-ResNet-based IM approach
achieves better performance in the high SINR scenarios while
performing worse in the lower SINR cases compared to the
Type I CV-FCN-based ones. This can be explained as follows:
in the high SINR scenarios, targets’ signals are the dominant
components in the radar data and have a lower dimensional
structure than the mixture of noise and interferences; in such
cases, it is easier for the CV-FCN (Type I) to learn the
bases to annihilate targets’ signals and thus with a residual
connection the CV-ResNet-based IM approach eliminates the
interferences and noise and outperforms the CV-FCN-based
ones. However, in the low SINR scenarios, interferences are
generally the largest component of the radar data and have
a lower dimensional structure than the mixture of noise and
targets’ signals; thus, it is easier for convolutional filters of
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Fig. 8. Performance comparison of the CV-FCNs with CV-ResNets, where
d means the number of convolutional layers in the network.

the CV-FCN to extract the features to annihilate interferences
directly. As a result, the CV-FCN-based IM outperforms the
CV-ResNet in the low SINR cases.

C. Performance Comparison With Real-Valued Networks

To analyze the IM performance of complex-valued net-
works, we compared the CV-FCNs with their real-valued
counterparts over a range of network depths.

The real-valued FCN (RV-FCN) is constructed using the
real-valued convolutional layer and the traditional ReLU acti-
vation function to replace their corresponding complex-valued
modules. In the complex-valued networks, the number of
complex filters in each layer is the number of complex feature
maps, i.e., the effective number of feature maps for each of
the real and imaginary parts. To obtain the same number of
feature maps for fair performance comparison, the RV-FCNs
were constructed in the same architecture as the corresponding
CV-FCNs but with the number of filters doubled in each layer
[see Fig. 3(b)].

The comparison results of the RV-FCNs and the CV-FCNs
are shown in Fig. 9. One can see that the CV-FCNs of

different depths show a better IM performance in the low
SINR scenarios compared with their real-valued counterparts.
This phenomenon is very meaningful in practice as the IM
is more demanding in the low SINR scenarios. To be clear,
some quantitative comparisons of the CV-FCNs and RV-FCNs
in the low SINR cases are shown in Table IV. When the SINR
of interfered signals is between —40 and —20 dB, all the
CV-FCNs with depths varying from 6 to 12 obtain better IM
performance in terms of the SINRs, modulus of the correlation
coefficient, and the detection rate of the recovered signals
(in bold red font) compared with the RV-FCNs. Specifically,
the SINRs of the beat signals recovered by the CV-FCNs
are on average 1.16 dB higher than that by the RV-FCNs.
Since the detection rate depends on the accuracy of the
recovered signal, the detection rates of the CV-FCNs are on
average 4.46% higher than that of the RV-FCNs. However, the
number of parameters of a CV-FCN is only half of that of its
corresponding RV-FCN.

Next, the performance of the optimal CV-FCN with 42370
parameters and its related optimal RV-FCN with 84418 para-
meters is compared. Although the CV-FCN has 49.8% fewer
parameters, it achieves almost the same performance as the
RV-FCN. The optimal RV-FCN requires 1.04 MB of memory
in the computer’s memory, while the CN-FCN requires only
586 kB. In addition, the SINR of recovered signals has
improved from 1.41 to 2.44 dB for interfered signals with
the SINR from —40 to —35 dB. Thus, the CV-FCN provides
a better solution to practical applications considering its par-
simony requirement of hardware memory and the superior
performance in suppressing strong interferences.

D. Effects of Prior-Guided Loss Function

In this section, the prior-guided loss function (6) is adopted
to retrain the optimized CV-FCN (Model A) in Section V-B,
and its effects on the training convergence and the size of
required training dataset are investigated with different values
of the hyperparameter A.

1) Effect on Convergence Rate of Training: The synthetic
dataset was used for training. Then, without loss of generality,
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Fig. 9. Performance comparison of the CV-FCNs with the corresponding RV-FCNs in terms of (a) average SINR, (b) modulus, and (c) phase of the correlation
coefficient, and (d) target detection rate, where d means the number of convolutional layers in the network.

TABLE IV
COMPARISON OF THE CV-FCN WITH RV-FCN

No. of SINR (dB) in low p | in low Zp [rad] in low detection rate in low

Method filters Depth  Total parameter SINR scenarios! SILIR‘ scenarios  SINR scenarios SINR scenarios

6 19170 3.9687 0.6129 0.2177 0.6320

7 23810 4.3370 0.6364 0.2036 0.6480

8 28450 4.6703 0.6531 0.1920 0.6783
CV-FCN 16 9 33090 4.8899 0.6519 0.1911 0.6739

10 37730 5.3700 0.6786 0.2020 0.6982

11 42370 5.4120(optimal) 0.6818 0.2103 0.6994

12 47010 5.2010 0.6719 0.1915 0.7010

6 38178 3.9395 0.6117 0.2115 0.6149

7 47426 3.2449 0.5928 0.2127 0.6026

8 56674 3.6104 0.6183 0.2037 0.6318
RV-FCN 32 9 65922 2.3263 0.5683 0.2353 0.6086

10 75170 2.9225 0.5901 0.2080 0.6251

11 84418 5.1908(optimal) 0.6744 0.1744 0.6826

12 93666 4.4984 0.6394 0.1945 0.6533

! The SINR of interfered signals is between -40 dB and -20 dB.
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Fig. 10. Performance comparison of CV-FCNs trained with prior-guided loss
function using the full dataset (4320 samples) for different epochs.

A =0 (i.e.,, mse) and A = 128 were used in the loss function
(6) to illustrate its performance. For both cases, the CV-FCNs
were trained for certain epochs varying from 20 to 100 with
increasing steps of 20.

The performance of the CV-FCN improves with the increase
of training epochs for both cases of 4 = 0 and 4 = 128,
as shown in Fig. 10. Meanwhile, a marginal difference between
the training results of 80 and 100 epochs shows that the
CV-FCNs obtained in both cases converged to a certain
suboptimal solution when trained for 100 epochs. However,
by introducing the prior feature as a regularization term (e.g.,
A = 128), the features needed for IM can be extracted faster by
training and the CV-FCN after only 20 training epochs reaches
almost comparable results as that after 100 training epochs,
especially in the low SINR scenarios (Fig. 10). By contrast,
in the high SINR scenarios, the interference components are
relatively small compared to the targets’ signals, and noise
becomes the dominant disturbance to the signal. Consequently,
the mse term becomes the dominant part in the prior-guided
loss function and the regularization impact of L;; norm
becomes weaker when A takes a fixed medium value (e.g.,
A =128). As a result, it leads to slower training convergence
in the high SINR scenarios. To overcome this problem, one
possible solution is to adjust the value of 4 according to the
SNR, which would be considered in the future.

2) Effect on the Size of Training Dataset: To evaluate the
effect of prior knowledge incorporation in the loss function
on the size of the dataset required for training, we randomly
chose 1/2, 1/4, and 1/8 of samples from the training dataset
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Fig. 12. Performance of CV-FCNs trained with prior-guided loss function using smaller datasets compared to that trained with mse using the full dataset in
terms of (a) average SINR, (b) modulus, and (c) phase of the correlation coefficient, and (d) target detection rate.

in Section V-D1 to form three smaller datasets and then used
them for the designed CV-FCN (Model A) training. Based on
the convergence analysis in Section V-D1, the number of the
training epochs was set to 100.

Fig. 11 shows the performance of the CV-FCNs trained
using the datasets of different sizes when A takes various
values. The SINRs of recovered signals generally degrade
with the shrinkage of training datasets [Fig. 11(a)—(c)]. The
smaller the training dataset used compared to the full dataset,
the severer the SINR degradation. However, with the increase
of A, the SINRs of recovered signals improve, which are more
noticeable in the low SINR scenarios and in a smaller training
dataset case. Besides, the CV-FCNs trained with 1/2 or 1/4 of
the full data obtained the best results when 4 = 64, while
the ones trained with 1/8 of the full data show the highest
SINR when A = 256. This is because there are more residual
interferences in the recovered signals processed by the NNs
trained using a smaller dataset; in such situations, the prior
feature plays a greater role in suppressing the interference.
Note that a larger value of 4 (e.g., 4 = 400) may result in
the loss of targets’ signals when the interference is almost
completely removed.

To facilitate the comparison of the regularization effect of
the prior knowledge on the size of training dataset, the SINRs,
correlation coefficients, and the detection rates of recovered
signals with 4 = 64 in Fig. 11(a) and (b) and 4 = 256 in
Fig. 11(c) are replotted together in Fig. 12. It is clear that
reducing the size of the training dataset results in performance
degradation over a wide range of SINRs of input signals.
However, with the additional prior information offered by the

L, norm, the CV-FCNs trained on smaller datasets achieve
comparable performance as that on the full dataset in the low
SINR scenarios, even when the training dataset is reduced
to one eighth. This is because with a small training dataset,
the features extracted by the network with mse would be
insufficient for IM; thus, the network’s performance would
worsen. Incorporating the prior information offered by L
norm is helpful to guide and improve the features extracted for
IM, compensating for the effect of data shortage. Therefore,
the proposed IM approach is attractive for small data learning
by introducing prior knowledge.

Then, we demonstrate the IM performance of CV-FCNs
trained with prior-guided loss function using 1/8 of the full
data (i.e., 540 samples). Fig. 13 shows the IM results of an
interfered beat signal of three point targets at the distance
of 1, 3, and 4 km. Due to strong interferences, the weak
target is almost immersed in the raised noise floor [see
Fig. 13(a) and (b)]. After being processed with the RV-FCN
and CV-FCN obtained with 1 = 0, the interferences and noise
are significantly suppressed, and the CV-FCN shows a better
performance. However, some residual interference components
are still observed [Fig. 13(c)—(f)]. With the increase of 4,
the residual interferences and noise are further mitigated
[Fig. 13(g)-(k)], and consequently, the noise floor of the range
profile decreases as well [Fig. 13(i)]. Besides, it should be
noted that the signal loss exists due to limited training data
[see Fig. 13(f)—(k)] and it is difficult to handle for the existing
DL-based IM approaches with one end-to-end neural network.
Furthermore, we would consider introducing a constraint of
signal continuity to reduce the loss.
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IM for the simulated radar signal whose SINR is —10.2 dB and SNR is 20 dB. (a) Acquired beat signal contaminated by mutual interferences,
(b) its range profiles, (c) its —f diagram, and (m) its RD map. (d) Interference-free reference. (e) Result of IM of RV-FCN trained with mse using 1/8 of the
full data. (f)—(k) Results of IM of CV-FCNs trained with prior-guided loss function using 1/8 of the full data. (I) Corresponding range profiles obtained after

IM. (n) and (o) RD maps and its target detection results (white rectangles) of recovered beat signals processed by the CV-FCNs obtained with 4 = 0 and
A = 256, respectively.
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Fig. 14. Performance comparison of our proposed approach with state-of-the-art IM techniques in terms of (a) average SINR, (b) modulus, and (c) phase

of the correlation coefficient, and (d) target detection rate.

To further evaluate the performance of the proposed prior-
guided IM approach on range-Doppler processing, the beat
signals in the 256 consecutive sweeps were generated for the
scenario above with three point targets at 1, 3, and 4 km. The
targets’ Doppler velocities were set to 0, —5, and —10 m/s
relative to the primary radar, and three aggressor FMCW
radars moved away from the primary radar with Doppler
velocities of 0, —10, and 20 m/s. The RD map of the interfered
beat signal is shown in Fig. 13(m). The white rectangle
represents the point if the detector labels it as a target. Due to
the strong interferences, the two targets at the distance of 3 and
4 km cannot be detected. Then, the CV-FCNs trained with
prior-guided loss function using 1/8 of the full data are used
to process the radar data in a frame. For conciseness, only the
RD maps of recovered beat signals obtained with 4 = 0 and
A = 256 are given in Fig. 13(n) and (o). After IM with 4 =0,
although most interferences and noise are suppressed, some
residual interference components exist and the target at the
distance of 4 km still cannot be distinguished [Fig. 13(n)].
With the value of A increased to 256, the interferences are
further mitigated, and all the targets can be accurately detected
in the RD map, as shown in Fig. 13(0).

Therefore, by tuning the hyperparameter A, the prior infor-
mation characterized by L, ; norm can enforce the CV-FCN
to extract meaningful features for IM faster during training,
thus accelerating the convergence rate of training. Moreover,
by incorporating the prior information, the proposed CV-FCN's
can be trained with a smaller dataset, which is attractive for
IM problems as it is generally very difficult to acquire labeled
real radar data in practice, especially for dynamic scenarios.

E. Comparative Analysis With Other IM Techniques

The performance of our proposed approach is compared
with that of several state-of-the-art IM methods, including
traditional signal processing approaches, i.e., the wavelet
denoising (WD)-based method [8], adaptive noise canceller
(ANC) [7], CFAR-Z and CFAR-AC [4], and DL-based
approaches, i.e., CNN-based method [14] and ResNet-based
method [24]. The parameters used in the aforementioned
traditional signal processing approaches are listed in Table V,
which were tuned to achieve the optimal performance in the
synthetic dataset. The CV-FCN was trained with prior-guided

TABLE V

PARAMETERS IN THE SELECTED TRADITIONAL SIGNAL PROCESSING
APPROACHES FOR COMPARISON

Method Parameter Value
Number of Training Cells 450
Number of Guard Cells 150
CFAR-Z/AC Probability of False Alarm 0.001
Dilation size 18
WD Level of wavelet decomposition 9
Interference power threshold 20% signal power
ANC Filter length 170
Fraction of the upper bond of step size 1.9

loss function where 4 = 128 and the CNN and ResNet were
trained with the mse. We used the simulated radar signals for
test and quantitatively evaluated the performance of different
methods.

The SINRs, correlation coefficients, and the detection rates
of the obtained signals after IM with different approaches
are shown in Fig. 14. Our proposed IM approach based
on prior-guided CV-FCN generally performs better than the
other methods. Although the ResNet-based approach achieves
comparable performance as the proposed one, it has 29 x more
parameters than the proposed CV-FCN, which would lead to
memory burden and much higher computation complexity.

On the other hand, the CFAR-Z and CFAR-AC use CFAR
to detect the interference components of acquired beat signals
in the r—f spectrum. The detection accuracy is determined
by the selected parameters. Then CFAR-Z uses zeroing to
mitigate detected interferences, which naturally removes tar-
gets’ beat signals at the same time. Different from CFAR-Z,
CFAR-AC uses AC to reconstruct the beat signals removed
by zeroing, which shows better performance than CFAR-Z,
especially in high SINR scenarios. Besides, a WD-based
method can reconstruct and remove the interferences in the
wavelet domain, which shows a good performance in low
SINR scenarios. In the ANC method, the negative half of the
FFT spectrum is used as the input of its reference channel,
and the threshold needs to be manually adjusted for different
levels of interference. As the positive and negative parts are
not ideally conjugate symmetric as assumed in [7], the IM
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Fig. 15.

IM for measured radar signals in the scene of the industrial chimney and surrounding buildings. (a) Acquired beat signal contaminated by mutual

interferences, (b) its range profiles, and (c) its 7—f diagram. (d) Results of IM of the RV-FCN trained with mse. (e)—(h) Results of IM of the CV-FCNs trained
with prior-guided loss function. (i) Corresponding range profiles obtained after IM. All the models were trained using only simulated data.

performance of the ANC would degrade, resulting in a cor-
relation coefficient with lower modulus and higher argument,
as shown in Fig. 14(b) and (c). As described, the performance
of the above traditional signal processing methods depends on
a proper selection of a few manually adjustable parameters.
Over a wide range of the SINR variations, their performance
is not as good as the selected DL-based methods.!

VI. MEASUREMNT RESULTS

The measured radar signals collected as described in
Section IV-B are used to verify the generalization of the
proposed IM approach.

For conciseness, we analyze the IM performance in the
scene of the industrial chimney and surrounding buildings.
As the clean reference signals are unavailable, the quantitative
evaluation of the IM performance is omitted here. Instead, the

'In principle, the range of SINRs of input signals can be divided into a few
smaller intervals. By tuning the related parameters of conventional methods
over each interval, they could outperform the DL-based methods. However,
selecting such a set of parameters is nontrivial in practice.

qualitative results, including the signal waveforms in the time
domain, the r—f diagrams, and the range profiles, are shown
in Fig. 15. In Fig. 15(a), three large pulses can be observed in
the received radar signal, which is caused by the strong inter-
ferences. The interference-contaminated beat signal leads to a
range profile with significantly increased noise floor, and the
two weaker targets are almost overwhelmed [see Fig. 15(b)].
Using the STFT algorithm with the same parameter setting
as for the simulated signals, the t—f spectrum of the beat
signal is computed [Fig. 15(c)], where three inclined thick
lines represent the interferences.

To suppress the interferences, the RV-FCN and CV-FCN
obtained in Section V-B are used. Note the networks were
trained using only the synthetic radar dataset and the prior-
guided loss function.

The ¢t—f maps of the recovered signal processed by the
RV-FCN and CV-FCN are shown in Fig. 15(d) and (e). With
the RV-FCN, the interferences are entirely removed in the
negative frequency, but some residuals are still observed in
the positive frequency spectrum [Fig. 15(d)].
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Fig. 16.

IM for measured radar signals in three scenarios (A13 highway with traffic flow in Delft, a street with moving cars, and a rotating wind turbine

from left to right). (a)—(c) r—f diagrams of acquired beat signals contaminated by mutual interferences. (d)—(f) Results of IM of the RV-FCN trained with
mse. (g)—(i) Results of IM of the CV-FCN trained with mse. (j)—(I) Results of IM of the CV-FCN trained with prior-guided loss function where A is 400.

In contrast, a better IM performance is achieved with the
CV-FCN [see Fig. 15(e)]. This shows a better generalization
performance of the CV-FCN, compared to that of the RV-FCN,
in the experimental data although it was trained with only
the synthetic radar dataset. Moreover, with the increase of the
value of A, the residual interference components and noise
are further suppressed [as shown in Fig. 15(e)—(h)]. After IM,
three peaks of targets can be clearly seen in the range profiles
in Fig. 15(i), and the CV-FCN results in a lower noise floor

than the RV-FCN, which would be of benefit to improve the
detection probability of targets.

The RV-FCN and the proposed CV-FCN were also used to
mitigate interference for the measured radar signals collected
in the other three scenes: A13 highway with traffic flow in
Delft, a street with traffic flow, and a rotating wind turbine.
The processing results for three examples are shown in the
three columns in Fig. 16. From Fig. 16(d) to (i), the CV-FCN
achieves slightly better IM performance than the RV-FCN
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when 1 = 0, but some residual interferences still can be
seen in the r—f spectrograms obtained with both approaches.
By increasing A, the proposed CV-FCN significantly sup-
presses the interferences and noise [see Fig. 16(j)—(1)], and
the desired targets’ spectra are recovered.

The experimental results on measured radar signals col-
lected in various real-world scenes have shown a better
generalization performance of the proposed CV-FCN. More-
over, these experiments also validate that incorporating prior
feature constraints in the loss function for training of the
CV-FCN is helpful to suppress the interferences and noise in
measured radar signals. Therefore, the proposed prior-guided
CV-FCN-based IM approach can be readily applied in reality.

VII. CONCLUSION

In this article, a prior-guided DL-based IM approach has
been proposed for FMCW radars. The prior expert feature is
introduced as a regularization term in the loss function for the
neural network training. The experimental results show that
the proposed CV-FCN-based IM approach, compared to the
existing traditional and DL-based IM techniques, achieves the
state-of-the-art performance in terms of the SINRs, correla-
tion coefficient, and the detection rate of recovered signals.
Moreover, the use of the prior-guided loss function signifi-
cantly accelerates the training of the proposed CV-FCN and
reduces the size of required training dataset. Furthermore, the
experimental results with measured data demonstrate that the
generalization performance of the proposed CV-FCN-based
IM approach greatly improves by incorporating prior features
even if it was trained with only synthetic radar data. These
merits make the proposed CV-FCN-based IM approach to
be readily applied in practice. Finally, to further optimize
the proposed network architecture and training procedure,
designing an optimization algorithm to automatically tune the
hyperparameter / in the prior-guided loss function is necessary
and will be considered in the future.
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