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Energy-Aware Adaptive Framework for CAV

Dewant Katare
Delft University of Technology
Delft, the Netherlands
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Abstract—Driving assist applications and connected au-
tonomous vehicle systems are supported using AI models and
algorithms, which process and analyze heavy data volumes.
High-performance computing units and large memory systems
support these models, algorithms, and applications, which results
in additional onboard energy consumption. The current trend
is also towards full electrification of vehicles and increasing
connectivity in the vehicular ecosystem to support collaborative
and distributed applications using vehicle-edge-cloud computing.
However, with the increased focus on model performance and
improving the accuracy of these models and applications, the
issue of high-performance computing requirements and resulting
energy consumption are overlooked. The problem becomes more
challenging and complex for resource-constrained edge devices,
which are battery-dependent and have limited memory and com-
puting power. This paper proposes components for an adaptive
framework to reduce energy consumption by balancing model
accuracy. The contributions include proposing and integrating
model partition mechanisms, adaptive deployment across edge
devices and approximation strategies for the models. By inte-
grating these components, this framework supports energy-aware
development across various platforms. The approach offers a
sustainable method for computing and communication-oriented
applications within the vehicular ecosystem.

Index Terms—Energy-aware Computing, Model Approxima-
tion, ML Systems, Edge Al, Vehicle-Edge Computing

I. INTRODUCTION

Autonomous vehicles have advanced with the integration of
sensing units, intelligent algorithms and connectivity, advanc-
ing the traditional vehicle from a mode of transportation to a
cyber-physical interconnected system [1]. These advancements
use basic and complex computational models, enhancing ve-
hicle navigation, efficiency, and user experience. In particular,
Connected autonomous vehicles (CAV) use various Al mod-
els, including regression, classifiers, and complex attention
mechanisms, to perform tasks that range from environmental
sensing to decision-making and driver assistance functional-
ities using vehicle-edge-cloud computing ecosystem [2]-[5].
An overview of CAV is shown in Figure 1. These intelligent
vehicles depend on real-time data processing and continuous
communication, supported by high-performance computing
units and large memory systems.

Al models in these systems manage tasks ranging from
perception and actuation to navigation, necessitating ongoing
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Fig. 1: An overview of vehicle-edge-cloud ecosystem [5]

processing of substantial data from onboard sensors like cam-
eras, radar, lidar, and GPS [3], [6]-[8]. This extensive data
handling increases onboard energy consumption, presenting a
significant challenge for electric vehicles aimed at sustainable
computing [2], [9], [10]. Energy-efficient computing strategies
aim to reduce power usage in tasks, while energy-aware
methods dynamically optimize energy consumption based on
processing and memory workload [11]. Similar techniques in
smartphone technology involve advanced power management
like dynamic voltage and frequency scaling to enhance battery
life without impacting performance [12], [13]. For vehicular
systems, transitioning to energy-aware computing necessitates
optimizing hardware, software, and computational strategies
to adapt dynamically to the vehicle’s current energy needs
and operational demands [5], [14]. This paper explores the
following research questions to develop an adaptive, energy-
aware computing framework for connected vehicles.

1) Which computing strategies can enable collaborative and
energy-efficient edge deployments in CAV?

2) How can energy-aware techniques be adopted in CAV
to optimize energy consumption dynamically?

To address the above questions, we propose a framework to
reduce the memory and computational load based on system
and application requirements while balancing the accuracy.
We also focus on collaborative deployments using edge Al to



improve onboard energy efficiency. The framework integrates
model partition mechanisms, adaptive model deployment, and
model approximation strategies.

II. RELATED WORK AND CHALLENGES

Energy-efficient and sustainable computing techniques have
gained attention with the increased usage and deployment of
autonomous systems, which depend on complex computational
models and bring additional energy demands [3], [5], [10].
Connected vehicular technology and applications, which de-
pend on the intersection of computing and communication
within the vehicular ecosystem, require energy management
and sustainable computing practices. In this section, we dis-
cuss existing frameworks that covers energy-efficient strategies
and the requirements to advance from energy-efficient to
energy-aware computing.

A. Energy-Efficient Computing in CAV

Previous work in energy management includes hardware-
level improvements such as advanced power electronics for
efficient battery management and power units [2], [15] and
software strategies such as data compression and reducing
the complexity of models, algorithms [11], [16] to optimize
related components. Techniques like model pruning and ef-
ficient neural network designs have also helped to reduce
the computational demands by using compressed models used
in the perception, mapping, and navigation of connected
autonomous vehicles [7], [15], [17]. While these methods
have effectively reduced model and computational parameters,
the compression scope does not consider dynamic vehicular
environments’ variable computational requirements and char-
acteristics. As a result, energy-efficient strategies operating
under static conditions often have less than optimal perfor-
mance in unpredictable situations where the environmental and
operational conditions are dynamic [3]. Existing frameworks
such as LoPECS [18] discuss a low-power edge computing
system to reduce power consumption in autonomous driving
applications. The system uses a heterogeneous computing ap-
proach and dynamic task offloading to edge cloudlets, showing
onboard energy savings for V2X applications. This framework
uses a Heterogeneity-Aware Runtime Layer and a vehicle-edge
Coordinator to optimize the user experience with extended
battery life and enhanced performance of driving services.

VECMAN [19] introduces energy-aware resource manage-
ment in vehicular edge computing systems by addressing
the challenge of high energy consumption in collaborative
applications through optimized resource-sharing and task-
offloading strategies. The framework reduces computational
energy consumption, using key components such as a re-
source selector algorithm and an energy manager algorithm,
which enhance system reliability and energy efficiency. Using
a deep deterministic policy gradient (DDPG) algorithm, a
deep reinforcement learning-based framework is discussed for
optimizing resource allocation in the Internet of Vehicles [13].
The framework reduces the mobile network operator’s energy
costs while ensuring timely task completion. This study shows

the potential of DRL methods to achieve robust, real-time
decision-making in complex vehicular network environments.
A carbon-aware framework for AIoT ecosystems focusing on
sustainable computing practices is discussed in [10]. The
framework discusses energy-efficient communication and low-
carbon task offloading. The framework includes a multi-source
model for communication and a carbon-aware multi-channel
exploration offloading decision algorithm. Experiments show
that it outperforms existing methods in reducing data ac-
quisition errors, energy consumption, and carbon emissions,
enhancing the overall sustainability of AloT ecosystems.

B. Energy-Aware Models and Computing

The development of energy-aware computing requires an
intelligent strategy that can manage ongoing energy consump-
tion while balancing the performance and quality of CAV
applications [3], [16]. Compared to traditional methods focus-
ing on energy efficiency, energy-aware frameworks dynami-
cally adapt to varying energy availability and computational
demands. This adaptation involves frameworks that monitor
energy usage in real-time for connected vehicles and adjust
computational strategies to align with current vehicular needs
and application or task priorities, as several CAV applications,
such as adaptive cruise control, automatic emergency braking
and simultaneous localization and mapping, have strict latency
and computing requirements [11], [20].

Strategic computation while balancing system performance
is the backbone of energy-aware systems, allowing them to
modify operational modes based on real-time environmental
data. This can lead to methods and techniques where non-
essential computations such as infotainment-related and la-
tency tolerable are scaled down in safe driving conditions to
save energy, or essential tasks are prioritized based on safety-
critical and latency criteria. Furthermore, the integration of
edge computing enhances these systems using distributed com-
putational loads across a network of devices. This arrangement
reduces data processing latency and enables localized energy
management decisions at the edge level rather than optimizing
the complex centralized computing and processing [8], [19],
[20]. Using edge computing is also complemented with real-
time analytics, reduced latency and adaptive Al technologies
to effectively balance performance with energy consumption,
resulting in more sustainable vehicular technologies [18].

In energy-aware computing practices, software or model
approximation provides a practical and balanced solution by
reducing the computational load without compromising per-
formance. Methods such as stochastic rounding, low-precision
arithmetic, dynamic precision scaling and probabilistic ap-
proximation have been proposed in iot, vehicular and cyber-
physical systems [5], [7], [9], [14]. Combined use of these
mechanisms can reduce energy consumption while balancing
operational performance or reduction in quality and model
performance with high energy saving.



III. COMPONENTS AND FRAMEWORK OVERVIEW

The design of the proposed adaptive framework is based on
principles discussed in the previous Lopecs framework [18].
The general components of the low-power edge computing
system for real-time autonomous driving systems (Lopecs)
are discussed in the subsection below, and the following
subsection covers our proposed components, which can be
integrated with existing Lopecs to advance it from an energy-
efficient to an energy-aware framework.

A. Overview of LOPECS Framework

Lopecs is a multi-layered architecture designed to optimize
energy consumption and improve computational efficiency
in autonomous vehicles. At the first layer, The framework
includes input as sensors or incoming data pipelines, followed
by the Quality of Experience (QoE) Oriented Service Clas-
sification as the first layer, which prioritizes tasks based on
their impact on user experience. This layer ensures that safety-
critical tasks receive the required computational resources on
a priority basis. The next layer is the Runtime Layer, which
includes: Real-Time Operating System (RTOS) a foundational
OS that supports all lower-level operations with minimal
latency, Heterogeneity Aware Scheduler which manages task
allocation across various computing units, ensuring that each
task is processed on the appropriate hardware to maximize
energy efficiency, and lastly an OpenCL API + Runtime, which
allows the use of a standardized API for parallel computing
across heterogeneous platforms, enhancing the flexibility and
efficiency of the system. The third layer described in the
Lopecs framework is Heterogeneous Computing Platform,
which includes computing support for multiple CPU System
to handle standard computational tasks, with energy-efficient
scheduling managed by the Heterogeneity Aware Scheduler,
and GPU Units, which includes specialized 3D GPUs and an
Image Processor, for high-intensity computation tasks such as
image processing and complex tasks such as SLAM. This layer
also includes support for Dedicated Accelerators such as video
and audio accelerators, which process specific tasks related to
video and audio processing and power usage for multimedia.

Lastly, one of the most essential layers in Lopecs is the
Vehicle-Edge Coordinator, which manages the communica-
tion between the vehicle’s onboard computing system and
other edge computing resources (cloudlets). This coordinator
dynamically offloads tasks to edge servers based on current
network conditions and system load, enhancing the overall
energy efficiency by using computing resources available
within the vehicle-edge ecosystem. Integrating these compo-
nents together as a framework addresses autonomous vehicles’
onboard power consumption challenge and supports driving
services with a distributed, adaptable approach. The evaluation
for Lopecs included testing multiple services with a total
power consumption of 11W on the Jetson TX1 device. Overall,
the framework is the proof-of-concept edge computing system
implemented and tested on edge devices with autonomous
vehicles, addressing the necessity for real-time, power-efficient
computing solutions. While LoPECS included components for

reducing power consumption, its performance relies on the
proximity of edge cloudlets, which may only be consistently
available in some environments. The framework also requires
expanding the applicability to a broader range of computing
architectures and driving scenarios. Additionally, addressing
the problems associated with ML model partitions, data pro-
cessing mechanisms, and adaptive deployment for inference
on vehicle-edge scenarios remains an open challenge.
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Fig. 2: Proposed adaptive energy-aware framework overview

B. Proposed Components

A high-level overview of the proposed framework is shown
in Figure 2. This framework adapts Lopecs five layers and
includes these existing layers as a baseline. These five layers
used in our adaptive framework have been described as: OS
and Service Scheduler, Vehicle task profiler, programming in-
terface, hardware units description, and communication layer.
The additional components proposed in this paper are:

1) Model Partition Mechanism: Model partitioning is an
important component in our proposed energy-aware frame-
work. This component is designed to distribute large-scale
Al models, such as CNN, Vision Transformers (ViTs), across
various edge devices efficiently while optimizing energy
use and maintaining performance. Our framework introduces
the Dynamic Resource-Aware Partitioning (DRAP) strategy,
which adapts edge devices’ diverse capabilities for tasks.
DRAP considers each device’s computational power, memory
availability, and energy levels; it also analyzes the structure
of models such as ViTs to identify optimal points for model
splitting. Additionally, it evaluates the latency and accuracy
requirements of different CAV tasks to guide partitioning deci-
sions. DRAP aims to enhance the distribution of model layers
across devices by solving a multi-objective optimization prob-
lem. The goals are to minimize overall energy consumption,



balance computational loads, and meet latency requirements
for timely operations. The optimization function is:

N
E; L
min g a—+0
i—1 ( Oi Ltotal

where F; is the energy consumption, C; the computational
capacity, L; the number of layers assigned to device ¢, Liota;
the total number of layers, and 7T; the processing time on
device ¢. Coefficients «, /3, and v are weighting factors that
balance the priorities.

DRAP includes several techniques to reduce complexity
and enhance energy efficiency. Dynamic head pruning, for
example, adjusts the ViT number of attention heads in ViT
layers according to the device’s energy state. Elastic dimension
scaling reduces the embedding dimensions of layers when
energy is limited to decrease computational demands. Selective
token processing is employed in resource-constrained scenar-
ios, focusing only on the most critical tokens to minimize com-
putational efforts. Effective communication between devices
is essential for energy-aware partitioning. DRAP improves
this by applying compression algorithms to feature maps,
reducing the volume of data transferred. It also adjusts the
precision of transmitted data based on available bandwidth and
energy resources. Predictive prefetching uses historical data
and current context to predict and prefetch necessary data,
reducing latency. DRAP continuously adjusts its strategies
based on real-time system conditions. If a device’s energy
level falls below a certain threshold, tasks are reallocated
to devices with more energy. It also dynamically manages
workload distribution to avoid overloading any single device.
Partitioning strategies are adjusted based on current energy
and computing resource conditions, prioritizing critical tasks
when needed. These strategies ensure that the framework ef-
fectively utilizes resources across heterogeneous edge devices
in the vehicular ecosystem, allowing CAVs to use complex Al
models efficiently while optimizing energy consumption.

2) Model Approximation Techniques: Our energy-aware
framework also integrates advanced model approximation
techniques aimed at reducing the energy consumption of
onboard systems in connected autonomous vehicles (CAVs)
while ensuring the functionality necessary for their operation
remains intact. These techniques specifically target the reduc-
tion of computational complexity and power demands without
substantial impact on the performance of the models [21]. The
approximation technique minimises multiplication in convo-
lutional operations, incorporating stochastic methods to min-
imize energy use. This includes implementing probabilistic
kernel application, where convolutional kernels are applied
with varying probabilities determined by their relevance to
the specific task, thereby avoiding uniform application across
all scenarios. We dynamically adjust the sampling rate for
these operations to adapt to the system’s current energy state.
Additionally, sparse activation maps are generated by selec-
tively zeroing out activations probabilistically, which helps to
maintain essential features while reducing the computation.

Our framework also uses variational inference techniques
optimized for energy saving. Low-rank approximations sim-
plify covariance matrices, reducing memory demands and
computational overhead. Adaptive sampling for Monte Carlo
estimation allows for adjusting the number of samples based
on the system’s energy budget, facilitating a balance between
accuracy and power consumption. Moreover, hierarchical vari-
ational models are implemented to improve inference effi-
ciency by using shared statistical strength across different
model layers. Precision in computational tasks is dynamically
managed through techniques such as context-aware precision
adjustment and mixed-precision quantization. Computational
precision is continuously adapted based on external conditions
such as vehicle speed and environmental complexity, as well
as the importance of the current computational task. This
strategy includes layer-specific quantization where critical
network layers maintain higher precision, whereas less crucial
layers operate with reduced bit-widths. The framework also
features an energy-driven reconfiguration system that adjusts
computational precision in response to dips below specific
energy thresholds, ensuring sustained operation during low-
power situations. Additionally, an adaptive floating-point for-
mat customizes the number of bits allocated for the exponent
and mantissa to match the computational demands precisely.

These approximation strategies are integrated to optimize
energy efficiency. The framework actively analyzes incoming
tasks to determine the most suitable combination of approxi-
mation techniques based on the current energy constraints and
task specifics. Real-time performance monitoring maintains a
feedback loop that assesses the impact of these approximations
on model performance, allowing for dynamic adjustments
to ensure an optimal balance between energy efficiency and
operational accuracy. Optimization simplifies the model com-
plexity in scenarios where energy is critically low, prioritizing
safety-critical functions to maintain essential system integrity.
By implementing these model approximation strategies, our
framework aims to lower the energy footprint of Al models
within CAVs, enabling the deployment of advanced algorithms
on resource-constrained edge devices.

3) Adaptive Model Deployment Strategies: Our frame-
work’s adaptive model deployment component aims to op-
timize model orchestration across distributed computing re-
sources, including edge devices and cloud infrastructures. This
strategy uses advanced gradient-based techniques to achieve
rapid convergence and efficient parallel computation, which is
essential for handling dynamic environmental conditions and
computational capabilities.

Gradient-Based Optimization Techniques: Our frame-
work uses advanced gradient methods like Enhanced Momen-
tum Gradient Descent (EMGD) to accelerate the convergence
of model training processes. EMGD incorporates a momentum
term, aiding in navigating along the pertinent directions of the
gradient. The equation is given by:

7/)(t+1) _ 'W}(t) + VCost((I)(t))’ (D
B+ — §lt) _ pyp(t+1), 2)



where z/z(t) is the velocity, v is the momentum coefficient,
VCost(®®) is the gradient of the cost function, and 7 is
the learning rate. Asynchronous Gradient Descent (AGD):
This technique allows for asynchronous updates in a parallel
computing setup, enhancing scalability and fault tolerance.
AGD reduces the need for global synchronization, allowing
each node to update based on locally computed gradients:

t+1) _ &) (t)
cbglobal - q)k)cal - UVCOSt((I)local)?

where ®gigpa and Pocq represent the global and local model
parameters, respectively. Deployment includes initialization of
model parameters and offload decisions, which are iteratively
refined using performance and cost metrics. This process
ensures optimal configuration based on the computational
capabilities of processing units. After this step, the model
components are mapped to hardware resources using a lookup
table approach. This method ensures that the device handles
each model component with the required memory and comput-
ing resources, thus optimizing resource use and performance.
We use EMGD to map models directly on multiple edge
devices, taking advantage of fast convergence properties. AGD
synchronizes model parameters across edge devices and the
cloud, effectively managing communication delays or failures.

Cloud Deployment: This strategy uses AWS cloud com-
puting instances capabilities to scale computational resources.
EMGD improves the training process, and AGD asyn-
chronously updates model parameters across the distributed
system, optimizing resource allocation and cost management.

Edge-Cloud Hybrid Deployment: This hybrid approach
combines edge computing’s low-latency and local data pro-
cessing with the cloud’s computational power. It starts with
model training in the cloud using EMGD and distributes model
parameters to edge devices via AGD, reducing data transfer
requirements and enabling responsive model training. These
adaptive deployment strategies ensure the framework meets
the computational demands of sophisticated Al models, man-
aging orchestration complexity, optimizing communication
overhead, and maintaining rapid convergence across network
conditions. This approach is essential for deploying advanced
Al models in resource-constrained environments, facilitating
more efficient and scalable autonomous vehicle systems.

4) Energy-Aware Systems Using Reinforcement Learning:
Advances from energy-efficient to energy-aware systems in
connected vehicles require an advanced energy management
approach. This transition involves moving from static, pre-
defined energy-saving settings to dynamic, adaptive strategies
that can respond in real-time to changing environmental condi-
tions and operational demands. Reinforcement Learning (RL)
offers a robust framework for facilitating this shift by enabling
continuous learning and adaptation based on the system’s in-
teractions with its environment. Reinforcement learning works
on the principle of decision-making under uncertainty, where
an agent learns to perform actions that maximize some notion
of cumulative reward. In the context of connected vehicles,
the RL agent interacts with a vehicular environment that
is highly dynamic, characterized by continuous changes in

driving conditions, network status, and energy availability. The
agent’s objective is to develop a policy that optimizes energy
usage without compromising the main performance metrics
such as safety, timeliness, and accuracy of navigational and
operational tasks. Reinforcement Learning (RL) provides a
robust framework for this shift, enabling continuous learning
and adaptation based on the vehicle’s interactions with its
dynamic environment.

Reinforcement Learning for Dynamic Energy Manage-
ment: Reinforcement Learning (RL) improves our system
from energy-efficient to energy-aware by dynamically opti-
mizing energy use while maintaining essential model and
application performance metrics. The RL framework consists
of: State Space: This includes necessary data about the oper-
ational status, including battery levels, processor and memory
utilization, latency and network conditions required for making
adaptive decisions. Action Space: Actions include adjusting
computational resource speeds (CPU/GPU), and decisions on
task offloading to optimize energy consumption efficiently. Re-
ward Function: Designed to balance high performance with
low energy consumption, this function penalizes excessive en-
ergy use and rewards reductions in energy consumption when
a model partition, resource allocation and an approximation
strategy is used. The implementation steps are:

Training the RL Agent: Initially, the agent is trained within a
simulated environment replicating operational scenarios with
diverse memory and computational load. This phase allows
the agent to learn optimal policies without real-world effects,
using simulated data (model training and evaluation based on
batch sizes) to predict energy requirements accurately.

Real-Time Learning and Adaptation: Post-deployment, the
RL agent continually refines its policies based on incoming
real-world data. This ongoing learning process ensures that
the system remains adaptive to changing conditions and can
optimize decisions for energy management dynamically.

Integration with Task: The trained RL agent’s policies
are integrated into the operational applications, for e.g., a
perception task, enabling real-time adjustments to the energy
management strategies based on the vehicle’s current state and
its environment.

Model Approximation: These strategies reduce computa-
tional demands using probabilistic kernel applications or
sparse activation maps, defined as:

n
Eapprow = E Eo’rig,i - Eapprow,i
i=1

where Ey,5.; and Egppr0z,; TEpresent the original and reduced
energy consumption for each task.

Model Partitioning: This involves distributing computation
to optimize energy usage across vehicle, edge-cloud layers:

m
Epart = Elocal + § Etrans,j + Eremote,j
j=1

Here Ejocals Etrans,j> and Eremote,; are used for local com-
putations and data transmission energies.
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Model Deployment Mechanisms: Both synchronous and
asynchronous mechanisms are used to process data, influenc-
ing overall energy consumption:

Edeploy = O4Esync + (1 - a)Easync

Where o refers to the operations using synchronous meth-
ods. Utilizing RL in this capacity enhances overall energy
management in connected vehicles, dynamically adjusting
operational strategies to maintain optimal performance levels
while minimizing energy consumption. This approach aligns
with sustainability goals and improves the deployment strategy
of advanced Al applications in energy-limited scenarios for
autonomous and efficient vehicular technologies. By imple-
menting these strategies, our framework improves the energy
efficiency of connected autonomous vehicles to operate effi-
ciently and sustainably under varying operational conditions.

C. Integration of Proposed Components

Integrating the proposed components: resource allocation &
management, approximation scheme, adaptive model deploy-
ment, and energy management into the LOPECS framework
improves its capabilities from energy-efficient to energy-aware
computing. The resource allocation-management module inter-
faces with the previous heterogeneous-aware scheduler, opti-
mizing the distribution of computational tasks across available
resources while considering energy constraints. The approx-
imation scheme component works in coordination with the
computing unit platform, dynamically adjusting the precision
of operations based on the capabilities of each computing
unit and current energy levels. Adaptive model deployment
uses the vehicle-edge coordinator to intelligently partition
and distribute Al models across vehicle and edge resources,
minimizing data transfer and energy consumption. Finally, the
energy management module integrates with the task profiler,
continuously monitoring energy usage and providing output
to components for real-time optimization. This integration
enables the framework to make energy-aware decisions at
different stages of task execution, from initial profiling to final

TABLE I: Comparison of baseline and our proposed method.

Models Methods | mAP (%) | Latency | Energy (mlJ)
. Central 57.3 4.25 370.6
EdgeVIT | (1 55.6 3.88 290.7
. Central 557 3770 430.6
TinyViT Ours 51.1 327 367.5
| Central 53.9 386 3627
EfficientViT | ¢ 517 334 381.6
ViT Central 497 473 493.6
Ours 425 3.02 402.5
) Central 76.6 505 432.0
DeiT-B Ours 40.2 3.54 341.4

deployment, resulting in a more efficient and adaptable system
for vehicle-edge services.

IV. TEST AND EVALUATION

Hardware: For evaluations the devices used includes
Xavier NX, Jetson TX2, and Raspberry Pi 4, which differ in
computational power and memory capabilities. This allowed
us to evaluate the flexibility of our partitioning strategies in
the real edge Al conditions. We measured each device’s energy
use and latency during the inference phases.

Vision Transformer Models: We used several Vision
Transformer models with architecture, including attention
mechanisms, feed-forward network (FFN) layers, and the
integration of various operations from CNNs, GNNs, and
MLPs. Our evaluation included: ViT: The standard Vision
Transformer model applying transformers to image recogni-
tion with self-attention mechanisms. EdgeViT: Adapted for
edge computing, this model has computational efficiency and
minimizes memory demands for real-time image processing
on constrained devices. TinyViT: This model offers a compact
solution for environments with limited resources, balancing the
size and computational requirement against accuracy. DeiT-B:
Optimizes training efficiency through knowledge distillation,
ideal for limited data environments. EfficientViT: A ViT model
designed for efficient inference on edge devices, optimizing
the balance between model performance and devices.



Dataset: The models were tested on the OPV2V dataset
[22], which supports cooperative perception tasks. Generated
using the OpenCDA framework and CARLA simulator, this
dataset has around 73 diverse driving scenes in 9 cities
with 12K frames of LiDAR point clouds and RGB camera
images, providing a robust platform for evaluating our models’
performance in autonomous driving applications.

Evaluation Metrics: We use onboard Energy Consumption,
monitored using inbuilt and external tools to measure power
usage during inference. mAP, is used for benchmarking 3D
object detection tasks. Latency, is used to measure the time
required to complete inference across the distributed devices,
as shown in Table I, which compares our method against
a centralized approach. The table shows that models like
EdgeViT and TinyViT provide high efficiency with lower
energy demands. Figure 3 shows the model’s latency and nor-
malized energy usage across devices, which helps to identify
the computational challenges and processing requirements on
the Raspberry Pi and powerful Jetson devices. For normalized
energy tracking, we used NVIDIA’s NVML for GPUs and
Tegrastats for Tegra processors, enabling us to monitor and
optimize energy consumption. CPU consumption ranges from
0.22 for EfficientViT to 0.29 for ViT, while memory from
0.26 for EdgeViT to 0.34 for both ViT and DeiT-B. The GPU
energy usage varies from 0.37 for ViT to 0.55 for TinyViT.
This analysis shows that models such as EdgeViT, TinyViT,
and EfficientViT have efficient GPU processing. While the
legacy ViT model shows a more balanced distribution of
energy consumption across components, showing potential for
further optimization of components.

V. CONCLUSION AND FUTURE WORK

This study proposes an adaptive framework that includes
model partition mechanisms, adaptive model deployment, and
model approximation strategies to balance energy efficiency
with model performance and accuracy using an energy-aware
approach. We have described the proposed components, their
integration and testing using vision models to answer the
mentioned research questions, which shows the potential for
onboard energy savings and balanced performance in the
vehicular ecosystem. Future work will test the framework
across heterogeneous edge devices, including accelerators and
multi-modalities, to validate its adaptability and effectiveness
in diverse operational environments. Additionally, the scope
of vehicular applications will be expanded to include more
complex computational tasks such as HD mapping or video
streaming, where some computational processes are offloaded
and shared with cloud environments, which can help explore
the balance between edge and cloud computing, aiming to
optimize resource allocation and further reduce the energy
footprint of connected vehicular systems.
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