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Introduction: 3D Building Models 

Disaster Response

• simulate floods
• map water flows
• predict wind dispersion
• heat patterns

Urban Planning

• energy efficient buildings
• shadow estimation
• solar potential

Forensics
• work in tandem with 

other elements
• reconstruct crime scenes 

and unveil concealed 
evidence 
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Source: https://forensic-architecture.org/

https://forensic-architecture.org/


Introduction: Point Clouds

Obtained via:

• Photogrammetry (Multi-View Stereo algorithm)
• LiDAR 

Source: Carlos Hermandez (2015)
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LiDARPhotogrammetry



Introduction: MVS

• reconstructs a 3D point cloud representation based on
• set of overlapping images and camera parameters
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Bring back the depth!
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Introduction: MVS
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disparity
Depth Map



Introduction: MVS

• reconstructs a 3D point cloud representation based on
• set of overlapping images and camera parameters

• Pipeline involves
1. Locating matching pixels in overlapping images
2. Deriving depth from disparities in pixel positions
3. Recovering point cloud (3D)

Correspondences Depth Map Point Cloud

reproject
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disparity



Introduction: Challenges with Traditional MVS 

• Reconstruct Accurate but Incomplete models.

• Rely on photo-consistent metrics (RGB) to locate the matching pixels

• matching impossible in reflective, low-textured regions
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Introduction: Challenges with Traditional MVS 

• Reconstruct Accurate but Incomplete models.

• Rely on photo-consistent metrics (RGB) to locate the matching pixels

• matching impossible in reflective, low-textured regions

Reflective

RGB space

Incomplete Reconstruction
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Low-textured



1. Semantic priors into Traditional MVS pipelines

▪ Semantics indicate the weak regions 

▪ Guide class-specific geometric constraints in order to improve depth

RGB image and Semantic Map. 

Background: Address limitation

• Traditional MVS with Semantic Priors • Learning-based MVS

[Stathopoulou et al., 2021] 14



2. Learning-based MVS systems

▪ Outperform traditional MVS in these challenging regions

Figure: MVSNet. Source: Yao et al. (2018)

Background: Address limitation 

• Traditional MVS with Semantic Priors • Learning-based MVS
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Bridging the Gap
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Bridging the Gap

Semantic
guidance
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Bridging the Gap

Semantic
guidance

Learning-based
MVS



Research Objective & Questions

Objective:

• Refine the 3D reconstruction of buildings using semantic guidance and deep learning (DL).
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Research Questions & Objective

Objective:

• Refine the 3D reconstruction of buildings using semantic guidance and deep learning (DL).

Sub-questions:

▪ How can semantic priors be effectively integrated into a DL framework to facilitate the 
semantically-guided regularization of 3D models of buildings?

▪ What is a suitable refinement module architecture for depth residual learning that can best 
contribute to the improvement of the 3D reconstruction of buildings?

▪ Which deep learning architecture for semantic segmentation demonstrates superior 
performance in detecting facade elements, such as walls, doors, and windows?

Main Question: 

▪ To what extent can leveraging semantic priors within learned MVS techniques
enhance the accuracy and completeness of 3D models of buildings?
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Related Work: 

Convolutional 
Neural Networks
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Related Work: 

Convolutional 
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RGB Image
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RGB Image
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RGB Image Estimation
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RGB Image

Error

Estimation

Ground Truth
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Related Work: 

Convolutional 
Neural Networks
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RGB Image

Error

Estimation

Ground Truth



Related Work: Learning-based MVS
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Figure: MVSNet. Source: Yao et al. (2018)

• MVS Network
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Figure: MVSNet. Source: Yao et al. (2018)
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Figure: MVSNet. Source: Yao et al. (2018)

• MVS Network



Related Work: Learning-based MVS
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Figure: MVSNet. Source: Yao et al. (2018)

• MVS Network
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Related Work: Traditional MVS
• Differentiable Homography and the Plane Sweep Algorithm. 

Source: Deep Learning for Multi-View Stereo via Plane Sweep: A SurveySource: https://towardsdatascience.com/estimating-a-homography-matrix-522c70ec4b2c

?

d1
d2
d3



Related Work: Learning-based MVS
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Figure: MVSNet. Source: Yao et al. (2018)

• MVS Network



Related Work: Learning-based MVS

39

Figure: MVSNet. Source: Yao et al. (2018)

• MVS Network

Error



Related Work: Learning-based MVS
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• Cascaded MVS Network
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Related Work: Semantic Segmentation



Related Work: Facade Parsing
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Related Work: 
Transformers in Natural Language Processing
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Self-attention mechanism enables to:
• Capture meaning 
• Determine position in a sentence
• Analyse how each word interacts with other words in long sequences of 

text

“Meaning is a result of relationships between things, and self-attention is 
a general way of learning relationships.” (Vaswani)

Input sentence to translate:
‘I poured water from the bottle into the cup until it was full.’ 
‘I poured water from the bottle into the cup until it was empty.’ 



Related Work: 
Semantic Segmentation using Vision Transformers
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Vision Transformers:
• Transformers  adapted for images
• self-attention mechanisms

• Capture long-range dependencies



Methodology: 

Semantic MVS
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Methodology: Semantic Segmentation
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Implementation: Depth Datasets

• DTU Dataset
• used for training and evaluation 
• only subset pertaining to buildings !
• Small objects (<0.5m) shot in a 

laboratory setting

• Facade ETH3D Dataset
• Real-world outdoor data
• used for generalization
• Few meters to hundreds of meters

Source: https://www.eth3d.net/datasets

Source: https://roboimagedata.compute.dtu.dk/
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https://www.eth3d.net/datasets
https://roboimagedata.compute.dtu.dk/
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Results: Semantic Segmentation

DTU ETH3D

wall

window or door
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Results: Semantic Segmentation

DTU ETH3D

wall

window or door



Experiments and Evaluation
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Experiments and Evaluation: Variations in the Input
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Experiments and Evaluation: Variations in the Feature Extraction
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Experiments and Evaluation: Variations in the Refinement Block
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Experiments and Evaluation: Smoothness terms

* Each experiment incorporated the two smoothness loss terms.

*
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Experiments and Evaluation: Model Selection

Model selection criteria:
• runtime efficiency

• complexity considerations

• performance at the depth map level (% of pixels with a depth error less than 4mm)
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Experiments and Evaluation: Model Selection

Proposed Model ⊃ rgb_FPN_RU-Net



Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

• The proposed model showed a 1% increase in accuracy at the depth map level. 
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels
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• Improvement attributed to the depth fusion algorithm:
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→ reconstruction based on multi-view consistent and confident predictions
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Experiments and Evaluation: Proposed Model

Evaluation on Point Cloud and Depth Map levels

• Significant improvements in accuracy at the point cloud level 

indicating a more precise reconstruction of the point cloud.

• Improvement attributed to the depth fusion algorithm:

• geometric + confidence tests 

• Therefore, the higher accuracy suggests that the Proposed Model predicts depth values that:

• are more consistent across multiple views

• more confidently (20.000 pixels more with a threshold of 0.999) 
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Experiments and Evaluation: Accuracy

Proposed Baseline

• points color-coded based on their proximity to ground truth

• bottom row of windows in the Proposed Model are closer to the ground truth

low acc

high acc
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Experiments and Evaluation: Completeness

Proposed Baseline 75



Experiments and Evaluation: Completeness

Proposed

Baseline
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Experiments and Evaluation: Completeness

Proposed Baseline
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Ablation study

An ablation study isolates components of the approach and assesses their individual contribution to 

the overall performance.

78



Ablation study 1

Ablation 1: 
network trained with the semantics as input to the FPN module
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Ablation study 1
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Ablation study 1
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Ablation 1: 
network trained with the semantics as input to the FPN module



Ablation study 2

Ablation 2: 
network trained solely with the refinement block

82



Ablation study 2
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Ablation 2: 
network trained solely with the refinement block



Ablation study 3

Ablation 3: 
network trained separately with only the smoothness terms
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Ablation study
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Ablation study
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Ablation study
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Proved effective:
• Semantics as Input to FPN (Ablation 1)
• Refinement Block (Ablation 2)

Negative impact:
• Smoothness Terms (Ablation 3)

Interestingly, 
• solely the use of the Semantics as Input to FPN 

PROVED SUFFICIENT to elevate the model's performance …
beyond the Baseline results. 



Ablation 1: Semantics as Input to FPN 

Proposed

Baseline

Ablation 1

Ablation 1
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Ablation 1: Semantics as Input to FPN 

Ablation 1 Baseline
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Ablation 3: Smoothness Terms 

Ablation 3 Baseline

Observation: 
planar windows and smoother facades, at the cost of detailed reconstruction. 
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Ablation 3: Smoothness Terms 

Ablation 3 Baseline Ground Truth 98



Generalization to the ETH3D Dataset
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Proposed

Baseline



More Semantic Segmentation Results
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building

Pre-trained SegFormer

building

Fine-tuned SegFormer

window

other

More Semantic Segmentation Results
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building

Fine-tuned SegFormer

window

other

More Semantic Segmentation Results



Conclusions
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• Vision Transformer models are powerful for semantic segmentation. 
• LangSAM, SegFormer (Fine-tuned) performed better on the real-world outdoor dataset

• 3D reconstruction benefited from semantic information: 
• semantics as input improved the reconstruction for both the DTU and ETH3D dataset

• 3D reconstruction did not benefit from semantic guidance under the current assumptions
• Up to the user to prioritize whether the model should conform to the assumption made during its 

development or to the ground data and vice versa. 



Thank you for your attention!
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Discussion
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