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ABSTRACT

High-dimensional data sets are often available in genome-enabled predictions. Such data sets include nonlinear relationships with complex de-
pendence structures. For such situations, vine copula-based (quantile) regression is an important tool. However, the current vine copula-based
regression approaches do not scale up to high and ultra-high dimensions. To perform high-dimensional sparse vine copula-based regression, we
propose 2 methods. First, we show their superiority regarding computational complexity over the existing methods. Second, we define relevant,
irrelevant, and redundant explanatory variables for quantile regression. Then, we show our method’s power in selecting relevant variables and
prediction accuracy in high-dimensional sparse data sets via simulation studies. Next, we apply the proposed methods to the high-dimensional
real data, aiming at the genomic prediction of maize traits. Some data processing and feature extraction steps for the real data are further dis-
cussed. Finally, we show the advantage of our methods over linear models and quantile regression forests in simulation studies and real data

applications.

KEYWORDS: genomic prediction; high-dimensional data; quantile regression; variable selection; vine copula.

1 INTRODUCTION

Genomic prediction (GP) aims at predicting a breeding value
using genotypic measurements. Then, an unobserved trait is
predicted using its genotype information like single-nucleotide
polymorphism (SNP). With rapid developments in genomic
technologies, researchers have high-dimensional SNP data sets.
However, it poses some challenges in prediction modeling, such
as asmall number of observations and a large number of explana-
tory variables, skewness in variables, irrelevant and redundant
variables, interactions among variables, and nonconstant error
variance. To solve the drawbacks regarding the data dimension-
ality in the GP, statistical or machine learning-based approaches
have been applied (Li et al.,, 2018). Recently, quantile regression
approaches, which model the conditional distribution of the re-
sponse, have been utilized to deal with the skewness and outliers
in the data (Pérez-Rodriguez et al., 2020). Still, the question has
been how to model conditional quantiles flexibly while handling data
dimensionality in GP.

It is important to identify the SNPs relevant for predicting
breeding values to design future genotype studies. For instance,
since the human population has been growing, the stability of
food supplies has gained much more importance. Thus, plant
breeding efforts aim at the crops’ genetic improvement. Holker
etal. (2019) provided agronomic measurements and > 500 000
SNPs to make European flint maize landraces available for such
an aim.

Vine copula-based (quantile) regression allows modeling a
nonlinear relationship between explanatory variables and re-
sponses. It considers higher-order explanatory variables and
deals with unknown functional error forms. However, the cur-
rent vine copula-based regression methods’ computational com-
plexity makes them infeasible to be applied in high-dimensional
data sets (Kraus and Czado, 2017; Tepegjozova et al., 2022).
We refer to high- and ultra-high-dimensional data sets when the
number of explanatory variables is between 10 and 1000 and
> 1000, respectively.

‘We propose 2 vine copula-based regression methods that per-
form well in analyzing high-dimensional sparse data sets, where
sparsity means that many explanatory variables do not pre-
dict the response. Their computational complexity is signifi-
cantly less than the existing methods. We define relevant, redun-
dant, and irrelevant explanatory variables for quantile regression
and assess the methods’ prediction power in high-dimensional
sparse simulated data sets. Our analyses regarding the inclusion
of relevant variables and exclusion of irrelevant variables show
our methods’ capability to provide sparse models. We apply the
methods for genomic prediction of maize traits, proposing data
preprocessing, and feature extraction steps on the data given by
Holker et al. (2019). Such steps can be further applied and im-
proved in future studies. Overall, we can resolve data dimension-
ality issues in vine copula-based regression. To the best of our
knowledge, there has not yet been any study performing the ge-
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nomic prediction using vine copula models and assessing vine
copula regression methods’ performance in the presence of re-
dundant and irrelevant variables.

Alternative nonlinear quantile regression models are general-
ized additive models (GAM) (Wood, 2017), quantile regression
forests (QRF) (Meinshausen, 2006), and quantile regression
neural networks (QRNN) (Cannon, 2011). QRNN may suffer
from quantile crossing (Cannon, 2018), which does not exist in
vine copula-based approaches by construction. Kraus and Czado
(2017) show a better performance of their vine copula-based ap-
proach than GAM. Hence, among nonlinear models, we com-
pare our models with quantile regression forests and show our
advantages, especially in the presence of dependent variables.
Moreover, despite the quantile crossing problem, we analyze
the performance of linear models with variable selection, ie, lin-
ear quantile regression with a LASSO-type penalty (LQ RLasso)
(Belloni and Chernozhukov, 2011), in nonlinear cases.

The paper is organized as follows: Section 2 introduces vine
copulas and new methods; Section 3 provides simulation stud-
ies. We present the real data application in Section 4, discuss
our findings, and conclude in Section S. The paper has online
Supplementary Material.

2 HIGH-DIMENSIONAL SPARSE VINE
COPULA REGRESSION

2.1 D-vine copulas and prediction
Copulas are distribution functions, allowing us to separate
the univariate margins and dependence structure. Let X =
(X, ... ,Xp)T € R? be a p-dimensional random vector with
the joint cumulative distribution function (cdf) F and the
univariate marginal distributions F, ... F,. By Sklar’s theorem
(Sklar, 1959), the copula C, corresponding to F, is a multi-
variate cdf with uniform margins such that F(x;, ..., x,) =
C[Fl(xl), .. .Fp(xp)]. When the univariate marginal distri-
butions are continuous, C is unique, which we assume in
the remainder. In addition, the p-dimensional joint den-
sity f can be written as f(x) = C[Fl(xl), e, Fp(xp)] X
fi(x1) -+ fy(x,), x € RP, where cis the copula density of the

random vector [Fl (x1), .. .FI,(XI,)]T € [0, 1]~

Standard multivariate copulas, such as the multivariate ex-
changeable Archimedean or Gaussian, often do not accurately
model the dependence among the variables. Aas et al. (2009)
developed a pair-copula construction or vine copula approach
using a cascade of bivariate copulas to extend their flexibilities.
Such a construction can be represented by an undirected graphi-
cal structure involving a set of linked trees, ie, a regular (R-) vine
(Bedford and Cooke, 2002). A R-vine for p variables consists
of p — 1 trees, where the edges in the first tree are the nodes
of the second tree, the edges of the second tree are the nodes
of the third tree, and so on. If an edge connects 2 nodes in the
(t 4 1)th tree, their associated edges in the tth tree must have a
shared nodein the tthtreefort =1, ..., p — 2. Thenodesand
edgesin the first tree represent p variables and unconditional de-
pendence for p — 1 pairs of variables, respectively. In the higher
trees, the conditional dependence of a pair of variables condi-
tioning on other variables is modeled. To get a vine copula or

pair-copula construction, there is a bivariate (pair) copula asso-
ciated with each edge in the vine.

One special class of R-vines are D-vines, whose graph structure
is a path, ie, all nodes’ degree in the graph is smaller than three. A
node in a path represents a variable, and an edge between a pair
of nodes corresponds to dependence among the variables of the
respective nodes expressed by a pair copula. The node having a
degree of one is called aleaf node. Once the order of the nodes in
the first tree is determined, the associated D-vine copula decom-
position is unique. Moreover, if the pair copulas in the higher tree
levels than t are independence copulas, wheret < pandt > 1,
representing conditional independence, a t-truncated vine cop-
ula is obtained (Section 1 of the Supplementary Material).

D-vine copulas allow us to express the conditional den-
sity of a leaf node in the first tree in a closed form. Here,
we choose the leaf node in the first tree of a D-vine cop-
ula as a response variable. In the remainder, assume that
(y,-, Xilyenns x,-,p), i=1,...,n, are realizations of the ran-
dom vector (Y, X, ..., Xp), and Y denotes a response vari-
able with its marginal distributions F, and the others corre-
spond to explanatory variables with their marginal distribu-
tions F, ..., F,. For the D-vine copula with the node or-
der 0 — 1 — ... — p corresponding to the variables Y — X; —

.—X,, p > 2, as stated in Kraus and Czado (2017), the

conditional quantile function FOTII... » at quantile & can be ex-
pressed in terms of the inverse marginal distribution function
E; ! of the response and the conditional D-vine copula quan-

tile function CO_“1 """" p at quantile o as F0|_11,..‘,p(°‘|x1’ R xp) =

E Gt (@lFi(x1), .., By(x,)].

Since p-dimensional D-vine copula’s input is the marginally
uniform data on [0, 1]¥, the estimation of the D-vine copula
follows a two-step approach called the inference for mar-
gins (Joe and Xu, 1996). First, each marginal distribution is
estimated. Then, the data is converted into the copula data
by applying probability integral transformation, eg, using a
univariate non-parametric kernel density estimator, ie, Ly
and de, d=1,...,p. Next, we have the pseudo copula
data: (Vis Uils o v o ui,p) = [pY(yi)7 pXl (xi,l)s cees pxp(xi,p)];
i=1,...,n, being realizations of the random vector
(v,uy, ..., Up). More details about the conditional log-
likelihood and estimation of D-vine copulas are in Section 1 of
the Supplementary Material.

2.2 Proposed methods: vineregRes and vineregParCor

We propose 2 methods to perform a D-vine copula regression on
high-dimensional sparse data sets: vineregRes and vineregParCor.
Sections 2 and 3 of the Supplementary Material give an illustra-
tive example and details of the methods.

The method vineregRes performs the variable selection at a
given iteration based on the residuals of the previous itera-
tion, ie, the pseudo-response. It finds the variable among the
candidates that provides the best bivariate copula conditional
log-likelihood conditioned on the variable and conditioning
the pseudo-response of the previous iteration. Assume )71-(5) and
171.(5) i=1,...,n, denote the pseudo-response and its pseudo-
copula data in the sth iteration, respectively, which are realiza-

tions of the random variable Y *) and V), respectively. V(%) and
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V) have the indices 0 and 0¢), respectively, and are always a leaf
node in the first tree.

vineregRes

Step 1 (initialization): For given data (y;, x;1, . .., %;,) and

(vis i1, . .., Ui p), define the initial pseudo-response )71_(1) =y
with its copula scale 171-(1) ,i=1,...,n, the initial D-vine or-
der D) = (0), the initial chosen variable index set I(l) =,

and the initial set of candidate explanatory variables p o d =
{1,..., p}

Fors: 1,2,...,

Step 2 (variable selection): Fit a parametric bivariate cop-
ula to data {(171.(5), uig),i=1,...,n} for d € pmd and de-
note the copula, copula density, and its estimated parameters

by CR™, &9 and %0 , respectively. Then, find the variable for

which the conditional log-likelihood of the copula CR™® is max-
imized, ie,
df =argmax, _ » . In &0 [ﬁ(S) i g3 696)].
(s+1) dieps) | i=1 0©dgy - id(g)
Step 3 (D-vine extension): Extend the D-vine order by adding

the variable with index d (s+1) to get a D-vine order DG+ =

[DO), d* (c41)]- Select the parametric pair copula families and es-
timate the parameters in the extended D-vine structure, where
the associated D-vine copula and its estimated parameters are
denoted by C¢*1) and 66+, respectively.

Step 4 (chosen variable indices and hyperparameter updates):
Extend the chosen variable set, adding the new variable,

Iv(tjj_l) 1)(;2 U d* (s+1) and update pga:dl) pcand \ (s+1)°

Step S (pseudo-response update or stop): If a stopping con-
dition (Section 2.3) does not hold, estimate the median of the
response variable based on the D-vine copula C¢*) and update
the pseudo- response, ie,

)71'(5+1) y |: ‘l((if)l)(o Solul p1o v ul Pd( +1) 0(S+1)):|9
1.}.i(s-‘v-l) — R’(S+1) [5)'1(5 )]7
wherei=1,...,nand{p1, ..., p4..,} S ZG.

Another method to perform a D-vine copula regression for
high-dimensional data is to use the partial correlation between
the response and a candidate explanatory variable given the cho-
sen variables at each iteration based on their empirical normal
scores (Joe, 2014).

vineregParCor

Step 1 (initialization): As given in vineregRes and the data’s
normal scores.

Fors=1,2,...,

Step 2 selection): d;

s+1
der), |’00,d<5>;15,§3 |, where p; 1.5 is the estimated( par)tlal
correlation of variables j, k given those indexed in S based
normal scores.

Step 3 (D-vine extension): As given in vineregRes.

Step 4 (chosen variable indices and hyperparameter updates):
As given in vineregRes.

(variable
arg max

2.3 Bivariate copula selection and stopping criteria

Step 3 of vineregRes and vineregParCor selects parametric pair
copulas and estimates their parameters associated with the ex-
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tension of the D-vine structure. Step 2 of vineregRes fits a para-
metric bivariate copula to the pseudo-response and a candidate
explanatory variable. First, we estimate the parameters that max-
imize the log-likelihood of a candidate bivariate copula family
(Section 4 of the Supplementary Material). Later, we can select
the one with the lowest Akaike (AIC) or the Bayesian informa-
tion criterion. While extending the D-vine structure and adding
new trees at Step 3 of the methods, the fit of parametric pair cop-
ulas can be performed sequentially from the lowest to the highest
trees (Brechmann, 2010).

To decide if a chosen candidate explanatory variable in a
given iteration should be in a model, we will consider the
conditional AIC (cAIC), which penalizes the conditional
log-likelihood of the model based on the D-vine copula by
the effective degrees of freedom in the model (Section 4 of
the Supplementary Material). We stop adding variables when
the current iteration’s (cAIC) is not smaller than the previous
iteration’s (cAIC). If the cAIC always improves in each iteration,
we stop after all explanatory variables are included in the model.

2.4 Complexity

Assuming that the data consists of p explanatory variables, the
complexity of the existing method vinereg is O(p®) in terms
of the total number of bivariate copulas to be selected during
the algorithm (Tepegjozova, 2019). Thus, we evaluate the com-
plexity of vineregRes and vineregParCor using the same criterion.
We will consider the worst-case scenario that the algorithms
run until all explanatory variables are included in the model.
Further, the total number of estimated parameters is linear in
terms of the number of bivariate copulas. The detailed calcula-
tions in Section 4 of the Supplementary Material show that the
complexity of vineregParCor and vineregRes in terms of the to-
tal number of selected bivariate copulas is O(p?). Hence, our
methods significantly reduce the computational complexity of
vinereg.

2.5 Relevant, redundant, and irrelevant variables

Now we define relevant, redundant, and irrelevant variables
for predicting the conditional quantile of a response variable
Y given the index set of explanatory variables X. We will de-
note the cdf of the variables with the index set X by Fy in the
following.

Definition 1 (Relevant variables) The index set of variables M C
X is called relevant for Y if and only if it holds Frjp (ylxa) #
Fr (), where x o includes the variables in M.

Definition 2 (Redundant variables) The index set of variables
R is called redundant given the set of variables M for Y if
and only if it holds Frpr(ylxnm, #r) = Frm(lxam) and
Frir(xa, xr) # Fa(xpa) X Fr(xr), where the vectors x
and xr include the variables in the sets M and R, respectively,
RCAXAMCX, RNM=0.

A discussion on redundant variables in a D-vine copula is in Sec-
tion 5 of the Supplementary Material.
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Example 1 Consider the model (Y,X;,X,)" ~ N3(0, %)
with (0.5, 0.4, 0.8) vectorizing the upper triangular part of the
symmetric covariance matrix X, where it holds py x,.x, = 0, ie,
Y is conditionally independent of X, given X;. Hence, we have

fy,xz X1 ( 7x2‘x1) fr X| ( \xl)Xfxz X| (xz\xl)
frix.x (}’lxl, x) = fx;‘xl (Lm) =~ yfxzp(1 (xZ\Lcl) =

frix, OWlwr). Since fx, x, (%1, %) # fx, (%1) X fx, (%2), X5 is
redundant given X, forY.

Definition 3 (Irrelevant variables) The set of variables T is
called irrelevant given the set of variables M for Y if and only
if it holds By, z (Y12, #7) = B (e ), Faz (%, #1) =
Fai(an) X Fr(vr), and 20y, 57) = iy (y) X Er(xz), where
the vectors x pq and x7 include the variables in the sets M and Z,
respectively, L C X, M C X, TNM = 0.

Example 2 Consider the model (Y,X;,X,)" ~ N3(0, %)
with (0.5, 0, 0) vectorizing the upper triangular part of the
symmetric covariance matrix X, where it holds py x,.x, = 0;
hence, fyix, x, ylx1, %2) = fyix, (ylx1). In addition, it holds
o (e o) = fo () x fo(x)  and  frx(px) =
fr(y) x fx, (x2); thus, X, is irrelevant given X for Y.

3 SIMULATION STUDY

We show the flexibility and effectiveness of the proposed meth-
ods on simulated datasets being nonlinear and having differ-
ent sparsity. We explore the following questions: Q1 How do
vineregRes and vineregParCor work in situations with nonlin-
ear explanatory variable effects on the response’s quantiles in
the presence of redundant and irrelevant variables for predic-
tion accuracy and computational complexity? Q2 How well
do vineregRes and vineregParCor identify relevant and irrele-
vant variables for predicting the response’s quantiles? Q3 How
do vineregRes and vineregParCor perform compared to the al-
ternative methods LQRLasso and QRF (Section 6 of the
Supplementary Material)?

3.1 Data generating process (DGP)
DGP1: irrelevant variables

d_ 2
Y5 =X x X, X

|Xi,3| +0.1+e0.4><X,"4><XL5

+ (X6 - -

+€; X 0;,

Xip)(0,...,0)7
d=1,2,3, (1)

i=1,...,n,

where we sample the relevant variables (X;, ..., X; s)T ~
Ns(0,%), i=1,...,n with the (a, b)th element of the
covariance matrix X, ; = 0.75/97%irrelevant variables
(X6 -y Xipg) " ~ Npy—5(0, 1, _5), the random error terms
€ ~ N (0, 1) that are independent and identically distributed
(iid), independently, and set o; € {0.5,1}, i=1,...,n. We
simulate data sets with different number of irrelevant variables
and set it to (pg — S) in each case d = 1, 2, 3 as follows: Case
1 with p; = 10 (50% of variables are irrelevant), Case 2 with p,
=20 (75% of variables are irrelevant), and Case 3 with p3 = SO
(90% of variables are irrelevant).

DGP2: redundant variables

Y4 = /15 x Xiy — 2 X Xio+ 0.5 + Xis X (—4 x X5+ 1)
+eN 4+ (2 x X2 + X2,
+(Xi7 +1) x (In (|X;, + X; 5| +0.01))
+(Xias - Xip)(0, 0)"

+exo;, i=1,...,n, d=1234, (2)

where the samples of explanatory variables are indepen-
dently generated from a multivariate normal distribution
with a Toeplitz correlation structure, ie, (X1, ..., X, DT~
N(0,%),i=1,...,n j=1,2,3, with the (a, b)th ele-
ment of the covariance matrix Za,b = p‘“ibl. To represent a
challenging but realistic scenario, we set p = 0.7S. We sam-
ple € ~ N(,1), i=1,...,n (iid) independently from
the explanatory variables and set 0; € {0.5,1}, i=1,...,n.
All variables predict the response’s quantiles; however, the
others are redundant, given the first 10 variables. We change
the number of redundant variables and set it to (p; — 10)
ford =1, 2, 3, 4: Case 1 with p; = 20 (50% of variables are
redundant given the 10 relevant ones), Case 2 with p, = 40
(75% of variables are redundant given the 10 relevant ones),
Case 3 with p; = 100 (90% of variables are redundant given the
10 relevant ones), Case 4 with p, = 1000 (99% of variables are
redundant given the 10 relevant ones).

Based on Equations 1 and 2, we simulate samples with size
of 450 (n= 450) with a random split of 300/150 observations
for a training/a test set. We replicate our procedure 100 times
and average performance measures per sample (Section 6 of
Supplementary Material).

3.2 Performance measures

We consider the computation time, the number of chosen vari-
ables, true positive rate (TPR), and false discovery rate (FDR) as
methods’ performance measures on the training set. To evaluate
the performance of a method on the test set, we apply the pin-
ball loss (PL,) at @ = 0.0S, 0.50, 0.95. TPR is the ratio of the
chosen relevant variables by a method M to the total number of
relevant variables. FDR is the ratio of the number of chosen ir-
relevant variables to the total number of chosen variables by a
method M. Higher TPR and smaller FDR are better. PL, mea-
sures the accuracy of the quantile predictions yf‘M at the level o
by a method M compared to the givenresponse y;, i = 1, ..., n.
The smaller pinball loss values are better (Steinwart and Christ-
mann, 2011) (Section 6 of the Supplementary Material).

3.3 Results

All computations are run on a single-node CPU with Intel Xeon
Platinum 8380H Processor with ~25 GB RAM, running R ver-
sion 4.2.2. However, Step 2 of vineregRes can be broken down
into parallel fits across candidate variables for a faster computa-
tion.

Variable selection and computational complexity results on the
training set: In Table 1, we analyze the TPR and FDR only for the
DGP1 setting since all variables are relevant in the DGP2 setting.
The computations for vinereg were not complete within 3 days
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TABLE 1 Comparison of the methods’ performance on the training set over 100 replications under the cases 1-3 and 1-4 specified in Equations

1 and 2, respectively.

DGP Measure Case vinereg vineregRes  vineregParCor QRF LQRLasso (0.05,0.50, 0.95)
1 TPR 1 0.81(0.01) 0.80(0.02)  0.67(0.02) 1.00 (0.00) 0.73 (0.02), 0.69 (0.02), 0.63 (0.02)
2 0.85(0.01)  0.79 (0.03) 0.59 (0.02) 1.00 (0.00) 0.68 (0.02), 0.68 (0.02), 0.55 (0.02)
3 0.89 (0.01) 0.78(0.02)  0.56 (0.02) 1.00 (0.00) 0.61 (0.02),0.61 (0.02), 0.48 (0.01)
FDR 1 0.28 (0.01)  0.08 (0.01) 0.24 (0.02) 0.50 (0.00) 0.28 (0.02),0.32 (0.02), 0.24 (0.02)
2 0.55(0.01) 0.13(0.02)  0.45(0.02) 0.75 (0.00) 0.38 (0.02), 0.49 (0.03), 0.34 (0.03)
3 0.80 (0.00)  0.15(0.02)  0.65(0.02) 0.90 (0.00) 0.35(0.03), 0.58 (0.02), 0.40 (0.03)
Chosen Vars. 1 5.83(0.13) 4.56(0.19)  4.68(0.16) 10.00 (0.00) 5.24(0.22),5.48 (0.21), 4.99 (0.26)
2 9.76 (0.19)  5.04(0.26)  6.03(0.23) 20.00 (0.00) 6.60 (0.41), 8.48 (0.43), 5.30 (0.36)
3 23.24(0.42) 5.29(0.33) 8.74 (0.30) 50.00 (0.00) 5.93(0.38),10.20 (0.68), 5.97 (0.47)
Time 1 0.18 (0.00)  0.17(0.01)  0.06 (0.00) 0.01 (0.00) 0.02 (0.00), 0.02 (0.00), 0.02 (0.00)
2 0.97(0.02) 0.30(0.02)  0.10(0.01) 0.01 (0.00) 0.02 (0.00), 0.43 (0.03), 0.02 (0.00)
3 12.06 (0.31) 0.77(0.05)  0.34(0.03) 0.03 (0.00) 0.12 (0.00), 0.14 (0.00), 0.12 (0.00)
2 Chosen Vars. 1 10.94 (0.23) 5.41(0.19)  6.68(0.20) 20.00 (0.00) 7.05 (0.32), 10.12 (0.36), 8.95 (0.40)
2 19.63 (0.54) 5.17(0.17) 8.25(0.28) 40.00 (0.00) 7.88 (0.43),12.36 (0.51),9.88 (0.48)
3 62.92(2.78) 5.83(0.22)  11.66 (0.42)  100.00 (0.00)  7.35(0.36), 15.45 (0.78), 9.44 (0.55)
4 - 7.08 (0.54)  31.72(1.23)  1000.00 (0.00) -
Time 1 1.15(0.03) 0.20(0.01)  0.16 (0.01) 0.01 (0.00) 0.09 (0.00), 0.10 (0.00), 0.08 (0.00)
2 7.30(0.26)  0.32(0.01)  0.29(0.03) 0.02 (0.00) 0.11 (0.00), 0.13 (0.00), 0.11 (0.00)
3 159.22(8.66) 0.84(0.03) 0.72 (0.06) 0.05 (0.00) 0.35 (0.00), 0.35 (0.00), 0.34 (0.00)
4 - 9.44 (0.69)  12.18 (1.26) 0.44 (0.00) -

The numbers in parentheses under a method’s name column are the corresponding empirical standard errors. (=) shows computational infeasibility. LQ RLasso column corresponds
to the quantile levels (0.05, 0.50, and 0.95). Chosen Vars. corresponds to the total number of chosen variables. Time is in minutes and per replication.

per replication for the fourth case of the DGP2 setting, making
it computationally infeasible. Also, we did not run LQ RLasso for
that case since it ran ~7 h per replication and had worse perfor-
mances in the other simulation cases.

In all cases, QRF chooses all variables in the associated DGP
to make predictions. Thus, its TPR is 1, the number of selected
variables equals the total number of variables in a sample, and
its FDR is the proportion of the irrelevant variables in the asso-
ciated DGP setting. More analyses about QRF are provided in
Section 7 of the Supplementary Material.

Excluding QRF, in all cases of the DGP1 setting, vinereg has
a better TPR performance than the others. However, its FDR
is higher than others, adding many irrelevant variables to the
model. vineregRes correctly identifies >75% of the relevant vari-
ables in all cases of the DGP1 setting. Its FDR is <15% there,
making it the best method for FDR. Further, vineregParCor’s
TPRis higher than 50% in all DGP1 cases. However, like others,
its FDR increases as the number of irrelevant variables increases
in the model, reaching > 50% in the third DGP1 case. LQ RLasso
identifies at least 48% of the relevant variables, but its TPR de-
creases when the number of irrelevant variables increases.

While vineregRes selects the lowest number of variables be-
tween 4 and 6, vinereg includes almost half of the total number
of variables in the data in each case. This highlights the power
of vineregRes regarding the exclusion of irrelevant variables in
sparse data sets. vineregParCor’s number of chosen variables is
between vinereg and vineregRes in all evaluated cases. The same
applies to LQ RLasso, but it selects more variables for estimat-
ing median predictions than other quantiles. In an ultra-high-
dimensional case with 1000 explanatory variables, the number
of variables chosen by vineregParCor is, on average, 31.72 with
the empirical standard error of 1.23, while it is 7.08 with that of
0.54 for vineregRes.

As the number of variables increases, the average running
time for all methods increases. Among vine-based methods,
vineregParCor provides the fastest computation as expected from
the results in Section 2.4. However, QRF provides the fastest
computation among all methods considered. vineregRes and
vineregParCor run <15 min in the ultra-high-dimensional case.
LQRLasso’s running time for quantile levels does not differ
much.

Prediction accuracy results on the test set: Table 2 shows that
vineregRes provides the best fit in 8 evaluations out of 9 (3
pinball losses evaluated for 3 levels) in the DGP1 setting
among vine copula-based methods. vinereg and vineregParCor
have the same accuracy as vineregRes for the first case in the
DGP1 setting. However, as the number of irrelevant variables
increases, a residual-based variable selection may be better
than other vine copula-based methods. Moreover, LQ RLasso
has the highest pinball loss in all cases of the DGP1 set-
ting because of the high nonlinearity in samples. Even though
vineregParCor’s performance is better than LQRLasso, it pro-
vides worse fits than the others at the level 95%. A likely ex-
planation can be that including irrelevant variables in addition
to the most relevant ones in a vine copula may negatively im-
pact the prediction accuracy. However, a similar result does
not apply to QRF. Despite including all irrelevant variables in
the model, QRF still performs better than all in 7 evaluations
out of 9.

Table 2 shows that vineregRes provides the lowest pinball loss
at 3 quantile levels in all DGP2 cases, except at the level 0£95% in
the first case. Since vineregRes gives the most sparse models in the
DGP2 setting in Table 1, we infer that including many relevant
but potentially redundant variables in vinereg, vineregParCor, and
QRF is worsening the prediction accuracy in the DGP2 setting.
LQRLasso suffers from nonlinearity.
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TABLE 2 Comparison of the average performance of the methods on the test set for the pinball loss (PL,, ) at different
quantile levels o over 100 replications under the cases 1-3 and 1-4 specified in Equations 1 and 2, respectively.

DGP Measure  Case vinereg vineregRes  vineregParCor QRF LQRLasso
1 PLg s 1 0.21 (0.01) 0.21 (0.01) 0.21 (0.01) 0.22 (0.01) 0.34(0.01)
2 0.23 (0.01) 0.22 (0.01) 0.22 (0.01) 0.22 (0.01) 0.34 (0.02)
3 0.24 (0.01) 0.21 (0.01) 0.22 (0.01) 0.22 (0.01) 0.32 (0.01)
PLy 50 1 0.79 (0.04) 0.79 (0.03) 0.81 (0.04) 0.76 (0.04) 0.94 (0.02)
2 0.84 (0.04) 0.79 (0.03) 0.82 (0.04) 0.69 (0.02) 0.97 (0.04)
3 0.84 (0.02) 0.76 (0.02) 0.79 (0.02) 0.72 (0.02) 0.90 (0.02)
PLg .95 1 0.43 (0.07) 0.43 (0.06) 0.46 (0.07) 0.41 (0.07) 0.59 (0.04)
2 0.37 (0.04) 0.39 (0.04) 0.44 (0.04) 0.32 (0.03) 0.64 (0.07)
3 0.38(0.03) 0.38 (0.03) 0.41 (0.03) 0.35 (0.03) 0.53(0.03)
2 PLg .05 1 0.53 (0.01) 0.53 (0.01) 0.54 (0.01) 0.70 (0.02) 0.84 (0.02)
2 0.57 (0.01) 0.54 (0.01) 0.56 (0.01) 0.70 (0.02) 0.85 (0.02)
3 0.81 (0.04) 0.54 (0.01) 0.58 (0.01) 0.72 (0.01) 0.92 (0.03)
4 - 0.55 (0.01) 0.89 (0.02) 0.78 (0.02) -
PLg 50 1 1.87 (0.02) 1.83 (0.02) 1.84(0.02) 1.91 (0.02) 2.20 (0.02)
2 1.99 (0.02) 1.84 (0.02) 1.86 (0.02) 1.93 (0.03) 226 (0.03)
3 2.59 (0.09) 1.84 (0.02) 1.94 (0.02) 2.00(0.03) 2.29(0.02)
4 - 1.89 (0.03) 2.42(0.03) 2.17 (0.03) -
PLy 95 1 0.53 (0.01) 0.55 (0.01) 0.55 (0.01) 0.65 (0.01) 0.78 (0.02)
2 0.57 (0.01) 0.56 (0.01) 0.56 (0.01) 0.67 (0.01) 0.82 (0.02)
3 0.81 (0.05) 0.57 (0.01) 0.61 (0.02) 0.68 (0.01) 0.83 (0.02)
4 - 0.57 (0.02) 0.88 (0.03) 0.75 (0.02) -

The best performance for each quantile level and DGP case is highlighted. The numbers in parentheses under a method’s name column are the
corresponding empirical standard errors. (—) shows computational infeasibility.

Since the relevant, irrelevant, and redundant variables are
known in simulation studies, when only the relevant 10 variables
are used for prediction in the DGP2 setting, Q RF has the pinball
loss 0f 0.64, 1.81, and 0.62 at levels 0.05, 0.50, and 0.95, respec-
tively. Thus, vineregRes would have better accuracy than QRF in
most cases of the DGP2 setting, even if the latter selected the
most relevant variables. Thus, vineregRes is more advantageous
than QRF in the presence of many dependent variables in our
simulations.

4 APPLICATION: THE GENOMIC
PREDICTION OF MAIZE TRAITS

We describe a real-data application on the doubled-haploid
(DH) lines from European flint maize landraces that motivates
our methods’ usage. Hélker et al. (2019) evaluated 899 DH lines
whose data contains genotypic measurements with the SNP
array technology and phenotypic measurements of agronomic
traits across environments.

We are interested in the relationship between a DH line’s geno-
type encoded by its SNPs and its phenotypic outcome described
by its traits, ie, the genomic prediction of maize traits. Specifi-
cally, we would like to find relevant SNPs for a trait in a multi-
variate prediction model using our high-dimensional vine cop-
ula regression methods, performing variable selection.

4.1 Data description and preprocessing
There are 3 landraces in the data, and we focus on the Kemater
Landmais Gelb (KE) landrace, which has the largest number of
observations (471 out of 899). There are S01 124 explanatory

variables, SNPs, which have only 0 and 2 as values; eg, 0 cor-
responds to the genotype T'T, and 2 denotes the genotype CC.
We predict 4 responses of agronomic traits separately: early plant
height measured by centimeters at the fourth and sixth stages
(PH_V4/V6), female flowering time (FF), and male flowering
time (MF) measured by days (Figure 1). Plant breeders need to
increase the early plant development and avoid decreasing or in-
creasing female and male flowering times during the maize geno-
type adoption. Thus, the traits’ prediction from the genotypic
measurements is crucial.

To compare the performance of regression methods, we parti-
tion our data randomly into training (67%) and test (33%) sets.
Then the former and latter contain 314 and 157 observations,
respectively. Further, we remove the duplicate explanatory vari-
ables, retaining one and the common explanatory variables with
the threshold of 5%. For instance, assume an explanatory vari-
able in our training set contains 300 zero values and 14 two val-
ues. Then, such a variable does not differ among the observa-
tions and might not be expected to have predictive power on are-
sponse. Thus, the number of explanatory variables in the training
and test sets decreases from 501 124 to 44 789, ie, we retain ~9%
of the initial explanatory variables. Hence, the number of obser-
vations (DH lines) in the training sets is 314, whereas 147 for
their test sets. The number of explanatory variables (SNPs) is 44
789 (p =1, ...,44789), and there are 4 univariate responses
(traits) (k=1,...,4).

4.2 Feature extraction

Since our explanatory variables are binary, and there can be asso-
ciated latent variables with a prediction power on the response,
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FIGURE 1 Scatter plots of an extracted continuous feature, combining 100 SNPs in a feature, and the traits. Feature_2 corresponds to the
combination of the SNPs whose P-value from the OLS of the associated trait is higher than 100 SNPs but lower than others. Similar
correspondence applies to other features. Orange curves demonstrate a local polynomial regression fit.

we focus on estimating these latent variables and using them as
extracted features in a regression method. Our approach is to
group the explanatory variables and estimate their weights in
their groups so that such weights are used to estimate the latent
variables representing each group. Let y; and SNP,, denote the
response vector for trait k and explanatory variable vector p, re-
spectively.

1. Fitalinear regression between a response and an explana-
tory variable, SNP:
A pk A pk
Vi = ﬂop + ﬂlp x SNP,, for k=
1....4, p=1,...,44789.
2. Perform a two-tailed Wald test for H : ,Bf * — 0 versus

H, : BF ok # 0 and determine the associated P-values PP¥
fork=1,...,4, p=1,...,44789.

3. Screen the explanatory variables whose P-value from the
2nd step are smaller than 0.10 and have the screened set:
Sk = {SNP, : PPF < 0.10[p =1, ..., 44789} fork =
1,...,4.

4. Order the set of the explanatory variables Sy based on their
P-value non-decreasingly:
Or = {SNP,,, ..., SNP, } with P""* < .. < pYisd-k
forOk:Sk,kz 1,...,4.

S. Estimate the latent variables, ie, create the continuous fea-
tures feutureg 4 Dy using a grouping size G of explana-

toryvariables in Oy and using their coeflicients from Equa-
tion 1: L

4 Wdp»
featuregdk =6 " x SNPwdk +...+

B8 o NP for G e {100,200},

Wdj+G—1

nkc:{%], de=1,...,m,, k=1,...,4

Then we have 174 (87) continuous features for FF, 92 (46)
continuous features for MF, 198 (99) continuous features for
PH_V4,and 183 (93) continuous features for PH_V6 by group-
ing G = 100 (G = 200). Figure 1 shows a scatter plot of a con-
tinuous feature and a trait.

4.3 Prediction
We have our data Df = (y. featurekc':l, e feature,gnkc ) for
eachresponse k = 1, ..., 4 and G € {100, 200}. To identify if
a feature is relevant, redundant, or irrelevant, we first conduct a
bivariate analysis by fitting a vine copula regression on each fea-
ture and trait, ie, D-vines with 2 nodes: response and 1 feature. If
a feature is relevant or redundant given the others, our methods
add it to the model; otherwise, it is not selected as explained in
Section 2.5. The bivariate copula family selection between the
response and the first feature is conducted as explained in Sec-
tion 2.3. For instance, we conduct 174 (87) bivariate analyses for
FF using a grouping size of G = 100 (200). Then all features of 4
responses are classified as relevant or redundant using a grouping
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TABLE 3 Comparison of the methods’ performance on the test set for the pinball loss (PL, ) and on the training set for the number of selected
continuous features (No. Ftr.), where (a, b, and c) under the LQ RLasso column corresponds to the quantile levels (0.05, 0.50, and 0.95).

vregRes  vregParCor LQRLasso QRF vregRes  vregParCor LQRLasso QRF
Trait Measure G =100 G =200
FF PLg 05 0.35 0.49 0.40 0.38 0.39 0.39 0.39 0.37
PLg 50 1.43 1.51 1.50 1.48 1.48 1.56 1.47 1.45
PLg 95 0.47 0.47 0.41 0.38 0.41 0.43 0.39 0.39
No. Ftr. 11 22 (8,41,4) 174 4 14 (8,29,5) 87
MF PLg 05 0.35 0.36 0.34 0.33 0.35 0.36 0.32 0.34
PLg 50 1.41 1.42 1.39 1.36 1.39 1.40 1.36 1.37
PLg s 0.45 0.47 0.41 0.39 0.44 0.45 0.40 0.39
No. Ftr. 12 16 (7,45,8) 92 8 13 (5,15,12) 46
PH_V4 PLg 05 0.51 0.51 0.55 0.55 0.51 0.55 0.56 0.55
PLy 50 1.93 1.87 1.92 1.94 1.96 1.99 1.92 1.94
PLg s 0.56 0.58 0.55 0.60 0.57 0.57 0.55 0.62
No. Ftr. 6 11 (9,15,8) 198 3 11 (7,17,4) 99
PH_V6 PLy 05 1.01 1.01 0.98 1.00 0.96 0.98 1.0S 1.00
PLg 50 3.09 3.10 3.04 3.27 3.06 3.47 3.14 3.31
PLy 95 0.91 0.89 0.92 0.97 0.90 1.0S 0.94 1.04
No. Ftr. 4 12 (8,49,5) 183 2 12 (6,29,6) 93

The best performance on the test set for each quantile level , trait, and G is highlighted.

size of G = 100 and G = 200. Next, we apply our methods to 8
different data sets’ training sets to find the most relevant features,
thereby redundant ones given them. Also, we compare them with
LQRLassoand QRF on test sets using the pinball loss defined in
Section 3.2 at the levels 0.05, 0.50, 0.95.

Table 3 shows that vine copula-based methods perform worse
than LQRLasso and QRF for MF. Dependencies among MF
and its selected features by vineregRes are more linear than those
among other traits since it fits mostly the Gaussian copula in the
first tree for MF (Section 8 of the Supplementary Material). We
remark that LQ RLasso may perform well if it can avoid crossing
quantile curves, but there is no guarantee that the 95% quantile
curve exceeds the 90% quantile curve everywhere (Section 9
of the Supplementary Material). Whenever LQ RLasso is more
accurate than vineregRes for PH_V4, it includes more features,
giving a trade-off between model sparsity and accuracy. Even
though QRF provides the lowest pinball loss at all quantiles for
FF for G = 200, vineregRes has better performance than it for
G = 100, except at the level 95%. vineregRes is the most sparse
and accurate model at all quantile levels considered for PH V6
using G = 200. It chooses 2 features for G = 200, identifying
>95% of the features as redundant. It has the best accuracy for
PH_V6 for 4 cases out of 6, with 3 quantile levels evaluated for
2 G values.

Given the selected features, the others are redundant for a trait
and a grouping of G using vineregRes. For instance, given the 1st
and 88th features for PH_V6 using a grouping size of G = 200,
the remaining 91 features are redundant using vineregRes. Since
the features of PH_ V6 are highly dependent but are not needed
in a model, in parallel to the simulation study results in Sec-
tion 3.3, the reason for our methods’ better accuracy than QRF
may be many dependent but redundant features for PH_V6
(Section 10 of the Supplementary Material).

Our SNP screening and feature extraction steps are similar
to Qian et al. (2020). Even though they fit a simple linear re-
gression on the first feature, which is based on the linearly and

marginally most important SNPs, we conclude in Section 10
in the Supplementary Material that the linearly and marginally
most important SNP group might not be considered the most
relevant for prediction when allowing nonlinear dependencies
as in our methods.

S DISCUSSION AND CONCLUSION

High-dimensional sparse vine copula regression is a signifi-
cant tool for efficiently allowing nonlinear relationships be-
tween explanatory variables and responses and selecting relevant
variables. In genomic prediction, genotypic measurements like
SNPs are often very high-dimensional, which might be reduced
by considering some SNP groups and their interactions. Also,
many groups may be irrelevant for prediction. Our methods can
handle such situations and predict responses at different quan-
tile levels. Their performance might be improved with bivariate
copula families having more asymmetries, eg, >2 parameters.

For our application, consider the following question: which
SNPs impact the low and high quantiles of the trait PH_V6?
vineregRes identifies 2 SNP groups (features) that consist of 400
SNPs in total. In the first feature, the corresponding SNPs” P-
values out of the linear regression with the trait PH_V6 are in the
range [ 1072, 1077], whereas its range is [0.087, 0.090] in the
88th feature. Thus, the marginal impacts of the selected SNPs
differ. Given these SNPs, others are redundant to predict the
trait PH V6. Thus, plant breeders can assess the selected SNP
groups’ impact on the trait’s various quantile levels and identify
the associated SNPs using our methods. Chosen SNP groups can
be compared to other genome-wide association studies, helping
breeders to decide on future genotype adoption. Hence, com-
paring the identified SNPs with those in Mayer et al. (2020) is
high on the agenda.

Feature extraction is a vital step that may impact our meth-
ods’ genomic prediction power. For instance, the choice of SNPs’
weights for estimating their latent variable is open to future
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research. Also, even though it offers a trade-off between a com-
putational burden and prediction power, one can apply cross-
validation for the choice of the SNP’s group size G. In addi-
tion, some SNPs might affect the trait, not marginally only in
the presence of certain other SNPs. Alternatively, one may re-
move the P-value screening of the SNPs at the 10% level de-
scribed in Section 4.1 and consider all possible extracted fea-
tures. Likewise, some SNPs might influence the trait marginally,
but not when certain other SNPs are in the model. For such
cases, some post-processing steps for feature extraction might be
applied.

Finally, our variable selection steps can be adapted for more
flexible vine tree structures.
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