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Abstract

The growing agreement that soil organic matter (SOM) is an essential factor to predict
and optimise a wide range of soil ecosystem services, has made the lack of generally accepted
mechanistic modelling tools for SOM degradation a pressing matter. In this study, we de-
veloped a state of the art mechanistic toolbox which embodies the core of SOM degradation,
while maintaining a model structure that allows flexible addition of interactions with other
soil components. The theoretical framework of the toolbox is an aerobic reaction network
where SOM is defined as a mixture of known organic compounds from plant and microbial
origin, that interact with microorganisms in a non-limiting aqueous environment. Simula-
tions of the toolbox show that the bulk properties of SOM can be interpreted as weighted
averages of the properties of individual organic compounds. The downside of implementing
a novel theoretical approach in the toolbox, is that some crucial parameter values are poorly
documented in literature. To tackle this issue, we incorporated a Bayesian inference tool,
which is capable of selecting an experimental design that makes optimal use of the inher-
ent model structure to maximise the future parameter identifiability. The toolbox shows
promising outlooks to both a) increase the acceptance of the state of the art insights in
SOM degradation by reinterpreting older experimental findings, while b) further enhancing
mechanistic modelling of interaction processes between SOM and other soil components to,
ultimately, make accurate predictions of SOM degradation within a complex soil environ-
ment.
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1 INTRODUCTION

1 Introduction

Soils provide a wide range of ecosystem services, as the result of complex interactions between
several soil components. Soil organic matter (SOM) has been known to be a crucial factor for
soil fertility for decades [1, 2]. Nowadays, SOM is identified as playing an essential role in an
increasing number of ecosystem services, such as water quality, erosion resistance and climate
change mitigation [1]. Not surprisingly, extensive time and effort have been dedicated towards
predicting and, ultimately, optimising the ecosystem services for their end-goal.

By consequence, there is an urgent need for tools that can answer the ever-growing amount and
variation in research questions regarding SOM [3]. Currently, the available numerical models are
falling short of this demand due to their limited applicability. The prevailing models, such as
RothC [4], are constrained to the turnover of carbon and sometimes nitrogen in the soil, without
the possibility to extract information on additional properties of SOM [5]. These models are
developed based on data collected from field studies [4]. Due to this empirical nature, the validity
of their predictions is restricted to the range of observations used upon building the model [1,4].
For instance, if soil temperatures increase drastically due to climate change, the current models
cannot be used to predict how carbon turnover will react within this new temperature range [1].
Overall, using empirical modelling to answer the vast diversity in SOM-related research would
require an individual model for each ecosystem service, which would then still encounter major
difficulties when making predictions in diverging conditions. Mechanistic modelling, on the other
hand, aims to make predictions by mimicking the processes leading up to the outcome [6]. Given
that the ecosystem services are all merely different outcomes of the same interaction processes,
mechanistic modelling is a much more efficient approach to SOM predictions and optimisation
over a range of scientific fields. Unfortunately, generally accepted mechanistic numerical models
of SOM degradation are lacking to date.

A major prerequisite of mechanistic modelling is knowledge of the processes in question, which
is where the problem lies with modelling of SOM degradation. The fact that mechanistic models
failed to develop, can be traced back to a longstanding misconception of the process of SOM
degradation. Traditionally, it has been thought that the majority of SOM consists of humic
substances [7]. Humic substances constitute of humic acids, fulvic acids and humin [8]. The
constituents can be divided through a sequential extraction scheme of acidic and alkaline solu-
tions, which operationally defines each fraction [8]. Humic and fulvic acids were thought to be
products of complex condensation reactions between disassembled plant material, resulting in
de novo macromolecules. The macromolecules were expected to be refractory with regard to
degradation by microorganisms, allowing them to persist in the soil for periods several times
longer than the original plant material [9]. However, the macromolecules in question had never
been directly observed in samples of SOM [10]. Their absence was disregarded as merely an
analytical artefact, by assuming the analysis methods were interfering with the actual structure
of the humic substances [10].

In the last ten years, a new interpretation for SOM degradation has been evolving from two key
insights, namely that a) neoformation of macromolecules is negligible, and b) that SOM persists
in the soil not solely due to its own refractory nature, but due to the combined action of several
stabilisation mechanisms [1, 2, 7, 11]. The first insight is the direct result of the application of
advanced nuclear magnetic resonance (NMR) spectroscopy to identify traditional fractions of
humic substances [10]. The measured signals show that the vast majority of SOM mixtures can
be explained by organic molecules of plant and microbial origin [10]. This observation does not
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1 INTRODUCTION

exclude the existence of de novo macromolecules, but strongly refutes their importance [10]. The
second insight opposes the notion that certain microbial and plant compounds persist for long
periods of times, by virtue of their intrinsic refractory nature [1,7]. Laboratory experiments show
that the degradation rate of even the most resistant plant compounds is still orders of magnitude
higher than the average turnover rate of organic matter in the soil. Rather, the degradation
rate of SOM is governed by environmental factors, which protect or stabilise SOM in various
ways against their degradation by microorganisms [1, 7]. The main mechanisms are aggregate
formation, mineral binding and metal binding [1, 7].

To the author’s knowledge, only two attempts at translating the new theoretical insights into
a mechanistic numerical model have been published. The first attempt is the AggModel by
Segoli et al. (2013) [3]. The AggModel focuses on the second insight, by modelling aggregate
dynamics, SOM degradation and mineral binding of SOM as mechanistic processes. The organic
matter itself is characterised according to its state of association with minerals and aggregates.
The second attempt is the BAMS1 model by Riley et al. (2014) [12]. BAMS1 includes the first
insight by developing a reaction network for SOM degradation by defining SOM as a mixture of
carbon compounds of plant and microbial origin. The second insight is integrated in the model
by assigning relatively fast reaction rates to the degradation of these compounds. Furthermore,
SOM is then protected by its interaction with soil minerals.

First and foremost, the goal of this paper is to create a numerical model that embodies solely
the core of SOM degradation, but does feature the possibility to add interactions with other soil
components in a mechanistic manner in later applications. Concretely, this goal is pursued by
developing a reaction network based on state of the art insights into SOM. An extensive literature
research is conducted to define SOM entirely as known compounds of plant and microbial origin.
The degradation of SOM is the direct result of interaction of SOM with microorganisms and
soil water. By consequence, microorganisms and soil water are inherent components of the SOM
degradation core and included in the model. Furthermore, the need to use the core model to add
interactions with other soil components is met by the characterisation of the SOM compounds
with various properties. The reaction network is implemented in a numerical forward model.

The main drawback of the forward model developed in this paper, is that it relies on parameter
values which are poorly documented in current literature. For this reason, a second research
objective is to create a tool that can suggest the design of an experiment which would make
optimal use of the inherent model sensitivity to identify the value of the most uncertain param-
eters. To conduct this analysis, the forward model is expanded with the DREAM algorithm of
Vrugt et al. (2016) as implemented by Van Turnhout et al. (2016). The third and last research
objective is to allow customised adjustments of the presented reaction network, using objective
assessment criteria. To achieve this, we use the DREAM module for network selection, as done
in Van Turnhout et al. (2016).

The findings of the literature research are presented in Section 2. The development of a theoretical
reaction network based on the literature findings is explained in Section 3. Section 4 addresses
the implementation of the reaction network into a toolbox. Section 5 describes a single run of
the forward model with baseline values and an analysis to assess the suitability of experimental
designs for uncertain parameters quantification (Section 5.3). The results of both methods are
presented in Section 6, and subsequently discussed in 7. Finally, the conclusions of this paper
are presented in Section 8.
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2 LITERATURE RESEARCH

2 Literature Research

This section presents the findings from the literature study which are relevant for the further
development of a reaction network for SOM degradation. First, we outline the main concepts of
SOM degradation, as illustrated in Figure 1. Afterwards, the SOM compounds of plant origin
involved in aerobic degradation are described. Subsequently, the SOM of microbial origin is
defined as well. Finally, the kinetics of these reactions are determined. The section is concluded
with a brief description of anaerobic SOM degradation. This description highlights the significant
difference with aerobic degradation, although developing a reaction network for anaerobic SOM
degradation is beyond the scope of this paper.

2.1 Current view on SOM degradation

The reaction network is conceptually defined in a chronological order, starting with plant organic
matter which enters the soil. The polymeric fraction of these plant residues is depolymerised by
extracellular enzymes. The enzymes are produced by both major groups of living biomass in the
soil, i.e fungi and bacteria [13]. The depolymerisation yields several monomers. Monomers func-
tion as substrates for microbial growth, upon which carbon dioxide (CO2) and other byproducts
such as extrapolymeric substances (EPS) are produced [13]. The efficiency with which substrates
are build up as biomass and byproducts is called the microbial growth efficiency (MGE) [13].
Both depolymerisation and monomer uptake occur at a rate linked to the intrinsic resistance of
the compounds. Stabilisation mechanisms act as barriers between SOM and the (extra)cellular
enzymes, which slow down the overall reaction [1, 7]. The total amount of living biomass is the
result of both growth and decay. Decayed biomass is called necromass, which consists of micro-
bial residues, mostly polymers [13]. These polymers undergo the same process as polymers from
plant origin. Without input of fresh plant material, the microbial SOM fraction will grow at the
expense of plant SOM. This concept is summarised in Figure 1. The production of microbial
byproducts is not dealt with in this research. The barriers or stabilisation mechanisms are not
part of this reaction network, which solely focuses on a dynamic way to represent SOM as a
component (or module) within a broader soil system (or model). Section 2.2 will identify the
major plant compounds and their reaction paths. Section 2.3 then describes the decay of living
biomass and the subsequent degradation of microbial organic matter (MOM). The kinetics of all
the above reactions are discussed in Section 2.4. Section 2.5 highlights the limitations of this
literature research.

2.2 Aerobic degradation of plant residues

Defining the SOM fraction of plant origin is structured in two steps. The first step, described in
Section 2.2.1, characterises all individual polymer types through one representative compound,
one chemical formula and one or more monomers. In Section 2.2.2, the depolymerisation of
these polymers is addressed. Depolymerisation by hydrolysis releases the same monomers as for
polymerisation, as opposed to oxidative depolymerisation which can yield different monomers.
Section 2.2.3 describes the monomeric uptake, which leads to the removal of the plant residues
from the SOM mixture.
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2 LITERATURE RESEARCH

Figure 1: Conceptual model of SOM degradation

2.2.1 Input of plant residues

In this section we determine which plant residue polymers are present in the soil. These residues
enter the soil system both as above ground input and as below ground input through root
exudates [7]. Plants consist of eight major types of polymers, i.e. starch, cellulose, hemicellulose,
lignin, tannins, cutin, suberin and proteins [14]. Additionally, lipids are prominently present in
plant organic matter, although they are not polymers. The eight polymer types are first defined
in function of their role within the plant. Afterwards, the polymers are further described in
function of their monomers and linkage among those monomers. The monomers and linkage
types are always unequivocally defined, with a fixed chemical formula and chemical properties.
For certain polymers extra parameters are introduced to characterise the variability with regard
to monomers and linkage. With the help of the previously defined monomers, linkage and possible
extra parameters, the polymers can be characterised through a clear expression of their chemical
formula, and their functional groups. The functional groups discussed in this literature research
are carboxyl groups, other carbonyl groups and phenolic groups. The functional groups of the
polymer can again be derived from its monomers and their linkage. All monomers defined in
this section are included in Table 1. All polymers defined in this section are included in Table
2 with an expression for their chemical formula. In the chemical formulas of the polymers, the
n subscript represents an arbitrary polymerisation degree. Table 3 contains the characterisation
of the plant polymers based on their functional groups.

1. Starch is a storage polysaccharide in vascular plants [14]. It is composed of amylose and
amylopectin, two different polysaccharides of hexose monomers (C6H12O6). The hexose in
question is glucose. The glucose monomers are linked together by glycosidic bonds. The
glycosidic bond is created by a dehydration reaction, which releases one H2O molecule when
linking two monomers. Therefore, the chemical formula of starch is (C6H10O5)n. Glucose
does not have any carboxyl, carbonyl or phenolic groups. The glycosidic bond does not
add any of these either, so starch does not have any carboxyl, carbonyl or phenolic groups.

2. Cellulose is the principal structural component of plant cells [14]. It is a polysaccharide
which consists of glucose monomers [8]. The glucose units are linked through β − (1 −
4)−glycosidic bonds. The glycosidic bond is created by a dehydration reaction, which
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releases one H2O molecule when linking two monomers. The chemical formula of cellulose
is therefore (C6H10O5)n. Glucose does not have any carboxyl, carbonyl or phenolic groups.
The glycosidic bond does not add any of these either, so cellulose does not have any
carboxyl, carbonyl or phenolic groups.

3. Hemicellulose is the second most common structural polysaccharide [14]. Hemicellulose has
a much higher degree of heterogeneity than cellulose. Hemicellulose is a complex branched
structure made up of a variety of monosaccharides [8], mainly pentoses (C5H10O5) and
some hexoses (C6H12O6) [15]. The percentage of hexose is indicated with %C6

. The per-
centage of pentose is thus 1−%C6 . Hemicellulose has several substitutes on its side chains,
mainly acetic acid (C2H4O2) [15]. The percentage of monosaccharide monomers which are
acetylated can be indicated by the acetylation degree ηAc. The acetylation of a hydroxyl
group on the monosaccharide removes one H2O molecule from the monosaccharide and
the acetic acid in total. A general expression for the chemical formula of hemicellulose
is thus (C5+%C6

H10+2%C6
−2(1+ηAc)O5+%C6

−1(1+ηAc))n. For example, xylan is one of the
most common hemicelluloses [14]. Xylans have different acetylation degrees [16]. Xylans
originating from dicots are expected to have one acetic acid group per two xylose units [16].
Those hemicellulose polymers thus have a chemical formula (C6H9O4.5)n. Hexose and pen-
tose monosaccharide do not have any carboxyl, carbonyl or phenolic group. As mentioned
for cellulose, the glycosidic bond does not add any functional groups either. However,
for each acetylated monosaccharide hemicellulose gains one carboxyl group. Therefore,
hemicellulose has ηAc carboxyl groups.

4. Lignin provides structural rigidity to a plant by filling out cell walls [14]. It is a complex,
highly aromatic structure [8, 14]. The monomers are phenylpropanoid units, i.e. guaiacyl
(G, C10H12O3), syringyl (S, C11H14O4) and p-hydroxyphenol (P, C9H10O2) units [8, 17].
The chemical formula of the lignin polymer depends on the ratio of G:S:H and on the
linkage between the monomers [17]. The parameter %G indicates the percentage of phenyl-
propanoid units that are G units. The percentage of S units is indicated with %S . The
percentage of P units can be calculated from the previous ones, i.e 1 − %G − %S . In
this literature research we examine the β-aryl ether bond, the biphenyl linkage and the
phenylcoumarane linkage, which are the most common bond types in lignin [17]. This ex-
amination is conducted for the polymeratisation of a p-hydroxyphenyl unit (Figure 2). For
the β-aryl ether bond, two times a hydrogen radical is removed and then a H2O molecule
is added [17]. The result is therefore that the polymer contains one oxygen atom more
than its constituting monomers. For the biphenyl bond two times a hydrogen radical is
removed [17]. The polymer then contains two hydrogen atoms less than the monomer. For
the phenylcoumarane linking, two hydrogen radicals are also removed when linking two
monomers [17]. The biphenyl bond and the phenylcouramane linking therefore have the
same effect on the chemical formula of the polymer. We assume that these binding mech-
anisms are the same for linking other monomeric units as well. The percentage of bonds
which are β-aryl ether bonds is indicated with %ArO. The other bonds are assumed to be
biphenyl or phenylcoumarane bonds. A general expression for the chemical formula of lignin
can thus be set up with parameters %G, %S and %ArO. The general expression is given
by (C9+1%G+2%S

H10+2%G+4%S−2(1−%ArO)O2+1%G+2%S−%ArO
)n. Characterizing lignin by

its functional groups is again done through its units and the linkages. All units have one
phenolic functional group. Both the phenylcoumarane linkage and the aryl-ether linkage
remove the phenolic functional group (transforming it respectively into an acyclic ether
and a cyclic ether). The biphenyl linkage leaves the phenolic functional group unchanged.
To characterise the functional groups of lignin, we therefore need one additional parameter.
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2 LITERATURE RESEARCH

The percentage of biphenyl linkage is indicated by %BiPh. The amount of phenolic groups
in lignin then becomes %BiPh.

Figure 2: Formation of bonds in lignin (Source: Bugg et al (2011))

5. Tannins are polyphenols that can be found in higher plants [14]. Tannins are capable of
precipitating proteins from solutions, through non-reversible reactions [18]. They can be
divided into condensed tannins and hydrolysable tannins. Hydrolysable tannins consist
of two units, i.e. sugars (glucose or similar) and phenolic acids [14]. The monomers of
condensed tannins are flavan-3-ols, which have two aromatic rings [14]. The most com-
mon flavan-3-ol for tannin is catechin (C15H14O6) [14]. The monomers are bound through
carbon-carbon bonds [14]. The polymer can therefore be represented as (C15H12O6)n. Cat-
echin has four phenolic groups. The carbon-carbon bond does not change these functional
groups. Therefore, tannin also contains four phenolic groups.

6. Cutin forms the macromolecular frame of the plant cuticle [14]. Together with the waxes
and lipids in the cuticle, it is the principal source of aliphatic materials in soil [19]. It
is an insoluble polyester of cross-linked hydroxy-fatty acids and hydroxyepoxy-fatty acids,
which are long chain fatty acids (LCFA) [19]. Cutin monomers can be divided based on
their chain length, which is either C16 or C18 [14]. The major C16 component is 10,16-
dihydroxypalmitic acid (C16H30O4) [20]. The major C18 component is 18-hydroxyoleic
acid (C18H30O4) [20]. The proportion of C16 to C18 monomers can vary greatly. For
instance, cutin of fast-growing plants contains mostly C16 monomers, whereas the cutin of
an apple cuticle contains both types of monomers [20]. We introduce the parameter %C18

to indicate the percentage of monomers with chain length C18. The monomers are bound
through ester linkages upon dehydration of the monomers [20]. Further research on the
amount of linkage is necessary, but it seems justified to assume that each monomer is bound
to two other monomers by two ester linkages. A general expression for the chemical formula
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of cutin can be given by (C16+2%C18
H28O3)n. The monomers 10,16-dihydroxypalmitic acid

and 18-hydroxyoleic acid both contain one carboxyl group. Through the ester linkage, the
carboxyl group is transformed into a carbonyl group in cutin.

7. Suberin is a cell wall component of cork cells and its content is high in bark and plant roots
[14]. It is a polyester, like cutin, but in addition to aliphatic monomers, it contains aromatic
components [14, 20]. The aliphatic monomers have chain lengths of C20 to C30, which is
longer than cutin monomers [14]. The aromatic components are phenolic acids [14]. Suberin
is also a polyester present in the cuticle of vascular plants [14]. The aliphatic monomers
and aromatic monomers form distinct domains [14]. The composition and structure of
suberin is insufficiently known to set up a general expression for its chemical formula.

8. Proteins have varying roles in the plant, ranging from enzymes to storage substances [14].
They are polypeptides, i.e long chains of amino acids, made up of approximately 20
common amino acids [14]. Amino acids differ from one another in chemical formula and
chemical properties. We therefore present a different approach for setting the chemical
formula of proteins and amino acids. Torabizadeh et al (2011) [21] states that, even though
proteins have a large range of functions and structures, it is possible to find a general
chemical formula. The suggested formula is (CH1.58N0.28O0.3S0.01)x, where x represents
any number of carbon atoms. To set a general expression for the chemical formula of
protein which is conform to the previous ones, the number of carbon atoms should be that
of the number of carbon atoms in the monomers. Amino acids typically have between 3
and 5 carbon atoms [21]. By setting the number of carbon atoms to four, the chemical
formula of the protein becomes (C4H6.32N1.12O1.2S0.04)n. A general chemical formula for
amino acids is now backfigured from the polymerisation reaction of amino acids. Amino
acids are linked together through peptide bonds. Peptide bonds are formed through a
dehydration reaction. One H2O molecule is thus removed when binding two amino acids.
A general chemical formula for amino acids can thus be given by C4H8.32N1.12O2.2S0.04.
Amino acids consist of an amine functional group, a carboxyl group and a side chain. In
this literature research we do not discuss amine groups. The side chains can have greatly
varying functional groups. There is therefore always (at least) one carboxyl group in amino
acids. The peptide bond removes the carboxyl group, which means only a carbonyl group
remains in proteins, not regarding possible side chains.

9. Lipids are a heterogeneous group of plant compounds, which can fulfil different functions
as well [14]. For instant, they are part of the plant cuticle which forms a water-repellent
layer [14]. Plant lipids can be alkanes, alkenes, fatty acids and esters [14]. Due to their large
variety, it is not possible to set a formula for their composition, nor for their functional
groups. Nonetheless, it should be noted that lipids are not polymers, as opposed to the
previously described plant compounds.

2.2.2 Depolymerisation of plant polymers

Once the plant residues enter the soil system, they are exposed to the action of extracellular
enzymes from fungi and bacteria. These extracellular enzymes depolymerise the polymers into
monomers. The depolymerisation occurs either through hydrolysis or oxidation of the monomeric
bonds. Hydrolysis is the reverse reaction of dehydration. By consequence, the monomers re-
leased upon hydrolysis are identical to those described previously for polymerisation. On the
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other hand, depolymerisation by oxidation is not necessarily the same as the reverse reaction of
polymerisation. As a result, it is necessary to define new monomers in certain cases.

Of the eight polymer types described in Section 2.2.1, five can be hydrolyzed: starch, cellulose,
hemicellulose, cutin and proteins. The hydrolysable bond and one example of an extracellular
enzyme involved in the hydrolysis are discussed for each polymer. The monomers of starch
and cellulose are linked by glycosidic bonds, which are hydrolysable by respectively amylase
and cellulase [14,22]. Hemicellulose monomers are also linked by glycosicid bonds, which can be
hydrolyzed by, for example, xylanase [23]. The cutin monomers are bound through ester linkages,
which can be hydrolyzed by cutinase [20]. The peptide bonds of protein can be hydrolyzed by
protease [7,19]. The hydrolysis reactants and products are summarised in Table 4, together with
their stoichiometric coefficients.

The remaining three types of plant polymers mentioned in Section 2.2.1 require oxidative de-
polymerisation: lignin, condensed tannin and suberin. Suberin is however not further described
due to lack of sufficient knowledge on its composition and depolymerisation mechanisms.

Lignin is mostly degraded by white-rot fungi [17, 23]. However, brown-rot fungi and even some
bacteria can also degrade lignin through different pathways [17]. Several types of degradation
products are found [17]. The most common breakdown products for fungal degraders are benzoic
acids, with additional carboxy, methoxy and/or hydroxyl groups [17]. Typical benzoic acids
are for instance dihydroxybenzoic acid (C7H6O4), 4-hydroxy-3-methoxy-6-carboxybenzoic acid
(C7H8O6) and gallic acid, also known as 3,4,5-trihydroxybenzoic acid (C7H6O5) [17]. Side-chains
are cleaved by oxidation as well, which can form various volatile fatty acids (VFA) [17]. Laccases

Table 1: Monomer characterisation of plant residues

Monomer Chemical formula -COOH -Arom-OH C=O
Hexose C6H12O6 0 0 0
Pentose C5H10O5 0 0 0
Acetic acid C2H4O2 1 0 0
Guaiacyl unit C10H12O3 0 1 0
Syringyl unit C11H14O4 0 1 0
P-hydrophenyl unit C9H10O2 0 1 0
Catechin C15H14O6 0 4 0
10,16-dihydroxypalmitic acid (C16) C16H30O4 1 0 0
18-hydroxyoleic acid (C18) C18H30O4 1 0 0
Amino acid C4H8.32N1.12O2.2S0.04 1 0 0

Table 2: Chemical formula of polymers in plant residues

Polymer Parameters Chemical formula
Starch - (C6H10O5)n
Cellulose - (C6H10O5)n
Hemicellulose %C6 , ηAc (C5+%C6

+ηAc
H10+2%C6

−2(1+ηAc)O5+%C6
−1(1+ηAc))n

Lignin %G, %S , %ArO (C9+1%G+2%S
H10+2%G+4%S−2(1−%ArO)O2+1%G+2%S−%ArO

)n
Condensed tannins - (C15H12O6)n
Proteins - (C4H6.32N1.12O1.2S0.04)n
Cutin %C18 (C16+2%C18

H28O3)n
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are known to use the reduction of O2 to H2O for oxidation of lignin [17, 24]. The half reaction
for O2 is given by:

O2 + 4H+ + 4e− ⇒ 2H2O

Peroxidases such as lignin peroxidase (LiP) use the reduction of hydrogen peroxide (H2O2) to
water [17,24]. The half reaction is given by:

H2O2 + 2H+ + 2e− ⇒ H2O

While the depolymerisation of hydrolysable tannins to its monomers, e.g. gallic acid and glucose,
is explicitly mentioned in literature, this is not the case for the oxidative depolymerisation of
condensed tannins. However, the uptake of flavan-3-ol as substrate for microorganisms is dis-
cussed with regard to condensed tannins [18]. It thus seems justified to assume that flavan-3-ol
is a possible depolymerisation monomer.

The newly introduced monomers are summarised in Table 5. The stoichiometry of the oxidation
reactions cannot be written with a general equation, as was the case for hydrolysis reactions,
due to the larger variability in depolymerisation products. The half reaction for the polymer
oxidative depolymerisation needs to be balanced with the half reaction of the reduction of the
oxidator.

2.2.3 Substrate uptake of plant monomers

The depolymerisation of polymers by extracellular enzymes creates monomers which can function
as substrates for microorganisms. The substrates are used in several metabolic reactions, which
lead to biomass growth, maintenance and product formation [5]. A carbon source, a nitrogen
source and water are crucial for these processes [5, 25]. Additionally, a reductor or an oxidator
is necessary if the substrate is more, respectively less oxidated than the biomass itself [25]. The
exact elemental composition of biomass differs depending on the type of fungi or bacteria. A
commonly used elemental composition is CH1.4N0.2O0.4 [6].

Add lipids The metabolic reactions can be split up in anabolic and catabolic reactions. The
catabolic reactions break down the substrates into products, while storing energy in the form
of adenosine triphosphate (ATP) [25]. In aerobic conditions, the main byproduct is CO2 [25].
Anabolic reactions transform substrates into biomass components, using ATP [25]. Balancing the
catabolic and anabolic reaction for biomass growth is achieved through the growth yield (YX/S).
The growth yield of a specific substrate can be estimated from experimental data. Additionally,

Table 3: Functional groups of polymers in plant residues

Polymer Parameters -COOH -Arom-OH C=O
Starch - 0 0 0
Cellulose - 0 0 0
Hemicellulose ηAc ηAc 0 0
Lignin %BiPh 0 %BiPh 0
Condensed tannins - 0 4 0
Proteins - 1 0 0
Cutin - 0 0 1
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Table 4: Depolymerisation of hydrolysable plant residue polymers

Polymer C-compounds H2O
Starch 1 glucose -1
Cellulose 1 glucose -1
Hemicellulose 1 monosaccharide + ηAc Acetic acid -(1+ηAc)
Protein 1 Amino Acid -1
Cutin %C18

C18 + (1-%C18
)C16 -1

Kleerebezem et al. (2010) [25] have developed a method based on thermodynamic principles to
determine the growth yield. However, the catabolic reaction is not always linked to an anabolic
reaction, for instance when the catabolic reaction is used for maintenance purposes.

As mentioned before, a nitrogen source is also essential for microbial growth. Originally, it was
thought that only nitrogen in its mineralised form, NH3, could be used for biomass growth [5,26].
This hypothesis is called the Mineralisation-Immobilisation Turnover (MIT) scheme, where all
nitrogen is first mineralised before being immobilised by microorganisms [5]. The nitrogen present
in amino acids is mineralised when amino acids are further degraded into VFA and NH3 [5].
Nowadays, it is known that microorganisms can also assimilate nitrogen directly from an N-
containing substrate. In the Direct (DIR) hypothesis the nitrogen of substrates is always directly
assimilated [5]. The parallel (PAR) scheme forms a bridge between the MIT and the DIR
hypothesis, saying that part of the nitrogen is directly assimilited and the other part is mineralised
first [5]. The PAR scheme is the most realistic representation of how microorganisms fulfil their
nitrogen need.

2.3 Aerobic degradation of microbial residues

The first step in defining all SOM of microbial origin is the decay of biomass into necromass,
which consists of several microbial polymers. These microbial polymers are then subject to
extracellular enzymes. The released monomers will then be taken up by biomass, which is the
last step in identifying new compounds and reactions in SOM degradation.

2.3.1 Biomass decay

Large differences exist in the exact polymer composition of necromass. A first important step to
account for these differences is to distinguish between fungal and bacterial necromass [14].

Fungal necromass consists of four major polymers: chitin, glucan, proteins and melanins. Pro-
teins have already been defined in Section 2.2.1. The three other polymer types are discussed

Table 5: Monomer characterisation of plant residues after oxidation

Monomer Chemical formula -COOH -Arom-OH C=O
Dihydroxybenzoic acid C7H6O5 1 2 0
3-hydroxy-4-methoxy-5-carboxybenzoic acid C7H8O6 2 1 0
2,3,4-trihydroxybenzoic acid C7H6O5 1 3 0
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below. All newly introduced microbial monomers are summarised in Table 6. The chemical for-
mulas of the microbial polymers are summarised in Table 7. The microbial polymers are further
characterised by their carboxyl, phenolic and carbonyl functional groups in Table 8.

1. Chitin is the structural component of fungal cell walls [14]. N−Acetylglucosamines (NAG,
C8H15NO6) form the monomeric building blocks of chitin [8, 14]. Fungi also contain other
polymers similar to chitin, such as chitosan (glucosamine monomers) and galactosamine
polymers [14]. The NAG monomers are linked together with β − (1 − 4) bonds by a
dehydration reaction. As a result, the chemical formula of chitin is (C8H13NO5)n.

2. Glucan is a structural component of both the fungal cell wall and the fungal cell matrix [14].
It is a polysaccharide of glucose monomers, which are linked through glycosidic bonds
by a dehydradation reaction. By consequence, glucan has a chemical formula equal to
(C6H10O5)n.

3. Melanins are non-hydrolysable structures in the cell wall of fungi, which protect the cell
wall against hydrolysis [14]. Melanins have a polymeric core, with monomers similar to
phenols and quinones [14]. Attached to this core are proteins, carbohydrates and lipids [14].
Due to the lack of knowledge on its exact composition, melanin is not included in Table 7.

Necromass from bacterial origin consists of three major polymers: peptidoglycan, proteins and
bacteran.

1. Peptidoglycan is a main compound of bacterial cell walls and consists of N-acetylglucosamine
and N-acetylmuramic acid (NAM, C11H19NO8) monomers [8, 14]. Peptidoglycan system-
atically alternates one NAG and one NAM monomer which are bound with β − (1 − 4)-
glycosidic bonds by a dehydradation reaction. Additionally the NAM monomer has an
oligopeptide side chain of approximately four amino acids [14]. The amino acids are bound
through peptide bonds, which removes four H2O molecules in total. The oligopeptide side
chain is often cross-linked to another side chain, which would require the removal of one
additional H2O molecule. The last H2O molecule removed is shared between two units
and thus only counts as half. The overall composition of peptidoglycan therefore becomes
that of one NAG, one NAM, four amino acids, minus six H2O molecules (and often 6.5)
removed for dehydration. This yields a chemical formula of (C35H54.28N6.48O16.8)n.

2. A number of bacteria have been shown to contain significant amounts of non-hydrolysable
aliphatic biomolecules, called bacteran [14]. They derive from the condensation of complex
lipids and are located in the cell wall [14]. Little information is available on their exact
composition [14]. As a result, no general expression for the chemical formula is given.

To establish a stoichiometric equation for decay, we introduce the parameter %fungi, which rep-
resents the amount of fungal biomass at a given moment. The composition of fungal necromass
can subsequently be characterised through the percentage of chitin (%chit), glucan (%gluc), pro-
tein (%prot,f )and melanin (1−%chit−%gluc−%prot,f ) present in the necromass. By consequence,
1−%fungi is the amount of bacterial biomass at that same moment. Likewise, the composition
of bacterial necromass is characterised through the percentage of peptidoglycan (%pept), protein
(%prot,b) and bacteran (1 −%pept −%prot,b). Values for the percentages could be estimated by
using a description given by Throckmorton et al. (2012) [27], where necromass is characterised
with pyrolysis-GC-MS. The characterisation is divided in extracellular polysaccharides, lipids,
phenols, benzene, polysaccharide and N-compounds.
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2.3.2 Depolymerisation of microbial residues

The microbial polymers need to be depolymerised before they can act as substrate for biomass
growth themselves. From the five microbial polymers discussed, three can be hydrolyzed: chitin,
glucan and peptidoglycan.

The bonds in chitin can be hydrolyzed by chitinase [7]. The glycosidic bonds in glucan can be
hydrolyzed by glucosidase [7]. Peptidoglycan can be hydrolyzed by peptidoglycan hydrolase and
several other enzymes depending on which bond is hydrolyzed. The stoichiometry of the three
hydrolysis reactions is summarised in Table 9.

Little is known about the composition and decomposition of melanins and bacterans [14]. It has
been shown that white-rot enzymes involved in lignin degradation can also degrade melanins [14].

2.3.3 Substrate uptake of microbial monomers

N-acetylglucosamine and N-acetylmuramic acid are the only monomers which are specific for
MOM. The monomeric uptake of microbial monomers is the last step that needed to be defined
from a chronological point of view.

2.4 Kinetics of aerobic degradation

In Section 2.2 and 2.3 the important components and reactions have been presented that occur
during SOM degradation. To be able to establish a reaction network, additional information is
necessary with regard to the kinetics of the above-mentioned reactions.

It is common to assume first order kinetics for depolymerisation reactions. This is in accordance
with the traditional compartment models for SOM, such as RothC [4, 5], as well as with water
treatment models such as the ASM3 model [5, 28]. The reaction rate rS [molL·h ] in first order
kinetics follows Eq. 1:

Table 6: Monomer characterisation of microbial necromass

Monomer Chemical formula -COOH -Arom-OH C=O
N-acetylglucosamine C8H15NO6 0 0 1
N-acetylmuramic acid C11H19NO8 1 0 1

Table 7: Chemical formula of polymers in microbial necromass

Polymer Parameters Chemical formula
Chitin - (C8H13NO5)n
Glucan - (C6H10O5)n
Peptidoglycan - (C35H55.28N6.48O16.8S0.16)n
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rS =
dCS
dt

= kmax · CS (1)

Where Cs is the substrate concentration [molL ] and kmax is the maximum rate parameter [1/h].

Kmax is a measure of the recalcitrance of a polymer. Recalcitrance is the ability of a polymer
to protect itself from extracellular enzymes through its intrinsic molecular characteristics [7]. A
higher kmax leads to higher reaction rates and thus faster degradation. Finding correct value
ranges for kmax, which only reflects recalcitrance of the molecule and no other stabilisation
mechanisms is, however, difficult. While the characterisation of growth rates is regularly con-
ducted under ambient temperature and pressure, the determination of depolymerisation is either
focussed at industrial applications [29], with high temperatures and pressures, or at in-situ char-
acterisation of depolymerisation in the soil. As a rule of thumb, it can be stated that polymers
that require oxidative depolymerisation have a higher recalcitrance, and by consequence a lower
kmax value [14]. Table 10 summarises the subdivision between polymers with higher and lower
recalcitrance.

It is important to note that first order kinetics for depolymerisation are only valid when there
is no limitation coming from another reactant, such as water or oxygen. To include the effect
of substrate limitation, other than the one who has a strictly linear dependence, a substrate
limitation term can be added to the equation for the reaction rate. The reaction rate is then
calculated with Eq. 2 [5, 30]

rs1,s2 = kmaxs1,s2
· Cs1 ·

Cs2
Cs2 +KInh

(2)

Where rs1,s2 is the reaction rate for an equation with two substrates s1 and s2 [molL·h , kmaxs1,s2

the maximum reaction rate [ 1
h ], Cs1 the concentration of the substrate s1 which shows linear

dependence [molL ], Cs2 the concentration of the limiting substrate s2 [molL ] and KInh is the

inhibition term [molL ] [6].

The metabolic reactions consist of substrate uptake reactions leading to microbial biomass
growth. When characterizing growth reactions, we often use the specific growth rate µ instead
of the standard reaction rate rgrowth. The relationship between the two parameters is given by
Eq. 3:

µ =
rgrowth
CX

(3)

Where µ is the specific growth rate [ 1
h ], rgrowth is the reaction rate of the growth reaction [molL·h ]

and CX is the biomass concentration [molL ].

Table 8: Functional groups of polymers in microbial necromass

Polymer Parameter -COOH -Arom-OH C=O
Chitin - 0 0 1
Glucan - 0 0 0
Peptidoglycan - 1 0 6
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Table 9: Depolymerisation of hydrolysable microbial polymers

Polymer C-compounds H2O
Chitin 1NAC -1
Glucan 1Glucose -1
Peptidoglycan 1NAC + 1NAM + 4Amino Acids -6

Table 10: Intrinsic recalcitrance of SOM polymers

High kmax Low kmax
Cellulose Lignin
Hemicellulose Condensed tannin
Proteins Melanin
Cutin Bacteran
Chitin
Peptidoglycan
Glucan

The specific growth rate µ is modelled with the Monod equation [6], given by Eq. 4:

µ =
dCX
CX · dt

= µmax ·
CS

CS +KInh
(4)

Where µ is the specific growth rate [ 1
h ], µmax is the maximum specific growth rate [ 1

h ] and CS
is the limiting carbon substrate [molh ].

The reaction rate is rewritten as Eq. 5 to show that the reaction rate depends linearly on the
total biomass concentration:

rgrowth = YX/S ·
dCS
dt

= µ · CX =
−µmax
YX/S

· CX ·
Cs

CS +KInhb
(5)

Where rgrowth is the reaction rate of the growth reaction [molL·h ], YX/S is the growth yield of

biomass on substrate S [molmol ], CS is the substrate concentration [molL ], CX is the biomass con-

centration [molh ] and µmax is the maximum specific growth rate [ 1
h ].

For carbon substrates which do not contain nitrogen, the growth reaction also depends on the
availability of NH3. Additionally, also O2 will participate in some growth reactions. Both
dependencies can be modelled by adding a substrate limitation term to the reaction rate.

The decay reaction of biomass is also typically modelled as first order reaction [28].

Each reaction can potentially be inhibited by the concentration of a specific compound. Several
inhibitions can be found in literature which influence degradation of soil organic matter. Tan-
nins can bind with enzymes, which disables them and inhibits SOM degradation [18]. Xylose
oligomers, released from hemicellulose hydrolysis, have been show to inhibit cellulose hydroly-
sis [29]. Low N-contents reduces the growth yield [31]. Onset of production of lignin-degrading
enzymes from white-rot fungi might be linked to a secondary metabolism condition in response
to a nutrient depletion [17]. The resulting monomers (or even oligomers) depend on the type
of enzymes, and thus on the type of microorganisms available. Phenols also inhibit their own
uptake by microorganisms. Several inhibition models are known to describe the dynamics of
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microbial growth on phenol [32]. A commonly used model is the Andrews inhibition model, also
known as Haldane model [32,33], given by Eq. 6:

µs = µmax,s ·
Cs

Ks + Cs +
C2

S

Ki

(6)

Where µs is the specific growth rate on substrate s [ 1
h ], µmax,s is the maximm specific growth

rate on substrate s [ 1
h ], Cs is the substrate concentration [molL ], Ks is the half-saturation constant

[molL ] and Ki is the inhibition constant [molL ].

2.5 Anaerobic degradation of soil organic matter

Anaerobic conditions can occur in certain soil types, e.g. peat soils [34], but also more generally
speaking in subsoils. SOM degradation can still exist in anaerobic conditions, but involving
pathways and SOM components different from those discussed in Sections 2.2 to 2.4.

In anaerobic conditions the microorganisms are mostly limited to (anaerobic) bacteria, as the
vast majority of fungi require oxygen to exist. The anaerobic degradation of readily degradable,
i.e. hydrolysable, SOM polymers is called anaerboic digestion [35]. Anaerobic digestion consists
of a series of steps, each performed by a different fraction of the microbial community. The
four major processes which make up anaerobic digestion are extracellular hydrolysis of polymers,
acidogenesis, acetogenesis or anaerobic oxidation and methanogenesis. Each of the three last
processes are performed by a different fraction of the microbial community. The hydrolysis
converts the polymers into monomers such as monosaccharides, LCFA and amino acids [35].
Acidogenesis perfomed by acidogens then converts the simpler monomers into VFA. Acetogenesis
by acetogens uses VFA as substrates for growth, which results in the production of acetic acid,
CO2 and hydrogen. Lastly, methanogens consume acetates and hydrogen during methanogenesis,
while producing methane (CH4) and CO2.

A large fraction of recalcitrant polymers such as lignin and condensed tannin were thought to
be undegradable in anaerobic conditions [34, 35]. The idea is now growing that even for these
polymers microorganisms have adapted to degrade them in anaerobic conditions. Extensive
research will be necessary to establish a second reaction network for anaerobic SOM degradation
of all polymers, which is beyond the scope of this research.
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3 Theoretical Framework

In this section, a reaction network for SOM degradation is established based on the results of
the literature research described in Section 2. Choosing a finite set of compounds and reactions
requires a large amount of simplifications. These simplifications are discussed and argued in
this section. It has been chosen to only define an aerobic reaction network, as the anaerobic
degradation still requires further documentation.

Choosing SOM polymer types Six plant polymers are included in the reaction network, i.e.
cellulose, hemicellulose, proteins, cutin, lignin and condensed tannins. Starch has the same chem-
ical formula and functional groups as cellulose, and is, therefore, not included separately. Due
to limited knowledge on suberin’s composition and degradation, it is not explicitly represented
in the reaction network. Nonetheless, the aliphatic fraction of suberin can be accounted for
through an equivalent concentration of cutin. Likewise, the aromatic fraction can be accounted
for through an equivalent concentration of lignin. Hydrolysable tannins are not included in the
reaction network either, because they are only present in plants in very low concentrations [14].
Although condensed tannins are also only present in low concentrations, they have been included
due to their higher recalcitrance. The condensed tannins might therefore gain more importance
throughout degradation due to their preservation. Additionally, five new microbial polymers are
included as well, i.e. glucan, chitin, peptidoglycan, bacteran and melanin. Other glucosamine and
galactosamine polymers can be accounted for through chitin due to their similar characteristics.

Choosing SOM monomer types Seven monomer types are represented in the reaction net-
work, i.e. monosaccharides, monoaromatic compounds, amino acids, VFA, LCFA, NAM and
NAG. Monosaccharides are crucial monomers for glucan, cellulose (or starch) and hemicellulose.
Monoaromatic compounds are necessary to represent depolymerisation of lignin, condensed tan-
nins and melanin. Amino acids are a product of depolymerisation of proteins and peptidoglycan.
VFA are released during the depolymerisation of hemicellulose and lignin. Furthermore, amino
acids can also react to amino acids, according to the MIT and PAR scheme. LCFA are the
monomers of cutin and bacteran. LCFA are also used to represent lipids in the system, as LCFA
are a type of lipid. NAM is released during peptidoglycan depolymerisation. Finally, NAG is a
monomer both for chitin and peptidoglycan. In total eighteen SOM compound types are thus
included in the reaction network. One global biomass component is also included. Additionally,
some monomers defined previously can dissociate in water. As a result, dissociated forms of
NAM, NAG, LCFA and VFA become part of the reaction network.

Choosing the non-organic compounds Subsequently, it is necessary to define the non-
organic fraction of the compounds active in the degradation process. The crucial compounds for
degradation are H2O, O2, NH3 and CO2. As mentioned in Section 2.2.2 H2O2 can also be used
as oxidator for the depolymerisation of lignin and possibly other compounds. Nevertheless, the
compound is not included in the reaction network. The oxidation reactions already contain high
levels of uncertainty, and H2O2 chemistry is more complex than that of O2. H2O can dissociate
to H+ and OH−. NH3 can be protonated and form NH+

4 in solution or be in equilibrium with
NO−3 . CO2 is in equilibrium with H2CO3 and HCO−3 . H+, OH−, H2CO3, HCO−3 , NH+

4 and NO−3
also become part of the reaction network. The result of these decisions can be seen in Figure
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3. This reaction network forms the framework for the implementation of SOM degradation in a
numerical forward model.

Figure 3: Complete reaction network

Characterisation of polymers To impose a mass balance for all reactions, it is necessary
to characterise all compounds with a chemical formula. The polymers can be divided in three
categories based on the way their chemical formula is set. In the first category, the polymers
have a fixed chemical formula which closely represents their actual elemental composition. This
category consists of cellulose, condensed tannins, proteins, glucan, chitin and peptidoglycan. In
the second category, the chemical formula is calculated based on a few extra parameters that
characterise the polymer. This category consists of hemicellulose ( %C6

, ηAc), lignin (%G, %S ,
%ArO) and cutin (%C18) through additional parameters. The third category is that of polymers
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whose composition is ill-defined and therefore the chemical formula and other characteristics
are solely a rough estimation of those characteristics. Melanin for example is known to have
aromatic compounds. In this reaction network it is thus represented through the same chemical
formula and characteristics as lignin. Bacteran is known to contain LCFA monomers. It is thus
represented through the same characteristics as cutin.

Characterisation of monomers The SOM compound types for monomers need to compass
a larger variety of compounds through only one model compound. Therefore, we select a model
compound whose characteristics are closest to the average of those characteristics of the other
compounds it has to represent. For most compound types, this model compound corresponds
with an actual, perfectly defined compound. By consequence, all other characteristics besides
chemical formula, can also be deducted directly from this compound. The model compound for
monosaccharides is glucose, because both glucan and cellulose solely consist of hexose monomers.
For hemicellulose this can also be the case, though pentose is more common. NAM and NAG are
already actual compounds and therefore they do not require the choice of a model compound.
Acetic acid is the model compound for VFA, for several reasons. Acetylated hemicellulose re-
leases acetic acid, while amino acid and lignin might also react to other VFA. Furthermore, acetic
acid has the shortest chain length of all VFA. This makes acetic acid suitable to solve discrep-
ancies in the carbon mass balance. The model compound for monoaromatic compound types
is dihydroxybenzoic acid. Dihydroxybenzoic acid is the oxidative degradation product closest
to the average of the other products represented in Table 5. Furthermore, dihydroxybenzoic
acid is similar (or identical) to some breakdown products of both hydrolysable and condensed
tannins [18]. The characterisation of the LCFA compound type forms a minor exception, as the
characterisation is only indirectly conducted by choosing a perfectly defined and actual model
compound. Instead, it is achieved through the weighted average of the model compound for C16

LCFA and that for C18 LCFA. The chosen model compound for C16 is 10,16-dihydroxypalmitic
acid and that for C18 is 18-hydroxyoleic acid. The weighted average is achieved through the
percentage of C18 (%C18) in cutin. The last adjustment regarding chemical formulas is that
sulphur (S) is not included in the reaction network, because it is not an essential component of
degradation and present in lower concentration in proteins and amino acids when compared to
C, H, O and N.

Setting the reaction stoichiometry Include matlab code in appendix Once the re-
actions, compounds and chemical formulas have been set, the stoichiometric equation can be
defined. Generally speaking, the stoichiometric equation is set by defining the coefficient of the
SOM reactants and products which ought to cover the C-balance, and then closing the mass
balance for N and O with NH3 and H2O. Oxidation reactions additionally need to be balanced
for H by H+, then balanced for charge by e−. Subsequently, this reaction is balanced for electrons
with the half-reaction of O2 reduction. For reduction reactions, the reaction is balanced with
the half-reaction of the oxidation of H2O. For metabolic reactions, this scheme is followed for
both the catabolic and the anabolic reaction, through the growth yield. The main challenge in
setting the stoichiometric equation is dealing with discrepancies between the chemical formula of
the actual compounds and that of the model compound. For hemicellulose, the actual monomer
can be pentose (C5H10O5), but the model monosaccharide has a chemical formula set to be
C6H12O6. The stoichiometric coefficient for the monosaccharide is thus changed to 5/6 instead
of one, to maintain a closed carbon mass balance. For lignin oxidation, a discrepancy exists
between the number of carbon atoms (NoC) of the polymer and the NoC of the monomer, i.e.
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dihydroxybenzoic acid. This is dealt with by accounting for the extra C atoms through VFA
production. Finally, the monoaromatic compound only consists of one aromatic ring (NoC = 7),
while catechin is made out of two rings (NoC = 15). This is accounted for by changing the
stoichiometric coefficient of the monoaromatic compound to 15/7, as to add 15 carbon atoms to
the monoaromatic compound concentration per reaction.

Defining the reaction kinetics A reaction is defined by both its stoichiometry and its kinet-
ics. As discussed in Section 2.4, the depolymerisation and decay reactions are modelled through
first order kinetics, with their own concentration as reaction driving concentration. Additionally,
substrate limitation can be accounted for when other limiting substrates are used. Values for
the maximum rate parameter have to be chosen from experimental data. Substrate uptake and
the related biomass growth are assumed to follow Monod kinetics. Maximum growth rates too,
can be defined based on experimental studies, but, moreover, they can be estimated through a
method developed by Kleerebezem et al. (2010) [25], pertaining on thermodynamic principles.
The maximum growth rate is then calculated from the ∆Gf °at 25°C of all reactants and prod-
ucts, from the stoichiometry of the catabolic and anabolic (half-)reactions and from the growth
yield. For substrates with a NoC equal to or larger than seven, the growth yield then still needs
to be set through experimental data. For the substrates with NoC equal to or lower than six,
the growth yield can be estimated by the same method, using only the number of carbon (NoC)
atoms of the substrate and the oxidation state γ of the substrate [25].

Choosing inhibitions Another aspect of kinetics in the reaction network are inhibitions.
Only the inhibition caused by phenols, i.e. substrate limitation by phenols [33], is included.
This decision is made, because monoaromatic compounds are expected to have an important
effect on the bulk properties of the SOM mixture. The reason is that monoaromatic compounds
are the only dissolved aromatic (and phenolic) compounds. Not including the inhibition would
underestimate the amount of monoaromatic compounds in the SOM mixture. Furthermore, the
inhibition is well described in literature. Moreover, the inclusion of this inhibition could be
used as a framework to add additional inhibitions in the future. The last issue concerning the
kinetics is the degradation of amino acids to VFA and NH3. In the DIR scheme this reaction
rate would be set to zero. In the MIT scheme the uptake of amino acids would be set to zero and
a maximum rate parameter for the reaction to VFA and NH3 would need to be defined. In this
reaction network we define a flexible PAR scheme, where the reaction rate for the reaction to
VFA is linked to the uptake rate for amino acid uptake. Any intermediate situation between MIT
and DIR can therefore be modelled. A new variable is introduced, which we will call the amino
acid assimilation efficiency ηAsAA. The ηAsAA represent the percentage of amino acids that
are directly assimilated by microorganisms, without first degrading to VFA. The DIR scheme
corresponds with a ηAsAA value of one and the MIT scheme with a value of zero. Any values in
between correspond with PAR schemes, which lean more towards the MIT or to the DIR scheme.
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4 Toolbox

The reaction network defined in Section 3 is implemented as a forward numerical model in
MATLAB, based on the gray modelling toolbox of Van Turnhout et al. (2016) [6]. Section 4.1
lists all input variables necessary to run the forward model. The forward model itself is described
in Section 4.2. The processing of the output from the forward model is discussed in Section 4.3. A
schematic representation of the forward model is given in Figure 4. At last, Section 4.4 presents
the implementation of the DREAM algorithm from Vrugt et al. (2016) [36], which is used for a
Bayesian Inference analyse, described in Section 5.3.

4.1 Input variables for forward model

The forward model requires input variables, which can be divided in four categories. All variables
are summarised by category in Table 11. The first category contains variables to characterise the
SOM compound types. These parameters can be measured prior to running the forward model
and have already been discussed in Sections 2 and 3. The second category consists of the variable
pertaining to the initial conditions, i.e. the concentrations of all compounds j that are initially
(t0) present Cj,0, the batch temperature T [K], the volume of the liquid phase Vl [l], the volume
of the gas phase Vg [l] and the batch pressure p [atm]. The third category encloses input variables
which cannot be determined prior to running the forward model, due to high uncertainty. Rather
than implementing the forward model with fixed values, the parameters become variables. Doing
so allows us to easily change the values after each run. This feature is used to apply Bayesian
Inference on these parameters (see later). The variables present in the third category are all
the kmax for the depolymerisation reactions, the growth rates (optional), yields (optional for
monomers with NoC > 6), the kmax for decay, Ks and Ki as inhibition parameters for phenol
substrate limitation. The fourth and last category contains variables which the ODE solver uses
to solve the above set of differential (reaction) equations. These variables are the initial time t0,
the end time tend and the time step ∆t.

Table 11: List of input variables

Type of input Parameters
Characterisation %C6

, ηAc, %G, %S , %ArO, %C18
, %BiPh

%fungi, %chit, %gluc, %prot,f , %pept, %prot,b

Initial conditions Cj,ini ∀ compounds j present at tini
T , p, Vl, Vg

Large uncertainty kmax,j ∀ depolymerisation reactions j
µmax,j optional for substrate uptake reactions
kmax,decay
Ks and Ki for phenol inhibition
YX/S optional for substrates with NoC 6 6
ηAsAA for amino acid reaction rates

Solver tini, tend, ∆t
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4.2 Forward model

The forward model consist of a static and a dynamic component. The static component initialises
a system of differential equations, which represent the reactions that are active throughout
aerobic degradation of SOM. The initialisation is conducted in three stages: 1. initializing the
compounds with their characteristics, 2. initialising reaction stoichiometry and reaction rates of
kinetic reactions and 3. initialising the equilibrium reactions involving the liquid and gas phase.
The dynamic component solves the system of differential equations defined in the previous stages.

Initialisation of compounds Initialising the compounds present in the reaction network is
achieved by creating a cell array which saves their names, chemical formula, amount of functional
groups, gibbs free energy and oxidation state. Another structure saves the index of each com-
pound within the array. The chemical formula of the polymers are defined by first creating the
monomers as compounds. The chemical formula of the monomers is always hard-coded, following
the description in Table 1 and Table 6. When multiple monomers are present in one polymer, the
formulas are combined together according to the composition as described in Table 2 and Table
7. For hemicellulose the formula of acetic acid is multiplied by factor ηAc and then added to the
formula for the monosaccharide. For cutin the formula of the C18 LCFA is multiplied by factor
%C18 and then added to the formula of the C16 LCFA. For lignin the formulas of the G, S and P
unit are respectively multiplied with factors %G, %S and (1−%G−%S) and then added together.
For polymers with multiple hydrolysable bonds the formula of H2O is then multiplied by the
amount of hydrolysable bonds (see Table 4 and Table 9) and subtracted from the monomeric
formula. For lignin and tannin two hydrogen atoms are removed from the monomeric formula.
The formula for melanin is set equal to the formula of lignin. The formula for bacteran is set
equal to the formula for cutin. Subsequently, the amount of functional groups (carboxyl, pheno-
lic and carbonyl) are hard-coded for each compound, following Table 3 and Table 8. Only the
amount of phenolic groups in lignin varies and is equal to %BiPh. The ∆Gf °of each compound
is hard-coded in the model as well. All values are shown in Table 12. The last characteristic is
the oxidation state of carbon atoms in the SOM compounds. The oxidation state γ is calculated
following Eq. 7

γ =
−1 ·NoH + 3 ·NoN + 2 ·NoO

NoC
(7)

Where NoH is the number of hydrogen atoms in the compounds, NoN the nitrogen atoms, NoO
the oxygen atoms and NoC the carbon atoms.

Initialisation of stoichiometric equations The initialisation of the kinetic reaction consists
of setting both the stoichiometry and the kinetics of the reaction. For the non-metabolic reac-
tions, setting the stoichiometry means closing the mass and electron balances. This is achieved
through a series of subsequent steps. The first step is defining the stoichiometric coefficients of
the carbon-containing SOM compounds of each reaction. These coefficients are based on the
monomer composition, which are either hard-coded, or function of additional parameters. This
has been discussed in Section 3. Based on the requirement of a closed mass balance for O, N
and H, and a charge balance, the stoichiometric coefficients of H2O, NH3, H+ and e− are then
automatically calculated. For redox reactions, i.e. the reactions where the coefficient for e− is
non-zero, the equation is balanced with either the reduction of O2 to H2O or the oxidation of
H2O to O2. For the substrate uptake reactions, the same process is followed for both the anabolic
and the catabolic reaction. The two reactions are then balanced by YX/S . For the substrates
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with NoC > 7, the YX/S has been defined as an input variable. For the other substrates, the
forward model first checks if the parameter has been defined as an input variable. If not, it is
calculated with the method of Kleerebezem et al. (2010) [25] based on thermodynamic principles.
The method uses the ∆Gf ° of all reactants and products in the anabolic and catabolic reactions,
and the stoichiometric coefficients of these two reactions. Once all stoichiometric equations have
been calculated, the coefficients of H2O and O2 are overwritten to be set to zero. By setting
the consumption and production of H2O to zero, the volume of the liquid phase stays constant.
By setting the consumption and production of O2 to zero, it is assumed the environment is not
limited by O2.

Initialisation of kinetics To set the kinetics of the reaction, we define the reaction driving
concentration Cdriving, the maximum rate parameter kmax or µmax and the inhibitions, including
Monod kinetics. For depolymerisation reactions, the Cdriving is the polymer concentration. For
substrate uptake reactions and for biomass decay, the Cdriving is the biomass concentration CX .
The kmax for decay and depolymerisation reaction has to be passed to the forward model as an
input variable. For the µmax the forward model always checks if the parameter has been defined
as an input variable. If not, it is calculated by a method from Heijnen et al. (2010) [37], based
on thermodynamic principles. The rate of the degradation of amino acids to VFA and NH3 is
calculated by linking the input variable ηAsAA with the µmax of amino acid uptake, by following
Eq. 8:

kmax,AA⇒V FA = 2 · (1− ηAsAA) · µmax,AA (8)

Where kmax,AA is the kmax for the reaction of amino acids to VFA [ 1
h ], µmax,AA is the theoretical

µmax with amino acids as substrates [ 1
h ] and ηAsAA is the efficiency of assimilation of amino acids

[−].

We assume that µmax,AA as defined so far is the one valid when half the amino acids react to
VFA and half are taken up, i.e. corresponding with ηAsAA equal to 0.5. In other cases, the actual
µmax,AA is updated from Eq. 9:

µmax,AA,new = 2 · ηAsAA · µmax,AA,old (9)

Each inhibition is defined by the type of inhibition, the reaction it is acting upon and the inhibi-
tion parameters. There are six monod kinetics inhibitions defined for the six types of substrate
uptake reactions, aside from monoaromatic uptake. Furthermore there are four substrate lim-
itation inhibitions by NH3 on the substrate uptake of monosaccharides, VFA, monoaromatic
compounds and LCFA. The value of Kinh is set at 0.001 for these ten inhibitions. At last, there
is the inhibition of phenol on its own uptake, specified with KS and Ki which have been passed
to the forward model as input variables. The monod kinetics are already present in the toolbox
of Van Turnhout et al. (2016) [6]. The Haldane kinetics for phenol substrate limitation is added.

Initialisation of equilibrium reactions The above-mentioned reactions are all kinetic re-
action. In addition, equilibrium reactions occur in the system. In the liquid phase, certain
compounds can dissociate. Initialising the dissociation reactions follows the same approach as
Van Turnhout et al. (2016) [6]. We indicate that H+, OH−, H2O, C2H4O2, C2H3O−, H2CO3,
HCO−3 , NH3, NH+

4 and NO−3 are all present in the system. The dissociation constants of these
compounds are available in Orchestra’s Minteq database. Additionally, the dissociation of the
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new monomers is also defined. This consists of the dihydroxybenzoic acids, NAM and LCFA.
For the monomaromatics, the pKa of the 2,4-dihydroxybenzoic acid is used, because their pKa
values form an intermediate value between the pKa of the several isomers. The pKa of N-acetyl
muramic acid is estimated through the pKa of the carboxyl group of glycolic acid. For the long
chain fatty acids, the estimated value of pKa for a palmitic acid is used [38]. The values can
be found in Table 12. The gas phase consists of O2, which is also the filler gas, CO2 and NH3.
The concentration of CO2 in the gas phase is in equilibrium with the concentration of H2CO3 in
solution. The concentration of NH3 is in equilibrium with the concentration of NH+

4 in solution.
The equilibrium is governed by Henry’s law [6]. The Henry constant needs to be defined.

An overview of all parameter values which are hard-coded in the forward model is given in Table
12.

Table 12: List of hard-coded parameter values

Parameter category Parameters Values
∆Gf °[kJ/mol] Monosaccharide (glucose) -917 [39]

VFA (acetic acid) -396.41 [39]
Amino Acid -500 ([-700;-200] [39])
Dihydroxybenzoic acid -551.8 [40]
16-hydroxy-palmitic acid -1332.25 [41]
N-acetyl-glucosamine -855.23 [42]
N-acetylmuramic acid -1153.68 [43]

Logarithmic acid For inorganic fraction Minteq Database
dissociation constant (pKa) Dihydroxybenzoic acid carboxyl 4.48

phenolic group 8.83
phenolic group 12.6
N-acetyl muramic acid carboxyl group 3.83 (est)
Palmitic acid carboxyl group 4.75 (est)

Inhibition constants For NH3 substrate limitation 0.001
Kinh [mol/l] For monomeric substrates (monod) 0.001

Solving the reaction network Solving the system of equations is done by an ODE solver
and Orchestra. The code for this was directly taken from Van Turnhout et al. (2016) [6]. The
main output of the forward model is an array containing the concentrations of all compounds
at each time step between t0 and tend, accompanied by the array containing all compounds and
their characteristics, i.e. name, index, chemical formula, γ, ∆Gf °and functional groups.

4.3 Output processing

The final step is processing the output to generate meaningful results. The most basic results
are plots of the concentration in time for all compounds. Additional plots are then generated
by combining those concentrations with chemical properties of the corresponding compound
and summing these results for relevant compound combinations. These plots demonstrate the
dynamic nature of the bulk properties of SOM. All plots are listed below:

1. The concentration, expressed in Cmol, in time of the total soil organic carbon (SOC), by
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multiplying the concentration of all SOM compounds with the coefficient for C in their
chemical formula and then summing all the products.

2. The concentration in time of SOC associated with aromatic compounds, by multiplying
the concentration of the aromatic compounds, i.e. lignin, tannin, monoaromatic compounds
and melanin, with the coefficient for C in their chemical formula and then summing all the
products.

3. The concentration in time of SOC associated with aliphatic compounds, by subtracting the
SOC in aromatic compounds from the total SOC.

4. The average oxidation state in time of C in all SOM compounds, by multiplying all con-
centrations, expressed in Cmol, with the corresponding oxidation state, summing these
products and then dividing by the total SOC.

5. The ratio in time between the aliphatic and the aromatic SOC in time, by dividing the
concentration of SOC in aliphatic fraction by the concentration in the aromatic fraction.

6. The ratio in time between the concentration of SOC and nitrogen, by dividing the total
SOC by the concentration of nitrogen both in N-containing compounds, i.e. proteins, amino
acids, chitin and peptidoglycan, and in NH3.

7. The concentration, expressed in mol, in time of carbonyl, carboxyl and phenolic groups,
by multiplying the concentration of each compound, in mol, by the respective amount of

Figure 4: Schematic representation of the forward model
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the functional group.

4.4 DREAM and hypothetical dataset

To be able to apply Bayesian Inference analyses on the forward model, the DREAM algorithm
of Vrugt et al. (2016) [36] is included in the toolbox. The implementation is adopted from Van
Turnhout et al. (2016) [6]. As an input, the DREAM module requires a dataset, a forward
model, a number of iterations and a set of parameters on which the analysis is applied, including
realistic value ranges. The output of the forward model is altered by prior processing, to mimic
the measurement points of the dataset.

The DREAM module is expanded with a script that creates a hypothetical dataset. First,
the forward model is run with specified values for all input variables, including the uncertain
parameters. Second, the output variables of the forward run are processed to model the variables
of interest, i.e. the measured variables in a real dataset. Third, we select only the values at certain
time intervals, corresponding to the sample times in a real dataset. Lastly, noise is added to the
output, to mimic the occurrence of measurement errors in a real dataset. The noise is normally
distributed and defined by a standard deviation. Where applicable, the output is truncated to
avoid negative concentrations after noise addition.
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5 Method

With the implementation finalised, the toolbox can now be deployed as an analysis tool. We
conduct three analyses. First, we initialise and run the toolbox for one example situation, to yield
predictions on SOM and its properties. Second, we set up an analysis to choose an experimental
design for quantification of uncertain parameter values. The third and last analysis illustrates
the comparison between two reaction networks when the user of the toolbox is only interested
in describing a specific dataset.

5.1 Forward run with baseline values

The output of the forward model can be interpreted as predictions on SOM degradation for the
specific situation described by the values of the input variables. In this section we present one
such situation, whose predictions are then addressed and discussed in Sections 6 and 7. The input
variables are divided into three categories. In the first category are the uncertain parameters
which cannot be measured directly (referred to as difficult to measure) and which are not bound
to a specific situation. The suggested values for these parameters will be referred to as baseline
(i.e. standard) values, which users can use without conducting further research. In the second
category are variables that can be quantified by measurements prior to running the analysis or
easily estimated based on the origin of the plant OM and data in literature. The third and
last category contains the input variables that can simply be imposed on the system, such as
temperature or the initial concentration. For illustrative purpose, we limit the presence of SOM
compounds of plant origin to lignin and cellulose.

1. Difficult to measure input variables Not surprisingly, the input variables that are dif-
ficult to measure are also the variables with the most uncertain value. Due to the limited
experimental data available, the values merely represent rough estimations. For the kmax pa-
rameters, we simply make a distinction between low and high recalcitrance, as done in Table
10. We assume that the slow reaction rates are approximately a factor 100 smaller than the fast
reaction rates. This factor can be observed when comparing the reaction rates in in-situ mea-
surements [44]. The measured values themselves are lower, resp. 0.06 1/d and 0.0005 1/d, but
this can be attributed to the effect of stabilisation mechanisms. We arbitrarily decide to set the
values to be a factor 5 faster than the in-situ parameters. Furthermore, we assume the growth
rates on LCFA and monoaromatics to be as slow as the fast kmax of easily degradable polymers.
The decay rate is set to be 0.8 1/d, which is slower than the growth rates of standard substrates
(e.g. glucose), but faster the depolymerisation rates. The yields for LCFA and monoaromatic
compounds is set to lower than the general heterotrophic yield, i.e. approximately 0.50 cmol

cmol .
Next, we specify the growth yield for all other monomers with NoC 6 7 to be 0.65 cmol/cmol,
i.e. the general value for heterotrophic growth yield in ASM3 [28, 45]. It should be noted that
the growth yield in the forward model is defined on a mol/mol basis, rather than cmol/cmol.
By consequence, 0.65 needs to be multiplied with -NoC. The ηAs,AA is set to 0.5 to model an
intermediate scenario between the DIR and MIT scheme. Table 14 summarises all values of the
input variables. The chosen values are shown in Table 13, together with a hypothetical range
within which the real value could fall.
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Table 13: Baseline values for uncertain input variables

# Parameter Baseline value Hypothetical range
1 khyd,cellulose 0.3 1/d [0.1 · khyp;10 · khyp]
2 kox,lignin 0.003 1/d [0.1 · khyp;10 · khyp]
3 khyd,protein 0.3 1/d [0.1 · khyp;10 · khyp]
4 khyd,chitin 0.3 1/d [0.1 · khyp;10 · khyp]
5 khyd,glucan 0.3 1/d [0.1 · khyp;10 · khyp]
6 khyd,peptidoglycan 0.3 1/d [0.1 · khyp;10 · khyp]
7 kox,bacteran 0.003 1/d [0.1 · khyp;10 · khyp]
8 kox,melanin 0.003 1/d [0.1 · khyp;10 · khyp]
9 µmonoaromatic 0.3 1/d [0.1 · µhyp; 10 · µhyp]
10 µLCFA 0.3 1/d [0.1 · µhyp; 10 · µhyp]
11 kdecay 0.8 1/d [0.1 · khyp;10 · khyp]
12 Ks,monoaromatic 0.01 1/d [0.005; 1]
13 Ki,monoaromatic 0.6 1/d [0.01; 1]
14 YLCFA - 8 mol/mol [−9;−7]
15 Ymonoaromatic -3.5 mol/mol [−4.2;−1.4]
16 YX/S for NoC > 7 −0.65 ·NoC mol/mol [−0.55 ·NoC; 0.75 ·NoC]
17 ηAsAA 0.5 [0;1]

2. Measurable input variables The measurable input variables relate to the composition
of the initial OM, in this case cellulose and lignin. The composition of cellulose is fixed. On
the other hand, lignin is characterised with regard to its monomeric units and linkage. In this
case, we represent lignin as having an equal amount of each unit (%G = %S = %P = 1/3),
which is typical for lignin of grasses [14]. Furthermore, we specify that half of the linkages are
aryl bonds (%ArO = 0.5) and 20% are biphenyl bonds (%BiPh = 0.2), which falls within a
realistic distribution of bond types [14]. The presence of biomass implies the gradual supply of
microbial residues through decaying biomass. We assume that half the necromass has fungal
origin (%fungi = 0.5). A rough estimate of the composition of fungal necromass is conceived
based on Throckmorton et al. (2012) [27]. The amount of chitin is set to 30% (%chit = 0.3),
that of glucan to 45% (%gluc = 0.45) and that of proteins to 10% (%prot,f = 0.1). Similarly,
the composition of bacterial necromass has to be specified. As such, we define the amount of
peptidoglycan to be 75% (%pept = 0.75), that of bacterial protein to be 10% (%prot,b = 0.1).
Although cutin is absent as plant residue, we still need to define a hypothetical percentage of C18
(vs. C16) LCFA. This parameter will be used to quantify the bacteran that enters the system
through biomass decay. We arbitrarily set the amount of C18 LCFA to be 50% (%C18 = 0.5).

3. Imposed input variables The hard-coded reaction environment currently associated with
the forward model is a closed and perfectly mixed batch, with gas venting when total gas pressure
p increases above the initial pressure p0 [6]. The user can impose the batch temperature T, the
initial pressure p0, the gas volume Vg and the liquid volume of H2O, Vl. In this case, the batch
has a liquid volume Vl of one liter H2O and equivalent gas volume Vg. The batch temperature
T is specified as 283K (or approximately 10 °C) to mimic a realistic soil water temperature. The
p0 is set (and maintained) at 1 atm. The batch specifications are summarised in Table 15. The
remaining imposed input variables are the initial concentrations. The cellulose concentration is
chosen to be approximately 200 g/l, based on other published experimental designs where the
weight/volume percentage concentration (w/v) of cellulose ranged from 5% to 20% [46], i.e. a

42



5 METHOD

concentration [g/l] of 50 to 200 g/l. In both experimental designs of this section, the lignin
concentration [g/l] is close to fifty percent of that of cellulose. This lignin-to-cellulose ratio
resembles the lignin-to-cellulose ratio in leaf litter [14]. NH3 is added to obtain a C/N ratio of
30, which is a realistic C/N ratio for fresh litter input [47]. Acetic acid and dihydroxybenzoic acid
are included in low concentrations to improve the stability of the initial Orchestra calculations.
Given that the model uses concentration in units of mol/l, it is required to convert the value.
Therefore, the concentration in g/l, the molecular weight which is based on the chemical formula,
and the concentration in mol/l are all included in Table 16.

With the above-mentioned values of input parameter, the reaction system is fully initialised. We
decide to simulate the behaviour of SOM over a period of thirty days.

5.2 Evaluation of dynamic SOM characterisation

During the course of the simulation, the bulk properties of SOM will change due to the disap-
pearance of some compounds and creation of others, which have varying properties. The exact
bulk property depends on the concentration of each compound and on the properties of each
individual compound. The course of the concentrations rely on highly uncertain kinetic param-
eters. For this reason, the validity of the result interpretation would be highly uncertain as
well. However, there is one aspect of the simulation which has already been well defined, i.e. the
individual compounds and their characteristics. The interpretation of the simulated results will
thus focus on the range of values covered by the bulk property. For any simulated bulk property,
a maximum and minimum value can be defined beforehand. The maximum value is the highest
value of the property when looking at individual compounds. Likewise, the minimum value will
be the lowest. By consequence, the simulated range of the bulk property will lie within these

Table 14: Values of input variables

Type of input Parameter Value
Characterisation %G 1/3

%S 1/3
%ArO 0.5
%BiPh 0.2
%fungi 0.5
%chit 0.30
%gluc 0.45
%prot,f 0.10
%pept 0.75
%prot,b 0.10
%C18 0.5

Table 15: Values of imposed batch specifications

Parameter Value
T [K] 283
p [atm] 1
Vl [l] 1
Vg [l] 1
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Table 16: Initial concentrations

Compound C [ gl ] MW [ g
mol ] C [moll ]

Cellulose 200.88 162 1.24
Lignin 93.8 187.6 0.5
Biomass Cx 0.0452 22.6 0.002
NH3 6.8 17 0.4
Acetic acid 0.006 60 0.0001
Dihydroxybenzoic acid 0.3293 164.65 0.002

two limits and can possibly be significantly narrower. To evaluate the validity of these results,
we will compare them to experimental data of humic substances.

Hypothesis The bulk properties of ’humic’ substances should fall within the theoretical range
of properties the model can offer. We hypothesis this result, because the identification of several
compound types and their properties is based on a rigourus literature review. If the properties of
humic substances lie beyond the range offered by this model, this either contradicts the statement
that humic substances are actually organic compounds of plant and microbial origin, or that an
important compound is missing in our model. Furthermore, we expect that the range of values
for properties covered by the simulation is narrower than the full potential range of values.

Mode of evaluation To evaluate the ability of the simulations to characterise actual SOM
mixtures, we compare the results of the simulation with properties of model humic molecules.
Model humic molecules are molecules that are expected to be observed in SOM samples, but
hypothetical SOM molecules whose properties are averages of experimentally determined proper-
ties [48]. We use two such molecules in this analysis, i.e. the Temple-Northeastern-Birmingham
(TNB) molecule and the Schulten SOM molecule [48–50]. The characteristics of both model
molecules are given in Table 17.

Table 17: Characterisation of TNB and Schulten SOM

Model Chemical formula OxC,avg %COOH,avg %AromOH

TNB C38H39O16N2 [49] -0.0263 (calc) 7,89 [49] 5.26 [49]
Schulten SOM C342H388O124N12 [50] -0.3041 (calc) 8.56 [50] 2.72 [50]

5.3 Experimental design selection for improvement of baseline values

The analysis introduced in this section brings forth the initial step in establishing a more adequate
set of baseline values than the one suggested in Section 5.1, i.e. designing an experiment to
quantify the parameters of interest.

After gathering data from any actual experiment, DREAM can be deployed to assess the iden-
tifiability of certain parameters of a postulated reaction network based on the measurements.
When the identifiability of a certain parameters is low, it is then possible to add or change
measurements obtained in an ensuing experiment. This is an iterative process. Due to the large
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cost and time investment of conducting such experiments, we aim to find an experimental design
which already provides an excellent starting point.

To achieve this, we need to realise that poor identifiability of a parameter arises from several
factors. A first source of poor identifiability is that none of the monitored variables is sufficiently
influenced by, i.e. not sensitive for, the parameter in question. Another factor is that the parame-
ter in question does influence one or more monitored variables, but that it is correlated to another
parameter. Due to the correlation, it is not possible to identify those parameters separately. The
last reason is that the postulated reaction network is insufficiently correct and/or complex to
explain the measured data. The poor identifiability which follows from insensitivity and cor-
relations not captured in the presumed network cannot easily be evaluated prior to the actual
experiment. On the other hand, poor identifiability arising from insensitivity and correlations
which is inherent to the structure of the reaction network can and should be avoided.

For this purpose, we apply DREAM on two hypothetical datasets A and B to conduct what is
essentially a sensitivity analysis. Both hypothetical datasets are created as explained in Section
4.4, representing two experimental designs A and B. This is the type of dataset that would be
observed during a real experiment if the reaction network presented in this paper was an exact
representation of the actual SOM degradation. In our case, the error between the simulated data
and the measured data can now be entirely explained by measurement errors. The identifiability
of the parameters of interest are compared for both hypothetical datasets, to choose the superior
experimental design. We then use the model structure to interpret, and subsequently resolve,
poor identifiability. This concludes the conceptual aspect of the analysis. The following four
paragraphs address the concrete aspects, being a) generating the two hypothetical datasets, b)
the investigated parameters, c) the hypothesis, and d) the assessment criteria used to evaluate
the hypothesis.

Generating two hypothetical datasets Both hypothetical datasets are generated from the
same forward run of the reaction network. For this purpose, we use the forward run initialised in
Section 5.1 with the current baseline values. For Experiment Design A we simulate this specific
situation over thirty days. The simulation for Experimental Design B is limited to three days.
The output of the forward run is then processed to mimic the measurement points of the corre-
sponding experiments. Table 18 shows that both experimental designs would monitor the pH,
the cumulative concentration of CO2 and the concentration of cellulose, lignin, monosaccharides,
monoaromatic compounds, NAM and biomass. Additionally, Experimental Design A would also
monitor the concentration of peptidoglycan, whereas Experimental Design B would monitor the
concentration of NAG. These variables are all direct outputs of the forward run. The processing
is thus limited to selecting the output at discrete time steps, which correspond with the proposed
sample times for the future experiments. The number of samples is given in Table 18, and are
spread evenly over the proposed length of the experiment. The last step is adding a normally
distributed noise to the datasets. The standard deviation of the noise is attributed based on
the standard deviation of the corresponding measurement, see Table 18, due to (hypothetical)
measurement errors.

Parameters under investigation As has been noted in Section 2.4, a large amount of uncer-
tainty is linked to the maximum rate parameters kmax of the depolymerisation reaction. In fact,
no experimental data is readily available for the depolymerisation of SOM at low temperatures
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Table 18: Hypothetical measurements (SD and nSamples)

Hypothetical Measurement SD nsamples
pH 0.05 [51] 30
CO2(cum) 0.006 [52] 30
Cellulose 0.005 [53] 10
Lignin 0.005 [53] 10
Monosaccharide 0.0005 10
Monoaromatic compounds 0.0005 10
NAM 0.0005 10
Biomass CX 0.0005 10
Peptidoglycan (exclusively for Exp. A) 0.0005 10
NAG (exclusively for Exp. B) 0.0005 10

and without interference of stabilisation mechanisms. Consequently, we include the kmax for the
depolymerisation reaction of all polymers in the reaction network. Furthermore, kmax,decay of
biomass decay is incorporated in the analysis as well, because it can adopt a large range of values.
The last factor of respectable uncertainty is the biomass growth on LCFA and monoaromatic
compounds. This uncertainty arises from the fact that LCFA and monoaromatic compounds
are atypical monomers. With this in mind, we include µmax and YX/S of biomass growth on
LCFA and monoaromatic compounds, as well as KS,Ph and Ki,Ph, the inhibition parameters
of phenol substrates. The chosen parameters are summarised rows 1 to 15 of Table 13. The
value ranges within which DREAM searches for an optimal value are the ones suggested in Table
13 as well. DREAM is then run for 200.000 iterations for each of the datasets, optimising the
above-mentioned parameters within the corresponding ranges.

Hypothesis It is hypothesised that, due to the difference in simulation time, the parameters
related to the MOM fraction (e.g. depolymerisation of chitin) will be better identifiable in the
dataset based on Experimental Design A. As an additional measurement, experiment A monitors
the concentration of peptidoglycan, whereas Experiment B monitors the concentration of NAG.
As a result, no microbial polymer is measured in experiment B. We hypothesise that there will
be a larger correlation between the decay rates and the depolymerisation rates of microbial
residues in experimental design B. In general, we expect that it will be possible to interpret the
correlations using the inherent model structure.

Assessment criteria To be able to assess the identifiability of the parameters we will generate
and discuss several results:

1. The hypothetical measurement points versus the simulated data.

2. The joint posterior distributions. The dataset has a larger sensitivity to the parameters
with narrower joint posterior distributions P (θ|ŷ).

3. The Kullback-Leibler Divergence (Dkl) criterion uses the joint prior and posterior distribu-
tion to quantify and compare the identifiability of the parameters from both experimental
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set-ups. Dkl is defined with Eq. 10:

Dkl =

∫
(p(θi|ŷ) · ln

(
p(θi|ŷ)

p(θi)

)
· dθi (10)

4. The correlation plots. When parameters are strongly correlated, it is not possible to assess
the sensitivity of the dataset to the parameters separately.
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6 Results

This section contains the results of the methods described in Section 5. The discussion of the
results is done in Section 7.

6.1 Simulations by forward run with baseline values

In this section we present the results of the 2500 days simulation with baseline values. Figure
5 displays the course of the cellulose, lignin and melanin concentration. The long simulation
period has been divided in three stage, as follows: a) from day 0 to day 20, b) from day 20 to
day 1500, and c) from day 1500 to day 2500 (Figures 5a, 5b and 5c). The division in stages
facilitates the comparison of the compound concentration in relative terms. In Figure 5a (Stage
I) the concentration of cellulose starts higher than that of lignin, but rapidly decreases. After 4
days the cellulose concentration becomes less than that of lignin. At the start of the simulation,
there is no melanin present in the system. It increases slowly throughout stage I. In Figure 5b
(Stage II), it can be seen that cellulose has vanished from the system (or SOM mixture). Lignin
and melanin are now following a similar course of concentration decrease, and approaching each
others value. Figure 5c shows that melanin and lignin have a similar concentration, where lignin
is slightly higher.

(a) From day 0 to day 20 (b) Fom day 20 to day 1500 (c) From day 1500 to day 2500

Figure 5: Concentration of cellulose, lignin and melanin from day 0 to day 2500

The figures above are direct results of the concentration of the individual compounds. In addition,
we can present results of bulk properties of SOM by combining those concentrations with the
properties of the individual compounds. Figure 6 presents the average oxidation state of the
carbon atoms in the SOM mixture and the elemental analysis for nitrogen. Both properties
can be directly deducted from the chemical formula of the individual compounds and their
concentration. In Figure 7, we show the average amount of carboxyl and phenolic groups per
carbon atom in the mixture. In order to calculate these two properties, we need the chemical
formula, the amount of carboxyl and phenolic groups and the concentration for each individual
compound. In the following four paragraphs, we will describe the simulation of each simulation
in more detail.

Figure 6a The average oxidation state of the carbon atoms in any SOM mixture in our model
always lies between -1.29 and 0.48. These limits correspond with the oxidation state of C in resp.
LCFA and monoaromatic compounds. The actual range of values covered by the SOM mixture
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(a) Average oxidation state of the organic carbon
atoms

(b) Average percentage of N atoms in an organic
compound

Figure 6: Average property of bulk SOM

is [-0.6;0.2]. The average oxidation state of carbon in TNB and the Schulten SOM molecule fall
within the simulated range of values. A SOM mixture which has the same oxidation state as the
TNB molecule is achieved after approximately 1900 days. For the Schulten molecule this is the
case after approximately 1500 simulated days.

Figure 6b The average percentage of N in any SOM mixture in our model always lies between
0% and 8.9%. This corresponds with the composition of resp. monosaccharide and protein. The
actual range of values covered by the SOM mixture is much narrower, i.e. [0%;0.8%]. The average
percentages of N in TNB (2.1%)and the Schulten SOM molecule (1.39%) do not fall within the
simulated range of values.

Figure 7a The average amount of carboxyl groups per carbon atoms in any SOM mixture
in our model always lies between 0% and 50%. These limits correspond with the amount of
carboxyl groups in C in resp. monosaccharides and acetic acid. The actual range of values
covered by the SOM mixture is [0%;12%]. The average amounts of carboxyl groups per C atoms
in TNB (7.89%) and the Schulten SOM molecule (8.56%) fall within the simulated range of
values. A SOM mixture which has the same average amount of carboxyl group as the TNB
molecule is reached after approximately 1650 days. For the Schulten molecule this is the case
after approximately 1750 simulated days.

Figure 7b The average amount of phenolic groups per carbon atoms in any SOM mixture
in our model always lies between 0% and 28.5%. These limits correspond with the amount of
carboxyl groups in C in resp. monosaccharides and monoaromatic compounds. The actual range
of values covered by the SOM mixture is [1%;22.5%]. The average amounts of phenolic groups
per C atoms in TNB (5.26%) and the Schulten SOM molecule (2.72%) fall within the simulated
range of values. A SOM mixture which has the same average amount of phenolic group as the
TNB molecule is reached after approximately 900 days. For the Schulten molecule this is the
case after approximately 300 simulated days.
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(a) Average percentage of carboxyl groups per or-
ganic C

(b) Average percentage of phenolic groups per or-
ganic C

Figure 7: Average property of bulk SOM

6.2 Results of experimental design selection

Identifiability (Dkl) and posterior ranges The identifiability, quantified by Dkl, and pos-
terior ranges of the parameters which have converged in at least one experimental design, are
given in Table 19. The experimental design with the largest Dkl is indicated in bold for each
value. The Dkl of kmax,cellulose is the highest in experimental design B. For all other parameters,
the Dkl is the highest in experimental design A. Some posterior ranges do not include the initial
hypothetical value.

Table 19: Posterior ranges (5% - 95%) and Dkl

kcellulose klignin kprotein kchitin
khyp = 0.3 khyp=0.003 khyp = 0.3 khyp = 0.3

Set-up Quantile Dkl Quantile Dkl Quantile Dkl Quantile Dkl

A [0.2963;0.3053] 5.63 [0.0013;0.0021] 3.28 [0.2556;0.2969] 3.92 [0.3601;0.4330] 3.49
B [0.2989;0.3036] 6.26 [0.0011;0.0024] 2.86 [0.6585;1.0313] 1.80 [0.2380;0.4582] 2.26

kglucan kpeptidoglycan kbacteran kmelanin
khyp=0.3 khyp=0.003 khyp=0.003 khyp=0.003

Set-up Quantile Dkl Quantile Dkl Quantile Dkl Quantile Dkl

A [0.2895;0.3120] 4.62 [0.2624;0.3029] 4.00 [0.0063;0.0144] 1.04 [0.0009;0.0035] 2.31
B [0.2983;0.4413] 2.70 [0.0487;0.1686] 3.15 [0.0088;0.0287] 0.32 [0.0176;0.0297] 0.66

µmonoaromatic kdecay Ks,monoaromatic

khyp=0.3 khyp=0.8 khyp = 0.01
Set-up Quantile Dkl Quantile Dkl Quantile Dkl

A [1.5965;2.9816] 0.87 [0.7927;0.8057] 7.06 [0.2434;0.4894] 1.16
B [2.5722;2.9674] 1.86 [0.7684;0.8029] 6.02 [0.2416;0.7455] 0.49

Correlations Lastly, we analysed correlations between parameters for both reaction networks.
Figures 8a and 8b show the correlation between the kmax of chitin hydrolysis and that of biomass
decay for both experimental designs. We observed a strong correlation between the two param-
eters in experimental design A, but not in experimental design B.
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(a) Correlation between kmax of chitin and biomass
decay for Experimental Design A

(b) Correlation between kmax of chitin and biomass
decay for Experimental Design B

Figure 8: Correlation between kmax of chitin and biomass decay after 200.000 iteration runs

Figures 9a and 9a represent the correlation between kmax of chitin and peptidoglycan hydrolysis.
In experimental design A, a correlation is absent. On the other, we observed a correlation between
the two parameters for experimental design B.

(a) correlation between kmax of chitin and peptido-
glycan hydrolysis for Experiment A

(b) Correlation between kmax of chitin and pepti-
doglycan hydrolysis for Experiment B

Figure 9: Correlation between kmax of chitin and peptidoglycan hydrolysis after 200.000 iteration runs

The correlations between kmax of lignin and melanin oxidative depolymerisation is displayed in
Figures 10a and 10b. For both experimental designs, correlation can be observed.
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(a) Correlation of kmax of lignin and melanin for
Experiment A

(b) Correlation of kmax of lignin and melanin for
Experiment B

Figure 10: Correlation of kmax of lignin and melanin after 200.000 iteration runs

7 Discussion

This section discusses the results presented in Section 6.

7.1 Discussion of simulations with baseline values

The three stages show in Figure 5 can roughly be interpreted as follows:

� Stage I: A stage where the SOM mixture is governed by plant residues, with both easily
degradable (e.g. cellulose) and relatively resistant (e.g. lignin) plant compounds. This stage
ends rapidly (after 4 days) when the easily degradable fraction has been degraded (Figure
5a).

� Stage II: A stage where the SOM mixture is governed by relatively resistant plant com-
pounds (e.g. lignin), and a growing fraction of resistant microbial residues (e.g. melanin).
This stage spans from day 4 to day 1500, and is thus more than 350 times longer than
stage I (Figure 5b).

� Stage III: A stage where the SOM mixture is governed by resistant plant compounds (e.g.
lignin) and resistant microbial residues (e.g. melanin). This stage spans at least until day
2500 and is expected to be maintained even longer (Figure 5c).

For the properties of bulk SOM, the absolute concentration of individual compounds is not
important. It is the relative concentration that governs the bulk properties.

For all studied bulk properties, i.e. average oxidation state, % of N, % of carboxyl groups and % of
phenolic groups, the model can technically simulate SOM mixture that have the corresponding
value of TNB and Schulten SOM molecule (Figures 6 and 7). For all properties, except the
percentage of N, this SOM mixture can found with the mixture simulated with the current
initialisation and simulation time (Figures 6a, 7a and 7b.
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The average percentage of N of the SOM mixture stays lower than that of TNB and Schulten
SOM during the whole simulation (Figure 6b. However, the values do fall within the technical
limitations of the property. This observation could thus be explained by factors that do not
question the validity of the compounds and reaction types in the reaction network itself. A SOM
mixture that does have the same property could be reached by adapting the initial conditions,
the redistribution of necromass into several microbial polymers or one or more reaction rates.
Another possibility is that we are either missing a nitrogen rich compound in our mixture, or
that the amount of N of one or more compounds has been underestimated.

For the oxidation state of C and for the amount of carboxyl groups, the simulation time at which
the correct values are met lies within Stage III. These SOM mixture thus contain mostly microbial
residues and resistant plant residues. On the other hand, for the phenolic groups to match the
phenolic groups in TNB and Schulten, we need a SOM mixture from Stage I. This SOM mixture
thus correspond to a mixture of both easily degradable and resistant plant compounds. This is
not necessarily contradictory, because the model humic molecules are themselves representations
of several SOM mixtures, from which experimental data has been published. An interesting
future analysis would be to compare the simulations to the experimental data of one specific
SOM mixture. In that case, the same simulated SOM mixture should give reasonable results for
the several properties.

7.2 Discussion of experimental design selection

In this section, we will discuss the suitability of the two experimental designs A and B, based on
the identifiability of parameters based on Dkl and correlations, shown in Section 6.2.

From Table 19 it can be seen that set-up A is better at identifying (i.e. higher Dkl) the depoly-
merisation rate of protein, chitin and peptidoglycan as well as the decay rate and the growth
yield on monoaromatics. Similarly, set-up B is better at identifying the rates related to the plant
fraction.

The results of the analysis are only partially in accordance with the hypothesised results. The
discordances highlight the importance of running an automatised analysis of the experimental
designs and use clearly defined statistical parameters to compare the designs. The best experi-
mental design might not be the one which would be chosen intuitively. Especially for complex
reaction networks with high numbers of fitted parameters, it is important to do so. Furthermore,
the analysis can also reveal which adaptation can be made to the currently best experimental
design, to increase the identifiability of the fitted parameters.

We hypothesised that a stronger correlation between kmax of microbial polymers and biomass
decay would be observed for experimental design B, than for A, due to the lack of measurements
monitoring microbial polymers. However, Figure 8b does not show any correlation, while 8a
does. A possible explanation is that the microbial fraction is already poorly identifiable with
Experimental Design B, which would influence the identifiability of the correlations.

In 9b a correlation between kmax of chitin and peptidoglycan hydrolysis is noted. This corre-
lations finds its origin in the similar composition of chitin and peptidoglycan. Both polymers
release NAM. Due to the additional measurement of peptidoglycan in Experimental Design A,
the correlation disappears.
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The strong correlation between the kmax of lignin and melanin was to expected, because both
polymers have been characterised in the same way: same chemical formula, same properties and
same kmax. Therefore, the correlation can only be removed by monitoring directly one of the
two concentrations.
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8 Conclusions

The main context from which this study evolved, is the urgent need for a versatile mechanistic
modelling tool that can address the ever-growing diversity in research questions related to SOM
degradation. The chosen starting point for the development of such a tool, was to look for the
common denominator across all the research questions. The result of this paper is a mechanistic
toolbox, which features both a forward model for SOM degradation as well as a tool for Bayesian
inference analysis, i.e. DREAM. The forward model is the implementation of an aerobic SOM
degradation network, where SOM is defined as a mixture of known organic compounds of plant
and microbial origin, which interacts with microorganisms in a non-limiting aqueous environment.

The major conclusions that can be drawn based on the development and evaluation of our novel
mechanistic toolbox, are presented below:

1. The current literature suffices to make informed and justified choices with regard to defin-
ing the main SOM degradation compounds and reactions, along with their stoichiometry.
However, the literature lacks the data to adequately quantify the kinetics of such degrada-
tion reactions. The reason for this can be found in the novel nature of our approach: so
far, the kinetic parameters of certain reactions have rarely been studied under non-limiting
conditions combined low pressures and temperatures.

2. During the numerical implementation of the reaction network it became apparent that
we can deal with the uncertain nature of the kinetic parameters, by incorporating them
as input variables, rather than hard-coding their value in the main body of the forward
model. As such, the standard values, i.e. baseline values, can be easily updated whenever
new information is obtained. Furthermore, the uncertain parameters can then be analysed
with DREAM.

3. To implement the reaction network, the only strictly necessary characterization of the
individual compounds is that of their chemical composition through a chemical formula.
Other useful properties are ∆Gf ° and the average oxidation state of the carbon atoms.
The two latter properties can be used to estimate growth yields and rates. Moreover, the
model structure allows us to link any non-essential property as we wish.

4. By adding noise to simulations of the forward model, we can generate hypothetical datasets
that mimic real datasets with only measurement errors. A hypothetical dataset can then be
combined with DREAM, or Bayesian inference in general, to gain a powerful tool that as-
sesses the sensitivity of certain output parameters to input variables, as well as correlations,
which can indeed be related back to the inherent model structure.

5. The combination of a hypothetical dataset and the DREAM module can be deployed to
select experimental designs which take into account avoidable poor identification of the
parameters of interest, by assess the model structure for sensitivity and correlations.

With these insights, the toolbox can already be a valuable asset in further research. We describe
two applications that can be initiated in a near future with the toolbox as such:

1. The most immediate application of the toolbox is to define the first experiment that should
be conducted to gather data which can identify the uncertain parameters. The discussion
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in Section 7.2 illustrates how this should be done. This process needs to be iterated several
times. Once the first experiment has been conducted, the DREAM needs to be used to
assess the real identifiability of the parameters. At this point, a new iteration process will
start, since with a real dataset there is the additional influence of model errors.

2. The second proposed application is to use several mixtures of SOM, defined by individ-
ual compounds, as input for molecular simulations [48, 54]. Currently, those molecular
simulations are mostly applied on representative DOM molecules, such as the Schulten
Molecule [48]. These molecules are characterised with properties that reflect experimen-
tally determined properties of humic substances. Due to the flexible nature of our toolbox,
similar properties can be added to the individual compounds. During the simulations we
could then study the supramolecular association behaviour of the compounds. This can
help reinterpret older experimental data, in terms of humic substances, in the light of the
most recent view on SOM and its degradation.

To conclude this report, we address a (non-exhaustive) list of recommended improvements on
the toolbox itself:

1. The most profound adaptation to the current reaction network, will be addition of anaero-
bic SOM degradation. This will result in new SOM compounds, especially with regard to
the byproducts originating from substrate growth [35,55–57]. The addition of an anaerobic
network will require an extended literature study, but its implementation will be straight-
forward due to the model flexibility. The true difficulty might be to cope with the increasing
depletion of oxygen, which will not create a distinct switch between aerobic and anaero-
bic conditions. A starting point for an anaerobic reaction network can be the Anaerobic
Digestion Model [35] for wastewater treatment.

2. All biomass types are currently lumped together to form one component. It is recommended
to add more types of biomass, starting with a distinction between fungal and bacterial
biomass. The proportion of fungal and bacterial biomass is important for the resulting
necromass composition. At the moment, this proportion is set constant throughout time.
Another reason for adding multiple biomass types, is that not all polymers and monomers
can be degraded by all biomass. When for example no white-rot fungi is present in the
system, the lignin decomposition will come to a halt. In anaerobic conditions, where only
specialised biomass is capable of degrading compounds with high recalcitrance, this concept
becomes increasingly important.

3. The general process of microbial growth could also be expanded to better mimic the concept
of microbial growth efficiency (MGE). Modelling extracellular polymeric substances can
be used to model biomfilms, which in turn influence the uptake rate of monomers [31].
Furthermore, the principle of MGE is linked to the availability of nitrogen [31]. In the
current version, depletion of NH3 or N-containing substrates decreases the uptake rate of
substrates. However, a more realistic process would be to have equivalent uptake rates,
but a decreased MGE, with higher production of CO2 and other byproducts [31].

How large is the contribution of microbial organic matter to the total organic matter? Which type
of organic matter mixture will result in maximum mineral binding? What is the temperature
dependence of stable OM pools [58]? With our novel toolbox, we are now one step closer to
numerically approach this wide range of hypotheses.
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