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Abstract

This work is a bachelor thesis featuring a collection of explorations of the Kuramoto model in the presence
of noise in one and two dimensions. The model was explored analytically and numerically. It contains a
study of literature and new analytical derivations.

An attempt to link the fraction of oscillators to the order parameter resulted in experience through the
process of deriving the result, but a plot of the first few terms of this expansion showed it not being
close. The assumption on which the expansion was based however was shown to be valid in simulations.

More successfully an upper bound on the probability of synchronization was found. This probability was
found on a ring consisting of N oscillators, and verified of a ring of 3 oscillators. The results was a bound
better than one that was already calculated, though the method of verification used was not ideal.

An analysis of the stability of solutions on this 3-ring resulted a visual representation of entrainment and
an amount of stable solutions possible, which was 1.

This result was in accordance with the more general result following from the investigation of a system
of coupled rings with arbitrary sizes of either ring. We then expanded this system to conclude that the
stability of the entire system could be split into the stability of either ring and the possibility of having
a solution for the linking phase difference.

We elaborated on general practices when numerically analyzing SDEs and integrations methods. The
Kuramoto model proved to be kind in the sense that the Euler-forward and Milstein scheme coincided.

In a more physics-centered approach we studied the Ising and XY model. This prompted literature study
on the Kosterlitz Thouless transition, through analysing the spin-wave Hamiltonian and the energy of
free vortex of a pair of vortices.

We also then explored conservation of the vortex-pair behaviour in a noise including Kuramoto model,
which verified a duality in partition functions as described in ref. [1].
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1. Introduction

Modern life is filled with impulses which require quick attention, coming from constant pings from social
media or for example traffic. This makes it seem as if life has a chaotic nature, which might well be
considering the second law of thermodynamics. This law states that in any energy related process, total
entropy will either stay the same or increase. In more simple words; everything that we see happening
around us slowly, but irreversibly, introduces bits of chaos in the universe. Yet, there are some aspects
of life showing order, one of which is synchronization.

Synchronization can be a powerful and beautiful phenomenon. Most have experienced it through for
example walking in step with another person. This may seem like a small feat, but when done in large
groups it has the power to destroy metal and concrete bridges [2], which is also why military troops
break step when marching over a bridge.

A powerful example which lies closer to me is rowing together with others. Though synchronization in
the boat can be somewhat difficult to achieve, the feeling and power it delivers propels the boat like no
other technique1.

Figure 1.1: Me, the rower closest to the camera, rowing with my crew. The boat type we rowed in for
this regatta was quite slow, but working in sync helped us achieve a nice second place.

Perhaps the most beautiful example however of synchronization can be seen in fireflies. Some types of
fireflies, particularly in south Asia, light up periodically. They blink six times and then wait for a bit.
When the sun starts to set the fireflies start to shine. When it is fully dark the fireflies interact with the
blinking of others and they synchronize. This effect causes bushes or trees to light up and can be best
described with a video of these fireflies synchronizing2.

Many more examples can be found with varying complexity, such as metronomes on a moving plate3,
but also heart cells, magnetic spins via the XY model and electrical networks such as power grids [3].
Phenomena like these sparked mathematical and physical interest and led to the Kuramoto model, which
we will investigate in this work.

This work will be divided into three parts. First, in chapter 2, we will discuss how to approach numerical
analysis of stochastic differential equations. Secondly, in chapter 3, we will review and elaborate on
literature on the subject. Furthermore we will do some derivations on probabilities of synchronization
and stability for certain systems. Lastly, in chapter 4, we will establish a link with the aforementioned
magnetic spins via the XY model.

1Some research suggests anti-phase rowing might be quicker, this does not however allow the boat to set a rhythm which
can be felt. The stroke cycle might be more efficient in motion, but extra energy is needed for focusing on rhythm which
could also be used to move the boat faster. Furthermore, it requires elongated boats which reduces stiffness and increases
drag.

2https://www.youtube.com/watch?v=2IVBDDVPl68
3https://www.youtube.com/watch?v=T58lGKREubo
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2. Numerical analysis

For numerical analysis a Python implementation of the Kuramoto model was used. This was achieved
using the well-known package numpy implemented using the Milstein scheme. The code used for this can
be found on GitHub [4].

2.1 Good practices when using SDEs

In this work we are dealing with an SDE (Stochastic Differential Equation). Working with these equations
is different from working with deterministic differential equations. For this we will write out three good
practices when implementing numerical analysis of an SDE in Python.

Ensure reproducible results SDEs are inherently random. This is a property which makes them
interesting, but it might make comparing runs harder. This can be mitigated by setting a seed, through
numpy.random.seed( some number ) for example. This locks the pseudo-random number generators
on some initial condition, which in turn makes it so that randomly generated numbers will come out
the same between runs.

Generate random numbers beforehand Pieces of code take time to evaluate. Often people will
generate random numbers at each timestep to then perform calculations with. It is more efficient
however to generate a large collection of random numbers before iterating. This saves computation
time at each individual timestep as the numbers need only be read from memory.

Do not use scipy The python library scipy is popular and used very often when evaluating
differential equations. It however works with variable step sizes, which helps improve accuracy, but no
step size information is relayed back to the user during the integration process. This makes cumbersome
to use this library with SDEs, where the numerical evaluation of random numbers often depends on
the stepsize used. It would save time to outright skip scipy and look for a different library, or to write
an integrating script manually.

2.2 Integrators

It may seem strange that such a simple scheme as Euler-Forward is used, but when integrating an SDE
some caution is required.

Lots of simulations as of writing this use a scheme which is at least as advanced as Runge-Kutta-4. Some
more delicate simulations even resort to symplectic integrators, which are a whole topic on their own,
ensuring some conserved quantities. These scheme have been tested and verified extensively, producing
many great results, but their usefulness in SDEs is limited1. This is because many schemes rely on
the solution being sufficiently smooth, which is not true in general for SDEs (take Brownian motion for
example).

Thus, we rely on different methods. Methods for integrating SDEs are classified as a weak or strong
approximation, as is often the case with any probabilistic convergence.

Strong or weak approximation An approximation Xh of the random process X is said to be an
n-th order strong approximation of X if for all t ∈ [0, T ],

E
[
|Xh

t −Xt|
]

= O (hn) .

It is said to be an n-th order weak approximation if for all t ∈ [0, T ],

E
[
f(Xh

t )
]
− E [ f(Xt) ] = O (hn)

1This is true for most schemes used with deterministic differential equations. It might be possible to find a symplectic
integrator for some SDEs, but finding them seems to be very hard.
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6 CHAPTER 2. NUMERICAL ANALYSIS

for a sufficiently wide class of functions f : R→ R (for example, C∞b (R)).

As with many forms of probabilistic convergence, the weak approximation is best used when the distri-
bution of the random process is of interest. For more detailed information it is best practice to resort to
a strong approximation [5].

2.2.1 Euler-Forward

For a simple Euler-Forward integration of a function we use a first order Taylor polynomial to obtain

x[t+ ∆t] ≈ x[t] + ∆t · f [x, t]

for the ODE ẋ(t) = f(x, t).

If we then look at the SDE ẋ(t) = Ẇ (t), where W is a Wiener-process we find something else, using that
W (t)−W (s) ∼W (t− s) ∼ N (0, t− s) by definition of a Wiener process.

x[t+ ∆t] = x[t] + ∆x =x[t] + ∆W

= x[t] + (W [t+ ∆t]−W [t]) =x[t] +W (∆t)

= x[t] +N (0,∆t) =x[t] +
√

∆t · N (0, 1)

This is a very useful identity as white noise is defined as the time-derivative of a standard Wiener-process.
Thus, when using Euler-Forward, we find that the integration step for the SDE ẋ(t) = f(x, t) + Ẇ (t)
must be

x[t+ ∆t] = x[t] + ∆t · f [x, t] +
√

∆t · N (0, 1) (2.1)

This leaves us with a strong approximation of order 1
2 , producing figures 2.1a and 2.1b.

(a) Result for N = 10 × 10. (b) Result for N = 30 × 30.

Figure 2.1: Variations of the order parameter due to changing noise strength for a system of N oscillators.

2.2.2 Milstein

The Euler-Forward method however is quite simple, and is of low order. An improvement on this is the
Milstein method. This method also gives a strong approximation, but is of order 1. It is often used for
its improved order over the Euler-Forward method, while still being relatively simple to implement. We
can apply this method to the SDE

ẋ(t) = f(x) + σ(x)Ẇ (t).

In the case of the Kuramoto model we have f(x) =
(∑

j Kij sin(xj − xi)
)T
i

, where xj denotes the j-th

component of the random vector x, so θj in notation used earlier, and σ(x) = D.

The Milstein method is then defined as follows [6]:

x[t+ ∆t] = x[t] + f(x[t]) ·∆t+ σ(x[t]) ·∆W [t] +
1

2
σ(x[t])σ′(x[t])(∆W [t]2 −∆t).
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Where ∆W [t] signifies the discretized derivative of the Wiener process as before, so ∆W [t] ∼ ∆t·N (0, 1).

While the term seems rather long, implementing this method is simple when σ(x) is know. What makes
it even easier in the case of the Kuramoto model, is the fact that the diffusion coefficient, σ(x) that is,
is constant. Thus, σ′ = 0 and the Milstein method coincides with Euler-Forward.

2.2.3 On higher order methods

Higher order methods exist, but they were not used in this work. However, it seems fitting to at least
mention them as a point for future improvement. The Milstein method can be expanded further to
obtain the order 3

2 strong Taylor scheme. The implementation of this however is rather complicated and
requires the creation of new random variables.

A more suitable approach for the Kuramoto model is the Stochastic-Runge-Kutta- 3
2 method. The method

is still quite complicated to implement, for details see [5], but offers a method developed especially for
SDEs with a constant diffusion coefficient (called scalar noise in [5]). An advantage of a Runge-Kutta
like method is the absence of derivatives of f (and possibly σ, but these are zero for a constant diffusion
coefficient) in the scheme, which allows for a more plug-and-play implementation.



3. Theory

In this chapter we will review some of the theoretical background provided in literature, as well as expand
on this with further analysis. We will produce figures through own simulations [4], with the exception
of one, which will be mentioned.

3.1 Kuramoto’s analysis

The governing equation for a system of oscillators in the standard Kuramoto model is

dθi
dt

= ωi +
∑
j

Kij sin(θj − θi). (3.1)

Here each ωi represents the natural frequency of the i-th oscillator, and Kij indicates the coupling
strength between oscillators i and j.

The ωi are distributed according to some probability density. If we let Ω = E [ω ] and transform our
system to a rotating system, θ → θ − Ωt that is, we can treat ω as a distribution with mean zero.

Kuramoto provided some analysis on the model in the case of infinitely many oscillators under mean
field coupling. Below we work out the details in ref. [7].

We first define a phase locked solution as a solution in which θ̇i = θ̇j where i and j are coupled oscillators.

Mean field coupling In Kuramoto’s original analysis he considered the case of mean-field coupling.
This is a means taking Kij = K/N > 0 in equation 3.1. Using this method we can greatly simplify the
Kuramoto model using what is called the order parameter

reiψ =
1

N

N∑
j

eiθj , (3.2)

where r indicates the coherence and ψ is the mean phase. If we then look at rei(ψ−θi) we see that its
imaginary part occurs in equation 3.1. Thus, we can simplify that equation to

dθi
dt

= ωi +Kr sin(ψ − θi). (3.3)

In the limit of infinitely many oscillators we may rewrite 3.2 into an integral with a new probability
density ρ(θ, t |ω) to obtain

reiψ =

∫ π

−π

∫ ∞
−∞

eiθρ(θ, t |ω)g(ω) dωdθ. (3.4)

Here g(ω) signifies the probability density of the eigen-frequencies ω in the system, which will take to be
Gaussian for the rest of this thesis. The new density of phase ρ(θ, t |ω) changes with θ and time, but it
is subject to the given distribution of the eigenfrequencies.

Continuity condition The continuity condition for the density of phase can be derived with the
argument stating that the number of states must be conserved. To this end, we consider a small fraction
of (−π, π], ∆θ, over a small amount of time, ∆t. We denote the velocity of the states with ν. Then by
conservation of states:

∆θ
(
ρ|t+∆t
t +O

(
∆t2

))
= ∆t

(
ρν|θθ+∆θ +O

(
∆θ2

))
ρ|t+∆t
t

∆t
+O (∆t) =

ρν|θθ+∆θ

∆θ
+O (∆θ)

Then taking the limit ∆t→ 0 and ∆θ → 0 yields

∂ρ

∂t
+

∂

∂θ
(ρν) = 0. (3.5)

8



3.1. KURAMOTO’S ANALYSIS 9

Stationary states for infinitely many oscillators We now consider infinitely many oscillators with
eigenfrequencies ω and initial positions taken to be 0 w.l.o.g.1 (without loss of generality) under mean
field coupling. If we now look at equation 3.4 we can find r = 0 for a fully incoherent solution, or r = 1
for a fully synchronized solution. More interesting are partially synchronized solutions.

Suppose we take Ω to be the mean of all ω and transform the system along θ → θ−Ωt. We can see that a
state is locked in phase with the mean, synchronized that is, whenever dθ

dt = 0. Oscillators with |ωi|< Kr
can then become phase-locked with a phase difference with respect to the mean phase, being 0, which
satisfies ω = Kr sin(θ). This yields the stable solution theta ∈ [−π/2, π/2] and unstable solution ϑ ∈
[π/2, 3π/2] as can be seen in figure 3.1. The latter has measure zero and does not have to be considered
for the density.Thus, density for phase locking oscillators then becomes δ(ω−KR sin(θ))H(cos(θ)), with
H being the Heaviside function.

For the incoherent stationary states we note that ∂ρ
∂t = 0, by stationarity. Thus from equation 3.5 we

see that ρν is constant w.r.t. θ. We now write ρ = C(ω)/ν to obtain an equation which does not depend
on time explicitly. In the rotating frame chosen, we see that ν = θ̇ = ω + Kr sin(ψ − θ), something
which Kuramoto saw intuitively [7]. Normalization of ρ then yields the distribution as given in equation
3.6 and shown in figure 3.2. The figure shows high density at π/2 and low density at −π/2 which is
in accordance with the oscillators slowing down or speeding up respectively. For ω → ∞ the curves
approach 1/2π.

ρ =


δ(ω −Kr sin(θ))H (cos(θ)) for |ω|≤ Kr
√
ω2−(Kr)2

2π|ω−Kr sin(θi)| for |ω|> Kr

(3.6)

Figure 3.1: The stability of stationary states. ψ
was chosen w.l.o.g. to be 0. The dots indicate the
stationary points and the arrows indicate the direc-
tion in which a small deviation from a stationary
point will travel.

Figure 3.2: Plot of equation 3.6 for values of ω of 5, 10 and 50. Kr was taken as 1.

1This can be done without loss of generality because the system only depends on phase differences between oscillators.
If we add some arbitrary number ∆ to each θi or θ we would result with ... sin(θj + ∆ − θi − ∆) or ... sin(ψ + ∆ − θ − ∆).
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Using the assumption that g(ω) is Gaussian allows us to combine and simplify equations 3.6 and 3.4.
We will first note that the imaginary parts must vanish, as we have taken ψ = 0 w.l.o.g. We then split
the integral in equation 3.4 over |ω|≤ Kr and |ω|> Kr.

r =

∫ π

−π

∫
|ω|≤Kr

cos(θ)ρ(θ, t |ω)g(ω)dωdθ +

∫ π

−π

∫
|ω|>Kr

cos(θ)ρ(θ, t |ω)g(ω)dωdθ.

We can now note that ρ(θ+ π, t | −ω)g(−ω) = ρ(θ, t |ω)g(ω) to evaluate that the second integral is zero.

∫ π

−π

∫ −Kr
−∞

cos(θ)ρ(θ, t |ω)g(ω)dωdθ =

∫ π

−π

∫ −Kr
−∞

cos(θ)ρ(θ + π, t | −ω̃)g(−ω̃)dω̃dθ

=

∫ π

−π

∫ ∞
Kr

cos(θ)ρ(θ + π, t | ω̃)g(ω̃)dω̃dθ

=

∫ 2π

0

∫ ∞
Kr

cos(θ̃ − π)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

= −
∫ 2π

0

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

= −
(∫ π

0

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

+

∫ 2π

π

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

)
= −

(∫ π

0

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

+

∫ 0

−π

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

)
= −

∫ π

−π

∫ ∞
Kr

cos(θ̃)ρ(θ̃, t | ω̃)g(ω̃)dω̃dθ̃

Thus, we are left with only the part for |ω|< Kr, which we can easily integrate out because of the delta
functions. From this we obtain

r = rK

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ))dθ. (3.7)

This equation has a trivial solution r = 0 which corresponds to a fully incoherent solution, ρ = 1/2π
that is. It also has a separate branch

1 = K

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ))dθ. (3.8)

This equation also has a solution for r = 0, which can be found easily by substituting r = 0 in g. This
yields the critical coupling constant Kc = 2

g(0)π , below which synchronization is not possible.

3.2 Phase transition for annealed noise

The physical systems modelled by the Kuramoto model are often subject to noise, for example in the
form of thermal energy. In this section we will analyse the effect of noise of this form of noise, called
annealed noise. For this our system will be a 2D torus of some size N ×N . As such, we now expand the
Kuramoto model with a stochastic noise term Dηi(t), which we will take to be Gaussian for the rest of
this work. Also we leave out the individual ωi. The constant D signifies the strength of the noise, ηi(t) is
the standard white noise added to the system. Furthermore we restrict ourselves to nearest-neightbour
coupling, signified by the nni. The coupling strength usually denoted by K is left out through rescaling
in time.

dθi
dt

=
∑
j∈nni

sin(θj − θi) +Dηi(t) (3.9)
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In figure 3.3 we show the simulated behaviour of the order parameter and Binder cumulant for varying
noise strength D. The simulations were run using a self written Python script. These figures indicate
a possible phase transition with some critical noise strength Dc. The (fourth order) Binder cumulant is
defined by

Ur = 1−
[
〈r4〉

3〈r2〉2

]
. (3.10)

Here [·] means taking a sample average and 〈·〉 a time average in the steady state. We can then easily
see that in the fully synchronized case Ur = 2/3, as r just takes the value 1 without fluctuation. Hence
〈r4〉 = 1 = 〈r2〉2 and thus Ur = 2/3.

The de-synchronized limit is a bit harder to see, as Ur does not approach 0 for increasing system size,
which it is when applied to the Ising model [8]. In the case of the Kuramoto (or XY) model some articles
directly claim it will approach 1/3 [9, 10], which it does, but these articles lack proof. We worked out a
proof which can be found in the Appendix for the interested reader .

This Binder cumulant features a much sharper ’knee’ and can be used for spotting where the phase-
transition starts, which defines the critical Dc.

(a) The order parameter for a 10× 10, 20× 20 and
30 × 30 system.

(b) The Binder cumulant for a 10 × 10, 20 × 20
and 30×30 system. The drop curves off sharply at
D ≈ 1, indicating a phase transition at this point.

Figure 3.3: Simulation results of varying system sizes showing the order parameter and Binder cumulant
depending on annealed noise strength.

For further estimation of Dc we look at a scaled variance of the order parameter for an L × L system,
called the fluctuation, defined by

χr(D,L) = Ld
[
〈r2〉 − 〈r〉2

]
. (3.11)

Here [·] and 〈·〉 denote the same as before. The maximum of χ would then be at the point where the
variation would be the largest. We can intuitively explain why this is. For D < Dc, synchronization will
occur, thus we have an order parameter very close to 1 all the time. For D > Dc, synchronization is
not possible. Hence the order parameter will consistently be relatively low. Only near the critical noise
strength will we see jumps between synchronization and incoherence, so naturally the fluctuation will be
the greatest at this point.

3.3 Synchronization phenomena for quenched noise

Now we will look at a simplification of 3.1, where we still take K = 1 w.l.o.g. Further we use nearest
neighbour coupling as in the previous section.

dθi
dt

= ωi +K
∑
j∈nni

sin(θj − θi) (3.12)

Here we assume that ωi ∼ N (0, σ2) i.i.d.
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Figure 3.4: The simulated fluctuation for systems of varying sizes. Note that like in figure 3.3, the critical
noise strength seems to be approximately 1.

(a) The order parameter for different, smaller sys-
tem sizes. We now see some separation.

(b) The Binder cumulant for systems of different
and smaller sizes, with quenched noise only.

Figure 3.5: The results of simulations for varying system sizes with quenched noise for a timespan of two
minutes in the rescaled time.

It seems logical that for larger σ the model would have more trouble synchronizing. To investigate this
plot of the order parameter and Binder cumulant are made and shown in figure 3.5.

For increasing system sizes an earlier drop-off in the Binder cumulant can be seen. An interesting result
is that the order parameter has already decreased significantly when the Binder cumulant is just starting
to decrease. This is due to what is called entrainment.

As we saw before in the mean field analysis, states can be stationary whenever ωi = Kr sin(θi) after
rotating the system to the mean phase. Thus, when increasing σ from 0, states can be locked in phase
without bunching up into a singular point. This can be seen in the decrease or the order parameter.

At some point the order parameter has decreased so much that there no longer are solutions to ωi =
Kr sin(θi) for at least some oscillators. This happens at the critical quenched noise strength σc and is
more accurately shown using the Binder cumulant in figure 3.5b.

3.3.1 Stability analysis

For the system with quenched noise only there is a nifty method for finding the critical quenched noise
strength σc. This method is a physicists second-favorite tool, with separation of variables being the first;
perturbation theory.
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Suppose we have some stationary state with phases θ. We will next apply a small perturbation to it
which we will call δθ. We take the perturbation sufficiently small to apply a linear approximation so
that we find

δθ̇ = J(θ,ω)δθ,

where J is the Jacobian matrix evaluated at (θ,ω). The elements of the Jacobian matrix are given by

J ijkl =
∂

∂θkl
F (θij , θkl)

∣∣∣∣
θ

.

Here F (θij , θkl) = ωi + K
∑
kl∈nnij sin(θkl − θij) which allows us to explicitly write out the Jacobian

matrix.

The quadruple subscripts follow directly from the 2D model, with θij denoting the oscillator at position
(i, j).

The entire Jacobian matrix would take up a lot of paper so it will be omitted here, but it can be seen in
ref. [9] on p. 18 for the keen reader. An interesting property can be deduced without writing down the
closed form.

We can note that the matrix is symmetric following from the evenness of the cosine. This implies that
the eigenvalues are rea, which simplifies stability analysis, where we can look at the eigenvalues to form
a conclusion on stability.

We should note that the system is invariant under rotational translation as we explained before. A zero
eigenvalue is always present because of this. Thus, we are interested in whether the largest eigenvalue is
larger than 0.

The point at which the system starts to destabilize is marked by the appearance of an eigenvalue greater
than 0. The perturbation for σ ≥ σc pushes some synchronized oscillators into another state, making
the previous state unstable. This in turn causes a positive eigenvalue(s) to appear. Due to limits in
computation time we show a figure of this made in ref. [9] in figure 3.6.

Figure 3.6: The result of simulations with the eigenvalue analysis taken from ref. [9].

3.3.2 Fractional synchronization

Suppose now that we are interested in the relation between the order parameter and the fraction of
oscillators which are synchronized. We will denote this fraction f . This will be investigated under the
assumption that the eigenfrequencies are drawn from a N (0, σ2) distribution. This is then equivalent to
stating that

f ≈ P(|ω|< Kr) =

∫ Kr

−Kr

e−
x2

2σ2

√
2πσ2

dx = erf

(
Kr

σ
√

2

)
, (3.13)

where the approximation becomes increasingly accurate for increasing system sizes as a consequence of
the law of large numbers.
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We then look at equation 3.8 and simply substitute u = Kr sin(θ) once again using the assumption that
g is Gaussian to arrive at an integral equation quite like 3.13.

r =

∫ Kr

−Kr

√
1− u2

(Kr)2

e
−u2

2σ2

√
2πσ2

du

Now we note that we can use the extended binomial theorem to expand the square root in terms of even
powers of u; √

1− u2

(Kr)2
=

∞∑
i=0

(
1/2

i

)(
−1

(Kr)2

)i
u2i. (3.14)

We can then use induction to relate integrals as such:

∫ Kr

−Kr
u2n e

−u2

2σ2

√
2πσ2

du = (2n− 1)σ2

∫ Kr

−Kr
u2(n−1) e

−u2

2σ2

√
2πσ2

du− σ2 (Kr)2n−1
√

2e
−(Kr)2

2σ2

√
πσ2

.

Putting this together into we find that

∫ Kr

−Kr
x2n e

−u2

2σ2

√
2πσ2

du = −

(
n−1∑
i=0

σ2(Kr)2(n−i)−1

√
2

πσ2
e

−(Kr)2

2σ2
(2n− 1)! !σ2i

(2(n− i)− 1)! !

)
+ (2n− 1)! ! fσ2n

= I(n, σ,Kr, f). (3.15)

Here I is shorthand notation. We than then put this together with equation 3.14 to obtain that

r =

∞∑
i=0

(
1/2

i

)(
−1

(Kr)2

)i
I(i, σ,Kr, f). (3.16)

Finally, we can eliminate Kr from this by using 3.13, such that Kr = σ
√

2erf−1(f):

r =

∞∑
i=0

(
1/2

i

)(
−1

(σ
√

2erf−1(f))2

)i
I(i, σ, σ

√
2erf−1(f), f). (3.17)

However, using this last substitution will not yield better results than f = erf
(
Kr
σ
√

2

)
itself will. Hence

it might be more interesting to leave the result at equation 3.16, as it omits the error function. Using
this result to approximate an implicit relation between f and r or σ/Kr seems difficult though, a lot of
complicated math is needed to work out a few terms yielding only the result in figure 3.7.

A perhaps easier result is the relation we started with, namely f = erf
(
Kr
σ
√

2

)
, which yields the green

line in figure 3.7. If we zoom in more by leaving out the result of 3.16 we see that this assumption was
not unreasonable, but could be better, as can be seen in figure 3.8. The assumption and simulated values
did become closer as the system size increased.
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Figure 3.7: The result of a 10× 10 simulation with noise strength ranging from 0 to 3. The solid green
line represent the error-function assumption, the dashed orange line is the first two terms of eq 3.17.

Figure 3.8: The result of simulations for varying system sizes with noise strength ranging from 0 to 3.

The red line represents the initial assumption that f = erf
(
Kr
σ
√

2

)
.

3.3.3 Synchronization requirements

We will now take a deeper dive into when synchronization is possible and stability. We will investigate
this on rings and coupled rings.

1D nearest neighbor coupling

We consider a 1D case of nearest neighbor coupling with quenched noise only. We take N to be the
number of oscillators. In this case we can look at two coupled oscillators and equate their Kuramoto
equations (3.12) to find what is needed for phase locking. We then after eliminating θi+1 through rotating
the system obtain

|ωi − ωi+1|= K|2 sin(θi) + sin(θi+2)− sin(θi−1)|.
Thus, we need

K ≥ |ωi − ωi+1|
4

(3.18)

if we want synchronization with the mean 1
N

∑N
i=1 ωi of the system to be possible. In the case of three

oscillators 4 is replaced by 2, as this case coincides with mean field coupling. If we assume the ω to be
N (0, σ2) i.i.d. we can find synchronization probabilities using the following

P
(
16K2 Q (ωi − ωi+1)2

)
= P

(
16K2 Q N 2(0, 2σ2)

)
= P

(
8K2

σ2
Q N 2(0, 1)

)
= P

(
8K2

σ2
Q χ2

1

)
.
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We then have N − 1 independent differences in eigenfrequencies. The probability of partial synchroniza-
tion being possible is then

1− P
(
χ2

1 ≥
8K2

σ2

)N−1

(3.19)

and the probability of total synchronization being possible is

P
(
χ2

1 ≤
8K2

σ2

)N−1

. (3.20)

This is a result somewhat similar to that of found by Strogatz and Mirollo [11].

Suppose now we add some annealed noise ηi(t) for each oscillator with a N (0, D2) distribution. When
doing this it becomes important to ask what we define to a synchronized state to be, as a small fluctuation
will always be present. The figures in the next section were generated using a histogram of oscillator
velocities (θ̇s). A solution was taken to be fully synchronised if all velocities were in the same bin, and
partially synchronised if any bin has height greater than 1/N . Depending on the bin sizes this might be
a valid method. For the verification in this work we used a bin size of 4

√
σ2 +D2/11.

We can then do the same analysis as before, with ωi − ωi+1 + ηi(t) − ηi+1(t) ∼ N
(
0, 2(σ2 +D2)

)
. We

can then easily write out the probability of partial synchronization being possible as

1− P
(
χ2

1 ≥
8K2

σ2 +D2

)N−1

(3.21)

and the probability of total synchronization being

P
(
χ2

1 ≤
8K2

σ2 +D2

)N−1

. (3.22)

We can then see that both situations are less likely.

Three oscillators

In the special case of three oscillators without annealed noise we already saw that the factor 4 does not
hold, but more can be said in the case of total synchronization. We thus fill in N = 3 in equations 3.22
and 3.21 to obtain the partial synchronization probability

1− P
(
χ2

1 ≥
2K2

σ2 +D2

)2

and total synchronization probability

P
(
χ2

1 ≤
2K2

σ2 +D2

)2

.

First, we introduce simulation results of these probabilities, given in figure 3.9. The results with annealed
noise are given in figure 3.10.

Here we see some interesting behaviour in figure 3.10. The curves seems to drop off significantly lower
for noise strength < 2. Figure 3.10b however also shows the problem with the histogram method and
defining synchronization in a stochastic sense. A lower limit greater than 0 seems to be reached which
is due to the annealed noise interfering with the histogram method.
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(a) Simulated probability of total synchronization
for a system of 3 oscillators. Both the bound by
Strogatz and Mirollo and the calculation in this
work are shown.

(b) Simulated probability of partial synchroniza-
tion for a system of 3 oscillators, with a calculated
upper bound

Figure 3.9: Simulation results of synchronization probabilities for a system of 3 oscillators with quenched
noise.

(a) Simulated probability of total synchronization
for a system of 3 oscillators including annealed
noise in different ratios to the quenched noise, with
a calculated upper bounds. Both the bound by
Strogatz and Mirollo and the calculation in this
work are shown.

(b) Simulated probability of partial synchroniza-
tion for a system of 3 oscillators including annealed
noise, with a calculated upper bound

Figure 3.10: Simulation results of synchronization probabilities for a system of 3 oscillators including
annealed noise.

Stability of the 3-ring solutions We now take a step back to the case where D = 0. For any
fully-synchronized solution to be stable, the eigenvalues need to be 0, which will always be present due
to the rotational invariance, and less than 0. For a system this small and simple we can analytically
work out what was done in section 3.3.1. We can then find that the two non-zero eigenvalues are given
by

λ1,2 = K

[
− cos(θ1 − θ3)− cos(θ2 − θ3)− cos(θ1 − θ2)

±
(

(cos(θ1 − θ3) + cos(θ2 − θ3) + cos(θ1 − θ2))
2

− 3 (cos(θ1 − θ2) cos(θ1 − θ3) + cos(θ1 − θ2) cos(θ2 − θ3) + cos(θ1 − θ3) cos(θ2 − θ3))

)1/2
]
.
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We note that the term in front of the square root is also squared within it. This mean that we can only
have both eigenvalues negative if this term is negative and also

cos(θ1 − θ2) cos(θ1 − θ3) + cos(θ1 − θ2) cos(θ2 − θ3) + cos(θ1 − θ3) cos(θ2 − θ3) ≥ 0.

We can the utilize the zero eigenvalue corresponding to rotational invariance to remove θ3, so

cos(θ1 − θ2) cos(θ1) + cos(θ1 − θ2) cos(θ2) + cos(θ1) cos(θ2) ≥ 0.

We can then impose phase-locking to find the following conditions to be met by any solution,

ω3 + ω2

K
= sin(θ2 − θ1)− sin(θ1)

ω3 + ω1

K
= sin(θ1 − θ2)− sin(θ2).

A visual representation of this is given in figures 3.11 and 3.12 in the form of level curves. The curves in
figure 3.11a correspond to particular values of (ω2 +ω3)/K, whereas the curves in figure 3.11b correspond
to values of (ω1 + ω2)/K. The intersections of curves in figure 3.11a and 3.11b thus define the possible
synchronized solutions for some set of values {ω1, ω2, ω3,K}. The fact that any solution must lie on
these level curves yields a nice visual representation of entrainment.

From these figures we see that for any set of values {ω1, ω2, ω3,K} there are two at most possible
synchronized solutions, but combining this with figure 3.11c leaves us with the only stable solution, of
which there can be at most one.

We will elaborate a bit more on figure 3.11c. One might expect that solutions would only be stable
in the region [−π/2, π/2]2, yet we observe a different region. This is simply because of the origin not
representing the mean phase, but one of the three oscillators’ phase.

(a) Level curves for (ω3+ω2)/K =
sin(θ2−θ1)−sin(θ1), ranging from
−1.55 in cyan to 1.55 in yellow.

(b) Level curves for (ω3+ω1)/K =
sin(θ1−θ2)−sin(θ2), ranging from
−1.55 in orange to 1.55 in ma-
genta.

(c) Region of stable eigenvalues.

Figure 3.11: Stable region and level curves for the phase-locking conditions.
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Figure 3.12: Combined figures of 3.11. Stable region and level curves of phase-locking conditions for the
3-oscillator Kuramoto problem with no annealed noise

3.3.4 Ring coupling

Following the analysis performed by [12], we can investigate a system consisting of two coupled rings
consisting of three oscillators each. It is easy to realise that an extra degree of freedom is needed, as
there are now N oscillators and N + 1 connections. This can be solved by taking sin(θ1 − θ3) = q and
sin(θ4 − θ6) = p in the network below in figure 3.13, though any combination of two phase-differences
could be used as long as they originate from different rings. For the examples below we work with a
coupled system of two 3-rings.

By imposing synchronization we can set up the following linear system, where we denote δi = ωi − Ω,
with Ω = 1

N

∑N
i=1 ωi being the mean frequency of the system, following from the differential equation

3.12;


1 −1

1 −1
−1 1 −1

1 1 −1
1 −1

−1 1





sin(θ1 − θ3) (= q)
sin(θ2 − θ1)
sin(θ3 − θ2)
sin(θ4 − θ3)
sin(θ4 − θ6) (= p)
sin(θ5 − θ4)
sin(θ6 − θ5)


=

1

K


δ1
δ2
δ3
δ4
δ5
δ6

 (3.23)

This leads to the following:
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Table 3.1: Phase differences of the system as given
in figure 3.13. Here δi = ωi − Ω, with Ω being
the mean frequency of the system. We omit the
π − arcsin solutions since they are not stable.

Phases Difference
θ6 − θ5 arcsin(p+ δ6/K)
θ5 − θ4 arcsin(p+ (δ6 + δ5)/K)
θ4 − θ6 arcsin(p)
θ4 − θ3 arcsin((δ4 + δ5 + δ6)/K)

arcsin(−(δ1 + δ2 + δ3)/K)
θ3 − θ2 arcsin(q − (δ1 + δ2)/K)
θ2 − θ1 arcsin(q − δ1/K)
θ1 − θ3 arcsin(q)

Figure 3.13: The system of two coupled 3-rings
used.

Now we note that the difference θ4 − θ3 has two solutions, which must thus be equal in order to achieve
synchronization, yielding that

∑6
i=1 δi
K

= 0

must be true. This is always the case by how the δi were defined, by taking δi = ωi − Ω that is.
This implies that stability of the coupled system depends on the stability of the individual rings and
(δ4 + δ5 + δ6)/K2 being in (−1, 1] independently, not through some complicated relation.

Now as in [12], we need to have that the sum of all differences in a ring must equal a multiple of 2π, as
it must of course make an integer amount of circles. Here we have a choice to make on how we take the
arc-sines, so we either choose our branch in (−π/2, π/2] or in (π/2, 3π/2]. This choice could be different
for each phase difference, but if we want stable solutions only one branch is allowed. Solutions of a ring
are stable if and only if the phase-differences lie in (−π/2, π/2] [13]3. As such, this is how we choose our
branches.

Knowing this it is possible to calculate a limit on the amount of stable solutions in systems consisting of
arbitrary ring sizes. For a ring with N oscillators we have solutions for N phase differences in (−π/2, π/2],
of which the sum must be a multiple of 2π. Thus the maximal total phase difference we can achieve is
±Nπ/2 = 2mπ, so we see that m can take values in −bN/4c, ..., 0, ..., bN/4c. This m is also called the
winding number, as it indicates how many full turns (or windings) the solution makes. The total phase
difference for each ring, denoted by Φ below, can easily be generalised as such:

Left: ΦL =

Nleft−1∑
i=0

arcsin

q − 1

K

i∑
j=1

δj

 , right: ΦR =

Nright−1∑
i=0

arcsin

p+
1

K

i∑
j=1

δNtotal+1−j

 .

We now have at most 2bN/4c + 1 winding numbers per ring. We can then invoke injectivity of the
arc-sine to realise that this is also the amount of stable solutions. From the windings numbers we can
solve for p or q s.t ΦL = 2m1π or ΦR = 2m2π respectively. Thus, for a system consisting of two coupled
rings of sizes N1 and N2 we have at most (2bN1/4c+ 1)× (2bN2/4c+ 1) stable solutions, depending on
the coupling constant K.

For a 3 + 3 system this equates to one single stable solution, with the winding number for both rings
being 0. This is shown in figure 3.14. The figure shows ΦL and ΦR for all values of q and p and the
stable solutions lie at the points where the line has height 2mπ. A demonstration for a ring consisting of
7 oscillators is shown in figure 3.15. This figure shows three stable solutions for K = 10, which coincides
with 2b7/4c+ 1 = 3.

2Or arcsin(−(δ1 + δ2 + δ3)/K).
3Dankjewel Johan :)
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(a) The left ring with (ω1, ω2, ω3) =
(−0.21,−0.05,−0.05).

(b) The right ring with (ω4, ω5, ω6) =
(1.15,−1.05,−0.08).

Figure 3.14: The curves defined implicitly by taking the sum of phase differences in the rings of 3
oscillators to be equal to φ. The left ring admits solutions for K = 0.1 whereas the right ring does not.
Note that the only intersection with 2mπ is at φ = 0, so there is only one stable solution. The stable
solutions are marked with a +++.

Figure 3.15: The curves defined implicitly by taking the sum of phase differences in the ring of 7 oscillators
to be equal to φ. We see no solutions for K = 0.1, one for K = 1 and three for K = 10. The stable
solutions are marked with a +++.
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How strong should the coupling constant then be for stable solutions to exist? This value can be ap-
proached numerically in Maple by first setting up an optimization problem for which we check feasibility,
so we trick Maple with constraint being that all the terms inside arc-sines in table 3.1 lie within -1 and
1:

max 1

s.t. − 1 ≤ p ≤ 1

− 1 ≤ p+ δ6/K ≤ 1

− 1 ≤ p+ (δ5 + δ6)/K ≤ 1

− 1 ≤ q ≤ 1

− 1 ≤ q − δ1/K ≤ 1

− 1 ≤ q − (δ1 + δ2)/K ≤ 1

− 1 ≤ (δ4 + δ5 + δ6)/K ≤ 1

.

We then define f(K) := .5 if feasible else − .5 and let Maple search for the zero point of f
numerically. In our the system depicted in figure 3.14 we then find Kc ≈ 0.52. The script for this can
also be found in the GitHub [4].

Connection strength variation We might now also be interested in how the system behaves if we
adjust the coupling constant between the two systems, so we replace the coupling constant K between
nodes 4 and 3 with the constant K ′. This changes the system only slightly so we will take it one step
further and also introduce differing coupling constants for the left and right ring, denoted KL and KR

respectively. This changes the system given in 3.23 to


KL −KL

KL −KL

−KL KL −K ′
K ′ KR −KR

KR −KR

−KR KR





sin(θ1 − θ3) (= q)
sin(θ2 − θ1)
sin(θ3 − θ2)
sin(θ4 − θ3)
sin(θ4 − θ6) (= p)
sin(θ5 − θ4)
sin(θ6 − θ5)


=


δ1
δ2
δ3
δ4
δ5
δ6

 . (3.24)

We then arrive at a different, though only slightly, version of table 3.1:

Table 3.2: Phase differences for the system of two coupled 3-rings with different coupling constants in
each ring and at the connection between the two rings.

Phases Difference
θ6 − θ5 arcsin(p+ δ6/KR)
θ5 − θ4 arcsin(p+ (δ6 + δ5)/KR)
θ4 − θ6 arcsin(p)
θ4 − θ3 arcsin((δ4 + δ5 + δ6)/K ′)

arcsin(−(δ1 + δ2 + δ3)/K ′)
θ3 − θ2 arcsin(q − (δ1 + δ2)/KL)
θ2 − θ1 arcsin(q − δ1/KL)
θ1 − θ3 arcsin(q)

From this it becomes apparent that the possibility of stable solutions is clearly divided in three parts.
Each of the rings has to be stable, which is determined by its own properties, and the coupling constant
K ′ has to be large enough as to yield any solution.



4. Ising and XY model

4.1 Ising model

The Ising model describes the alignment of magnetic spin in a lattice. The spins cause a local magne-
tization, which makes it such that aligned spins are in a lower energy state, which is more favorable.
This could cause materials to be magnetic, were it not for thermal excitations. Heat causes the spins
to fluctuate, destroying alignment. For low temperatures however, this effect is small and we may
see magnetization. This process can occur rapidly as a phase transition, which is called spontaneous
magnetization.

In the Ising model each spin σi can take values 1 or −1 corresponding to spin up or spin down. The
effect of neighbouring spins is then assumed to only be felt from nearest neighbours, so that we may
write out the Hamiltonian of the system

H(σ) = −
∑
〈i j〉

Jijσiσj −
∑
i

Eσi. (4.1)

In this equation 〈i j〉 denotes that i and j must be nearest neighbours, so it is equal to
∑
i

∑
j∈nni in the

notation used in the previous chapter. Jij gives the interaction between spins i and j, which is usually
taken to be independent of i, j. The quantity E denotes influence of an external magnetic field. The
external field is often taken to be zero.

This model shows no phase transition in 1D, but it does in 2D, as was shown by Peierls in 1936.

4.2 XY model

We can generalize the previous Hamiltonian (eq 4.1) in the case of no external field for spins pointing in
any direction instead of just up or down. Then we obtain

H(σ) = −
∑
〈i j〉

Jij〈σjσi〉 = −
∑
〈i j〉

Jij cos(θj − θi). (4.2)

Here 〈σiσj〉 denotes the inner product of the spin vectors with length 1 of oscillators i and j, which
equals the cos(θj − θi) we have already seen in equations 3.1, 3.9 and 3.12.

We can easily find the link between this and the Kuramoto model by realising that

∇H(σ) =

d
(
−
∑
j∈nij Jij cos(θj − θi)

)
dθi

T

i∈{1,...,N}

(4.3)

=

∑
j∈nij

Jij sin(θj − θi)

T

i∈{1,...,N}

=
dθ

dt
(4.4)

is a case of the Kuramoto model without any form of noise. It is interesting to note that the gradient of
the Hamiltonian results in a first derivative of its coordinates. This is called a gradient system.

4.2.1 The KT-transition

Now we will look at the Nobel-prize winning KT (Kosterlitz Thouless) transition. For this we will look
at an L×L lattice of spins within the XY model with constant coupling Jij = J . Then we approximate
the cosine in the Hamiltonian up to the second order which, after neglecting constant energy, results in

H(σ) =
J

2

∑
〈ij〉

(θj − θi)2.

23
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This approximated system, called the spin-wave Hamiltonian, like the original, is invariant under a
rotation of the entire system. This is called a continuous symmetry, because the system does not change
when adjusting this continuous parameter. The Mermin-Wagner theorem then states that no ordinary
phase-transition can occur [14, 15], because of the continuous symmetry in the system. The correlation
function can be shown to be [16]

〈ei(θ(r)−θ(0))〉 ∼ r−kbT/2πJ .

This indeed goes to zero as r → ∞, so no long-range order can exist in the system. Yet, we still see a
transition in the XY-model, which is due to vortices, which are not captured accurately in the spin-wave
Hamiltonian.

A vortex is a set of four spins which, when travelling along them in a clockwise-manner, rotate clockwise.
An anti-vortex rotates anti-clockwise when traversing clockwise. This is indicated in figure 4.1. A pair
of vortices consists of a vortex and an anti-vortex.

Figure 4.1: A simulated state of the XY-model at T = 0. A few obvious vortices (solid, red) and
anti-vortices (dashed, blue) are outlined.

For the energy of such a vortex we look at the energy cost on a circle, with perimeter 2πr and thus 2πr/a
spins on that perimeter. Here a is the lattice constant. The difference between two adjacent sites then
is 2π a

2πr = a
r , so we see that

E =
2πJ

a2

∫ L

a

1

2

(a
r

)2

rdr = Jπ lnL/a.

Also we observe that the entropy of a vortex is S = kb ln Ω ≈ kb ln
(
L
a

)2
. We can now write out the

Helmholtz free energy of a vortex as

F = (πJ − 2kbT ) lnL/a.

Thus we observe that we cross F = 0 whenever

T =
πJ

2kb
.

We will denote this temperature by Tc, where c indicates it being the critical temperature. For T above
this Tc negative free energy occurs for a single vortex, so it becomes energetically favorable to form free
vortices. Below Tc the converse hold.

A pair of vortices however has energy independent of L, namely E ∼ J ln(r/a) with r being the distance
between the two vortices. The entropy of such a pair still scales with the logarithm of the system size,
so we see that a pair of vortices may occur for T < Tc.
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Kuramoto model

One may wonder then, would the more general quenched noise including of the Kuramoto model also
show this behaviour? The answer to this is a yes. It has been shown in ref. [1] using figures for the case
of no quenched noise, which we already discussed in the previous paragraph. It has more interestingly
also been shown through a lengthy and complicated transformation of the partition functions of the XY
and Kuramoto model for oscillators with differing eigenfrequencies. We can find these numerically and
show them, as in figure 4.2.

A final question on the duality of these models then is on the annealed noise introduced in section 3.2.
The simple answer is that this is hidden in the temperature. The annealed noise gives random ’kicks’
according to some distribution which can be seen in the average velocity of the oscillators, which define
the temperature of a solution.

These two forms of noise then do not hinder the characteristics shown by the XY model, suggesting that
the link between the XY and Kuramoto model is very strong.
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(a) Phases simulated with eigenfrequencies with
variance 0.

(b) Local order parameter simulated with eigenfre-
quencies with variance 0.

(c) Phases simulated with eigenfrequencies with
variance 0.25.

(d) Local order parameter simulated with eigenfre-
quencies with variance 0.25.

(e) Phases simulated with eigenfrequencies with
variance 0.45.

(f) Local order parameter simulated with eigenfre-
quencies with variance 0.45.

Figure 4.2: Simulation results for a Kuramoto model with nearest neighbour coupling and a system size
of 30× 30.



5. Discussion

5.1 Analytical results

Most of the analytical results speak for themselves, but there are two for which some discussion is of
interest.

Firstly we look back to section 3.3.2 on partial synchronization. The difference between the simulated
values and the expansion approximation is large, the characteristics do not carry over well. The com-
plicated result then in equation 3.16 yields little value, but does relate the synchronized fraction f and
order parameter r without the error-function assumption on which it was based. Perhaps this could
bring an expansion for the error-function.
The assumption itself gave a better approximation, which was approached by simulation results as the
system size increased.

Secondly, we look at the synchronisation probability for a ring of three oscillators in section 3.3.3. The
probability calculated in equations 3.19, 3.20 give rise to the same error-function like behaviour as in
ref. [11], but with some different scaling factors. The probability calculated in section 3.3.3 seems to be
much closer. The partial synchronization probability seemed to be off somewhat, this could be due to
the histogram method problem which was more visible when including annealed noise.

Incorporating annealed noise complicated the result. The histogram method used seemed to fail when
noise strengths increased above D ≈ 1, visible especially from the large fluctuations and high probability
in the high noise limit in figure 3.10b. Improving on this could perhaps be done by choosing a clever
scaling of bin sizes in the histogram, or by using a more robust definition of phase-locking in the case of
stochastic noise.

5.2 Numerical accuracy

When switching from deterministic problems to SDEs more is lost than just integration schemes. We
also lose methods for estimating the error in the solution.

Luckily, our system shows the same dynamics in almost all situations. This allows us to find an accurate
enough step size by inspection. Of course it should be noted that this accurate enough holds little
quantifiable value, hence the inclusion of differences over step sizes shown below. Further, the figures
produced in chapter 3 match the figures in ref. [9] at a step size of ∆t = 1/15 in rescaled time. These
facts provide confidence in the numerical accuracy of simulations ran.

Figure 5.1: Simulation results of the order parameter on a 10× 10 system with varying step sizes.
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6. Conclusion

We elaborated on the methods of numerical analysis used for producing the results in this work. We
started simple by listing some good practices when dealing with SDEs and then moved on to integrating
methods for SDEs. These methods were of lower order than one may be used to when integrating
deterministic differential equations, but fortunately the Kuramoto model allowed us to easily use a
scheme of order 1. This was due to the diffusion coefficient being a constant, which caused the otherwise
order 1/2 Euler-forward method to coincide with the order 1 Milstein method.

We also slightly touched on higher order methods for integrating SDEs. These methods do yield a higher
order and implementation is possible for future improvement. In particular the Runge-Kutta method
could deliver a plug and play experience once the code is written, providing good ease of implementation
for further expansion of the model.

After this chapter we set out the understand and recreate the results in ref. [9]. This introduced notions
of the Binder cumulant, fluctuation and an analysis of stability of stationary solutions. We also proved
the result that in the de-synchronized limit of a mean field coupled system we have that the Binder
cumulant approaches 1/3.

Section 3.3.2 then introduced an attempt to relate the fraction of oscillators which become synchronized
to the order parameter. The expansion attempt did not show great results for the first few terms, but
it did yield experience in working with the extended binomial theorem and expanding difficult terms.
The assumption on which it was based gave a better approximation which was approached by simulation
results as the system size increased.

Moving on then we attempted calculating a different quantity, namely the probability of either partial of
total synchronization being possible. The resulting equations showed some similar behaviour to a result
found by Strogatz and Mirollo [11]. The bound obtained however seemed to more accurate, at least in
the case of total synchronization of a ring consisting of three oscillators without annealed noise.
The addition of annealed noise caused some problems however. For low levels of noise strength (D < 1)
the bound seemed to be accurate still. Above this we observed high probability in the high noise limit
and large fluctuations. A better definition for synchronization seems needed to verify the results.
The stability analysis carried out after this yielded good results on the amount of stable solutions for a
predefined system of three oscillators on a ring. The level curves gave a, in my eyes rather elegant, visual
representation of entrainment. Intersecting these level curves yielded two points of which only one could
lie in the region of stability, so we found only one possible stable solution. This is in accordance with
the analysis carried out in the next section, noting that 2 · b3/4c+ 1 = 1.

In the final section of chapter 3 we explored a coupling of two rings. We found an upper bound on
the amount of stable solutions such a coupled system could have, which we showed by introducing the
winding number. The stability the entire system proved to be a simple combination of three parts; the
stability of each individual ring and the possibility of the linking phase difference having a solution. We
showed this in greater extent by introducing an independent coupling constant for each of these parts,
which did not change stability of the overall system if the three parts were stable.

The final chapter took us to a more physics-centered look on the Kuramoto model. We researched
literature of the Ising and XY model, the latter of which showed a clear link with the Kuramoto model.
We then strengthened the link between the Kuramoto model and the XY model by showing that the
inclusion of noise, be it quenched or annealed, does not break the duality. This was worked out extensively
by transforming partition functions in ref. [1] and shown using figures in this work.

The stability analysis performed on the coupling of rings has applications specifically in electrical net-
works such as power grids. These grids however follow the second order Kuramoto model, which may
alter some properties of the solutions found. This is a suggested point of future research.
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Appendix

Proof of the Binder cumulant limit

We first look at the case where the oscillators are U(0, 2π) i.i.d. Then first note that 〈eikθ〉 = 0 for
k ∈ Z\{0}. We work out the second moment:

〈r2〉 =
1

N2
·

∑
j

eiθj

(∑
k

e−iθk

)
=

1

N2

(
N · 〈e0〉+N(N − 1) · 〈eiθ〉〈e−iθ〉

)
=

1

N

Further, we work out the fourth moment:

〈r4〉 =
1

N4

∑
j

eiθj

(∑
k

eiθk

)(∑
l

e−iθl

)(∑
m

e−iθm

)
=

1

N4

(
N(N − 1)(N − 2)(N − 3)

〈
eiθ
〉2 〈

e−iθ
〉2

+N(N − 1)
(〈
e2iθ

〉 〈
e−2itθ

〉
+ 2

〈
e0
〉2)

+N(N − 1)
(
2
〈
eiθ
〉 〈
e−iθ

〉
+ 2

〈
e−iθ

〉 〈
eiθ
〉)

+N(N − 1)(N − 2)
(〈
e2iθ

〉 〈
e−iθ

〉2
+ 4

〈
eiθ
〉 〈
e−iθ

〉
+
〈
e−2iθ

〉 〈
eiθ
〉2)

+N
〈
e0
〉)

=
1

N4
(2N(N − 1) +N)

We now introduce the eigenfrequencies of the oscillators which are N (0, σ2) i.i.d. Thus, we now look at

r2 =
1

N2

∑
j

ei(θj+ωjt)

(∑
k

e−i(θk+ωkt)

) .

Again we note the characteristic function
〈
eiωt

〉
= e−

1
2 (σt)2 . Through some careful bookkeeping of terms

we extend our previous result to obtain the same results, but now valid for any t and σ2. We then
combine this to find that

Ur = 1−

[ 〈
r4
〉

3 〈r2〉2

]

= 1− N−4 (2N(N − 1) +N)

3N−2

= 1− 2N(N − 1)

3N2
− 1

3N

= 1− 2

3
+

1

3N

This has a deviation of 1/3N from 1/3, so for systems larger that 10 nodes we may say

Ur ≈
1

3
.
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We can also ignore the initial positions and look at just the result of moving with velocities ωj ∼ N (0, σ2),
so we look at

r =
1

N

∑
j

eiωjt.

We can then apply the previous work and arrive at

Ur = 1−



N(N − 1)(N − 2)(N − 3)e−2(σt)2 +N(N − 1)
(

2 + 4e−(σt)2 + e−4(σt)2
)

+N(N − 1)(N − 2)
(

2e−3(σt)2 + 4e−(σt)2
)

+N

3
(
N2 + 2N2(N − 1)e−(σt)2 +N2(N − 1)2e−2(σt)2

)

.

We can write this a bite more shorthand using big O notation

Ur = 1−

2N2 −N +O
(
N4
)
O
(
e−2(σt)2

)
+O

(
N2
)
O
(
e−(σt)2

)
+O

(
N3
)
O
(
e−(σt)2

)
3
(
N2 +O (N3)O

(
e−(σt)2

)
+O (N4)O

(
e−2(σt)2

))
 .

Which, leaving out much more details, can be simplified even further to

Ur = 1−

2N2 −N +O
(
N4
)
O
(
e−(σt)2

)
3
(
N2 +O (N4)O

(
e−(σt)2

))
 .

It is then easy to see that the order terms decay extremely fast, resulting once again in Ur ≈ 1/3− 1/N
for settling times T > 2/σ.
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