

Delft University of Technology

ManyTypes4Py
A benchmark python dataset for machine learning-based type inference
Mir, Amir M.; Latoskinas, Evaldas; Gousios, Georgios

DOI
10.1109/MSR52588.2021.00079
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 IEEE/ACM 18th International Conference on Mining Software Repositories, MSR 2021

Citation (APA)
Mir, A. M., Latoskinas, E., & Gousios, G. (2021). ManyTypes4Py: A benchmark python dataset for machine
learning-based type inference. In L. O'Conner (Ed.), 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories, MSR 2021: Proceedings (pp. 585-589). Article 9463150 (2021 IEEE/ACM
18TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR 2021)). IEEE.
https://doi.org/10.1109/MSR52588.2021.00079
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSR52588.2021.00079
https://doi.org/10.1109/MSR52588.2021.00079

ManyTypes4Py: A Benchmark Python Dataset for
Machine Learning-based Type Inference
Amir M. Mir

Department of Software Technology
Delft University of Technology

Delft, The Netherlands
s.a.m.mir@tudelft.nl

Evaldas Latoškinas
Department of Software Technology

Delft University of Technology
Delft, The Netherlands

e.latoskinas@student.tudelft.nl

Georgios Gousios
Department of Software Technology

Delft University of Technology
Delft, The Netherlands

g.gousios@tudelft.nl

Abstract—In this paper, we present ManyTypes4Py, a large
Python dataset for machine learning (ML)-based type inference.
The dataset contains a total of 5,382 Python projects with more
than 869K type annotations. Duplicate source code files were
removed to eliminate the negative effect of the duplication bias.
To facilitate training and evaluation of ML models, the dataset
was split into training, validation and test sets by files. To extract
type information from abstract syntax trees (ASTs), a light-
weight static analyzer pipeline is developed and accompanied
with the dataset. Using this pipeline, the collected Python projects
were analyzed and the results of the AST analysis were stored in
JSON-formatted files. The ManyTypes4Py dataset is shared on
zenodo and its tools are publicly available on GitHub.

Index Terms—Type Inference, Machine Learning, Python,
Type Annotations, Static Analysis

I. INTRODUCTION

In recent years, dynamic programming languages (DPLs)
have become immensely popular as they give developers fast
prototyping [1]. However, DPLs lack static typing, which
causes several issues such as unexpected run-time exceptions,
sub-optimal support for integrated development environments
(IDEs), and less precise program analysis. To address these is-
sues, optional static typing is introduced for DPLs like Python
[2], JavaScript [3], and PHP [4]. Yet, developers are required
to manually add type annotations to their existing codebases,
which is a laborious task [5]. To ease the type annotation
burden, researchers have recently employed machine learning
(ML) techniques to infer types for DPLs [6]–[8].

ML techniques need a sufficiently large dataset to achieve
an acceptable level of generalization for the task at hand
[9]. Concerning the ML-based type inference for DPLs, it is
difficult to create a benchmark dataset that contains software
projects with a sufficient number of type annotations. Because
of the optional static typing, many software projects written
in DPLs lack type annotations. Nevertheless, to train an ML-
based type inference model for Python, researchers created
their own dataset by either gathering a small set of projects
with type annotations [7] or employ static type inference tools
to add type annotations to existing projects [8].

We believe that there is a need for a large benchmark
dataset that facilitates training ML-based type inference mod-
els, especially for Python. Unlike TypeScript’s compiler, the
Python interpreter cannot infer the type of variables or function

signatures at compile time [10]. Motivated by this, we present
the ManyTypes4Py dataset, a large dataset to train ML models
for predicting type annotations in Python. Currently, we are
working on the Type4Py model [11], which is trained on the
earlier version of the ManyTypes4Py dataset. The experimental
results show that the model trained on our dataset is overall
more accurate when compared to the same model trained on
a smaller dataset [11].

In summary, the paper has the following contributions:
• ManyTypes4Py dataset, which features 5,382 Python

projects with more than 869K type annotations. The latest
version of the dataset can be downloaded on zenodo1.

• LibSA4Py tool, a light-weight static analyzer pipeline
to process Python projects and extract type hints/features
for training ML-based type inference models. The tool is
publicly available on a GitHub repository2.

II. METHOD

We created the ManyType4Py dataset using the following
methodology:

• To find Python projects with type annotations, we in-
tuitively search for projects that have mypy as a dep-
dendency on libraries.io. Since mypy is the most used
type checker for Python, projects that use mypy have
most likely type annotations. Our search resulted in 5,382
Python projects that are publicly available on GitHub.
We cloned all the discovered projects in Sep. 2020 and
created a file that contains projects’ URL and their latest
commit hash.

• As demonstrated by Allamanis [12], it is essential to de-
duplicate a code corpora before training ML models, as
code duplication negatively affects the performance of
ML models when testing on duplicated code corpora.
Following this, we de-duplicated the collected Python
corpora using our code de-duplication tool, namely,
CD4Py3. In short, the CD4Py tool tokenizes Python
source code files, vectorizes files using Term Frequency-
Inverse Document Frequency (TF-IDF), and performs k-

1https://zenodo.org/record/4479714
2https://github.com/saltudelft/libsa4py
3https://github.com/saltudelft/CD4Py

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Static Analyzer

Imports Modules

Classes Functions

Seq2Seq Code Transformation

Comments
Removal

String/Number
Removal

Type
Propagator

Space
Adder

Type Annotations
Removal

AST
Visitor

Python Corpora NLP Pre-processor

JSON
Representation

Fig. 1. Overview of light-weight static analysis pipeline (LibSA4Py tool)

TABLE I
DUPLICATION STATISTICS ACROSS THE MANYTYPES4PY DATASET

Duplication stats Value

Detected duplicate files 400,245 (78.43%)
Detected clusters 45,836
Avg. # of files per clusters 8.73
Median # of files per clones 3.00
Duplication ratio 69.45%

nearest neighbor search to identify candidate duplicates
files.

• After removing duplicate files, we split the dataset into
three sets by files, i.e., 70% training data, 10% validation
data, and 20% test data. This is a common practice that
is considered in recent research work [7], [8], concerning
machine learning-based models for type inference.

• Given the de-duplicated code corpora and a list of files
for the three sets, we ran light-weight static analysis
pipeline, which is depicted in Figure 1. First, the Abstract
Syntax Tree (AST) of Python source files are visited.
Second, type hints and features are statically extracted
from imports, modules, classes, and functions, inspired
by recent ML-based type inference approaches [6], [7].
Third, the seq2seq representation4 of source code files
[13] are generated by removing comments, string, number
literals, and propagating types. Forth, common Natural
Language Processing (NLP) practices such as tokeniza-
tion and lemmatization are applied to identifier names in
source code files. Finally, the processed Python projects
are stored as a JSON-formatted file.

After completing all the aforementioned steps, a zip file is
created which contains: (1) JSON file of processed Python
projects (2) a file containing projects’ URL and their latest
commit hash (3) a file containing duplicate files in the dataset
(4) a CSV file containing a list of files and their corresponding
set. The helper scripts and instructions for preparing the
dataset are publicly available on a GitHub repository5.

4Each token is aligned with a type if present. Otherwise, zero is inserted.
5https://github.com/saltudelft/many-types-4-py-dataset

III. DESCRIPTION

Before describing the characteristics of the ManyTypes4Py
dataset, we first describe the duplication statistics across the
dataset, which is shown in Table I. The duplication ratio of the
dataset is 69.45% as detected by the CD4Py tool. This is in
line with the findings of Lopes et al. [14], which showed that
the Python ecosystem on GitHub has 71% file-level duplicates.
It should be noted that the duplication ratio is obtained using
the following formula:

(no. of duplicate files − no. of detected clusters)
no. of source code files ∗ 100.0

(1)

After keeping a file from each duplicate cluster, we removed
354,409 duplicate files from the dataset.

The characteristics of the ManyTypes4Py are shown in
Table II after code de-duplication. Overall, the dataset has
5,382 Python projects and 183,916 source code files (i.e. .py
files). 27.6% of source code files have type annotations, i.e.,
there is at least one type-annotated function in those files.
Of 2,096,797 functions in the dataset, 53.8% has comments6,7

and 15.5% has return type annotations. However, Of 3,923,667
functions’ arguments, 5.6% have comments and 12.2% have
type annotations.

As shown in Table II, there are a total of 869,825 type
annotations and 67,060 unique types in the ManyTypes4Py
dataset. To demonstrate the distribution of types, top 10 most
frequent types in the dataset are shown in Figure 2. Of 869,825
types, 50.56% of them are present in the top 10 most frequent
types. As can be observed from Figure 2, types follow a
long-tail distribution. In other words, the majority of type
annotations are either str, None, int, or bool.

As stated in Section II, the dataset provides processed
Python projects in JSON-formatted files, which contains var-
ious type hints and features. As of this writing, there are
23 fields in JSON-formatted files that are described in Table
III. Of 23 extracted fields, 16 of them are natural/contextual
type hints or features that can be used for training ML-based

6Note that here comments are functions’ docstring in Python, which can
be a one-line description or a complete description of a function.

7Our LibSA4Py tool can detect Google, reST, and NumPy docstrings.

TABLE II
CHARACTERISTICS OF THE MANYTYPES4PY DATASET

Metrics Dataset

All Training Validation Test

Repositoriesa 5,382 4,913 2,789 3,796
Lines of codeb 22M - - -

Files 183,916 132,409 14,675 36,832
...with type annotations 50,838 (27.6%) 36,542 4,105 10,191

Functions 2,096,797 1,509,048 169,519 418,230
...with comment 1,129,573 (53.8%) 812,632 91,325 225,616
...with return type annotations 325,532 (15.5%) 234,319 26,104 65,109

Arguments 3,923,667 2,822,699 310,685 790,283
...with comment 220,976 (5.6%) 159,453 16,924 44,599
...with type annotations 480,793 (12.2%) 347,898 37,148 95,747

Types 869,825 347,898 89,334 192,102
...unique 67,060 53,614 13,995 23,572
a Note that there is an intersection among repositories in the three sets as the dataset is split

by files.
b Comments and blank lines are ignored when counting lines of code.

0 20000 40000 60000 80000 100000 120000 140000
Count

str

None

int

bool

Any

Optional[str]

float

List[str]

Dict[str, Any]

dict

Ty
pe

s

Fig. 2. Top 10 most frequent types in the ManyTypes4Py dataset

type inference models. For instance, the name field stores
the name of a class or a function, which is a natural source
of information for predicting types [6]. The ret_exprs
and params_occur fields provide return expression(s) of
a function and usages of functions’ parameter(s) in its body,
respectively. These are considered contextual type hints, i.e.,
the context in which a variable or an argument is used provides
a hint for predicting types [7]. Also, the untyped_seq and
typed_seq fields provide the normalized seq2seq represen-
tation of a Python source code file and the type of identifiers
in the file, respectively. They both can directly be used for
training an ML-based type inference model.

IV. APPLICATIONS

a) ML-based type inference: In this task, ML models
are trained to predict the type of functions’ arguments, return
types, and variables for DPLs (e.g. Python). To do so, the
AST of source code files are analyzed to extract features

that give a hint for predicting types. By processing ASTs,
the ManyTypes4Py dataset provides common features, i.e.,
natural and contextual type hints that can be employed to
create code embeddings and train an ML model. Moreover,
the provided seq2seq representation of source code files gives
the full context around identifiers.

b) Learning-based code completion: In this application,
an ML model is expected to predict part of a word or token
for a function or a variable. For DPLs, code completion is a
challenging task as there is no type information available. To
overcome this, ASTs are statically analyzed while providing
type information [15]. The ManyTypes4Py dataset can be
used as a baseline for training a code completion model as it
provides partial type annotations for functions and variables.
Also, our AST analysis pipeline (LibSA4Py tool) can further
be extended to infer types of nodes and variables for simple
cases.

V. LIMITATIONS

Currently, our static analysis pipeline cannot parse source
code files in Python 2. Therefore, Python2-style type annota-
tions8 cannot be extracted. Due to this limitation, about 1%
of source code files in the dataset cannot be parsed.

VI. RELATED WORK

There are several Python code corpora that can be used for
machine learning-based type inference. Recently, Allamanis
et al. [8] proposed the Typilus model, which is a graph-
based neural model that predicts type annotations for Python.
The Typilus model [8] is accompanied by a dataset that
contains 600 Python projects. Moreover, the source code files
of Typilus’ dataset are converted to graph representations that
are only suitable for training the Typilus model. The Many-
Types4Py dataset provides JSON-formatted analyzed source

8https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-
python-2-7-and-straddling-code

TABLE III
DESCRIPTION OF FIELDS IN THE JSON FILE OF PROJECTS PRODUCED BY THE LIBSA4PY PIPELINE

Field Name in the JSON Description

Project

author/repo The name of a project and its author on the GitHub URL

src_files Contains the path of a project’s source code files

file_path The path of a source code file to differentiate it with other files

Module

untyped_seq The normalized seq2seq representation of an analyzed source code file

typed_seq Contains the type of identifiers in untyped_seq if present. Otherwise 0 is inserted.

imports Contains the name of imports in an analyzed source code file

variables Contains variables’ name and their type defined in a module (i.e. global variables)

classes Contains the JSON object of analyzed classes in a module which is described below

funcs Contains the JSON object of analyzed functions in a module, which are described below

set The set to which a source code file belongs to, i.e., train, valid, test

Class

name The name of an analyzed class in a module

variables Contains class variables’ name and their type if present

funcs Contains the JSON object of analyzed functions in a class, which are described below

Function

name The name of an analyzed function in either a class or a module

params Contains an analyzed function’s parameter names and their type if present

ret_exprs Contains the return expression(s) of an analyzed function

ret_type The return type of an analyzed function if present

variables Contains local variables’ name and their type in an analyzed function

params_occur Contains parameters and their usages in the body of an analyzed function

docstring Contains docsting of an analyzed function if present, which has the below subfields

docstring.func One-line description of an analyzed function if present

docstring.ret Description of what an analyzed function returns if present

docstring.long_descr Long description of an analyzed function if present

code files that contains useful type hints for training various
machine learning models. Raychev et al. [16] published the
Python-150K dataset in 2016, which contains 8,422 Python
projects. Unlike our dataset, the Python-150K dataset [16]
is not collected solely for the ML-based type inference task,
meaning that a large number of projects in the dataset may not
have type annotations at all, especially given the time that the
dataset was created. Allamanis [12] showed that the Python-
150K dataset suffers from code duplication despite the removal
of project forks.

VII. CONCLUSION

In this paper, we present the ManyTypes4Py dataset, a
benchmark Python dataset for ML-based type inference. It
contains 5,382 Python projects from GitHub with more than
869K type annotations. The collected Python projects were de-
duplicated by removing duplicate source code files to ensure
that trained ML models do not have duplication bias. Using the

accompanying LibSA4Py tool, the AST of Python source code
files were analyzed to provide 16 type hints plus a seq2seq
representation for training ML-based type inference models.
For each analyzed project, the result of the AST analysis is
saved in a JSON-formatted file. Although the dataset’s main
application is ML-based type inference, it can be a useful
baseline for learning-based code completion.

In the near future, we will extend our static analysis pipeline
(LibSA4Py tool) to add more type annotations to the dataset
by implementing cheap and simple type inference heuristics.
Also, we will perform data and control flow analysis to create
graph representation of source code files for training graph-
based neural models. To include more projects with type
annotations, we will consider projects that use other type
checkers other than mypy.

ACKNOWLEDGMENT

This research work was funded by H2020 grant 825328
(FASTEN).

REFERENCES

[1] [n. d.], “Ieee spectrum’s the top programming languages 2019,”
https://spectrum.ieee.org/computing/software/the-top-programming-
languages-2019.

[2] G. Van Rossum, J. Lehtosalo, and L. Langa, “Pep 484–type hints,” Index
of Python Enhancement Proposals, 2014.

[3] G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,”
in European Conference on Object-Oriented Programming. Springer,
2014, pp. 257–281.

[4] S. Klingström and P. Olsson, “Type inference in php using deep
learning,” LU-CS-EX, 2020.

[5] J.-P. Ore, S. Elbaum, C. Detweiler, and L. Karkazis, “Assessing the type
annotation burden,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 190–201.

[6] R. S. Malik, J. Patra, and M. Pradel, “Nl2type: inferring javascript
function types from natural language information,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 304–315.

[7] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “Typewriter: Neural
type prediction with search-based validation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 209–
220.

[8] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: neural
type hints,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 91–105.

[9] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 843–852.

[10] M. L. Scott, Programming Language Pragmatics, 4th ed. Morgan
Kaufmann, 2016.

[11] A. M. Mir, E. Latoskinas, S. Proksch, and G. Gousios, “Type4py:
Deep similarity learning-based type inference for python,” arXiv preprint
arXiv:2101.04470.

[12] M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 2019, pp. 143–153.

[13] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, 2018, pp. 152–162.

[14] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: a map of code duplicates on github,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 1–28,
2017.

[15] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia: Ai-
assisted code completion system,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 2727–2735.

[16] V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code with
decision trees,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 731–747,
2016.

