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Introduction: 3D Building Models

Disaster Response Urban Planning

* simulate floods

* map water flows

* predict wind dispersion
* heat patterns

* energy efficient buildings
* shadow estimation
* solar potential

Forensics

* workin tandem with
other elements

* reconstruct crime scenes
and unveil concealed
evidence
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Source: https://forensic-architecture.org/
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Introduction: Point Clouds

Obtained via: b

TR

-\ ;s

* Photogrammetry (Multi-View Stereo algorithm)
* LiDAR

Photogrammetry LiDAR

Source: Carlos Hermandez (2015)



Introduction: MVS

* reconstructs a 3D point cloud representation based on
» set of overlapping images and camera parameters



Bring back the depth!
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Introduction: MVS

* reconstructs a 3D point cloud representation based on
» set of overlapping images and camera parameters

« Pipeline involves
1. Locating matching pixels in overlapping images
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Introduction: MVS

* reconstructs a 3D point cloud representation based on
» set of overlapping images and camera parameters

« Pipeline involves
1. Locating matching pixels in overlapping images
2. Deriving depth from disparities in pixel positions

disparity
Correspondences E Depth Map
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Introduction: MVS

* reconstructs a 3D point cloud representation based on
» set of overlapping images and camera parameters

« Pipeline involves
1. Locating matching pixels in overlapping images
2. Deriving depth from disparities in pixel positions
3. Recovering point cloud (3D)

disparity

Correspondences g Depth Map
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reproject
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Point Cloud
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Introduction: Challenges with Traditional MVS

* Reconstruct Accurate but Incomplete models.

* Rely on photo-consistent metrics (RGB) to locate the matching pixels
* matching impossible in reflective, low-textured regions
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Introduction: Challenges with Traditional MVS

* Reconstruct Accurate but Incomplete models.

* Rely on photo-consistent metrics (RGB) to locate the matching pixels
* matching impossible in reflective, low-textured regions

RGB space

Incomplete Reconstruction

Low-textured

Reflective
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Background: Address limitation

* Traditional MVS with Semantic Priors

1. Semantic priors into Traditional MVS pipelines
= Semantics indicate the weak regions

= Guide class-specific geometric constraints in order to improve depth

RGB image and Semantic Map.

[Stathopoulou et al., 2021]
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Background: Address limitation

e Traditional MVS with Semantic Priors e Learning-based MVS

2. Learning-based MVS systems

= Qutperform traditional MVS in these challenging regions

'— Conv + BN + RelU, Stride = 1
:— C(mv"‘BN"‘RrLU Stnde =2
:— tlcmv stride =

@ (kmcatmancm

\ @ Addition

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Source Images

[mtwl Depth 1\{:11:

2 |
=
ki
=1
Feature Differentiable Cost Volume Depth Map
Extraction Homography Regularization Refinement

Figure: MVSNet. Source: Yao et al. (2018)
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Background: Address limitation

e Traditional MVS with Semantic Priors e Learning-based MVS

2. Learning-based MVS systems
= Qutperform traditional MVS in these challenging regions

! p— Conv+BN+RelU, Stnde=1 |
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Figure: MVSNet. Source: Yao et al. (2018)
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Background: Address limitation

 Traditional MVS with Semantic Priors

2. Learning-based MVS systems

= Qutperform traditional MVS in these challenging regions

{ shared Weights

Figure: MVSNet. Source: Yao et al. (2018)

Source Images

Reference Image

1 Sharcd Weights

Learning-based MVS

'— Conv + BN + RelU, Stride = 1
:— C(mv"‘BN"‘RrLU Stnde =2
:— tlcmv stride =

@ (kmcatmancm

\ @ Addition

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[mtwl Depth 1\{:11:

SN

Feature
Extraction

Differentiable
Homography

Cost Volume
Regularization Refinement

Depth Map



Bridging the Gap
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Bridging the Gap

Semantic
guidance
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Bridging the Gap

Semantic
guidance

Learning-based
MVS
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Research Objective & Questions

Objective:

« Refine the 3D reconstruction of buildings using semantic guidance and deep learning (DL).
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Research Questions & Objective

Main Question:

= To what extent can leveraging semantic priors within learned MVS techniques
enhance the accuracy and completeness of 3D models of buildings?
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Sub-questions:

» How can semantic priors be effectively integrated into a DL framework to facilitate the
semantically-guided regularization of 3D models of buildings?

23



Research Questions & Objective

Objective:
» Refine the 3D reconstruction of buildings using semantic guidance and deep learning (DL).

Main Question:

= To what extent can leveraging semantic priors within learned MVS techniques
enhance the accuracy and completeness of 3D models of buildings?

Sub-questions:

= How can semantic priors be effectively integrated into a DL framework to facilitate the
semantically-guided regularization of 3D models of buildings?

» Whatis a suitable refinement module architecture for depth residual learning that can best
contribute to the improvement of the 3D reconstruction of buildings?

24



Research Questions & Objective

Objective:
» Refine the 3D reconstruction of buildings using semantic guidance and deep learning (DL).

Main Question:

= To what extent can leveraging semantic priors within learned MVS techniques
enhance the accuracy and completeness of 3D models of buildings?

Sub-questions:

= How can semantic priors be effectively integrated into a DL framework to facilitate the
semantically-guided regularization of 3D models of buildings?

= What is a suitable refinement module architecture for depth residual learning that can best

contribute to the improvement of the 3D reconstruction of buildings?
» Which deep learning architecture for semantic segmentation demonstrates superior
performance in detecting facade elements, such as walls, doors, and windows?

25



Related Work:

Convolutional
Neural Networks
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Related Work:

Convolutional
Neural Networks
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Related Work:

Convolutional
Neural Networks

e o

. convolution | pooling | convolution | pooling |fully connected,




Related Work:

Convolutional
Neural Networks

RGB Image Estimation
A O5no
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o =t -
. convolution | pooling | convolution | pooling |fully connected,
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Related Work:

Convolutional
Neural Networks

RGB Image Estimation
A O5no
i .,;_::_:b_:ﬁ —
. convolution | pooling | convolution | pooling |fully connected, - Error
Ground Truth
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Related Work:

Convolutional
Neural Networks

RGB Image

e o

convolution

l

Estimation

pooling | convolution ; pooling | fully connected,

Ground Truth

_ Error
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Related Work:

Convolutional
Neural Networks

RGB Image

e o

convolution

l

Estimation

pooling | convolution ; pooling | fully connected,

Ground Truth

—

Error
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Related Work: Learning-based MVS

« MVS Network
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Figure: MVSNet. Source: Yao et al. (2018)
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Regularization

Depth Map
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Related Work: Learning-based MVS

« MVS Network
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Figure: MVSNet. Source: Yao et al. (2018)



Related Work: Learning-based MVS

« MVS Network
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Related Work: Learning-based MVS

« MVS Network
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Figure: MVSNet. Source: Yao et al. (2018)
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Related Work: Traditional MVS
« Differentiable Homography and the Plane Sweep Algorithm.

" T 1
)'Rl 'Kl_

Hi(d) =K, Ri-(I —

Source: https://towardsdatascience.com/estimating-a-homography-matrix-522c70ec4b2c Source: Deep Learning for Multi-View Stereo via Plane Sweep: A Survey 37



Related Work: Learning-based MVS

MVS Network

Source Images

Reference Image
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Figure: MVSNet. Source: Yao et al. (2018)

Depth Map
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Related Work: Learning-based MVS

« MVS Network
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Related Work: Learning-based MVS

Cascaded MVS Network

na 4
o ! .V L

|

R
Regr¢ssion
s

\]\
<
S\
b
!
;E

=
!
!
[
Regrimon Re

W Differentiable Homography Warping @ Cost Volume Hypothesis Plane Generation

(M) Variance Cost Metric ‘1) Feature Volume —* 3D Convolutions

40



Related Work: Semantic Segmentation
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Related Work: Facade Parsing
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Related Work:
Transformers in Natural Language Processing

Attention Is All You Need

Self-attention mechanism enables to:

* Capture meaning

* Determine position in a sentence Mol oo b Goosle ety Gl Resenely
. . . avaswani@google.com noam@google.com nikip@google.com usz@google.com

* Analyse how each word interacts with other words in long sequences of

Llion Jones™ Aidan N. Gomez* T Lukasz Kaiser”
text Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

“Meaning is a result of relationships between things, and self-attention is Abstract
a gen era/ Way of Iearning rEIationShipS. 7 (Va Swa n i) The dominant sequence transduction models are based on complex recurrent or

convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
I n p ut Se nte n Ce to tra ns I ate: to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after

II po UrEd Water frOm the bo ttle in to the Cup un ti/ it Was fu’l., training for 3.5 days on eight GPUs, a small fraction of the training costs of the

best models from the literature. We show that the Transformer generalizes well to

/I poured Water from the bottle in to the Cup un tl'l it was empty.’ other tasks by applying it successfully to English constituency parsing both with

large and limited training data.
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Related Work:
Semantic Segmentation using Vision Transformers

Over-smoothed

Image Patches Attention Maps

Vision Transformers:
* Transformers adapted for images -n_ﬂ

* self-attention mechanisms .Hﬁ

e Capture long-range dependencies ..i

%%?ﬁ

Tokens
(a) Patch embedding (b) Self-attention

44



Methodology:
Semantic MVS

CasMVSNet
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CasMVSNet
Methodology: 4 N ,-".. L n
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CasMVSNet
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Methodology:
Semantic MVS

3. Loss Function
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Methodology:
Semantic MVS

e Semantic Point Cloud
Reconstruction
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Methodology:
Semantic MVS
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CasMVSNet
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Methodology: Semantic Segmentation

|

segmentation text prompts:
facade, door, window

valid mask

LangSAM model
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Implementation: Depth Datasets

* DTU Dataset
» used for training and evaluation

* only subset pertaining to buildings !
* Small objects (<0.5m) shotin a
laboratory setting

* Facade ETH3D Dataset
* Real-world outdoor data
e used for generalization
* Few meters to hundreds of meters

Source: https://www.eth3d.net/datasets

54


https://www.eth3d.net/datasets
https://roboimagedata.compute.dtu.dk/

Results: Semantic Segmentation

C wall

. window or door

DTU ETH3D
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Results: Semantic Segmentation

C wall

. window or door

DTU ETH3D
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Experiments and Evaluation

Modules
FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms

rgb_FPN_RU-Net rgb FPN RU-Net v

Proposed Model semantic + rgb  FPN RU-Net v
rgb_AFPN_RU-Net rgb Attention-FPN RU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFPN_R2AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v

Baseline Model (CasMVSNet) rgb FPN No No

asMVSNet B ;‘ g
-o-o-0— I T nﬂ
- c1
| 5‘ini'-'f L% ,
| o [

W Homography Warping
M Variance Metric

ﬁ T

LangSAM model

Loss function

L = L1+ Ll+Mfanﬂee| v D;el' + M‘windows, doors @| v:.I‘D'ref

—

smoothness terms

Semantic 3D Reconstruction
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Experiments and Evaluation: Variations

Modules
FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms
rgb_FPN_RU-Net rgb FPN RU-Net v
Proposed Model semantic + rgb | FPN RU-Net v
rgb_AFPN_RU-Net rgb Attention-FPN RU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFPN_R2AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v
FPN No No

Baseline Model {CasMVSNe[ rgb

in the Input

CasMVSNet

FPN
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INPUT

reforence image
H T
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LangSAM model
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Loss function

—

smoothness terms

L = L1+ Ll+Mfanﬂee| v D;el' + M‘windows,doors @| VID!“A

Semantic 3D Reconstruction
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Experiments and Evaluation: Variations in the Feature Extraction

Modules
FPN Loss Function
PEEE— |
Model Name Input Architecture Refinement Smoothness
Block Terms

rgb_FPN_RU-Net rgb FPN RU-Net v
Proposed Model semantic + rgb | FPN RU-Net v
rgb_AFPN_RU-Net rgb Attention-FPN RU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFPN_R2AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v
Baseline Model (CasMVSNet) rgb FPN No No

|

CasMVSNet g h
- ||
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) ol .
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e QES W R i [
z () | M Voo Mt mEE - (mEE
U-Net 1 1|

LangSAM model

Loss function

L = L1+ Ll+Mfanﬂee| v D;el' + M‘windows,doors @| VID!“A

—

smoothness terms

Semantic 3D Reconstruction
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Experiments and Evaluation: Variations in the Refinement Block

Modules
FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms

rgb_FPN_RU-Net rgb FPN RU-Net v

Proposed Model semantic + rgb  FPN RU-Net v
rgb_AFPN_RU-Net rgb Attention-FPN RU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFPN_R2AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v

Baseline Model (CasMVSNet) rgb FPN No No
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Semantic 3D Reconstruction
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Experiments and Evaluation: Smoothness terms

Modules
FPN Loss Function *
Model Name Input Architecture Refinement Smoothness
Block Terms

rgb_FPN_RU-Net rgb FPN RU-Net v

Proposed Model semantic + rgb  FPN RU-Net v
rgb_AFPN_RU-Net rgb Attention-FPN RU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFPN_R2AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v

Baseline Model (CasMVSNet) rgb FPN No No

* Each experiment incorporated the two smoothness loss terms.

CasMVSNet g D
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LangSAM model

Loss function
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smoothness terms

Semantic 3D Reconstruction

61

DEPTH MAP LEVEL

POINT CLOUD LEVEL



Experiments and Evaluation: Model Selection

Modules
FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms

rgh EPN RTINet reh EPN RI L Net V4
Proposed Model semantic + rgb  FPN RU-Net v

rg D_AFPN_KU-Net l‘gb Attention-EPN KU-Net v
srgb_AFPN_RU-Net semantic + rgb Attention-FPN RU-Net v
rgb_AFPN_RAU-Net rgb Attention-FPN RAU-Net v
rgb_AFP}J_RJ_AU-Net rgb Attention-FPN R2AU-Net v
rgb_FPN_CNN rgb FPN CNN v
srgb_FPN_CNN semantic + rgb FPN CNN v

Baseline Model (CasMV5SNet) rgb FPN No No

Model selection criteria:

* runtime efficiency

» complexity considerations
» performance at the depth map level (% of pixels with a depth error less than 4mm)
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Experiments and Evaluation: Model Selection

Modules
FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms
rgb_FPN_RU-Net rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v

Baseline_Nindel (CasMVSNet) rgb FPN No No

Proposed Model @ rgb_FPN_RU-Net

63



Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Point Clouds (testing)

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb ~ FPN RU-Net v
Moderz2 aia) ARt PN RU-Net v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Depth Maps (testing)

Model Name Acc. Comp. Owverall

(mm)}  (mm)]  (mm)]

% pixels with err <4mm 1

| 78.97

79.69

Baseline Model (CasMVSNet) (.398 0.325 0.361
Proposed Model 0.357 0.316 0.336

* The proposed model showed a 1% increase in accuracy at the depth map level.

64



Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Moderz2 aia) ARt PN RU-Net v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing)

Depth Maps (testing)

Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)}  (mm)l  (mm)]
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Significant improvements in accuracy at the point cloud level
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Moderz2 Tob Atention-FPN™RU=NEt v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing) Depth Maps (testing)
Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)}  (mm)]  (mm)|
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Significant improvements in accuracy at the point cloud level

indicating a more precise reconstruction of the point cloud.
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms
Meodel.l rgb LD Rl=Net va
Proposed Model semantic + rgb ~ FPN RU-Net v
Moderz2 aia) ARt PN RU-Net v
Model 3 semantic + rgb  Attention-FPN RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN  R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing) Depth Maps (testing)
Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)|  (mm))  (mm)]
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Significant improvements in accuracy at the point cloud level

indicating a more precise reconstruction of the point cloud.

* Improvement attributed to the depth fusion algorithm:
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Moderz2 Tob Atention-FPN™RU=NEt v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing)

Depth Maps (testing)

Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)|  (mm))  (mm)|
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Improvement attributed to the depth fusion algorithm:
« geometric + confidence tests
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Moderz2 Tob AteRtion-FPN™RU=NEt v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing) Depth Maps (testing)
Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)}  (mm)]  (mm)|
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Improvement attributed to the depth fusion algorithm:
« geometric + confidence tests

= reconstruction based on multi-view consistent and confident predictions

69



Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms
Meodel.l rgb LD Rl=Net va
Proposed Model semantic + rgb ~ FPN RU-Net v
Moderz2 aia) ARt PN RU-Net v
Model 3 semantic + rgb  Attention-FPN RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN  R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing) Depth Maps (testing)
Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)|  (mm))  (mm)]
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

* Significant improvements in accuracy at the point cloud level

indicating a more precise reconstruction of the point cloud.

« Improvement attributed to the depth fusion algorithm:
« geometric + confidence tests

» Therefore, the higher accuracy suggests that the Proposed Model predicts depth values that:
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Mode12 eb AtERtion-FPR™ RO-NEt v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing)

Depth Maps (testing)

Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)|  (mm))  (mm)|
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

» Therefore, the higher accuracy suggests that the Proposed Model predicts depth values that:
« are more consistent across multiple views
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement ~ Smoothness
Block Terms
Model 1 rgb FPN RU-Net v
Proposed Model semantic + rgb  FPN RU-Net v
Moderz2 Tob AteRtion-FPN™RU=NEt v
Model 3 semantic + rgb  Attention-FPN  RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN ~ R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing) Depth Maps (testing)
Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm)}  (mm)]  (mm)|
Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
I Proposed Model 0.357 0.316 0.336 79.69

» Therefore, the higher accuracy suggests that the Proposed Model predicts depth values that:

« are more consistent across multiple views
* more confidently
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

Modules

FPN Loss Function
Model Name Input Architecture Refinement Smoothness
Block Terms
Meodel.l rgb LD Rl=Net v
Proposed Model semantic + rgb ~ FPN RU-Net v
Moderz2 Tgb Atention-FPN™RU=NEt v
Model 3 semantic + rgb  Attention-FPN RU-Net v
Model 4 rgb Attention-FPN ~ RAU-Net v
Model 5 rgb Attention-FPN R2AU-Net v
Model 6 rgb FPN CNN v
Model 7 semantic + rgb  FPN CNN v

Point Clouds (testing)

Depth Maps (testing)

Model Name Acc. Comp. Overall % pixels with err <4mm 1
(mm) | (mm)|  (mm)]|

Baseline Model (CasMVSNet) | 0.398 0.325 0.361 78.97
0.357 0.316 0.336 79.69

| Proposed Model

* Significant improvements in accuracy at the point cloud level
indicating a more precise reconstruction of the point cloud.

« Improvement attributed to the depth fusion algorithm:
« geometric + confidence tests

» Therefore, the higher accuracy suggests that the Proposed Model predicts depth values that:
« are more consistent across multiple views
» more confidently (20.000 pixels more with a threshold of 0.999)
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Experiments and Evaluation: Accuracy

* points color-coded based on their proximity to ground truth
» bottom row of windows in the Proposed Model are closer to the ground truth

low acc mm

high acc I

Proposed Baseline
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Experiments and Evaluation: Completeness

Proposed
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Experiments and Evaluation: Completeness

Proposed

Baseline
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Experiments and Evaluation: Completeness

Proposed
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Ablation study

An ablation study isolates components of the approach and assesses their individual contribution to

the overall performance.

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
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Ablation study 1

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Ablation 1:

network trained with the semantics as input to the FPN module

CasMVSNet

W: Homography Warping
M: Variance Metric
R: Regression
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Semantic 3D Reconstruction

79

DEPTH MAP LEVEL

POINT CLOUD LEVEL



Ablation study 1

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Ablation 1:

network trained with the semantics as input to the FPN module

CasMVSNet

= M
W= — o

(INPUT

W: Homography Warping
M: Variance Metric
R: Regression

Loss function

L = L1+ L2+ Mfacade | VID'ref |+ Mwindows,doors © | V2 D'refl

—

———

smoothness terms

Semantic 3D Reconstruction
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Ablation study 1

CasMVSNet

Point Cloud (testing)

R: Regression

W: Homography Warping
M: Variance Metric

Model Name Acc. Comp. Overall

(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
Ablation 1:

network trained with the semantics as input to the FPN module

Semantic 3D Reconstruction
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Ablation study 2

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

CasMVSNet

FPN

INPUT

NN L Ry
_’6_‘,’./‘_’@5“’ R/— “ —k
-
B, ,

W: Homography Warping
M: Variance Metric
R: Regression

Ablation 2:

network trained solely with the refinement block

Loss function

L = L1+ L2+ Mfacade | VID'ref |+ Mwindows,doors © | V2 D'ref!
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smoothness terms

Semantic 3D Reconstruction

82

DEPTH MAP LEVEL

POINT CLOUD LEVEL



Ablation study 2

CasMVSNet

Point Cloud (testing)

~W-m-®

L1

W: Homography Warping
M: Variance Metric
R: Regression

Model Name Acc. Comp. Overall

(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
Ablation 2:

network trained solely with the refinement block

L=Li+L2

Semantic 3D Reconstruction
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Ablation study 3

CasMVSNet

Point Cloud (testing)

Model Name Acc. Comp. Overall

(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
Ablation 3:

network trained separately with only the smoothness terms

Loss function

L = L1+ L2+ Mfacade | VID'ref |+ Mwindows,doors © | V2 D'refl

—

———

smoothness terms

Semantic 3D Reconstruction
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Semantics as Input to FPN (Ablation 1)
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
[ Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Semantics as Input to FPN (Ablation 1)
Refinement Block (Ablation 2)
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Proved effective:

Semantics as Input to FPN (Ablation 1)
Refinement Block (Ablation 2)
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
| Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

* Smoothness Terms (Ablation 3)
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
| Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Negative impact:

Smoothness Terms (Ablation 3)
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Ablation study

Interestingly,

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
| Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Interestingly,

solely the use of the Semantics as Input to FPN
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
| Ablation 1 (Semantics as Input to FPN)  0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Interestingly,
* solely the use of the Semantics as Input to FPN

PROVED SUFFICIENT to elevate the model's performance ...
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Ablation study

Point Cloud (testing)

Model Name Acc. Comp. Overall
(mm) | (mm) | (mm) |
Baseline Model (CasMVSNet) 0.398 0.325 0.361
Ablation 1 (Semantics as Input to FPN) 0.355 0.316 0.335
Ablation 2 (Refinement Block) 0.364 0.321 0.343
Ablation 3 (Smoothness Terms) 0.525 0.592 0.558
Proposed Model 0.357 0.316 0.336

Interestingly,
* solely the use of the Semantics as Input to FPN

PROVED SUFFICIENT to elevate the model's performance ...

beyond the Baseline results.
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Ablation 1: Semantics as Input to FPN

Ablation 1

Ablation 1

Proposed
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Ablation 1: Semantics as Input to FPN

Ablation 1
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Ablation 3: Smoothness Terms

Observation:
planar windows and smoother facades, at the cost of detailed reconstruction.

Ablation 3 97



Ablation 3: Smoothness Terms

Ablation 3

Ground Truth
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Generalization to the ETH3D Dataset

Model Name Completeness (%) Accuracy (%) T F-Score 1
T

Baseline Model (CasMVSNet) 38.40 88.38 53.54

Proposed Model 39.00 89.85 54.39

Baseline

Proposed
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More Semantic Segmentation Results
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More Semantic Segmentation Results
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Conclusions

* Vision Transformer models are powerful for semantic segmentation.
e LangSAM, SegFormer (Fine-tuned) performed better on the real-world outdoor dataset

* 3D reconstruction benefited from semantic information:
e semantics as input improved the reconstruction for both the DTU and ETH3D dataset

* 3D reconstruction did not benefit from semantic guidance under the current assumptions
* Up to the user to prioritize whether the model should conform to the assumption made during its
development or to the ground data and vice versa.




Thank you for your attention!
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Discussion
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