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Abstract

Shear cracking in slender reinforced concrete beams with thin webs can result in signif-
icant shear crack width and deflection which is usually ignored in practice due to lack of
availability of the engineering models in design codes. This can lead to unconservative pre-
dictions of the crack width and total deflection in the SLS (Serviceability Limit State). The
large crack widths can cause problems related to durability, aesthetic appeal, maintainabil-
ity and fluid tightness of the structure. An inspection in 2001 reveals extensive shear cracks
in Grondal and Alvik bridges in Sweden. The problem is so severe that the bridges are tem-
porarily closed. Later, the investigations reveal that although the bridges are designed ac-
cording to Swedish codes, the provided shear reinforcement is insufficient for crack width
control under service loads on the bridge. Therefore, it becomes imperative to evaluate the
available crack width models and develop robust models for shear crack width prediction.

A literature review of the available models for shear crack width is performed to identify
the crucial parameters influencing shear crack width. Shear crack width is influenced by
several parameters, but the most critical parameters are shear crack spacing, shear stir-
rup strain, principle strain in the cracked concrete and diagonal compression strut angle.
Thereafter, various models available to evaluate these parameters are reviewed to under-
stand their applicability and limitations.
This is followed by a study for the analysis of performance of the models with respect to the
experimental observations. Based on the limited experimental dataset, it is found that the
Zakaria et al. (2011) shear crack spacing model, and the fib MC 2010 (Model Code 2010)
crack spacing model (for members with orthogonal reinforcement) provide a conservative
estimate for the shear crack spacing in RC (reinforced concrete) beams. The predictions
from the current EC2 crack spacing model are slightly unconservative. All the three crack
spacing models take into account the influence of bond transfer length on the stress distri-
bution in concrete and reinforcement.
It is also found that the SMCFT (Simplified Modified Compression Field Theory), CFT (Com-
pression Field Theory) and CCC (Compression Chord Capacity) model provide estimates
for the shear crack angle with small deviations from the experimentally observed values.
However, all these three models predict flatter (smaller) mean shear crack angles as com-
pared to the experimentally observed values. The SMCFT and CFT determine the diagonal
compression strut angle with a consideration of deformations of reinforcement (transverse
and longitudinal) and diagonally cracked concrete. On the other hand, the CCC model pre-
dicts the diagonal shear crack angle based on the assumption that the horizontal projection
of the first branch of flexural-shear crack is equal to 0.85d where d is the effective depth to
the longitudinal tensile reinforcement.
According to comparison with the experimental observations referred in this study, the
CCC model provides a conservative estimate for the concrete contribution to shear resis-
tance which is required to evaluate the shear stirrup strains. Using concrete contribution
to shear resistance from this model, an engineering strategy to estimate the concrete con-
tribution to shear resistance at service loads is proposed. Thereafter, five different models
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for mean shear crack width (the first three models with two variants each) and four differ-
ent models for shear deflection are proposed. The comparison of the predictions from the
mean shear crack width models with the experimental data reveals that a conservative esti-
mate for the shear crack width can be made by equating shear crack width as the product of
mean principle tensile strain in the cracked concrete and the shear crack spacing (Model-
IIIB, Model-IV and Model-V). It is observed that the assumption of zero concrete contri-
bution to shear resistance (shear-force transfer) at service loads (in B variants of Models-I,
II and III) result in relatively higher predicted mean shear crack widths (as compared to
the corresponding A variants) and therefore, more conservative estimates. Moreover, the
assumption of mean shear crack angle equal to 45 degrees also leads to relatively more con-
servative estimates of mean shear crack width. Model-IV and Model-V seem to outperform
other mean shear crack width models considering mean and consistency of the models to-
gether as a metric. The mean and SD of the predictions from Model-IV are 0.85 and 0.30
for the original formulation of the model. However, with the assumption of mean shear
crack angle equal to 45 degrees, the mean and SD values are observed to be 0.37 and 0.13
respectively.
It is found that a conservative estimate for shear deflection can be obtained by assum-
ing a linear shear force versus deflection response for a slender reinforced concrete beam
(Model-I). The ratio of the experimentally observed to predict shear deflection for Model-I
is 0.85 with a SD (Standard Deviation) of 0.31.
The proposed Models-IIIB, IV and V (in their original formulation) and Models- IB, IIA, IIB,
IIIA, IIIB and IV (with an assumption of mean shear crack angle equal to 45 degrees) for
the shear crack width and Model-I for shear deflection provide a conservative estimate for
the range of experimental beam specimen data covered in this MSc thesis. These models
(especially Model-IV for mean shear crack width and Model-I for shear deflection) seem to
be potentially useful engineering models for use in engineering practice to evaluate mean
shear crack width and shear deflection for slender beams with thin webs (for example slen-
der webs of bridge girders). However, the models require further validation with an experi-
mental study to assess and establish suitability for wider application in design practice.
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ing to design flexural moment) due to axial force.
Mu factored moment at section.
Mud flexural capacity of the member assuming zero axial force.
M Moment due to service load at a section at distance dv from the face of the

support.
Nc shear resistance from concrete compression zone.
NE d axial force in the cross section due to external loads or due to prestressing.
n modular ratio.
N

′
d design axial compression force.

NE d axial force in the cross section due to external loads or due to prestressing
(this is equal to zero in this study).

N f factored axial force in the cross section occurring along with V f and in-
cludes the influence of tensile forces due to shrinkage and creep (tension is
taken as positive while compression is taken as negative).

Nu axial force on the concrete member in ultimate limit state.
Nv axial force in the longitudinal reinforcement bars to resist the shear force.
P externally applied point load.
Pu the reaction generated at the support.
s spacing between the shear stirrups.
sav g mean spacing between the shear cracks.



sav g ,exp mean spacing between the shear cracks measured experimentally.
sav g ,pr ed mean spacing between the shear cracks predicted using the considered

shear crack spacing model.
sexp shear crack spacing observed experimentally.
smθ mean crack spacing in the stabilized cracking phase.
smθ−av g mean crack spacing in the crack formation phase.
sm,x crack spacing in direction perpendicular to the stirrups.
sm,y crack spacing in direction perpendicular to the longitudinal reinforcement.
spr ed predicted shear crack spacing from the various models.
sr,max maximum spacing between the cracks.
sr,max,y maximum spacing between the cracks along y direction.
sr,max,z maximum spacing between the cracks along z direction.
Ssi nθcr shear resistance due to aggregate interlock effect.
sv spacing of the stirrups.
sx spacing between the longitudinal rebars.
sy the stirrup spacing.
S concrete contribution from the aggregate interlock effect.
Ts axial force in the longitudinal reinforcement.
T flexural tension force.
Tu axial force in the longitudinal reinforcement.
Tu axial force in the longitudinal reinforcement.
V Applied shear force.
V shear force due to service load at a section at distance dv from the face of

the support.
V̄ shear deflection at the section due to a unit force applied at the section

under consideration (at which shear deflection is being measured).
Vai shear resistance contribution from the aggregate interlock effect.
Vc nominal shear strength.
Vc shear force resisted by concrete compression zone.
Vc concrete contribution to shear resistance.
Vcc concrete compression zone shear resistance.
Vc,CCC predicted concrtee contribution to the shear resistance of a shear rein-

forced beam at ULS.
Vccr concrete compression zone shear resistance.
Vcd shear resisted by dowel action.
Vc,exp concrete contribution to shear resistance observed experimentally.
Vc,pr ed concrete contribution to shear resistancepredicted by the considered con-

crete contribution to shear resistance model.
Vcr first diagonal shear cracking load.
Vcr,CCC predicted first diagonal shear cracking load from the compression chord

capacity model. In this study it is =Vc,CCC .
Vcr,pr ed experimentally measured first diagonal shear cracking load.
Vcr,pr ed predicted first diagonal shear cracking load from the considered concrete

contribution to shear resistance model.
vci aggregate interlocking shear stress at the crack surface.
Vc,pr ed concrete contribution to shear resistance predicted by various models.



Vc,pr ed ,ser concrete contribution to shear resistance predicted at service loading con-
ditions predicted by the proposed model.

Vd shear resisted by dowel action.
Vdcr shear resistance of the longitudinal reinforcement.
VE Shear force at a section at distance "dv " away from the support.
VE d design shear force on the beam.
V f factored shear force (in the present study this is the shear force correspond-

ing to the service shear load).
Vl shear resistance contribution from dowel action.
Vnom nominal shear resistance of a shear reinforced beam from EC2 [19].
Vp the vertical tensile force component of the inclined prestressed tendons.
VRd ,c shear strength of the shear unreinforced beam according to EC2.
Vs shear resistance offered by the stirrups.
vser shear stress at the service shear load (=0.6Vnom,EC 2/(bd)).
Vser applied shear force at service load condition.
Vstr ut axial compressive force in the diagonal compression strut.
Vu factored shear force.
Vy Yield shear force i.e. force at which the shear stirrups yield.
w crack width.
wav g mean crack width.
wav g ,exp mean crack width measured experimentally.
wav g ,pr ed mean crack width predicted by the crack width models.
wk characteristic crack width.
wmax average diagonal crack width.
x height of the compression zone.
xo height of the compression zone.
z internal lever arm of the beam.



Abbreviation Full form

AASHTO American Association of State Highway and Transportation Officials
ACI American Concrete Institute
ASCE American Society of Civil Engineers
CCC Compression Chord Capacity
CFT Compression Field Theory
COV Coefficient of Variation
CSA Canadian Standards Association
EC Euro Code
fps foot-pound-second
HYSD High Yield Strenght Deformed Bars
JSCE Japanese Society of Civil Engineers
MC Model Code
MCFT Modified Compression Field Theory
Max Maximum
Min Minimum
N.A Neutral Axis
RC Reinforced Concrete
PC Prestressed Concrete
PSC Prestressed Concrete
NLFEA Non Linear Finite Element Analysis
SD Standard Deviation
SLS Serviceability Limit State
SMCFT Simplified Modified Compression Field Theory
ULS Ultimate Limit State
VSIM Variable Strut Inclination Method
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1
Introduction

“Learn from yesterday, live for today, hope for tomorrow. The important thing
is not to stop questioning.”

Albert Einstein

This Chapter comprises the introduction to current design practice pertaining
to diagonal shear cracks under service loads and motivation behind this MSc
thesis project. Moreover, the research objectives, research questions, scope
and outline of the thesis are also described.

1



2 1. Introduction

1.1. Background and Motivation
One of the crucial characteristics of the reinforced concrete structures is the presence of
cracks. Although, reinforcement in concrete can not be activated unless there is some
cracking in the concrete, the presence of cracks in concrete can jeopardize its serviceability
and durability. The guidelines available in the design codes are applicable to flexural and
tensile cracks and are not suitable to be directly used for the analysis of shear cracks [65].

An inspection in 2001 reveals extensive cracks in the web of concrete hollow box girders
of Grondal bridge in Stockholm, Sweden just after two years of putting the bridge in service
(Figure 1.1). After some time, similar problem is reported in the Alvik bridge in Stockholm
[29]. The concerned authorities decide to temporarily close the bridges fearing the risk
of shear failure. The bridges are designed in accordance with the Swedish codes. However,
later it is found that the designs have inadequate shear reinforcement in serviceability limit
state. It is observed that the crack width kept on increasing along with an increase in the
number of cracks [24]. In general, the average crack width is found to be in the range of 0.1-
0.3 mm whereas the maximum crack width is found in the range of 0.4-0.5 mm which is
considered to pose problems concerning durability and serviceability of the structure [29].
Thus, it becomes important to evaluate the available models for the prediction of shear
crack width under service loads.
The EC2 [19] provides a well-described method for the analysis of flexural and tensile cracks.
However, a well-defined method with clear instructions for the calculation of shear crack
widths is missing. This may lead to the problem of either under reinforced or over rein-
forced design for shear load under service load conditions. Both of these scenarios cause
an increase in the cost to provide a safe and serviceable structure for use. Figure 1.2 shows
schematic diagram of flexural and shear cracks in a slender reinforced concrete beam.
Moreover, the total deflections of the RC beams after shear cracking involves a significant
magnitude of shear deformation besides flexural deformation [49]. Figure 1.3 shows the
flexural and shear deformations in a portion of the reinforced concrete beam. Although, in
the elastic stage only a minor shear deflection is expected, shear cracking may occur even
under service loading conditions. This may cause shear deflections as high as up to 25%
of the total deflections ([21], [20], [45], [40]). This shear deflection is primarily caused by
diagonal shear cracks in concrete. However, in practice the shear cracking (unlike flexural
cracking) is not duly considered because of a lack of practical models [28].
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Figure 1.1: The monitoring of web cracking in Grondal bridge [55]

Flexural Cracks

Shear Cracks

Figure 1.2: Shear cracks and flexural cracks in a RC (Reinforced Concrete) beam
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Figure 1.3: Shear and flexural deformations in a RC beam (Adapted from Chiu et al. [13])
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1.2. Research Objectives and Methodology
There is a lack of simplified engineering models to predict shear crack width and shear de-
flection in slender reinforced concrete beams. Therefore, the following research objectives
for this MSc thesis project are stated.

1. To develop an engineering model for prediction of shear crack width in slender re-
inforced concrete beams.

2. To develop a simplified approach to predict shear deflections under service loads
for the slender reinforced concrete beams.

1.3. Research Questions
In order to successfully achieve the aforementioned research objectives, the following re-
search questions are systematically answered in the thesis.

1. How to develop a robust and effective prediction model for the shear crack width
under service loading conditions?
A comprehensive study of the available models for shear crack width and parame-
ters affecting shear crack width is performed to understand the state of the art. The
available models in the literature are compared and the common factors among the
various models are identified to understand the most crucial parameters affecting
shear crack width. After finding the most crucial factors impacting the shear crack
width, the prediction accuracy of the available models in literature to evaluate these
individual parameters is assessed by comparing with the experimental observations.
The crucial factors in the models giving predictions close to the experimental val-
ues are then used to propose models for calculating shear crack width under service
loads in slender reinforced concrete beams.

2. How to develop a simplified approach to predict the shear deflections in the slen-
der reinforced concrete beams under service loads?
A simplified approach based on the assumption of variation of shear force-deflection
response of a slender reinforced concrete beam in a predefined manner is used to
develop the proposed models for predicting shear deflection in slender reinforced
concrete beams under service loads.

3. How to validate the proposed model for predicting the shear crack width and shear
deflection of the reinforced concrete beams?
The predictions of shear crack width and shear deflection from the proposed mod-
els are compared with and validated against the experimental observations. In this
study, experimental data from the literature is referred and no new experiments are
perform.

1.4. Scope
The goal of this MSc thesis is to develop an engineering approach for predicting shear crack
width in slender reinforced concrete beams. In this study no distinction is made between
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the predictions for average crack width of flexural-shear cracks and pure shear cracks in the
shear span. The study is limited to the application of short term monotonic service loads.
The behaviour under cyclic loading and creep behaviour are not a part of this MSc thesis.
The experimental data in the literature is referred for validation in this study and therefore,
no experiments are performed. The behavior under flexural cracking lies outside of the
scope of this study.

1.5. Outline
Figure 1.4 shows the organization of thesis into various chapters.

Figure 1.4: Organization of thesis into various chapters
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Chapter 2 : This Chapter presents a literature review of the available models for the shear
crack width. The crucial parameters affecting shear crack width are identified.
Chapter 3 : This Chapter presents the results of the prediction accuracy of the various mod-
els reviewed in Chapter 2 ) by comparing with experimental observations. The models with
predictions closest to the experimental results are identified.

Chapter 4 : This Chapter presents the theoretical background and assessment of the pro-
posed models for shear crack width and shear deflection under service load.

Chapter 5 : This Chapter presents the conclusions of this MSc thesis and a few recom-
mendations for the future work.



2
Literature Review

“The only source of knowledge is experience.”

Albert Einstein

This Chapter begins with a description of two available shear crack widthmod-
els. It may be noted that there are other available empirical models as well
however, these models are presented in Appendix A for a clear and concise
discussion. The most crucial parameters affecting shear crack width are then
identified. This is followed by the study of available models in literature for the
evaluation of these important parameters.

7
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2.1. Shear Cracks in Concrete
Cracking in concrete is governed by the magnitude of principle tensile stresses which are
the resultant of bending and shear stresses. Crack occurs at locations where principle ten-
sile stress exceed the tensile strength of concrete. Generally, cracks are initiated in the ex-
treme fiber of the beam where the bending stresses are maximum. However, in case of
beams with extremely thin webs, cracks can also arise directly in the web [40]. As we go
from the extreme fiber (with maximum bending stress) towards the neutral axis, the ori-
entation of the principle stresses change which depends on the relative values of bending
and shear stress. Therefore, the crack orientation changes and cracks are no more per-
pendicular to the longitudinal axis of the beam. The cracks which initially opened as pure
bending (flexural) cracks at the extreme tension fiber of the beam rotate and form the so
called flexure-shear cracks. The pure flexural cracks arise in the portion of the beam with
zero shear force. Figure 2.1 shows the various types of cracks in concrete.
In the following sections, a review of the shear crack width models and the models for
parameters affecting shear crack width is presented. It should be noted there are several
empirical models available in the literature for shear crack width and its important pa-
rameters. However, the discussion in this Chapter is limited to the models identified as
relevant and used later in the development of the proposed engineering models for shear
crack width in this MSc thesis. Figure 2.2 shows the overview of the topics discussed in this
Chapter.

Flexural Cracks

Web Shear Cracks

Flexural-Shear Cracks

Figure 2.1: Various types of cracks in reinforced concrete beam
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Crucial	Parameters

Figure 2.2: Overview of the topics discussed in Chapter 2

2.2. Shear Crack Width
In this section models namely EC2 crack width model and Zakaria et al. [65] crack width
model are discussed. It may be noted that in all the equations in this Chapter the default
units for the various parameters are in N and mm convention unless stated otherwise.

1. EC2 Crack Width Model [19]
This model is based on the expression of crack width in terms of the mean strain of
the reinforcement bar considering the tension stiffening effect of concrete in between
the cracks. It is assumed that the mean tensile strain in the reinforcement is absorbed
in the crack width over the distance between two cracks. Equation 2.1 is given for the
calculation of crack width. It may be noted that wk seems to be the characteristic
crack width (it is not clearly stated) going by the convention used in EC2 to indicate
characteristic values with a sub-script k. It may also be maximum crack width. It is
important to keep into consideration that this crack width needs to be converted to
mean crack width for purpose of comparison with the experimental values.

wk = sr,max(εsm −εcm) (2.1)

εsm −εcm =
σs −kt

fct ,e f f

ρp,e f f
(1+αeρp,e f f )

Es
≥ 0.6

σs

Es
(2.2)
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where

kt factor to take into account the duration of the load.
=0.6 for short-term load.
=0.4 for long-term load.

The mean strain in the reinforcement over the crack width depends on the stress
distribution in the reinforcement as well as the concrete surrounding the reinforce-
ment (Figure 2.3). Once a crack arises in the reinforced concrete, the entire tensile
force is taken by the reinforcement at the crack location. However, gradually this
force is transferred to the surrounding concrete over a certain distance through bond
stresses. At a certain distance concrete carries the original magnitude of tensile force
[12]. This minimum distance required by the reinforcement to transmit the forces
to concrete is called transfer length. Among other factors, this length is influenced
by the bond stress. It is experimentally observed that the bond stress between con-
crete and reinforcement can be assumed as constant for the purpose of calculation
of crack width. Bond stress is expressed by Equation 2.3.

τbm = 2 fctm (2.3)

where
τbm mean bond stress between the reinforcement bar and concrete.
fctm mean axial tensile strength of concrete.

The assumption of constant bond stress leads to linear stress profiles for reinforce-
ment and concrete within the transfer length. The maximum crack width can be
expressed as the maximum crack spacing times mean difference in the steel and con-
crete strain over the transfer length. It may be noted that the predicted crack width
is an estimation of the crack width only in the hidden tensile member region around
the reinforcement (Figure 2.4).
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Figure 2.3: Development of bond stresses along the transfer length around a crack

Figure 2.4: Effective height of the hidden tensile member for different structural elements
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Assumptions/ Limitations of Model

(a) The crack is assumed to open perpendicular to the reinforcement.

(b) The crack width prediction is limited to the effective height of the hidden tensile
member.

2. Zakaria et al. Shear Crack Width Model [65]
This model is based on the findings in the experimental study by Zakaria et al. [66].
The authors made the following observations regarding the diagonal crack width in
reinforced concrete beams.

(a) Shear crack width increases proportionately with the increase in the shear crack
spacing and shear stirrup strain.

(b) The shear crack width to shear crack spacing ratio decreases with increase in the
transverse and longitudinal reinforcement. This ratio increases with increase in
side concrete cover to shear stirrups.

(c) The shear crack width to shear crack spacing ratio is also influenced by the type
of reinforcement bar (deformed or plain reinforcement bar).

The empirical Equation 2.4 is proposed to evaluate the average diagonal shear crack
width in reinforced concrete beams.

wav g = K (cs)a(
1

ρw
)b(

1

ρt
)c (smθ−av g )εw (2.4)

K = 0.112kskt (2.5)

wmax = kmax wav g (2.6)

where
K constant to account for the stirrup type.
ks = 1.0 for shear stirrups with conventional closed hook (135o).
ks = 1.2 for shear stirrups comprising of two U-shaped lap
spliced parts.
kt constant to account for the type of shear stirrup rebar.
kt = 1.0 for HYSD (High Yield Strength Deformed) bars.
kt = 1.2 for plain reinforcement bars.
ρw =Aw /bw sy .

a, b and c empirical constants.
a =0.05
b =0.207
c =0.252
kmax correlation factor.

=1.4
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Zakaria et al. [65] perform an extensive review of the available shear crack width
models. The equations for these models are included in the Appendix A. Since the
proposed model by Zakaria et al. [65] is developed after an analysis of the perfor-
mance and deficiencies of these models, the analysis of these models is omitted in
this thesis for brevity and clarity of the content.

Assumptions/ Limitations of Model

(a) This model comprises several empirical constants.

(b) The formula to evaluate the stirrup strain is not given and therefore, in its cur-
rent form the shear crack width can be calculated only when the stirrup strain
is known experimentally.

3. Summary of the Crack Width Models
The most significant parameters for the prediction models for shear crack width are:
shear crack spacing, side concrete cover to shear stirrups, shear reinforcement ratio,
longitudinal reinforcement ratio, type of shear stirrup bars and shear reinforcement
anchorage type. There are certain factors which affect both shear crack spacing and
shear crack width such as: shear and longitudinal reinforcement type and ratios, side
concrete cover to the shear stirrups etc [65]. Based on the above two models for shear
crack width, it is clear that the shear crack spacing, diagonal compression strut angle
and the strain in the reinforcement play a crucial role in the determination of shear
crack width. Based on the truss analogy for the shear resistance of a beam, the shear
stirrup force can be determined by subtracting the concrete contribution to shear
resistance for a given applied load. The subsection 2.2.1, subsection 2.2.2 and sec-
tion 2.3 comprise a discussion about the available models for calculation of shear
crack spacing, diagonal compression strut angle and concrete contribution to shear
resistance respectively.

2.2.1. Shear Crack Spacing
1. EC2 Crack Spacing Model [19]

(a) Reinforcement bars spaced <5(c +φ/2) c/c (centre to centre)
This model is derived using the cracking in a tension member model wherein
the crack spacing between the two cracks is governed by the transfer length for
the forces to get transferred from the steel reinforcement bar to concrete.
According to EC2 [19], if the reinforcement bars are located with respect to each
other within a distance of 5(c+φ/2), the maximum crack spacing may be calcu-
lated using the Equation 2.7.

sr,max = k3c +k1k2k4φ/ρp,e f f (2.7)

It is suggested to use φeq where more than one type of reinforcement bar di-
ameters are present. If a section contains n1 and n2 reinforcement bars with
diameters φ1 and φ2 respectively, then φeq is calculated using Equation 2.8.

φeq = n1φ
2
1 +n2φ

2
2

n1φ1 +n2φ2
(2.8)
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where
c the clear cover to the longitudinal reinforcement.
k1 coefficient to account for the bond properties of the reinforcement.

= 0.8 for HYSD (High Yield Strength Deformed Bars).
=1.6 for plain reinforcement bars.

k2 coefficient to account for the type of strain distribution.
=0.5 for flexure.
=1.0 for pure tension.

It may be noted that the recommended values of k3 and k4 are 3.4 and 0.425
respectively. The second term on right hand side in the Equation 2.7 arises from
the transfer length for the transfer of forces from the reinforcement bars to con-
crete. The first term on right hand side in the equation effectively provides a
lower limit for the maximum crack spacing in case of beams with very high re-
inforcement ratios.

(b) Reinforcement bars spaced >5(c +φ/2) c/c (centre to centre)
In this case an maximum to the crack spacing is suggested as given in Equa-
tion 2.9.

sr,max = 1.3(h −x) (2.9)

It may be noted that for a shear stirrup this would mean that if the distance between
the legs of the stirrups exceeds 5(cs +φs/2) (where cs and φs are the side concrete
cover to stirrups and shear stirrup diameter respectively) the crack spacing parame-
ter sr,max,y = 1.3b (where b is the cross section width of the beam). The crack spac-
ing in reinforced concrete members where the angle between the axes of principle
stresses and the direction of reinforcement > 15o is given by Equation 2.10.

sr,max = 1
cosθ

sr,max,y
+ si nθ

sr,max,z

(2.10)

where
θ angle between the rebars in y direction and the direction of principle tensile

stress as shown in Figure 2.5.
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Figure 2.5: The definition of theta in EC2 [19] crack spacing model

It may be noted here that the different shear crack spacing models may look different
in terms of taking sine or cosine of theta with respect to the crack spacing control
characteristics of reinforcement in a particular direction. However, on close inspec-
tion it is clear that they are exactly the same because considering the angle between
tensile stress and reinforcement in either longitudinal or transverse direction leads
to the trigonometric ratio changing from cosine to sine.
Mean Shear Crack Spacing
In the derivation of the EC2 Crack Spacing Model, the maximum crack spacing cor-
responds to 2 times the transfer length (for the transfer of forces from reinforce-
ment to concrete). The minimum crack spacing corresponds to the transfer length.
Therefore, it can be assumed that the mean crack spacing corresponds to 1.5 times
the transfer length. Therefore, the maximum crack spacing from EC2 Crack Spac-
ing Model in Equation 2.10 is multiplied with (1.5/2) to obtain the mean shear crack
spacing.

sr,av g = 0.75sr,max (2.11)

where
sr,av g average shear crack spacing.

Figure 2.6 shows the orientation of the axes as considered in EC2 crack spacing model.
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ε θ
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a a
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z

Figure 2.6: The orientation of axes in EC2 [19] crack spacing model

Figure 2.7: Variation of crack width with respect to distance from the reinforcement bars (Adapted from EC2
[19])

Figure 2.7 shows the variation in crack width with respect to the distance from the
reinforcement bar.

where
c clear cover to the reinforcement bar.
A neutral axis of the beam.
B concrete tension zone surface.
C predictions of the crack spacing from Equation 2.9.
D predictions of the crack spacing from Equation 2.7.
E actual crack width on the beam surface.
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Figure 2.8: Assumed diagonal shear cracks at a constant crack spacing

Figure 2.9: Assumed horizontal cracks caused by transverse tension with crack spacing smy in between the
two adjacent cracks

Figure 2.10: Assumed vertical cracks caused by axial tension with crack spacing smx in between the two
adjacent cracks

Assumptions/ Limitations of Model
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(a) This model lacks a description about the crack control characteristics of rein-
forcement in transverse direction.

(b) The shear cracks are assumed parallel to each other and at a constant spacing.

2. fib MC Crack Spacing Model [23]
The Equation 2.12 is proposed to obtain the maximum crack spacing for reinforced
concrete members with reinforcements in orthogonal directions.

ls,max =
(

cosθ

lsx,k
+ si nθ

ls y,k

)−1

(2.12)

where
θ is the angle between the reinforcement in x direction and direction of ten-

sile stress (Figure 2.11).

lsx,k = 1

4

fctm

τbm

φs

ρs
(2.13)

It may be noted here that for a stabilized cracking stage and for short term loading
τbm is equal to 1.8 fctm [23]. Figure 2.12 shows the orientation of the axes in the fib
MC [23] crack spacing model.

Figure 2.11: The definition of theta in fib MC [23] crack spacing model
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ε θ
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Figure 2.12: The orientation of axes in fib MC 2010 [23] crack spacing model

Assumptions/ Limitations of Model

The shear cracks are assumed parallel to each other and at a constant spacing.

3. Zakaria et al. Crack Spacing Model [65]
The Equation 2.14 is proposed based on the harmonization of the CEB-FIP MC 1978,
CEB-FIP MC 1990 and Collins and Mitchell Model. The original CEB-FIP (1978) [18],
the crack control characteristics of the longitudinal reinforcement sm,x is not included.
This factor is introduced by Zakaria et al. Moreover, it may be noted here that SMCFT
[7] suggests the simplification to use the crack control characteristic parameter of
the longitudinal reinforcement sm,x equal to the vertical spacing (along the height of
the beam) between the longitudinal reinforcement in the longitudinal cross section
plane. However, this spacing is not considered either in the EC2 crack spacing model,
or in the Zakaria et al. crack spacing model.

sθ =
1

si nθ
sm,x

+ cosθ
sm,y

(2.14)

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx
(2.15)

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy
(2.16)

ρx = As + Aps

Acx,e f
(2.17)

Acx,e f = 2.5(h −de )bw (2.18)

de =
Asd + Apsdp

As + Aps
(2.19)

ρy = 0.5Aw

Ac y,e f
(2.20)

Ac y,e f = mi n
(
2.5(cs +dby /2)sy , (bw /2)sy

)
(2.21)
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where
sy ≤15dby .
k1 factor to account for the bond characteristics of the reinforcement.

= 0.4 for HYSD bars.
=0.8 for plain reinforcement bars.

k2 factor to account for the shape of the stress distribution.
=0.125 for in flexure.
=0.25 for the pure tension.

Figure 2.13 shows the various crack spacing parameters used in this model. The au-
thors also perform a review of the available diagonal crack spacing models [65]. The
equations for these models are included in the Appendix A. Since the the proposed
model by Zakaria et al. [65] is developed after an analysis of the performance and
deficiencies of these models, the analysis of these models is omitted in this thesis for
brevity and clarity of the content.

Figure 2.13: Various geometrical parameters used in the shear crack spacing model [65]

Assumptions/ Limitations of Model
The shear cracks are assumed parallel to each other and at a constant spacing.

4. Summary of the Shear Crack Spacing Models
The review of the available shear crack-spacing models leads to the following infer-
ences.

(a) The most significant parameters for shear crack -spacing based on the review of
the available models are: shear crack orientation θ, location of the longitudinal
and shear reinforcement in the cross section, shear reinforcement and longitu-
dinal reinforcement ratios (ρl and ρw ) and effective concrete areas around the
stirrups and longitudinal rebars, bond properties of shear stirrups and longitu-
dinal reinforcement [65].
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(b) It is recognized the shear crack spacing is governed by the crack control charac-
teristics of both longitudinal and transverse reinforcements which is often rep-
resented by calculating the horizontal and vertical crack spacing components
sx and sy . These vertical and horizontal cracks spacing are the spacings which
would occur when cracking occurs perpendicular to the longitudinal and shear
reinforcement respectively. The reinforcement diameters and reinforcement ra-
tios appear to be the basic parameters which influence the shear crack spacing.

(c) The position of the stirrups from the edge or the center of a cross section is also
included as a parameter influencing shear crack spacing in the various models
(mentioned in this Chapter as well as those in Appendix A). Similarly, effective
depth of the beam and the cover to the longitudinal reinforcement are used to
account for the position of the longitudinal reinforcement.

(d) One of the primary parameters mentioned in most of the shear crack width
models is the stirrup strain. The shear crack spacing is evaluated using the prod-
uct of stirrup strain with shear crack spacing in majority of the models. The
shear stirrup percentage is also a parameter that affected the shear crack width
either directly or through shear crack spacing.

(e) There are a limited number of models available to calculate the shear crack an-
gle. The compression strut angle is close to the shear crack angle but not ex-
actly the same [65]. If we compare the crack spacing models of EC2 [19] with
fib MC [23] and model given by Zakaria et al. [65], the definition of the angle
theta seems to be different. In EC2 [19], the angle theta is the angle between
the reinforcement in y direction and tensile stresses while it the angle of com-
pression strut (approximately equal to the shear crack angle) in the fib MC [23]
and Zakaria et al. [65] model. This difference in definition is the reason for the
reversed sine and cosine angles in the denominator of the smθ−av g expression
in these models. Therefore, these apparently different forms of angle lead to
similar expressions ultimately.

(f) From the literature review, it is inferred that the value of the effective area around
longitudinal and shear reinforcement is a crucial factor in determining the pre-
dicted values.

(g) It can be seen that the different models assigned different significance to the
parameters like shear and longitudinal reinforcement ratios, strains and shear
and longitudinal reinforcement placement in the cross section etc. based on
empirical fitting. However, these parameters may not be exhaustive when it
comes to the shear cracking behavior under service loads. For instance, it is
known that shear crack width varies along the crack trajectory [65]. Hence, it
must be influenced by the distance of the location of measurement from the
stirrups, longitudinal reinforcement and the crack tip etc.
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2.2.2. Diagonal Compression Strut Angle
1. Theorem of Plasticity [19]

In the conventional truss analogy for a reinforced concrete beam, it is assumed that
the shear force is carried by the compression struts once the shear reinforcement be-
gins to yield [28]. The diagonal compression strut can be obtained using the Theorem
of Plasticity by equating yield force in the shear stirrups to the diagonal compression
strut capacity. In this theory, it is assumed that the strut would rotate to smaller val-
ues of angle as the force increases beyond the yield force of the steel reinforcement
and the ultimate failure is characterized the crushing of the diagonal strut. The Equa-
tion 2.22 for θ can be obtained [48].

θ = si n−1

√
Asw fy wm

bw sν1αcc fcm
(2.22)

ν1 = 0.6

(
1− fcm

250

)
(2.23)

Figure 2.14: The condition for strut inclination at failure [28]

Assumptions/ Limitations of Model
The model assumes a constant value of the compression strut angle throughout the
shear span.

2. SMCFT Model [7]
The determination of the diagonal compression strut angle is based on the compati-
bility of strains between the shear stirrup strains and the concrete strain and the equi-
librium between the concrete and stirrup stresses. The theory assumes that the crit-
ical crack is aligned at a normal direction to the direction of principle tensile strain.
According to the SMCFT [7], the angle of inclination can be obtained using Equa-
tion 2.24.

θ = 29+7000εx (2.24)

It may be noted that the angle θ In Equation 2.24 is in degrees. SMCFT is obtained
by making a few assumptions in the MCFT. It is assumed that the failure shear stress
is 0.25 fc (where fc is the cylindrical compressive strength of concrete). The princi-
ple compressive stress-strain relationship is assumed as linear on account of the low
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magnitude of compression stresses. The value of θ is obtained from curve fitting of
the observations made for θ versus εx (longitudinal strain). An additional assumption
of crack spacing equal to 300mm is made for the concrete members with reinforce-
ments in orthogonal directions. The general shear provisions of the CSA-2004 code
[5] are based on MCFT [57]. The longitudinal strain “εx” in the Equation 2.24 can be
obtained using Equation 2.25 [5].

εx =
ME
dv

+VE

2ES AS
(2.25)

Figure 2.15: Determination of longitudinal strain in a reinforced concrete non-prestressed beam [4]

Figure 2.15 shows the contribution of the moment, shear force and axial force in the
determination of the axial strain in the longitudinal reinforcement bars.

Assumptions/ Limitations of Model

(a) The model assumes a failure shear stress equal to 0.25 fc .

(b) The clamping stress in the transverse direction is assumed equal to zero.

(c) The diagonal crack spacing is assumed equal to 300 mm in the model.

3. CCC Model [15]
This model give the inclination of the critical flexural shear crack in reinforced con-
crete beam. The critical crack is assumed as the crack closest to the section with zero
bending moment. It is assumed that the critical flexural shear crack opens when the
bending stress in the extreme fiber of the cross section reached the flexural tensile
strength. It is observed through experiments that the horizontal projection of the first
branch of the flexural shear crack could be approximated as almost equal to 0.85d
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(see Figure 2.16). The model states that the inclination of the diagonal compression
strut is equal to the mean angle of the shear crack and is given by the Equation 2.26.

cotθ = 0.85ds

ds −x
≤ 2.50 (2.26)

It is important to note here that Equation 2.26 is applicable for stresses at or after the
yielding of the reinforcement [31].

where
x: depth of neutral axis of the cracked section of a prestressed con-

crete beam evaluated using the assumption of zero concrete tensile
strength. Moreover, it is assumed that concrete in compression zone
is in linear elastic zone.

x = xo (for reinforced concrete beams without axial load).
ds : effective shear depth.

xo

d
=αeρl

(
−1+

√
1+ 2

αeρl

)
≈ 0.75(αeρl )

1
3 (2.27)

1

Nc

Ns

Nc

Ns

crackcrack
a a

a a

a a

Figure 2.16: Evolution of the critical shear crack (adapted from [15]

Assumptions/ Limitations of Model
The horizontal projection of the first branch of flexural-shear crack is assumed equal
to 0.85d .

4. CFT Model [16]
This theory assumes that the concrete element resists the externally applied shear
stress by generating tensile stresses in both transverse and longitudinal reinforce-
ment and compressive stress in concrete. The crack pattern is simply assumed as a
series of parallel cracks all inclined at an angle θ to the longitudinal reinforcement.
Figure 2.17 shows the summary of the equilibrium, compatibility and constitutive
relations according to this theory. The rearrangement of the equations shown in Fig-
ure 2.17 for linear elastic reinforcement response give Equation 2.28 to calculate the
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diagonal compression strut angle (or the inclination of the principle stress in this
case).

t an4θ =
1+ 1

nρl

1+ 1
nρt

(2.28)

where: n: modular ratio = Es/Ec .
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Figure 2.17: Compression Field Theory [4]

Assumptions/ Limitations of Model
The application of the model is limited to situations where reinforcement response
is in linear elastic range.
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5. NLFEA Model (Ueda et al. Model) [56]
The authors perform NLFEA to find the inclination of the principle compressive stress
in shear reinforced concrete beams and propose the Equation 2.29 and Equation 2.30
to evaluate the diagonal compression strut angle (in degrees).

θ =−α(v − vo)2 +θo vo ≤ v ≤ 1.7vc (2.29)

θ = θ1

(
1.7vo

v

)β
1.7vc ≤ v (2.30)

θo = 3.2
( a

d

)
+40.2 a/d > 1.5 (2.31)

θ1 =−α(1.7vc − v)2 +θo (2.32)

vo = 0.9vc (2.33)

vc = 0.2 f
1
3

c (100ρt )
1
3 (1/d)

1
4

(
0.75+ 1.4

a/d

)
(2.34)

α= 0.4
( a

d

)2
+2.9 (2.35)

β= (0.7−32
p
ρtρw )

a

d
(2.36)

where
v is nominal shear stress.
V applied shear force.
vc is nominal shear stress at first diagonal cracking.
ρt longitudinal tensile reinforcement.
a/d shear span ratio (>1.5).
v = V

bd

Assumptions/ Limitations of Model
The model is applicable for beams with a/d > 1.5.

6. Summary of the Diagonal Compression Strut Angle Models
It is stated and experimentally observed that the angle of diagonal compression strut
angle is more or less close to the shear crack angle ([4], [65], [41]). The Theorem of
Plasticity predicts the diagonal compression strut angle at ULS. A unique value of θ
(diagonal compression strut angle) which is independent of the applied shear force
is obtained. The predictions given by SMCFT [7] and [16] are based on the compli-
ance with equilibrium and compatibility conditions of diagonally cracked concrete
member with orthogonal reinforcement bars. The CFT [16] give a constant value of θ
similar to the Theorem of Plasticity model. However, the predictions given by SMCFT
[7] and NLFEA model [56] are based on the magnitude of applied shear stress on the
beam. Both the models allow for the reduction of the compression strut angle as the
applied shear force increases.
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2.3. Concrete Contribution to Shear Resistance Models
2.3.1. Force Transfer in a Shear Reinforced Beam
Many design codes in practice use sectional design approach for the shear resistance of
reinforced concrete beams. Truss analogy for beams is one such approach which is intro-
duced as early as 1900s. The beam with diagonal shear cracks can be idealized as a truss
for analysis and design purposes. Figure 2.18 shows the schematic presentation of various
discretized truss components of a reinforced concrete beam. The idealized truss comprises
of the diagonal compression strut (of concrete), horizontal concrete compression chord at
the top, horizontal tension chord at the bottom (longitudinal tension reinforcement) and
vertical ties (stirrups) [41]. The diagonal concrete compression struts transfer the external
force to the vertical tension ties. The shear resistance in the truss analogy therefore, pri-
marily comes from the vertical ties (or stirrups). The flexural resistance comes from the
horizontal top and bottom chords. While the concrete contribution to the shear resistance
is ignored in the conventional models, recently a greater number of design codes recognize
this concrete contribution and adopt a combination of shear resistance of steel ties from
the truss analogy in combination with an additional term for concrete contribution [4].

PP
a a

L
Compression Strut

Shear Cracks

Tension Chord

Compression Chord

Figure 2.18: Truss analogy for a shear reinforced beam subjected to shear and flexure force

2.3.2. Shear Transfer Action Types
There is a consensus in the literature regarding the application of additive model ( i.e total
shear resistance as a sum of shear strength contribution from concrete and steel respec-
tively) to calculate the total shear resistance of concrete [4]. The concrete contribution to
shear resistance comes from various individual components otherwise called shear trans-
fer actions in this study. The different shear transfer actions are shown in Figure 2.19. The
different shear transfer actions of dowel action, aggregate interlock and concrete compres-
sion zone can be merged together and represented by a single term Vc . Therefore,the total
shear resistance V can be obtained using Equation 2.37.

V =Vc +Vs (2.37)

where
Vc concrete contribution to shear resistance.
Conventionally, in the experiments the shear resistance contribution from the stirrups is
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measured using the strain values in the stirrups obtained with the installed strain gauges.
Thereafter, the concrete contribution to the shear resistance is calculated. Figure 2.20
shows the various shear transfer mechanisms comprising the concrete contribution to total
shear resistance. The various shear transfer mechanisms comprising the shear resistance
are briefly described below.

Figure 2.19: Different shear strength transfer mechanisms of a reinforced concrete beam without shear
reinforcement Yang [62]

Figure 2.20: Different shear strength components of a reinforced concrete beam with shear reinforcement
(Hu and Wu [32])

1. Aggregate Interlock Effect
This effect comes into picture due to the protruding aggregates between the two
cracked surfaces. The tangential and normal displacements between the two cracked
surfaces lead to the development of compressive and normal stresses. The protrud-
ing aggregates resist the slipping between the two surfaces and thereby help in trans-
mitting the shear. The magnitude of aggregate interlock effect depends on the crack
width. It decreases sharply with increase in crack width. This effect decreases with
decrease in the size of aggregate since smaller aggregates implies smoother crack
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plane surface. The aggregate interlock effect for a high strength concrete is lower than
for a normal strength concrete due to the cracks passing through aggregates (which
actually are responsible for bridging the crack surface and provide aggregate inter-
locking shear resistance in case of normal strength concrete) instead of the cement
fine aggregate matrix in high strength concrete.

2. Uncracked Concrete Compression Zone Contribution
The uncracked compression zone of concrete is subjected to shear stress along with
compression. The contribution of this zone to the shear resistance depends on the
depth of compression zone. For slender beams at ULS, the contribution of compres-
sion zone to shear resistance is small owing to its small depth.

3. Dowel Action
This shear resistance mechanism come into action because of the ability of the longi-
tudinal reinforcement to resist shear force perpendicular to its axis. The dowel action
provides shear resistance through either bending, shear or kinking action as shown
in Figure 2.21.

Figure 2.21: Different mechanisms of shear transfer by dowel action [50]

In the above Figure 2.21,
l denotes the free length over which deformations occur in the reinforce-

ment bar. The other symbols have their usual meanings.

4. Residual Tensile Stresses
When the crack width is small (<0.1mm), the cracked concrete still has a residual
tensile strength to transmit the shear forces across cracks. However, when the crack
width is larger (>0.1mm), the contribution of this shear transfer mechanism is about
10 times smaller than the aggregate interlock effect [63].

5. Axial Resistance of Shear Stirrups
This is one of the most significant shear transfer mechanism in a shear reinforced
beam. The shear resistance in this mechanism arises from the component of the
stress (in stirrups) perpendicular to the crack plane. Besides carrying the shear force,
stirrups also confine the growth of diagonal cracks in beams.
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2.3.3. Concrete Contribution to Shear Resistance Models
ASCE-ACI Committee 426 [3] recommends that the concrete resistance to the shear resis-
tance of the shear reinforced concrete beams can be considered identical to the concrete
contribution to the shear resistance in case of reinforced concrete beams without shear
reinforcement. Thus, this section summarizes numerous approaches to evaluate the con-
crete contribution to the shear resistance as given by various researchers for the shear re-
inforced beams as well as models provided to evaluate the shear resistance of reinforced
concrete beams without shear reinforcement (in this study the failure load or the ultimate
shear resistance of the shear un-reinforced beam is assumed to be equal to the concrete
contribution to the shear resistance in case of shear reinforced beams).

1. EC2 Shear Resistance of Shear Un-reinforced Beams Model [19]
Equation 2.38 is proposed to evaluate the shear resistance of shear un-reinforced
concrete beams.

VRd ,c = [CRd ,c k(100ρl fck )
1
3 +k1σcp ]bw d (2.38)

with a minimum value given by Equation 2.39.

VRd ,c = (vmi n +k1σcp )bw d (2.39)

where

k = 1+
√

200

d
≤ 2.0 (2.40)

ρ = Asl

bw d
≤ 0.02 (2.41)

Asl Cross sectional area of the longitudinal reinforcement extended to a section
≥lbd +d past the section under consideration.

bw smallest width of the cross-section in the tensile region.

σcp = NE d
Ac

< 0.2 fcd

Ac area of cross-section of concrete (in mm2).

The recommended values of various parameters are given below.
CRd ,c 0.18/γc .
k1 0.15.

vmi n 0.035k
3
2 f

1
2

ck .
where
Figure 2.22 shows the definition of Asl as specified in EC2 (2004).
The term vmi n is defined as the minimum mean shear stress at which opening of a
flexural shear crack in a shear un-reinforced beam occurs simultaneously with the
yielding of the longitudinal tension reinforcement. This term facilitates the calcula-
tion of the minimum shear capacity for the members with very low amount of flexural
reinforcement [61].
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Figure 2.22: The longitudinal reinforcement in Equation 2.41 [19]

In the Figure 2.22, lbd : is the design anchorage length.

Assumptions/ Limitations of Model
The model is valid for beam specimens with longitudinal reinforcement ratio ≤ 2%.

2. ACI 318-11 Model [33]
The minimum shear strength of a shear un-reinforced beam can be calculated using
the empirical Equation 2.42.

Vc = 2λ
√

f
′

c bw d (2.42)

Equation 2.42 is obtained by the simplification of Equation 2.43.

Vc =
(
1.9λ

√
f ′

c +2500ρw
Vud

Mu

)
bw d (2.43)

where
ρw longitudinal reinforcement percentage.
Vu factored shear force in lb.
Mu factored moment at section in lb.

It must be noted that the units in this model are in fps (foot-pound-second) system.
Assumptions/ Limitations of Model

(a) It is assumed that the critical section is located at a distance d from the support.

(b) An assumption is made that ratio 2500ρw (Vud/Mu) = 0.1
√

fc .

3. CCC Model [15]
The concrete contribution to shear resistance in this model is based on the multi-
action mechanical model. This model is based on the premise that the shear fail-
ure in a shear-reinforced beam in initiated by the concrete compression chord being
subjected to the principle stresses reaching the Kupfer’s bi-axial failure envelope [35].
The shear resistance provided by concrete comprises of contribution from the com-
pression zone, dowel action and shear transfer across cracks. The Equation 2.44 is
proposed to evaluate this contribution to the shear resistance.

VRm,c =Vc +Vw +Vl = 0.3ς
x

d
( fcm)

2
3 bv,e f f (2.44)
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where
Vc the contribution of the compression zone.
Vw the shear transferred by concrete across the crack.
Vl the contribution of longitudinal rebars to shear resistance of concrete

through dowel action.

x

d
= 0.75(αeρl )

1
3 (2.45)

if x≤h f

bv,e f f = bv = bw +2h f ≤ b (2.46)

if x > h f

bv,e f f = bw + (bv −bw )

(
h f

x

) 3
2

(2.47)

where
bv effective width of the compression flange.
b total cross-section width at the flange.

bv = bw +2h f ≤ b (2.48)

Figure 2.23: Notations for a T beam [15]

The minimum shear strength contribution by concrete can be expressed Equation 2.49.

VRm,cmi n = 0.25(ς
x

d
+ 20

d
)( fcm)

2
3 bw d (2.49)

ς= 2√
1+ d

200

(
d

a

)0.2

≥ 0.45 (2.50)

According to the model, failure occurs when there is a damage concentration around
the so-called critical shear crack with increasing load. As the load is increased, a sec-
ond branch of crack is opened. This model assumes a linear and parabolic distri-
bution of normal and shear stresses respectively for the concrete compression chord
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above the critical shear crack. With the increasing load this second crack branch in-
creases in length and eventually leads to a continuous crack connecting the tip of the
first crack branch to the point of application of the external point load. This genera-
tion of a through crack marks the shear failure of the beam. Several assumptions are
made to develop a simplified expression in this model. The following assumptions
are made.

(a) The diagonal crack spacing is equal to d (effective depth to the longitudinal re-
inforcement).

(b) The tensile stress versus crack opening is a linear relationship.

(c) The mean value of longitudinal reinforcement is assumed as ρ = 1.5% and the
mean shear crack angle is assumed to be θ = 36o .

(d) The horizontal projection of the critical shear crack is equal to 0.85d as observed
in the experiments.

(e) The depth of the neutral axis can be calculated from the cracked section analysis
for concrete sections under pure bending.

It should be noted that the model introduces an empirical factor given by Zararis and
Papadikis [68] to account for the size effect.

Si ze f actor =
{

1.2−0.2
a

d
d

}
≥ 0.65 (2.51)

d in m in the Equation 2.51.
Assumptions/ Limitations of Model

(a) The mean longitudinal reinforcement ratio is assumed equal to 1.5%.

(b) The diagonal shear crack spacing is assumed equal to d .

(c) It is assumed that the tensile stress- crack opening curve is linear.

(d) The mean shear crack angle is assumed equal to 36 degrees.

4. JSCE Model [1]
The design shear strength in this model is based on a conventional 45o truss analogy
with an additional contribution from concrete to the shear resistance offered by stir-
rups. A due consideration is given to the influence of axial forces, effective depth and
longitudinal reinforcement on the shear strength contribution from concrete. The
empirical Equation 2.52 is proposed to calculate the contribution of concrete to the
shear capacity of the reinforced concrete beam.

Vcd =βdβpβn fvcd bw d/γb (2.52)

fvcd = 0.20 3
√

f
′

cd (N /mm2) where fvcd ≤ 0.72(N /mm2) (2.53)

βd = 4p1000/d , when βd > 1.5, is taken as 1.5.

βp = 3
√

100ρv , when βp > 1.5, is taken as 1.5.
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βn =1+2Mo/Mud = 1+ 4Mo/Mud when βn > 2, is taken as 2 when βn < 0, is
taken as 0.

ρv As/bd .
γb 1.3 (used generally).
Assumptions/ Limitations of Model
Equation 2.52 is developed from the formula given by Niwa et al. but after neglecting
the effect of a/d [46].

5. AASHTO Model [47]
This design procedure assumes that the shear stress is constant over the effective
shear depth of the beam dv . The design method is derived from MCFT [57] which
is described in Appendix B. The equilibrium of the forces in the diagonally cracked
concrete lead to the strain in the tension and compression flange. The Equation 2.54
is proposed to evaluate the concrete contribution to the shear resistance. It must be
noted that the units in this model are based on fps convention.

Vc = 0.0316β
√

f
′

c bv dv (2.54)

The concrete contribution Vc comes from the tensile stresses in concrete [47].

where
β factor accounting for influence of diagonal cracking in concrete on shear

and tensile resistance.
bv minimum web width throughout the effective shear depth.

In Equation 2.54 for sections having minimum amount of transverse reinforcement
(The minimum amount of transverse reinforcement is given by Equation 2.55.

Av ≥ 0.0316
√

f
′

c
bv s

fy
(2.55)

where

bv cross sectional width of the beam adjusted for the presence of pre-stressing
ducts (in the present study the effect of pre-stressing is not included).

β= 4.8

1+750εs
(2.56)

The simplified equation (considering zero pre-stressing) to obtain the longitudinal
strain εs is given by Equation 2.57).

εs =
(M

d +0.5V
)

Es As
(2.57)

where
M moment due to service load at a section at distance dv from the face of the

support.
V shear force due to service load at a section at distance dv from the face of

the support.
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Figure 2.24: Determination of longitudinal strain in the web of a reinforced concrete non-prestressed beam
[14]

In Figure 4.21, D refers to the compression force in the strut.

Figure 2.25: Determination of shear strength from AASHTO model [7]

Figure 2.25 shows the contribution of the moment, shear force and axial force in the
determination of the axial strain in the longitudinal reinforcement bars.

where
θ angle of the diagonal cracks.

The other symbols used in the above Figure 4.20 have the same meaning as explained
above. The subscript “u” indicates ultimate limit state.
It must be noted that the units in this model are in fps system.
Assumptions/ Limitations of Model
It is assumed that the shear stress is constant over effective shear depth.
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6. CSA Model [5] The shear resistance contribution of concrete using this model is func-
tionally equivalent to the AASHTO model. The Equation 2.58 is proposed to calculate
the concrete contribution to shear resistance.

Vc =φcλβ

√
f
′

c bw dv (2.58)

where√
f
′

c ≯ 8MPa for beams containing minimum transverse reinforcement.
β factor to account for shear resistance of cracked concrete.
f
′

c specified compressive strength of concrete.

β= 0.40

1+1500εx
(2.59)

The strain in the longitudinal reinforcement εx can be calculated using the Equa-
tion 2.60.

εx =
M f

dv
+V f −Vp +0.5N f − Ap fpo

2(Es As +Ep Ap )
(2.60)

Figure 2.26: Determination of longitudinal strain in the longitudinal reinforcement of a reinforced concrete
non-prestressed beam [4].

Assumptions/ Limitations of Model

(a) The model is applicable only when
√

fc ≯ 8MPa.

(b) The model is applicable for RC members with minimum shear reinforcement
area Av = 0.06

√
fc bw s/ fy .
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7. Zsutty Model [69]
The author perform regression analysis on a base expression obtained using dimen-
sional analysis. The Equation 2.61 is proposed to calculate the concrete contribution
to the shear resistance (Note in this study the shear resistance of shear un-reinforced
beams is considered as the equivalent to concrete contribution to shear resistance
for comparison purposes).

Vu = 2.2

[(
f
′

cρ
d

a

) 1
3

]
bd (2.61)

Assumptions/ Limitations of Model
?? validated as giving conservative and consistent predictions for a/d > 2.5.

8. Niwa et al. Model [46]
The authors perform a regression analysis of experimentally observed shear strength
of shear un-reinforced beams. The empirical Equation 2.62 is proposed to evaluate
the the shear resistance of shear un-reinforced beams (which in this study is consid-
ered as the equivalent of concrete contribution to the shear resistance in case of a
shear reinforced beam).

Vu =
[

0.2(100 f
′

cρ)
1
3

(
d

−1
4

)(
0.75+1.4

d

a

)]
bd (2.62)

The term d
−1
4 accounts for the size effect and is based on the Weibull’s weakest link

theory.
Assumptions/ Limitations of Model
The model is validated on a limited experimentally dataset.

9. Zararis Model [67]
This model is based on the premise that the failure in shear un-reinforced beams oc-
cur due to formation of critical diagonal crack in slender reinforced concrete beam.
The critical diagonal crack has two branches. The first branch is an inclined shear
crack which is formed in the vicinity of the flexural cracks and is often formed in be-
tween the flexural cracks. It is the second branch of the critical diagonal crack (which
initiates at the tip of the first branch) which is responsible for the failure of the beam.
Figure 2.27 shows the free body diagram of the segment of the beam above the critical
diagonal crack [67]. The Equation 2.63 is proposed to calculate the concrete contri-
bution to the shear resistance of the shear reinforced concrete beam.
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Figure 2.27: Free body diagram of the segment of the beam above the critical diagonal crack [67]

Vu =
[{

1.2−0.2(
a

d
)d

} c

d
fct

]
bd (2.63)

Si ze f actor =
{

1.2−0.2(
a

d
)d

}
≥ 0.65 (2.64)

d is in m in the Equation 2.64.

fct = 0.3( f
′

c )
2
3 (2.65)

( c

d

)2
+600

ρ+ρ′

f
′

c

( c

d

)
−600

ρ+
(

d
′

d

)
ρ

′

f ′
c

= 0 (2.66)

where
c depth of the neutral axis.

The model is explained in detail in B.
Assumptions/ Limitations of Model

(a) It is assumed that a/d > 2.5.

(b) It is assumed that there is no slip in the first branch of the diagonal shear crack.

(c) It is assumed that the neutral axis depth after shear cracking is same as that for
cross-section with flexural cracks.

10. Tureyen et al. Model [54]
This model is based on the premise that the shear failure in a shear un-reinforced
beam occurs when the principle tensile stress in concrete above the neutral axis reaches
the concrete tensile strength value ft . The depth of neutral axis is determined using
the cracked cross sectional analysis for bending cracks. Figure 2.28 shows that var-
ious forces and stresses acting on free body diagram of the beam portion between
two cracks. The Equation 2.67 is proposed by Tureyen and Frosch [54] for the shear
resistance of a shear un-reinforced beam (considered as concrete contribution to the
shear resistance of a shear reinforced beam).

Vu = 2

3
bc

√
f 2

t + ft
σm

2
(2.67)
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where
ft concrete tensile strength.

ft = 0.5
√

f
′

c (2.68)

σm = 0.625
√

f
′

c (2.69)

c = kd.

k =
√

2ρm + (ρm)2 −ρm (2.70)

m = Es
Ec

Figure 2.28: The FBD (Free Body Diagram) showing various stresses and forces at a cracked section as
considered by Tureyen and Frosch [6]

In the Figure 2.28,
c height of the compression zone.
N.A. neutral axis of the beam.
∆x length of the cracked concrete.

This model is developed for shear unreinforced beams with shear span ratio, a/d >
2.7. The model is applicable to only those beams which fail in shear before bending
failure and have adequate end anchorage for the longitudinal reinforcement.
Assumptions/ Limitations of Model

(a) It is assumed that a/d > 2.5.

(b) It is assumed that the neutral axis depth after shear cracking is same as that for
cross-section with flexural cracks.

11. Summary of the Concrete Contribution to Shear Resistance Models
In this section, a review of the various available models to predict the concrete contri-
bution to the total shear resistance of a shear reinforced beam is made. These mod-
els are based on either empirical and dimensional analysis or principles of applied
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mechanics. It can be seen that all the models except AASHTO Model [47] and CSA
Model [5] gives a fixed value of the shear resistance independent of the applied load-
ing conditions. The latter two models are based on the MCFT [57] and incorporate
the longitudinal reinforcement strain as a parameter influencing the predicted value.
It is also seen that only Niwa et al Model [46] and Zararis Model [68] explicitly account
for the size effect in their expressions. It is seen that on a minute scale the concrete
contribution to shear resistance can be attributed to various shear transfer mecha-
nisms namely aggregate interlock, concrete un-cracked compression zone, dowel ac-
tion and residual tensile stresses. However, there is no consensus among researchers
as to which transfer mechanism has a dominant contribution.

2.4. Conclusion
In Chapter 2, a detailed review of the various models available in literature to predict shear
crack width, shear crack spacing, diagonal compression strut angle and concrete contribu-
tion to shear resistance at the ULS is carried out. Table 2.1 presents a summary of the basic
principles and some limitations of these models. It is found that the shear crack spacing
and shear stirrup strain are the two most important parameters that influence shear crack
width.

Majority of the available shear crack spacing models are based on the assumption of paral-
lel diagonal shear cracks. The final crack spacing expression is given as the weighted sum
of crack spacing control characteristics in longitudinal and transverse directions. The in-
fluence of the bond stress transfer length is evident from the term containing the ratio φ/ρ
in various crack spacing models. The determination of diagonal compression strut angle
is based on the equilibrium of forces in the concrete member in a few models reviewed in
this chapter. The other models are derived empirically based on either experimental ob-
servations of the shear crack length projections or non linear finite element simulations.

Most of the models give an empirical expression for the calculation of concrete contribu-
tion to ultimate shear resistance. However, a few models also give analytical expressions for
this contribution based on the assumption that the failure occurs when the tensile stress in
concrete reaches a particular predetermined value. The most significant parameters found
in various available models which affect concrete contribution to shear resistance are con-
crete compressive strength, longitudinal and transverse reinforcement ratio and height of
the uncracked concrete compressive zone. Most of the reviewed models give a constant
value of concrete contribution to shear resistance. However, models based on MCFT are
capable to predict the concrete contribution at different stages of loading. In Chapter 3 the
predictions of the respective parameters from the various models reviewed in this Chapter
are compared with the experimental observations. This facilitates the identification of the
models giving predictions close to the experimentally observed values of parameters.
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Table 2.1: Basic principles and limitations of the reviewed models

Theory/ Model Principle Assumptions / Remarks

Shear Crack Width Models
EC2 Crack Width Model [19] Expresses crack width as the product of mean

reinforcement strain and the maximum crack
spacing. The maximum crack width is

obtained as a function of bond transfer length

cracks opens perpendicular to the
reinforcement; crack control is limited to the

effective height of hidden tensile member

Zakaria et al. Crack Width
Model [65]

Expresses crack width as a function of mean
shear crack spacing , stirrup strain, transverse

and longitudinal reinforcement

comprises empirical constants; stirrup strain
to be obtained experimentally

Shear Crack Spacing
Models

EC2 Crack Spacing Model
[19]

Expresses crack spacing as a function of clear
cover, reinforcement diameter and effective

reinforcement ratio

lacks a clear description for transverse
reinforcement

fib MC Crack Spacing Model
[23]

Expresses crack spacing as a function of slip
lengths in longitudinal and transverse

direction

shear cracks are assumed parallel to each
other at a constant spacing

Zakaria et al. Crack Spacing
Model [65]

Expresses crack spacing as a function of
relative position of reinforcement in the

cross-section, reinforcment spacing,
diameter of the reinforcement bars and

effective reinforcement ratio in the
longitudinal and transverse direction

shear cracks are assumed parallel to each
other at a constant spacing
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Diagonal Compression
Strut Angle Models

Principle Assumptions Remarks

Theorem of Plasticity [19] Based on the assumption of simultaneous
yielding of stirrups and crushing of the

compression strut

constant value of the compression strut angle
throughout the shear span

SMCFT Model [7] based on the simplification of MCFT failure shear stress = 0.25 f ′
c ; clamping stress,

fz = 0; sxe = 300mm for shear reinforced
concrete beams

CCC Model [15] Based on the experimental observation of
horizontal projection of the critical shear

crack

horizontal projection of first branch of
flexural-shear crack = 0.85d

CFT Model [4] The shear stress is resisted by both
longitudinal and transverse reinforcement in

tension and concrete in compression

limited to reinforcement response in linear
elastic zone

NLFEA Model (Ueda et al.
Model) [56]

Based on the parametric study using Non
Linear Finite Element Analysis

valid for a/d > 1.5

Concrete Contribution to
Shear Resistance Models

Principle Assumptions / Remarks

EC2 Concrete Shear
Resistance Model [19]

Expresses concrete shear resistance as a
function of compressive strength, applied

axial force and the longitudinal
reinforcement ratio

longitudinal reinforcement ratio É 2%

ACI 318-11 Model [33] States that the concrete contribution to shear
in both shear reinforced and unreinforced
beams can be taken equal to the load that

causes significant shear cracking

critical section is located at distance d from

the support ; 2500ρw (Vud/Mu) = 0.1
√

f
′

c
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CCC Model [15] Concrete contribution to shear resistance
comes from uncracked compression chord,
dowel action and residual tensile stresses at

crack surface

mean longitudinal reinforcement percentage
=1.5%; shear crack spacing = d ; tensile stress-

crack opening curve is linear; θmean = 36o

JSCE Model [1] Empirical equation that expresses influence
of axial forces, effective depth and

longitudinal reinforcement ratio on the
concrete contribution to shear resistance

equation is developed from formula given by
Niwa et al.[46] but neglecting the effect of a/d

AASHTO Model [47] Based on the MCFT shear stress constant over effective shear
depth

CSA Model [5] Based on the MCFT
√

f
′

c not greater than 8 MPa;

Av = 0.06
√

f
′

c bw s/ fy

Zsutty Model [69] Empirical equation based on dimensional
analysis and regressional fitting

model is validated as giving conservative and
consistent predictions for a/d > 2.5

Niwa et al. Model [46] Empirical equation to derive shear resistance
of shear unreinforced beams with a factor

which accounts for size effect

originally validated on a very limited
experimental dataset

Zararis Model [67] States that shear failure occurs because of the
formation of the opening of second branch of

the critical diagonal crack

a/d > 2.5; no slip in the first branch of critical
diagonal crack; neutral axis depth same as

that obtained for cross section with flexural
cracks

Tureyen and Frosch Model
[54]

Shear failure in a shear unreinforced beam
occurs when the principle tensile stress in the
concrete above neutral axis reaches concrete

tensile strength

a/d > 2.7; neutral axis depth same as that
obtained for cross section with flexural cracks
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Evaluation of the Available Models

“Once we accept our limits, we go beyond them.”

Albert Einstein

This Chapter comprises theperformanceevaluation of variousmodels reviewed
in the Chapter 2 in terms of their prediction accuracy of the respective param-
eters. The variation of the mean prediction ratios (experimentally observed
value to the predicted value) with respect to the various specimen parame-
ters is also included to identify any possible bias with any of these parameters
in the models.

45
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T HE present Chapter aims at evaluating the accuracy of predictions made by the vari-
ous available models for shear crack spacing, diagonal compression strut angle and

concrete contribution to the shear resistance with respect to the experimental data avail-
able in the literature. A comparative assessment of the accuracy of these models and their
statistical dependence on the various beam specimen parameters is provided. This moti-
vates a better choice of models for conservative estimates of these parameters. The units
for all parameters are in N and mm unless stated otherwise.

3.1. Shear Crack Spacing
3.1.1. Experimental Details
Table 3.1 shows the summary of the key characteristics of the different experiments from
literature referred in the study. Zakaria et al. [66] perform experiments to study the fac-
tors that impact the shear crack spacing and shear crack width in shear reinforced con-
crete beams. The shear reinforcement characteristics like the side concrete cover to stir-
rups, stirrup spacing and stirrup configuration (details of the cross section are shown in
Figure 3.2 and Figure 3.3) are the parameters in the experiments. While the authors find
the remarkable influence of these parameters on the shear crack spacing and shear crack
width, the influence of the loading paths (loading and unloading) is found to be insignifi-
cant. Ten simply supported shear reinforced concrete beams are casted to study the effect
of the parameters mentioned above. Experiments are performed in three different test se-
ries namely series I, II and III. These series are designed to study the effect of shear span
ratio, side concrete to stirrups and longitudinal reinforcement ratio. The shear crack spac-
ing is measured perpendicular to the shear cracks at mid depth of the beam as shown in
Figure 3.1.
In another study, Hu and Wu [31] quantify shear cracking in reinforced concrete beams
tested with a cantilever mechanical scheme. The authors install strain gauges inside the
stirrups by cutting them longitudinally and then joining them using Araldite epoxy resin.
Figure 3.4 shows the mechanical scheme and the cross section of the beams used in the
experiments. In the present analysis, two of the shear reinforced beams titled D10 and R10
respectively are included. Lee et al. [37] studied the effect of high strength stirrups on shear
crack spacing and shear crack width in shear reinforced concrete beams. The mechanical
scheme and instrumentation details in the experiment are shown in Figure 3.5. Table 3.2
shows the various geometrical parameters for the specimens involved in the present anal-
ysis. The range of these parameters is summarized in Table 3.3.



3.1. Shear Crack Spacing 47

Table 3.1: Key characteristics of specimens referred for shear crack spacing study

Publication Series Specimens Mechanical
Scheme

Variable Method

Zakaria et
al. [65]

A1 to C3 10 4- point
bending

crack spacing at mid-
height

Hu and
Wu [31]

D10, R10 2 cantilever crack spacing at mid-
height

Lee et
al. [37]

B334-120 to
B667-200

12 4- point
bending

crack spacing in middle-
one third
portion

Figure 3.1: The measurement of average shear crack spacing [66]
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Figure 3.2: The mechanical scheme and cross section details for the reinforced concrete beams in series I
[66]
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Figure 3.3: The mechanical scheme and cross section details for the reinforced concrete beams in Series II
and III [66]

Figure 3.4: The mechanical scheme and cross section details for the reinforced concrete beams [37]
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Figure 3.5: The mechanical scheme and cross section details for the reinforced concrete beams [31]



3.1. Shear Crack Spacing 51

Table 3.2: Geometrical parameters for the different specimens in the test series of Zakaria et al. [66] and Hu
and Wu [31]

Specimen
Width
(mm)

Height
(mm)

ρw % ρl % a/d d/b

A1 left 200 200 0.72 2.86 2 0.80
A2 left 200 350 0.72 2.83 2 1.40
A3 left 200 500 0.72 2.84 2 2.16
A4 left 200 750 0.72 2.84 2 3.35
B1 left 200 500 0.72 2.84 2 2.16
B2 left 200 500 0.36 2.84 2 2.16
B3 left 200 500 0.36 2.84 2 2.16

C1 200 500 0.72 1.62 2 2.25
C2 200 500 0.72 2.3 2 2.14
C3 200 500 0.72 3.64 2 2.09

D10 250 300 0.41 2.38 2.6 1.08
R10 250 300 0.62 2.38 2.6 1.08

B334-120 350 450 0.60 3.72 3 1.12
B334-160 350 450 0.44 3.72 3 1.12
B334-200 350 450 0.36 3.72 3 1.12
B480-120 350 450 0.60 3.72 3 1.12
B480-160 350 450 0.44 3.72 3 1.12
B480-200 350 450 0.36 3.72 3 1.12
B530-120 350 450 0.60 3.72 3 1.12
B530-160 350 450 0.44 3.72 3 1.12
B530-200 350 450 0.36 3.72 3 1.12
B667-120 350 450 0.60 3.72 3 1.12
B667-160 350 450 0.44 3.72 3 1.12
B667-200 350 450 0.36 3.72 3 1.12

Table 3.3: Range of parameters for the specimens studies for evaluation of available shear crack spacing mod-
els

Parameter Range

a/d 2-3
d/b 0.80-3.34

ρw fym (MPa) 1.33-4.02
ρl (%) 1.62-3.72
ρw (%) 0.36-0.72

f ′
c (MPa) 32.47-50.10

3.1.2. Observations
The shear crack spacing observed from the experiments is compared with the shear crack
spacing predictions from the crack spacing models by Zakaria et al. [65], EC2 [19], and
fib MC 2010 [23]. The ratio of experimental to calculated shear crack spacing from dif-
ferent models are given in Table 3.4. Table 3.5 shows various statistical parameters of the
ratio sav g ,exp /sav g ,pr ed for the EC2 model, Zakaria et al model and fib MC model. It can
be observed that the Zakaria et al. model show the conservative mean value closest to 1.0
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followed by the model given by fib MC model. This indicates that the factors considered
in the formulation of these models are the crucial factors influencing the shear crack spac-
ing. These factors are side concrete cover to stirrup, shear and longitudinal reinforcements
ratio and diameter of both shear and longitudinal reinforcement. Zakaria et al. observe
that the distance of the nearest longitudinal reinforcement from the center of the beam
height is more important parameter influencing shear crack spacing than effective con-
crete cover. This may be a reason for the better correlation of their model as compared to
the EC2 model.

However, both EC2 and Zakaria et al. models show higher standard deviation and coef-
ficient of variation as compared to the fib MC model. The similar trend is reflected in the
range of the prediction ratio from these models. The over conservative (a higher predicted
value of shear crack spacing results in a conservative estimate of shear crack width) shear
crack spacing predictions of the fib MC model may be attributed to the fact that the model
does not incorporate the effective reinforcement percentage in the formulation unlike the
EC2 model and Zakaria et al. model. The statistical dependence of these models is stud-
ied by plotting the variation of sav g ,exp /sav g ,pr ed against various parameters for each of the
three models.
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Table 3.4: sav g ,exp /sav g ,pr ed values of the different shear crack spacing models

sav g ,exp /sav g ,pr ed

Specimen EC2 [19] Zakaria et al. [65] fib MC [23]

A1 left 0.32 0.28 0.25
A2 left 0.55 0.61 0.56
A3 left 0.74 0.83 0.76
A4 left 0.99 1.10 1.01
B1 left 0.56 0.64 0.80
B2 left 0.53 0.55 0.52
B3 left 0.59 0.55 0.58

C1 0.82 0.91 0.82
C2 0.76 0.85 0.77
C3 0.66 0.74 0.68

D10 0.54 0.54 0.42
R10 0.47 0.40 0.40

B334-120 1.32 1.22 0.55
B334-160 1.09 0.93 0.37
B334-200 1.73 1.32 0.54
B480-120 1.10 1.01 0.46
B480-160 1.49 1.27 0.50
B480-200 1.59 1.21 0.50
B530-120 1.65 1.52 0.69
B530-160 1.71 1.46 0.58
B530-200 1.59 1.21 0.50
B667-120 1.02 0.94 0.43
B667-160 1.09 0.93 0.37
B667-200 1.49 1.13 0.46

Table 3.5: Statistical parameters for sav g ,exp /sav g ,pr ed for the different shear crack spacing models

sav g ,exp /sav g ,pr ed

Statistical
Variable

EC2 [19]
Zakaria
et al. [65]

fib MC 2010 [23]

Mean 1.02 0.92 0.56
Median 1.01 0.93 0.53

SD 0.45 0.34 0.18
COV 0.45 0.36 0.31

Minimum 0.32 0.28 0.25
Maximum 1.73 1.52 1.01

Range 1.41 1.24 0.75
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Figure 3.6: The ratio of sav g ,exp /sav g ,pr ed versus a/d for the EC2 model [19]

Figure 3.6 shows that EC2 model exhibits a tendency to predict unconservative crack spac-
ing value at higher shear span ratio ( a

d ≥ 3). This may lead to unconservative predictions at
higher values of shear span ratios. Similar tendency is shown by Zakaria et al. model (see
Figure 3.7).
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Figure 3.7: The ratio of sav g ,exp /sav g ,pr ed versus a/d for the Zakaria et al. model [65]
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Figure 3.8: The ratio of sav g ,exp /sav g ,pr ed versus ρl /ρw for EC2 model [19]

It can be observed from Figure 3.8 that most of the unconservative predictions (
sexp

spr ed
> 1.0

are obtained for higher values of ρl
ρw

( ρl
ρw

> 6.0). This may lead to unconservative predictions
for relatively lightly shear reinforced beams. Similar tendency is shown by Zakaria et al.
model (see Figure 3.9).
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Figure 3.9: The ratio of sav g ,exp /sav g ,pr ed versus ρl /ρw for the Zakaria et al. model [65]
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Figure 3.10: The ratio of sav g ,exp /sav g ,pr ed versus cs for the EC2 model [19]

It can be observed from Figure 3.12 that the predictions from EC2 model shows a tendency
to decrease and therefore, become more conservative with the increasing values of the side
concrete cover to stirrups. The unconservative predictions are observed only for the low
value of side concrete cover to stirrups (cs = 20mm). Similar tendency is exhibited by Za-
karia et al. model (see Figure 3.13).
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Figure 3.11: The ratio of sav g ,exp /sav g ,pr ed versus cs for Zakaria et al. model [65]
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Figure 3.12: The ratio of sav g ,exp /sav g ,pr ed versus cl for the EC2 model [19]

Figure 3.12 shows the tendency of the EC2 model to predict unconservative values for shear
crack spacing at higher values of clear cover to the concrete. However, the difference be-
tween the values of concrete cover shown in the plots is negligible from execution point of
view.
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Figure 3.13: The ratio of sav g ,exp /sav g ,pr ed versus cl for Zakaria et al. model [65]



58 3. Evaluation of the Available Models

0 100 200 300 400 500 600

eff, x / eff, x 

0

0.5

1

1.5

2

s av
g

, e
xp

 / 
s av

g
, p

re
d
 [

-]
Unconservative predictions

Figure 3.14: The ratio of sav g ,exp /sav g ,pr ed versus φe f f ,x /ρe f f ,x for the EC2 model [19]

It may be observed from Figure 3.14 and Figure 3.15 that both EC2 and Zakaria et al. model

give several unconservative predictions at
φe f f ,x

ρe f f ,x
= 150. However, almost all the predictions

at values of
φe f f ,x

ρe f f ,x
> 150 are found to be conservative.
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Figure 3.15: The ratio of sav g ,exp /sav g ,pr ed versus φe f f ,x /ρe f f ,x for Zakaria et al. model [65]



3.1. Shear Crack Spacing 59

0 1000 2000 3000 4000

w / w [mm]

0

0.5

1

1.5

2

s av
g

, e
xp

 / 
s av

g
, p

re
d
 [

-] Maximum and minimum of predictions
tends to increase

Figure 3.16: The ratio of sav g ,exp /sav g ,pr ed versus φw /ρw for the EC2 model [19]

With the increasing values ofφw /ρw , EC2 and fib MC models show the tendency to predict
unconservative and conservative values (see Figure 3.16 and Figure 3.17). This may indi-
cate the suitability of the fib MC model over EC2 model at values of φw /ρw > 2000. How-
ever, this trend needs to be validated with experimental observations to make sure that it is
a factual trend and not a limitation due to the sampling size in this study.
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Figure 3.17: The ratio of sav g ,exp /sav g ,pr ed versus φw /ρw for fib MC 2010 model [23]
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Figure 3.18: The ratio of sav g ,exp /sav g ,pr ed versus d/b for fib MC 2010 model [23]

It can be seen from Figure 3.18 that both maximum and minimum of the predictions from
the fib MC model tends to increase with the increasing values of d/b. However, all the pre-
dictions (except one corresponding to d/b > 3.0) are conservative. This trend needs further
validation with an experimental dataset to establish if it is a factual trend or a limitation in
the sampling.

3.2. Diagonal Compression Strut Angle
3.2.1. Experimental Details
The same set of specimens as described in section 3.1 are used for the analysis of diagonal
compression strut angle. Initially, the crack opens parallel to the direction principle strain,
however, as the shear force increases the shear crack undergoes rotation and its direction
deviates [4]. Thus, the diagonal compression strut angle is the maximum of the diagonal
shear crack angle. It may be noted here that although the compression strut angle is not
exactly same as shear crack angle but it is similar to it and therefore, a comparison between
the values can be made [65].
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Table 3.6: Key characteristics of specimens referred for diagonal crack angle study

Publication Series Specimens Mechanical
Scheme

Variable Method

Zakaria et
al. [65]

A1-C3 10 4-point
bending

crack angle average angle

Hu and
Wu [31]

D10, R10 2 cantilever crack angle average angle
at mid-height

Lee
et al. [37]

B340-120 to
B670-200

12 4-point
bending

crack angle average angle
in the middle

one- third
portion along

heightL

P=0.6Vnom, EC20.6Vnom, EC2=P
a a

L
0.6Vnom, EC2=P

a

L

P=0.6Vnom, EC2

L

Figure 3.19: The application of service load to the different mechanical schemes considered in the
calculation of shear crack angle from different models

Figure 3.19 shows the application of service load (the service load in this study is taken as
60% of the nominal shear resistance calculated from the EC2 VSIM) to different mechan-
ical schemes considered while calculating diagonal compression strut angle from various
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models. Note that in SMCFT and NLFEA models, the predicted diagonal compression strut
angle is dependent on the magnitude of applied load.

3.2.2. Observations
The experimental values of the shear crack angles are compared with the angle of the com-
pression strut angle calculated using different models. The comparison is summarized in
Table 3.8. A total of twenty four set of data points from the previous research studies are
analyzed. The experimental observations are made in the stabilized cracking phase i.e., no
more shear cracks can be developed with increase in load and the crack pattern is fully- de-
veloped. It can be seen that all the models result in a mean prediction ratio greater than 1.0.
This means that all predictions are unconservative since the predicted shear crack angle is
flatter than the experimentally observed angle. This leads to predicting smaller strains in
the stirrups than the actual strains if stirrups are assumed to be smeared across the shear
crack. It is observed that the predictions by SMCFT [7] and CFT [31] have the mean values
of θav g ,exp /θav g ,pr ed as 1.14 and 1.22 respectively. The SD and COV in case of CFT model
are slightly higher than the SMCFT. This is expected since this CFT does not take into ac-
count the tensile strength of concrete. It should also be noted that the predictions by CCC
model [15] are also close to the experimental values as suggested by the mean, SD and COV
values of 1.19, 0.09 and 0.08 respectively.

The crack angle predictions by Theorem of Plasticity are highly biased towards predicting
the flatter angles within the range of permissible angles given by the EC2 (21.8o ≤ θ ≤ 45o)
[19]. This is reflected by the mean value of 1.85. Moreover, the model gives rise to relatively
high uncertainty in the predictions as is reflected by the SD value of 0.18 and COV of 0.10
respectively which are higher than the corresponding values reported for the SMCFT model
predictions and CCC model predictions. The results obtained for the Theorem of Plasticity
model in the present analysis are coherent with the observations made by Olalusi [48] who
studies the variation of the predicted angle with shear reinforcement parameter ρw fym for
EC2-VSIM (Theorem of Plasticity) [19], SMCFT and CCC model [15] (Refer to Figure 3.24).
It is observed that the SMCFT gives the most consistent predictions for the angle while The-
orem of Plasticity shows bias towards predicting flatter angles even smaller than the lower
limit of 21.8 degrees as prescribed in EC2 [19] as shown in Figure 3.24.
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Figure 3.20: The ratio of θav g ,exp /θav g ,pr ed versus a/d for the Theorem of Plasticity [19]

It can be observed from Figure 3.20 that minimum predictions from Theorem of Plasticity
model show a tendency to predict lower values with increasing a/d . However, the predic-
tion ratio is greater than 1.0 for all a/d ≤ 3.0 indicating the model predicts flatter angles
than observed in the experiments in the ULS.
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Figure 3.21: The ratio of θav g ,exp /θav g ,pr ed versus d/b for the Theorem of Plasticity [19]

Figure 3.21 shows the variation of the predictions from Theorem of Plasticity model with
d/b. It can be seen that both minimum and maximum of the predictions tend to increase
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with the increasing d/b. This may result in highly unconservative predictions for slender
deep beams.
It can be observed from Figure 3.22 and Figure 3.23 that CFT model and SMCFT model do
not show any bias in the prediction for a range of values of ρw fym .
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Figure 3.22: The ratio of θav g ,exp /θav g ,pr ed versus ρw fym for the CFT [16]
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Figure 3.23: The ratio of θav g ,exp /θav g ,pr ed versus ρw fym for the SMCFT [7]

It can be observed from Figure 3.23 that SMCFT model predicts values with a higher dis-
persion for lower values of ρw fym . This model uses half of the longitudinal reinforcement
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stress as an estimate for the web stress to calculate the shear crack angle. However, the
strain varies continuously over the depth. Moreover, the assumption of a linear strain di-
agram based on the plane section hypothesis may not hold true after cracking. This may
be a reason for the observed dispersion in the model predictions. However, a experimental
verification is required to establish if it is a factual trend or a limitation of the sampling.

Table 3.7: θav g ,exp /θav g ,pr ed values of the different diagonal compression strut angle prediction models

θav g ,exp /θav g ,pr ed

Specimen
Theorem of
Plasticity [19]

SMCFT [7] CCC [15] NLFEA [56]
CFT
[16]

A1 left 2.03 1.09 1.27 2.17 1.24
A2 left 1.93 1.06 1.21 1.95 1.19
A3 left 1.93 1.07 1.22 1.93 1.20
A4 left 1.97 1.07 1.24 2.06 1.22
B1 left 2.05 1.14 1.30 2.05 1.27
B2 left 2.03 1.21 1.28 2.75 1.44
B3 left 1.74 1.04 1.10 1.91 1.23

C1 2.23 1.15 1.29 2.46 1.26
C2 2.20 1.21 1.34 2.07 1.32
C3 2.00 1.15 1.33 1.66 1.29

D10 1.65 1.06 1.00 1.19 1.09
R10 1.88 1.19 1.15 1.40 1.14

B334-120 1.53 1.01 1.00 1.20 1.00
B334-160 1.67 1.13 1.10 1.28 1.16
B334-200 1.84 1.25 1.21 1.31 1.32
B480-120 1.72 1.13 1.13 1.46 1.13
B480-160 1.86 1.24 1.22 1.52 1.29
B480-200 1.68 1.13 1.10 1.36 1.21
B530-120 1.75 1.14 1.15 1.47 1.14
B530-160 1.92 1.28 1.26 1.54 1.33
B530-200 1.69 1.13 1.11 1.39 1.22
B667-120 1.70 1.23 1.24 1.60 1.23
B667-160 1.76 1.16 1.16 1.51 1.22
B667-200 1.67 1.10 1.09 1.52 1.20
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Table 3.8: Mean, SD and COV of θav g ,exp /θav g ,pr ed for the different compression strut angle prediction
models

θav g ,exp /θav g ,pr ed

Statistical
Variable

Theorem of
Plasticity [19]

SMCFT [7] CCC [15] NLFEA [56]
CFT
[16]

Mean 1.85 1.14 1.19 1.70 1.22
Median 1.85 1.14 1.21 1.53 1.22

SD 0.18 0.07 0.10 0.41 0.09
COV 0.10 0.06 0.08 0.27 0.07

Maximum 2.23 1.28 1.34 2.75 1.44
Minimum 1.53 1.01 1.00 1.19 1.00

Range 0.70 0.27 0.34 1.56 0.44

             Limits on angle 
             according to EC2

Figure 3.24: The values of θ versus ρw fy wm as observed by Oladimeji [48]

3.3. Concrete Contribution to the Shear Resistance
3.3.1. Experimental Details
Table 3.9 shows the summary of the key characteristics of the different experiments from
literature referred in the study. The concrete contribution to shear resistance is a crucial
parameter because it indicates the load shared by stirrups and therefore, strains in the stir-
rups for a given applied load. This section describes the experiments referred to compare
the results of concrete contribution to the shear strength at ultimate limit state calculated
using various models.
Hu and Wu [32] studied the variation in the concrete contribution to shear resistance with
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shear span. It is observed that for the RC beams with shear span ratio 2.5 (with deformed
bars in shear reinforcement), the concrete contribution is almost comparable from the in-
stance of first diagonal cracking to the first instance of yielding of stirrups (not all the stir-
rups yield simultaneously). For beams with shear span ratio 3.1, a steep decrement is ob-
served in the concrete contribution to the shear resistance between these two stages (Refer
Figure 3.29). According to the ASCE-ACI Committee 426 [4], clause R22.5.1.1 (recommen-
dation also extended to ACI-318- 14 [34]), concrete contribution to the shear resistance for
both shear reinforced and shear unreinforced beams should be taken as the cracking shear
force in the shear unreinforced beam. Therefore, comparison of the predicted concrete
contributions from different available models with the concrete contribution to the shear
resistance at first diagonal cracking may be relevant and is required to be done.
In the assessment that follows, experiments perform by Hu and Wu [31], Zakaria et al. [66],
Hassan et al. [26], Hu and Wu [32], and Munikrishna et al. [44] are referred. The details
of the specimens used in the first two researches mentioned are provided in section 3.1
and section 3.2. Hassan et al. [26] assess the behavior of shear reinforced concrete beams
with high strength stirrups. Hu and Wu [32] perform a study on the effect of shear span
ratio on the concrete and stirrup contribution to the total shear resistance of the reinforced
concrete beams for different magnitudes of applied load. Munikrishna et al. perform ex-
perimental studies on the shear behavior of reinforced concrete beams with high strength
stirrups. The geometrical parameters of the beam specimens are given in Table 3.10. Fig-
ure 3.25- Figure 3.28 show the cross section and mechanical scheme of the beam specimens
in the experimental work referred in this study.

Table 3.9: Key characteristics of specimens referred for concrete contribution to shear resistance study

Publication Series Specimens Mechanical
Scheme

Variable Method

Zakaria et
al. [65]

A1-C3 16 4-point
bending

Vcr strain gauges
in stirrups

Hassan
et al.(2012)

B8, B9 2 3-point
bending

Vcr strain gauges
in stirrups

Hu and Wu [32] D2.5, D3.1,
R2.5, R3.1

4 cantilever Vc ,Vcr strain gauges
in stirrups

Hu and Wu [31] D10, R10 2 cantilever Vc ,Vcr strain gauges
in stirrups

Munikrishna et
al. [44]

G1-C60 to
G3-M100

9 3-point
bending

Vc strain gauges
in stirrups
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Table 3.10: Geometrical parameters for the different specimens in the test series of Hu and Wu [32], Hu and
Wu [31] and Munikrishna et al. [44] respectively

Specimen Width
(mm)

Height
(mm)

ρw (%) ρl (%) a/d d/b

D2.5 180.0 360.0 0.42 3.27 2.50 1.67
D3.1 180.0 360.0 0.42 3.27 3.10 1.67
R2.5 180.0 360.0 0.64 3.27 2.50 1.67
R3.1 180.0 360.0 0.64 3.27 3.10 1.67
D10 250 300 0.41 2.38 2.6 1.08
R10 250 300 0.62 2.38 2.6 1.08

G1-C60 609.6 711.2 0.11 1.02 3.10 1.06
G1-M80 609.6 711.2 0.09 1.53 3.10 1.06

G1-M100 609.6 711.2 0.07 1.02 3.10 1.06
G2-C60 609.6 711.2 0.11 1.02 3.10 1.06
G2-M80 609.6 711.2 0.09 1.53 3.10 1.06

G2-M100 609.6 711.2 0.07 1.02 3.10 1.06
G3-C60 609.6 711.2 0.31 2.16 3.00 0.75
G3-M80 609.6 711.2 0.25 3.24 3.00 0.75

G3-M100 609.6 711.2 0.2 2.16 3.00 0.75

Table 3.11: Range of parameters for the specimens studies for evaluation of available concrete contribution
to shear resistance models

Parameter Range

a/d 2.5-3.1
d/b 0.75-1.67

ρw fym (MPa) 0.46-2.07
ρl (%) 1.02-3.27
ρw (%) 0.07-0.64

f ′
c (MPa) 32.48-44.00

Table 3.12: Range of parameters for the specimens studies for comparison of concrete cracking shear resis-
tance with predictions from various models

Parameter Range

a/d 2.5-3.1
d/b 0.80-3.34

ρw fym (MPa) 1.33-2.3.23
ρl (%) 1.62-3.64
ρw (%) 0.31-0.72

f ′
c (MPa) 25-45
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Figure 3.25: The cross section details for the reinforced concrete beams [26]

Figure 3.26: The cross section and the mechanical schemes of the reinforced concrete beams [32]
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Figure 3.27: The cross section and the mechanical schemes of the RC beams [44]

Note: The dimensions mentioned in the Figure 3.27 are in feet and inches.
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Figure 3.28: The cross section and the mechanical schemes of the RC beams [38]

Figure 3.29: The variation of concrete and stirrup contribution to shear resistance for the beam with a/d 2.5
(Left) and 3.1 (Right) respectively [32]

3.3.2. Observations
Table 3.16 and Table 3.17 show the mean, SD and COV of the ratio of experimental to pre-
dicted concrete contribution to the ultimate shear resistance. The prediction ratio (experi-
mental to predicted value) of the concrete contribution to shear resistance at ultimate limit
state for each specimen using different models is shown in Table 3.16 and Table 3.17. It can
be seen that Tureyen and Frosch (2003) [54], Niwa et al. [46], JSCE [1], ACI-318-11 [33] and
CCC [15] models give conservative estimates for the concrete contribution to the ultimate
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shear resistance. CCC model gives relatively the most accurate (and also conservative) pre-
dictions for the concrete contribution to the ultimate shear resistance with the mean value
of the experimental to predicted concrete contribution equal to the 1.05. The model also
shows relatively better consistency in the predictions with the SD and COV of 0.35 and 0.33
respectively.
Table 3.13 shows the ratio of experimentally observed shear cracking load and predicted
concrete shear resistance from the various models. It can be observed that the predicted
values are noticeably smaller than the experimentally observed cracking shear resistance
(the mean prediction ratio is significantly greater than 1.0). This indicates that generally
concrete contribution to shear resistance decreases continuously from instance of first di-
agonal shear cracking to the ultimate shear failure. Therefore, equating concrete shear re-
sistance at ultimate limit state from the aforementioned models to the first diagonal shear
cracking load is assumed to yield a conservative estimate of first diagonal shear cracking
load.

Table 3.13: Vcr,exp /Vc,pr ed ratio for the concrete contribution to the shear resistance at first diagonal crack by
different models

Vcr,exp /Vc,pr ed

Statistical
Variable

Tureyen and
Frosch [54]

Niwa et al.
[46]

JSCE [1] ACI-318-11
[33]

CCC [15]

Mean 2.19 1.79 2.05 2.38 1.72
Median 2.16 1.74 2.09 2.35 1.75

SD 0.83 0.65 0.76 0.90 0.65
COV 0.38 0.36 0.37 0.38 0.38
Max 4.35 3.25 3.44 4.66 2.93
Min 1.04 0.83 0.89 1.04 0.75

Range 3.31 2.41 2.55 3.62 2.18
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Table 3.14: Vc,av g ,exp /Vc,av g ,pr ed ratio for the concrete contribution to the ultimate shear resistance by differ-
ent models (a)

Vc,av g ,exp /Vc,av g ,pr ed

Specimen EC2 [19] ACI 318-11
[33]

CCC [15] CSA [5] JSCE [1]

D10 0.78 1.11 0.82 0.86 0.95
R10 1.10 1.58 1.17 1.22 1.33
D2.5 0.93 1.43 0.99 1.04 1.13
D3.1 0.27 0.41 0.30 0.30 0.32
R2.5 1.61 2.48 1.72 1.81 1.95
R3.1 0.54 0.82 0.59 0.60 0.66

G1-C60 1.05 0.98 1.33 0.61 1.32
G1-M80 0.92 0.98 1.16 0.55 1.16

G1-M100 1.06 0.98 1.32 0.61 1.33
G2-C60 1.05 0.98 1.33 0.61 1.32
G2-M80 0.92 0.98 1.16 0.55 1.16

G2-M100 1.06 0.98 1.32 0.61 1.33
G3-C60 0.77 0.97 0.90 0.85 0.95
G3-M80 0.69 0.98 0.79 0.74 0.84

G3-M100 0.79 0.98 0.89 0.88 0.98

Table 3.15: Vc,av g ,exp /Vc,av g ,pr ed ratio for the concrete contribution to the ultimate shear resistance by differ-
ent models (b)

Vc,av g ,exp /Vc,av g ,pr ed

Specimen AASHTO [47] Zsutty [69] Zararis [65]
Niwa et
al.

[46]
Tureyen
& Frosch

[54]

D10 0.86 0.78 0.48 0.89 1.11
R10 1.22 1.10 0.66 1.25 1.56
D2.5 1.05 0.90 0.56 1.04 1.30
D3.1 0.30 0.28 0.16 0.33 0.37
R2.5 1.81 1.55 0.96 1.80 2.24
R3.1 0.60 0.56 0.33 0.66 0.75

G1-C60 0.61 0.94 0.91 1.34 1.30
G1-M80 0.55 0.82 0.79 1.17 1.10

G1-M100 0.61 0.94 0.91 1.34 1.31
G2-C60 0.61 0.94 0.91 1.34 1.30
G2-M80 0.55 0.82 0.79 1.17 1.10

G2-M100 0.61 0.94 0.91 1.34 1.31
G3-C60 0.85 0.73 0.54 0.95 0.97
G3-M80 0.74 0.64 0.49 0.84 0.85

G3-M100 0.89 0.74 0.55 0.97 0.99
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Table 3.16: Statistical parameters for Vc,av g ,exp /Vc,av g ,pr ed ratio for the concrete contribution to the ultimate
shear resistance by different models (a)

Vc,av g ,exp /Vc,av g ,pr ed

Statistical
Variable

EC2 [19] ACI 318-11
[33]

CCC [15] CSA [5] JSCE [1]

Mean 0.90 1.11 1.05 0.79 1.12
Median 0.92 0.98 1.16 0.61 1.16

SD 0.30 0.46 0.35 0.36 0.37
COV 0.33 0.41 0.33 0.46 0.33

Maximum 1.61 2.48 1.72 1.81 1.95
Minimum 0.27 0.41 0.30 0.30 0.32

Range 1.34 2.07 1.42 1.50 1.62

Table 3.17: Statistical parameters for Vc,av g ,exp /Vc,av g ,pr ed ratio for the concrete contribution to the ultimate
shear resistance by different models (b)

Vc,av g ,exp /Vc,av g ,pr ed

Statistical
Variable

AASHTO [47] Zsutty [69] Zararis [65]
Niwa et
al.

[46]
Tureyen
and Frosch

[54]

Mean 0.79 0.84 0.66 1.09 1.17
Median 0.61 0.82 0.66 1.17 1.11

SD 0.36 0.28 0.24 0.35 0.41
COV 0.46 0.33 0.37 0.32 0.35
Max 1.81 1.55 0.96 1.80 2.24
Min 0.30 0.28 0.16 0.33 0.37

Range 1.51 1.27 0.80 1.47 1.87
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Figure 3.30: Vc,av g ,exp /Vc,av g ,pr ed versus d/b for predictions by CCC model [15]

It can be seen from Figure 3.30 that the maximum of the predictions from the CCC model
tends to increase with the increasing d/b. This shows a tendency of the predictions to
become increasingly unconservative and thus, this model may give highly unconservative
values for deep slender beams. However, a verification with an experimental study may be
needed to establish if this observed tendency is factual or a limitation of the sampling.

3.4. Conclusion
In this Chapter, the performance of the different models for diagonal compression strut
angle, diagonal crack spacing and concrete contribution to shear resistance is assessed by
comparison with experimental observations. The following conclusions are drawn.

1. Zakaria et al. Crack Spacing Model and fib Crack Spacing Model gives conservative
estimates of shear crack spacing from shear crack width calculation point of view.
The best estimate is given by Zakaria et al Model. Moreover, It is observed that fib MC
model predicted over conservative values of shear crack spacing.

2. All the studied shear crack angle models predict unconservative (flatter angles) val-
ues (in varying degrees) as compared to the experimental observations. The best
estimates are obtained by SMCFT, CCC and CFT models.

3. The best estimate of concrete contribution to shear resistance is obtained using CCC
model. It is observed from the experimental data that the predicted value of concrete
contribution to shear resistance at ULS can serve as a conservative estimate for the
first diagonal shear cracking load.



4
Proposed Models

“Imagination is more important than knowledge.”

Albert Einstein

This Chapter comprises the proposed models for diagonal shear crack width
and shear deflection under service loads for the slender (a/d > 2.5) shear re-
inforced concrete beams. The performance of these models is assessed by
comparison with experimental values. The results are presented in the form
of a prediction ratio (ratio of experimentally observed value to the predicted
value) for evaluation in terms of accuracy in predictions. The variation of mean
prediction ratio is studied against various experimental specimen parameters
to identify any bias in the predictions with respect to any of these parameters.
Themodels are assessed for the accuracy by closeness of themean prediction
ratio (experimentally obtained shear crack width to the predicted shear crack
width) to one. Moreover, a sensitivity analysis of the models with respect to the
statistical dependence on the variousmaterial andmechanical parameters of
the beams is assessed. Appendix D provides a solved example for calculation
of mean shear crack width and shear deflection using the proposed models.
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T HIS Chapter explains the theoretical background and performance of the proposed
models for calculating mean shear crack width and shear deflection. It may be noted

that default units for for the various parameters are in N and mm unless stated otherwise.
Also, same equations from the models described in Chapter 2 are used in various proposed
models but some of these equations are restated here for the ease of readability.

4.1. Concrete and Steel Contribution to Shear Resistance
In Chapter 3, the prediction accuracy of various models available in the literature for shear
crack spacing, diagonal compression strut angle and concrete contribution to shear resis-
tance is assessed. Also, in Chapter 3 it is observed that stirrup strain and principle ten-
sile strain in the concrete (in between the cracks) are crucial parameters that influence the
shear crack width. In this section, an approach is suggested to make an engineering esti-
mate of the concrete contribution to shear resistance corresponding to the service loads.
Firstly, an estimate of the concrete contribution to shear resistance at ULS should be made
with CCC [15] model. Based on the discussion in Chapter 3, this concrete contribution Vc

can be assumed equal to first diagonal cracking shear force, Vcr . Equation 4.18 is proposed
by CCC model to evaluate the concrete contribution to shear resistance of the shear rein-
forced beam at ULS.
Figure 4.1 shows the variation of concrete and steel stirrups contribution to the shear resis-
tance as per experimental observations [32]. It can be seen that the concrete contribution
decreases after the first diagonal shear crack occurs (after the first diagonal crack occurs
stirrups are activated and begin to take any further load) and only start to increase notice-
ably again once the stirrups have yielded. In the proposed model, it is assumed that the
concrete contribution to the shear resistance decreases linearly (from Vcr at the first diag-
onal crack) to zero (at the applied load equal to Vnom according to EC2 [19]) as shown in
Figure 4.2. Moreover, in the proposed approach, It is assumed that there is no yielding in
stirrups at service loads. Thus, concrete contribution to the shear resistance at the service
loading conditions can be obtained using Equation 4.1.

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC ) (4.1)
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(a) (b)

Figure 4.1: Variation of Vc and Vs for two beam specimens with shear span ratio of 2.5 and 3.1 respectively
[32]

Figure 4.2: Proposed method to calculate Vc at service load condition

Now,
Vs =V −Vc (4.2)

In the Equation 4.2, Vc at service loading conditions can be obtained by equating it to the
Vcr,pr ed ,ser as obtained In Equation 4.1.

4.2. Principle Strains and the Stirrups Strain
Hu and Wu [31] found that before the yielding of shear reinforcement (which in the pro-
posed models is also assumed to hold since shear stirrups are not expected to yield un-
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der the application of service loads), the measured inclination of the principle stresses are
very close to the direction of principle strains. Similar observations are made by Bhide and
Collins ([10], [11]) who found that initially the crack formation occurs almost along the
direction of principal strains and the crack only rotates later with the increasing value of
principle strains. Therefore, in the proposed models in this Chapter, the assumption of co-
axiality of principle stress and principle strain is adopted.
Assuming that the transverse reinforcement is uniformly distributed across the crack sur-
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Figure 4.3: The local stress and strain at the crack surface of an RC beam

face and the transverse strain in concrete is equal to the strain in the stirrups, stirrups strain
can be given by Equation 4.3 [41].

εy = Vs s

Av Es j dcotΘ
(4.3)

The force in the diagonal compression strut from Figure 4.3 and Figure 4.4 can be given by
Equation 4.4.

si n(θ) = V

Vstr ut
(4.4)

Now assuming that the strut is in linear elastic stage under the application of service loads,
stress in the strut can be obtained by Equation 4.5.

σstr ut = Vstr ut

Astr ut
(4.5)

where,
Astr ut = j dcos(θ)bw (4.6)

Thus, principle compressive strain in the diagonal concrete strut can be given by Equa-
tion 4.7.

ε2 =− V

j dbw Ec si nΘcosΘ
=− Vs +Vc

j dbw Ec si nΘcosΘ
(4.7)

where:
θ diagonal compression strut angle.
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Figure 4.4: The components of the applied shear force along and perpendicular to the diagonal compression
strut
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(13)

where ε2 is the principle compressive strain in concrete. 

With the known values of θ, εy, and ε2, a Mohr’s circle can then be constructed as shown in Fig. 6

to calculate the tensile strain ε1, given below

 (14)

This equation takes into consideration that θ may be more than 45o.

Many researchers including Walraven et al. (1981) have concentrated on the experimental

relationships between the shear carried by concrete vc and the tensile strain ε1. Vecchio and Collins

(1986) derived the equation for the limiting value of shear stress transferred across the crack; the

equation further used by Walraven et al. (1981) in his study is given below

(15)

where  is the maximum aggregate size in millimeters; fci is the compressive stress on crack

surface (assumed as zero in this model);  is the compressive strength of concrete and w is the

average crack width over the cracked surface. The crack width can be taken as 

(16)

Where

(17)

and where smx and smy are the indicators of the crack control characteristics of the longitudinal and

transverse shear reinforcement, respectively. Bhide and Collins (1989) used the provision of the

CEB-FIP Code (1978) for calculating the crack spacing 
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Fig. 6 Compatible strain conditions in a RC elementFigure 4.5: The Mohr circle for strains for different values of θ [41]

The relationship in Equation 4.8 between the principle strains can be obtained from the
Figure 4.5.

ε1 =
2(εy +ε2)

|cos2Θ|+1
−ε2 (4.8)

4.3. Shear Crack Width
In the discussion so far, a calculation strategy to obtain the concrete contribution to shear
resistance and subsequently the principle strains and the stirrup strain is proposed. These
strain values form the basis of the calculations of mean shear crack width using the models
proposed in this section.

4.3.1. Model-IA
This model is adapted from EC2 crack width formula for tensile and flexural cracks. The
current EC2 crack spacing model [19] evaluates the crack spacing by virtually transforming
the given cross section into the cross section of an equivalent hidden tensile member. In
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this model, it is proposed to calculate the shear crack spacing using the current method-
ology provided in EC2 to calculate crack spacing for members with reinforcement in or-
thogonal directions. The crack spacing is influenced by the bond transfer length between
concrete and reinforcement. The stress in the longitudinal reinforcement is maximum at
the location of intersection of longitudinal reinforcement with cracks and gradually the
stress is transmitted to concrete over the transfer length. It is assumed that a similar stress
distribution holds for stirrups as well (see Figure 4.6 and Figure 4.7). The obtained crack
spacing should then be multiplied with the average reinforcement strain (stirrup strain) in
between the two diagonal shear cracks.
It is assumed that the influence of longitudinal reinforcement on the shear crack width is
taken into account only through its influence in shear crack spacing, sr,max,θ. The shear
crack spacing is a function of crack control characteristics of longitudinal and transverse
reinforcement (calculated by the parameter sr,max in both directions). The crack spac-
ing control parameter of the longitudinal reinforcement is applicable to the hidden ten-
sile member as shown in Figure 4.8. It is assumed that crack spacing control parameter in
transverse direction is also applicable to the hidden tensile member around the stirrups.
The crack spacing control parameter in transverse direction is calculated using a definition
of the effective area of the hidden tensile member (around stirrups) from the fib MC 2010
[23] as shown in the Figure 4.10. The concrete contribution to shear resistance at ULS (to
obtain stirrup force, stress and strain) and the mean shear crack angle are calculated using
the CCC model (Equation 4.18 and Equation 4.30 respectively).

Figure 4.6: Figure showing stress distribution in concrete and longitudinal reinforcement close to flexural
cracks
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Figure 4.7: Figure showing assumed stress distribution in concrete and longitudinal reinforcement close to
shear cracks

Figure 4.8: Effective area of the hidden tensile member around longitudinal reinforcement as per EC2 [19]

Figure 4.9: Assumed effective area of the hidden tensile member around stirrups.
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Figure 4.10: Effective area of the hidden tensile member around stirrups as given in fib MC 2010 [23]

Ay,e f = mi n
(
2.5(cs +dby /2)sy , (bw /2)sy

)
(4.9)

The crack width is calculated using the Equation 4.10 given in the EC2 [19].

wk = sr,max(εsm −εcm) (4.10)

wav g = sr,av g (εsm −εcm) (4.11)

εsm −εcm =
σs −kt

fct ,e f f

ρp,e f f
(1+αeρp,e f f )

Es
≥ 0.6

σs

Es
(4.12)

where:
σs the stress in the stirrup assuming a cracked section.
αe = Es/Ecm .
ρp,e f f = 0.5Asw /Ay,e f f

Asw the cross section area (of both legs) of the stirrups.
Ay,e f f the area shown in Figure 4.10.
kt factor that accounts for duration of loading.

= 0.6 for short term loading.
= 0.4 for long term loading.

Limitation of the Current EC2 Crack Width Model
It must be noted that the crack width calculated using Equation 4.10 is characteristic crack
width and not mean crack width. This is clear because the mean stirrup strain is multiplied
with the maximum diagonal crack spacing in this equation. However, to properly evalu-
ate the prediction accuracy of the crack width model, mean crack width is required since
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only mean crack width can be compared directly with the experimental values. Therefore,
it is decided to introduce a factor to reduce the maximum shear crack spacing from the EC2
Crack Spacing Model to mean shear crack spacing. In the derivation of the EC2 Crack Spac-
ing Model, the maximum crack spacing corresponds to 2 times the transfer length (for the
transfer of forces from reinforcement to concrete) [12]. The minimum crack spacing cor-
responds to the transfer length. Therefore, it can be assumed that the mean crack spacing
corresponds to 1.5 times the transfer length. Therefore, the maximum crack spacing from
EC2 Crack Spacing Model in Equation 4.28 is multiplied with (1.5/2) to obtain the mean
shear crack spacing.

It must be noted that Equation 4.12 is applicable for the longitudinal tensile reinforcement
and nothing is explicitly mentioned about the transverse direction in the current EC2 ver-
sion. The given Equation 4.12 considers the tension stiffening effect of concrete in between
the cracks. The reinforcement stress is maximum at the location of intersection of rein-
forcement with crack and gradually reduces as stress is transferred to the concrete due to
bond slip between reinforcement and concrete over the disturbed area. The stress in con-
crete is zero at the location of crack and gradually increases along the disturbed area. In the
present model, similar mechanism for the transfer of forces from reinforcement to concrete
is assumed around stirrups. Therefore, Equation 4.12 is used to evaluate the mean strain in
the stirrups as well. Now,

σs = Vs

Es
(4.13)

Vs =V −Vc (4.14)

Vc =Vc,pr ed ,ser (4.15)

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC ) (4.16)

Vcr,CCC =VRm,c (4.17)

The Equation 4.15 is proposed to evaluate this contribution to the shear resistance.

VRm,c =Vc +Vw +Vl = 0.3ς
x

d
( fcm)

2
3 bv,e f f (4.18)

where
Vc the contribution of the compression zone.
Vw the shear transferred by concrete across the crack.
Vl the contribution of longitudinal rebars to shear resistance of concrete

through dowel action.
x

d
= 0.75(αeρl )

1
3 (4.19)

if x≤h f

bv,e f f = bv = bw +2h f ≤ b (4.20)
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if x > h f

bv,e f f = bw + (bv −bw )

(
h f

x

) 3
2

(4.21)

where
bv effective width of the compression flange.
b total cross-section width at the flange.

bv = bw +2h f ≤ b (4.22)

Figure 4.11: Notations for a T beam [15]

The minimum shear strength contribution by concrete can be expressed Equation 4.23.

VRm,cmi n = 0.25(ς
x

d
+ 20

d
)( fcm)

2
3 bw d (4.23)

ς= 2√
1+ d

200

(
d

a

)0.2

≥ 0.45 (4.24)

The shear crack spacing can be determined using EC2 crack spacing model as follows.
EC2 Crack Spacing Model

1. Reinforcement bars spaced <5(c +φ/2) c/c (centre to centre)
This model is derived using the cracking in a tension member model wherein the
crack spacing between the two cracks is governed by the transfer length for the forces
to get transferred from the steel reinforcement bar to concrete.
According to EC2 [19] if the reinforcement bars are located with respect to each other
within a distance of 5(c +φ/2), the crack spacing may be calculated using the Equa-
tion 4.25.

sr,max = k3c +k1k2k4φ/ρp,e f f (4.25)

It is suggested to use φeq where more than one type of reinforcement bar diameters
are present. If a section contains n1 and n2 reinforcement bars with diametersφ1 and



4.3. Shear Crack Width 87

φ2 respectively, then φeq is calculated using Equation 4.26.

φeq = n1φ
2
1 +n2φ

2
2

n1φ1 +n2φ2
(4.26)

where
c the clear cover to the longitudinal reinforcement.
k1 coefficient to account for the bond properties of the reinforcement.

= 0.8 for HYSD (High Yield Strength Deformed Bars).
=1.6 for plain reinforcement bars.

k2 coefficient to account for the type of strain distribution.
=0.5 for flexure.
=1.0 for pure tension.

It may be noted that the recommended values of k3 and k4 are 3.4 and 0.425 respec-
tively. The second term on right hand side in the Equation 4.25 arises from the trans-
fer length for the transfer of forces from the reinforcement bars to concrete. The first
term on right hand side in the equation effectively provides a lower bound for the
maximum crack spacing in case of beams with very high reinforcement ratios.

2. Reinforcement bars spaced >5(c +φ/2) c/c (centre to centre)
In this case an upper bound to the crack spacing is suggested as given In Equa-
tion 4.27.

sr,max = 1.3(h −x) (4.27)

It may be noted that for a shear stirrup this would mean that if the distance between the
legs of the stirrups exceed 5(cs +φs/2) (where cs and φs are the side concrete cover to stir-
rups and shear stirrup diameter respectively) the crack spacing parameter sr,max,y = 1.3b
(where b is the cross section width of the beam). The crack spacing in reinforced concrete
members where the angle between the axes of principle stresses and the direction of rein-
forcement > 15o is given by Equation 4.28.

sr,max = 1
cosθ

sr,max,y
+ si nθ

sr,max,z

(4.28)

sr,av g = 0.75sr,max (4.29)

where
θ angle between the rebars in y direction and the direction of principle tensile

stress (Figure 4.13).

Figure 4.12 shows the orientation of the axes as considered in EC2 crack spacing model.
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Figure 4.12: The orientation of axes in EC2 [19] crack spacing model

Figure 4.13: The definition of θ in EC2 [19] crack spacing model
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Figure 4.14: Variation of crack width with respect to distance from the reinforcement bars (Adapted from
EC2 [19])

Figure 4.14 shows the variation in crack width with respect to the distance from the rein-
forcement bar.

where
c clear cover to the reinforcement bar.
A neutral axis of the beam.
B concrete tension zone surface.
C predictions of the crack spacing Equation 4.27.
D predictions of the crack spacing Equation 4.25.
E actual crack width on the beam surface.

Figure 4.15: Assumed diagonal shear cracks at a constant crack spacing



90 4. Proposed Models

Figure 4.16: Assumed horizontal cracks caused by transverse tension with crack spacing smy in between the
two adjacent cracks

Figure 4.17: Assumed vertical cracks caused by axial tension with crack spacing smx in between the two
adjacent cracks

The angle θ in Equation 4.28 can be calculated using CCC model. The model states that the
inclination of the diagonal compression strut (assumed equal to mean shear crack angle in
this thesis) is given by the Equation 4.30.

cotθ = 0.85ds

ds −x
≤ 2.50 (4.30)

It is important to note here that the Equation 4.30 is applicable for stresses at or after the
yielding of the reinforcement [31].

where
x: depth of neutral axis of the cracked section of a prestressed con-

crete beam evaluated using the assumption of zero concrete tensile
strength. Moreover, it is assumed that concrete in compression zone
is in linear elastic zone.

x = xo (for reinforced concrete beams without axial load).
ds : effective shear depth.

xo

d
=αeρl

(
−1+

√
1+ 2

αeρl

)
≈ 0.75(αeρl )

1
3 (4.31)
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Figure 4.18: Evolution of the critical shear crack (adapted from [15]

Assumptions/ Limitations of Model-IA

1. It is assumed that the bond stress transfer mechanism in transverse direction is sim-
ilar to the longitudinal direction.

2. It is assumed that the bond slip occurs between stirrup and concrete causing bond
stress which allows the transfer of forces from the reinforcement to concrete.The
bond stress between reinforcement and concrete is assumed constant throughout
the length of disturbed zone.

3. The calculated mean shear crack width is applicable to the hidden tensile member
and may not be be representative of mean shear crack widths in case of deep slender
beams at large distance from reinforcement.

4. Shear cracks are assumed parallel to each other.

5. The angle of shear crack is assumed equal to the mean shear crack inclination from
the CCC model which is originally applicable at ULS. The horizontal projection of the
first branch of flexural-shear crack is assumed equal to 0.85d .

6. The concrete contribution to shear resistance at ULS is assumed equal to the value
predicted by CCC model. The concrete contribution to shear resistance at ULS in
the CCC model is determined after making a few assumptions. It is assumed that
the mean longitudinal reinforcement percentage =1.5%. The shear crack spacing is
assumed equal to d and mean shear crack inclination is assumed equal to 36 degrees.
Moreover, it is assumed that the tensile stress- crack opening curve is linear.

7. It is assumed that the concrete contribution to shear resistance decreases linearly
from first diagonal cracking to the stage of all stirrups yielding.

8. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

9. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].
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10. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).

4.3.2. Model-IB
This model completely ignores any direct contribution of concrete to the shear resistance
under service loading conditions. The model assumes that the entire load is transmit-
ted first to the stirrups and then the concrete is stressed because of the forces in the stir-
rups. The mean shear crack width can be determined using Equation 4.11. The calculation
procedure is same as the Model-IA except that concrete contribution to shear resistance
Vc,pr ed ,ser is equal to zero in Equation 4.16. Moreover, the mean shear crack angle in Equa-
tion 4.28 is calculated using CFT [16] instead of CCC model [15] since in the former model
concrete tensile resistance is not considered and this makes the model relatively more com-
patible with zero concrete contribution (zero concrete contribution (Vc = 0)) assumption.
The mean shear crack angle can be determined using Equation 4.32.

t an4θ =
1+ 1

nρl

1+ 1
nρt

(4.32)

Assumptions/ Limitations of Model-IB

1. It is assumed that the bond stress transfer mechanism in transverse direction is sim-
ilar to the longitudinal direction.

2. It is assumed that the bond slip occurs between stirrup and concrete causing bond
stress which allows the transfer of forces from the reinforcement to concrete.The
bond stress between reinforcement and concrete is assumed constant throughout
the length of disturbed zone.

3. The calculated mean shear crack width is applicable to the hidden tensile member
and may not be be representative of mean shear crack widths in case of deep slender
beams.

4. Shear cracks are assumed parallel to each other.

5. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

6. The shear crack angle is determined using CFT instead of CCC model. The expres-
sion used for the calculation of this angle is applicable to reinforcement structural
response in linear elastic zone only and therefore, no stirrup yielding should occur
under the application of service loads.

7. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

8. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).
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4.3.3. Model-IIA
This is a semi-empirical model based on harmonization of crack width model given by Za-
karia et al. [65] and the stirrup strain obtained in Equation 4.3. The concrete contribution
to shear resistance at ULS comes from CCC model and the concrete contribution to shear
resistance at service loads can be determined using Equation 4.16. The Equation 4.33 can
be used to calculate the crack width [65].

wav g = K (cs)a(
1

ρw
)b(

1

ρt
)c smθ−av gεw (4.33)

K = 0.112kskt (4.34)

wmax = kmax wav g (4.35)

where
K constant to account for the stirrup type.
ks = 1.0 for shear stirrups with conventional closed hook (135o).
ks = 1.2 for shear stirrups comprising of two U-shaped lap
spliced parts.
kt constant to account for the type of shear stirrup rebar.
kt = 1.0 for HYSD (High Yield Strength Deformed) bars.
kt = 1.2 for plain reinforcement bars.
ρw =Aw /bw sy .

a, b and c empirical constants.
a =0.05
b =0.207
c =0.252
kmax correlation factor.

=1.4

εs = σs

Es
(4.36)

The stirrup stressσs can be determined using Equation 4.13-Equation 4.24 given in Model-
IA. The description of the Zakaria et al. crack width model is provided in 2.2.2. The value
of stirrup strain εw can now be substituted from Equation 4.36 into Equation 4.33 to obtain
the shear crack width. The original model proposed by Zakaria et al. [65] is based on the
following observations made by authors in an experimental program[66].

1. Shear crack width increases proportionately with increase in shear crack spacing and
shear stirrup strain.

2. The shear crack width to shear crack spacing ratio decreases with increase in the
transverse and longitudinal reinforcement ratio. The ratio also increases with in-
crease in side concrete cover to stirrups.
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3. The shear crack width to shear crack spacing ratio is also influenced by the type of
reinforcement bars (deformed or plane reinforcement bars).

The empirical constants are incorporated into Equation 4.33 for calculating mean shear
crack width to account for the influence of stirrups type, longitudinal and transverse re-
inforcement ratio and side concrete cover to stirrups. The shear crack spacing expression
used in the model is formulated based on the observations in a previously carried out ex-
perimental study [66]. The background of the shear crack spacing model is the harmoniza-
tion of CEB-FIP MC 1978 [18], CEB-FIP MC 1990 [8] and Collins and Mitchell Model [17].
The shear crack spacing is expressed as a weighted mean of crack control characteristics of
both longitudinal and transverse reinforcements after taking into consideration the shear
crack angle. The mean shear crack spacing smθ−av g in Equation 4.33 can be determined us-
ing Zakaria et al. crack spacing model which gives Equation 4.37 for determining the mean
shear crack spacing.

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

(4.37)

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx
(4.38)

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy
(4.39)

ρx = As + Aps

Acx,e f
(4.40)

Acx,e f = 2.5(h −de )bw (4.41)

de =
Asd + Apsdp

As + Aps
(4.42)

ρy = 0.5Aw

Ac y,e f
(4.43)

Ac y,e f = mi n
(
2.5(cs +dby /2)sy , (bw /2)sy

)
(4.44)

where
sy ≤15dby .
k1 factor to account for the bond characteristics of the reinforcement.

= 0.4 for HYSD bars.
=0.8 for plain reinforcement bars.

k2 factor to account for the shape of the stress distribution.
=0.125 for in flexure.
=0.25 for the pure tension.

Figure 4.19 shows the various crack spacing parameters used in this model.
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Figure 4.19: Various geometrical parameters used in the shear crack spacing model [65]

The angle θ in Equation 4.37 can be determined using Equation 4.30.
Assumptions/ Limitations of Model-IIA

1. It is assumed that the bond stress transfer mechanism in transverse direction is sim-
ilar to the longitudinal direction.

2. Shear cracks are assumed parallel to each other.

3. The angle of shear crack is assumed equal to the mean shear crack inclination from
the CCC model which is originally applicable at ULS. The horizontal projection of the
first branch of flexural-shear crack is assumed equal to 0.85d .

4. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

5. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).

6. The concrete contribution to shear resistance at ULS is assumed equal to the value
predicted by CCC model. The concrete contribution to shear resistance at ULS in
the CCC model is determined after making a few assumptions. It is assumed that
the mean longitudinal reinforcement percentage =1.5%. The shear crack spacing is
assumed equal to d and mean shear crack inclination is assumed equal to 36 degrees.
Moreover, it is assumed that the tensile stress- crack opening curve is linear.

7. It is assumed that the concrete contribution to shear resistance decreases linearly
from first diagonal cracking to the stage of all stirrups yielding.

8. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].
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9. The model comprises several empirical constants.

10. The model is applicable only for deformed shear stirrups and not for specimens with
plain reinforcement bars.

11. Model is only applicable for reinforcements in elastic stage.

4.3.4. Model-IIB
This model completely ignores any direct contribution of concrete to the shear resistance
under service loading conditions. The model assumes that the entire load is transmit-
ted first to the stirrups and then the concrete is stressed because of the forces in the stir-
rups. The mean shear crack width can be determined using Equation 4.33. The calculation
procedure is same as the Model-IIA except that concrete contribution to shear resistance
Vc,pr ed ,ser is equal to zero in (Equation 4.16). Moreover, the mean shear crack angle in
Equation 4.38 is calculated using CFT [16] instead of CCC model [15] since in the former
model concrete tensile resistance is not considered and this makes the model relatively
more compatible with zero concrete contribution (zero concrete contribution (Vc = 0)) as-
sumption. The mean shear crack angle can be determined using Equation 4.32.
Assumptions/ Limitations of Model-IIB

1. Shear cracks are assumed parallel to each other.

2. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

3. The model comprises several empirical constants.

4. The model is applicable only for deformed shear stirrups and not for specimens with
plain reinforcement bars.

5. Model is only applicable for reinforcements in elastic stage.

6. The shear crack angle is determined using CFT instead of CCC model. The expres-
sion used for the calculation of this angle is applicable to reinforcement structural
response in linear elastic zone only and therefore, no stirrup yielding should occur
under the application of service loads.

7. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

8. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).

4.3.5. Model-IIIA
This model is based on the assumption that average shear crack width can be expressed
as the product of mean principle tensile strain in concrete (in and between the cracks)
and the spacing between shear cracks (Equation 4.45) the cracks are assumed parallel to
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each other and inclined to the longitudinal reinforcement at an angle given by the CCC
model (Equation 4.30). The concrete contribution to shear resistance at ULS and at service
loads can be calculated using the same procedure and equations used for Model-IA. The
principle tensile strain ε1 can be calculated using Equation 4.8. This principle strain should
then be multiplied with the shear crack spacing (Equation 4.37) from the model given by
Zakaria et al. which is also used in Model-IIA.

wav g = ε1sθ (4.45)

Assumptions/ Limitations of Model-IIIA

1. It is assumed that the mean principle tensile strain in cracked concrete is absorbed
within all the cracks.

2. It is assumed that the bond stress transfer mechanism in transverse direction is sim-
ilar to the longitudinal direction. The bond stress between reinforcement and con-
crete is assumed constant throughout the length of disturbed zone.

3. The calculated mean shear crack width is applicable to the hidden tensile member
and may not be be representative of mean shear crack widths in case of deep slender
beams.

4. Shear cracks are assumed parallel to each other.

5. The angle of shear crack is assumed equal to the mean shear crack inclination from
the CCC model which is originally applicable at ULS. The horizontal projection of the
first branch of flexural-shear crack is assumed equal to 0.85d .

6. The concrete contribution to shear resistance at ULS is assumed equal to the value
predicted by CCC model. The concrete contribution to shear resistance at ULS in
the CCC model is determined after making a few assumptions. It is assumed that
the mean longitudinal reinforcement percentage =1.5%. The shear crack spacing is
assumed equal to d and mean shear crack inclination is assumed equal to 36 degrees.
Moreover, it is assumed that the tensile stress- crack opening curve is linear.

7. It is assumed that the concrete contribution to shear resistance decreases linearly
from first diagonal cracking to the stage of all stirrups yielding.

8. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

9. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

10. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).
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4.3.6. Model-IIIB
This model completely ignores any direct contribution of concrete to the shear resistance
under service loading conditions. The model assumes that the entire load is transmit-
ted first to the stirrups and then the concrete is stressed because of the forces in the stir-
rups.The mean shear crack width can be determined using Equation 4.47. The calculation
procedure is same as the Model-IIIA except that concrete contribution to shear resistance
Vc,pr ed ,ser is equal to zero in (Equation 4.16). Moreover, the mean shear crack angle in
Equation 4.29 is calculated using CFT [16] instead of CCC model [15] since in the former
model concrete tensile resistance is not considered and this makes the model relatively
more compatible with zero concrete contribution (zero concrete contribution (Vc = 0)) as-
sumption. The mean shear crack angle can be determined using Equation 4.32.

Assumptions/ Limitations of Model-IIIB

1. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

2. The shear crack angle is determined using CFT instead of CCC model. The expres-
sion used for the calculation of this angle is applicable to reinforcement structural
response in linear elastic zone only and therefore, no stirrup yielding should occur
under the application of service loads.

3. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

4. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).

4.3.7. Model-IV
This model is also based on the assumption that average shear crack width can be ex-
pressed as the product of principle tensile strain in concrete (in and between the cracks)
and the spacing between shear cracks (Equation 4.47). All the cracks are assumed parallel
to each other and inclined to the longitudinal reinforcement at an angle given by the CSA
model based on SMCFT (Equation 4.46). The concrete contribution to shear resistance at
ULS (to obtain the mean principle tensile strain in cracked concrete) is also calculated us-
ing the CSA model (instead of CCC model) wherein this contribution is expressed as the
capacity of the beam web (under tensile stress) to resist shear (Equation 4.48). This contri-
bution decreases with increase in the longitudinal strain in the web. The mean principle
tensile strain ε1 can be calculated using Equation 4.8. This strain is calculated using the ad-
ditive model for shear resistance, truss analogy for diagonally cracked RC beam and Mohr’s
strain circle similar to the procedure followed in Model-IIIA. This principle strain should
then be multiplied with the shear crack spacing (Equation 4.37) from the model given by
Zakaria et al. which is also used in Model-IIA . The mean shear crack angle in the calcu-
lation of mean shear crack spacing can be determined using the expression for diagonal



4.3. Shear Crack Width 99

compression strut angle given by Equation 4.46. It may be noted that the angle θ in Equa-
tion 4.46 is in degrees.

θ = 29+7000εx (4.46)

wav g = ε1sθ (4.47)

Vc =φcλβ

√
f
′

c bw dv (4.48)

where√
f
′

c ≯ 8MPa for beams containing minimum transverse reinforcement.
β factor to account for shear resistance of cracked concrete.
f
′

c specified compressive strength of concrete.

β= 0.40

1+1500εx
(4.49)

The strain in the longitudinal reinforcement εx can be calculated using Equation 4.50.

εx =
M f

dv
+V f −Vp +0.5N f − Ap fpo

2(Es As +Ep Ap )
(4.50)

Figure 4.20: Determination of longitudinal strain in the longitudinal reinforcement of a reinforced concrete
non-prestressed beam [4].
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Figure 4.21: Determination of longitudinal strain in the web of a reinforced concrete non-prestressed beam
[14]

Assumptions/ Limitations of Model-IV

1. Shear cracks are assumed parallel to each other.

2. The angle of shear crack is assumed equal to the mean shear crack inclination from
the SMCFT. The theory assumes that clamping stress in transverse directions are zero.
The failure shear stress is assumed equal to 0.25 fc . And the shear crack spacing is
assumed equal to 300mm.

3. The concrete contribution to shear resistance at ULS is assumed equal to the value
predicted by CSA model which is based on SMCFT. The concrete contribution to
shear resistance at ULS in the SMCFT is determined after making a few assumptions.
The maximum value of

√
fc ≯ 8MPa. This theory can be used for RC beams which

have a minimum transverse reinforcement area equal to 0.06
√

fc bw s/ fy . Moreover,
the web longitudinal strain is assumed equal to half the maximum strain in the lon-
gitudinal tension reinforcement.

4. It is assumed that the concrete contribution to shear resistance decreases linearly
from first diagonal cracking to the stage of all stirrups yielding.

5. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

6. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

7. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).
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4.3.8. Model-V
This model is adapted from handbook for EC2 developed by Swedish Concrete Associa-
tion (Betongföreningen, 2010). According to the handbook, the reinforcement stresses in a
plane stress state can be calculated by establishing equilibrium of the tensile stresses in the
reinforcement with compressive stress and shear stress in the uncracked concrete. It is as-
sumed that the cracked concrete can not take any tensile force. The reinforcement stresses
in the two directions may be calculated with Equation 4.51 and Table D.9. The mean prin-
ciple tensile strain should then be multiplied with the mean shear crack spacing obtained
from Zakaria et al. shear crack spacing model (using Equation 4.37) to obtain the mean
shear crack width.

σsx = σx
( x

2h

)+τx y cotθ
Asx

bw h

(4.51)

σs y =
σy +τx y t anθ

As y

bw s

(4.52)

εy = σs

Es
(4.53)

Once the strain in the stirrups is known, the mean principle tensile strain in concrete can
be found with Equation 4.8 and Equation 4.7. In case the compressive stress in concrete
on the top and bottom extreme fibers are σc1 and σc2 respectively then the stress in the
longitudinal reinforcement can be obtained using Equation 4.54.

σsx =
(σc1+σc2

2

)+τx y cotθ
Asx

bw h

(4.54)

where
σc1 compressive stress in the extreme top fiber of the beam.
τx y maximum shear stress in concrete.
Asx cross-section area of the longitudinal reinforcement.
As y combined cross-section area of both legs of a 2-legged stirrup.
x height of the compression zone.
bw web width of the beam.
h height of the beam cross-section.
s stirrup spacing.
σsx is reinforcement stress in the x-direction.
σs y is the reinforcement in the y-direction.
ρx is reinforcement ratio in the x- direction (Asx/bw h).
ρy is the reinforcement ratio in the y- direction (As y /bw sy ).
θ diagonal compression strut angle with respect to the longitudinal axis of

the beam.

It is proposed to use θ given by the CFT in case of RC beams. In case of PC beams, the
angle may be adopted and its value can be given using the proposed Equation 4.55 [51].

θp = θ
[

1−
(
σpc

fc

)0.7]
(4.55)
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where
θp shear crack angle in case of PC (Prestressed Concrete) beams.
θ shear crack angle in case of RC beams.
σpc prestressing force divided by cross-section area of the beam.
fc compressive strength of concrete.

Derivation of Reinforcement Stresses in Longitudinal and Transverse Di-
rections
The proposed equations for the stresses in longitudinal and transverse reinforcements in
the model can be obtained from equilibrium of forces in the longitudinal and transverse
directions respectively.
From Figure 4.22, considering equilibrium in horizontal direction

∑
H = 0 we can write

Equation 4.56.

σsx Asx = σc1

2
(bw x)+τy x(l bw ) (4.56)

⇒σsx =
σc1

2 (bw x)+τy x(lbw )

Asx
(4.57)

⇒σsx =
σc1
2h (x)+τy x( l

h )
Asx

bw h

(4.58)

Now, l /h = cot (θ)

⇒σsx =
σc1
2h (x)+τy xcot (θ)

ρx
(4.59)

where:
ρx longitudinal reinforcement percentage.
Similarly,

From Figure 4.23, considering equilibrium in vertical direction
∑

V = 0 we can write Equa-
tion 4.60.

σs y

(
l

s

)
As y =σy (lbw )+τx y (hbw ) (4.60)

⇒σs y =
σy (lbw )+τx y (hbw )

As y

(
l
s

) (4.61)

⇒σs y =
σy +τx y ( h

l )
As y

bw s

(4.62)

⇒σs y =
σy +τx y t an(θ)

ρw
(4.63)

where
ρw transverse reinforcement percentage.
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Now let us assume that the entire cross-section of the beam is under non uniform com-
pression due to the influence of prestressing. The equilibrium of forces in the longitudinal
direction can be written as Equation 4.64.

σsx Asx = σc1 +σc2

2
(bw x)+τy x(l bw ) (4.64)

⇒σsx =
σc1+σc2

2 (bw x)+τy x(l bw )

Asx
(4.65)

⇒σsx =
σc1+σc2

2h (x)+τy x( l
h )

Asx
bw h

(4.66)

Now, l /h = cot (θ)

⇒σsx =
σc1+σc2

2h (x)+τy xcot (θ)

ρx
(4.67)

where
l length of the reinforced element under consideration.
ρx longitudinal reinforcement percentage.

Figure 4.22: Stresses in the reinforcement and cracked concrete

Figure 4.23: Stresses in the reinforcement and concrete under varying compressive stress along the depth

Assumptions/ Limitations of Model-V
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1. It is assumed that the bond stress transfer mechanism in transverse direction is sim-
ilar to the longitudinal direction.

2. The calculated mean shear crack width is applicable to the hidden tensile member
and may not be be representative of mean shear crack widths in case of deep slender
beams.

3. Shear cracks are assumed parallel to each other.

4. The angle of shear crack is predicted from CFT. This theory is used to predict the
mean shear crack angle for this model because the CFT also does not consider the
tensile strength of concrete.

5. It is assumed that concrete cannot resist any tensile force after cracking.

6. It is assumed that the bond exist between longitudinal reinforcement and concrete
which causes shear stress to occur in concrete below the neutral axis.

7. Clamping stress in the transverse direction are assumed zero.

8. The shear stress distribution in concrete before and after cracking is assumed to be
the same.

9. It is assumed that the strain in all stirrups along the shear crack is equal. However,
this assumption is not compliant with the experimental observations [31].

10. Shear crack width along the shear crack path is assumed as constant. However, shear
crack width is observed to vary along the crack path [66].

11. It is assumed that the shear crack angle is constant throughout the span of the beam.
However, it is experimentally observed that the shear crack angle varies along the
shear span of the beam ([41], [60]).

4.3.9. Results
In this subsection, assessment of the performance of the various models presented in sub-
section 4.3.1- subsection 4.3.6 is done. In order to evaluate the accuracy of these models, a
comparison is made with the experimental values of mean shear crack width for 26 differ-
ent beam specimens from literature.
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Figure 4.24: Experimental setup for the shear crack width study [37]

Table 4.1: Key characteristics of experiments and specimens referred for diagonal crack width study

Paper Specimens Mechanical
Scheme

Variable Method

Munikrishna
et al. [44]

3 3-point
bending

wav g , wmax LVDTs, crack
gauges

Lee et
al. [38]

12 4-point
bending

wav g crack
comparator,

pressure gauge
Lee et
al. [37]

11 4-point
bending

wav g , wmax LVDTs

Table 4.1 show the key characteristics of the experiments referred in this analysis. The me-
chanical schemes and the cross section details of these experimental studies ([44], [38]) are
shown in Figure 3.28 and Figure 3.27 respectively. The corresponding details of the experi-
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mental study of Lee et al. [37] are shown in Figure 4.24. The various geometrical parameters
of the corresponding beam specimens in these studies are provided in Table 4.2.

Table 4.2: Range of parameters for the specimens studies for comparison of shear crack widths with predic-
tions from various models

Parameter Range

a/d 2.56- 3.00
d/b 1.12- 1.13

ρw fym (MPa) 0.96- 4.83
ρl (%) 2.00- 4.00
ρw (%) 0.20- 0.70

f ′
c (MPa) 33.60- 68.40
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Table 4.3: Mean shear crack width prediction ratios of the models proposed

wav g ,exp /wav g ,pr ed

Specimen
Model
- IA

Model
-IB

Model
- IIA

Model
- IIB

Model
- IIIA

Model
- IIIB

Model
- IV

Model
- V

G3-C60 1.08 0.99 0.65 0.60 0.53 0.51 0.52 0.28
G3-M80 0.88 0.81 0.50 0.46 0.40 0.39 0.40 0.18

G3-M100 0.96 0.98 0.43 0.43 0.37 0.42 0.36 0.20
B34-3 1.56 1.10 1.05 0.75 0.92 0.59 0.88 0.38
B34-5 2.53 1.82 2.05 1.49 1.35 0.92 1.30 0.56
B42-2 1.48 0.96 1.18 0.76 0.86 0.51 0.81 0.36
B42-3 1.67 1.20 1.46 1.06 0.96 0.64 0.90 0.41
B42-4 1.40 1.04 1.22 0.91 0.80 0.55 0.76 0.34
B42-5 1.58 1.15 1.28 0.94 0.83 0.58 0.79 0.35
B42-6 1.75 1.39 1.20 0.95 0.80 0.63 0.76 0.34
B68-2 1.86 1.02 1.47 0.80 1.05 0.54 0.91 0.48
B68-3 1.60 1.13 1.40 0.99 0.89 0.60 0.80 0.40
B68-4 1.43 1.11 1.25 0.97 0.79 0.58 0.73 0.36
B68-5 1.83 1.22 1.47 0.98 0.93 0.61 0.83 0.42
B68-6 1.92 1.41 1.31 0.96 0.85 0.64 0.76 0.38

B334-120 2.97 1.69 1.88 1.06 1.23 0.66 0.78 0.53
B334-160 3.44 1.00 1.86 0.54 1.35 0.37 0.46 0.58
B480-120 2.29 1.54 1.45 1.04 0.94 0.65 0.69 0.40
B480-160 3.20 2.04 1.74 1.11 1.20 0.76 0.80 0.52
B480-200 5.62 2.95 2.63 1.38 1.89 1.00 1.06 0.81
B530-120 3.57 2.36 2.25 1.69 1.45 1.04 1.09 0.63
B530-160 4.70 3.25 2.55 1.76 1.75 1.21 1.24 0.76
B530-200 3.60 2.19 1.68 1.03 1.20 0.75 0.76 0.52
B667-120 5.09 3.51 3.40 2.63 2.19 1.63 1.64 0.95
B667-160 4.74 3.55 2.57 2.02 1.76 1.39 1.35 0.76
B667-200 2.45 1.83 1.15 0.86 0.81 0.62 0.60 0.35

Table 4.3 show the values of prediction ratio (ratio of experimentally observed mean crack
width to the predicted mean crack width) for the various models.

Table 4.4: Statistical parameters for the predictions of proposed models to evaluate the average diagonal crack
width

Statistical
Parameter

Model
-IA

Model
-IB

Model
-IIA

Model
-IIB

Model
-IIIA

Model
-IIIB

Model
-IV

Model
-V

Mean 2.51 1.66 1.58 1.08 1.08 0.72 0.85 0.47
Median 1.89 1.30 1.45 0.97 0.94 0.63 0.79 0.41

SD 1.35 0.83 0.69 0.50 0.45 0.31 0.30 0.19
COV 0.54 0.50 0.44 0.46 0.41 0.42 0.35 0.40
Max 5.62 3.55 3.40 2.63 2.19 1.63 1.64 0.95
Min 0.88 0.81 0.43 0.43 0.37 0.37 0.36 0.18

Range 4.74 2.74 2.97 2.20 1.82 1.26 1.29 0.77

Table 4.4 shows the various statistical parameters based on the prediction of shear crack
width using the proposed models. It can be observed that conservative mean crack width
predictions are made by Models-IIIB, IV and V. The predictions of Model-I, which is based
on the EC2 crack width model, are highly unconservative than the experimental values.
It can be observed from Table 4.4 that the maximum of prediction ratio of all the models
lead to an unconservative prediction of mean shear crack width except Model-V. However,
mean of the prediction ratio from the Models- IIIB, IV and V gives conservative estimates



108 4. Proposed Models

of mean shear crack width. It can be seen that Model- V give the least SD (equal to 0.19)
among all the models. However, Model IV showed the least COV among all the models.
The maximum of the prediction ratio from this model is 0.95. On an absolute scale SD and
COV for even Models- IIIB and IV (models which provide a conservative estimate of mean
shear crack width) are high with values 0.31 and 0.30 respectively for the two models re-
spectively. Moreover, the maximum of the prediction ratio is greater than 1.0 for Models
IIIB and Model IV indicating that there is a probability of unconservative predictions of
mean shear crack width calculated using these models. On comparing the value of stresses
(during calculations) in stirrups from different models, it is found that Model-V predicted
higher stresses in the stirrups than Model-I (A and B) and Model-II (A and B).
Model-IA which is based on the substitution of stirrup force from the truss analogy in the
conventional EC2 shear crack width model for flexural and tensile cracks resulted in the
most unconservative predictions. This may be due to the difference in the calculated and
actual stirrup stresses. In the proposed methodology to calculate the stirrup strains, it is
assumed that the stirrup strain is equal in all the stirrups. However, experimentally it is
observed that the stirrup strain is not equal [31]. Another reason for the discrepancy in
the calculation of shear stirrup strain may be the flatter angles (as compared to the actual
shear crack angle) predicted by diagonal compression strut angle models. This is reinforced
by the fact that even after assuming zero contribution (in Model-IB and Model-IIB) of the
concrete to the shear resistance, the mean calculated shear crack width is smaller than the
experimentally observed mean shear crack width.

Model-IA shows the highest SD. A significant portion of this SD may be due to the varia-
tion in the predicted values of concrete contribution from the CCC model as the SD is re-
duced in Model-IB (wherein the concrete contribution to shear resistance is considered as
zero). Model-IIA which is based on the substitution of stirrup strain in the semi-empirical
diagonal crack width calculation model by Zakaria et al. [65] also resulted in unconserva-
tive results with a high degree of dispersion indicated by the high values of SD and COV.It
is seen in Chapter 3 that the mean shear crack spacing prediction from the Zakaria et al.
crack spacing model is conservative. Therefore, the unconservative predictions for shear
crack width may be attributed to unconservative values of stirrup strain and (or) the uncer-
tainity in the regression parameters. However, it is clear from the predictions of Model-IIB
that the variation in Model-IIA largely comes from the dispersion in the predicted concrete
contribution to shear resistance (since Vc,pr ed ,ser = 0 in Model-IIB and the mean of the pre-
diction ratio for Model-IIB is 1.08 while it is 1.58 for Model-IIA). Model-IIIB shows a mean
value of the prediction ratio equal to 0.72. The reason for the conservative estimate is as-
suming that the concrete contribution to the shear resistance is zero and due to the ability
of the model to properly account for the inclination of the cracks with respect to the stirrups
(multiplication of principle strains in cracked reinforced concrete instead of shear stirrup
strain with shear crack spacing). Conservative estimates are also obtained from Model-IV
and Model-V with a mean of the prediction ratio equal to 0.85 and 0.47 respectively. Similar
to Model- IIIB, these models also expresses the crack width in terms of the mean principle
tensile strain in the cracked concrete. The value of concrete resistance factor φc is taken
as 1.0 in the original formulation of the Model-IV. An alternate analysis with φc = 0.65 (rec-
ommended value in CSA-2004 [5]) is also performed. The mean and SD for the alternate
analysis are found to be 0.79 and 0.30 respectively. The concrete contribution to shear re-
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sistance at the stirrup yielding in Model-IV is estimated using the CSA model which is based
on SMCFT.

Table 4.5: Average crack width prediction ratios of the models proposewith a shear crack angle equal to 45
degrees

wav g ,exp /wav g ,pr ed

Specimen wav g ,exp Model- IA Model-IB Model- IIA Model- IIB
Model
- IIIA

Model
- IIIB

Model- IV

G3-C60 0.25 0.74 0.54 0.46 0.38 0.28 0.23 0.27
G3-M80 0.23 0.52 0.37 0.31 0.25 0.18 0.14 0.17

G3-M100 0.37 0.67 0.49 0.30 0.24 0.20 0.16 0.19
B34-3 0.30 0.91 0.66 0.63 0.52 0.37 0.30 0.35
B34-5 0.53 1.52 1.08 1.23 0.98 0.55 0.44 0.53
B42-2 0.22 0.91 0.66 0.72 0.53 0.36 0.26 0.34
B42-3 0.36 1.01 0.73 0.90 0.73 0.40 0.33 0.38
B42-4 0.35 0.77 0.60 0.75 0.63 0.34 0.28 0.32
B42-5 0.36 0.97 0.70 0.78 0.62 0.35 0.27 0.33
B42-6 0.56 1.07 0.77 0.73 0.59 0.34 0.27 0.33
B68-2 0.23 1.19 0.70 0.94 0.55 0.47 0.27 0.41
B68-3 0.37 1.03 0.73 0.89 0.68 0.40 0.30 0.36
B68-4 0.46 0.84 0.63 0.80 0.66 0.36 0.29 0.33
B68-5 0.38 1.17 0.80 0.94 0.65 0.42 0.29 0.38
B68-6 0.57 1.23 0.87 0.84 0.59 0.39 0.27 0.35

B334-120 0.20 1.85 1.00 1.17 0.70 0.53 0.31 0.34
B334-160 0.12 2.14 0.61 1.16 0.33 0.58 0.16 0.19
B480-120 0.28 1.23 0.86 0.90 0.69 0.41 0.31 0.31
B480-160 0.35 1.99 1.09 1.08 0.68 0.52 0.32 0.35
B480-200 0.49 3.50 1.65 1.64 0.80 0.82 0.39 0.46
B530-120 0.50 1.81 1.34 1.40 1.11 0.63 0.49 0.49
B530-160 0.62 2.93 1.66 1.59 1.07 0.76 0.51 0.54
B530-200 0.40 2.24 1.16 1.05 0.60 0.52 0.29 0.33
B667-120 0.88 2.61 2.04 2.12 1.74 0.95 0.77 0.76
B667-160 0.89 2.52 1.76 1.60 1.23 0.76 0.58 0.59
B667-200 0.42 1.49 0.88 0.72 0.50 0.35 0.24 0.26

It is seen in section 3.2 that the predictions from all the diagonal compression strut an-
gle (or shear crack angle) prediction models are slightly unconservative as all the models
predicted flatter values of the compression strut angle value (i.e., prediction ratio greater
than 1.0) than the experimentally observed values. Moreover, since it is known that the
plane with the maximum shear stress is inclined at 45 degrees to the longitudinal axis of
the beam before first shear cracking, an additional analysis for all the models with the
shear crack angle assumed equal to 45 degrees is performed. It should be noted that the
actually shear crack angle would definitely be lesser than this value on account of rota-
tion of the crack angle with post- shear cracking. However, this higher assumed value of
shear crack angle will give higher predicted forces in the stirrups and is therefore, a con-
servative approach. Table 4.5 shows the values of prediction ratio (ratio of experimentally
observed mean crack width to the predicted mean crack width) for the various models with
the assumed value of shear crack angle equal to 45 degrees. Table 4.6 shows the statistical
parameters for the predictions of proposed models to evaluate the average diagonal crack
width with a shear crack angle equal to 45 degrees. It can be seen that the mean of the
prediction ratio decreases significantly for all the models. All the models except Model-IA
gives conservative predictions of the mean shear crack width. Similarly, reduction in SD
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and Range are also observed for all the models. This is expected because an assumption of
45 degree angle of the shear crack angle results in higher values of strains in the stirrups and
the mean principle tensile strain in the cracked concrete which leads to higher predicted
value of mean crack width. It can be seen that the maximum value of the predictions from
Models-IIIA, IIIB and IV becomes less than 1.0. The mean value of the predictions from
these models is also less than 1.0 as shown in Table 4.6. This indicates enhanced proba-
bility of the models to give conservative estimates of mean shear crack width. Although,
mean of the predictions from Model-IIA shows the closest and conservative value to 1.0,
however, the maximum of the predictions from this model is 2.12 which indicates a prob-
ability that the predictions from this model may be unconservative as well. The mean and
SD of the predictions from Model- IV with φc = 0.65 are found to be 0.35 and 0.13 respec-
tively. The calculation of mean shear crack width from Model-V with an assumption of the
mean shear crack angle of 45 degrees causes stresses much larger than the yield strength in
the stirrups and therefore, the results are omitted in Table 4.6 and Table 4.5 (since stirrups
are not expected to yield at service loads). It is observed that with an assumption of mean
shear crack angle of 45 degrees Model-V gives over-conservative results (relatively very high
values of predicted mean shear crack width as compared to the experimental crack widths)
and therefore is not suitable for application in design practice.

Table 4.6: Statistical parameters for the predictions of proposed models to evaluate the mean diagonal crack
width with a shear crack angle equal to 45 degrees

Statistical
Parameter

Model -IA Model -IB Model -IIA Model -IIB Model -IIIA Model -IIIB Model -IV

Mean 1.49 0.94 0.99 0.69 0.47 0.33 0.37
Median 1.21 0.79 0.90 0.64 0.41 0.29 0.34

SD 0.77 0.43 0.42 0.32 0.19 0.14 0.13
COV 0.52 0.46 0.43 0.46 0.40 0.42 0.35
Max 3.50 2.04 2.12 1.74 0.95 0.77 0.76
Min 0.52 0.37 0.30 0.24 0.18 0.14 0.17

Range 2.98 1.66 1.81 1.49 0.77 0.63 0.59
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Table 4.7: The ratio of the experimentally obtained maximum crack width to the average crack width for the
reinforced concrete beam specimens [38]

Specimen wav g ,exp wmax,exp wmax,exp /wav g ,exp

B34-3 0.30 0.80 2.69
B34-5 0.53 0.74 1.40
B42-2 0.22 0.63 2.88
B42-3 0.36 0.81 2.26
B42-4 0.35 1.05 2.97
B42-5 0.36 1.05 2.92
B42-6 0.56 1.68 2.99
B68-2 0.23 0.60 2.63
B68-3 0.37 1.06 2.91
B68-4 0.46 1.59 3.43
B68-5 0.38 0.84 2.24
B68-6 0.57 1.19 2.10

The principle tensile strains tend to concentrate at certain weakest locations along the crit-
ical diagonal crack as the load increases. This causes a deviation between the values of
mean shear crack width and the maximum crack width [31]. Table 4.7 shows the value of
the maximum crack width to average crack width as observed experimentally in the test
series by Lee et al. [38]. It can be seen that the ratio varies from 1.40 for specimen B34-
5 to 3.43 for specimen B68-4. The mean value of wmax/wav g is found to be 2.61. Various
researchers find different value of this ratio in their experiments and they adopt different
ratios to conservatively predict the maximum crack width from the average crack widths.
Hu and Wu [31] observe in their experiments that the maximum crack width to average
crack width ratio is about 1.5. Deluce et al. [22] suggest the value of this ratio to be 1.57
while Lee et al. [36] and Voo et al. [59] assume the value of this ratio as 1.7. It should be
noted that the maximum value of wmax,exp /wav g ,exp equal to 3.43 may not be the true rep-
resentative of the actual relation between these two values. Ideally, we may want to have a
relation between the characteristic maximum crack width and the average crack width .In
this study, we have a limited set of data points, therefore, such a relation can not be reliably
stated.
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Figure 4.25: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IA.
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Figure 4.26: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IB.

It can be observed from Figure 4.25 that prediction from Model-IA shows high dispersion
for a/d = 3 as compared to a/d = 2.56. Moreover, a bias towards giving unconservative
predictions can be seen at a/d = 3 as compared to a/d = 2.56. Similar tendency to predict
higher dispersion for a/d = 3.0 as compared to a/d = 2.56 is observed in all the models (see
Figure 4.26- Figure 4.31).
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Figure 4.27: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IIA
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Figure 4.28: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IIB
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Figure 4.29: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IIIA
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Figure 4.30: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IIIB

It can be seen from Figure 4.30 that 5 out of 26 predictions are unconservative (i.e. predic-
tion ratio > 1.0).



4.3. Shear Crack Width 115

0 1 2 3 4 5
a/d [-]

0

0.5

1

1.5

2

2.5

3

3.5

w
av

g
, e

xp
 / 

w
av

g
, p

re
d
 [

-]

High dispersion in values

Figure 4.31: The ratio of wav g ,exp /wav g ,pr ed versus a/d for the proposed Model-IV
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Figure 4.32: The ratio of wav g ,exp /wav g ,pr ed versus ρw fym (MPa) for the proposed Model-IIA

It can be observed from Figure 4.32 that 23 out of 26 predictions from Model-IIA are uncon-
servative. Therefore, this model is not suitable to make predictions for the average shear
crack width under service loads.
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Figure 4.33: The ratio of wav g ,exp /wav g ,pr ed versus ρw fym(MPa) for the proposed Model-IIB

Figure 4.33 shows the prediction ratio for various beam specimens according to Model-
IIB. It can be seen that the predictions are roughly uniformly distributed around a mean
value of 1.0. Although, the mean of the prediction ratios is 1.08, there are a large number of
unconservative predictions.
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Figure 4.34: The ratio of wav g ,exp /wav g ,pr ed versus ρw fym (MPa) for the proposed Model-IIIA

Figure 4.34 shows that the predictions from Model-IIIA are roughly uniformly distributed
around a mean value of prediction ratio = 1.0. 11 out of 26 predictions are found unconser-
vative.



4.3. Shear Crack Width 117

0 1 2 3 4 5

wfym [MPa]

0

0.5

1

1.5

2

w
av

g
, e

xp
 / 

w
av

g
, p

re
d
 [

-]

Figure 4.35: The ratio of wav g ,exp /wav g ,pr ed versus ρw fym (MPa) for the proposed Model-IIIB

Figure 4.35 show that there is no particular bias in the predictions of the Model-IIIB with
respect to the shear reinforcement parameter ρw fym .
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Figure 4.36: The ratio of wav g ,exp /wav g ,pr ed versus ρw fym (MPa) for the proposed Model-IV

It can be seen from Figure 4.36 that Model-IV gives 6 unconservative predictions out of the
total 26 specimens referred in the analysis. Moreover, it can be noticed that the predictions
do not exhibit any bias with respect to ρw fym .
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Figure 4.37: The ratio of wav g ,exp /wav g ,pr ed versus ρl /ρw for the proposed Model-IIB
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Figure 4.38: The ratio of wav g ,exp /wav g ,pr ed versus ρl /ρw for the proposed Model-IIIA
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Figure 4.39: The ratio of wav g ,exp /wav g ,pr ed versus ρl /ρw for the proposed Model-IIIB

It can be observed from figures Figure 4.37- Figure 4.40 that there is no bias in the predic-
tions of Model-IIB, Model-IIIA and Model-IIIB with respect to ρl /ρw .
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Figure 4.40: The ratio of wav g ,exp /wav g ,pr ed versus ρl /ρw for the proposed Model-IV
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Figure 4.41: The ratio of wav g ,exp /wav g ,pr ed versus fc (MPa) for the proposed Model-IIB
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Figure 4.42: The ratio of wav g ,exp /wav g ,pr ed versus fc (MPa) for the proposed Model-IIIA
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Figure 4.43: The ratio of wav g ,exp /wav g ,pr ed versus fc (MPa) for the proposed Model-IIIB

It can be observed from Figure 4.41- Figure 4.43 that there is no bias in the predictions of
Model-IIB, Model-IIIA and Model-IIIB with respect to fc .
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Figure 4.44: The ratio of wav g ,exp /wav g ,pr ed versus fc (MPa) for the proposed Model-IV

It can be observed from Figure 4.44 that there is no bias in the predictions of Model-IV with
respect to fc .
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Figure 4.45: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,x /ρe f f ,x for the proposed Model-IIB

Figure 4.45 shows that the maximum and minimum of the prediction ratios from Model-
IIB show a tendency to decrease and increase respectively with the increase in the
φe f f ,x/ρe f f ,x . This may lead to the predictions converging to values close to 1.0 at higher
values of φe f f ,x/ρe f f ,x and may lead to more accurate predictions. However, this hypoth-
esis needs further validation based on an experimental study to test whether it is actual or
a limitation of the sampling. Similar tendency of the maximum of predictions is observed
for the Model-IIIB (see Figure 4.46).
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Figure 4.46: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,x /ρe f f ,x for the proposed Model-IIIB
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Figure 4.47: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,x /ρe f f ,x for the proposed Model-IIIA

Figure 4.47 shows that the maximum of the prediction ratios from Model-IIIA shows a ten-
dency to decrease with the increase in the φe f f ,x/ρe f f ,x . This may lead to the predictions
converging to values close to 1.0 at higher values of φe f f ,x/ρe f f ,x and may lead to more
accurate predictions. However, this hypothesis needs further validation based on an ex-
perimental study to test whether it is factual or a limitation of the sampling.
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Figure 4.48: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,x /ρe f f ,x for the proposed Model-IV

Figure 4.48 shows that the maximum of the prediction ratios from Model-IV shows a ten-
dency to decrease with the increase in the φe f f ,x/ρe f f ,x . This may lead to the predictions
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converging to values close to 1.0 at higher values of φe f f ,x/ρe f f ,x and may lead to more
accurate predictions. However, this hypothesis needs further validation based on an ex-
perimental study to test whether it is factual or a limitation of the sampling.
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Figure 4.49: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,y /ρe f f ,y for the proposed Model-IIB

It can be observed from Figure 4.49 that both maximum and minimum of the prediction
ratios from Model-IIB showed a tendency to decrease with the increase in φe f f ,y /ρe f f ,y .
This may lead to the conservative predictions at higher values of φe f f ,y /ρe f f ,y . However,
this hypothesis needs further validation based on an experimental study to test whether it
is actual or a limitation of the sampling.
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Figure 4.50: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,y /ρe f f ,y for the proposed Model-IIIA

It can be seen from Figure 4.50 that the minimum of the prediction ratio from Model-IIIA
shows a tendency to decrease with the increasing φe f f ,y /ρe f f ,y . However, the maximum
do not show any particular trend and remain significantly greater than 1.0 over the range
of φe f f ,y /ρe f f ,y . Therefore, any comment on the nature of conservatism in the predictions
from this model requiresverification with an experimental study.
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Figure 4.51: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,y /ρe f f ,y for the proposed Model-IIIB

Figure 4.51 shows that the maximum of the prediction ratios from Model-IIIB shows a ten-
dency to decrease with the increase in the φe f f ,y /ρe f f ,y . This may lead to conservative
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predictions at higher values of φe f f ,y /ρe f f ,y . However, this hypothesis needs further val-
idation based on an experimental study to test whether it is factual or a limitation of the
sampling.
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Figure 4.52: The ratio of wav g ,exp /wav g ,pr ed versus φe f f ,y /ρe f f ,y for the proposed Model-IV

Figure 4.52 shows that the maximum of the prediction ratios from Model-IV show a ten-
dency to decrease with the increase in the φe f f ,y /ρe f f ,y . This may lead to conservative
predictions at higher values of φe f f ,y /ρe f f ,y . However, this hypothesis needs further val-
idation based on an experimental study to test whether it is factual or a limitation of the
sampling.
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4.4. Shear Deflection

T HUS far we have discussed various models for predicting shear crack width. This
model is based on predicting the shear deflection under service loads based on shear

stiffness. The shear stiffness can be calculated as a function of shear stiffness at the first
diagonal crack and subsequent degradation of the shear stiffness until shear failure (which
is assumed to be marked by the yielding of the shear stirrups ([28], [41]). The shear force
versus shear strain behavior of the RC beam under service loads is observed to be linearly
elastic until the appearance of the first diagonal crack. The shear stiffness of the beam in
the elastic stage can be obtained using the method of elasticity ([28], [49]).

Kv,e =Gc Av ≈ 0.42Ec Av (4.68)

Av = bw dv (4.69)

The shear stiffness of the truss at the yielding can be expressed using Equation 4.70.

Kv,y =
Vy

γ
= Vy

δs/dv cotΘs
= nρv Ec Av cot 2Θs

1+nρv csc4Θs
(4.70)

where
ρv shear stirrup ratio.
Vy force at which the stirrups yield and can be expressed by Equation 4.71 [49].
where
Vcr = Vcr,CCC

ρv shear reinforcement ratio.
fv y yield strength of stirrups.
θ minimum inclination of the crack angle given by Equation 4.72 [49].

Vy =Vcr +bdvρv fv y cotθ (4.71)

θ = t an−1

[(
0.77+ 0.66

nρs

4+ 1
nρv

)]
(4.72)

where
ρv longitudinal reinforcement ratio.

It may be noted that shear stiffness of the truss at yielding is given by Equation 4.70 if θ ≥
ar ct an(dv /a). Otherwise, shear stiffness of the truss model is given by Equation 4.73 [49].

Kvc = nρv Ec Av cot 2α

1+4nρv (1+0.39cot 2α)
(4.73)

where
α arctan(dv /a)
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He et al. [28] suggested the use of lower bound Theorem of Plasticity to calculate the di-
agonal compression strut angle. However, based on the discussion in Chapter 3, it is clear
that CFT give comparatively more accurate predictions of diagonal compression strut an-
gle than the Theorem of Plasticity. It should be noted that it is proposed that under service
loading conditions, the concrete and steel reinforcement can be assumed to behave lin-
early and therefore, θs can be given by Equation 4.74 ([49], [16]).

Θs = ar ct an

ÌÌÌÊ(
1+ 1

nρs

1+ 1
nρv

)0.25ÍÍÍË (4.74)

where
ρs shear reinforcement percentage.
ρv longitudinal reinforcement percentage.

He et al. [28] mention three different approaches to model the degradation of the shear
stiffness from the point of first diagonal cracking to the ultimate shear failure (here con-
sidered as the yielding of the shear stirrups). The three idealized models are described in
the Figure 4.53. In this MSc thesis, the original models are adapted by using a different
definition of the mean shear crack angle and first diagonal cracking load than the origi-
nally proposed models. It is proposed to calculate the mean shear crack angle from CFT
(Equation 4.74) instead of lower bound Theorem of Plasticity (while evaluating yield shear
stiffness in Equation 4.70) and use CCC model (Equation 4.18) to calculate the first diago-
nal cracking load instead of empirical equation given in ACI 318-11 [33].

The second stage of the shear response is the cracked stage up to
the yielding of the shear reinforcement (shown as Point A → C in
Fig. 1). The postcracking shear stiffness, Kv;cr, drops substantially
from the initial elastic shear stiffness. After the development of
diagonal cracks, Eq. (1) is no longer applicable due to the Poisson
ratio’s weakening effect on the second principal stress, which leads
to the redistribution of transverse stress to shear reinforcements
(Leonhardt 1978). Immediately after first shear cracking, the intact
concrete between adjacent inclined cracks carries considerable
tensile force due to the bond between the steel and the concrete.
This phenomenon, often termed the tension-stiffening effect, con-
tributes significantly to the postcracking shear stiffness of the beam.

At Point C, representing the yielding of shear reinforcement, the
beam is fully diagonally cracked and the tension-stiffening effect is
assumed to be vanished. At this point, the secant shear stiffness can
be defined as a fraction of the elastic shear stiffness as follows:

Kv;y ¼ β · Kv;e ðfor V ¼ VyÞ ð3Þ

where Kv;e and Kv;y = elastic and yield shear stiffnesses, respec-
tively; and β = shear stiffness reduction factor when stirrup yielding
(hereinafter referred to as the shear retention factor), which is in-
troduced to allow for the reduction in shear stiffness when shear
cracks fully propagate. According to the experimental study of
Hansapinyc et al. (2003), the shear retention factor is usually less
than 0.2 in RC beams.

In Eq. (3), Vy is the applied shear force when stirrups yield.
According to Pan et al. (2014), Vy can be calculated from

Vy ¼ Vcr þ ρvfyvbwdv cot θcr ð4Þ

where ρv = shear-reinforcement ratio; fvy = yielding strength of
web reinforcement; dv = effective shear depth of the beam, which
can be approximately taken as 0.9d; and θcr = diagonal crack angle
when stirrup yielding.

The angle of the initial diagonal cracks is normally assumed as
45° for non-prestressed concrete members. Therefore, Eq. (4) can
be simplified as follows:

Vy ¼ 0.17
ffiffiffiffiffi
f 0
c

p
bwdþ 0.9ρvfyvbwd ð5Þ

After the yielding of the stirrups, a considerable load increase
is possible up to the shear failure. For the purposes of control-
ling deflections at service load levels, this paper deals with shear
forces no greater than Vy. To solve for the postcracking shear
stiffness of the beam (subjected to shear forces Vcr ≤ V ≤ Vy),
two important issues are raised and dealt with in this paper as
follows:
• Transition from the uncracked stage to the fully cracked stage:

Degradation models will be established to provide a smooth
transition between the initial elastic shear stiffness and the yield
shear stiffness; and

• Value of the shear retention factor: An analytical truss analogy
will be employed to solve for the yield shear stiffness of fully
diagonally cracked webs.

Shear-Stiffness Degradation Models

Model I: Linear Tangent-Stiffness Model

After diagonal cracking, a sudden drop of the shear stiffness would
occur. It is usually assumed that the shear force-strain response of
the cracked beam would follow the straight line AC (Fig. 1), indi-
cating a linear tangent shear-stiffness after diagonal cracking. The
slope of AC representing the tangent shear stiffness can be written
as (Hoedajanto 1983; Pan et al. 2014)

KModel−I
v;cr ¼ Vy − Vcr

γy − γcr
¼ Vy − Vcr

Vy

Kv;y
− Vcr

Kv;e

ð6Þ

where γcr = shear strain of the section under the cracking shear
force Vcr; and γy = shear strain of the section under the yielding
shear force Vy.

Then, the effective shear stiffness (secant stiffness), which is the
slope of the straight line OB’, can be solved as follows:

Fig. 1. Idealized models for shear force-deformation responses of RC beams
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Figure 4.53: The three idealized models for prediction of shear stiffness degradation [28]

These models are described below.

1. Model-I (Linear Tangent Stiffness Model)
In this model it is assumed that the shear stress-strain response is linear between
points A and C (which marks the instance of first diagonal crack and ultimate shear
failure (yielding of the shear stirrups). The slope of the graph at any point in between
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A and C is given by Equation 4.75.

K Model−I
v,cr = Vy −Vcr

γy −γcr
= Vy −Vcr

Vy

Kv,y
− Vcr

Kv,e

(4.75)

Now, the effective shear stiffness at any point B’ between A and C (corresponding to
the applied shear force V is given by the slope of the line OB’).

K Model−I
v,e f f = V

Vcr
Kv,e

+ (
Vy

Kv,y
− Vcr

Kv,e
) V −Vcr

Vy−Vcr

(4.76)

2. Model-II (Linear Secant Stiffness Model)
In this model the effective shear stiffness is assumed to be linearly decreasing from
Kv,e to Kv,y as the load increases from the first diagonal cracking to the ultimate shear
failure. Hence, the effective stiffness may be given by Equation 4.77.

K Model−I I
v,e f f = Vy −V

Vy −Vcr
Kv,e + V −Vcr

Vy −Vcr
Kv,y (4.77)

3. Model-III (Hybrid Stiffness Model)
In this model the effective shear stiffness between the points A and C is taken as the
mean of the effective shear stiffness calculated using Model-I and Model-II and is
given by Equation 4.78. Therefore,

K Model−I I I
v,e f f = Vy −V

Vy −Vcr
Kv,e + V −Vcr

Vy −Vcr
Kv,y (4.78)

4. Model-IV (Adapted He et al. Model)
He et al.[28] introduced simplifications in Model-III and derived the expression for
the effective shear stiffness given in Equation 4.79 [28].

Kv,e f f =
[

(1− 3
p
ρv )(−8λ3

v +16λ2
v −11λv )

3
+1

]
(4.79)

It should be kept in mind that the effective shear stiffness is a function of the applied shear
force in all the proposed models. It may be noted that in the original model proposed by
the authors an assumption of mean diagonal shear crack angle equal to 45 degrees is made
for the evaluation of yield shear force Vy . Moreover, the first diagonal shear cracking load is
calculated using the empirical expression given in ACI 318-11 [33]. In the adapted model,
It is proposed to calculate the mean shear crack angle from CFT (Equation 4.74) and use
CCC model (Equation 4.18) to calculate the first diagonal cracking load instead of empirical
equation given in ACI 318-11 [33]. However, the assumption that the ratio of yield shear
stiffness to the elastic shear stiffness is equal to third root of shear reinforcement ratio from
the original He et al. model is retained in the adapted model. Once the effective shear
stiffness K Model−i

v,e f f is calculated, the shear strain corresponding to an applied shear force V
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can be obtained by Equation 4.80.

γ=



V

Kv,e
, if V ÉVcr

V

Kv,e f f
, if Vcr ÉVy

(4.80)

The shear deflection at any point in the span can be found Equation 4.81.

∆v =
∫ L

0
γ(x)V̄ d x (4.81)

Figure 4.54 graphically illustrates the method to obtain the shear deflection for the typical
loading configurations of a 4-point bending beam and uniformly distributed loaded beam
respectively.

Figure 4.54: Illustrations for calculation of shear deformation for typical load configurations [28]

4.4.1. Experimental Details
Hansapinyo et al. [25] perform a study for shear deflections in shear reinforced concrete
beams. The elongation of shear stirrups and longitudinal reinforcement bars is measured
using electronic wire strain gauges. The surface deformation of concrete is measured us-
ing electronic transducers. The deflection of beam is also measured using displacement
transducers. The shear deflection is separated from total deflection by subtracting flexural
deflection. Two different methods are deployed to calculate the shear deflection.
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1. Adding the total shear deflection of different panels (the beam is discretized in a set
of panels and shear deformation of each panel is measured using strain transforma-
tion law on the measured strains at 45 degrees to the axis of the beam).

2. Subtracting flexural deflection from total deflection. The flexural deflection is cal-
culated by double integration of beam curvature along the span. The curvature is
alternatively also calculated using measured axial strains at different depths along
the height of the beam cross-section.
Similarly, Wang et al. [60] perform a series of tests on beams with slenderness ra-
tio< 3.0 to study the degradation of shear stiffness post diagonal-cracking. The total
deflection is measured using LVDTs (Linear Variable Differential Transformer). The
flexural deflection is calculated using equation given in ACI 318-08 [2] and subtracted
from total deflection to obtain the shear deflection.

Figure 4.55: Mechanical scheme and instrumentation for specimens [60]
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Figure 4.56: Mechanical scheme and instrumentation for specimens [25]

Table 4.8: Summary of specimens analyzed for shear deflection study

Publication Series Specimens Mechanical
Scheme

Instrumentation
Method

Wang et
al.[60]

B3, B8 and B9 3 4-point
bending

Strain gauges, LVDT

Hansapinyo
et al. [25]

S1, S2, S3 and
S4

4 4-point
bending

Strain gauges, PI Type
electronic transducers

Table 4.8 shows the key characteristics of the experimental work referred in this study.

Table 4.9: Range of parameters for the specimens studies for comparison of shear deflection with predictions
from various models

Parameter Range

a/d 2.60-3.50
d/b 1.81-2.05

ρw fym (MPa) 0.73-1.74
ρl (%) 0.70-4.26
ρw (%) 0.13-0.47

f ′
c (MPa) 24.20-50.00

4.4.2. Results
In this subsection, an assessment of the performance of the various prediction models pro-
posed in section 4.4 is done.
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Table 4.10: Shear-Deflection Results from various models

δav g ,exp /δav g ,pr ed

Specimen Load-
Level

Shear
Deflection
Experimental
(mm)

%(Shear-to-
flexure)
Deflection

Model-I Model-II Model-III Model-IV

B3 0.5V 1.11 0.32 0.72 5.39 3.06 2.78
B8 0.5V 0.82 0.25 0.40 3.69 2.05 1.89
B9 0.5V 0.93 0.22 0.51 5.64 3.08 2.85
B3 0.6V 2.00 0.47 0.90 1.00 3.52 3.23
B8 0.6V 1.48 0.37 0.44 1.00 2.02 2.08
B9 0.6V 1.74 0.35 0.62 1.00 3.44 3.27
B3 0.7V 2.56 0.51 0.88 1.00 2.73 3.24
B8 0.7V 2.15 0.47 0.46 1.00 1.23 2.18
B9 0.7V 2.22 0.38 0.59 1.00 2.30 3.21
S1 0.5V 0.68 0.32 1.13 3.35 2.24 1.98
S2 0.5V 1.25 0.25 1.44 4.42 2.93 2.51
S3 0.5V 0.86 0.30 0.90 3.38 2.14 1.80
S4 0.5V 0.66 0.28 0.68 3.31 1.99 1.74
S1 0.6V 1.00 0.38 1.11 3.38 2.24 1.77
S2 0.6V 1.45 0.23 1.15 3.49 2.32 1.83
S3 0.6V 1.14 0.33 0.85 2.73 1.79 1.72
S4 0.6V 1.00 0.36 0.68 2.93 1.81 1.73
S1 0.7V 1.39 0.44 1.16 3.16 2.16 1.83
S2 0.7V 2.25 0.30 1.35 3.60 2.48 2.17
S3 0.7V 1.75 0.23 1.03 2.30 1.66 2.08

Table 4.10 shows the prediction ratios for the various models at different load levels. Here V
is the nominal shear resistance calculated using EC2 [19]. It can be seen that the percentage
of shear deflection to the total deflection in the referred studies is large. It is found that on
an average shear deflection are as high as 33.83% of the flexural deflections. The percentage
varies from 22.13% for specimen B9 at 0.5V to 51.2 % for specimen B3 at 0.7V. It can be seen
that the percentage of shear deflection increases with increase in the applied shear load.

Table 4.11: Statistical parameters for the δs,exp /δs,pr ed by different models

Statistical
Parameter

Model I Model II Model III
Model IV
(He et al.) [28]

Mean 0.85 2.84 2.36 2.29
Median 0.87 3.24 2.24 2.08

SD 0.31 1.46 0.60 0.58
COV 0.36 0.51 0.25 0.25
Max 1.44 5.64 3.52 3.27
Min 0.40 1.00 1.23 1.72

Range 1.04 4.64 2.29 1.54

Table 4.11 shows the various statistical parameters for the proposed models for shear de-
flection. It can be seen that Model-I gives the most accurate predictions for the shear de-
flection with a mean and median value of 0.85 and 0.87 respectively. However, the maxi-
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mum prediction ratio is 1.44 indicating a probability for unconservative predictions. The
SD and COV for this model are 0.31 and 0.36 respectively which are significantly smaller as
compared to other models. It may be noted that all other models in this study are found to
give unconservative predictions. This may be attributed to the inability of these models to
capture the rate of shear stiffness degradation post diagonal shear cracking. Model-IV also
gives unconservative predictions with significant dispersion in the values as indicated by
high values of SD. This may be due to two reasons. First, since Model-IV is also based on the
hybrid stiffness model, it inherently incorporates the effect of secant stiffness model. Sec-
ond, the model uses the assumption that the ratio of yield shear stiffness to elastic shear

stiffness is third root of shear reinforcement ratio, (ρw )
1
3 , may not always be applicable.

Based on the results obtained above, a study for the sensitivity of the predictions to the
various beam specimen parameters is done for Model-I and Model-IV.

0 1 2 3 4 5
a/d [-]

0

0.5

1

1.5

2

av
g

, e
xp

 / 
av

g
, p

re
d
 [

-]

Maximum of predictions
tends to increase

Minimum of predictions 
tends to increase

Figure 4.57: The ratio of δs,exp /δs,pr ed versus a/d for shear deflection Model-I

Figure 4.57 shows that Model I exhibits a tendency to make higher predictions with a higher
maximum at a/d = 3.5 as compared to a/d = 2.5. This indicates the possibility of uncon-
servative predictions at higher slenderness ratios. However, this hypothesis needs further
validation with an experimental study to test whether it is a fact or only a limitation of the
sample size in the study.
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Figure 4.58: The ratio of δs,exp /δs,pr ed versus d/b for shear deflection Model-I.

Figure 4.58 shows the variation of the prediction ratio with d/b for Model-I. It can be seen
that both the maximum and minimum of the prediction ratio tend to increase with the
increasing values of d/b. This indicates that the predictions from this model tends to be-
come less conservative at higher values of d/b. Thus, this model may consistently give
unsafe predictions for deep slender beams for d/b > 2.
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Figure 4.59: The ratio of δs,exp /δs,pr ed versus ρl /ρw for shear deflection Model-I

It can be observed from Figure 4.59 that the minimum of the predictions from Model-I
shows a tendency to increasingly predict unconservative values for higher values of ρl /ρw .
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Five out of six unconservative predictions from the model occur at ρl /ρw equal to 9.06.
This indicates that the application of this model may not be suitable for beams with very
high longitudinal reinforcement ratio as compared to the shear stirrups ratio. However,
further validation with an experimental study is needed for this observation to establish if
it is factual or a limitation of the sample size in the study.
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Figure 4.60: The ratio of δs,exp /δs,pr ed versus ρw fym(MPa) for shear deflection Model-I.

It can be seen from Figure 4.60 that all the unconservative predictions for Model-I occur
corresponding to highest value of ρw fym in the study. This indicates that this model may
not be suitable to predict shear deflections for heavily shear reinforced beams. This may be
due to the inability of the linear shear force deflection curve to capture the rate of stiffness
degradation in shear reinforced beams.
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Figure 4.61: The ratio of δs,exp /δs,pr ed versus d/b for Model-IV

Figure 4.61 shows that both maximum and minimum of the prediction ratio from Model-IV
shows a tendency to decrease with the increase in the d/b. However, the prediction ratio
remained significantly higher than 1.0 for the highest value of d/b = 2.05 in the study. An
experimental study is required to establish if this trend is factual and whether the same
trend continues for even higher values of d/b. In the latter case, Model-IV may be used to
predict shear deflections for very deep slender beams.
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Figure 4.62: The ratio of δs,exp /δs,pr ed versus ρw fym(MPa) for Model-IV
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It is clear from the Figure 4.62 that both maximum and minimum of the prediction ratio
from Model-IV shows a tendency to decrease with the increase in the ρw fym . However, the
prediction ratio remained significantly higher than 1.0 for the highest value of ρw fym equal
to 1.74 in the study. An experimental study is required to establish if this trend is factual
and whether the same trend continues for even higher values of ρw fym . In the latter case,
the Model-IV may be used to predict shear deflections for heavily shear-reinforced beams.

4.5. Overview of the Proposed Shear-Crack Width and Shear
Deflection Models

In this Chapter, several models are proposed to evaluate the shear crack width and shear
deflection for slender reinforced concrete beams. The basic concept behind the proposed
shear crack width models is to evaluate the shear crack spacing and stirrup strain or mean
principle tensile strain in the cracked concrete depending on the proposed shear crack
width model under consideration. It is proposed that a conservative estimate of the first
diagonal shear cracking resistance can be made by assuming it equal to the concrete con-
tribution to shear resistance at ULS (in this thesis it is assumed as a state when all stirrups
yield). This assumption is made based on the experimental observation for variation of
concrete contribution to shear resistance (after subtracting contribution of stirrups from
the applied shear force) with the applied shear force. For slender RC beams, the concrete
contribution to shear resistance decreases continuously from the instance of first diagonal
shear crack to ULS. It is assumed that the concrete contribution to shear resistance is 100
percent of the applied shear force at first diagonal shear cracking and 0% of the applied
shear force at ULS. The total shear resistance is calculated using EC2 expression for shear
resistance of shear reinforced concrete beams. The contribution of stirrups to the shear
resistance at service loads is the difference between the applied service shear force and
corresponding concrete contribution to shear resistance.
It is well- known that the angle of shear crack as well as the angle of diagonal compres-
sion strut changes continuously as the applied shear force increases. However, based on
reported findings in the literature, this difference is found to be small [31]. Therefore, prin-
ciple stress and principle strains are assumed co-axial in the proposed models. As stated
earlier, the additive model of shear resistance (i.e., total shear resistance is the sum of shear
resistance contribution of concrete and stirrups) is used in the proposed models. The di-
agonally cracked beam is analyzed with the truss analogy.
The principle stress in the diagonal compression strut and strains in stirrups and mean
principle tensile strain in the cracked concrete could be obtained once the concrete and
stirrup contribution to the shear resistance are known. The mean principle tensile in cracked
concrete is determined using Mohr’s circle. The obtained stirrup strain (or alternatively
mean principle tensile strain in the cracked concrete depending on the shear crack width
model under consideration) is used along with shear crack spacing to obtain shear crack
width using various proposed models. Five different models are proposed to evaluate the
shear crack width in slender reinforced concrete beams under the application of service
loads (in this thesis service load is assumed equal to 60% of the nominal shear resistance of
a shear reinforced beam according to EC2). The first three models have two variants (A and
B) and the variant B of these models are identical to first variant except for the fact that the
concrete contribution to shear resistance is assumed equal to zero in variants B. The con-



4.5. Overview of the Proposed Shear-Crack Width and Shear Deflection Models 139

crete contribution to shear resistance at ULS is determined using CCC model in the first
three models.
The first model is adapted form of the current EC2 model to evaluate the crack width. The
current model predicts crack width for a flexural or tensile member using mean reinforce-
ment strain and maximum crack spacing. This model is extended to predict shear crack
width using mean stirrup strain and the average shear crack spacing (shear crack spacing
is calculated using the EC2 model for crack spacing in members with orthogonal reinforce-
ments).
The second model is adapted mean shear crack width model given by Zakaria et al. [65].
The stirrups strain obtained using the methodology described previously is proposed to be
substituted in the original expression given by the Zakaria et al.[65].
The third model proposed to determine the mean shear crack width as a product of the
mean principle tensile strain in the diagonally cracked concrete and the shear crack spac-
ing obtained from Zakaria et al. model [65].
The fourth model is based on the determination of the concrete contribution to shear re-
sistance using SMCFT. The mean principle tensile strain in the cracked concrete is deter-
mined using the previously described methodology. This strain is then multiplied with the
mean shear crack spacing obtained from the Zakaria et al. shear crack spacing model [65].
The fifth and the last model for shear crack width determination is adapted from the Swedish
handbook for EC2 [9] and the EC2 model for the determination of crack width . This model
established equilibrium between the reinforcement stresses and the stresses in concrete
to determine the stirrup strains. It is assumed that the cracked concrete can not take any
tensile stress. Figure 4.63 shows the strains in different directions in reinforced concrete el-
ements in between the cracks. The various shear transfer actions comprising the concrete
contribution to shear resistance are shown in Figure 4.64. Figure 4.65 shows the basic ap-
proach behind the proposed models for shear crack width prediction.
In this Chapter, four simplistic models are also proposed for the determination of shear de-
flection in slender reinforced concrete beams. All the four models required determination
of effective shear stiffness and then using this effective stiffness and the applied shear force
to determine the shear strain and shear deflection using Virtual- Work theorem. The first
model is based on the assumption that the shear stress- strain graph is linear between the
stages of first diagonal shear cracking and all stirrups yielding. The second model is based
on the assumption that the effective shear stiffness decreases linearly between the stages
of first diagonal shear cracking and all stirrups yielding (or ULS in this thesis). The third
model evaluates the effective shear stiffness of the diagonally cracked beam as the mean
of the effective shear stiffness from the first two models. The fourth model is the adapted
form of shear deflection model given by He et al. [28]. In the original model given by He
et al., It is assumed that the shear cracks are inclined at an angle of 45 degrees while deter-
mining the shear force corresponding to yielding of all the stirrups. Secondly, an additional
assumption is introduced that the ratio of yield shear stiffness to the elastic shear stiffness
is equal to third root of shear reinforcement ratio. The second assumption is retained in the
proposed Model- IV (adapted He et al. Model) as well, however, the mean shear crack angle
is calculated using the CFT. Figure 4.66 shows an overview of the calculation steps to eval-
uate potential shear deflection in slender reinforced concrete beams using the proposed
models in this MSc thesis.
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a) b)

c)

Strains in the reinforced concrete element in between the cracks Various shear transfer actions (Adapted from Yang et al. [51])

Basic approach behind the proposed models  for predicting average shear crack width  

Figure 4.63: Strains in the reinforced concrete element in between the cracks

a) b)

c)

Strains in the reinforced concrete element in between the cracks Various shear transfer actions (Adapted from Yang et al. [51])

Basic approach behind the proposed models  for predicting average shear crack width  

Figure 4.64: Various shear transfer mechanisms (Adapted from Yang et al. [62])



4.5. Overview of the Proposed Shear-Crack Width and Shear Deflection Models 141

a) b)

c)

Strains in the reinforced concrete element in between the cracks Various shear transfer actions (Adapted from Yang et al. [51])

Basic approach behind the proposed models  for predicting average shear crack width  Figure 4.65: Basic approach behind the proposed models for average shear crack width prediction
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Figure 4.66: Flowchart showing general calculation methodology of the proposed models for shear
deflection.

4.6. Conclusion
In this Chapter, five different models for mean shear crack width and four different models
for shear deflection in slender reinforced concrete beams are proposed and evaluated. It
must be noted that the performance of these models is assessed in comparison to a limited
data available from the experiments. Therefore, the following inferences are applicable to
the studied specimens and their validity as generic conclusions needs to be established us-
ing a detailed experimental study covering wide range of parameters.

1. Model-I (A and B) (adapted EC2 model), Model-II (A and B) (adapted Zakaria et al.
model) and Model-IIIA (expressing diagonal shear crack width as the product of prin-
ciple tensile strain and shear crack spacing) give unconservative predictions of the
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shear crack width. One of the possible reasons is identified as the difference in the
estimated and actual shear stirrup strain. It is found that the assumption of equal
strain in all the stirrups may not be conservative from shear crack width calculation
point of view. Another reason for the unconservative predictions may be the fact
that the diagonal compression strut angle models used for prediction of mean shear
crack angle may have resulted in flatter predictions for the shear crack angles as seen
in subsection 3.2.2.

2. All the B variants of the Models (IB, IIB and IIIB) based on the assumption of no direct
contribution of concrete to shear resistance give relatively conservative and consis-
tent predictions for the mean shear crack width. This indicates that the prediction of
concrete contribution to shear resistance using the proposed methodology has sig-
nificant scatter.

3. All models except Model-IA give conservative predictions for the mean shear crack
width when the mean shear crack angle is assumed as 45 degrees. It is also seen
that this assumption leads to significant reductions in the SD in the predictions of
Models-IIIA, IIIB and IV.

4. Shear crack width Models III-A, III-B, IV and V show relatively small number of un-
conservative predictions as well as lower SD as compared to Models-IA, IB, IIA and
IIB. This implies that mean principle tensile strain in cracked concrete may be a more
accurate parameter than shear stirrup strain to calculate mean shear crack width.

5. Although, the mean prediction ratio from shear crack width Model-IIB and Model-
IIIA have a mean value equal to 1.08 (close to 1.0), yet a significant number of esti-
mates (out of the total number of estimates) are unconservative. Thus, unless certain
modification is introduced in these models, their usage is susceptible to give uncon-
servative estimates.

6. Model-IV seems to perform well both in its original formulation as well as with the
assumption of mean shear crack angle equal to 45 degrees. This also indicates that
SMCFT seems to be better than other approaches in predicting the concrete con-
tribution to shear resistance and mean shear crack angle at service loads. Another
model that seems to give relatively better predictions is Model-V which is based on
the assumption of zero concrete tensile strength post shear cracking. Both Model-IV
and Model-V use the shear crack spacing predictions from Zakaria et al. shear crack
spacing model indicating that this model seems to give conservative yet relatively
accurate estimations of the mean shear crack spacing under service loads. Model-
IIIB which is based on the assumption of zero concrete contribution to shear resis-
tance and also comprising mean shear crack spacing from Zakaria et al. model in
its formulation follows Model-IV and Model-V in terms of accuracy and consistency
of predictions as indicated by the mean, SD and COV values. All the three ( Model-
IIIB, IV and V) express crack width as the product of mean principle tensile strain in
cracked concrete and the diagonal shear crack spacing. This supports the inference
that mean principle tensile strain in cracked concrete is a relatively better parameter
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than stirrup strain while calculating mean shear crack width.

7. It is found that only Model-I out of all the four models for shear displacement predic-
tion gives conservative estimates for shear deflection. Thus, it indicates that only this
model is able to capture the degradation in the shear stiffness post- diagonal crack-
ing.



5
Conclusions and Recommendations

“The important thing is to not stop questioning. Curiosity has its own reason
for existing. ”

Albert Einstein

This Chapter comprises the conclusions drawn after the analysis of results of the
available and proposedmodels for mean shear crack width and shear deflec-
tion. A set of recommendations are made for future explorations to develop
robust shear crack width and shear deflection prediction models.
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T HIS Chapter presents the conclusions of contributions made with this MSc thesis work
and presents a list of recommendations for future research.

5.1. Conclusions
In this MSc thesis project various approaches to predict shear crack width and shear de-
flection are assessed. The performance of the developed approaches is evaluated by com-
parison with a limited dataset available in the literature. It may be noted here that the infer-
ences are drawn based on the observations of analysis using this limited dataset. Therefore,
the following conclusions need to be further validated using a detailed experimental stud-
ies covering wide range of parameters before being accepted for slender reinforced con-
crete beams in general.

1. An engineering model is proposed to predict the concrete contribution to shear resis-
tance corresponding to the service loads. This model assumes that the first diagonal
shear cracking load can be be estimated conservatively by considering it as equal to
the concrete contribution to shear resistance at the instance of shear stirrup yielding.
This assumption is supported by results from previous experiments [31]. The first di-
agonal shear cracking load (the resistance until first diagonal cracking is assumed to
be the concrete resistance only) is assumed to decay linearly to zero at instance of
shear stirrup yielding. Thus, concrete contribution to shear resistance correspond-
ing to service loads can be made by linear interpolation. This model can be used in
practice in absence of a more reliable and accurate model.

2. There can be large differences in the experimentally observed stirrup strain and the
calculated stirrup strain based on an assumption of equal strains in all stirrups. The
experimental strain in some stirrups can be greater than the others and the absolute
value of strain in such stirrups can be greater than that calculated using the assump-
tion of equal strain in all the stirrups. This assumption may lead to unconservative
predictions of the stirrup strain values at service loads.

3. The mean principle tensile strain in the cracked concrete is a more accurate strain
parameter than the shear stirrup strain from the shear crack width calculation point
of view. This is also in compliance with the background of SMCFT [7] and CFT [16].

4. The models (Models-IIIB, IV and V) are proposed in this MSc thesis to predict the
mean shear crack width. The models express shear crack width as a product of mean
principle tensile strain in cracked concrete and the shear crack spacing. In the ab-
sence of a more reliable and accurate model, these models can be used to estimate
mean shear crack width for slender reinforced concrete beams (a/d >2.5).Model IIIB
assumes no direct contribution of concrete to shear resistance. Model-IV is based
on SMCFT and determines concrete contribution to shear resistance from SMCFT.
Model-V assumes that concrete cannot take any tensile stress post diagonal shear
cracking and the compressive stress and shear stress in concrete are in equilibrium
with the reinforcement stresses.

5. The assumption of mean shear crack angle equal to 45 degrees leads to conservative
mean shear crack width predictions.
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6. The assumption of zero concrete contribution to shear resistance leads to relatively
conservative predictions of mean shear crack width from the models and seems to
reduce the SD in the predictions of mean shear crack width.

7. The variation of shear stiffness degradation post-diagonal shear cracking can be con-
servatively predicted by assuming a linear tangent shear stiffness between the in-
stance of first diagonal cracking and shear stirrup yielding. In other words, the shear
stiffness degradation behaviour can be modelled by assuming that shear-force strain
behaviour of a cracked reinforced concrete beam is a straight line between the in-
stance of first diagonal cracking and shear stirrup yielding. In the absence of a more
reliable and efficient method to predict the shear deflection, the proposed Model-I
(Linear Tangent Stiffness Model) can be used. It must however be noted that while
the mean of the predictions is 0.85 and a high SD of 0.31 is obtained. Moreover, the
wider application of the model in design practice requires validation with an experi-
mental study.
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5.2. Future Recommendations
During the course of this MSc thesis, a number of following aspects are highlighted which
can serve as recommendations for the future work.

1. In this thesis, it is assumed that the concrete contribution to the shear resistance de-
creases linearly from first diagonal cracking to zero at the stirrup yielding. It can be
interesting to study the actual variation of this contribution for a range of beam spec-
imen parameters.

2. It is found that the shear crack angle is not constant throughout the shear span of the
beam ([41], [60]). In this thesis, an assumption of a constant value of the shear crack
angle is made. It may be interesting to study the variation of the shear crack angle
in the shear span to develop a more refined model for shear crack width and shear
deflection prediction.

3. The scope of this MSc thesis project is limited to the development of shear crack
width and shear deflection models under static loads. However, that the effect of
dynamic loads, creep and relaxation may enhance the shear crack width and shear
deflection in RC members. Therefore, modification of the proposed models or devel-
opment of new models considering these load effects can be an interesting study.

4. It is found that the current EC2 model does not provide an estimate for the crack
width outside the hidden tensile member. This may lead to significant deviation in
the predictions in case of deep beams. A study with regards to the influence of depth
of reinforced concrete beam on the diagonal crack width may be an interesting re-
search to address this issue.
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A
Appendix A

This Appendix includes the review of the shear crack width and shear deflection models
performed by Zakaria et al. [65].The original table in the publication is reproduced here
and for more details reader is recommended to refer the publications referred in the paper
[65].

151



152
A

.A
p

p
en

d
ix

A

A.1. Crack Width Models-Review
 

 

(2) Existing shear crack width prediction models 
Table 1 presents a review of the existing shear 

crack width prediction models9), 10), 13)~15), 17), 18), 20). 
Each model contains various parameters for shear 
crack width, among which the primary parameter is 
the shear reinforcement strain. However, the other 
parameters and their functions are not the same 
among the different models as found in the models 
for shear crack spacing. 

Except Hassan et al. model20) and Piyamahant 
model14), in which the slip of shear reinforcement is 
calculated being not directly related to the crack 
spacing, the models in Table 1 show that the esti-
mated shear crack width can be taken as crack 
spacing times the strain of shear reinforcement. It 
was found in the previous authors’ study1) that there 
are the additional factors which affect only the shear 
crack width but the shear crack spacing, or which 

Table 1 Overview of existing models predicting average shear crack width. 
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wk is the characteristic shear crack width; wavg is the average shear crack width; 
kw denotes a correction coefficient to take account of the effect of the slope of the 
stirrups on the spacing of the cracks [kw = 1.2 for vertical stirrups (α = 90o), kw = 
0.8 for inclined stirrups (α = 45o- 60o)]; α is the angle between shear reinforce-
ment and longitudinal axis of the member; εw is the shear reinforcement strain; 
srm is the average crack spacing as discussed in CEB-FIP Model Code 197817), 21). 
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wk is the characteristic shear crack width; wavg is the average shear crack width; 
ls,max is the maximum shear crack spacing; smθ is the average shear crack spacing; 
εw is the shear reinforcement strain; lsx,max is the maximum vertical crack spacing; 
lsy,max is the maximum horizontal crack spacing; definitions of smθ, lsx,max and 
lsy,max are given in CEB-FIP Model Code199018), 21). 
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wavg is the average shear crack width;  dby is the shear reinforcement diameter; kp 
is a coefficient that takes into account the effect of shear reinforcement ratio (ρw); 
kfc is a coefficient takes into account the effect of compressive strength of con-
crete (fc

’); εw is the shear reinforcement strain; S is the modified slip,  
and 
k1 = 2.4, S = 4x103εw+20x106(εw)2  for plain bar 
k1 = 2.0, S = 8x103εw+2x106(εw)2  for deformed bar 
k2 = 1.2 for vertical stirrup,  k2 = 1.0 for inclined stirrup  
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wavg is the average shear crack width;  dby is the shear reinforcement diameter; S 
is the normalized slip; fc

’ is the compressive strength of concrete; εw is the shear 
reinforcement strain.  
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wavg is the average shear crack width; lav is the average crack spacing; cs is the 
side concrete cover to the shear reinforcement; ca = (sy-dby)/2; sy is the shear 
reinforcement spacing; dby is the diameter of shear reinforcement; s is the dis-
tance between stirrup legs (s = bw-2cs-dby); ρy is the ratio of the amount of 
transverse reinforcement to the effective concrete area (ρy = Aw/[(2ca+dby)bw]); bw 
is the beam width; εw is the shear reinforcement strain. 
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wavg is the average shear crack width; kw is a coefficient that takes into account 
the effect of shear reinforcement ratio (ρw); kp is a coefficient takes into account 
the effect of compressive stress at centroid of concrete section due to prestress 
(σc,ps); fc

’ is the compressive strength of concrete; εw is the shear reinforcement 
strain; smθ is the average shear crack spacing which can be calculated as given in 
the previous work9), 21) . 

De Silva et al. 
model10) 
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wavg is the average shear crack width; kw is a coefficient that represents the effect 
of the shear reinforcement angle [kw = 1.2 for vertical stirrups (α = 90o), kw = 0.8 
for inclined stirrups (α = 45o- 60o)]; α is the angle between shear reinforcement 
and longitudinal axis of the member; εw is the shear reinforcement strain; smθ is 
the average shear crack spacing as given in the previous studies10), 21). 
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Figure A.1: Overview of the available crack width models [65]
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Table 1 presents a review of the existing shear 

crack width prediction models9), 10), 13)~15), 17), 18), 20). 
Each model contains various parameters for shear 
crack width, among which the primary parameter is 
the shear reinforcement strain. However, the other 
parameters and their functions are not the same 
among the different models as found in the models 
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Except Hassan et al. model20) and Piyamahant 
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calculated being not directly related to the crack 
spacing, the models in Table 1 show that the esti-
mated shear crack width can be taken as crack 
spacing times the strain of shear reinforcement. It 
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wk is the characteristic shear crack width; wavg is the average shear crack width; 
kw denotes a correction coefficient to take account of the effect of the slope of the 
stirrups on the spacing of the cracks [kw = 1.2 for vertical stirrups (α = 90o), kw = 
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wk is the characteristic shear crack width; wavg is the average shear crack width; 
ls,max is the maximum shear crack spacing; smθ is the average shear crack spacing; 
εw is the shear reinforcement strain; lsx,max is the maximum vertical crack spacing; 
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wavg is the average shear crack width;  dby is the shear reinforcement diameter; kp 
is a coefficient that takes into account the effect of shear reinforcement ratio (ρw); 
kfc is a coefficient takes into account the effect of compressive strength of con-
crete (fc

’); εw is the shear reinforcement strain; S is the modified slip,  
and 
k1 = 2.4, S = 4x103εw+20x106(εw)2  for plain bar 
k1 = 2.0, S = 8x103εw+2x106(εw)2  for deformed bar 
k2 = 1.2 for vertical stirrup,  k2 = 1.0 for inclined stirrup  
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wavg is the average shear crack width;  dby is the shear reinforcement diameter; S 
is the normalized slip; fc
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wavg is the average shear crack width; lav is the average crack spacing; cs is the 
side concrete cover to the shear reinforcement; ca = (sy-dby)/2; sy is the shear 
reinforcement spacing; dby is the diameter of shear reinforcement; s is the dis-
tance between stirrup legs (s = bw-2cs-dby); ρy is the ratio of the amount of 
transverse reinforcement to the effective concrete area (ρy = Aw/[(2ca+dby)bw]); bw 
is the beam width; εw is the shear reinforcement strain. 
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wavg is the average shear crack width; kw is a coefficient that takes into account 
the effect of shear reinforcement ratio (ρw); kp is a coefficient takes into account 
the effect of compressive stress at centroid of concrete section due to prestress 
(σc,ps); fc

’ is the compressive strength of concrete; εw is the shear reinforcement 
strain; smθ is the average shear crack spacing which can be calculated as given in 
the previous work9), 21) . 
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wavg is the average shear crack width; kw is a coefficient that represents the effect 
of the shear reinforcement angle [kw = 1.2 for vertical stirrups (α = 90o), kw = 0.8 
for inclined stirrups (α = 45o- 60o)]; α is the angle between shear reinforcement 
and longitudinal axis of the member; εw is the shear reinforcement strain; smθ is 
the average shear crack spacing as given in the previous studies10), 21). 
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Figure A.2: Overview of the available crack width models [65]





B
Appendix B

This Appendix includes a brief description about the different types of shear failure modes
observed in reinforced concrete beams. This is followed by a description about the back-
ground of the MCFT. Thereafter, a more elaborate discussion on the background of one of
the concrete contribution to shear resistance models is presented.

B.1. Types of Shear Failure
1. Flexural Shear Failure

In this failure mode (shown in Figure B.1 a flexural crack initiates normal to the longi-
tudinal reinforcement in the tensile zone at the outermost fiber (the outermost fiber
is exposed to maximum normal stress and zero shear stress). As the applied load
increases the crack propagates upwards and is exposed to increasing shear stress be-
sides a normal stress. Thus the principle stress acting on the crack cause a rotation of
the crack. The failure is characterized by the excessive crack opening.

Figure B.1: Flexural Shear Failure Mode

2. Shear Tension Failure
This type of failure is characterized by the cracking of the beam web due to high
principle tensile stress (shown in Figure B.2). This mode of failure is commonly ob-
served in pre-stressed beams with thin webs (for example hollow core slabs). The thin
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web exposed to high principle tensile stresses crack opens due to a bi-axial tension-
compression state. Such a failure is brittle in nature and dangerous because of the
absence of warning before failure. The D (Disturbed) regions of the beam close to the
support are vulnerable to this type of failure mode.

Figure B.2: Shear Tension Failure Mode

3. Web crushing Failure
This type of failure (shown in Figure B.3)occurs when the compressive strength of the
web is exceeded before the yielding of shear stirrups (this failure mode is commonly
observed in over- shear reinforced beams). This is a typical failure mode in the vicin-
ity of the applied load near the top flange of a I beam.The crack is initiated in the web
and then proceed bi-directionally towards the support as well as the loading point.

Figure B.3: Web Crushing Failure Mode

4. Shear Stirrup Yielding Failure
This failure mode is characterized by the yielding of shear stirrups (shown in Fig-
ure B.4). This is a ductile failure mode and therefore, a warning is visible before the
ultimate failure of the reinforced concrete beam. Such a failure mode has a large
number of smeared cracks distributed throughout the shear span of the beam.
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Figure B.4: Shear Stirrup Yielding Failure Mode

MCFT [57]
This theory is based on the assumption that response of a cracked concrete element under
the application of in plane stresses (shear force, axial force and bending moment) can be
represented with a series of parallel smeared cracks. The crack angle is expressed in terms
of the longitudinal strain and therefore, the crack rotates with the change in the external
load. According to this theory, concrete can be subjected to the compression and shear
stresses but no tensile stresses are allowed at the crack surface. However, concrete in be-
tween the cracks can take tensile stresses.
The cracked concrete is treated separately as a new material with its own constitutive model.
The model evaluates the shear resistance of the concrete element by simultaneous solution
for the equilibrium, compatibility and constitutive relationships in terms of mean stress
and strains. The mean stress and strains are the mean values for the cracked concrete and
concrete in between the cracks. The principle stress and strains are assumed to be co-axial
though experimentally it is found that these can be inclined to each other at an angle of up
to 10o in case of members with orthogonal reinforcement. The model expresses the mean
crack width as a product of mean principle tensile strain and crack spacing.
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Figure B.5: Various relations of the MCFT [4]

B.2. Zararis (2003) Model for Concrete Contribution to Shear
Resistance

B.2.1. Shear-Unreinforced Beams

T HE Zararis and Papadakis [68] model for a shear unreinforced beam is based on the
premise that the failure in shear unreinforced beams occur due to formation of criti-

cal diagonal crack in slender reinforced concrete beam. The critical diagonal crack has two
branches. The first branch is an inclined shear crack which is formed in the vicinity of the
flexural cracks and is often formed in between the flexural cracks. It is the second branch of
the critical diagonal crack (which initiates at the tip of the first branch) which is responsible
for the failure of the beam. Conventionally, this type of failure in slender beams is named
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“diagonal tension failure” [68]. The model is originally proposed for the beams with slen-
derness ratio greater than 2.5.
It is assumed that the crack opening of the first branch is perpendicular to its direction.
Due to this assumption, there are no aggregate interlock forces acting on this crack branch
surface. The only forces considered to act on this branch of crack are dowel forces and axial
tension force in the longitudinal reinforcement as shown in Figure B.6 below.

Figure B.6: (a); Free body diagram with the first branch of the diagonal crack(b) Free body diagram of the
triangular concrete element below the first branch of the diagonal crack (c) Distribution of normal

compressive stress along the beam depth (d) Distribution of the shear stress along the beam depth [68].

where
σc normal stress in the concrete compression zone
c depth of compression zone above the tip of first branch of diagonal crack
d effective depth of the longitudinal reinforcement
τ shear stress in the compression zone
∆T compressive force in the triangular element below the tip of the first branch

of the diagonal crack due to transfer of compressive stresses from the top
fibre to the area below the crack tip

C Normal force in the compression zone
T axial force in the longitudinal reinforcement
Vd the shear force carried by the longitudinal reinforcement
φ angle of the crack from the vertical
b width of the beam cross section

The authors report that the calculated depth of the compression zone above the inclined
shear crack is the same as that above the flexural crack and the same fact is reflected in the
observation of the cracked specimens. It is assumed that the neighboring inclined cracks
are parallel to each other. The Figure B.6 1(c) and 1(d) shows the considered normal and
shear stress distribution respectively. It is shown using the condition for mechanical equi-
librium of the portion of beam between the first inclined crack and the loading point that
the resultant forces generate splitting stresses across the line of action of resultant com-
pressive force (resultant of applied load and compressive force in the concrete compression



160 B. Appendix B

zone) as shown in Figure B.7. Based on the theorem of elasticity and an assumed possible
arrangement of the forces (in the portion between the first shear crack branch and the load-
ing point) the stress distribution along the second branch of diagonal crack is obtained as
shown in Figure B.8.

Figure B.7: .(a)Line of Action of the resultant compressive force (b) Portion of the beam containing the
dashed line along which diagonal splitting occurs [68].

where
P Applied external concentrated load
C f Normal concrete force in the region of pure flexure
T f Force in the longitudinal reinforcement in the region of pure flexure
z internal lever arm between the compression and tension forces in the re-

gion of pure flexure
β factor to convert compression zone depth to an to the depth with rectan-

gular stress block
a shear span
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Figure B.8: Normal stresses along the second branch of diagonal crack [68]

where
lcr length of second branch of critical diagonal shear crack The ultimate shear

stress (including the size effect) at which the normal tensile stress is found
to exceed the split tensile strength is found using Equation B.1

vu = Vu

bd
=

(
1.2−0.2

a

d
d

) c

d
fct (B.1)

where (
1.2−0.2

a

d
d

)
≥ 0.65 (B.2)

B.2.2. Beams Reinforced with Stirrups:
Zararis [67] find that the crack pattern for the shear failure of the shear reinforced and shear
unreinforced beams are found to be similar. According to the model, the opening of the
second branch of the diagonal crack causes an increase of the shear force in the longitu-
dinal reinforcement. The shear force in the above model for shear unreinforced beams is
the shear at the initiation of the cracking of the second branch of diagonal cracking. How-
ever, it is shown that after the first branch of diagonal cracking, stirrups also come into the
picture and begin to take load which causes a slight increase in the shear force of the longi-
tudinal reinforcement. Therefore, the ultimate shear failure load for a shear unreinforced
beam is equal to the shear resistance at the beginning of the opening of the second branch
of diagonal crack, the contribution from the stirrups and an additional contribution from
the change in the shear force of longitudinal reinforcement. The ultimate shear resistance
is therefore expressed using Equation B.3.

Vu =Vcr +Vs +∆Vd (B.3)

Based on an approximation of the transfer length lt shown in Figure B.10 equal to 0.5*d and
the condition of force equilibrium, the following expression for the additional shear force
in the longitudinal reinforcement is obtained using Equation B.4.

∆Vd = 0.5ρv fv y bd (B.4)

A detailed derivation of the intermediate variables in the model can be found elsewhere
([68], [67]). Figure B.9 shows the the free body diagram of the segment of the beam above
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the critical diagonal crack, where
Cu normal force in the concrete compression zone
Vs shear force in the stirrups
Vdcr shear force in the longitudinal reinforcement
Pu Applied external load
Tu axial force in the longitudinal reinforcement
Vccr Shear force in the second branch of the critical diagonal crack after stirrups

are activated
∆Vd increment of the shear force in the longitudinal reinforcement

Figure B.9: The free body diagram of the segment of the beam above the critical diagonal crack[67]
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Figure B.10: Forces in the longitudinal reinforcement cover region susceptible to horizontal splitting as the
second branch of the diagonal crack opens (a) no stirrups (b) stirrup spacing = transfer length for stresses

from longitudinal reinforcement to concrete (c) stirrup spacing less than "lt " [67]
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Appendix C

This Appendix presents the observations regarding the nominal shear resistance calculated
using the EC2 nominal shear resistance for shear unreinforced beams compared with the
experimental values.

C.1. Nominal Shear Capacity from EC2 VSIM Model

Table C.1: Nominal shear capacity as calculated from EC2 VSIM (Variable Strut Inclination Method) and ex-
perimental observations.

Publication Specimen ρw fym Vexp VEC 2,nom
Vexp /
VEC 2,nom

Hu et al. [31] D10 1.8122 218.1 275.2279 0.792434
R10 1.8166 236.9 275.8961 0.858657

Munikrishna
et al. [44]

G1-C60 0.45507 560.473 421.1726 1.330744

G1-M80 0.49644 569.369 442.176 1.287652
G1-M100 0.48265 573.817 425.1692 1.34962
G2-C60 0.45507 560.473 421.1726 1.330744
G2-M80 0.49644 569.369 442.176 1.287652
G2-M100 0.48265 573.817 425.1692 1.34962
G3-C60 1.28247 609.403 943.2981 0.646034
G3-M80 1.379 649.437 1029.052 0.631102
G3-M100 1.379 653.885 1010.676 0.646978

Lee et al. [38] B34-2 2.41816 403.16 743.8676 0.541978
B34-3 3.4752 679.5 877.0823 0.774728
B34-4 4.82908 714.25 984.876 0.725218
B34-5 2.8944 674.3 816.1858 0.82616
B34-6 3.02151 575 830.4211 0.69242
B42-2 2.41816 665.15 743.8676 0.894178
B42-3 3.4752 801.25 982.3184 0.815672
B42-4 4.82908 800.55 1114.401 0.718368
B42-5 2.8944 691.4 890.3672 0.776534
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B42-6 3.02151 673.3 927.2161 0.726152
B68-2 2.41816 800.95 743.8676 1.076737
B68-3 3.4752 870.55 1069.031 0.814336
B68-4 4.82908 914.7 1386.58 0.659681
B68-5 2.8944 798.35 890.3672 0.896653
B68-6 3.02151 701.9 929.4684 0.755163

Lee et al. [36] S20-1 1.4532 374.1 245.2275 1.525522
S20-2 1.6659 401.7 281.1206 1.428924
S20-3 1.9023 441.7 321.0131 1.375956
S20-4 2.2503 502.5 346.7907 1.449001
S30-3 0.87 600.2 305.37 1.965484
S30-4 0.87 620.8 305.37 2.032944
S30-5 1.74 893.1 610.74 1.462324
S30-6 1.74 893.7 610.74 1.463307
S35-1 1.4532 451.6 245.2275 1.841555
S35-2 1.6659 489.3 281.1206 1.740534
S35-3 1.9023 516 321.0131 1.607411
S35-4 2.2503 507 379.7381 1.335131
S40-2 1.894 795.8 471.1088 1.689206
S40-3 2.422 1073.9 602.4422 1.782578
S40-4 2.7765 1133.4 690.6197 1.641135
S40-5 3.1705 1183.4 730.0351 1.621018
S40-6 3.7505 981.1 780.3292 1.25729
S50-2 1.894 1174.4 471.1088 2.492842
S50-3 2.422 1281.7 602.4422 2.127507
S50-4 2.7765 1313.5 690.6197 1.901915
S50-5 3.1705 1420.2 788.6222 1.800862
S50-6 3.7505 1517.3 889.755 1.705301
S80-2 1.894 1336.3 471.1088 2.8365
S80-3 2.422 1444.9 602.4422 2.398404
S80-4 2.7765 1566.5 690.6197 2.268253
S80-5 3.1705 1674.8 788.6222 2.123704
S80-6 3.7505 1736.8 932.89 1.861741

Zakaria et al.
[66]

A1 left 2.664 285.4 192.9002 1.479522

A1 right 2.664 285.4 192.9002 1.479522
A2 left 2.664 470.2 337.5754 1.392874
A2 right 2.664 470.2 337.5754 1.392874
A3 left 2.664 720 520.8306 1.382407
A3 right 2.664 720 520.8306 1.382407
A4 left 2.664 1196.5 806.5641 1.483453
A4 right 2.664 1196.5 806.5641 1.483453
B1 left 2.664 715 520.8306 1.372807
B1 right 2.664 715 520.8306 1.372807
B2 left 1.332 540.7 260.4153 2.076299
B2 right 2.664 540.7 520.8306 1.038149
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B3 left 1.332 522.4 260.4153 2.006027
B3 right 2.664 522.4 520.8306 1.003013
C1 2.664 551.4 542.5319 1.016346
C2 2.664 600.8 514.8025 1.167049
C3 2.664 760.3 502.7463 1.512294

Piyamhant [] 0.035-S 0.1225 187.5 39.47295 4.750088
0.035-N 0.1225 187.5 39.47295 4.750088
0.05-S 0.168 190.8 54.65485 3.490999
0.05-N 0.168 190.8 54.65485 3.490999
0.065-S 0.2205 187.8 71.05131 2.64316
0.065-N 0.2205 187.8 71.05131 2.64316
0.08-S 0.2765 226.6 88.81413 2.551396
0.08-N 0.2765 226.6 88.81413 2.551396

T.K.Hassan
[26]

B0 1.57 370.5 353.25 1.048832

B2 2.51 570 482.9043 1.180358
B3 3.14 608 525.0758 1.157928
B5 2.51 456 482.9043 0.944286
B6 3.14 484.5 525.0758 0.922724
B8 2.51 391.88 482.9043 0.811507
B9 3.14 427.5 706.5 0.605096
B10 2.51 566 564.75 1.002213
B11 3.14 618 706.5 0.874735

Figure C.1: Prediction of total shear resistance from EC2-VSIM versus experimental observations.

It is reported in the literature that the current EC2-VSIM model give very conservative re-
sults at low values of shear reinforcement percentage [1-6]. This model is based on the
lower bound Theorem of Plasticity and considers the shear strength resistance as solely the
contribution from stirrups without any contribution of concrete. The shear resistance is
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given in Equation C.1

VRm,s =
Asw z fymcotθ

s
(C.1)

where
Asw the cross-section area of stirrups
z flexural lever-arm =0.9d
fym mean yield strength of the stirrups
θ diagonal compression strut angle
s spacing between the stirrups

The shear

resistance is limited by the capacity of the compression strut to prevent premature crushing
of the concrete web in compression.

VRd ,max = Asw

s
z fy wmcotθ (C.2)

where

21.8◦ ≤ θ ≤ 45◦ (C.3)

The strut inclination angle is calculated assuming that the stirrups yield at the same instant
as that of the concrete compression strut crushing.

θ = si n−1

√
Asw fym

bαcw sν1 fcm
(C.4)

where the lower limit of the angle is imposed to ensure that the crack width in serviceability
limit state can be controlled as recommended by Thurlimann [7].

ν= 0.6(1− fcm

250
) (C.5)

The reduction factor accounting for long term effects on concrete is assigned a value of
one in this report [8]. Olalusi [9] performs a parametric assessment of the prediction of
shear strength using EC2 VSIM model and compared the values with the compilation of
the experimental results database for slender shear reinforced RC beams by Reineck et al.
[10]. It is found that the EC2-VSIM Model fails to capture the trend of shear strength over
the range of parameters and is more conservative than Compression Chord Capacity and
MCFT (R2k) predictions which capture the trend better. The shear span ratio of the beams
in the database is >2.40 and only the beams that fail in shear compression or the diagonal
tension mode are considered (thus removing the beams that failed in flexure mode from
the database. The Vexp /VEC 2,nom is found to be in some cases as high as 3.2 for ρw fym ≤ 1
. While for 2 ≤ ρw fym ≤ 4, the same ratio went < 1 indicating the inconsistency in the pre-
diction of the shear strength by EC2 Model. Moreover, it is reported that the prediction of
compression strut angle from the EC2-VSIM model are biased towards the smaller angle
value limit in the range of theta recommended by EC2. However, MCFT gives the most
consistent prediction of the compression strut angle. The Table C.1 lists the total shear re-
sistance predictions for 87 beam specimens from the various experiments referred in this
study. From Figure D.1, it is clear that the EC2 VSIM method give extremely conservative
estimates of the shear strength of RC beams with ρw fym ≤ 1. It can be observed from the
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scatter plots that EC2 VSIM (Variable Strut Inclination Method) provides inconsistent pre-
dictions for the shear strength over the range of values of ρw fym .





D
Appendix D

This Appendix includes solved examples for the proposed mean shear crack width and
shear deflection models in this MSc thesis. The examples intend to inform the reader about
the sequence in which intermediate parameters should be calculated to calculate the mean
shear crack width or shear deflection using the proposed models.

D.1. Shear Crack Width Calculation

This section comprises of the examples for the calculation of mean shear crack width us-
ing the proposed models in this MSc thesis. The mean shear crack width is calculated for
the specimen named B334-120 from an experimental study [37].The beam specimen input
parameters required for the calculation are tabulated in Table D.1.

171
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Figure D.1: Experimental setup for the shear crack width study [37]
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Table D.1: Input parameters for the specimen B334-120 selected for mean shear crack width calculation from
various models.

Parameter Value

Vmax 566.4 kN
b 350 mm
h 450 mm

dv 352.5 mm
l 2.95m
s 120 mm

Asw 253.26 mm2

ρl 3.72%
ρw 0.603%
fcm 50.1 MPa
fyk 334 MPa
Es,l 200000 MPa (Assumed)
Es,w 200000 MPa (Assumed)
a/d 3.0

D.1.1. Model-IA

Table D.2: Calculation of the shear crack width according to the proposed model-IA

Parameter Formula Value
fct ,e f f fctm 4.07 MPa

αe

αe = Es

Ec

5.6

ρp,e f f

ρp,e f f = 0.5
Asw

Ay,e f f

0.016

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.028 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

148.147 kN
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Vs

Vs =V −Vc

224.573 kN

σs

σs = Vs

Es

188.181 MPa

εsm −εcm

εsm −εcm =
σs −kt

fct ,e f f

ρp,e f f
(1+αeρp,e f f )

Es
≥ 0.6

σs

Es

0.565*10−3

sr,max,y

sr,max = k3cs +k1k2k4φw /ρpw,e f f

345.493 mm

sr,max,z

sr,max = k3cl +k1k2k4φl /ρpl ,e f f

138.051 mm

x
x = 0.75d(αeρl )

1
3

184.128 mm

θ

cotθ = 0.85ds

ds −x
≤ 2.50

0.557

sr,max

sr,max = 1
cosθ

sr,max,y
+ si nθ

sr,max,z

159.026 mm

sr,av g

sr,av g = 0.75sr,max

119.269 mm

wav g

wav g = sr,av g (εsm −εcm)

0.067 mm
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D.1.2. Model-IB

Table D.3: Calculation of the shear crack width according to the proposed model-IB

Parameter Formula Value
fct ,e f f fctm 4.07 MPa

αe

αe = Es

Ec

5.6

ρp,e f f

ρp,e f f = 0.5
Asw

Ay,e f f

0.016

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.028 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

0 kN

Vs

Vs =V −Vc

372.719 kN

σs

σs = Vs

Es

330.550 MPa

εsm −εcm

εsm −εcm =
σs −kt

fct ,e f f

ρp,e f f
(1+αeρp,e f f )

Es
≥ 0.6

σs

Es

0.992*10−3

sr,max,y

sr,max = k3cs +k1k2k4φw /ρpw,e f f

345.493 mm

sr,max,z

sr,max = k3cl +k1k2k4φl /ρpl ,e f f

138.051 mm
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x
x = 0.75d(αeρl )

1
3

184.128 mm

θ

cotθ = 0.85ds

ds −x
≤ 2.50

0.583

sr,max

sr,max = 1
cosθ

sr,max,y
+ si nθ

sr,max,z

156.124 mm

sr,av g

sr,av g = 0.75sr,max

117.093 mm

wav g

wav g = sr,av g (εsm −εcm)

0.118 mm
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D.1.3. Model-IIA

Table D.4: Calculation of the shear crack width according to the proposed model-IIA

Parameter Formula Value

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.028 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

148.147 kN

Vs

Vs =V −Vc

224.573 kN

σs

σs = Vs

Es

188.181 MPa

εw

εw = Vs s

Av Es j dcotΘ
0.941*10−3

sr,max,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.297 mm

sr,max,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.615 mm

x
x = 0.75d(αeρl )

1
3

184.128 mm

θ

cotθ = 0.85ds

ds −x
≤ 2.50

0.557
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smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

131.965 mm

wav g

wav g = K (cs)a(
1

ρw
)b(

1

ρt
)c smθ−av gεw

0.106 mm
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D.1.4. Model-IIB

Table D.5: Calculation of the shear crack width according to the proposed model-IIB

Parameter Formula Value

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.028 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

0 kN

Vs

Vs =V −Vc

372.719 kN

σs

σs = Vs

Es

330.550 kN

εw

εw = Vs s

Av Es j dcotΘ
1.6* 10−3

sr,max,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.297 mm

sr,max,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.615 mm

θ

t an4θ =
1+ 1

nρl

1+ 1
nρt

0.583

smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

132.381 mm
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wav g

wav g = K (cs)a(
1

ρw
)b(

1

ρt
)c smθ−av gεw

0.187 mm
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D.1.5. Model-IIIA

Table D.6: Calculation of the shear crack width according to the proposed model-IIIA

Parameter Formula Value

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.028 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

148.147 kN

Vs

Vs =V −Vc

224.573 kN

σs

σs = Vs

Es

188.181 MPa

εw

εw = Vs s

Av Es j dcotΘ
0.941*10−3

ε2

ε2 =− V

j dbw Ec si nΘcosΘ
=− Vs +Vc

j dbw Ec si nΘcosΘ
-0.19*10−3

ε1

ε1 =
2(εy +ε2)

|cos2Θ|+1
−ε2

1.2*10−3

sm,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.297 mm

sm,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.615 mm
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x
x = 0.75d(αeρl )

1
3

184.128 mm

θ

cotθ = 0.85ds

ds −x
≤ 2.50

0.557

smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

131.965 mm

wav g

wav g = ε1smθ−av g

0.162 mm



D.1. Shear Crack Width Calculation 183

D.1.6. Model-IIIB

Table D.7: Calculation of the shear crack width according to the proposed model-IIIB

Parameter Formula Value

Vcr,CCC

Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

232.0128 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.72 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,CCC + (0−Vcr,CCC )

Vnom −Vcr,CCC
(Vser −Vcr,CCC )

0 kN

Vs

Vs =V −Vc

372.719 kN

σs

σs = Vs

Es

330.550 kN

εw

εw = Vs s

Av Es j dcotΘ
1.6*10−3

ε2

ε2 =− V

j dbw Ec si nΘcosΘ
=− Vs +Vc

j dbw Ec si nΘcosΘ
0-0.184*10−3

ε1

ε1 =
2(εy +ε2)

|cos2Θ|+1
−ε2

1.2*10−3

sm,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.297 mm

sm,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.615 mm
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x
x = 0.75d(αeρl )

1
3

184.128 mm

θ

t an4θ =
1+ 1

nρl

1+ 1
nρt

0.583

smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

132.381 mm

wav g

wav g = ε1smθ−av g

0.303 mm
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D.1.7. Model-IV

Table D.8: Calculation of the shear crack width according to the proposed model-IV

Parameter Formula Value

Vcr,C S A

Vcr,C S A =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

87.213 kN

Vnom

VRd ,s =
Asw z fy wd cotθ

s
621.2 kN

Vser

Vser = 0.6Vnom

372.719 kN

Vc,pr ed ,ser

Vc,pr ed ,ser =Vcr,C S A + (0−Vcr,C S A)

Vnom −Vcr,C S A
(Vser −Vcr,C S A)

40.583 kN

Vs

Vs =V −Vc

332.136 kN

σs

σs = Vs

Es

278.313 kN

εw

εw = Vs s

Av Es j dcotΘ
1.39*10−3

ε2

ε2 =− V

j dbw Ec si nΘcosΘ
=− Vs +Vc

j dbw Ec si nΘcosΘ
-0.188*10−3

ε1

ε1 =
2(εy +ε2)

|cos2Θ|+1
−ε2

1.85*10−3

sm,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.297 mm

sm,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.615 mm
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εx

εx =
M f

dv
+V f −Vp +0.5N f − Ap fpo

2(Es As +Ep Ap )

2.0*10−3

θ

θ = 29+7000εx

0.75

smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

137.408 mm

wav g

wav g = ε1smθ−av g

0.255 mm
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D.1.8. Model-V

Table D.9: Calculation of the shear crack width according to the proposed model-V

Parameter Formula Value

τx y

τx y = 1.5
Vser

bd
2.71 MPa

σs y

σs y =
σy +τx y t anθ

As y

bw s

449.43 MPa

εw

εw = Vs s

Av Es j dcotΘ
1.5*10−3

ε2

ε2 =− V

j dbw Ec si nΘcosΘ
=− Vs +Vc

j dbw Ec si nΘcosΘ
-0.17*10−3

ε1

ε1 =
2(εy +ε2)

|cos2Θ|+1
−ε2

2.84*10−3

sm,x

sm,x = 2
(
cx + sx

10

)
+k1k2

dbx

ρx

302.29 mm

sm,y

sm,y = 2
(
cs +

sy

10

)
+k1k2

dby

ρy

145.61 mm

θ

t an4θ =
1+ 1

nρl

1+ 1
nρt

0.58

smθ−av g

smθ−av g = 1
si nθ
sm,x

+ cosθ
sm,y

132.38 mm

wav g

wav g = ε1smθ−av g

0.37 mm
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D.2. Shear Crack Deflection Calculation
This section comprises of the examples for the calculation of shear deflection using the pro-
posed models in this MSc thesis. The mean shear deflection is calculated for the specimen
named S1 from a previous experimental study [25].The beam specimen input parameters
required for the calculation are tabulated in Table D.10.

Figure D.2: Mechanical scheme and instrumentation for specimens [25]

Table D.10: Input parameters for the specimen S1 selected for shear deflection calculation from various mod-
els.

Parameter Value

Vser 107.495 kN
b 150 mm
h 350 mm

dv 276.534 mm
l 1.797m
s 80 mm

Asw 56.4 mm2

ρl 4.26%
ρw 0.47%
fcm 33 MPa
fyk 370 MPa
Es,l 200000 MPa (Assumed)
Es,w 200000 MPa (Assumed)
a/d 2.6
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D.2.1. Model-I

Table D.11: Calculation of the shear deflection according to the proposed model-I

Parameter Formula Value

Vy

Vy =Vcr +bdvρv fv y cotθ

204.957 kN

Vcr

Vcr =Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

71.594 kN

Kve

Kv,e =Gc Av ≈ 0.42Ec Av

5.48*108N /mm

Kv y

Kv,y =
Vy

γ
= Vy

δs/dv cotΘs
= nρv Ec Av cot 2Θs

1+nρv csc4Θs

0.834*108N /mm

K Model−I
v,e f f

K Model−I
v,e f f = V

Vcr
Kv,e

+ (
Vy

Kv,y
− Vcr

Kv,e
) V −Vcr

Vy−Vcr

1.14*108N /mm

∆v

∆v =
∫ L

0
γ(x)V̄ d x

0.9 mm
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D.2.2. Model-II

Table D.12: Calculation of the shear deflection according to the proposed model-II

Parameter Formula Value

Vy

Vy =Vcr +bdvρv fv y cotθ

204.957 kN

Vcr

Vcr =Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

71.594 kN

Kve

Kv,e =Gc Av ≈ 0.42Ec Av

5.48*108N /mm

Kv y

Kv,y =
Vy

γ
= Vy

δs/dv cotΘs
= nρv Ec Av cot 2Θs

1+nρv csc4Θs

0.834*108N /mm

K Model−I
v,e f f

K Model−I
v,e f f = V

Vcr
Kv,e

+ (
Vy

Kv,y
− Vcr

Kv,e
) V −Vcr

Vy−Vcr

3.48*108N /mm

∆v

∆v =
∫ L

0
γ(x)V̄ d x

0.29 mm
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D.2.3. Model-III

Table D.13: Calculation of the shear deflection according to the proposed model-III

Parameter Formula Value

Vy

Vy =Vcr +bdvρv fv y cotθ

204.957 kN

Vcr

Vcr =Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

71.594 kN

Kve

Kv,e =Gc Av ≈ 0.42Ec Av

5.48*108N /mm

Kv y

Kv,y =
Vy

γ
= Vy

δs/dv cotΘs
= nρv Ec Av cot 2Θs

1+nρv csc4Θs

0.834*108N /mm

K Model−I
v,e f f

K Model−I
v,e f f = V

Vcr
Kv,e

+ (
Vy

Kv,y
− Vcr

Kv,e
) V −Vcr

Vy−Vcr

2.31*108N /mm

∆v

∆v =
∫ L

0
γ(x)V̄ d x

0.44 mm
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D.2.4. Model-IV

Table D.14: Calculation of the shear deflection according to the proposed model-I

Parameter Formula Value

Vy

Vy =Vcr +bdvρv fv y cotθ

204.957 kN

Vcr

Vcr =Vcr,CCC =VRm,c = 0.3ς
x

d
( fcm)

2
3 bv,e f f

71.594 kN

Kve

Kv,e =Gc Av ≈ 0.42Ec Av

5.48*108N /mm

Kv y

Kv,y =
Vy

γ
= Vy

δs/dv cotΘs
= nρv Ec Av cot 2Θs

1+nρv csc4Θs

0.834*108N /mm

K Model−I
v,e f f

K Model−I
v,e f f = V

Vcr
Kv,e

+ (
Vy

Kv,y
− Vcr

Kv,e
) V −Vcr

Vy−Vcr

1.81*108N /mm

∆v

∆v =
∫ L

0
γ(x)V̄ d x

0.56 mm
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Appendix E- Integral Design Management

Perspective

E.1. Introduction
This Appendix is written in partial fulfilment of the requirements to obtain the IDM (Inte-
gral Design Management) annotation at the Delft University of Technology. The annotation
is designed for students aiming at combining technical knowledge with engineering man-
agement skills and preparing the graduates for future roles in multidisciplinary engineer-
ing practices.In this Appendix, a discussion is made about the implications of the proposed
technical structural design methodology on the other aspects of an infrastructure project
like quality, risk-management, maintenance time and cost-estimation of the project.
Section E.2 describes the design steps of a cantilever balanced bridge and evaluation of
mean shear crack widths and shear deflection with the proposed models in this thesis. The
proposed models facilitate the design of right amounts of shear reinforcement to keep the
crack widths under the permissible limits specified in the practical design codes.
E.3 defines quality in project management and comment on the implications of the pro-
posed models on the project quality. The cost to achieve this quality is discussed. The
section E.4 and section E.5 discuss the effects of the modified design method using the
proposed models on the time to maintenance and cost range estimates for the project.The
section E.6 presents a risk register with a description of three crucial risks inherent in the
application of conventional design method. The proposed design methods are used as a
risk response and post-risk response assessment is also made. The section E.7 and sec-
tion E.8 present the conclusions of the discussion in the Appendix and a critical reflection
on the personal experience of the author while pursuing the IDM annotation at the Delft
University of Technology.

E.2. Cantilever Balanced Bridge
An inspection in 2001 reveals extensive cracks in the web of concrete hollow box girders of
Grondal bridge in Stockholm, Sweden just after two years of putting the bridge in service
(Figure 1.1). After some time, similar problem is reported in the Alvik bridge in Stockholm
[29]. The concerned authorities decide to temporarily close the bridges fearing the risk
of shear failure. The bridges are designed in accordance with the Swedish codes. However,
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later it is found that the designs have inadequate shear reinforcement in serviceability limit
state. It is observed that the crack width kept on increasing along with an increase in the
number of cracks [24]. In general, the average crack width is found to be in the range of 0.1-
0.3 mm whereas the maximum crack width is found in the range of 0.4-0.5 mm which is
considered to pose problems concerning durability and serviceability of the structure [29].
Now, the original details of the sections of these bridges are not available and therefore,
in Figure E.2, a hypothetical case with an assumed main and side spans is considered and
a cantilevered balanced bridge cross section is designed using simplified assumptions and
thumb rules to assess the applicability of the proposed mean shear crack width model. Fig-
ure E.1 shows the schematic diagram of the designed cantilever balanced bridge along with
an approach bridge. The section A-A is considered at the hammer head while the section
B-B is considered at the center of the main span.

HAMMER

 HEAD

MAIN SPAN

EMBANKMENT

APPROACH

BRIDGE

SIDE SPAN SIDE SPAN

HAMMER

 HEAD

80000 150000 8000

WATER

330000

Figure E.1: Schematic diagram of the cantilever balanced bridge and approach bridge

In this section, a cantilever balanced bridge cross-section is designed using simplifying
assumptions and thumb rules. The main span of the bridge is 150m and the two side
spans are 80m wide. The cast in-situ segments and travelling formwork are used. The
approach bridge of length 330m is connected to the bridge (see Figure E.1). The character-
istic strength of concrete and steel reinforcement is 50MPa and 500MPa respectively. The
structure is designed for Euro Code Consequence Class 3 and Load Model 1. The carriage
way comprises in each direction of two traffic lanes, a hard strip and hard shoulder, and
parapets on each side.

Figure E.2: Schematic representation of carriage-way of the designed cantilever balanced bridge

Figure E.2 shows the schematic diagram of the carriage way of the bridge. Figure E.3 shows
a typical box girder cross-section used in the cantilever balanced bridge construction. The
various parameters marked in the diagram are to be determined. The main span of the
bridge is 150m. Based on the thumb rule L

h = 22. This means the required minimum height
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of the girder, hmi n = 6.8m.

Figure E.3: Schematic representation of RC beam as beam on elastic foundation [43]

Determination of Box-Girder Cross Section

L

h
= 22

=⇒ hmi n = 6.81

=⇒ hpr ovi ded = 7.0m

l1 = 2.5 to 3.5m
Let us assume l1 = 3.5m
Based on the thumb rules in design practice [64]

l1

l2
= 0.45

=⇒ = 8.0m

Determination of d4
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d4 (required) ≥ 350mm

d4 = 2(cc +φst i r r up +φmai n) +φp−hose + φduct−mai n

=⇒ d4 (required) = 382mm

d4 = 2 Xr

Xr = 167.5mm

d4 (provided) = 400mm

Determination of d1

d1 (required) ≥ 250mm

d1 = 2(cc +φst i r r up +φmai n) +φduct−tr ans + φduct−mai n

=⇒ d1 (required) = 324mm

=⇒ d1 (provided) = 350mm

Determination of d2

d1

d2
= 0.75

=⇒ d2 (required) = 466.67mm

=⇒ d2 (provided) = 475mm

Taking l1 = 3.5m,

=⇒ lp = 7.2m

Determination of d3

d3 (required) ≥ 250mm

d3 (required) ≥ lp

30
d3 = 2(cc +φst i r r up +φmai n) +φduct−tr ans + φduct−mai n

=⇒ d3 (provided) = 350mm
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Now, the height of haunch should be equal to d3, therefore,hv = 350mm.

Determination of lv

lv

lp
≤ 0.20

=⇒ lv (provided) = 1.4m

Using lv and lp ,

l3 = lp −2lv

=⇒ l3 (provided) = 4.4m

d5 at the section A-A (at the location of hammer) can be taken as 1000mm. Figure E.3 shows
the typical section of a box girder cross section.

Determination of the BM above the main support
As the name suggests, the mechanical scheme of the cantilever balanced bridge is a can-
tilever beam with a fixed end. The self weight intensity at section A-A

qA−A = γc A A−A =⇒ qA−A = 467.43kN /m (E.1)

where
γc weight density of the reinforced concrete.
A A−A cross-section area of the section A-A.
AB−B cross-section area of the section B-B.

Let us assume a linear decrement of the load from section A-A to section B-B.

qB−B = γc AB−B =⇒ qB−B = 261.43kN /m (E.2)

Figure E.4 shows the linear variation of the weight between the section A-A and section B-B.
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Figure E.4: Variable self-weight intensity along the span

Now,

MA−A = qB−B

2

(
L

2
− wpi er

2

)2

+ 1

2
(qA−A −qB−B )(

L

2
− wpi er

2
)

1

3
(

L

2
− wpi er

2
) (E.3)

where
wpi er top width of the pier.

=⇒ MA−A = 903825.20kN /m

Determination of the SF above the main support
The SF at the cross section A-A is

VA−A = qB−B

2

(
L

2
− wpi er

2

)
+ 1

2
(qA−A −qB−B )(

L

2
− wpi er

2
) (E.4)

=⇒ VA−A = 26968.37kN

Number of prestressing strands
Assuming that the stress at the top fiber of the box girder is equal to 3 MPa (thumb rule to
assume that the compressive stress at the top fiber after the including the effect of asphalt
load and traffic load)
Therefore,

σt =−P

A
−P

ep

Wt
+ MA−A

Wt
=−3000kN /m2 (E.5)

ep = yt − cc −φmai n −φst i r r up − φduct−mai n

2
(E.6)

yt = 3.61m

ep = 3.44m
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where
ep eccentricity of the prestressing cable.
yt distance of the top extreme fiber of the cross-section from centroid.
cc clear cover to the main reinforcement.
φmai n diameter of the longitudinal reinforcement.
φst i r r up diameter of the transverse reinforcement.
φduct−mai n diameter of the duct of the longitudinal prestressing cable.
φduct−tr ans diameter of the duct of the transverse prestressing cable.

=⇒ P = 180910.15kN

Assuming application of prestressing steel Fep 1860 for which,

σpw =σpi ∗0.85

where

σpw residual prestressing force after short term prestressing losses.
σpi initial prestressing force before prestressing losses.

σpw = 1395∗0.85 = 1185.75MPa

Total required area of the prestressing strands (Ap ) to achieve the required prestress at per-
missible stress levels is :

Ap = P

σpw
(E.7)

=⇒ Ap = 152570.23mm2

Assuming (12, (φ15.7mm) strands are being used,
Number of cables (required) =84
Number of cables (adopted)= 85
The c/c spacing b/w prestressing cable = 15000

85 =176.47 mm

Figure E.5 shows the side and the top view layouts of the prestressing cables in the can-
tilevered balanced bridge.
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Figure E.5: Side and Top view layout of the prestressing cables
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Check for bottom flange thickness at ULS

Let us assume a mass strain of 1.75∗10−3 in the bottom flange to prevent the possibility of
brittle failure while checking the axial resistance provided by the bottom flange at ULS.
1st Iteration
Assuming,

σpu = 0.95 fpk

γs
= 1606.45MPa (E.8)

σpu maximum permissible stress in the prestressing strands.
fpk yield strength of the prestressing strands.
γs factor of safety for the stress in the prestressing strands.

Now,

σpm∞ = P

Ap
= 1182.41mm2

σpm∞ maximum applied prestressing stress in the strands.

∆Np = Ap (σpu −σpm∞) = 64863.48kN (E.9)

Now,

αb fcd xu = Pm∞+∆Np (E.10)

xu depth of the compression zone.

xu = Pm∞+∆Np

αb fcd
= 819.24

Now,

∆εp = (
dp −xu

xu
)εw = 1.30∗10−2 (E.11)

where,

dp = h −φmai n −φst i r r up − φduct−mai n

2
= 6891.5

Figure E.6 shows the stress-strain relationship for the pre-stressing strands used in this
case.
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Figure E.6: Stress-strain relationship for the prestressing strands

Now ,

=⇒ σpu = 1554.12MPa (E.12)

2nd Iteration
Let’s assume σpu = 1554.12MPa

=⇒ ∆Np = 56871.54kN

=⇒ xu = 792.60mm

=⇒ εu = 1.35∗10−2

εu maximum strain in the prestressing strands at the ULS.

=⇒ σpu(g r aph) = 1557.20MPa ≈σpu(assumed)

=⇒ the iteration is stopped & xu = 792.60mm

Check for Moment Resistance
Figure E.7 shows the cross- section forces acting at ULS.
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Figure E.7: Cross-section forces at ULS

MRd = Pm∞(h − yt −βxu)+∆Np (h −βxu − c −φst −φmai n − φduct−mai n

2
) (E.13)

where
h total height of the girder cross-section
c = yt distance of centroid from the top
Now,

MRd = 882890.710kN m

ME d = 1.4MA−A −Pm∞ep (E.14)

=⇒ ME d = 642293.91kN m

Now,

MRd > ME d

=⇒ Moment resistance capacity is sufficient at the section A-A

Check for Shear Resistance
Since the height of the box-girder section decreases linearly from section A-A to section B-
B, the inclination in the bottom flange of the box girder leads to a vertical component of
the concrete compression force. This vertical component resists external shear force and
therefore, enhances the shear resistance of the box girder.Figure E.8 shows the variation in
the height of the box girder between section A-A and section B-B.
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Figure E.8: Cross-section forces at ULS

VE d = 1.5(VA−A −Ncu si nα) (E.15)

α= t an−1

(
hA−A −hB−B

L
2 − wpi er

2

)

Assumed wpi er = 2m

vE d = VE d

bd
= 4.54MPa (E.16)

where

b = 2d4 −0.5
∑

2φduct

Shear Resistance of Concrete without any Stirrups

vRdc ≥ vmi n +k1σcp (E.17)

where

k1 = 1+
√

200

d

σcp compressive stress in the concrete due to prestressing.

=⇒ vRdc ≥ 1.76MPa

=⇒ vE d ≥ vRdc (E.18)

=⇒ check VRd ,max

vRd ,max =σcd ∗ si nθcosθ =αcwν1 fcd si nθcosθ (E.19)
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Figure E.9: Modification factor for the transverse tension in the compression strut

Figure E.9 shows the modification factor for the effect of transverse tension between in the
compression strut. where

According to EC2,

21.8o ≤ θ ≤ 45o (E.20)

=⇒ vRd ,max = 12.9MPa

Now,

vRd ,max > vE d

=⇒ design the shear stirrups
Design of Shear Stirrups
According to iStructE,

θ = 0.5si n

[
5.56VE d

bd fck (1− fck
250 )

]
= 19.58o (E.21)

But, According to EC2,

21.8o ≤ θ ≤ 45o

θ(adopted) = 21.8o
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Now, according to EC2 the concrete contribution to the shear resistance of a shear rein-
forced beam is equal to zero.

VRd ,s =VE d

VRd ,s =VE d =VE d = Asw fyd zcotθ

s
(E.22)

=⇒ spacing (provided) = 200mm.
Mean shear crack width calculation using proposed Model-IV for mean shear crack width
Now, for stirrup spacing of 200 mm c/c

wav g = 2.14mm (E.23)

Now, ACI- 318 [34] recommends that crack width be limited to 0.41mm in a reinforced con-
crete structural element under service loading conditions. Therefore, the stirrup spacing
has to be reduced.The mean shear crack width can be reduced to 0.41mm with 50 mm stir-
rup spacing. Now, this may pose execution challenges. In that case, shear reinforcement
with higher bar diameter should be deployed.
The mean shear crack width with the original design method was found to be 2.146 mm
and the stirrup spacing provided was 200 mm. However, ACI 318 [34] specifies the mean
acceptable crack width equal to 0.41 mm under service loads. It is found that to bring the
mean shear crack width value to the acceptable limit, the stirrup spacing should be reduced
to 50mm. It may be noted that in the design of the cantilever balanced bridge, several
assumptions are made which may be more conservative than the practical design scenarios
in practice. However, the goal is to underscore the fact that a design which is shear safe at
ULS according to the accepted design norms may not be shear-sufficient at SLS from the
perspective mean shear crack width control. The same issue is seen in case of Alvik and
Grondal bridges in Sweden where extensive shear cracking is observed under service loads
within a few days of putting the bridges into service. This highlights the impact that the
proposed mean shear crack width and shear deflection models can have on mitigating the
problem of large shear crack widths in service condition.

E.3. Proposed Models and Quality Management
Quality in a project delivery means "Supply the customers with what they want to stan-
dards and specifications they want and at the price that suit their needs" [58].
Quality = Stakeholder satisfaction.
According to Maylor,

Sati s f acti on = perception-expectation
where
per cepti on quality of the output
expect ati on desired level of quality of output

Now, in case of a bridge design, client expectations cannot be lowered to enhance the sat-
isfaction. A client expects that the bridge should not undergo severe shear cracking under
service loads application. Therefore, to increase client satisfaction, perception should be
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increased. The proposed design methodology ensures that the designed bridge is not vul-
nerable to severe shear cracking under the application of service loads. Therefore, percep-
tion is increased which in turn increases the quality of the finished product which is the
design of the bridge girder in this case.

Cost of Quality
There are two types of cost of quality.

1. Cost of achieving good quality

(a) Prevention: These are costs incurred to raise the quality of the product to meet
customer satisfaction.

(b) Appraisal: These are the costs incurred to evaluate the process and their outputs
with the goal of establishing compliance with the quality.

2. Cost of poor quality

(a) Internal failure costs: These correction costs are incurred when the product is
still inside the company office and compound and not yet received by the cus-
tomer for example repair and re-evaluation.

(b) External failure costs: These correction costs are incurred when the product/
service has already been delivered to the customer and fault/ flaw is detected
after the receipt by the customer for example penalty and recall costs.

In the context of this MSc thesis work, it is clear that the cost of poor quality of current
design method is the external failure cost since the failure can only be brought to notice
after it has occured in the structure (the failure/ fault has already stepped out of the de-
sign office and can no more be controlled internally). The proposed design methodology
reduces/ prevents this external cost, however, another cost is incurred with it. The pro-
posed design method comes with the cost of prevention. The cost of prevention comes in
the form of additional design effort cost and additional material and placement labor cost
in case shear reinforcement enhancement is found necessary (using the proposed mod-
els) for controlling shear crack width and shear deflection under allowable limits. Usually
the cost of external failure is higher than the cost of prevention.Thus, the proposed design
methodology can bring about huge savings in maintenance cost throughout the life span
of the structure.
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Figure E.10: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads [58]

E.4. Proposed Models and Time to Maintenance
Maintenance refers to the set of activities that is needed to keep the required function(s)
available at the agreed level of service. The area under the probability density function is
constant. However, the proposed design method leads to better performance not only in
SLS but the enhanced shear reinforcement (if found in analysis) will increase the shear
capacity in ULS as well. This leads to the shifting of the mean maintenance time to a
higher value. Similarly, other values are shifted towards right and therefore, entire gamma
probability density function plot shifts rightward. If it is assumed that the maintenance
occurring beyond the mean time to maintenance is significantly aimed at improving the
load carrying capacity of the bridge at the ULS (and maintenance before mean time to
maintenance is generally for serviceability related issues) then there is a possibility of the
gamma PDF curve becoming right skewed. This is because the current design method-
ology already provides sufficient ULS resistance. The enhanced design methodology will
further increase the resistance at ULS and depending on the magnitude of the enhance-
ment right skewness may get introduced in the probability density function. Figure E.11
shows the original and the shifted probability density function (PDF). Figure E.12 shows
the shifted and skewed (and shifted) probability density function of the maintenance for
the proposed design method (which proposes application of engineering models for the
calculation of mean shear crack width and shear deflection in addition to the currently
used design checks for bending moment resistance, shear resistance check and check for
flexural crack widths).
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Figure E.11: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads

Figure E.12: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads
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E.5. Proposed Models and Cost Range Estimates
Typically, the price of a project comprises cost of direct materials and direct labor, project
overheads, general overheads and profit of the contractor(s). The design of the structure
may be contracted to an engineering office by the client, or the contractor may have their
own in-house engineering design team. The proposed mean shear crack width and shear
deflection models introduce an additional design step in the shear design of slender rein-
forced concrete beams. This has implications on the design cost as well as the construction
cost should a shear enhancement is made based on the analysis of mean shear crack width
and shear deflection under service loads. Thus, the baseline cost (or prime cost) of the
project is also likely to increase. This will cause the changes in the estimated costs by con-
tractors during the tendering phase. In most cases, the estimated total cost of a project is
not a fixed number but usually it is defined as a range between the pessimistic and opti-
mistic estimate of the cost. Such an estimate is called the range cost estimate and it is nec-
essary to know the spread of the probable finished total cost of the project. The range esti-
mate is typically characterized by different values like P10, P50 and P90 with a likelihood of
not being exceeded by the actual total cost of the project by 10%, 50% and 90% respectively.
where
P10 Optimistic estimate (10% chance of being better)
m most likely estimate (mode of the distribution)
P50 median estimate (the 50%- 50% outcome)
P90 Pessimistic estimate (10% chance of being worse)
Figure E.13 shows the various cost range estimates of a project.
Based on the interviews with a few practicing bridge engineers (who prefer to stay anony-
mous), it is revealed that the material costs can vary anywhere between 20%-40% of the
total cost of the project. The reinforcement (design and material) cost is a fraction of the
total cost of the project.The proposed design method may increase the proposed shear re-
inforcement volume to up to 4 times (say) in extreme cases as also see in the example of
the cantilever balanced bridge presented earlier. Assuming that the reinforcement cost ac-
counts for 40 % (conservative estimate) of the total material and design cost of the project.
It is also assumed that the material and design cost accounts for 40% of the total project
cost (including cost of land acquisition, labour cost, documentation and legal cost, mate-
rial and design cost). This implies that reinforcement cost can be as high as 16% of the total
project cost in extreme cases.
Assuming the two extreme situations where the application of the proposed mean shear
crack width and shear deflection models do not increase the provided shear reinforcement
and the case in which four times the original calculated shear reinforcement amount is
provided, the mean scenario is assumed where the proposed models recommend the ap-
plication of 200% more of the original amount of stirrups.Thus, this increment leads to an
increase in the total cost of the project by 24.24% (assuming the reinforcement cost is 16%
of the total cost of the project). Figure E.14 shows the qualitative change in the probabil-
ity density function of the cost range estimate due to the adoption of the proposed design
method.
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Figure E.13: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads

Maturing of a Cost Range Estimate
There are two key drivers of the cost range estimates.

1. Variability: This comprises variation in scope, materials and time required to finish a
project. This variation is directly reflected in the total finished cost of the project.

2. Risk: A risk is an uncertain, future event, that, if it occurs has a negative or positive
impact on project promises [39]. The risk event tend to directly affect the CAPEX
(Capital Expenditure) of the project.
The two inferences can be drawn regarding the influence of the proposed design
method on the cost range estimate.

(a) The current design method performs better in terms of accuracy of the esti-
mates of the total project cost (including the maintenance cost) as compared
to the conventional design method.

(b) The proposed method brings down the probability of the severe consequences
of the critical service life maintenance issues and thus, their influence on the
CAPEX.
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Figure E.14: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads

The range estimates are reduced by the reducing variability and responding to risk events.
The proposed method certainly addresses the risk of potential shear cracking occuring un-
der service loads and at the same time leads to more accurate estimations off the total fin-
ished cost of the project (including the maintenance cost). Therefore, the proposed method
plays a role in maturing the cost range estimate of the project.

Sample case for quantifying the effect of proposed design method using
Delphi-Beta Method
The Table E.1 and Table E.2 show the calculation for finding the resultant distribution of the
total cost of a project based on the conventional design method and the proposed design
method respectively. The cost of land acquisition and cost of civil works is assumed to have
a Beta- distribution spread as shown in Figure E.15.
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Figure E.15: Or iginal and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads

where
a Optimistic estimate (5% chance of being better)
m most likely estimate (mode of the distribution)
b Pessimistic estimate (5% chance of being worse)

In the discussion in the beginning of section E.5, it is estimated that the material cost ac-
counts for about 16% of the total project cost in extreme situations. It is mentioned that a
200% increment in the stirrups amount increases the total project cost by 24.24%.Now, let
us assume that the design cost is roughly equal to 4% of the total cost of civil works in the
project. Assuming that the equal design effort is required for design for Bending Moment
as well as Shear Force, based on the calculations done in this MSc thesis, it is found that
design time (assumed cost increases in same proportion as time) for shear is increased by
30% due to additional checks. This implies that increased design cost of the project due
to the adoption of proposed design method = 4% * 50% * 30% of the cost of civil works.
This amounts to 0.6% increase in the cost of civil works. Let us conservatively assume that
cost of civil works is increased by 1%.Therefore, the total increase in the cost of the civil
works (material + design) due to the application of the proposed design method over con-
ventional design method leads to a total increment of (24.24+ 1)% in the cost of civil works.
Let us assume a total increment of 26% occurs as a conservative approximation. The es-
timated mean values of the cost of land acquisition and cost of civil works are taken in a
proportion based on the real costs from an internal report of a design company outside of
The Netherlands. The optimistic and pessimistic estimates are chosen randomly. More-
over, the estimates for the conventional and the proposed design methods stay the same
for the cost of land acquisition. The cost of civil works (for the proposed design method) is
obtained by increasing the estimates by 26% of the original values used in the conventional
design method.
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Table E.1: Cost range estimate for the original design method using Delphi-Beta method

Parameter Formula Value
Estimate of

Mean cost of
land acquisition

Estimated value 8 million Euros

Estimate of
Mean cost of

civil works

Estimated value 2.8 million Euros

Estimate of
Optimistic cost

of land
acquisition

Estimated value 5.5 million Euros

Estimate of
Optimistic cost

of civil works

Estimated value 1.9 million Euros

Estimate of
Pessimistic cost

of land
acquisition

Estimated value 12 million Euros

Estimate of
Pessimistic cost

of civil works

Estimated value 4 million Euros

Mean of the
distribution of

land acquisition
cost

µ1 = a +4m +b

6
8.25 million

Euros

Standard
Deviation of the
distribution of

land acquisition
cost

σ1 = b −a

6
1.08 million

Euros

Mean of the
distribution of

cost of civil
works

µ2 = a +4m +b

6
2.85 million

Euros
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Standard
Deviation of the
distribution of

cost of civil
works

σ2 = b −a

6
0.35 million

Euros

Mean of the
Normal

distribution of
total

µ=µ1 +µ2

11.1 million
Euros

Standard
Deviation of the

Normal
distribution of

total cost

σ=
√
σ2

1 +σ2
2

1.138 million
Euros

Based on the comparison of the mean values of normal distribution of the total project cost
from the conventional and proposed design methods , it is clear that the proposed design
method increases the total project commissioning cost by 9.37% in this example. Now, this
value of increment in the cost is applicable only for this example and for this particular
proportion of the costs of land acquisition and cost of civil works. A more detailed study
is needed to establish the general range of increment by the adoption of the new design
method.
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Table E.2: Cost range estimate for the proposed design method using Delphi-Beta method

Parameter Formula Value
Estimate of

Mean cost of
land acquisition

Estimated value 8 million Euros

Estimate of
Mean cost of

civil works

Estimated value 3.52 million
Euros

Estimate of
Optimistic cost

of land
acquisition

Estimated value 5.5 million Euros

Estimate of
Optimistic cost

of civil works

Estimated value 2.39 million
Euros

Estimate of
Pessimistic cost

of land
acquisition

Estimated value 12 million Euros

Estimate of
Pessimistic cost

of civil works

Estimated value 5.04 million
Euros

Mean of the
distribution of

land acquisition
cost

µ1 = a +4m +b

6
8.25 million

Euros

Standard
Deviation of the
distribution of

land acquisition
cost

σ1 = b −a

6
1.08 million

Euros

Mean of the
distribution of

cost of civil
works

µ2 = a +4m +b

6
3.59 million

Euros
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Standard
Deviation of the
distribution of

cost of civil
works

σ2 = b −a

6
0.44 million

Euros

Mean of the
Normal

distribution of
total

µ=µ1 +µ2

11.84 million
Euros

Standard
Deviation of the

Normal
distribution of

total cost

σ=
√
σ2

1 +σ2
2

1.17 million
Euros

E.6. Shear Cracking Risk Assessment
A risk is an uncertain, future event, that, if occurs has a negative impact or positive impact
on project promises [39].In this MSc thesis, the discussion is focused on the risk involved
with current design method in practice which does not involve calculation of mean shear
crack width and shear deflection due to the lack of availability of the practical models. Risk
is usually expressed as the product of probability of its occurrence times the potential im-
pact it can have on the objectives. Based on the probability and potential impact of the
risk, different strategies are used to deal with these risks within the constraints of time,
money etc. Figure E.17 shows the four extreme categories of risk depending on the val-
ues of probability and potential impact. There are only a few cases reported in the liter-
ature with the problem of severe shear cracking under service loads (example Alvik and
Grondal bridges in Sweden). Therefore, risk due to shear deficient design (for shear crack
width and shear deflection control) seems to be a risk with low probability but high conse-
quences.Therefore, such a risk can be categorized as a medium risk according to Hastings
[27]. Now, the proposed method helps reduce the probability of occurrence of this risk.
Moreover, the increased shear reinforcement also reduces the potential impact since the
ductility of the structure is most likely increased due to additional amount of stirrups (if
required by the analysis with the proposed models). The shear deficient design of the rein-
forced concrete beams can lead to various types of risks. Table E.3 shows the identified pri-
mary technical, socio-political and business categories risks in the form of a risk-register.
It is important to assess the effectiveness of the risk-response post implementation of the
measure. In the present case, the improved design method with proposed models for mean
shear crack width and shear deflection is taken as the risk response posed by the applica-
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tion of current design methods without assessment of mean shear crack width and shear
deflection.

Figure E.16: Original and New position of the perceived risk of extensive shear cracking in a bridge girder
under service loads

Figure E.17: Different Levels of risk depending on the likelihood and consequences as defined by Hastings
[27]
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Table E.3: Semi-quantitative Risk register for a shear deficient bridge design for mean shear crack width control under service loads

Nr. Category Risk Description Pre-response Assessment Risk-
Response

Post-response-Assessment

Cause Risk
Event

Consequence Probability Impact Probability Impact Post-risk
action

Secondary
risk

(I) Technical Bridge
girder

is
shear
defi-

cient in
SLS

may
show
large
crack

widths
under
service
loads

Maintenance
cost of the

project
becomes
too high

and exceeds
budget

60% High
maintenance

costs

Improved
design in
office for

SLS

25% reduced
mainte-
nance

cost
within
budget

data
storage for
design and

corre-
sponding

crack
width

monitor-
ing

extended
construc-
tion time

because of
extra

placement
of stirrups

(II) Socio-
political

Bridge
girder

is
shear
defi-

cient in
SLS

may
show
large
crack

widths
under
service
loads

Perception
of risk and

eminent
structural

failure

60% complaints
and loss of
public trust

Improved
design in
office for

SLS

25% co-
operation

by
people
during

mainte-
nance

interview
people for
reaction to
the main-
tenance
opera-

tions, plan
and speed

increased
project

budget; less
funds for

other
projects

(III) Business Bridge
girder

is
shear
defi-

cient in
SLS

may
show
large
crack

widths
under
service
loads

Lost client
trust and

brand
reputation

60% penalty; lack
of timely

payments;
poor future

business
associations

Improved
design in
office for

SLS

25% higher
client

satisfac-
tion

quality
and

customer
satisfac-

tion
surveys

with
clients

increased
design time
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E.7. Conclusion
In this Appendix, several aspects of an infrastructure project (a cantilever balanced bridge
in this case) are discussed. These aspects are quality, risk-management and maintenance.
The proposed models help attain high quality standards by facilitating the design of a struc-
ture (bridge) that meets the serviceability requirements of the structure. The proposed
models help prevent excessive shear crack widths which can jeopardize the functionality
of the structure and pose durability problems. The cracking also affects the aesthetics of
the infrastructure. Moreover, extensive shear cracking also poses different types of risks.
While it deteriorates the structure and causes technical risks on one hand, it also causes
socio-political risk of criticism and loss of public trust as well as business risk of bad repu-
tation and discontinued business relationship with the clients.
It is seen that the proposed design method delays the mean time to critical maintenance.
The robust design comes with a cost of extra design and material (shear reinforcement)
but prevents excessive maintenance costs in the later phases. Therefore, it is cost- effective
from life cycle cost point of view. Overall the proposed methods facilitate improved quality,
reduced risk and reduced maintenance cost but requires an investment in the form of high
initial design effort and material cost (in case the structure is found shear deficient in SLS).

E.8. Reflection
My MSc journey was a little different from other peers in the Department because I chose
to pursue IDM annotation along with my MSc in Structural Engineering. I have to be hon-
est to admit that initially it was a bit challenging and uncomfortable for me to think about
design from management point of view. As a Structural Engineer, we are trained in a partic-
ular way of thinking about structures especially the load carrying capacity of the structures.
However, it was only in the course "Infrastructure Management" that I realized the other
crucial factors that have equal or even more influence on the structure like risk manage-
ment and financial planning etc. Learning about Risk registers and NPV as a tool to com-
pare the alternatives are some of my personal key takeaways from the course.
The course on "Integral Systems Design" was a unique course for me. It challenged me
heavily and eventually shifted my perspective about looking at at structures and infrastruc-
tural projects from systems point of view. A structure has a lot of entities and components
which interact with each other through various interfaces.
I admit that I was not very fond of working in teams and preferred to do tasks myself more
than relying on help from others until I followed the course "Collaborative Design and Engi-
neering". It was a daunting task to position myself to contribute in a big team of 30 students
from different disciplines with different perspectives and collaborate together to produce
a coherent report with small contribution from each team member.I learnt the importance
of communication with other team members and how crucial it is to seek feedback from
the peers. This is especially important when you are a part of the project where your work
has huge implications on the quality and usability of the project deliverable. The course
on "Financial Engineering" sparked my enthusiasm to learn more about investment tools
and stock markets, inflation etc. I realized that it is quite empowering to be able to predict
the financial parameters that can help make informed choices in different scenarios. In
my opinion, you are not a complete engineer without some knowledge of basic financial
terms like interest, discount rate, inflation and the means to calculate these and use these
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to compare the financial viability of different projects.
The course " Information Systems in Construction Industry" gave me the confidence that
any software tool can be learnt if there is a focused practice and tolerance for large number
of hit and trials in the beginning to know the most used commands. I was always fascinated
by the Softwares like Revit and heard about Relatics. The course gave me the necessary
foundation and sparked my interest to learn more about these these softwares. I learnt that
learning any new software tool is messy in the beginning but a stage comes wnen it be-
comes enjoyable and easy. The point is you have to be willing to stick through that initial
phase of mastering the basic most used commands of the software. Last but not the least,
the IDM part of my thesis challenged me to find the wider implications of my research work
in practice. It helped me in assessing the potential scale of impact of my thesis work on var-
ious aspects of the project like project cost, quality, maintenance and risk-management.
The "IDM Annotation" focus of my work established coherence between the technical en-
gineering aspects and the engineering management aspects of the infrastructure projects
like bridge- design, construction and maintenance. I realized that this coherence is the key
towards useful and successful projects in the construction industry. It took me a while to
figure out the elegant way to document the potential consequences of my work but the
time spent was fully worth it. I can take a small pride in acknowledging that although I do
not have an in depth knowledge about construction management, yet I feel comfortable in
having discussions with my Construction Management Master colleagues and I definitely
am in a better position to do that thanks to the "IDM Annotation". I would highly recom-
mend this annotation to the students willing to challenge themselves to come out of their
comfort zone to become a τ Engineer. You should definitely follow the annotation to know
what that really means.
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F.1. Dowel Action

T HIS Appendix describes a proposed methodology to predict the dowel action contri-
bution to the shear resistance of a reinforced concrete beam. The dowel action of the

longitudinal reinforcement can be evaluated based on the mechanical analogy of Beam on
Elastic Foundation and Extended to Beam on Inelastic Foundation [43]. The reinforcement
and the surrounding concrete are modelled as beam and elastic foundation (comprising of
springs) in this model. The following are the equations given by Hetenyi [30] based on the
assumption that beam and the elastic foundation behaves elastically.

Figure F.1: Schematic representation of RC beam as beam on elastic foundation[43]

y(x) = 2Pλ

ks
Dλx (F.1)

Θ(x) = −2Pλ2

ks
Aλx (F.2)
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M(x) = −P

λ
Bλx (F.3)

V (x) =−P ·Cλx (F.4)

Lc0 = 3Π

4
4

√
4Es Ib

k f c db
(F.5)

where
k(s) spring stiffness simulating reinforcement bar and the surrounding con-

crete
y(x) deflection profile of the beam
θ(x) rotation profile of the beam
M(x) moment profile of the beam
V (x) shear profile of the beam
E(s) Modulus of Elasticity of steel
I (b) Moment of Inertia of the bar
E(s) Modulus of Elasticity of steel

k f c =
150 f 0.85

c

db
(F.6)

Aλx = e−λx(cosλx + si nλx) (F.7)

Bλx = e−λx(si nλx) (F.8)

Cλx = e−λx(cosλx − si nλx) (F.9)

Dλx = e−λx(cosλx) (F.10)
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λ= 4

√
ks

4Es Ib
(F.11)

To account for the non-linearity due to crushing and fracture damages in the vicinity of
the shear plane, the concept of curvature influencing length, Lc which is initially used by
Maekawa and Qureshi (1996)[42] is used. This curvature influencing zone influences the
stiffness of the subgrade given by the following equations.

ks =


220 f 0.85

c , if D I É 0.02

220 f 0.85
c

(1+3(D I −0.02)0.8)4
, if D I ≥ 0.02

(F.12)

where D I is the damage index and it is a dimensionless parameter.

D I = δ

db
(F.13)

A better expression for the DI accounts for the deterioration of the bond due to damage by
crushing and fracture. This expression considers the effect of the bar slip.

D I =
(
1+ 150S

db

)
δ

db
(F.14)

where S is slip and can be obtained based on the harmonization of the equations of [52]
Shima et al. by [53]. Figure F.2 shows the local slip and bond stress around a reinforcement
bar embedded in concrete.
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Figure F.2: Bond stress and local slip around a reinforcement bar [53].

a = 2(1+
(

2x

Ld

)1.2

) ≥ 2, x ≥ Ld /2 (F.15)

s = εs(a +3500εs) (F.16)

s = εy (a +3500εy ),εy ≤ εs < εsh (F.17)

where
ε(sh) strain at the strain hardening
ε(y) strain at the yielding
ε(s) free strain in the bar
L(d) bond deterioration length

Here, s

is the normalized slip.

S = db

K f c
s (F.18)

K f c =
fc

20

2/3

(F.19)

In our case x = d where d is the effective depth. Qureshi and Maekawa found that the
length of the bond deterioration zone is about 5 times the diameter of the reinforcement
bar in case of pure axial pullout and greater in case of combined slipping and axial pullout.
In this case, we have assumed Ld = 5db .
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Figure F.3: Bond deterioration zone around the RC interface [53].

Figure F.3 shows the bond deterioration zone near RC interface. Also, we have assumed
that the longitudinal bars will not yield under service load. The dowel force is significantly
influenced by the concrete side cover and concrete bottom cover. The amount of dowel
force mobilized is dependent on the relative magnitude of these cover values respectively.
Now,

w(x) = d

dx
V (x) = 2Pλe−λxcos(λx) (F.20)

w(x) = 0 → Li = π

2λ
(F.21)

Vd =
∫ π

2λ

0
wd x = 1.21P (F.22)

where

P = ksδ

2λ
(F.23)

In case cb<cs

Vd = 1.21

(
cb

cs

)
P (F.24)

The iterative procedure to calculate the dowel force proposebelow is based on the determi-
nation of the right value of the damage index.

1. Assume a value for the damage index D I .
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Figure F.4: The two cases for beam cover splitting [Moradi et al]

2. Calculate ks and δ based on this value of D I .

3. Evaluate the εs and S

4. Now calculate the value of D Icalc given in ( Equation F.14)

5. if D I =D Icalc , the process stops. Otherwise, make a new estimate of D I and repeat
Steps 1-5.

6. Calculate P from( Equation F.23) and then calculate Vd from ( Equation F.24).



Bibliography

[1] Standard specifications for concrete structures. Tokyo, Japan, 2002.

[2] ACI Committee 318. Building code requirements for structural concrete (aci 318-08)
and commentary. American Concrete Institute, Farmington Hills, MI, 2008.

[3] ASCE-ACI Committee 426. The shear strength of reinforced concrete members. JStruct
Div, 99(6):1091–1187, 1973.

[4] Joint ACI-ASCE Committee 445. Recent approaches to shear design of structural con-
crete (aci 445r-99). Farmington Hills, MI,, 1999.

[5] CSA Committee A23.3. Design of concrete structures (csa a23.3-04). Canadian Stan-
dards Association, Rexdale, ON, Canada, 2004.

[6] S. Ahmad and P. Bhargava. Shear strength models for reinforced concrete slender
beams: a comparative study. Structures, 16:119–128, 2018.

[7] Vecchio F.J. Bentz, E.C. and M.P. Collins. Simplified modified compression field theory
for calculating shear strength of reinforced concrete elements. ACI Materials Journal,
103(4):614–624, 2006.

[8] Comite Euro International Du Beton. Cep-fip model code 1990. Thomas Telford Ser-
vice Ltd., London), () ), 1990.

[9] S. Betongföreningen. Svenska betongföreningens handbok till eurokod 2. Tech. rep.,
Svenska Betongföreningen), volym i. ), 2010.

[10] S.B. Bhide. Reinforced concrete elements in shear and tension. Univ. of Toronto, Dept.
of Civil Engng., 87-02, 1987.

[11] S.B. Bhide and M.P. Collins. Influence of axial tension on the shear capacity of rein-
forced concrete members. Structural Journal, 86(5):570–581, 1989.

[12] R.C. Braam. Concrete structures 2 -cie 3150 reader. CiTG, TU Delft), ).

[13] Chi K.N. Chiu, C.K. and F.C. Lin. Experimental investigation on the shear crack de-
velopment of shear-critical high-strength reinforced concrete beams. Journal of Ad-
vanced Concrete Technology, 12(7):223–238, 2014.

[14] A. Cladera and A.R. Mari. Shear design procedure for reinforced normal and high-
strength concrete beams using artificial neural networks. part ii: beams with stirrups.
Engineering structures, 26(7) ):927–936, 2004.

[15] Marí A. Bairán J.M. Ribas C. Oller E. Cladera, A. and N. Duarte. The compression chord
capacity model for the shear design and assessment of reinforced and prestressed
concrete beams. Structural concrete, 17(6):1017–1032, 2016.

229



230 Bibliography

[16] M.P. Collins. Towards a rational theory for rc members in shear. Journal of the Struc-
tural Division, 104(4), 1978.

[17] M.P. Collins and D. Mitchell. Prestressed concrete structures (vol.9). Englewood Cliffs,
NJ: Prentice Hall.), ), 1991.

[18] Paris. Comite Euro-International du Beton/Federation Internationale de la Precon-
trainte. Cep-fip model code for concrete structures, 3rd edition. Comite Euro Interna-
tional Du Beton, 1978.

[19] C.E. De Normalisation. Eurocode 2: Design of concrete structures, part 1-1: General
rules and rules for buildings. Comite European De Normalisation (CEN), Lausanne,
Switzerland, 2004.

[20] P. G. Debernardi and M. Taliano. Shear deformation in reinforced concrete beams with
thin webs. Mag. Concr. Res., 58(3):157–171, 2006.

[21] B. L. Meyers Deflections of concrete structures, G. M. Sabnis and eds. F. Roll. Dilger,
w., and abele, g. (1974). “initial and time-dependent shear deflection of reinforced
concrete t-beams. American Concrete Institute, Farmington Hills, MI.

[22] Lee S.C. Deluce, J.R. and F.J. Vecchio. Crack model for steel fiber-reinforced concrete
members containing conventional reinforcement. ACI Structural Journal, 111(1):93–
102, 2014.

[23] fib (International Federation for Structural Concrete). Ceb-fip model code 2010.first
complete draft, vol 2, chaps.(7–10). fib Bulletin, 562010, 2013.

[24] James G. Long term monitoring of the alvik and gröndal bridges. Byggkonstruktion,
TRITABKN Rapport 76 ):48, 2004. doi: www.byv.kth.se.

[25] Pimanmas A. Maekawa K. Hansapinyo, C. and T. CHAISOMPHOB. Proposed model
of shear deformation of reinforced concrete beam after diagonal cracking. Doboku
Gakkai Ronbunshu, 725:305–319, 2003.

[26] Mantawy A. Soliman J. Sherif A. Hassan, T.K. and S.H. Rizkalla. Bond characteristics
and shear behavior of concrete beams reinforced with high-strength steel reinforce-
menty. Advances in Structural Engineering, 15(2):303–318, 2012.

[27] N.A.J. Hastings. Physical asset management: With an introduction to iso55000.
Springer), ), 2015.

[28] Liu Z. He, Z.Q. and Z.J. Ma. Shear deformations of rc beams under service loads. Jour-
nal of Structural Engineering, 143(1), 2016.

[29] A. Hejll. Structural health of bridges: monitor, assess and retrofit. Doctoral disserta-
tion, Luleå tekniska universitet, ), 2004.

[30] M. I. Hetenyi. Beams on elastic foundation: Theory with applications in the fields of
civil and mechanical engineering. .” Ann Arbor, The University of Michigan Press.



Bibliography 231

[31] B. Hu and Y.F. Wu. Minimum shear reinforcement in normal, medium, and high-
strength concrete beams. Journal of Structural Engineering, 147:666–678, 2017.

[32] B. Hu and Y.F. Wu. Effect of shear span-to-depth ratio on shear strength components
of rc beams. Engineering Structures, 168:770–783, 2018.

[33] ACI (American Concrete Institute). Building code requirements for structural concrete
(aci 318-11) and commentary. , Farmington Hills, MI, 2011.

[34] ACI (American Concrete Institute). Building code requirements for structural concrete
and commentary. ACI 318–14, Farmington Hills, MI, 2014.

[35] H. B. Kupfer and K. H. Gerstle. Behavior of concrete under biaxial stresses. J Eng Mech
Div, 99:853–866, 1973.

[36] Choi I.J. Lee, J.Y. and S.W. Kim. Behavior of concrete beams reinforced with astm a
1035 grade 100 stirrups under shear. ACI Structural Journal, 108(5), 2011.

[37] Choi S.H. Lee, J.Y. and D.H. Lee. Structural behaviour of reinforced concrete beams
with high yield strength stirrups. Magazine of Concrete Research, 68(23 ):1187–1199,
2016.

[38] Lee D.H. Lee J.E. Lee, J.Y. and S.H. Choi. Shear behavior and diagonal crack width
for reinforced concrete beams with high-strength shear reinforcement. ACI Structural
Journal, 112(3), 2015.

[39] M. Leijten. Project management-epa1412-spm4416-spm8000. Lecture Slides, CiTG,
TU Delft), ).

[40] F. Leonhardt and R. Walther. The stuttgart shear tests, 1961. Cement and Concrete
Association, London.

[41] B. Li and C.T.N. Tran. Determination of inclination of strut and shear strength us-
ing variable angle truss model for shear-critical rc beams. Structural Engineering and
Mechanics, 41(4):459–477, 2012.

[42] K. Maekawa and J. Qureshi. Computational model for reinforcing bar embedded in
concrete under combined axial pullout and transverse displacement. Proceeding of
JSCE, 31 (538):227–239, 1996.

[43] Soltani M. Moradi, A.R. and A.A. Tasnimi. A simplified constitutive model for dowel
action across rc cracks. Journal of advanced concrete technology, 10(8):264–277, 2012.

[44] Hosny A. Rizkalla S. Munikrishna, A. and P. Zia. Behavior of concrete beams reinforced
with astm a 1035 grade 100 stirrups under shear. ACI Structural Journal, 108(1):34–41,
2011.

[45] J. Nie and C. S. Cai. Deflection of cracked rc beams under sustained loading. J. Struct.
Eng., 6(708):708–716, 2000. doi: 10.1061/(ASCE)0733-9445(2000)126.



232 Bibliography

[46] Yamada K. Yokozawa K. Niwa, J. and H. Okamura. Revaluation of the equation for
shear strength of reinforced concrete beams without web reinforcement. Doboku
Gakkai Ronbunshu, 372:167–176, 1986.

[47] AASHTO (American Association of State Highway and Transportation Officials).
Aashto-lrfd bridge design guide specifications for gfrp-reinforced concrete bridge
decks and traffic railings, washington, dc. 2009.

[48] O.B. Olalusi. Present state of eurocode 2 variable strut inclination method for shear
design and possible improvement. Structures, 19:48–57, 2012.

[49] Li B. Pan, Z. and Z. Lu. Effective shear stiffness of diagonally cracked reinforced con-
crete beam. Journal of Structural Engineering, 59:95–103, 2014.

[50] Park R. Phillips M. Paulay, T. Horizontal construction joints in cast in place reinforced
concrete. ACI Special Publications, 42(51):599–616, 1974.

[51] UEDA T. SATO, Y. and Y. KAKUTA. Shear strength of prestressed concrete beams with
frp tendon. Concrete library international), 27 ):189–208, 1996.

[52] Chou L. Shima, H. and Okamura H. Micro and macro models for bond in reinforced
concrete. Journal of Faculty of Engineering, The University of Tokyo, 39(2):133–194,
1987.

[53] M. Soltani and K. Maekawa. Path-dependent mechanical model for deformed rein-
forcing bars at rc interface under coupled cyclic shear and pullout tension. Engineer-
ing Structures, 30 (4):1079–1091, 2008.

[54] A.K. Tureyen and R.J. Frosch. Concrete shear strength: Another perspective. Structural
Journal, 100(5):609–615, 2003.

[55] Hejll A. Täljsten, B. and G. James. Carbon fiber-reinforced polymer strengthening and
monitoring of the gröndals bridge in sweden. Journal of Composites for Construction,
11(2) ):227–235, 2007.

[56] SATO Y. ITO T. UEDA, T. and K. NISHIZONO. Shear deformation of reinforced concrete
beam. Doboku Gakkai Ronbunshu, (711):205–215, 2002.

[57] F.J. Vecchio and M.P. Collins. The modified compression-field theory for reinforced
concrete elements subjected to shear. ACI J., 83(2):219–231, 1986.

[58] A. Verbraeck. Project management-epa1412-spm4416-spm8000. Lecture Slides, CiTG,
TU Delft), ).

[59] J.Y.L. Voo and S.J. Foster. Variable engagement model for fibre reinforced concrete in
tension ,uniciv report no. r-420. School of Civil and Environmental Engineering, The
University of New South Wales, Australia, 2003.

[60] Dai J.G. Wang, T. and J.J. Zheng. Multi-angle truss model for predicting the shear de-
formation of rc beams with low span-effective depth ratios. Engineering Structures,
91:85–95, 2015.



Bibliography 233

[61] van der Veen C. de Boer A. Yang, Y. and D.A. Hordijk. Investigation of v min based on
experimental research. fib Symposium, Cape Town, 2016.

[62] Walraven J. Yang, Y. and J.D. Uijl. Shear behavior of reinforced concrete beams without
transverse reinforcement based on critical shear displacement. Journal of Structural
Engineering, 143(1):04016146–1–04016146–13, 2017.

[63] Y. Yang. Shear behaviour of reinforced concrete members without shear reinforce-
ment, a new look to at an old problem. TU Delft Research Repository,Ph.D. Thesis,
2014.

[64] Y. Yang. Lecture slides cie-5127, concrete bridges. CiTG, TU Delft), ), 2019.

[65] Ueda T. Zakaria, M. and Z. Wu. Evaluating and proposing prediction models of shear
crack width in concorete beams. Journal of Japan Society of Civil Engineers, Ser. E2
(Materials and Concrete Structures), 67(2):245–263, 2011.

[66] Ueda T. Wu Z. Zakaria, M. and L. Meng. Experimental investigation on shear cracking
behavior in reinforced concrete beams with shear reinforcement. Journal of Advanced
Concrete Technology, 7(1):79–96, 2009.

[67] P. D. Zararis. Shear strength and minimum shear reinforcement of reinforced concrete
slender beams. Structural Journal, Structural Journal:203–214, 2003.

[68] P. D. Zararis and G.C. Papadakis. Diagonal shear failure and size effect in rc beams
without web reinforcement. Journal of structural engineering, 127–7:733–742, 2001.
doi: https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733).

[69] T.C. Zsutty. Beam shear strength prediction by analysis of existing data. Journal Pro-
ceedings, 65(11):943–951, 1968.


	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Research Objectives and Methodology
	Research Questions
	Scope
	Outline

	Literature Review
	Shear Cracks in Concrete
	Shear Crack Width
	Shear Crack Spacing 
	Diagonal Compression Strut Angle

	Concrete Contribution to Shear Resistance Models
	Force Transfer in a Shear Reinforced Beam
	Shear Transfer Action Types
	Concrete Contribution to Shear Resistance Models

	Conclusion

	Evaluation of the Available Models
	Shear Crack Spacing
	Experimental Details
	Observations

	Diagonal Compression Strut Angle
	Experimental Details
	Observations

	Concrete Contribution to the Shear Resistance
	Experimental Details
	Observations

	Conclusion

	Proposed Models
	Concrete and Steel Contribution to Shear Resistance
	Principle Strains and the Stirrups Strain
	Shear Crack Width
	Model-IA
	Model-IB
	Model-IIA
	Model-IIB
	Model-IIIA
	Model-IIIB
	Model-IV
	Model-V
	Results

	 Shear Deflection 
	Experimental Details
	Results

	Overview of the Proposed Shear-Crack Width and Shear Deflection Models
	Conclusion

	Conclusions and Recommendations
	Conclusions
	Future Recommendations

	Appendices
	Appendix A
	Crack Width Models-Review

	Appendix B
	Types of Shear Failure
	Zararis (2003) Model for Concrete Contribution to Shear Resistance
	Shear-Unreinforced Beams
	Beams Reinforced with Stirrups:


	Appendix C
	Nominal Shear Capacity from EC2 VSIM Model

	Appendix D
	Shear Crack Width Calculation
	Model-IA
	Model-IB
	Model-IIA
	Model-IIB
	Model-IIIA
	Model-IIIB
	Model-IV
	Model-V

	Shear Crack Deflection Calculation
	Model-I
	Model-II
	Model-III
	Model-IV


	Appendix E- Integral Design Management Perspective
	Introduction
	Cantilever Balanced Bridge
	Proposed Models and Quality Management
	Proposed Models and Time to Maintenance
	Proposed Models and Cost Range Estimates
	Shear Cracking Risk Assessment
	Conclusion
	Reflection

	Appendix F
	Dowel Action

	Bibliography

