
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2013

MSc THESIS

Automated Code Review for Fault Injection

Alexandru Ionut Diaconescu

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2013-12

The software quality relies, among others, on security. In the smartcards

domain assumed throughout this paper, the focus is on security. Smart-

cards are embedded systems that contain sensitive information. Code re-

view is one of the most efficient evaluation techniques applied to smartcards.

It is used for the examination of the smartcard source code in order to find

security weak points. Since the code review is expensive, time-consuming

and error-prone when done manually, we developed an application that is

performing this process automatically. According to our knowledge, this

automation of the code review process for smartcards is an innovative ap-

proach. In this study, we use our application to identify the smartcard

software vulnerabilities in order to further exploit them using fault injec-

tion. Fault injection is one of the most common attacks against smart-

cards. The developed application was evaluated and validated based on a

test-suite composed of smartcard programs. The test-suite is composed of

12 smartcard programs that are based on defensive programming patterns

against fault injection attacks. We were able to identify 15 vulnerability

types in the test-suite. The success rate of the identified vulnerabilities

from the test programs varies between 30% and 100%. As a result, we

believe that the application will be a significant factor in evaluating the

smartcard software.

Automated Code Review for Fault Injection

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Alexandru Ionut Diaconescu
born in Bucharest, Romania

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Automated Code Review for Fault Injection

by Alexandru Ionut Diaconescu

Abstract

T
he software quality relies, among others, on security. In the smartcards domain assumed
throughout this paper, the focus is on security. Smartcards are embedded systems that
contain sensitive information. Code review is one of the most efficient evaluation techniques

applied to smartcards. It is used for the examination of the smartcard source code in order to
find security weak points. Since the code review is expensive, time-consuming and error-prone
when done manually, we developed an application that is performing this process automatically.
According to our knowledge, this automation of the code review process for smartcards is an
innovative approach. In this study, we use our application to identify the smartcard software
vulnerabilities in order to further exploit them using fault injection. Fault injection is one of
the most common attacks against smartcards. The developed application was evaluated and
validated based on a test-suite composed of smartcard programs. The test-suite is composed of
12 smartcard programs that are based on defensive programming patterns against fault injection
attacks. We were able to identify 15 vulnerability types in the test-suite. The success rate of the
identified vulnerabilities from the test programs varies between 30% and 100%. As a result, we
believe that the application will be a significant factor in evaluating the smartcard software.

Laboratory : Computer Engineering
Codenumber : CE-MS-2013-12

Committee Members :

Advisor:

Chairperson: Koen Bertels, CE, TU Delft

Member: Arjan van Genderen, CE, TU Delft

Member: Jos Weber, WMC, TU Delft

Member: Razvan Nane, CE, TU Delft

Member: Cees-Bart Breunesse, Riscure BV

i

ii

Contents

List of Figures v

List of Tables vii

Acknowledgements ix

1 Smartcard vulnerabilities 1
1.1 Overview of Smartcard Vulnerabilities . 1

1.1.1 Introduction . 1
1.1.2 Problem definition . 2
1.1.3 Scope . 5
1.1.4 Objectives . 5
1.1.5 Smartcard vulnerabilities . 6

1.2 Testing and Certification . 10
1.2.1 Smartcard standards . 10
1.2.2 Testing and Certification requirements 12

1.3 Organization . 17
1.4 Summary . 18

2 Experimental Setup 19
2.1 Code review . 19
2.2 Infrastructure Setup . 20

2.2.1 LLVM . 20
2.3 Code Review Application for Fault Injection 22

2.3.1 Pass . 22
2.3.2 Target program graph . 22
2.3.3 Toolchain . 23
2.3.4 Passchain . 25
2.3.5 Annotation Pass . 27
2.3.6 Paths pass . 27
2.3.7 Analysis pass . 28

2.4 The Riscure Smartcard Development Guideline 30
2.4.1 Riscure patterns . 31

2.5 Summary . 39

3 Application for Fault Injection Vulnerabilities Recognition 41
3.1 Target program example . 41
3.2 Annotation Pass . 43
3.3 Paths Pass . 49
3.4 Analysis Pass . 52

iii

3.4.1 Main method . 52
3.4.2 Dependencies Identification . 56

3.5 Proof-of-Concept Example . 58
3.6 Summary . 61

4 Evaluation 63
4.1 Test suite . 63
4.2 Types of smartcard vulnerabilities . 66
4.3 Results and Validation . 109
4.4 Summary . 118

5 Conclusion 119
5.1 Summary . 119
5.2 Future work . 121

Bibliography 135

iv

List of Figures

1.1 Workflow of the fault injection attack process 4
1.2 Typical scheme of a smartcard . 6
1.3 Organization of international smartcard standards [30] 11

2.1 Call Graph example . 23
2.2 Control Flow Graph example. The figure represents a part of the CFG of

the main function. Inside the basic blocks, we can see the instructions in
LLVM assembly language format. 24

2.3 Variants of Security Checks . 26
2.4 The developed Application . 26
2.5 . 28
2.6 Annotation Pass example. On the top part of the figure, we can see the

Annotation Pass highlighted in the Passchain 28
2.7 . 29
2.8 Paths Pass example. On the top part of the figure, we can see the Paths

Pass highlighted in our Application . 29
2.9 . 30
2.10 Analysis Pass example. On the top part of the figure, we can see the

Analysis Pass highlighted in our Passchain 30

3.1 Call graph of the Target Program Example 42
3.2 Pseudocode of the getAllPaths method . 51
3.3 Pseudocode of the resGlobalsFunctionsSensitive method 57
3.4 Proof-of-Concept Example . 59

4.1 Case 5 pseudocode solution . 76
4.2 Case 15 pseudocode solution . 109
4.3 Success rate of the Results . 110
4.4 Vulnerability types of Test1 . 110
4.5 Vulnerability types of Test2 . 111
4.6 Vulnerability types of Test3 . 111
4.7 Vulnerability types of Test4 . 112
4.8 Vulnerability types of Test5 . 112
4.9 Vulnerability types of Test6 . 113
4.10 Vulnerability types of Test7 . 114
4.11 Vulnerability types of Test8 . 114
4.12 Vulnerability types of Test9 . 115
4.13 Vulnerability types of Test10 . 115
4.14 Vulnerability types of Test11 . 116
4.15 Vulnerability types of Test12 . 116
4.16 Execution times of the 3 passes . 117

v

vi

List of Tables

4.1 Riscure patterns . 65
4.2 Evaluation tests . 66
4.3 Case1 . 67
4.4 Case2 . 69
4.5 Case3 . 71
4.6 Case4 . 73
4.7 Case5 . 75
4.8 Case6 . 78
4.9 Case7 . 80
4.10 Case8 . 83
4.11 Case9 . 87
4.12 Case10 . 91
4.13 Case11 . 93
4.14 Case12 . 95
4.15 Case13 . 98
4.16 Case14 . 105
4.17 Case15 . 108

5.1 Glossary . 128
5.2 Glossary . 129
5.3 Glossary . 130
5.4 Glossary . 131
5.5 Glossary . 132
5.6 Abbreviations . 132

vii

viii

Acknowledgements

I would like to express my deep gratitude to Professor Koen Bertels and to my supervisor
Razvan Nane from the Delft University of Technology for their guidance and useful
critiques of this report. I am grateful for all the feedback given by Koen Bertels and
Razvan Nane during the whole project period.

I would like to express my very great appreciation to my research coordinators Cees-
Bart Breunesse and Eloi Sanfelix from the Riscure BV security test laboratory for their
guidance, advice and assistance during the development of the automated code review
application for fault injection. I am grateful of all the information I received during my
Internship at Riscure, that helped me to successfully implement the application for this
project and that provided me the theoretical support for this work. My grateful thanks
are also extended to Ileana Buhan, for her advice and support.

I would also like to thank to the other members of the thesis committee: Arjan van
Genderen and Jos Weber, for their time and effort to review this work.

Last but not least, I would like to thank my family and friends for their support and
encouragement throughout my study.

Alexandru Ionut Diaconescu
Delft, The Netherlands
October 18, 2013

ix

x

Smartcard vulnerabilities 1
In this chapter we give an overview of smartcard vulnerabilities. We present the engi-
neering domain of the project and define the problem addressed in this work. Based
on the problem definition, the scope and the objectives of the project are formulated.
Subsequently, an introduction on smartcard vulnerabilities is given. The chapter ends
with a section describing the smartcard standards, as well as the testing and certifica-
tion requirements for evaluating smartcard programs. We define a penetration testing
methodology for our application developed in this work.

1.1 Overview of Smartcard Vulnerabilities

1.1.1 Introduction

The software quality relies, among others, on security [5]. In the smartcards domain,
the focus is mainly on security. Smartcards are embedded systems which in general
contain sensitive information. These devices are involved in security sensitive operations.
For smartcards, as well as for other sensitive embedded systems, security practices are
integrated in the software development life cycle. The popularity of smartcards has
increased in the last years due to the need to replace the magnetic-stripe cards which were
not secure, allowing for the smartcard technology to evolve. Because of confidentiality
reasons, the access control is on-card with the smartcard having computing capability.

The domains where smartcards are applied include banking, wireless market (SIM
cards), electronic tickets, identity cards, health cards etc. Banking is the domain where
smartcards are widely used under the format of debit cards, credit cards or cash cards.
Therefore, considering this utilization of smartcards, security has to be enforced for these
devices.

Pioneer development guidelines were elaborated in the smartcard industry. These
can be found under the format of programming patterns and principles (see Section
2.4.). The development guidelines are specific to smartcards and intend to minimize
the threats in smartcard applications. However, in order to develop a methodology for
smartcard defense which is in compliance with the development guidelines, first we have
to investigate how to attack the card. The offensive actions against smartards analyzed
in this thesis work are represented by code reviews, which are one of the most common
and efficient attacks [25].

The identification of smartcard vulnerabilities using source code reviews repre-
sents the goal of this thesis work. The identified vulnerabilities can be further exploited
by the actual fault injection process. The fault injection process leads to the intro-
duction of faults in the device running the software, resulting in unprivileged execution
of critical code or recovery of sensitive data. Knowing the security vulnerabilities, rec-

1

2 CHAPTER 1. SMARTCARD VULNERABILITIES

ommendations can be made for smartcard software developers in order to mitigate the
threats. Smartcards are the target devices used for the evaluation of the developed ap-
plication. The approach can be expandable to other sensitive embedded devices, such
as payment terminals or smartphones.

More industry and research areas interfere within this work. The source code review
research (from this work) is focused on the identification of smartcard vulnerabili-
ties, being easily expandable to other embedded systems. The motivation is that vari-
ous smartcard security mechanisms are used on multiple embedded systems like mobile
phones, set-top boxes, printers, payment terminals or medical equipment. The main
reason for the focus on smartcards is that these devices are the perfect target to test
the security of embedded systems, due the nature of smartcards which are involved in
security sensitive activities. The code review application developed for this project per-
mits automated smartcard vulnerabilities identification. Another related IT domain is
represented by the Embedded Systems security. More concretely, we are interested in the
subdomain of side channel attacks testing on Embedded Systems. The fault injection
attacks are a type of side channel attacks, which are explained in Section 1.1.5 [39].
Even if the thesis work can be extended to a larger domain of embedded devices, this
project focuses on smartcards. This narrowing of the domain targeting only a specific
device class will give better analysis results.

In literature, there is little guidance to smartcard developers on side channel attacks.
The developers implement defense measures at the hardware, operating system and
application levels [39]. In this project, we exploit the vulnerabilities from the application
level of the smartcard. The code review used in this thesis work focuses on identifying
the application level countermeasures which will lead to find vulnerabilities that can be
further exploited using fault injection attacks.

An application was developed for this thesis work, with the goal to identify the
smartcard vulnerabilities at the application level. Since there is no benchmark [8] for
smartcard software, Riscure provided a test suite. We assume that the test suite covers
the main part of the smartcard vulnerability types [39], which are presented in Chapter
4. We mention that in the smartcard industry there is no benchmark, referring to the
fact that no benchmark is public or accepted. As mentioned in [8], benchmarks exist
only in the R&D departments of smartcard manufacturers and in some smartcard users
organization.

1.1.2 Problem definition

In this thesis work, we will investigate, implement and test an automated code review
application used to find smartcard vulnerabilities. The problem definition is represented
by the necessity of implementing an automated code review application for the fault
injection process. This is going to replace the manual code analysis for vulnerabilities,
increasing the efficiency with respect to time and workload. The automated code
review is used to find the weak points in the smartcard program. Currently, the code
review is done manually at Riscure and is therefore a time consuming process.

A source code review application is used to identify vulnerabilities at the application
layer of the smartcard program, weaknesses that can be exploited by the fault injection

1.1. OVERVIEW OF SMARTCARD VULNERABILITIES 3

process. The inserted faults in the running software may result in unprivileged execution
of sensitive code or in unwanted data leakage.

There are several possible effects of the fault injection process, e.g. skipping instruc-
tions or changing registers / memory values. By observing the effects, some protection
solutions against fault injections can be proposed. For example, the code path leading to
critical code should be protected with redundant checks, with the aim to verify the con-
ditions under which the execution of the critical code is allowed. The redundant checking
can be done while verifying the correctness of the cryptographic functions’ results. The
cryptographic functions might be integrity algorithms, authorization algorithms, encryp-
tion / decryption algorithms or confidential operations which are using sensitive data.
An alternative to redundant checking can be the execution of the inverse operation on
the data, followed by the verification of the results.

Source code reviews are used to identify the checks which set the conditions of
critical code execution. The recognition of these checks leads to the identification of
the smartcard vulnerabilities. The vulnerabilities can be exploited by fault injection
attacks that can manipulate the sensitive data. The sensitive data can be exploited by
unauthorized attacks (e.g. the money balance from a bank smartcard) or the data which
is used by the security mechanisms (example: masterkeys). By doing the code review
in an automated way, the time and workload for the security analysts is minimized. In
addition, the analysis will be less exposed to human faults.

Smartcard vulnerabilities are not dependent on language specifics. Therefore, the
smartcard source code should be analyzed in a common representation. One of
the goals defined in Section 1.1.4. is to have support for the most common smartcard
programming languages, in order to translate them into the common representation.
The smartcard vulnerabilities will be identified by enabling code review on the common
representation. A requirement of the thesis work is to find a framework in which the
application can function on multiple smartcard programming languages. In the thesis
work, we use LLVM to get the common representation of the source code languages.

LLVM is one of the most popular open-source compiler frameworks. LLVM is a
good choice for the thesis project’s application since it poses front-ends for many source
code languages. The LLVM intermediate code is suitable for fault injection analysis.
The alternative was to use compilers to transform C, C++ or Java Card source code
into different bitcode representations, such as .NET. A front-end needs to be used to
transform the smartcard programming languages into the intermediate code. An API
which will analyze the resulted bitcode needs also to be designed. After analyzing the
possibilities, we have chosen to use LLVM for several reasons. First, it is open-source and
well documented. Second, it poses a variety of front-ends to transform multiple source
code languages into common bitcode. Third, it has intermediate code representation.
Fourth, it is a complete framework and provides extensive support for tool development.
Using LLVM, the developed system is able to identify the weak points on the smartcard
program which can be used in the fault injection process.

The defined problem has its solution in the development of an application which
enables automated code review of smartcard programs. The smartcard program can be

4 CHAPTER 1. SMARTCARD VULNERABILITIES

Figure 1.1: Workflow of the fault injection attack process

written in a variety of smartcard specific languages. The application is implemented on
top of the LLVM compiler framework. The workflow of our application can be see in
Figure 1.1.

The whole process will be fully described in Chapter 2. As we can observe in Figure
1.1, the smartcard source code is translated into the LLVM common bitcode representa-
tion. Our application is running the code review on the bitcode, resulting the smartcard
vulnerabilities. These weaknesses are further exploited using fault injection. Addition-
ally, the LLVM bitcode can be translated into a human-readable assembly format.

I developed the application for this project at Riscure BV. Riscure is an international
security test laboratory, that is specialized in evaluating and testing the security of
smartcards and embedded devices designed to operate securely. Riscure was founded
in 2001 by Marc Witteman. In this project, we used a test-suite that is based on the
Riscure guidelines which provides programming patterns to avoid fault injection attacks.
Riscure provides its customers detailed feedback on security strengths and weaknesses
of their products.

The Riscure personnel which will use our application are called security analysts.
They play the role of an attacker who tries to break the security of the target smart-
card. Based on the results, recommandations are made to increase the security of the
smartcard.

The thesis title introduces two concepts. The automated code review concept
is presented in Section 2.1. It represents an automated analysis of the source code.
Using the analysis done by our application, the security weaknesses of the smartcard

1.1. OVERVIEW OF SMARTCARD VULNERABILITIES 5

software application are discovered. These weaknesses are called vulnerabilities. The
fault injection concept is described in Section 1.1.5.2. It represents the physical technique
used to exploit the found vulnerabilities.

1.1.3 Scope

The scope of the thesis work is to provide automation of smartcard vulnerabilities recog-
nition for fault injection. This requires the usage of automated code review targeted
on the smartcard source code. The code review is used to identify the weak points on
the smartcard software. The code review is currently done manually at Riscure, but
this approach is time consuming, costly and might be error-prone. Hence, we need to
automate the code review to eliminate the impediments resulted from manual analysis
[15]. The scope is used to define the objectives.

1.1.4 Objectives

The objectives are formulated from the scope of the thesis work. Smartcard vulnerabili-
ties are not dependent on language specifics. Based on this observation, we analyze the
smartcard source code in a common representation. Hence, a goal of the thesis work is
to provide support for the most common smartcard source code languages. These are
C, C++, Embedded C, Java Card. Under this assumption, it is preferable to abstract
from the source code into an intermediate representation. The code review is performed
on the common intermediate representation. Therefore, after transforming the source
code into intermediate representation, this representation under the format of bitcode is
analyzed for detecting critical code and protection measures. The code review is done
by performing control flow and data flow analysis.

Another goal of this work is the thesis project evaluation. A set of categorized
tests is used to check the accuracy of our application. The results are represented and
explained into the evaluation chapter.

The objectives of this thesis work can be categorized into the following:

• transformation of the source code to a common intermediate representation that
can be further analyzed

• analyze automatically the intermediate representation for vulnerabilities. This is
done in the form of automated source code review for vulnerabilities recognition

• evaluate the results from the point of view of the efficiency regarding the vulnera-
bilities recognition. The evaluation is based on a relevant test-suite

The enumerated objectives are derived from the problem definition from Section 1.2..
The necessity of implementing an automated code review application for fault injection
is illustrated by the objectives to transform the smartcard code into an intermediate
language and to review the code in an automated manner. As mentioned in Section 1.2.,
LLVM is used to obtain the intermediate code.

6 CHAPTER 1. SMARTCARD VULNERABILITIES

Figure 1.2: Typical scheme of a smartcard

1.1.5 Smartcard vulnerabilities

The work presented in this thesis is based on the recognition of the smartcard vulnera-
bilities which can be further exploited by fault injection attacks. The vulnerabilities are
smartcard software weaknesses which are identified by the application developed for this
thesis work.

A typical smartcard scheme can be seen in Figure 1.2. We present a typical smartcard
integrated circuit [10].

The master unit in a smartcard is the central process unit, which is coordonating the
other units and is making computations. Three types of memories are typically found on
the smartcard. The basic sofware (the smartcard embedded software and the integrated
circuit software) is kept in the Flash (or ROM) memory. A part of the embedded software
and data are kept in the E2PROM memory module. The data and the code are stored
in the RAM memory. The CPU is linked to circuits that give the clock and the reset
signal to the processing unit. External signals are received via the I/O interface. The
cryptographic algorithms from the smartcard needs two external circuits: the random
number generator and the Crypto specialized processor. These circuits are needed for
the computations of complex cryptographic operations. The attacks on smartcards can

be categorized as follows [38]:

• Logical attacks: exploits vulnerabilities in software

• Physical attacks: analysis or modification of hardware

• Side channel attacks: analysis or modification of device behavior, by using physical
phenomena

The application used in this thesis work identifies the vulnerabilities which can be used
in fault injection attacks. The fault injection attacks are a type of side channel attacks,

1.1. OVERVIEW OF SMARTCARD VULNERABILITIES 7

which are presented below.

1.1.5.1 Side channel attacks

Side channel attacks treats security aspects like:

• Integrity: attacks to change the behavior of the smartcard program

• Confidentiality: attacks that can reveal sensitive data during program execution

• Authorization: attacks by changing the behavior of the smartcard program can
lead to unauthorized access to sensitive data

Smartcard developers use secure programming methods in their efforts to defend against
side channel attacks. These methods consist in sensitive operations that have to be
identified by our application before using side channel attacks. In Chapter 2, we will
present a set of secure programming patterns for critical devices. The patterns represent
a base for the test-suite used in the evaluation of our application. [39]

Side channel threats differ from logical threats, the smartcard developers implement-
ing defensive measures throughout the code. In the case of logical threats, the defensive
measures focus mostly on input validation and output control.

Side channel attacks are well-known in the smartcard community and less outside of
it [39]. The principle of a side channel attack is to abuse an unintended communication
channel, hence the name of this kind of attack. The candidates for this kind of attacks
can be embedded systems like mobile phones, smart cards, access control tokens etc., as
mentioned previously in this chapter. The most common abused side channels are [39]:

• Time: the time to complete a specific operation

• Power: the power that is used by the embedded system or the power which is
available

• Electro-magnetic radiation: EM radiation produced by the device

An example of an attack by abusing the time channel was reported in 2003 [6], on SSL
over a network. There are two side channel attacks used to abuse the previous mentioned

channels:

• Data leakage

• Fault injection

In the case of data leakage, the channel is passively listened for sensitive data leaks.
In the case of fault injection, faults are inserted into the smartcard program to actively
change the behavior of the device. In this thesis work, we focus on fault injection
vulnerabilities.

8 CHAPTER 1. SMARTCARD VULNERABILITIES

1.1.5.2 Fault injection attacks

As mentioned above, fault injection is a type of side-channel attacks. Basically, using
fault injection, an attacker aims to change the flow of the smartcard program or to
change a critical value. This techniques allows to load unauthorized firmware, to skip a
digital signature verification or to jump over the increase of a security counter [39]. An
example of a device that performs fault injection attack is the Pay-TV unlooper, used
for TV piracy. There are multiple ways of injecting faults. These are [39]:

• Power glitches: disturbing the power supply to the processor, wrong values can be
read from memory

• Optical glitches: a laser can force elementary circuits to switch, involving specific
change of data or behavior

• Power interruptions: interrupt the power supply to the processor, trying to stop
the processor to take countermeasures against a detected attack

• Clock manipulations: imposing a short clock cycle can lead to values misinterpre-
tations read from memory

• Differential Fault Analysis: a cryptographic key might be revealed by comparing
the results of several runs of the cryptographic algorithm with injected faults and
without injected faults

A form of testing used along with fault injection techniques is stress testing. It is
used to check the stability of a system in testing conditions beyond the system’s normal
operational capacity. The robustness, availability and error handling of the software
system outside the normal operational parameters can be then determined and thus this
form of testing represents a way of finding vulnerabilities. Based on the results provided
by our application, the security analysts can use fault injection along with stress testing,
trying to exploit the found vulnerabilities. The vulnerabilities are mostly related to the
security checks from the smartcard software. The security checks contain conditional
branches, used to verify if the smartcard functions as expected. Therefore, a specific
type of code coverage which is interesting for the thesis work is the branch coverage.
One goal of our application is to identify the conditional branch coverage which is part
of security checks. Basically, the branch coverage is a metric of the number of branches
that are executed during experimentation. A large branch coverage can be achieved with
stress testing by taking into account the conditions from security checks. This coverage
can be improved by taking into account all the possible execution paths of the smartcard
program, as seen in the Section 2.3.6..

Fault injection types There are two types of fault injection: hardware implemented
fault injection (HWIFI) and software implemented fault injection (SWIFI). The SWIFI

1.1. OVERVIEW OF SMARTCARD VULNERABILITIES 9

techniques can be compile-time injections or runtime injections. After inserting a fault
into a system, the fault is propagating by following a defined cycle. When a fault
executes, an error within the system can appear, illustrated by an invalid state. This
phenomenon can propagate through the system. The observed error state is cataloged
as failure. This aspect is important in dependability. [21] If a security check from the
smartcard software is detecting a failure in a critical code block, the functionality of the
smartcard can be disabled. Therefore, our application should detect the security checks
which involve such smartcard disabling operations.

The first type of fault injection is the compile-time injection. The compile-time
injection technique consists in modifying the source code to inject simulated faults. A
type of compile-time injection is the mutation testing. This test checks if the tested
software is correct and covers all the requirements of the target implementation. If
the system’s behavior reflected by the output is not affected, than the mutated code
was not executed (the security analyst did not insert fault injection on any already
executed path during the experiment) or the testing software have not located the fault
that was injected (because the security analyst inserted fault injection in order to skip
the security checks which aim to find the already inserted faults). A special type of
mutation testing is fuzzing, in which the communication data between interfaces are
mutated, having the scope of identifying the failures in data processing. The mutation
can be detected by the smartcard security checks if two conditions are met: first, having
the same test input, different states for the mutant and for the original program should
appear; second, the output values should be checked by the test program. These kind
of security checks are related to the Riscure patterns presented in Chapter 2. There
are multiple operators used for mutation by fault injection, like statement deletion,
replace operators with other operators, replaces variables with variables of the same
type. More sophisticated operators of class-level exist, for object-oriented languages [23],
for concurrent constructions [7] or for complex objects like containers [2]. An extension
of mutation test is represented by the fault injection techniques which add code instead
of just modifying it. One of these techniques is based on perturbation functions to add
noise [4] to the existing values to perturb them into other values. The security checks
used in our test-suite and the fault injection attacks on them are presented in Chapter
4.

The second type of fault injection is the runtime injection. The vulnerabilities found
by our application are represented by the smartcard security checks that will be bypassed
using runtime fault injection. The runtime injection technique is used for fault injection
into the running smartcard software system. This is done by a software trigger injector.
The trigger injectors can be time based or interrupt based. There are different techniques
used for fault insertion. One of them is the network level fault injection, handling the
corruption of network packets at the network interface. This might be used to obtain the
sensitive data sent and received by the smartcard. Another technique is the corruption
of memory space, more precisely RAM, registers, I/O map. The syscall interposition
technique deals with the faults propagation from the operating system kernel interfaces
to the executing systems software, by injecting fault into the operating system calls.
Lastly, the most important technique is to skip the instructions from the security checks
which can lead to the smartcard disabling. Some of these software security testing related

10 CHAPTER 1. SMARTCARD VULNERABILITIES

techniques are not applicable to smartcards. We focus in our project on smartcards.
Therefore, we are concerned on the hardware fault injection, mostly using voltage/clock
manipulation, laser or EM injection. These are presented in relevant examples in Chapter
4.

1.2 Testing and Certification

1.2.1 Smartcard standards

1.2.1.1 Overview of smartcard standards

This section gives an overview of the smartcard standards. The standards are not related
to the developed application for this thesis work, but are coming to complete the overview
of the IT domain of this project.

The growing presence of smartcards into everyday life demands for smartcard stan-
dardization. Smartcards can be used to implement different types of systems: health
insurance cards, telephone cards, bank cards etc. Since on the market a large variety
of smartcards and smartcard manufacturers exists, the need to generate application-
independent standards has appeared. The standards allow multifunctional smartcards to
be developed and the standards should be applicable to all smartcard types. Smartcards
represent only the top of the iceberg of more complex systems. These networked sys-
tems are behind the card terminal, responsible for specific services. Therefore, smartcard
standards should be in concordance with all the entities that are forming the complex
system.[30]

Since the terms standard and specification can produce confusion while used,
Rankl and Effing [30] provide a definition of standards. A standard is defined as a
document produced by consensus and adopted by organizations, that defines rules or
guidelines for activities or activities results in order to achieve optimum regulation in a
given context. On the other hand, a specification refers to the explicit set of requirements
to be satisfied by the smartcard. The set of specifications provides a complete description
of the behavior of a system to be developed.

1.2.1.2 International standardization of smartcards

The international standards for smartcards are developed under ISO/IEC and under
CEN (European Committee for Standardization). The ISO/IEC standards define the
basic standards for smartcards. ISO is the International Organization for Standard-
ization and IEC stands for the International Electrotechnical Commission. Figure 1.3
presents the structure of ISO and IEC standards. In the figure, we observe two com-
mittees that deal with the smartcard standards: ISO TC68/SC6 for the financial area
smartcards and ISO/IEC JTC1/SC17 for the general application smartcards. The CEN
organization complements the ISO activities and produce application-specific standards.

The organization of the smartcard standards under ISO and IEC can be seen in

1.2. TESTING AND CERTIFICATION 11

Figure 1.3: Organization of international smartcard standards [30]

Figure 1.3. A short presentation of the smartcard standards (not only the ones from
the figure under ISO/IEC) is given in the following paragraphs.

ISO 7816 standards ISO 7816 standards deal with identification cards that are in-
tegrated circuit cards with contacts. The standards are published by ISO and cover
multiple smartcard aspects: physical and contact characteristics, signals and communi-
cation protocols, interindustry commands and data elements, application characteristics.
[11]

GSM standards ETSI (European Telecommunications Standards Institute) pub-
lished standards that cover the smartcards for cellular phone systems. GSM is a spec-
ification for international mobile telephone systems. First, the GSM standards for mo-
bile phone smartcards (GSM 11.11, GSM 11.14) handle the specifications of SIM (the
smartcard used for mobile phones) regarding the application toolkit for the SIM-mobile
equipment interface. Second, the GSM standard for mobile phone smartcards (GSM
03.48) deals with the security mechanism for the SIM application toolkit. Third, the
GSM 03.19 is the standard for the SIM API of the Java Card platform. [11]

EMV specifications Europay, MasterCard and Visa define EMV, a set of specifi-
cations for smartcards. The EMV specifications are based on the ISO 7816 standards
presented above. The latest version of specifications is EMV96 3.1.1., published in 1998
and aimed for the financial industry. The specifications cover the smartcard general
specifications, terminal specifications and application specifications. [11]

Open Platform specifications The Open Platform defines specifications for the de-
velopment and operation of multiple-application smart card systems. It contains smart-

12 CHAPTER 1. SMARTCARD VULNERABILITIES

card and terminal specifications. The smartcard specifications define requirements to
implement an Open Platform card. The terminal specifications define the terminal ar-
chitecture and the terminals compatibility with ISO and EMV. Initially developed by
Visa, the specifications were translated to GlobalPlatform, which is promoting a global
infrastructure for smartcard implementation for multiple industries. [11]

OpenCard Framework The OpenCard Framework is developed by OpenCard con-
sortium, initially being owned by IBM. OpenCard is a framework that gives a standard
interface for smartcard readers and smartcard applications. Its model includes smart-
card terminal vendors, smartcard issuers, smartcard operating system providers, plat-
form providers, having the objective to minimize the dependence on each of these parties.
[11]

PC/SC The PC/SC specifications are defined by the PC/SC workgroup, describing a
general purpose architecture for using smartcards on PC systems. The host-side smart-
card applications are built on top of several service providers and a resource manager.
The smartcard functionality is made available through an API. [11]

The code review is intended to find vulnerabilities for smartcards that use the ISO
7816 basic standard, the EMV and the Open Platform specifications. The thesis work
is aimed to analyze the card at the application layer, so the hardware or the operating
system specifications are not relevant. The security mechanisms introduced by these
specifications are identified by the application of this thesis work. The smartcard security
measurements are identified as smartcard vulnerabilities and these cases are illustrated
into the Evaluation chapter of this thesis. The standards and specifications section is
not related to our application, but they complete the overview of the smartcard domain.

1.2.2 Testing and Certification requirements

The testing and certification requirements are directed towards the smartcard target
programs. The smartcard programs have to respect several standards and specifications
defined in the previous section. In contrast, the application developed for this thesis
work is an ethical hacking toolchain, aimed to provide assistance to the security analysts
to discover vulnerabilities of embedded systems. From the point of view of Riscure, the
developed application does not have certification requirements. However, the application
must comply with the LLVM development requirements (being developed under LLVM)
and it can be considered part of a penetration testing methodology (using the application,
the security analysts make experiments to test the security of the target smartcard). For
our application, we use an own-defined methodology inspired in the CC certification
process. The CC represents the Common criteria for information tehnology security
evaluation. The certificates include the CEM, which is the Common methodology for
information tehnology security evaluation. [1]

1.2. TESTING AND CERTIFICATION 13

1.2.2.1 Penetration Testing methodology

The aim of the application from this thesis work is to find vulnerabilities in the smartcard
program source code, being part in a penetration testing methodology (that includes also
the actual fault injection attack on the smartcard). A penetration testing methodology is
described in [10]. The methodology can be used to define the attack steps and penetration
strategies for our developed application.

This section describes a general penetration testing methodology that we used in the
project. The methodology is own-defined, being inspired in the CC certification process.
Our methodology is presented below.

We focus on the first step and on the second step of the methodology, more exactly
on the definition of a set of potential vulnerabilities and on the identification of the
vulnerabilities. This is done by the application of the Riscure patterns in our test-suite
which is used to evaluate our application. The guidance on the attack methods is given
by the accredited laboratories, such as Riscure. The chosen method is based on glitching
the sensitive conditions from the smartcard program by a fault injection device. The
fault injection device glitches on the smartcard, being able to change the flow of the
program or modify sensitive data. A glitch is a short-lived fault in a system inserted by
the attacker/security analyst using fault injection. Another example of guidance is the
AFSCM NFC cardlet development guideline [14].

The AFSCM guidance is mentioned only for reference, being an alternative to the
Riscure patterns. Our test-suite is based on the Riscure patterns, that cover the common
smartcard vulnerabilities [39].

The Riscure patterns and the AFSCM rules are guidances for the test-suite used to
evaluate our application. In contrast, we need a guidance for our application which is
used to attack the smartcard. First, we present our own-defined penetration testing
methodology. Second, we present the guidance that is based on the CC certificates
(which an overview of the general methodology) and is it called APSC JIL Application
of Attack Potential to Smartcards, provided by the National Schemes.

Penetration methodology for our application Our penetration testing method-
ology for the application satisfies the scope defined in Section 1.1.2. and the objectives
defined in Section 1.1.3. First, the security analyst has to set a scope for the attack
(e.g. increase the balance on the smartcard). Second, since the smartcard vulnerablities
are not dependent on the language specifics, the smartcard target program should be
compiled into a common intermediate represention. The result is a bitcode file which
can be used for code review. Third, the attacker should define the points in the program
between which it will perform code review. The code review is made at compile-time.
Therefore, the fourth step is to identify all the possible execution paths of the target
program. For each execution path, the application should identify the smartcard vul-
nerabilities (the fifth step). The last step is to insert fault injection to exploit the found

14 CHAPTER 1. SMARTCARD VULNERABILITIES

vulnerabilities, with the purpose to avoid the security mechanisms and to reach the goal.

Overview of the general methodology The APSC guidance [9] is based on the eval-
uation of the International Security Certification Initiative (ISCI) and the JIL Hardware
Attacks Subgroup (JHAS).

The CC certification process is based on the CC certificates [9] and it describes
the steps followed when performing an attack. The CC certificates make a distinction
between the cost of identify vulnerabilities for an attack and the cost to exploit the
vulnerabilities. In this thesis work, we perform the vulnerabilities identification phase.

The attack vulnerabilities identification and exploitation are inspired from the CC
certification process. The CC certificates are mapped to factors like elapsed time, exper-
tise, knowledge of the target program, access to the target program, equipment needed
to carry out the attack, as well as evaluation samples with known secrets [9]. From these
factors, the corresponding requirements are derived, that characterize the vulnerabilities
recognition for our application.

The vulnerabilities identification phase is relevant to this thesis work. A set of in-
structions to trigger the specific equipment is needed for the exploitation phase. The
exploitation phase is the next step from the methodology after the code review is done
by our application. The set of instructions can contain timing information required for
a perturbation attack, so the vulnerability can be directly exploited. In the case of our
work, the smartcard evaluator is not spending time on looking for sensitive conditional
branches into the code, work that can be error-prone.

The knowledge of the target program is an important requirement mentioned in the
CC Certificates. It is expected that the knowledge needed to generate the attacking
scripts (set of instructions) is passed from the identification phase [9].

Another requirement derived from the factors mentioned above is linked to the access
to the target program. However, this requirement is made for the exploitation phase.
This requirement is needed due the fact that an attack requires more than one sample of
the device where the target program resides. Multiple samples are required because the
attack success can have some probability and also the devices might be destroyed while
the attack (for example, many glitches in a fault injection attack may make a smartcard
not functional).

The place of our application in the methodology and a description of the application
can be seen in Chapter 2. Chapter 3 presents a detailed description of the developed
application.

In the next paragraph, there is presented a short taxonomy of penetration attacks.
We mention when a type of an attack is applicable in our work.

Penetration attacks This section also includes the main categories of penetration
attacks. The attacks which are relevant for the developed application are mentioned
together with the applicability of them in this thesis work.

In [9], there is given a large range of attack method examples. We briefly present
them next.

1.2. TESTING AND CERTIFICATION 15

The physical attacks can enable access to secret data, disconnect IC security features
or even force internal signals. Other type of physical attacks can overcome sensors and
filters, in order to change the program flow, induce failures in operations, change the
operating mode.

The perturbation attacks are attacks that can use the output from the application
developed in this thesis work. The fault injection are belonging to the perturbation
attacks domain. The introduced faults can be used to recover keys or plaintext. The
attack is directed against cryptographic operations or can be used to change the results
of authentication checks. Several examples are [9]:

• Read operation. A read value can be changed when arrive to destination (not
actually changed in memory).

• Random number generation. The attack can force all the random number genera-
tors output to be all 1s.

• Program flow modification. Our application is mainly aimed for this vulnerability.
Possible effects are: skip an conditional branch instruction, replace an instruction
with a dummy one, invert a test, generate an unauthorized jump, create calculation
errors.

The Differential Fault Analysis (DFA) attack is another type of attack. It can have
as input the results of the developed application for this thesis work. Secret keys can
be retrieved by comparing a calculation without an error and calculations that do have
an error [9]. There are two ways to conduct this attack: invasive and non-invasive. The
non-invasive way consists in power glitching or by applying lasers on the target device.
Using DFA the DES, 3DES and RSA keys can be revealed, by changing the cryptographic
outputs.

A non-invasive retrieving of secrets can be the Simple Power Analysis or the Differ-
ential Power Analysis. These types of attacks aim to exploit data leakage obtained from
variations in the power consumption [9] of the target devices. Riscure provides Leakage
Patterns besides the Fault Injection Patters (presented in Section 2.4.), but it is not the
scope of this thesis work to treat them.

Other multiple attacks can threaten the security of embedded devices. The EMA
attack represent a different type of attack, directed to measure the electromagnetic
emissions from an IC during operation. Other attacks aim to enter the test mode of
the target device, in order to exploit the test features. A type of logical attack executes
malicious applications formed from illegal sequences of byte-code instructions oriented
against Java Card target programs. Buffer overflow or stack overflow attacks are done
using malicious applications. [9]

A type of attacks are directed against the smartcard software. This type of attacks
are logical attacks that need a number of different steps to discover vulnerabilities. The
steps are [9]: observe messages, command searches, edit commands, direct attacks on
cryptographic operations, man-in-the-middle attacks, replay attacks, access control and
bypass authentication. The last two steps can be performed using the developed appli-
cation for the thesis work. Using the application presented in this thesis, the security

16 CHAPTER 1. SMARTCARD VULNERABILITIES

operations (including the access control and authentication) that are protected by secu-
rity checks can be identified. These can be further bypassed by inserting fault injection.

1.2.2.2 Other requirements

The application is developed over LLVM, hence the application can submit to LLVM
requirements. In addition, several Common Criteria requirements are discussed.

LLVM has a policy for the tools development. The policy applies only to the tools
that are added to the LLVM repository and have an open-source character. However, this
is not the case for our application, which is not open-source. The requirements requires
to have code reviews (manual or automated) of the developed tool, test cases for every
feature, minimum quality specified in the LLVM Coding Standards. The LLVM Coding
Standards refer more to the code that will be used in the LLVM source tree, which is
not the case for our application. If the tools are not intended to the LLVM source tree,
no coding standards are regarded as absolute requirements [35]. The main idea of the
LLVM Coding Standards is that if an existing piece of code is extended, enhanced or
bug fixed, the same style as the existing one should be used so the source code is uniform
and intelligible [35].

The test-suite developed for the evaluation of our application is based on the Riscure
patterns. The test-suite presented in Chapter 4 is formed from test programs (real or
experimental) and not from in-use smartcard programs (since they are proprietary). As
a future work, the test-suite can submit to the testing and certification requirements for
smartcard programs, if the suite will contain in-use smartcard programs. The smartcard
code has to follow the ISO/IEC 15408 international standard known as the Common
Criteria for Information Technology Security Evaluation or CC. The Common Criteria
(CC) is a framework used for specification of a system products functional and assurance
requirements. The provided assurance is related to the specification, implementation and
evaluation of the product [1].

The Common Criteria organization published a supporting document guidance for
smartcard evaluation [10]. The purpose of the document is to define smartcard (and
similar embedded systems) evaluation terminology and to describe it.

There are more software cores on the smartcard, as follows [10]:

• IC dedicated software: needed for testing purposes, hardware utilization services,
support software

• Basic software: required for generic functions of the smartcard, like the operating
system, general routines and interpreters

• Application software: dedicated to applications. It is contained in the Embedded
Software

1.3. ORGANIZATION 17

• Embedded software: handles generic functions on the smartcard (contains the
Basic software), but also embedded software dedicated to applications (contains
the Application Software)

The application developed in this thesis work is aimed to find the vulnerabilities of the
Application part of the Embedded software. The scope of the fault injection process is to
attack the application layer of the smartcard program, which is found in the Embedded
software core.

As a conclusion regarding the certification and testing requirements, these require-
ments are mostly oriented towards hardware and towards procedures to follow, not being
detailed regarding the implementation of a code review application that identifies soft-
ware vulnerabilities. We can consider the requirements presented above in the case of
the test-suite. Guidelines might be used for the secure programming of test-suite, like
the ones provided by Riscure and AFSCM [14]. The AFSCM was introduced in Section
1.2.2.1. On the other hand, we are interested into requirements for the application used
to find smartcard vulnerabilities. Briefly defined procedures exist in this case, but con-
straints or rules are not defined. The reason is the nature of attacks, which are used to
harden the security of the smartcards based on experiments. In the future, these kind of
attacks against smartcards may lead to the development of a benchmark test-suite and
even to the fully standardization of the attack methodology. The requirements to imple-
ment a penetration application are given by experimental attacks. These requirements
can be used to describe the procedures to develop a more secure smartcard software.

1.3 Organization

This thesis is structured as follows: the first Chapter presents an overview of smartcard
vulnerabilities, together with the testing and certification requirements of the developed
application for this thesis work. In the second Chapter, the experimental setup is de-
scribed, including an introduction to code review, to the LLVM compiler framework and
a brief presentation at abstract level of the application developed for this thesis work.
The Riscure patterns are also presented, which were used in the generation of the test
suite, presented in the Evaluation chapter. The Evaluation chapter is the fourth chap-
ter, that presents the vulnerability types from the test suite programs, together with
the results and validation. Chapter 5 concludes the work presented in this document,
including the future work.

18 CHAPTER 1. SMARTCARD VULNERABILITIES

1.4 Summary

We present in this chapter an overview of smartcard vulnerabilities. The domain of
this project and the key concepts were introduced. The problem definition is repre-
sented by the necessity of implementing an automated code review application for the
fault injection process, that gives the scope of this thesis. The objectives of this thesis
work can be summarized as: the transformation of the source code to a common inter-
mediate representation; analyze automatically the intermediate representation for fault
injection vulnerabilities; evaluate the results regarding the vulnerabilities recognition.
Additionally, we gave an overview of the smartcard standards and of the testing and cer-
tification requirements for smartcards. Particularly, our application is an ethical hacking
toolchain, aimed to provide assistance to the security analysts to discover vulnerabilities
of smartcards.

Experimental Setup 2
The Experimental Setup chapter describes the theoretical background of the developed
code review application and the setup needed for its implementation and evaluation. A
short introduction to the code review process is done in the beginning of the chapter,
which is followed by a presentation of the LLVM compiler framework upon which our
application was developped. The central section of Chapter2 is Code Review Application
for Fault Injection which introduces our application, presenting the theoretical aspects,
its scope and functionality. The application is presented at an abstract level. This
chapter answers questions such as ”What is the developed application?”, ”Why it is
needed?” and ”How it is implemented?”. Chapter3 should be checked for the detailed
description of the application used to detect smartcard vulnerabilities.

Chapter2 presents the theoretical aspects (fault injection vulnerabilities) that were
used to generate the test-suite from the Evaluation chapter. The test-suite is based on a
smartcard development guideline provided by Riscure, that is presented in Section 2.4.

2.1 Code review

Code review is a process for the examination of source code. Its applicability is to find er-
rors and weak points in the code. Its results can be used for code fixing and improvement.
The reviews can be performed in many forms [22]. The most common vulnerabilities
found by code reviews are given by security checks, buffer overflows, memory leaks, race
conditions, string exploits. The goal is to correct them and to improve the software
security.

Using code review, security weaknesses in the source code can be identified. Many
security problems are caused by bugs. For example, misusing string functions can lead to
the raise of buffer overflow vulnerabilities. In the case of this thesis work, we concentrate
of the security vulnerabilities in the smartcard source code. Our code review application
identifies the security checks from the smartcard, which can be further exploited by
fault injection.

Automated code review The code review for identifying vulnerabilities can be done
automatically. In literature [24] it is reported that only 17.6% of the embedded software
engineers use automated tools (those tools are not related to our problem definition;
the main domain for the code review tools is the detection of implementation bugs,
such as format string exploits, memory leaks or buffer overflows) for code review and
it is expected an increasing of 23.7% till 2014. The process of automated code review
contains source code verification based on a set of rules.

19

20 CHAPTER 2. EXPERIMENTAL SETUP

Our automated code review application is a static analyzer of the target smartcard
source code. It finds security vulnerabilities for fault injection at compile-time. Based
on the results, the fault injection exploits the identified vulnerabilities at run-time.

2.2 Infrastructure Setup

The system on which the application is developed is Ubuntu 12.04, a recent stable release.
The main tool that is needed for the automated code review is LLVM.

As mentioned in Chapter 1, the application will make automated code review on the
smartcard target programs from the test-suite. LLVM provides the needed tools for code
review and support for a multitude of programming languages. The idea is to transform
any smartcard target program source code into an intermediate representation and to
perform code review on it.

2.2.1 LLVM

LLVM is a compiler framework written in C++. Because our application extends the
functionality of LLVM, the application is written in C++ as well. Basically, LLVM
framework is made up from compiler and toolchain technologies. LLVM name comes
from low-level virtual machine [35], but nowadays the name has little to do with virtual
machines. Since its evolution is as an umbrella for a variety of projects, its scope was
not limited to the creation of virtual machines. Nevertheless, LLVM can still be used to
build virtual machines. LLVM provides flexibility and reusability, being one of the most
developed compiler frameworks.

Using LLVM, the developed system is able to identify the operations that can be used
in the fault injection process. The identified operations are based on security sensitive
data which is marked by the analysts into the smartcard source code. This approach is
chosen due the fact that the interfaces might be proprietary. If they are proprietary and
no documentation about the APIs used is available, then the sensitive data has to be
input by the analyst. This is the case for our application.

The application of this thesis work is based on more tools which LLVM provides.
The most important one is the LLVM Core.

The LLVM Core [35] is a collection of libraries, providing compiler optimizers and
code generation support. The libraries are built on the LLVM intermediate representa-
tion, called LLVM IR. Particularly for our work, the code review is made on the LLVM
IR in order to find fault injection vulnerabilities.

2.2.1.1 Clang

The platform to obtain the LLVM IR (LLVM bitcode) from the target program is given
by Clang. Clang is a LLVM C/C++/Objective-C front-end compiler. Its compilers are
claimed to be much faster than GCC [33]. The LLVM IR obtained from C/Objective-C

2.2. INFRASTRUCTURE SETUP 21

smartcard target programs is given by Clang. Clang++ is the Clang version to deal with
C++ target programs.

2.2.1.2 VMKit

In contrast to the C/C++ programs compiled with Clang, several smartcard programs
may be written in Java or .NET. Actually, Java Card is one of the most popular smart-
card programming languages. In order to obtain the LLVM IR from Java or .NET target
programs, we use the VMKit tool. This tool is an implementation of the Java and .NET
virtual machines for LLVM framework.

2.2.1.3 KLEE

It is not rare that the input provided by the analysts to be incomplete. In order to
improve the input needed by the application from the thesis work, sensitivity has to be
propagated. The most common way is to make taint analysis to detect the sensitivity
propagation. One question is why tainted analysis is needed. By using the application
without taint analysis support, only the security checks that are based on the already
marked sensitive variables are detected. However, some sensitive conditions may be
based on variables that are not initially considered sensitive by the analysts, but their
values are influenced by sensitive variables. Therefore, in the case of a fault injection
attack, if a sensitive condition based on a tainted variable is not bypassed, the attack
may fail (if the condition statement is executed).

Currently, we implemented our taint analysis algorithm inside the thesis application
for the purpose to find the tainted variables that participate in unidentified sensitive
conditions. The algorithm is explained in Section 3.3.. In order to make the taint analysis
more efficient, we aim to use symbolic execution (as a future work). The symbolic
execution is a means of analyzing a program to determine the possible execution paths
and to emulate the execution of the program. Note that the tainted variables can be
inherited between multiple execution paths, so they are needed to be identified before the
application from this thesis work is applied, improving the input of sensitive variables.

KLEE is a LLVM tool that implements the needed symbolic virtual machine to
support symbolic execution. For the symbolic execution, KLEE uses a theorem prover
to evaluate all the dynamic paths through a program (until a user-defined threshold
value) [35]. As a future work, we aim to use KLEE to evaluate the dynamic paths in
order to identify the tainted variables that participate in unidentified security checks.

Some LLVM-based projects provide support for other programming languages. The
most known is Dragonegg [35], allowing to compile Ada and Fortran. Other projects
offer support to compile Ruby, Python, Haskell, D, PHP, Pure, Lua in the LLVM IR
[35]. However, the scope of this thesis work is not to test these languages, since they
might be rarely used for smartcard implementation.

22 CHAPTER 2. EXPERIMENTAL SETUP

2.3 Code Review Application for Fault Injection

This section provides an overview of the developed application. The application is de-
scribed at an abstract level in this chapter. The functionality of each tool found in our
application is briefly described based on a target program example. For a more detailed
description of the application, we refer the reader to Chapter3.

2.3.1 Pass

The code review application developed for this thesis work is a toolchain. The applica-
tion contains three chained tools. The three tools are used to analyze and transform
the LLVM IR bitcode of the smartcard target program. The tools providing such func-
tionality are called Passes in the LLVM technology.

A LLVM pass is used for transformations and optimizations required by the compiler,
performing code review and being a structuring technique for compiler code [35]. All the
three passes of the application are subclasses of the LLVM Pass class. The LLVM Pass
class gives the necessary methods to develop a LLVM pass. Our passes override virtual
methods inherited from the Pass class in order to implement the required functionality.

There are 3 steps to perform for applying a LLVM pass. The first step is to set up
the build environment. The source code is compiled using a Makefile script, that links
together all the compiled files from a workspace folder into a shared object (.so). This
type of object can be dynamically loaded by the LLVM tool called opt. The second step
adds the basic code required for a pass like: the inclusion of specific headers (for example
llvm/Pass.h), the usage of the namespace llvm, the proper pass declaration (for example
struct MyClass : public ModulePass), pass identifier definition, the main method (for
example virtual bool runOnModule(Module &M)) which overrides the inherited abstract
virtual method, pass initialization using the pass ID address and the pass register. The
third step is to run the pass using the opt tool, loading the created shared object.
Particularly, the bitcode file (LLVM IR) is run using the opt tool. The opt tool is run
together with the command line option (–time-passes) that gives information about the
execution time of the pass. In order to see the target program as one unit, the application
uses the ModulePass class for all its three composing tools.

2.3.2 Target program graph

This section presents the structure of a smartcard target program from our test-suite.
Based on it, the functionality of each tool from our application is explained.

The structure of the target program can be seen as a Call Graph. A Call Graph is
a graph whose vertices are the functions of the program and the edges are given by the
relations between functions. Basically, a Call Graph is a directed graph indicating the
connections between subroutines of a program. An edge (a,b) represents that Function
a calls Function b. A trivial example of a Call Graph of a target program can be seen
in Figure 2.1.

2.3. CODE REVIEW APPLICATION FOR FAULT INJECTION 23

Figure 2.1: Call Graph example

Futhermore, each function of the Call Graph (CG) can be seen as a Control Flow
Graph (CFG). The call graph is formed from more control flow graphs. A CFG gives
the paths that can be traversed during one execution of a program. The vertices are
represented by basic blocks, while the edges are jumps in the control flow. Figure 2.2
shows a snippet code from a target program used for the evaluation of the application.

A more detailed presentation of the smartcard target programs is given in the third
chapter, together with a C++ trivial example on which the application is applied. Based
on the target program example, the functionality of each of the three passes is illustrated.
Actual examples of target programs are shown in the Evaluation chapter.

2.3.3 Toolchain

The application developed for this thesis work is a toolchain. The toolchain fulfils the
scope defined in Section 1.1.3., namely the automation of the fault injection vulnerability
recognition process. Since the vulnerability identification done by the security analysts
was primarily manually, we needed to develop an automated code review application.
In order to cover all the conditions based on sensitive variables, our application has to
identify the dependencies between the sensitive conditional branches (the conditional
branches which are part of security checks) and the original sensitive variables. The
dependencies discovered by the toolchain shows:

• How many sensitive conditional braches there are in the target program

• The location of the sensitive conditional braches

• The original sensitive variables on which the conditional branches are dependent

24 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.2: Control Flow Graph example. The figure represents a part of the CFG of the
main function. Inside the basic blocks, we can see the instructions in LLVM assembly
language format.

2.3. CODE REVIEW APPLICATION FOR FAULT INJECTION 25

• The location where the original sensitive variables are declared

Why the dependencies between the original sensitive variables and the conditional
branches are needed? Inside the LLVM intermediate representation, every time a variable
is used inside a basic block it has a different assigned name. For example, when a global
variable is allocated, it is named @a. When it is loaded inside a basic block, the loaded
value is assigned to a local variable named %6, the following computations being done
using the local variable. Different alias names may be assigned to the variable, depending
on conversion or transformation operations.

The LLVM variable identifiers have two types: global and local. The global identifiers
(for example functions or global variables) begin with the @ character, while the local
identifiers (register names, local variables) begin with the % character [35]. The original
sensitive variable is annotated as sensitive by the security analysts, but the local variables
that are aliases for the original variable are not. It would be inefficient to propagate the
sensitiveness among all the target bitcode. Therefore, we need to get the original variable
which is annotated as sensitive by the security analysts or which is automatically marked
as sensitive based on taint analysis (that is explained in the Section 3.3.).

The identified dependencies show in how many places and where to insert faults
(fault injection) into the smartcard program in order to avoid the security checks. The
dependencies are identified for each possible execution path of the program. Only
identifying all the security checks in the program is not relevant, since we are interested
only on one execution path per test. When the smartcard program executes, it follows
only one possible execution path in a given context. Also, it is not effective, since
the number of places to insert fault injection may be very large. By inserting faults
at the sensitive checks on a possible execution path, malicious actions could be done
by bypassing the conditional branches. For example, on a specific execution path, the
balance from a travel smartcard may be increased by the attacker/security analyst.

The sensitive conditions implemented on the smartcard program are structures which
include conditional branches dependent on sensitive variables. They represent smartcard
vulnerabilities which can be exploited using fault injection. As we will see in the Eval-
uation chapter, these sensitive checks come in variants. We can see in Figure 2.3 the
variants of the security checks, composed of conditional branches and the return BAD
statement (in the first 3 cases) that can disable the functionality of the smartcard.

2.3.4 Passchain

As mentioned in the first section of this subchapter, a pass is a LLVM tool that does
analysis and transformation on the LLVM IR. Basically, the developed toolchain can
be seen as a passchain in terms of LLVM terminology, every tool being represented
by a pass. The passchain denoting the vulnerability recognition application is shown in
Figure 2.4.

As we can see from the figure, the security analysts makes annotations into the source
code of the target program. The smartcard target program is compiled into the LLVM
intermediate representation: the LLVM bitcode (the three .bc files from the figure).
The bitcode files serve as inputs for the three tools contained in our application: the
Annotation Pass, the Paths Pass and the Analysis Pass. The output of the application

26 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.3: Variants of Security Checks

Figure 2.4: The developed Application

gives the results. Based on the smartcard vulnerability results, the security analysts
determine the locations where to insert fault injection in the target smartcard code.

The security analysts mark the sensitive variables inside the source code by using
annotations. The annotation is a medatada added to the variable. The annotations
used by the security analysts are introduced in Section 3.3.

The passchain needs appropriate input from the security analysts. This input consists
in annotating the variables that are assumed to be sensitive. The annotation can be

2.3. CODE REVIEW APPLICATION FOR FAULT INJECTION 27

done partially due the fact that some variables are identified to be sensitive by the taint
analysis which is integrated into our application. The next step is to compile the target
program using the appropriate LLVM-based compiler (for example Clang++ for C++
target programs). The result will be a bitcode file having the extension .bc. The first
bitcode file is transformed by the first tool of the toolchain which is called the Annotation
Pass. The resulted bitcode file is then analyzed and transformed by the Paths Pass. The
third produced bitcode file is analyzed by the main Analysis Pass which gives the final
results that will indicate the locations where to insert faults into the target smartcard
program.

All the three passes will be presented in detail in Chapter 3 and briefly described in
the following paragraphs.

The target program can be seen as a large graph, as previously described in Section
2.3.2.

2.3.5 Annotation Pass

The functionality of the Annotation Pass is to indicate:

• the original sensitive variables marked by the security analysts inside the source
code (example from Figure 2.6 : sensitive global variables like pin or balance and
sensitive locals like a variables a or like an element of an array t[10])

• the start and the end points between which the analysis will be applied

The end point of the analysis represents the state of the program in which the goal is
achieved by bypassing the security checks. The end point is a leaf in the program graph,
that leads to the success state from the point of view of the attacker/security analyst.
In the majority [39] of the cases, the other leaves are bad states, meaning that security
procedures like faultDetect() or faultResponse() are triggered (indicated by BAD in the
following picture). These procedures are smartcard security mechanisms that can disable
the smartcard functionality.

The goals of the Annotation Pass are:

• to define target program borders for the code review

• to indicate the sensitive variables in the bitcode file

2.3.6 Paths pass

This pass is used to traverse the CFGs (control flow graphs) that form the CG (call
graph), with the purpose to identify the possible execution paths. Figure 2.8 shows the
two possible execution paths between the Start point and the End (Succes) point in the
target program.

The goals of the Paths Pass are:

• Consider only the fragment of the target code that the security analyst is interested
in. The fragment is chosen depending on the purpose of the attack. For example,
if the security analyst wants to withdraw money from the bank smartcard, the end

28 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.5:

Figure 2.6: Annotation Pass example. On the top part of the figure, we can see the
Annotation Pass highlighted in the Passchain

point of the fragment should be set after the withdraw operation in the program
flow

• On the fragment of the target code (from above), get all possible execution paths
on which our application will individually apply the code review

2.3.7 Analysis pass

The main functionality of the Analysis Pass is to identify which security checks are
dependent on sensitive variables. The scope of this pass is to determine in how many
places and where to insert fault injection. Figure 2.10 shows the places where fault
injection has to be inserted on the two possible execution paths previously identified.

We can see that by inserting fault injection on the particular conditional branches
(from the indicated basic blocks in Figure 2.10), we can bypass their corresponding
security checks. Hence, we can reach the Success state and not any Bad state without
knowing the secrets (values of the sensitive variables) used in the conditional branches.
This is done by identifying the dependencies between the conditional branches and the
sensitive variables. These dependencies can be:

• Direct dependencies

2.3. CODE REVIEW APPLICATION FOR FAULT INJECTION 29

Figure 2.7:

Figure 2.8: Paths Pass example. On the top part of the figure, we can see the Paths
Pass highlighted in our Application

• Inter-procedural dependencies

• Tainted dependencies

• Indirect dependencies

• Alias dependencies

Examples with all the dependencies are given in the next chapter. Briefly described,
a direct dependency is given by a pair of (conditionalBranch, sensitiveVariable), where
the alias of the original sensitive variable is used directly by the conditional branch.

In an inter-procedural dependence, the conditional branch calls a function that could
call another function or the same function recursively. The calls can be multiple, so the
search for sensitive variables is done considering a cascade of function calls. The Analysis
Pass identifies all the sensitive variables that are called by a specific conditional branch
in other functions (procedures).

The tainted dependencies are another type of dependencies identified by the Analysis
Pass. The concept behind taint analysis is that the security checks (more exactly their
conditional branches) can be dependent also on variables that are not initially consid-
ered sensitive (like flags), but are influenced by sensitive variables. Therefore, security

30 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.9:

Figure 2.10: Analysis Pass example. On the top part of the figure, we can see the
Analysis Pass highlighted in our Passchain

mechanisms on smartcards contain conditional branches that are dependent on variables
that are not original sensitive variables.

The indirect dependencies are given by a pair of (conditionalBranch, sensitiveVari-
able), having one term of the conditional branch guard a function which has one of its
arguments a sensitive variable.

The alias dependencies are illustrated by a pair of (conditionalBranch, sensitiveVari-
able), having one term of the conditional branch guard an alias of the sensitive variable.
All the dependency types are illustrated with examples in Chapter 4.

To summarize, the Analysis Pass is the third tool of our application that is doing
data flow analysis and also control flow analysis on the target program, in order to
discover vulnerabilities under the form of dependencies between the conditional branches
(from the encountered security checks) and the sensitive variables. The dependencies are
illustrated in detail in Chapter 4.

2.4 The Riscure Smartcard Development Guideline

The smartcard target programs are protected by security checks which are encountered
in the program flow. These security checks have to be identified by our application, in

2.4. THE RISCURE SMARTCARD DEVELOPMENT GUIDELINE 31

order to bypass them by using fault injection.

In this section we present smartcard development guidelines, provided by Riscure.
A part of the test suite from the Evaluation chapter is based on these guidelines, which
are structured in the form of patterns.

2.4.1 Riscure patterns

The Riscure patterns are a set of security principles, guides, recommendations for the
smartcard software development engineers. The Riscure patterns are used only in the
test suite generation, presented in Chapter 4. The scope of the patterns is to protect the
data and the program flow in the smartcard code. The smartcard software developers
can use these patterns to protect confidential data such as cryptographic keys while
hiding the sensitive decisions. The patterns serve only for the smartcard application
layer. Additionally, the smartcard engineers have to take into account the protection
for hardware and the operating system. Our application is aiming to identify the fault
injection vulnerabilities, even if the extra security measures given by the patterns are
used.

The smartcard developers implement mechanisms to secure sensitive operations as
withdrawing money, modifying the balance, displaying personal information about the
owner etc. Our application is needed to identify these security mechanisms. After the
vulnerable spots from the smartcard program are found, fault injection is used to exploit
them. Using fault injection, the sensitive data can be manipulated and the security
checks can be avoided. An example of a weak smartcard security measure is:

if(conditional branch) //security check based on sensitive data

...

faultDetection(); //dangerous for the attacker/security analyst

Our application is identifying this vulnerability represented by the dependency be-
tween the conditional branch and the sensitive data. Based on this result, the security
analyst will mark the point where to insert fault injection. As we will see in the Chapter
4, the marked points for fault injection are dependent on the vulnerability type.

The patterns are used in the test-suite, which is presented in the Evaluation chapter.
The test-suite used for this thesis work is not limited to these patterns, other various
security mechanisms being taken into account, as seen in Chapter 4.

2.4.1.1 FAULT.DOUBLECHECK

The FAULT.DOUBLECHECK pattern [39] is the main pattern that exploits the double-
checking security mechanism. The context is given by the situation when a sensitive
decision may be corrupted by a fault injection attack. The solution is to double check
the sensitive conditions. It is recommended that the checks are complementary. The
following example illustrates the situation:

if (sensitiveValue == 0x45FA8C12) {

32 CHAPTER 2. EXPERIMENTAL SETUP

. . .

if (~sensitiveValue != 0x45FA8C12) {

faultDetect();

}

}

If the attacker do not glitch (inserting fault injection) on both sensitive checks, the
faultDetect() procedure will be trigger. This procedure can lead to the temporarily or
permanently disablement of the functionality of the smartcard. The fail is due the fact
that the complement value is not equal to 0x45FA8C12.

This pattern can be checked by the developed application in this thesis work under
the form of structural analysis. The Analysis Pass fulfills this need. In particular for
the double-check pattern, the Analysis Pass tool can check if an identified sensitive
condition is nested in another identified sensitive condition block (the second if from
the example is nested in the first if block) or if it contains a lower block with another
sensitive condition (the first if block from the example contains the second if condition).
However, the sensitive conditions must be dependent on the same sensitive variable(s)
in order to check this pattern. This check is provided by the Analysis Pass.

2.4.1.2 FAULT.DETECT

Using the fault injection process, the sensitive data can be manipulated during the
smartcard program execution. [39] The solution is to verify for integrity the sensitive
data when used, based for example on a checksum. A more complex solution is to
encapsulate the sensitive data into security controlled objects that have own integrity
checking methods. An example is shown below :

int sensitData = VALUE;

int checksum = ~VALUE+0xFA;

if ((sensitData & (checksum-0xFA)) != 0x00) fail();

If the fail() procedure is trigger, than the integrity of the sensitData or its protecting
checksum might have been violated.

This pattern can be checked by using the Analysis Pass of the developed application.
The checksum is a value tainted from a sensitive condition, as mentioned in Section
2.2.1.3.. This means that the checksum value is changed in a nested block of a condition
that is evaluated based on sensitive variables (like pin in the case of smartcards). The
Analysis Pass considers the tainted values from sensitive values also as being security
sensitive. Hence, the condition check based on the checksum (the if condition from
the example) will be identified as a possible place to glitch (to perform a fault injection
attack). Hence, the pattern is checked by identifying the sensitive conditions that contain
the checksum in their guards.

2.4.1.3 FAULT.CRYPTO

Fault injection attacks can be applied on cryptographic algorithms. The cryptographic
algorithms can reveal sensitive keys while being attacked by Differential fault analysis
(DFA), which is based on returning data of false encryptions.

2.4. THE RISCURE SMARTCARD DEVELOPMENT GUIDELINE 33

The solution proposed by the FAULT.CRYPTO pattern [39] is to check the sensitive
data during or after the cryptographic operation. In the following example, the ciphered
data is checked before it is transmitted to the deciphering function:

decipher(cipheredData, key);

if (decipheredData != 0x45FC3A98) {

faultDetect();

}

The conditional branch verifies if the deciphered data matches the original data which
has to be ciphered. If it is a match, it is most likely that the crypto function was not
corrupted by fault injection.

This pattern can be checked by the Analysis Pass. The pass can use data flow
analysis by tracking the encrypted data. Based on the same principle of taint analysis
from the previous pattern example, the sensitive condition is identified (the if statement
from the example).

2.4.1.4 FAULT.CONSTANT.CODING

Fault injection can manipulate sensitive data that is using trivial constant coding, like
Boolean values. The solution [39] is not to use this trivial encoding and to use instead
numbers that have a large hamming distance (the number of bits that differ) between
them. Using this pattern, it is difficult for an attacker to change one valid value to
another valid value, because the fault injection can typically flip only a bit or only set
all the bits to 0 or 1. An example [39] of suitable values, with a larger data type that
permits a larger hamming distance (larger than 8 in the example) is shown below:

static final short STATE_INIT = (short)0x5A3C;

static final short STATE_LOCKED = (short)0xC3A5;

This pattern can be verified if applied by structural analysis, more exactly by calculating
if the hamming distance if below a threshold value. The sensitive values using the specific
encoding can be checked after the Annotation Pass from the developed application is
applied on the smartcard’s target code.

2.4.1.5 FAULT.FLOW

The fault injection process can be used for the so-called code hijacking attack. The
hijacking consists in unauthorized jumps to privileged code, by manipulating the program
counter or the stack. A prevention measure is given by the checking of the correct flow
of the program during the execution of the privileged code. More concretely, this can be
done by verifying the counters utilized for the correctness of the execution path. These
counters keep track of the function calls and steps.

The method is illustrated in the example accompanying this paragraph [39]. Several
methods use a counter which is increased and each of them includes its own number of
steps (step value) that is used to increase the counter. The security measure consists
in checking if the number of taken steps are the same as the expected step value and if

34 CHAPTER 2. EXPERIMENTAL SETUP

the right method is called. This can be done by comparing the counter increased over a
function call with the product of steps and the step value.

An example is shown below:

#define M1 = 7;

#define M2 = 17;

int counter;

void main(int argc, char** argv) {

...

counter = 0;

method1();

counter -= 4*M1;

if (counter != 0) faultDetect();

}

void method1() {

int localCounter;

...

counter += M1;

...

localCounter = counter;

method2();

counter -= 2*M2;

if (counter != localCounter) faultDetect();

...

counter += M1;

...

}

void method2() {

...

counter += M2;

...

counter += M2;

...

}

In the main function, the counter is modified by subtracting 4 increase steps of
method1 (4*M1). If the completion check of method1 fails, faultDetect() procedure is
triggered, than can disable the smartcard functionality. In method1(), the counter is
increased by M1, having the localCounter as a backup counter. After calling method2(),
the counter is modified by subtracting 2 increase steps of method2 (2*M2). Then, the
same procedure to verify the completion of method2 is applied. The last counter increase
in method1() is done by adding the M1 value. In method2(), the counter is increased
two times by M2. The method identifiers M1 and M2 are chosen to be prime because
it is less likely that the same counter increase will result. Because there are multiple

2.4. THE RISCURE SMARTCARD DEVELOPMENT GUIDELINE 35

security checks in the nested code, it is hard for the attacker to bypass all of them. The
attacker/security analyst needs to glitch all the security checks to have a successful code
hijacking. There might be the case that parts of the code have no predictable flow, like
the complex loops. Other patterns should be used to protect these parts of code. In
order to verify if this pattern is applied, the check counters have to be identified in the
code. Using the Analysis Pass, the basic blocks in which sensitive data is used can be
identified. Then, assumptions on check counters regarding their sensitiveness have to be
made. The assumptions are based on the variable incrementation which is proportional
to the number of instructions in the basic block.

2.4.1.6 FAULT.LOOPCHECK

The fault injection attacks can be directed to terminate earlier a repetitive process
running in a loop. This way, later security checks can be bypassed. The solution [39]
consists in checking the loop completion. An example that applies the pattern is shown
below:

for (i=0; i<n; i++) {

...

}

if (i != n)

faultDetect();

By using the Annotation Pass, this pattern can be checked. Either the analyst can
annotate the loop counter as sensitive or this can be done by the Annotation Pass.
We can consider this pattern a particular case of the FAULT.FLOW pattern which is
presented above.

2.4.1.7 FAULT.DEFAULTFAIL

This pattern [39] is related to the parameters that can take only a limited set of values.
If these parameters are used in a switch or in a if-else-if construction, it is common that
the default case deals with the last possible value without any accompanying security
checking. This unprotected case is vulnerable to fault injection attacks, more concrete
for potential data manipulation. The solution consists in checking all possible cases of
the switch or of the if constructs and using fail by default (default case of switch or
the final else statement in an if-else construct). In the following example, the sensitive
variables are initialized with least-privileged data. Hence, if an attacker is able to skip
later assignments, he cannot escalate privileges.

switch (state) {

case INITIALIZE: init(); break;

case LOCK: lock(); break;

case ACTION: action(); break;

default: fail();

}

36 CHAPTER 2. EXPERIMENTAL SETUP

2.4.1.8 FAULT.BRANCH

The smartcard program may be maliciously manipulated by changing the Boolean values
used for decisions. Using fault injection, an attacker can change values to 0 and 1. This
pattern recommends not to use Boolean values for sensitive decisions. In spite, non-
trivial values should be used. An example [39] is provided below:

if (sensitiveValue == 0x4FB3) {

. . .

}

else if (sensitiveValue == 0xF43B) {

. . .

}

else

. . .

The pattern is easily checked if applied by using the Analysis Pass. The sensitive con-
ditions can be identified and the constants used can be checked against a set of rules for
triviality (example: non-Boolean values). The type of the variables in the guard can be
easily checked using LLVM methods.

2.4.1.9 FAULT.RESPOND

This pattern [39] represents a guideline to provide an efficient response to a fault injec-
tion attack. The goal is to protect the device in the case of an attack. The guideline
consists in two parts: monitor and respond to fault injection attacks. The monitoring
can be represented by repeating checks for data changes (using the FAULT.DETECT
pattern, previously presented). The frequency of faults has to be observed, since smart-
cards can malfunction not only because of fault injection attacks. The guideline presents
also a response. The most common measure is to temporarily or permanently disable
the functionality of the smartcard. An alternative is to introduce long processing de-
lays. In the following example, the faultDetect() procedure detects the faults, while the
faultResponse() procedure responds to faults.

#define MAX_FAULTS = 10;

int fault_counter = 0;

void main() {

if (fault_counter >= MAX_FAULTS) {

faultResponse();

}

processing();

}

void faultDetect() { // fault injection is detected

if (fault_counter < MAX_FAULTS) {

fault_counter++;

2.4. THE RISCURE SMARTCARD DEVELOPMENT GUIDELINE 37

} else {

faultResponse();

}

while (true);

}

void faultResponse() {

wipeSecretsAndDeactivate();

while (true);

}

The fault counter variable has to be stored in a non-volatile memory. In the main()
function, we check if the faults exceeded the maximum number of admitted faults. If the
amount is not exceeded, the normal processing is executed. The faultDetect() method
is used to detect a fault injection attack. The fault counter is incremented until the
maximum number admitted. If the number of faults is in excess, the faultResponse()
method is triggered. The endless while(true) loop forces the system to reboot, after a
fault is detected. The security mechanism on the smartcard uses faultResponse() as a
defensive measure. It triggers the wipeSecretsAndDeactivate() method which is used to
disable the device. Concretely, it clear the secrets (the sensitive data, like the pin code
for smartcards) and blocks the access.

The pattern should be checked if applied only in the case when the security analysts
do not have available the piece of code from the example, because in that case the security
mechanisms of the smartcards (as faultResponse() and faultDetect()) are not available.
The fault counter(s) can be tracker by data flow analysis and they can be identified using
taint analysis. Then, the Analysis Pass can indicate all the sensitive conditions that lead
to faultResponse() and to faultDetect().

2.4.1.10 FAULT.BYPASS

If the fault detection procedure used in the above example is not done at the same level (in
the code) as the protected functionality, multiple double-checks may be useless against a
type of fault injection attack that can bypass them. In order to avoid this situation, the
solution is to check for faults in the same function that executes or invokes the protected
functionality. In the example from below[39], two methods of protection are proposed:
weak protection() and better protection(). An example of weak protection() method can
be observed below:

void weak_protection() {

if (!test1())

return;

protected_process();

}

The weak protection() method provides protected functionality after the security check.
If test1() does not pass the condition, the access to the protected functionality is not

38 CHAPTER 2. EXPERIMENTAL SETUP

allowed. If the condition is passed, the protected process() may begin. The test1()
method is presented below:

boolean test1() {

boolean result1 = check1();

if (check1() != result1) faultDetect();

boolean result2 = check2();

if (check2() != result2) faultDetect();

return result1 && result2;

}

The method test1() uses two methods to check for fault detection: check1() and check2().
The first if statement double-checks the check1() method, triggering faultDetect() in case
of failure. As it can be observed from the example, the weak protection() method checks
the access conditions by calling test1, that is protected against fault injection. However,
the protection is not ensured, even if test1 might be secure enough. By using fault
injection, an attacker can glitch (bypass using fault injection) the if condition from
the weak protection() method, so the call to test1() can be skipped. There is also an
alternative attack: the fault injection attack can manipulate the return value in order to
access the protected functionality.

On the other hand, the better protection() method uses the already presented double-
check pattern inside the function that gives access to the protected functionality. The
method can be observed in the following pseudocode:

void better_protection() {

boolean result1 = test2();

boolean result2 = test2();

if (result1 != result2)

faultDetect();

if (!result1 || !result2)

return;

protected_process();

}

The better protection() method offers the access to the protected functionality only after
the double security check. If the conditional arguments (result1 and result2) are different,
a fault detection procedure is triggered. If one of the conditional arguments is NULL,
then the access is denied. The called test2() function can be observed below:

boolean test2() {

boolean result1 = check1();

boolean result2 = check2();

return result1 && result2;

}

The test2() function contains the check1() and the check2() tests, with no fault detection
mechanism. This is done by the better protection() method. The taint analysis has to

2.5. SUMMARY 39

be used to check automatically this pattern, like in the case of the FAULT.DETECT
pattern. It is possible to check if the fault detection is in the same function together
with sensitive instructions. Once the tainted values are known, the Analysis Pass can be
used to identify the sensitive conditions that might be glitch by fault injection attacks.

2.4.1.11 FAULT.DELAY

The glitch of fault injection usually needs an exact hit on the vulnerable code. The
proposed solution [39] uses random length delays when sensitive code is utilized. This
solution is directed against the time based fault injection attacks, the prediction of the
instructions which can be affected by a glitch becoming improbable. An example is
provided below:

void delay () {

int n = rand() & 0x2AB;

for (i=0, j=n; i<n ; i++, j--){

if ((i+j) != n)

faultDetect();

}

}

This function is used to wait random time and to catch the faults. The random length
delays have to be identified in order to check if the pattern is applied. More exactly, the
loop with random values has to be identified. After these loops are manually or auto-
matically identified, the Analysis Pass can be used to check if any sensitive conditions
are present before the delay loops.

2.5 Summary

This second chapter presents the theoretical background and setup of the developed
application for this thesis work. The chapter presents the scope and functionality of
each tool that is contained in our code review application. In this chapter, we present
the application at an abstract level. For a more detailed presentation of the application,
we refer the reader to the next chapter. Chapter 2 presents the setup of the evaluation of
the application. The evaluation is based on a test-suite that is dependent on the Riscure
smartcard development guideline.

40 CHAPTER 2. EXPERIMENTAL SETUP

Application for Fault Injection
Vulnerabilities Recognition 3
The Application for Fault Injection vulnerabilities recognition chapter gives a detailed
presentation of the developed application. The application is a toolchain composed
from 3 tools (LLVM passes). In the following sections, the LLVM passes are described
accompanied by a target program example. The passes were briefly presented in the 2.3
section Code Review Application for Fault Injection.

The application is necessary for implementing an automated code review application
for the fault injection process. The code review is identifying the smartcard vulnerabil-
ities which can be exploited using fault injection. The evaluation of the application is
done in Chapter 4. An example of a trivial smartcard security measure is given in
Section 2.4.1.

In the next section, the target program example is introduced. In the following sec-
tions, all the 3 passes are described in terms of the provided functionality, local objectives
for each pass, connections with other passes/external environment and implementation.
Additionally, the functionality of each pass is exemplified on the target program.

3.1 Target program example

The target program example is a trivial example which is relevant for the main types
of dependencies that will be described in the next sections, together with the 3 LLVM
passes of our application. All the dependency types are presented in Chapter 4.

The target program is part of the smartcard domain for banking applications. The
problem is represented by the fact that a security analyst can increase the money balance
on the smartcard by bypassing the security mechanisms. The attack point is identified
by using our code review application and implemented by applying fault injection. The
scope is to identify the smartcard code vulnerabilities in order to insert fault injection
to bypass the security checks. Therefore, our application should be able to identify the
security checks represented by the conditional branches that are dependent on sensitive
variables.

The code is split in functions under the form of a call graph (graph made from the
functions of the target program) that can be seen in Figure 3.1.

However, in order to illustrate the example in a more legible way (easy to follow,
logical flow of events), the code is represented under the form of a control-flow graph
which is composed from the basic blocks of each function of the target program (as seen
in Figure 3.1). As shown in Section 2.3.2., the code review is based on the call graph
and on the control flow graphs (one CFG for each function) of the target program. In
order to get the call graph of the target program, we use the LLVM getAnalysisUsage()
method. This particular method extracts from the AnalysisUsage object the needed

41

42 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

Figure 3.1: Call graph of the Target Program Example

information, more concretely the call graph nodes. From the nodes we can extract
the program’s functions. The reason of working with LLVM call graph nodes and not
directly with functions is that the LLVM nodes provide extra information (for example:
the getCalledFunction() method gives the callee function). The identification of the
basic blocks is done by associating integer identifiers for each one of them as shown in
the example below:

FUNCTION main | BASIC_BLOCK if.then16 | NR 12

The smartcard target program translated into LLVM IR bitcode represents a mod-
ule. The module is composed of functions. Each function is composed from one or more
basic blocks. A basic block has one entry point (no instruction from the basic block
except the first one is the destination of a jump instruction anywhere in the program)
and one exit point (only the last instruction of the basic block can cause the program to
begin executing code in a different basic block). Each basic block contains instructions
that might have several operands, which can be accesed during the code review. There-
fore, the analysis is done at multiple levels: on the functions of the module, on the basic
blocks contained into the functions, at instruction level, on the instruction operands.

The code example is written in the C++ language. The example is trivial; the
purpose of this section is to illustrate how the application works on a proof-of-concept

3.2. ANNOTATION PASS 43

example. Examples derived from real-world smartcard programs can be seen in the
Evaluation chapter.

The trivial basic program includes 4 functions and the declaration of the global
variables. The main function is called process and is used to select the path to take via
a switch construction. The first possibility is to check the pin, by calling the verifyPin
function. If the user gives the correct pin value as input, the pinVerified flag is set to
true. We can see the example above in Figure 3.1.

Please note that in all the following examples, GOOD is defined as 1 and BAD
is defined as 0. If the returned value is BAD, a fault detection routine is called which
can disable the smartcard functionality with the scope to protect the smartcard from
attackers, as mentioned in the first chapter.

The second option which the program flow can take is the increaseBalance function.
After 4 if constructions, the program flow encounters an operation for increasing the
balance. One conditional branch is calling the locker function, which implements a
security checking mechanism. The exact functionality of our application on the target
program example is shown in Section 3.6, since all the tools which form our application
should be presented.

For an easier understanding and for a logical flow of events, the example is given after
all the 3 passes that compose our application are presented. The example (presented
in Section 3.6.) shows how the most common types of smartcard vulnerabilities are
identified by our application. For the chosen approach, each vulnerability identification is
seen as a stand-alone event (a result of our application). We have chosen this approach
for a better understanding of the functionality of our application as a succession of similar
events.

In contrast, in Chapter 4 we use a different approach. For this approach, the
functionality of each pass is presented sequentially. An example is (for the approach
used in Chapter 4): we show all the execution paths and then we show separately the
identified vulnerabilities for all the paths. In contrast (for the Chapter 3 approach), it
is easier and more logical to present for each path (on which we have a succes target state,
denoted by an annotated end point) which vulnerabilities are contained. Therefore, we
show separately on each specific path where to insert fault injection in order to get to
the succes target state.

The Chapter4 provides more complicated examples which are used in real tests.

3.2 Annotation Pass

The Annotation Pass is the first tool of our application. As seen in the Section 2.3.5.,
the pass receives as input the LLVM bitcode file which is compiled from the smartcard
target program. The security analysts annotate in the source code a part of the sensitive
variables and the points between which the code review is going to be done. The goals

44 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

of the Annotation Pass is to define the target program borders for the code review and
to indicate the sensitive variables in the bitcode file.

The Annotation Pass uses the annotations marked by the security analysts and adds
the correspondent information into the LLVM bitcode file. The information will be used
by the following passes, the Paths Pass and the Analysis Pass. In almost all cases, the
security analysts will not mark all the sensitive variables in the source code. Therefore,
a taint analysis algorithm is embedded into the Annotation Pass, having the purpose
to improve the input for our application.

The Annotation Pass is a module pass, meaning that it traverses the entire bitcode
of the target program in order to find the annotated sensitive variables, as well as the
boundaries between which the analysis is to be performed. The annotations serve as
input for the Paths Pass and for the Analysis Pass. The Annotation Pass is the first
pass of the applications toolchain, containing 3 parts:

• the search for annotations

• the taint analysis

• the metadata addition

These parts will be explained in detail in this section. The pass seeks annotations
that fall into the following categories:

• annotated local sensitive variables

• annotated global sensitive variables

• the start and end points between which the analysis should be applied

• tainted variables from the annotated sensitive variables

The security sensitive variables (that can be also arrays or class members) are an-
notated as sensitive by the security analysts. Because the input given by the analysts
can be incomplete, it is extended by the tainted variables provided by the taint analysis.
For example, the variables are annotated in the target program by using attributes in
the case of C/C++ target programs and by using built-in annotations in Java marked
by @ (an example is found in Section 4.2.8.). For example, in a C++ target program,
a variable is annotated as:

__attribute__((annotate(DS))) int a;

The annotation value (DS in the above example, which stands for data sensitive) is
customizable. However, this customization should not affect the other passes from the
toolchain. Therefore, the annotated values are transmitted to the other passes by adding
LLVM metadata to instructions. The metadata provides coherence between the passes,
by using the same string fields (for example, start for the starting point of the analysis)
that are added to the bitcode.

In LLVM, the annotations are contained into the:

3.2. ANNOTATION PASS 45

• @llvm.global.annotations intrinsic, which stores the annotations regarding the
global variables

• @llvm.var.annotation intrinsic, which stores the annotations regarding the local
variables

• @llvm.ptr.annotation.p0i8 intrinsic, which stores the annotations regarding the
arrays

In order to access the local variable which was annotated, the application uses the
functions that are corresponding to local iterators through the module. In the case of
global variables, the global iterators are used. Therefore, the Annotation Pass contains
two similar searching loops for annotated variables.

For an annotated variable, the specific annotation intrinsic is called with a number
of operators. The most important operator gives the references to the structures that
contain the proper string annotations (example: @str):

@llvm.global.annotations = appending global [1 x { i8*, i8*,

i8*, i32 }][{ i8*, i8*, i8*, i32 } { i8* bitcast (i32*

@balance to i8*), i8* getelementptr inbounds ([3 x i8]*

@.str, i32 0, i32 0), }], section "llvm.metadata"

In this example, the global variable balance is annotated as sensitive with the string
(DS) found in the str structure. We can see an example of a C/C++ annotation above.
We show below the LLVM structure @.str that stores the DS string (the mark for
sensitive).

The proper annotations are declared as constants, containing among their operands
the string used to annotate the specific variable:

@.str = private unnamed_addr constant [4 x i8] c"DS\00",

section "llvm.metadata"

As mentioned above, for each annotated variable, metadata is added to transmit the
sensitiveness information to the other passes. The LLVM metadata can be added to
instructions.

In the case of local variables, all the alloca instructions for adding metadata are iden-
tified. The alloca instructions are used to define a local variable. However, in the case of
global variables there are no allocation instructions. Therefore, all the load instructions
which correspond to global variables are identified, in order to carry the metadata. If
no load instructions are available, the Annotation Pass searches for a suitable instruc-
tion to carry the metadata. The search is done by a recursive identification function,
which is looking in-depth for the suitable instruction to carry the metadata. A suitable
instruction to carry the sensitive metadata for a global variable is an instruction that
has one operand referring the global variable and that has not any annotation metadata

46 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

attached to it (another sensitive metadata, start, end). For e.g., if we attach the sensi-
tive metadata to an instruction that already has attached the start metadata, that the
start field is replaced by the sensitive metadata field. References to the correspondent
load instructions (or a suitable equivalent) are contained in the operands of the global
variable.

The next step is to identify the calls to the annotation intrinsics. An intrinsic func-
tion is a function that substitutes a sequence of automatically generated instructions
by the compiler. Our code review application uses the annotation intrinsics in order
to find the sensitive variables, the start and the end points marked by the analysts
inside the source code. We mentioned above the annotation intrinsics used by LLVM:
@llvm.global.annotations, @llvm.var.annotation and @llvm.ptr.annotation.p0i8. Our ini-
tial assumption that the LLVM annotation intrinsic calls are always in the entry block
of the function is wrong. Smartcard programmers can declare sensitive variables in any
other basic block of the function as well. Therefore, the Annotation Pass analyzes all the
call instructions from the function. The operands of a call instruction are the callee func-
tion arguments, followed by the function name. Hence, the called function is obtained.
If it is one of the intrinsics, then the first operand of the call function is the annotated
value. The second operand is the proper annotation. Using different casting operations,
the annotated values are obtained, together with the annotation string. In the case of the
global variables, the Annotation Pass implements synchronization between the operands
of the load instructions (or equivalent) and the operands of the annotated variables. The
synchronization was done using an array to store the positions of the load instruction
(or equivalent) references among the global variable operands.

For each identified annotation, the correspondent metadata (sensitive, start, end) is
added. The Annotation Pass gets a pointer to the LLVM context associated with the
current function, that will be added of the new created metadata node. The metadata
is added to the correspondent instructions like:

• alloca instructions for the local variables

• alloca instructions for the start and end points

• load instructions (or equivalent; example: store) for the global variables

• alloca instructions in the case of tainted variables which are locally defined

• load instructions (or equivalent) in the case of tainted variables which are globally
defined

• GEP instructions in the case of arrays (local or global)

• call instructions in some cases of variables which are part of indirect dependencies
(example: in Section 4.2.6.)

The metadata is set to the created metadata node. It updates or replaces the already
present metadata.

3.2. ANNOTATION PASS 47

Initially, the annotations were not translated into the LLVM bitcode. Hence, the
LLVM compilation with debug information enabled was required.

As we mentioned in Section 2.3.5., the Annotation Pass implements a taint analysis
algorithm. Taint analysis plays an important role in providing the input for the applica-
tion developed for this thesis work. The users of our application are the security analysts
who try to identify the vulnerabilities on the smartcard and based on them, they attack
the smartcard using fault injection. The purpose of taint analysis is to complete the set
of sensitive variables that are provided to the application.

For a trivial taint analysis example, we refer the reader to Section 3.6 : in Figure 3.7,
the variable pinVerified is influenced by the pin sensitive global variable. By performing
a taint analysis on the target program, the variable pinVerified will be considered also
sensitive, despite not being initially marked by the security analysts.

The task of marking the sensitive variables inside the target program falls to the
security analysts. Since usually the input provided is not sufficient for our application
to identify all the possible vulnerabilities, a taint analysis algorithm is contained inside
the Annotation Pass. Even if the input improvement is not the scope of this thesis, we
made research in that area. In the Future work section it is presented a taint analysis
based on symbolic execution. The reason why our taint algorithm implemented inside
the Annotation Pass is limited is that we assume we cannot covers all the cases and this
problem can be solved by the taint analysis based on symbolic execution. The limits of
our implemented taint analysis can be seen in Section 4.2.15, Section 4.2.5 or Section
4.2.11.

The taint analysis investigates how the sensitiveness is propagating from one sen-
sitive variable to other variables. A level of taint propagation denotes the following
situation: if we have a pair of variables (a,b) with a being sensitive and a influences the
value which b can take, then b is tainted from a and therefore it is considered sensitive
as well. A n-level of taint propagation means that: if we have a n-tuple of variables
V1, V2, ...Vn with V1 being annotated by the analysts as sensitive and having the
chain V1 influences V2, V2 influences V3, ...Vn-1 influences Vn, then V2 is tainted
from V1 and therefore considered sensitive; then, V3 is tainted from the V2 which is
now considered sensitive; ...Vn is tainted from Vn-1 which is considered sensitive. The
implemented taint analysis algorithm for the Annotation Pass works for the 1st level
of taint propagation. An example can be seen in Section 4.2.10. The embedded taint
analysis algorithm from the Annotation Pass is a searching in-depth function. The
taint algorithm identifies the conditional branches which are using sensitive variables
in their guards. Then, the algorithm searches for the variables which will inherit the
sensitiveness in all the succesor basic blocks. The variables involve in the algorithm can
be locals, globals, arrays, members of a class.

However, the tainted variables from a n-level of propagation can still be identified
by our application if the variables are in a specific order in the program flow. This
situation can be seen in Section 4.2.13. Another order can make the taint algorithm to
not identify all the tainted variables, as explained in Section 4.2.13. We did not improve
the taint algorithm because we decided to use symbolic execution. The approach using

48 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

symbolic execution is described in the Future work section. However, an optional
recursive in-depth function can be added to the Annotation Pass to solve the n-level
taint propagation. We set a limit l on the propagation level. The function calls our taint
algorithm l times, everytime the list with the sensitive variables being updated.

Still, we identified 2 situations when the Annotation Pass is not identifying variables
that are not marked as sensitive, but are part of security checks. The first situation
is presented in Section 4.2.12., when the security analyst is not annotating as sensitive
a variable which influence the values of multiple other values used in security checks,
the result being a cascade of unidentified dependencies. Currently, we assume that the
security analyst has the responsability to give a satisfactory input (necessary for the
taint analysis to give the necessary results) to our application. The second situation
is illustrated by the fact that the Annotation Pass does not identify other cases of
sensitiveness propagation (which is not taint propagation). Examples can be see in
Section 4.2.11., in Section 4.2.15., the alias analysing from Section 4.2.5. Therefore, we
plan to use symbolic execution for the sensitiveness propagation as a future work.

An interesting observation can be made when searching for the instructions to carry
the metadata. In some cases which are not common, we can have the situation presented
below:

On the paths: %retval = alloca i32, align 4, !path !928

0 1 10 11 18 19 28 29 36 37 46 47 54 55 64 65 72 73 82 83

90 91 100 101 108 109 118 119 126 127 136 137 144 145 154

155 162 163 172 173 180 181 190 191 198 199 208 209

On the paths: %retval = alloca i32, align 4, !path !928

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

207 208 209 210 211 212 213 214 215

Apparently, an alloca instruction receives metadata with paths information and then
the metadata is replaced with other metadata with paths information. Still, none of
the two paths is lost. The reason is that the two alloca instructions from above are
different instructions inside the LLVM bitcode. They share only the common assembly
representation. Thus, when the Analysis Pass is searching for the instructions, they are
contained in different basic blocks. In our example from above, the first alloca instruction
is contained inside the entry basic block from the Z9RSAdecryptli function (RSAdecrypt

3.3. PATHS PASS 49

in the source code), while the second instruction is contained inside the entry basic block
from the main function.

For output examples, we refer the reader to Chapter 4.

3.3 Paths Pass

The Paths Pass is the second tool of our application. We can observe in Section 2.3.6.
that the pass receives as input the LLVM bitcode file which is the output of the Anno-
tation Pass.

The Paths Pass uses the metadata added by the Annotation Pass and computes all
the possible execution paths between the start and the end point. The Paths Pass would
transform the LLVM bitcode file, marking for each execution path the contained basic
blocks. In contrast, we can see for each basic block in which paths it is contained. The
metadata added by the pass is going to be used by the Analysis Pass, which is identifying
the smartcard vulnerabilities. The goal of the Paths Pass is to select all the possible
execution paths on which our application will individually apply the code review to find
vulnerabilities.

The Paths Pass is composed of 4 parts:

• the mapping of the basic blocks from the smartcard target program into an oriented
graph

• the algorithm for identifying all the paths in the oriented graph

• the generation of the set of execution paths

• the metadata addition for each basic block; the Paths Pass adds for each basic
block the corresponding execution paths it belongs to

A structure BBnode is used to keep the name of a specific basic block. The basic
block names are unique inside a function, but may conflict in the context of the whole
module. In order to avoid any conflicts, BBnode keeps also the function name. A worklist
is used to keep all the BBnodes.

The Paths Pass uses the LLVM method getAnalysis<CallGraph>() to get the call
graph of the smartcard target program.

Working directly with basic blocks as nodes in the graph is very costly since the basic
blocks are complex structures. Therefore, we adopted the optimal approach of mapping
the basic blocks to integers. The number of the nodes is computed when traversing the
graph to get the BBnodes.

The next step is to construct the edges of the graph. Since we took the decision
to use our own graph with integers (not to work directly with LLVM basic blocks, as
mentioned above), we need to build the edges between the integer nodes. Therefore,
our application identifies how the LLVM basic blocks are linked inside the bitcode file

50 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

and based on this we build the edges for our graph. Our application uses two types of
edges: links between functions and links between basic blocks inside functions. For the
first type of edges, the Paths Pass identifies the connections of the call graph. Hence,
pairs of (Callee, Caller) basic blocks between the functions need to be identified. For
the second type of edges, the successors of every basic block are identified. Therefore,
the Paths Pass adds connections (inside the graph with integers that the Paths Pass
builds) between the basic blocks from the same function. Basically, the Paths Pass is
constructing the control-flow graph for every function.

For the identification of all paths of the graph, the Paths Pass implements the getAll-
Paths method which is based on a Depth-first search algorithm (DFS). The getAllPaths
method is presented in the pseudocode from Figure 3.2. The Paths Pass explores all
the execution paths from the target program control flow and deals with the potential
recursivity problems. A defined stack is used to push and pop the nodes from a work
vector. A Graph class is defined, which contains methods like:

• verification if two nodes are connected

• edge addition to the graph

• verification if a node is a leaf

• getAllPaths method :

int** getAllPaths(int, std::vector<int>&, int**, int*)

having the arguments (in order):

– the required node

– the visited vector which is transmitted by reference

– the integer matrix used to store the set of execution paths

– the number of columns of the matrix, which is transmitted by reference

The getAllPaths uses a recursive algorithm. The required node (correspondent to the
end node marked by the analysts) is marked as visited before calling the getAllPaths
method. The getAllPaths method does the analysis between the start and the end points
annotated by the security analysts. The instructions carrying the metadata information
containing these points (received from the Annotation Pass) are identified in the code.
The start and the end points correspond to two different basic blocks from the graph of
the target program. Therefore, the getAllPaths method will consider only the program
flow between those two basic blocks when it identifies all the possible execution paths.

We use a recursiveness level to limit the number of recursive calls inside the
graph. In Chapter 4, the test-suite was tested with the level 2 of recursiveness. However,
the tests on the application passed with a recursiveness level up to 4. The getAllPaths
method uses the visited vector to keep the identified paths. When the end node is found,

3.3. PATHS PASS 51

Figure 3.2: Pseudocode of the getAllPaths method

the path (the current visited vector) is stored into the result matrix. After a recursive
call of getAllPaths, the visited vector and the recursiveness level are cleared.

The pseudocode presented above is implemented in C++.

The Paths Pass adds the paths metadata information for the Analysis Pass. A loop
iterates over all the basic blocks contained inside the identified execution paths. For the
current basic block, the Paths Pass searches the suitable instruction to carry the path
information metadata in a similar way as the Annotation Pass does (described in Section
3.3). It is very common that a basic block is part of multiple execution paths. Each
path is mapped to an integer, so the metadata sent to the (Analysis Pass) is reduced
in size.

This mapping on paths is different from the mapping on basic blocks done by getAll-
Paths. Our application implements 2 mappings involving integers. One mapping is
used by the getAllPaths method that is implementing an algorithm to search for all the
possible execution paths inside the target program. The algorithm analysis a graph of
integers, with each integer being an identifier for a basic block from the bitcode
file. The second mapping is used by the Paths Pass to add the metadata with path
information for the Analysis Pass. When Paths Pass adds metadata, it uses an integer
identifier for every path that is added to the metadata. The security analyst can
see the paths composition as an output of the Paths Pass. Therefore, all the path ma-
trix does not need to be passed to the Analysis Pass. It is more efficient (and less in
size) to send only the paths identifiers to the Analysis Pass that will use them. The
Analysis Pass needs only the paths identifiers in its processing. Therefore, using the
metadata sent by the Paths Pass, the Analysis Pass can check for each basic block in
which paths it is contained. Therefore, the Analysis Pass knows the security checks
(which are formed from several instructions of the basic block) from a specific basic
block in which paths they are contained. The dependencies involving the security checks
are correspondent to the smartcard vulnerabilities. Therefore, we can see for each vul-
nerability in which execution path it is contained. However, as we will see in the
next section, the Analysis Pass provides the results in differently, meaning that the
Analysis Pass shows separately for each execution path which vulnerabilities it
contains. This process will be explained in Section 3.5.

The composition of the paths represents the output of the Paths Pass. We refer the

52 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

reader to Chapter 4 to see the examples.

3.4 Analysis Pass

The Analysis Pass is the third tool of our application. It is introduced in Section 2.3.7.
The Analysis Pass receives as input the LLVM bitcode file which is the output of the
Paths Pass. The output of the Analysis Pass gives the results of our application. Based
on the results, the security analysts identify the points where to insert fault injection
in the smartcard target source code. The scope is to exploit the founded smartcard
vulnerabilities.

The Analysis Pass uses the metadata added by the Annotation Pass for identifying
the sensitive variables. The pass identifies the dependencies between the security checks
from the smartcard and the sensitive variables. It uses the metadata added by the Paths
Pass to get the execution paths. The Analysis Pass identifies separately the dependencies
found on each path. Based on the results, the security analysts know the places where
to insert fault injection for each possible execution path.

The Analysis Pass is the final tool of the our toolchain. It contains the core of the
application, the actual analysis part of the vulnerabilities that can be further exploited
by fault injection. The Analysis Pass produces the results that indicate the places where
to insert fault injection in order to bypass the security checks from the target program.

The Analysis Pass contains 2 different parts:

• main (the runOnModule method) that gives the final results

• dependencies identification (6 recursive methods) that does the metadata process-
ing (the inputs from the previous passes)

All the parts of the Analysis Pass will be explained in detail in the following para-
graphs.

3.4.1 Main method

The main method is the core of the Analysis Pass. This method gives the final results
of our application. All the needed methods used to identify the dependencies are called
from this method. Furthermore, the metadata from the other passes is handled by the
Main method and the results are processed in the final format. The method is used
to traverse the entire target bitcode. Therefore, the Main module method uses a loop
block that iterates over every function from the target bitcode. The reason for using
a module pass (instead of a function-by-function pass like runOnFunction) is given by
the different execution paths that the target program can take. Concretely, the analysis
should be applied each time only for one execution path. When the fault injection is
inserted into the target program source code, only the vulnerabilities for the current
execution path are taken into account. Therefore, the vulnerabilities are correspondent
to each execution path received from the Paths Pass.

3.4. ANALYSIS PASS 53

The results are stored under a defined format given by a dependency between a
conditional branch instruction and a sensitive variable. A result of the Analysis Pass
has the following fields:

• the conditional branch (for example, an if condition) contained in the security
check

• the place where to insert fault injection (the line number of the instruction
to be avoided from the security check; the instruction can be the conditional
branch/return BAD statement etc.; examples are found in Chapter 4)

• the original sensitive variables on which the conditional branch is dependent (we
are not interested in registers that are used by the guard of the conditional branch
or by the aliases of the original sensitive variable, but in the original sensitive
variable itself)

• the place where the original sensitive variable is declared (the line number in the
source code)

The results will be distributed to each execution path. Each path received via meta-
data from the Paths Pass is memorized in an array of arrays of variable length. The
results are stored in an array with elements of result defined-type of variable length.

The communication with the dependency identification methods is done inside a loop
block, which iterates over every function of the module. A conditional branch can be
dependent on more than one sensitive variable. For a particular conditional branch, the
same sensitive variable can be identified multiple times. An example when this case is
possible (valid for analogous examples): a conditional branch can be directly dependent
on a sensitive variable and can call a function, which is using the same sensitive variable.
In order to avoid the redundant results, the Analysis Pass uses an array of StringRef
type elements (StrinfRef is the LLVM string version) that keeps track of the already
identified sensitive variables.

For every function of the module, all the conditional branches are identified in order
to check if they are part of a security check. An example of typical LLVM conditional
branch is:

%cmp21 = icmp sgt i32 %call20, %5, !dbg !958

In the example from above, the name of the conditional branch is %cmp21. The
type is icmp, which stands for Boolean comparison operation between 2 structures that
do not involve floating-point operands (for example, it can be the LLVM operation
correspondent to an if operation in the source code). Sgt is the condition code that
represents the signed greater than operand. The %call20 operand is a call to a function
(whose result will be used in the icmp comparisson) and %5 stands for a pointer to a
variable. The instruction contains debug information.

For each identified conditional branch, the correspondent dependencies are sought.

54 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

Consequently, the link with the dependency identification (which is presented in the
next subsection) is done.

We present this paragraph in more detail because the Analysis Pass uses analogous
methods (analogous to the first method that we will describe, that is partialResLoad).
All the pointers/variables/methods on which a conditional branch is dependent are iden-
tified. This is done by getting all the load instructions on which the conditional branch
is dependent. The partialResLoad method is called, which is used to identify for a given
conditional branch all the load instructions on which it is dependent. In order to call a
method of type opChecker (the class for our dependency recursive search methods), an
object of type opChecker is created. The partialResLoad method receives as parameters:
the current conditional branch instruction, a synchronization variable and an array that
is keeping the partial results during recursive calls. The received results fill an array
that has its elements synchronized with each conditional branch. The reason for us-
ing this synchronization mechanism is to map the corresponding set of results for each
conditional branch.

The partialResGEP method is the analogous to partialResLoad. It identifies all the
arrays on which a conditional branch is dependent. The difference is that the Analysis
Pass gets all the GEP instructions instead of loads. The Analysis Pass marks as results
only the dependecies that involve sensitive arrays.

The first dependency identification method is resLoadAlloca. The mechanisms used
are similar to the ones used in the case of partialResLoad. For each load instruction
identified by resLoadAlloca, the correspondent set of local variables that are marked as
sensitive by the Annotation Pass are received. Sensitive1 is the metadata used for global
variables, while sensitive is used for local variables. The results are synchronized using
the same mechanism as described in the case of partialResLoad. The same array is used
for the results received with local variables and with global variables, for a more efficient
synchronization with the current load instruction. Consequently, the synchronization
between the resLoadAlloca and resLoadGlobals methods is implemented. The resLoad-
GEP method is analogous with the resLoadAlloca and resLoadGlobals methods. The
difference is that it identifies the dependencies that involve arrays. The Analysis Pass
considers as results only the dependecies which involve sensitive variables/arrays.

An example of the definition of a local variable is:

%secure_flag = alloca i32, align 4, !sensitive !929

The local variables in LLVM are declared using the alloca instruction. LLVM allo-
cates memory on the stack of the currently executing function and it returns a pointer
of the appropriate type to the program. In the example from above, the local variable
secure flag of type i32 was marked as sensitive by the Annotation Pass.

A similar example for a global variable is given below:

@unlock = global i32* null, align 4

As we mentioned in detail in the Annotation Pass, the LLVM metadata cannot be
added to global variable definitions. Hence, the metadata sensitive1 corresponding to

3.4. ANALYSIS PASS 55

the global variables is added to the load instructions (or equivalent instructions which
are suitable to carry the metadata) that reference the global variables. In the example
from above, the unlock global variable is declared. The corresponding load instruction
which carries the sensitive1 metadata is:

%11 = load i32* @unlock, align 4, !dbg !962, !sensitive1 !963

Another dependency identification method is resGlobalsFunctionsSensitive. It works
in the same manner as described in the case of partialResLoad. For each conditional
branch, the Analysis Pass identifies the correspondent set of global variables that are
marked as sensitive1 by the Annotation Pass. It used to search in-depth for global sensi-
tive variables which can be used in a function called by the conditional branch. However,
the function that is using the sensitive variable may be called by other functions, in cas-
cade (as we mentioned in Section 2.3). Hence, the search is made recursively, as we
present in Section 3.5.2.. This type of dependency is an inter-procedural dependency.
An example is presented in Section 4.2.3.

The Analysis Pass identifies the sensitive local variables on which the conditional
branches are dependent in the same manner as in the previous paragraph. In this case,
the used recursive method is resAllocasFunctionsSensitive. Analogous to resGlobalsFunc-
tionsSensitive and resAllocasFunctionsSensitive, the resGEPsFunctionsSensitive method
identifies the sensitive arrays on which the conditional branches from the security checks
are dependent.

The indirect dependecies are also identified by the Analysis Pass. The indirect de-
pendencies involves conditional branches that call functions that have sensitive vari-
ables/arrays as operands. The indirect dependencies are presented in Section 4.2.6.

The Analysis Pass implements a mechanism to detect the duplicated results. If the
result is not a duplicate, it is marked as visited. When a result is printed: the conditional
branch name of the security check is printed, together with the line number where the
branch is in the code. The line number is printed using the getLineNumber method of
the Analysis Pass. Then, the Analysis Pass prints the sensitive variable on which the
conditional branch is dependent and the line number where the variable is defined. In
this case, the findDbgDeclare method of the Analysis Pass is used to get the line number
of the definition.

The Analysis Pass gets the correspondent basic block of the conditional branch and
it checks on which execution paths is found, based on the input received from the Paths
Pass. Therefore, the Analysis Pass prints for each execution path which results it con-
tains.

We can encounter the case when some identified dependencies (by the Analysis Pass)
are not printed as results by our application. The reason is that they are not contained
on any execution path between the points chosen by the security analysts. Still, the
Analysis Pass has the option to print even the depedencies which are not found on any
exection path. They are printed toghether with the message For paths, choose other
start and end points.

Next we present the resursive methods (of the opChecker class which is implemented
by our application) used by the Analysis Pass to identify the dependencies between the

56 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

conditional branches and the sensitive variables. We refer the reader to Chapter 4 for
examples.

3.4.2 Dependencies Identification

The Analysis Pass contains 8 recursive methods that are used to identify the dependen-
cies which involve the conditional branches which are based on sensitive variables. All
the 8 methods were mentioned in the previous section. The sensitive variables are ini-
tially marked by the security analysts or they are tainted variables, which are considered
to be sensitive due the fact that their values are influenced by sensitive variables.

An example of the prototype of a in-depth recursive method used by the Analysis
Pass to identify dependencies is:

Instruction** opChecker::methodName(Instruction *I, int* resSize,

Instruction** localPartialRes)

As we can observe, the method returns a matrix of the LLVM Instruction type,
which is used for local variables. In the case of global variables, the GlobalValue
LLVM type is used. The class which contain the method is called opChecker, which is
followed by the name of the method. The first argument I is a pointer to the instruction
which is representing the conditional branch. The second argument resSize is an array
used to synchronize the results between the conditional branches. The third argument
localPartialRes is the matrix which stores the results that will be sent to the Main
method.

We can see an example of the structure of a recursive function of the resGlobals-
FunctionsSensitive method (described above, the method gets all the inter-procedural
dependencies involving sensitive global variables) in the pseudocode from Figure 3.3.

The first method used is partialResLoad. This paragraph is described in more detail
because there are 7 analogous methods. This method is used to identify all the load
instructions on which a conditional branch is dependent on. It receives as arguments the
current conditional branch, the synchronization variable and the array that keeps the
partial results. The method takes all the operands of the conditional branch instruction
in order to identify a reference to a load instruction. If found, the method stores it in
the partial results array and the synchronization variable correspondent to the current
conditional branch is updated. Otherwise, a recursive call of the method is searching in
depth for load instructions. The results for the current instruction are returned to the
Main method.

After the load instructions (which are operands of the conditional branches) are
identified by the partialResLoad method, the resLoadAlloca method gets all the alloca
instructions that an identified load is dependent on. The alloca instructions are used
to define local variables. The Analysis Pass checks if the local variables are sensitive.
If they are sensitive, then the found dependency is a vulnerability and mark as a re-
sult by our application. However, the current conditional branch can be dependent on
sensitive global variables as well. The resLoadGlobals method is the analogous method

3.4. ANALYSIS PASS 57

Figure 3.3: Pseudocode of the resGlobalsFunctionsSensitive method

used for sensitive global variables. The same array is used to store the results with
local variables and with global variables, for a more efficient synchronization with the
current load instruction. Consequently, the synchronization between the resLoadAlloca
and resLoadGlobals methods is implemented.

The fourth method is partialResGEP. The method is similar with the partialResLoad
method and it is used to identify all the GEP instructions on which a conditional branch
is dependent on. Based on the identified GEP instructions, the resLoadGEP gets all the
load instructions the GEP is dependent on. The resLoadGEP method is similar with
resLoadAlloca and resLoadGlobals. For the current conditional branch, it searches the
sensitive array on which the branch is dependent.

The resGlobalsFunctionsSensitive and the resAllocasFunctionsSensitive methods are
used to identify the inter-procedural dependencies mentioned in Section 3.5.1.. In this
case of dependency, the current conditional branch is dependent on a sensitive variable
which is used in other function. The conditional branch calls a function, that might call
another function that is using the sensitive variable. Therefore, the resGlobalsFunction-
sSensitive and the resAllocasFunctionsSensitive methods search for a in-depth in a cas-
cade of functions for sensitive variables. The resAllocasFunctionsSensitive method iden-
tifies the dependencies that involve sensitive local variables, while resGlobalsFunction-
sSensitive identifies the dependencies that involve sensitive global variables. Analogous
with resGlobalsFunctionsSensitive and resAllocasFunctionsSensitive is the resGEPsFunc-
tionsSensitive method, which is used to identify the inter-procedural dependencies that
involve sensitive arrays.

The Analysis Pass uses the method getLineNumber to get the line number for a

58 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

conditional branch. The conditional branch is dependent on sensitive variables. The
findDbgDeclare method gets the line number of the definition of a local sensitive vari-
able, while the method findDbgGlobalDeclare gets the line number where a global variable
is defined. The methods use the LLVM structure llvm.dbg.cu which keeps debug infor-
mation. From the LLVM structure, Analysis Pass gets the debug metadata nodes, that
are used to characterize LLVM descriptors (DIDescriptor). The Analysis Pass gets the
needed information from the operands of a descriptor. We are interested in the 8th
operand, which gives the line number of the definition of the global variable.

3.5 Proof-of-Concept Example

This section presents the functionality of our application on a trivial target program
example. For more complicated examples, we refer the reader to Chapter4. This example
is given after each tool was presented. The reason for choosing this approach is given
in Section 3.2, where the target program example is introduced. Section 3.2 provides
explanations of the statements from the source code. An example is the return BAD
statement, which can disable the functionality of the smartcard.

As we can see in Figure 2.4 from Section 2.3.4., the target program is compiled into
a bitcode file. The file serves as input for the Annotation Pass. After the start point,
the end point and the sensitive variables are identified, a new bitcode file is produced.
This new bitcode file serves as input for the Paths Pass. The output is a new bitcode file
that contains the information regarding the all possible execution paths. This file is the
input for the Analysis Pass which gives the results. Based on the results, the security
analyst knows where to insert fault injection in order to exploit the vulnerabilities on
the smartcard.

The target program source code is shown in Figure 3.1 from Section 3.2. All the
basic blocks are numbered as we can see in the following figures.

The global variables are declared in the starting basic block (number 1). The analysts
annotated the pin and the balance as sensitive variables. Also, the local variable code is
marked as sensitive. The global variable pinVerified is initialized with BAD.

Figure 3.4 shows the target program example under the form of a control-flow graph.
The annotations in the source code can be observed in the figure. The security analysts
annotated the global variables pin and balance as sensitive (basic block number 1), as
well as the local variable code from the locker function (basic block number 10). The
start point of the analysis is marked in the process function (which was explained in
Section 3.2) (basic block number 2), with the purpose to make review on all the possible
functions (being called from process), which may contain sensitive conditional branches.
As previously mentioned in the 3.2 Target program example section, the purpose of the
attack is to increase the balance on the bank smartcard. Consequently, the end point is
marked after the increasing operation (basic block number 18).

The Paths Pass identifies the possible execution paths between the annotated start
and end points. In the case when the chosen option is to verify the pin, the path 2,3,4 is
identified. A conditional branch which requires pin checking is encounted in the program
flow (basic block number 4). The problem is how to avoid the security check without

3.5. PROOF-OF-CONCEPT EXAMPLE 59

Figure 3.4: Proof-of-Concept Example

knowing the pin value. For a successful attack, the execution of the program should take
the basic block which is returning GOOD. The GOOD value is returned to the switch
condition from the process function.

The next step is to check if the encounter security check is a candidate for fault in-
jection. The Analysis Pass is identifying a direct dependency between the if conditional
branch and the sensitive global variable pin (shown in basic block 4). Based on the
provided result, the security analyst has two options. One option is to skip (by inserting
fault injection) the return BAD statement (explained in detail in Section 3.2 and in
the Chapter4) which may disable the smartcard functionality if called more than 3 times
(if the pin value is wrongly inserted 3 times, the smartcard may stop function) (basic
block number 6). In this case, the value of pinVerified is not set to GOOD, since the flow
is taking the return BAD branch. The second option is to skip the conditional branch
itself (basic block number 4), which leads to the execution of the left-sided basic block,
as seen in the following figure. In this case, the function is returning GOOD (basic block
number 5).

At this step, we assume that the security analyst has chosen the second option (the
choice of the first/second option is not relevant, until the Step 13, which is discussed

60 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

below). The security check was succesfully bypassed (the execution path is 2,3,4,5).

The program flow takes the 2,3,4,5 path, returning to the process function.

The Paths Pass has identified the paths containing the increaseBalance method. If
the user chooses to increase the balance on the smartcard, the program flow encounters
multiple security checks. In this example, we assume that the attacker wants to increase
the balance on the smartcard (basic block number 18), by exploiting the smartcard
vulnerabilities. The first security check is based on the locker authorization method
(basic block number 9).

At Step4, the scope is to bypass the security check mentioned above (basic block
number 9). The Analysis Pass identifies the dependency between the security check and
the sensitive local variable code, which is found by an in-depth recursive search in the
potential cascade of function calls. Again, the security analyst has two options: either
skip the conditional branch which is calling the locker function, either enter in the locker
function (inside the basic block number 10).

Skipping the conditional branch (first option) implies the following instruction return
BAD to be skipped as well (basic block number 11). The second option implies to enter
in the locker function (basic block number 10), which contains another security check.
The place where to insert fault injection is shown the basic block 11.

In the case of the second option, the taken path is 2,8,9,10. Then, another conditional
branch part of a security check is encountered (basic block number 10).

The Analysis Pass identifies the dependency between the conditional branch indi-
cated in basic block 10 and the sensitive local variable code. Therefore, the security
analyst inserts fault injection to skip the following return BAD instruction (indicated in
basic block 13).

The security mechanisms from the locker function are bypassed. The Paths Pass
identifies the path to continue, which is 2,8,9,10,12. We can see that another conditional
branch is encountered (basic block number 12).

The Analysis Pass identifies the same direct dependency as the first one encountered
in this example. The dependency between the sensitive global variable balance and the
conditional branch shown below is exploited as a smartcard vulnerability. Therefore,
fault injection is inserted to skip the return BAD statement (indicated (basic block
number 15).

The conditional branch based on the sensitive variable is bypassed. The program
flow encounters another conditional branch (basic block number 14).

The Analysis Pass checks the dependency related to the encountered conditional
branch. We can observe that the if statement is based on the user’s input (basic block
number 14). The Analysis Pass does not consider this dependency a security check,
because the conditional branch is not dependent on any sensitive variable. The pass is
acting correctly, since this conditional branch is not a smartcard vulnerability (from the
basic block 14), because the security analyst can control the provided input.

The program flow advance is 2,8,9,10,12,14,16, when the last conditional branch
from our example is encountered (basic block number 16).

The Analysis Pass identifies the conditional branch depending on the pinAlias vari-
able (basic block number 16). We can observe that the variable is an alias for the pinVer-
ified global variable, which is transmitted as a parameter. At Step3, we mentioned that

3.6. SUMMARY 61

the chosen option will affect the attack on the smartcard. We assume that the security
analysts did not marked pinAlias as a sensitive variable. However, the Annotation Pass
identifies the pinVerified global variable as being a tainted sensitive variable because its
value is influenced by the sensitive global variable pin (if the pin is correctly introduced,
the value of the pinVerified flag is changed to GOOD) (basic block number 5). As
mentioned in Section 4.2.5., the Annotation Pass does not found the alias as a tainted
variable from pinVerified (which is already identified as a tainted sensitive variable). In
order to identify this security check, the algorithm described in Section 4.2.5. should be
integrated in the tainted analysis algorithm inside the Annotation Pass. Because this
version is not generic, it can only be optionally included. The problem can be solved by
making a taint analysis based on symbolic execution, as mentioned in the Future work
section.

If the optional taint analysis code is not included in the Annotation Pass, then the
succes of bypassing this conditional branch lays in the choices made at Step3. If the
security analyst has chosen to insert fault injection to skip the return BAD statement,
than the value of pinVerified is not changed to GOOD, so the pinAlias will be set to
BAD and the control flow can end into the return BAD operation (correspondent to this
step) (basic block number 19). However, if the security analyst has chosen to skip the
pin verification conditional branch at Step3, than the value of pinVerified would be set
to GOOD. Therefore, the pinAlias would be set to GOOD. We assume that the program
flow is taking first the pin verification branch and after that the branch in which the
balance can be increased. This assumption is sustained by the logical functionality of a
smartcard.

If the security check presented at the previous steps was bypassed, the program flow
is succesfully reaching the increase balance operation (as we see in basic block 18) (basic
block number 18). Therefore, the attack using fault injection was successful and the
balance could have been increased by exploiting the smartcard vulnerabilities identified
by our application.

3.6 Summary

The third chapter presents in detail the application developed for this thesis. The func-
tionality of each of the 3 tools (the Annotation Pass, the Paths Pass and the Analysis
Pass) that form the application is illustrated by a target program example. For more
complex program examples, we refer the reader to Chapter4. We present for each of the 3
tools their local objectives, their functionality, their implementation and the connections
between them or with the external environment.

62 CHAPTER 3. APPLICATION FOR FAULT INJECTION VULNERABILITIES
RECOGNITION

Evaluation 4
The developed application was evaluated and validated on a custom test suite. We
present first this test suite which contains real smartcard test applications, but also
specific experimental programs. The second section presents the obtained results, show-
ing the efficiency of finding vulnerabilities for fault injection. The results show how
the developed application was validated and gives additional comments of the obtained
results.

Riscure provided a test suite, since no benchmark exists [8] for smartcards software.
Other test programs were derived from the Riscure patterns. The test suite is based on
the assumption that it covers the main part of the smartcard vulnerability types [39].

4.1 Test suite

The test suite is composed of target programs on which the application was tested during
implementation and during the evaluation phase. There are two types of test programs:

• Riscure smartcard test programs from training targets

• Experimental programs

The test programs from training targets are smartcard applications that are provided
by Riscure. They are meant to illustrate smartcard fault injection vulnerabilities. These
programs are used on real devices, which are subject to physical attacks. The physical
attacks used by Riscure are various, but they include also fault injection, which is the
relevant attack for this work.

The test suite contains experimental programs as well. The purpose of these programs
is to cover the test cases that are not present in the Riscure real smartcard test programs,
but might occur in other smartcard applications. The experimental programs cover all
the dependency types described in Chapter 3, but also cases when the vulnerabilities
are not identified by our application. Furthermore, the relevant Riscure patterns are
included into the test programs.

The test suite programs cover the most common smartcard programming languages,
including C++, Java, C. For the evaluation of our application, the types of vulnerabilities
covered are more relevant than the number of different programming languages in
which the target programs software is written. The testing methodology follows the
steps described in Section 1.2.2. A description of the steps is presented in the following
paragraphs.

The security analysts mark the sensitive variables inside the target program. Because
usually the input is not sufficient for the analysis to identify all the possible vulnerabili-
ties, a taint analysis was attached to the Annotation Pass. Even if the input improvement

63

64 CHAPTER 4. EVALUATION

is not in the scope of this thesis, we briefly investigated how the input accuracy could
be improved. In Section 3.3. and in the Future work section, the taint analysis based
on symbolic execution is presented, which can be used efficiently to improve the input
initially provided by the security analysts. The taint algorithm included into our ap-
plication is not covering all the taint propagation flow, as mentioned in Chapter3 and
illustrated by several examples in the next sections.

The next step is to compile the target programs, using LLVM specific front-ends:
Clang is used for the C target programs, Clang++ is used for the target programs
written in C++, VMKit is used for the Java/Java Card programs. The optimization
level used is -O0, so the front-end compiles the source code in the most straightforward
way possible, performing no optimization. This is the best option to consider, since the
developed application will perform analysis and transformations on the resulting LLVM
bitcode, taking into consideration all the source code data (e.g. if we would set the -Os
optimization level, Clang would perform dead code removal; smartcards use redundant
security checks based on conditional branches; therefore, some equivalent conditional
branches could be removed by Clang; the result leads to the fact that the Analysis
Pass would not identify a security check because it was removed by the compiler; the
security analysts want to have all the security checks identified). All the statements
from the target source code are converted into the corresponding instructions without
rearrangement or code redundancy removal. For example, we want to avoid the situations
when the compiler considers two conditional branches redundant and eliminates one of
them. Therefore, we want to analyze all the security checks in order to avoid the case
when a vulnerable point to insert fault injection is not taken into account (such a security
check as we already mentioned in this paragraph), even if the developed application is
properly functioning.

The communication between the passes that form the toolchain is made through the
usage of metadata. Therefore, the source level debug information should be generated.

This is done by adding the -g flag when compiling the target programs. The -emit-
llvm flag is also needed, in order to be used the LLVM representation for the assembler
and object files. In order to run only the preprocess, the compile and the assemble steps
needed, the -c flag is used. The -o flag is used to write the output to the resulting LLVM
bitcode file (for example: Test.bc). An optional step can give the resulting bitcode into
a human-readable LLVM assembly form. For this, the llvm-dis disassembler is used.

Based on the bitcode generated from the target program, the Annotation Pass is
producing a new bitcode file, which serves as input for the Paths Pass. Its output is
a bitcode file that represents the input of the Analysis Pass, which produces the final
results. The results can optionally be in the form of a new LLVM bitcode file.

The test suite is composed from 12 target programs. Since there is no benchmark
suite available for smartcard programs [8], we tried to cover the majority of the cases that
Riscure is dealing with. In the next subsection, the cases corresponding to different types
of fault injection vulnerabilities are presented. The different types of vulnerabilities to

4.1. TEST SUITE 65

FAULT.BRANCH 1

FAULT.DETECT 2

FAULT.CONSTANT.CODING 3

FAULT.DOUBLECHECK 4

FAULT.CRYPTO 5

FAULT.BYPASS 6

FAULT.DEFAULTFAIL 7

FAULT.FLOW 8

FAULT.RESPOND 9

FAULT.LOOPCHECK 10

FAULT.DELAY 11

Table 4.1: Riscure patterns

be found by our application are corresponding to different security mechanisms included
by the developers into the smartcard source code. The test target programs include real
smartcard and experimental test programs, written in C, C++, Java.

In Table 4.1., we present the identification number for each of the Riscure patterns.
The numbers are used in Table 4.2. that presents the test-suite.

In Table 4.2., we can see how the Riscure patterns from Table 4.1. are applied inside
the tests from the test-suite.

The test-suite is summarized in the table. We can see on the first row the name of
the test and the type of the test program. On the second row, we can see the Riscure
patterns that are included into the test program.

The scope of the Evaluation chapter is to present all the cases that were encountered
while we were testing our application. In the following sections, we present all the cases
encountered that were related to different types of vulnerabilities.

Please note that the purpose of the fault injection attack is to make a specific piece
of code to return GOOD. This means that a particular security check from the piece
of code is avoided and harming actions can be taken, such as increasing the balance
on the card or withdrawing money. If the piece of code is returning BAD, than a
faultDetect() procedure (or a similar procedure) is triggered, disabling the functionality
of the smartcard.

Please note that the return GOOD statement is just an example, other similar
success actions (in attacking the smartcard) will be presented in the following cases.

The return BAD-like statements (the return BAD format is used in our test suite;
the statement can have other form in smartcard programs, but the functionality is the
same with return BAD). An example of detecting these fail statements for Java Card
programs is by looking for ISOException. The ISOException is the most common way
to end a process on Java Card programs. Other mechanisms are represented by the flag
status codes defined in ISO7816. These statements can easily by detected by the Analysis
Pass, but the results can lead to numerous false positives as explained in the following.

66 CHAPTER 4. EVALUATION

Test01 experimental smartcard test program

Patterns 1; 2; 3; 4

Test02 experimental smartcard test program

Patterns 1; 2; 3; 4

Test03 smartcard test program from training target

Patterns 1; 3; 5

Test04 smartcard test program from training target

Patterns 1; 3; 5; 6; 7

Test05 smartcard test program from training target

Patterns 1; 3; 5

Test06 smartcard test program from training target

Patterns 1; 2; 3; 5; 6

Test07 smartcard test program from training target

Patterns 1; 3; 5; 6;

Test08 smartcard test program from training target

Patterns 1; 2; 3; 4; 5; 7

Test09 smartcard test program from training target

Patterns 1; 3; 5; 7; 8, 9, 10;

Test10 smartcard test program from training target

Patterns 1; 2; 3; 4; 5; 7

Test11 smartcard test program from training target

Patterns 1; 2; 3; 4; 5; 6; 7

Test12 smartcard test program from training target

Patterns 1, 3; 5; 10; 11

Table 4.2: Evaluation tests

One example of a false positive is the fail operations due the abnormal behavior of the
smartcard. Therefore, the smartcard does not fail only because of external attacks (such
as fault injection). Example of a return BAD mechanism is presented in Section 2.4.1.9.

The purpose of the application being under evaluation in this section is to detect the
place in the source code where to insert fault injection, in order to efficiently attack the
card.

4.2 Types of smartcard vulnerabilities

We are interested in the types of the smartcard vulnerabilities encountered in our tests.
The types of vulnerailities are more relevant than the actual test-suite, since we want to
show in which cases our application works and in which cases our application does not
identify the smartcard vulnerabilities. We can see the composition of the test programs
in terms of vulnerability types in Section 4.3.

4.2. TYPES OF SMARTCARD VULNERABILITIES 67

Successful Yes

Vulnerability type Direct dependency

Part of Test01, Test02, Test03, Test05, Test06, Test08, Test10, Test11, Test12

Table 4.3: Case1

4.2.1 Case1

4.2.1.1 Overview

Case1 is a type of vulnerability that is found in 9 target programs, an example being
the first test of our test suite. The Test01 is a smartcard test program from a training
target, written is C. The code example given in Chapter 3 is part of Test01. Table 4.3
shows that Case1 is a successful case because the vulnerability is identified. We can see
from Table 4.3 in which tests this type of vulnerability appears.

The vulnerability is part of the mentioned tests, including the following piece of code:

4.2.1.2 Code snapshot

__attribute__((annotate("DS"))) static uint32_t /* sensitive */ pin;

...

static int verifyPin(uint8_t* input) {

if(pin == (uint32_t)*input) { // line 44

pinVerified = GOOD;

__attribute__((annotate("END"))) int qwe;

return GOOD;

}

return BAD;

}

4.2.1.3 Description

This is one of the most common and trivial vulnerabilities. The purpose of our applica-
tion is to set the pinVerified flag to GOOD and to return GOOD, without knowing the
pin value.

The security analysts annotate the global variable pin as sensitive. Additionally,
the analysts annotate the start point in the main process function (which is not shown)
and the end point in the verifyPin function, with the purpose to increase the balance.
Since the verifyPin function is called immediately after the start point, there are only 2
possible execution paths. However, if the start and the end points would have a larger
number of basic blocks number between them (as it can be seen in the following cases),
the number of possible execution paths would be greater than 200.

The Annotation Pass marks pin as sensitive (using metadata) inside the LLVM
bitcode. The Paths Pass identifies the execution paths which include the specific piece

68 CHAPTER 4. EVALUATION

of code.

Below is a snapshot of the 2 execution paths, which include the particular vulnera-
bility type.

1 2 6 7

1 2 6 8 9 2 6 7

The succession of the basic block from the paths is represented by integers, based on
the mapping presented in Section 3.4. As an example, the path 1 2 6 7 is represented
in the output of the developed application as:

BasicBlock entry Function process Nr 1 => BasicBlock sw.bb

Function process Nr 2 => BasicBlock entry Function verifyPin Nr 6

=> BasicBlock if.then Function verifyPin Nr 7

The Analysis Pass checks for dependencies between the conditional branches and the
sensitive variables. Therefore, it finds the vulnerability and indicates the place where to
insert fault injection. The output of the pass is:

The instruction if from the line number 44 is dependent on

the sensitive global @pin defined at the line number 17

We can see the ouput in LLVM representation:

The path 1 2 6 7 contains the dependencies

%cmp = icmp eq i32 %0, %conv, !dbg !32 i32 44

@pin = internal global i32 0, align 4 i32 17

...

We notice that no sensitive metadata field is attached to @pin. The metadata is
attached to the correspondent load instruction. The detailed explanation can be found
in Section 3.3.

Based on the output of the application, the analysts know that on a specific execution
path they have to insert fault injection into the indicated point. In this vulnerability
example, the indicated point is at the line 44. The conditional check based on pin is
skipped, so the pinVerified flag is set to GOOD, accomplishing the objective.

4.2.2 Case2

4.2.2.1 Overview

Case2 is a type of vulnerability which is similar to the first case, but now the sensitive
variable is local. The chosen example is also taken from the Test01, for a better consis-
tency with the first example. Table 4.4 shows that the case is successful and it shows in
which tests this type of vulnerability appears.

4.2. TYPES OF SMARTCARD VULNERABILITIES 69

Successful Yes

Vulnerability type Direct dependency

Part of Test01, Test02, Test03, Test06, Test07, Test08, Test10, Test11

Table 4.4: Case2

The part of the code in which this vulnerability is encountered is:

4.2.2.2 Code snapshot

static int locker(int n) {

__attribute__((annotate("DS"))) /* sensitive */ double uL_code=0xA4;

...

if (!(n== uL_code))

return BAD; // line 58

__attribute__((annotate("END"))) int qwe;

return GOOD;

}

4.2.2.3 Description

We are still in the area of trivial basic vulnerabilities. The purpose of the attack is to
force the locker function to return the value GOOD. The security analysts annotate the
local uL code as sensitive. The start point is preserved in the process function, which
calls the increaseBalance function, which is calling the locker function. The end point
is marked inside the locker function.

Since the number of basic blocks between the start basic block and the end basic
block (including them) is relatively small, only 15 possible execution paths are between
the two annotated points (considering also the calls to other functions). The Annotation
Pass is marking uL code as being sensitive inside the LLVM bitcode (using metadata).
The Paths Pass identifies the execution paths between the annotated start and end
points. Below is a snapshot of only 3 execution paths from the total of 15 paths.

25 27 5 6 9 21 23

25 27 5 6 9 21 22 24 9 11 12 20 27 5 6 9 21 23

25 27 5 6 9 21 22 24 9 11 13 14 20 27 5 6 9 21 23

An example on how the mapping is done for the 25 27 5 6 9 21 22 24 9 11 12 20
27 5 6 9 21 23 path is shown below (notice that compared to the mapping from Case1,
the mapping integer-basic block is different after changing the end point inside the test
source code):

70 CHAPTER 4. EVALUATION

BasicBlock entry Function process Nr 25 => BasicBlock

sw.bb3 Function process Nr 27 => BasicBlock entry Function

increaseBalance Nr 5 => BasicBlock for.cond Function

increaseBalance Nr 6 => BasicBlock for.end Function

increaseBalance Nr 9 => BasicBlock entry Function locker Nr

21 => BasicBlock if.then Function locker Nr 22 => BasicBlock

return Function locker Nr 24 => BasicBlock for.end Function

increaseBalance Nr 9 => BasicBlock if.end Function

increaseBalance Nr 11 => BasicBlock if.then4 Function

increaseBalance Nr 12 => BasicBlock return Function

increaseBalance Nr 20 => BasicBlock sw.bb3 Function process

Nr 27 => BasicBlock entry Function increaseBalance Nr 5

=> BasicBlock for.cond Function increaseBalance Nr 6 =>

BasicBlock for.end Function increaseBalance Nr 9 => BasicBlock

entry Function locker Nr 21 => BasicBlock if.end Function

locker Nr 23

We notice that the locker function is called 2 times from the switch block from the
main process function (via the intermediate function increaseBalance). The basic block
number 23 is the one containing the end annotation and the return GOOD instruction.

The vulnerability is found by the Analysis Pass. The relevant line of the output is:

The instruction if from the line number 57 is dependent on the sensitive

local %uL_code defined at the line number 55

In LLVM representation, the result is represented like:

The path 25 27 5 6 9 21 22 24 9 11 12 20 27 5 6 9 21 23

contains the dependencies

...

%cmp = icmp eq i32 %0, %1, !dbg !35 i32 57

%code = alloca i32, align 4, !sensitive !29 i32 55

...

The analyst observes the vulnerability from the line 57. Since the scope is to force
the locker function to return GOOD, the instruction to be skipped is the return BAD
from line 58, being the place where to insert fault injection. The scope of the attack is to
skip the security check, with the purpose to withdraw money from the card (operation
which is found later in the program flow).

Therefore, by exploiting the vulnerability from the line 58, the security check from
the example is bypassed.

4.2. TYPES OF SMARTCARD VULNERABILITIES 71

Successful Yes

Vulnerability type Inter-procedural dependency

Part of Test01, Test02, Test03, Test05, Test08, Test10, Test11, Test12

Table 4.5: Case3

4.2.3 Case3

4.2.3.1 Overview

Case3 presents a vulnerability type which is linked to Case2. The context is given by
the fact that the function from Case2 is called from a conditional branch inside the
increaseBalance function. This is also a successful test of the application.

If the first two vulnerabilities were given by direct dependencies (the sensitive vari-
ables being used directly by the conditional branch expression), in this case the depen-
dency is inter-procedural. This means that a conditional branch calls a function (which
may call other functions, in cascade) which uses a sensitive variable on which the origi-
nal conditional branch is dependent. As mentioned in Chapter 3, the Analysis Pass uses
recursive depth searching methods to identify this kind of dependencies.

The vulnerability is part of the extended piece of code from Case2 :

4.2.3.2 Code snapshot

static int locker(int n) {

__attribute__((annotate("DS"))) /* sensitive */ double uL_code=0xA4;

...

if (!(n== uL_code))

return BAD;

return GOOD;

}

...

static int increaseBalance(uint8_t* input, int* pinAlias) {

...

if(!locker(unlock[4]))

return BAD; // line 69

...

balance += input[DATA_O];

__attribute__((annotate("END"))) int qwe;

return GOOD;

72 CHAPTER 4. EVALUATION

4.2.3.3 Description

We can noticed that the end point in the program is now in the increaseBalance func-
tion, due the fact that the purpose of the attack has changed. The new purpose is to
execute the instruction which increases the balance on the smartcard, by bypassing the
encountered security checks.

In this case, the sensitive variable is annotated exactly like in Case2. Therefore
uL code is a local sensitive variable, marked in the LLVM bitcode by the Annotation
Pass. The Paths Pass is calculating all the possible execution paths between the two
points, which are 19 for this case.

Below is a snapshot of 4 execution paths:

25 27 5 6 9 21 22 24 9 11 13 15 17 19

25 27 5 6 9 21 22 24 9 11 13 15 17 18 20 27 5 6 9

11 13 15 17 19

25 27 5 6 9 21 23 24 9 11 12 20 27 5 6 9 11 13 15 17 19

25 27 5 6 9 21 23 24 9 11 13 14 20 27 5 6 9 11 13 15 17 19

An example of mapping (integer - basic block) for the path 25 27 5 6 9 21 22 24 9
11 13 15 17 19 is:

BasicBlock entry Function process Nr 25 => BasicBlock sw.bb3

Function process Nr 27 => BasicBlock entry Function increaseBalance

Nr 5 => BasicBlock for.cond Function increaseBalance Nr 6 => BasicBlock

for.end Function increaseBalance Nr 9 => BasicBlock entry Function

locker Nr 21 => BasicBlock if.then Function locker Nr 22 => BasicBlock

return Function locker Nr 24 => BasicBlock for.end Function

increaseBalance Nr 9 => BasicBlock if.end Function increaseBalance

Nr 11 => BasicBlock if.end5 Function increaseBalance Nr 13 =>

BasicBlock if.end9 Function increaseBalance Nr 15 => BasicBlock

if.end15 Function increaseBalance Nr 17 => BasicBlock if.end18

Function increaseBalance Nr 19

The basic block 9 contains the if conditional branch from the example. The vulner-
ability is identified using the Analysis Pass. The output is:

The instruction if from the line number 68 is dependent

on the sensitive local %uL_code defined at the line number 55

The output has the LLVM representation:

%tobool = icmp ne i32 %call, 0, !dbg !47 i32 68

%code = alloca i32, align 4, !sensitive !29 i32 55

4.2. TYPES OF SMARTCARD VULNERABILITIES 73

Successful Yes

Vulnerability type Tainted Dependency

Part of Test01, Test02, Test06, Test07, Test10, Test11

Table 4.6: Case4

Similar to Case2, the analyst observes the vulnerability related to the line 68 and
marks the line 69 as a fault injection target. Therefore the line 69 is skipped and the
correspondent return instruction is not executed. Furthermore, the attack is a success
because the balance +īnput[DATA O] instruction can be executed.

Please note that: We can observe from the example that the 2 conditional branches
are complementary. This means that if we use fault injection to skip the return BAD
statement from the callee function locker, then the function will return GOOD to the
increaseBalance caller function. Therefore, it is not needed to insert fault injection to
skip the return BAD statement from the increaseBalance function, since the if condition
is not NULL. Therefore, we can state that the 2 if conditional branches are complemen-
tary. The security analysts have the task of identifying these complementary conditional
branches.

It is not the purpose of our application to automatically detect the conditional
branches which are complementary. The implementation of this task at compile-time
(like the entire Analysis Pass) can be prone to errors, since we do not know in which
order the pass is identifying the conditional branches and if one conditional branch is
influenced by the other one for each execution path. The solution is to emulate the
execution of the target program and to use symbolic execution. In conclusion, by using
our application, the analyst can see which points are suitable for fault injection. The
security analyst has the task of choosing which points will serve as input for the physical
fault injection hardware.

4.2.4 Case4

4.2.4.1 Overview

This case presents a vulnerability given by a dependence between a conditional branch
and a variable that is not initially considered sensitive. However, the variable is influ-
enced by another sensitive variable. The variable is called tainted (as seen in Section
3.3).

This type of the vulnerability can be observed in the code snapshot from below:

4.2.4.2 Code snapshot

__attribute__((annotate("DS"))) static uint32_t /* sensitive */ pin;

74 CHAPTER 4. EVALUATION

static int pinVerified;

....

if(pin == (uint32_t)*input) {

pinVerified = GOOD;

return GOOD;

}

....

if(!pinVerified) {

return BAD; // line 71

}

4.2.4.3 Description

The code is formed from three pieces: the first piece is part of the globals declaration
and the other two pieces reside in different functions. The purpose of the attack is to
bypass the if(pinVerified) conditional branch.

Case 4 is connected to Case1. In Case1, the conditional branch instruction (illus-
trated also here) was skipped, so the pinVerified value was set to GOOD. On the other
hand, the pinVerified variable is used by a conditional branch later in the program (after
the pin is checked for authentication, so pinVerified is set to GOOD).

However, pinVerified is not initially considered sensitive by the security analysts, so
the branch might not be considered to be vulnerable. The solution is given by the Anno-
tation Pass, which integrates a taint analysis algorithm that helps the sensitiveness to be
propagated through the source code. In the authentication part of the code, we observe
that the value of pinVerified is influenced by the sensitive global variable pin. Therefore,
the pinVerified flag is tainted by the pin global. The Annotation Pass checks all the
conditional branches which use sensitive variables and takes the target basic blocks (the
conditional branch operands). In each target basic block, it searches for instructions that
change the values of variables that are not considered sensitive. An example for such an
instruction is store, having the value to be stored (1 for GOOD) as the first operand and
the place to store it (pinVerified) as the second operand. Consequently, the Annotation
Pass adds the sensitive metadata field to the tainted variable. The implementation used
by the Annotation Pass does not take into consideration all the possible cases of taint
analysis (like the particular case of alias analysis), which is described in Case5. In order
to efficiently cover the taint analysis, a symbolic execution approach using KLEE over
LLVM is proposed as future work. The KLEE tool is introduced in the Section 2.2.1.3.

The Paths Pass discovers 19 paths, like in Case3 (since the target program is identi-
cal). Consequently, the Paths Pass output is analog. The conditional branch where the
vulnerability exists is part of the if.end basic block from the increaseBalance function.

The Analysis Pass identifies the conditional branch that is dependent on the tainted
pinVerified variable:

The instruction if from the line number 70 is dependent on the

4.2. TYPES OF SMARTCARD VULNERABILITIES 75

Successful** No

Vulnerability type Alias Dependency

Part of Test01, Test03, Test07, Test09

Table 4.7: Case5

tainted global @pinVerified defined at the line number 18

The equivalent LLVM representation is:

%tobool3 = icmp ne i32 %5, 0, !dbg !50, !path !28 i32 70

@pinVerified = internal global i32 0, align 4 i32 18

In contrast to the other LLVM representations from above, this conditional branch
contains the metadata with the paths information provided by the Paths Pass. This
means that in the particular basic block number 11 (the if.end basic block from the
increaseBalance function), the icmp instruction is the first instruction that does not
have already metadata added. Therefore, it is chosen to transport the paths metadata
to the Analysis Pass. The detailed logic is presented in Section 3.3.

The analyst observes the vulnerability from the line 70 by checking the output of the
Analysis Pass. Since the purpose is to bypass the security check, the security analyst
triggers fault injection at the line 71 with the purpose to skip the return BAD statement.

4.2.5 Case5

4.2.5.1 Overview

Case 5 shows a vulnerability that the developed application does not detect. This case
is the last example given from the Test01 target program. It is related to the sensitivity
propagation using aliases.

**This case is considered unsuccessful in the general case. However, a small algorithm
can be optionally added to the developed application in order to solve some particular
cases, like the one which is presented below. This algorithm will be presented in the
Description section.

The following piece of code illustrates the vulnerability:

4.2.5.2 Code snapshot

int process(uint8_t* /* insensitive */ input) {

__attribute__((annotate("START"))) /*start*/ int asd;

uint16_t sw;

....

76 CHAPTER 4. EVALUATION

Figure 4.1: Case 5 pseudocode solution

switch(input[INS_O]) {

....

case INCREASE:

sw = increaseBalance(input,&pinVerified);

break;

....

static int increaseBalance(uint8_t* input, int* pinAlias) {

....

if(!*pinAlias) {

return BAD;

}

....

__attribute__((annotate("END"))) /*end*/ int qwe;

4.2.5.3 Description

The start point is indicated in the process function and the end point is in the increase-
Balance function. The purpose of the attack is to bypass the if(!*pinAlias) conditional
branch. As seen in Case4, the pinVerified global variable is tainted by the sensitive global
variable pin, so is the sensitiveness is propagated to pinVerified. On the INCREASE
switch branch from the process function, the increaseBalance is called with an argument
which represents a reference to pinVerified.

The increaseBalance function uses pinAlias as an alias for the pinVerified variable.
The pinAlias variable is used in an alias dependency. The scope is to bypass the if
conditional branch, but the developed application does not take it into account as a
vulnerability during the analysis. The reason is that our application does not support
alias analyzing.

In order to solve the problem, we present two solutions:

• using a straight algorithm (for this particular case, the algorithm can be optionally
added to the application). The algorithm is shown in Figure 4.1.

• using symbolic execution with KLEE (presented in Future Work)

4.2. TYPES OF SMARTCARD VULNERABILITIES 77

The first solution (using the small algorithm) solves the particular case from this
example, but it cannot be generalized.

In order to solve the lapses of the first solution, we propose the symbolic execution
as a future work. The target program can be symbolically executed.

4.2.6 Case6

4.2.6.1 Overview

Case6 is a type of vulnerability which is part of a test case that simulates the Oracle
padding function [31]. In this case, the target program is written in C++, so classes,
methods and objects are used. Also, a sensitive array is used inside the conditional
branch presented in this test case. Padding oracles are part of a vulnerability class that
provides side channel information, usually by abusing the padding check in order to
decrypt ciphertexts.

This example is taken from a test case used for a SIM (subscriber identity module)
card, a special type of smartcard used for mobile phones. The flow of the relevant
operations is the following: The ciphertext C is encrypted from the plaintext P using
the secret key K. After several operations, the ciphertext C is decrypted using the same
key K into P. Then, P is checked if valid, using the confidentialityPadding1 method.

The context of this example is given by the following situation: Before a SIM is
released on the market, it is programmed with a secret key Ki, which is 128-bit long.The
key Ki should be used on special algorithms that run internally on the SIM. A copy of
the key is kept at the Authentication Center of the network operator. The key is used in
the authentication process in the GSM protocol, with the purpose to encrypt the voice.
In the test case Test06, the purpose of the attacker is to change the value of Ki on the
SIM card. Therefore, the attacker can perform a DOS (denial of service) attack, so the
mobile client cannot authenticate to the Authentication Center for accessing the voice
encryption service (since the value of Ki is different on the SIM and at the Authentication
Center). Furthermore, the attacker can listen the unencrypted voice.

The key Ki is kept encrypted on the SIM and we use the 128-bit long array C for
this purpose. The masterkey K is used in order to change the Ki value on the SIM.
The decrypted plaintext Ki is checked if valid using a confidentiality padding function
(in this test case). If the result is validated, the atttacker can undertake actions like
changing the value of Ki. The attacker does not know the secret key K used to decrypt
the ciphertext C. Therefore, the scope of the attack is to bypass the validation security
check of the decrypted Ki.

The resulted padding is checked using the confidentialityPadding1 method of the
SecCheck class. The details of the Oracle confidentiality checking (checking if the last
bytes are either 1, 22, 333 etc.) are not relevant for the test case presentation. One
possible attack against the Oracle function is to bypass the conditional branch. The
attack is accomplished by our application. The Analysis Pass highlights the indirect
dependency type.

The Indirect Dependency type can be observed in the following piece of code, being

78 CHAPTER 4. EVALUATION

Successful Yes

Vulnerability type Indirect dependency

Part of Test06, Test09, Test10, Test11

Table 4.8: Case6

explained in the following section.

4.2.6.2 Code snapshot

__attribute__((annotate("DS"))) unsigned char Ki[128];

.....

class SecCheck {

private:

...

int confidentialityPadding1(unsigned char *Ki1)

{

int i;

for (i=128-Ki1[127]; i<127; i++){

if(Ki1[127]!=Ki1[i]){

return 0;

}

return (Ki1[127]!=0);

}

}

};

.....

SecCheck padd;

...

__attribute__((annotate("START"))) int asd;

...

decrypt(C, Ki, padd.K);

...

if(!(padd.confidentialityPadding1(Ki)))

return BAD; // line 124

....

unsigned char* input;

read(input, 128);

....

for(i=0;i<128;i++){

Ki[i]=input[i];

....

__attribute__((annotate("END"))) int qwe;

4.2. TYPES OF SMARTCARD VULNERABILITIES 79

....

4.2.6.3 Description

The SecCheck class has multiple security checking methods, the confidentialityPadding1
being relevant for this test case. Inside the main function, the conditional branch that
is calling the confidentialityPadding1 method is between the annotated start and end
points. The security analysts have annotated the array Ki as sensitive, because it can
be used in security checks. The scope of the attack is to bypass the security branch
invoking the confidentialityPadding1.

The type of dependency discovered by the application is an indirect dependency. In
this type of dependency, the conditional branch is calling a function having one of the
arguments a sensitive variable.

This type of dependency is different from a direct dependency, since the sensitive vari-
able is not one of the condition arguments. Also, it is different from an inter-procedural
dependency, since inside the called method no variable is considered sensitive. As men-
tioned in Chapter 3, the declarations of global variables (arrays in this case) cannot
have metadata. Therefore, the call instruction which is the argument of the conditional
branch and which is using the sensitive array Ki is annotated as sensitive:

%call = call i32 @_ZN8SecCheck17confidentialityPadding1EPh

(%class.SecCheck* %padd, i8* getelementptr inbounds ([128 x i8]

* @Ki, i32 0, i32 0)), !dbg !955, !sensitive1 !949

This annotation is valid because the call instruction is using only one variable. There-
fore, we know that the specific call is carrying sensitive metadata only for Ki. Con-
sequently, the sensitiveness cannot propagate to other variables, like in the case when
the sensitiveness-carrier instruction has as arguments more variables (in this case the
call instruction is the sensitiveness-carrier for Ki). The Paths Pass identifies 89 possible
execution paths, the relatively small number being the consequence of the location of the
start point, which is close to the conditional branch. The basic block containing the con-
ditional branch (which the attacker wants to bypass) is for.end from the main function,
while the confidentiality method is part of 6 basic blocks. The actual confidentiality check
is part of the for.body basic block of the ZN8SecCheck17confidentialityPadding1EPh
function.

The Analysis Pass identifies the indirect dependency between the conditional branch
and the sensitive array P by verifying if the arguments of the call instruction are sensitive
variables. Since the declaration of Ki could not carry the metadata transmitted by the
Annotation Pass (because it is global, as explained in Section 3.3), the Analysis Pass
searches the instruction carrying the metadata. The call instruction is used to carry the
sensitive metadata for the Ki array. The Analysis Pass identified the call instruction,
takes the Ki operand and discovers that the operand is sensitive. This leads to the fact
that the conditional branch is dependent on Ki.

The resulting dependency is:

80 CHAPTER 4. EVALUATION

Successful No

Vulnerability type Direct Dependency

Part of Test07, Test12

Table 4.9: Case7

The instruction if from the line number 123 is dependent on the sensitive

global @Ki defined at the line number 10

In LLVM format:

%tobool = icmp ne i32 %call, 0, !dbg !957, !path !934 i32 123

@Ki = global [128 x i8] zeroinitializer, align 1 i32 10

The purpose is to bypass the security check which leads to return BAD (as mentioned
in the other test cases). Therefore the point marked to insert fault injection is the line
124, which is the next code line after the identified conditional branch. Consequently,
the return BAD statement is skipped. The attacker/security analyst changes the key Ki
and consequently, the mobile client cannot authenticate in order to use the encrypted
voice service.

4.2.7 Case7

4.2.7.1 Overview

The Case7 type of smartcard vulnerability is based on the test case programs used for
debit cards. This case is unsuccessful, since it needs a different approach of interpret-
ing the dependencies compared to the current functionality of the Analysis Pass. The
dependency is identified, but our application does not consider it as a vulnerability.

The focus is on the operation which encrypts using the secret key K the data buffer
into an encrypted buffer. DES is the used encryption algorithm. If the security analyst
would inject faults at the line where the encryption function is called, than the encryption
of the buffer would be skipped. A conditional branch from the Test12 is double checking
if the encryption was accomplished, using the desVerified flag. However, this conditional
branch (not relevant for Case7) is identified by our application as a tainted dependency
and consequently not presented here, but shown in the code (being based on a flag that
changes its value inside the encryption function; the concept is explained in Case4). The
vulnerability case based on this example is presented into the Description section.

The situation is illustrated in the next code snapshot:

4.2.7.2 Code snapshot

//stored password

__attribute__((annotate("DS"))) unsigned char deskey[168];

4.2. TYPES OF SMARTCARD VULNERABILITIES 81

//given password

__attribute__((annotate("DS"))) unsigned char inputkey[168];

....

int displayUserData(unsigned char *ukey,

const char* field){

....

if(! desVerified)

return BAD;

snameC=extract(buffer,field);

//ukey is an alias for deskey

desDecrypt(ukey, snameC, DECRYPT);

....

return sname;

}

....

int main(int argc, char* argv[]){

....

unsigned char* inputkey;

read(inputkey, 168);

....

__attribute__((annotate("START"))) int asd;

desEncrypt(inputkey, buffer, ENCRYPT);

....

displayUserData(deskey,surname);

....

__attribute__((annotate("END"))) int qwe;

....

4.2.7.3 Description

The goal of the attack is to get the personal data of the smartcard user in plaintext.
In the presented example, the attackers aim for the surname field. The personal data of
the user is part of the encrypted buffer.

The data is retrieved by calling the displayUserData method, based on a secret key
and on the surname field. The attacker does not know the deskey used to obtain the
secret data. Inside the DES encryption function, the inputkey data required from the user

82 CHAPTER 4. EVALUATION

is matched against the deskey secret key stored on the smartcard. The given password
from the user is inputkey, while deskey is the password stored on the smartcard.

The way to achieve the goal is to insert fault at the line number 54, so the encryption
requiring the correct inputkey is skipped.

The Analysis Pass does identify the dependency between the desEncrypt method and
the sensitive array deskey. However, the application is currently looking for conditional
branches that can lead to fault detection procedures that can disable the functionality
of the smartcard. The dependencies between method calls and sensitive variables need
a different approach. The application does not consider the dependency as a result that
gives a point where to insert fault injection.

The dependency is illustrated below in LLVM format:

call void @_Z7desEncryptPhS_PKc(i8* getelementptr inbounds

([168 x i8]* @deskey, i32 0, i32 0), i8* getelementptr inbounds

([40 x i8]* @buffer, i32 0, i32 0), i32 1), !dbg !936

The buffer is encrypted using the DES algorithm. A conditional branch based on
the tainted variable desVerified is insuring that the user data is displayed only if the
buffer has been encrypted. This conditional branch can be bypassed as presented in
Case4. From the encrypted buffer, there is extracted the field corresponding to the users
surname.

Still, the field is encrypted, because our application did not detected the desEncrypt
operation as a place where to insert fault injection. As a summary, the solution is:
consider the DES encryption as an operation to be skipped by using fault injection,
so the returned surname will be in plaintext. Also, the conditional branch from the
displayUserData method (that is checking if the encryption was done should be bypassed)
as we did in Case4.

The question Why we do not consider the call to the desEncrypt instruction operation
a result? may arise. The reason is that we need to define a procedure for considering a
call instruction (having sensitive variables as arguments) a result. False positives cases
may arise if you consider all such instructions as results. Such a situation is presented in
the code snapshot from above, given by the desDecrypt function. Assuming that the ukey
is found to be sensitive (by sensitiveness propagation for aliases), than the application
would consider the desDecrypt(ukey, snameC, DECRYPT) operation as a point to insert
fault injection, because the operation is a call instruction using a sensitive argument.
Since the decryption is not requiring any user input for the key, this operation should
not be skipped, in order to have a successful attack against the confidentiality of the
user data (because the decrypt operation is needed for the attack in order to have access
to plaintext). Therefore, we need a procedure to differentiate between the valid results
and the false positives.

4.2. TYPES OF SMARTCARD VULNERABILITIES 83

Successful Yes

Vulnerability type Direct Dependency

Part of Test08

Table 4.10: Case8

4.2.8 Case8

4.2.8.1 Overview

This case aims not to present a different type of vulnerability, but to show an example
with Java source code. The case contains a direct type of dependency based on a sensitive
global variable. However, we needed to make adjustments to the Annotation Pass. The
chosen example is taken from the Test case 8 which is part of bank smartcard programs.

The part of the code that contains the dependencies is shown below:

4.2.8.2 Code snapshot

class MYGL {

static int pin;

static int balance;

}

....

public class Main {

private static final int SW_WARNING_STATE_CHANGED

= 33;

public static void main(String[] args)

throws Exception {

try{

TestAnnotationParser parser =

new TestAnnotationParser();

parser.parse(Annotated.class);

int creditAmount;

creditAmount=4597;

....

if(MYGL.pin!=buffer){

return BAD; // line 117

// ISOException.throwIt(SW_WARNING_STATE_CHANGED);

}

MYGL.balance=creditAmount+6094;

....

84 CHAPTER 4. EVALUATION

if(MYGL.balance>3006)

return BAD1; // line 132

// ISOException.throwIt(SW_WRONG_P1P2);

}

....

catch (IOException ioe) {

System.out.println("Warning incorrect pin : " +

SW_WARNING_STATE_CHANGED + ioe.getMessage());

}

}

}

4.2.8.3 Description

The standard Annotation Pass cannot be used in the same format for the Java target
programs, so modifications were done in the code. The reason is that the VMKit tool
(presented in Section 2.2.1.3) does not support yet Java source code annotations. More
exactly, when the Java source code is translated into LLVM bitcode, the source code
annotations are ignored in the generation phase. A distinction is made between the
source code annotations which are not supported (needed by our application, to perform
queries) and the proper internal annotations structures used in J3 (tool from VMKit,
whom implementation does not rely on LLVM annotations as well). In the VMKit
representation, a Java objects is a set of bytes in the heap and these bytes can be moved
by the garbage collector. The runtime representation of a class is another object (based
on the same logic). Therefore, an annotation at Java level should be in fact an object,
which is a description/metadata of the members inside the class. However, the source
code annotations are not supported by VMKit.

Below we can see the custom source code Java annotation that we tried to use to
mark the sensitive variables:

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import java.lang.reflect.Method;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@interface Sensitive {

String info() default "";

}

4.2. TYPES OF SMARTCARD VULNERABILITIES 85

class Annotated {

@Sensitive (info = "DS")

public void foo(String myParam) {

System.out.println("This is "

+ myParam);

}

}

class TestAnnotationParser {

public void parse(Class clazz)

throws Exception {

Method[] methods = clazz.getMethods();

for (Method method : methods) {

if (method.isAnnotationPresent

(Sensitive.class)) {

Sensitive test = method.getAnnotation

(Sensitive.class);

String info = test.info();

if ("DS".equals(info)) {

System.out.println("Variable

is sensitive!");

// try to invoke the method

with param

method.invoke(

Annotated.class.newInstance(),

info);

....

public class Main {

public static void main(String[] args)

throws Exception {

TestAnnotationParser parser = new

TestAnnotationParser();

parser.parse(Annotated.class);

....

The Annotation Pass was modified to receive the variables which are considered
sensitive as input from the keyboard. The global variables pin and balance are identified
in the LLVM code by looking at the @MYGL static global:

For pin:

({ i32, i32 }* @MYGL_static, i32 0, i32 1)

For balance:

86 CHAPTER 4. EVALUATION

balance = ({ i32, i32 }* @MYGL_static,

i32 0, i32 0)

The Annotation Pass was also modified regarding the searching for the variable
names. The LLVM bitcode from Java does not preserve the variable names like in the
C/C++ case. The tool was changed to look for arrays of UTF-16 type that are used for
strings. Therefore, the Annotation Pass identified the variables and the class by looking
at the ASCII code format contained in LLVM internal constants. For example, the string
balance is contained in:

@43 = internal constant { i32, [7 x i16] } { i32 7, [7 x i16]

[i16 98, i16 97, i16 108, i16 97, i16 110, i16 99, i16 101] }

Translating the array elements from the ASCII decimal format, the resulting string
is balance. The Annotation Pass marks as sensitive the indicated global variable. In the
case of the pin variable, the transformed instruction which carries the metadata is:

%95 = load i32* getelementptr inbounds ({ i32, i32 }*

@Global_static, i32 0, i32 1), align 4, !sensitive1 !6

A problem (which is not affecting this case example) may arise when dealing with
Java-into-LLVM translation of the local variables. In our example, the local variable is
creditAmount. Even if in our example the compiler is optimizing the code and considers
the local variable as a constant (it stores 10691 directly into balance, which is the addition
result between the creditAmount value of 4597 and the added value of 6094; also there is
no alloca instruction), the local variable name is not preserved in any case. The reason
is that the LLVM Java bitcode does not give and use the name of the local variables.
In the standard Java bitcode, the names of the local variables are found in an attribute
used for debugging, but currently VMKit does not use this attribute. The LLVM bitcode
which vmjc (tool from VMKit) emits does not contain the names of the local variables.

The goal of the attack is to bypass the two security checks from the smartcard
program. Both dependencies from the target program example are direct dependencies.
In the case of the pin variable, the output of the Analysis Pass in LLVM format is:

%96 = icmp slt i32 %95, 1966 printing a <null> value

i32* getelementptr inbounds ({ i32, i32 }* @Global_static, i32 0,

i32 1) printing a <null> value

As we can see, the line numbers are not printed because the specific methods from
the Analysis Pass do not work on the Java LLVM bitcode. The analysts have to do an
extra manual check to identify the corresponding conditional branches in the code (based

4.2. TYPES OF SMARTCARD VULNERABILITIES 87

Successful Yes

Vulnerability type Inter-procedural Dependency

Part of Test04

Table 4.11: Case9

on the LLVM output), operation that will slightly increase the workload. Therefore, one
place to insert fault injection is at the line 117 to avoid the return BAD statement.

This statement may call the ISOException.throwIt(SW WARNING STATE CHANGED)
Java Card API operation that can temporary disable the functionality of the smartcard
if the pin value is incorrect more than 3 times. In the case of the balance sensitive
global variable, the place to insert fault injection is at the line 132. In this case the
return BAD1 may be used to trigger the ISOException.throwIt(SW WRONG P1P2)
JAVA Card API operation that forbids the balance to exceed a certain value.

4.2.9 Case9

4.2.9.1 Overview

This case is part of a test target program that emulates the FAULT.BYPASS Riscure
pattern, which is presented in Section 2.4. This type of smartcard vulnerability denotes
an inter-procedural dependence (as in Case3), but it requires a different approach as pre-
sented in the Description paragraph. On the other hand, the specific FAULT.BYPASS
examples (part of the same test) are presented in Case10 and Case11.

We can see the inter-procedural dependency in the code snapshot from below:

4.2.9.2 Code snapshot

int flag11=0;

int flag12=1;

int flag21=1;

int flag22=1;

class SecCheck {

public:

__attribute__((annotate("DS"))) const

char K[7]="secret";

....

int integrityPadding2(unsigned char *P2)

{

88 CHAPTER 4. EVALUATION

const char* sloc = "secret";

flag12=0;

if (K != sloc){

flag21=0; // line 45

flag22=0;

return BAD; // line 47

}

return GOOD;

}

};

....

int main(int argc, char* argv[]){

....

if(!(padd.integrityPadding2(P)))

return BAD; // line 88

....

4.2.9.3 Description

This case presents an inter-procedural dependency which is different from the dependency
from Case3. The difference is given by the fact that a conditional branch is dependent
on a sensitive local variable which is declared inside a class definition, not and is declared
inside a method.

In order to identify the dependency from this case, the Annotation Pass queries the
LLVM intrinsic llvm.ptr.annotation.p0i8. The sequence of instructions between the local
variable used (%arraydecay) and the definition of the sensitive variables is longer, as we
can see in the next snapshot.

%K = getelementptr inbounds %class.SecCheck* %this1, i32 0,

i32 0, !dbg !991, !sensitive !992

%0 = bitcast [7 x i8]* %K to i8*, !dbg !991

%1 = call i8* @llvm.ptr.annotation.p0i8(i8* %0, i8* getelementptr

inbounds ([3 x i8]* @.str2, i32 0, i32 0), i8* getelementptr

inbounds ([9 x i8]* @.str1, i32 0, i32 0), i32 22), !dbg !991

%2 = bitcast i8* %1 to [7 x i8]*, !dbg !991

%arraydecay = getelementptr inbounds [7 x i8]* %2, i32 0,

i32 0, !dbg !991

4.2. TYPES OF SMARTCARD VULNERABILITIES 89

For this type of vulnerability, the Analysis Pass is looking for a getelementptr in-
struction for the definition of the sensitive local variable, instead of an alloca instruction
which is more common in our test suite. We can see that the Annotation Pass is using
a getelementptr instruction for carrying the sensitive metadata. The Paths Pass takes
all the execution paths. A snapshot of 5 of the total of 147 possible execution paths is:

7 1 2 5 7 8 9 10 8 11 22 24 25

11 13 15 16 17 19

7 1 2 5 7 8 9 10 8 11 22 24 25

11 13 15 17 19

7 1 2 5 7 8 11 13 15 16 19

....

7 1 2 3 4 2 5 7 8 9 10 8 11 22 23

25 11 13 15 16 19

7 1 2 3 4 2 5 7 8 9 10 8 11 22 23

25 11 13 15 16 17 19

The last execution path from the snapshot is mapped as:

BasicBlock entry Function main Nr 7 => BasicBlock entry

Function _Z7decryptPhS_PKc Nr 1 => BasicBlock for.cond

Function _Z7decryptPhS_PKc Nr 2 => BasicBlock for.body

Function _Z7decryptPhS_PKc Nr 3 => BasicBlock for.inc Function

_Z7decryptPhS_PKc Nr 4 => BasicBlock for.cond Function

_Z7decryptPhS_PKc Nr 2 => BasicBlock for.end Function

_Z7decryptPhS_PKc Nr 5 => BasicBlock entry Function main Nr 7

=> BasicBlock for.cond Function main Nr 8 => BasicBlock for.body

Function main Nr 9 => BasicBlock for.inc Function main Nr 10 =>

BasicBlock for.cond Function main Nr 8 => BasicBlock for.end

Function main Nr 11 => BasicBlock entry Function

_ZN8SecCheck17integrityPadding2EPh Nr 22 => BasicBlock if.then

Function _ZN8SecCheck17integrityPadding2EPh Nr 23 => BasicBlock

return Function _ZN8SecCheck17integrityPadding2EPh Nr 25 => BasicBlock

for.end Function _ZN8SecCheck17integrityPadding2EPh Nr 11 =>

BasicBlock if.end Function main Nr 13 => BasicBlock if.end8 Function

main Nr 15 => BasicBlock lor.lhs.false Function main Nr 16 => BasicBlock

lor.lhs.true Function main Nr 17 => BasicBlock if.end13 Function

main Nr 19

On the execution path from above, the Analysis Pass identifies the inter-procedural
dependency and a direct dependency (which is linked with the first dependency). Both
of them are related to the sensitive key K :

The relevant inter-procedural dependence for this case is:

The instruction if from the line number 87 is dependent on

the sensitive local %K defined at the line number 22

90 CHAPTER 4. EVALUATION

The direct dependency present inside the integrityPadding2 method of the SecCheck
class is:

The instruction if from the line number 44 is dependent on

the sensitive local %K defined at the line number 22

The two dependencies in the LLVM specific format are:

Instruction %cmp = icmp ne i8* %arraydecay, %3, !dbg !949

from line number i32 44 is dependent on

instruction %K = getelementptr inbounds %class.SecCheck*

%this1, i32 0, i32 0, !dbg !991, !sensitive !992 i32 22

Instruction %tobool = icmp ne i32 %call,

0, !dbg !960

from line number i32 87 is dependent on

instruction %K = getelementptr inbounds %class.SecCheck*

%this1, i32 0, i32 0, !dbg !991, !sensitive !992 i32 22

Like in Case3, we observe that the 2 sensitive checks are complementary. If we skip
the sensitive check from integrityPadding2 using fault injection, then the method will
return GOOD, so the sensitive check from the lines 87-88 will be not return BAD since
the guard of the conditional branch is true. In contrast, if we insert fault injection to
bypass the security check from main, then the method integrityPadding2 will not be
called and the security analyst does not have to insert another fault injection inside the
method. However, this scenario is valid only when the start and the end points are set
as for Case9. In this context, the points characterize the purpose of the attack.

The goal of the attack is to skip the two return BAD statements correspondent to
the identified dependencies from above. Therefore, based on the results provided by the
Analysis Pass, the security analysts will mark the lines 47 (the return BAD statement)
and 88 (the return BAD statement) as places to insert fault injection. Next, two other
cases from the same target test example can be seen.

4.2.10 Case10

4.2.10.1 Overview

This case presents a smartcard vulnerability which is part of the same target test as
Case9 and Case11. This case is given by the implementation of the FAULT.BYPASS
Riscure pattern, which is described in the Section 2.4. of this thesis.

We can see the tainted dependency in the code snapshot from below:

4.2. TYPES OF SMARTCARD VULNERABILITIES 91

Successful Yes

Vulnerability type Tainted Dependency

Part of Test04, Test11

Table 4.12: Case10

4.2.10.2 Code snapshot

int flag11=0;

int flag12=1;

int flag21=1;

int flag22=1;

class SecCheck {

public:

__attribute__((annotate("DS"))) const

char K[7]="secret";

....

int integrityPadding2(unsigned char *P2)

{

const char* sloc = "secret";

flag12=0;

if (K != sloc){

flag21=0;

flag22=0;

return BAD;

}

return GOOD;

}

};

....

int main(int argc, char* argv[]){

....

if((!flag21 || !flag22) &&

(flag21 != flag22)){

return BAD; // line 94

92 CHAPTER 4. EVALUATION

}

....

4.2.10.3 Description

The aim of the attacker is to bypass the conditional branch depending on the 2 global
flags (flag21 and flag22). As we can be see in the code, the conditional branch is not
initially dependent on any sensitive variable marked by the security analysts. However,
the Annotation Pass is handling this situation. We need to insert fault injection in the
situations when the pairs (flag11-flag12 and flag21-flag22) have elements with different
values.

For example, this situation can be achieved if (in Case9 which is previously presented)
the security analyst does not check the fact that the return BAD statement is not
immediately after the conditional branch (at line 44) and the fault injection is triggered
earlier (at the line 45 instead of 47 as seen in Section 4.2.9.), skipping the flag21=0
statement. Therefore, flag21 is not set to 0. We consider the situation when on a specific
execution path the conditional branch if (K != sloc) is not executed (the program is
executed like for Case9), but on another execution path (the program is executed like
for Case10) the conditional branch if (K != sloc) is executed and therefore the flag21=0
statement can be skipped (fault injected) by mistake. Consequently, the value of flag21
will be 1 (unchanged), while the value of flag22 will be 0 (changed).

The Annotation Pass detects the sensitiveness propagation from the conditional
branch if(K != sloc) which is dependent on the sensitive variable K to the statements
flag21=0 and flag22=0. Therefore, the global variables flag21 and flag22 are automat-
ically marked as sensitive by the Annotation Pass. The two variables are tainted from
the sensitive variable K.

For these types of vulnerabilities, the tainted algorithm from the Annotation Pass
identifies the sequences of getelementptr, bitcast and call instructions which use a local
sensitive variable declared inside the SecCheck class. The local variables declared inside
a class are different from the local variables declared inside a function. The declaration
is done using a getelementptr instruction instead of an alloca instruction, as we can see
below:

%K = getelementptr inbounds %class.SecCheck* %this1,

i32 0, i32 0, !dbg !991, !sensitive !992 i32

The Annotation Pass automatically marks the tainted variables from K :

%11 = load i32* @flag21, align 4, !dbg !962, !sensitive1 !963

%12 = load i32* @flag22, align 4, !dbg !962, !sensitive1 !963

4.2. TYPES OF SMARTCARD VULNERABILITIES 93

Successful No

Vulnerability type Direct Dependency

Part of Test04, Test06, Test07

Table 4.13: Case11

The execution paths are the same detected paths from Case9, the target program be-
ing the same. The Analysis Pass detects the conditional branch from the main function
which is dependent on the tainted global variables flag21 and flag22.

The conditional branch if((!flag21 —— !flag22) && (flag21 != flag22)) is detected
by our application as an instruction to be bypassed using fault injection:

The instruction if from the line number 93 is dependent

on the sensitive local %flag21 defined at the line number 15

The instruction if from the line number 93 is dependent

on the sensitive local %flag22 defined at the line number 16

The security analysts mark the return instruction from the line number 94 for in-
serting fault injection, in order to bypass the security check.

4.2.11 Case11

4.2.11.1 Overview

Case11 is part of the same target test program which contains the Case9 and the Case10
vulnerability types. This case is built inspired by the FAULT.BYPASS Riscure pattern.
The pattern is presented described in Section 2.4 of this report.

The situation is presented in the following snapshot:

4.2.11.2 Code snapshot

int flag11=0;

int flag12=1;

int flag21=1;

int flag22=1;

class SecCheck {

public:

__attribute__((annotate("DS"))) const

char K[7]="secret";

....

94 CHAPTER 4. EVALUATION

int integrityPadding2(unsigned char *P2)

{

const char* sloc = "secret";

flag12=0;

if (K != sloc){

flag21=0;

flag22=0;

return BAD;

}

return GOOD;

}

};

....

int main(int argc, char* argv[]){

....

if(flag11 != flag12){

return BAD;

}

....

4.2.11.3 Description

In this case, the attacker aims to bypass the conditional branch which is based on the
flag11 and flag12 globals. The global variables are not marked by the security analysts
as sensitive. The situation is different from Case10, since flag12 is not tainted from any
sensitive variable, so it will not be detected by the Annotation Pass and not marked as
sensitive.

We can observe that flag11 is initialized with 0, while flag12 is initialized with 1.
The smartcard target program requires that the integrityPadding2 method is executed
as a mandatory security mechanism (implies flag12 to be set to 0). Therefore, the value
of flag12 is changed to 0. However, in the control flow of the program, the if conditional
branch from the snapshot from above is present. The conditional branch checks if the
two variables are equal. If not, the program will return BAD. Basically, the conditional
branch implies the indirect checking of the conditional branch which is presented in
Case9. The Analysis Pass does not identify the vulnerability, so the security check is
not bypassed.

4.2. TYPES OF SMARTCARD VULNERABILITIES 95

Successful No

Vulnerability type Direct and Tainted Dependencies

Part of Test05

Table 4.14: Case12

4.2.12 Case12

4.2.12.1 Overview

Case12 is part of the Test5 target program which implements mechanisms against data
leakage [39]. This case illustrates a situation when the security analyst does not annotates
as sensitive a variable which influence the values of multiple other values used in sensitive
checks. This situation results in a cascade of unidentified dependencies.

The situation is shown in the following code:

4.2.12.2 Code snapshot

__attribute__((annotate("DS"))) char masterkey[256];

int parityCheck1=1; //should remain 1

int parityCheck2=1; //should remain 1

......

int checkParity (char* key, int offset) {

char odd_parity[]= {

1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11,.... 113, 113, 117, 117,

153, 153, 154, 154, 199, 199, 200, 200,

248, 248, 251, 251, 253, 253, 254, 254};

int r = rand() & 255;

for (int i=0, j = r; i<256; i++, j = (j+1)&255) {

if (key[j] != odd_parity[key[j+offset]]) {

parityCheck1 = 0;

return 0;

}

}

return 1;

}

.....

96 CHAPTER 4. EVALUATION

int main(int argc, char* argv[])

{

__attribute__((annotate("START"))) int asd;

char keycode[256];

....

for (int i = 0, j = (rand() & 255); i < 256; i++, j = ((j+1) & 255))

keycode[j] = masterkey[j];

int flag=checkParity(keycode, 1);

if(!checkParity(keycode, 1))

return BAD;

if(!flag)

return BAD;

if(!parityCheck1){

parityCheck2=0;

return BAD;

}

if(!parityCheck2)

return BAD;

....

4.2.12.3 Description

The code snapshot is part of Test5 which implements security checks based on tainted
variables. The purpose of this case is to show that the tainted variables of a level greater
than 1 are not identified, as mentioned in Section 3.3. The security analysts only marked
masterkey as a sensitive variable. Inside the main function, the value of the masterkey is
safely copied into the local variable keycode. The copying is done by starting at a random
index in the range [0,3]. The Annotation Pass identifies this sensitiveness propagation
and automatically marks the keycode local variable as sensitive. A conditional branch
successfully identified by the Analysis Pass (we do not explain the procedure since it is

4.2. TYPES OF SMARTCARD VULNERABILITIES 97

similar to Case2) calls the checkParity function.

The output of the Annotation Pass shows the two marked variables:

%arrayidx = getelementptr inbounds [16 x i8]* @masterkey, i32 0,

i32 %1, !dbg !956, !sensitive1 !957

%keycode = alloca [16 x i8], align 1, !sensitive !938

The checkParity function uses an alias for the keycode local variable, similar to Case5.
Since our application does not consider the sensitiveness propagation using aliases (it
considers only for particular cases, as explained in Case5), the conditional branch from
the checkParity function is not considered by the Analysis Pass as an instruction to
be bypassed. The key parity is checked by using a table. Each entry of the table
represents the odd parity of the index. The parity verification is made inside a loop
that is selecting random numbers for the index. The loop is considering all key bytes.
If the key does not respect the parity, the checkParity function will return 0. The
function returns 1 if all bytes were found to be odd. This result will not affect the attack
on the if(!checkParity(keycode, 1)) conditional branch from the main function, since
this sensitive condition is already identified as a place to insert fault injection, being
dependent on the keycode sensitive variable. However, if the conditional branch from
the checkParity function is executed, then the value of the parityCheck1 flag is changed
to 0. The security checks are safety passed if the parityCheck1 and the parityCheck2
flags remains 1.

The sensitiveness is succesfully propagated from the masterkey to the keycode vari-
able which is used inside the computation. The procedure of this taint identification is
described in the following paragraph. For this type of taint dependency, the Annotation
Pass identifies all the store instructions which have the source operand (the one from
which it copies the value) marked as sensitive. There are two cases: the source operand
can be a global variable or a local variable. For the local variable, the tool checks di-
rectly if the variable contains the sensitive metadata. For the global variables, the tool
searches in depth the instructions which carry the sensitive metadata for them: load
instructions or getelementptr instructions (as explained in Chapter3). After the iden-
tification of the sensitive source instructions, the Annotation Pass marks as sensitive
the destination instructions (the operand of the store instructions in which the sensitive
values are copied). Again, this instruction can be local and the sensitive metadata is
directly added, or global and in this situation that implies to find an instruction to carry
the metadata.

The aim of the attacker is to bypass the security checks dependent on the 2 flags
mentioned above. However, in the case when the alias sensitiveness is not propagated
to the local variable key, the tainted variable parityCheck1 will not be considered sensi-
tive. Therefore, the Analysis Pass does not identify the if(!parityCheck1) condition as
a place to insert fault injection. On the other hand, we assume that we are using a
similar function as the one presented in Case5 and the alias key is considered sensitive.
Consequently, the Annotation Pass marks the parityCheck1 as sensitive, so the Analysis

98 CHAPTER 4. EVALUATION

Successful Yes

Vulnerability type Tainted and Direct Dependencies

Part of Test09

Table 4.15: Case13

Pass would identify as a result the conditional branch dependent on the parityCheck1.
However, the Annotation Pass does not mark as sensitive the tainted variable parity-
Check2, as explained in Section 3.3. Our application is able to determine only the first
level tainted variables, so the Annotation Pass does not mark parityCheck2 as sensitive.
In order to solve this problem, we propose the symbolic execution based on KLEE as a
future work. Our application does not identify the tainted variables in a cascade of taint
propagation blocks.

4.2.13 Case13

4.2.13.1 Overview

Case13 aims to show that in some situations the vulnerabilities from Case12 are identi-
fied by our application. This does not mean that the Annotation Pass always identifies
the sensitiveness propagation in a cascade of tainted blocks, as we can see in Case12.
However, the identification depends on the order of the sensitiveness propagation by
taint analysis. This situation is described in detail in the Description section. This
case, as well as the next presented cases - Case14 and Case15, are part of Test09 from
the test suite. This case shows the usage of the double data type inside the conditional
branches. In this case the LLVM fcmp instruction being used. In addition, we present the
conditional branch containing a direct dependency which includes the above-mentioned
tainted variables.

The relevant part of the code for Case13 from Test09 is shown below:

4.2.13.2 Code snapshot

#define BAD 0

#define GOOD 1

#define MAX_PIN_CTR 3

#define CLA 0x00

#define INS 0x01

#define P1 0x02

#define P2 0x03

#define LC 0x04

#define DATA 0x05

#define MAX_WRONG 2

#define MAX_FAULTS 12

4.2. TYPES OF SMARTCARD VULNERABILITIES 99

#define METHOD1 13

#define METHOD2 17

/** Global vars **/

uint8_t buffer[35];

unsigned char deskey[8];

unsigned char ee_deskey[8];

int faultCounter=0;

int flowCounter=0;

__attribute__((annotate("DS"))) unsigned

char pin[4]={8,2,6,9};

unsigned char ee_pin[4]= {8,2,6,9};

uint8_t pin_ctr = MAX_PIN_CTR;

uint8_t auth=false;

double pinwrong=0;

int process(){

__attribute__((annotate("START"))) int asd;

switch(buffer[CLA]){

case 0x00: // select application, or

//whatever starts with CLA=0x00

return 0x08;

break;

case 0xA0: // specific defined app’s

if (0x02 == buffer[INS] && buffer[LC]==0x04)

set_pin();

else if(0x04 == buffer[INS] &&

0x00 == buffer[P1] &&

0x00 == buffer[P2] &&

0x08 == buffer[LC])

do_des();

else if (0x08 == buffer[INS] && buffer[LC]==0x08)

des_decrypt();

else if (0x19 == buffer[INS] && buffer[LC]==0x04)

better_pin_double();

else if (0x1B == buffer[INS])

100 CHAPTER 4. EVALUATION

is_auth();

else

//Echo command

return (DATA+buffer[LC]+1);

break;

default: // illegal card usage

return 0x00;

break;

}

}

int main(){

//Enable global interrupts

//sei();

while(1){

//Read Command

//readAPDU();

//Check command and act accordingly

//determine();

int d=MAX_FAULTS;

if(faultCounter>d) // line 110

return BAD; // line 111

method1();

flowCounter -= 2*METHOD1;

if(flowCounter != 0) // line 115

return BAD; // line 116

return GOOD;

}

//unreachable code...

just avoiding compiler complaints

return 0;

}

//explic din paper + ce am eu

4.2. TYPES OF SMARTCARD VULNERABILITIES 101

int method1(){

int localCounter;

flowCounter += METHOD1;

localCounter = flowCounter;

method2();

flowCounter -= 3*METHOD2;

if(flowCounter != localCounter) // line 134

return BAD; // line 135

flowCounter += METHOD1;

}

int method2(){

double c=MAX_WRONG;

if(pinwrong>c){ //fcmp // line 142

faultCounter++;

return 0x69; // line 144

}

}

//PIN implementation with auth flag,

// double verification using better

//comparison routin and try counter

int better_pin_double(){

int i,j;

if(pin_ctr>0) {

--pin_ctr;

int r = rand() & 3;

for (i=0, j = r; i<4; i++, j = (j+1)&3) {

if (pin[j] != buffer[j]+DATA) { // line 158

auth=false; // line 159

pinwrong++;

return 0x69; // line 161

}

else {

.....

4.2.13.3 Description

The scope of the attack is to bypass all the security checks which can lead to a dangerous
operation, like disabling the functionality of the smartcard. The target test program

102 CHAPTER 4. EVALUATION

implements the Riscure patterns FAULT.RESPOND and FAULT.FLOW introduced
in Section 2.4. Case13 presents the situations when the unidentified vulnerabilities
presented in Case12 are still identified.

The FAULT.FLOW Riscure pattern introduces extra security checks among the code
which are dependent on flow counters, as we see in the code example. The flow counter
flags (flowCounter and localCounter) have the purpose to check if important parts of
code where executed or if the smartcard is under attack. The procedure is explained in
details in Section 2.4. The FAULT.RESPOND Riscure pattern checks the number of
faults and reacts to them. It was integrated in the test program Test09.

The Annotation Pass marks the sensitive variables in the LLVM bitcode and then
executes the taint analysis algorithm. As we can see from the code example, the vari-
able pinwrong is identified by the taint algortihm before the variables faultCounter and
flowCounter. These 2 variables are tainted from pinwrong. In addition, faultCounter
is identified as sensitive before the flowCounter variable. flowCounter is tainted from
faultCounter. This situation shows a 3-level taint propagation which is identified by
out application, but only because the variables are tainted in the correct order (as we
explained in Section 3.3). As we can see, another order can make the taint algorithm to
not identify all the tainted variables. We mention again that the taint algorithm was not
been improved since we made the decision to use symbolic execution, which is described
in the Future work section. An example of the output of the Annotation Pass involving
the pin, the auth and the pinwrong variables is:

%arrayidx = getelementptr inbounds [4 x i8]* @pin, i32 0,

i32 %4, !dbg !943, !sensitive1 !945

%0 = load i8* @auth, align 1, !dbg !932, !sensitive1 !934

%0 = load double* @pinwrong, align 8, !dbg !935, !sensitive1 !936

We can see that the sequence of LLVM instructions in the bitcode does matter for
Case13. The pin global variable is the single variable which is annotated as sensitive
by the security analysts in the target program source code. The rest of the identified
variables are tainted directly or indirectly (higher level of taintness) from pin.

The taint analysis algorithm of the Annotation Pass identifies the tainted variables
similar to the description from Case10, by searching in depth for the variables. The
first step is to identify the instruction which accesses the sensitive global variable. The
local variable which loads the value of pin is identified after a search in depth for the
instructions which have pin as an operand. This case of vulnerability includes a larger
sequence of instructions until the right instruction which accesses the sensitive variables
is found (getelementptr). The second step is to look for the identified global variable into
the array containing the instructions which carries the sensitive metadata added by the
Annotation Pass. After our application verifies that the global variable is sensitive, it
identifies the succesors of the conditional branch. For every succesor (represented by a
basic block), the store instructions are identified in order to see which store destination

4.2. TYPES OF SMARTCARD VULNERABILITIES 103

operands are influenced by the pin sensitive variable (as explained for Case12). The
identified variables are automatically marked as sensitive by the Annotation Pass.

The sensitiveness is propagated starting from the if (pin[j] != buffer[j]+DATA) condi-
tional branch. From this branch, the auth and pinwrong variables are marked as sensitive
by following the algorithm described above. As mentioned at the begining of this sec-
tion, the order in which the taint analysis is done is important. After the Annotation
Pass marks pinwrong as sensitive, the LLVM fcmp conditional branch if(pinwrong>c)
influences the value of faultCounter. In a similar way, the Annotation Pass marks the
faultCounter variable as sensitive. Analogously, the Annotation Pass marks the flow-
Counter variable as sensitive based on the if(faultCounter>d) conditional branch.

The Paths Pass identifies all the possible execution paths between the marked start
and end points. A snapshot of 4 short execution paths from the total of 203 is presented
below:

15 17 20 21 22 23 25 26 28 29

31 32 56 58 60

15 17 20 21 22 23 25 26 28 29 31

32 56 58 59 61 32 56 58 60

15 17 20 21 22 23 25 26 28 31 32 56

57 61 32 56 58 60

15 17 20 21 22 23 25 26 28 31 32 56

58 60

The third tool of our application is the Analysis Pass. The relevant part of the
results for this case are shown in the following results:

The instruction if from the line number 158 is dependent

on the sensitive global @pin defined at the line number 54

The instruction if from the line number 110 is dependent

on the sensitive global @faultCounter defined at the line number 36

The instruction if from the line number 115 is dependent

on the sensitive global @flowCounter defined at the line number 38

The instruction if from the line number 134 is dependent

on the sensitive global @flowCounter defined at the line number 38

The instruction if from the line number 142 is dependent

on the sensitive global @pinwrong defined at the line number 61

Or in LLVM representation:

%cmp5 = icmp ne i32 %conv2, %add, !dbg !944 158 @pin = global [4 x i8]

104 CHAPTER 4. EVALUATION

c"\08\02\06\09", align 1 54

%cmp = icmp sgt i32 %0, %1, !dbg !937 110 @faultCounter = global i32 0,

align 4 36

%cmp1 = icmp ne i32 %3, 0, !dbg !942 115 @flowCounter = global i32 0,

align 4 38

%cmp = icmp ne i32 %3, %4, !dbg !940 134 @flowCounter = global i32 0,

align 4 38

%cmp = fcmp ogt double %0, %1, !dbg !935 142 @pinwrong = global double

0.000000e+00, align 8 61

As we can observe, all the conditional branches dependent on the already-annotated
variable pin (as a direct dependency) and the tainted variables (as tainted dependen-
cies from it) were identified. Using the results, the attacker can successful bypass
of the security checks implemented by the Riscure patterns FAULT.RESPOND and
FAULT.FLOW, which are explained in detail in section 2.4.

The reason of the appearance of the fcmp conditinal branch instruction is that it is
dependent on a global variable of type double. The fcmp instruction deals with floating
point operands, in contrast with the icmp instruction.

Based on our application’s output, the security analysts will insert fault insert at
the line 111 (the return BAD statement) for the faultCounter, at the lines 159 (the
auth=false statement) and 161 (the return 0x69 statement) for the pin global, at the
line number 116 (the return BAD statement) and 135 (the return BAD statement) for
the faultCounter flag and at the line number 144 (the return 0x69 statement) for the
pinwrong global variable. The return 0x69 statement is similar with the returning BAD
statement, which is explained in this chapter.

Case13 shows good results given by our application for a successful fault injection
attack.

As we can observe, the paths calculated by the Paths Pass which are seen in the
Case13 do not have very long traces. The reason is the target programs structure: from
a switch construct the user can choose an option from the smartcard. An example of
one option is presented in the code from the Case14 (part of the same test), where
the security analysts annotated the end point inside the is auth method. Therefore,
the Paths Pass will compute all the possible execution paths only between the switch
with the smartcard options and the point within the specific method. This way, our
applications output will tell all the vulnerabilities of the computed execution paths,
while the vulnerabilities from the rest of the code will be shows standalone.

4.2.14 Case14

4.2.14.1 Overview

Case14 is part of the same target program Test09. It gives an example with a switch
conditional branch and it shows a false positive result. Also, we show an example of

4.2. TYPES OF SMARTCARD VULNERABILITIES 105

Successful Yes

Vulnerability type Tainted Dependencies

Part of Test04, Test08, Test09, Test10, Test11

Table 4.16: Case14

complementary results.

The relevant part of the code for the Case14 from the Test07 is shown below:

4.2.14.2 Code snapshot

//PIN implementation with auth flag,

// double verification using better

//comparison routin and try counter

int better_pin_double(){

int i,j;

if(pin_ctr>0) {

--pin_ctr;

int r = rand() & 3;

for (i=0, j = r; i<4; i++, j = (j+1)&3) {

if (pin[j] != buffer[j]+DATA) {

auth=false;

pinwrong++;

return 0x69;

}

else {

//Authentication complete!

auth=true;

pin_ctr++;

return 0x90;

}

}

switch(pin_ctr){ // line 174

case 3: auth=true; return 0x90; break;

default: auth=false; pinwrong++; return 0x69;

}

} else {

auth=false;

pinwrong++;

return 0x69;

}

106 CHAPTER 4. EVALUATION

}

// Retrieve whether authentication was successful or not

int is_auth(){

if(auth==true){

buffer[0]=0x01;

return 0x90;

} else if (auth == false){

buffer[0]=0x00;

return 0x90;

} else { __attribute__((annotate("END"))) int qwe;

return 0x69; } // line 196

}

4.2.14.3 Description

This case is part of Test09 and is linked to Case13 which was previously presented.
The Annotation Pass executes the integrated taint algorithm which finds the auth and
the pin ctr flags as variables which inherit the sensitiveness analogously as described in
Case13.

%0 = load i8* @auth, align 1, !dbg !932, !sensitive1 !934

%1 = load i8* @pin_ctr, align 1, !dbg !938, !sensitive1 !937

The execution paths are the same as in Case13 due the fact that the start and the
end points in the program are preserved. The Analysis Pass identifies the dependency
between the tainted variable pin ctr and the switch conditional branch from the line 174.
The line of the output presenting the situation is:

The instruction switch from the line number 174 is dependent

on the sensitive global @pin_ctr defined at the line number 58

In LLVM format:

switch i32 %conv13, label %sw.default [i32 3, label %sw.bb

], !dbg !957 174 @pin_ctr = global i8 3, align 1 58

The pin ctr variable leads to a false positive result. The result is identified by our
application as it should be. Hence, the analysts have the task to determine the false
positive results. The result is given by the conditional branch if(pin ctr¿0) from the
lines number 154. This conditional branch is not a security check and this fact can been
seen immediately by the analysts by observing that there are no dangerous instructions
which lead to security measures on the smartcard (like the return BAD statement present
in all the test cases). The output with the result is:

4.2. TYPES OF SMARTCARD VULNERABILITIES 107

The instruction switch from the line number 154 is dependent

on the sensitive global @pin_ctr defined at the line number 58

In LLVM format:

%cmp = icmp sgt i32 %conv, 0, !dbg !936 i32 154

@pin_ctr = global i8 3, align 1 i32 58

The pin ctr variable is an example on how the taint analysis from the Annotation
Pass works. The pin ctr variable is tainted from the else branch of the if (pin[j] !=
buffer[j]+DATA) conditional branch, more exactly when it is incremented at the line
number 166. The Analysis Pass identifies the dependency from the line 154 as seen
above.

In addition, Case14 shows an example of complementary results. The Analysis Pass
identifies the security check if (pin[j] != buffer[j]+DATA) in Case13. Based on this
result, the security analysts insert fault injection to the next line number, in order to
skip the statement which sets the auth flag to false. However, the auth flag is marked
as sensitive (as mentioned above). Therefore, the Analysis Pass identifies the following
vulnerabilities:

The instruction if from the line number 189 is dependent

on the sensitive global @auth defined at the line number 59

The instruction if from the line number 192 is dependent

on the sensitive global @auth defined at the line number 59

In LLVM format:

%cmp = icmp eq i32 %conv, 1, !dbg !934 189 @auth = global i8 0,

align 1 59

%cmp2 = icmp eq i32 %conv1, 0, !dbg !941 192 @auth = global i8 0,

align 1 59

We can observe the following situation: assuming that at a specific moment of time
auth is set to true, the security analysts insert fault injection and skip the auth=false
operation, described in Case13. Therefore, the value of the flag remains true, so the
dependencies identified above (the two if statements from lines 189 and line 192 depen-
dent on auth) will not lead to the dangerous statement return 0x69. Therefore, in this
situation the fault injection is not necessary for these two dependecies, since only the
branches related to auth (having the true value) will be executed. However, as mentioned
before in this thesis, this is not the scope of our application. The security analysts have
the task of deciding which results are complementary.

Based on the results provided by the Analysis Pass for Case14, the security analysts
insert fault injection at the line 196, in order to avoid the return 0x69 instruction.

108 CHAPTER 4. EVALUATION

Successful** No

Vulnerability type Tainted Dependency

Part of Test09, Test12

Table 4.17: Case15

4.2.15 Case15

4.2.15.1 Overview

Test09 brings another vulnerability case. Case15 is derived from the implementation of
the Riscure pattern LOOPCHECK.

**This case is considered unsuccessful in the general case. We can optionally add a
small algorithm to the Annotation Pass, which works for particular cases. The solution
is presented in the Description section.

The part of the code from Test09 illustrating the situation is:

4.2.15.2 Code snapshot

int better_pin_double(){

......

for (i=0, j = r; i<4; i++, j = (j+1)&3) {

if (pin[j] != buffer[j]+DATA) {

auth=false;

pinwrong++;

return 0x69;

}

else {

.....

}

if(i != 4){ //important loop that must be completed

return 0x69;

}

4.2.15.3 Description

This vulnerability type comes from the implementation of the Riscure pattern
LOOPCHECK described in Section 2.4. A conditional branch checks the counter of
the important loop containing the security operations presented in Case13 and Case14,
with the purpose to verify if the loop has been completed for every element of the pin
array. The attackers can skip the security operations from the loop, as seen in Case13.
Therefore, the smartcard developers applied the Riscure pattern LOOPCHECK to check
the loop completion. Initially, the security analysts did not annotate the loop counter
as a sensitive variable. Since the loop counter does not have any direct link with any

4.3. RESULTS AND VALIDATION 109

Figure 4.2: Case 15 pseudocode solution

sensitive variable, any dependency between a conditional branch and the counter is not
considered as a vulnerability.

The solution is analogous to the one presented in Case5, with the exception of the
algorithm integrated in the Annotation Pass which is shown in Figure 4.2.

This algorithm can be embedded into the Annotation Pass. Therefore, the Analysis
Pass will identify the tainted dependencies between the loop counter and the security
check in the smartcard target program.

The solution is not permanently integrated into our application, since the symbolic
execution is a better solution for the taint analysis, as explained in the Future work
section.

4.3 Results and Validation

The success rate of the evaluation of our application is presented in Figure 4.3. For each
test that is part of our test-suite, we can see the percentage of the identified vulnerabilities
that can be exploited using fault injection (in blue) and the percentage of the unidentified
vulnerabilities (in red). We can observe that all the vulnerabilities were identified for
Test02, Test08, Test10 and Test11. We explain for every test the success rate and the
reason for the corresponding percentage value.

Test01 is an experimental test program, which was used to present
the functionality of our application in Section 3.6. It implements the
FAULT.BRANCH, the FAULT.DOUBLECHECK, the FAULT.DETECT and the
FAULT.CONSTANT.CODING Riscure patterns. Figure 4.3 aggregates the results and
shows the success rate of 80% for Test01, as we can see in Figure 4.4. This percentage
shows that a fifth of the vulnerabilities are unidentified, which are related by Case5 (the

110 CHAPTER 4. EVALUATION

Figure 4.3: Success rate of the Results

Figure 4.4: Vulnerability types of Test1

alias dependency is not identified by our application). This test program contains the
most common smartcard vulnerabilities (as encountered in our test suite). As mentioned
in Section 4.2.5., we can increase the success rate at 100% if we include the algorithm
described in Section 4.2.5. in the Annotation Pass. However, we consider unsuccessful
the Case5 vulnerability type because the described algorithm from Section 4.2.5. is not
generic. The generic solution is presented in the Future work section.

4.3. RESULTS AND VALIDATION 111

Figure 4.5: Vulnerability types of Test2

Figure 4.6: Vulnerability types of Test3

The second test of the evaluation suite has a success rate of 100%. It uses only smart-
card vulnerabilities which were identified by our application, as we can see in the Figure
4.5. It is an experimental program and it implements the FAULT.DOUBLECHECK,
the FAULT.DETECT and the FAULT.CONSTANT.CODING Riscure patterns.

We observe that only unidentified vulnerabilities of Test03 are related to alias analyz-
ing (as we seen in Figure 4.6). This vulnerability type is presented in Section 4.2.5. It is
a test program from a Riscure training target and it implements the FAULT.BRANCH,
the FAULT.CRYPTO and the FAULT.CONSTANT.CODING Riscure patterns. The
success rate for this test program is high, at 80%.

Test4 is a test program from a Riscure training target based on the implemen-
tation of the FAULT.BYPASS Riscure pattern. The other included Riscure pat-

112 CHAPTER 4. EVALUATION

Figure 4.7: Vulnerability types of Test4

Figure 4.8: Vulnerability types of Test5

terns are FAULT.BRANCH, FAULT.DEFAULTFAIL, FAULT.CONSTANT.CODING
and FAULT.CRYPTO. We can see in Figure 4.3 that the success rate is 73%. The
special type of direct dependency vulnerabilities related to Case11 are not identified by
our application (as we seen in Figure 4.7). The unidentified vulnerabilities are given by
the side effects of inserting fault injection, as we describe in Section 4.2.11.

Test5 is a smartcard test program from a Riscure training target that has a success
rate of 33%. The small rate of successful identified vulnerabilities is related to Case12,
which is explained in Section 4.2.12. In this test program, we assumed that the security
analysts did not annotated the sensitive variable which influences the values of multiple
variables used in security checks among the program flow. Therefore, the Annotation

4.3. RESULTS AND VALIDATION 113

Figure 4.9: Vulnerability types of Test6

Pass does not mark the tainted variables as being sensitive, resulting in a cascade of
unidentified tainted dependencies. This leads to a percentage of 67% of unidentified
vulnerabilities, as we see in the Figure 4.8. The Riscure patterns FAULT.BRANCH,
FAULT.CRYPTO and FAULT.CONSTANT.CODING are included in this test.

Test06 is a smartcard test from the public domain based on the Oracle
padding function. The device target under attack is a SIM smartcard for mobile
phones. This test includes the FAULT.BYPASS, FAULT.BRANCH, FAULT.DETECT,
FAULT.CONSTANT.CODING and FAULT.CRYPTO Riscure patterns. The percentage
of identified smartcard vulnerabilities is 75%. Like in the case of Test4, our application
does not identify the Case11 vulnerability type (as we seen in Figure 4.9). This vulner-
ability type is a special type of direct dependency vulnerability resulted as a side effect
of inserting fault injection (previously in the program execution).

We can see in Figure 4.10 the cases which are contained in the Test07 test pro-
gram (from a Riscure training target). The test program uses the DES encryption
algorithm. The included RISCURE patterns are FAULT.BYPASS, FAULT.BRANCH,
FAULT.CONSTANT.CODING and FAULT.CRYPTO.

The success rate is 30%. This low rate is a result of the presence of 3 unidentified
vulnerability types. Two of them are presented in Case5 and Case11. In addition, one
fifth of the cases is represented by the Case7 vulnerability type. This is an unidentified
direct dependency between an encryption operation and a sensitive variable. Since the
vulnerability is not a security check, our application does not consider it as a location
to insert fault injection.

The purpose of the test program from a Riscure training target Test8 is to check if
our application preserves its functionality in the case of Java target test programs. The
success rate is 100%. We introduced the Case8 vulnerability type in Section 4.2.8., which
denotes a vulnerability found in a Java smartcard program. However, as we mentioned in
Section 4.2.8., this vulnerability type is different from the others only from the point of
view of the programming language of the smartcard. Therefore, Case8 can be translated

114 CHAPTER 4. EVALUATION

Figure 4.10: Vulnerability types of Test7

Figure 4.11: Vulnerability types of Test8

into 4 types of vulnerabilities, as we see in Figure 4.11.

The included RISCURE patterns are FAULT.DOUBLECHECK, FAULT.BRANCH,
FAULT.DEFAULTFAIL, FAULT.DETECT, FAULT.CONSTANT.CODING and
FAULT.CRYPTO.

The success rate of the test program Test9 (from a Riscure training target) is 44%,
as we can see from Figure 4.3. The lower success percentage is given by the Case5 alias
vulnerability and by Case15 (as we seen in Figure 4.12). The usage of the Case15 shows
the presence of multiple implementations of the FAULT.LOOPCHECK Riscure pattern.

The included RISCURE patterns are FAULT.FLOW, FAULT.BRANCH,
FAULT.RESPOND, FAULT.LOOPCHECK, FAULT.DEFAULTFAIL,
FAULT.CONSTANT.CODING and FAULT.CRYPTO.

4.3. RESULTS AND VALIDATION 115

Figure 4.12: Vulnerability types of Test9

Figure 4.13: Vulnerability types of Test10

The success rate of Test10 is 100%, our application identifying all the 6 vulnerability
types shown in Figure 4.13. The Riscure patterns included into this test program
from a Riscure training target are FAULT.BRANCH, FAULT.DOUBLECHECK,
FAULT.DEFAULTFAIL, FAULT.DETECT, FAULT.CONSTANT.CODING and
FAULT.CRYPTO.

The rest test target program Test11 has a success rate of 100% in identifying
the vulnerabilites which can be exploited by fault injection. The test contains
6 vulnerability types, as we see in Figure 4.14. The Riscure patterns used for
this test case are FAULT.BYPASS, FAULT.BRANCH, FAULT.DOUBLECHECK,
FAULT.DEFAULTFAIL, FAULT.DETECT, FAULT.CONSTANT.CODING and

116 CHAPTER 4. EVALUATION

Figure 4.14: Vulnerability types of Test11

Figure 4.15: Vulnerability types of Test12

FAULT.CRYPTO.

The Test12 test program from a Riscure training target is the most related (from
our test suite) to the domain of cryptanalysis. All the other tests imply cryptographic
operations, but Test12 aims to show vulnerabilities inside the cryptographic implemen-
tations. However, the attack on cryptographic algorithms is not so relevant for our
test suite, since the most effective way to avoid cryptographic security checks is to
bypass the conditional branch invoking the cryptographic function. The succes rate is
37%. The low success rate is given by the usage of the loop counter check of Case15
and by the Case7 cryptographic calls which are not part of a conditional branch. The
Riscure patterns used are FAULT.BRANCH, FAULT.CRYPTO, FAULT.LOOPCHECK,
FAULT.DELAY, FAULT.CONSTANT.CODING. We can see the vulnerability types of

4.3. RESULTS AND VALIDATION 117

Figure 4.16: Execution times of the 3 passes

Test12 in Figure 4.15.

In Figure 4.16, the execution times of the 3 passes of our application are presented.
The study is relevant in order to see which computation part is the most resource-
consuming. As we can see from Figure 4.16, the Paths Pass takes the most time to
execute. Based on this knowledge, the security analysts can made multiple code reviews
on the target program while keeping the same start and end points without executing
the Paths Pass multiple times. In this situation, the security analysts can experiment
by changing the annotated sensitive variable, while preserving the same start and end
points. This situation is possible because if the start and the end points are not modified
by the analyst, then the execution paths calculated by the Paths Pass remain the same.

We can see in Figure 4.16 that the execution times of the Annotation Pass and of
the Analysis Pass are less than 20 miliseconds for all the tests from the test suite. The
computations are not so expensive in comparisson with the processing of the Paths Pass.
In 8 tests, the execution time of the Paths Pass varies between 80 and 200 miliseconds.
The most expensive part of the Paths Pass is the getAllPaths method, which is used to
compute all the possible execution paths between 2 nodes. However, we see that in the
case of Test 9, the execution time is less than 20 miliseconds. The reason is that the
security analysts have chosen very close the start and the end points in the moment
when we measured the execution time. In addition, the metadata addition with the
paths information is expensive. In contrast, the most expensive computation part on
the Annotation Pass is the taint analysis algorithm, while on the Analysis Pass the most
processing part is given by the recursive in-depth methods that search for dependencies.
In conclusion, the security analysts have the task to choose carefully the start and the end
points before starting the code review if the execution time is required to be minimized.

118 CHAPTER 4. EVALUATION

4.4 Summary

The evaluation presented in this chapter validates our application. The scope defined in
Section 1.1.2. and the objectives defined in Section 1.1.3. are satisfied by our application.
We were able to automate the code review process for finding smartcard vulnerabilities.
Our test-suite based on the Riscure patterns is relevant to evaluate our application since
we assume that it covers the most common smartcard vulnerabilities [39]. We used
the Riscure test-suite since no benchmark exist for the smartcard software [8]. Our
application successfully identified the most common smartcard vulnerability types, as
we can see in Section 4.2. In addition, we provide solutions for the cases of unidentified
vulnerabilities. Foreach type of fault injection vulnerability, we present an overview, we
provide a relevant code snapshot and we give the correspondent description.

Conclusion 5
5.1 Summary

In the area of software security, code review is one of the most effective practices [25].
Smartcards are the chosen embedded systems for evaluation in this thesis work. Smart-
cards have been used in multiple applications. Some smartcards, like banking cards,
present a high risk of security. In order to test the security of such devices, the devel-
oped application in this thesis work employs code review. This thesis project includes an
application that allows the code review process to be performed in an automated way.
The reason for developing the application is that the manual code review is error-prone
and it is costly with respect to time and workload. The developed application is focused
on finding security fault injection vulnerabilities in a smartcard program.

This document presents an overview of smartcard vulnerabilities in the first chapter,
together with the domain of this project and the key concepts. The problem is defined as
the necessity of implementing an automated code review application targeting smartcard
program. The code review leads to the identification of the smartcard vulnerabilities,
that can be further exploited using the fault injection attack. The objectives of this
thesis work can be epitomized as: we need to transform the smartcard source code to a
common intermediate representation that is going to be analyzed automatically in order
to find fault injection vulnerabilities; also, we need the evaluation of the results regarding
the vulnerabilities recognition. This report gives an overview of the smartcard standards
and of the testing and certification requirements for smartcards.

The implemented application for this thesis work presents support for almost all
smartcard programs languages. Our application is an ethical hacking toolchain, which is
used by the security analysts in order to discover vulnerabilities of smartcards. Using the
LLVM compiler framework, the application transforms them into a common intermediate
representation. By using the implemented application, the code review is done on the
common intermediate bitcode. LLVM provides a view in LLVM assembly language of
the intermediate representation, if manual debugging is required.

The developed application satisfies the scope defined in Section 1.1.2. and the objec-
tives defined in Section 1.1.3. of this thesis work. Our application provides automation
of the fault injection vulnerabilities recognition. The application was needed because
the code review is currently done manually and this process is costly, error-prone and
time consuming. It is developed under LLVM, that provides support for a multitude
of smartcard programming languages such as C, C++, Java, Embedded C etc. The
programs of our test-suite are written in these languages.

The theoretical background and setup of the developed application for this thesis
work are presented in the second chapter. Our code review application contains 3 tools,
the Annotation Pass, the Paths Pass and the Analysis Pass. The scope and the function-

119

120 CHAPTER 5. CONCLUSION

ality of each tool is presented in the second chapter. For a more detailed presentation of
the 3 tools, we refer the reader to the third chapter. The setup of the evaluation of our
application in presented in the second chapter. The evaluation is based on a test-suite
that is based on the Riscure smartcard development guideline that is composed from the
Riscure patterns. In the third chapter, the functionality of each of the 3 tools that form
the application is illustrated by a target program example. We refer the reader to the
fourth chapter for more complex smartcard test cases.

We present for each of the 3 tools their functionality, their local objectives, their
implementation, together with the connections between the tools or with the external
environment. The Annotation Pass is the tool used to search for the source code anno-
tations introduced by the security analysts in the code. This tool implements the taint
analysis, used to check the data flow analysis performed at each step of execution of a run
of the smartcard program. Basically, the taint analysis is used to determine the values
that are derived from the source code annotations. Additionally, the Annotation Pass
performs metadata addition. The security analysts annotate in the smartcard source
code the sensitive local variables, the sensitive global variables and the the start and
end points between which the analysis should be applied. The Paths Pass handles the
mapping of the basic blocks from the smartcard target program into an oriented control-
flow graph. This tool used an algorithm for identifying all the paths in the oriented
graph and it generates the set of execution paths. The Paths Pass adds for each basic
block the corresponding execution paths it belongs to. This informations is further used
by the Analysis Pass. The Analysis Pass contains a main part that produces the final
results and a part that identifies the dependencies between conditional branches and
sensitive variables, in order to identify the smartcard security checks. The results of the
Analysis Pass are used by the security analysts in order to determine the places where
to insert fault injection. Basically, a result contains the conditional branch contained in
the security check, the place where to insert fault injection given by the line number of
the instruction to be avoided, the original sensitive variables on which the conditional
branch is dependent and the place where the original sensitive variable is declared. The
results are distributed to each execution path.

Using the toolchain of the application, the vulnerabilities that can be exploited by
fault injection are found in the smartcard source code. In addition, the application is
used to evaluate the compliance of the automated code review on our test-suite. The
test-suite contains the most common smartcard fault injection vulnerabilities [39] and it
integrates the Riscure development guidelines under the format of programming patterns
[39]. We used a test-suite based on Riscure patterns because no benchmark exist for the
smartcard source code [8]. The test-suite is composed of 12 smartcard programs that are
based on defensive programming patterns against fault injection attacks. We were able
to identify 15 vulnerability types in our test-suite. The evaluation from Chapter 4 shows
that our application successfully identified the most common smartcard vulnerability
types. The success rate of the identified vulnerabilities from the test programs varies
between 30% and 100%. Nevertheless, for the unidentified vulnerabilities we provided
solutions at an algorithmic level.

The evaluation validates our application, which satisfies the scope defined in Section
1.1.2. and the objectives defined in Section 1.1.3.. Using the developed application, we

5.2. FUTURE WORK 121

were able to automate the code review process for finding smartcard vulnerabilities. The
test-suite based on the Riscure patterns is relevant to evaluate our application since we
assume that it covers the most common smartcard vulnerabilities [39]. Our application
successfully discovers the most common smartcard vulnerability types (as seen in Section
4.2.). Additionally, we provide solutions for the cases of unidentified vulnerabilities. We
present for every type of fault injection vulnerability an overview, a code snapshot and
a detailed description. As a result of the evaluation, we believe that the application will
be a significant factor in evaluating the smartcard software.

5.2 Future work

The future works consists mainly in implementing the taint analysis based on symbolic
execution. The concept was introduced in Section 2.2.1.3. and in Section 3.3.. We can
see in Section 4.2.12. and in Section 4.2.5. why the symbolic execution is needed as a
future work. On the other hand, other solutions given as future work are described in
Section 4.2.7. and in Section 4.2.15.

The Annotation Pass implements a taint analysis algorithm in order to improve
the input with sensitive variables. Our algorithm is limited as we can see in Section
4.2. We did not improve the algorithm since we assume that we cannot covers all cases
and this problem can be solved by taint analysis based on symbolic execution. The
symbolic execution can be implemented in KLEE, which is a LLVM tool and which is
introduced in Section 2.2.1.3. The developed application for the thesis project attacks
the confidentiality of a smartcard data. The taint analysis can leak sensitive information
used for finding variables that can be utilized in sensitive conditional branches, in spite
of not being initially considered sensitive. The example from Section 4.2.13. shows the
necessity for detecting all the taint leaks.

The tool built on top of KLEE [12] can be used to perform taint analysis based on
symbolic execution. The taint analysis can be used as an input for the Annotation Pass,
the first tool of our application. As a future work, the taint analysis based on symbolic
execution is going to replace the taint analysis code currently contained in the Anno-
tation Pass. As explained in Section 3.3. and in Chapter 4, the current taint analysis
implementation is limited to one level of taintness and the functionality is provided only
in the most common case of tainted variables from a conditional branch dependent on
a sensitive variable. The taint analysis that we want to use as future work is an open-
source KLEE patch [12], which is applied before building KLEE over LLVM. The taint
analysis is made by using the KLEE symbolic execution engine, which is introduced in
Section 2.2.1.3. The taint analysis track flows of data. The tool considers also indirect
flows from the control flow (these concepts are described below). The scope is to discover
the taint propagation that involves the already defined sensitive variables.

The KLEE patch [12] used together with the developed application defines the LLVM
semantics for the direct and the indirect flows that arise from branch operations. The
scope of our thesis work is to use a more applied taint analysis, to detect variables
used in sensitive conditions inside the target program. We derive some examples from
the examples given in literature [12], in order to show how the taint propagation is

122 CHAPTER 5. CONCLUSION

observed in the LLVM IR. The tainted data is assumed not to be initially in memory,
but introduced in the executing code by external sources.

The direct flow [12] is shown in the example from below. The taint propagation from
a sensitive variable to other variables is done through an assignment. In the example,
file F1 (which is used as input file) is considered 1 in the LLVM IR, while F2 (being
used as output file) is considered 2.

The C code:

int a,b;

fread(F1,&a,1);

b=a;

fwrite(F2,&b,1);

The corresponding LLVM IR (in the format of LLVM assembly):

%a1 = alloca i32

%b1 = alloca i32

call i32 @fread (1, i32 * a1, 1)

%a = load i32 * a1

store i32 %a, i32 * b1

call i32 @fwrite 0, (2, i32*%b1,1)

In the C code, we can see how the data that is read is leaked when written to the
output. The variable a is considered sensitive, while b is initially not. The tainting is
done when a is assigned to b. In the correspondent LLVM IR code (seen under LLVM
assembly mode), we see that the C variables a and b correspond to different memory
locations. The a1 and b1 are pointers that reference both variables. The data is leaked
at the 5th and the 6th lines, when the a1 value is loaded to a and then stored into the
memory location b1. The taint propagation is done using the memory locations and the
registers.

In the case of indirect flows [12], a variables holds the value of a sensitive variable
even is there is no direct flow between the two variables. The variable a is considered
sensitive, while b is initially not. Therefore, a is not directly tainting b. This indirect
taint propagation is derived from the control flow. The original sensitive variable a
influence the b variable through the switch conditional block. In the corresponding
LLVM IR code, the mapping in done by he LLVM switch primitive and the tainting is
done via jumps. The way of identifying the taint propagation is done using symbolic
execution, the control flow being tracked during execution.

The C code:

int a,b;

fread(F1,&a,1);

switch (a) {

case 0 :

b=0;

case 1 :

5.2. FUTURE WORK 123

b=1;

case 2 :

b=2;

}

fwrite(F2,b,1);

The corresponding LLVM IR (in the format of LLVM assembly):

%a1 = alloca i32

%b1 = alloca i32

call i32 @fread(1, i8 * %a1,1)

%a = load i32 * %a1, align 1

switch i32 %a, label %bb3 [

i32 0, label %bb0

i32 1, label %bb1

i32 2, label %bb2]

bb0:

store i32 0, i32 * %b1

br label %bb3

bb1:

store i32 1, i32 * %b1

br label %bb3

bb2:

store i32 2, i32 * %b1

br label %bb3

bb3 :

call i32 @fwrite(2, i32 * %b1, 1)

The pointer arithmetic and memory is another way of taint propagation [12]. The
second for loop from the example from below is used to count the zeros in the array.

int array[100];

for (i=0; i<100; i++)

array[i]=0;

int a,b;

fread(F1,&a,1);

array[a]=1;

for(b=0; array[b]==0; b++);

fwrite(F2,b,1);

In the code example, the taint propagation from b to a is done in a particular way:
an array filled with zeros stores 1 into the position that is given by a [12]. The output is
incremented with every traverse of the array elements. Therefore, b will keep the value
of a. If a is sensitive, then the sensitiveness is propagated to b. The tainting propagation
is based on the dependency between a and the array, on which b is dependent. Basically,
the array stands as an intermediate link for taint propagation.

124 CHAPTER 5. CONCLUSION

The taint analysis tool uses symbolic execution for analyzing all the execution paths
of the target program, so we have to be take into consideration the semantics. Semantic
rules formally describe how an LLVM machine executes [12]. These rules are needed by
the taint analysis since they are used to characterize the evolution of the system from
one state to another state depending on the current instruction. The semantics involves
the following statements:

• The input values are considered symbolic variables

• The conditional branches are dependent on the assignments to the symbolic vari-
ables

The taint analysis is done by checking the taint propagation among variables, starting
from the initial sensitive variables. The methodology used in literature [12] involves an
execution trace under analysis, that complies to a set of semantic rules from the initial
context. The output comes from the application of the rules in the taint analysis. The
open-source KLEE patch [12] is necessary since sensitive information flows from the
target program can be exploited. The taint analysis patch was mainly designed for
code that uses cryptography, like the smartcard software. The KLEE patch [12] is
using dynamic taint analysis that required the target program to run, while out current
implemented taint algorithm is static.

The reason why the symbolic execution is appropriate for taint analysis is that the
target program is dynamically explored through all its branches. But this context can
lead to a large input spectrum. In order to avoid this situation, the symbolic execution
uses symbolic variables as inputs. The symbolic variables are initially uninstantiated,
but then are constrained during execution time. Symbolic functions are also introduced,
in order to deal with the fact that the search space may become very large when trying
to explore all the branches. The symbolic functions are aimed to replace the concrete
functions that can be very expensive in the cost of exploration (e.g. an AES encryption
function). These functions have their properties described using rules. There are also
drawbacks of using the KLEE patch [12]. The tool does not function based on receiving
as input the source code target program and performing analysis. A special KLEE API
is defined in the patch which can be used to control the variables.

Please note that using the KLEE patch [12], we can implement the taint analysis
as defined (our definition) in the Chapter 3 and Chapter 4. However, the term taint
used for the patch [12] is different from our definition. Still we can implement the taint
analysis with the same scope. The term taint used for the patch [12] is explained in the
following paragraphs. For the patch [12], the concept of taint value is defined. The taint
values are used to describe the taint levels, which characterize variables. The taintness
as defined in Chapter 3 (our definition) will propagate (based on inheritance) through
the executing program and will mark the encountered variables as L (low) or H (high) if
tainted. In our particular case defined in Section 1.1.2., the variables which are marked
with H tainted from sensitive variables will be considered sensitive as well. In our case,
the taint analysis discovers which variables are dependent on other variables. In the
case of the KLEE patch [12], taint means simply a mark. A byte of memory (or llvm
register) may be marked (tainted) or not marked (not tainted). These marks(taints) are

5.2. FUTURE WORK 125

propagated through the execution of the instructions of the LLVM program. The user
can use this marks (taints) to detect if a chunk of memory is influenced by any of the
previously tainted variables.

In order to control the taint value of variables in the target program, KLEE methods
like klee taint, klee get taint or klee assert should be use and the following arguments
should be set:

(taint,buffer,size)

representing the taint level, target variable and the size.

Another drawback of the tool is that the API is built only for C target programs.
For other programming languages, the currently implemented taint analysis from the
Annotation Pass should be used. A solution is to develop a similar tool as the KLEE
patch [12], based on symbolic execution.

A requirement of the KLEE patch [12] is to run the program under the LLVM
tool klee, which gives the homonym command. The command is the common KLEE
workflow. If there are no symbolic values marked, KLEE may be seen as a plain llvm
bitcode interpreter. The KLEE API should be used directly from target C code, setting
and asking for taints and reacting to that. The KLEE patch [12] will not trigger any
fork, so by default it will execute only one trace. In order to execute more traces, the
KLEE API usage should be mixed with symbolic values. This requires the usage of
the KLEE API method klee make symbolic. Based on the new perspective of taintness
as defined for the KLEE patch [12], we can detect if some variable depend on other
variable. For this purpose, inside the C source code, a call to klee set taint and a call
to assert/klee get taint methods should be added in the correct place to check for the
taint. The user should also define which variables or bytes from the target program will
be symbolic and which variables or bytes will be tainted. In order to check which values
are tainted, we need to add explicit checks inside the target program with klee get taint
and klee assert. The klee get taint method expects a pointer to memory and a size and
returns the union of taint values of all the bytes in the chunk of the selected memory.
The taint propagation is transparent to the user. However, the user can set and query
taint values using the special functions taint set/taint get, but the propagations are done
automatically. The problem is that the user needs to access the chunk of memory where
the union of taint variables is. The taints are saved in an internal KLEE structure
Cell. The user cannot access that directly from the target program only by means of
taint set/taint get. The user needs to set the corresponding Cell taint value to a taint
argument that can be accessed. Initially, every variable is considered not to be tainted.
The programmer sets the taints with klee set taint and the internal taint value of the
specific chunk of memory gets the corresponding taint value. Then, the target program
is run, copying the taint values from one variable to other and from one byte of memory
to another (propagating the taintness). Then, the programmer can check if a chunk of
memory is tainted (or which taint it has, L or H) with klee get taint(buffer,size). In the
case of local variables and arguments there are internal Cell instances associating the
taint values with the actual variable value. The taint values are modified accordingly
when the program progress. A trivial example is:

126 CHAPTER 5. CONCLUSION

int b;

int a;

klee_set_taint(1, &a, sizeof(a));

//from now on, a is tainted with taint "1"

b = a + 1

// now b is also tainted because a was tainted

assert (klee_get_taint(&b,sizeof(b)) == 1)

The user is tainting the memory that holds the variable a with klee set taint(1,
&a, sizeof(a)). Then, the user set the memory holding a as symbolic with
klee make symbolic(&a, sizeof(a), v̈ar)̈, so KLEE tests every possible trace depending
on a. After this operation, the programmer can put an assert checking the taint of
the memory holding the variable b, with the instruction klee assert(klee get taint(&b,
sizeof(b)) == 1). This assert shows if b is tainted with taint 1. It fails to emit an
exception if the variable is not tainted. If KLEE finds any trace in which b is not tainted
with the taint 1, it will output an error showing which values of variable a reached the
error condition.

Using the taint analysis implemented by the KLEE patch [12], we can see which
variables are influenced by other values during the symbolic execution. The user can use
the marks (taints) from the KLEE patch [12] to detect if a chunk of memory is influenced
by any of the previously tainted variables. Based on the output, the Annotation Pass

5.2. FUTURE WORK 127

can mark the found variables as sensitive, improving the input for our application.

128 CHAPTER 5. CONCLUSION

AFSCM non-profit association promoting the technical

development of contactless mobile services [14]

annotation in the context of source code

annotations, it is a feature of

debugging tools; an annotation is

metadata attached to data [29]

API software interface, specified in detail, that

provides access to specific functions of a

program [30]

attack exploitation of a vulnerability by a threat

agent [37]

attacker person (or program) who attempts to perform

a malicious action against a system [37]

authentication verification process that the identity

claimed by a subject is valid [37]

authorization process that ensures that the requested

activity or object access is possible with

respect to the rights and privileges assigned

to the authenticated identity [37]

availability ability to ensure users to have timely and

reliable access to their information assets [40]

basic block part of the source code that has

one entry point (no instruction from the

basic block except the first one is

the destination of a jump instruction

anywhere in the program) and one exit

point (only the last instruction of the

basic block can cause the program to

begin executing code in a different

basic block) [3]

benchmark act of running a computer program, a set of

programs in order to assess the relative

performance of an object, normally by

running a number of standard tests and

trials against it [13]

bitcode in the context of LLVM, it represents the

intermediate code produced from the source code

by LLVM front-end compilers [35]

bug mismatch between implementation and

specification [28]

call graph graph whose vertices are the functions

of the program and the edges are

given by the relations between functions;

it represents a directed graph indicating

the connections between subroutines

of a program [32]

certification it refers to the confirmation of certain

characteristics of an object, person or

organization [18]

Table 5.1: Glossary

5.2. FUTURE WORK 129

ciphertext message that has been encrypted for

transmission [37]
Clang LLVM C/C++/Objective-C front-end

compiler [33]

code review process for the examination of source

code [22]; in the context of smartcards, its

applicability is to ind vulnerabilities in the

code; the results can be used for code or code

fixing and improvement

conditional branch an instruction that directs the

computer to another part of the

program based on the results of a

compare; in the context of smartcards,

a sensitive conditional branch is the

decisional part of a security check

confidentiality ability to prevent of unauthorized use or

disclosure of information [40]

control-flow graph graph whose vertices are represented

by basic blocks of the program and

the edges are jumps in the control

flow [3]

countermeasure action taken to patch a system vulnerability

against an attack [37]

denial of service attack that prevents a system from

processing or responding to requests

for resources [37]

dependency in the context of smartcard

code review, it is a situation in

which a program statement refers to the

data of a preceding statement [17]

depth-first search algorithm for traversing or searching

tree or graph data structures [16]

encrypt process used for converting a message

into ciphertext [37]

encryption science of hiding the meaning or intent of

communication data from recipients not

meant to receive it [37]

exploit instance of attack on a system as a result of

the system’s vulnerabilities [27]

glitch very short voltage dropout or

voltage spike [30];

short-lived fault in a system inserted

by the attacker/security analyst

using fault injection

GlobalPlatform association founded by various smartcard

companies to standardize technologies

for multiapplication smartcards [30]

Table 5.2: Glossary

130 CHAPTER 5. CONCLUSION

guideline recommendation hinting the actions to do or

avoid during software development. Guidelines

are at an intermediary level, being more concrete

than principles, but not more than rules [27]

integrity ability to ensure if the information

is complete and has not been modiied by

unauthorized recipients [40]

intrinsic function function that substitutes a sequence of

automatically generated instructions

by the compiler [35]

Java Card multiapplication smartcard that embeds the

Java Card operating system [30]

KLEE LLVM tool that implements a symbolic

virtual machine to support

symbolic execution [34]

LLVM is a compiler framework written in C++,

used for compiler construction and

code review [35]

logical attacks malicious actions that exploits

vulnerabilities in software [39]

metadata description of the data in a

source, distinct from the actual

data [26]

methodology the systematic, theoretical analysis of the

methods applied to a field of study

or the theoretical analysis of methods and

principles associated with a branch of

knowledge [19]

pass in the context of LLVM, it is a

tool used to analyze or transform

a source code [35]

pattern in the context of Riscure, generalization derived

from the Riscure sets of security principles, guides,

recommendations for the smartcard software

development engineers [39]

penetration testing live test of the effectiveness of security

defenses through mimicking the actions

of real-life attackers [20]

physical attacks malicious actions that analyze

or modify the hardware [39]

plaintext message that has not been encrypted

the system’s vulnerabilities [37]

principle abstract statement of general security

knowledge that tends to be generic in nature [25]

Riscure company specializing in the security analysis

embedded devices, including smartcards

RAM volatile memory that is used as working memory

in smartcards [30]

ROM non-volatile memory that is used to store

programs and data that cannot be altered [30]

Table 5.3: Glossary

5.2. FUTURE WORK 131

rule more concrete version of a guideline. The

description of the rules is done at syntax level,

while the guidelines are described at

semantic level [27]

security check structures composed of sensitive

conditions and return instructions; in

the context of smartcards, the security

checks aim to protect the sensitive data

on the smartcard

security analyst part of the security testing

personnel which plays the role of

an attacker

sensitive data it refers to data whose unauthorized

disclosure may have serious adverse effects

on the private data from the system

side channel attacks malicious actions that analyze

or modify the device behavior by

using physical phenomena [39]

SIM GSM-specific smartcard that is used to secure

the authenticity of the mobile system

with respect to the network [30]

smartcard card containing embedded integrated

circuits [30]

software security the engineering of software that is

aimed to ensure the correct functionality

of a system under malicious attacks [25]

specification it refers to the explicit set of

requirements to be satisfied by the system;

it provides a complete description of the

behavior of a system to be developed [30]

standard document produced by consensus and adopted

by organizations, that defines rules or

guidelines for activities or activities results

in order to achieve optimum regulation

in a given context [30]

symbolic execution means of analyzing a program

to emulate the execution of the

program [34]

taint analysis data flow analysis performed

at each step of execution of a

single run; used to determine if values

are derived from user input

target program the program to be evaluated

terminal device that provides power to the smartcard

and enables it to exchange data [30]

test-suite in the context of smartcards, it is a

collection of test cases that are intended

to be used to test the smartcard program in

order to show if the expected behavior

is preserved [24]

Table 5.4: Glossary

132 CHAPTER 5. CONCLUSION

threat potential occurrence that may cause an

unwanted behavior of the system [37]

VMKit LLVM Java/.NET front-end

compiler [36]

vulnerability result of a software defect that can be

exploited by an attacker in order to

undertake malicious actions [27]

Table 5.5: Glossary

AFSCM Association Franaise du Sans Contact Mobile

API Application Programming Interface

APSC Attack Potential to Smartcards

CC Common Criteria

CEN European Committee for Standardization

CFG Control Flow Graph

CG Call Graph

CPU Central Processing Unit

DFA Differential Fault Analysis

DFS Depth-First Search

EEPROM Electrically Erasable Programmable Read Only Memory

EM Electro-Magnetic

ETSI European Telecommunications Standards Institute

GSM Global System for Mobile Communications

HWIFI Hardware Implemented Fault Injection

IBM International Business Machines Corporation

IEC International Electrotechnical Commission

IR Intermediate Representation

ISCI International Security Certification Initiative

ISO International Organization for Standardization

IT Information Technology

JHAS JIL Hardware Attacks Subgroup

LLVM Low Level Virtual Machine

PIN Personal Identification Number

RAM Random Access Memory

ROM Read Only Memory

SIM Subscriber Identity Module

SWIFI Software Implemented Fault Injection

VMKit Virtual Machine Kit

Table 5.6: Abbreviations

Bibliography

[1] ISO/IEC 15408, Common criteria, www.commoncriteriaportal.org/, 2013.

[2] Alexander, Bieman, Ghosh, and Ji, Mutation of java objects, www.inf.ufpr.br/silvia
/topicos/artigos/OO3.pdf.gz, 2002.

[3] F.E. Allen, Control flow analysis, dl.acm.org/citation.cfm?id=808479, 1970.

[4] Machine Learning Group at the University of Waikato, Weka project,
www.cs.waikato.ac.nz/ml/weka/, 2012.

[5] BITS, Software assurance framework, http://www.bits.org/publications/secu-
rity/BITSSoftwareAssurance0112.pdf, 2012.

[6] Boneh and Brumley, Timing attack on unprotected ssl implementations,
cs.ucsb.edu/ koc/docs/c36.pdf, 2005.

[7] Bradbury, Cordy, and Dingel, Mutation operators for concur-
rent java (j2se 5.0), http://www.irisa.fr/manifestations/2006/Muta-
tion2006/papers/14 Final version.pdf, 2006.

[8] Cedric, Open benchmark for java card technology, cedric.cnam.fr
/fichiers/RC885.pdf, 2010.

[9] Common Criteria Methodology [CEM], Joint interpretation library applica-
tion of attack potential to smartcards version 2.1, http://www.ssi.gouv.fr
/site documents/JIL/JILThe application of attack potential to smartcards V2-
1.pdf, 2006.

[10] National Cryptologic Centre, Supporting document guidance, smartcard evaluation,
version 2.0, www.commoncriteriaportal.org/files/supdocs/CCDB-2010-03-001.pdf,
2010.

[11] Zhiqun Chen, Java card technology for smart cards, http://www.oracle.com
/technetwork/java/javacard/javacard-142511.html, 2004.

[12] Ricardo Corin and Felipe Manzano, Taint analysis of security code in the klee sym-
bolic execution engine, www.meals-project.eu/sites/default/files/761802642012.

[13] D.Salomon and G.Motta, Handbook of data compression,
http://books.google.com/books/about/Handbook of Data Compression.html?id=
LHCY4VbiFqAC&redir esc=y, 2010.

[14] Association Franaise du Sans Contact Mobile Specifications, Afscm. nfc cardlet
development guidelines, release 2.2, www.afscm.org, 2012.

[15] Evans and Larochelle, Improving security using extensible lightweight static analysis,
http://dx.doi.org/10.1109/52.976940, 2002.

133

134 BIBLIOGRAPHY

[16] Even and Shimon, Graph algorithms, http://books.google.com/books
/about/Graph Algorihms.html?id=adtQAAAAMAAJ&redir esc=y, 1979.

[17] J.L. Hennessy and D.A. Patterson, Computer architecture: a quantitative approach,
http://books.google.com/books/about/Computer Architecture.html?id=gQ-
fSqbLfFoC&redir esc=y, 2011.

[18] IEEE, Technav. ieee certification, technav.ieee.org/tag/375/certification, 2013.

[19] S.I. Irny and A.A. Rose, Designing a strategic information systems planning method-
ology for malaysian institutes of higher learning (isp- ipta), issues in information
system, iacis.org/iis/2005/Ishak Alias.pdf, 2005.

[20] ISACA, Glossary, http://www.isaca.org/Pages/Glossary.aspx?tid=651&char=P,
2013.

[21] Jones and Capers, Measuring defect potentials and defect removal effi-
ciency, http://www.rbcs-us.com/images/documents/Measuring-Defect-Potentials-
and-Defect-Removal-Efficiency.pdf, 2010.

[22] A. Kolawa and D.Huizinga, Automated defect prevention: Best
practices in software management, http://books.google.com/books
/about/Automated Defect Prevention.html?id=PhnoE90CmdIC&redir esc=y,
2007.

[23] Ma, Offutt, and Kwo, Mujava: An automated class mutation system,
www.ist.tugraz.at/teaching/pub/Main/QS/mujava.pdf, 2004.

[24] A. Mathur, Foundations of software testing, http://books.google.com/books
/about/Foundations of Software Testing.html?id=yU-rTcurys8C&redir esc=y,
2011.

[25] McGraw, Automated code review tools for security, http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=4712512, 2008.

[26] McGraw and Hill, Dictionary of scientific and technical terms,
http://books.google.com/books/about/McGraw Hill dictionary of
scientific and.html?id=9t83ABfTBvQC&redir esc=y, 2003.

[27] G. McGraw, Software security: Building security in. ad-
dison wesley professional, http://books.google.com/books
/about/Software Security.html?id=HCQdypbpZXgC&redir esc=y, 2006.

[28] A. Mller, An introduction to analysis and verification of software,
http://cs.au.dk/ amoeller/talks/verification.pdf, 2003.

[29] Oracle, Docs: Annotations, http://docs.oracle.com
/javase/tutorial/java/annotations/, 2010.

BIBLIOGRAPHY 135

[30] Wolfang Rankl and Wolfang Effing, Smart card hand-
book, third edition, http://books.google.com/books
/about/Smart Card Handbook.html?id=JBAGF0v5LqMC&redir esc=y, 2003.

[31] Juliano Rizzo and Thai Duong, Practical padding oracle attacks, usenix.org/events
/woot10/tech/full papers/Rizzo.pdf, 2010.

[32] B.G. Ryder, Constructing the call graph of a program, http://ieeexplore.ieee.org/xpl
/login.jsp?tp=&arnumber=1702621&url=http1.pdf

[33] Open source. University of Illinois, Clang: a c language family frontend for llvm,
clang.llvm.org/, 2013.

[34] , The klee symbolic virtual machine, klee.llvm.org/, 2013.

[35] , The llvm compiler infrastructure, http://llvm.org/, 2013.

[36] , Vmkit: a substrate for virtual machines, vmkit.llvm.org/, 2013.

[37] E. Tittel, J.M. Stewart, and M. Chapple, Cissp: Certified infor-
mation systems security professional, http://books.google.com/books
/about/CISSP Certified Information Systems Secu.html?id=r7bwQG33aTUC&redir esc=y,
2004.

[38] Witteman, Advances in smartcard security, www.riscure.com
/archive/ISB0707MW.pdf, 2002.

[39] , Secure application programming in the presence of side channel attacks,
www.riscure.com/benzine/documents/Paper Side Channel Patterns.pdf, 2012.

[40] J. Wylder, Strategic information security, http://books.google.com/books
/about/Strategic Information Security.html?id=gPWoe-8MGZkC&redir esc=y,
2003.

	List of Figures
	List of Tables
	Acknowledgements
	Smartcard vulnerabilities
	Overview of Smartcard Vulnerabilities
	Testing and Certification
	Organization
	Summary

	Experimental Setup
	Code review
	Infrastructure Setup
	Code Review Application for Fault Injection
	The Riscure Smartcard Development Guideline
	Summary

	Application for Fault Injection Vulnerabilities Recognition
	Target program example
	Annotation Pass
	Paths Pass
	Analysis Pass
	Proof-of-Concept Example
	Summary

	Evaluation
	Test suite
	Types of smartcard vulnerabilities
	Results and Validation
	Summary

	Conclusion
	Summary
	Future work

	Bibliography

