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Preface  

With great pleasure, we welcome you to ISMIR 2019, the 20th International Society for 
Music Information Retrieval Conference. ISMIR is the world’s leading research forum on 
processing, searching, organizing and accessing music-related data.  For the 20th anniversary 
of the conference, we are honored to welcome you to the beautiful city of Delft, The 
Netherlands, where the conference will take place from November 4-8, 2019. 
The tagline for this year's conference is ‘Across the Bridge’. Our community reflects a 
diversity of scientific disciplines, seniority levels, professional affiliations, and cultural 
backgrounds. It always has been explicitly interested in fostering and stimulating this 
diversity, leading to better science and better music services. For this anniversary edition of 
ISMIR, through various actions and program elements, we have tried to explicitly encourage 
the community to take this a step further, and actively connect across the bridges between our 
backgrounds. 

Scientific program 
We are excited to present this year’s program. A total of 308 abstracts were registered, of 
which 246 finally turned into complete and well-formatted papers to enter the review process. 
The PC insisted on a strict adherence to ISMIR’s submission policy, e.g. not accepting any 
paper simultaneously under review at another venue. Special care was taken to assemble an 
experienced and interdisciplinary review panel reflecting our community’s diversity of 
scientific disciplines and cultural backgrounds in line with this year’s conference tagline 
‘Across the Bridge’. As in previous years, reviews were double-blind (i.e., both the authors 
and the reviewers were anonymous) with a two-tier review model involving a pool of 212 
reviewers, plus 66 meta-reviewers. Each paper was assigned to 1 meta-reviewer and 3 
reviewers. The meta-reviewers’ assignments were based on topic preferences and bids on 
papers. The reviewers’ assignments were based on these criteria and meta-reviewer 
suggestions. Handling at most 4 submissions, each meta-reviewer was asked to provide a full 
review themselves and to adopt an active role in the discussion phase with the other 
reviewers, ultimately providing a final summarizing meta-review. Of the 246 reviewed 
papers, 110 were accepted, resulting in an acceptance rate of 44.7%. Among these 110 
papers, 66 have a student as the first author. 
Authors could assign one or more subject areas to their paper. The following table indicates 
the distribution (in percent of the total number of papers) of subject areas. We indicate this 
distribution over the submitted (246) and the accepted works (110). 

Subject Area % of accepted % of submitted 

Domain knowledge: machine learning/artificial intelligence for music 40.0 38.6 

MIR data and fundamentals: symbolic music processing 23.6 15.9 

Domain knowledge: representations of music 20.9 16.3 

MIR data and fundamentals: music signal processing 19.1 16.7 

Applications: music retrieval systems 18.2 16.3 

Music processing: pattern matching and detection 16.4 13.0 

Music processing: automatic classification 16.4 18.3 

Music processing: similarity metrics 16.4 13.8 

Domain knowledge: computational music theory and musicology 16.4 12.6 
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Music processing: music transcription and annotation 13.6 12.2 

Applications: music composition, performance and production 13.6 12.6 

Evaluation and Methodology: MIR tasks, datasets and annotation protocols 13.6 11.4 

Musical features and properties: harmony, chords and tonality 13.6 10.6 

Musical features and properties: rhythm, beat, tempo 11.8 8.9 

Musical features and properties: expression and performative aspects of music 10.9 8.5 

Musical features and properties: melody and motives 10.0 8.9 

Musical features and properties: structure, segmentation and form 10.0 9.8 

User-centered MIR: human-computer interaction and interfaces 10.0 8.5 

Applications: digital libraries and archives 9.1 5.3 

To commemorate the 20 year anniversary of the ISMIR conference, authors were also invited 
to submit a contribution to a “20th anniversary papers” track. Four papers (one of these 
having seven undergraduate student joint first authors) were chosen from 12 submissions. 
This took place in a separate process involving only meta-reviewers. Every anniversary paper 
was reviewed and discussed by 4 meta-reviewers and 1 senior meta-reviewer. 
This year we introduced several changes to the submission and review processes, such as: 1) 
the use of Microsoft CMT as submission system, which offers more flexibility, more 
features, and can be used without cost; 2) the submission form was re-designed to let authors 
upload supplementary material (e.g., code, audio samples) and provide the takeaway message 
from their contribution; 3) the review form was also re-designed to reduce problematic 
borderline decisions and focus on the re-usable insights of the papers; 4) the review process 
was 100% anonymous, that is, no author, reviewer or meta-reviewer knew the identity of 
other author, reviewer or meta-reviewer; and 5) the attribution of best-paper awards, moving 
from the choice of a single best contribution to a set of best contributions. 
Based on meta-reviewers’ recommendations for best paper awards, a panel of 7 experts 
reread all 8 recommended papers and delivered a ranking of the papers plus verbatim 
explanations of their reasoning. With this information at hand, the Scientific Program Chairs 
made the final choice to award 4 best papers. Next to this, based on rating feedback given by 
meta-reviewers, the choice was made to award 4 best reviewers. 
The table shown below summarizes the ISMIR publication statistics over the history of the 
conference. A very special thanks goes to our Scientific Program Chairs for their extensive 
efforts to ensure a fair and efficient paper selection. 
Following the successful presentation format that was first piloted at ISMIR 2018 in Paris, all 
regular papers both have been assigned a short plenary oral presentation, as well as a poster 
presentation. With anniversary papers being more focused on community reflection, these 
papers are presented in longer oral slots, with plenary Q&A. 
To further emphasize equality of all regular papers—regardless of their subject area—the 
presentation order of papers has been randomized. In doing this, authors of thematically 
related work also have lower odds of having to present their posters in parallel. 
To allow for longer exchanges about the scientific work presented at ISMIR, and more public 
exposure of ISMIR’s output (given various public outreach efforts, as mentioned below), the 
choice also was made to have all posters exhibited during the full conference. 
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Year Location Oral Poster Total 
Papers 

Total 
Pages 

Total 
Authors 

Unique 
Authors 

Pages/ 
Paper 

Authors/ 
Paper 

Unique 
Authors/ 

Paper 
2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 
2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 
2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2 
2005 London 57 57 114 697 316 233 6.1 2.8 2 
2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 
2008 Philadelphia 24 105 105 630 296 253 6 2.8 2.4 
2009 Kobe 38 85 123 729 375 292 5.9 3 2.4 
2010 Utrecht 24 86 110 656 314 263 6 2 2.4 
2011 Miami 36 97 133 792 395 322 6 3 2.4 
2012 Porto 36 65 101 606 324 264 6 3.2 2.6 
2013 Curitiba 31 67 98 587 395 236 5.9 3 2.4 
2014 Taipei 33 73 106 635 343 271 6 3.2 2.6 
2015 Málaga 24 90 114 792 370 296 7 3.2 2.6 
2016 New York 25 88 113 781 341 270 6.9 3.0 2.4 
2017 Suzhou 24 73 97 716 324 248 7.4 3.3 2.6 
2018 Paris 104 104 786 337 265 7.5 3.2 2.5 
2019 Delft 114 114 889 390 315 7.8 3.4 2.8 

WiMIR 
Women in MIR (WiMIR) is a group of people in the MIR community dedicated to promoting 
the role of, and increasing opportunities for, women in the field. We meet to network, share 
information, and discuss in an informal setting the goal of building a community that 
supports women—and more broadly, diversity—in the field of MIR. WiMIR has held annual 
meetings at the ISMIR conference since 2012, garnering a high turnout of both female and 
male attendees. Since 2016, WiMIR has also organized a mentoring program connecting 
female students, postdocs, and early-stage researchers to more senior females and male allies 
in the field. 
In contrast to past ISMIRs, for ISMIR 2019, the choice was made to not designate dedicated 
WiMIR chairs to the conference, and to explictly not restrict topics of interest to WiMIR to a 
WiMIR reception and session only. Instead, efforts were taken to make WiMIR’s themes of 
interest naturally integrated, central themes to the conference, as part of the tasks of the 
General Chairs. 
This year, the WiMIR workshop, that offers an accessible entry and networking opportunity 
to people interested in ISMIR themes, was scheduled before the ISMIR main conference. 
This was done to encourage for newly made connections at this workshop to further be 
extended throughout the main conference. 
The WiMIR bingo, that normally would be held at a dedicated WiMIR reception or cocktail, 
has this year been included as an element in the official Welcome Reception of the 
conference, still bearing the WiMIR brand. Again, this has been done to emphasize that 
networking and inclusion are important to ISMIR as a whole. 
Finally, the scope of the WiMIR grants was broadened and formulated more inclusively. For 
the first time, the WiMIR grant management was also taken up by a male ally. 
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Diversity & Inclusion 
Diversity and inclusion are key themes to ISMIR 2019. Beyond thematic/disciplinary 
diversity (reflected in the scientific program) and gender diversity (reflected through WiMIR 
actions), we have actively tried to also stimulate other forms of diversity, and explicitly strive 
for inclusion. 
With regard to other forms of diversity: as for diversity regarding types of positions and 
affiliations, through our Meetup with Industry, we have offered an explicit platform to our 
industry partners to present their recent work to the local community, beyond traditional 
conference presentation forms. 
As for diversity regarding seniority levels, this year’s ISMIR also has strived to actively 
include and encourage newcomers, and to make ISMIR accessible for the young generation, 
as well as those who may not have natural support and opportunity to afford attendance of 
ISMIR. 
To this end, dedicated newcomer inclusion and accessibility strategies were followed. 
Through multiple student author grants, also partially supported by the ISMIR board, student 
authors got financial support to be able to join the conference. 
Besides this grant, partially out of the anniversary donation of the ISMIR board to the ISMIR 
2019 organizers, a new type of grant was established for ISMIR 2019: the Community Grant. 
This grant was meant to support several individuals who would like to attend ISMIR, but 
who are not in the capacity to actively participate as contributors to the conference yet (or 
anymore). Existing ISMIR members were encouraged to suggest and champion Community 
Grant applicants. Thanks to this grant, we both have managed getting several past ISMIR 
members to re-engage with the community, but also have supported multiple young people, 
e.g. from different disciplines, and from labs that do not have strong MIR presence or 
priorities at this moment, to join our community. 
Also in terms of registration pricing, priority was given to make rates as accessible as 
possible to students. Following all these actions, we indeed have seen a substantial share of 
participants to ISMIR 2019 being newcomers to the conference (as much as 40% of 
registered full conference participants). To explicitly include these newcomers in the 
community, a dedicated Newcomer Chair focuses throughout the conference on making our 
newest community members indeed feel welcomed. 

Sustainability 
When collecting community input for ISMIR 2019, one request coming up was finding ways 
to reduce the ecological footprint of ISMIR. To this end, this year, proceedings are only 
distributed in digital form, and not on USB drives. We further chose not to produce a formal 
hardcopy program booklet, but instead offer hardcopies of paper listings on demand only, 
while including hyperlinks to papers and supplementary material in the digital file bearing 
these listings. To further increase the attractiveness of a digital program, and make it more 
interactive, we have chosen to make use of Introwise, a digital event platform and networking 
tool, suggested to us by ISMIR community member Anna Aljanaki. We are curious to see in 
the conference whether this will indeed allow for a conference experience that is at least as 
good as former conference experiences have been. 
In terms of digital sustainability, we further have worked hard to comply to the ISMIR 
society standards on digital archivability, now also including the LBD submissions as non-
proceedings, yet ISMIR-archived contributions.  
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Public visibility 
ISMIR 2019 takes place at a location that does not have a large, long-time established MIR 
lab; at the same time, Delft does have an engaged community of students and citizens 
interested in learning about recent scientific and technological advances in the field. Taking 
advantage of the Aula Conference Centre having sufficient physical capacity, while the town 
of Delft is relatively small, we have actively invested in furthering ISMIR’s open culture, by 
sharing as much of ISMIR as possible with the public. 
Therefore, ISMIR’s evening keynotes, the Youth Music Challenge, as well as the Meetup 
with Industry have been made free-of-charge ISMIR elements, explicitly accessible to the 
general public. 

Keynote speakers 
For ISMIR 2019, we are very honored to host four esteemed keynote speakers: 

• Henkjan Honing, Professor in Music Cognition, Faculty of Humanities and the 
Faculty of Science University of Amsterdam: “What makes us musical animals”. 
Henkjan has been a major role model in performing interdisciplinary scientific 
research on music, and disseminating science to the general public. We are looking 
forward to an inspiring talk on musicality: a topic not central to the MIR field, but 
personally recognizable for many of us. 

• Georgina Born, Professor of Music and Anthropology, Professorial Fellow, Mansfield 
College, University of Oxford: “MIR redux: Knowledge and real-world challenges, 
and new interdisciplinary futures”. Linking to our ‘Across the Bridge’ tagline, we are 
grateful to have Georgina shedding light on our field, from disciplinary viewpoints 
that we would not naturally encounter at ISMIR at large. 

• Jeremy Pickens, Principal Data Scientist, OpenText: “Music as Investigation”. 
Jeremy was an active member of our community in the early years of ISMIR; while 
he now formally works in other domains, he has kept on following what happened in 
ISMIR, and we are delighted to have him back at this anniversary edition. 

• Henriette Cramer, Principal Research Scientist & PM, Spotify: “Music and 
algorithmic responsibilities in practice”. Henriette is the expert on fair and responsible 
recommendation in music. With this being a topic that has rapidly emerged as a 
critical focus point for ISMIR, we look very much forward to learning from her. 

 
Three of the keynotes (Henkjan Honing, Georgina Born, Jeremy Pickens) have been 
scheduled in early evening slots, such that a broader audience can be reached. The fourth 
keynote (Henriette Cramer) is scheduled as part of the WiMIR session, to emphasize the 
relation between the keynote’s theme and key interests of WiMIR. 

Tutorials 
Our tutorial chairs have selected six tutorials, based on relevance (i.e. being of interest to the 
whole community or only a segment thereof); suitability to generally knowledgeable students 
in MIR rather than specialists; quality; comprehensiveness / coverage; originality of topics 
with respect to previous ISMIR tutorials; novelty of authors with respect to previous ISMIR 
tutorials; expertise of authors; foster complementarity of tutorials; and foster open source and 
free software tools/data and reproducible research. 
This has led to three tutorials in the morning, and three tutorials in the afternoon of Monday, 
November 4: 
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Morning 
• [T1] Fundamentals of Music Processing: An Introduction using Python and Jupyter 

Notebooks by Meinard Müller and Frank Zalkow; 
• [T2] Generating Music with GANs: An Overview and Case Studies by Hao-Wen 

Dong and Yi-Hsuan; 
• [T3] Audiovisual Music Processing by Zhiyao Duan, Slim Essid, Bochen Li and 

Sanjeel Parekh. 
Afternoon 

• [T4] Computational Modeling of Musical Expression: Perspectives, Datasets, 
Analysis and Generation by Carlos Cancino-Chaćon, Katerina Kosta and Maarten 
Grachten; 

• [T5] Waveform-based music processing with deep learning by Sander Dieleman, 
Jordi Pons and Jongpil Lee; 

• [T6] Fairness, Accountability and Transparency in Music Information Research 
(FAT-MIR) by Emilia Gómez, Andre Holzapfel, Marius Miron and Bob L. Sturm. 

Unconference 
As in previous years, there will be an Unconference session during ISMIR 2019. This session 
will offer a platform to discuss MIR-related topics as proposed by the participants in a 
bottom-up fashion. With plenty of meeting rooms and a central hall, the conference venue 
provides an excellent infrastructure for the Unconference. We will start Friday 8th of 
November, 15:30 with a short plenary meeting in the Frans van Hasseltzaal, in which we will 
establish the topics. In principle, any topic that generates sufficient interest among the 
participants will be facilitated, limited by the amount of groups and time-slots available. To 
speed-up the topic selection process, the Introwise tool will be used to prepare topics and do 
the voting. 

Late Breaking/Demo Session 
The Late Breaking/Demo (LBD) Session features prototype systems, initial concepts, and 
early results which have not yet fully matured, but are of interest to the Music-IR community. 
Following the convention of past years, a light review was performed on submissions by our 
LBD chairs, and a maximum of 50 submissions has been admitted for presentation at the 
conference. 
To further emphasize that LBD contributions are not part of the proceedings of ISMIR, but 
rather should be seen as non-refereed works, a new paper template has been used that makes 
this status more explicit. To allow for those in need of visas to apply in time, LBD acceptance 
was performed in two stages, with the first stage explicitly allowing for feasible timelines 
towards visa applications. 

Youth Music Challenge 
Many people, regardless of their backgrounds or interests, love music and consume it daily. 
These days, this consumption will mostly be focused on digital music, which users discover 
and access through online services. As such, many people in the world implicitly engage with 
MIR technology, and our research field has considerable potential for public outreach. As 
discussed during the WiMIR session of ISMIR 2018, this could be an opportunity to try 
engaging a more diverse young audience for STE(A)M topics. 
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On the occasion of ISMIR 2019, we have partnered with Roem, a Delft-based Campaign 
Agency for the Greater Good, to organize a Youth Music Challenge. In the months between 
ISMIR 2018 and ISMIR 2019, we visited various (platforms for) STEM teachers in Dutch 
secondary schools for advice, and developed workshops and a challenge for youngsters aged 
12-18, asking for them to propose, prototype and present ideas for ‘the music service of the 
future’. 
The first edition of the Youth Music Challenge was run at the Christelijk Lyceum Delft, a 
‘Technasium’ school which explicitly includes STEM design challenges in the curriculum. 
Five groups of middle and high school students (aged 12-13 and 15-16) have participated in 
the challenge, and will pitch their ideas on the night of November 5, 2019, at OPEN, the 
public library and music school of Delft. These outcomes will subsequently become part of a 
temporary public exhibit at OPEN, showcasing our youth's ideas to both the ISMIR 
community and the general public. 
The students will receive feedback by a jury consisting of: 

• Cynthia Liem, general co-chair of ISMIR 2019, assistant professor at Delft University 
of Technology and initiator of the Youth Music Challenge; 

• Romain Hennequin, lead scientist at Deezer; 
• Casper Karreman, senior developer at Muziekweb; 
• Peter Sobot, staff software engineer at Spotify. 

Our special thanks go to: 
• Martijn Kirsten from Roem, for the production of the Youth Music Challenge; 
• Alexander Ettema from Studio Alex, for creative and media support to the challenge; 
• John Schmitz, dean of the Faculty of Electrical Engineering, Mathematics and 

Computer Science of Delft University of Technology, for having agreed to financially 
support the production of the Youth Music Challenge, as an effort to increase future 
diversity in our professional field; 

• students and teachers from Christelijk Lyceum Delft, for having participated in the 
challenge. 

The intention is to keep running the Youth Music Challenge in coming years, and expand its 
scope to a truly national one. 

Meetup with Industry 
Following an initiative first started at ISMIR 2018, after the main conference, a Meetup with 
Industry will take place on Friday, November 8 in the late afternoon and evening. With 
ISMIR being the world’s leading R&D forum for music tech since 2000, and many 
colleagues having taken industry positions, the Meetup with Industry offers a networking 
platform and exposure opportunity in which participants can: 

• Discover and shape the future of music technology; 
• Connect with and recruit top talent from the MIR community and local universities; 
• Meet world-class experts and explore the current state-of-the-art in music, creative 

and data science tech applications; 
• Connect with and learn from leading music, creative and data science tech companies; 
• Discover startups leveraging latest technologies in a variety of music, creative and 

data science applications; 
• Exchange with other players and startups in the music, creative and data science 

industry; 
• Showcase and market latest products and services. 
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We have strived to make the Meetup as accessible as possible, and to encourage the 
participation of interested parties who may not be in the ISMIR community, with special 
focus on students. Therefore, the choice was made to make access to the Meetup free of 
charge, including first drinks and bites, to explicitly campaign for it towards students at Delft 
University of Technology, and to organize it close to the campus, at the very end of the 
students’ exam week. 
Exhibitors present at the Meetup include Spotify, Tencent Music Entertainment, Pandora, 
Chordify, Google, Gracenote, Peachnote, AI Music, Universal Music Group and Dolby. 

Social Events 
ISMIR 2019 has two official social events. 

Welcome reception 
The ISMIR 2019 Welcome Reception will take place on Monday, November 4 at the 
Bierfabriek in Delft. In a building that was formerly the local discotheque of Delft, the 
Bierfabriek now hosts a large informal pub and restaurant, serving various types of home-
brewed beer and comfort food. 
Conference Banquet & Pandora Jam Session 
The ISMIR 2019 Conference Banquet & Pandora Jam Session will take place on Thursday, 
November 7 at the Lijm & Cultuur complex in Delft. Formerly a glue factory, Lijm & 
Cultuur now is a multi-functional creative lab, mostly used as a cultural and festival location. 
Following dinner, the community will transition into its now-traditional jam session. We are 
grateful to our Gold Sponsor Pandora for having financially supported this jam, and look 
forward to seeing many ISMIR attendees playing. 
Beyond these official social events, the city of Delft offers multiple opportunities for local 
social experiences in smaller groups. Several local cafes known for their live music agreed to 
allow ISMIR attendees to play during non-booked late nights, and we look forward to hearing 
them. 

Music 
To commemorate ISMIR’s 20th anniversary, the Call for Music for ISMIR 2019 was targeted 
at creating a joint musical-technical performance, taking up the spirit of ISMIR conferences, 
jam sessions, late-breaking/demos, and hackathons. 
To include as many people as possible, a video performance entitled "Variations on ISMIR" 
has been compiled with Mozart's famous Variations on the French song "Ah, vous dirai-je 
maman" (K. 265) as basis. The variation theme is also well-known as a children’s or 
Christmas song ("Twinkle, twinkle little star"...). These variations have had significance to 
the first ISMIR in 2000, and a score excerpt of this piece has served as the first ISMIR logo 
for many years. 
The ISMIR community was encouraged to contribute short variations on this theme 
(maximally 60 seconds), showing both ISMIR people and MIR technology in action. In 
response to the Call for Music, multiple contributions were sent in from across the world. The 
final result will be shown in a plenary music intermezzo, and also will be made available 
online. 
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Satellite Events 
Surrounding the ISMIR 2019 conference, participants have the opportunity to attend several 
satellite events: 

• 2nd International Workshop on Reading Music Systems (WoRMS), held on 
November 2 as a half-day workshop at the Aula Conference Centre of Delft 
University of Technology; 

• 1st Workshop on Designing Human-Centric MIR Systems, held on November 2 as 
a half-day workshop at the Aula Conference Centre of Delft University of 
Technology; 

• 2nd Women in MIR Workshop, held on November 3 as a full-day workshop at the 
Aula Conference Centre of Delft University of Technology; 

• 6th International Conference on Digital Libraries for Musicology (DLfM), held 
on November 9 as a full-day conference at the National Library of The Netherlands, 
The Hague. 

Host City 
Delft is a compact, historic town between Rotterdam and The Hague in the province of 
South-Holland, The Netherlands. It forms part of the ‘Randstad’, the urban agglomeration in 
the western part of the Netherlands, and is one of the nation’s main educational and research 
centers. 
Delft is more than 900 years old. The city owes its name to the word ‘delven’ (digging). 
Around 1100 AD, a local river was widened by hand to enable better drainage of the 
surrounding farmland, leading to the oldest (and still existing) canal called the Oude Delft 
(Old Delft). In 1246, Delft received its city franchise from the Dutch Earl Willem II. Delft 
flourished and new neighborhoods were added. As early as 1355, the city reached the size it 
would remain until the 19th century. 
During the country’s war of independence against Spain in the 16th and 17th centuries, Delft 
played an important role as the residence of William of Orange, known as the Father of the 
Nation who initiated the establishment of the state of The Netherlands. Upon his 
assassination at his Prinsenhof residence, he was buried in the New Church of Delft. His 
descendants formed the House of Orange-Nassau, which ultimately would become the Dutch 
Royal Family. The Royal Family still holds a special connection to Delft, and the New 
Church has now become the Royal Crypt in which former kings and queens are buried. 
Many world-renowned painters like Johannes Vermeer, Jan Steen and Karel Fabritius lived 
and worked in Delft. Delft was also the hometown of scientist Antoni van Leeuwenhoek, 
inventor of the microscope. Furthermore, the city became famous for its Delft Blue pottery. 
The establishment of the Royal Academy for the Training of Civil Engineers in 1842 (which 
later would become Delft University of Technology) was a strong stimulus to the revival of 
the industry (and thus the importance of Delft) in the 19th century. New neighborhoods were 
built, and university buildings and faculties were relocated from the historic center of the city 
to a new quarter dedicated to the university. 
Despite wars and rapid population growth, the historic center of Delft has remained almost 
completely intact. Today, Delft is a beloved tourist location, an important high-tech hub, and 
a pleasant home to almost 100,000 inhabitants, many of whom are affiliated to the university. 
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Keynote Talk 1  

What makes us musical animals 
Henkjan Honing 
Professor in Music Cognition 
Faculty of Humanities and the Faculty of Science 
University of Amsterdam 
 
Abstract 
We are all born with a predisposition for music, a predisposition that develops spontaneously 
and is refined by listening to music. Nearly everyone possesses the musical skills essential to 
experiencing and appreciating music. Think of “relative pitch,” recognizing a melody 
separately from the exact pitch or tempo at which it is sung, and “beat perception,” hearing 
regularity in a varying rhythm. Research shows that all humans possess the trait of musicality. 
We are a musical species—but are we the only musical species? Can there be musical 
machines? In his presentation, Henkjan Honing embarks upon the quest to discover the 
cognitive and biological mechanisms that underpin musicality. 
 

Biography 
Henkjan Honing is a professor of Music Cognition at both the Faculty of Humanities and the 
Faculty of Science of the University of Amsterdam (UvA). He studies what musicality is or 
can be and to what extent human beings share musicality with other animals. His aim is to 
define the cognitive and biological mechanisms that underpin musicality. In addition to a 
research agenda (The Origins of Musicality, 2018, MIT Press), Honing has published several 
books for the general public, including the English-language publications Musical Cognition 
and The Evolving Animal Orchestra. Honing’s books and lectures are popular with a broad 
audience and are appreciated both inside and outside the scientific world. 
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Keynote Talk 2  

MIR redux: Knowledge and real-world challenges, and 
new interdisciplinary futures 
Georgina Born 
Professor of Music and Anthropology 
Professorial Fellow, Mansfield College 
University of Oxford 
 
Abstract 
How can MIR refresh itself and its endeavors, scholarly and real world? I speak as an outsider, 
and it is foolhardy to advise scientist colleagues whose methodologies one would be hard 
pressed to follow! Nonetheless, my question points in two directions: first, to two areas of auto-
critique that have emerged within the MIR community – to do with the status of the knowledge 
produced, and ethical and social concerns. One theme that unites them is interdisciplinarity: 
how MIR would gain from closer dialogues with musicology, ethnomusicology, music 
sociology, and science and technology studies in music. Second, the ‘refresh’ might address 
MIR’s pursuit of scientific research oriented to technological innovation, itself invariably tied 
to the drive for economic growth. The burgeoning criticisms of the FAANG corporations and 
attendant concerns about sustainable economies remind us of the urgent need for other values 
to guide science and engineering. We might ask: what would computational genre recognition 
or music recommendation look like if, under public-cultural or non-profit imperatives, the 
incentives driving them aimed to optimise imaginative and cultural self- and/or group 
development, adhering not to a logic of ‘similarity’ but diversity, or explored the socio-musical 
potentials of music discovery, linked to goals of human flourishing (Nussbaum 2003, 
Hesmondhalgh 2013)? The time is ripe for intensive and sustained interdisciplinary 
engagements in ways previously unseen. My keynote ends by inviting action: a think tank to 
take this forward. 
 

Biography 
Georgina Born OBE FBA is Professor of Music and Anthropology at the University of 
Oxford, was the bass player with Henry Cow in the late 70s, played improvised cello in the 
80s, wrote an ethnography of IRCAM in the 90s and an ethnography of the BBC in the 
2000s, and is a leading interdisciplinary scholar writing on the mediation of music, especially 
its social forms. She ran an ERC-funded research group (2010-15) studying ethnographically 
how digitization and the internet have affected music worldwide. 
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Keynote Talk 3 

Music as Investigation 
Jeremy Pickens 
Principal Data Scientist 
OpenText 
 
Abstract 
The music information retrieval landscape has changed dramatically in the past two decades 
since ISMIR’s inception. Music and user data exist at web scale and systems and algorithms 
have evolved to take advantage of it. Yet there remain classes of problems and information 
needs for which scale data will never be available. The early ISMIR community, perhaps if 
only out of necessity, responded to such challenges by adopting various mindsets: exploratory, 
investigatory, niche.  The benefits of these mindsets extend far beyond music into other 
individual-scale, task-oriented domains such as law, where popularity and prevalence do not 
provide easily-distillable answers. Do the benefits run both ways? 

 
Biography 
Jeremy Pickens is a Principal Data Scientist at OpenText (né Catalyst Repository Systems), a 
leader in enterprise software and legal technology.  His research in information retrieval has 
spanned a number of domains from music to images and video to various legal applications.  
The common thread among these disparate areas has been an emphasis on recall-oriented, 
comprehensive, and holistic views of relevance.  Jeremy is a pioneer in the field of 
collaborative exploratory search, a form of information seeking in which a group of people 
who share a complex information need actively collaborate to achieve it.  His ongoing research 
focuses on methods for continuous learning.  Jeremy holds a PhD in Computer Science from 
the University of Massachusetts, Amherst, Center for Intelligent Information Retrieval. He 
conducted his post-doctoral work at King’s College, London. Before joining Catalyst and 
OpenText, he spent five years as a research scientist at FX Palo Alto Lab, Inc.  He was also a 
member of many of the early (2000-2005) ISMIR organizing committees. 
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WiMIR Keynote  

Music and algorithmic responsibilities in practice 
Henriette Cramer 
Principal Research Scientist & PM 
Spotify 
 
Abstract 
Music is deeply personal, and influences our moods and motivation. Music creates 
communities, shapes subcultures, and powers an enormous industry. What music is available, 
what can be found, what is recommended, matters. Who gets to learn, to play, to record, 
matters. 
And, crucially, how the music recommendation and retrieval community defines success 
determines who gets amplified. 
We're at a moment in tech where, alongside its successes, machine learning's failures and 
biases have gained much attention. There is an overwhelming number of calls-to-action but 
still relatively few standard practices for industry practitioners. This means we have a 
responsibility, especially as an ISMIR community. But what does that mean, practically? 
This talk will outline challenges encountered in practice and at scale, specific to music 
streaming. We’ll briefly travel through time, and take you from early 1900’s magic lantern 
slides’ music promotion to the current zeitgeist where new guidelines for algorithmic 
accountability are clamoring for attention themselves. We’ll discuss how new UIs (like voice) 
can make certain creators inaccessible, female creators’ representation in streaming, and 
optimizing for more than just engagement. We’ll share technical and organizational lessons 
learned, pitfalls, and tensions in assessing decisions’ potential impact. 
 
Biography 
Henriette Cramer is a principal researcher at Spotify Research, and product manages 
Spotify’s Algorithmic Responsibility effort. She is particularly interested in the impact that 
teams' design, data and organizational decisions have on algorithmic outcomes. Prior, she set 
up Spotify’s ‘human side of Machine Learning’ Hai lab, and led data research for Spotify’s 
voice platform. She has worked on recommendations, ad quality, and conversational 
interactions at Yahoo, and on location-based data, perceptions of place, and human-robot 
interaction at the Swedish Institute of Computer Science. She holds a PhD from the 
University of Amsterdam focused on people’s responses to autonomous systems. More 
at: http://henriettecramer.com 
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Tutorial 1 

Fundamentals of Music Processing: An Introduction using 
Python and Jupyter Notebooks 

Meinard Müller and Frank Zalkow 
 
Abstract 
This tutorial will give an easy-to-understand introduction to music processing with a 
particular focus on audio-related analysis and retrieval tasks. In particular, the tutorial is 
aimed at non-experts and researchers who are new to the field. Based on well-established 
topics in Music Information Retrieval (MIR) as motivating application scenarios, we present 
fundamental techniques and algorithms that apply to a wide range of analysis and retrieval 
problems. We intend to explain the main ideas and techniques in an intuitive fashion using 
various figures and sound examples. Besides the theory, we also show how these techniques 
can be implemented going through specific Python code examples. All material, including 
the introduction of MIR scenarios, illustrations, sound examples, technical concepts, 
mathematical details, and code examples, are integrated into a comprehensive framework 
based on Jupyter notebooks. The notebooks are organized along with the eight chapters of the 
textbook on Fundamentals of Music Processing (FMP) (Springer 2015, http://www.music-
processing.de). Another important goal of this tutorial is to show how the notebooks can 
be used to generate educational material for lectures and presentations. The notebooks (as 
well as HTML exports and multimedia examples) can be accessed via 
https://www.audiolabs-erlangen.de/FMP. 

 

Reference 
Meinard Müller 
Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications 
Springer Verlag, ISBN: 978-3-319-21944-8, 2015. 

 
Meinard Müller studied mathematics (Diplom) and computer science (Ph.D.) at the 
University of Bonn, Germany. In 2002/2003, he conducted postdoctoral research in 
combinatorics at the Mathematical Department of Keio University, Japan. In 2007, he 
finished his Habilitation at Bonn University in the field of multimedia retrieval. From 2007 to 
2012, he was a member of the Saarland University and the Max-Planck Institut für Informatik. 
Since September 2012, Meinard Müller holds a professorship for Semantic Audio Processing 
at the International Audio Laboratories Erlangen, which is a joint institution of the Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU) and the Fraunhofer-Institut für Integrierte 
Schaltungen IIS. His recent research interests include music processing, music information 
retrieval, audio signal processing, and motion processing. Meinard Müller has been a member 
of the IEEE Audio and Acoustic Signal Processing Technical Committee from 2010 to 2015 
and is a member of the Board of Directors of the International Society for Music Information 
Retrieval (ISMIR) since 2009. He wrote a monograph titled "Information Retrieval for Music 
and Motion" (Springer, 2007) as well as a textbook titled "Fundamentals of Music 
Processing" (Springer, 2015, http://www.music-processing.de). 
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Frank Zalkow studied Music Informatics and Musicology (Bachelor) and Music Informatics 
(Master) at the University of Music Karlsruhe, Germany. Since 2016, he has been working 
towards his Ph.D. degree in the Semantic Audio Processing Group headed by Meinard Müller 
at the International Audio Laboratories Erlangen. Previously, he worked for the Max-Reger-
Institute Karlsruhe (2008–15) as well as Institute for Musicology at Saarland University 
(2015–16). His research interests include music retrieval, machine learning, as well as cross-
connections between musicology and music information retrieval.  
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Tutorial 2 

Generating Music with GANs: An Overview and Case 
Studies 
Hao-Wen Dong and Yi-Hsuan Yang 
 
Abstract 
This tutorial aims to provide an overview of generative adversarial networks (GANs) and 
their use in generating music. The format of the tutorial will include lectures, demonstration 
of sample systems and technical results with illustrative musical examples. 

• We will start by discussing the scope of music generation and introduce various tasks 
that can broadly be regarded as music generation. For each task, we will then discuss 
its challenges, commonly used approaches and some notable systems proposed in the 
literature. 

• In the second part, we will explain the machine learning fundamentals for GANs. We 
will also present some interesting applications of GANs in other fields to showcase 
their potentials. 

• The following section will contain the case studies of four different tasks---symbolic 
melody generation, symbolic arrangement generation, symbolic musical style transfer 
and musical audio generation. In each part, we will first provide an overview of the 
task and then introduce several models proposed in the literature as examples. 

• We will conclude the tutorial by discussing the current limitations of GAN-based 
models and suggesting some possible future research directions. 

In addition to lectures, we will go through some demo projects using Google Colab. These 
demo projects are designed to provide participants with hands-on experience and deeper 
understanding of the training of GANs. We will also cover topics such as data representation, 
processing, I/O, visualization and evaluation. 
The tutorial is targeted to students and newcomers who are interested in or working on music 
generation research, and also machine learning specialists who want to see how GANs can be 
applied to music generation. 
Tutorial website: https://salu133445.github.io/ismir2019tutorial/ 

 
Hao-Wen Dong is currently a research internship in the Research and Development Division 
at Yamaha Corporation. He will be starting a Ph.D. this fall in Electrical and Computer 
Engineering at University of California, San Diego. Previously, he was a research assistant 
under the supervision of Dr. Yi-Hsuan Yang in the Music and AI Lab at Academia Sinica. He 
received his bachelor’s degree in Electrical Engineering at National Taiwan University. His 
research interests lie at the intersection of machine learning and music. 
Yi-Hsuan Yang is an Associate Research Fellow with Academia Sinica, where he leads a 
research lab called the Music and AI Lab. He received his Ph.D. degree in communication 
engineering from National Taiwan University in 2010. He is also a Joint-Appointment 
Associate Professor with the National Cheng Kung University. His research interests include 
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music information retrieval, affective computing, and machine learning. Dr. Yang was a 
recipient of the 2011 IEEE Signal Processing Society Young Author Best Paper Award, the 
2012 ACM Multimedia Grand Challenge First Prize, and the 2015 Best Conference Paper 
Award of the IEEE Multimedia Communications Technical Committee. In 2014, he served as 
a Technical Program Chair of the International Society for Music Information Retrieval 
Conference (ISMIR). He gave a tutorial on “Music Affect Recognition: The State-of-the-art 
and Lessons Learned” in ISMIR 2012. He was an Associate Editor for the IEEE Transactions 
on Affective Computing and the IEEE Transactions on Multimedia in 2016-2019. He is 
currently on a sabbatical leave to work with a privately funded research organization in 
Taipei called the Taiwan AI Labs. 
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Tutorial 3 
Audiovisual Music Processing 
Zhiyao Duan, Slim Essid, Bochen Li, and Sanjeel Parekh 
 

Abstract 
Music is a multimodal art form. While sound plays a key role, other modalities, especially 
visual, are also critical to enhancing the musical experience. Recently, the MIR field has 
witnessed a rapid growth of interest in audiovisual processing of music. 
This tutorial is intended to introduce this emerging research direction to the broader MIR 
community. It extends a recently published overview article on audiovisual analysis of music 
performances [1] into general audiovisual music processing. Specifically, it provides a 
comprehensive overview of state-of-the-art research in different aspects of audiovisual music 
processing, including music performance analysis, content-based retrieval, and music 
creation. It summarizes datasets, tools and other resources in this field, and articulates 
challenges and opportunities for future research. An interesting aspect of this tutorial is that it 
contains two hands-on case studies (30 min each) for the audience to personally experience 
audiovisual research. Instructions of software environments and starter code will be provided 
prior to the tutorial for preparation. 
To our best knowledge, this is the very first tutorial on audiovisual processing at ISMIR. This 
tutorial is designed for students and researchers who have general knowledge of music 
information retrieval and who are interested in learning the state of the art and gaining hands-
on experience of audiovisual music processing research. The comprehensive overview and 
categorization of different aspects of this field will help the audience gain a global view of 
the research problems, methods, tools, challenges, and opportunities. The hands-on case 
studies will provide the audience a first-hand experience of the research, helping them 
quickly arrive at the research frontier. We especially look forward to ideas and inspirations 
that the MIR community has to offer through this interactive and hands-on tutorial. 
 
[1] Zhiyao Duan*, Slim Essid*, Cynthia C. S. Liem*, Gaël Richard*, and Gaurav Sharma*, 
“Audiovisual analysis of music performances: overview of an emerging field,” IEEE Signal 
Processing Magazine, vol. 36, no. 1, pp. 63-73, 2019. (* authors in alphabetical order) 
 
Zhiyao Duan is an assistant professor in Electrical and Computer Engineering, Computer 
Science and Data Science at the University of Rochester. He received his B.S. in Automation 
and M.S. in Control Science and Engineering from Tsinghua University, China, in 2004 and 
2008, respectively, and received his Ph.D. in Computer Science from Northwestern 
University in 2013. His research interest is in the broad area of computer audition, i.e., 
designing computational systems that are capable of understanding sounds, including music, 
speech, and environmental sounds. He is also interested in the connections between computer 
audition and computer vision, natural language processing, and augmented and virtual reality. 
He co-presented a tutorial on Automatic Music Transcription at ISMIR 2015. He received a 
best paper award at the 2017 Sound and Music Computing (SMC) conference, a best paper 
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nomination at the 2017 International Society for Music Information Retrieval (ISMIR) 
conference, and a CAREER award from the National Science Foundation. 
Slim Essid received his state engineering degree from the École Nationale d’Ingénieurs de 
Tunis, Tunisia, in 2001, his M.Sc. (D.E.A.) degree in digital communication systems from 
the École Nationale Supérieure des Télécommunications, Paris, France, in 2002, his Ph.D. 
degree from the Université Pierre et Marie Curie (UPMC), Paris, France, in 2005, and his 
Habilitation à Diriger des Recherches degree from UPMC in 2015. He is a professor in 
Telecom ParisTech’s Department of Images, Data, and Signals and the head of the Audio 
Data Analysis and Signal Processing team. His research interests are machine learning for 
audio and multimodal data analysis. He has been involved in various collaborative French 
and European research projects, among them Quaero, Networks of Excellence FP6-Kspace, 
FP7-3DLife, FP7-REVERIE, and FP-7 LASIE. He has published over 100 peer-reviewed 
conference and journal papers, with more than 100 distinct coauthors. On a regular basis, he 
serves as a reviewer for various machine-learning, signal processing, audio, and multimedia 
conferences and journals, e.g., a number of IEEE transactions, and as an expert for research 
funding agencies. 
Bochen Li received his B.S. from University of Science and Technology of China in 2014. 
He is currently pursuing a Ph.D. degree in the Department of Electrical and Computer 
Engineering at the University of Rochester in the USA, under the supervision of Professor 
Zhiyao Duan. His research interests lie primarily in the inter-disciplinary area of audio signal 
processing, machine learning, and computer vision towards multimodal analysis of music 
performances, such as video-informed multipitch estimation and streaming, source separation 
and association, and expressive performance modeling and generation. 
Sanjeel Parekh received B. Tech (hons.) degree in Electronics and Communication 
engineering from LNM Institute of Information Technology, India in 2014 and M.S. in 
Sound and Music Computing from Universitat Pompeu Fabra (UPF), Spain in 2015. His 
Ph.D. thesis titled ‘Learning representations for robust audio-visual scene analysis’ was 
completed in collaboration with Technicolor R&D and Telecom ParisTech, France between 
2016-19. His research focusses on developing and applying machine learning techniques to 
problems in audio and visual domains. Currently, he is with LTCI lab at Telecom ParisTech, 
France.  
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Tutorial 4 
Computational Modeling of Musical Expression: 
Perspectives, Datasets, Analysis and Generation 
Carlos Cancino-Chacón, Katerina Kosta, and Maarten Grachten 
 
Abstract 
The aim of this tutorial is to introduce the theory and practice of music performance research 
to a broad MIR audience. A music performance—an acoustic or audio-visual rendering of 
it—provides a much richer musical experience than the symbolic or notated representation of 
the performed music. This richness is arguably an important aspect of our engagement with 
music and is shaped by the musician’s interpretation of the intentions of the music, as 
conveyed through their performance. The means of expressing these intentions vary from one 
instrument to another, and can include tempo, timing, dynamics, articulation, timbre, and 
intonation, among others. 
In this tutorial we will give a brief overview of the music performance literature and highlight 
how expressive dimensions affect the perception and the creation of music. Furthermore we 
will showcase some state-of-the-art computational methods for both analysis and synthesis of 
expressive piano performances. We include a hands-on part in which we share easily 
operated and adaptable code written in Python using Jupyter iPython notebook for 
demonstrating how to get started with computational analysis and synthesis of musical 
expression. 

 
This work is partially supported by the European Research Council (ERC) under the 
European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 
No 670035 (project “Con Espressione”). 

 
Carlos Cancino-Chacón is a postdoctoral researcher at the Austrian Research Institute for 
Artificial Intelligence (OFAI), Vienna, Austria. His research focuses on studying  expressive 
music performance, music cognition and music theory with machine learning methods. He 
pursued a doctoral degree on computational models of expressive performance at the Institute 
of Computational Perception of the Johannes Kepler University Linz, Austria. He received an 
M.Sc. degree in Electrical Engineering and Audio Engineering from the Graz University of 
Technology, a degree in Physics from the National Autonomous University of Mexico and a 
degree in Piano Performance from the National Conservatory of Music of Mexico. 
Katerina Kosta is a senior machine learning researcher at ByteDance AI lab. She pursued 
her Ph.D. from the Centre for Digital Music at the Computer Science and Electronic 
Engineering department of Queen Mary University of London, conducting research on 
computational modelling and quantitative analysis of expressive changes of dynamics in 
performed music. Research interests during her studies included time series analysis, custom 
data structures, pattern recognition, audio processing, and machine learning for music 
synthesis and analysis of perceived emotion in music audio. She received degrees from 
University of Athens (Mathematics) and Filippos Nakas Conservatory, Athens (Piano), and a 
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Sound and Music Computing Masters from the Music Technology Group at Universitat 
Pompeu Fabra, Barcelona. 
Maarten Grachten is a senior researcher in machine learning for music and sound 
technology, currently active as an independent machine learning consultant. He holds an 
M.Sc. in Artificial Intelligence from University of Groningen (The Netherlands, 2001), and a 
Ph.D. in Computer Science and Digital Communication from Pompeu Fabra University 
(Spain, 2007). He has worked on computational modeling of musical expression in jazz and 
classical music since 2001. His work has been funded by European and national research 
grants at research institutions including the Austrian Research Institute for Artificial 
Intelligence (OFAI) and Johannes Kepler University (Austria), and has been published in 
international peer-reviewed conferences and journals.   
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Tutorial 5 
Waveform-based music processing with deep learning 
Jongpil Lee, Jordi Pons, and Sander Dieleman  
 
Abstract 
A common practice when processing music signals with deep learning is to transform the raw 
waveform input into a time-frequency representation. This pre-processing step allows having 
less variable and more interpretable input signals. However, along that process, one can limit 
the model’s learning capabilities since potentially useful information (like the phase or high 
frequencies) is discarded. In order to overcome the potential limitations associated with such 
pre-processing, researchers have been exploring waveform-level music processing techniques, 
and many advances have been made with the recent advent of deep learning. 
In this tutorial, we introduce three main research areas where waveform-based music 
processing can have a substantial impact: 

1) Classification: waveform-based music classifiers have the potential to simplify 
production and research pipelines. 

2) Source separation: making possible waveform-based music source separation would 
allow overcoming some historical challenges associated with discarding the phase. 

3) Generation: waveform-level music generation would enable, e.g., to directly 
synthesize expressive music. 

 
Jongpil Lee received the B.S. degree in electrical engineering from Hanyang University, 
Seoul, South Korea, in 2015, the M.S. degree, in 2017, from the Graduate School of Culture 
Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea, 
where he is currently working toward the Ph.D. degree. He interned at Naver Clova Artificial 
Intelligence Research in the summer of 2017 and at Adobe Audio Research Group in the 
summer of 2019. His current research interests include machine learning and signal 
processing applied to audio and music applications. 
Jordi Pons is a researcher at Dolby Laboratories. He is finishing a PhD in music technology, 
large-scale audio collections, and deep learning at the Music Technology Group (Universitat 
Pompeu Fabra, Barcelona). Previously, he received a MSc in sound and music computing 
(Universitat Pompeu Fabra, Barcelona), and his BSc was in telecommunications engineering 
(Universitat Politècnica de Catalunya, Barcelona). He also interned at IRCAM (Paris), at the 
German Hearing Center (Hannover), at Pandora Radio (USA, Bay Area), and at Telefónica 
Research (Barcelona). 
Sander Dieleman is a Research Scientist at DeepMind in London, UK, where he has worked 
on the development of AlphaGo and WaveNet. His current research interest is large-scale 
generative modeling of perceptual signals (images, audio, video). He was previously a PhD 
student at Ghent University, where he conducted research on feature learning and deep 
learning techniques for learning hierarchical representations of musical audio signals. In the 
summer of 2014, he interned at Spotify in New York, where he worked on implementing 
audio-based music recommendation using deep learning on an industrial scale.  
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Tutorial 6 
Fairness, Accountability and Transparency in Music 
Information Research (FAT-MIR)  
Andre Holzapfel, Marius Miron, Bob L. Sturm, Emilia Gómez 
 
Abstract 
This tutorial focuses on the timely issues of ethics, fairness, accountability and transparency, 
with particular attention paid to research in applications in music information research. These 
topics arise from a broader consideration of ethics in the field – related work of which was 
recently published in TISMIR: https://transactions.ismir.net/articles/ 
10.5334/tismir.13. These topics are also receiving attention in the broader domain of 
machine learning and data science, e.g., the FAT-Machine Learning (ML) conference 2014-
2018, Explainable AI workshops 2017-2018, Interpretable Machine Learning workshops, and 
in the context of the HUMAINT project and winter school on ethical, legal, social and 
economic impact of Artificial Intelligence (https://ec.europa.eu/jrc/communities/ 
en/community/humaint). This tutorial is suitable for researchers and students in MIR 
working in any domain, as these issues are relevant for all MIR tasks, from low- to high-level, 
from system to user-centered research. There are no prerequisites for taking this tutorial. 
 
Andre Holzapfel received M.Sc. and Ph.D. degrees in computer science from the University 
of Crete, Greece, and a second Ph.D. degree in music from the Centre of Advanced Music 
Studies (MIAM) in Istanbul, Turkey. He worked at several leading institutes in computer 
engineering as postdoctoral researcher, with a focus on rhythm analysis in music information 
retrieval. His field work in ethnomusicology was mainly conducted in Greece, with Cretan 
dance being the subject of his second dissertation. In 2016, he became Assistant Professor in 
Media Technology at the KTH Royal Institute of Technology in Stockholm, Sweden. Since 
then, his research subjects incorporate the computational analysis of human rhythmic 
behavior by means of sensor technology, and the investigation of ethical aspects of 
computational approaches to music. 
Marius Miron is a Postdoctoral researcher for European Commission’s Joint Research 
Centre within the project HUMAINT, working on fairness and interpretable machine learning 
and on assessing the influence of artificial intelligence on humans. He has a PhD (2018) in 
Computer Science (Audio Signal Processing and Machine Learning) from Pompeu Fabra 
University, Barcelona. His PhD thesis concerned separating the audio corresponding to the 
instruments in an orchestral music mixture. He has completed internships at Computational 
Perception Group, Johannes Kepler University, Linz where he worked on deep learning for 
source separation, and at Telefonica Research, Barcelona, where he worked on catastrophic 
forgetting in machine learning. During 2011-2013 he was a research engineer for the research 
institute INESC in Porto for a project aiming at modelling groove in music. 
Bob L. Sturm received the B.A. degree in physics from University of Colorado, Boulder in 
1998, the M.A. degree in Music, Science, and Technology, at Stanford University, in 1999, 
the M.S. degree in multimedia engineering in the Media Arts and Technology program at 
University of California, Santa Barbara (UCSB), in 2004, and the M.S. and Ph.D. degrees in 
Electrical and Computer Engineering at UCSB, in 2007 and 2009. In Dec. 2014, he became a 
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Lecturer at the Centre for Digital Music at Queen Mary University of London. In July 2018 
he became an associate professor of computer science at the Royal Institute of Technology 
KTH in Stockholm Sweden. 
Emilia Gómez leads the HUMAINT (HUman and MAchine INTelligence) team at the 
Centre for Advanced Studies, Joint Research Centre (European Commission) and the MIR 
(Music Information Research) lab of the Music Technology Group, Universitat Pompeu 
Fabra in Barcelona. Her research background is in music information retrieval, where she has 
particularly focused on pitch, melody and tonal processing of music audio signals. She also 
researches more widely on the impact of artificial intelligence technologies on human 
behaviour. She is a Telecommunication Engineer (Universidad de Sevilla, Spain), DEA in 
Acoustics, Signal Processing and Computer Science applied to Music (IRCAM, Paris) and 
Ph.D. in Computer Science (Universitat Pompeu Fabra). Emilia Gómez has co-authored more 
than 130 scientific publications in peer-reviewed scientific journals and conferences, and 
contributed to several open datasets and software libraries. She is currently president of the 
International Society for Music Information Retrieval (ISMIR), and particularly interested in 
promoting diversity in the MIR field. 
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DATA USAGE IN MIR: HISTORY & FUTURE RECOMMENDATIONS

Wenqin Chen† Jessica Keast† Jordan Moody† Corinne Moriarty†
Felicia Villalobos† Virtue Winter† Xueqi Zhang† Xuanqi Lyu

Elizabeth Freeman Jessie Wang Sherry Cai Katherine M. Kinnaird
Smith College, Northampton Massachusetts, USA

kkinnaird@smith.edu

ABSTRACT

The MIR community faces unique challenges in terms
of data access, due in large part to country-specific copy-
right laws. As a result, there is an emerging divide in the
MIR research community between labs that have access
to music through large companies with abundant funds,
and independent labs at smaller institutions who do not
have such expansive access. This paper explores how in-
dependent researchers have worked to overcome limita-
tions of access to music data without contributing to the
crisis of reproducibility. Acknowledging that there is no
single solution for every data access problem that smaller
labs face, we propose a number of possibilities for how
the MIR community can bridge the gap between advance-
ments from large companies and those within academia.
As MIR looks towards the next 20 years, democratizing
and expanding access to MIR research and music data
is critical. Future solutions could include a distributed
MIREX system, an API designed for MIR researchers, and
community-led advocacy to stakeholders.

1. INTRODUCTION

Since its very conception, the field of Music Information
Retrieval (MIR) has struggled with data accessibility, due
in part to the nature of music copyright. To deal with this,
MIR researchers have developed methods for avoiding or
circumventing copyright infringement. Said methods in-
clude relying upon public domain and/or Creative Com-
mons music, attainment of certain licenses and/or permis-
sions, use of private in-house data sets, and the access of
music data without specifically accessing the audio itself.
Each of these methods, however, possess inherent draw-
backs such as cost, lack of diverse data, or challenges asso-

† Joint first authors with equal contribution

c© Wenqin Chen, Jessica Keast, Jordan Moody, Corinne
Moriarty, Felicia Villalobos, Virtue Winter, Xueqi Zhang, Xuanqi Lyu,
Elizabeth Freeman, Jessie Wang, Sherry Cai, Katherine M. Kinnaird. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Wenqin Chen, Jessica Keast, Jordan Moody,
Corinne Moriarty, Felicia Villalobos, Virtue Winter, Xueqi Zhang, Xu-
anqi Lyu, Elizabeth Freeman, Jessie Wang, Sherry Cai, Katherine M.
Kinnaird. “Data Usage in MIR: History & Future Recommendations”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

ciated with acquiring required licenses. Public domain and
Creative Commons music is often constrained to Western
classical pieces; in-house data sets require financial invest-
ment; and music data without audio often fail to give a full
picture. These drawbacks contribute to an overall dispar-
ity of access to data in the MIR community and add to the
crisis of reproducibility. In an attempt to strengthen both
MIR research and the MIR community as a whole, this
paper will propose a number of potential solutions to the
drawbacks in existing methods in the hopes that they may
serve as a guiding future direction.

The paper is organized as follows. In Section 2, we
report on the current concerns and constrictions to data ac-
cess for MIR researchers. In Section 3, we discuss how
datasets from the first ISMIR in 2000 differ from the 10th
ISMIR in 2009, and how both compare to the most recent
ISMIR in 2018. In Section 4, we outline three propos-
als for expanding and enhancing access to music data for
researchers. Finally, in Section 5, we challenge the com-
munity to think urgently about the future and how we can
support efforts to improve access to music data.

2. MOTIVATION AND BACKGROUND

Over the last 20 years, society’s access to music has
evolved. At the first ISMIR conference in 2000, we could
only dream of a world with smartphones complete with
numerous personalized music streaming applications that
make music readily available. Platforms like Spotify and
SoundCloud – that now allow for artists to directly share
music with the world – had yet to be a pervasive reality.

While the rise of these technologies allows end users to
enjoy music more easily and expands MIR research greatly
in scope, data commonly used MIR research has not neces-
sarily become more accessible. As with any rapidly grow-
ing field, careful attention needs to be paid to legal and
scientific concerns with regards to data. In this section, we
provide a historical overview of copyright in the United
States as it relates to MIR research (though similar state-
ments could be said for other countries). We also discuss
the importance of reproducibility for MIR studies.

2.1 History of US Copyright and MIR research

As every MIR researcher is keenly aware, musical record-
ings are closely protected by copyright laws, which vary
by country. In this paper, we treat copyright law in the
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United States as a case study. The Copyright Act of 1790
marks the beginning of copyright in the US [26]. In 1998,
just before the first ISMIR conference, one of the most ex-
tensive laws passed was the Digital Millennium Copyright
Act (DMCA). This law dealt with issues that arose due
to the advent of computers, including allowing data to be
copied temporarily during computer maintenance and the
ease of broadcast data over the Internet. It also facilitated
the implementation of World Intellectual Property Orga-
nization (WIPO) Internet treaties, a set of international
norms aimed at preventing unauthorized access to and use
of creative works on the internet [26]. 1

As technology has continued to evolve, so too have US
laws. In 2018, the Music Modernization Act (MMA) was
passed to establish a system of music licensing for digitally
distributed music of today [4]. The MMA designates a me-
chanical licensing collective to oversee a database of musi-
cal works that is made publicly available, as well as ensure
that artists are paid for their work through the administra-
tion of a blanket license. MMA also specifies what songs
are in the public domain. With a clearer regulation on mu-
sic copyright and establishment of a centralized database
to track down songwriters, MMA helps reduce unneces-
sary US copyright related lawsuits while protecting the in-
terests of the music creators. However, given the global
nature of the MIR community, being compliant with US
laws alone is not enough. As a result, researchers tend to
opt for international open source licenses such as Creative
Commons (see Section 3.2).

2.2 Reproducibility and Validity of Research

Two vital aspects of scientific research are reproducibility
(which encodes reliability) and validity (which often is a
proxy for generalizability). These concepts determine how
“good” research is – a study that cannot be generalized or
trusted is not worth doing.

As MIR tasks grow increasingly complex, it is urgent
that the community address the crisis of reproducibility
and how it affects the reliability of research. At ISMIR
2014, Raffel et. al. reported that differing evaluation imple-
mentations can produce deviations of 9-11% in commonly
used metrics across diverse tasks including beat tracking,
structural segmentation, and melody extraction [29]. The
ability of researchers to verify each other’s work is an inte-
gral step in the scientific process; without it, consensus on
new findings is difficult to reach. That process, however,
has been hindered by the use of copyright-protected data
in MIR research. Privatized data cannot be legally shared
between authors, thus preventing proper re-evaluation for
reproducibility [24].

In addition, private and copyright-protected data can be
expensive to procure, thus incentivizing and often limiting
MIR researchers to using relatively small datasets. This
is unfavorable when considering the external validity of a
study. It is a general consensus, as Sturm puts eloquently,
that “experimental power increases with the number of ob-
servations” [35]. Using larger datasets helps control for

1 https://www.wipo.int/copyright/en/activities/internet_treaties.html

confounding variables and can sometimes reveal subtle
patterns that smaller collections would not pick up on [6].
Smaller datasets carry none of these benefits in addition to
having weaker experimental power, greater susceptibility
to variation, and revealing only the more obvious patterns.
Moreover, limited access to material leads to “restricted
and biased subsets,” which are difficult to generalize to
larger music populations and thus bring into question the
external validity of such studies [37].

3. DATA USAGE & EVOLUTION

In this section, we explore data usage and data evolution
as well as features of datasets commonly used today. We
investigate different classifications of data explored in pa-
pers in three different ISMIR conferences. We then discuss
the evolution of data creation and examine the limitations
of popular datasets.

3.1 Dataset Classification

To illustrate how data usage has evolved over the last 20
years, this paper analyzes datasets used in published pa-
pers from ISMIR 2000 [1], 2009 [2], and 2018 [3]. This is
done in order to answer three key questions. First, are these
datasets diverse enough? Second, how were these datasets
created and did the process get easier or harder over time?
Third, how were these datasets released and what was their
impact?

3.1.1 Genre Classification

To address the first question, we investigate how different
music genres have been represented at ISMIR. To do so,
we examined the published submissions from the first (in
2000), 10th (in 2009), and most recent (in 2018) ISMIR
conferences. Each paper in the respective proceedings was
analyzed by three of the authors of this paper, and all music
data used for analysis, training, or testing was classified by
genre. Although most papers explicitly stated what type of
music was used, any disagreements regarding dataset clas-
sification were discussed until there was consensus. The
results of this survey are displayed in Figure 1. Datasets
that used four or fewer genres were classified with each of
the genres, those with five or more were given the genre
label “various”. 2 As many datasets contained multiple
genres and many papers referenced multiple datasets, there
may be more than one genre representing each paper. Any
genre only used once in a given year was categorized as
“Other,” such as the analysis of opera singing in ISMIR
2018 by Parada-Cabaleiro et.al. [28].

We find that the proceedings in ISMIR 2018 [3] and IS-
MIR 2009 [2] used data from more music genres, and have
a more equal distribution among these genres than those
in 2000 [1]. The proportion of pop and rock songs used
decreased over time as other genres were included. The
proportion of papers that did not use music data or did not

2 Datasets with at least one non-Western genre were labeled both “var-
ious” and “non-Western.” Datasets with only Western genres were given
no other genre labels
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Figure 1: Proportion 3 of the number of papers that use different genres of data from first ISMIR conference in 2000 [1]
to the 10th ISMIR in 2009 [2], to the 19th ISMIR in 2018 [3]. “Excerpts*” refers to music excerpts under 3 seconds, and
“categorical” refers to music selected for a non-genre category such as mood. The “non-Western” category does not include
genres such as J-pop and K-pop, which were classified as solely “pop”.

specify the type of music they used have also decreased
over time. The latter may be due to an increasing empha-
sis on reproducibility in MIR, researchers becoming more
diligent in documenting their data sources so that others
may accurately reproduce their work.

The diversity of MIR research has increased over time.
For example, “electronic”, “categorical”, “non-Western”,
and “single instrument” music were studied in both 2009
and 2018, even though they had not been in 2000. There
has been a substantial increase in papers that consider five
or more different genres. However, non-Western genres
remain comparatively under-studied, and “classical” con-
tinues to be one of the most-studied genres in MIR.

3.1.2 Dataset Collection and Release

To address the second and the third questions, four authors
of this work determined the data classifications for datasets
used in ISMIR 2018. The categories can be applied to both
the dataset creation process and the dataset release process
and are summarized in Table 1. 4

• Creative Commons – CC – includes all datasets re-
leased under a Creative Commons license, such as
MedleyDB [7]. 5

• Public Domain – PD – includes all freely available,
downloadable, open source datasets that are not li-
censed under Creative Commons, including datasets
released on GitHub; for example, The Million Song
Dataset (MSD) [6]. 6

• Commercial datasets – COM – include those that
are owned by for-profit companies such as Spotify
and Deezer, and are therefore either not available for
public use or available only for purchase.

3 Proportion out of all genres labels generated for music data used for
each paper in that year’s ISMIR. The authors found 15 instances of genre
usage in ISMIR 2000, 190 in ISMIR 2009, and 132 in 2018.

4 Note that one dataset can be put into multiple categories.
5 https://medleydb.weebly.com/downloads.html
6 http://millionsongdataset.com/

• In-house datasets – IH – refers to unshareable
datasets that are privately owned or contributed via
personal connections. For example, some of Med-
leyDB’s data are in-house, though the database is re-
leased under CC.

• Library held datasets – LIB – refer to all datasets
that are owned and maintained by libraries, or re-
search institutions, including archives dedicated to
preserving historical audio records; for example, the
University of Iowa Musical Instrument Samples. 7

• Meta library – MET – refers to aggregates of several
existing datasets; for example, the MuMu dataset
combines info from MSD and Amazon Reviews
[27].

• Permission needed category – PER – refers to any
dataset that needs explicit permission to access, but
are available for free or at a minimal cost so as to dis-
tinguish from the commercial category. An example
would be the RWC database [18]. 8

• Short clips category – SHO – consists of datasets
that are made up of short audio samples (usually less
than 30 seconds) or recordings of single notes and
chords. The NSynth dataset is one example [16]. 9

3.2 Evolution of dataset creation process: Creative
Commons and open source practices

Creative Commons [34] is an international system that cre-
ators can use to offer certain usage rights to the public
while reserving other rights. This licensing allows con-
tent to be distributed within the boundaries of copyright
laws, ensuring that creators get credit for their work while
allowing for non-commercial distribution and use of the

7 http://theremin.music.uiowa.edu/MIS.html
8 https://staff.aist.go.jp/m.goto/RWC-MDB/
9 https://magenta.tensorflow.org/datasets/nsynth
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Category Creation Count Release Count
CC 10 22
PD 16 32

COM 9 5
IH 18 5

LIB 9 9
MET 9 0
PER 4 9
SHO 12 12

unclear 17 12

Table 1: Classifications of datasets in ISMIR 2018 [3].
Creation count is the number of datasets in each form as
gathered by dataset creator, while release count refers to
the number of datasets in each form as released for use.
There were a number of papers that were not clear on the
dataset that they used.

copyrighted material [9, 19]. There are six types of Cre-
ative Commons licenses, all applicable worldwide [9, 19].

Before the emergence of Creative Commons in 2002
[8], early MIR research used small and idealized data sets
[24]. This is evident in the proceedings of the first ISMIR
conference held in 2000, which suffered from a lack of
data. Out of the ten papers published in the proceedings,
only six described the datasets used. Out of these six, just
two papers – [21, 30] – used existing databases, while the
other four had to gather data on their own. In comparison
with ISMIR 2000, ISMIR 2018 has expanded not just in
the scope and complexity of MIR research, but also in the
number of datasets referenced, leveraging the resources li-
censed under Creative Commons or in the public domain.

3.3 Popular Databases Today

Some of the most influential datasets are Million Song
Dataset (MSD), RWC and MedleyDB. As of June 2019,
according to Semantic Scholar, these sets were cited 560,
364, and 124 times respectively. 10 Some CC and OPS
datasets such as Jamendo are popular, but their influence
is difficult to quantify because citations are often not ex-
plicitly required. 11 Both MedleyDB and Jamendo rely on
Creative Commons for copyright-free distribution of music
files [7, 20].

In ISMIR 2018 alone, the MSD was used in 11 dif-
ferent papers, making it one of the most frequently cited
datasets in that conference. Released in 2011, the MSD
is a freely available collection of derived Echo Nest fea-
tures and metadata of one million contemporary Western
commercial songs [6]. The dataset can be used along with
7digital to fetch short samples of songs within certain
limitations for free [6].

This lack of audio is not unusual; our investigations
(described in Section 3.1) found that about one-fifth of all

10 Accessed on June 23, 2019
11 https://www.jamendo.com/

datasets used in ISMIR 2018 do not contain any audio files.
Research on this kind of data is limited to the provided fea-
tures (by Echo Nest in the case of MSD), and does not al-
low for the kind of in-depth investigation that audio data
provides. However, the model of collaborating with free,
community-driven datasets as well as commercial compa-
nies has served as a good solution for expanding the scale
of MIR datasets without violating copyright law.

Due to copyright limitations, many MIR researchers
also choose to use music databases that consist exclusively
of public domain works, Creative Commons works, or
those with limited features of the raw audio. The Classical
Music Archive, for instance, is a large repository of clas-
sical music with each track existing in public domain [5].
The pervasiveness of classical music (and dirth of other
genres) in the public domain leads to research being greatly
skewed towards the classical genre with other genres being
explored much less. Although this research remains impor-
tant, it is worth pointing out that the vast majority of music
produced today is not classical, and is not encompassed by
these studies.

Other datasets avoid copyright infringement by omit-
ting material subject to copyright. For instance, Acous-
ticBrainz is a publicly available database that is entirely
composed of features extracted from songs, rather than the
songs themselves [5]. AcousticBrainz extracts features on
the song level, accumulating the values researchers might
want to use and associating them with songs without stor-
ing any audio [5]. Similarly, in 2006, OMEN was proposed
as a system of feature extraction that would take place in
libraries [22]. The proposal indicates a method of commu-
nication between researchers and libraries that would al-
low researchers to request specific features from a specific
song that would then be extracted by librarians. Frame-
works such as OMEN would help researchers circumvent
copyright and the cost of in-house datasets while protect-
ing content created by artists through the separation of mu-
sic from its features to create more available music data.

3.4 Many Datasets; Yet Limited Data & Data Access

Despite the numerous cited datasets, an issue repeatedly
raised within MIR is the existence of bias 12 in data com-
monly used in the field. Bias is frequently inevitable due
to lack of resources. For example, the structural segmenta-
tion task in MIREX 2010 used two datasets with 397 songs
in total almost exclusively biased towards Western popular
music [15]. This was partially because the data were do-
nated by a few universities and were therefore limited in
quantity and diversity. A new annotated dataset with over
1,300 songs covering pop, jazz, classical and world mu-
sic then became available in 2011 [15], and has been used
since in the structural segmentation task of MIREX.

Community and partnership-driven data initiatives have
provided working data access to further MIR research.
However each member of the MIR community faces

12 Bias can exist in terms of geographic location, musical instruments,
music genres, musical styles and musical fundamentals such as key, har-
mony, tempo and rhythm.
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unique hindrances to accessing data. MSD and Creative
Commons currently help researchers bypass these chal-
lenges with innovative solutions, but do not support a data
access framework for the MIR community as a whole.

4. PROPOSALS

As concerns about access and reproducibilty mount, we
offer proposals to increase data access that draw upon re-
sources existing within the MIR community. These sug-
gestions seek to address the crisis of reproducibility while
working within current copyright law.

The three proposals below tackle these issues from three
different parts of the MIR community. The first calls upon
our academic partners to build a distributed MIREX. The
second asks our industrial partners to leverage their exist-
ing infrastructures. The third asks the whole community to
expand our support for dataset creators. Noting that MIR
researchers around the world fall under different copyright
laws given their location, some of these proposals focus
on actions that could be taken in the United States (to the
benefit of the worldwide community), while others provide
potential global solutions.

4.1 Academic Proposal: Distributed MIREX

Our first proposal is a new, decentralized, distributed Mu-
sic Information Retrieval Exchange (MIREX) system that
would build on the success of the existing MIREX infras-
tructure, while leveraging previously untapped resources
to support the development of such a system. Drawing on
the strengths of the proposals in [11–13], this distributed
MIREX seeks to be a middle ground between small, in-
house datasets and large industrial ones – allowing re-
searchers to test algorithms without violating copyright or
relying solely on non-copyrighted music.

This proposed system would distribute the responsibili-
ties and challenges associated with running MIREX among
three institutions, by creating two new MIREX sites in ad-
dition to the current one run by IMIRSEL at University
of Illinois Urbana-Champaign (UIUC). Though the startup
cost of a new MIREX site is substantial (data, servers, and
other infrastructure needs), creating several MIREX loca-
tions is a long-term investment in MIR research and future
researchers. More MIREX locations will increase the com-
munity’s opportunities to access music datasets and allow
for additional comparisons between algorithms.

4.1.1 Current MIREX

MIREX was created by IMIRSEL as a method to make
comparisons between algorithms. The system’s process of
submitting, running, and returning results ensures that the
music data being used is in accordance with US copyright
laws [10]. Though MIREX has been a successful tool for
MIR research, it presents challenges of accessibility and
efficiency. In response to these challenges, several MIR
papers have called on the community for help and have
proposed a distribution of MIREX responsibilities includ-
ing: a web service system to give some algorithm execu-

tion responsibility to the user [13], a distributed task man-
agement [11], a breakdown of the MIR process across labs
participating in the NEMA framework with inter-lab com-
munication [12], and a proposal for a distributed computa-
tion model that leverages open source methods [23].

4.1.2 Logistics of Distributed MIREX

The first step in creating a distributed MIREX is to iden-
tify the additional two sites. We propose that the three sites
would not operate in a coordinated fashion, as suggested
in [11, 12], other than ensuring that the timings of the runs
do not overlap. Undergraduate-focused institutions – com-
mon in the US – are ideal for selection as new MIREX
locations, as these schools tend to have existing systems
for supporting undergraduate student research and student
work-study programs.

Within the MIR community, MegsRadio, under the di-
rection of Douglas Turbull, is an example of an under-
graduate student driven MIR project that thrived at Ithaca
College [36]. MegsRadio ran throughout the year with
students addressing technical issues as well as working
on user-facing elements of their work [36]. Student in-
volvement similar to that in MegsRadio is what we envi-
sion for the proposed distributed MIREX. Additionally, re-
search has suggested that students who do undergraduate
research in STEM may be more likely to pursue a gradu-
ate/professional degree in a STEM field [14]. It stands to
reason that these findings could be extended to MIR, espe-
cially the field’s technical aspects. As such, intentionally
involving more undergraduates in MIR research will help
broaden the field and provide some of the labor required to
maintain a distributed MIREX system.

In addition to the potential of undergraduate workers,
our distributed MIREX’s ability to run algorithms on dif-
ferent datasets multiple times per year could allow re-
searchers the the chance to test their work more than once
a year. Furthermore, this system could lessen the indi-
vidual infrastructure-related responsibility of handling the
“interim data explosion” problem [12] caused by specific
algorithms. More locations could allow for more storage
of features created and generated by algorithms, which the
current MIREX discards due to storage limitations [12].
The task of maintaining not only the data itself, but any
features created by algorithms, would be distributed to var-
ious MIREX sites – thus addressing the infrastructure ca-
pacity issues in the current model. The current system en-
tails engaging in several hours of intensive back and forth
communication with participants about their algorithms as
described in [11]. Instead, this distributed MIREX could
increase access to more diverse and quality datasets over
time as well as foster growth in the MIR community. Addi-
tionally, the creation of the distributed MIREX would com-
pliment open source systems like those proposed in [23] at
ISMIR 2016.

4.2 Industrial Proposal: Researcher API License

As the MIR field has grown, so have industrial research
groups and public-facing technologies. To complement
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our academic proposal, we advocate developing a re-
searcher API license that leverages existing industrial in-
frastructure. This proposed new license would be designed
with the workflow of MIR research practices in mind and
would allow for actions that are completely disjointed from
current developer licenses.

Developer licenses are designed with software devel-
opers in mind and possess inherent restrictions that make
them unsuited for MIR research. For example, a streaming
phone app that allows for streaming from a different plat-
form would be created under a developer license. But ac-
tions such as feature extraction, harmonic-percussive sep-
aration, and sampling are in violation of most developer
licenses (for example, see Section IV.1.a of [33]). These
guidelines leave very little room for MIR research of any
kind, and similar language exists on other APIs’ terms of
use, including Soundcloud’s API terms of use that pro-
hibits the using of any data from their platform (see [32]).

We propose that companies with existing developer li-
censes and API infrastructure (such as Spotify and Sound-
Cloud) create a new license that explicitly allows for com-
mon MIR practices such as feature extraction and explic-
itly prohibits using algorithm outputs for commercial or
listening purposes, but limits casual listening. To create
appropriately narrow language, companies could consult
with IMIRSEL who forged similar agreements to build the
MIREX [10]. Such a license addresses concerns about
data biased towards popular music, as smaller artists can
directly share their work on these streaming platforms.

An immediate and real concern with such a license is
the potential for abuse. To help address this concern, we
propose the creation of an ethics training module similar
to those taken by researchers conducting work using hu-
man and animal subjects (colloquially referred to as IRB
courses). In this ethics training module, MIR researchers
would be educated on the ethical, cultural, and financial
issues at play in using and misusing music data. MIR re-
searchers would also have to complete various assessments
that certify their understanding of these nuanced issues.

This proposal has the potential for global reach as many
companies already operate in several countries, and seeks
to provide access to more diverse data.

4.3 Community Proposal: Usage and Advocacy

In addition to creating a decentralized MIREX system and
an academic API license, the MIR community must also
continue to support the current creators and maintainers
of research datasets, not only through their use but through
advocacy of laws that make them possible in the first place.
The passing of laws such as the Music Modernization Act
in the US (Section 2.1) affect the MIR community, but the
community had no influence on the creation or implemen-
tation of this policy.

Since ISMIR is affected by these policy changes, it is
important for the society to know about the current poli-
cies. It would be beneficial to be involved in the politics be-
hind these laws to ensure that the voices of researchers are
heard. Many research societies have created frameworks

for government communication. The American Associa-
tion for the Advancement of Science (AAAS) has the Cen-
ter for Science Diplomacy, which connects science to pol-
icy and allows the strengthening of connections between
diplomatic and science communities [17]. The American
Mathematical Society (AMS) is a part of the Coalition for
National Science Funding and the Task Force on Ameri-
can Innovation, both of which are alliances of professional,
academic, and scientific organizations that advocate for is-
sues that affect the members and their communities [31].
These alliances and committees ensure that these fields of
research are not negatively affected by policy changes and
that the voices of the societies are heard.

As stated on the ISMIR website, one of the purposes of
the ISMIR Organization is “to cooperate with representa-
tives of other organizations and disciplines toward the fur-
therance of music information retrieval” [25]. To achieve
this goal, it is necessary to cooperate not only with other
research societies but also with the government bodies that
create the infrastructures that MIR researchers work un-
der. The creation of an ad-hoc committee or some other
system focused on current music policy changes and ad-
vocating for music research in policy would benefit the
MIR community. Allying with other music research or-
ganizations such as the American Musicological Society
or the International Musicological Society could also help
facilitate change in music policy for the betterment of re-
search. These systems would benefit both the society and
the growth of the MIR field as a whole.

5. CONCLUSION: TOWARDS A STRONGER
MIR COMMUNITY

We have proposed three possibilities for expanding re-
searcher access to music data. While progress on any of
these three proposals will better the field, simultaneous ef-
forts will lead to a collective impact that is greater than
the sum of each proposal’s individual impacts. For exam-
ple, as new MIREX locations begin, industrial researchers
can consult on how to design and build appropriate in-
frastructure given the school’s constraint. Similarly, in
the US model, undergraduate students working in MIR re-
search groups would make excellent testers for early ver-
sions of companys’ researcher API licenses. Finally, with
the creation of an ad-hoc committee (supported by the IS-
MIR board) representing the interests of MIR researchers
to policy-makers and vice versa, the whole MIR commu-
nity will be better informed about current laws concerning
music. This increased awareness will help to continually
improve both academic and industrial research efforts.

Unequal access to music data has led to field-wide is-
sues including a crisis of reproducibility and concerns
about access. Despite this, future directions and solutions
do exist. By implementing the multi-pronged approach
outlined in this paper, MIR research can adapt to overcome
these obstacles and avoid the looming schism between cor-
porate and independent labs. Moreover, the methods we
have proposed will foster cooperation within the field and
could lead to greater diversity within MIR.
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ABSTRACT

Music Information Retrieval (MIR) tends to focus on the
analysis of audio signals. Often, a single music recording
is used as representative of a “song” even though differ-
ent performances of the same song may reveal different
properties. A performance is distinct in many ways from a
(arguably more abstract) representation of a “song,” “piece,”
or musical score. The characteristics of the (recorded) per-
formance —as opposed to the score or musical idea— can
have a major impact on how a listener perceives music. The
analysis of music performance, however, has been tradition-
ally only a peripheral topic for the MIR research community.
This paper surveys the field of Music Performance Analysis
(MPA) from various perspectives, discusses its significance
to the field of MIR, and points out opportunities for future
research in this field.

1. INTRODUCTION

Music, as a performing art, requires a performer or group
of performers to render a musical score into an acoustic
realization [38]. This is also true for non-classical music:
for example, the ‘score’ might be a lead sheet or only a
structured sequence of musical ideas, a ‘performer’ could
also be a computer rendering audio, and the acoustic realiza-
tion might be represented by a recording. The performance
plays a major role in how listeners perceive a piece of music:
even if the score content is identical for different renditions,
as is the case in western classical music, listeners may prefer
one performance over another and appreciate different ‘in-
terpretations’ of the same piece of music. These differences
are the result of the performers actively or subconsciously
interpreting, modifying, adding to, and dismissing score
information.

Although the distinction between score and performance
parameters is less obvious for other genres of western mu-
sic, especially ones without clear separation between the
composer and the performer, the concept of interpreting
an underlying score is still very much present, be it as a
live interpretation of a studio recording or a cover version
of another artist’s song. In these cases, the freedom of the
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performers’ in modifying the score information is often
much higher than it is for classical music — reinterpreting a
jazz standard can, e.g., include the modification of content
related to pitch, harmony, and rhythm.

Performance parameters can have a major impact on a lis-
tener’s perception of the music [13]. Formally, performance
parameters can be structured in the same basic categories
that we use to describe audio in general: tempo and tim-
ing, dynamics, pitch, timbre [51]. While the importance
of different parameters might vary from genre to genre,
the following list introduces some mostly genre-agnostic
examples to clarify the performance parameter categories:
• Tempo and Timing — the score specifies the general

rhythmic content, just as it often contains a tempo indi-
cator. While the rhythm is often only slightly modified
by performers in terms of micro-timing, the tempo (both
in terms of overall tempo as well as expressive tempo
variation) is frequently seen only as a suggestion to the
performer.

• Dynamics — in most cases, score information on dy-
namics is missing or only roughly defined. The perform-
ers will vary loudness based on their plan for phrasing,
tension, importance of certain parts of the score, and
highlight specific events with accents.

• Pitch — the score usually defines the general pitches
to play, but pitch-based performance parameters include
expressive techniques such as vibrato as well as conscious
or unconscious choices for intonation.

• Timbre — as the least specific category of musical sound,
scores encode timbre parameters often only implicitly
(e.g., instrumentation) while performers can, e.g., change
playing techniques or the choice of specific instrument
configurations (such as the choice of organ registers).

Note that usually the performance to be analyzed is a record-
ing and not a live performance; every recording contains
processing choices and interventions by sound engineer and
editor with potential impact on expressivity — these modi-
fications cannot be separated from the musicians’ creation
and are thus an integral part of what is investigated [58].

The most intuitive form of Music Performance Analysis
(MPA) —discussing, criticizing, and assessing a perfor-
mance after a concert— has arguably taken place since
music was first performed. Early attempts at systematic
and empirical MPA can be traced back to the 1930s with
vibrato and singing analysis by Seashore [90] and the ex-
amination of piano rolls by Hartmann [37]. In the past
two decades, MPA has greatly benefited from the advances
in audio analysis made by members of the Music Infor-
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mation Retrieval (MIR) community, significantly extend-
ing the volume of empirical data by simplifying access
to a continuously growing heritage of commercial audio
recordings. However, while advances in audio content
analysis have had clear impact on MPA, the opposite is
less true. While there have been publications on per-
formance analysis at ISMIR, the major MIR conference,
their absolute number remains comparably small (com-
pare [3, 10, 18, 41, 53, 54, 73, 84, 85, 98, 104, 105] with a
title referring to music performance out of approximately
1800 ISMIR papers overall).

Historically, MIR researchers often do not distinguish be-
tween score-like information and performance information
even if the research deals with audio recordings of perfor-
mances. For instance, the goal of music transcription, a very
popular MIR task, is usually to transcribe all pitches with
their onset times [5]; that means that a successful transcrip-
tion system transcribes two renditions of the same piece
of music differently, although the ultimate goal is to detect
the same score (note that this is not necessarily true for all
genres). Therefore, we can identify a disconnect between
MIR research and performance researchers that impedes
both the evolution of MPA approaches and robust MIR al-
gorithms, slows gaining new insights into music aesthetics,
and hampers the development of practical applications such
as new educational tools for music practice and assessment.

The remainder of this paper is structured as follows.
The next Sect. 2 presents research on the objective descrip-
tion and visualization of the performance itself, identifying
commonalities and differences between performances. The
subsequent sections focus on studies taking these objec-
tive performance parameters and relating them to either the
performer (Sect. 3) or the listener (Sects. 4 and 5). We con-
clude our overview with a summary on applications of MPA
and final remarks in Sect. 6. Note that while performance
research has been inclusive of various musical genres, such
as the Jingju music of the Beijing opera [33, 118], tradi-
tional Indian music [15, 34, 65] and jazz music [1], the vast
majority of studies have been concerned with Western clas-
sical music. Therefore, the remainder of the paper focuses
primarily on Western music.

2. PERFORMANCE MEASUREMENT

A large body of work focuses on a descriptive approach to
analyzing performance recordings. Such studies typically
extract characteristics such as the tempo curve [69, 75, 77]
or loudness curve [82, 90] from the audio and aim at either
gaining general knowledge on performances or comparing
attributes between different performances/performers based
on trends observed in the extracted data.

Several researchers observed a close relationship be-
tween musical phrase structure and deviations in tempo and
timing [71,75,91]. For example, tempo changes in the form
of ritardandi tend to occur at phrase boundaries [50, 69]. A
similar co-occurrence was observed between dynamic pat-
terns and timing [50, 81]. Additionally, Dalla Bella found
the overall tempo influences the overall loudness of a per-
formance [16]. There are also indications that loudness can

be linked to pitch height [81]. While the close relation of
tempo and dynamics to structure has been repeatedly veri-
fied, Lerch did not succeed in finding similar relationships
between structure and timbre properties in the case of string
quartet recordings [50].

Pitch-based performance parameters have been analyzed
mostly in the context of single-voiced instruments. Vibrato
and its rate has, e.g., been studied for vocalists [17, 90]
and violinists [22, 57]. Regarding intonation, Devaney et
al. found significant differences between professional and
non-professional vocalists in terms of the size of the interval
between semi-tones [17].

Other studies use a multitude of performance param-
eters and aim to identify trends over time. For example,
Ornoy and Cohen investigated violin performances of 19th
century repertoire recorded in the past two decades [68].
They found a blend of stylistic approaches among violinists
which questions the traditional distinction made between a
historically informed and a mainstream performance.

The challenges in accessibility and interpretability of the
extracted performance parameters have also led researchers
to work on more intuitive or condensed forms of visualiza-
tion that allow describing and comparing different perfor-
mances beyond the traditional forms of visualization such
as tempo curves [69,75,77] and scatter plots [50]. The “per-
formance worm,” for example, is a pseudo-3D visualization
of the tempo-loudness space that allows the identification
of specific gestures in that space [23, 48]. Sapp proposed
so-called “Timescapes” and “Dynascapes” to visualize sub-
sequence similarities of performance parameters [84, 85].

While most of the studies mentioned above make use of
statistical methods to extract, visualize, and investigate pat-
terns in the performance data, few studies make use of Ma-
chine Learning (ML) for MPA and performance modeling.
However, ML-based approaches are useful for tasks such as
composer classification, discovery of performance rules, or
modeling performance characteristics. Widmer conducted
studies that utilized ML to model expression in musical
performance [109, 111, 112] and to learn simple rules from
performance data with inductive learning [110]. He also
applied ML to identify performers, showing that performer
characteristics can be modeled by ML algorithms [112].

The studies presented in this section often follow an ex-
ploratory approach; extracting various parameters in order
to identify commonalities or differences between perfor-
mances. While this is, of course, of considerable interest,
one of the main challenges is the interpretability of these re-
sults. Just because there is a timing difference between two
performances does not necessarily mean that this difference
is perceptually meaningful. Without this link, however,
results can only provide limited insights into which pa-
rameters and parameter variations are ultimately important.
Another typical challenge in such studies is the reliability
of MIR algorithms for automatic annotations. While the
accuracy of such algorithms has steadily improved over
time, the fact that the majority of studies surveyed here
continue to rely on manually-annotated data implies that
the state-of-the-art algorithms for automatic annotation still
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lack the required degree of accuracy for most tasks.As a
result, most analyses are performed on small sample sizes
possibly leading to poor generalizability of the studies.

3. PERFORMER

While most studies focus on the extraction of performance
parameters or the mapping of these parameters to the lis-
teners’ reception (see Sects. 4 and 5), some investigate the
capabilities, goals, and strategies of performers. A perfor-
mance is usually based on an explicit or implicit perfor-
mance plan with clear intentions [14]. There is, as Palmer
verified, a clear relation between reported intentions and
objective parameters related to phrasing and timing of the
performance [69]. Similar relations between the intended
emotionality and loudness and timing measures were re-
ported by Juslin [42] and Dillon [19–21]. For example,
projected emotions such as anger and sadness show signifi-
cant correlations with high and low tempo and high and low
overall sound level, respectively. Moreover, a performer’s
control of expressive variation has been shown to signifi-
cantly improve the conveyance of emotion. For instance,
a study by Vieillard et al. found that listeners were better
able to perceive the presence of specific emotions in music
when the performer played an expressive (versus mechani-
cal) rendition of the composition [107]. This suggests that
the performer plays a fairly large role in communicating
an emotional “message” above and beyond what is com-
municated through the score alone [44]. In addition to the
performance plan itself, there are other influences shap-
ing the performance. Acoustic parameters of concert halls
such as the early decay time have been shown to impact
performance parameters such as tempo [55, 86, 87]. An-
other interesting area of research is performer error. Repp
analyzed performers’ mistakes and found that errors were
concentrated in mostly unimportant parts of the score (e.g.,
middle voices) where they are harder to recognize [40], sug-
gesting that performers consciously or unconsciously avoid
salient mistakes [80].

There is a wealth of information about performances that
can be learned from performers. The main challenge of this
direction of inquiry is that such studies have to involve the
performers themselves. This limits the amount of available
data and possibly excludes well-known and famous artists,
resulting in a possible lack of generalizability. Depending
on the experimental design, the separation of possible con-
founding variables (e.g., motor skills, random variations,
and the influence of common performance rules) from the
scrutinized performance data can be a challenge.

4. LISTENER

Every performance will ultimately be received and pro-
cessed by a listener. The listener’s meaningful interpreta-
tion of the incoming musical information relies on a so-
phisticated network of parameters. These include not only
external, or semi-objective parameters such as score or
performance-based features, but also “internal” ones such
as those shaped by the culture, training, and history of the

listener. For this reason, listener-focused MPA remains one
of the most challenging and elusive areas of research. How-
ever, to the extent that MPA research depends on purely
perceptual information (e.g., expressiveness) or intends to
deliver perceptually-relevant output (e.g., performance eval-
uation or reception, similarity), it is imperative to achieve
a fuller understanding of the perceptual relevance of the
manipulation and interaction of performance characteristics
(e.g., tempo, dynamics, articulation).

4.1 Musical expression

When it comes to listener judgments of a performance, it
remains poorly understood which aspects are most impor-
tant, salient, or pertinent for the listener’s sense of satis-
faction. According to Schubert and Fabian [89], listen-
ers are very concerned with the notion of “expressiveness”
which is a complex, multifaceted construct. Discovering
which performance characteristics contribute to an expres-
sive performance thus requires dissecting what listeners
deem “expressive” as well as understanding the relation
and potential differences between measured and perceived
performance features. For instance, expressiveness is style-
dependent, meaning that the perceived appropriate level of
expression in a Baroque piece will be different from that
of a Romantic piece — something that has been referred to
as “stylishness” [25, 45]. In addition, there is the perceived
amount of expressiveness, which is considered independent
of stylishness [88]. Finally, Schubert and Fabian distin-
guish a third “layer” of expressiveness which arises from a
performer’s manipulation of various features specifically to
alter or enhance emotion [89]. This is distinct from musical
expressiveness which more generally refers to the manipu-
lation of compositional elements by the performer in order
to be “expressive” without necessarily needing to express a
specific emotion. Practically speaking, however, it may be
difficult for listeners to separate these varieties of expres-
siveness [89, p.293]), and research has demonstrated that
there are interactions between them (e.g., [107]).

4.2 Expressive variation

Several scholars have made significant advances in our un-
derstanding of the role of timing, tempo, and dynamics on
listeners’ perception of music. As noted in Sect. 2, the
subtle variations in tempo and dynamics executed by a
performer have been shown to play a large role in high-
lighting and segmenting musical structure. For instance,
changes in timing and articulation within small structural
units such as the measure, beat, or sub-beat appear to aid in
the communication and emphasis of the metrical structure
(e.g., [4, 29, 70, 93]), whereas changes across larger seg-
ments such as phrases, aid in the communication of formal
structure. In fact, the communication of musical structure
has been suggested as one of the primary roles or functions
of a successful performer (see [43, 83]). For instance, an
experiment by Sloboda found that listeners were better able
to identify the meter of an ambiguous passage when per-
formed by a more experienced performer [93]. Through
measuring the differences in the performers’ expressive
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variations, Sloboda identified dynamics and articulation —
in particular, a tenuto articulation— as the most important
features for communicating which notes were accented.

The extent to which a performer’s expressive variations
align with a listener’s musical expectations appears an im-
portant consideration. For example, because of the pre-
dictable relation between timing and structural segmenta-
tion, it has been demonstrated that listeners find it difficult
to detect timing (and duration) deviations from a “metro-
nomic” performance when the pattern and placement of
those deviations are stylistically typical [66, 77, 78]. Like-
wise, Clarke [11] found pianists able to more accurately
reproduce a performance when the timing profile was “nor-
mative” with regards to the musical structure, and also
found listeners’ aesthetic judgments to be highest for those
performances with the original timing profiles compared
with those that were inverted or altered.

In addition to communicating structural information to
the listener, the role of performance features such as timing
and dynamics have also been studied extensively for their
role in shaping “expressive” performance (see [12,30]). For
instance, a factor analysis in [89] examined the features
and qualities that may be related to perceived expressive-
ness, finding that dynamics had the highest impact on the
factor labeled “emotional expressiveness.” Gingras et al.
studied the relation between musical structure, expressive
variation, and listeners’ ratings of musical tension. They
found that variations in expressive timing were most pre-
dictive of listeners’ tension ratings [31]. While the role of
expressive variation in timbre and intonation have gener-
ally been less studied, there has been substantial attention
given to the expressive qualities of the singing voice where
these parameters are especially relevant (see [96]). For
instance, Sundberg found that a sharpened intonation at
a phrase climax contributed to increased expressiveness
and perceived excitement [97], and Siegwart and Scherer
found that listener preferences were correlated with certain
spectral components such as the relative strength of the
fundamental and higher spectral centroid [92].

The reason why expressive variation is so enjoyable for
listeners remains largely an open research question. As
mentioned above, its role appears to go beyond bolster-
ing the communication of musical structure. As pointed
out by Repp, even a computerized or metronomic perfor-
mance will contain grouping cues [83]. However, one
prominent theory suggests that systematic performance de-
viations (such as tempo) may generate aesthetically pleas-
ing expressive performances in part due to their exhibiting
characteristics that mimic “natural motion” in the physical
world [32, 49, 79, 102, 103] or human movements or ges-
tures [8, 66]. For instance, Friberg and Sundberg suggested
that the shape of final ritardandi matched the the velocity of
runners coming to a stop [27], and Juslin includes “motion
principles” in his model of performance expression [43].

4.3 Mapping and Predicting Listener Judgments

In order to isolate listeners’ perception of features that are
strictly performance-related, several scholars have investi-

gated listeners’ judgments across multiple performances of
the same excerpt of music (e.g., [24, 77]). A less-common
technique relies on synthesized constructions or manip-
ulations of performances, typically using some kind of
rule-based system to manipulate certain musical param-
eters (e.g., [11, 76, 83, 95]), and frequently making use of
continuous data collection measures (e.g., [89]).

From these studies, it appears that listeners (especially
“trained” listeners) are capable not only of identifying per-
formance characteristics such as phrasing, articulation, and
vibrato, but that they are frequently able to identify them
in a manner that is aligned with the performer’s intentions
(e.g., [26, 63]). However, while listeners may be able to
identify performers’ intentions, they may not have the per-
ceptual acuity to identify certain features with the same
precision allowed by acoustic measures. For instance, a
study by Howes [39] showed there was no correlation be-
tween measured and perceived vibrato onset times. This
suggests that there are some measurable performance pa-
rameters that may not map well to human perception. For
example, an objectively measurable difference between a
“deadpan” and “expressive” performance does not neces-
sarily translate to a perceived “expressive” performance,
especially if the changes in measured performance parame-
ters are structurally normative, as discussed in Sect. 4.2.

Given a weak relation between a measured parameter
and listeners’ perception of that parameter, an important
question arises: is the parameter itself not useful in model-
ing human perception, or is the metric simply inappropriate?
For example, there are many aspects of music perception
that are known to be categorical (e.g., pitch) in which case a
continuous metric would not work well in a model designed
to predict human ratings. Similarly, there is the considera-
tion of the role of the representation and transformation of a
measured parameter for predicting perceptual ratings. This
question was raised by Timmers, who examined the repre-
sentation of tempo and dynamics that best predicted listener
judgments of musical similarity [101]. This study found
that, while most existing models rely on normalized varia-
tions of tempo and dynamics, the absolute tempo and the
interaction of tempo and loudness were better predictors.

Clearly, the execution of several performance parameters
are important for the perception of both fine-grained and
large-grained musical structures, and appear to have a large
influence over listeners’ perception and experience of the
emotional and expressive aspects of a performance. Since
the latter appears to carry great significance for both MPA
and music perception research, it suggests that future work
ought to focus on disentangling the relative weighting of the
various features controlled by performers that contribute to
an expressive performance. Since it is frequently alluded
to that a performer’s manipulation of musical tension is
one of the strongest contributors to an expressive perfor-
mance, further empirical research must attempt to break
down this high-level feature into meaningful collections of
well-defined features that would be useful for MPA.

The research surveyed in this section highlights the im-
portance of human perception in MPA research, especially
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as it pertains to the communication of emotion, musical
structure, and creating an aesthetically pleasing perfor-
mance. In fact, the successful modeling of perceptually-
relevant performance attributes, such as those that mark “ex-
pressiveness,” could have a large impact not only for MPA
but for many other areas of MIR research, such as computer-
generated composition and performance, automatic accom-
paniment, virtual instrument design and control, or robotic
instruments and HCI (see, e.g., the range of topics dis-
cussed in [46]). A major obstacle impeding research in this
area is the inability to successfully isolate (and therefore
understand) the various performance characteristics that
contribute to a so-called “expressive” performance from
a listener’s perspective. Existing literature reviews on the
topic of MPA have not been able to shed much light on this
problem, in part because researchers frequently disagree (or
conflate) the various definitions of “expressive.” Careful
experimental design and/or meta-analyses across both MPA
and cognition research, as well as cross-collaboration be-
tween MIR and music cognition researchers, may therefore
prove fruitful areas for future research.

5. PERFORMANCE ASSESSMENT

Assessment-focused MPA deals with modeling how we as
humans assess a musical performance. While this is tech-
nically a subset of listener-focused MPA, its importance
to MPA research and music education warrants a tailored
review of research in this area. Performance assessment is a
critical and ubiquitous aspect of music pedagogy: students
rely on regular feedback from teachers to learn and improve
skills, recitals are used to monitor progress, and selection
into ensembles is managed through competitive auditions.
The performance parameters on which these assessments
are based are not only subjective but also ill-defined, lead-
ing to large differences in subjective opinion among music
educators [100, 108]. Work within Assessment-focused
MPA seeks to increase the objectivity of performance as-
sessments [62], and build accessible and reliable tools for
automatic assessment.

Over the last decade, several researchers have worked
towards developing tools capable of automatic music per-
formance assessment which can be categorized based on:
(i) the parameters of the performance that are assessed, and
(ii) the technique/method used to design these systems.

Tools for performance assessment typically assess one or
more performance parameters which are usually related to
the accuracy of the performance in terms of pitch and timing
[56, 72, 106, 113], or quality of sound (timbre) [47, 74]. In
building an assessment tool, the choice of parameters may
depend on the proficiency level of the performer being
assessed. For example, beginners will benefit more from
feedback in terms of low-level parameters such as pitch or
rhythmic accuracy as opposed to feedback on higher-level
parameters such as articulation or expression.

Assessment tools can also vary based on the granularity
of assessments. Tools may simply classify a performance
as ‘good’ or ‘bad’ [47,64], or grade it on a scale, say from 1
to 10 [72]. Systems may provide fine-grained note-by-note

assessments [74] or analyze entire performances and report
a single assessment score [64, 72].

While different methods have been used to create perfor-
mance assessment tools, the common approach has been to
use descriptive features extracted from the audio recording
of a performance based on which a cognitive model pre-
dicts the assessment. This approach requires availability of
performance data (recordings) along-with human (expert)
assessments for the rated parameters.

The level of sophistication of cognitive models was lim-
ited especially for early attempts; e.g., simple classifiers
such as Support Vector Machines were used to predict
human ratings. In this case, descriptive features became
an important aspect of the system design. In some ap-
proaches, standard spectral and temporal features such as
Spectral Centroid, Spectral Flux, and Zero-Crossing Rate
were used [47]. In others, features aimed at capturing cogni-
tive aspects of music perception were hand-designed using
either musical intuition or expert knowledge [2, 52, 64, 74].
For instance, Nakano et al. used features measuring pitch
stability and vibrato as inputs to a simple classifier to rate
the quality of vocal performances [64]. Several studies
also attempted to combine low-level audio features with
hand-designed feature sets [56, 106, 113], as well as incor-
porating information from the musical score into feature
computation [6, 7, 18, 106].

Recent methods, however, have transitioned towards
using advanced ML techniques such as Sparse Coding
[36, 114, 116] and Deep Learning [72] as a proxy to so-
phisticated cognitive models. Contrary to earlier methods
which focused on extracting cognitively intuitive or impor-
tant features, these techniques input raw data (usually in
the form of pitch contours or spectrograms) and train the
models to automatically learn meaningful features so as to
accurately predict the assessment ratings.

In some ways, this evolution in methodology has mir-
rored that of other MIR tasks: there has been a gradual
transition from feature design to feature learning. Fea-
ture design and feature learning have an inherent trade-off.
Learned features extract relevant information from data
which might not be represented in the hand-crafted fea-
ture set. This is evident from their superior performance at
assessment modeling tasks [72, 114]. However, this supe-
rior performance comes at the cost of low interpretability.
Learned features tend to be abstract and cannot be easily
understood. Custom-designed features, on the other hand,
typically either measure a simple low-level characteristic of
the audio signal or link to high-level semantic concepts such
as pitch or rhythm which are intuitively interpretable. Thus,
such models allow analysis that can aid in the interpretation
of semantic concepts for music performance assessment.
For instance, Gururani et al. analyzed the impact of differ-
ent features on an assessment prediction task and found
that features measuring tempo variations were particularly
critical, and that score-aligned features performed better
than score-independent features [35].

In spite of several attempts across varied performance
parameters using different methods, the important features

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

37



for assessing music performances remain unclear. This
is evident from the average performance of these tools in
modeling human judgments. Most of the presented sys-
tems either work well only for very select data [47] or have
comparably low prediction accuracies [106, 113], rendering
them unusable in most practical scenarios. While this may
be partially attributed to the subjective nature of the task
itself, there are several other factors which have limited
the improvement of these tools. First, most of the mod-
els are trained on small task-specific or instrument-specific
datasets that might not reflect noisy real-world data. This
reduces the generalizability of these models. The problem
becomes more serious for data-hungry methods such as
Deep Learning which require large amounts of data for
training. Second, the distribution of ground-truth (expert)
ratings given by human judges is in many datasets skewed
towards a particular class or value [35]. This makes it chal-
lenging to train unbiased models. Finally, the number of
parameters required to adequately model a performance
results in high dimensional data. While the typical ap-
proach is to train different models for different parameters,
this approach necessitates availability of performance data
along-with expert assessments for all these parameters. In
many occasions, such assessments are either not available
or are costly to obtain.

Given these data-related challenges, an interesting direc-
tion for future research might consider leveraging models
which are successful at assessing a few parameters (and/or
instruments) to improve the performance of models for
other parameters (and/or instruments). This approach, usu-
ally referred to as transfer learning, has been found to be
successful in other MIR tasks [9]. In addition, the ability to
interpret and understand the features learned by end-to-end
models will play an important role in improving assessment
tools. Interpretability of neural networks is still an active
area of research in MIR, and performance assessment is an
excellent test-bed for developing such methods.

6. CONCLUSION

The previous sections outlined insights gained by MPA at
the intersection of audio content analysis, empirical musi-
cology, and music perception research. These insights are of
importance for better understanding the process of making
music as well as affective user reactions to music. Fur-
thermore, they enable a considerable range of applications
spanning a multitude of different areas including systematic
musicology, music education, MIR, and computational cre-
ativity, leading to a new generation of music discovery and
recommendation systems, and generative music systems.
The most obvious application example connecting MPA and
MIR is music tutoring software. Such software aims at sup-
plementing teachers by providing students with insights and
interactive feedback by analyzing and assessing the audio of
practice sessions. The ultimate goals of an interactive mu-
sic tutor are to highlight problematic parts of the students’
performance, provide a concise yet easily understandable
analysis, give specific and understandable feedback on how
to improve, and individualize the curriculum depending on

the students’ mistakes and general progress. Various (com-
mercial) solutions are already available, exhibiting a similar
set of goals. These systems adopt different approaches,
ranging from traditional music classroom settings to games
targeting a playful learning experience. Examples for tu-
toring applications are SmartMusic [59], Yousician [117],
Music Prodigy [99], and SingStar [94].

Performance parameters have a long history being either
explicitly or implicitly part of MIR systems. For instance,
core MIR tasks such as music genre classification and mu-
sic recommendation systems have been utilizing tempo and
dynamics features successfully [28]. Generative models
often require performance data to allow for the rendition of
a convincing output. This obviously includes performance
rendition systems that take a score and attempt to render a
human-like output [60, 67], but it is also important for mod-
els of improvisation such as jazz solos as pitch information
is part of the performance.

Despite such practical applications, there are still many
open topics and challenges that need to be addressed. The
main challenges of MPA have been summarized at the end
of the sections above. The related challenges to the MIR
community, however, are multi-faceted as well. First, the
fact that the majority of the presented studies use manual an-
notations instead of automated methods should encourage
the MIR community to re-evaluate the measures of success
of their proposed systems if, as it appears to be, the outputs
lack the robustness or accuracy required for a detailed anal-
ysis even for tasks considered to be ’solved.’ Second, the
missing separation of score and performance parameters
when framing research questions or problem definitions can
impact not only interpretability and reusability of insights
but might also reduce algorithm performance. If, e.g., a
music emotion recognition system does not differentiate
between the impact of core musical ideas and performance
characteristics, it will have a harder time differentiating
relevant and irrelevant information. Thus, it is essential
for MIR systems to not only differentiate between score
and performance parameters in the system design phase but
also analyze their respective contributions during evalua-
tion. Third, lack of data continues to be a challenge for both,
MIR core tasks and MPA; a focus on approaches for limited
data [61], weakly labeled data, and unlabeled data [115]
could help address this problem..

In conclusion, the fields of MIR and MPA each depend
on the advances in the other field. In addition, music per-
ception and cognition, while not a traditional topic within
MIR, can be seen as an important linchpin for the advance-
ment of MIR systems that depend on reliable and diverse
perceptual data. Cross-disciplinary approaches to MPA
bridging methodologies and data from music cognition and
MIR are likely to be most influential for future research.
Empirical, descriptive research driven by advanced audio
analysis is necessary to extend our understanding of music
and its perception, which in turn will allow us to create
better systems for music analysis, music understanding, and
music creation.
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ABSTRACT

Providing means to assist the user in finding music is one
of the original motivations underlying the research field
known as Music Information Retrieval (MIR). Therefore,
already the first edition of ISMIR in the year 2000 called
for papers addressing the topic of “User interfaces for mu-
sic IR”. Since then, the way humans interact with technol-
ogy to access and listen to music has substantially changed,
not least driven by the advances of MIR and related re-
search fields such as machine learning and recommender
systems.

In this paper, we reflect on the evolution of MIR-driven
user interfaces for music browsing and discovery over the
past two decades. We argue that three major developments
have transformed and shaped user interfaces during this
period, each connected to a phase of new listening prac-
tices: first, connected to personal music collections, intel-
ligent audio processing and content description algorithms
that facilitate the automatic organization of repositories
and finding music according to sound qualities; second,
connected to collective web platforms, the exploitation of
user-generated metadata pertaining to semantic descrip-
tions; and third, connected to streaming services, the col-
lection of online music interaction traces on a large scale
and their exploitation in recommender systems.

We review and contextualize work from ISMIR and re-
lated venues from all three phases and extrapolate current
developments to outline possible scenarios of music rec-
ommendation and listening interfaces of the future.

1. INTRODUCTION

With a history of five years of ISMIR conferences, in 2004,
Downie [11] attempts to define the research field of Mu-
sic Information Retrieval (MIR) as “a multidisciplinary re-
search endeavor that strives to develop innovative content-
based searching schemes, novel interfaces, and evolving
networked delivery mechanisms in an effort to make the

c© Peter Knees, Markus Schedl, Masataka Goto. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Peter Knees, Markus Schedl, Masataka Goto. “In-
telligent User Interfaces for Music Discovery: The Past 20 Years and
What’s to Come”, 20th International Society for Music Information Re-
trieval Conference, Delft, The Netherlands, 2019.

world’s vast store of music accessible to all”. Given the
music industry landscape and how people listen to music
15 years later, this definition has not only stood the test of
time, but also proven to be visionary.

With its origins in Information Retrieval research
(cf. [5]), one of the original motivations underlying MIR
was indeed to develop technology and provide means to as-
sist the user in finding music. As the way humans interact
with technology to access and listen to music has substan-
tially changed since then, user interfaces for music discov-
ery remain to be a pivotal element in MIR research. 1

In this paper, we reflect on the evolution of MIR-driven
user interfaces for music browsing and discovery over the
past two decades—from organizing personal music col-
lections to streaming a personalized selection from “the
world’s vast store of music”. Therefore, we connect major
developments that have transformed and shaped MIR re-
search in general and user interfaces in particular to preva-
lent and emerging listening practices at the time. We iden-
tify three main phases that have each laid the foundation
for the next and review work that focuses on the specific
aspects of these phases.

First, we investigate the phase of growing digital per-
sonal music collections and interfaces built upon intelli-
gent audio processing and content description algorithms
in section 2. These algorithms facilitate the automatic or-
ganization of repositories and finding music in personal
collections, as well as commercial repositories according
to sound qualities. Second, in section 3, we investigate the
emergence of collective web platforms and their exploita-
tion for listening interfaces. The extracted user-generated
metadata often pertains to semantic descriptions and com-
plements the content-based methods that facilitated the de-
velopments of the preceding phase. This phase also con-
stitutes an intermediate step towards exploitation of col-
lective listening data, which is the driving force behind the
third, and ongoing phase, which is connected to streaming
services (section 4). Here, the collection of online music
interaction traces on a large scale and their exploitation in
recommender systems are defining elements.

1 So do interfaces for “active listening,” aiming at increasingly engag-
ing the listener through augmented experiences and allowing also musi-
cally untrained listeners to gain deeper insights into aspects of the music
they are consuming [20]. However, in this work we will not emphasize
these interfaces.
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Extrapolating these and other ongoing developments,
we outline possible scenarios of music recommendation
and listening interfaces of the future in section 5.

2. PHASE 1: CONTENT-BASED MUSIC
RETRIEVAL INTERFACES

Based on the technological advancements in encoding and
compression of audio signals (most notably mp3) together
with the establishment of the Internet as mainstream com-
munication medium and distribution channel, and, in rapid
succession, the development of high capacity portable mu-
sic players in the late 1990s, digital music has not only
stirred up the IT industry, but also initiated a profound
change in the way people “use” music.

At the time, the most popular and conventional inter-
faces for such music access display the list of bibliographic
information (metadata) such as titles and artist names.
When the number of musical pieces in a personal music
collection was not large, music interfaces with the title list
and mere text searches based on bibliographic informa-
tion were useful enough to browse the whole collection to
choose pieces to listen to. However, as the accessible col-
lection grows, such simple interfaces become insufficient,
and new research approaches targeting the retrieval, classi-
fication, and organization of music emerge.

“Intelligent” interfaces for music retrieval became a re-
search field of interest with the developments in content-
based music retrieval [6]. A landmark in this regard
was the development of query by humming systems [31]
and search engines indexing sound properties of loudness,
pitch, and timbre [77] that initiated the emancipation of
music search systems from traditional text- and metadata-
based indexing and query interfaces. While interfaces were
still very much targeted at presenting results in sequen-
tial order according to relevance to a query, in the early
2000s, MIR research proposed several alternatives to facil-
itate music discovery.

2.1 Map-based music browsing and discovery

Interfaces that allow content-based searches for music
retrieval are useful when people can formulate good
queries and especially when users are looking for a
particular work, but sometimes it is difficult to come up
with an appropriate query when faced with a huge music
collection and vague search criteria. Interfaces for music
browsing and discovery are therefore proposed to let users
encounter unexpected but interesting musical pieces or
artists. Visualization of a music collection is one way
to provide users with various bird’s-eye views and com-
prehensive interactions. The most popular visualization
is to project musical pieces or artists onto a 2D or 3D
space by using music similarity. 2D visualizations also
lend themselves to being applied on tabletop interfaces
for intuitive access and interaction, e.g. [30]. The trend of
spatially arranging collections for exploration can be seen
throughout the past 20 years and is still unbroken.

Figure 1. Islands of Music (left) and nepTune (right): mu-
sic browsing interfaces that let a user explore a music col-
lection by using a metaphor of “islands” visualizing self-
organized clusters.

One of the earliest interfaces is GenreSpace [69] that vi-
sualizes musical pieces with genre-specific colors in a 3D
space. Coloring of each piece is determined by automatic
genre classification. The layout of pieces is determined by
principal component analysis (PCA), which projects high-
dimensional audio feature vectors into 3D positions. This
idea is frequently used in other more recent interfaces.

Another early interface called Islands of Music [48]
visualizes musical pieces on a 2D space representing an
artificial landscape. It uses a self-organizing map (SOM)
to arrange musical pieces so that similar pieces are located
near each other. As shown on the left side in Figure 1, it
uses a metaphor of “islands” that represent self-organized
clusters of similar pieces. The denser the regions (more
items in the same cluster), the higher the landscape (up to
“mountains” for very dense regions). Sparse regions are
represented by the ocean. This interface provides three dif-
ferent views corresponding to similarities based on three
aspects: (1) timbre analysis, (2) rhythm analysis, and (3)
metadata like artist and genre. A user can smoothly change
focus from one view to another while exploring how the
organization changes. Several extensions of the Islands of
Music idea were proposed in following years. An aligned
SOM is used by Pampalk et al. in [48] to enable a seamless
shift of focus between clusterings created for different mu-
sical aspects, for instance, between a SOM created only on
rhythm features and one created only on timbre features.
The nepTune interface presented by Knees et al. in [36],
as shown on the right side in Figure 1, enables exploration
of music collections by navigating through a three-
dimensional artificial landscape. Variants include a mobile
version [27] and a larger-scale version using a growing
hierarchical self-organizing map (GHSOM) [10] that
automatically structures the map into hierarchically linked
individual SOMs [57]. Neumayer et al. propose a method
to automatically generate playlists by drawing a curve
on the SOM visualization [47]. Lübbers and Jarke [42]
present a browser employing multi-dimensional scaling
(MDS) and SOM to create 3-dimensional landscapes. In
contrast to the Islands of Music metaphor, they use an
inverse height map, meaning that agglomerations of songs
are visualized as valleys, while clusters are separated by
mountains. Their interface further enables the user to adapt
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Figure 2. Musicream: A music playback interface that lets
a user unexpectedly come across various musical pieces
similar to those liked by the user.

the landscape by building or removing mountains, which
triggers an adaptation of the underlying similarity measure.

Another SOM-based browsing interface is Globe of Mu-
sic [40], which maps songs to a sphere instead of a plane
by means of a GeoSOM [78]. Mörchen et al. [46] em-
ploy an emergent SOM and the U-map visualization tech-
nique [70] to color-code similarities between neighboring
clusters. Vembu and Baumann incorporate a dictionary of
musically related terms to describe similar artists [74].

In the Search Inside the Music application [38], Lamere
and Eck use a three-dimensional MDS projection. Their
interface provides different views that arrange images of
album covers according to the output of the MDS, either in
a cloud, a grid, or a spiral. Vad et al. [71] apply t-SNE [72]
to mood- and emotion-related descriptors, which they infer
from low-level acoustic features. The result of the data
projection is visualized on a two-dimensional map, around
which the authors build an interface to support the creation
of playlists by drawing a path and by area selection.

While the above interfaces focus on musical pieces, in-
terfaces focusing on artists have also been investigated.
For example, Artist Map [73] is an interface that enables
users to explore and discover artists. This interface projects
artists onto a 2D space and visualizes them as small dots
with genre-specific, tempo-specific, or year-specific col-
ors. This visualization can also be used to create playlists
by drawing paths and specifying regions.

Other examples use, e.g., metaphors of a “galaxy” or
“cosmos,” or extend visualizations with additional infor-
mation. MusicGalaxy [65], for example, is an exploration
interface that uses a similarity-preserving projection of
musical pieces onto a 2D galaxy space. It takes timbre,
rhythm, dynamics, and lyrics into account in computing
the similarity and uses an adaptive non-linear multi-focus
zoom lens that can simultaneously zoom multiple regions
of interest while most interfaces support only a single re-
gion zooming. As a similar metaphor, “planetarium” has
been used in Songrium, 2 a public web service for interac-
tive visualization and exploration of web-native music on
video sharing services [23]. It uses similarity-preserving

2 https://songrium.jp

Figure 3. “Reinventing the Wheel” (left) and its applica-
tion on an iPod using the dial for browsing the collection
(right).

projection of pieces onto both 2D and 3D galaxy spaces
and provides various functions: analysis and visualization
of derivative works, and interactive chronological visual-
ization and playback of musical pieces. Instrudive [66]
enables users to browse and listen to musical pieces by
focusing on instrumentation detected automatically. It vi-
sualizes each musical piece as a multicolored pie chart in
which different colors denote different instruments. The
ratios of the colors indicate relative duration in which the
corresponding instruments appear in the piece.

2.2 Content-based filtering and sequential play

When a collection of music becomes huge, it is not feasi-
ble to visualize all pieces in the collection. Other types of
interfaces that visualize a part of the music collection in-
stead of the whole have also been proposed. An example is
Musicream [21], a user interface that focuses on inducing
active user interactions to discover and manage music in
a huge collection. The idea behind Musicream is to see if
people can break free from stereotyped thinking that mu-
sic playback interfaces must be based on lists of song ti-
tles and artist names. To satisfy the desire “I want to hear
something,” it allows a user to unexpectedly come across
various pieces similar to ones that the user likes. As shown
on the right side in Figure 2, disk icons representing pieces
flow one after another from top to bottom, and a user can
select a disk and listen to it. By dragging a favorite disk
in the flow, which serves as the query, the user can eas-
ily pick out other pieces similar to the query disk (attach
similar disks) by using content-based similarity. In addi-
tion, to satisfy a desire like “I want to hear something my
way,” Musicream gives a user greater freedom of editing
playlists by generating a playlist of playlists. Since all op-
erations are automatically recorded, the user can also visit
and retrieve a past state as if using a time machine.

The FM4 Soundpark Player makes content-based
suggestions by showing up to five similar tracks in a
graph-like manner [17] and constructing “mixtapes” from
given start and end tracks [15]. VocalFinder [16] enables
content-based retrieval of songs with vocals that have
similar vocal timbre to the query song.

Visualization of a music collection is not always neces-
sary to develop music interfaces. Stewart et al. [64] present
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an interface that uses only sound auralization and haptic
feedback to explore a large music collection in a two or
three-dimensional space.

The article “Reinventing the Wheel” [51] revealed that
a single-dial browsing device can be a useful interface for
musical pieces stored on mobile music players. The whole
collection is ordered in a circular locally-consistent playlist
by using the Traveling Salesman algorithm so that similar
pieces can be arranged adjacently. The user may simply
turn the wheel to access different pieces. This interface
also has the advantage of combining two different similar-
ity measures, one based on timbre analysis and the other
based on community metadata analysis. Figure 3 shows
the conceptual prototype as well as an extended implemen-
tation on an Apple iPod [60], the most popular mobile lis-
tening device at the time.

3. PHASE 2: COLLABORATIVE AND
AUTOMATIC SEMANTIC DESCRIPTION

While content-based analysis allowed for unprecedented
views on music collections based on sound, interfaces built
solely upon the extracted information were not able to “ex-
plain” the music contained or give semantically meaning-
ful support for orientation within the collections. That is,
while they are able to capture qualities of the sound of the
contained music, they largely neglect human concepts of
music organization, such as (sub-)genres or listening pur-
poses, e.g., during activities like workouts. This informa-
tion is however typically found on the web and ranges from
user-generated tags to unstructured bits of expressed opin-
ions (e.g., forum posts or comments in social media) to
more detailed reviews and encyclopedic articles (contain-
ing, e.g., biographies and discography release histories).
In MIR, this type of data is often referred to as commu-
nity metadata or music context data [35]. These online
“collaborative efforts” of describing music are resulting
in a rich vocabulary of semantic labels and have shaped
music retrieval interfaces towards music information sys-
tems. In parallel, platforms like Last.fm 3 (in this context
better: AudioScrobbler), take advantage of users being in-
creasingly always connected to the Internet and tracking
listening events for the sake of identifying listening pat-
terns and making recommendations, leading to the phase
of automatic playlisting and music recommendation (cf.
section 4). In this section, we focus on tags as a main driver
of MIR research and music interfaces.

3.1 Collaborative platforms and music information
systems

With music related information being ubiquitous on the
web, dedicated web platforms that provide background
knowledge on artists emerge, e.g., the AllMusic Guide,
depending on editorial content. Using new technologies,
such music information systems can, however, also be built
by aggregating information extracted from various sources
using text mining methods [59] or by taking advantage of

3 https://last.fm

Figure 4. Last.fm tags of Led Zeppelin
(source: https://musicmachinery.com/tag/lastfm/)

the “wisdom of the crowd” and building collaborative plat-
form like the above mentioned Last.fm.

A central feature of Last.fm is to allow users to tag their
music, ideally resulting in a democratic ground truth of
what could be considered the semantic dimensions of the
corresponding tracks, cf. Figure 4. However, typical prob-
lems arising with this type of information are noisy and
non-trustworthy information as well as data sparsity and
cold start issues mostly due to popularity biases, cf. [37].

MIR research during this phase has therefore dealt ex-
tensively with auto-tagging, i.e., automatically inferring
semantic labels from the audio signal of a music piece (or
related data), to overcome this shortcoming, e.g., [3,12,33,
44, 63, 68, 76].

Alternative approaches to generate semantic labels in-
clude human workforce. TagATune [39] is a game that
pairs players across the Internet who try to determine
whether they are listening to the same song by typing tags.
In return for entertaining users, TagATune has collected
interesting tags for a database of songs. Other examples
of interfaces that were designed to collect useful infor-
mation while engaging with music are MajorMiner [43],
HerdIt [2], and Moodswings [34] (cf. section 4.1).

A more traditional way to obtain musically informed
labels is to have human experts, e.g. trained musicians,
manually label music tracks according to predefined mu-
sical categories. This approach is followed by the Music
Genome Project, 4 and serves as the foundation of Pan-
dora’s automatic radio stations (cf. section 4).

As a consequence of these efforts, during this phase, the
question of how to present and integrate this information
into interfaces was secondary to the question of how to
obtain it, as will become obvious next.

3.2 Visual interfaces

With the trend towards web-based interfaces, visualization
and map based interfaces integrating semantic information
have been proposed.

MusicRainbow [49] is a user interface for discovering
unknown artists, which follows the above idea of a single-
dial browsing device but features informative visualiza-
tion. As shown in Figure 5, artists are mapped on a circular
rainbow where colors represent different styles of music.

4 https://www.pandora.com/about/mgp
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Figure 5. MusicRainbow: An artist discovery interface
that enables a user to actively browse a music collection
by using audio-based similarity and web-based labeling.

Similar artists are automatically mapped near each other by
using the Traveling Salesman algorithm and summarized
with word labels extracted from artist-related web pages.
A user can rotate the rainbow by turning a knob and find
an interesting artist by referring to the word labels.

The nepTune interface shown in Figure 1 also provides a
mode that integrates text-based information extracted from
artist web pages for supporting navigation in the 3D en-
vironment. To this end, labels referring to genres, instru-
ments, origins, and eras serve as landmarks.

Other approaches explore music context data to visual-
ize music over real geographical maps, rather than comput-
ing a clustering based on audio descriptors. For instance,
Govaerts and Duval extract geographical information from
biographies and integrate it into a visualization of radio
station playlists [22]. Hauger and Schedl extract listening
events and location information from microblogs and visu-
alize both on a world map [25].

Lyrics are also important elements of music. By us-
ing semantic topics automatically estimated from lyrics,
new types of visual interfaces for lyrics retrieval can be
achieved. LyricsRadar [55] is a lyrics retrieval interface
that uses latent Dirichlet allocation (LDA) to analyze top-
ics of lyrics and visualizes the topic ratio for each song
by using the topic radar chart. It then enables a user to
find her favorite lyrics interactively. Lyric Jumper [67] is a
lyrics-based music exploratory web service that enables a
user to choose an artist based on topics of lyrics and find
unfamiliar artists who have similar profile to her favorite
artist. It uses an advanced topic model that incorporates an
artist’s profile of lyrics topics and provides various func-
tions such as topic tendency visualization, artist ranking,
artist recommendation, and lyric phrase recommendation.

4. PHASE 3: RECOMMENDER INTERFACES AND
CONTINUOUS STREAMING

With ubiquitous Internet connection and a development of
computer and entertainment systems to be always online,
personal music collections have lost relevance to many
people, as virtually all music content is available at all
times. In essence, such subscription streaming services
like Spotify, Pandora, Deezer, Amazon Music, or Apple

Music have transformed the music business and music lis-
tening alike.

Central element to these services is the aspect of per-
sonalization, i.e., providing foremost a user-tailored view
onto the available collections of allegedly tens of millions
of songs. Discovery of music is therefore performed by
the system, based on the user profile of past interactions,
rather than by the user herself.

Interfaces for music recommendation can support mu-
sic listening in more personalized ways. Music recom-
mendation typically models personal preferences of users
by using their listening histories or explicit user feed-
back, e.g. [7, 62]. It then generates a set of recom-
mended musical pieces or artists for each user. This rec-
ommendation can be implemented by using collaborative
filtering based on users’ past behaviors and exhibits pat-
terns of music similarity not captured by content-based ap-
proaches [61]. When the playback order of recommended
pieces is important, automatic playlist generation is also
used, e.g. [4, 24, 45].

The main challenges of this type of algorithms are, as
in all other domains of recommender systems, cold start
problems. The approach taken to remedy these are again
to integrate additional information on the music items to
recommend, i.e. facets of content and metadata as applied
in the earlier phases, by building hybrid recommenders on
top of pure collaborative filtering. Additionally, context-
awareness plays an important role, for instance to recom-
mend music for daily activities [75].

An overview over aspects, techniques, and challenges
of music recommender systems can be found in [58].
Therefore, in this section, we do not elaborate on the ba-
sics of music recommender systems but highlight again in-
terfaces that focus on personalization and user-centric as-
pects, as we consider these to be the bridge to future intel-
ligent music listening interfaces.

4.1 Recommender interfaces

Although most related studies have focused on methods
and algorithms of music recommendation and playlist gen-
eration, some studies focus on interfaces.

MusicSun [50] is a user interface for artist recommen-
dation. A user first puts favorite artist names into a “sun”
metaphor, a circle in the center of the screen, and then ob-
tains a ranked list of recommended artists. The sun is visu-
alized with some surrounding “rays” that are labeled with
words to summarize the query artists in the sun. By inter-
actively selecting a ray, the user can look at and listen to
the corresponding recommended artists.

Moodplay [1] is an interactive music recommender sys-
tem that uses a hybrid recommendation algorithm based
on mood metadata and audio content. A user first con-
structs a profile by entering favorite artist names and then
obtains a ranked list of recommended artists. It highlights
those artist positions in a latent mood space visualization,
showing various mood labels. The centroid of profile artist
positions is used to recommend nearby artists. The change
of a user’s preference is interactively modeled by moving
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in this space and its trail is used to recommend artists.
In MoodSwings [34], users try to match each other

while tracing the trajectory of music through a 2D emotion
space. The users’ input provides metadata on the emo-
tional impression of songs as it changes over time.

Recent studies deal with the design of recommender
user interfaces regarding complexity and user control [28]
and the implications of recommender techniques on the
discovery of music in playlist building [32].

4.2 Psychologically-inspired music recommendation

Recently, music recommender research is experiencing a
boost on topics related to psychology-informed recom-
mendation. In particular the psychological concepts of per-
sonality and affect (mood and emotion) are increasingly
integrated into prototypes. The motivation for this is that
while listening to music both personality traits and affec-
tive states have been shown to strongly influence music
preferences [14, 52, 56].

Lu and Tintarev [41] propose a system that re-ranks re-
sults of a collaborative filtering approach according to the
degree of diversity each song contributes to the recom-
mendation list. Since previous studies showed that per-
sonality is most strongly correlated with music key, genre,
and number of artists, the authors implement diversity
through these features and adjust results depending on the
listener’s personality. Fernández-Tobías et al. [13] propose
a personality-aware matrix factorization approach that in-
tegrates a latent user factor describing users’ personality
in terms of the Big Five/OCEAN model (openness, con-
scientiousness, extraversion, agreeableness, and neuroti-
cism) [29]. Deng et al. [9] propose an emotion-aware rec-
ommender for which they extract music listening informa-
tion and emotions from posts in Sina Weibo, 5 a popular
Chinese microblogging service, adopting a lexicon-based
approach (Chinese dictionaries and emoticons). FocusMu-
sicRecommender [79] recommends and plays back musi-
cal pieces suitable to the user’s current concentration level
estimated from the user’s behavior history.

5. THE NEXT PHASE: THE FUTURE OF
INTELLIGENT MUSIC USER INTERFACES

In terms of interfaces, we observe strong trends towards
context-awareness and personalization, also on the level of
individual user and personality traits that should guide the
recommendation process when other sufficient interaction
data is unavailable. The central challenge behind these
facets is to accurately infer the user’s intent in an action
(listening, skipping, etc.), i.e., to uncover the reasons why
humans indulge in music, from the comparatively limited
signal that is received.

On the other hand, we see the development in the realm
of music generation and variation algorithms, which per-
mit to create content based on large repositories of exam-
ples (cf. recent work by Google Magenta 6 [26, 53, 54])

5 http://weibo.com
6 https://magenta.tensorflow.org

and/or with the help of informed rules and templates, e.g.,
for automatic video soundtrack creation or adaptive music
generation in video games marketed by companies such as
Jukedeck 7 or Melodrive, 8 respectively.

In the long run, we expect the border of these domains
to blur, i.e., there will be no difference in accessing ex-
isting, recorded music and music automatically created by
the system tailored to the listener’s needs. More concretely,
as discussed as one of grand challenges in MIR in [19],
we envision music streaming systems that deliver preferred
content based on the user’s current state and situational
context, automatically change existing music content to fit
the context of the user, e.g., by varying instruments, ar-
rangements, or tempo of the track, 9 and even create new
music based on the given setting.

With the current knowledge of streaming platforms
about a user’s preferences, context sensing devices running
the music apps, and first algorithms to variate and generate
content, the necessary ingredients for such a development
seem to be available already.

6. CONCLUSIONS

We identified three phases of listening culture and dis-
cussed corresponding intelligent interfaces. Interfaces per-
taining to the first phase focus on structuring and visu-
alizing smaller scale music collections, such as personal
collections or early digital sales repositories. In terms of
research prototypes, this phase is most driven by content-
based MIR algorithms. The second phase deals with web-
based interfaces and information systems, with a strong
focus on textual descriptions in the form of collaborative
tags. MIR research during this phase therefore deals with
automatic tagging of music and utilization of tag infor-
mation in interfaces. Finally, the third and current phase
is shaped by lean back experiences driven by automatic
playlist algorithms and personalized recommendation sys-
tems. MIR research is therefore shifting towards exploita-
tion of user interaction data, however always with a fo-
cus on integration of content-based methods, community
metadata, user information, and contextual information of
the user. While the former three strategies are typically
applied to remedy cold start problems, integrating context-
awareness is often an additional source thereof.

The trend of personalizing listening experiences leads
us to belief that, in the not too distant future, music listen-
ing will not only be a matter of delivering the right mu-
sic at the right time, but also of generating and “shaping”
the right music for the situation the user is in. We will
therefore see a confluence of music retrieval and (interac-
tive) music generation – with ample challenges for MIR
research ahead.

7 https://www.jukedeck.com
8 https://melodrive.com
9 One of the earliest approaches to customize or personalize existing

music is “music touch-up” [18], where several examples such as Dru-
mix [80] and AutoMashUpper [8] were developed. Lamere’s Infinite Juke-
box (http://infinitejukebox.playlistmachinery.com)
can also be seen as an example toward this direction.
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ABSTRACT

In 1999, Fujishima published Realtime Chord Recogni-
tion of Musical Sound: a System using Common Lisp Mu-
sic. This paper kickstarted an active research topic that has
been popular in and around the ISMIR community. The
field of Automatic Chord Recognition (ACR) has evolved
considerably from early knowledge-based systems towards
data-driven methods, with neural network approaches ar-
guably being central to current ACR research. Nonethe-
less, many of its core issues were already addressed or re-
ferred to in the Fujishima paper. In this paper, we review
those twenty years of ACR according to these issues. We
furthermore attempt to frame current directions in the field
in order to establish some perspective for future research.

1. INTRODUCTION

This year marks the twentieth anniversary of Fu-
jishima’s [17] seminal ACR system. In this work the au-
thor proposed the calculation of a 12-D chroma feature
which gets compared to a dictionary of binary chord tem-
plates. The label of the most similar chord template is then
considered to be the chord output. Fujishima also proposed
exploiting the temporal continuity of chords by smooth-
ing the chromas across time to produce less noisy labels,
and suggested that musical information could be exploited.
This system outline created the framework within which
much of the early research on ACR would happen.

Perhaps the most striking evolution in ACR has been
the move from knowledge-driven to data-driven systems.
Initially, data-driven elements were used as one-for-one re-
placements, or additions, of elements to the framework set
by Fujishima. Examples are more sophisticated chroma
features, learnt Gaussian chord models or HMM-based
temporal models. More recently ACR research has been
dominated by Deep Learning (DL). In DL-ACR the rela-
tionship of tasks and elements becomes blurred as systems
have become more integrated. This is perhaps most ev-
ident in the system of McFee and Bello [40], which ap-
pears superficially to be a singular unit, although closer in-
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spection reveals convolutional filters providing short-term
context, recurrent elements modelling musical language,
chroma, and auxiliary targets for extra musical context. We
therefore consider that the system outline provided by Fu-
jishima is still valid in a discussion of ACR.

ACR systems have developed considerably in these
twenty years and commercial products providing such
functionality have recently been developed. However,
there is still room for improvement. For instance, while
ACR results have continually progressed, complex chords
are still recognised less well than major and minor tri-
ads. Nonetheless, ACR results have improved to the point
where the ambiguity in chord labels is now becoming a
topic of research. Such ambiguity can be introduced by the
chord labels themselves, or may result from different inter-
pretations of chord and melody. An interesting aspect of
modern ACR research derived from user research in com-
mercial products is the prediction of user interpretations in
the presence of ambiguity.

In the rest of this paper we review previous and current
research in ACR. Based on such review, we propose sev-
eral areas that have potential for improvement in ACR. We
first consider the related features and chord models, before
discussing temporal and musical context. We furthermore
consider ambiguity and subjectivity in ACR, and problems
associated with chord vocabularies before concluding.

2. PROBLEM 1: FINDING AN APPROPRIATE
FEATURE REPRESENTATION

The chroma feature has been perhaps the most influen-
tial idea in ACR, and much early ACR research focused
on producing chroma variants. Typically the chroma fea-
ture is calculated by summing the energy of elements of
the same pitch class in a preliminary pitch spectrum fea-
ture. In Fujishima’s paper, and subsequent others, the pitch
feature was calculated by gathering the energy under win-
dows of a spectrogram that are positioned logarithmically
in frequency. Later approaches used a constant-Q trans-
form (CQT) [4] which places windows on a multi-scale
spectrogram, affording higher resolution of low frequen-
cies, at the cost of lower temporal resolution. Such pitch-
based spectra are more compact than linear spectrograms
and afford simple summation in the chroma calculation, a
process referred to as pitch folding. Indeed, pitch folding
of logarithmic spectra into chroma features is perhaps the
most important technical aspect of Fujishima’s paper, as it

54



affords a low-dimensional semantically meaningful feature
that is easily derived. However, the log-frequency spec-
trum may result in corruption of harmonic structure as e.g.
the second overtone of a root note is located in a pitch bin
labelled with the class of its perfect fifth. Such windowing
also results in bins of higher pitch being of large frequency
width, and possibly containing energy from several pitch
class sources. However, even in the presence of such po-
tential sources of error the pitch folded chroma feature has
endured as a staple of ACR.

Many chroma variants have been designed to attempt to
counter the negative effects of pitch folding. In the sim-
plest case, a spectral weighting is employed that lowers
the effect given to higher pitches, which are more likely
to contain misassigned harmonics. Other researchers have
applied extra weight based upon the harmonic structure in
the spectrogram, for instance the harmonic product spec-
trum is windowed and folded in the Enhanced Pitch Class
Profile [34] and in [41]. Alternatively note spectral tem-
plates are employed through convolution [18] and for spec-
tral decomposition [38] although the log-frequency win-
dowed spectrogram has generally prevailed. Other chroma
refinements through pitch feature manipulation have been
proposed. Placing less effect on the relative coefficients
in the pitch feature, thereby inducing a level of timbre-
invariance, is encouraged by regularisation using e.g. log
compression [42] which is seen to be useful for ACR [10].

Researchers have attempted to create chroma with
sharper definition. High-resolution spectral methods such
as parabolic interpretation [18] and spectral reassignment
[27, 46] have been used in order to sharpen a spectrogram
before windowing. Likewise, sharpness of features can
be diminished when a piece is not tuned to the standard
440Hz, and tuning estimation is often performed to counter
this problem [18, 21]. Alternatively, higher dimensional
chroma have been employed to avoid these pitfalls [18,59].

In DL-ACR systems, the network is expected to learn
any necessary weightings or transforms from training on
data. DNNs are often employed as direct classifiers, and
for ACR can be trained with one-hot chord class vectors
[3,14,15,61,68]. Using chroma feature targets has become
a popular design choice in ACR [30,31]. As in more tradi-
tional ACR methods, CQT and other log-frequency spectra
are seen to predominate as input features [24, 30, 40, 61].
Different inputs have occasionally been employed, e.g. the
Harmonic CQT is employed in [64]. Dimensionality re-
duction of input data has been explored with principal
component analysis (PCA) applied to a spectrogram [3]
and to a CQT [68]. It is unclear whether PCA was use-
ful other than for dimensionality reduction, and its related
decrease in computational expense. Tuning is often ig-
nored, possibly with the assumption that the data-driven
systems have the capability to learn to deal with tuning er-
rors. Some exceptions to this are the inputs used in [14,15],
while training data of a CNN-based ACR system is aug-
mented using detuning in [31].

So far there is a lack of comparative evaluation of the
effects of the input feature in DL-ACR, with most papers

instead focussing on the effects of later steps in the pro-
cessing chain. In the particular case where chroma targets
are employed in DL-ACR, the DNN can be seen simply
as a replacement for e.g. tuning, compression, weighting
and pitch folding. It is no surprise that fast convergence
is observed in such DNNs, although rarely reported. Few
alternatives to logarithmic spectra have been considered,
unlike other music processing tasks where raw audio input
observed has been examined [56]. We propose that the use
of linear spectra for DL-ACR should be explored. Linear
spectrograms do come with the caveat that invariance to
pitch-shift is lost, a property that is attractive for use with
CNNs. However, overtones of a given root frequency can
be expected to be found approximately equidistant from
each other in a linear spectrogram, a structure that should
also be extractable. In the log-frequency spectrogram, such
overtone structure is not so simply presented because har-
monics of orders that do not possess an integer base-2 log-
arithm are misassigned in pitch class. One can consider
this a form of information loss that may be detrimental
to ACR, particularly when a large vocabulary of chords
is employed and some exploration of spectrogram-based
training should be undertaken. Alternatively, a multiple in-
put DNN system could be employed using both CQT and
Fourier spectrograms.

3. PROBLEM 2: DEFINING WHAT A CHORD
LOOKS LIKE IN FEATURE SPACE

Chord classification requires models of chords that can be
compared to a given feature such as chroma. Originally,
the use of binary chroma templates for classification was
proposed in tandem with the pitch-folded chroma [17]. In
such a binary chroma template each pitch expected to be
active in a chord is set to one. Comparison of a chroma
vector with a dictionary of binary templates affords a sim-
ple classification approach to chord recognition, with each
chroma vector labelled according to the most similar tem-
plate. Most ACR research has similarly focussed on the
comparison of chroma-based features and chord models.
The most notable early alternative chord feature is the tonal
centroid, or tonnetz, feature [20] which is actually a partial
Fourier Transform of a chroma feature. Binary templates
formed the basis of much early ACR research [21] and
many chroma estimation methods [33, 38] implicitly tar-
geted outputting chroma vectors similar to binary vectors,
a goal that can still be seen in DNNs when chroma tar-
gets are employed [30, 64]. Binary templates possess the
ability to model a chord when there is no representative
data available, and despite their simplicity are often effec-
tive [10]. However, binary templates may be unrealistic
as the effects of misasssignment of harmonics in chroma
features are ignored.

An alternative perspective is to place less emphasis on
manipulating chroma vectors, and create templates that
are more similar to the expected data. A template can
be synthesised as in [48, 50], where chord templates are
formed by summing spectra of several note templates, pa-
rameterised by a number of harmonics and a roll-off factor
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determining the energy in each harmonic [19]. This ap-
proach has largely been overlooked as data-driven methods
that naturally learn models akin to the data became popu-
lar. Early data-driven models learnt chord models from la-
belled chroma features, with several different model types
explored. Perhaps the most common of these have been
multivariate Gaussian (mixture) models, a generative ap-
proach learnt from data, which have been applied in the
context of chroma features [10, 59] and tonal centroid fea-
tures [35], and also in the context of DNN features [24]
Other chroma based classifiers have included support vec-
tor machines [41, 57], which have also been applied to
DNN chroma outputs [68], and random forests [25].

Other research has looked beyond chroma, considering
chord classification on the full pitch spectrum. A linear
full spectrum classifier is applied in [8] while logistic re-
gression is used in [30] where it is seen to improve on a
similar classification applied to chroma features. Such re-
sults indicate some limitations for ACR of the chroma fea-
ture, which may lose useful information in the pitch fold-
ing process. The chroma representation is compact and
octave-invariant, qualities that have allowed templates and
simple Gaussians to be effective in ACR. Such approaches
may be less viable in the context of extra spectral infor-
mation, with data-driven methods more likely to be able to
deal with the extra information coming from the increased
dimensionality. The octave-invariance also prevents the
chroma feature from distinguishing between different in-
versions of a given chord. A bass chroma calculated from
a window on the lower octaves of the pitch feature was in-
troduced in [39] in order to capture inversions. Extending
this, a three windowed chroma with Gaussian models was
proposed in [9] approximating full-spectrum analysis.

In DL-ACR there are different options for training and
classification. Aside from chroma target outputs, DNNs
can also employ more standard black-box classification
vectors where each element denotes the likelihood of a dif-
ferent chord [14, 15, 68] or can even be trained using both
chroma and label targets [3]. Furthermore, chord classifi-
cation with DNNs may be performed using activations of
the penultimate layer of the network as a feature, which
may be passed to a subsequent network [3, 31, 61].

A new perspective is seen in the most recent DL-ACR
methods, which are being trained to learn extra informa-
tion encoded through the use of auxiliary targets. This can
be clearly seen in the works [40] and [64] where alongside
the chroma feature, one-hot feature targets representing the
bass note [40, 64], root note [40], highest pitch note [64]
alongside a distinctive no-chord target [40] have been in-
troduced to network training. Such approaches, which we
call target label engineering should be of benefit in ACR.
More possibilities for auxilary targets may exist. This tar-
get label engineering displays a turnaround in ACR feature
research; where traditionally the focus has been on manip-
ulating features close to the input, it seems that more atten-
tion may now be given to the target labels, and the sorts of
information that ACR researchers might like to extract.

4. PROBLEM 3: THE MISMATCH BETWEEN
PROCESSING RATE AND CHORD RATE

To locate chords in time, feature representations consist
of multiple time-localised frames. The simplest way is
to create features at a constant, but arbitrary rate, which
determines the processing rate of the entire system. This
approach was taken by Fujishima, whose features had a
rate of 3.906 Hz. In this case, it is important to make the
rate high enough, because it effectively imposes a time grid
onto which all chord labels are projected, and making this
grid too coarse leads to misalignment at the chord bound-
aries. Therefore later approaches generally increased this
feature rate to the order of tens of Hz.

The rate of chord changes is typically an order of mag-
nitude higher than the frame rate. Although the exact num-
ber depends on the music piece, the Isophonics dataset
used for MIREX has an average chord change rate of 0.46
Hz for example [52]. Especially in the traditional meth-
ods where the features are processed frame-wise, the high
frame rate compared to the chord rate leads to a high
risk of fragmented chord output. A number of techniques
have therefore been tried to enforce temporal continuity
between frames, starting with a simple smoothing filter.
Fujishima himself used a mean filter, but median [47] fil-
ters have also been used. These smoothing filters can be
applied either to chord probabilities [48] or to the features
themselves [2] to remove noise such as percussive sounds
and non-harmonic melody notes. In the latter case, a chord
model then works on a smoother feature representation,
which indirectly also leads to a less fragmented chord out-
put.

The drawback of blindly applying a smoothing filter is
that chord transitions may be smeared, leading to inaccu-
racy in boundary estimation and will cause short chords to
be smoothed out even if they are very apparent in the sig-
nal. A better method is therefore to consider the chord
matching outputs as the observations of an HMM and
smooth them with the Viterbi algorithm [2, 5, 59]. The
strength of each of the chord candidates is then taken into
account and the diagonal elements of the transition matrix
control the probability of a chord change [2]. The Viterbi
smoothing has been shown to outperform filtering of the
chroma output, and filtering of the feature representation
does not bring any additional benefits [10].

A consequence of using a HMM for smoothing is that
the imposed duration distribution takes the shape of a ge-
ometric distribution, meaning that the shorter a chord, the
more likely it becomes. Since this obviously is not a re-
alistic distribution, the usage of duration-explicit HMMs
has been explored, which allow arbitrary duration distribu-
tions. The shape of the distribution was not found to have
a major influence on the results, however [8].

An advantage of modern, recurrent neural network
(RNN) based approaches is that the chord duration distri-
bution is learnt automatically as part of the chord mod-
elling, without further intervention. RNNs [3] or, more re-
cently, long short-term memory (LSTM) units [16, 61, 64]
are fed the feature frames one by one, but remember previ-
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ous input which can be used in the prediction of the current
frame. With the advent of bidirectional LSTMs [16, 64],
future frames can now also be taken into account.

Feedforward networks do not learn a chord duration dis-
tribution, as they have no memory elements, but achieve
temporal stability by processing multiple time frames at
once instead of isolated frames [22]. The entire local envi-
ronment can then be used to learn the label of the middle
frame, which includes learning to integrate over time and
to avoid short disturbances. A context window of 1.5 s
was found to be optimal in [30]. Of course, convolutional-
recurrent models [40] combine the benefits of both.

Following sporadic usage of conditional random fields
(CRFs) in traditional systems [5], the combination of CRFs
and deep learning is gaining popularity [31, 64]. In this
case, a CRF is stacked onto a neural network as the last
layer to smooth the output, where one advantage is that
they can be trained together for maximum discriminability.

Another way of handling the difference between fea-
ture and chord rates is to reduce the discrepancy from the
start. This can be accomplished by segmenting the time
axis of the feature representation in a musically meaning-
ful way. A first option is to use the output of a beat-
tracker to resample the feature representation onto a beat-
synchronous grid [2, 36, 60]. The underlying assumption
is that chords only change at beat times. The features
can then be smoothed over the inter-beat interval without
risk of blurring the chord boundaries. It has been shown,
however, that beat-synchronous processing may not be ad-
vantageous compared to smoothing the chord output with
an HMM [10]. A potential reason is the reliance of this
method on a correct beat estimation, which was not as
common at the time these experiments were performed as
it is today. A certain benefit of beat-synchronous features
is that the processing rate of systems built around them is
lower (0.33–1 Hz for 60–180 BPM), so they run faster.

A final possibility is to explicitly determine chord
boundaries before attempting to identify the chords they
delineate [13, 20]. This way, the features or chord output
can be maximally smoothed without drawbacks, but deter-
mining a good chord segmentation function is hardly an
easier problem. A recent deep learning approach consists
of two stages [64], the first determines the chord segmen-
tation and triad using a small vocabulary, while the second
stage picks the final chord type from a larger vocabulary.

Going forwards, we note that blind feature segmenta-
tion has been amply used by neural network approaches,
but musically meaningful segmentation has not. Although
one of the advantages of deep learning is that a network
can come up with the most optimal feature representa-
tion itself, making the input to the network more musi-
cally explicit would be worth investigating. Feeding beat-
synchronous features into a network would allow it to learn
chord duration distributions expressed in terms of beats in-
stead of frames, which could be more expressive. Such an
approach would accumulate the errors of the beat tracking
though, so multi-task learning [65] where a single network
jointly learns to predict multiple outputs might be better.

Beat-tracking could be learnt together with chord recog-
nition. In case intermediate features are desired, chroma
could be calculated together with chord segmentation.

5. PROBLEM 4: ACHIEVING LONG-TERM
CONSISTENCY IN CHORD SEQUENCES

Multiple chords in a sequence do not follow each other
randomly, but exhibit strong temporal links. Typical chord
patterns have emerged throughout history, which have been
studied by scholars such that expert knowledge about them
is available [58]. ACR systems have been trying to in-
corporate this knowledge, initially with expert-based ap-
proaches, nowadays driven by data.

Implementation-wise, chord sequence consistency is
mostly dealt with together with duration modelling of a
single chord, as discussed in Section 4. In HMM-based
approaches, the off-diagonal elements of the transition ma-
trix determine where a chord change will lead to, whereas
the diagonal elements influence when it takes place. The
sources of knowledge for chord change information are
different from the ones used for duration though. The dou-
bly nested circle of fifths has been used frequently [2, 49]
(or abused, as it is a model for key similarity) as well as
other expert theories [39, 54].

The chord change probabilities of those probabilistic
models have also been determined through corpus analy-
sis [43, 54], before deep learning approaches became pop-
ular [31, 40, 61, 64, 68]. Typical for deep learning is that
chord changes can be handled together with chord dura-
tion and models (problems 2, 3 and 4) by a single net-
work [40, 64] to maximally exploit their mutual informa-
tion. Nonetheless, some of the proposed approaches find it
beneficial to handle the problems separately [32], in a way
reminiscent of earlier knowledge-based systems.

Taking into account chords beyond the directly adja-
cent ones remains a challenge. A standard HMM can only
model preceding chords indirectly, through chaining bi-
grams, so increasing the Markov order to trigrams and 4-
grams has been tried [26], but their overall improvement
remained small. As for deep learning techniques, the typ-
ical receptive field of feedforward neural networks is too
small (1.5 s for [30]) to contain multiple chord changes and
learn long-term dependencies. Recurrent neural networks
have the theoretical advantage that all previous and/or fu-
ture frames can be remembered, but vanishing gradient
problems restrict their long-term memory in practice [1].
Attention mechanisms, which are used in machine trans-
lating to remember the context of long phrases, are poten-
tial solutions to this problem. The Transformer architec-
ture [63] is one candidate for future exploration.

Since long-term chord dependencies are so hard to take
into account with the aforementioned techniques, a cou-
ple of alternatives have been proposed that rely on musi-
cal structure. Feature representations of a repeated sec-
tion have been averaged in order to make them more sta-
ble [11, 37] and that average has then been used for all in-
stances of that section. A more probabilistic version of
this idea has been explored in a statistical-relational frame-
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work [51]. While these techniques do not exactly use long
term dependencies to improve chord recognition, at least
they ensure that repeated sections are consistent.

6. PROBLEM 5: EXPLOITING RELATIONSHIPS
WITH RELATED MUSICAL CONCEPTS

Chords are just one way of describing musical content.
Other musical concepts such as key, genre, bass or melody
describe different aspects of the same piece of music. Sev-
eral research efforts have incorporated ACR in systems
that recognise multiple musical concepts, jointly or in se-
quence, to exploit the mutual information between them.
We’ve already discussed the use of beat information to ad-
dress Problem 3, so this section focusses on other concepts.

Practically, we see that probabilistic graphical models
such as HMMs [35, 54] or dynamic Bayesian networks
(DBNs) [39] have been the dominant approach so far to
integrate related concepts into ACR. Their inherent modu-
larity is exploited to decompose the probabilistic relations
between concepts into more comprehensive factors.

Arguably the musical concept most related to chords is
the musical key, as the latter also describes the harmony
in a music piece, albeit on a longer temporal scale, i.e. a
key spans multiple chords in sequence. Assigning differ-
ent probabilities to all combinations of keys and chords is
therefore a way to exploit their relationship. These proba-
bilities can be derived from musical knowledge [39, 54] or
data-driven [26, 35, 54]. One advantage of extracting keys
with chords is that the chord sequence can be expressed
relative to the key, in a representation close to functional
harmony analysis, which has been shown to have a higher
information density [58]. The required keys to make this
possible can be derived prior to [26] or jointly with chord
recognition [35, 54]. However, it has not been proven that
using key-independent relative chord representations lead
to improvements in actual chord recognition.

Downbeat is also related to chords in the sense that
chords are more likely to change on downbeats than on
other beats. This link has been exploited by making chord
transition probabilities depend on the metric position of a
beat in a measure. One example is a joint downbeat-chord
system [50] that can deal with different time signatures and
added or deleted beats. Another approach included beat-
dependent chord transitions as part of a larger system that
involves chord inversion and key as well [39], but which is
limited to the 4/4 time signature. In both cases, the proba-
bilities were determined by expert knowledge.

Other relationships between musical concepts can be
exploited in a similar way. Bass notes, for instance, can be
strongly indicative of the chord being played. They have
the advantage of being comparatively easy to identify in
a spectrum and are used as such to inform ACR [62, 67].
A joint key-chord-structure system has been proposed [53]
based on the hypothesis that certain chord sequences are
more likely at the start or end of high-level structures such
as chorus or verse. Finally, different genres have differ-
ent idiomatic chord sequences, so genre-dependent context
modelling has also been examined [34, 44].

None of the recent deep-learning approaches have in-
volved other musical concepts so far. In theory, it would be
possible to identify the key segments of a piece beforehand
and then transpose all segments of all pieces into one sin-
gle key, instead of augmenting the feature representation
as in [22,40]. However, just like feeding beat-synchronous
representations into a network, this would suffer from er-
rors in the preceding key recognition step. Most likely a
better solution would be to create specific networks that
recognise chords together with any of the discussed con-
cepts in a multi-task learning process such as [65]. Unfor-
tunately, data annotated with multiple concepts is even less
available than data that is annotated with just chords.

7. PROBLEM 6: HANDLING AMBIGUITY AND
SUBJECTIVITY

Fujishima’s system was tested using a strongly controlled
setup. His dataset consisted mostly of clean, well-defined
chords produced by an electronic keyboard using three dif-
ferent presets. He furthermore tailored his settings to these
specific sonorities, but noticed that these settings didn’t
translate well to real music. Indeed, when we want to ap-
ply chord recognition to real music, the situation is very
different from a controlled environment.

An enormous variety of music exists that may not even
contain chords. Music can be monophonic, from a musi-
cal tradition that doesn’t know the concept, or polyphonic
without containing chords (e.g. a fugue). Even if chords
are present in a music signal, it can also contain many
sources – such as untuned percussion – that disturb the
perception of a chord in a listener, human or mechanical.
Furthermore, what exactly contributes to a chord is also
ill-defined. The distinction between chord sequence and
melodic line is not clear cut and can be a matter of opin-
ion. Also the granularity of a chord sequence, for instance
whether fast approach chords or anacrusis (pickup) chords
are transcribed, depends on the user or use-case. A final
cause of ambivalence is when chords are only implied, not
audible as such, as with arpeggiated chords for instance.

Because all of these reasons human annotators aren’t in
total agreement when it comes to transcribing chords. The
reported agreement on the root of a chord lies between
76% [29] (4 annotators) and 94% [12] (2 annotators) on
average, but large outliers towards the bottom can appear
in individual files [23, 45]. When comparing algorithmic
output to a single human reference output, it is therefore
hard to tell if any disagreements are valid alternative inter-
pretations or outright errors. Although this phenomenon
has been diagnosed and quantified [23, 45] multiple times
already, final solutions are yet to emerge. The availability
of chord datasets with multiple annotations, such as [45]
(20 songs annotated by 5 persons) and [29] (50 songs an-
notated by 4 persons) is certainly a first step on the way.
That former dataset has been used to learn the idiosyn-
crasies of different annotators and create personalised al-
gorithmic output tailored to their preferences [28]. While it
does provide a means of personalisation, it requires exam-
ple transcriptions for each user, which might not be avail-
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able. Furthermore multiple viewpoint annotations do not
answer the question of whether an algorithmic output dif-
fering from all N viewpoints is plain wrong or the N+1th
valid viewpoint. A different way of evaluating will be nec-
essary for this, but it will probably be hard to scale. Ask-
ing human experts whether an automatic transcription is a
good chord analysis (even if not exactly their own) would
work, but would also mean that every different setting of an
algorithm needs to be evaluated manually. Even by crowd-
sourcing the process, it would be impossible to test multi-
ple parameterisations of a system.

8. PROBLEM 7: CHORD VOCABULARY AND
ASSOCIATED BALANCE PROBLEMS

Fujishima’s system was able to distinguish no less than 27
different chord types, but subsequent systems quickly re-
duced this number to two [2] or four [21] types of triad.
Apart from [39], small vocabulary sizes remained the de-
facto standard until the last few years, with an upward
trend that seems more definitive this time [14, 40].

The necessity of imposing an algorithmic chord vocabu-
lary stems directly from the choice of treating chord recog-
nition as a classification problem. This design choice is
extremely wide-spread, but is not inherently part of the
task. Chord class-free approaches can be envisaged, such
as labelling sets of active chromas, where the complexity is
then shifted towards determining when a chroma is active
(itself potentially a classification problem). A vocabulary-
free model of chords such as proposed in [66] can be used
to label the chroma sets, but only the model in isolation has
been tested so far, not as part of a full ACR system.

A particularity to increasing the classes in ACR is that
the distinction between them becomes smaller the more
classes are added. Especially when triads and tetrads (4-
chroma chords) are mixed, because the set of chromas in
tetrads are a superset of the chromas in their associated
triad. Commonly used flat classification approaches as-
sume disjoint categories, and therefore aren’t an optimal
match for the problem [23]. A form of hierarchical or
alternatively multi-stage classification [64] is one way to
address this problem, but these need to be explored fur-
ther in the future. Different ways of representing target
labels to make classes more orthogonal [7, 40, 64] consti-
tute another type of solution, one in which standard flat
classification algorithms can continue being used. Multi-
ple auxiliary labels are introduced in this approach, which
we called target label engineering in Section 3. Alterna-
tively, multiple distances between chords have been used
as targets [7]. These chord label representations constitute
a modern take on introducing musical knowledge into deep
learning. Where feature engineering tried to shape the au-
dio input into features that were maximally discriminative,
target label engineering aims to do the same working back
from the label output.

A further complication when considering chord labels
as separate classes is that their frequency of occurrence
is strongly unbalanced. For instance, the five most com-
mon chord types account for over 80% of popular music

datasets [6, 64]. This imbalance in chord distribution af-
fects both training data-driven ACR systems and evalua-
tion. For training, new strategies need to be developed to
avoid overemphasising the most frequent classes [16]. In
evaluation, improvements on rare chords are barely visible
when using a metric that reports the percentage of time the
correct chord is found. Discussing performance on multi-
ple levels, with rarer chords separated, is necessary to get
more insight into algorithm performance [55].

Finally, the chord imbalance itself differs from dataset
to dataset. Genre, instrumentation, cultural origin, key and
chord distributions are all linked, and are manifested as a
skew towards certain roots and chord types, as well as vari-
ance in timbre. Since the majority of available annotated
data consists of anglophonic pop music, its representative-
ness is questionable. Until current algorithms are cross-
checked with new datasets containing e.g. Latin, jazz and
metal, their general applicability remains unproven.

9. CONCLUSIONS

In this paper, we discussed 20 years of research on au-
tomatic chord recognition, starting with Fujishima’s pa-
per [17]. Even though modern ACR systems differ
strongly in their proposed technical solutions, we find that
his initial system was very effective at identifying the prob-
lems that arise during the creation of ACR systems. We
therefore compared past and recent solutions thematically
according to these problems, with the intention of inspiring
future work on this topic.

We note a tendency towards tackling the different prob-
lems in ACR as a single integrated approach, in con-
trast to the compartmentalised strategies of the early years.
This evolution follows the move from knowledge-driven
to data-driven approaches. The lack of available training
data in the early years called for knowledge-based sys-
tems, which in turn required systems to be broken down
into smaller components for them to remain comprehensi-
ble. Each component usually dealt with one sub-problem
in isolation. Early data-driven approaches replaced these
knowledge-based components with learnt ones, while re-
taining the modular structure. The arrival of deep learning
permitted to replace all these components by a single sys-
tem that is better at exploiting the interactions between the
ACR problems. Nonetheless, some researchers choose to
keep the modularised approach, to increase interpretability
or to employ specific training data or procedures.

A consequence of moving towards integrated systems,
is that the comparison between them becomes harder. No
general blueprint of a DL-ACR system can be given, as
many approaches compete, and therefore it is difficult to
translate findings of one system to the other or to combine
parts of two systems into one. Without a doubt, more in-
novations in deep learning will make their way to ACR,
which will keep the field moving fast for the foreseeable
future. It is encouraging to see that the specific character-
istics of music are starting to show up in the deep learning
approaches, with musical knowledge guiding the training
procedure and architecture.
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ABSTRACT

Audio-based music classification and tagging is typically
based on categorical supervised learning with a fixed set of
labels. This intrinsically cannot handle unseen labels such
as newly added music genres or semantic words that users
arbitrarily choose for music retrieval. Zero-shot learning
can address this problem by leveraging an additional se-
mantic space of labels where side information about the la-
bels is used to unveil the relationship between each other.
In this work, we investigate the zero-shot learning in the
music domain and organize two different setups of side
information. One is using human-labeled attribute infor-
mation based on Free Music Archive and OpenMIC-2018
datasets. The other is using general word semantic infor-
mation based on Million Song Dataset and Last.fm tag
annotations. Considering a music track is usually multi-
labeled in music classification and tagging datasets, we
also propose a data split scheme and associated evaluation
settings for the multi-label zero-shot learning. Finally, we
report experimental results and discuss the effectiveness
and new possibilities of zero-shot learning in the music do-
main.

1. INTRODUCTION

Audio-based music classification and tagging is a task that
predicts musical categories or attributes such as genre,
mood, instruments and other song quality from music
tracks. Current state-of-the-arts algorithms are based on
supervised learning of deep convolutional neural networks
that directly predict the labels in the output layer [18]. That
is, the neural networks are trained to minimize the predic-
tion errors with regards to the labels. The prediction results
can be used to automatically annotate music tracks or re-
trieve music tracks using the labels as a query word [32].
By the nature of the setting in the supervised learning,
however, the approach allows only a fixed set of word la-
bels in the annotation and retrieval.

c© Jeong Choi, Jongpil Lee, Jiyoung Park, Juhan Nam. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Jeong Choi, Jongpil Lee, Jiyoung Park, Juhan
Nam. “Zero-shot Learning for Audio-based Music Classification and Tag-
ging”, 20th International Society for Music Information Retrieval Confer-
ence, Delft, The Netherlands, 2019.

Zero-shot learning is a learning paradigm that can over-
come this limitation and enables the trained model to pre-
dict unseen labels [12, 20]. For example, it allows the
model to predict newly added music genres after the train-
ing or retrieve songs using a query word that users arbi-
trarily choose. This is possible by utilizing side informa-
tion that derives a separate semantic space from labels. For
example, the side information can be musical instrument
annotation vectors of music genres or word embedding
learned from sentences. The zero-shot learning approach
conducts supervised learning between the semantic space
and audio feature space. Once the mapping between two
embedding spaces is learned, the model can predict unseen
labels. Figure 1 illustrates the concept of zero-shot learning
applied to music classification and tagging.

The zero-shot learning approach was previously applied
to music data [28]. However, they focused on evaluating a
specific semantic embedding method that works for gen-
eral multimedia data rather than delving into zero-shot
learning in the music domain. In this work, we carefully
investigate how the concept of zero-shot learning can be
properly applied to audio-based music classification and
tagging. Specifically, we designed two settings of side in-
formation. One is using human-labeled attribute informa-
tion and the other is using general word semantic infor-
mation. Also, considering a music track is usually multi-
labeled in music classification and tagging datasets, we
propose a data split scheme that yields a comprehensive
list of combinations for seen or unseen audio and labels,
and evaluate them in the various settings. Through the ex-
periments, we show the effectiveness and new possibilities
of zero-shot learning in the music domain.

2. BACKGROUND: ZERO-SHOT LEARNING

Zero-shot learning has been studied mainly for object
recognition in the field of computer vision [34]. They have
attempted to build a model that can recognize novel vi-
sual categories without any associated training samples by
employing a joint embedding space of both images and
their class labels [34]. It was originally inspired by hu-
man’s ability to recognize objects without seeing training
examples or even create new categories dynamically based
on semantic analysis [9]. What enables this semantic ex-
ploitation of unseen images is “information transfer” that
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Figure 1. Overview of zero-shot learning concept applied to music classification and tagging.

applies the knowledge learned in an auxiliary domain to
the main targeted task. Thus, it aims to explore how seen
and unseen images are semantically related based on the
side information.

The types of side information can be largely divided
into two categories [9, 34, 37]. One is human-annotated
attributes of the labels. In the computer vision commu-
nity, there are publicly available human-annotated attribute
datasets such as AWA (Animals With Attributes) [12] and
CUB (Caltech-UCSD Birds-200) [35]. For example, AWA
offers images of 50 animals annotated on 85 attributes as-
sociated with animals characteristics such as “furry” or
“has tail”. These examples may be equivalent to music
genre classification where corresponding attributes are mu-
sical instruments. These attributes can be used as binary
output to train a classifier and infer unseen class based on
similarity measure [2, 12] or to learn their relative strength
[21, 30]. When such explicit attributes data are not avail-
able, the semantic attributes can be learned with hierarchy
of classes or other relationships [14,25,27]. In general, this
attribute-based approach has advantages in interpretability
but requires well-defined attributes and annotation data.

The other type of side information is a general word
semantic space learned from different resources. A com-
monly used choice is neural language models such as
Word2Vec [1, 8, 15, 16, 19, 36] and GloVe [1, 23, 36]. An-
other choice is learning relational semantic embeddings us-
ing pre-defined lexical hierarchy such as WordNet [17,27].
These general semantic spaces have an advantage in that
they have a large set of words in the vocabulary to pre-
dict unseen labels. However, if the target labels have a spe-
cific context, the general semantic space may fail to capture
it [28].

3. DATA SPLIT SCHEME FOR MULTI-LABEL
ZERO-SHOT LEARNING

Many of music classification and tagging datasets have
multiple labels to annotate music tracks. However, zero-
shot learning in the image domain has been treated primar-
ily as a single-label problem, although a few studies have
attempted to address it in multi-label classification [10,14].
An important difference between single-label and multi-

label zero-shot learning is data split scheme for training
and test. In general, in zero-shot learning, both data and
labels are split into seen and unseen sets. In the single-
label setup, the label split can automatically divide the
dataset into training and test sets (Figure 2 (a)). In the
multi-label setup, however, specifying reasonable instance
or label splits is not straightforward.

3.1 Previous Approaches

Most of previous works on multi-label zero-shot learning
are conducted the instance-first split [26]. They first split
instances into train and test, and only used seen labels for
training as shown in the left of Figure 2 (b). In this case,
some of the instances in the train set can have positive an-
notations for unseen labels. As an alternative, the label-first
split was proposed in [33]. They first split labels into seen
and unseen groups, and select training instances to have
no positive annotation for unseen labels and select test in-
stances to have at least positive annotation on unseen labels
as shown in the right of Figure 2 (b). However, in this case,
due to the nature of multi-label data, too many instances
can be assigned to the test set.

Meanwhile, it is an important issue to determine which
split in instance (train and test) or label (seen and unseen)
should be evaluated in measuring zero-shot learning per-
formance. A generalized zero-shot learning evaluation set-
ting is proposed in [37]. It includes both seen and unseen
labels at test time to examine more natural annotation per-
formance compared to use only unseen labels at test time.
In multi-label zero-shot learning, however, the data split
and evaluation settings are still not clear and there is no
agreed consensus yet.

3.2 Proposed Data Split Scheme

We propose a data split scheme and evaluation settings for
multi-label zero-shot learning to measure the performance
in more refined and various settings. The proposed data
split is shown in Figure 2 (c). We first divide labels into
seen (X) and unseen (Y) groups and then split instances
into three groups. The first subset (A) of instances are la-
beled with at least one from seen labels and not labeled
with any of unseen labels. The second subset (B) of in-
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Figure 2. Data split for zero-shot learning

stances are labeled with at least one from each of seen and
unseen labels. Lastly, the third subset (C) of instances are
only labeled with at least one from unseen labels. Then
we create the three setups (including train setup, test setup
for annotation task, and test setup for retrieval task) with
a combination of instance subsets (A, B, and C) and label
subsets (X and Y) as described in Figure 2 (c).

In this configuration, the label-first split can be obtained
when the training set is A-X (a subset where instances are
from A and labels are from X) and the test set is (B+C)-Y
(a subset where instances are from (B+C) and labels are
from Y). Also, the generalized zero-shot learning evalua-
tion setting can be expressed to include not only the Y area
but also the (X+Y) area at test time. We therefore extend
the split and evaluation settings more comprehensively, al-
lowing for many aspects of multi-label zero-shot learning
to be considered.

We take the train setup from A-X, B-X, and (A+B)-X.
The instances in A-X only contain annotations on seen la-
bels and the instances in B-X contain annotations on both
seen and unseen labels. By distinguishing these two areas,
we expect to see the difference in model learning by using
instances with and without annotations in the unseen labels
in multi-label zero-shot learning.

The test setup for the annotation task is made up of com-
binations of B, C, or (B+C) with Y. In addition, combi-
nations of B, C, or (B+C) with (X+Y) can be also con-
sidered to measure generalized zero-shot learning perfor-
mance on the annotation task as explained in the Section
3. The test setup for retrieval task is composed of (B+C)-Y

and (A+B+C)-Y. We can regard (A+B+C)-Y as a case of
generalized zero-shot learning evaluation setting because
the retrieval is performed not only on the instances of un-
seen labels ((B+C) split) but also on instances of seen la-
bels (A split). The C-Y area cannot be formed in the re-
trieval evaluation. The reason for this is that once we split
labels into seen and unseen and then assign overlapping
instances to the B area, we may not guarantee that all the
unseen labels have at least one positive activation on the
instances in the C area.

4. MODEL

4.1 Deep Embedding Model

Zero-shot learning is primarily performed by a compatibil-
ity function that maps multimedia embedding and seman-
tic embedding. The joint embedding methods can be cate-
gorized into learning linear compatibility, nonlinear com-
patibility, intermediate attribute classifier, and their hybrid
[37]. In this work, we focus on learning nonlinear com-
patibility. The model takes audio mel-spectrogram as in-
put rather than audio embedding extracted from pre-trained
model. A convolutional neural network (CNN) module for
audio is learned directly with semantic embedding from
ground truth annotations. Figure 3 illustrates the model ar-
chitecture. The model takes audio from one module and
randomly selected a positive word and a negative word
from the ground truth annotations of the audio via the se-
mantic vector lookup table. Following the previous works
[8, 22], the loss function is chosen as a max-margin hinge
loss as below:

L(A,W ) = max
[
0,∆ −Rel

(
A,W+) + Rel

(
A,W−)]

where ∆ is the margin, W+ denotes the label with positive
annotation for the audio input, and W− denotes the label
with negative annotation. The cosine similarity of the last
hidden layer of the audio module and semantic module is
used as a relevance score [22]:

Rel(A,W ) = Similaritycosine (yA, yW ) =
yTAyW

|yA‖yW |

where yA and yW denote the output of the last hidden
layer for the audio module and the semantic module, re-
spectively.

The mel-spectrogram based audio CNN module is con-
structed with four 1D convolutional layers with a 2D fil-
ter [5,7,13,24]. Each layer is followed by a rectified linear
unit (ReLU) activation and a max pooling layer. We added
a convolutional layer and an average pooling layer on top
of them to construct a fixed-size audio embedding vector
compatible to the semantic module. The semantic module
is constructed by adding a fully connected layer over a se-
mantic embedding (the output of semantic vector lookup
table). In this case, the semantic embedding (or semantic
vector lookup table) can be composed with both human-
annotated attributes data or general word semantic space.
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Figure 3. Deep embedding model for zero-shot learning
using instrument vector space or general word semantic
space.

4.2 Classification Model

The deep embedding model can be used for not only the
zero-shot learning setting but also the conventional multi-
label classification and tagging problem where we train
and evaluate the model with only seen labels. Therefore,
we construct a classification model and compare it with the
deep embedding model to evaluate the learning capability
of the deep embedding model. The classification model is
basically the same as the audio module of the deep em-
bedding model but the output is the binary representation
of the labels. To this end, we added a fully-connected out-
put layer with the size of seen labels on top of the average
pooling layer of the audio module. We used the sigmoid
activation and binary cross-entropy loss for the multi-label
classification.

4.3 Training Details

We extract mel-spectrogram from audio with 128 mel
bins, 1024 size FFT (Hanning window), and 512 size hop
in 22,050 Hz sampling rate. We standardized the mel-
spectrogram across all training data to have zero mean and
unit variance. We randomly selected three seconds of au-
dio chunk (130 frames) as an input size to the CNN mod-
ule. We optimized the model using stochastic gradient de-
scent with 0.9 Nesterov momentum, 0.001 learning rate,
and 1e−6 learning rate decay for all models and datasets.
Our system is implemented in Python 3.5.2, Keras 2.2.2,
and Tensorflow-gpu 1.6.0 for the back-end of Keras. 1

1 The source code is available at https://github.com/
kunimi00/ZSL_music_tagging

Label Split Instance Split

Dataset X (seen) Y (unseen) Total A B C Total

FMA 125 32 157 11606 6935 925 19466
MSD 900 226 1126 199385 188967 18057 406409

Table 1. Data split statistics.

In the test phase, we took the average of the fixed-size
audio embedding vectors over a single music track to ob-
tain a track-level embedding, and made the predictions by
the distance between track-level audio embedding and tag
embedding.

5. EXPERIMENTAL SETTINGS

We apply the proposed data split scheme and the deep em-
bedding model to publicly available music classification
and tagging datasets. We experiment with this in two set-
tings of side information that we discussed in Section 2.
For all the splits, we reserve 10% instances of train set as
a validation set randomly. 2

5.1 Experiment 1: Genre with Instrument Attributes

Musical instrument is one of the most important elements
that determine music genre. Thus, recognizing instruments
in a music track can be a strong cue to predict an unseen
(or unheard) genre (assuming that the predictor learned
the genre from some literature). For this experiment, we
use Free Music Archive (FMA) [6] and OpenMIC-2018
datasets [11]. FMA contains audio files and genre annota-
tions. OpenMIC-2018, which was originally designed for
multiple instrument recognition, has 20 different instru-
ment annotations to the audio files in FMA. We filtered the
audio files to have both genre and instrument annotations.
As a result, 19,466 audio with 157 genre labels and 20 in-
strument annotations are left. Following the proposed data
split scheme, we randomly split 157 labels into 125 seen
and 32 unseen ones. Then, three groups of audio instances
(A, B, C) are created naturally. The statistics of audio and
labels is described in Table 1.

The annotations on 20 different instruments in the
OpenMIC-2018 dataset are labeled as a likelihood mea-
sure summarized from crowd-sourced annotations. They
are regarded as positive if the likelihood value of an in-
strument annotation is larger than 0.5 and, otherwise, neg-
ative. The exact value of 0.5 means that it’s unannotated.
So, we treated positive and negative information inde-
pendently and created 40 dimensional instrument vectors
that can represent both positive and negative information.
The genre to instrument attribute relationship is then con-
structed by accumulating 40 dimensional instrument vec-
tors of the songs according to the genre labels. Finally, we
standardized the instrument vectors to have zero mean and
unit variance. This was used as the semantic vector lookup
table in the learning model.

2 All the data splits are available along with the source code.
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Annotation Task FMA MSD

Train Test AUC-i MAP-i P@1 P@5 P@10 AUC-i MAP-i P@1 P@5 P@10

A-X

B-Y 0.8736 0.5118 0.3465 0.4810 0.5008 0.8559 0.3391 0.3895 0.2944 0.3109
C-Y 0.7917 0.3887 0.1563 0.0813 0.0643 0.8956 0.4536 0.3867 0.4278 0.4403

(B+C)-Y 0.8640 0.4973 0.3333 0.4648 0.4855 0.8593 0.3491 0.3893 0.3060 0.3221
B-(X+Y) 0.8834 0.3524 0.3725 0.2604 0.3056 0.9107 0.2664 0.4653 0.2735 0.2265
C-(X+Y) 0.7958 0.1316 0.0162 0.0841 0.1089 0.9019 0.1594 0.0522 0.1292 0.1449

(B+C)-(X+Y) 0.9207 0.4264 0.4018 0.3540 0.3932 0.9315 0.2842 0.3762 0.2645 0.2504

B-X

B-Y 0.8907 0.5633 0.4099 0.5371 0.5545 0.8679 0.3904 0.4803 0.3481 0.3623
C-Y 0.8144 0.4008 0.2281 0.3556 0.3834 0.8926 0.4814 0.4379 0.4573 0.4674

(B+C)-Y 0.8817 0.5442 0.3885 0.5158 0.5344 0.8700 0.3983 0.4766 0.3576 0.3715
B-(X+Y) 0.9373 0.5142 0.5740 0.4206 0.4778 0.9217 0.2733 0.4462 0.2651 0.2283
C-(X+Y) 0.8414 0.1886 0.0389 0.1494 0.1694 0.8941 0.1389 0.0666 0.1045 0.1231

(B+C)-(X+Y) 0.8872 0.3606 0.3713 0.2881 0.3263 0.9276 0.2509 0.3272 0.2232 0.2147

(A+B)-X

B-Y 0.8864 0.5036 0.3090 0.4748 0.4951 0.8632 0.3563 0.4349 0.3124 0.3278
C-Y 0.8286 0.4224 0.2530 0.3803 0.4064 0.8971 0.4836 0.4405 0.4591 0.4699

(B+C)-Y 0.8796 0.4940 0.3024 0.4636 0.4846 0.8662 0.3674 0.4354 0.3252 0.3402
B-(X+Y) 0.9118 0.4275 0.4784 0.3350 0.3813 0.9231 0.2977 0.5111 0.3094 0.2605
C-(X+Y) 0.8276 0.1923 0.0530 0.1507 0.1738 0.9044 0.1920 0.1016 0.1629 0.1780

(B+C)-(X+Y) 0.9073 0.3812 0.3770 0.3064 0.3445 0.9370 0.2984 0.3987 0.2808 0.2660

Table 2. Zero-Shot learning results for annotation task.

5.2 Experiment 2: General Word Semantic Space

The other type of side information is word embedding
learned from a large-scale text dataset separately from mu-
sic datasets. It can represent words as vectors in a se-
mantic space. We adopted GloVe as a word embedding
model [23]. Instead training it from scratch, we used a
publicly available pre-trained GloVe model 3 . It consists
of 300-dimensional vectors of 19 million vocabularies
trained from documents in Common Crawl data. Since this
can cover a large vocabulary of words, we used a mu-
sic dataset with rich annotations, which is Million Song
Dataset (MSD) with the Last.fm tag annotations [3]. From
the full set of 498,035 tags in the Last.fm annotations, we
filtered the tags that correspond to 2,000 genre/sub-genre
classes contained in Tagtraum genre ontology [29]. We fil-
tered the result (1800 tags) again into 1,126 tags after elim-
inating missing words in the dictionary of the pre-trained
GloVe model. We used 406,409 audio instances annotated
with the refined 1,126 tags. Following the proposed data
split scheme, we randomly split 1,126 tags into 900 seen
and 226 unseen ones, and organized three groups of audio
instances (A, B and C). They are summarized in Table 1.

5.3 Evaluation Metrics

We used the area under the ROC curve averaged over
instance (AUC-i), mean average precision over instance
(MAP-i), and precision at K (P@K) as evaluation metrics
for the annotation task. The retrieval task is evaluated using
the area under the ROC curve averaged over label (AUC-l)
and mean average precision over label (MAP-l).

6. RESULTS

6.1 Multi-label Zero-Shot Annotation

We compare the results of the combination of the proposed
multi-label zero-shot learning split in the annotation task.

3 The Common Crawl model was trained with 42B tokens containing
1.9M vocabulary. https://nlp.stanford.edu/projects/glove/

Data Split FMA MSD

Train Test AUC-l MAP-l AUC-l MAP-l

A-X
(B+C)-Y 0.6793 0.0904 0.6740 0.0279

(A+B+C)-Y 0.6771 0.0392 0.6673 0.0149

B-X
(B+C)-Y 0.7194 0.1280 0.6907 0.0295

(A+B+C)-Y 0.7236 0.0662 0.6843 0.0158

(A+B)-X
(B+C)-Y 0.7314 0.1170 0.6864 0.0310

(A+B+C)-Y 0.7377 0.0518 0.6789 0.0172

Table 3. Zero-Shot learning results for retrieval task.

From Table 2, we can find that training with (A+B) or B
instance set shows better performance than that with A in
general. This indicates that the instances in B give better
supervision over the entire tag set. In the case of test on
C-(X+Y), the MAP-i and P@K scores are very low. This
is because the case is generalized zero-shot learning eval-
uation setting [37] which makes predictions of seen label
even when the ground truth of seen labels have only nega-
tives.

We also see that some results have different trends be-
tween the two datasets. For example, test on B gives bet-
ter results than C on FMA, but the results are opposite to
those on MSD. We suspect that this may be due to differ-
ence in label cardinality, the average number of labels per
instance [31], which can significantly affect performance
in multi-label classification [4]. Specifically, FMA tracks
have cardinality of 1.18 for B-Y and 1.15 for C-Y, whereas
MSD tracks have cardinality of 2.04 in B-Y and only 1.11
in C-Y. This lower cardinality may cause better perfor-
mance in C-Y than B-Y for MSD. However, we need fur-
ther investigation considering differences in datasets and
side information.

6.2 Multi-label Zero-Shot Retrieval

The results of the retrieval task are reported in Table 3.
As in the annotation task, the overall performance is high
when training with (A+B)-X. Also, the test results on
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Data Split FMA MSD

Train Test Model AUC-l AUC-l

A-X B-X
Deep Embedding Model 0.7381 0.7161

Classification Model 0.7250 0.6980

Table 4. Results on retrieval task that compares deep em-
bedding model to classification model. The detail of clas-
sification model is described in Section 4.2.

Query
Top 5 Retrieved Tracks Original Last.fm

(Title / Artist) Annotation

guitar

Iron Acton / psychedelic, experimental,
Beak krautrock, english, bass

Drink Whiskey And Shut up / rock
Brian Setzer

Thar She Blows / party, surf,
The Halibuts surfrock

All Quiet On 34th Street / rock, rocknroll, hardrock,
Eric Burdon And The New Animals screamo, 00s

Gimme Some Lovin’ / 60s, british,
Traffic classicrock, rock

lovely

Eddie My Love / 50s, doowop, oldies,
The Chordettes pop, vocal

Vaya Con Dios / 50s, jazz,
Les Paul & Mary Ford oldies

(I Can’t Help You) I’m Falling Too / country,
Skeeter Davis oldies

Mr. Blue / oldies, 50s, pop,
The Fleetwoods doowop, ballad

I’m Blue Again / blue,
Patsy Cline country

Table 5. Top 5 retrieved tracks for a query word from un-
seen tag subset (‘guitar’) and an arbitrary word (‘lovely’).

(A+B+C)-Y are lower than that on (B+C)-Y. We can regard
the test on (A+B+C)-Y as a generalized zero-shot learning
evaluation setting for the retrieval task. This means that
even for instances that do not have a positive annotation
on unseen label according to the split (instances that were
denoted as A), the evaluation is performed including this
instances so to consider whether the model actually make
a negative prediction on them. Thus, this is a more strict
evaluation setting.

6.3 Deep Embedding Model vs. Classification Model

We also conducted an additional experiment to verify the
performance of the deep embedding model in the conven-
tional multi-label classification and tagging task 4 . Table
4 shows results in the retrieval scenario following previ-
ous work [5, 7, 13, 24]. We can see that the deep embed-
ding model outperforms the classification model on both
datasets. This indicates that associating audio with labels
via the side information is a powerful approach even in the
conventional multi-label classification and tagging task.

4 In this evaluation, some labels were excluded because there are some
labels that have negative annotations for all instances according to the
split.

Smells like teen spirit
Nirvana

Superstition
Stevie Wonder

Theme to Grace / Lament
George Winston

classicrock (unseen) funk (unseen) folk
punk soul instrumental

rock (unseen) pop (unseen) jazz
80s (unseen) jazz piano (unseen)
alternative 80s (unseen) singersongwriter
punkrock blues (unseen) chillout

90s classicrock acoustic
metal 90s (unseen) blues

vintage disco mellow
alternativerock dance chill

Table 6. Top 10 auto-tagging results for examples of well-
known songs including unseen tags during training.

Query General Semantic Space
Zero-shot Embedding

Space

guitar
bass, acoustic, piano, vocals,
violin, percussion, strings,

vocal, music, jazz

instrumental, minimal, rock,
acidrock, progressiverock,
alternative, psychedelic,

folkrock, classicrock, band

lovely
awesome, love, cool, romantic,
relaxing, summer, christmas,

holiday, vintage, soft

relaxing, relax, lovesongs,
easylistening, baby, country,
romantic, easy, americana,

ballad

Table 7. Comparison of top 10 nearest word vectors (out
of 1,126 tags) on general semantic space and the trained
zero-shot embedding space.

6.4 Case Study

We conducted case studies to better understand the perfor-
mance of the zero-shot learning model. Table 6 shows the
results of annotation on several famous music tracks. They
show that the predictions are reasonable for both seen or
unseen tags. Table 5 lists retrieved tracks given a query
word and their original labels. We can see that the results
are reasonable even if we did not use seen tags. Further-
more, we compared the general semantic space of GloVe
model to our trained deep embedding space in Table 7. The
examples show the deep embedding space learns the rela-
tionship between words in a more musically meaningful
way.

7. CONCLUSIONS

In this paper, we showed that zero-shot learning is capa-
ble of associating music audio with unseen labels using
side information. This allow to use a rich vocabulary of
words to describe music, thereby enhancing the experience
of music retrieval or recommendation in a more human-
friendly way. There is a large room to explore for future
work. For example, lyrics can be used as side information
which can be obtained without manual human annotation.
The neural language models can be also trained to contain
more musical context, for example, using text descriptions
of playlists or music articles.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

72



8. ACKNOWLEDGMENT

This work was supported by NAVER Corp.

9. REFERENCES

[1] Zeynep Akata, Scott Reed, Daniel Walter, Honglak
Lee, and Bernt Schiele. Evaluation of output embed-
dings for fine-grained image classification. In Proc. of
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2927–2936, 2015.

[2] Ziad Al-Halah, Makarand Tapaswi, and Rainer Stiefel-
hagen. Recovering the missing link: Predicting class-
attribute associations for unsupervised zero-shot learn-
ing. In Proc. of The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5975–
5984, 2016.

[3] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian
Whitman, and Paul Lamere. The million song dataset.
In Proc. of International Society for Music Information
Retrieval Conference (ISMIR), 2011.

[4] Francisco Charte, Antonio Rivera, María José del Je-
sus, and Francisco Herrera. Improving multi-label clas-
sifiers via label reduction with association rules. In
International Conference on Hybrid Artificial Intelli-
gence Systems, pages 188–199. Springer, 2012.

[5] Keunwoo Choi, György Fazekas, Mark Sandler, and
Kyunghyun Cho. Convolutional recurrent neural net-
works for music classification. In Proc. of the IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 2392–2396, 2017.

[6] Michaël Defferrard, Kirell Benzi, Pierre Van-
dergheynst, and Xavier Bresson. Fma: A dataset for
music analysis. In Proc. of International Society for
Music Information Retrieval Conference (ISMIR),
2017.

[7] Sander Dieleman and Benjamin Schrauwen. End-to-
end learning for music audio. In Proc. of the IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 6964–6968, 2014.

[8] Andrea Frome, Greg S Corrado, Jon Shlens, Samy
Bengio, Jeff Dean, Marc Aurelio Ranzato, and Tomas
Mikolov. Devise: A deep visual-semantic embedding
model. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26,
pages 2121–2129. Curran Associates, Inc., 2013.

[9] Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang
Xue, Leonid Sigal, and Shaogang Gong. Recent ad-
vances in zero-shot recognition: Toward data-efficient
understanding of visual content. IEEE Signal Process-
ing Magazine, 35(1):112–125, 2018.

[10] Yanwei Fu, Yongxin Yang, Tim Hospedales, Tao Xi-
ang, and Shaogang Gong. Transductive multi-label
zero-shot learning. British Machine Vision Association,
2014.

[11] Eric Humphrey, Simon Durand, and Brian McFee.
Openmic-2018: an open dataset for multiple instru-
ment recognition. In Proc. of International Society
for Music Information Retrieval Conference (ISMIR),
2018.

[12] Christoph H Lampert, Hannes Nickisch, and Stefan
Harmeling. Attribute-based classification for zero-shot
visual object categorization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(3):453–
465, 2014.

[13] Jongpil Lee and Juhan Nam. Multi-level and multi-
scale feature aggregation using pretrained convolu-
tional neural networks for music auto-tagging. IEEE
Signal Processing Letters, 24(8):1208–1212, 2017.

[14] Thomas Mensink, Efstratios Gavves, and Cees GM
Snoek. Costa: Co-occurrence statistics for zero-shot
classification. In Proc. of The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2441–2448, 2014.

[15] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. In Proc. of International confer-
ence on Learning Representations (ICLR), 2013.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages
3111–3119, 2013.

[17] George A Miller. Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41,
1995.

[18] Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu
Chou, and Yi-Hsuan Yang. Deep learning for audio-
based music classification and tagging: Teaching com-
puters to distinguish rock from bach. IEEE Signal Pro-
cessing Magazine, pages 41–51, 2019.

[19] Mohammad Norouzi, Tomas Mikolov, Samy Bengio,
Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S
Corrado, and Jeffrey Dean. Zero-shot learning by con-
vex combination of semantic embeddings. In Proc. of
International conference on Learning Representations
(ICLR), 2013.

[20] Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton,
and Tom M Mitchell. Zero-shot learning with semantic
output codes. In Advances in neural information pro-
cessing systems, pages 1410–1418, 2009.

[21] Devi Parikh and Kristen Grauman. Relative attributes.
In International Conference on Computer Vision
(ICCV), pages 503–510. IEEE, 2011.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

73



[22] Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo
Ha, and Juhan Nam. Representation learning of mu-
sic using artist labels. In Proc. of International Society
for Music Information Retrieval Conference (ISMIR),
pages 717–724, 2018.

[23] Jeffrey Pennington, Richard Socher, and Christopher
Manning. Glove: Global vectors for word represen-
tation. In Proc. of the 2014 conference on empiri-
cal methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[24] Jordi Pons, Thomas Lidy, and Xavier Serra. Experi-
menting with musically motivated convolutional neu-
ral networks. In Proc. of the International Workshop
on Content-Based Multimedia Indexing (CBMI), pages
1–6, 2016.

[25] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt
Schiele. Learning deep representations of fine-grained
visual descriptions. In Proc. of The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 49–58, 2016.

[26] Zhou Ren, Hailin Jin, Zhe Lin, Chen Fang, and Alan
Yuille. Multiple instance visual-semantic embedding.
In Proc. of the British Machine Vision Conference
(BMVC), volume 1, page 3, 2017.

[27] Marcus Rohrbach, Michael Stark, György Szarvas,
Iryna Gurevych, and Bernt Schiele. What helps where–
and why? semantic relatedness for knowledge trans-
fer. In Proc. of The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 910–917.
IEEE, 2010.

[28] Ubai Sandouk and Ke Chen. Multi-label zero-shot
learning via concept embedding. arXiv preprint
arXiv:1606.00282, 2016.

[29] Hendrik Schreiber. Genre ontology learning: Compar-
ing curated with crowd-sourced ontologies. In Proc. of
International Society for Music Information Retrieval
Conference (ISMIR), pages 400–406, 2016.

[30] Krishna Kumar Singh and Yong Jae Lee. End-to-end
localization and ranking for relative attributes. In Euro-
pean Conference on Computer Vision, pages 753–769.
Springer, 2016.

[31] Grigorios Tsoumakas and Ioannis Katakis. Multi-label
classification: An overview. International Journal of
Data Warehousing and Mining (IJDWM), 3(3):1–13,
2007.

[32] Douglas Turnbull, Luke Barrington, David Torres, and
Gert Lanckriet. Semantic annotation and retrieval of
music and sound effects. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 16(2):467–
476, 2008.

[33] Qian Wang and Ke Chen. Multi-label zero-shot human
action recognition via joint latent embedding. arXiv
preprint arXiv:1709.05107, 2017.

[34] Wei Wang, Vincent W Zheng, Han Yu, and Chunyan
Miao. A survey of zero-shot learning: Settings, meth-
ods, and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2):13, 2019.

[35] Peter Welinder, Steve Branson, Takeshi Mita, Cather-
ine Wah, Florian Schroff, Serge Belongie, and Pietro
Perona. Caltech-UCSD birds 200. 2010.

[36] Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh
Nguyen, Matthias Hein, and Bernt Schiele. Latent em-
beddings for zero-shot classification. In Proc. of The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 69–77, 2016.

[37] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-
shot learning - the good, the bad and the ugly. In Proc.
of The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), July 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

74



LEARNING NOTATION GRAPH CONSTRUCTION FOR
FULL-PIPELINE OPTICAL MUSIC RECOGNITION

Alexander Pacha
Institute of Information Systems
Engineering, TU Wien, Austria

alexander.pacha@tuwien.ac.at

Jorge Calvo-Zaragoza
Pattern Recognition and Artificial

Intelligence Group
University of Alicante, Spain
jcalvo@dlsi.ua.es

Jan Hajič jr.
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ABSTRACT

Optical Music Recognition (OMR) promises great bene-
fits to Music Information Retrieval by reducing the costs of
making sheet music available in a symbolic format. Recent
advances in deep learning have turned typical OMR obsta-
cles into clearly solvable problems, especially the stages
that visually process the input image, such as staff line re-
moval or detection of music-notation objects. However,
merely detecting objects is not enough for retrieving the
actual content, as music notation is a configurational writ-
ing system where the semantic of a primitive is defined by
its relationship to other primitives. Thus, OMR systems
must employ a notation assembly stage to infer such re-
lationships among the detected objects. So far, this stage
has been addressed by devising a set of predefined rules
or grammars, which hardly generalize well. In this work,
we formulate the notation assembly stage from a set of de-
tected primitives as a machine learning problem. Our no-
tation assembly is modeled as a graph that stores syntactic
relationships among primitives, which allows us to cap-
ture the configuration of symbols in a music-notation docu-
ment. Our results over the handwritten sheet music corpus
MUSCIMA++ show 95.2% precision, 96.0% recall, and
an F-score of 95.6% in establishing the correct syntactic
relationships. When inferring relationships on data from a
music object detector, the model achieves 93.2% precision,
91.5% recall and an F-score of 92.3%.

1. INTRODUCTION

Optical Music Recognition is the field of research that in-
vestigates how to read music notation in documents com-
putationally. This technology enables many computational
tasks that, otherwise, could not be performed directly on
the music sources themselves [17]. One interesting appli-
cation of OMR is concerned with reconstructing the notes
encoded in the music-notation document, also referred to

c© Alexander Pacha, Jorge Calvo-Zaragoza, Jan Hajič jr..
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Alexander Pacha, Jorge Calvo-
Zaragoza, Jan Hajič jr.. “Learning Notation Graph Construction for Full-
Pipeline Optical Music Recognition”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

as replayability [22]. In particular, the objective of the re-
playability application is to recover the pitches, onsets, du-
rations, and velocities of notes from a document and ex-
port them into a symbolic representation. This symbolic
representation—e.g., a MIDI file—is already a very useful
abstraction of the music itself and allows for plugging in a
wide range of music information retrieval tools. However,
despite prolonged efforts, the replayability application is
still under research [4, 7, 16, 36].

Given the wealth of information that is contained in a
music score, the task of decoding its content is usually ad-
dressed by dividing the process into smaller stages that rep-
resent limited challenges. The general pipeline, proposed
first by Bainbridge and Bell [3] and later refined by Re-
belo et al. [29], is considered a de-facto standard, which
organizes the process into four main blocks: i) preprocess-
ing, which works over the input image to ease further steps
and make the system more robust; ii) music object detec-
tion, which is in charge of retrieving and classifying all
objects and glyphs of the image; iii) notation assembly,
which must infer the relationships among the detected ob-
jects to reconstruct the music notation itself; and iv) encod-
ing, which exports the symbolic reconstruction into the de-
sired format, typically MIDI for replayability or an XML-
based encoding such as MusicXML [15] or MEI [19] for
further computational processing.

As our starting point towards completing the OMR
pipeline, we assume that the music object detection stage
can be solved reliably, which allows us to investigate how
to deal with the later stages. In this paper, we want to focus
in particular on the third stage, which is responsible for the
notation assembly. Although previous work exists, most
approaches are based on predefined rules that hardly gen-
eralize, and that only work for a limited set of scenarios.
In contrast, we propose a well-principled machine learning
approach, which addresses the problem in a generalizable
way, provided there is convenient training data.

2. RELATED WORK

Most literature on OMR focuses on the first stages of the
pipeline. This comes as no surprise because if one strug-
gles with detecting music objects in an image reliably, it
is understandable that subsequent stages that build on top
of that are often neglected. With the appearance of deep
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learning in OMR, however, many steps that traditionally
produced suboptimal results, such as the staff-line removal
or symbol classification, have seen drastic improvements
[14, 26] and are no longer considered obstacles for OMR
development.

Deep learning also caused some steps to become obso-
lete or collapse into a single (bigger) stage. For instance,
the music object detection stage, which was traditionally
separated into segmentation plus classification stages, is
currently addressed in a single step. Convolutional neu-
ral networks have been shown to be able to deal with the
music object detection stage holistically, without having to
remove staff lines at all [25]. A compelling advantage is
the capability of these models to be trained in a single step
by merely providing pairs of images and positions of the
music objects to be found, eliminating the preprocessing
step altogether [24, 35]. This issue has been the subject
of intense recent research. A comparison of existing ap-
proaches to holistic music object detection is presented in
the work of Pacha et al. [27].

Since the beginning of the OMR research, there have
been attempts to complete the full pipeline, including the
notation assembly stage. Below, we introduce some par-
ticular proposals to perform this stage that can be found in
the existing literature. They can be broadly divided into
grammar-based approaches, and approaches that rely on
heuristics and pre-defined rules.

2.1 Grammar-based approaches

Formal grammars represent the most widely used descrip-
tion of music notation. This feels natural, given that music
notation has syntactic rules and hierarchical structures that
invite such a formalization. These grammars are manually
built to describe the expected relationships among music-
notation objects and then used to reconstruct the music no-
tation from the detected primitives [1–3, 5, 6, 30, 33]. The
2D nature of music notation also inspired graph grammars,
as in the work of Fahmy and Blostein [12]. A prominent
example of this approach is the DMOS system, proposed
by Coüasnon et al. [8,9], which uses a definite clause gram-
mar for describing the relations between graphical objects
on two levels: a graphical one that assists the recognition
of symbols and a syntactic one, which introduces the mu-
sical semantics into the process.

2.2 Heuristical approaches

The other set of approaches relies on ad hoc rules for the
music notation at hand. This includes assumptions about
the configuration and position of the occurring primitives
to reconstruct composite symbols and the notation graph
[10, 23, 28, 34]. Rossant et al. [31] additionally consid-
ered fuzzy modeling, which allows for self-correction dur-
ing the recognition [32]. Their system evaluated different
hypotheses of recognized symbols to verify the compati-
bility between them.

3. NOTATION ASSEMBLY

The related works clearly show a lack of machine learning
approaches. This work aims to fill that gap, by propos-
ing a formulation of the notation assembly stage based on
machine learning models. The advantage of such models
is that they provide greater flexibility since they can vary
their behavior by just changing the provided training set.
This is especially interesting for OMR, where there is a
great diversity of scenarios depending on the epoch or type
of composition of the music scores.

The conventional OMR pipeline foresees that the nota-
tion assembly stage infers the relationships among previ-
ously detected music objects to retrieve the necessary in-
formation to infer the sequence of notes and rests.

Our approach understands that music notation can be
modeled as a directed graphG = (V, T ), hereafter referred
to as Music Notation Graph (MuNG). V represents the set
of vertices, where ζ(v), v ∈ V is the label associated with
a vertex. T represents the set of directed edges, such that
ti = (v1, v2), ti ∈ T, v1, v2 ∈ V denotes an edge from
vertex v1 to vertex v2. The primitives that make up the
music notation, such as noteheads or stems, are modeled
as vertices of this graph, while the relationships between
these symbols are modeled by the edges. In our MuNG,
the edges are not labeled, but there are two types of rela-
tionships:

• Syntactic edges that relate elements syntactically.
This includes relationships between primitives that
make up a composite symbol, such as an eighth note,
which consist of a notehead, a stem, and a flag or
beam as well as general relationships, e.g., between
an accidental and the notehead that is affected by it.

• Precedence edges that specify the temporal order be-
tween notes. In most cases, the position on the hori-
zontal axis is sufficient to infer this kind of relation-
ship; however, for polyphonic music, a more sophis-
ticated mechanism is needed to handle ambiguous
situations.

We can, therefore, define the set of edges as T = S∪P ,
where S is the set of edges that define the syntactic rela-
tionships and P is the set of edges that define the prece-
dence relationships. A graphical representation of MuNG
is shown in Fig. 1. The primary goal of our work is to train
a machine learning model to construct such a MuNG G
from a music score image.

4. LEARNING MUSIC NOTATION GRAPH
ASSEMBLY

There are existing algorithms that are capable of dealing
with the input image and retrieving a set of detected music-
notation primitives. In other words, these algorithms pro-
cess the input and provide the set of vertices V , along with
its associated labels and bounding-boxes. In order to com-
plete the OMR pipeline for replayability, we also need to
recover the set of edges T .
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Figure 1: Graphical representation of a Music Notation
Graph in a selected excerpt of music notation: vertices
are highlighted with transparent yellow bounding boxes
around the music-notation primitives, syntactic edges are
shown as transparent cyan lines, and precedence edges
are shown as transparent purple lines connecting the note-
heads.

We propose a principled way of inferring T without re-
sorting to a set of fixed rules but using machine learning.
Our system learns to establish these relationships from a
conveniently annotated training set so that the rules are im-
plicitly modeled by the machine learning model.

The edges that relate vertices of the set T have an un-
labeled binary nature; i.e. for each pair of vertices, a rela-
tionship either exists or not. Formally speaking, the infer-
ence of these relationships can be formulated as a function
f : V × V → {0, 1}. However, given their different na-
ture, the set of edges S and P are inferred by independent
models. To learn the functions fS and fP , for the edges
of S and P , respectively, we propose to train binary classi-
fiers that receive two vertices and predict whether such re-
lationship must be established or not. To do so, one would
have to estimate the potential relationship between each
pair of symbols, which entails high computational costs.
However, it is obvious that most of these relationships are
unfeasible. Since the music object detection stage also re-
trieves some associated information, such as the label ζ(v)
associated to each vertex and the bounding box of that ob-
ject in the input score image, we can use this information
to filter edges by two criteria:

1. An edge is only feasible if the distance between the
bounding boxes of their vertices falls below a certain
threshold t. In other words, two vertices that are too
far apart cannot be related.

2. An edge is only feasible if the labels of its associ-
ated vertices are “compatible”, e.g., a notehead with
a stem. This eliminates a large number of incom-
patible combinations, such as an edge between an
accidental and a rest. The compatibility map is a
fixed list of vertex pairs that, according to the syntax
of modern music notation, can hold a relationship to
each other.

Then, given two vertices v1 and v2, for which their edge
is declared feasible, we train a deep convolutional neural
network to predict whether there must be an edge from v1
to v2 or not. We generate a multi-channel image with a
fixed size that serves as input features for the neural net-
work, which consists of:

• Channel 1: the patch of the input score image that is
centered at the objects represented by v1 and v2.

• Channel 2: the binary mask of the object v1

• Channel 3: the binary mask of the object v2

The required information to generate these multi-
channel images can be obtained from the bounding boxes
of v1 and v2, which are expected to be generated during
the preceding music object detection stage. Note, that the
masks for channel 2 and 3 are obtained from the bound-
ing boxes and the underlying image, which means that
the masks can (partially) include other objects as well un-
less the exact masks are provided via pixelwise segmenta-
tion [16, 35].

The network is then fed with this 3-channel image and
trained to predict 1 if there should be a relationship be-
tween the vertices, and 0 otherwise. Visualizations of the
input images are given in Fig. 2.

4.1 Dataset

To carry out our experiments we need a corpus, which
has annotations for both the individual symbols as well
as their relationships. Currently, the only publicly avail-
able dataset which fulfills this requirement is the MUS-
CIMA++ dataset [18] of handwritten music notation. It
provides symbol-level annotations as well as relationship
annotations for 140 out of 1 000 images from the CVC-
MUSCIMA dataset [13]. The MUSCIMA++ dataset con-
tains 91 254 annotated symbols, consisting of both nota-
tion primitives and higher-level notation objects, such as
key signatures or time signatures as well as 82 247 explic-
itly marked relationships between symbol pairs.

Unfortunately, the precedence relationships between
notes are not included in the MUSCIMA++ dataset, so our
experiments consider only the syntactic edges. However,
the formulation and the proposed approach are very simi-
lar and should work for both kinds of edges.

4.2 Relationship Reconstruction

For learning the relationships, we train a convolutional
neural network in PyTorch with five consecutive blocks,
each consisting of a convolution, batch normalization, a
non-linearity (ReLU), and max-pooling, before going into
a fully connected layer with a single output neuron fol-
lowed by a sigmoid activation function that produces the
final estimation. The network has 28 865 parameters in to-
tal. We use the Binary Cross-Entropy loss and train with
the Adam optimizer [20] until the validation performance
has not improved for ten epochs, upon which we stop.

The data-loading routine presents the biggest challenge
because it has to construct the multi-channel images as de-
scribed in Sect. 4. To efficiently generate the set of vertex-
pairs, we compute the pairwise distance between all ob-
jects in an image but filter them considerably afterward by
the distance and compatibility criteria (see Sec. 4). The
distance threshold was set to t = 200 pixels for including
most valid edges from the MUSCIMA++ dataset. Valid re-
lationships between objects that are further apart than 200
pixels are extremely rare and were neglected in favor of
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(a) A positive example of two objects that
are related.

(b) A negative example of two objects that
are unrelated.

(c) A hard negative example of a dot that
could be related to the notehead, but is not.

Figure 2: Three samples of images that are used during training. The mask given in channel 2 is shown as bright green
overlay and the mask from channel 3 as cyan overlay.

computational efficiency. Our compatibility map contains
225 valid combinations of primitives. To improve the per-
formance even further and simplify the classification task,
the input image for the neural network is cropped to a
sub-image of 512 × 256 pixels (width × height), contain-
ing the two objects of interest at its center. Both the dis-
tance threshold and the sub-image dimensions are hyper-
parameters that are dataset-dependent but can be obtained
by running a statistical analysis on the used dataset.

We split the 140 images of the dataset into 60 % train-
ing data, 20 % validation data, and 20% test data. In each
epoch, the network is trained on approximately 250 000
images of candidate pairs. Approximately 25 percent of
the candidates contain positive examples. The best re-
sults were obtained after just 12 epochs before the network
started to overfit and the validation performance declined.
The source-code is publicly available on Github. 1

4.3 Music Object Detection

Since the notation assembly stage begins after the music
objects have been detected in the score image, we also
wanted to evaluate, how well our approach works on ac-
tual detection results. For obtaining such results, we resort
to a state-of-the-art music object detector as proposed by
Pacha et al. [25] with a minor modification: While we do
divide the full page into sub-images containing one stave
each, we do not see the need for cutting the images any fur-
ther. The model selection and training procedure remains
unchanged. We split the dataset into 100 images for train-
ing, 20 images for validation and 20 images for testing, as
proposed by the authors of the MUSCIMA++ dataset. The
improved implementation is publicly available. 2

We evaluate the trained model on the test set for the
stave-wise individual images and report the Mean Average
Precision (mAP) as defined for the COCO challenge [21]
which is a unified metric, commonly used for object detec-
tion tasks. The trained model achieves 69.5 % mAP. For
comparison, we also report a mAP of 93.3 % when using
the mAP as defined for the PASCAL VOC challenge [11],
which was used in the original paper. Finally, the im-
ages are merged into the full-page results upon we achieve:

1 https://github.com/OMR-Research/MungLinker
2 https://github.com/apacha/

MusicObjectDetector-TF

34.5 % mAP / 45.2 % w-mAP 3 (COCO) and 53.8 % mAP
/ 80.9 % w-mAP (PASCAL). As our main focus is on learn-
ing relationships and not music object detection, we do
not go into further details on these numbers. However,
we want to point out that the COCO metric is very strict
and probably underestimating the performance of the mu-
sic object detector (see Fig. 3 for an example output).

4.4 Evaluation Protocol

Once the music objects have been detected, and their rela-
tionships established, the system can produce a complete
MuNG that can be compared with the reference MuNG,
provided as ground truth. However, it is necessary to first
establish the correspondences between vertices from the
prediction and the ground-truth. To do so, we assume that
a detected object v1 corresponds to a ground-truth object
v2 if they depict the same class ζ(v1) = ζ(v2) and their
Intersection over Union exceeds 50 %.

Once the vertices of the ground-truth are matched with
the detected objects, it is possible to compute the statistics.
If an established relationship is correct, it is considered a
true positive (TP); if an established relationship is incor-
rect, it is considered a false positive (FP); and, if an ex-
pected relationship is not predicted, it is considered a false
negative (FN). Then, we can compute precision (P ), recall
(R), and F-score (F1) metrics:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2
P ×R
P +R

P measures how reliable the established relationships
are, whereas R measures the ability of the model to re-
trieve as many relationships as possible. F1 summarizes
both metrics with a single value.

Note that, although our evaluation is primarily focused
on the relationships between objects, the used metrics are
affected by the performance of the music object detector.
Errors from earlier stages of the OMR process propagate
to later stages. So if musical objects were missed, their
relationships are counted as false negatives. To account for
this, we evaluate our model in two ways:

3 Weighted Mean Average Precision is the Mean Average Precision,
weighted by the frequency of the occurring classes, which is higher be-
cause frequent classes yielded better results than rare ones.
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Figure 3: Sample output of the improved music object detector. Each detected object v has a box around it, with the color
representing the class ζ(v) of the particular object, e.g., light green for full-noteheads.

• over a hypothetical set of perfect detections, which
we can extract from the ground-truth of the corpus,
and

• over the result of an actual music object detec-
tor, specifically using the state-of-the-art model, de-
scribed in Sect. 4.3.

These settings allow us to answer the two questions:
Does the proposed approach for reconstructing the MuNG
with a machine learning model work at all? If yes, how
well does the system perform in a real-world scenario,
when confronted with (imperfect) object detector results
instead of the perfect ground-truth bounding boxes?

4.5 Results

The main objective of our work is to demonstrate that the
notation assembly stage can be formulated as a machine
learning task. The main results of our experiments are
given in Table 1. It can be observed that the proposed ap-
proach is highly effective: in all cases, values above 90 %
are reported.

When starting from ground-truth music object detec-
tion, our model yields P = 95.2%, R = 96.0%, and
F1 = 95.2%, which indicates a successful approach to
completing the OMR pipeline. In case of starting from
actual results of a state-of-the-art detector, performance
decreases slightly to P = 93.2%, R = 91.5%, and
F1 = 92.3%. We think this is because the location of the

objects is not always exact (leading to a lower P ) and miss-
ing symbols cause relationships to be irrecoverable (lead-
ing to a lower R).

Graph Edges / Relationships

Precision Recall F-Score

Perfect Detection 95.2% 96.0% 95.6%
Real Detector 93.2% 91.5% 92.3%

Table 1: Overall performance of the proposed machine
learning model to reconstruct syntactic edges of the Mu-
sic Notation Graph (MuNG), given hypothetically perfect
detection results (top row), and given results from a state-
of-the-art detector (bottom row).

In order to provide more experimental insights, Table
2 reports 10 out of the 225 compatible combinations of
relationships that are most common in the MUSCIMA++
dataset. As might be expected, the notehead primitives
are involved in all of these frequent combinations. In this
regard, our model obtains nearly optimal results for these
over-represented cases. Note that these relationships are
of particular relevance to be able to decode the notes that
appear in the score. When comparing the individual results
to the overall results in Table 1, the discrepancy can be
explained by looking at the remaining 215 combinations
that are not shown. Many of these have a much lower F1,
probably because they are under-represented in the dataset.
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From To Number of candidate
pairs in the dataset F-Score on the test set

notehead-full stem 158064 99.5%
notehead-full beam 61253 98.7%
notehead-full leger_line 47503 98.1%
notehead-full slur 24738 96.4%
notehead-full 8th_flag 12877 97.7%
notehead-full sharp 12563 97.5%
notehead-full duration-dot 12305 96.7%
notehead-empty stem 9488 100.0%
notehead-full staccato-dot 8628 96.8%
notehead-full natural 7160 98.7%

Table 2: Overview of the ten most common combinations of object-pairs, along with the number of generated candidate
pairs in the dataset, as seen by the network. The last column contains the F-scores that were reported for the individual
combinations when evaluating the trained model on the test set, containing the ground truth of music primitives v.

5. CONCLUSION AND OUTLOOK

In this work, we study how to complete the OMR pipeline
from the previous efforts to detect the music objects within
the input image. Our approach seeks the construction of a
music notation graph that stores the information of the no-
tation primitives as well as their syntactic and precedence
relationships. We propose a machine learning model that
can predict whether two primitives are related to each other
or not.

Results over the set of syntactic relationships from the
handwritten sheet music dataset MUSCIMA++ show that
our approach is very effective. We obtain success rates
close to the optimum when establishing the correct rela-
tionships from the ground-truth primitives (F1 = 95.6%).
When re-evaluating the results starting from the primi-
tives detected by a state-of-the-art music object detector, a
slightly lower performance can be observed (F1 = 92.3%).
These figures indicate that the notation assembly stage of
the OMR pipeline can be solved reliably with a machine
learning model, given a curated set of annotated scores.
Comparing our approach to existing methods is extremely
difficult, if not impossible, because:

• most existing solutions are black boxes with closed
source-code, or there is no available implementation
at all,

• only a few systems are capable of handling hand-
written modern notation, and

• it is unclear how to compare the music notation as-
sembly stage between two different systems, espe-
cially given that the notation graph is only an inter-
mediate representation.

So, although the results are promising, we still see many
interesting avenues for further research. For instance, by
adding data augmentation during training to make the no-
tation assembly model more robust against variations in the
bounding box retrieval of the first stage. Also, we plan to
look into providing other meaningful features to the net-

work, such as the class labels ζ(v) of the involved prim-
itives v ∈ V . Furthermore, we observed that the fixed-
sized input patch given to the network is often covering a
much larger area than required to contain the objects of in-
terest, especially when they are very close (see Fig. 2c).
This could be handled by using size-independent neural
network layers such as Global Pooling, instead of flatten-
ing the features and feeding them into a fully-connected
layer, allowing us to adjust the input patch for each sam-
ple.

We also believe that the notation assembly stage could
benefit from having a broader set of hypotheses about the
objects detected in the previous stage, instead of a fixed set
of proposals. State-of-the-art music object detectors are
based on statistical neural models that are able to provide a
probability distribution over the whole set of possible de-
tection hypotheses. When it comes to recognizing, we are
typically interested in the most likely hypothesis—the one
that is proposed as an answer—forgetting the other ones.
However, it is certainly interesting to exploit this statistical
modeling: the notation assembly algorithm could establish
relationships that are more logical a priori, although the
objects involved have a lower probability according to the
object detector. These types of approaches have yet to be
explored in the field of OMR.

And finally, for completing the OMR pipeline, the en-
coding stage is still missing. However, we see two benefits
of the notation graph representation: the encoding can be
implemented by experts in music encoding that are pro-
ficient in a particular format and given a complete graph
representation, there is no restriction on the actual output
format because the graph contains all the information that
is present in the image.
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[16] Jan Hajič jr., Matthias Dorfer, Gerhard Widmer, and
Pavel Pecina. Towards full-pipeline handwritten OMR
with musical symbol detection by u-nets. In 19th Inter-
national Society for Music Information Retrieval Con-
ference, pages 225–232, Paris, France, 2018.
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ABSTRACT

While the automatic recognition of musical instruments has
seen significant progress, the task is still considered hard for
music featuring multiple instruments as opposed to single
instrument recordings. Datasets for polyphonic instrument
recognition can be categorized into roughly two categories.
Some, such as MedleyDB, have strong per-frame instrument
activity annotations but are usually small in size. Other,
larger datasets such as OpenMIC only have weak labels,
i.e., instrument presence or absence is annotated only for
long snippets of a song. We explore an attention mechanism
for handling weakly labeled data for multi-label instrument
recognition. Attention has been found to perform well
for other tasks with weakly labeled data. We compare
the proposed attention model to multiple models which
include a baseline binary relevance random forest, recurrent
neural network, and fully connected neural networks. Our
results show that incorporating attention leads to an overall
improvement in classification accuracy metrics across all 20
instruments in the OpenMIC dataset. We find that attention
enables models to focus on (or ‘attend to’) specific time
segments in the audio relevant to each instrument label
leading to interpretable results.

1. INTRODUCTION

Musical instruments, both acoustic and electronic, are nec-
essary tools to create music. Most musical pieces comprise
of a combination of multiple musical instruments resulting
in a mixture with unique timbre characteristics. Humans
are fairly adept at recognizing musical instruments in the
music they hear. Recognizing instruments automatically,
however, is still an active area of research in the field of
Music Information Retrieval (MIR). Instrument recogni-
tion in isolated note or single instrument recordings has
achieved a fair amount of success [14, 26]. Recognizing
instruments in music with multiple simultaneously playing
instruments, however, is still a hard problem. The task is

c© Siddharth Gururani, Mohit Sharma, Alexander Lerch.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Siddharth Gururani, Mohit Sharma,
Alexander Lerch. “An Attention Mechanism for Musical Instrument
Recognition”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

difficult because of (i) the superposition (in both time and
frequency) of multiple sources/instruments, (ii) the large
variation of timbre within one instrument, and (iii) the lack
of annotated data for supervised learning algorithms.

Identifying music in audio recordings is helpful for gen-
eral retrieval systems by allowing users to search for music
with specific instrumentation [32]. Instrument recognition
can also be helpful for other MIR tasks. For example, in-
strument tags may be vital for music recommendation sys-
tems to model users’ affinity towards certain instruments,
genre recognition systems could also improve with genre-
dependent instrument information. Building models con-
ditioned on a reliable detection of instrumentation could
also lead to improvements for tasks such as automatic mu-
sic transcription, source separation, and playing technique
detection.

As mentioned above, one of the challenges in MIR in
general, and in instrument recognition in particular, is the
lack of large-scale annotated or labeled data for supervised
machine learning algorithms [17, 36]. Datasets for instru-
ment recognition in polyphonic music can broadly be di-
vided into strongly and weakly labeled. A weakly labeled
dataset (WLD) contains clips that may be several seconds
long and have labels for one or more instruments for their
entirety without annotating the exact onset and offset times
of the instruments. A strongly labeled dataset (SLD), how-
ever, contains audio with fine-grained labels of instrument
activity. WLDs are easier to annotate compared to SLDs
and therefore scale better. Even though SLDs enable strong
supervision of learning algorithms, the smaller size may
lead to poor performance of deep learning methods. WLDs,
however, have the disadvantage that an instrument may be
marked positive even if the instrument is active for a very
short duration of the entire clip. This makes it challenging
to train models with WLDs.

Models for recognition in weakly labeled data may ben-
efit from inferring the specific location in time of the in-
strument to be recognized. We formulate the polyphonic
instrument recognition task as a multi-instance multi-label
(MIML) problem, where each weakly labeled example is
a collection of short-time instances, each with a contribu-
tion towards the labels assigned to the example. Toward
that end, we apply an attention mechanism to aggregate the
predictions for each short-time instance and compare this
approach to other models which include binary-relevance
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random forests, fully connected networks, and recurrent
neural networks. We hypothesize that the ability of the
attention model to weigh relevant and suppress irrelevant
predictions for each instrument leads to better classification
accuracy. We visualize the attention weights and find that
the model is able to mostly localize the instruments, thereby
enhancing the interpretability of the classifier.

The next section reviews literature in instrument recog-
nition and audio tagging or classification. Sect. 3 discusses
various datasets for instrument recognition and the chal-
lenges associated. Next, Sect. 4 formulates the problem and
describes the model. Sect. 5 specifies the various experi-
ments and the evaluation metrics to measure performance.
We report the results of the experiments and discuss them in
Sect. 6. Finally, in Sect. 7 we conclude the paper suggesting
future directions for research.

2. RELATED WORK

2.1 Musical Instrument Recognition

Instrument recognition in audio containing a single instru-
ment can refer to both recognition from isolated notes
or recognition from solo recordings of pieces. We refer
to [15,26] for a review of literature in single instrument and
monophonic instrument recognition.

Current research has focused on instrument recognition
in polyphonic and multi-instrument recordings. While tradi-
tional approaches extract features followed by classification
algorithms were previously prevalent [9, 21], deep neural
networks have dominated recent work in this field. Han
et al. [13] applied Convolutional Neural Networks (CNNs)
to the task of predominant instrument recognition on the
IRMAS dataset [5] and outperformed various feature-based
techniques. Li et al. [25] proposed to learn features from
raw audio using CNNs for instrument recognition using
the MedleyDB dataset [4]. Gururani et al. [12] compared
various neural network architectures for instrument activity
detection using two multi-track datasets containing fine-
grained instrument activity annotations: MedleyDB and
Mixing Secrets [11] . They found significant improvement
of CNNs and Convolutional Recurrent Neural Networks
(CRNNs) over fully connected networks and proposed a
method for visualizing model confusion in a multi-label
setting. Hung et al. [19] utilized the fine-grained instru-
ment activity as well as pitch annotations in the MusicNet
dataset [33] and showed the benefits of pitch-conditioning
on instrument recognition performance. In follow-up re-
search, Hung et al. [18] proposed a multi-task learning ap-
proach for instrument recognition involving the prediction
of pitch in addition to instrumentation. They released a syn-
thetic, large-scale, and strongly-labeled dataset generated
from MIDI files for evaluation and found that multi-task
learning outperforms their previous approach of using pitch
features as additional inputs.

2.2 Audio event detection, tagging and classification

The task of audio or sound event classification shares many
commonalities with instrument recognition. Both tasks aim

to identify a time-variant sound source in a mixture of mul-
tiple sound sources. A few key differences are that research
in sound event classification typically focuses on uncorre-
lated sounds such as motor noise, car horns, baby cries, or
dog barks, while musical audio is highly correlated. Addi-
tionally, music has a rich harmonic and temporal structure
usually absent in audio captured from real world acoustic
scenes.

For a historic review of work in sound event and audio
classification, we refer readers to the survey article by Stow-
ell et al. [31]. We focus on more recent literature involving
deep neural network architectures —which are now the
standard approach— as well as on methods that focus on
addressing weak labels.

Hershey et al. [16] adapted deep CNN architectures from
computer vision and found that they are effective for large-
scale audio classification. Cakir et al. [6] researched the
benefits of CRNNs for sound event detection over models
comprising of only CNNs. They found that the ability of
RNNs to capture long-term temporal context helps improve
performance against models only comprising CNNs. Ada-
vanne et al. [1] proposed to use spatial features extracted
from multi-channel audio as inputs for CRNN architectures.
They found that presenting these features as separate layers
to the model outperforms concatenation of these features at
the input stage.

Learning from weakly labeled data has also been a focus
in audio classification. Most works utilize the Multiple-
Instance Learning (MIL) framework for the task, where
each example is a labeled bag containing multiple instances
whose labels are unknown. Kumar and Raj [24] utilized
support vector machines and neural networks for solving
the MIL problem. They train bag-level classifiers capa-
ble of predicting instances and are hence also useful for
localization of sound events. Similarly, Kong et al. [22]
proposed decision-level attention to solve the MIL prob-
lem for Audio Set [10] classification. Attention is applied
to instance predictions to enable weighted aggregation for
bag-level prediction. Kong et al. [23] extended this and
propose feature-level attention where instead of applying
attention to the instance predictions, it is applied to the
hidden layers of a neural network to construct a fixed-size
embedding for the bag. Finally a fully connected network
predicts the labels for the bag using the embedding vector.
McFee et al. [27] compared various methods for aggregat-
ing or pooling instance-level predictions. They developed
an adaptive pooling operation capable of interpolating be-
tween common pooling operations such as mean-, max- or
min-pooling.

3. DATA CHALLENGE

In Sec. 2.1, we introduced research on instrument recogni-
tion in polyphonic, multi-timbral music. One theme that
emerges is that with almost every new publication, a new
dataset is released by the authors in an effort to address
issues with previous ones. While releasing new datasets is
highly encouraged and vital for research in MIR in general,
an uncoordinated effort leads to lack of uniformity in the
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datasets used. In this section we briefly describe the com-
mon datasets for instrument recognition and identify the
challenges associated with them.

The IRMAS dataset [5] is a frequently used dataset for
predominant instrument recognition. It consists of a sepa-
rate training and testing set, each containing annotations for
11 predominant instruments. The dataset consists of short
excerpts —3 s for training and variable length for testing—
of weakly labeled data. One fundamental problem of the
IRMAS annotations is that the training set lacks multi-label
annotation; this can be problematic for a general use case
as instrument co-occurrence is ignored.

The MedleyDB [4] and Mixing Secrets [11] datasets
are both multi-track datasets. Due to the availability of
instrument-specific stems, strong annotations of instrument
activity are available. Thus, these two multi-track datasets
provide all the necessary detailed annotations for instru-
ment activity detection and have been used in [12, 25].
These datasets have two disadvantages when training mod-
els. First, with a few hundred distinct songs models trained
with the data are hardly generalizable. Second, the datasets
are not well balanced in terms of either musical genre or
instrumentation. However, this may not be a problem if
the datasets were larger and the distribution represented the
real-world.

Most of these problems were addressed with the release
of the OpenMIC dataset [17]. This dataset contains 20,000
10 s clips of audio from different songs across various gen-
res. Each clip is annotated with the presence or absence of
one or more of 20 instrument labels. OpenMIC presents a
larger sample size as well as a uniform distribution across in-
struments. It is, however, weakly labeled, i.e., each 10 s clip
has instrument presence or absence tags without specific
onset and offset times. Due to the nature of weak labels,
models cannot be trained using fine-grained instrument ac-
tivity annotation as done, e.g., in [12, 19]. Additionally,
not all clips are labeled with all 20 instruments, i.e., there
are missing labels. This complicates the training proce-
dure if models are to predict the presence/absence for all
20 instruments for an input audio clip. Despite their draw-
backs, creation of WLDs scales better since weak labels
are cheaper to obtain; models capable of exploiting WLDs
may thus be vital for the future development of instrument
recognition.

4. METHOD

Before describing the model details, we provide a formaliza-
tion of our approach to the instrument recognition problem
in weakly labeled data.

4.1 Pre-Processing

As mentioned in Sect. 3, the OpenMIC dataset consists of
10 s audio clips, each labeled with the presence or absence
of one or more of 20 instrument labels. For each audio
file in the dataset, the dataset creators also release features
extracted from a pre-trained CNN, known as “VGGish”
[16]. The VGGish model, based on the VGG architectures

Input 
10 x 128 Embedding Layers Embedding 

10 x 128 

Prediction 
Layer 

Attention 
Layer 

Predictions 
1 x 20 

Figure 1: Model Architecture

for object recognition [30], is trained for audio classification.
The model produces a 128-dimensional feature vector for
0.96 s windows of audio with no overlap. The features are
ZCA-whitened and quantized to 8-bits. For a 10 s audio
file, we obtain a 10 × 128-dimensional matrix. We also
normalize the 8-bit integers to a quantized range of [0, 1].

4.2 Formulation

4.2.1 Multi-Instance Multi-Label Problem

In the most general setting, instrument recognition can
be framed as Multi-Instance Multi-Label (MIML) classi-
fication [38, 42, 43]. Under this setting, we are given a
training dataset {(X1,Y1), . . . (Xm,Ym)} where Xi is
a bag containing r instances Xi = {xi,1, . . .xi,r} and
Yi = [yi,1, . . . ,yi,L] ∈ {0, 1}L is a label vector with L
labels with yi,j = 1 if any of the instances in Xi contains
label j. In the remainder of this section, we will drop the
indices used to reference a specific data point and simply
represent a sample from the dataset as (X,Y). In our case,
a bag X refers to the 10× 128-dimensional feature matrix
representing one audio clip and each bag contains 10 in-
stances. Our problem is also a Missing Label problem since
for a sample (X,Y), not all yj are known or annotated
(compare Sect. 3).

In our experiments, we assume that all labels can be
independently predicted for each instance. Under this as-
sumption, the MIML problem decomposes into L (20 for
OpenMIC dataset) instantiations of Multi-Instance Learn-
ing (MIL) [8,41] problems, one for each label in the dataset.

Note that exploiting label-correlation in multi-label clas-
sification has shown to significantly improve the classifica-
tion performance [28, 28, 34, 40]. However, exploring ways
to incorporate label-correlation for instrument recognition
in the OpenMIC dataset has the additional challenge of miss-
ing and sparse labels [3]. Also, as is prevalent in most MIL
approaches [8], we assume independence among different
instances in a bag. Neighboring instances in a bag represent-
ing a polyphonic music snippet will, however, likely have
high correlation. Relaxing the aforementioned assumptions
about independence among labels, and instances in a bag
is left for future work since in our current work, we focus
on the impact of attention for aggregating instance-level
predictions.

4.2.2 Multi-Instance Learning

In the MIL setting, a bag label is produced through a score
function S(X). Under the assumption of independence
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among instances, S(X) admits a parametrization of the
form

S(X) = µ
(
f(x)

)
(1)

where f(.) is a score function for an instance x, and µ(.) is
a permutation-invariant aggregation operation for instance
scores f(x) [37]. This parameterization induces a natural
approach to classify a bag of instances: (i) to produce scores
for each instance in the bag using an instance-level scoring
function f(x), and (ii) to aggregate the scores across differ-
ent instances in the bag using the aggregation function µ(.).
In our approach, we use a classification function to produce
instance-level scores f(x), which are essentially the proba-
bilities of a label being present for each instance. The max
and avg functions are two commonly used permutation-
invariant operations to aggregate instance-level scores to
bag-level scores. McFee et al. found that learning an aggre-
gation operation, however, significantly improved perfor-
mance over fixed predefined operations like max and avg.
We choose to represent our aggregation operation µ(.) as a
weighted sum of instance-level scores, i.e.,

S(X) =
∑
x∈X

wx f(x) (2)

where wx is a learnable weight for instance x. Our choice
of f(.) and µ(.) has the two advantages that (i) the resulting
S(.) is the probability of a label being present in the bag
and can be directly used to make a prediction and (ii) the
learned weights for each instance add interpretability to the
MIL models by encoding beliefs placed by the MIL model
on the score of each instance.

4.2.3 Attention Mechanism

The learnable aggregation operation is equivalent to at-
tention. Given a bag X = {x1, . . . ,xr} of r instances,
the instance level scoring function f(.) produces a bag
{f(x1), . . . , f(xr)} of instance scores. The bag-level
score S(X) is then computed using Eq. (2).

We further impose the restriction that instance weights
wx should sum to 1, i.e.,

∑
x∈X wx = 1. This ensures

that the aggregation operation is invariant to the size of the
bag, thus allowing the model to work with sound clips of
arbitrary length. Furthermore, this normalization leads to a
probabilistic interpretation of the instance weights which
can then be used to infer the relative contribution of each
instance towards S(X). For an instance x ∈ X, the weight
wx is thus parametrized as

wx =
σ(v>h(x))∑

x
′∈X σ(v

>h(x′))
(3)

where h(x) is a learned embedding of the instance x, v are
the learned parameters of the attention layer, and σ(.) is the
sigmoid non-linearity.

This corresponds to the attention mechanism tradition-
ally used in sequence modeling [2, 35]. For example, Raf-
fel and Ellis [29] produced attention weights in a manner
similar to Eq. (3) with the only difference being the use
of softmax operation to perform normalization of weights
across the instances.

4.3 Model Architecture

Computing bag-level scores S(.) involves computing
instance-level scores f(.) and aggregating the scores across
instances using a learned set-operator µ(.) which performs
weighted averaging with the weights computed with Eq. (3).
For our experiments, we represent the scores, both instance
level f(.) and bag-level S(.), as the probability estimate
of the instance or bag being a positive sample for a given
label. We first pass each instance x through an embedding
network of three fully connected layers to project each in-
stance to a suitable embedding space. Next, instance-level
scores f(.) are computed from the output of embedding
network with another fully connected layer. Similarly, at-
tention weights are computed by normalizing the outputs
of a fully connected layer, the weights of which correspond
to parameters v in Eq. (3). Note that the output dimen-
sion of these two parallel fully connected layers is equal
to the number of labels, i.e., 20. Figure 1 illustrates the
model architecture. In the embedding layer, the number
of hidden units is 128. We also found that adding a skip
connection from the input to the final embedding stabilized
the training across different random seeds. We use batch
normalization, ReLU activations, and a dropout of 0.6 af-
ter each embedding layer. The model has 55336 learnable
parameters.

4.4 Loss Function and Training Procedure

Our model performs a multi-label classification over 20
labels given an input. However, as we point out earlier,
the OpenMIC dataset does not contain all labels for each
instance. This leads to missing ground truth labels for
training with loss functions such as binary cross-entropy
(BCE). To account for this, we utilize the partial binary
cross-entropy (BCEp) loss function introduced for handling
missing labels [7]:

BCEp(y, q) =
g(py)

L

∑
l∈Lo

yl log q + (1− yl) log(1− q)

g(py) = αpγy + β

(4)

Here g(py) is a normalization function, py is the proportion
of observed labels for the current data point, L is the total
number of labels, Lo is the list of observed labels for the in-
put data, yl ∈ {0, 1} is the ground truth (absent or present)
for label l, and q is the model’s probability output for the
label l being present in the input data X. The hyperparam-
eters in Eq. (4) are α, β, and γ. Note that in the absence
of g(py), data points with few observed labels will have a
lower contribution in loss computation than those with sev-
eral observed labels. This is undesirable behavior and the
inclusion of a normalization factor, dependent on the pro-
portion of observed labels, is important. Therefore, we set
α, β, and γ to 1, 0, and −1, respectively. This normalizes
the loss for a data point by the number of observed labels
and is equivalent to only computing the loss for observed
labels.
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Finally, the Adam optimization algorithm [20] is used
for training with a batch size of 128 and learning rate of
5e−4 for 250 epochs. We checkpoint the model at the epoch
with the best validation loss.

5. EVALUATION

In this section we describe the experimental setup including
the dataset, the baseline methods, and evaluation metrics.

5.1 Dataset

We use the OpenMIC dataset for the experiments in this
paper. In addition to the audio and label annotations, the
data repository contains pre-computed features extracted
from the publicly available VGG-ish model for audio clas-
sification. We utilize those features in our experiments to
strictly focus on handling the weak labels and avoid fur-
ther complexity by having to learn features from the raw
data or spectrogram representations. Pilot experiments for
feature learning showed that CNN architectures based on
state-of-the-art instrument recognition models were unable
to outperform the baseline model of 20 instrument-wise
random forest classifiers trained using the pre-computed
features. For reproducibility and comparability, we utilize
the training and testing split released with the dataset. Addi-
tionally, we randomly sample and separate 15% data from
the training split to create a validation set.

5.2 Experiments

We compare the attention model (ATT) with the following
models:

1. RF_BR: This model is the baseline random forest
model in [17]. A binary-relevance transformation is
applied to convert the multi-label classification task
into 20 independent binary classification tasks [39].

2. FC: A 3-layer fully connected network trained to
predict the presence or absence of all instruments
for a given data instance. Here, the input features
of dimension 10 × 128 are flattened into a single
feature vector for classification. Dropout is used for
regularization and the Leaky ReLU (0.01 slope) is
used. The model has 986772 parameters.

3. FC_T: This model serves as an ablation study to ob-
serve the benefits of the attention mechanism. FC_T
uses the same embedding layer as ATT. However,
the aggregation of predictions in time is simply per-
formed with average-pooling. The model has 52116
parameters.

4. RNN: A 3-layer bi-directional gated recurrent unit
model with 64 hidden units per direction. The model
processes the input features and produces a single
embedding which is then fed to a classifier for all 20
instruments. The model has 226068 parameters.

Source code for the Pytorch implementation of the neu-
ral network models is publicly available. 1 For each model,
we train 10 randomly initialized instances with different ran-
dom seeds and compute the classification metrics for each.

1 https://github.com/SiddGururani/AttentionMIC
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Figure 2: Precision, recall, and F1-score for different mod-
els

This gives us a distribution of each model’s performance.
One benefit of ATT over the FC and RNN models is its
small size. Both the ATT and FC_T utilize weight-sharing
for embedding instances from the bags. This leads to sig-
nificantly fewer learnable parameters compared to FC and
RNN while performing better than both of these models.

5.3 Metrics

While the total number of clips per instrument label in the
OpenMIC dataset is balanced, the number of positive and
negative examples is not well balanced for each instrument
label. Therefore, we separately compute the precision, re-
call and F1-score for the positive and negative class. There-
after, we compute the macro-average of these metrics to
report the final instrument-wise metrics, meaning that posi-
tive and negative examples are weighted equally. We call
these the instrument-wise precision, recall, and F1-score.
Additionally, to measure the overall performance of a classi-
fier, we macro-average the instrument-wise precision, recall
and F1-score. We use a fixed threshold of 0.5 to convert the
outputs into binary predictions for computing the classifica-
tion metrics.

6. RESULTS AND DISCUSSION

Figure 2 shows the overall performance of ATT compared
to the baseline models with box plots for the macro-
averaged precision, recall, and F1-score. Additionally, we
compare the instrument-wise F1-score for each model in
Figure 3. Note that we only show the mean instrument-wise
F1-score across 10 seeds in Figure 3 for improved visibility.

We observe that while the attention mechanism does
not lead to an improvement in precision compared to the
other models, the recall is improved significantly and con-
sequently the F1-score is also improved. We also observe
that ATT performs better than RF_BR in almost every in-
strument label, especially for the labels with high positive-
negative class imbalance, such as clarinet, flute, and organ.
This ties to the observation made about improved recall,
as ATT is able to overcome this imbalance possibly due
to the ability to localize the relevant instances for the mi-
nority class. In the case of an imbalanced instrument label,
the recall for the minority class greatly suffers for RF_BR.
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Figure 3: Instrument-wise F1-scores

While this problem is easily mitigated in standard multi-
class problems by using balanced sampling, it is difficult to
address with multi-label data. Comparing to FC_T, we can
attribute the better performance of ATT to better aggrega-
tion of instance-level predictions. FC_T is essentially the
same model as ATT using mean pooling instead of atten-
tion, and ATT outperforms it for most instrument classes,
especially the generally more difficult to classify instru-
ments. The RNN model also beats the RF_BR baseline. In
polyphonic music, the instances in a bag are structured and
highly correlated and hence using a recurrent network to
model the temporal structure in the instance sequence leads
to a powerful embedding of the bag, incorporating useful
information from each instance.

We visualize the attention weights for two example clips
in Figure 4. The left clip is from the test set and starts
with the vocals fading out until 2 seconds. From 5 second
onwards, the vocals grow in loudness until the end of the
clip. The violin plays throughout but is the pre-dominant
instrument only for a few seconds between 3 and 6 seconds,
as visualized in the corresponding attention weights as well.
The right clip is from the training set and contains vocals
starting from 6 second onwards. The attention weights for
vocals directly coincides with that. It is interesting to note
that the annotation for vocals was missing for this clip.

7. CONCLUSION

Weakly labeled datasets for instrument recognition in poly-
phonic music are easier to develop or annotate than strongly
labeled datasets. This calls for a paradigm shift in the ap-
proaches towards supervised learning approaches better
suited for weakly labeled data. We formulate the instru-
ment recognition task as a MIML problem and introduce an
attention-based model, evaluated on the OpenMIC dataset
for 20 instruments, and compared against several other base-
line models including: (i) binary-relevance random forest,
(ii) fully connected networks, and (iii) recurrent neural net-
works, We find that the attention mechanism improves the
overall performance as well as the instrument-wise perfor-
mance of the model while keeping the model light-weight.
The example visualizations show that the model indeed is

voice voice
violin

voice

voice
violin

voice

Attention Weights Attention Weights

Figure 4: Attention Weight Visualization: The horizon-
tal bars above the mel-spectrogram represent the attention
weights across the instances of the clip for the respective
instruments.

able to attend to relevant sections on a clip.
Some of the assumptions made in the formulation of the

MIML problem are strong and may be worth relaxing due
to the nature of musical data. We plan to further explore the
task of instance-level embeddings using recurrent networks
or using self-attention mechanisms as used in Transformer
networks [35]. Additionally, we plan to address the prob-
lem of missing labels or label sparsity in the OpenMIC
dataset using the curriculum learning-based methods pro-
posed in [7]. Our concern is that the dataset is not large
enough with enough labels for strictly supervised learning
approaches to significantly improve the results much further
than what we achieve with the attention mechanism, and
we therefore plan to tackle the problem from other angles,
such as handling missing labels or data augmentation.
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ABSTRACT

MIDI–sheet music alignment is the task of finding cor-
respondences between a MIDI representation of a piece
and its corresponding sheet music images. Rather than us-
ing optical music recognition to bridge the gap between
sheet music and MIDI, we explore an alternative approach:
projecting the MIDI data into pixel space and performing
alignment in the image domain. Our method converts the
MIDI data into a crude representation of the score that only
contains rectangular floating notehead blobs, a process we
call bootleg score synthesis. Furthermore, we project sheet
music images into the same bootleg space by applying a
deep watershed notehead detector and filling in the bound-
ing boxes around each detected notehead. Finally, we align
the bootleg representations using a simple variant of dy-
namic time warping. On a dataset of 68 real scanned pi-
ano scores from IMSLP and corresponding MIDI perfor-
mances, our method achieves a 97.3% accuracy at an er-
ror tolerance of one second, outperforming several base-
line systems that employ optical music recognition.

1. INTRODUCTION

This paper tackles the problem of MIDI–sheet music syn-
chronization. Given a symbolic music representation and
its scanned sheet music, the goal is to determine the align-
ment between each time instant in the symbolic representa-
tion and its corresponding pixel location in the sheet music.

Many tools for alignment have been developed in the
context of audio synchronization. The goal of audio syn-
chronization is to find the temporal alignment between two
different audio recordings of the same musical piece. The
main technique used to solve this alignment problem is
called dynamic time warping (DTW) [3] [10] [15]. DTW
consists of four steps: (1) extracting a sequence of features
from both audio recordings, (2) computing a cost matrix

∗ The first two authors had equal contribution.

c© Thitaree Tanprasert, Teerapat Jenrungrot, Meinard
Müller, TJ Tsai. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Thitaree Tanprasert,
Teerapat Jenrungrot, Meinard Müller, TJ Tsai. “MIDI–Sheet Music
Alignment Using Bootleg Score Synthesis”, 20th International Society
for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

C, where Cij indicates the dissimilarity between the ith

frame of recording 1 and the jth frame of recording 2,
(3) using dynamic programming to calculate a cumulative
cost matrix D and backtrace matrix B, where Dij indi-
cates the optimal path score from (0, 0) to (i, j) given a set
of allowable transitions and transition weights, and where
Bij indicates the penultimate element in the optimal path,
and (4) backtracing through B to determine the lowest cost
path through the entire matrix. Many works have proposed
ways to extend or improve upon this basic method, includ-
ing doing the time warping in an online fashion [4] [18], es-
timating the alignment at multiple granularities [22] [26],
handling repeats and jumps [12], handling subsequences
or partial alignments [20] [28], dealing with fixed memory
constraints [23], and utilizing multiple recordings [1] [31].

Several previous works have studied the problem of
finding correspondences between audio and sheet music.
There are two general approaches to the problem. The first
approach is to use an existing optical music recognition
(OMR) system to convert the sheet music into a symbolic
(MIDI-like) representation, to collapse the pitch informa-
tion across octaves to get a chroma representation, and then
to compare this representation to chroma features extracted
from the audio. This approach has been applied to syn-
chronizing audio and sheet music [2] [16] [27], identifying
audio recordings that correspond to a given sheet music
representation [13], and finding the audio segment corre-
sponding to a fragment of sheet music [11]. A different
approach has been explored in recent years: convolutional
neural networks (CNNs). This approach attempts to learn a
multimodal CNN that can embed a short segment of sheet
music and a short segment of audio into the same feature
space, where similarity can be computed directly. This ap-
proach has been explored in the context of online sheet
music score following [5], sheet music retrieval given an
audio query [6] [7], and offline alignment of sheet music
and audio [7]. Dorfer et al. [8] have also recently shown
promising results formulating the score following problem
as a reinforcement learning game.

In this paper, we consider the task of MIDI–sheet mu-
sic synchronization, which can be seen as a variant of
the audio–sheet music synchronization scenario. As sym-
bolic (MIDI-like) representations often serve as a bridge
between audio and sheet music, MIDI–sheet music syn-
chronization can be regarded as an important intermedi-
ate step for more general cross-modal alignment. As men-
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tioned above, traditional approaches typically apply OMR
to bridge the modality gap—a step that often introduces
severe errors. On the other side, deep learning approaches
that try to extract shared feature representations directly
from waveforms (audio) and images (sheet music) are
promising, but are still in their infancy [21]. As the main
contribution of this paper, we introduce an approach that
avoids an explicit OMR step by working with an explicitly
known sparse, binary representation in the image domain.
As we will demonstrate, we can convert both sheet image
data and MIDI data into this representation using simple
logic coupled with a notehead detector. Based on this com-
mon binary representation, we show how the alignment
problem can then be solved using a simple variant of DTW.
In a sense, our approach mimics a deep learning approach,
but explicitly introduces a mid-level representation. We
hope that our contribution not only sheds a new light into
cross-modal alignment, but may also serve as a non-trivial
baseline approach for future fully automated procedures.

The paper is organized as follows. Section 2 describes
the proposed algorithm. Section 3 explains the experimen-
tal results. Section 4 provides an analysis of system per-
formance. Section 5 concludes the work.

2. SYSTEM DESCRIPTION

There are two inputs to our system: a MIDI file and its
corresponding sheet music. Similar to recent work [6–8],
we assume that the sheet music is presented as a sequence
of image strips, where each image strip contains a single
line of music. We focus exclusively on piano music in
this work, so each line of music consists of a single grand
staff containing an upper staff (treble clef) and a lower staff
(bass clef). The image strips may be different sizes, and the
staff lines may appear at a different location on each strip.

Our proposed method has three main steps. The first
step is to convert each image strip into a sparse, binary
representation in pixel space (Ai in Figure 1). We perform
this conversion by applying a notehead detector and fill-
ing in the predicted bounding boxes around each detected
notehead. This representation is a very crude represen-
tation of the score that only contains rectangular floating
notehead blobs. Accordingly, we call this a bootleg rep-
resentation. The second step is to project the MIDI data
into the same bootleg space (Bi in Figure 1). We perform
this projection by converting MIDI note onsets into float-
ing notehead blobs that are appropriately placed in pixel
space. The third step is to align the bootleg representations
using a variant of DTW (Figure 3). These three steps are
described in detail in the next three subsections. 1

2.1 Notehead Detection

The first step is to convert each image strip into a boot-
leg representation. As shown in Figure 1 (left side), we
accomplish this by applying a notehead detector and fill-
ing in the predicted bounding boxes around each detected

1 Our code and data are available at https://github.com/
ttanprasert/sheet-midi-sync.

Figure 1. Projecting data to bootleg space. We convert the
image strips and MIDI data into a very crude approxima-
tion of the sheet music that only contains floating notehead
blobs. The staff lines in Ai and Bi are shown as a visual
aid, but are not included in the bootleg representation.

notehead. The remainder of this subsection describes our
notehead detection.

Our notehead detector is based on the deep watershed
detector recently proposed by Tuggener et al. [30] for mu-
sical object detection in sheet music. The deep watershed
detector is a fully convolutional network [17] modified to
predict three outputs: (a) a quantized energy output map
which indicates the likelihood of having an object at each
pixel location, (b) a class output map which predicts which
type of object is present at each pixel location (e.g. filled
notehead, staff line, treble clef, sharp, quarter rest, etc.),
and (c) a bounding box output map which indicates the
width and height of an object at that pixel location. Fig-
ure 2 illustrates the overall architecture of the deep note-
head detection network. The reader is referred to [30] for
more details. In [29] and [30], Tuggener et al. show that
fully convolutional networks are more suitable for seman-
tic segmentation and detection of tiny objects in sheet mu-
sic, tasks where (large) object detection methods like Fast
R-CNN [14], Faster R-CNN [25], and YOLO [24] fail mis-
erably.

We trained our network on the DeepScores dataset [29].
This dataset contains approximately 300,000 full pages
of synthetically generated musical scores and pixel-level
ground truth labels for 124 different symbol classes. The
inputs to the network are 500x500 grayscale image patches
that are randomly sampled from the full page images. The
loss function is a linear combination of the losses from
the quantized energy output map (cross entropy loss), class
output map (cross entropy loss), and bounding box output
map (mean squared error).

After training on DeepScores, we fine-tune the network
on real scanned sheet music. For fine-tuning, we manu-
ally annotated the location and type of approximately 2200
noteheads in 30 different pages of piano music downloaded
from IMSLP. 2 These 30 pages of music were selected to
maximize diversity across composers and music publish-
ers, and they are a completely separate set from the data
used to evaluate alignment. Because we only care about
detecting noteheads, we disregard all other musical objects

2 https://imslp.org
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Figure 2. Architecture of the deep watershed notehead de-
tector. The number below each layer indicates the num-
ber of feature maps. In the downsampling and upsampling
stages, the length and width of the feature maps change
by a factor of two in each successive layer. We train on
the DeepScores dataset [29] and fine-tune on a small set of
manually labeled noteheads in real scanned music.

in the fine-tuning process. Because the real scanned music
contains a variety of font sizes, we scale each input im-
age to match the staff line spacing in the DeepScores data.
After fine-tuning, the notehead detector achieves a training
mean average precision (mAP) of 0.4201 for all notehead
types (black notehead, half notehead, and whole notehead).
For reference, in normal object detection tasks (not tiny
objects), the state-of-the-art mAP is around 0.4 to 0.6. 3

Figure 5 (top half) shows an example of the notehead de-
tector predictions on a section of Brahms Intermezzo Op.
117 No. 2.

2.2 Bootleg Synthesis

The second step is to convert the MIDI data into a bootleg
representation. As shown in Figure 1 (right side), we ac-
complish this by converting note onsets into appropriately
placed floating notehead blobs. This process consists of
three key parts.

The first part is determining the staff line coordinate
system. For each image strip, we would like to deter-
mine the location of the staff lines in the upper staff and
lower staff. We can accomplish this by computing the row
sum of image pixels, convolving the result with comb fil-
ters of various sizes (each containing 5 regularly spaced
impulses), and identifying the comb filter that yields the
strongest response at two non-overlapping staff locations.
This gives us the staff line coordinate system for the upper
and lower staves.

The second part is synthesizing and placing noteheads.
Given the coordinate system from an image strip, we con-
vert each MIDI note onset into one or more floating rect-
angular noteheads. Note that there is ambiguity when con-
verting from a MIDI note number to a location on a staff.
For example, a MIDI note number of 68 might appear as a
G-sharp or an A-flat, which correspond to two different
staff locations. To handle this ambiguity, we can place
a larger-than-normal rectangular notehead which overlaps
both possible locations. Furthermore, since notes in the
middle register could appear in the right hand or left hand
staves, we can simply place two different floating note-

3 http://cocodataset.org/#detection-leaderboard

Figure 3. Aligning MIDI-generated bootleg scores with
the sheet image-generated bootleg strips. Each bootleg
strip Ai is compared to its corresponding bootleg score Bi

to yield a cost matrix block Ci. Note that each Bi is a
MIDI-generated bootleg score of the entire piece projected
onto the staff line coordinate system of strip Ai. The red
line indicates an alignment path.

heads at both possible locations. In the visualization of Bi

in Figure 1, for example, you can see that the first chord
contains a C4, which produces a notehead in both the up-
per and lower staves.

The third part is handling timing issues. One issue is
the choice of sampling rate. When converting the MIDI
data into the bootleg representation, we must choose how
much time corresponds to a single pixel column. To avoid
extreme time warping, we select this parameter to ensure
that the bootleg representation is approximately the same
length as the image strips concatenated end-to-end. An-
other issue is shortening long pauses. When there is a fer-
mata in the score, for example, the MIDI performance may
slow down in tempo by a factor of three or four. The sheet
music, however, does not reflect this, i.e., the length of the
measure in pixels is not elongated by a factor of three or
four. To mitigate this issue, we simply shorten long gaps
greater than a fixed threshold to the length of the thresh-
old. In experiments, we find that system performance is
relatively insensitive to this threshold (across an order of
magnitude).

Because each sheet image strip Ai has a different size
and a different staff line coordinate system, we generate
one bootleg score Bi of the entire MIDI performance for
each image strip Ai. In other words, Bi is the bootleg score
representation of the entire MIDI performance projected
onto the staff line coordinate system of image strip Ai. A
schematic illustration of this process is shown in Figure 3
for the case of three image strips A1, A2, and A3. Note that
the duration of each Bi (i ∈ {1, 2, 3}) semantically corre-
sponds to the total duration of the concatenation A1A2A3,
while the pixel height of each Bi matches the height of
image strip Ai.
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2.3 Block DTW

The third step is to determine the alignment between the
bootleg representations. Figure 3 shows a graphical depic-
tion of this process. In this example, the sheet music con-
tains three image strips A1, A2, and A3. The alignment is
carried out in two substeps.

The first substep is to calculate the cost matrix (Ci) be-
tween each bootleg image strip (Ai) and its corresponding
MIDI-generated bootleg score (Bi). In choosing a suitable
cost metric, we must consider the nature of the bootleg rep-
resentations. The MIDI-generated bootleg score will have
many redundant notes, where (for example) a C4 will ap-
pear in both the left and right hand staff systems in order
to handle both possibilities. For this reason, we do not
want to penalize the two bootleg representations when they
disagree—we only want to reward them when they agree.
One simple cost metric that meets this criteria is a negative
inner product, i.e. the (k, `)th element of Ci indicates (−1
times) the number of overlapping black pixels in the kth

pixel column of Bi and the `th pixel column of Ai. When
black ink shows up in the same vertical pixel position in
two pixel columns, it will make the cost more negative.

The second substep is to perform global DTW. We
assemble the constituent cost matrices Ci into a single
global cost matrix (represented as a bold black rectangle
in Figure 3). We then apply DTW with step transitions
{(1, 1), (1, 2), (2, 1)} and corresponding weights {2, 3, 3}.
This set of step transitions and weights is a robust, common
choice in alignment tasks (e.g. see [19]). The lowest cost
path through the global cost matrix is the estimated align-
ment between the MIDI performance and the sheet music.
The estimated alignment is shown as a red line in Figure 3.

3. EXPERIMENTS

We now summarize our experiments, where we evaluate
and compare our bootleg alignment approach with several
baseline approaches. In Section 3.1, we describe our ex-
perimental setup introducing the dataset, the manually gen-
erated reference annotations, and the evaluation measure.
In Section 3.2, we then present and discuss our quantitative
results.

3.1 Experimental Setup

The data consists of sheet music scans and MIDI represen-
tations for 22 compositions from 8 different composers.
The pieces are all for solo piano, contain no repeats or
structural jumps, and span a variety of eras, styles, and
lengths. The sheet music is downloaded from IMSLP and
contains digital scans of printed sheet music editions in the
public domain. Note that the choice of using scans of real
printed sheet music is a significant departure from other
works that focus on synthetically rendered sheet music rep-
resentations (e.g. [7, 8]). In total, there are 68 sheet music
scores. For each composition, we also collected one MIDI
performance from online websites. 4 The MIDI perfor-
mances are symbolic score representations that have been

4 www.piano-midi.de and www.mazurka.org.uk

Piece Sh Meas Strips
Brahms Fantasia Op117No2 4 86 20,25
Brahms Fantasia Op116No6 3 64 12,15
Chopin Mazurka Op30No2 6 64 9,12
Chopin Mazurka Op63No3 6 76 10,12
Chopin Mazurka Op68No3 6 60 8,12
Clementi Sonata Op36No1 mv3 2 70 8,8
Clementi Sonata Op36No2 mv3 2 111 14,14
Clementi Sonata Op36No3 mv3 2 82 11,11
Debussy Children’s Corner mv1 3 76 24,25
Debussy Children’s Corner mv3 3 124 23,29
Debussy Children’s Corner mv6 3 128 25,25
Mendelssohn Op19No2 5 91 12,14
Mendelssohn Op62No3 3 48 8,10
Mendelssohn Op62No5 3 59 12,13
Mozart Sonata No13 mv3 4 225 42,50
Mozart Sonata No9 mv3 3 269 50,60
Schubert Impromptu Op90No1 2 204 41,60
Schubert Impromptu Op90No3 2 86 42,42
Schubert Op94No2 2 92 17,20
Tchaikovsky The Seasons - Jan 2 102 29,29
Tchaikovsky The Seasons - Jun 2 99 38,40
Tchaikovsky The Seasons - Aug 2 198 24,24

Table 1. Summary of dataset. For each piece, the table in-
dicates the number of sheet music versions (Sh), the num-
ber of measures (Meas), and the minimum & maximum
number of image strips (i.e. lines of music) across the dif-
ferent sheet music versions.

modified to sound like expressive, realistic human perfor-
mances. Table 1 summarizes the dataset.

The ground truth consists of beat-level annotations. For
the sheet music, we annotate the horizontal pixel location
of a subset of beats in each piece, along with the measure
number and image strip number. Because pixel-level anno-
tation of beat locations is very time-consuming, we anno-
tate the beats in N = 40 measures equally spaced through-
out each piece. For the MIDI performances, we estimate
the ground truth beat locations using pretty-midi 5

and manually correct any errors.
To evaluate the system performance, we compare the

predicted alignment to the ground truth annotations. At
the ground truth beat locations in the sheet music, we com-
pare the predicted corresponding times in the MIDI to the
ground truth timestamps. Given a fixed error tolerance,
we define the error rate to be the percentage of predictions
that fall outside of the allowable error tolerance. By con-
sidering a range of error tolerances, we can characterize
the tradeoff between error rate and error tolerance.

In total, we have 68 MIDI-score pairings, and the result-
ing alignments are evaluated at 10, 913 ground truth beat
locations. Our choice to use scans of real published musi-
cal scores has a tradeoff: it places a constraint on the size
of the dataset due to the time-consuming nature of anno-
tation, but it is more representative of performance “in the
wild" compared to large synthetic datasets like the Multi-
modal Sheet Music Dataset (MSMD) [9]. We also evaluate

5 https://github.com/craffel/pretty-midi
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Figure 4. Comparison of baselines to the bootleg system
with and without fine-tuning. The legend lists the systems
in order of performance from worst to best. For a descrip-
tion of the baseline systems, see Section 3.2.

our system on MSMD as a point of comparison.

3.2 Results

We compare our bootleg method (with and without fine-
tuning the notehead detector) to five baseline systems. The
first baseline system (‘globlin’) simply assumes a global
linear correspondence between the concatenated sheet im-
age strips and the MIDI performance. The second and third
baseline systems use two different commercial OMR sys-
tems (Photoscore 6 and SharpEye 7 ) to convert the sheet
music to MIDI, synthesize the MIDI to audio, and then per-
form audio–audio alignment using DTW on chroma fea-
tures with 25 ms hop size. 8 These baselines are abbrevi-
ated as ‘ps-audio’ and ‘se-audio’ in Figure 4. The fourth
and fifth baseline systems use the same two OMR systems
to convert the sheet music to MIDI, estimate the beat lo-
cations using pretty-midi, and then assume a 1-to-1
correspondence between beat locations in both MIDI files.
Note that the OMR system can have many recognition er-
rors but still have perfect alignment if it can simply inter-
pret barlines and beats correctly. These two baselines are
abbreviated as ‘ps-midi’ and ‘se-midi’ in Figure 4. 9

There is one important issue to mention about evaluat-
ing the OMR baseline systems. Because PhotoScore and
SharpEye do not retain the connection between sheet mu-
sic pixel location and corresponding MIDI time, there is
no reliable way to automatically infer ground truth beat
locations in the OMR-generated MIDI. Thus, it was neces-
sary to manually annotate the ground truth beat locations
in the OMR-generated MIDI on every sheet music score,
so that the predicted alignment can be evaluated. This is a

6 https://www.neuratron.com/photoscore.htm
7 http://www.visiv.co.uk
8 We also experimented with doing DTW directly on a piano roll rep-

resentation of the MIDI data, but found that the results were always worse
than synthesizing to audio and aligning chroma features.

9 Note that the stairstep shape of the ‘se-midi’ system comes from the
fact that SharpEye always renders its OMR-generated MIDI at 120 BPM,
so that missing or extra beats correspond to errors at integer multiples of
500 ms.

Figure 5. An example of the predicted alignment pro-
duced by the bootleg system. The upper half of the fig-
ure shows the original score with the detected noteheads
overlaid. The bottom half of the figure shows the aligned
MIDI-generated bootleg score. This figure is best visual-
ized in color.

very time-consuming process, and clearly not sustainable
for large-scale evaluations. However, the benefit of these
results is a fair comparison to commercial OMR systems
over a reasonably diverse data set.

Figure 4 compares the performance of our proposed
bootleg approach (with and without fine-tuning) against
the five baseline systems. There are three things to notice
about Figure 4.

First, the bootleg method (‘bootleg’) outperforms the
baselines by a wide margin. For example, at 500 ms
error tolerance the bootleg systems achieve error rates
around 10%, whereas the best performing baseline system
achieves an error rate of 47%. Similarly, at 1000 ms error
tolerance the bootleg systems achieve 3 − 4% error rate,
whereas the best baseline system has a 27% error rate.

Second, fine-tuning the notehead detector on sheet mu-
sic scans (‘bootleg-ft’) shows demonstrable improvement.
For example, at 1000 ms error tolerance the fine-tuning
improves the error rate from 4.0% to 2.7%, and at 100 ms
error tolerance the fine-tuning improves the error rate from
48.8% to 42.8%. We already know that fine-tuning will al-
ways improve results. The key observation here is that we
can significantly improve results even with an extremely
small dataset (2200 noteheads).

Third, the bootleg systems achieve very low asymptotic
error rates. Whereas the best-performing baseline system
achieves an error rate of 24.7% at a 2000 ms error toler-
ance, the fine-tuned bootleg system achieves a 0.4% error
rate. So, the bootleg alignments are reliable, at least on the
data in our experiments.

4. FURTHER ANALYSIS

In this section, we further investigate the proposed system
through three different types of analyses.

4.1 Visualization of Alignments

The first method of analysis is to create a visualization that
shows the predicted alignment between the bootleg repre-
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Figure 6. This figure shows two comparisons: (a) The
performance of the bootleg system on real scanned sheet
music vs. synthetically generated sheet music (see Section
4.2). (b) The performance of the bootleg system with and
without notehead detection (see Section 4.3).

sentations. Figure 5 shows an example from a section of
Brahms Intermezzo Op. 117 No. 2. In the upper half, the
detected notehead regions are overlaid on top of the orig-
inal score for ease of visualization. The bottom half con-
tains the aligned MIDI-generated bootleg score. We can
see that most noteheads are correctly detected, and the two
bootleg representations match well.

By looking at example visualizations, we discovered
two weaknesses in our system. The first weakness is that
the notehead detector performs poorly on half noteheads
and whole noteheads. This is due to the fact that the train-
ing data was highly imbalanced towards filled noteheads.
The second weakness is that the staff line detection occa-
sionally fails, which leads to poor alignments on the en-
tire strip. Interestingly, the system is fairly robust to clef
changes, mainly because clef changes usually only occur
in one staff but not in both staffs simultaneously.

4.2 Synthetic vs. Real Data

The second analysis investigates the question: “How well
does the proposed system work on synthetic data vs. real
data?" As mentioned before, we chose to evaluate the base-
line systems on real data (i.e. scans of music from IMSLP)
rather than synthetically rendered data so that we can as-
sess performance “in the wild." The primary drawback of
using real data is that it needs to be manually annotated,
which is very costly and limits the practical size of the
evaluation dataset. To see how well our system performs
on synthetic data, we also ran a large-scale evaluation on
the Multimodal Sheet Music Dataset (MSMD) [9].

Figure 6 compares the performance of the bootleg sys-
tem on the real dataset (black solid line) and the test set
from MSMD (gray solid line). We can see that the syn-
thetic data is “easier" to align, especially at lower error tol-
erances. However, the performance on MSMD leveled off
at a much higher error rate for large error tolerances (e.g.
4.4% error at 1500 ms tolerance vs. 1.8% error on the real

dataset). Upon further investigation, we found that these
errors came from a small set of six pieces that all had one
of two peculiar characteristics: (a) they consisted of almost
all half or whole notes throughout the entire piece (e.g.
Erik Satie’s Gymnopedies), or (b) they had very frequent
time signature changes (on average every 1.4 measures for
the two relevant pieces). The first characteristic will cause
the bootleg system to fail because of the imbalance in note-
head detection training data, and the second will cause ex-
treme time warping in the alignment stage. While these
pieces might be considered extreme or unusual in this re-
gard, they nonetheless provide additional insight into fail-
ure modes of the bootleg approach. When we removed this
set of six pieces from evaluation, the error curve falls sig-
nificantly (dotted gray line in Figure 6). We can interpret
the gap between the dotted gray curve and the solid black
curve as the performance loss when transitioning from syn-
thetic data to real scanned sheet music.

4.3 Importance of Notehead Detection

The third analysis investigates the question: “How much
does system performance depend on notehead detection?"
To answer this question, we simply removed the notehead
detection from our system and directly aligned the MIDI-
generated bootleg scores to the raw image strips. We ex-
pect the performance to be worse without notehead detec-
tion because the raw sheet music will contain many sym-
bols that the MIDI-generated bootleg score does not have:
note stems, rests, accidentals, etc. These additional sym-
bols introduce noise that can lead to poor alignments.

Figure 6 compares the performance of the bootleg sys-
tem with (solid black line) and without (dotted black
line) notehead detection on the real dataset. Surpris-
ingly, the system without notehead detection performs only
marginally worse, and it approaches approximately the
same error rate at high error tolerances. This suggests a
way to significantly reduce the complexity of the system
without sacrificing much performance.

5. CONCLUSION

We investigate the MIDI–sheet music synchronization
problem as an important intermediate step for cross-modal
alignment. Because OMR is a difficult task and may not be
needed for music alignment, we avoid the need for OMR
by introducing a mid-level representation called a bootleg
score. We project the MIDI data into bootleg space us-
ing the rules of Western musical notation, and we project
the sheet music into bootleg space by applying a deep
watershed notehead detector. Once the MIDI and sheet
music have been projected to this bootleg representation,
the alignment can be performed using a simple variant of
DTW. We evaluate the proposed system on scans of real
published piano scores. Our results indicate that the pro-
posed approach works well for piano music, and it out-
performs several baseline systems based on optical music
recognition. Our approach may serve as a non-trivial base-
line approach for future end-to-end learning approaches.
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ABSTRACT

There are a number of efforts in the MIR community
towards increased reproducibility, such as creating more
open datasets, publishing code, and the use of common
software libraries, e.g. for evaluation. However, when it
comes to datasets, there is usually little guarantee that re-
searchers are using the exact same data in the same way,
which among other issues, makes comparisons of different
methods on the “same” datasets problematic. In this paper,
we first show how (often unknown) differences in datasets
can lead to significantly different experimental results. We
propose a solution to these problems in the form of an open
source library, mirdata, which handles datasets in their
current distribution modes, but controls for possible vari-
ability. In particular, it contains tools which: (1) validate
if the user’s data (e.g. audio, annotations) is consistent
with a canonical version of the dataset; (2) load annota-
tions in a consistent manner; (3) download or give instruc-
tions for obtaining data; and (4) make it easy to perform
track metadata-specific analysis.

1. INTRODUCTION

Music Information Retrieval (MIR) systems are often soft-
ware or algorithms which are evaluated and compared
based on their performance according to appropriate met-
rics on chosen datasets. These systems are becoming in-
creasingly complex; reproducing systems presented in aca-
demic publications requires access to the software and
data [23]. As outlined in [23], some of the common ele-
ments of an MIR system are (1) Data (Audio and Annota-
tions) (2) Codecs and Parsing (3) Modeling and (4) Evalu-
ation. The reproducibility of each of these elements poses
challenges, but efforts are being made to reduce potential
inconsistencies.

For evaluation, different implementations of evaluation
metrics can result in substantially different results, moti-
vating the need for mir eval - a common and transpar-

c© Rachel M. Bittner, Magdalena Fuentes, David Rubin-
stein, Andreas Jansson, Keunwoo Choi, Thor Kell. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Rachel M. Bittner, Magdalena Fuentes, David Rubinstein,
Andreas Jansson, Keunwoo Choi, Thor Kell. “mirdata: Software for Re-
producible Usage of Datasets”, 20th International Society for Music In-
formation Retrieval Conference, Delft, The Netherlands, 2019.

ent evaluation software [29]. For modeling, slightly dif-
ferent implementations of the same algorithm can result
in very different results [23]. Recently, this has been mit-
igated by the availability of software with tools for pop-
ular MIR tasks. Some examples are librosa [25] and
essentia [6] - tools for MIR related signal process-
ing, simple models and commonly used algorithms; Scikit-
Learn [28] - tools for training simple machine learning al-
gorithms; and madmom [5] - deep learning and machine
learning models for common MIR tasks such as chord
recognition, beat and downbeat tracking.

It is very difficult to get licenses to distribute music
recordings openly. As a result, the majority of datasets
available do not have freely available audio files; the ex-
change of this data is often done manually, which can re-
sult in varying data versions. When working with pairs
of audio and annotation files, it is important that the au-
dio files used are the same files that were used to create
the annotations. When audio files are released separately
from annotations, unknown differences between the origi-
nal and other versions of the audio can create reproducibil-
ity issues. Websites such as Zenodo 1 and Figshare 2 pro-
vide permanent hosting and versioning of datasets, increas-
ing reproducibility, but many datasets used in MIR are
not available on such websites, and (often unknown) dif-
ferences in data can adversely affect downstream perfor-
mance.

Additionally, the annotations that come with each of
these datasets exist in a huge variety of formats. Among
these formats, some provide very complete information
e.g. in the form of a JAMS file [17, 22], while others
lack crucial information needed to accurately use the data,
such as the time stamps associated with different observa-
tions. Most of the time, researchers write their own code
for parsing the specific annotation files they use for a par-
ticular dataset. This is both inefficient and error-prone;
what was found for evaluation and modeling is also true
for data parsing: small differences in annotation loading
code can result in huge differences in results downstream.
Finally, the pairing of audio and annotation files is often
done manually each time, usually by matching on filename
substrings. In addition to being cumbersome, this can also
lead to mismatched audio and annotation files.

To summarize, obtaining datasets and writing code to

1 https://zenodo.org
2 https://figshare.org
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process them is both time consuming and error-prone. As a
result, researchers are less inclined to use multiple datasets
for their task, and instead develop or test their models on
single datasets, reducing the reliability of their results [33].
We believe that the two current biggest blockers of repro-
ducibility in the MIR community are (1) the lack of open
datasets, resulting in a lack of transparency as to the con-
sistency of data across publications and (2) the lack of an
open library for consistently loading annotations in various
formats in common datasets.

In this paper, we introduce an open source library,
mirdata, which provides tools for using common MIR
datasets. We aim to create a useful tool for researchers,
which will increase reproducibility, and facilitate and en-
courage the use of several datasets for evaluation. In par-
ticular, it contains tools for loading dataset-specific anno-
tations in a consistent manner, validating if a dataset copy
the user has is consistent with a canonical version of the
dataset, downloading datasets, and linking audio and an-
notation files along with track level metadata. We demon-
strate the need for this tool by highlighting inconsistencies
in common practices when loading annotations and in the
data itself (annotations and audio) for three popular MIR
datasets, namely iKala, Salami, and the Beatles dataset.

The library is publicly available on Github at github.
com/mir-dataset-loaders/mirdata.

2. RELATED WORK

Data utility libraries exist for other fields such as text,
video and image analysis [1,10,27,28] which allow a user
to download a dataset and load it into memory for ease
of use in experimentation and consistent results. Tensor-
Flow [1], a deep learning framework, includes a variety
of datasets covering images, text, language translation and
video 3 . In order to ensure the integrity of the data, Ten-
sorFlow hard codes expected file sizes and SHA256 check-
sums of each file in their library, as well as paths of the
data included with the dataset. If the expected values do
not match what is downloaded, the local dataset is not con-
sidered valid and is not available for usage in the library.

Scikit-Learn [28], a popular machine learning library
for Python, includes their own set of dataset loading util-
ities 4 . Some small datasets, known as “toy datasets”, are
included directly in the library. Larger datasets, known
as “real-world datasets” are downloaded and stored in a
“data home” directory on the local machine. Like Tensor-
Flow, Scikit-Learn checks for dataset integrity based on a
SHA256 checksum, but only checks the downloaded zip or
tar file itself. This approach requires that users download
the entirety of the Scikit-Learn library in order to use the
dataset loaders.

MLDatasets 5 acts as a specification for how datasets
should be managed. DataDeps [36] specifies dataset meta-
data that conforms to a management system. This method
allows for multiple people to maintain their own dataset

3 www.tensorflow.org/datasets/datasets
4 https://scikit-learn.org/stable/datasets
5 https://github.com/JuliaML/MLDatasets.jl

repositories or for a single organization to set up multiple,
independent libraries, each for one dataset.

There are few examples of dataset utility libraries for
music. However, the python library Nussl [19] for source
separation contains some dataset utilities. Unlike the other
libraries previously mentioned, Nussl does not include
any utilities for dataset retrieval and expects the user to
have the datasets locally on the machine before use. How-
ever, it includes expected checksums for the dataset audio
and logic to check for validity and existence of the dataset
as well as simple utilities for loading the data.

Software also exists for loading particular types of
(music-centric) annotations, including pretti midi 6

for MIDI data, JAMS [17] for data released in JAMS for-
mat, and Music21 7 for MIDI and MusicXML data. When
annotations are released in these formats, custom loading
code is less necessary. However, many annotations are re-
leased in other formats and require custom loading code.

3. AUDIO FILES IN MIR DATASETS

Datasets in MIR suffer from a unique constraint: most
music is protected under copyright. Datasets which are
built on copyrighted materials are not typically available
for open download. There are several common levels of
access for the audio files for different MIR datasets:

1. Open Access

2. Restricted Access (e.g. password protected)

3. “Do it yourself” Access (e.g. YouTube links)

4. No Access

We surveyed 128 MIR datasets from the “Audio Con-
tent Analysis” website 8 in April 2019 and determined
their access levels. By our estimate, 80 were “open ac-
cess”, 19 were “restricted access”, 15 were “DIY” Ac-
cess, 14 were “no access”, meaning that 22.8% of the total
list is not openly available. These limited access datasets
include historically popular datasets such as RWC [13],
AudioSet [12], CAL10k [32], the Beatles dataset [16],
iKala [8], the Million Song Dataset [2], and Salami [31].

The more restrictive the access level, the more room
there is for “dataset telephone”; when it is difficult to ac-
cess a particular dataset from a common repository, re-
searchers may share their personal copies with each other,
which may contain perturbations from when they first re-
ceived it. Additionally, since the audio and annotations
are sometimes released separately, if the audio is incorrect,
the annotations will not correspond to the audio files, re-
sulting in inconsistencies during model development and
evaluation. As a result, researchers are performing experi-
ments and computing metrics on datasets they believe are
the same as others versions, but may be quite different in
reality.

6 github.com/craffel/pretty_midi
7 http://web.mit.edu/music21/doc/index.html
8 https://www.audiocontentanalysis.org/

data-sets/
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In an ideal case, the audio files used for a dataset should
be the same as those used to create the annotation files.
There are a number of popular datasets for which the au-
dio is difficult to obtain. For example, the 7-digital preview
clips of the million song dataset [2] have often been used
for music classification tasks. While the clips were pre-
viously available through an API, it has since been shut
down and the clips are no longer available. In the Beat-
les dataset [16], audio is not released, but instead, catalog
numbers and release years of the albums used are provided
to prevent differences in audio versions used. Regardless,
we found that different versions of the dataset have been
used by researchers (see Section 4.1). In the case of Au-
dioSet [12], audio is provided in the form of YouTube
video identifiers, adding a new challenge in data repro-
ducibility. However, the availability of the linked YouTube
videos changes over time, and accessibility varies by coun-
try.

4. EXPERIMENTS - WHY A COMMON TOOL IS
NEEDED

Differences in audio or annotations, or in the code used to
load data into memory can have a huge impact on down-
stream results. In this section, we examine the effect of real
differences we found on evaluation metrics in instances of
three popular MIR datasets.

4.1 The Beatles Dataset

The Beatles dataset [16] contains annotations for beats,
downbeats, sections, and chords for the nearly entire Beat-
les’ collection. However, as the audio is copyrighted, only
the annotations are released as part of the dataset. The re-
searchers are asked to use their personal copy of the Beat-
les’ catalog and match the audio files with the annotations.

The annotations were created using a particular version
of the audio, and they may not correspond well with other
versions. For this dataset in particular, it is quite easy to
end up with different versions of the same Beatles track,
since there are several releases of every album, including
remastered versions.

To evaluate these potential differences, we first com-
pared checksums across four different researcher’s copies
of the audio files corresponding to the Beatles dataset. Out
of the four versions, three had identical checksums, while
one had invalid checksums on every single audio file, in-
dicating that the audio is completely different between the
two versions. Upon further examination of the differences,
we found inconsistencies in the number of channels, the
duration, and the average RMS of the audio files between
the two versions.

The differences go even further than channels, duration
and volume. In Figure 1, we first normalize a pair of audio
files to have the same peak level and compute the absolute
difference in their spectrograms. In the low frequencies,
in particular, there are major differences between the fre-
quency content of the two versions, despite sounding sim-
ilar.
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Figure 1. Normalized absolute difference between two
spectrograms of the first 30 seconds of “Across the Uni-
verse” computed on audio files from two versions of the
Beatles dataset audio.
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Figure 2. Chord metrics for chord estimates computed on
two different versions of the Beatles audio, compared with
the Beatles dataset reference chord annotations.

Next, we ran a chord recognition algorithm [21] on the
two different versions of the audio collection, and com-
puted the standard chord recognition metrics as imple-
mented in mir eval using the dataset’s (public) refer-
ence chord annotations. The differences in the metrics
are shown in Figure 2. While only one of these metrics
had statistically significantly different results (“overseg”,
according to a paired t-test), we see that the same chord
recognition algorithm produces results which are different
enough to affect the metrics.

4.2 The iKala Dataset

The iKala dataset [8] is commonly used for melody esti-
mation, vocal activity detection, and source separation. It
contains isolated vocals and instruments (provided as left
and right channels of a stereo audio file), along with vocal
f0 annotations and lyrics.

We performed the same checksum experiment as for the
Beatles dataset and compared checksums for four different
researcher’s copies of the iKala dataset. We found that all
four versions (audio and annotations) were identical.

One challenge with the iKala dataset is that the vocal
f0 annotations are provided as newline-separated files with
the pitch, but without timestamps, which must be inferred
upon load. On the dataset’s website, they state that the hop
size is 0.032 seconds, but it does not state the alignment
of the first time frame (left aligned or center aligned). The
dataset’s website also provides code for loading the anno-
tation files, which uses a different hop size of 0.03125 sec-
onds and center aligned frames (with the first time stamp
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Figure 3. iKala reference annotations loaded using two
different hop sizes (32 ms and 31.25 ms) versus the output
of Melodia. (Left) the first 5 seconds of the track. (Right)
the last 5 seconds of the track.

at 0.5 * hop seconds).
To see how users infer the iKala time stamps, we per-

formed a search of public code on Github.com for code
which loads the iKala pitch annotations. We found 5
unique ways of loading the time stamps, consisting of 3
different hop sizes (0.032 s and 0.03125 as listed on the
dataset website, and 0.032017, inferred from the duration
of the audio files), and two different alignments (left and
center). By far, the most common combination was using
a hop size of 0.032 s and left aligned frames.

The differences in hop size have a major effect on the
alignment of the audio and the annotation, especially over
time. Figure 3 shows an example of the annotations loaded
with two of the hop sizes, and the estimate of a melody
extraction algorithm (Melodia [30]) for comparison. In the
first 5 seconds, the differences are small, but in the last 5
seconds, we see a visible misalignment between the loaded
annotations and the audio.

To investigate the severity of these differences, we ran
two melody extraction algorithms, Melodia [30] and Deep
Salience [3], on the iKala audio. We then compute melody
evaluation metrics using mir eval with reference times
computed using the three different hop sizes, h = 32 ms,
h = 32.017 ms and h = 31.25 ms, using left aligned
frames. In Figure 4, we show boxplots of the results across
tracks in the dataset for each of these reference hop sizes.
The results for different hop sizes are quite different, and
drastically so for the smallest hop size, 0.03125 s. Even
the difference between h = 32 and h = 32.017 in Overall
Accuracy is substantial for both datasets - a difference that
is historically enough to claim state of the art over another
algorithm. A paired T-test shows statistically significant
differences for all pairs of hop sizes for each metric, with
the exception of Voicing Recall for h = 32 and h = 32.017

Next, we compute the melody metrics for the same
melody extraction algorithms using a hop size of h = 32
ms and compare left vs center aligned frames in the ref-
erence. Figure 5 shows the results per track of the two
different reference alignments. The difference in metrics is
smaller than for the hop size differences, but left alignment
is statistically significantly worse than right alignment for
Overall Accuracy and Raw Pitch Accuracy under a paired
T-test.
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32.02
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Deep Salience

Figure 4. Melodia and Deep Salience melody metrics
when evaluated against iKala’s reference data loaded with
3 different hop sizes.
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Figure 5. Melodia and Deep Salience melody metrics
when evaluated against iKala’s reference data loaded with
left and center-aligned time stamps.

This begs the question: which is the correct way to load
the timestamps? Since it is quite unlikely that an incor-
rectly time aligned reference would produce higher scores
than a correct alignment, it is likely that, despite the norm
of using left-aligned frames, the annotations are intended
to have center aligned timestamps. Indeed, if we look at
a specific example of left vs. center aligned timestamps
for a short excerpt compared with two different algorithm
estimates, as in Figure 6, we see that the reference is bet-
ter aligned with both estimates when using center aligned
time frames. Note that in Figure 4, the reference hop of
32.02 ms resulted in higher metrics than the hop of 32 ms
(both with left aligned frames), and a 32 ms hop with cen-
ter aligned frames has higher metrics than all of the left-
aligned hops. The data loaded with a hop size of 32.02
ms starts off misaligned but over time, approaches a center
alignment, explaining the “better” score with this incorrect
hop size.

The shocking result of this set of experiments is that
every single example we found publicly – including the
code found on the dataset’s website – appears to be loading
the f0 data incorrectly, either with an incorrect hop size or
an incorrect alignment - no example we found had both a
hop size of 32 ms and center alignment.

4.3 Salami Dataset

The Salami dataset [31] is a popular dataset used for music
structural segmentation. It consists of 1359 tracks across
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Figure 6. Left and center aligned time stamps for a track in
iKala versus algorithm estimates from Melodia and Deep
Salience. The dashed lines show the distance from the es-
timate where the algorithm would be considered correct in
the standard melody extraction metrics.

a wide variety of genres, namely classical, jazz, popu-
lar, world, among others. Each track has annotations of
‘coarse’ and ‘fine’ segments, and among the annotated
files, a subset of 884 tracks was annotated by two distinct
annotators. The complete set of annotations was released
in version 2.0 of the dataset, increasing the volume of the
dataset with respect to previous versions. For instance,
from version 1.9 to 2.0 additional annotations related to
539 tracks were added, 390 with multiple annotations and
189 with single annotations. Both versions are available in
the dataset’s main repository. However, as in other cases
when a dataset is updated, there is no centralized version
control that is transparent and ensures the awareness of the
community to these changes.

Data-driven models are increasingly popular for ad-
dressing MIR tasks, including the task of boundary detec-
tion using the Salami dataset [15, 35]. One of the main
reproducibility-related issues about data-driven models is
their training, in particular, the amount of annotated data
is crucial. When using Salami, it is important to avoid us-
ing an old version of the annotations, which could have a
negative impact in a model’s performance in comparison
with the same model trained on the newest version of the
dataset. In particular, if different data is used for training
two different models with the aim of comparing their per-
formance afterward, it is difficult to isolate possible causes
of performance differences. An example of this situation is
shown in [11], where the authors use a different subset of
Salami than previous works, obtaining substantially differ-
ent results when intending to re-implement other authors’
model (e.g. 0.246 instead of the previously reported 0.523
F-measure with a ±0.5 s tolerance window).

Another possible source of inconsistency with the use
of this dataset relates to contributions from people other
than the dataset creators. The authors in [24] manually
edited 171 of the annotations in version 2.0, to correct for-
matting errors and enforce consistency with the annotation
guide proposed by the dataset creators. However, this “cor-
rected” version of the annotations was not included in the
dataset’s main repository. This third version of annotations
is used in recent works [24, 34]; comparison of systems
without awareness of the difference with the version 2.0 re-
leased annotations may lead to differences in performance
that are beyond models’ design.

5. MIR DATASET LOADERS

In this section, we describe the mirdata python library,
our proposed solution to the current reproducibility is-
sues with dataset versions and loaders. A driving philos-
ophy of this library is to work with the imperfect situa-
tion we are faced with, with regards to the limited open-
ness of MIR data. In an ideal scenario, all data would
be freely sharable and version controlled; since this is not
the case, we do our best to create tools to maximize re-
producibility given the current constraints. Most impor-
tantly, we aimed to create a clean, transparent and easy to
use interface to encourage reuse and contributions. The
first release of the library will include loaders for Orch-
set [7], iKala [8], MedleyDB Melody and Pitch subsets [4],
the Beatles dataset [16], Salami [31], the Million Song
Dataset [2], Medley Solos-DB [18], RWC [9, 13, 14, 20],
DALI [26], and GuitarSet [37].

5.1 Dataset Indexes and Checksums

Datasets, by their definition, are collections of data. In the
case of MIR datasets, the data is often a collection of sep-
arate files, some of which correspond to e.g. a particular
audio file. For example, the Beatles dataset contains four
separate text files containing chord, beat, section, and key
annotations for each audio file. Since each of these four
annotation files are related to the same audio file, it is desir-
able to have a common way of linking them. In mirdata,
we use a dataset index to link related files, in the form of a
JSON file. This index contains a unique identifier for each
group (for example, the name of the audio file), which is
mapped to its corresponding file paths and their expected
checksums, for example:

{
"track1": {

"audio": [
"example/audio/track1.wav",
"912ec803b2ce49e4a541068d495ab570"

],
"annotation": [

"example/annotations/track1.csv",
"2cf33591c3b28b382668952e236cccd5"

]
},
...

}

The use of an index for each dataset is advantageous for
a number of reasons. First, it groups related data files in
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a transparent way, avoiding audio-annotation pairing mis-
takes, and removing the need for custom filename sub-
string matching per dataset. Second, it gives a version-
controlled record of all expected files in the dataset, pre-
venting inconsistencies due to missing or extra files; we
can check if all the expected files are present in a local copy
of a dataset, and we load data to memory based on the in-
dex, ignoring files not included in it. Finally, it provides a
way to verify if a local copy of a dataset is consistent with
a canonical version on a file-by-file basis.

For each dataset, we also provide a validate()
function, which checks for the existence of files locally and
compares the expected checksums with checksums of the
local copy. A checksum is a representation of a digital file
similar to a fingerprint and usually computed by taking a
hash of the bits in a file. The smaller (in size) represen-
tation created allows for efficient file comparisons at the
bit level. If two files have the same checksum then a user
can assume that the two files are exactly the same with
high confidence. If the checksums between two files differ
or the computed checksum is different from an expected
checksum, then the user is at a minimum aware of discrep-
ancies and can take appropriate action. In the mirdata
use case, checksums allow users who have a local copy of
a dataset to know whether or not they are using the same
data as others, simply by running the validation function.

Note that there is not always one “correct” version of a
dataset, so it is difficult to decide which version of a dataset
should be used to create the reference checksums. For this
library, we compute checksums on the version that is as
close to the “original” as possible, for example by obtain-
ing a version from dataset creators.

5.2 Dataset Downloading

It can often be difficult or unclear how to get access to
a particular dataset, and same data often exists in multi-
ple places and may not be identical. In mirdata, we
provide a download() function for each dataset. When
data is openly available online, the function automatically
downloads the data, and this version of the data is same the
version used to create the checksums. When the data has
been downloaded, we run validation to ensure it matches
and warn the user if not (e.g. in the case of an incomplete
download). When data is not openly available online, we
provide instructions for how to obtain the data (e.g. by re-
questing access on a particular website). Once the data has
been obtained, the user can then run validation to ensure
the data is consistent.

5.3 Annotation Loaders

As highlighted previously, differences in implementations
for loading annotation data to memory can have big effects
on the resulting data. In mirdata, we remove the need
for users to manually write loaders per dataset and annota-
tion type by providing functions for loading all annotations
for each dataset. These implementations are shared and
transparent, allowing users to permanently correct mis-
takes in the way data is loaded.

As an example, for some of the beat annotations in the
Salami dataset, the beat position is missing for only a few
observations. These missing positions can be inferred from
the neighboring information (e.g. beats 1 and 3 have la-
bels, and the one in between is absent), and in mirdata’s
implementation we fill in this information on load.

5.4 Track Metadata

More often than not, in addition to data files containing
e.g. time varying annotations, datasets provide track-level
metadata. When loading annotations, we also link any
available track level metadata with each track id group.
This can be particularly useful when splitting data, such
as for creating unbiased train-validation-test splits [23], or
for analyzing evaluation metrics over different splits of a
dataset.

6. CONCLUSIONS

Although data distribution challenges remain, we believe
that the use of mirdata will result in reproducible us-
age of datasets in research moving forward. Future iter-
ations of mirdata will include support for large (out of
memory) datasets and an increased number of supported
datasets. As datasets become more open and annotation
formats standardize, the scientific need for this library will
lessen, but it will remain a useful tool for ease of working
with datasets.

Importantly, we designed mirdata to have a low bar-
rier to entry for contributions. New datasets can be easily
included independently with minimal interfacing with the
rest of the library. With active community participation, we
believe that mirdata can help ensure that MIR datasets
are used in a consistent, reproducible manner moving for-
ward.
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ABSTRACT

Automatic cover detection – the task of finding in an au-
dio database all the covers of one or several query tracks
– has long been seen as a challenging theoretical problem
in the MIR community and as an acute practical problem
for authors and composers societies. Original algorithms
proposed for this task have proven their accuracy on small
datasets, but are unable to scale up to modern real-life au-
dio corpora. On the other hand, faster approaches designed
to process thousands of pairwise comparisons resulted in
lower accuracy, making them unsuitable for practical use.

In this work, we propose a neural network architecture
that is trained to represent each track as a single embed-
ding vector. The computation burden is therefore left to
the embedding extraction – that can be conducted offline
and stored, while the pairwise comparison task reduces to
a simple Euclidean distance computation. We further pro-
pose to extract each track’s embedding out of its dominant
melody representation, obtained by another neural network
trained for this task. We then show that this architecture
improves state-of-the-art accuracy both on small and large
datasets, and is able to scale to query databases of thou-
sands of tracks in a few seconds.

1. INTRODUCTION

Covers are different interpretations of the same original
musical work. They usually share a similar melodic line,
but typically differ greatly in one or several other dimen-
sions, such as their structure, tempo, key, instrumentation,
genre, etc. Automatic cover detection – the task of finding
in an audio database all the covers of one or several query
tracks – has long been seen as a challenging theoretical
problem in MIR. It is also now an acute practical problem
for copyright owners facing continuous expansion of user-
generated online content.

Cover detection is not stricto sensu a classification
problem: due to the ever growing amount of musical works
(the classes) and the relatively small number of covers per
work, the actual question is not so much “to which work
this track belongs to ?” as “to which other tracks this track
is the most similar ?”.

c© Guillaume Doras, Geoffroy Peeters. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Guillaume Doras, Geoffroy Peeters. “Cover Detection Us-
ing Dominant Melody Embeddings”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

Formally, cover detection therefore requires to establish
a similarity relationship Sij between a query track Ai and
a reference track Bj . It implies the composite of a fea-
ture extraction function f followed by a pairwise compar-
ison function g, expressed as Sij = g(f(Ai), f(Bj)). If
f and g are independent, the feature extraction of the ref-
erence tracks Bj can be done offline and stored. The on-
line feature extraction cost is then linear in the number of
queries, while pairwise comparisons cost without optimi-
sation scales quadratically in the number of tracks [16].

Efficient cover detection algorithms thus require a fast
pairwise comparison function g. Comparing pairs of entire
sequences, as DTW does, scales quadratically in the length
of the sequences and becomes quickly prohibitive. At the
opposite, reducing g to a simple Euclidean distance com-
putation between tracks embeddings is independent of the
length of the sequences. In this case, the accuracy of the
detection entirely relies on the ability of f to extract the
common musical facets between different covers.

In this work, we describe a neural network architec-
ture mapping each track to a single embedding vector,
and trained to minimize cover pairs Euclidean distance
in the embeddings space, while maximizing it for non-
cover pairs. We leverage on recent breakthroughs in domi-
nant melody extraction, and show that the use of dominant
melody embeddings yield promising performances both in
term of accuracy and scalability.

The rest of the paper is organized as follow: we review
in §2 the main concepts used in this work. We detail our
method in §3, and describe and discuss in §4 and §5 the dif-
ferent experiments conducted and their results. We finally
present a comparison with existing methods in §6. We con-
clude with future improvements to bring to our method.

2. RELATED WORK

We review here the main concepts used in this study.

2.1 Cover detection

Successful approaches in cover detection used an input
representation preserving common musical facets between
different versions, in particular dominant melody [19, 27,
40], tonal progression – typically a sequence of chromas
[10, 12, 33, 39] or chords [2], or a fusion of both [11, 29].
Most of these approaches then computed a similarity score
between pairs of melodic and/or harmonic sequences, typ-
ically a cross-correlation [10], a variant of the DTW algo-
rithm [12, 20, 33, 39], or a combination of both [25].
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These approaches lead to good results when evaluated
on small datasets – at most a few hundreds of tracks, but
are not scalable beyond due to their expensive compari-
son function. Faster methods have recently been proposed,
based on efficient comparison of all possible subsequences
pairs between chroma representations [34], or similarity
search between 2D-DFT sequences derived from CQTs
overlapping windows [31], but remain too costly to be scal-
able to query large modern audio databases.

Another type of method has been proposed to alleviate
the cost of the comparison function and to shift the burden
to the audio features extraction function – which can be
done offline and stored. The general principle is to encode
each audio track as a single scalar or vector – its embed-
ding – and to reduce the similarity computation to a simple
Euclidean distance between embeddings. Originally, em-
beddings were for instance computed as a single hash en-
coding a succession of pitch landmarks [3], or as a vector
obtained by PCA dimensionality reduction of a chroma-
gram’s 2D-DFT [4] or with locality-sensitive hashing of
melodic excerpts [19].

As for many other MIR applications, ad-hoc – and
somewhat arbitrary – hand-crafted features extraction was
progressively replaced with data-driven automatic feature
learning [15]. Different attempts to learn common fea-
tures between covers have since been proposed: in par-
ticular, training a k-means algorithm to learn to extract an
embedding out of chromagram’s 2D-DFT lead to signifi-
cant results improvements on large datasets [16]. Similar
approaches, commonly referred to as metric learning ap-
proaches, have been used in different MIR contexts, such
as music recommendation [21, 41], live song identifica-
tion [38], music similarity search [24], and recently cover
detection [23].

2.2 Metric learning

Although the concept can be traced back to earlier works
[1,8], the term of metric learning was probably coined first
in [43] to address this type of clustering tasks where the
objective is merely to assess whether different samples are
similar or dissimilar. It has since been extensively used in
the image recognition field in particular [14, 36, 37].

The principle is to learn a mapping between the in-
put space and a latent manifold where a simple distance
measure (such as Euclidean distance) should approximate
the neighborhood relationships in the input space. There
is however a trivial solution to the problem, where the
function ends up mapping all the examples to the same
point. Contrastive Loss was introduced to circumvent this
problem, aiming at simultaneously pulling similar pairs to-
gether and pushing dissimilar pairs apart [13].

However, when the amount of labels becomes larger,
the number of dissimilar pairs becomes quickly intractable.
It was moreover observed in practice that once the network
has become reasonably good, negative pairs become rela-
tively easy to discern, which stalls the training of the dis-
criminative model. Pair mining is the strategy of training
the model only with hard pairs, i.e. positive (resp. nega-

tive) pairs with large (resp. small) distances [35]. Further
improvement was introduced with the triplet loss, which
is used to train a model to map each sample to an embed-
ding that is closer to all of its positive counterparts than it
is to all of its negative counterparts [30]. Formally, for all
triplets {a, p, n} where a is an anchor, and p or n is one
of its positive or negative example, respectively, the loss
to minimize is expressed as ` = max(0, dap + α − dan),
where α is a margin and dap and dan are the distances be-
tween each anchor a and p or n, respectively.

2.3 Dominant melody extraction

Dominant melody extraction has long been another chal-
lenging problem in the MIR community [18, 28, 42]. A
major breakthrough was brought recently with the intro-
duction of a convolutional network that learns to extract the
dominant melody out of the audio Harmonic CQT [7]. The
HCQT is an elegant and astute representation of the audio
signal in 3 dimensions (time, frequency, harmonic), stack-
ing along the third dimension several standard CQTs com-
puted at different minimal multiple frequencies. Harmonic
components of audio signal will thus be represented along
the third dimension and be localized at the same location
along the first and second dimensions. This representation
is particularly suitable for melody detection, as it can be
directly processed by convolutional networks, whose 3-D
filters can be trained to localize in the time and frequency
plan the harmonic components.

In a recent work [9], we suggested in an analogy with
image processing that dominant melody extraction can be
seen as a type of image segmentation, where contours of
the melody have to be isolated from the surrounding back-
ground. We have thus proposed for dominant melody es-
timation an adaptation of U-Net [26] – a model originally
designed for medical image segmentation – which slightly
improves over [7].

3. PROPOSED METHOD

We present here the input data used to train our network,
the network architecture itself and its training loss.

3.1 Input data

We have used as input data the dominant melody 2D repre-
sentation (F0-CQT) obtained by the network we proposed
in [9]. The frequency and time resolutions required for
melody extraction (60 bins per octave and 11 ms per time
frame) are not needed for cover detection. Moreover, ef-
ficient triplet loss training requires large training batches,
as we will see later, so we reduced data dimensionality as
depicted on Figure 2.

The F0-CQT is a) trimmed to keep only 3 octaves
around its mean pitch (180 bins along the frequency axis),
and only the first 3 minutes of the track (15500 time
frames) – if shorter, the duration is not changed. The
resulting matrix is then b) downsampled via bilinear 2D
interpolation with a factor 5. On the frequency axis, the
semi-tone resolution is thus reduced from five to one bin,

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

108



342 × 18 × �

1024 × 36 × 1

114 × 9 × 2�  38 ×  5 × 4�
 13 × 3 × 8�

5 × 2 × 16�  1 × 1 × 16�

 1 × 1 × �

batch norm + conv2d + pool2d average dense + L2-norm.

Figure 1: Convolutional model (time on the first dimension, frequency on the second dimension).

which we considered adequate for cover detection. On the
time axis, it is equivalent to a regular downsampling.

Finally, as the representation of different tracks with
possibly different durations shall be batched together dur-
ing training, the downsampled F0-CQT is c) shrunk or
stretched along the time axis by another bilinear interpo-
lation to a fixed amount of bins (1024). This operation is
equivalent to a tempo change: for the 3 minutes trimmed,
shrinking is equivalent to multiply the tempo by a factor 3.
We argue here that accelerated or decelerated version of a
cover is still a cover of the original track.

F0

 t × 360 × 6
 t × 360

 15500 × 180

 3100 × 36

 1024 × 36

H
C
Q
T

a) b) c)

Figure 2: Input data pre-processing: dominant melody is ex-
tracted from HCQT, then a) F0 output is trimmed, b) downsam-
pled by a factor 5 and c) resized time-wise to 1024 bins (time bins
on first dimension, frequency bins on second dimension).

3.2 Model

The proposed model is a simple convolutional network
pictured in Figure 1. As we are constrained by the input
data shape, whose time dimension is much larger than its
frequency dimension, only five layers blocks are needed.
Each layer block consists of a batch normalization layer, a
convolution layer with 3 × 3 kernels and a mean-pooling
layer with a 3 × 2 kernel and 3 × 2 stride in order to re-
duce time dimensionality faster than frequency dimension-
ality. A dropout rate of 0.1, 0.1, 0.2 and 0.3 is applied to
the blocks 2, 3, 4 and 5, respectively.

The first convolutional layer has K kernels, and this
number is doubled at each level (i.e. the deeper layer out-
puts 24K-depth tensors). The penultimate layer averages
along frequency and time axes to obtain a vector. A last
dense layer outputs and L2-normalizes the final embedding
vector of size E.

Our assumption behind the choice of this convolutional
architecture is that we expect it to learn similar patterns in
the dominant melody, at different scales (tempo invariance)
and locations (key and structure invariance).

3.3 Objective loss

We use a triplet loss with online semi-hard negative pairs
mining as in [30]. In practice, triplet mining is done within
each training batch: instead of using all possible triplets,
each track in the batch is successively considered as the
anchor, and compared with all its covers in the batch. For
each of these positives pairs, if there are negatives such as
dan < dap, then only the one with the highest dan is kept.
If no such negative exist, then only the one with the lowest
dan is kept. Other negatives are not considered.

Model is fit with Adam optimizer [17], with initial
learning rate at 1e−4, divided by 2 each time the loss on
the evaluation set does not decrease after 5k training steps.
Training is stopped after 100k steps, or if the learning rate
falls below 1e−7. The triplet loss was computed using
squared Euclidean distances (i.e. distances are within the
[0, 4] range), and the margin was set to α = 1.

3.4 Dataset

As metric learning typically requires large amount of data,
we fetched from internet the audio of cover tracks provided
by the SecondHandSongs website API 1 . Only works with
5 to 15 covers, and only tracks lasting between 60 and 300
seconds where considered, for a total of W = 7460 works
and T = 62310 tracks.

The HCQT was computed for those 62310 tracks as de-
tailed in [7], i.e. with fmin = 32.7 Hz and 6 harmonics.
Each CQT spans 6 octaves with a resolution of 5 bins per
semi-tone, and a frame duration of ~11 ms. The imple-
mentation was done with the Librosa library [22].

The dominant melody was extracted for these 62310
HCQT with the network we described in [9], and the out-
put was trimmed, downsampled and resized as described
in §3.1.

4. PRELIMINARY EXPERIMENTS

We present here some experiments conducted to develop
the system. The 7460 works were split into disjoint train
and evaluation sets, with respectively 6216 and 1244 works
and five covers per work. The evaluation set represents
~20% of the training set, which we considered fair enough
given the total amount of covers. The same split has been
used for all preliminary experiments.

1 https://secondhandsongs.com/
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4.1 Metrics

Ideally, we expect the model to produce embeddings such
that cover pair distances are low and non-cover pair dis-
tances are high, with a large gap between the two distribu-
tions. In the preliminary experiments, we have thus evalu-
ated the separation of the cover pairs distance distribution
pc(d) from the non-cover pairs distance distribution pnc(d)
with two metrics:

- the ROC curve plots the true positives rate (covers,
TPR) versus the false positive rate (non-covers, FPR) for
different distance d thresholds. We report the area under
the ROC curve (AuC), which gives a good indication about
the distributions separation. We also report the TPR corre-
sponding to an FPR of 5% (TPR@5%), as it gives an oper-
ational indication about the model’s discriminative power.

- we also report the Bhattacharyya coefficient (BC), ex-
pressed as

∑
d

√
pc(d)pnc(d), as it directly measures the

separation between the distributions (smaller is better) [6].

4.2 Influence of input data

We first compared the results obtained for different inputs
data: chromas and CQT computed using Librosa [22], and
the dominant melody computed as described in 3.1. As
shown on Figure 3 (left), dominant melody yields the best
results. It does not imply that melody features are more
suited than tonal features for cover detection, but shows
that convolutional kernels are better at learning similar
patterns at different scales and locations across different
tracks when the input data is sparse, which is not the case
for chromas and CQT.
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Figure 3: Scores obtained on evaluation set for a model trained -
with chromas, CQT or F0 (left). - on the F0 with various octaves
spans (middle). - on the F0 with various durations (right).

Results obtained when trimming the F0-CQT with vari-
ous octaves and time spans are also shown Figure 3. It ap-
pears that keeping 3 octaves around the mean pitch of the
dominant melody and a duration of 2 to 3 minutes yields
the best results. Smaller spans do not include enough in-
formation, while larger spans generate confusion.

All other results presented below are thus obtained with
the dominant melody 2D representation as input data, and
a span of 3 octaves and 180 seconds for each track.

4.3 Influence of model and training parameters

We then compared the results obtained for different num-
bers of kernels in the first layer (K) and the correspond-
ing sizes of the embeddings (E). As shown on Figure 4

(left), results improve for greater K, which was expected.
However, increasing K above a certain point does not im-
prove the results further, as the model has probably already
enough freedom to encode common musical facets.
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Figure 4: Scores obtained on evaluation set for a model trained -
with various K/E (left) - with various B (right).

We have then compared the results obtained for differ-
ent sizes of training batches (B). As shown on Figure 4
(right), results improve with larger B: within larger
batches, each track will be compared with a greater num-
ber of non-covers, improving the separation between clus-
ters of works. A closer look at the distances shows indeed
that the negative pairs distance distribution pnc(d) gets nar-
rower for larger batches (not showed here). Due to GPU
memory constraints, we have not investigated values above
B=100.

All other results presented below are obtained with
K=64, E=512 and B=100.

5. LARGE SCALE LOOKUP EXPERIMENTS

We now present experiments investigating the realistic use
case, i.e. large audio collections lookup. When query-
ing an audio collection, each query track can be of three
kinds: a) it is already present in the database, b) it is a
cover of some other track(s) already in the database, or c)
it is a track that has no cover in the database. The case a)
corresponds to the trivial case, where the query will pro-
duce a distance equal to zero when compared with itself,
while case c) corresponds to the hard case where neither
the query or any cover of the query have been seen dur-
ing training. We investigate here the case b), where the
query track itself has never been seen during training, but
of which at least one cover has been seen during training.

5.1 Metrics

In these experiments, we are interested in measuring our
method’s ability to find covers in the reference set when
queried with various unknown tracks. This is commonly
addressed with the metrics proposed by MIREX 2 for the
cover song identification task: the mean rank of first cor-
rect result (MR1), the mean number of true positives in the
top ten positions (MT10) and the Mean Average Precision
(MAP). We refer the reader to [32] for a detailed review of
these standard metrics. We also report here the TPR@5%,
already used in the premilinary experiments.

2 https://www.music-ir.org/mirex/wiki/2019
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5.2 Structuring the embeddings space

We study here the role of the training set in structuring the
embeddings space, and in particular the role of the number
of covers of each work. More precisely, we tried to show
evidence of the pushing effect (when a query is pushed
away from all its non-covers clusters) and the pulling effect
(when a query is pulled towards its unique covers cluster).

To this aim, we built out of our dataset a query and a
reference set. The query set includes 1244 works with five
covers each. The reference set includes P of the remaining
covers for each of the 1244 query works, and N covers for
each other work not included in the query set ( Figure 5).

ℰ

{ }w1 N { }qi P

{ }wj N

qi

Figure 5: Big dotted oval represents the embeddings space E .
Smaller dotted ovals represent work clusters of covers. Red
crossed circles represent the positions in the manifold of the ref-
erence tracks wj that are not covers of query track qi (N per
cluster). Green circles represent the positions of the tracks that
are covers of query track qi (P per cluster).

Pushing covers We first train our model on the refer-
ence set with fixed P=5. We compute query tracks embed-
dings with the trained model, compute pairwise distances
between query and reference embeddings, as well as the
different metrics. We repeat this operation for different val-
ues of N ∈ [2, ..., 10], and report results on Figure 6 (left).
We report MR1’s percentile (defined here as MR1 divided
by the total of reference tracks, in percent) instead of MR1,
because the number of reference tracks varies with N .
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Figure 6: Query scores for different training/reference sets. Left:
increasing N, number of covers of non-queries, P fixed. Right:
increasing P, number of covers of queries, N fixed. (Y-axes scale
MAP and TPR on the left, and the MR1 percentile on the right).

The MAP only slightly decreases asN increases, which
indicates that the precision remains stable, even though
the number of examples to sort and to rank is increasing.
Moreover, the MR1 percentile and the TPR@5% clearly
improve as N increases. As P is fixed, it means that the
ranking and the separation between covers and non-covers
clusters is improving as the non-queries clusters are con-
solidated, which illustrates the expected pushing effect.

Pulling covers We reproduce the same protocol again,
but now with N=5 fixed and for different values of P ∈
[2, ..., 10]. We report results on Figure 6 (right). It appears
clearly that all metrics improve steadily as P increases,
even though the actual query itself has never been seen dur-
ing training. As N is fixed, this confirms the intuition that
the model will get better in locating unseen tracks closer to
their work’s cluster if trained with higher number of covers
of this work, which illustrates the expected pulling effect.

5.3 Operational meaning of pc(d) and pnc(d)

We now investigate further the distance distributions of
cover and non-cover pairs. To this aim, we randomly split
our entire dataset into a query and a reference set with a
1:5 ratio (resp. 10385 and 51925 tracks). Query tracks are
thus not seen during training, but might have zero or more
covers in the reference set.

Covers probability Computing queries vs. references
pairwise distances gives the distributions pc(d) and pnc(d)
shown on Figure 7 (left). Using Bayes’ theorem, it is
straightforward to derive from pc(d) and pnc(d) the prob-
ability for a pair of tracks to be covers given their distance
d (Figure 7, right). This curve has an operational mean-
ing, as it maps a pair’s distance with a probability of being
covers without having to rank it among the entire dataset.
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Figure 7: Left: separation of pc(d) (green) and pnc(d) (red).
Right: probability of being a covers pair given the distance d
(green) and total pairs distance distribution pc(d)+pnc(d) (blue).

Easy and hard covers We repeat the previous test five
times with random splits, and report metrics in Table 1. At
first sight, MR1 and MT@10 could seem inconsistent, but
a closer look at the results gives an explanation. To illus-
trate what happens, imagine a set of five queries where the
first query ranks ten covers correctly in the first ten po-
sitions, e.g. because they are all very similar, while all
other four queries have their first correct answer at rank
100. This would yield to MT@10=2.0, and MR1=80.2.
This kind of discrepancy between MR1 and MT@10 re-
flects the fact that some works in our dataset have similar
covers that are easily clustered, while other are much more
difficult to discriminate. This can be observed on the pos-
itive pairs distribution pc(d) on Figure 7 (left), which is
spread over a large range of distances.

MAP MT@10 MR1 BC AuC TPR@5%

Proposed
0.39 2.90 581 0.40 0.97 0.88

(<0.01) (0.03) (59) (<0.01) (<0.01) (<0.01)

Table 1: Results of query set lookup in reference set.
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6. COMPARISON WITH OTHER METHODS

6.1 Comparison on small dataset

We first compared with two recent methods [31, 34], who
reported results for a small dataset of 50 works with 7 cov-
ers each. The query set includes five covers of each work
(250 tracks), while the reference set includes each work’s
remaining two covers (100 tracks). As this dataset is not
publicly available anymore, we have mimicked it extract-
ing randomly 350 tracks out of own dataset 3 .

Our data-driven model can however not be trained with
only 100 tracks of the reference set, as it would overfit im-
mediately. We have thus trained our model on our full
dataset, with two different setups: a) excluding the 350
tracks reserved for the query and reference sets. b) exclud-
ing the 250 tracks of the query set, but including the 100
tracks of the reference set. We repeated this operation ten
times for each setup, and report the mean and standard de-
viation on Table 2 for the same metrics used in [31, 34],
as well as the p-value obtained by a statistical significance
t-test carried out on results series.

MAP P@10 MR1
[34] 0.591 0.140 7.910
[31] 0.648 0.145 8.270
Proposed a) 0.675 0.165 3.439

(0.04), p=.29 (0.005), p<.001 (1.062), p<.001
Proposed b) 0.782 0.179 2.618

(0.104), p<.01 (0.014), p<.001 (1.351), p<.001

Table 2: Comparison between recent method [31, 34] and our
proposed method on a small dataset (precision at 10 P@10 is
reported instead of MT@10. As there are only two covers per
work in the reference set, P@10 maximum value is 0.2).

Our method significantly improve previous results: for
the hardest case a) where the model has not seen any
queries work during training, embeddings space has been
sufficiently structured to discriminate the unseen works
from the other training clusters (pushing effect). For the
easier case b), the pulling effect from the known queries
covers provides further improvement.

6.2 Comparison on large dataset

We also compared with [16], who is to our knowledge the
last attempt to report results for thousands of queries and
references – a more realistic use case. This paper reported
results on the SecondHandSong (SHS) subset of the Mil-
lionSong dataset (MSD) [5] for two experiments: a) only
the training set of 12960 covers of 4128 works was used
both as the query and reference sets. b) the SHS MSD test
set of 5236 covers of 1726 works was used to query the
entire MSD used as reference.

The SHS MSD is not available anymore. However, as
our dataset has also been built from the SHS covers list, we
consider that results can be compared 3 . We have therefore
randomly generated out of our dataset a training and a test

3 We acknowledge that, strictly speaking, results can not be directly
compared to rank methods, as original datasets of [34], [31] and [16] are
not available any longer. They however reflect the level of performance
of the proposed method.

set mimicking the original ones. We trained our model on
the training set, and perform the pairwise distances compu-
tation between the query and reference sets (as the query
set is included in the reference set, we excluded for com-
parison the pairs of the same track). For experiment b), we
have used our entire dataset as reference set as we do not
have one million songs. We have repeated this operation
five times and report in Table 3 the mean and standard de-
viations for the same metrics used in [16], as well as MR1,
MT@10 and the p-value of the t-test carried out.

MAP MR MT@10 MR1

a)
[16] 0.285 1844 - -
Proposed 0.936 78 2.010 33

(0.001), p<.001 (6), p<.001 (<0.001) (3)

b)
[16] 0.134 173117 - -
Proposed 0.220 3865 1.622 430

(0.007), p<.001 (81), p<.001 (0.003) (19)

Table 3: Comparison between method [16] and our proposed
method on a large dataset (MR=Mean rank). For b), the MR
percentile should be compared, as our reference set does not have
1M tracks (6th vs. 17th percentile for [16]).

Our method significantly improve previous results. For
case a), results are notably good, which is not surprising
as the model has already seen all the queries during the
training. Case b) is on the other hand the hardest possible
configuration, where the model has not seen any covers
of the queries works during training, and clusterisation of
unseen tracks entirely relies on the pushing effect.

As to our method’s computation times, we observed on
a single Nvidia GPU Titan XP for a ~3 mn audio track:
~10 sec for F0 extraction, ~1 sec for embeddings compu-
tation, and less than 0.2 sec for distances computation with
the full dataset embeddings (previously computed offline).

7. CONCLUSION

In this work, we presented a method for cover detection,
using a convolutional network which encodes each track
as a single vector, and is trained to minimize cover pairs
Euclidean distance in the embeddings space, while max-
imizing it for non-covers. We show that extracting em-
beddings out of the dominant melody 2D representation
drastically yields better results compared to other spectral
representations: the convolutional model learns to identify
similar patterns in the dominant melody at different scales
and locations (tempo, key and structure invariance).

We have also shown that our method scales to audio
databases of thousands of tracks. Once trained for a given
database, it can be used to assess the probability for an
unseen track to be a cover of any known track without hav-
ing to be compared to the entire database. We have finally
shown that our method improves previous methods both on
small and large datasets.

In the future, we plan to grow our training dataset to
address the realistic use case where collections of millions
of tracks should be queried: as for many other data-driven
problems, will the cover detection problem be solved if the
embeddings space is sufficiently structured?
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ABSTRACT

Existing kinematic research on orchestral conducting
movement contributes to beat-tracking and the delivery of
performance dynamics. Methodologically, such movement
cues have been treated as distinct, isolated events. Yet
as practicing musicians and music pedagogues know, con-
ductors’ expressive instructions are highly flexible and de-
pendent on the musical context. We seek to demonstrate
an approach to search for effective descriptors to express
musical features in conducting movement in a valid mu-
sic context, and to extract complex expressive semantics
from elementary conducting kinematic variations. This
study therefore proposes a multi-task learning model to
jointly identify dynamic, articulation, and phrasing cues
from conducting kinematics. A professional conducting
movement dataset is compiled using a high-resolution mo-
tion capture system. The ReliefF algorithm is applied to
select significant features from conducting movement, and
recurrent neural network (RNN) is implemented to iden-
tify multiple movement cues. The experimental results dis-
close key elements in conducting movement which com-
municate musical expressiveness; the results also highlight
the advantage of multi-task learning in the complete mu-
sical context over single-task learning. To the best of our
knowledge, this is the first attempt to use recurrent neural
network to explore multiple semantic expressive cuing in
conducting movement kinematics.

1. INTRODUCTION

During orchestral conducting, conductors use their body
movements to guide musicians’ expressions of various fea-
tures such as the tempo, dynamics, and articulation in mu-
sic. Through these delicate nuances in their body move-
ment, conductors are able to communicate their refined in-
terpretations and expressive intentions of the musical work
in question. As documented in pedagogical literature,

c© Yu-Fen Huang, Tsung-Ping Chen, Nikki Moran, Simon
Coleman, Li Su. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Yu-Fen Huang, Tsung-
Ping Chen, Nikki Moran, Simon Coleman, Li Su. “Identifying Expres-
sive Semantics in Orchestral Conducting Kinematics”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

’conducting semantics’ - a codified repertoire of move-
ments bearing specific musical instructions - are broadly
accepted as core knowledge, fundamental to conducting
practice. [11,15,21,31]. However, in the scenario of actual
conducting performances, conductors’ movement styles
are remarkably diverse. Moreover, while it is conventional
common sense for experienced musicians to identify dis-
tinct musical features (e.g. phrasing, dynamics, articula-
tion), these features associate with one another in the com-
plex musical context, and conductors tend to communi-
cate similar musical features using diverse strategies de-
pending on the musical context, e.g., dynamic and phrase
cuing may vary when conducted with different articula-
tion patterns. As a result, existing music-movement cou-
pling models are limited in some aspects [16, 28, 33].
The straightforward association which presumes that cer-
tain movement features can communicate specific musical
traits, as stated in conducting pedagogy, has not been ob-
served in such models.

The major challenges to overcome for current conduct-
ing movement research are: 1) to identify interpretable
quantitative descriptors to represent movement features; 2)
to construct a generalisable model, which is robust in iden-
tifying features such as phrase, dynamic, and articulation
cuing in complex musical context, and which is tolerant
to the flexibility of conducting performance and the differ-
ences between individual conductors. In this study, we ap-
proach both of the challenges by adopting machine learn-
ing algorithms. More specifically, to determine potential
movement descriptors relevant to expressive musical fea-
tures, we first applied a supervised feature selection tech-
nique, ReliefF [17–19], to three-dimensional body move-
ment data. Based on such selected features, we then sought
to jointly identify different types of expressive cuing in
conducting movement, and thus trained a recurrent neural
network (RNN) on the body movement data from various
conductors to perform multi-task learning (MTL).

This study identifies the effective descriptors in con-
ducting movement which are used to communicate mu-
sical features. As the pioneering attempt to apply RNN
to music-movement coupling in conducting, we also ver-
ify the advantage for RNN framework with MTL to probe
potential complex connections between various movement
and musical elements, especially compared to previous
works using other models. In the subsequent section, re-
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Figure 1. Basic metrical patterns in musical conducting.
(reproduced from http://www.purposeful primarymusic.com).

lated research in musical conducting movement will be re-
viewed. Our dataset and model will be introduced in sec-
tion 3 and 4 respectively. The experimental designs will
be reported and the results will be discussed in section 5,
followed by the conclusion in section 6.

2. RELATED WORK

For orchestral performance, a fundamental function of
conducting is to coordinate musicians’ playing. Conduc-
tors regulate the musical timing using basic beat patterns
(e.g. two-beat, three-beat, or four-beat cycles etc., see
Figure 1), and such beating movements communicate both
the tempo arrangement and the metrical structure of the
performed musical piece [11, 15, 21, 31]. The beating pat-
tern in conducting has been substantially investigated, and
it is found that the vertical action is the major component
to lead the beat timing [4, 22, 24, 34, 35]. The tracking of
beat is the most efficient under the constraint of movement
bounding box area [35] and using dynamic time warping
technique [34]. Based on these findings, interactive sys-
tems such as Pinocchio, vMaestro, and Personal Orchestra
has built, in which the tempo of recorded orchestral audio
is manipulated by the user’s body movement, and the mu-
sic automatically aligns with the beat timing identified in
the movement [4, 22, 24].

Yet conducting movement is far more complicated than
simple beating. Built on these basic metrical patterns,
conductors take a step further to communicate their mu-
sical interpretations via refined variations in their move-
ment. Pedagogical sources present a stock of movements
frequently used by conductors to instruct their expressive
intentions regarding articulation, dynamics, and phrasing
[11, 15, 21, 31]. As summarised by the authors’ previ-
ous work, specific conducting movements carrying expres-
sive intentions, i.e. conducting semantics, are understood
to comprise distinct combinations of hand position (high/
low/ away from the body/ close to the body), movement
size (large/ small), speed (quick/ slow), acceleration (sud-
den/ gradual change of movement), smoothness (smooth/
jerky), trajectory shape (straight/ curved), and palm direc-
tion (upward/ downward/ facing musicians/ facing the con-
ductor) [13, 14]. These qualitative, subjective descriptions
of movement features match with quantitative, empirical
analysis of conducting kinematics, in which the palm di-
rections, movement size, hand positions and velocity re-
flect the dynamic change in music [8, 33, 35].

That conductors use their body movement to commu-
nicate musical expressiveness is self-evident, and is a

truth demonstrated by both musical pedagogy and empir-
ical analysis of conducting movement. However, exist-
ing music-movement coupling models generate only low
to moderate correlations between musical and movement
features [16, 33], and the computational approach which
automatically classifies conductors’ expressive intentions
based on their movement has also produced unsatisfactory
results [28]. These findings demonstrate that the expres-
sive semantics in conducting are highly context-dependent.
Different aspects of musical expression, such as dynamics,
articulation, and phrasing are entangled in actual instances
of musical performance, and their study would benefit
from the ecologically-valid, intact musical contexts.

In music information retrieval (MIR) research, vast ef-
forts have been devoted to extracting semantic representa-
tions such as pitch, beat, and harmony from audio signals.
The machine learning approach has gained great success in
modelling the semantics from music audio recordings [7].
During performance, musical sound is usually generated
by the execution of body movement. There is a press-
ing need, therefore, for an equivalent effort to explore the
expressive semantics carried by musical movement. The
recurrent neural network (RNN) is widely used to anal-
yse music semantics in a sequential way [25, 30, 32, 38].
RNN also allows the multi-task learning (MTL) setting,
which has been proven successful in music information re-
trieval [12, 39]. We therefore propose a RNN framework
with MTL approach in this study, and test the model on
our conducting movement corpus.

3. DATA

This study is based on a professional conducting move-
ment dataset collected by the authors, which contains
conductors’ upper body movement recorded by a high-
resolution motion capture system, together with annota-
tions of beat timing, phrase, dynamic, and articulation.

3.1 Collection of motion capture data

The motion capture data were recorded in the Biomechan-
ical Laboratory at the Institute for Sport, Physical Educa-
tion and Health Sciences (ISPEHS), University of Edin-
burgh, UK. Conductors’ movement were collected using a
nine-camera optical motion capture system (Qualisys, Pro-
Reflex, Sweden) at a sampling frequency of 120 frames
per second. The captured area was calibrated using the
Qualisys 300 mm wand kit with the average residual being
lower than 2 mm. Twenty-seven 12 mm optical markers
were attached to the conductor’s upper body and baton fol-
lowing the Golem Upper Body Model in Visual3D docu-
mentation [6]. The locations of 27 markers were illustrated
in Figure 2 and listed in Table 1.

Six conductors (3 professional conductors and 3 ad-
vanced conducting students) participating the collection
were all right-handed males, with an average conducting
experience for 10.6 years (SD = 9.37), and conducted for
4.4 hours per week on average (SD = 2.38) at the time of
participation. Five string musicians accustomed to musi-
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Figure 2. (a) The location of 27 optical markers placed on
the conductor’s upper body from the frontal and rear view-
points. The marker colours represent the ranking from the
feature selection procedure ReliefF: The top 15 elements
(red), no 16-30 elements (green), no 31-45 elements (blue),
no 46-81 elements (black). (b) The 27 markers captured by
the system from the frontal, lateral, and rear viewpoints.

cal conductors’ directions were recruited from University
ensembles; the average number of years’ instrumental ex-
perience was 15.6 (SD = 2.30) and average experience of
playing in orchestra was 12.2 (SD = 3.11).

Each conductor rehearsed with musicians for 30 min-
utes. In the subsequent recording session, the conduc-
tor’s movements were collected in a repeated measures
design. The 6 conductors performed 3 different ex-
cerpts of Western classical orchestral repertoire: 1) W.
A. Mozart, Serenade in G major, K.525 (first movement,
bars 1-55), 2) A. Dvořák, Serenade in E Major, Op.22
(first movement, bars 1-53), and 3) B. Bartók, Diverti-
mento for String Orchestra, Sz. 133 (third movement,
bars 1-183). The excerpts represent different composi-
tional styles [5], yet share aspects of metrical structure,
which lends them to comparison. Each excerpt is roughly 1
minute long according to constraints of the motion capture
equipment. Individual conductors recorded 3 instances
of each excerpt, with excerpt performance order counter-
balanced across the 6 individuals. As a result, 54 con-
ducting performances were collected in the corpus in to-
tal (3 performances x 3 musical excerpts x 6 conduc-
tors). The complete dataset was uploaded as the C3D
file format for motion capture analysis to the DataShare
open access data repository at the University of Edinburgh:
https://datashare.is.ed.ac.uk/handle/10283/2906.

# Name Description
1 RFHD Right temple
2 LFHD Left temple
3 RBHD Right back head
4 LBHD Left back head
5 CLAV Jugular Notch
6 STRN Xiphoid process of the Sternum
7 C7 Spinous process of the 7th Cervical vertebrae

8 T10 Spinous process of the 10th thoracic vertebrae

9 RBAK Middle of the right Scapula
10 RASI Right Anterior Superior Iliac Spine
11 LASI Left Anterior Superior Iliac Spine
12 RPSI Right Posterior Superior Iliac Spine
13 LPSI Left Posterior Superior Iliac Spine
14 RSHO Right Acromio-clavicular joint
15 RUPA Right upper arm
16 RELB Right elbow joint
17 RWRA Right wrist thumb side
18 RWRB Right wrist pinkie side
19 RFIN The 2nd Metacarpal of the right forefinger
20 LSHO Left Acromio-clavicular joint
21 LUPA Left upper arm
22 LELB Left elbow joint
23 LWRA Left wrist thumb side
24 LWRB Left wrist pinkie side
25 RFIN The 2nd Metacarpal of the right forefinger
26 BASH Baton shaft
27 BAEN Baton end

Table 1. The locations for 27 optical markers placed on
the conductor’s upper body

3.2 Data pre-processing and labelling

3.2.1 Pre-processing of motion capture data

The collected motion capture data were exported from
Qualisys Tracker Manager (version 2.7, Pro-Reflex, Swe-
den) and imported to Visual3D (standard version 4.93, C-
motion, USA) and Python (version 3.6.8) for further anal-
ysis. The original movement data containing the posi-
tion on x-, y-, and z- axes of 27 markers were smoothed
by the fourth-order low-pass Butterworth filter with a cut-
off frequency of 10 Hz. The speed on x-, y-, z- axes of
each marker was defined as the first derivative of x-, y-,
z- position respectively, divided by the sampling interval
(1/120 s). Speed was considered to carry important infor-
mation in previous studies on musical conducting move-
ment [13, 14, 26, 27], and thus was chosen as the variable
to be investigated. The speed data were normalised based
on the mean and standard deviation in each performance
trial, and were converted to the z-scores of speed.

The z-scores of speed were then imported in the sub-
sequent feature selection procedure ReliefF. Moreover, a
generalisable element is preferable for RNN model. Con-
sidering that the minor fluctuations within 1/10 beats
(roughly 5 frames) has only trivial effect on our target mu-
sical features – which are phrase, dynamic, and articula-

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

117



tion structure in bar level, and such minor fluctuations may,
on the contrary, have negative effect on generalisation, the
simple moving averages of speed data for per 5 frames
were thus taken before being imported in RNN model.

In order to align motion capture data with expressive
labels extracted from musical scores, the timing of beats
and bars in conducting movement was assessed. The beat
timing in movement was estimated using the motion cap-
ture analysis software Visual3D, and was defined as the
time when the lowest position of baton tip on the z-axis
(vertical axis) occurred within a beat period according to
previous studies [13,14,26,27]. The initiation of a musical
bar is then defined as the onset of the first beat in the given
bar.

3.2.2 Annotation of expressive labels

The label for dynamics, articulation, and phrasing were an-
notated by three experienced music theorists (with an aver-
age experience for music analysis = 20.7 years, SD = 2.89)
based on designated edition of musical scores [2, 9, 29].
Where the annotators disagreed with each other, the opin-
ion of the majority was taken. The dynamic and articula-
tion labels were appointed to each musical bar. Phrasing
labels, on the other hand, indicate the initiation timing of
phrases, which is dissimilar to dynamic and articulation
status that prolongs for a period of time. The phrase ini-
tiation was thus determined as the timing of the first beat
in each phrase, and then entered the model with a window
size of +/- 60 frames, which is equivalent to +/- 0.5 seconds
of the phrase initiation in the given sample frequency 120
fps, and roughly +/- 1 beat of the phrase initiation accord-
ing to 120 bpm instructed in musical scores. The labels are
illustrated in Figure 3. The annotation process complied
with the following principles:

1) Dynamics: The dynamic annotation contains 6
classes including: pp, p, mp, mf, f, ff in the 3 music ex-
cerpts. Dynamic levels were labelled according to the ex-
pressive terminology in the scores. Where there is no dy-
namic instruction specified in the given bar, the dynamic
level in the previous bar was taken. Where the dynamic
level changes within a bar, the dynamic level for the ma-
jority of beats was taken. Where different dynamic levels
exist in equal number of beats within a bar, the first dy-
namic level occurring in the given bar was taken. Where
crescendo or diminuendo is marked, the gradual change of
dynamics was divided into equal levels and was designated
to the bars in the crescendo or diminuendo process.

2) Articulation: The articulation annotation contains 3
classes including: legato, neutral, staccato. The legato la-
bel was assigned to where the slur is printed; the staccato
label was assigned to where the staccato mark is printed in
the score, or where a note equals to or shorter than a quaver
is followed by a rest; the neutral label was assigned to bars
where no specific legato or staccato marks was printed.
Where there are more than one type of articulation terms
printed within a bar, the articulation type for the majority
of beats was taken. Where different articulation types exist
in equal number of beats within a bar, the first articulation

type occurring in the given bar was taken.
3) Phrasing: The phrasing annotation specifies the ini-

tiation of phrases, and it contains 2 classes including: the
phrase onset, none. The phrase structure was determined
according to conventional music analysis techniques [3].
Where different melodies interlocked, the phrase in the
main melody is taken.

4. DATA ANALYSIS AND MODEL

The aforementioned data set was analysed in two steps: 1)
the supervised feature selection technique ReliefF was ap-
plied to identify effective descriptors in conducting move-
ment to communicate musical expressiveness; 2) the RNN
architecture with MTL setting were constructed to model
generalisable rules to associate multiple movement and
musical features.

4.1 Data representation

The input data is represented as the z-score of speed on x-,
y-, z- axes of 27 markers (3 x 27 = 81 features) with the
sample frequency of 120 fps. As shown in Figure 4, each
segment fed into the bidirectional long-short-term memory
(BLSTM) network contains 81 features with 121 frames
(which is equivalent to roughly 1 second or 2 beats); the
hop size for consecutive segments is 30 frames (0.25 sec-
onds or 0.5 beats); each input clip contains 64 segments
(16.75 seconds or roughly 32 beats; 8 bars in Mozart and
Dvořák; 32 bars in Bartók). In addition, we also imported
the top 15 movement elements selected by ReliefF (15 fea-
tures x 121 frames per segment) into RNN, to examine if
our recognition model is capable of identifying musical ex-
pressions from a small assemble of crucial features.

4.2 Feature selection for movement data

Orchestral conducting consists of movements from differ-
ent body parts. Conducting pedagogy mainly describes the
expressive guidance instructed by hand movements, yet no
evidence has been provided by previous motion capture
studies to verify such emphasis on hands. To this end,
it is essential to know which parts of the body and what
kinds of movements are relevant to the expressive inten-
tions in music. The process of finding such relevance can
be regarded as a feature selection problem. The ReliefF
algorithm, one of the most commonly used supervised fea-
ture selection algorithms for music related movement [23],
is applied here as an exploratory study. ReliefF is an ex-
tension from the original Relief [17–19] with higher reli-
ability and is applicable to multi-class datasets. The algo-
rithm searches every class of features xi for their k-nearest
neighbours from the same class (nearest hit) and from a
different class (nearest miss) to score how well such feature
to distinguish data from different classes [19]: Scorei ∼
−
∑

k d(xi, xNearHit)+
∑

k d(xi, xNearMiss), where d(·, ·) is
a distance measure. The exact form of ReliefF can be
found in [23]. In this research, we set k = 20 as suggested
by Urbanowicz et al. [37].
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Figure 3. The example of musical scores, 3 types of expression label (phrase onset, dynamic level, articulation), and the
movement data from right finger marker.

Figure 4. The multi-task model built on the RNN

4.3 Recognition model for music expression

We applied a recurrent neural network (RNN) with bidirec-
tional long-short-term memory (BLSTM) cells to carry out
multi-task learning (MTL) for expressive cuing in conduct-
ing movement. Such architecture is advantageous to deter-
mine sequential features in musical signals [7, 30, 32, 38],
yet to the best of our knowledge, this approach has not
been applied to musical movement in any existing study.

As shown in Figure 4, the model has a shared BLSTM
layer with 1024 hidden units, and a task-specific fully-
connected layer. The outputs from forward and back-
ward LSTMs are concatenated as a 2-by-1024 matrix in
the segment level, which is then flattened to link the fully-
connected layer. The output layer is a 10-D vector con-
taining the classes for the three tasks. Sigmoid is applied
to output phrase initiation (1D); Softmax is applied to out-
put the dynamic level (6D) and the articulation type (3D).

To examine the advantage of MTL, we also constructed
single-task learning (STL) models, where the same RNN
framework and BLSTM cells are applied to phrase, dy-
namics, and articulation tasks respectively.

5. EXPERIMENT

5.1 Experimental settings

The 54 conducting performance trials (810 input clips) are
divided into training set (48 trials, 720-722 clips) and test-
ing set (6 trials, 88-90 clips). The 9-fold cross-validation
is performed in a way that per 6 trials are in turns assigned
to the testing set in 9 experiments. Each clip fed into the
BLSTM network contains 64 segments (# of feature x 121
frames per segment); the hop size for consecutive clips are
32 segments. To prevent the problem of over-fitting, data
augmentation is performed in a way that random Gaussian
noise is added to the original data with the level of 0.1 stan-
dard deviation of the input data.

All networks are implemented using TensorFlow [1],
and are trained using stochastic gradient descent with
Adam optimiser. The cross-entropy between output and
labels are computed for training purpose. To avoid over-
fitting, L2 regularisation is applied. The dropout rate for
both the input and output of BLSTM cells is 0.7. The learn-
ing rate is 0.0001 with 4800 training steps. This procedure
is performed on 4 models: the MTL model, STL models
for phrase, dynamics, and articulation tasks respectively.

5.2 Evaluation metrics

For the phrase recognition task, The Precision, Recall, and
F1 measures (the balanced harmonic mean of Precision
and Recall) [10] are computed in segment level (hop size
= 30 frames; 0.25 seconds; roughly 0.5 beats). A detected
phrase cuing event is considered as a true positive if it lies
within a tolerance window +/- 60 frames (0.5 second and
roughly 1 beat) from the ground truth annotation. If there
are two or more phrase cuing detected within this toler-
ance window, one of the detections is considered as a true
positive, and others are considered as false positives. For
dynamic and articulation recognition tasks, the accuracies
(acc) are computed in segment level: acc = (# of true posi-

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

119



tive segments/ # of total segments).

5.3 Result

5.3.1 Results of movement feature selection

The top 15 relevant movement features selected by ReliefF
algorithm to fit 3 types of musical features (phrase, dynam-
ics, articulation) are illustrated in Figure 2. It appears that
the elements from right and left fingers, and right and left
wrists are prominent in communicating all three types of
musical expressions. These top 15 elements are inputted
in the subsequent RNN model.

It is an unexpected outcome that the elements from the
baton end are not included in the top list. As suggested
in conducting pedagogy, the baton end has been consid-
ered as an important reference to communicate expressive
information in conducting [11, 15, 21, 31]. In the Reli-
efF analysis, the elements from baton end are ranked as
no 31-33 within 81 elements. It could be the effect that
our target musical features are in bar level rather than in
beat level. According to eigenvalue and eigenvector anal-
ysis in previous research on musical movement, the move-
ments in extremity usually correspond to lower-level mu-
sical elements with a shorter period (such as per beat),
whereas movements in torso tend to associate with higher-
level musical features with a longer period (such as per bar
or longer) [36]. The right finger and wrist are in the in-
termediate location between the body and baton tip, and
are the key body part for conductors to manipulate the ba-
ton, which could be the reason that why they contribute the
most to our expressive targets.

5.3.2 Results of music expression recognition

The results of using RNN framework to perform MTL and
STL are reported in Table 2. It is manifest that the accu-
racy produced by all models is higher than the random in-
cidence (0.166 for 6-class dynamics; 0.333 for 3-class ar-
ticulation). All the t-tests comparing the models with the
feature selection procedure (# of feature = 15) and with
full feature sets (# of feature = 81) do not reach the sig-
nificant p-value of 0.05, which suggests that the top 15
features selected by ReliefF are effective descriptors re-
garding the expressiveness in conducting movement. It is
evident from t-tests that the MTL model shows its advan-
tage over STL models. It appears that these three musical
features are intertwined in the musical context. Identifying
phrase cuing can be the most challenging one among the
three tasks. Considering the characteristics of movement
kinematic signal, the phrase cuing can be easily confused
with local-level beat cuing. Yet in the multi-task model, the
dynamic and articulation information can help the recogni-
tion of phrase in one way or another.

The majority of previous research on conducting move-
ment focuses on the beating pattern in basic level [24, 34,
35], and in this study, we make effort to explore the higher-
level expressive semantics in conducting. There are several
previous attempts to tackle the semantic-level in conduct-
ing, but exclusively target on the dynamic instructions, and
tend to consider such gestures as isolated events regardless

Model # Phrase Dync. Artc.
P R F acc acc

MTL 81 60.39 ** 42.86 * 48.48 71.49 *** 76.45 ***

MTL 15 59.94 *** 42.10 47.63 73.03 *** 76.97 ***

STL 81 52.35 ** 38.15 * 44.07 65.16 *** 70.25 ***

STL 15 48.05 *** 40.78 43.87 64.46 *** 68.95 ***

Table 2. Recognition results (in %) using RNN with multi-
task setting (MTL) and single-task setting (STL): The pre-
cision (P), recall (R), F1 (F) measures for the phrase task,
and the accuracy (acc) for dynamics (dync.) and articula-
tion (artc.) tasks, comparing all movement features (# =
81) and the top 15 features selected by ReliefF (# = 15).
Asterisks indicate the p-value of t-test of MTL and STL
counterparts: * for p < 0.05; ** for p < 0.01; *** for p <
0.001.

the musical context [4, 8]. Previous studies examined the
correlations of movement-music dynamic feature pairs and
yield moderate r2 ranging from 0.4 - 0.5 [33]. Our model
takes another approach and is competent to investigate the
complex inter-connections among multiple factors, and is
able to produce further and solid results. As we expect
from previous MIR research using MTL settings [12, 39],
our MTL model demonstrates the advantage to consider
multiple musical and movement elements together to in-
vestigate the complex inter-connections in the communi-
cation process during conducting performance. Moreover,
as suggested by the previous research, musicians may per-
form the dynamics and articulation differently from the no-
tated scores [20], the connection between the conducting
movement and the performed sound can be further investi-
gated using a similar approach presented in this study.

6. CONCLUSION AND FUTURE WORK

In this paper, we describe results from our investigation
into the expressive semantics in conductors’ movement
used to communicate the phrase, dynamics, and articula-
tion in music. The supervised feature selection technique
ReliefF provides insights into effective descriptors in ele-
mentary kinematic signals of conducting movement. The
movement elements from the right and left hand, and right
and left wrists appear to carry important information re-
garding the conductor’s expressive intentions. These se-
lected descriptors are further investigated using recurrent
neural network with multi-task learning. The RNN ar-
chitecture yields improved results compared to previous
works using other analysis techniques. Particularly, the
multi-task learning model demonstrates a promising ap-
proach to examine the complex interactions among mul-
tiple musical and movement elements.

As the pioneering investigation on conducting move-
ment using RNN, we highlight the potential for this frame-
work to be applied to further explore other issues in music
conducting, such as the connection between the conduct-
ing movement and the performance sound. The findings of
such studies can enlighten the musical education for both
conductors and orchestral musicians.
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ABSTRACT

Roman numeral analysis has been central to the West-
ern musician’s toolkit since its emergence in the early
nineteenth century: it is an extremely popular method for
recording subjective analytical decisions about the chords
and keys implied by a passage of music. Disagreements
about these judgments have led to extensive theoretical de-
bates and ongoing controversies. Such debates are exac-
erbated by the absence of a public corpus of expert Ro-
man numeral analyses, and by the more fundamental lack
of an agreed-upon, computer-readable syntax in which
those analyses might be expressed. This paper specifies
such a standard, along with an associated code library in
music21, and a preliminary set of example corpora. To
frame the project, we review some of the motivations for
doing harmonic analysis, some reasons why it resists au-
tomation, and some prospective uses for our tools.

1. INTRODUCTION AND MOTIVATION

Roman numeral analysis represents tertian chords by their
triad type (major, minor, diminished, augmented), their
position relative to the tonic (specified by the scale de-
gree of their root), their bass note or inversion, and the
presence of sevenths or other added or altered notes. The
practice emerged in the early nineteenth century, with Got-
tfried Weber’s Versuch einer geordneten Theorie der Ton-
setzkunst [19] drawing on Rameau’s earlier concept of the
fundamental bass. Weber’s method was so immediately
popular that he complained other theorists were stealing
his methods, and it has remained common to the present
day. It is useful to contrast Roman numerals with alterna-
tives, notably:

• Absolute labels for chords such as ‘C’, as often
found in lead sheets;

• Function-theoretic labels such as ‘T[onic]’;

• Inversional symbols accompanying bass notes as
used in figured-bass notation.

c© Dmitri Tymoczko, Mark Gotham, Michael Scott Cuth-
bert, Christopher Ariza. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Dmitri Tymoczko,
Mark Gotham, Michael Scott Cuthbert, Christopher Ariza. “The Roman-
text Format: a Flexible and Standard Method for Representing Roman
Numeral Analyses”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

Absolute chord labels are performer-oriented in the
sense that they specify which notes should be played, but
do not provide any information about their function or
meaning: thus one and the same symbol can represent
a tonic, dominant, or subdominant chord. Accordingly,
these labels obscure a good deal of musical structure: a
dominant-functioned G major chord (i.e. G major in the
local key of C) is considerably more likely to descend by
perfect fifth than a subdominant-functioned G major (i.e. G
major in the key of D major). This sort of contextual in-
formation is readily available to both trained and untrained
listeners, who are typically more sensitive to relative scale
degrees than absolute pitches.

Roman numerals include contextual information at the
cost of increased subjectivity: by labelling chords relative
to a local tonic, they require the analyst to make a poten-
tially difficult decision about what the tonic is. However,
these decisions can be undone: given a Roman numeral
and a key, one can algorithmically derive an absolute chord
label. Thus Roman numerals can be used even in contexts
where absolute labels are needed (for instance, exploring
the frequency of “open” chords in guitar-based music).
This makes it a good choice for the construction of ana-
lytical corpora, as one can translate from Roman numerals
to absolute labels but not vice versa.

Function theoretical labels go one step further toward
abstraction: here chords are identified not by their note
content but by their perceived harmonic role. (Usually,
the three Riemannian functions T, S, D are employed,
though other writers have suggested additional harmonic
categories.) Thus in C major, a term like “D[ominant]”
could mean B-D-F, G-B-D-[F], or some other chord en-
tirely; just as “S[ubdominant]” could mean either D-F-A-
[C] or F-A-C. Because many distinct harmonies map to
a single functional term, these labels cannot be translated
into Roman numerals or absolute chord labels. However,
function labels can often be recovered from Roman numer-
als: in ordinary musical contexts, vii and V are Dominants,
while ii and IV are Subdominants [17]. Once again the
asymmetry gives us reason to prefer Roman numerals for
analytical corpora.

The inversional symbols of figured-bass notation are
in many ways analogous to absolute chord labels, but
with an important difference: they are often used to la-
bel “non-harmonic” sonorities containing dissonances that
do not belong to the underlying harmony. For this rea-
son, many recent theorists have favored them, [5, 10] be-
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lieving that Roman numerals impose too strong a dis-
tinction between the harmonic and non-harmonic realm.
(Ironically, Riemann himself made the converse complaint
against figured-bass notation, believing that it did not draw
a sharp enough distinction between harmonic and non-
harmonic [13]). When we restrict our attention to ter-
tian sonorities, however, figured-bass symbols are largely
equivalent to absolute chord labels, telling performers what
notes to play but not what they mean.

Each of these methods has its benefits and short-
comings; we have chosen Roman numerals for their
widespread popularity, their translatability to the other for-
mats, and their proven utility.

1.1 Motivation for Roman Numeral Analysis Corpora

Roman numeral analysis involves several different layers
of subjective judgment:

• which notes are harmonic / non-harmonic;

• what complete harmony, if any, an incomplete or
otherwise ambiguous chord might represent; and

• the underlying keys and when they change.

Thus Roman numeral analysis is not an automatic pro-
cess, and humans may legitimately disagree about the best
analysis of a given passage [14, 15, 18]. Instrumental tex-
tures present a particular challenge because it is not always
clear where harmonies change, and even a single, mono-
phonic passage such as an Alberti bass can imply multiple
voices. Even in rhythmically simpler genres, such as the
Bach chorales, there are significant challenges to automatic
Roman numeral parsing.

One of us has written a rule-based Roman numeral ana-
lyzer that reproduces human analyses of the Bach chorales
with roughly 82% accuracy (DT forthcoming work; code
available on request). That figure represents something
like the state of the art, and while 82% accuracy is suf-
ficient for some applications, it falls far short of what is
needed in serious analytical and pedagogical contexts. Fur-
thermore, extending the method to instrumental textures
poses a range of considerable challenges.

Such challenges motivate the construction of human-
made corpora, which can serve as the “ground truth” for
evaluating computational analyses. Human-made corpora
can also allow us to study the degree of alignment among
expert analysts, as well as providing important first-order
information about harmonic practices in different histori-
cal eras. Finally, the combination of automatic analyses
with machine-readable scores facilitates a host of analyti-
cal projects including the automatic identification of non-
harmonic tones.

2. THE .RNTXT SPECIFICATION STANDARD

We now outline our proposed standard. Previous work to
define standards and create corpora include [1, 3, 4, 7, 8,
11, 12, 16]. Our goal is to create a format that is not just
parsable by a computer, but also easy for human beings

Composer: J. S. Bach
Piece: Chorale BWV269
Analyst: Dmitri Tymoczko
Proofreader: David Castro

Time Signature: 3/4

Form: chorale
m0 b3 G: I
m1 b2 IV6 b3 V6
m2 I b2 V b3 vi
m3 IV b2.5 viio6 b3 I
m4 V || b3 I
m5 V6 b2 vi6/5 b3 viio6
m6 I6 b2 ii6/5 b3 V b3.5 V7
m7 I || b3 I
m8 I b2 ii b2.5 viio6 b3 I6
m9 I6 b2.5 V4/3 b3 I
m10 V || b3 vi
Note: consecutive first inversion triads
m11 vi b2 iii6 b3 ii6
m11var1 vi b2 I6/4 b3 ii6
m12 I6 b3 V7
m13 I b2 I6 b3 V7/IV
m14 IV || b3 I
m15 V6 b1.5 V6/5 b2 I b3 viio6
m16 I6 b2 I b3 V b3.5 V7
m17 vi b2 IV b3 I
m17var1 vi b2 IV b2.5 viio6/4 b3.5 I
m18 V || b3 I
m19 V6 b3 IV6
m20 vi b2 ii6/5 b3 V b3.5 V7
m21 I

Figure 1. An example of the new standard as used to rep-
resent an analysis of the Bach chorale BWV269.

to read and write. Previous work tends to neglect this lat-
ter consideration, and thus limits corpus creation to ded-
icated coders and researchers prepared to learn formats
divergent from textbook models. The Clercq-Temperley
and DCMLab’s tabular representation are user-friendly ex-
ceptions; we provide converters as part of the music21
code to connect with those format (as discussed below in
Section 3.1) [2]. Additionally, [4] reports that TAVERN
has plans for a forthcoming music21 converter which
would further extend the connections and interoperability
between these corpora. We provide extensive online exam-
ples (cf. Section 3.2) below and include one extract in the
text as Figure 1.

2.1 Metadata

Documents may begin with the following optional lines:

• Composer: e.g. ‘Mozart’

• Piece: Name and/or catalogue number, e.g. ‘K550’
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• Analyst: The name of the original analyst / origina-
tor of this document, e.g. ‘Jo Blogs’.

• Proofreader: The name(s) of the anyone involved in
checking and correcting this work, e.g. ‘Jo Vlogs’.

After the metadata, may include movement and time
signature information on separate lines.

Movement. Use Arabic numbering to label the move-
ment of a multi-movement piece.
Movement: 1
Each movement is typically contained in its own file.

Time Signature. Specify time signatures on a separate
line in the form of a simple string, such as:
Time Signature: 6/8
Changes of time signature are notated with a new specifi-
cation immediately preceding the change. If no time sig-
nature is specified 4/4 is assumed.

Key Signature. The format supports the (optional)
specification of the notated key signature as a number of
sharps (or negative number for flats) in the key signature.
So the specification:
Key Signature: -1
stands for a key signature of one flat (F major or d minor).

Minor Sixth / Minor Seventh. Specifies how scale de-
grees 6 and 7 are to be interpreted in minor mode. Sup-
ported values are ‘quality’ (major chords are on flattened
degrees, minor or diminished on raised degrees), ‘caution-
ary’ (default: same as quality, but # and b can used to leave
off ambiguity), ‘sharp’ (raised degrees are standard; low-
ered degrees require b), and ‘flat’ (lowered degrees are
standard). See github.com/MarkGotham/When-in-Rome
for a tabular comparison of these options.

2.2 General syntax of Chords

After the metadata, the document proceeds to itemize each
chord with one line per measure. Each line of analysis
starts with the symbol ‘m’ followed immediately by a mea-
sure number with no space; it then proceeds with pairs of
beat numbers (preceded by ‘b’) and their corresponding
Roman numerals. For instance, the line:
m5 b1 IV6 b2 V
indicates that in measure 5, a IV6 chord falls on beat 1,
followed by a V chord on beat 2.

Chord Inversions. The format supports all standard
representations of triad and seventh inversions, as itemized
in Section 2.3. Slashes are optional for separating subscript
from superscript numbers, so I64 may be I6/4 or I64.

Missing beats. If no beat is specified at the start of
a line, beat 1 is assumed. For any further beats that are
missing, the existing chord remains in effect. So the line:
m14 IV6 b2 V b4 V2
indicates that measure 14 starts with IV6 chord on beat 1,
followed by a V chord on beat 2 which remains in effect
across beat 3, and becomes V2 on beat 4.

No chord. ‘NC’ indicates a passage with no chord –
where one chord terminates prior to the onset of the next.

Measure numbers. Each line begins with a measure
number and each movement should be numbered sepa-

rately. This means that every movement will start with
measure 1, except in the case of an initial anacrustic mea-
sure which is numbered 0. (The music21 parser inter-
prets the length of the anacrusis based on the first notated
beat: thus in 4/4, m0 b4 C: V indicates a quarter-note
pickup, while m0 b4.5 C: V indicates an eighth-note
pickup.) Thus measure 1 is always the first full measure.
For multiple alternative measure numbers, such as first /
second time repeats or endings, use lower-case Latin script,
so ‘216a’, ‘217a’, ‘218a’ for the first, and ‘216b’, ‘217b’,
‘218b’ for the second. See ‘Repeats’ in Section 2.5 be-
low for details of how to handle measures that repeat the
harmonic context of other measures.

Beats. Beat numbering follows the conventions for the
given meter, so 4/4 has 4 beats in total, while 6/8 and 2/2
have two. Thus a succession of eighth notes will be as-
signed different beat positions depending on that context,
for instance:

• in 4/4: 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5.

• in 2/2: 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75.

• in 6/8: 1, 1.33, 1.66, 2, 2.33, 2.66 (or 2.67).

The X.33 and X.66 format is also used for the second
and third units in a triplet division of a duple meter. For
further division of ternary beats, analysts can either use
more precision or multiple decimal points, so that ‘1.833’
and ‘1.66.5’ indicate the point halfway through the second
eighth of the first beat of a 6/8 measure.

Keys. Indicate key changes with the name of the key in
the correct (upper or lower) case, followed by a colon. C:
indicates the key of C major; while c: is c minor. Sharps
are notated with ‘#’ and flats with either ‘b’ or ‘-’. Key
changes occur between beat and chord, so
m112 IV6 b4 C: ii
indicates a key change to C major on beat 4 of measure
112. A single chord can be notated as a pivot chord be-
longing to two keys like so:
m112 IV6 b4 vi C: ii
Here, one and the same (D minor) chord is recorded both
as ‘ii’ in the new key of C major and ‘vi’ in the old key (F
major). (Note the lack of a beat between the Roman nu-
merals in the two keys.) There is no need to change keys
for modally-inflected chords:
m112 IV6 b3 iv6
indicates a major triad 6̂-1̂-4̂ followed by the minor triad
[6̂-1̂-4̂ with the same root.

A key with a semicolon preceding the colon, such as
C;: indicates that the new key should also be indicated
with a change of key signature in any generated score.

In cases of key ambiguity, a secondary key may be pre-
ceded by a question mark and an open parentheses such as
?(Bb: which indicates that the analyst believes that B-flat
major is also a valid key but that the prevailing key (such
as g-minor) is the one to which subsequent Roman numer-
als will refer. These optional keys can be concluded by
reversing the direction of the parenthesis as in ?)Bb:.

Chromatic Alteration. For altered chords, simply use
the appropriate triadic symbol: lowercase with the suffix
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‘o’ for diminished, lowercase for minor, uppercase for ma-
jor, uppercase with the suffix ‘+’ for augmented. Roots can
be raised or lowered with a preceding ‘#’ and ‘b’(e.g. iv).
Thus bIII+ indicates an augmented triad on a lowered
scale-degree 3, or Eb-G-B in C major.

Altered, added, and omitted tones. These may be in-
dicated by an operation and chord step in brackets. Thus
V4/3[b5] indicates a V4

3 chord with whose bass is low-
ered. Note the potentially confusing (but standard) com-
bination of figured-bass and root-functional symbols: in
V4/3[b5] the ‘43’ refers to intervals above the bass,
while [b5] refers to an interval above the root. The sym-
bol ‘no’ can be used to specify chord tones that are to be
removed. Each alteration should appear in its own set of
brackets. Thus, as a non-sensical demonstration of mul-
tiple possible features, V65[no5][add#6][b3] indi-
cates Bb-E#-F-G in C major.

Minor mode. In minor, scale degrees 6 and 7 are vari-
able depending on whether the melodic or natural minor
collection is used. For the purpose of legibility the expec-
tation is that common chords conform to one of the stan-
dard minor scales. Thus a: VII refers to G-B-D while
a: viio refers to G#-B-D. Similarly, a: VI is F-A-C
while a: vio is F#-A-C. Augmented chords are treated
as altered major chords (i.e. based on natural-minor scale
degrees), while diminished chords are treated as altered
minor triads (raised degrees). These interpretations can
be changed through the ‘Sixth minor’ and ‘Seventh minor’
metadata tag described above.

Applied Chords. ‘Applied’, or ‘secondary’, chords are
notated using ‘/’. For instance, V/V indicates the domi-
nant chord of the dominant key of the prevailing tonic, so
D major (V of G major) in the key of C major. Applied
chords are typically used for local tonicisations (includ-
ing the purely diatonic V/III in minor), reserving ‘full’ key
changes like C: for longer modulations. Chained applied
chords such as V7/V/V are allowed.

Augmented and Neapolitan sixth chords. These are
sufficiently canonical to be afforded their own abbrevia-
tion. Thus ‘Ger*’ is shorthand for #ivo*[b3] where *
labels the appropriate inversion (7, 6/5, 4/3, or 2), ‘It*’
for #ivo*[b3] (with possible inversions being 5/3 or
blank, 6/3 or 6, or 6/4), and ‘Fr*’ for II*[bV]. For the
Neapolitan, ‘N’ and ‘N6’ are both accepted abbreviations
for bII6. Use bII for the Neapolitan in root position.

Cadential 6/4. For computational simplicity, the parser
expects any of I64, I6/4 or Cad64 for the cadential 6/4
chord (V64 is not treated as equivalent here since its mean-
ing depends on context).

2.3 Chord Symbol Summary

The following list summarises the possible symbols avail-
able for use in describing chords.

• Sharps and flats: b = flat, # = sharp, bb = double-flat,
## = double sharp, etc.

• Major Triads: I, II, III, IV, V, VI, VII (upper case)

• Minor Triads: i, ii, iii, iv, v, vi, vii (lower case)

• Triad suffixes: add ‘+’ to major for an augmented
triad; ‘o’ to minor for a diminished triad (note, this
is the letter ‘o’ not the numeral ‘0’); ‘/o’ indicates a
half-diminished seventh chord.

• Abbreviations: ‘It’, ‘Ger’, ‘Fr’, ‘N’, ‘Cad’.

• Triad inversions: no symbol or ‘5/3’ for root posi-
tion; ‘6’ or ‘6/3’ for first inversion; ‘6/4’ for second
inversion (with or without the optional ‘/’).

• Seventh inversions: ‘7’ for root position, ‘6/5’ for
first inversion, ‘4/3’ for second inversion and ‘2’ for
third inversion. ‘9’, ‘11’, and ‘13’ are also supported
in root position.

• Altered/added/omitted notes: use square brackets
and Arabic numerals, e.g. ‘[no5]’ for no fifth.

Together, these elements are sufficient to describe any
standard tonal chord. Roman numerals may involve more
or less complicated combinations of these symbols. For-
mally, the triad type is the only required element, so ‘I’ and
‘V’ (and their minor-mode equivalents) are the simplest
possible syntatical entries. A maximally-complex chord
description involves all of the available elements, which
will be parsed in the following order:

1. Triad type (with quality indicated by case);

2. Triad suffix for diminished / augmented;

3. Accidental for raising/lowering the root (sometimes
computed, in minor, from triad type);

4. Accidental for modifying a seventh and/or inversion
that follows;

5. Seventh, ninth, etc. and/or inversion;

6. Accidental for modifying an . . .

7. Altered/added/omitted note;

8. Relative key (in the case of applied chords)

Steps 6 and 7 also may be repeated.
See Section 3.1 for details of how the code processes

this, and github.com/MarkGotham/When-in-Rome for full
reference lists of all possible Roman numerals along with
the pitches they entail in C major and a minor.

2.4 Form, Phrase, and Pedals

Pedal points. With pedal points, analysts face a choice be-
tween integrating the pedal into the Roman numerals – for
instance, I IV6/4 I and V I6/4 V each has the same
tones in the bass throughout – or to indicate that the pedal
has harmonically separated from the passage and should
no longer be represented in this way [9, p.113]. This for-
mat supports both notations. To notate a pedal separately,
use a line of the kind:
Pedal: G m14 b3 m19 b1
Here a G pedal begins in measure 14 beat 3 and lasts until
(but not through) measure 19 beat 1.
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Large-scale formal labels. Formal sections can be
identified using the prefix Form:. Examples include
the major sections of Sonata Form (‘Exposition’, ‘Sec-
ond Theme’, ‘Development’, ‘Recapitulation’ and ‘Reca-
pitulation Second Theme’); numbered variations in varia-
tions form (‘Variation N’); and the large-scale divisions of
a Rondo (‘Rondo A’, ‘Rondo B’). These should be posi-
tioned on a separate line before the measure in which the
section begins.

Phrase boundary. Phrase boundaries can be identified
with ‘||’. This provides data useful for many lines of en-
quiry. From the strictly harmonic perspective, this can help
to contextualise unusual progressions. For instance, in
m33 V || b2 IV
the oddity of an apparent V-IV progression is contextu-
alised by the fact that it occurs across a phrase break: the
music stops on V before resuming on IV.

2.5 Repeated Progressions and Variants

Repeats. For different passages with the same harmonies,
the format supports the following abbreviation:
m3-4 = m1-2
This indicates that measure 3 is the same as measure 1
and measure 4 is the same as measure 2. This shorthand
works for exact repeats of chords progressions, with the
same chords, in the same order, in the same part of the
measure. For near variants, judicious copy-and-paste is re-
quired, taking care to make the necessary changes. One of
the authors (DT) has written a simple python program to
renumber measures and shift chords into a new key, avail-
able on request.

Variant readings. For multiple readings of the same
passages, use the ‘var’ tag. For instance,
m1 viio6
m1var1 ii
indicates that the chord in measure 1 is ambiguous: it may
be viio6 or ii. Multiple variants may be indicated with
var1, var2.

Notes. The ‘Note’ tag affords an opportunity to record
any other noteworthy elements, such as a pattern not ev-
ident from the Roman numerals alone. Include notes on
separate line, before the moment of interest. This sub-
sidiary feature is for the analyst’s reference only and not
processed as part of the harmonic analysis.

3. CODE AND CORPUS

Apart from the .rntxt standard specification, this paper also
presents a code library in music21 for handling Roman
numeral analyses, as well as a set of initial corpora.

3.1 Code

The code focusses on translation routines for the .rntxt rep-
resentation defined above, the related Clercq-Temperley
standard defined by Trevor de Clercq and David Temper-
ley for rock harmony (‘.tdc’ extension), and the DCMLab’s

Figure 2. An example of music21’s default musical-
notation rendering, with chords in close position and the
numeral itself included as a ‘lyric’. This example is from
the start of BWV269, corresponding to Figure 1.

tabular representation format (‘.tsv’ extension). 1

Like the .rntxt representation format, the code also pro-
vides a neutral conduit for processing Roman numeral
analyses in various ways: converting between representa-
tion formats, rendering the analyses in musical notation,
and engaging in computational analysis using the wider
music21 code base. Again, that neutrality means sup-
porting any in-principle approach to Roman numeral anal-
ysis as long as the representation meets the syntactical cri-
teria of the format.

Exceptions are raised in the case of divergence
from the syntax, and the parsers are fully inte-
grated into music21, so both corpus.parse() and
converter.parse() read directly from the file types
listed (.rntxt, .tdc, and .tsv). Files with other exten-
sions can be parsed by passing in a format parameter:
.parse(‘file.txt’, format=‘romantext’).

All features of RomanText described in this paper are
supported by the most recent release of music21 (v.5.7),
except [addX] tones and settings for alternative parsing of
vi/VI and vii/VII included in v.6.0alpha, and variant read-
ings which are not currently supported.

From these RomanText analyses, the code creates a
music21 Score with a single Part object containing all the
RomanNumeral objects within the relevant measures. Fig-
ure 2 shows an example of how music21 renders Roman
numerals: unless specified otherwise, the tonic is placed
in octave 4 (the octave above middle C inclusive), the root
(or imagined root if in inversion) is placed above that tonic,
and the real bass of each chord is placed in the octave above
that pitch. Where the corresponding score exists in an en-
coded format, this analysis part can be inserted as an addi-
tional ‘part’ in order to view the relationship between score
and analysis in musical notation. Future work may see an
option for matching the analysis up with the original piece
in order to render chords in their original spacing.

The RomanNumeral() class extends the Chord
class, inheriting mutually useful variables like .root,

1 For more information on the deClercq-Temperley format, see the
scholarly reports in [3] and [16]. For the DCML lab’s standard, see
[12] and the code base at github.com/DCMLab/ABC/ For music21’s
provision, see the code base at: github.com/cuthbertLab/
music21/tree/master/music21/romanText or for docu-
mentation: web.mit.edu/music21/doc/moduleReference/
moduleRoman.html for the code and Chapter 23 of the User’s Guide:
web.mit.edu/music21/doc/usersGuide/
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and introducing new read/write attributes. Thus anything
one can do to or with a Chord is also possible with a
RomanNumeral. A Roman numeral pairs a .figure
(such as I6) with a .key (such as C), but the class sup-
ports a range of additional attributes, some settable, others
read-only.

Additional methods support the creation of
RomanNumeral object ab initio, such as the
.romanNumeralFromChord() method which
processes any chord (which in turn can be made from a list
of pitches) into a RomanNumeral object when paired
with a specific key.

As discussed in Section 2, the RomanText format sup-
ports additional elements that are more textual than har-
monic: ‘large scale formal labels’, ‘pedals’, and ‘notes’.
music21 processes these as text with a dedicated subclass
of TextExpression.

3.2 Corpus

Finally, we present a set of example corpora approximately
representing the start, middle and end of common-practice
tonality as follows (with the total analyses in brackets):

1. Monteverdi madrigals, Books 3–5 (48 works);

2. Bach chorales (a sample, 20 analyses);

3. Preludes from the first book of Bach’s Well Tem-
pered Clavier (complete, 24 preludes);

4. Beethoven string quartets, converted from the DCM-
Lab’s ABC corpus and with manual error-correction
(complete, 16 quartets, 70 movements);

5. 19th-century French and German songs from the
‘Scores of Scores’ corpus [6], (sample, 50 songs).

See github.com/MarkGotham/When-in-Rome for di-
rections to these corpora: the first two are included in the
latest version of music21; more will be added after error
checking. We offer them in order to illustrate how the for-
mat works in a range of repertoire contexts, and to provide
an initial dataset for experimenting with the format. An
additional corpus of approximately 1,000 scores, ranging
from Dufay to Brahms, will be released within a year.

As we have been at pains to point out, the .rntxt for-
mat accommodates any kind of Roman numeral analysis,
as long it is adopts the basic syntax as outlined above. That
said, any particular corpus will have to make ‘policy’ de-
cisions about its approach, if it is to be consistent. In these
corpora, we have elected to prefer:

1. harmony changes on metrically strong positions and
at regular intervals;

2. to analyse similar material in similar ways;

3. to identify as ‘harmonic’ notes that do not belong
to any common species of non-harmonic tone (e.g.
notes that are both leapt-to and leapt-from); and

4. harmonic analyses that are more consistent with
standard harmonic theory.

No.1 and No.2 are intuitive enough, though No.2’s re-
liance on ‘similar’ leaves ample room for ambiguity; fur-
thermore there are cases where harmonic considerations
lead to different analyses of parallel passages. Rule No.
3 requires harmonic analyses to conform to the precepts
of traditional contrapuntal theory, which is mostly appro-
priate for our chosen repertoires (though some allowances
need to be made in the case of Monteverdi).

No.4 is arguably more interesting. The preference may
appear circular, but it is not: standard harmonic theory as-
serts that the majority of tonal chord progressions can be
understood as conforming to a small number of harmonic
and contrapuntal patterns; it does not assert that all pas-
sages are unambiguous, nor that composers tried to avoid
analytical ambiguity when composing. Thus analysts com-
monly rely on their harmonic expectations when identify-
ing chords. For instance, given a D-F dyad between I and
I6 in a common-practice C major context, preference No.4
helps lead us to identify the most promising candidates for
completion as ii, V4

3, and viio6 and to choose either of
the latter two, since the progressions I viio6 I6 and I V4

3

I6 are significantly more common than I ii I6. (The for-
mer is more common in Bach; the latter in Beethoven, so
detailed stylistic information is needed in this case.) The
sense of ‘commonness’, furthermore, can be justified by
looking only at those cases where a complete triad inter-
venes between I and I6. In this way, we use our sense of
what happens in the non-ambiguous cases to guide our in-
terpretation of the ambiguous ones.

A more thorough-going discussion of the philosophical
options available to Roman numeral analysts will be pub-
lished by author DT soon.

4. SUMMARY AND OUTLOOK

This paper presents a specification for Roman numeral
analysis, code for working with those analyses, and a set
of example corpora. The format thus supports a range
of data-driven approaches to harmonic analysis, as well
as other applications including pedagogical (e.g. visuali-
sation and the selection of pertinent teaching examples) to
compositional (setting harmonic constraints for stochastic
composition). We hope that these offerings will contribute
positively to ISMIR’s 20th anniversary call for ‘reusable’
material to ‘build up consistent knowledge across the com-
munity.’
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ABSTRACT

Grouping songs together, according to music preferences,
mood or other characteristics, is an activity which reflects
personal listening behaviours and tastes. In the last two
decades, due to the increasing size of music catalogue ac-
cessible and to improvements of recommendation algo-
rithms, people have been exposed to new ways for creat-
ing playlists. In this work, through the statistical analysis
of more than 400K playlists from four datasets, created in
different temporal and technological contexts, we aim to
understand if it is possible to extract information about the
evolution of humans strategies for playlist creation. We
focus our analysis on two driving concepts of the Music
Information Retrieval literature: popularity and diversity.

1. INTRODUCTION

The advent of the streaming era has transformed the role of
music playlists, which have become central to the listening
experience. The current interest by both academia and pri-
vate company is illustrated by the ACM RecSys Challenge
2018 for Automatic Music Playlist Continuation, where al-
most 2K people registered for participating [4]. However,
the interest in algorithmic-enhanced methods for playlist
generation started much before, when large catalogues of
digital music became available, around the beginning of
this century [1, 13, 17].

In the last 20 years, Music Information Retrieval (MIR)
literature has addressed several aspects of playlists, both
from a user and an algorithmic perspective [8]. In this
work, we focus on the analysis at scale of large playlist
datasets in order to understand how humans create a
playlist in different contexts. The main hypothesis of our
work is that technological innovations occurring in the last
two decades have affected how people are experiencing
music, and thus how music pieces are grouped together.

We center our attention on two main facets considered
important in the design of playlist generation systems, ac-
cording to the literature. On one hand, we address the char-

c© Lorenzo Porcaro1, Emilia Gomez1,2. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Lorenzo Porcaro1, Emilia Gomez1,2. “20 years of playlists:
a statistical analysis on popularity and diversity”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

acterization of playlists in terms of popularity, which has
been a focus of several studies and related to the so-called
long-tail effect [3]. On the other hand, we address the se-
mantic diversity of a playlist, considered as the contrary
to the semantic similarity concept. The trade-off between
similarity and diversity has been already object of anal-
ysis [6, 7], so following a similar direction we study the
diversity of semantic information in playlists.

In detail, we measure the popularity of a playlist, start-
ing from the popularity of its component tracks. The ad-
vantage of this measure relies in the possibility to compute
it without looking at the content. Furthermore, using tags
retrieved from Last.fm 1 , we define a playlist diversity in-
dex based on the semantic distance between its tracks. The
distance is computed using tag embeddings, a compact and
meaningful representation of user-generated annotations.

This work has three main contributions. First, we
propose and implement two distinct indexes for playlist
dataset characterization: one related to the concept of pop-
ularity and another one to the concept of diversity. Sec-
ond, we apply, study and discuss the statistical distribution
of these measures to four datasets, containing more than
400K playlists created in the last 20 years. Third, we re-
lease the data and software used for the analysis in order to
foster reproducible research and future work in the topic.

The paper is structured as follows. Section 2 provides
an overview of previous works related to the analysis of
the playlist creation processes. We then propose an analy-
sis methodology in Section 3, which includes a description
of the model, the considered datasets and the proposed sta-
tistical measures. Section 4 provides the obtained results,
which are discussed in Section 5.

2. RELATED WORK

A playlist is usually described in a very broad way as "an
ordered sequence of songs meant to be listened to as a
group", a noteworthy definition in the literature [9]. Sev-
eral approaches have been proposed to build computational
models of the mechanisms behind playlist creation such as
Combinatorial Pattern Generation [13], Gaussian Process
Regression [17], Markov Chains [5], or Hypergraph Ran-
dom Walks [12] among the others. Recent studies for ana-
lyzing playlists proposed context-aware algorithms, which

1 https://www.last.fm
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AOTM CORN SPOT DEEZ
Oldest
playlist

1998 2010 2012 2013

Newest
playlist

2011 2011 2015 2018

# playlists 100K 15K 175K 82K
Max length 60 75K 47K 400
# playlists

(w/o outliers)
97K 15K 155K 74K

Max length
(w/o outliers)

33 361 109 65

Avg length 19 131 27 17
# tracks 972K 75K 2,789K 277K

Table 1. Summary of the datasets.

Figure 1. Top 5 similar tags found for "rock", "pop",
"jazz", "electronic", "classical", using the tag-embeddings
computed from DEEZ corpora. Distance is calculated with
approximate nearest neighbor algorithm, using euclidean
distance of normalized vectors, plotted using t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm.

takes into account characteristics such as the playlist ti-
tle [16], and also sequence-aware algorithms, which ana-
lyze the order of songs in a playlist [20]. For an extensive
review of manual, automatic and assisted techniques for
playlist creation, we refer to [8].

Understanding how people create playlist is fundamen-
tal for creating computational models capable of emulating
this human generation process (automatic playlist genera-
tion) [5], or predicting the most likely song to add in a
given playlist (automatic playlist continuation) [4]. In ad-
dition, the intrinsic value that individuals give to a set of
songs cannot be always fully explained by the analysis of
the acoustic features, as tempo or tonality, emotional state
or contextual information [6], and the sentence "Making a
playlist is more of an art than a science" partly summarizes
this hindrance [7]. Finally, interactive tools for supporting
users during the decision-making process of playlist cre-
ation have been shown effective, but at the same time af-
fecting human decisions. Indeed, in [11] the authors show
how these kinds of tools can bias humans towards adding

AOTM CORN SPOT DEEZ
Rock Rock Rock Rock
Indie Altern. Pop Pop

Altern. Pop Indie Fem. Voc.
Pop Jazz Altern. Altern.

Fem. Voc. Fem. Voc. Electr. Indie
Altern. Rock Indie Fem. Voc. Hip Hop
Class. Rock Class. Rock Hip Hop Electr.
Indie Rock Soul Jazz French

Table 2. Top tags used within each dataset (Fem.
Voc.=Female Vocalist; Altern.=Alternative; Class. Rock
= Classic Rock; Electr.=Electronic).

tracks more popular or more recent, in comparison to what
they would independently add to the playlist. It can be
considered as a consequence of the difficulty of creating
models which effectively reflect human behaviors.

3. METHODOLOGY

3.1 Dataset

This study considers a total of 409K playlists (2.3M songs)
from four different playlist datasets (see summary in Table
1), three of them already proposed in the literature:

1. Art of the Mix [2] (AOTM): Playlists submitted by
users to the Art of the Mix website 2 .

2. Yes.com [5] (CORN): Playlists from radio stations
in the United States.

3. Spotify [16] (SPOT): Playlists from Twitter’s users
tweeting via Spotify.

4. Deezer (DEEZ): Playlist from Deezer’s users,
crawled in-house.

The datasets were considered because of the hetero-
geneity of their nature. Indeed, they have been created
using playlists from different periods, with different us-
age and purpose. CORN 3 provides playlists from radio
stations in the United States, without restrictions on mu-
sical genres. This is the only dataset where playlists are
not generated by users. AOTM 4 is the dataset containing
the oldest playlists, covering a 13 years period from 1998
to 2011. It is formed by playlists submitted by users to
Art of the Mix, a website where a community of playlist
passionates share their creations. SPOT 5 has been com-
posed tracking Spotify’s users active in Twitter between
2012 and 2015. Similarly, DEEZ has been created using
the Deezer API, selecting users playlists created between
2013 and 2018.

There are two main differences between AOTM and the
other two user-generated datasets. First, SPOT and DEEZ

2 http://www.artofthemix.org
3 http://www.cs.cornell.edu/~shuochen/lme/data_

page.html
4 https://bmcfee.github.io/data/aotm2011.html
5 http://dbis-nowplaying.uibk.ac.at/#playlists
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Artist Track Tags
The Blacktop Cadence Off track (’punk’, 100), (’indie rock’, 100)

The Cure Maybe someday (’post-punk’, 100), (’new wave’, 92)

The Blacktop Cadence
I don’t do well in
social situations

(’punk’, 100),(’indie rock’, 100)

Jefferson Airplane Today (’classic rock’, 100), (’Psychedelic Rock’, 98)
Husker Du Something I learned today (’punk’, 100), (’hardcore’, 49)
Superchunk Punch me harder (’indie’, 100), (’college rock’, 50)

Willie Bobo
Fried neck bones and

some home fries
(’sexy’, 100), (’downtempo’, 100)

Wu-tang Clan Clan in da front (’Hip-Hop’, 100), (’rap’, 81)

Table 3. Example of tracks and relative tags of a playlist with low diversity (pDI = 0.12, top), and a playlist with high
diversity (pDI = 0.98, bottom)

playlist creation process is embedded on particular stream-
ing platform, while this does not apply to AOTM. Second,
playlists in AOTM have been created before streaming ser-
vices became intensively used worldwide 6 , while DEEZ
and SPOT dataset are representative of a period in which
streaming technologies were already consolidated.

As pre-processing step, we filtered out playlists with
less than 4 unique tracks. In addition, we excluded ex-
tremely long playlists by computing, for each dataset
separately, the interquartile range (IQR) of the playlist
lengths and excluding all playlists that are longer than
Q3+1.5 IQR, where Q3 is the 3rd quartile. Table 1 shows
a summary of the dataset characteristics.

3.2 Playlist Popularity Analysis

We address the characterization of popularity by defining
a popularity index for both tracks and playlists based on a
set of metrics proposed in the literature.

We estimate the Track Popularity Index (tPI) as the
track frequency within a dataset, i.e. the number of
playlists in a dataset in which it occurs, as proposed in
[20]. This index is normalized between 0 and 1, using
min-max normalization. In order to understand how track
popularity is distributed, we uniformly split each dataset
into 10 different groups, according to tPI . The first one
contains tracks with tPI ∈ [0, 0.1), the second one with
tPI ∈ [0.1, 0.2), etc. We then analyze the statistical distri-
bution of track popularity per group, using two qualitative
measures proposed in the literature: Shannon index [18]
and Simpson index [19]. For both indexes, 0 indicates that
there is no variation in terms of popularity, while 1 indicate
that popularity varies significantly within the dataset.

In addition, we define the Playlist Popularity Index
(pPI) for a playlist p as the average of tPI for the playlist
tracks ti

pPI(p) =
1

len(p)

len(p)∑
i=1

tPI(ti) (1)

We compute pPI for each playlist and we then com-
pute the Gini coefficient [10] to estimate the degree of

6 https://www.ifpi.org/downloads/GMR2016.pdf

imbalance of the playlist popularity distribution for each
dataset, i.e. we obtain a measure of the statistical disper-
sion of playlist popularity. Gini coefficient is comprised
between 0 and 1, where 0 express the maximum balance,
which means that pPI is almost equally distributed be-
tween playlists in the dataset, while 1 represents an unbal-
anced situation, which means that few playlists have high
pPI , while several playlists have low pPI .

In the case of playlist popularity, the choice of using
Gini coefficient is motivated by the idea of having a value
representing the influence of every playlist on the overall
dataset distribution. Differently, when tracks are grouped
together according to their popularity, thanks to Shannon
and Simpson indexes we have an estimation of how tracks
are distributed within groups.

3.3 Playlist Semantic Diversity Analysis

In order to characterize the diversity of tracks on a given
playlist, we consider a semantic distance measure based on
user-generated tags. For every track, we queried Last.fm
website to retrieve its top 5 related tags. We then pro-
ceed as follows. First, we create a tag-vector represen-
tation to estimate tag distances. Second, we use a linear
combination of tags-embedding distances, weighted with a
tag popularity count, to obtain the distance between every
two tracks of a playlist. Third, we average the distances
between tracks to yield a final diversity estimation for a
playlist, according to the retrieved tags.

Finally, we obtain two metrics: 1) a distance between
tracks, based on tag-similarity; 2) a playlist diversity in-
dex, based on the distance variations between tracks. We
provide more details on the process in the next sections.

3.3.1 Tag-embeddings

Recent developments of NLP techniques have shown how
particular types of words vector representation can bring
with them valuable semantic information. In our study, we
select the GloVe [15] learning algorithm 7 , an architecture
that exploits the ratio of word-word co-occurrences prob-
abilities within a corpora for generating tag embeddings.

7 https://nlp.stanford.edu/projects/glove
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We choose this representation because of its compact form,
the low computation cost needed for training the model
with new corpora, and the facility to compute a distance
metric between embeddings. For training the model, we
combine the retrieved tags from Last.fm to create a corpus
of track tags, and we use it to generate a vector representa-
tion for each tag.

In Table 2, we report the most frequent tags for the four
datasets. Most of them are shared between datasets, so we
study the few not shared tags to better understand their pe-
culiarities. As an example, "French" only appear in DEEZ,
having Deezer been founded in France. Furthermore, we
observe how "Electr." and "Hip Hop" tags only appear in
SPOT and DEEZ. The rise of commercial music in these
these two genres in the last decade may be reflected in their
extended presence.

Figure 1 shows an example of similar tags, where
the distance has been computed using the trained tag-
embeddings. "rock" and "pop" clusters are quite near, as
"jazz" and "classical". Within "electronic" similar tags,
"dance" is the nearest one to "pop". Within the "jazz" clus-
ter, there are "trumpet" and "saxophone", two instruments
often related to this genre. These are some examples of ob-
servations that can be derived, and which reflect semantic
information contained in the computed vector representa-
tion.

3.3.2 Playlist Track-Tag diversity index

We define a track tr as linear combination of its T weighted
tags:

tr =
T∑

i=1

wi tagi (2)

where in our settings T = 5. Basing on (2), we define
a distance measure between tracks, named Track-Tag dis-
tance (dTT ), as follow

dTT (tr
(1), tr(2)) =

1

T

T∑
i=1

W
(1,2)
i dtag(tag

(1)
i , tag

(2)
i )

(3)
where the weight term is

W
(1,2)
i =

w
(1)
i + w

(2)
i

2max(w
(1)
i , w

(2)
i )

(4)

and the distance between two tags is defined as

dtag(tag1, tag2) =
√
2(1− cos(tag1, tag2)) (5)

cos(tag1, tag2) represents the cosine similarity between
tag-embeddings. The computation of the tag distances has
been carried out with the Annoy Python library 8 , which
makes use of the approximate nearest neighbor technique
for an efficient computation of the euclidean distance of
normalized vectors. In the dTT formula, Wi = 1 if
w

(1)
i = w

(2)
i , so weights do not impact the distance. Other-

wise, Wi ∈ (0.5, 1) , hence final distance decreases when

8 https://github.com/spotify/annoy

multiplying the weight term with the tag distance. In de-
tail, dTT is near to 0 when two tracks have a high sim-
ilarity, while it is around 1 when they are very different,
according to their combination of user-generated tags.

For understanding a playlist diversity in terms of seman-
tic annotations, we first compute the dTT distance for ev-
ery combination of two tracks in the playlist. Summing
the distances and dividing by the number of total possible
combinations, we obtain the Playlist Track-Tag diversity
index (pDI):

pDI(playlist) =
2

M(M − 1)

∑
i,j

dTT (tri, trj),

∀tri, trj ∈ playlist, j > i

where M is the length of the playlist. pDI is near to 0
when there is a low diversity between tracks within the
playlist, and almost 1 when tracks are extremely diverse,
according to the dTT distance. Table 3 provides two ex-
amples of playlists with different pDI values. The playlist
with low pDI is formed by tracks mainly tagged as "punk",
"rock" or "indie", while the playlist with high pDI has
tracks with tags more diverse, passing from "punk" to
"downtempo", to "hip hop".

4. RESULTS

4.1 Playlist Popularity Analysis

Results of the popularity analysis are shown in Table 4. We
first observe the great differences between radio playlists
from the CORN dataset and user-generated playlists from
the other datasets. Tracks’ popularity tPI in CORN varies
significantly more than in the other cases, according to
the Shannon and Simpson indexes, and the percentage of
tracks with tPI ∈ [0.0, 0.1) is smaller, indicating a large
presence of popular tracks within the dataset. The mean
of playlist popularity pPI is not extremely high, but it is
more balanced than for DEEZ, SPOT and AOTM accord-
ing to the Gini coefficient. Results can be interpreted as a
consequence of the nature of radio playlists. Indeed, tracks
rotation in radios is often constrained by commercial poli-
cies, because artists, or someone in their behalf, have to
pay for broadcasting their tracks. This clearly makes dif-
ficult for artists with few resources to be on air in a radio.
This phenomena is reflected in having few tracks from the
long-tail, i.e. less popular, inserted in radio playlists. The
balanced playlist popularity level also derives from the pol-
icy of alternating popular tracks with less know ones 9 .

Regarding user-generated playlists, we observe how
track popularity in DEEZ and SPOT are quite similarly
distributed. On the contrary, in AOTM the presence of
99.99% of track with tPI ∈ [0.0, 0.1) influences both
the Shannon index, the Simpson index and the Gini coeffi-
cient, creating an unbalanced situation with no diversity in
terms of track popularity. However, results of playlist pop-
ularity analysis give similar values among the three user-

9 https://www.digitalmusicnews.com/2015/02/19/
five-things-internet-radio-steal-broadcast-radio
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AOTM CORN SPOT DEEZ
Top tPI 4368 1746 1270 2523

Top tPI (normalized by dataset size) 0.045 0.112 0.008 0.034
Track with tPI ∈ [0.0, 0.1) (%) 99.99 96.09 99.85 99.74

tPI Shannon index 3.1·E−5 0.212 0.013 0.020
tPI Simpson index 4.3·E−6 0.076 0.003 0.005

Avg pPI (normalized by Avg playlist length) 1.19 2.01 1.76 9.64
pPI Gini coefficient 0.66 0.39 0.67 0.55

Table 4. Summary of playlist popularity analysis results.

AOTM CORN SPOT DEEZ
Original Random Original Random Original Random Original Random

Mean 0.68 0.72 0.84 0.85 0.58 0.68 0.63 0.82
Std 0.12 0.10 0.09 0.03 0.19 0.11 0.19 0.11
Max 0.99 0.98 1.05 0.97 1.13 0.99 1.14 1.09
Min 1.3·E−5 0.21 0.33 0.69 7.3·E−7 0.22 1.9·E−5 0.27
Gini 0.10 0.08 0.06 0.02 0.19 0.09 0.17 0.08
QCD 0.11 0.10 0.07 0.03 0.21 0.12 0.22 0.09

Table 5. Playlist Track-Tag diversity index (pDI) descriptive statistics. QCD indicates the quartile coefficient of disper-
sion, computed as QCD = (Q3−Q1)/(Q3 +Q1), where Q1 and Q3 are the first and third quartiles.

generated datasets, where only the DEEZ stands out for
having a high average value of pPI .

In general, the popularity of a playlist, intended as av-
erage of the frequency of its tracks within a dataset, can be
influenced by several factors. As example, AOTM dataset
has been created with playlists from 1998 to 2011, when
music was consumed by means of different services than
the ones which lead the market today. We suppose that
playlists in AOTM do not often come from the interaction
with a large music catalogues, or with algorithms for fa-
cilitating music search and discovery for playlist genera-
tion, and this can be related to a major presence of less
popular tracks. Furthermore, current streaming services
employ several tools to facilitate playlist sharing, to make
this a collaborative process, and to incorporate tracks of a
playlist into new playlists [14]. In terms of popularity, the
possibility to share a playlist can have a positive impact,
increasing the accessibility to much more content and then
reducing the number of less popular tracks.

4.2 Playlist Semantic Diversity Analysis

We faced two limitations when retrieving tags from
Last.fm: 1) we did not find tags for all queried tracks; 2)
for part of the tracks, the associated tags were small, less
than five. As a consequence, we follow a conservative ap-
proach when computing the Playlist Track-Tag diversity
index: 1) we only consider playlists for which all tracks
have associated tags (complete information); 2) tracks are
only compared with other tracks with the same number of
tags (balanced information).

After obtaining the semantic index for each playlist, we
compute descriptive statistics for understanding how the
computed descriptor characterizes these datasets. In addi-

tion, for every case we also extract the same statistics on
playlists of average size, created with random tracks from
the original playlists. In Table 5, we observe part of the
differences between datasets.

As in the previous sections, the analysis on CORN ra-
dio playlists provides values of different order of magni-
tude than user-generated playlists. Indeed, the mean and
the minimum value of the diversity index pDI are higher
for this dataset. This can be related to the fact that ra-
dio playlists are rarely composed by tracks from the same
artist, as it is the case for low diversity playlists according
to our analysis. Moreover, we observe that CORN playlists
are more balanced in terms of tag-similarity, as they are in
terms of track popularity, as represented by a low Gini co-
efficient and low quartile coefficient of dispersion.

In order to better understand how the diversity index
represents playlists’ characteristics, we have carried out a
qualitative analysis of the 10% of playlists with higher, and
10% with lower diversity. For every groups of playlists,
we compute the following values, reported in Table 6: 1)
average of Playlist Track-Tag index (Avg pDI); 2) aver-
age of unique tags for playlist (Avg tag count); 3) number
of playlists with at least one tag in common between all
the tracks (Common tags); 4) average of unique tags over
tracks (Avg Tag/Tracks); 5) average of unique artists for
playlist (Avg artist count); 6) playlist with tracks from the
same artist (Single-Artist); 7) average of unique tracks for
playlist (Avg track count) ; 8) average of unique tracks over
artist (Avg Tracks/Artist).

From the analysis of these values, we confirm previous
observations on the pronounced difference between CORN
and the other datasets. Looking at the percentage differ-
ence of each parameter, we see how CORN playlists span
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AOTM CORN SPOT DEEZ
Low High PD Low High PD Low High PD Low High PD

Avg pDI 0.43 0.85 64 0.65 0.98 40 0.19 0.87 128 0.28 0.93 108
Avg Tag Count 20 44 75 25 25 0 15 30 67 11 22 67

Common Tags (%) 34 0 34 0 0 0 23 1 22 44 1 43
Avg Tag/Tracks 1 3 100 3 4 29 1 3 100 2 3 40

Avg Artist Count 6 15 86 9 7 25 2 7 111 2 5 86
Single-Artist (%) 55 2 53 0 0 0 83 22 61 69 7 62
Avg Track Count 17 16 6 10 7 35 12 11 9 8 7 13
Avg Tracks/Artist 11 1 167 1 1 0 11 4 93 6 2 100

Table 6. Qualitative analysis results of low/high 10% playlists, ranked by their pDI . Column “PD” reports the percentage
difference (in %) between low and high cases values, calculated as PD(a, b) = 100 |a−b|

(a+b)/2

a small range of diversity, in comparison to user-generated
playlist datasets. SPOT and DEEZ present more variation
in terms of diversity, reflecting the values obtained for the
quartile coefficient of dispersion, presented in Table 5.

In general, these parameters are coherent with the anal-
ysis carried out before: playlists with a low pDI , hence
with less diversity, present in average a smaller number
of unique tags, more tags in common between tracks, few
artists for playlist and a higher percentage of single artist
playlists. Playlists with a high index present the inverse
characteristics.

5. CONCLUSIONS

We have presented a statistical analysis of more than 400K
playlists (2.3M songs) from four different datasets, three
composed by user-generated playlists, while one, CORN,
composed by radio playlists. Two of the user-generated
datasets, SPOT and DEEZ, have playlists created between
2012 and 2018, while AOTM playlists between 1998 and
2011. We develop our analysis using descriptive statistics,
and in addition we make use of indexes from the informa-
tion retrieval literature for evaluating the distribution of the
analyzed features within the sets. In particular, we focused
on two aspects: popularity and diversity.

From the proposed metrics, we observe how differences
between datasets emerge, reflecting the distinct context
in which playlists have been created. On one side, ra-
dio playlists analysis shows clear different results from
the ones obtained from user-generated playlist. On the
user-generated side, we observe how the study of AOTM
playlists reveals different characteristics than for SPOT and
DEEZ datasets. Behind this fact, we identify as possible
cause the change of music listening behaviours, shifting
from the idea of personal music repositories in the begin-
ning of the digital era, to the dominance of streaming ser-
vices of today. We hypothesize that this paradigm change
has also impacted the way users create playlists, and our
results partially reflect this shift.

In our analysis, we have found a more balanced situa-
tion in SPOT and DEEZ datasets in terms of popularity, al-
though they contain playlists with a high level of diversity
in terms of semantic tags. Even if different explanations

can be at the root of the different values, e.g. the larger
song search space of streaming services, the lower cost to
create and share a new playlist online, or the recommen-
dation algorithms that support playlist creation, we cannot
identify a specific cause with our analysis.

The proposed methodology can be applied to character-
ize playlists in terms of popularity and semantic diversity,
allowing the comparative analysis of human-generated and
algorithm-generated playlists in different contexts such as
historical periods, platforms and musical genres. We find
extremely valuable to compare different playlist datasets,
as it allows to understand how changes in the listening ex-
perience are affecting playlist creation strategies.

We hypothesize that if we extend this analysis to a larger
number of datasets, we would achieve a better understand-
ing of these changes. For instance, one of the limitations
of the considered datasets is that they provide a Western-
centric view. Adding playlist creators country information
could enrich our study. Similarly, a yearly-based temporal
analysis would help to better understand temporal varia-
tions. Moreover, adding other content- and context-based
features from playlists can help to explore factors that are
hidden in the presented analysis. Finally, it has already
been shown that considering the tracks ordering is helpful
for extracting playlist characteristics [20], so we plan to
include this information in future research.

To facilitate the reproducibility and transparency of our
study, the data and the software used are made publicly
available 10 .
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ABSTRACT

In the course of editing musical works, musicologists regu-
larly compare multiple sources of the same musical piece,
such as composers’ autographs, handwritten copies, and
various prints. For efficient comparison, cross-source navi-
gation is essential, enabling to quickly jump back and forth
between multiple sources without losing the current musi-
cal position. In practice, measures are first annotated by
hand in the individual source images and then related to
each other. Our approach automates this time-consuming
and error-prone process with the help of deep learning. For
this purpose, we train a neural network that automatically
finds bounding boxes of all measures in images. A sec-
ond network is trained to compute the similarity between
two measures to determine if they have the same musical
content and should, therefore, be linked for navigation. Se-
quences of outputs from the second network are matched
using Dynamic Time Warping to provide the final proposal
of measure relationships, so-called concordances. In addi-
tion to cross-source navigation, the results can be used to
spot structural differences across the sources which are es-
sential for editorial work, so that musicologists can focus
more on analytical tasks.

1. INTRODUCTION

Modern musical editions are the result of a long musico-
logical process. From the composer’s manuscript to the
printed music book, a musical work usually undergoes a
large number of iterations and minor corrections, occa-
sionally even substantial changes, such as striking or re-
working complete parts [1]. Many of these changes are ei-
ther unintentional—e.g., errors in handwritten copies, ty-
pographical errors by publishers—or generally not docu-
mented in a transparent manner. Musicologists, therefore,
work on this genesis when editing a work and try to record
the chronological order and causalities in their edition cre-
ation process.

c© Simon Waloschek, Aristotelis Hadjakos, Alexander
Pacha. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Simon Waloschek, Aristotelis Had-
jakos, Alexander Pacha. “Identification and Cross-Document Alignment
of Measures in Music Score Images”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

The first step in this process is, therefore, the screening
of the source material to identify differences between the
various sources of a work. To facilitate this process, links
are created between the sources so that editors can quickly
switch back and forth between them. Adequate granular-
ity of these links are usually musical measures, a feasible
compromise between annotation effort and accuracy [29].
Currently, the measures of all sources are manually anno-
tated with bounding boxes and related to each other in a
very time-consuming and error-prone way.

We have automated this multi-stage process by first rec-
ognizing and sorting measures in score images (both hand-
written and typeset) and then linking them according to
their musical content. For this purpose, deep learning was
used to develop a distance metric in an end-to-end fash-
ion without an intermediate representation. The results can
be further processed using classic alignment algorithms
from the MIR community such as Dynamic Time Warping
(DTW). While DTW-based approaches have achieved suf-
ficient quality for practical use, audio-to-score alignment is
still an active field of research [31]. Promising approaches
for the synchronization of scans and sound recordings [5,6]
are currently limited to monophonic and piano music and
have not yet achieved sufficient accuracy for most real-
world scenarios. With the contribution of this paper, we
decrease a potential gap in the "audio – symbolic score –
image" triangle and offer a new way for measure-accurate
alignment across modal boundaries.

2. RELATED WORK

Detecting measures can be seen as a preprocessing step
in Optical Music Recognition (OMR). Therefore, it was
rarely singled out as a dedicated task. While Pedersoli and
Tzanetakis perform document segmentation, they only dis-
tinguish between music scores and text blocks [22]. The
only research we know of, that specifically addresses the
automatic extraction of measures is by Vigliensoni et al.
[30]. In their work, they attempt to extract measures with a
traditional computer vision approach by heuristically find-
ing all bar lines and then joining them into measures. Their
approach requires human intervention for each page and
straight bar lines to work well.

For retrieval of sixteenth-century musical texts, Craw-
ford et al. [4] have recently proposed a two-step proce-
dure. They run an OMR algorithm to obtain an intermedi-
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ate format, followed by a second step that uses n-grams and
minimal absent words (MAWs) to find duplicates, related
texts, or parts that have the same musical material. Neural
networks make such intermediate formats partly obsolete
and allow for learning bimodal embeddings end-to-end as
shown by Dorfer et al. [5, 6], who correlate the scanned
music score with a sound recording. For this purpose, syn-
chronization was considered either a reinforcement learn-
ing problem [6] or a metric learning problem [5]. In the
metric learning approach, Dorfer et al. use the pairwise
ranking loss—also known as triplet loss [26]—that draws
triplets from a dataset consisting of an anchor, a positive
example (picture fits the audio) and a negative example
(picture does not fit the audio). This loss function creates
an embedding, where images and audio with the same con-
tent are appear close together, while non-matching images
and audio are placed relatively far apart. Their approach
has successfully been used before in other application do-
mains, such as facial recognition [26]. We resort to a simi-
lar cost function for metric learning (see section 4.2).

As the basis for our detection, we use a convolutional
neural network (CNN). While CNNs are currently an ac-
tive field of research for OMR, the most influential ap-
proaches come from the research area of computer vision.
They are used for many tasks, including image recognition,
semantic segmentation, object detection, and instance seg-
mentation. R-CNN [9] performs object detection by an-
alyzing a large number of heuristically generated region
proposals that are classified into background or one of the
classes of interest. Additionally, the bounding box is re-
fined with regression. R-CNN uses a CNN that extracts
features for object detection. These features are used in a
downstream SVM for classification and regression. Faster
R-CNN [23] improves the process by incorporating both
the region proposal step as well as the classification and
regression into the architecture of the neural network.

CNN-based computer vision approaches are largely
transferable to OMR and actively used for Music Infor-
mation Retrieval: Gallego and Calvo-Zaragoza are using
auto-encoders to remove staff lines [8]. Pacha et al. com-
pare various CNN-based approaches for detecting music
symbols in scores [21]. CNNs can also be used for seman-
tic segmentation for staff-line removal, music and text sep-
aration as well as for layout analysis as shown by Calvo-
Zaragoza et al. [3]. Using U-Nets [25], Hajic et al. do se-
mantical segmentation of handwritten music [10]. Pacha
and Calvo-Zaragoza recognize musical objects in mensural
notation using region-based CNNs [20]. By learning en-
ergy levels that are used as inputs to a watershed algorithm,
Tuggener et al. recognize music symbols [28]. In addi-
tion to the energy levels, the network also predicts class la-
bels and bounding boxes. And finally, Calvo-Zaragoza and
Rizo use convolutional recurrent neural networks trained
with a Connectionist Temporal Classification (CTC) loss
to recognize musical symbols in monophonic music scores
[2]. To simulate non-ideal image conditions, they artifi-
cially distort the images.

3. DATA & ANNOTATIONS

The success of Deep Learning approaches largely depends
on the amount and diversity of data used during training.
Since no dataset of sufficient size was available for mea-
sure recognition or the concordance task, we created a
large dataset ourselves in cooperation with musicologists
and professional musicians.

Our dataset contains measure annotations that were cre-
ated manually by musicologists for digital music editions.
In most cases, the image sources are high-resolution scans
of facsimiles, occasionally supplemented by early music
prints and PDFs exported directly from music engrav-
ing software. Due to an imbalance between handwritten
and typeset scores, we additionally obtained scores from
the IMSLP/Petrucci Music Library while paying attention
to varying image quality, the used engraving mechanism
as well as diverse musical content. We complemented
our collection with 140 pages from the MUSCIMA++
dataset 1 [7, 11].

Our data collection has a total of 8 251 pages with
81 124 annotated measures. The distribution according
to engraving type and the number of systems per page
is given in Table 1. One category is particularly over-
represented: handwritten music scores with just one sys-
tem per page because of a large quantity of full orchestral
scores from operas by Carl Maria von Weber. Book covers,
text pages, and empty pages have zero systems.

Systems per page
Pages per engraving type

Handwritten Typeset

0 413 113
1 5627 932
2 175 553
3 122 175

4 or more 102 39

Total pages 6439 1812

Table 1. Overall distribution of the dataset used.

The accuracy of the measure annotations varies. Since
the exact boundaries are not relevant for musicologists,
they were recorded only roughly. That is why many bound-
ing boxes contain small overlaps with adjacent measures as
shown in Figure 1.

To annotate the measures in the individual pictures, the
Android app Vertaktoid 2 [18] was used. It allows to con-
veniently draw bounding boxes for all measures with a pen
directly on the tablet screen. The results can then be ex-
ported to the MEI format [24] and used as ground truth
training data.

Data coming from digital music editions are partly pro-
vided with concordance annotations between the measures.

1 The measure annotations are published as separate dataset at
https://apacha.github.io/OMR-Datasets/#muscima

2 https://github.com/cemfi/vertaktoid

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

138



Figure 1. Examples of cropped measures originating from different sources of the same work. All measures represent the
same musical position, i.e. the same measure, within the work, but are in part extremely diverse in terms of instrumentation,
graphic representation and also image resolution.

4. ALIGNING MEASURE SEQUENCES

Our proposed solution for the given task can be split into
three individual parts. First, we have to find the bounding
boxes of all measure in the score images. Then we need
a metric in order to compute the similarity between two
given measure in terms of musical content. And finally, we
have to compute actual concordances for multiple sources
of the same music.

4.1 Optical Measure Recognition

For automatically detecting measures in complete music
scores, we propose a machine-learning approach with deep
convolutional neural networks and a Faster R-CNN detec-
tor [23]. Faster R-CNN has been shown to work well in a
range of situations, including detecting music objects [21].
In this case, there is just one class of objects that needs to
be detected, and the objects typically cover large portions
of the entire image with little overlap. Our implementation
is based on the TensorFlow Object Detection API frame-
work [14] and freely available online 3 .

We split the dataset randomly into 80% for training,
10% for validation, and 10% for testing. To avoid a bias
toward scores with just one system, we sample the images
equally from the ten categories depicted in table 1. The
only exception are images without systems which are sam-
pled only half as often as the other categories.

We tested the three different backbones, ResNet50,
ResNet101 [13], and Inception-ResNet-V2 [27] and re-
stricted ourselves to these to enable transfer-learning by
initializing the networks with weights trained on ImageNet
which generally improves the learning process, especially
at the beginning. Input images are resized to be no longer
than 1024 pixel on the longest edge. The Intersection over

3 https://github.com/OMR-Research/
MeasureDetector

Figure 2. Two samples of the detection results. Measures
are detected robustly in typeset and handwritten scores
without the need for preprocessing the images.
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Union (IoU) measures how well two bounding boxes over-
lap. If two predictions are very close, non-maximum sup-
pression filters the box with the lower score. The IoU
threshold is set to 0.6 and a maximum of 600 objects are
detected per image. These parameters are derived from sta-
tistical analysis of the entire data set and cover > 99.99%
of the dataset.

We evaluated the optical measure detection with the
commonly used average precision (AP) metric, as defined
for the COCO detection challenge [15]. It produces a
single number that measures how well objects were de-
tected. A detection is considered a match with the under-
lying ground truth if the IoU is above a certain threshold.
The trained models achieve very good results with 78.7%
AP (IoU=0.5:0.95) on the test set for the top-performing
model with Inception-ResNet-V2 [27] backbone. A few
samples of the detection output are depicted in Figure 2.

Given that the measure recognition step does not neces-
sarily return the measures of a page in the musically correct
order, we sort them according to the measure numbering
rules outlined by Mexin et al. in [18].

4.2 Metric Learning

Now that the scans of all scores are divided into individ-
ual measures, they have to be compared with each other to
identify equivalent measures. Again, a deep learning ap-
proach is used to learn such a musical similarity metric be-
tween two measures directly from the images. The neural
network is trained to compute an embedding for measure
images so that similar measures are placed in the proxim-
ity of one another in the embedding space. This allows
for convenient comparison of two measures by computing
their distance, e.g., using the L2 norm.

The idea is based on triplet loss [26]: A pair of equiv-
alent measure images from two different sources is drawn
from the list of concordances. We will call them the an-
chor image and the positive image. Additionally, a nega-
tive measure image is drawn from the same source as the
positive image, serving as a counterexample, i.e. having
no musical relation to the anchor or the positive measure
image. Each of these three images is fed separately into
the same neural network, resulting in three k-dimensional
vectors. The loss function is defined as

L = max(d(fa, fp)− d(fa, fn) + α, 0) (1)

with fa, fp, and fn being the resulting vectors from the
network f for the three images and a distance measure
d. Training with this loss function minimizes the distance
from the anchor to the positive image while maximizing
the distance between the anchor and the negative image.
The additional margin α defines how far away the least
dissimilarity should be. Finally, the surrounding max(...)
function ensures that the loss never gets negative.

We chose ResNet50 as the base network and replaced
the usual final average pooling and classification layers by
a fully connected layer with k-dimensional output. (Other
CNN-based networks used for computer vision would
most likely work comparably well.) All measure images

are resized to 512 × 512 pixels but the original width and
height information is also passed to the network as addi-
tional input.

The success of the used loss function depends heavily
on the sampling strategy for the image triplets as discussed
by Wojke and Bewley in [32]. In our context, there are
three specific problems in the dataset:

1. A randomly sampled negative image might acciden-
tally have the same musical content as the two other
images. Those cases are not covered in the concor-
dance dataset since not all measures with equal con-
tent have to be linked together.

2. Intuitively, it seems beneficial to take the previous
or subsequent measure of the positive sample as the
negative measure with the goal of enhancing the
contrast between them in terms of increased distance
in the embedding space. This would make adja-
cent measures more distinguishable. But again, the
chance of these measures having the same content is
higher compared to random sampling.

3. Especially handwritten sources sometimes exhibit
excessive use of measure repeats and other abbrevia-
tions as can be seen in the left part of Figure 1. Such
symbols are meaningless if their immediate context
is not given.

The first two problems could be solved by manually adding
all measures with the same content to the list of concor-
dances. Given the amount of images, we decided against
doing so and rely on rare collisions thanks to the large
number of data. We also discarded the (perfectly valid)
idea of looking at adjacent measures to form the triplets.

The third problem—presence of measure repeats and
abbreviations—has a direct impact on the appropriate
choice of the distance metric d in our loss function; When
using triplet loss, it is common practice to normalize the
embedding vectors. This constraint puts all embeddings
on a k-dimensional hypersphere, leading to some advan-
tages for further processing (see [26]). Furthermore, co-
sine distance is often used to calculate the distances. Both
decisions make it impossible to get an embedding vector
that is equally distant to all other possible vectors. This
very property, however, characterizes the meaning of mea-
sure repeats if no context is given. We, therefore, opted
for no vector normalization and chose the L2 norm as our
distance metric, resulting in

L =
N∑
i=1

[
‖fai − f

p
i ‖2 − ‖f

a
i − fni ‖2 + α

]
+

(2)

for a training batch with size N . To speed up training and
ensure fast convergence we select triplets that violate the
following constraint:

‖fai − f
p
i ‖2 + α < ‖fai − fni ‖2 . (3)

This filter step is performed for each batch during training
and makes sure that only those triplets are used that signif-
icantly contribute to the learning process. It also prevents
the network from overfitting.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

140



4.3 Concordance Computation & Manual
Adjustments

Given the embedding vectors for all measures of each
source of a musical work, we can compare two sources
by computing the distances between all measures from
one source to the other. The resulting similarity matrices
can then be used for dynamic time warping (DTW) as de-
scribed by Müller in [19] to get an alignment path between
the sources as shown in Figure 3.

We implemented the canonical DTW algorithm without
any noteworthy modifications to the core. Allowed step
sizes inside the similarity matrix during path computation
are (0, 1), (1, 0), and (1, 1). It rarely happens that a mea-
sure gets divided into two parts at system or page breaks,
so we penalized steps along a single axis by a factor of 2
to slightly enforce one-to-one mappings of the measures.

The quality of the alignment was evaluated using a
dataset with two sources and given ground truth concor-
dances as outlined in Table 2. We have decided in favor of
this particular dataset because it offers several challenges
that occur only rarely in other works:
Split measures: Some measures are split into two parts at

page breaks. Therefore, one measure of source A
maps to two other measures of source B.

Completely different sections: An entire part of the
piece was replaced in source B. Finding the "cor-
rect" concordance is impossible.

Additional parts: Source B contains a 16-measure Aria
that is not present in the other source.

Missing measure annotations: We also intentionally re-
moved measures from source A to simulate annota-
tion errors.

Pages Measures

Source A (typeset) 250 3098
Source B (handwritten) 532 3176

Total 782 6274

Table 2. Structure of the evaluation dataset.

In the MIR community, DTW is often used to syn-
chronize audio and/or symbolic score sources with each
other [12]. The time resolution of the features in such sce-
narios is usually in the range of several dozen milliseconds.
Deviations in the alignment path are therefore undesirable,
but can often be neglected as long as they do not exceed
certain limits. In our context, however, any deviation from
the ground truth marks a significant error. We took this
into account and defined a very simple score for the over-
all performance:

score = 1−

Number of (x, y) pairs from
alignment not in ground truth

Total number of concordances
in ground truth

(4)

Our evaluation showed 14 errors in relation to 3079 con-
cordance pairs, resulting in a score of 99.545%.

Figure 3. Interface for inspecting the computed measure
concordances. The alignment (white) and ground truth
(blue, only available in evaluation dataset) are plotted over
the currently visible part of the similarity matrix. Mea-
sures of both sources (right) can be compared by moving
a cursor within the matrix (green crosshair). A plot at the
bottom indicates potentially interesting positions.

As pointed out, the remaining 0.455% error rate still
present a non-negligible problem. Therefore, we devel-
oped an interface for manual adjustments to the alignment.
Apart from being able to quickly compare the measures
from two sources as shown in Figure 3, users can define
points in the similarity matrix that have to be part of the
alignment path. Each of these points splits the matrix into
two parts and computes the warping path for each part in-
dividually, ensuring that either the beginning or end of the
path matches the desired point. An event plot at the bottom
of the matrix helps to identify regions with potential errors
by showing where the alignment path is not diagonal, i.e.
taking a step in (0, 1) or (1, 0) direction.

The mentioned obstacles for correct alignment have
been handled successfully by either resulting in a cor-
rect alignment or—in case of substantial structural
differences—indicating a problem that cannot be solved
without human intervention by marking these parts in the
plot below the similarity matrix.

This alignment and adjustment step has to be repeated
for each source in regard to a master source of choice. The
corrected alignment data can then finally be imported into
the tools used by musicologists for their editorial work.

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automate the te-
dious task of annotating and linking measures in hetero-
geneous score images, thereby allowing for cross-source
navigation between measures without losing the current
musical position. We used deep learning to find bound-
ing boxes of measures in score images, learned a distance
metric for measures, and used that to align measures from
various sources, effectively linking equivalent musical po-
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sitions across sources. The evaluation showed that our ap-
proach is feasible and solves a real-world problem while
still retaining complete flexibility in case editors need to
make manual adjustments, thanks to an interactive correc-
tion tool.

The presented solution still does not cover all possible
situations that might occur in the editorial process. If the
measure sequences to be compared have a different order,
the alignment fails for these parts if not completely. We
will address this specific problem in the future by identify-
ing such passages and proposing reasonable re-ordering.

Having a musically meaningful distance metric for
measures also allows closing the gap between score images
and symbolic scores. The latter can be rendered with suit-
able engraving software and divided into individual mea-
sures, followed by the steps of our alignment pipeline.
Since audio can also be rendered from symbolic scores,
alignments between all three modalities are possible.

Another interesting application of our distance metric is
the ability to visualize datasets in image fields as shown in
Figure 4. Using dimensionality reduction algorithms such
as T-SNE [16] or UMAP [17], the measures are positioned
such that musically similar measures appear proximate to
one another, giving new insight into a musical piece but
also into the inner workings of the distance metric. For
example, the visualization shows that measure repeats are
placed almost in the center, indicating that their learned
embedding retains the musical property of being close to
basically every other measure in the embedding space.

Figure 4. 46 344 measure images from 15 different
sources of the same piece are projected into a two-
dimensional manifold with the UMAP algorithm. The map
is interactively zoomable.
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Frostel, and Gerhard Widmer. Learning audio–sheet
music correspondences for cross-modal retrieval and
piece identification. Transactions of the International
Society for Music Information Retrieval, 1(1):22–33,
2018.

[6] Matthias Dorfer, Florian Henkel, and Gerhard Widmer.
Learning to listen, read and follow: Score following as
a reinforcement learning game. In 19th International
Society for Music Information Retrieval Conference,
pages 784–791, Paris, France, 2018.

[7] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep
Lladós. CVC-MUSCIMA: A ground-truth of hand-
written music score images for writer identification
and staff removal. International Journal on Document
Analysis and Recognition, 15(3):243–251, 2012.

[8] Antonio-Javier Gallego and Jorge Calvo-Zaragoza.
Staff-line removal with selectional auto-encoders. Ex-
pert Systems with Applications, 89:138–148, 2017.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-
tendra Malik. Region-based convolutional networks
for accurate object detection and segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 38(1):142–158, 2016.
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ABSTRACT

This paper presents Query-by-Blending, a novel music ex-
ploration system that enables users to find unfamiliar music
content by flexibly combining three musical aspects: lyric
word, song audio, and artist. Although there are various
systems for music retrieval based on the similarity between
songs or artists and for music browsing based on visualized
songs, it is still difficult to explore unfamiliar content by
flexibly combining multiple musical aspects. Query-by-
Blending overcomes this difficulty by representing each
of the aspects as a latent vector representation (called a
“flavor” in this paper) that is a distinctive quality felt to be
characteristic of a given word/song/artist. By giving a lyric
word as a query, for example, a user can find songs and
artists whose flavors are similar to the flavor of the query
word. Moreover, by giving a query combining (blending)
lyric-word and song-audio flavors, the user can interactively
explore unfamiliar content containing the blended flavor.
This multi-aspect blending was achieved by constructing a
novel vector space model into which all of the lyric words,
song audio tracks, and artist IDs of a collection can be em-
bedded. In our experiments, we embedded 14,505 lyric
words, 433,936 songs, and 44,696 artists into the same
shared vector space and found that the system can appro-
priately calculate similarities between different aspects and
blend flavors to find related lyric words, songs, and artists.

1. INTRODUCTION

Given a huge collection of musical pieces such as those
provided by online music services, conventional music ac-
cess based on bibliographic metadata like song titles and
artist names has not been sufficient. The Music Informa-
tion Retrieval (MIR) community, therefore, has covered
various types of music retrieval and exploration. When a
listener wants to listen to familiar musical pieces, a popu-
lar approach is content-based music retrieval [4, 15, 26, 31]
based on music similarity. When a query is entered by

c© Kento Watanabe, Masataka Goto. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Kento Watanabe, Masataka Goto. “Query-by-Blending: A
Music Exploration System Blending Latent Vector Representations of
Lyric Word, Song Audio, and Artist”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

Figure 1. Query-by-Blending interface that consists of
blending, exploring, and information panels.

humming [5, 8, 12, 24, 29, 33], for example, similarities
between the query and melody lines in a database are com-
puted to show its title. When a query is given by a musical
piece [7, 17, 19, 25, 28], a ranked list of similar musical
pieces is shown. Music retrieval based on various kinds of
metadata [3, 6, 14, 27] is also proposed. Although music
would have multiple aspects, previous approaches typically
assume a single aspect as a query. Moreover, it is neces-
sary for users to conceive appropriate queries, which is
sometimes not easy.

When a user wants to discover unfamiliar musical pieces,
an approach of music exploration is important. Music explo-
ration systems typically provide interfaces that visualize a
music collection by embedding musical pieces or artists into
a 2D or 3D space and let users explore the collection to find
favorite pieces [11, 21, 25, 30] or artists [1, 25, 27, 32]. How-
ever, it is difficult for previous music exploration systems
to take different aspects of music into account. Another ap-
proach is to help users flexibly conceive a variety of queries
for music discovery [9]. Such assistance, however, has not
been investigated much in the MIR community.

We therefore propose a novel music exploration system,
Query-by-Blending, that can embed three musical aspects –
lyric word (word in lyrics), song audio (audio signal of a
song), and artist (represented as artist ID) – into a unified
high-dimensional latent vector space and enable users to
find unfamiliar but interesting music content by flexibly
combining those aspects (Figure 1). Query-by-Blending
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Figure 2. Query-by-Blending enables the exploration of
three musical aspects: lyric word, song audio, and artist.

uses a “flavor” and “blending flavors” metaphor to help
users combine different aspects to flexibly conceive a vari-
ety of queries. The terms “lyric-word flavor”, “song-audio
flavor”, and “artist flavor” denote latent vector representa-
tions that are distinctive qualities felt to be characteristic of
a given word, song, and artist. Each of the three kinds of
flavors can be used as a query to retrieve and display three
kinds of ranked lists: related lyric words, titles of songs
having related song audio, and related artist names.

By giving a favorite artist as a query, for example, a user
can not only listen to various songs containing its artist
flavor but also see lists of lyric words and artists containing
its artist flavor. Since the retrieved songs are not necessarily
songs by the query artist, a user can explore a variety of
unfamiliar music content. Since all three of the musical
aspects are embedded into the same latent vector space as
flavors, a user can add another flavor to “blend flavors” (i.e.,
give a query combining multiple musical aspects). Adding
a lyric-word flavor, for example, causes the displayed lists
to be interactively updated to give every musical content
containing that flavor as well as the previous flavor a higher
rank. Query-by-Blending can thus provide novel interactive,
incremental, and iterative exploration experiences based on
multiple musical aspects.

In implementing Query-by-Blending, it is difficult to cal-
culate similarities among the three musical aspects because
there are no large-scale annotations for supervised learning
of such similarities. To overcome this difficulty, we pro-
pose a method of constructing a latent vector space model
that can be trained with unsupervised learning under the
assumption that a lyric word, song audio, and artist sampled
from the same song tend to have similar meanings and are
mapped to positions close to each other in the unified vector
space. This method is based on multi-task learning, which
has been used successfully across various applications of
neural networks, and uses a vector model that can learn
shared representations of music content by separately train-
ing each aspect of a large music collection (one including
14,505 words, 433,936 songs, and 44,696 artists).

2. QUERY-BY-BLENDING

Query-by-Blending enables a user to iteratively issue a
query of any combination of lyric words, song titles, and
artist names and obtain ranked lists of lyric words, song

Figure 3. By blending multiple flavors, Query-by-Blending
can display music content similar to the blended flavor. The
blended flavor “snow + Lady Gaga” is similar to Christmas,
Pop, and Soul songs/artists.

titles, and artist names that are similar to the query. The
interface of Query-by-Blending is shown in Figure 1 and
consists of (1) a blending panel for issuing the query, (2)
an exploring panel displaying the retrieved ranked lists and
allowing the user to select a song, and (3) an information
panel displaying the title, artist name, and lyrics of the
selected song and allowing the user to play back a short
excerpt of the song for trial listening.

2.1 Exploring Three Musical Aspects

When a user enters a lyric word, song title, or artist name as
a query on the blending panel, the exploring panel displays
the retrieved lists of lyric words, song audio tracks, and
artists whose flavors (latent vector representations) are simi-
lar to the flavor of the query. The lists are sorted in the order
of the similarity. Figure 2 shows two screenshots of the
interface. As shown in the left side of Figure 2, for example,
when a user types “snow” into the lyric word text field on the
blending panel, the exploring panel displays the lyric word
“winter”, “Angel Band” (the title of a song containing the
word “snow”), and “Harry Connick, Jr.” (who released the
Christmas song album “When My Heart Finds Christmas”,
which can be considered to be related to “snow”). On the
other hand, as shown in the right side of Figure 2, when the
user types “Lady Gaga” into the artist text field on the blend-
ing panel, the exploring panel displays music content with
“Lady Gaga” flavor – lyric words “star” and “dance floor”,
songs of Pop and Dance music sung by female singers, and
an American female singer “Britney Spears”. The user can
then click one of the displayed songs to listen to its excerpt.
These results and their music excerpts are available at a web
page (https://kentow.github.io/qbb/). Query-
by-Blending thus enables the user to flexibly issue a query
to explore music content that is similar to the query.

2.2 Blending and Subtracting Flavors

Although issuing a single-flavor query with one of the three
aspects (flavors) has already been useful, the blending panel
further enables a user to issue a query blending multiple
flavors. As shown in Figure 3, for example, when the user
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Figure 4. Query-by-Blending allows the user to subtract
flavors from others. The flavor “Lady Gaga − Countdown
(Pop song)” is similar to Alternative and Rock songs/artists.

types both “snow” and “Lady Gaga” into the two text fields
on the blending panel, the retrieved ranked lists are updated
to be more similar to the blended flavor of both of them.
The exploring panel displays a Christmas song sung by the
female Soul singer “Ivy Levan”. Then the user can feel free
to iteratively add more flavors.

Moreover, when a user issues a query and finds some of
the listed songs or artists unappealing, the blending panel
enables the user to subtract a flavor related to them from
the current query. As shown in Figure 4, when the user
subtracts a Pop song “Countdown” having a “Pop song”
flavor from the original query of “Lady Gaga” (by clicking
the minus sign (−) located beside the text field of the song
“Countdown”), the exploring panel updates the lists to in-
clude Alternative and Rock music songs (e.g., “Letterbox”)
and artists (e.g., “Ben Folds”) that are similar to the flavor
“Lady Gaga − Countdown”. The user can also subtract
some flavors after blending multiple flavors.

When a user issues a query and finds unfamiliar songs
or artists interesting after trial listening on the information
panel, the user can add (blend) some of them to the current
query to update the retrieved lists. Query-by-Blending thus
provides novel exploration experiences, such as being able
to incrementally conceive a variety of queries including
both familiar and unfamiliar songs and artists. It enables
users to flexibly update their queries by blending and sub-
tracting various flavors to explore unfamiliar but interesting
music content interactively in a trial-and-error manner.

3. IMPLEMENTATION

We implemented Query-by-Blending by developing a novel
unsupervised method of constructing the unified latent vec-
tor space in which similar aspects are located nearby. Since
similarities related to the three musical aspects are not an-
notated in a typical music collection, we leveraged the
Distributional Hypothesis [10] that is well-known in the
field of Natural Language Processing and has successfully
been used in word2vec [23].

To explain the mechanism of capturing similarities, we
first focus on the similarity between two lyric words with-
out using audio and artist aspects. According to the Distri-
butional Hypothesis, we assume that words that occur in
similar contexts tend to have similar topics. As an example,

Figure 5. The Distributional Hypothesis for multiple as-
pects.

consider the following two lyrics:

“Snow white side street of cold NewYork City.”

“But here in the white of a cold winter night, ...”

Since “snow” and “winter” each co-occur with “cold” and
“white” (i.e., the same context), we can assume that “snow”
and “winter” have a similar topic. In this paper, we define
a context word (e.g., “cold” or “white”) to be a word co-
occurring with a target word (e.g., “snow” or “winter”)
in the same song. This mechanism is expressed by a co-
occurrence matrix where each row corresponds to a target
word and columns give the context words (the red frame in
Figure 5). In this matrix, each cell contains the frequency of
co-occurrence of the target word and the context word in all
the songs. In Figure 5, the target words “snow” and “winter”
have high co-occurrence with the context words “cold” and
“white” but low co-occurrence with “devil”. Other target
words “dark” and “shadow” frequently co-occur with the
context word “devil”. By calculating the co-occurrence
matrix, we can estimate that “snow” and “winter” have
similar topics and that “dark” and “shadow” have similar
topics. We call each row of this matrix a target word vector
and calculate the similarity between target words as the
distance between their target word vectors.

We then extend this co-occurrence matrix to context au-
dio tracks so that we can utilize audio signals for capturing
the similarity between target words. Each context audio is a
short fragment of song audio and is represented as an audio-
word defined in Section 3.2. In the green frame of Figure 5,
the target words “snow” and “winter” tend to co-occur with
some short fragments of song audio and are considered
similar, but other target words “dark” and “shadow” do
not co-occur with those short fragments. Both the context
words and context audio tracks can thus be used to capture
the similarity and are included in each target word vector.
As with the similarity between target words, we assume that
songs that occur in similar contexts tend to have similar
topics. In the blue frame of Figure 5, we call each row of
a target song audio in the co-occurrence matrix a target
audio vector. Each cell of a target audio vector contains
the number of occurrences of a context word in lyrics of
the song corresponding to the target song audio, or contains
the number of occurrences of a context audio in the target
song audio. In Figure 5, the target vectors of “snow”, “Jazz
song audio”, and “Jazz artist” are close to context vectors
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of “cold” and “white”; thus these multiple aspects can be
located near each other. Moreover, we can also naturally
calculate the similarity between any target word vector and
any target audio vector as the distance between them since
those vectors are represented in the same matrix.

Finally, in the same way, we can extend the co-
occurrence matrix to target artists. In the bottom part of Fig-
ure 5, we call each row of a target artist in the co-occurrence
matrix a target artist vector. Each cell of a target artist vec-
tor contains the number of occurrences of a context word
in lyrics of all songs by its artist, or contains the number of
occurrences of a context audio in all song audio tracks by
its artist. By extending the Distributional Hypothesis, we
can calculate similarities related to the three aspects.

3.1 Dataset

To calculate the above similarities, we made a dataset con-
taining 433,936 songs by 44,696 artists. The dataset item
for each song consists of a text file of English lyrics pro-
vided by a lyrics distribution company, an audio file of a
short music excerpt (30 sec, 44.1kHz) available for trial
listening on a music service, and an artist ID. Here, each
text file contains all sentences of the lyrics of a song. We
extracted 14,505 frequent lyric words from all the text files
and did not use words that appeared less than 100 times.

3.2 Creating Audio-word Representation

To represent a short fragment of song audio for a con-
text audio, we use a discrete symbol called an audio-word.
The audio-word can be obtained by a bag of audio-words
(BoAW) model [18] as follows. (1) Each music excerpt
is downsampled to 22,050 Hz. (2) We use LibROSA, a
python package for music and audio analysis, to extract 20-
dimensional mel-frequency cepstral coefficients (MFCCs)
with the FFT size of 2048 samples and the hop size of 512
samples. This result is represented as an MFCC matrix
(20 × 1280). (3) The MFCC matrix is divided into 128
submatrices (20 × 10) without overlap. (4) Each subma-
trix including 10 frames of MFCCs is flattened into a 200-
dimensional vector that represents local temporal dynamics
of MFCCs. (5) We use the k-means++ algorithm [2] to
group all 200-dimensional vectors of all 433,936 songs into
3,000 clusters. (6) Each cluster is regarded as a discrete
audio-word. We thus obtained 3,000 audio-words.

3.3 Vector Space Model for Multiple Musical Aspects

Since the co-occurrence matrix is huge and extremely
sparse, it is too computationally expensive to deal with.
To overcome this problem, our latent vector space model
uses a neural network to reduce the huge matrix to a dense
matrix as word2vec [23] also does.

The structure of the model is illustrated in Figure 6. Let
wt denote the target word, let awm denote the audio-word,
let a denote the artist ID, and let c denote the context con-
sisting of the context word and context audio-word. To
obtain a D-dimensional latent vector space/representation

Figure 6. Multiple musical aspect vector space model.

after dimension reduction, we define an embedding func-
tion vw(·) that maps the target word to a D-dimensional
vector and define an embedding function u(·) that maps the
context word/audio-word to a D-dimensional vector.

We formulate this as an optimization problem that mini-
mizes the distance between vw(wt), the target vector of a
target word wt in a song, and u(c), the context vector of
another context word or a context audio-word c randomly
sampled from the same song. By iterating this sampling and
minimization for every target word, the model captures the
similarity between target words. In Figure 5, for example,
“snow” and “winter” are frequently sampled for the target
words, and “cold” and “white” are frequently sampled for
the context words. In other words, the vectors of the target
words “snow” and “winter” are close to both of the vectors
of context words “cold” and “white” in the embedded vector
space. Thus, these target word vectors can be located near
each other. In the training phase to minimize the above dis-
tance, we maximize u(c)T · vw(wt), the dot product of the
context word/audio-word vector u(c) and the target word
vector v(wt) in the lyrics of a song. This maximization can
be done by optimizing parameters of u(·) and vw(·).

To accelerate training, we not only maximize the dot
product of co-occurring w and c but also minimize the
dot product of w and c′, where c′ is a noise word. This
technique is called Negative Sampling and is known to be
useful in training word2vec [23]. We define and minimize
the objective function E1 to maximize u(c)T · vw(wt) and
minimize u(c′)T · vw(wt):

E1 = −logσ
(
u(c)T · vw(wt)

)
−

N∑
n=1

logσ
(
−u(c′n)

T · vw(wt)
)
, (1)

where σ(·) is a sigmoid function. N is the number of
negative words/audio-words c′n(1 ≤ n ≤ N) sampled from
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Figure 7. Normalized multiple aspect vector on hyper-
sphere. Each circle denotes an embedded aspect. The
cosine similarity between similar aspects is large.

the following noise distribution:

P (c′n) = #(c′n)
0.75/

∑
c′∈V (#(c′)0.75), (2)

where V is the word and audio-word vocabulary and #(c′)
is the global frequency of a word and audio-word c′ in the
whole dataset. This is for maximizing the distance between
the target word and common words, such as “I” and “You”,
that occur frequently in the dataset.

In our current implementation, we set the vector dimen-
sion D to 400, the number of samplings for context words
and context audio-words in each song to 400, and the num-
ber of negative samplings to 10. The objective function
E1 is optimized using stochastic gradient descent with a
learning rate of 0.025, and training was run for 5 epochs.

We can also use the same idea to handle the similarities
related to song audio tracks and artists. For song audio
tracks, we define and minimize the loss function E2:

E2 = −logσ
(
u(c)T · 1

M

∑M
m=1 vs(awm)

)
−
∑N

n=1 logσ
(
−u(c′n)

T · 1
M

∑M
m=1 vs(awm)

)
, (3)

where M is the number of audio-words in the song, vs(·) is
an embedding function that maps the one-hot representation
of every audio-word in the song to a D-dimensional vector,
and the vector of the target song audio is represented by
averaging all the audio-word vectors vs(awm) in the song.
For artists, we define and minimize the loss function E3:

E3 = −logσ
(
u(c)T · va(a)

)
−

N∑
n=1

logσ
(
−u(c′n)

T · va(a)
)
. (4)

where va(·) is an embedding function that maps the one-hot
representation of the artist ID to a D-dimensional vector. In
the training phase, these objective functions E2 and E3 are
optimized with the same settings as E1.

The proposed model can capture similarities between
the same aspects by minimizing E1, E2, and E3. In addi-
tion, iterative optimization of the three objective functions
enables training of the similarity between multiple aspects
because these three objective functions share the embedding
function for the context vector u(·). In Figure 5, the target
vectors of “snow”, “Jazz song audio”, and “Jazz artist” get
closer to the context vectors such as u(white); thus these
multiple aspects can be located near each other.

3.4 Similarity Calculation

When calculating similarity, we use vectors obtained using
vw(·), vs(·), and va(·) without u(·). We can use the co-
sine similarity as a measure of the similarity of two vectors.

According to Levy et al. [16], multiple aspect vectors are
normalized to unit length before they are used for similarity
calculation, making cosine similarity and dot product equiv-
alent. By this constraint, all the words, songs, and artists
are located on a hypersphere and the system finds music
content considering two flavors by calculating the content
close to the blended vector on the hypersphere (Figure 7).

4. QUALITATIVE ANALYSIS

We investigated whether the trained vector space model ap-
propriately captures the similarity between multiple musical
aspects. Table 1 shows the five most similar lyric words,
song audio tracks 1 , and artists – as well as their cosine sim-
ilarities – that were obtained when we issued three different
queries written at the top.

We can see in Table 1 that the query word “death” is sim-
ilar to the words “blood” and “dead”, which is reasonable
since those words are often used in metal songs. Moreover,
“death” is similar to song audio tracks having aggressive
sounds using electric guitars and to Heavy Metal artists
such as “Savatage”. Metal songs like “Neuro Osmosis”
were found even though their lyrics do not include the word
“death”.

Table 1 also shows that the query song “Amazing Grace”
is similar to clean words such as “meadow” and “lullaby”
and to relaxation songs such as New Age and Holiday music.
Interestingly, the query artist “Michael Jackson” is similar
to the artist “Janet Jackson” who is his sister even though
the model does not know that they are siblings. This query
is also similar to rhythmic songs by other artists.

These results indicate that the multi-aspect vector space
model makes it possible to find related lyric words, songs,
and artists that are hard to find otherwise. Furthermore, we
tried to issue various queries by blending and subtracting
flavors of multiple aspects and confirmed the usefulness of
this blending and subtracting. Some results were illustrated
in Section 2.2. Another interesting result is that the blended
flavor “Stevie Wonder” + “snow” − “spring” is similar to
“California Christmas”.

5. QUANTITATIVE EVALUATION

Since ground-truth annotations of similarities between dif-
ferent aspects do not exist, it is not easy to quantitatively
evaluate the model in general, but we tried to evaluate the
effectiveness of blending latent vector representations by
comparing content-based distributions of retrieved results.
In Table 1, for example, the results retrieved for the word
“death” and the song “Amazing Grace” are contrasting and
have different impressions, which means that the distance
between their distributions is large. If we issue a query
blending them and it works effectively, we expect to see
somewhat intermediate results between them, which means
that the distance between one of the above distributions and
the new distribution after blending becomes smaller.

1 The song audio tracks used in this table can be listened to at our demo
page (https://kentow.github.io/qbb/).
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Input word: death Input song: Amazing Grace Input artist: Michael Jackson
Si

m
ila

rw
or

ds blood 0.70 may 0.37 hypnotized 0.41
dead 0.65 sadly 0.35 maurice 0.40
flesh 0.65 gentle 0.34 babygirl 0.39

reborn 0.63 meadow 0.34 confused 0.39
mortal 0.62 lullaby 0.34 emotions 0.39

Si
m

ila
rs

on
gs Burning Sermon (Rock) 0.49 I Wish I Was In England (World) 0.85 It’s a Man’s Man’s Man’s World (Pop) 0.50

Neuro Osmosis (Metal) 0.48 North Country Maid (Pop) 0.84 Tight (Gospel) 0.49
Scraping the Barrel (Metal) 0.48 Mary, Did You Know (Holiday) 0.83 Play with Bootsy (Rock) 0.48

Coins Upon the Eyes (Metal) 0.47 No Turning Back (Alternative) 0.83 Unspeakable (Pop) 0.48
The Harlot Ov the Saints (Rock) 0.47 Beloved (NewAge) 0.83 Dead Heat (Pop) 0.48

Si
m

ila
ra

rt
is

ts Gary Numan 0.40 Barbra Streisand 0.40 Janet Jackson 0.61
L’Âme Immortelle 0.39 Ella Fitzgerald 0.39 Sarah Connor 0.52
Cowboy Junkies 0.38 Linda Ronstadt 0.38 Luther Vandross 0.52

Don Moen 0.38 Debby Boone 0.37 Kylie Minogue 0.52
Savatage 0.37 Nana Mouskouri 0.35 Faith Evans 0.51

Table 1. The most similar words, songs, and artists obtained by Query-by-Blending. The genre tags are shown in parentheses.

We therefore quantitatively examined how much this dis-
tance decreases after blending as follows. (1) A word query
w and a song query s for evaluation are sampled from the
dataset. (2) We get the 100 most similar songs retrieved by
the word query w and compute ψw that denotes a content-
based distribution of all lyric words and audio-words (i.e.,
a histogram of them) appearing in those 100 songs. (3)
We get the 100 most similar songs retrieved for the song
query s and compute ψs that denotes a content-based dis-
tribution obtained from those 100 songs in the same way.
(4) We then get the 100 most similar songs retrieved for the
query blending w and s and compute ψw+s that denotes a
content-based distribution obtained from those 100 songs
in the same way. (5) We calculate the Jensen-Shannon (JS)
divergence between every pair of distributions: (ψw, ψs),
(ψw, ψw+s), and (ψs, ψw+s). If the JS divergences of (ψw,
ψw+s) and (ψs, ψw+s) are smaller than that of (ψw, ψs),
we can confirm that our query blending lyric word and song
audio works effectively. In addition, we replace the song s
with the artist a and repeat the above procedure.

[Experimental Setup] For the above step (1), we used
1,000 word queries (most frequent nouns, verbs, adjectives,
and adverbs), 1,000 song queries, and 1,000 artist queries.
For the step (4), we made one million word-song pairs and
one million word-artist pairs for the blended queries.

[Results] Table 2 shows JS divergences that are averaged
over pairs. We can see that, as expected, the JS divergences
of (ψw, ψw+s) and (ψs, ψw+s) are smaller than the JS diver-
gence of (ψw, ψs). The same applies to (ψw, ψa). We thus
confirmed that our blended queries work effectively with
regard to content-based distributions of retrieved results.

6. RELATED WORK

Several studies have dealt with the similarity between dif-
ferent aspects of music. McFee and Lanckriet [22], for
example, developed a hypergraph of song nodes whose
edges capture multi-aspect relationships. Although it can
be used to calculate similarities between songs while con-
sidering multiple aspects, it does not deal with similarities
between the multiple musical aspects.

Some studies embedded musical aspects into a high-

Distributions JS divergence Distributions JS divergence
ψw ψs 0.261 ψw ψa 0.224
ψw ψw+s 0.057 ψw ψw+a 0.147
ψs ψw+s 0.227 ψa ψw+a 0.119

Table 2. Quantitative evaluation of blending flavors.

dimensional vector space in an unsupervised manner. We-
ston et al. [35] proposed a model by which musical audio
signals and artist tags are embedded assuming that songs
created by the same artist are correlated. Wang et al. [34]
modeled the relationships between songs by using the same
architecture as word2vec under the assumption that songs
played by the same listener are similar. There are also stud-
ies that embedded vectorized audio-words and social tags
by using the singular value decomposition (SVD) [13, 20].
All these studies shared with ours the motivation of em-
bedding multiple aspects into a vector space but dealt only
with audio signals and metadata without lyrics even though
lyrics are an important element that conveys messages and
emotions of music. To the best of our knowledge, there is
no study in which lyric word, song audio, and artist ID are
embedded into the same vector space.

7. CONCLUSION

In this paper we proposed a novel interface, Query-by-
Blending, that enables users to find unfamiliar but interest-
ing music content by flexibly combining (blending) three
musical aspects: lyric word, song audio, and artist. Our
contributions are summarized as follows: (1) Query-by-
Blending is the first interface that lets users iteratively issue
various queries by blending and subtracting multiple musi-
cal aspects. (2) We developed the novel embedding method
of constructing the unified latent multi-aspect vector space
by using unsupervised learning. (3) We demonstrated that
our vector space model captures the similarities between
multiple aspects. We plan to conduct a user study evaluating
the Query-by-Blending interface. We also plan to extend
our model to blend other aspects, such as genre tags and
album cover images.
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ABSTRACT

Structural segmentation is the task of partitioning a record-
ing into non-overlapping time intervals, and labeling each
segment with an identifying marker such as A, B, or verse.
Hierarchical structure annotation expands this idea to al-
low an annotator to segment a song with multiple levels
of granularity. While there has been recent progress in de-
veloping evaluation criteria for comparing two hierarchical
annotations of the same recording, the existing methods
have known deficiencies when dealing with inexact label
matchings and sequential label repetition.

In this article, we investigate methods for automati-
cally enhancing structural annotations by inferring (and
expanding) hierarchical information from the segment la-
bels. The proposed method complements existing tech-
niques for comparing hierarchical structural annotations by
coarsening or refining labels with variation markers to ei-
ther collapse similarly labeled segments together, or sep-
arate identically labeled segments from each other. Us-
ing the multi-level structure annotations provided in the
SALAMI dataset, we demonstrate that automatic hierarchy
expansion allows structure comparison methods to more
accurately assess similarity between annotations.

1. INTRODUCTION

In the music information retrieval (MIR) literature, the
problem of musical structure analysis broadly concerns
methods for automatically inferring relationships between
moments in time within a piece [1, 10]. Substantial effort
has been expended to develop computational techniques
to infer various structures in recorded music, and the ex-
istence of reliable reference data and evaluation method-
ology is critical to accurately assess the efficacy of these
methods. More broadly, reliable methods for comparing
interpretations of musical structure can be informative for
understanding human perception of music [13, 14].

c© Brian McFee, Katherine M. Kinnaird. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Brian McFee, Katherine M. Kinnaird. “Improving struc-
ture evaluation through automatic hierarchy expansion”, 20th Interna-
tional Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

Musical structure can be represented in a variety of
ways, depending on the intended use case, ranging from
(symbolic) staff notation, to chord annotations, lead sheets,
etc. MIR research typically focuses on the segmentation
problem, where the time extent of a recording is parti-
tioned, and each partition is labeled with a descriptor that
can be used to indicate repetitions, such as A,B,A,C or
verse, chorus, verse, bridge. Much of the computational
work in this area models musical structure as flat, meaning
that there is exactly one partitioning of the piece, and the
elements of the partition (segments) cannot be merged or
subdivided to form larger or smaller structures.

In contrast, there is a long tradition in music the-
ory of modeling music with hierarchies that simultane-
ously represent structure at multiple levels of granular-
ity [2, 3]. Indeed, even when instructed to produce a
flat segmentation of a piece, expert annotators will often
encode latent hierarchical information by using variation
markers in their segment labels, e.g., A, . . . , A′ or verse,
. . . , verse_(instrumental) [9, 12]. Although an annotator’s
choice of segment label may clearly be informative in these
cases, this information is ignored by standard segmentation
comparison methods. This owes, primarily, to an inability
to directly support multi-level segmentations, which could
be used to simultaneously represent both the original and
simplified annotation as a coherent structure.

In recent years, there has been increasing interest and
progress in developing datasets [8, 12], computational
methods [16], representations [7], and evaluation crite-
ria [6] for hierarchically structured music segmentations.
However, little attention has been paid to exposing latent
hierarchical structure encoded by segment labels for use in
conjunction with these methods.

1.1 Our contributions

In this work, we develop a method for automatically expos-
ing latent multi-level structure encoded by label similar-
ity in music segmentations. The proposed automatic hier-
archy expansion method operates by simultaneously con-
tracting similar (but distinct) segment labels, and refining
identically labeled (but distinct) segments. The contraction
and refinement are combined with the original annotation
into a hierarchical annotation, which can then be compared
to other hierarchies using existing techniques.
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Using the SALAMI dataset as a test case, we demon-
strate that the proposed method is effective at identifying
similarities across annotations that are not captured by pre-
vious methods. Finally, we leverage insights gained in de-
veloping the method to explore issues of internal consis-
tency within multi-level structure annotations.

1.2 Preliminaries

For a signal of duration T , we define a (flat) segmentation
as a function S : [0, T ] → V where V denotes a set of
segment labels, e.g., V = {A,B, . . .}. We define a multi-
level segmentation (or hierarchy) as a sequence of segmen-
tations H = (S0, S1, . . .), where S0 maps to a single label,
and subsequent segmentations Si are ordered from coarse
to fine. We assume that each segmentation Si maps to a
distinct vocabulary. Finally, we say that a hierarchy H is
monotonic if for every level k, we have that

Sk(u) = Sk(v) ⇒ Sk−1(u) = Sk−1(v). (1)

2. RELATED WORK

Methods for evaluating musical structure analysis algo-
rithms, or more generally comparing two different (flat)
structural annotations, broadly fall into two categories:
boundary detection and label agreement. Boundary de-
tection metrics capture the agreement between annotations
in localizing moments of time when the piece transitions
from one coherent segment to another [15]. Segment
boundaries are entirely local phenomena, and the metrics
do not attempt to encode any sense of long-term structure
in the annotations.

Label agreement metrics, on the other hand, are glob-
ally informed, and derive from comparisons between the
segment labels applied to short samples, typically 0.1s in
duration. The pairwise precision metric [4] is defined by
determining which time points i and j are both given the
same label in the reference annotation, and checking to see
if the estimate annotation also gives both time points the
same label; the fraction of such pairs of time points deter-
mines a precision score. Exchanging the roles of the ref-
erence and estimate annotations yields definitions for re-
call and F1-score. Similarly, the normalized conditional
entropy measures [5] quantify agreement in terms of the
mutual information between the two annotations.

Although label agreement metrics account for global
structure, they have three notable shortcomings. First, they
are sensitive to alignment errors: if two annotators are op-
erating at different levels of granularity, this information
can be obscured by the evaluation. Hierarchical structure
evaluation measures address this by integrating multiple
segmentations at different levels of granularity into a single
hierarchy, and comparing hierarchies to one another [6].

Second, since they depend on frames in isolation from
their surrounding context, label agreement metrics cannot
distinguish a long segment A from two short segments aa
that cover the same time extent. Typically, practitioners
circumvent this issue by reporting boundary detection met-

rics as well as label agreement metrics, but the interactions
between the two types of score are rarely easy to interpret.

Finally, label agreement metrics have no mechanism to
exploit similarity encoded within segment labels: labels A
and A′ are considered equally distinct as A and B, even
though the annotator is clearly implying some high-level
similarity in the first case that is absent in the second.
While one could modify such annotations directly and use
a flat segment evaluation metric, doing so discards infor-
mation that could still be useful for comparison purposes.

In this work, we address these three issues by deriving
segment hierarchies which are informed by label similarity.
Discarding variation markers (A′ → A) allows the evalu-
ation to recover from superficially distinct segment labels,
while adding counters (aa→ a0a1) provides a way to dis-
tinguish a long segment from sequential repetitions of a
short segment. By integrating these two modifications into
a hierarchy, along with the original annotation, we preserve
all of the information present in the annotation.

2.1 Hierarchical evaluation

The approach taken in this work is based on the L-measure
method for multi-level segmentation comparison [6], sum-
marized here for completeness. Given a hierarchy H , a
meet matrix M is defined by the maximum level at which
every pair of time instants (u, v) receive the same label:

M [u, v] := max {k | Sk(u) = Sk(v)} . (2)

The meet matrix induces a partial ordering over pairs of
time instants, which is summarized by a set of triplets:

A(H) := {(t, u, v) |M [t, u] > M [t, v]} . (3)

Finally, given two hierarchies HR (the reference) and HE

(the estimate), a precision score is defined by comparing
the two triplet sets:

L-Precision
(
HR, HE

)
:=

∣∣A (
HR

)
∩A

(
HE

)∣∣
|A (HE)|

. (4)

Recall is defined analogously by reversing the roles of ref-
erence and estimate, and an F1-score (hereafter denoted
as L-Measure) can be computed by the harmonic mean of
precision and recall. The terms reference and estimate to
distinguish between annotations derive from the method’s
use in comparing algorithm outputs to manual annotations.
However, the method can generally compare between dif-
ferent annotations of equal status, e.g., produced by two
different human annotators. In this case, the terms refer-
ence and estimate are merely intended to identify the an-
notators, but not to confer privileged status to either.

Although defined for multi-level segmentations, the L-
measure can also be applied to compare flat segmentations
by including a vacuous segment S0 which produces a sin-
gle segment spanning the entire duration. This results in
an evaluation which is similar to the pairwise frame simi-
larity metric [4], differing only in that it compares triples
rather than pairs. For consistency across experiments, we
will employ this method (with the S0 segment) when com-
paring flat segmentations in the remainder of this article.
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3. METHODS

This work proposes a method for expanding flat annota-
tions to include both more nuanced and coarser structural
information. Such expansions seek to address the three
shortcomings of label agreement metrics detailed in Sec-
tion 2. We also explore the concept of monotonicity within
the hierarchy resulting from applying our methods to sev-
eral levels of flat annotations.

3.1 Automatic Hierarchy Expansion

Here, we propose an automatic hierarchical expansion for
any ‘flat’ annotations. Our method expands a flat annota-
tion into a hierarchy with three levels. The first level is a
contraction of the variation markers. The second level is
the original annotation. The third level is a refinement of
the labels by making each instance of a label unique by
adding counters to the label.

For a concrete example, consider Figure 1. The left part
of the image shows the flat annotation which is repeated
on the right side of the image as the middle level of the
hierarchy. The contraction level, shown in green, removed
the variation markers of the A repetition. The result is that
the contraction part of the hierarchy has two kinds of repe-
titions instead of three.

The refined level of the hierarchy, shown in blue, has
at most one block per line. For clarity, the refinement
level is created directly from the contraction level of the
hierarchy. For each instance of a label in the contrac-
tion level, we append a counter (starting with 0) to form
a new label. If instead we had conducted this refine-
ment starting at the middle level, we would have ended up
with the annotation labels {A0, A′0, B0, B1, B2} instead
of {A0, A1, B0, B1, B2}. Both methods produce equiva-
lent results, but the latter is easier to interpret.

Although the expansion described above is most eas-
ily understood when applied to flat inputs, it can also be
applied to hierarchical inputs by expanding each level in-
dependently and combining the results. An example of
this multi-level hierarchy expansion is given in Figure 2.
We also note that whenever a contraction (or refinement)
leaves the segmentation unchanged, the redundant level is
omitted from the expanded hierarchy as it produces no ad-
ditional content. Note that the expansions of the upper and
lower annotations in Figure 2 only have two levels each;
this is due to the lack of variation markers within the orig-
inal annotations, meaning that there is nothing to contract.

3.2 Monotonicity

The L-measure described in section 2.1 hinges upon the
definition of the meet matrix M (see eq. (2)), which can be
interpreted as measuring the similarity between two time
points by the depth in the hierarchy at which they receive
the same label. When expanding a flat segmentation S, the
result is guaranteed to be a monotonic hierarchy. If S(u) 6=
S(v), then the contraction level may assign u and v the
same label, but the refinement level will not. Conversely,

Time
A

A'

B

Time
 A0
 A1
 B0
 B1
 B2

A
A'
B
A 
B 

Figure 1. An example of automatic hierarchy expansion.
A flat segmentation (left) with segments (A,B,A′, B,B)
is expanded into a three-level hierarchy (right). The con-
traction level (green, top) removes variation markers, while
the refinement level (blue, bottom) adds counters to each
instance of a segment label. The center level (orange) pre-
serves the original annotation.

Original
a

b

c

A

B

Expanded
 a0
 a1
 b0
 b1
 c0

a
b
c

 A0
 A1
 B0

A
B

Figure 2. Automatic hierarchy expansion is not guaran-
teed to preserve monotonicity when applied independently
to each level of a hierarchy (left). The dashed lines in-
dicate two instants which receive the same label a in one
level, but different labels (A0 and A1) in a preceding level.

if S(u) = S(v), then the contraction level must preserve
this equivalence, while the refinement level may not.

However, when applying automatic expansion indepen-
dently to each level of a hierarchical annotation, the re-
sult may not be monotonic. Figure 2 illustrates this ef-
fect, where the refinement of the upper level (orange, left
plot) results in violations of monotonicity, indicated by the
dashed lines in the right plot.

While one could preserve monotonicity by only con-
tracting at the highest level and refining at the lowest level,
this is undesirable for three reasons. First, there may be
informative structure encoded by variation markers in the
intermediate levels which would be missed. Second, an-
notators may not be internally consistent (i.e., monotonic)
from upper to lower-level, so monotonicity would be vio-
lated from the start. And finally, because the L-measure de-
pends only on the maximum level of agreement, it does not
strictly require monotonicity to operate, though the results
may be somewhat counter-intuitive. Still, the L-measure
definition is most intuitive when the underlying annota-
tions are monotonic, so it is worth investigating the effects
of hierarchy expansion on monotonicity.
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Figure 3. L-measure applied to pairs of annotations in the SALAMI dataset before and after automatic expansion. Left:
upper-level annotations; middle: lower-level annotations; right: hierarchical annotations.

4. EXPERIMENTS

We evaluated the effect of automatic hierarchy expansion
on flat annotations in the SALAMI dataset [12]. This
dataset was selected for two reasons. First, it contains
multiple reference annotations (by different annotators).
Second, each annotation includes segmentations at differ-
ent levels of granularity (upper and lower), which can be
treated separately or combined into one hierarchy. All ex-
periments were conducted using the L-measure implemen-
tation included in mir_eval version 0.5 [11].

4.1 Expansion on flat annotations

For each SALAMI track with two annotators, we first com-
puted the L-measure between the two upper annotations.
Because neither annotator has a privileged status as refer-
ence, we computed the “L-measure” as the harmonic mean
of L-precision and L-recall. We then applied the hierarchy
expansion procedure to each annotation, and the recom-
puted the L-measure on the expansions. Comparing the
L-measure before and after expansion of a single level al-
lows us to quantify the amount of structural similarity im-
plicitly coded in the segment labels. This process was then
repeated for the lower-level annotations.

Figure 3 (left and middle plots) summarizes the results
of this experiment. As a general trend, expansion has sub-
stantial impact on the upper level, and less impact on the
lower level. More specifically, expansion of the upper level
produces a change in L-measure of 0.107 ± 0.168 (mean
± standard deviation), while expansion of the lower-level
produces a change of 0.038± 0.09. The trend is generally
positive at the upper level (with a few exceptions), while
the lower-level changes are more symmetric.

Figure 4 illustrates two extreme cases where automatic
hierarchy expansion dramatically changes the L-measure
between upper annotations. 1 In the first case, track 242
improves from 0 to 0.979, because the refinement of the
second annotation (AA→ A0A1) agrees with the first an-
notation (AA′), and the contraction of the first annotation

1 Qualitatively similar examples can be observed for the lower anno-
tations, which are omitted here for brevity.

A

A'

Silence

A

Silence

SALAMI #242

A

Silence

A

Silence

SALAMI #251

Figure 4. Two extreme examples where hierarchy expan-
sion changes the L-measure from flat (upper) annotations.
Left: track 242 increases by +0.979; right: track 251 de-
creases by −0.705.

(AA′ → AA) matches with the second annotation. These
annotations effectively encode the same information, dif-
fering only in the use of variation markers. The second
case, track 251, decreased from 0.879 to 0.174 after ex-
pansion. This is explained by the first annotation explicitly
marking repeated A sections, which are refined into unique
sections (A0, A1, A2, A3) by expansion. This structure is
absent from the second annotation, which covers the en-
tire duration by a single A segment. Prior to expansion,
label-agreement metrics over-estimate the similarity be-
tween these annotations. Hierarchy expansion exposes this
oversight, resulting in a more accurate comparison.

4.2 Expansion on hierarchical annotations

Extending the analysis of the previous section, we com-
bined each annotator’s upper and lower segmentations into
a hierarchical annotation H . We then applied hierarchy ex-
pansion to each level of the hierarchy, resulting in a new hi-
erarchy H∗. Finally, we computed the L-measure between
pairs of hierarchies before and after expansion, which pro-
vides a more holistic view of how expansion affects mea-
sured agreement between annotators.

The results of expansion comparison for hierarchies are
summarized in Figure 3 (right). Overall, the differences are
qualitatively similar to the lower-level comparison, pro-
ducing differences in L-measure of 0.048 ± 0.090. While
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Original

SALAMI #341

Expanded

SALAMI #341

Figure 5. Automatic expansion significantly improves L-
measure agreement between two hierarchical annotations
of track 341 (increase of +0.954). Left: the original hi-
erarchies; right: the expanded hierarchies. Segment labels
are suppressed to enhance legibility.

less dramatic than the upper-level comparison, the trend is
still generally positive, with over 77% of comparisons in-
creasing in value after applying hierarchy expansion. This
indicates that even when evaluating with hierarchical an-
notations, there is still some latent structure encoded in the
segment labels which current methods do not account for.

Figure 5 illustrates an example where expansion in-
creases L-measure between two hierarchies, from 0 to
0.954. The second hierarchy (bottom left) assigns the same
label to each segment, though the lower level is divided
in to repetitions. Expansion separates these repeated seg-
ments in both annotations, exposing the common structure
shared by both hierarchies (right two subplots).

Figure 6 illustrates the opposite case, where expan-
sion exposes disagreement, decreasing score from 0.841
to 0.618. In this case, looking only at the upper level of
the two annotations (left plots, orange level) would indi-
cate considerable agreement between the two annotations,
though the lower levels (blue) diverge significantly.

These selected examples are the extreme cases where
L-measures deviated the most after hierarchy expansion.
In both cases, we find that the divergence can be easily ex-
plained by visual inspection, which validates that hierarchy
expansion behaves as expected. Note that these cases are
relatively unusual, and most changes in scores are much
smaller in magnitude. We therefore conclude that hierar-
chy expansion is effective at recovering from exceptional
cases while not detrimentally affecting the common cases.

4.3 Quantifying monotonicity

The experiment described in Section 4.1 started with flat
segmentations, and is therefore guaranteed to produce
monotonic hierarchies. As noted in Section 3.2, this is not
generally true when expanding hierarchies. This raises the
question of the importance of monotonicity on hierarchical
segmentation evaluation, and whether a given annotator is

Original

SALAMI #118

Expanded

SALAMI #118

Figure 6. An example where automatic expansion signif-
icantly reduces L-measure agreement between two hierar-
chical annotations (decrease of −0.223). Left: the original
hierarchies; right: the expanded hierarchies.

0.2 0.4 0.6 0.8 1.0
Monotonicity of SALAMI annotations

101

102
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Figure 7. The distribution of monotonicity scores across
all segment hierarchies in SALAMI (median: 0.98).

internally consistent between upper and lower levels.
The definition of monotonicity given in eq. (1) is binary,

but it can be relaxed by instead measuring the proportion
of time instants u and v where agreement at level k implies
agreement at level k − 1. This is calculated exactly by the
pairwise recall measure [4], when Sk is treated as the refer-
ence and Sk−1 is the estimate. We thus computed pairwise
recall between lower and upper segmentations for each an-
notation: measures close to 1 are highly monotonic, and
lower values indicate violations of monotonicity. The re-
sults are summarized by the distribution plot in Figure 7.
Overall, the median monotonicity score across all annota-
tions was 0.98, though there appears to be a heavy tail of
non-monotonic annotations.

Looking more carefully into the data, we observed that a
significant portion of monotonicity violations could be ex-
plained by the use of variation markers in the upper-level
segmentation. These annotations are specifically problem-
atic because the lower segment a may correspond to dis-
tinct upper labels A and A′. More than 60% of hierarchies
that do not use variation markers in the upper level are per-
fectly monotonic, while only 27% of hierarchies with up-
per variations are monotonic.

Figure 8 illustrates the distribution of monotonicity
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Figure 8. Monotonicity measurements for each SALAMI
annotation, grouped by annotator. Median values and 95%
bootstrap confidence intervals are indicated by bars.

scores for each individual annotator, sub-divided according
to the presence or absence of variation markers in the upper
level. Figure 8 shows that use of upper variation markers
consistently coincide with lower monotonicity score.

In these experiments, we identified that variation mark-
ers can introduce unnecessary differences between sec-
tions. What is more, our investigations suggest that the
use of variation markers coincides with reduction in mono-
tonicity. The contraction level in the automatic hierarchy
expansion seeks to address this issue. However, expand-
ing multiple levels can introduce monotonicity violations.
Combining the investigations in this section with the re-
sults from Section 4.2, we conclude any new violations
created by the contraction of the lower level and the refine-
ment of the upper levels are not substantially detrimental
compared to the overall improvements conferred by auto-
matic hierarchy expansion.

4.4 Permutation stability

It is natural to ask whether the previous results are due to
introducing multiple hierarchical levels (independent of la-
bels), or if the specific manner in which the contraction and
refinement levels are constructed matters. If the effects of
hierarchy expansion on L-measure are primarily due to ad-
ditional levels, but not their specific label structure, we ex-
pect that expanding the segmentation with randomly per-
muted labels should produce comparable results.

To test this idea, we took inspiration from statistical per-
mutation testing, and conducted the following experiment
on each level of flat segmentations.

• For each annotation S, construct its hierarchy expan-
sion H and compute the L-recall from S to H .

• (Repeat): randomly permute the labels of S to pro-
duce new flat segmentation P , and expand P to new
hierarchy HP . Compute L-recall from S to HP .

We then compared the distribution of recall scores arising
from the (S,H) comparisons to distribution arising from
(S,HP ) comparisons. Since the expansion H contains S,

Level Mean (original) Mean (permutation) KS

Upper 0.992 0.603 0.940
Lower 0.996 0.468 0.977

Table 1. Results of the permutation-expansion test on
upper- and lower-level segmentations. KS reports the 2-
sample Kolmogorov-Smirnov test statistic between expan-
sion and permuted expansion comparisons.

the recall score will be identically 1. 2 Note that the expan-
sion HP will have equivalent refinement level to that of H
because each segment is uniquely labeled, so the differ-
ences induced by permutation are confined to the middle
and upper (contraction) levels.

For each annotation, 20 independent permutations were
generated. For each level, we report the mean L-recall over
original expansions and permuted expansions. We then
calculated the 2-sample Kolmogorov-Smirnov test statis-
tic (KS) to determine if the two samples could plausibly
be generated from the same underlying distribution. Ta-
ble 1 summarizes the results of the experiment. In both
cases, this null hypothesis was rejected with p-value nu-
merically indistinguishable from 0, indicating that the ef-
fects of the hierarchy expansion on the L-measure depend
on both the additional hierarchical information and its spe-
cific label structure.

5. CONCLUSION

The automatic hierarchy expansion method proposed in
this article provides a flexible framework for retaining sub-
tle differences in annotations, while simultaneously expos-
ing coarse similarity. By leveraging ideas from hierarchi-
cal structure evaluation, the proposed method is able to il-
luminate detailed structure latent in the annotations, and
recover from problematic edge cases not handled by previ-
ous methods. Moreover, the segment refinement technique
provides a way to simultaneously evaluate segment bound-
aries and repetitions, which has been problematic for pre-
vious, frame-based evaluations.

Although our focus of the experiments in this work
relies on structural segmentation labels in the SALAMI
dataset, the general ideas may be applied more broadly,
e.g., to the functional section labels used in the Isophon-
ics and TUT annotations [9]. Alternatively, this automatic
hierarchy expansion could be applied to other musical con-
cepts where hierarchies naturally occur, such as chord la-
bels (root, quality, extensions) or instrumentation (family,
instrument, register). This could provide a robust alterna-
tive evaluation technique for classification problems where
adhering to a flat vocabulary is problematic, but where
modeling full taxonomies might also be intractable.

2 When S consists of a single segment spanning the entire duration,
it will produce an L-recall of 0. However, we note that the permutation
procedure on such annotations will have no effect.
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ABSTRACT

Data-driven models for audio source separation such
as U-Net or Wave-U-Net are usually models dedicated to
and specifically trained for a single task, e.g. a particu-
lar instrument isolation. Training them for various tasks at
once commonly results in worse performances than train-
ing them for a single specialized task. In this work, we
introduce the Conditioned-U-Net (C-U-Net) which adds
a control mechanism to the standard U-Net. The control
mechanism allows us to train a unique and generic U-Net
to perform the separation of various instruments. The C-
U-Net decides the instrument to isolate according to a one-
hot-encoding input vector. The input vector is embedded
to obtain the parameters that control Feature-wise Linear
Modulation (FiLM) layers. FiLM layers modify the U-Net
feature maps in order to separate the desired instrument via
affine transformations. The C-U-Net performs different in-
strument separations, all with a single model achieving the
same performances as the dedicated ones at a lower cost.

1. INTRODUCTION

Generally, in Music Information Retrieval (MIR) we de-
velop dedicated systems for specific tasks. Facing new
(but similar) tasks require the development of new (but
similar) specific systems. This is the case of data-driven
music source separation systems. Source separation aims
to isolate the different instruments that appear in an au-
dio mixture (a mixed music track) i.e., reversing the mix-
ing process. Data-driven methods use supervised learning
where the mixture signals and the isolated instruments are
available for training. The usual approach is to build dedi-
cated models for each task to isolate [1, 19]. This has been
proved to show great results. However, since isolating an
instrument requires a specific system, we can easily run
into problems such as scaling issues (100 instruments =
100 systems). Besides, these models do not use the com-
monalities between instruments. If we modify them to do
various tasks at once i.e., adding more filters for the last

© Gabriel Meseguer-Brocal, Geoffroy Peeters. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Gabriel Meseguer-Brocal, Geoffroy Peeters.
“Conditioned-U-Net: introducing a control mechanism in the U-Net for
multiple source separations”, 20th International Society for Music Infor-
mation Retrieval Conference, Delft, The Netherlands, 2019.

Figure 1: [Left part] Traditional approach: a dedicated U-
Net is trained to separate a specific source. [Right part]
Our proposition based on conditioning learning. The prob-
lem is divided in two: a standard U-Net (which provides
generic source separation filters) and a control mechanism.
This division allows the same model to deal with different
tasks using the commonalities between them.

layers and having fix numbers of outputs, they reduce their
performance [19].

Conditioning learning has appeared as a solution to
problems that need the integration of multiple resources
of information. Concretely, when we want to process one
in the context of another i.e., modulating a system com-
putation by the presence of external data. Conditioning
learning divides problems into two elements: a generic
system and a control mechanism that governs it according
to external data. Although there is a large diversity of do-
mains that use it, it has been developed mainly in the image
processing field for tasks such as visual reasoning or style
transfer. There, it has been proved very effective, improv-
ing the state of the art results [3, 13, 20]. This paradigm
can be integrated into source separation creating a generic
model that adapts to isolate a particular instrument via a
control mechanism. We also believe that this paradigm can
benefit to a great diversity of MIR tasks such as multi-pitch
estimation, music transcription or music generation.

In this work, we propose the application of condition-
ing learning for music source separation. Our system relies
on a standard U-Net system not specialized in a specific
task but rather in finding a set of generic source separation
filters, that we control differently for isolating a particular
instrument, as illustrated in Figure 1. Our system takes as
input the spectrogram of the mixed audio signal and the
control vector. It gives as output (only one) the separated
instrument defined by the control vector. The main advan-
tages of our approach are - direct use of commonalities
between different instruments, - a constant number of pa-
rameters no matter how many instruments the system is
dealing with - and scalable architecture, in the sense that
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new instruments can be potentially added without training
from scratch a new system. Our key contributions are:

1. the Conditioned-U-Net (C-U-Net), a joint model
that changes its behavior depending on external data
and performs for any task as good as a dedicated
model trained for it. C-U-Net has a fixed number of
parameters no matter the number of output sources.

2. The C-U-Net proves that conditioning learning (via
Feature-wise Linear Modulation (FiLM) layers) is
an efficient way of inserting external information to
MIR problems.

3. A new FiLM layer that works as good as the original
one but with a lower cost (fewer parameters).

2. RELATED WORK

We review only works related to conditioning in audio and
to data-driven source separation methods.

Conditioning in audio. It has been mainly explored in
speech generation. In the WaveNet approach [22, 23] the
speaker identity is fed to a conditional distribution adding
a learnable bias to the gated activation units. A WaveNet
modified version is presented in [18]. The time-domain
waveform generation is conditioned by a sequence of Mel
spectrogram computed from an input character sequence
(using a recurrent sequence-to-sequence network with at-
tention). In speech recognition conditions are used in
[10], applying conditional normalisation to a deep bidirec-
tional LSTM (Long Short Term Memory) for dynamically
generating the parameters in the normalisation layer. This
model adapts itself to different acoustic scenarios. In [10],
the conditions do not come from any external source but
rather from utterance information of the model itself. They
have been also used in music generation for accompani-
ments conditioned on melodies [6] or incorporating history
information (melody and chords) from previous measures
in a generative adversarial network (GAN) [25]. Finally, it
has been also proved to be very efficient for piano tran-
scription [5]: the pitch onset detection is internally con-
catenated to the frame-wise pitch prediction controlling if
a new pitch starts or not. Both, onset detection and frame-
wise prediction are trained together.

Source separation based on supervised learning. We
refer the reader to [15] for an extensive overview of the
different source separation techniques. We review only the
data-driven approaches. Here, the neural networks have
taken the lead. Although architectures such as RNN [7] or
CNN [2] have been studied, the most successful one use
a deep U-Net architecture (also called U-Net). In [1], the
U-Net is applied to a spectrogram to separate the vocal and
accompaniment components, training a specific model for
each task. Since the output is the spectrogram, they need to
reconstruct the audio signal which potentially leads to ar-
tifacts. For this reason, Wave-U-Net proposes to apply the
U-Net to the audio-waveform [19]. They also adapt their
model for isolating different sources at once by adding to

Figure 2: [Top part] FiLM simple layer applies the same
affine transformation to all the input feature maps x. [Bot-
tom part] In the FiLM complex layer, independent affine
transformations are applied to each feature map c.

their dedicated version as many outputs as sources to sep-
arate. However, this multi-instruments version performs
worse than the dedicated one (for vocal isolation) and has
to be retrained to different source combinations.

The closest work to ours is [9]. In there, they propose
to use multi-channel audio as input to a Variational Auto-
Encoder (VAE) to separate 4 different speakers. The VAE
is conditioned on the ID of the speaker to be separated. The
proposed method outperforms its baseline.

3. CONDITIONING LEARNING METHODOLOGY

3.1 Conditioning mechanism.

There are many ways to condition a network (see [4] for
a wide overview) but most of them can be formalized
as affine transformations denoted by the acronym FiLM
(Feature-wise Linear Modulation) [13]. FiLM permits to
modulate any neural network architecture inserting one or
several FiLM layers at any depth of the original model. A
FiLM layer conditions the network computation by apply-
ing an affine transformation to intermediate features:

FiLM(x) = γ(z) · x+ β(z) (1)

where x is the input of the FiLM layer (i.e., the interme-
diate feature we want to modify), γ and β are parameters
to be learned. They scale and shift x based on the external
information, z. The output of a FiLM layer has the same
dimension as the intermediate feature input x. FiLM layers
can be inserted at any depth i in the controlled network.

As described in Figure 2, the original FiLM layer ap-
plies an independent affine transformation to each feature
map c 1 : γi,c and βi,c [13]. We call this a FiLM complex
layer (Co). We propose a simpler version that applies the
same γi and βi to all the feature maps (therefore γ and β
do not depend on c). We call it a FiLM simple layer (Si).
The FiLM simple layer decreases the degrees of freedom
of the transformations to be carried out forcing them to be
generic and less specialized. It also reduces drastically the
number of parameters to be trained. As FiLM layers do
not change the shape of x, FiLM is transparent and can be
used in any particular architecture providing flexibility to
the network by adding a control mechanism.

1 Or element-wise.
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3.2 Conditioning architecture.

A conditioning architecture has two components:

The conditioned network. It is the network that carries out
the core computation and obtains the final output. It is usu-
ally a generic network that we want to behave differently
according to external data. Its behavior is altered by the
condition parameters, γi,(c) and βi,(c) via FiLM layers.

The control mechanism - condition generator. It is the
system that produces the parameters (γ’s and β’s) for the
FiLM layers with respect to the external information z: the
input conditions. It codifies the task at hand and provides
the instructions to control the conditioned network. The
condition generator can be trained jointly [13, 20] or sepa-
rately with the conditioned network [3].

This paradigm clearly separates the tasks description
and control instructions from the main core computation.

4. CONDITIONED-U-NET FOR MULTITASK
SOURCE SEPARATION

We formalize source separation as a multi-tasks problem
where one task corresponds to the isolation of one in-
strument. We assume that while the tasks are different
they share many similarities, hence they will benefit from
a conditioned architecture. We name our approach the
Conditioned-U-Net (C-U-net). It differs from the previ-
ous works where a dedicated model is trained for a single
task [1] or where it has a fixed number of outputs [19].

As in [1,19], our conditioned network is a standard U-
Net that computes a set of generic source separation filters
that we use to separate the various instruments. It adapts
itself through the control mechanism (the condition gen-
erator) with FiLM layers inserted at different depths. Our
external data is a condition vector z (a one-hot-encoding)
which specify the instrument to be separated. For exam-
ple, z = [0, 1, 0, 0] corresponds to the drums. The vector
z is the input to the control mechanism/condition genera-
tor that has to learn the best γi,c and βi,c values such that,
when they modify the feature maps (in the FiLM layers)
the C-U-Net separates the indicated instrument i.e., it de-
cides which features maps information is useful to get each
instrument. The control mechanism/condition generator is
itself a neural network that embeds z into the best γi,c and
βi,c. The conditioned network and the condition generator
are trained jointly. A diagram is shown in Figure3.

Our C-U-Net can perform different instrument source
separations as it alters its behavior depending on the value
of the external condition vector z. The inputs of our system
are the mixture and the vector z. There is only one output,
which corresponds to the isolated instrument defined by
z. While training, the output corresponds to the desired
isolated instrument that matches the z activation.

4.1 Conditioned network: U-Net architecture

We used the U-Net architecture proposed for vocal separa-
tion [1], which is an adaptation of the microscopic images

Figure 3: The C-U-Net has two distinct parts: the condi-
tion generator and a standard U-Net. The former codifies
the input the condition vector, z (with the instrument to iso-
late) for getting the needed γi,(c) and βi,(c). The generic
U-Net has as input the magnitude spectrum. It adapts its
conduct via FiLM layers inserted in the encoder part. The
system outputs the desired instrument defined by z.

U-Net [17]. The input and output are magnitude spectro-
grams of the monophonic mixture and the instrument to
isolate. The U-Net follows an encoder-decoder architec-
ture and adds a skip connection to it.

Encoder. It creates a compressed and deep representation of
the input by reducing its dimensionality while preserving
the relevant information for the separation. It consists of a
stack of convolutional layers, where each layer halves the
size of the input but doubles the number of channels.

Decoder. It reconstructs and interprets the deep features and
transforms it into the final spectrogram. It consists of a
stack of deconvolutional layers.

Skip-connections. As the encoder and decoder are sym-
metric i.e., feature maps at the same depth have the same
shape, the U-Net adds skip-connections between layers of
the encoder and decoder of the same depth. This refines
the reconstruction by progressively providing finer-grained
information from the encoder to the decoder. Namely, fea-
ture maps of a layer in the encoder are concatenated to the
equivalent ones in the decoder.

The final layer is a soft mask (sigmoid function ∈
[0, 1]) f(X, θ) which is applied to the input X to get the
isolated source Y . The loss of the U-Net is defined as:

L(X,Y ; θ) = ‖f(X, θ)�X − Y ‖1,1 (2)

where θ are the parameters of the system.
Architecture details. Our implementation mimics the

original one [1]. The encoder consists in 6 encoder blocks.
Each one is made of a 2D convolution with 5x5 filters,
stride 2, batch normalisation, and leaky rectified linear
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Figure 4: FiLM layers are placed after the batch normal-
isation. The output of a encoding block is connected to
both, the next encoding block and the equivalent layer in
the decoder via the skip connections.

units (ReLU) with leakiness 0.2. The first layer has 16 fil-
ters and we double them for each new block. The decoder
maps the encoder, with 6 decoders blocks with stride de-
convolution, stride 2 and a 5x5 kernel, batch normalisation,
plain ReLU, and a 50% dropout in the first three. The final
one, the soft mask, uses a sigmoid activation. The model is
trained using the ADAM optimiser [11] and a 0.001 learn-
ing rate. As in [1], we downsample to 8192 Hz, compute
the Short Time Fourier Transform with a window size of
1024 and hop length of 768 frames. The input is a patch of
128 frames (roughly 11 seconds) from the normalised (per
song to [0, 1]) magnitude spectrogram for both the mixture
spectrogram and the isolated instrument.

Inserting FiLM. The U-Net has two well differenti-
ated stages: the encoder and decoder. The enconder is
the part that transforms the mixture magnitude input into
a deep representation capturing the key elements to isolate
an instrument. The decoder interprets this representation
for reconstructing the final audio. We hypothesise that, if
we can have a different way of encoding each instrument
i.e., obtaining different deep representations, we can use a
common ‘universal’ decoder to interpret all of them. Fol-
lowing this reasoning, we decided to condition only the U-
Net encoder part. In the C-U-Net, a FiLM layer is inserted
inside each encoding block after the batch normalisation
and before the Leaky ReLU, as described in Figure 4. This
decision relies on previous works where feature are modi-
fied after the normalisation [3,10,13]. Batch normalisation
normalises each feature map so that it has zero mean and
unit variance [8]. Applying FiLM after batch normalisa-
tion re-scale and re-shift feature maps after the activations.
This allows the net to specialise itself to different tasks.
As the output of our encoding blocks is transformed by
the FiLM layer the data that flows through the skip con-
nections carries on also the transformations. If we use
the FiLM complex layer, the control mechanism/condition
generator needs to generate 2016 parameters (1008 γi,c
and 1008 βi,c). On the other hand, FiLM simple layers
imply 12 parameters: one γi and one βi for each of the 6
different encoding blocks, which means 2002 parameters
less than for FiLM complex layers.

4.2 Condition generator: Embedding nets

The control mechanism/condition generator computes the
γi,(c)(z) and βi,(c)(z) that modify our standard U-net be-
havior. Its architecture has to be flexible and robust to gen-
erate the best possible parameters. It has also to be able to
find relationships between instruments. That is to say, we
want it to produce similar γi,(c) and βi,(c) for instruments

Table 1: Params number in millions. With dedicated U-
Nets, each task needs a model with 10M params. C-U-Nets
are multi-task and the number of params remains constant.

MODEL Non-conditioned SiF CoF SiC CoC
PARAM 39,30 (4 tasks x 9,825) 9,85 12 9,84 10,42

that have similar spectrogram characteristics. Hence, we
explore two different embeddings: a fully connected ver-
sion and a convolutional one (CNN). Each one is adapted
for the FiLM complex layer as well as for the FiLM sim-
ple layer. In every control mechanism/condition genera-
tor configuration, the last layer is always two concatenated
fully connected layers. Each one has as many parameters
(γ’s or β’s) as needed. With this distinction we can control
γi,(c) and βi,(c) individually (different activations).

Fully-Connected embedding (F): it is formed of a first
dense layer of 16 neurons and two fully connected blocks
(dense layer, a 50% dropout and batch normalised) with 64
and 256 neurons for the FiLM simple version and 256 and
1024 for the FiLM complex one. All the neurons have relu
activations. The last fully connected block is connected
with the final control mechanism/condition generator layer
i.e., the two fully connected ones. We call the C-U-Net that
uses these architectures C-U-Net-SiF and C-U-Net-CoF.

CNN embedding (C): similarly to the previous one and in-
spired by [18], this embedding consists in a 1D convolution
with lenght(z) filters followed by two convolution blocks
(1d convolutional with also lenght(z) filters, 50% dropout
and batch normalized). The first two convolutions have
‘same’ padding and the last one, ‘valid’. Activations are
also relu. The number of filters are 16, 32 and 64 for the
FiLM simple version and 32, 64, 252 for the FiLM com-
plex one. Again, the last CNN block is connected with the
two fully connected ones. The C-U-Net that uses these
architectures are called C-U-Net-SiC and C-U-Net-CoC.
This embedding is specially designed for dealing with sev-
eral instruments because it seems more appropriated to find
common γi,(c) and βi,(c) values for similar instruments.

The various control mechanisms only introduce a re-
duced number of parameters to the standard U-Net archi-
tecture remaining constant regardless of the instruments to
separate, Table 1. Additionally, they make direct use of the
commonalities between instruments.

5. EVALUATION

Our objective is to prove that conditioned learning via
FiLM (generic model+control) allows us to transform the
U-Net into a multi-task system without losing perfor-
mances. In Section 5.1 we review our experiment design
aspects and we detail the experiment to validate the multi-
task capability of the C-U-Net in Section 5.2.

5.1 Evaluation protocol

Dataset. We use the Musdb18 dataset [16]. It consists of
150 tracks with a defined split of 100 tracks for training
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Table 2: Overall performance (mean± std) for the 4 tasks.
Si= simple FiLM, Co= complex FiLM, F= Fully-embed
and C= CNN-embed, p= progressive train or np= not.

MODEL Total
SIR SAR SDR

Fix-U-Net(x4) 7.31 ± 4.04 5.70 ± 3.10 2.36 ± 3.96
C-U-Net-SiC-np 7.35 ± 4.13 5.74 ± 3.18 2.34 ± 3.69
C-U-Net-SiC-p 8.00 ± 4.37 5.74 ± 3.63 2.54 ± 4.07

C-U-Net-CoC-np 7.27 ± 4.24 5.60 ± 2.88 2.36 ± 3.81
C-U-Net-CoC-p 7.49 ± 4.54 5.67 ± 3.03 2.42 ± 4.21
C-U-Net-SiF-np 7.23 ± 3.97 5.59 ± 3.01 2.22 ± 3.67
C-U-Net-SiF-p 7.64 ± 4.05 5.73 ± 2.88 2.46 ± 3.88

C-U-Net-CoF-np 7.42 ± 4.20 5.59 ± 3.07 2.32 ± 3.85
C-U-Net-CoF-p 7.52 ± 4.04 5.71 ± 2.99 2.42 ± 3.97

and 50 for testing. From the 100 tracks, we use 95 (ran-
domly assigned) for training, and the remaining 5 for the
validation set, which is used for early stopping. The per-
formance is evaluated on the 50 test tracks. In Musdb18,
mixtures are divided into four different sources: Vocals,
Bass, Drums and Rest of instruments. The ’Rest’ task
mixes every instrument that it is not vocal, bass or drums.
Consequently, the C-U-Net is trained for four tasks (one
task per instrument) and z has four elements.

Evaluation metrics. We evaluate the performances of the
separation using the mir evaltoolbox [14]. We com-
pute three metrics: Source-to-Interference Ratios (SIR),
Source-to-Artifact Ratios (SAR) and Source-to-Distortion
Ratios (SDR) [24]. To compute the three measure we also
need the predicted ’accompaniment’ (the mixture part that
does not correspond to the target source). Each task has
a different accompaniment e.g., for the drums the accom-
paniment is rest+vocals+bass. We create the accompani-
ments by adding the audio signal of the needed sources.

Audio Reconstruction method. The system works exclu-
sively on the magnitude of audio spectrograms. The output
magnitude is obtained by applying the mask to the mix-
ture magnitude. As in [1], the final predicted source (the
isolated audio signal) is reconstructed concatenating tem-
porally (without overlap) the output magnitude spectrums
and using the original mix phase unaltered. We compute
the predicted accompaniment subtracting the predicted iso-
lated signal to the original mixture. Despite there are better
phase reconstruction techniques such as [12], errors due to
this step are common to both methods (U-Net and C-U-
Net) and do not affect our main goal: to validate condi-
tioning learning for source separation.

Activation function for γ and β. One of the most impor-
tant design choices is the activation function for γi,(c) and
βi,(c). We tested all the possible combinations of three acti-
vation functions (linear, sigmoid and tanh) in the C-U-Net-
SiF configuration. As in [13], the C-U-Net works better
when γi,(c) and βi,(c) are linear. Hence, our γ’s and β’s
have always linear activations.

Training flexibility. The conditioning mechanism gives the
flexibility to have continuous values in the input z ∈ [0, 1],

Table 3: Task comparison between the dedicated U-Nets
and the C-U-Net-CoF. Results indicate that they perform
similarly for all the tasks. We also add the multi-instrument
Wave-U-Net (M) results (median in parenthesis) and when
possible the dedicated version (D). For vocals isolation the
Wave-U-Net-M performs worse than the Wave-U-Net-D.

Model SIR SAR SDR

Vo
ca

ls

Fix-U-Net(x4) 10.70 ± 4.26 5.39 ± 3.58 3.52 ± 4.88 (4.72)
C-U-Net-CoF 10.76 ± 4.39 5.32 ± 3.27 3.50 ± 4.37 (4.65)
Wave-U-Net-D - - 0.55 ± 13.67 (4.58)
Wave-U-Net-M - - -2.10 ± 15.41 (3.0)

D
ru

m
s Fix-U-Net(x4) 10.08 ± 4.28 6.42 ± 3.28 4.28 ± 3.65 (4.13)

C-U-Net-CoF 10.03 ± 4.34 6.80 ± 3.25 4.30 ± 3.81 (4.38)
Wave-U-Net-M - - 2.88 ± 7.68 (4.15)

B
as

s Fix-U-Net(x4) 4.64 ± 4.76 6.51 ± 2.68 1.46 ± 4.31 (2.48)
C-U-Net-CoF 5.30 ± 4.73 6.29 ± 2.39 1.65 ± 4.07 (2.60)

Wave-U-Net-M - - -0.30 ± 13.50 (2.91)

R
es

t Fix-U-Net(x4) 3.83 ± 2.84 4.47 ± 2.85 0.19 ± 3.00 (0.97)
C-U-Net-CoF 4.00 ± 2.70 4.37 ± 3.06 0.24 ± 3.64 (1.71)

Wave-U-Net-M - - 1.68 ± 6.14 (2.03)

which weights the target output Y by the same value. We
call this training method progressive. In practice, while
training, we randomly weight z and Y by a value between
0 and 1 every 5 instances. This is a way of dealing with ab-
lations by making the control mechanism robust to noise.
As shown in Table 2, this training procedure (p) improves
the models. Thus, we adopt it in our training. More-
over, preliminary results (not reported) show that the C-
U-Net can be trained for complex tasks like bass+drums
or voice+drums. These complex tasks could benefit from
‘in between-class learning’ method [21] where z will have
different intermediate instrument combinations.

5.2 Multitask experiment

We want to prove that a given C-U-Net can isolate the Vo-
cals, Drums, Bass, and Rest as good as four dedicated
U-Net trained specifically for each task 2 We call this set
of dedicated U-Nets, Fix-U-Nets. Each C-U-Nets version
(one model) is compared with the Fix-U-Nets set (four
models). We review the results at Table 2 and show a com-
parison per task in Table 3.

Results in Table 2 for all 4 instruments highlight that
FiLM simple layers work as good as the complex ones.
This is quite interesting because it means that applying 6
affine transformations with just 12 scalars (6 γi and 6 βi)
at a precise point allows the C-U-Net to do several source
separations. With FiLM complex layers it is intuitive to
think that treating each feature map individually let the C-
U-Net learn several deep representations in the encoder.
However, we have no intuitive explanation for FiLM sim-
ple layers. We did the Tukey test with no significant dif-
ferences between the Fix-U-Nets and the C-U-Nets for any
task and metric. Another remark is that the four C-U-Nets
benefit from the progressive training. Nevertheless, it im-
pacts more the simple layers than in the complex ones. We
think that the restriction of the former (fewer parameters)
helps them to find an optimal state.

2 with the same learning rate and optimizer as the C-U-Nets.
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Figure 5: Each graph correlates the performance of two models. On top of it, we show the correlation and p-value. The ’y’
axis represents the fixed version (the four dedicated U-Nets) and the ’x’ one a different C-U-Net version (with progressive
train). The coordinates of each dots correspond to the models’ performance i.e., ’y’ position for the Fix-U-Net performance
and ’x’ for C-U-Net. There are three dots per song one per metric (SIR, SAR, and SDR) which does a total of 600 (50
songs x 3 metrics x 4 instruments). The dots alignment in the diagonal implies a strong correlation between models: if one
works well, the others too and vice versa. Each color highlights the points of each source separation task.

However, these results do not prove nor discard the
significant similarity between systems. For demonstrat-
ing that we have carried out a Pearson correlation exper-
iment. The results are detailed in Figure 5. The Pearson
coefficient measures the linear relationship between two
sets of results (+1 implies an exact linear relationship).
It also computes the p-value that indicates the probability
that uncorrelated systems have produces them. Our dis-
tinct C-U-Net configurations have a global corr > .9 and
p-value < 0.001. Which means that there is always more
than 90% correlation between the performance of the four
dedicated U-Nets and the (various) conditional version(s).
Additionally, there is almost no probability that a C-U-Net
version is not correlated with the dedicated ones. We have
also computed the Pearson coefficient and p-value per task
and per metric with the same results. In Figure 5 shows a
strong correlation between the Fix-U-Net results and the
distinct C-U-Nets (independently of the task or metric).
Thus, if one works well, the others too and vice versa.

In Table 3 we detail the results per task and metric for
the Fix-U-Net and the C-U-Net-CoF which is not the best
C-U-Net but the one with the highest correlation with the
dedicated ones. There we can see how their performances
are almost identical. Nevertheless, our vocal isolation (in
any case) is not as good as the one reported in [1], we
believe that this is mainly due to the lack of data. These
results can only be compared with the Wave-U-Net [19].
Although they report the results (only the SDR) for the
four tasks in the multi-instrument version (multiple outputs
layers) they only have a dedicated version for vocals. For
vocal separation, the performance of the multi-instrument
version decreases more than 2.5 dB in mean, 1.5 dB in the
median and the std increase in almost 2 dB. Furthermore,
the C-U-Net performs better than the multi-instrument in
three out of four tasks (vocals, bass, and drums) 3 . For the
’Rest’ task, the multi-instrument wave-u-net outperforms
our C-U-Nets. This is normal because the dedicated U-Net

3 Our experiment conditions are different in training data size (95 Vs
75) and in sampling rate (8192 Hz Vs 22050 Hz) than Wave-U-Net.

has already problems with this class and the C-U-Nets in-
herits the same issues. We believe that they come from the
vague definition of this class with many different instru-
ments combinations at once.

This proves that the various C-U-Nets behave in the
same way as the dedicated U-Nets for each task and metric.
It also demonstrates that conditioned learning via FiLM is
robust to diverse control mechanisms/condition generators
and FiLM layers. Moreover, it does not introduce any lim-
itations which are due to other factors.

6. CONCLUSIONS AND FUTURE WORK

We have applied conditioning learning to the problem of
instrument source separations by adding a control mecha-
nism to the U-Net architecture. The C-U-Nets can do sev-
eral source separation tasks without losing performance as
it does not introduce any limitation and makes use of the
commonalities of the distinct instruments. It has a fixed
number of parameters (much lower than the dedicated ap-
proach) independently of the number of instruments to sep-
arate. Finally, we showed that progressive training im-
proves the C-U-Nets and introduced the FiLM simple, a
new conditioning layer that works as good as the original
one but requires less γ’s and β’s.

Conditioning learning faces problems providing a
generic model and a control mechanism. This gives flex-
ibility to the systems but introduces new challenges. We
plan to extend the C-U-Net to more instruments to find
its restrictions and to explore the performance for com-
plex tasks i.e., separating two or more instruments com-
binations (e.g., vocals+drums). Likewise, we are explor-
ing ways of adding new conditions (namely new instru-
ment isolation) to a trained C-U-Net and how to detach the
joint training. Additionally, we intend to integrate it other
source separation architectures such as Wave-U-Net.

Lastly, we believe that conditioning learning via FiLM
will benefit many MIR problems because it defines a trans-
parent and direct way of inserting external data to modify
the behavior of a network.
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ABSTRACT

Musical schemata theory entails the classification of
subphrase-length progressions in melodic, harmonic and
metric feature-sets as named entities (e.g., ‘Romanesca’,
‘Meyer’, ‘Cadence’, etc.), where a musical schema is char-
acterized by factors such as music content and form, po-
sition and tonal function within phrase structure, and in-
terrelation with other schemata. To examine and auto-
mate the task of musical schemata classification, we de-
veloped a novel musical schemata classifier. First, we
tested methods for exact and approximate matching of
user-defined schemata prototypes, to establish the notions
of identity and similarity between composite music pat-
terns. Next, we examined methods for schemata prototype
extraction from collections of same-labelled annotated ex-
amples, performing training and testing sessions similar to
supervised learning approaches. The performance of the
above tasks was verified using the same annotated dataset
of 40 keyboard sonata excerpts from pre-Classical and
Classical periods. Our evaluation of the classifier sheds
light on: (a) ability to parse and interpret music informa-
tion, (b) similarity methods for composite music patterns,
(c) categorization methods for polyphonic music.

1. INTRODUCTION

Schemata have been characterised by psychologists as ‘the
building blocks of cognition’ [17], enabling an understand-
ing of the world in packages of knowledge. Similarly,
musical schemata can be thought of as ‘minimal meaning-
ful’ entities, enabling coherent interpretations of Classical
phrases. Musical schemata theory is studied and developed
by musicologists as a means of classifying short passages
in musical works, mainly from the Classical period [2,10].

Aiming to model musical schemata theory, we consider
the development of computational systems that create and
update definitions for prototypes of schemata categories

c© Andreas Katsiavalos, Tom Collins, Bret Battey. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Andreas Katsiavalos, Tom Collins, Bret Bat-
tey. “An initial computational model for musical schemata theory”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

Figure 1. Musical schemata are considered as sequences
of schema-events.

from annotated music examples. This work builds on a rel-
atively small amount of existing research in computational
modeling of musical schemata theory [8, 9, 18].

The novel system will enable the study of higher-level
operations and reasoning in content-based music informa-
tion retrieval than has been possible to date, and facilitate
further research with machine learning approaches in mu-
sic pattern extraction [15, 19, 20].

2. TASK DESCRIPTION AND BACKGROUND

2.1 Musical schemata in Classical keyboard works

A musical schema is defined as a stereotypical progres-
sion of schema-event elements (Figure 1): a feature-set
consisting of notes from two melodic movements (melody
and bass) and harmonic and metric information [7, 10]. A
schema is characterized by its content, that is, the number
and type of its constituent schema-events, but also as part
of phrases and even greater morphological entities such as
paragraphs, periods, etc., as well as its position, tonal func-
tion, and any interrelations with other schemata.

An interesting aspect of the theory is the notion of a
prototype for a set of similar progressions. The extraction
of schemata prototypes is a learning process and musical
schemata theory is an example-based approach, meaning
that knowledge about a schema prototype is obtained and
updated from examples and not by rules.
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Figure 2. Annotated example with melodic move-
ment separation (horizontal lines), harmonic regions, and
schemata notes (diamonds). The first line of the score has
a ‘Meyer’ instance and the second, a ‘Prinner’. Excerpt
from Wolfgang Amadeus Mozart, Piano Sonata no.16 in C
major K545 1st movement Allegro mm.1-8.

2.2 Modeling musical schemata theory

We implemented example-based machine learning with the
development of a musical schemata classifier. The classi-
fier works in three steps: making observations of the music
data, comparing these observations to stored schema pro-
totypes, and identifying schema-class similarity.

2.2.1 Observations

To classify music patterns such as musical schemata,
the input needs to be processed so that only relevant,
‘schematic’ material is considered. As described previ-
ously, musical schemata are viewed as progressions of
schema-events, and for that reason we consider two types
of ‘observations’: a) schema-states, and, b) schema-state
combinations/progressions. We will refer to these ele-
ments as ‘low-’ and ‘high-observations’ respectively. The
schema-states are schema-voice and schema-event sam-
ples, a kind of low-level form of music understanding
for small feature-sets. Combining these schema-state el-
ements, we can create schemata instances/samples that are
comparable to musical schemata prototypes and thus, per-
form similarity and classification tasks.

Creating the schema-state observations is a pre-
processing step, independent from the tasks of recogni-
tion and learning, but the observation process can utilize
information from stored prototypes to select only known
(stored) schema-states and, thus, reduce the number of
schema-event state observations.

2.2.2 Similarity

A fundamental task of the classifier is to perform compar-
isons of same-class information (e.g. states or schemata)
from different sources (e.g. observations, prototypes). The
matching of observations from a source score and a stored

schema prototype is the recognition process. To evalu-
ate our musical schemata classifier, these recognition re-
sults are compared/validated against schemata annotations,
a ‘ground-truth’, giving measures of recall and precision.

To perform comparisons, the idea is to define a similar-
ity metric for multi-feature elements and sequences, such
as schema-states and complete schemata, and utilize it to
identify and categorize them according to their content.

2.2.3 Class similarity

In addition to recognition and evaluation similarity, class
similarity is another type of similarity whereby common
relations amongst schema states and schemata observa-
tions of the same schema type are identified, hence, de-
scribing the properties of a schema family type. In this
study, a schema class is defined by a set of examples, an
example-base of high-level observations, and a class (sim-
ilarity) function that validates all its existing examples, act-
ing as the identity validator for all of them.

An interesting aspect of our classification method for
schemata is that, contrary to matching methods that cre-
ate a search-space for specific targets, our approach can go
beyond merely finding matches to existing schemata pro-
totypes to automatically identifying potential schemata.

3. METHODOLOGY

3.1 Method overview

The musical schemata classifier was developed by applica-
tion to incrementally more complex scenarios:

• Identification (labelled I hereafter). Initially, the
classifier performed musical schemata identification
with pattern matching techniques, identifying the ex-
act positioning of user-defined schema-family proto-
types in complete music parts;

• Recognition (labelled R and F). Next, we examined
the task of multiple and approximate recognition
of user-defined schema-family prototypes, to study
similarity-approximation methods for both single-
family prototypes (R) and collections of multiple
variants for a single schema class (F);

• Learning (labelled L). Finally, we tested the
schemata classifier on learning of schemata proto-
types from schema-annotated music examples.

The annotations were of a dataset of 40 keyboard sonata
parts (10 from Haydn, 10 from Mozart, and 20 from
Beethoven), containing annotations for 3 schemata types
(‘Meyer’, ‘Prinner’, and, ‘Cadence’). In total the num-
ber of unique annotations are: 17 generic and 23 ‘Meyer’
variations, 22 generic and 8 ‘Prinner’ variations, and, 40
generic and 15 ‘Cadence’ variations.

3.2 Model overview

The details of the model’s implementation are beyond the
scope of this paper and therefore the following provides
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Figure 3. Top view of the schemata classifier model.

only a high-level overview of the approach. 1 The clas-
sifier runs in sessions where information from up to five
sources is processed and combined (please see Figure 3).
The music-data source (Figure 3, DATA) supplies com-
plete sonata parts in MusicXML format sequentially, and
each input file follows the same information processing
path, where the input file is first converted into opera-
tional representations to perform score analysis and feature
extraction, and then extract state samples (schema-events
and -voices). The memory-data source (Figure 3, PROTO-
TYPES) is where schemata prototypes reside and are being
recalled for recognition. The feedback source (Figure 3,
FEEDBACK) inputs non-musical information to the model
and is utilized to pass annotations, such as schemata labels
for measure ranges. The run-time information of a session
is written to a session log (Figure 3, RUN-TIME LOG).
The learning operations are governed by a system profile
(Figure 3, PROFILE).

In general, the classifier creates and compares two
classes of information: a) schematic states, either schema-
events or schema-voices, and b) combinations and/or pro-
gressions of (a). The three basic operations that con-
nect these information sources all relate to similarity and
are: i) recognition, during which states and schemata from
memory and data are compared, ii) evaluations, where
the results from (i) are compared with annotations, and,
iii) adaptation, where the class similarity function of a
schema type is updated to include new entries to the ex-
ample base (the inclusion of a training observation).

The model also employs a number of task-specific func-
tions with smaller scope that aid the similarity functions
described above. For example, the results of feature ex-
traction (Figure 3, FE) are sent to both grouping func-
tions (Figure 3, GF, to extract schema-state and progres-
sion samples) and a schemata prototype instantiation func-
tion (Figure 3, SPi, to create comparable instances from
schemata prototypes).

1 See https://tinyurl.com/y5x2d99j for code and data.

3.3 Making music observations

The processing path for each music input element (a com-
plete sonata part) starts with the conversion of the Mu-
sicXML file into operational encodings (datapoints and
‘minimal segments’ [16]) to perform tonal and harmonic
score analysis and feature extraction, utilizing formalisms
in symbolic music processing from [14] and [4]. Next,
stylistic reduction, a combination of the aforementioned
analyses for the extraction of schematic information, se-
lects material from the score for the sampling of schema-
states (schema-voice and -event feature sets).

In addition to notated information available from the
MusicXML encoding, information about metric, tonal, and
harmonic properties is extracted utilizing task-specific al-
gorithms. Rhythm is extracted from the notated time sig-
nature of the input file and is embedded to operational
representations in the form of metric strength using [5].
Tonality is extracted from notation using ‘key’ and ‘mode’
attributes from MusicXML, but also using probe-tone pro-
files [12]. Harmony is extracted in segments using the Har-
mAn algorithm [16]. Complex voice separation is not un-
dertaken – rather, the outer notes, based on absolute pitch,
are considered to comprise melodic and bass movements.

3.3.1 Sampling schematic-states

After score analysis and feature extraction, the system has
enough information to extract schema-state samples. A
schema-voice is considered a monophonic sequence of dat-
apoints whose adjacent temporal interval is constrained
by extracted features that relate with metric information.
The extraction of schema-voices, often termed as music n-
grams, is in compliance with voice-leading rules [11]. The
schema-event sampling algorithm starts with score anal-
ysis information and ‘minimal segments’, and generates
schema-events, a type of temporal reduction with similari-
ties to time-span reduction described in [13]. First, each
‘minimal segment’ is assigned positional and (adjacent)
transitional ‘significance’ from two algorithms that weight
parameters from the ‘minimal segment’ properties and har-
mony. Then, a ‘minimal segment’ merger creates samples
from pairs of ‘minimal segment’ elements by combining
and selecting values for the schema-event characteristics.

The positional ‘significance’ of each ‘minimal segment’
is found using (1) and the weights in Table 1:

poSig = 1
3 (dpQ+ bStr + card) + outV p (1)

where poSig is the significance of the ‘minimal segment’,
dpQ is the overall quality of datapoints in the ‘minimal
segment’, bStr is the beat-strength value, card is the car-
dinality, and outVp is the bonus from movement in outer
voices.

Transitional ‘significance’ is calculated in a similar
manner but also considering the changes between the adja-
cent ‘minimal segment’ elements, mainly in harmony.

A schema-event sample has ontime and duration and
all the properties of a prototype schema-event but most
importantly, each schema-event sample is rated with the
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Feature Factor
beat strength 2
harmony 2
cardinality 1.5
outer voices 2
complete datapoint in ‘minimal segment’ 1
starting datapoint in ‘minimal segment’ 1
ending datapoint in ‘minimal segment’ 0.25
middle datapoint in ‘minimal segment’ 0.125

Table 1. The manual weights for positional ‘significance’
(poSig) of single ‘minimal segment’ elements.

combined ‘significance’ ratings of its ‘minimal segment’
elements, allowing further thresholding and selection.

For example, the total number of datapoints and ‘min-
imal segment’ elements for the excerpt in Figure 2 is 124
and 95, respectively. Thresholding ‘minimal segment’ el-
ements using above-average positional ‘significance’ rat-
ings, event-sampling returns a total of 107 schema-event
samples in the following form: ((measure, time signature,
beat), (pitch-value of each voice’s datapoints: [melody,
bass]), (positional ‘significance’), (transitional ‘signifi-
cance’), (melody:harmony:bass, in scale-degrees)). For
example, the first sample of the excerpt in Figure 2 is:

((1, 4/4, 1.0), [C5∗, C4], (4.00), (2.00), (1 : − : 1))

At a later stage, the type of schemata and the position in
which they appear in prototypes are also added to each
sample.

With the extraction of schematic material, in the form
of schema-voices and schema-events, we have extracted
low-level observations, i.e. schema-states. These elements
are utilized later for the creation of complete schemata-
instances (high-level observations).

3.4 The memory module

The memory module stores the schemata prototypes and
handles creation, update and instantiation operations of
each prototype. It is the knowledge-base, a repository
of generic prototypes starting with definitions from [10],
where each schema prototype is represented as a sequence
of schema-events (please see Figure 1).

3.5 Recognition

A core task of the schemata classifier is to assign/identify
prototype schema-states in low-level observations and
complete schemata prototypes in high-level observations,
with the latter consisting of pairs of schema-voices and
progressions of schema-events.

From the data part, post-stylistic analysis (please refer
to the data processing path in 3.3), the information of input
elements is converted into a set of state samples for voices
and events. From the memory part, a target space consist-
ing of schema-states and prototype schemata instances is
created according to extracted features (Figure 3, SPi).

3.5.1 Creating and thresholding schemata search space

After the extraction of schema-states, the classifier applies
an observation method to select and group state-samples
in schema-instances that are comparable to schemata
prototypes. Initially, schema-state samples are thresh-
olded based on their ‘significance’ ratings and, option-
ally, according to their similarity with prototype states.
When forming schemata samples, state-groups are fil-
tered by number of events (minimum/maximum), a min-
imum/maximum duration, and temporal regularity [6, 18].

3.5.2 Similarity between prototypes and constructs

When comparing extracted and prototype states and
schemata, these can either be exact or different, with the
latter case being comparable with a similarity metric.

3.5.3 Proto-state similarity

A schema-voice has a single melodic movement and is
characterized by the number of notes it contains. Matching
a schema-voice sample with a prototype schema-voice is a
sequence-similarity task and two voice-states are the same,
if their content is the same, regardless of the temporal re-
lations of the datapoints that comprise them. Considering
the order of appearance, the position of a datapoint in each
voice-state, the difference between schema-voice samples
and prototype schema-voices is measured as the sum of
differences of same position datapoints, also known as the
Hamming distance. For example, the distance dH between
schema-voices (in scale-degrees): a) 1,7,5,3, b) 1,7,4,3,
and c) 6,5,4,3, is: dH(a, b) = 1, dH(a, c) = 3, and,
dH(b, c) = 2.

The similarity between event-states is hierarchical, con-
sidering two layers of similarity for harmonic and melodic
information, and Boolean, meaning that differences are
not quantified. The harmonic information of two schema-
events can differ in type of harmony, expressed within the
tonal context (e.g., I, II, etc.) and in the arrangement of
the notes within the chord, the type of chord inversions
(e.g., 53, 63, etc.). To get a single numeric value from
the multi-feature comparisons of schema-events and main-
tain the types of difference, we consider different deci-
mal powers for each type of difference. Thus, difference
in harmonic type equals to 103, in chord type, to 102, in
melody, 101, and in bass, 100. Therefore, the possible
values from a schema-event state comparison are equal to
24 (0, 1, 10, 11,. . ., 1110, and 1111). For example, the
comparison between schema-events cSE with values (bass,
bass-intervals, melody) a) (1, 53, 5), b) (1, 63, 3), and
c) (3, 63, 1), is cSE(a, b) = 1110, cSE(a, c) = 111, and
cSE(b, c) = 1011. Temporal and metric information is not
considered for single event-states comparisons.

After the comparison with prototypical schema-states,
each schema-state sample can be tagged with the schema-
label and index it appears in prototypes.

3.5.4 Musical schemata similarity

Musical schemata similarity is handled as a sequence sim-
ilarity problem, similarly to voice-state similarity, but in-
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stead of counting the number of pitch-differences in same
order datapoints, schema-event differences are counted in-
stead. Thus, similarity between two schemata structures
can be expressed as the overall percentage of common
schema-events.

Approximation in schemata recognition is similar to
the methods presented in [3], using local, γ-, and global,
δ- variability thresholds, for schema-events and progres-
sions respectively. Thus, when comparing schema-event
progressions, there are two approximation thresholds, one
limiting the number and type of differences between
schema-events of the same position, and another limiting
the number of differences in the complete schema-event
progression.

3.5.5 Recognition workflow

The recognition process begins with the comparisons be-
tween prototypes and extracted state-samples. First, each
schema-state sample is tagged with the id and index of
their matching prototypes. Then schema-sampling oc-
curs, creating high-observations – progressions of schema-
event samples based on regularity and ‘significance’ rating
thresholds.

3.5.6 Schemata recognition output

The recognition process returns schema-labelled segments
of the score and a set of high-observations, rated with the
degrees of matching (percentage) with stored prototypes.

3.6 Learning prototypes

Learning musical schemata prototypes is about the extrac-
tion and update of schema-event progressions from anno-
tated observations. To achieve this goal, we consider an
example-base for each schema prototype class – a repos-
itory of observations within a music excerpt. After the
recognition process, if the input from feedback suggests a
label for a temporal region, then all observations of that
segment become training observations and are added to
the example-base for that particular schema-label. Main-
taining an example-base for each schema-type, we retain
access to all the information therein. Processing the ele-
ments of the example-base, we examine a class function
that extracts relations that are common to all observations
that are stored in the example-base repository of a schema.
The class function validates all the example-base and is
also used for recognition of unlabelled observations.

3.6.1 Class similarity function

To extract prototypes from an example-base of a schema
class, we need to identify the harmonic and melodic re-
lations that are common in all exemplars. The algorithm
first generates schema-samples and returns variable-length
progressions of schema-events that are then converted into
harmonic and melodic progressions within the tonal con-
text of the segment (in chord and scale degrees). These
contextualized progressions are then sorted by number of

schema-events, and the progressions with the highest fre-
quency of appearance and maximum number of events are
selected for prototypes.

3.7 Evaluation

The tasks of recognition and learning are evaluated in
terms of recall and precision with schemata annotations in
measure-level detail. The comparison of the recognition
results is Boolean, meaning that the temporal range and la-
bel of a recognized schema must match exactly; otherwise
they will be considered false-positives.

4. COMPUTATIONAL EXPERIMENTS

We tested four configurations of the musical schemata clas-
sifier to gradually achieve the goal of prototype extrac-
tion. First, we tested a pattern matching configuration aim-
ing for maximum accuracy in identifying a single schema-
type (label I). The second scenario examined approximate
matching of a single-schema (label R). The third config-
uration tests approximate matching of a schema-family,
including variations (label F). The last scenario tests the
learning algorithm and the extraction of a prototype for an-
notated examples (label L).

4.1 Maximum accuracy for a user-defined schema

The first model configuration for the schemata classi-
fier examined methods for the extraction of schema-voice
states and exact schemata matching for two schemata
types, namely ‘Meyer’ and ‘Prinner’ (please see Figure 2
for their generic types). The configuration uses datapoints,
extracted tonalities, and no harmonic information. The al-
gorithm creates a search-space of schema-voice samples
and filters them in pairs, with temporal regularity, to com-
pare them with schemata prototypes. There is no variation
in matching and no information preservation after each in-
put element. A recognition example of the algorithm and
its configuration is shown in Figure 4.

4.2 Approximate recognition for multiple user-defined
schemata targets

The task of approximate recognition of multiple schemata
prototypes is examined with two model configurations,
matching ‘Meyer’, ‘Prinner’, and ‘Cadence’ schemata.
The first case searches for generic approximations (omis-
sions and thresholds in similarity metrics) of each schema
family prototype, by first tagging all the extracted schema-
states with labels and positions of similar correspond-
ing elements in prototypes and then recognizes complete
schemata by combining elements with the same schema
class tag under temporal limitations. The second case
recognizes approximations of schema families (collections
of variants), performing comparisons between schema-
samples and class functions that validate all the variants
of a schema class. The type of matching approximation
of the second case includes those of the first case, but also
hierarchical comparisons, considering harmonic similarity
first, as a prerequisite, and voice similarity second.
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CT ST Vmin Vmax Emin Emax T Mr Br Trel val

M P 0.5 11 0 0 5 0.5 0.5 E 6

Figure 19: Duplication of schema-events. Which pair of schema-event pairs is
considered valid? Why consider the complete area from the start until measure 7
(Beethoven Ludwig van Piano Sonata op.27 no.2 C sharp minor 2nd movement,
mm 1-7).

4. System limitations in specificity. As stated previously, after achieving
maximum recall in a search-case, the next goal was to maximise precision by
filtering out false positives. The usual case was to increase the specificity of the
temporal filters until either precision perfected or, more often, a true positive
was excluded, in which case the last search score with the best recall was kept.
There were cases, however, that even though maximum search specificity was
applied, due to the density and diversity of notes in the music surface, false-
positives were unavoidable.

CT ST Vmin Vmax Emin Emax T Mr Br Trel val

M M 0.5 5 0 2 1,2 0 1 E 6

Figure 20: The values were manually configured to match annotated instances
but this seems unavoidable (Mozart Wolfgang Amadeus Piano Sonata KV.283
no.5 in G major, 1st movement, mm.38-42).

5. Representation issue. There were a few cases of false positives due to
the search-system’s schema-voice representation. Implementing a more robust
and elaborate calculator for melodic interval operations that will consider the
note names and their position in score (e.g. ‘morphetic’, Meredith et al., 2002)
will solve this issue.

32

Figure 4. Identification of a generic ‘Meyer’ instance. The
parameters from left to right: Manual search configuration
for generic ‘Meyer’ prototype with temporal distance be-
tween events in a range between 0.5 and 11 beats, and 0
for schema-event durations, for a single tonality (5) and 0.5
regularity threshold for temporal intervals in each melodic
movement, and maximum (6) thresholding in inter-event
temporal regularity. From Ludwig van Beethoven, Piano
Sonata in C-sharp minor op.27 no.2 2nd mvt mm.1-7.

4.3 Approximate recognition of extracted schema
family type from examples

This computational experiment examines prototype extrac-
tion and classification. The algorithm maintains reposito-
ries of exemplars for each schema-type separately, from
which prototype forms of schemata are extracted utilizing
a class function. The validity of the extracted prototypes is
examined by evaluating the recognition performance with
the extracted prototypes on previously unseen examples.

5. RESULTS

The identification task (Figure 5, I<SCHEMA>) achieved high
recall and precision for both schemata types, indicating
that basic music information processing of the classifier is
working as it should.

The recognition models, due to approximate match-
ing, have increased recall but lower precision (Figure 5,
(Figure 5, R<SCHEMA>, F<SCHEMA>). The first configu-
ration that tests family-prototype generic approximation
(Figure 5, R<SCHEMA>) can be very imprecise, as approx-
imating the prototypical form can yield completely un-
related patterns. The second configuration (Figure 5,
F<SCHEMA>) has slightly lower recall from the first but in-
creased precision, due to more targeted approximations
with the use of a class function.

The learning model (Figure 5, L<SCHEMA>) achieved
low recall, due to occasional erroneous prototype extrac-
tions and even lower precision, because of the highly-
generalised extractions of prototypes.

6. FINDINGS AND DISCUSSION

This paper presented a prototype model architecture for
musical schemata classification. It is among a small hand-
ful of computational models for extracting instances of
such high-level music-theoretic concepts from input staff
notation.

Figure 5. The F1 score of all musical schemata identifica-
tion models.

The computational model that was developed for a mu-
sical schemata classifier was tested under different tasks
and configurations, and proves to be a reliable framework
that can facilitate classification operations regarding mu-
sical patterns. The use of structured music information
(i.e. the ‘low’ and ‘high’ observations) enabled high-level
operations such as comparisons of abstract patterns, and
the methods that were developed to produce them can
be further fine-tuned. Moreover, the maintenance of an
example-base proved very helpful in prototype extraction,
as it provides transparency of operations. Furthermore, the
repository of a learning session can be reused in other ses-
sions, transferring learned knowledge.

The model was tested on a small dataset and its expan-
sion both in number and types of schemata annotations is a
natural future task. There are numerous improvements that
can be applied in this prototype model by fine-tuning indi-
vidual functions. For example, the sampling mechanisms
for schema-states and progressions can become adaptive
to local context, instead of global, part-wise features, and
thus become more accurate. Another interesting and in-
formative development would be the comparison of this
model’s performance with popular classifiers for sequen-
tial data, such as convolutional and recurrent neural net-
works. In addition, extending the classification capabil-
ities of the model to include information concerning the
position and function of schemata within phrases could be
useful for both learning and discovery of schemata. Lastly,
even the current abilities of the schema classifier can be
utilized to support content-based retrieval on digital score
libraries. The sampling method is independent from the
model and, thus, large databases of digital scores can be
represented as samples, or even symbolic fingerprints [1].
In addition, on top of a database representation for mu-
sic scores, a query language for music patterns (as musi-
cal schemata) would provide a flexible interface for a user-
defined content-based music information retrieval.
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ABSTRACT

We measure the complexity of songs in the Million
Song Dataset (MSD) in terms of pitch, timbre, loudness,
and rhythm to investigate their evolution from 1960 to
2010. By comparing the Billboard Hot 100 with random
samples, we find that the complexity of popular songs
tends to be more narrowly distributed around the mean,
supporting the idea of an inverted U-shaped relationship
between complexity and hedonistic value. We then exam-
ine the temporal evolution of complexity, reporting consis-
tent changes across decades, such as a decrease in aver-
age loudness complexity since the 1960s, and an increase
in timbre complexity overall but not for popular songs.
We also show, in contrast to claims that popular songs
sound more alike over time, that they are not more similar
than they were 50 years ago in terms of pitch or rhythm,
although similarity in timbre shows distinctive patterns
across eras and similarity in loudness has been increasing.
Finally, we show that musical genres can be differentiated
by their distinctive complexity profiles.

1. INTRODUCTION

Our everyday life is surrounded by cultural products; we
wake up to a song, read a book on the subway, watch a
movie with friends, or even travel far to admire a piece
of art. Despite such pervasiveness, we cannot fully ex-
plain why we like a particular song over others or what
makes something a great piece of art. Although the per-
ceived quality of a piece is affected by numerous contex-
tual factors, including one’s cultural, social, and emotional
background, theories suggest that preference, or ‘hedonis-
tic value’, may also be affected by innate properties of the
products, such as novelty and complexity [1, 18, 28]. In
particular, a popular theory suggests there is a Goldilocks
principle — that just the right amount of novelty or com-
plexity elicits the largest amount of pleasure, whereas
pieces with too little or too much complexity are less in-
teresting and enjoyable [3]. On the other hand, cultural

c© Thomas Parmer, Yong-Yeol Ahn. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Thomas Parmer, Yong-Yeol Ahn. “Evolution of the Informa-
tional Complexity of Contemporary Western Music”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

products are also fashionable — what is popular now may
be completely out of fashion next month. Such seemingly
contrasting observations prompt us to ask the following
questions: as fads come and go, is there still a consistent
preference towards the optimal amount of complexity in
cultural products? How has the complexity of contempo-
rary cultural products changed over time?

This question may apply to any type of cultural prod-
uct, but we focus here on the complexity of contemporary
Western songs. Although various studies have already re-
ported evidence of the ‘inverted U-shaped’ relationship be-
tween perceived complexity and the pleasantness of mu-
sic in terms of individual-level preference [1, 11, 32], ev-
idence of this preference at the population-level is un-
clear [7, 22, 30], and many past studies have been limited
by the size or extent of the data, in terms of genres or tem-
poral range.

Recently, datasets such as the Million Song Dataset
(MSD) began to allow researchers to systematically ana-
lyze patterns in music at a massive scale [6, 8, 26]. For
example, Serra et al. used musical ‘codewords’ based
on song segments in the MSD to identify changes in
pitch, timbre, and loudness over time, finding that newer
songs restrict pitch transitions, homogenize timbre, and in-
crease loudness (without increasing the variability in loud-
ness) [26]. Mauch et al. used a corpus of 17,000 songs
from the Billboard Hot 100 to analyze how popular music
has evolved between 1960 and 2010 in the United States;
using timbral and harmonic features derived from songs on
the Hot 100, they identified three stylistic revolutions that
occurred in 1964, 1983, and 1991 [15].

In this paper, we analyze the large-scale evolution of
complexity in contemporary music in terms of pitch, loud-
ness, timbre, and rhythm, during the period from 1960 to
2010 using the Million Song Dataset (MSD) [4]. We find
that complexity does seem to constrain popularity, as evi-
denced by the most popular songs (those on the Billboard
Hot 100) clustering around average values and exhibiting
smaller variance compared to a random sample. However,
complexity values do fluctuate over time, as long-term
trends are seen in loudness, timbre, and rhythm complex-
ity and in the similarity between songs on the Billboard
Hot 100. Finally, we compare the complexity of different
genres and find that genres have characteristic complexity
profiles, leading us to hypothesize that complexity may be
a factor in an individual’s musical selection.
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Figure 1. The number of songs per year. ‘All Songs’
refers to the filtered MSD dataset, while ‘Billboard Hot
100’ refers to those songs whose title and artist we matched
with songs on the Hot 100 as identified in [15].

2. METHODS

2.1 Data

The MSD is a dataset of one million songs created by
Columbia University’s LabROSA in collaboration with
The Echo Nest [4]. Each song in the dataset is divided
into small temporal segments (based on note onsets) with
detailed data derived from the song’s audio signal, and in-
cludes metadata such as title, artist, year, duration, and
genre terms.

Prior to analysis, we filtered the MSD to remove dupli-
cates, songs with missing genre or duration metadata, and
songs likely to be commentary pieces (whose title included
the tokens ‘interview’, ‘commentary’, ‘introduction’, ‘dis-
cuss’, ‘conference’, or ‘intro’), resulting in a dataset of
905,896 songs. Some songs also did not have all data types
— pitch, loudness, timbre, rhythm, or year — that we ex-
amine here and were thus left out of the corresponding cal-
culations. Due to a limited amount of data from the early
years, we restricted our analysis to the period from 1960
to 2010. The genre of each song was determined by the
term (Echo Nest tag) with the strongest weight, although
we note that terms are assigned at the artist level so all
songs by the same artist are grouped into the same genre.

To discover the most popular musical pieces in our
dataset, we found 6,661 songs which charted on the Bill-
board Hot 100 as identified in a previous study [15]. The
number of songs per year in our final dataset is shown in
Figure 1.

2.2 Codewords

To estimate complexity, we defined “codewords” for each
song across four dimensions (pitch, loudness, timbre, and
rhythm), similar to a previous study [26]. Each codeword
is based on a segment of the song. Pitch and timbre code-
words are vectors containing the pitches (based on the bi-
nary presence of each of 12 pitches in the chromatic scale)
and timbres (based on analysis of the audio signal, with
11 components thresholded into three bins) present in the
segment. Loudness codewords are equal to the binned
maximum decibel value of the segment. Similarly, rhythm

codewords are defined as the number of average sixteenth
notes between segments, where the average sixteenth note
is based on the time signature. We then defined a mea-
sure of complexity for each feature per song based on the
conditional entropy of each type of codeword. 1

2.3 Measuring Complexity

Although many studies have examined the relationship be-
tween the complexity of a piece and the derived pleasure
from it [1, 19–21, 31, 32], there is no universally adopted
way to measure the complexity of a song. Existing defi-
nitions of complexity include hierarchical complexity, dy-
namic complexity, information-theoretic complexity, and
cognitive complexity [10,23,27,34]. Information-theoretic
measures are attractive because they capture the surprise
inherent in a pattern, such as the notes played in a mu-
sical piece. Theories propose that music can be under-
stood as the kinetics of expectation and surprise, and that
composers seek to elicit emotions by fulfilling or denying
these expectations [1, 17, 35]. In particular, Implication-
realization (IR) theory posits that open intervals evoke ex-
pectations in a listener and the surprises of these expecta-
tions may be related to complexity [18, 32, 35].

Information-theoretic measures include Shannon en-
tropy, joint entropy, conditional entropy, compression or
algorithmic complexity [10, 16, 27, 29], and more compli-
cated techniques such as pairwise predictability between
time series, Hidden Markov Models, Normalized Com-
pression Distance, and predictive information rate [1,8,9].
Previous studies have used information-theoretic quanti-
ties to estimate perceived complexity, identify piece sim-
ilarity, derive psycho-acoustic features, and classify gen-
res [5, 10, 13, 25, 27, 30].

We use conditional entropy as our measure of complex-
ity, dependent on the immediately preceding symbol, as
it is known that events during even short preceding inter-
vals are enough to evoke strong expectations in the lis-
tener [1, 12, 35]. Other information-theoretic measures are
either more complicated (e.g. predictive information mea-
sures), can only be approximated in practice (e.g. Kol-
mogorov or algorithmic complexity), or do not take past
information into account (e.g. Shannon entropy).

Each song was assigned a complexity value for pitch,
loudness, timbre, and rhythm, which is equal to the condi-
tional entropy of the feature codewords:

(1)
H(Y |X) =

∑
xεX

p(x)H(Y |X = x) =

−
∑
xεX

p(x)
∑
yεY

p(y|x) log2 p(y|x)

where X and Y are possible codewords, p(x) is the
probability of observing codeword x and p(y|x) is the
probability of observing codeword y given the previous
codeword x.

1 Code is available at https://github.com/tjparmer/music-complexity.
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3. RESULTS

3.1 Complexity and Popularity

The complexity distribution of songs is approximately
bell-shaped, although timbre is skewed towards zero com-
plexity — unlike the other features, timbre becomes easily
predictable after only one previous codeword. The distri-
butions of the Hot 100 songs are similar, although the Hot
100 tends to exhibit statistically lower complexity in pitch
and timbre and higher loudness complexity, compared to
95% confidence intervals of 1,000 bootstrap random sam-
ples of the same size (see Fig. 2). Furthermore, we found
that the variances of the Hot 100 complexity values are
smaller than for other songs (based on 95% confidence in-
tervals of 1,000 bootstrap samples from the Hot 100 com-
pared to 1,000 bootstrap samples from the overall distri-
bution); thus, the popular songs tend to be located in a
narrower range near the mean across pitch, loudness, and
rhythm complexity. This result supports the theory for an
inverted U-shaped curve where global popularity is maxi-
mized by medium complexity.

3.2 Complexity Across Time

To examine the evolution of song complexity, we calculate
the mean complexity values for each year (for all songs
and the Hot 100 songs separately) in Fig. 3, which shows
several long-term trends. Later years mark the appearance
of songs with low loudness and rhythm complexity and
songs with high timbre complexity, but they were not re-
flected strongly in the Hot 100 songs. The low loudness
complexity may be due to the trend often called the “loud-
ness war” [26], which describes the tendency to produce
the entire song to be as loud as possible. Another possi-
ble reason may be the emergence of low complexity gen-
res in recent years. For instance, terms associated with
low loudness complexity outliers include ‘grindcore’, ‘hip
hop’, and ‘black metal’, all of which are relatively newer
genres in the dataset. Low rhythm and high timbre com-
plexity may be due to pop or electronic music that contain
modern production techniques with many different synthe-
sized textures and strong dance beats. Terms associated
with low rhythm outliers include ‘tech house’, ‘techno’,
and ‘hard trance’, while terms associated with high tim-
bre complexity outliers include ‘tech house’, ‘techno’, and
‘deep house’.

Previous research has indicated that the evolution of
Western popular music experienced significant changes
during three musical ‘revolutions’ in 1964, 1983, and 1991
[15]. The first was associated with rock and soul music,
the second with disco, new wave, and hard rock, and the
third with the emerging popularity of rap music over rock
music. These three revolutions split our period of analy-
sis into three ‘epochs’: 1964-1983, 1983-1991, and 1991-
2010. With this reference frame, we examine our measures
of complexity.

If we consider the entire dataset, each aspect of com-
plexity shows a different pattern. The pitch complexity has
been more or less stable across the whole period; the loud-

ness complexity has been decreasing overall, although the
period from 1983 to 1991 shows a slight increase; the tim-
bre complexity has been steadily increasing and reached a
plateau after the 1990s; finally, the rhythm complexity was
decreasing through the period from 1964 to 1983, and then
stabilized.

Meanwhile, we find that the temporal evolution of the
Hot 100 songs does not follow the overall pattern. The
largest difference can be observed in the timbre complex-
ity. While the timbre complexity of the entire dataset has
been steadily increasing, it has been almost completely
flat for the most popular songs, diverging from the overall
trend. This may indicate that the emergence of new gen-
res with high timbre complexity primarily happened for
more niche musical tastes. Pitch and loudness complexity,
by contrast, have been higher for popular songs in recent
years, while rhythm complexity was lower until the 2000s.

3.3 Popular Song Similarity

The analysis of complexity over time suggests that modern
day popular songs (at least from the 2000s) are more likely
to have higher pitch, loudness, and rhythm complexity (and
lower timbre complexity) than their less popular contem-
poraries. However, while this suggests that popular songs
are not simpler than the average song, it does not necessar-
ily indicate whether they sound more or less similar to their
popular contemporaries (that is, other Hot 100 songs that
are released in the same year). A recent report suggests that
popular songs are sounding more and more similar to other
songs on the charts [33]. In contrast, other research finds
that songs that perform well on the charts do not sound
too similar to their contemporaries but often have an opti-
mal level of differentiation [2]. To analyze whether pop-
ular songs become more similar to their contemporaries
over time, we measure the Kullback-Leibler (KL) diver-
gence [14] from each song in the Hot 100 to other popular
songs that were released in the same year. KL divergence
captures the unexpectedness of a song’s codewords given
the codewords present in other popular songs and thus in-
dicates the spread of codeword usage per year.

In Fig. 4, we show the KL divergence per year for each
feature, with each epoch marked. Larger KL divergence
in the figure suggests that the songs in that year are more
different from their contemporaries as compared to other
years. Our measurement shows that the 1964-1983 and
1991-2010 period are similar to each other while 1983-
1991 shows a reversing trend. Across features, the KL
divergence was either decreasing (songs are more similar
to each other) or stable during 1964-1983 and 1991-2010,
while 1983-1991 marked either a positive trend reversal
or a slow-down of the decreasing trend. These changing
trends suggest that musical revolutions are not born equal;
some may have spurred diversity among popular songs
while some may have homogenized the field.

Despite these fluctuations, the divergence trend is
roughly stable over time for pitch and rhythm, while tim-
bre rebounds after similarity decreases; thus, our findings
are consistent with research that songs that perform well
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Figure 2. Feature complexities and variances. Complexity distributions are shown (in bins of 0.1 bits, except for timbre
which is in bins of 0.02 bits). The variance plots include 95% confidence intervals in black (although confidence intervals
are smaller than the symbol and not visible), based on 1000 bootstrap samples of 1000 songs from the respective genre.

on the charts do not sound too similar to their contempo-
raries but rather maintain a degree of uniqueness which is
statistically consistent over time.

3.4 Complexity Across Genres

Let us turn our attention to musical genres and their com-
plexity. As some genres may be characterized by complex
harmonic structures or simple, repeated patterns, we ex-
pect to see differences across different genres in terms of
complexity. For example, jazz is often considered to have
complex patterns whereas dance music may be assumed to
use simpler rhythmic patterns. Our measurement concurs
with such speculation, but finds that different subsets of
genres may be relatively complex across one or two fea-
tures but not others. For instance, electronic and dance
styles tend to have high pitch complexity values, whereas
jazz and blues have high loudness complexity values. The
highest timbre complexity values belong to electronic gen-
res, although metal also scores highly, but electronic gen-
res have reduced rhythmic complexity which is instead
maximal in jazz, progressive and vocal genres.

We found that a variety of common genres were sig-
nificantly different from a random sample drawn from the
overall distribution in terms of each feature complexity
(based on a two-sample Kolmogorov-Smirnoff nonpara-
metric test as well as 95% confidence intervals of the
means of each feature), with the exception that pop was not
rhythmically distinct. Thus each genre seems to have dis-
tinctive complexity features that describe its songs: jazz is
relatively complex (except in terms of timbre), hip hop has
higher than average pitch and loudness complexity, heavy
metal has high rhythm complexity but low pitch and loud-
ness complexity, and electronica has high timbre complex-
ity but low rhythm complexity (Fig. 6).

This pattern may be indicative of some trade-offs that
listeners make. If they prefer timbre at the expense of
rhythmic complexity, they may prefer electronic genres. If

they prefer pitch and loudness complexity, they may prefer
hip hop or jazz. If they care about timbre and rhythm over
pitch and loudness, they may prefer heavy metal. There is
a positive correlation between pitch and loudness complex-
ity (Pearson’s r=0.77) across all songs, suggesting that gen-
res tend to have high pitch and loudness complexity (e.g.
hip hop, jazz) or low pitch and loudness complexity (e.g.
heavy metal). There is also a negative correlation seen be-
tween timbre and rhythm complexity (Pearson’s r=-0.55),
suggesting that rhythmic complexity decreases with higher
timbre complexity (although this is not true for metal gen-
res).

Interestingly, the Hot 100 is similar to the pop genre in
feature means and variances (although statistically differ-
ent). Both pop music (whose songs are given no genre-
specific term with higher weight than ‘pop’) and the Hot
100 (whose songs are primarily classified as genres other
than ‘pop’) have near average values of pitch, loudness,
and rhythm complexity, and lower than average values of
timbre complexity, while also having smaller variance than
the other selected genres (refer to Figures 2 and 6). This
may suggest that listeners expect the same from listening
to the Hot 100 as they do when listening to music labeled
as ‘pop’: mildly surprising songs that do not vary too much
in complexity and which are sonically predictable.

One may also expect similar genres to share similar
complexity scores. We used agglomerative clustering on
genres represented with over 5000 songs in the dataset (a
total of 41 genres), using Euclidean distance between the
genre mean complexity scores of each feature, and then
used the silhouette coefficient [24, 28] to find nine opti-
mal communities. The result matches intuitive expecta-
tions, such that rock genres are grouped together as are
electronic genres; interestingly jazz is grouped with hip
hop and rap, due to these genres having similar complexity
scores. These results suggest that a genre may be defined,
to some degree, by its pitch, loudness, timbre, and rhyth-
mic complexity.
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4. DISCUSSION

Understanding and characterizing the complexity of music
is an important area of study with both cultural and eco-
nomic significance. Although music may seem compli-
cated, songs quickly become predictable as you take pre-
vious knowledge into account. This suggests that condi-
tional entropy may be a useful way to characterize musi-
cal complexity, although our approach here assumes that
the uniform distribution of codewords is the state of maxi-
mum uncertainty and expectations are made based on only
one previous symbol, which cannot distinguish counts of
repeating patterns or phrasing [1]. Our approach is thus in-
trinsic to the song itself and ignores any a priori contextual
information.

Using this measure, we find that pitch complexity has
been generally stable over the period from 1960 to 2010,
while loudness and rhythm complexity have decreased and
timbre complexity has increased. Complexity norms seem
to constrain the most popular songs, as those on the Hot

100 are distributed around the overall feature means with
small variance in complexity, the exception being timbre
which is lower than average. Indeed, the Hot 100 is simi-
lar to songs labeled as ‘pop’, in that pop also has average
pitch, loudness, and rhythm complexity and low variance.

This result provides evidence of a global, inverted U-
shaped relationship between popularity and complexity,
where popular songs are, on average, the most pleasant to
the population. Listeners may expect popular songs to be
mildly complex, but not to deviate far from expected tim-
bre or complexity norms. Complexity of the Hot 100 has
in fact been consistent over fifty years in pitch and tim-
bre, while increasing recently in rhythm and decreasing in
loudness. Similarly, popular songs continue to maintain
a consistent level of differentiation from their contempo-
raries in terms of pitch, timbre, and rhythm.

Certain genres do differ significantly across complex-
ity features, suggesting that they have specific complexity
profiles that help define them. We hypothesize that certain
genres may ‘make up’ for lack of complexity in one area
by increased complexity in another. Perhaps fans of elec-
tronic genres prioritize complexity in timbre but rhythmi-
cally simple dance beats, or metal fans prioritize rhythmic
complexity and high volume at the expense of loudness
complexity.

More research needs to be done to fully elucidate the
relationship between complexity and musical appreciation.
For example, future research can relate musical complex-
ity to the listening habits of people on a large scale to de-
termine a more fine-grained measure of song popularity.
The consistency of popular songs over time suggests that,
collectively, people tend towards songs that are a certain
optimal level of complexity rather than being too simple
or complicated. However, it remains an open question to
what degree complexity plays a role in people’s cognitive
appreciation of music.
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ABSTRACT

We introduce DrummerNet, a drum transcription system
that is trained in an unsupervised manner. DrummerNet
does not require any ground-truth transcription and, with
the data-scalability of deep neural networks, learns from a
large unlabeled dataset. In DrummerNet, the target drum
signal is first passed to a (trainable) transcriber, then recon-
structed in a (fixed) synthesizer according to the transcrip-
tion estimate. By training the system to minimize the dis-
tance between the input and the output audio signals, the
transcriber learns to transcribe without ground truth tran-
scription. Our experiment shows that DrummerNet per-
forms favorably compared to many other recent drum tran-
scription systems, both supervised and unsupervised.

Transcription is a music information retrieval task with the
goal of estimating the score y when input audio x is given.
The majority of the recent transcription systems is based
on supervised learning, where the transcriber is an analy-
sis system ŷ = Fa(x) that is trained with annotated pairs
{(xm, ym)}Mm=1 to minimize the distance between y and
ŷ [6, 7, 27, 31, 33, 34, 37, 38].

The trend is similar in drum transcription on which we
focus in this paper. Supervised learning approaches may
incorporate models based on frame-based feature extrac-
tion and classification [15], non-negative matrix factoriza-
tion (NMF) for pattern matching [10], or hidden-Markov
model [25]. More attention has been given recently to
deep learning based models such as convolutional neural
networks (CNNs, [13, 34]) and recurrent neural networks
(RNNs, [33, 37, 38]), all of which have greatly improved
transcription systems.

However, the lack of a large-scale annotated dataset is
one of the most frequently mentioned obstacles that hinder
further improvement. In practice, this limits the general-
izeability of supervised learning systems, as will be dis-
cussed in Section 4, and using synthetic data is one way to
address this issue [7, 39]. Although there have been pro-
posals to use unlabeled data [42, 43], the issue remains
as they still rely on supervised learning combined with
teacher-student learning [16]. Parallel to those approaches,

c© Keunwoo Choi, Kyunghyun Cho. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Keunwoo Choi, Kyunghyun Cho. “Deep Unsupervised
Drum Transcription”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

an annotation-free and, therefore, a more scalable and gen-
eralizable alternative would be unsupervised learning.

Unsurprisingly, one of the humans’ music learning pro-
cedures, self-taught by trial-and-error, is very similar to un-
supervised learning. For example, musicians learn to tran-
scribe by (a) listening, (b) playing an instrument, (c) iden-
tifying differences, and (d) making adjustments. Can this
be done without any supervision? Yes, if the person can
spot the pitch difference (e.g., the pitch should be higher
or lower). Consistent with this logic, developing a tran-
scription system based on unsupervised learning would be
feasible if the system can test the estimation, measure the
error, and correct itself accordingly.

To implement such an unsupervised transcription sys-
tem, we need a synthesis system, x̂ = Fs(ŷ), making
the overall system x̂ = Fs(Fa(x)). During its training,
the system is given {x}Mm=1 and trained to minimize the
distance between x and x̂. There have been few systems
relying on unsupervised learning as explained above. In
MIR, the system in [1] utilized sparse coding to learn a
dictionary of time-frequency templates of piano and harp-
sicord, assuming a (matrix-)multiplication model with ad-
ditive noise, Fs(y) = Ay+e. Yoshii et al. proposed to use
sparse coding in a jointly-learned chord recognition and
transcription system [44]. Berg et al. designed a proba-
bilistic graphical model that parameterizes the spectral and
temporal envelopes, note events, and note activations, in
order to transcribe piano by inferring their parameters [2].
In drum transcription, many systems have used NMF to de-
compose a drum track spectrum into spectral templates and
their temporal activations (or transcription) [26, 41]. Sev-
eral variants of NMF were proposed to address the limits of
the fixed spectrum template of NMF [19, 20, 29]. Lastly, a
similar system can be found in computer vision, where the
parameters of input images are estimated by reconstruction
using an image renderer [18].

In this paper, we introduce DrummerNet, a deep neu-
ral network based drum transcription system that is trained
by unsupervised learning. With a more end-to-end ap-
proach, DrummerNet is distinguished from previous re-
search [1, 2, 44], which has strong priors on the target
sounds. In §2, we present the system design principle be-
hind DrummerNet, followed by its details in §3. In §4,
the evaluation results are discussed along with the ablation
study. We present our conclusion, the problems of our sys-
tem, and the future direction towards fully unsupervised
learning in transcription/MIR in §5.

1. INTRODUCTION
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Name Description Note

n,N The temporal index/length of audio input
k,K The index/total number of drum components K=11
x, y Mixture and transcription ∈ RN

x̂, ŷ Estimations of mixture/transcription ∈ RN

Table 1: Symbols used in this paper
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Figure 1: Block diagrams of DrummerNet structure.
Trainable modules are illustrated as black boxes and fixed
modules as rounded grey boxes.

Training the proposed DrummerNet is similar to the previ-
ous unsupervised learning approaches in music [1, 2, 44],
as they all train a system to output x̂ that reconstructs the
original signal x. The difference between ˆ

y to y.
There are three conditions under which unsupervised

learning of a transcriber can be achieved successfully.
First, the output of the analysis module Fa must be in the
form of transcription – a set of discrete events representing
the timing and intensity of the notes. Second, the synthe-
sis module Fs must synthesize the audio signal given the
transcription input ŷ. Third, all the components in the net-
work must be differentiable as we rely on backpropagation
to train it.

In this section, we introduce the proposed system structure.
We specify the number of channels, kernel size, and stride
as (channel, kernel, stride). All the convolu-
tional and recurrent layers use an exponential linear unit as
an activation function [9]. 1

1 The implementation of DrummerNet is available on https://
github.com/keunwoochoi/DrummerNet

3.1 Analysis module Fa

The analysis module Fa, as illustrated in the top half of
Figure 1, takes the audio signal x as an input and processes
it through a series of U-net variant [30], recurrent layers,
and gated Sparsemax activation [21]. After training, this
module is used as a transcriber (with peak-picking).

U-net The U-net consists of 1D convolutional layers,
max-pooling layers, and concatenations between the en-
coder and the decoder. The encoder consists of a convolu-
tional layer (128, 3, 1) followed by 10 convolutional
layers (50, 3, 1) interleaved with max-pooling of size
2. As a result, it outputs z ∈ RN/1024 which has a recep-
tive field size of 3,072 time steps.

The decoder has only 6 convolutional layers (50, 3,
1) interleaved with a concatenation with the feature map
at the same depth as in the encoder and a ×2 bi-linear in-
terpolation. We call the output of decoder r ∈ RN/16,
the representation based on which the transcription is es-
timated. The asymmetry between the encoder and the
decoder makes the length r to be shorter by a factor of
42 = 16 compared to that of input x. Assuming the input
audio is sampled at 16 kHz, 2 r would have a sampling rate
of 1,000 Hz.

Recurrent layers We use three recurrent layers: (GRUs
[8]) {along time-axis, bi-directional, 100-channel}, {along
time-axis, uni-directional, 50-channel}, and {along
channel-axis, uni-directional, K-channel}. These three re-
current layers have properties of i) being bi-directional so
that the onset at n can be determined by the vicinity of n
(both the past and the future), ii) enforcing temporal de-
pendency, and iii) enforcing component-wise dependency,
respectively. The width (or the hidden vector size) of the
third recurrent layer is equal to K, the number of drum
components in the synthesizer, to map each channel to each
drum component.

y, or 64 ms (temporal spar-
sity). The outputs from these two Sparsemax layers are
then multiplied element-wise.

2 This is the sampling rate of input audio in our experiment.

2. SYSTEM DESIGN PRINCIPLES

x and x works
as a proxy of the difference between ˆ

3. DRUMMERNET

Sparsemax In an ideal case of transcription, there would
be local sparsity along both the time and channel-axes be-
cause the drum events would not repeat with a rate of
1,000 Hz (which is faster than 16-beat on 240 BPM), nor
would all the K drum components be activated simultane-
ously. Although sparsity is one of the properties that can be
achieved by the autoregressive nature of the recurrent lay-
ers, we add Sparsemax [21] activation to encourage it ex-
plicitly. The output of Sparsemax has two important prop-
erties: i) it always sums to 1 (same as Softmax) and ii) it
is highly likely to be sparse with actual zeros (unlike Soft-
max). In DrummerNet, two Sparsemax layers are applied
in parallel, one along channel-axis (=instrument-axis) and
the other time-axis within a non-overlapping window size
of 64. This design choice is based on the assumption that
there are only a few onsets among notes (channel-axis spar-
sity) and within 64 samples at ˆ
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Class Subclass Description

KD KD Kick drum
SD SD Snare drum
HH CHH, PHH Closed/pedalled hi-hat

OHH Open hi-hat
TT HIT, MHT, High/high-mid/

HFT, LFT* high-floor/low-floor tom
CY RDC, RDB* Ride cymbal, ride cymbal bell

CRC, CHC*,
SPC*

Crash/china cymbal
splash cymbal

OT SST*, TMB side stick, tambourine

Table 2: A drum component hierarchy [36]. The synthe-
sizer Fs consists of 11 classes, following Subclass of the
table with omitting ones marked with asterisks *.

Median-Filtering 
Onset Enhancement 

Median-Filtering 
Onset Enhancement 

CQTs 

CQTs 

x

x̂

Mean 
Absolute 

Error 

Figure 2: The block diagrams of loss calculation

Upsampler Finally, the low temporal resolution of the
Sparsemax output is addressed by zero-insertion upsam-
pling by the factor of 16. According to this, we modify the
temporal quantization rate of events, unlike the upsampling
of a digital signal.

3.2 Synthesis module Fs

The synthesis module Fs consists of K parallel 1D convo-
lutional layers and a channel-wise summing operator. The
kernel of each layer is not trained but fixed to the known
waveform of each drum component to convert a transcrip-
tion of a component ŷk into a track x̂k. The tracks are
summed to generate the final output x̂ (=

∑K
k=1 x̂k), the

synthesized audio signal. This module is only used during
training.

In the implementation, we use K = 11, using Subclass
in Table 2, following [36]. Ones marked with asterisks
were excluded due to their scarcities in our source of iso-
lated drum recordings, which consisted of 12 virtual drum
instruments provided by Logic Pro X. Multiple drum kits,
including rock, pop, funk, and soul 3 , were used to prevent
the network from overfitting to a specific drum kit. Dur-
ing training, a drum kit was randomly assigned for every
batch.

3.3 Learning

Unable to directly compute the transcription loss during
unsupervised learning, we carefully designed a loss func-
tion at the audio level, Lx(x, x̂), as minimizing it would
also minimize the transcription loss, Ly(y, ŷ). To do so,

3 Brooklyn, Heavy, Liverpool, Neo Soul, Detroit Garage, Motown Re-
visited, Portland, Sunset, Speakeasy, SoCal, Smash, and Slow Jam. All
with velocity=98.

Module Input (size) Output (size)

U-net encoder
Conv1D x:(1, N) (C∗, N)
10× Conv1D (C∗, N) (C∗, N/1024)

U-net decoder
6× Conv1D (C∗, N/1024) r:(C∗, N/16)

Recurrent layers (C∗, N/16) (K,N/16)

Sparsemax (K,N/16) (K,N/16)

Upsampler (K,N/16) ŷ:(K,N)

Synthesis module
Channel splitter ŷ:(K,N) K × ŷk:(1, N)
Each Conv1D ŷk:(1, N) x̂k:(1, N)
Sum (mixer) K × x̂k:(1, N) x̂:(K,N)

Table 3: The shapes of inputs/outputs of the module in
DrummerNet. C∗ indicates the number of channels but
unspecified.

Figure 3: The effect of drum extraction for kick, snare,
close hi-hat, and open hi-hat, from top to bottom. Columns
are from left to right: original waveform, original spec-
trum, and onset-enhanced spectrum

Lx should be able to differentiate the drum components
– kick drum (KD), snare drum (SD), and hi-hat (HH) –
while being invariant to the varying drum kits. Perceptu-
ally, there are clear differences between KD, SD, and HH.
Although both impulsive, KD is in the low-frequency band
while SD is in the mid-frequency band. SD is also rela-
tively tonal and has a longer envelope. HH is more compli-
cated to describe due to its variation from its playing tech-
nique. For example, closed and pedalled-HH’s are in the
high-frequency band, impulsive, and with relatively low
energy, while open-HH’s are similar except louder with a
longer noisy envelope.

We thus define and use onset spectrum similarity, which
is designed to represent the similarity based on the onset
part of sounds in the spectrum domain. As illustrated in 2,
it is measured by i) applying median-filtering based drum
extraction [12] which enhances onsets (with a FFT size of
1024 and median filter length of 31 on both axes), ii) con-
verting to multi-resolution CQTs (constant-Q transform)
for both x and x̂, and then iii) calculating the mean abso-
lute difference between them.

Among many spectral magnitude representations, we
use (log-magnitude) CQT since the logarithmic frequency
scale is known to match well to human auditory percep-
tion [23]. We followed the implementation of Pseudo-
CQT 4 which multiplies linear-to-octave filterbanks to an
STFT. As a result, the CQT covered nearly 8-octave bands

4 http://librosa.github.io/librosa/
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from 32.07 Hz (C1) to 8 kHz (the Nyquist frequency of our
experiment) with a 12-band/octave resolution. This imple-
mentation is differentiable.

Figure 3 shows the effect of onset enhancement. It pre-
serves the characteristics of the drum components in the
transient part while removing the after-onset components.
This process makes Lx and Ly more similar, as the non-
transient parts vary more among drum kits due to their ran-
dom and noisy nature. In a preliminary experiment, for ex-
ample, the network tried to reconstruct all the non-transient
components of SD using tom-toms and HHs, resulting in
non-sparse and severe false-positive detection of onsets.

For the training of DrummerNet, we used an in-house
dataset of drum stems that are crawled from many web-
sites. The dataset consisted of 3,940 unique tracks averag-
ing 225 seconds each for a total of 249 hours. Since the
dataset was crawled from various websites, some details,
such as the distribution of drum components, are hard to
identify. The tracks were mostly popular western rock/pop
music. Alternatives to this in-house dataset can be found
in [7] (3,758 drum sample recordings (×8 second = over
8 hours) or 60,000 synthesized drum loops (×8 second =
over 133 hours)) and [39] (4,197 drum tracks (259 hours)).
We opted for the in-house dataset because it provided more
diversity as it was not synthesized.

Each audio file was resampled to 16 kHz and down-
mixed to mono. The training batch size was 16, and for
each audio file, we randomly selected a 2-second segment.
On average, there were 112.5 segments in a track, and
therefore training with 443,250 (=3,940 × 112.5) items
would be approximately one epoch. With a Nvidia Tesla
P100 and a batch size of 32, it took about 9 hours to train
a single epoch. We implemented DrummerNet using Py-
torch 1.0 [24] and used Librosa 0.6.3 [22] and Madmom
0.16 [4] for audio processing and peak-picking.

We used a heuristic peak-picking method introduced in
[5]. This method selects a peak ŷ[n] at n if it satisfies the
three conditions in Eq. (1),

ŷ[n] =max(x[n− wm], ..., x[n+ wm])

ŷ[n] ≥average(x[n− wa], ..., x[n+ wa]) + δ

n >nlp + ww,

(1)

where the max window wm=50 ms, average window
wa=100 ms, threshold δ=0.2, waiting window ww=50 ms,
and nlp is the last detected peak. We mainly use F1 score
along with Precision and Recall using mir eval [28]. The
tolerance window is 50 ms.

After training, we test the system on three public
datasets: IDMT-SMT-Drums (SMT, 104 drum tracks, total
130 minutes [10]), Medley-DB Drums (MDB, 23 tracks,
total 20 minutes [36]), and ENST-drums (ENST, 61 min-
utes [14], drum-only tracks known as ‘wet-mix’ of ‘minus-
one’ subset). According to [40], a task is DTD 5 if tracks

5 DTD: drum transcription of drum-only recordings

1 10 100
number of training items [x100,000]

0.5
0.6
0.7
0.8
0.9 Average F1 scores

Avg
SMT
MDB
ENST

Figure 4: The F1 scores of DrummerNet over training
items on each dataset (SMT, MDB, ENST), averaged over
KD, SD, and HH. AVG indicates the overall average F1
scores of three datasets.

6

4.2 Trend of Performance over Training
We did not employ a stopping strategy but trained the net-
work for 6 × 106 items (about 13 epochs). As illustrated
in Figure 4, the overall performance gradually increases as
the training proceeds and approaches converging towards
the end of training. This indicates that the proposed loss
function is a good proxy of transcription loss. After the ini-
tial phase of training, the performance differences among
datasets remain consistent, probably due to the different
characteristics of drum tracks in each dataset, as will be
discussed in Section 4.4.

4.3 Relative Performance against Baselines

In this experiment, we trained our system on the in-house
training set without any annotation and evaluated it on
a separate test set (also known as ‘eval-cross (trained
on DTP)’, [40]), which is a stronger condition than a
usual train/test split scenario in supervised learning (‘eval-
subset’, [40]). This setup allows us to measure the gener-
alization capabilities across the datasets. Specifically, our
experiment is equivalent to DTD, ‘eval-cross (trained on
DTP)’ experiment in [40]. 7 , which is only available on
SMT. Therefore, only the performances on SMT are com-
pared in this Section. Overall, the performance of Drum-
merNet is favorable to that of recent drum transcription
systems. With an average F1 score of 0.869 on SMT,
the proposed unsupervised DrummerNet outperformed 9
out of 10 systems. The nine systems include ones with
deep neural networks and supervised approach (ReLUts,
RNN, lstmpB, tanhB, and GRUts [33,34,37,38]), as well as
ones with NMF and unsupervised approach (AM1, AM2,

6 DTP: drum transcription in the presence of percussion
7 Numbers are omitted in the paper but are available on-

line: https://www.audiolabs-erlangen.de/resources/
MIR/2017-DrumTranscription-Survey.

in [40]. Following this conven-
tion, we evaluate DTD with SMT (Section 4.3), and DTP
with MDB/ENST. We did not fine-tune for any dataset in
any experiment and used the whole datasets for evaluation
only.

4.1 Setup

4. EXPERIMENTS AND ANALYSIS
are drum-only, more precisely KD/SD/HH-only, and the
system annotates KD/SD/HH events. This is the case
for the SMT dataset. A task with the system annotat-
ing KD/SD/HH but with drum tracks consisting of more
than those three components, e.g., tom-toms and cym-
bals, is named DTP
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Figure 5: The F1 scores of DrummerNet and other sys-
tems on SMT with ‘eval-cross’ setup, sorted by the as-
cending order of the overall average. The system names
follow [40].

PFNMF, and SANMF [10, 41]). It did not outperform
NMFD [20], a system based on the convolutive NMF.

The comparison between DrummerNet and the
NMF/unsupervised learning-based systems [10, 41]
implies that the proposed deep neural network structure
effectively learns relevant representations. Furthermore,
DrummerNet allows constant-time inference, unlike NMF
and other factorization-based approaches which require
iterative optimization in the test time.

What is more interesting is its generalizability. All the
deep learning based systems 8 present deteriorating perfor-
mance in the transfer learning scenario (eval-cross) com-
pared to the dataset split scenario (eval-subset). 9 How-
ever, less data-driven approaches 10 present similar or even
increased performances in eval-cross. This implies that
the distributions within datasets are fairly different and bi-
ased to certain types of drum tracks and therefore, a tran-
scription system trained with those datasets will be also
biased accordingly. This limitation may be attributed to
the small sizes of those datasets. Theoretically, supervised
deep learning systems may generalize better if trained on a
very large dataset, which lacks practicality due to the high
annotation cost. In contrast, it is relatively easy to unbias
DrummerNet. One only needs to control the distribution of
drum tracks by their style/genre/sounds without annotating
every note.

4.4 Qualitative Analysis

In this section, we will analyze the performance and the be-
havior of DrummerNet by components, datasets, and met-
rics, as illustrated in Figure 6. Here, we notice two clear
trends. First, across all of the three datasets and the met-
rics, detecting KD was the easiest, followed by SD and HH
(except the precision on SMT). Second, SMT seems to be
the easiest, followed by MDB and ENST. What could be
the reasons?

The first trend is strongly related the proposed loss func-
tion. KD has the least within-class variability while being
the most distinguishable component (the largest mutual-
class variability) due to its solitary frequency range. SD
and HH share both the mid and high-frequency ranges

8 RNN, tanhB, ReLUts, lstmpB, GRUts - RNN-based systems
9 See Figure 10 (b) of [40]. Note that most of the reported scores in

papers also follow eval-subset setup.
10 SANMF, NMF, PFNMF, AM1, AM2 - NMF-based systems
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Figure 6: Evaluation of DrummerNet on SMT (top), MDB
(middle), and ENST (bottom) datasets.

Figure 7: A transcription example of DrummerNet, ‘Real
Drum 01-12’ in SMT - the output of analysis module (top),
after peak-picking (middle), and ground truth (bottom);
KD, SD, HH (left to right).

and their sounds can vary significantly across drum kits
– i.e., larger within-class variability and smaller mutual-
class variability. A common pattern, consequently, is the
false positive of HH due to SD and vice versa. This is pre-
sented in Figure 7, where SD has many false positives due
to HH.

The second trend is caused by the mixed use of the
probability and the onset velocity in the DrummerNet. Al-
though transcription ŷ is the estimated amplitude of drum
components, the peak-picking method treats ŷ as if it was a
probability. This discrepancy becomes problematic when
the velocities of drum events in a track vary drastically as
in the case of MDB and ENST. A failure case is demon-
strated in Figure 7, where the HH with strong accents on
several occasion caused DrummerNet to miss many of the
other HH peaks.

4.5 Ablation Study

We conducted an ablation study where the performance of
DrummerNet is compared with that of its variants. Figure 8
shows the reported F1 scores averaged over datasets and
components. Please refer to the caption in Figure 8 for the
definitions of the system names.
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Figure 8: The ablation study results, F1 scores averaged
over three datasets per component (KD, SD, HH) and
their overall average (AVG). The label indicates as follow:
DFL (default DrummerNet as introduced), SOFT (two
Softmax layers instead of Sparsemax), MEL (use 128-band
melspectrogram instead of CQTs), STFT (use 1024-point
STFT instead of CQTs), NOE (not onset enhancement in
loss), CONV (3-layer convolutional layers instead of re-
current layers).

Figure 9: A transcription example of SOFT (DrummerNet
with Softmax) , ‘Real Drum 01-12’ in SMT - the output
of analysis module (top), after peak-picking (middle), and
ground truth (bottom); KD, SD, HH (left to right).

Sparsemax (DFL vs. SOFT) Among all the variants in
this experiment, we observe the most dramatic change in
the performance when we replaced Sparsemax with Soft-
max (SOFT), mostly in a negative way. In SOFT, the
two Softmax layers were applied in sequence instead of
in-parallel and multiplied, which we tested, but the train-
ing was unstable. The transcription ŷ of SOFT tends to
be much noisier with many false positives, as presented in
Figure 9. We conclude that the sparsity induced by Sparse-
max is a crucial factor behind the success of the proposed
unsupervised transcription.

Figure 9 provides a good example of the performance
degradation pattern for each component. As in Figure 8,
although the scores of all the three components decrease
in SOFT, the degradation is not as critical for HH as in
the case of KD/SD. This observation reflects the underly-
ing properties of the different components. KD and SD
are sparser than HH, and thus may benefit more from the
introduction of Sparsemax.

CQT (DFL vs. MEL vs. STFT) Replacing CQTs with
either melspectrograms (MEL) or short-time Fourier trans-
form magnitudes (STFT) results in decreased performance.
Unlike CQTs, where different numbers of FFT are used for
each octave range, melspectrograms are computed based
on single-resolution STFT. This implies that DrummerNet
benefits from CQTs which consider multiple temporal and
spectral resolutions.

Comparing MEL and STFT, the melfrequency compres-
sion helps with the better detection of KD but not SD

nor HH. This is explained by the different frequency band
weighting of STFT and melspectrogram. Since melfre-
quency is linear below 1 kHz and logarithmic above 1 kHz
[32], melspectrogram allocates relatively more bins below
1 kHz. This means that the loss function in MEL is biased
towards the low-frequency range, resulting in training that
favors KD over the others.

Onset Enhancement (DFL vs. NOE) The onset en-
hancement is shown to be boosting the performance, but
not significantly (0.017). In the learning curve, we ob-
serve that removing the onset enhancement from the loss
function results in a large performance degradation during
the initial phase of training. This is mainly due to false-
positives in the non-transient part.

Recurrent layers (DFL vs. CONV) Overall, replacing
three recurrent layers with three convolutional layers does
not make significant differences (0.011). This may means
i) a long-term relationship may not provide additional in-
formation, probably because the transcription largely de-
pends on local information, and ii) the mutual conditioning
in the last recurrent layer is not effective in our experiment.
In an informal analysis, we observed that with recurrent
layers, ŷ still has some local temporal correlation, e.g., the
activations are smeared over time, probably because that is
better to reconstruct the input audio.

The experiment also revealed room for further im-
provements. Considering the discreteness of the musical
notes, a reinforcement learning approach may be more
suitable [35], making the prediction more sparse and re-
placing the peak-picking with trainable action. The onset-
enhancement on audio similarity is a function carefully-
chosen in order to approximate Ly when x and x̂ are
given. Unfortunately, the approximation is limited be-
cause the exact drum sounds in x are not given, and there-
fore a perfect reconstruct of (onsets of) the input audio
(Lx(x, x̂) = 0) does not lead to a perfect transcription
(Ly(y, ŷ) = 0). An alternative way would be measuring a
similarity on a (perceptual) representation domain instead
of the audio, for example, by learning a loss using forward-
backward consistency (also known as a cyclic loss [17]) or
known audio features. Lastly, the current synthesizer mod-
ule is limited to drums as it does not handle the duration
of notes. A trainable synthesizer can be used to expand
DrummerNet to other instruments [3, 11], eventually lead-
ing to an unsupervised universal transcription system com-
bined with instrument recognition.

We introduced DrummerNet, a deep neural network that is
trained to transcribe drum tracks without a labeled dataset.
In the experiment, DrummerNet achieved strong perfor-
mance compared to existing systems trained with super-
vised learning, showing its generalizability towards a real-
world drum transcription scenario. Our ablation study
showed that Sparsemax and CQT played a crucial role in
the successful training of DrummerNet.

5. CONCLUSION
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rian Krebs, and Gerhard Widmer. madmom: a new
Python Audio and Music Signal Processing Library.
In Proceedings of the 24th ACM International Con-
ference on Multimedia, pages 1174–1178, Amsterdam,
The Netherlands, 10 2016.
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ABSTRACT

Target-based assisted orchestration can be thought of as the
process of searching for optimal combinations of sounds to
match a target sound, given a database of samples, a sim-
ilarity metric, and a set of constraints. A typical solution
to this problem is a proposed orchestral score where can-
didates are ranked by similarity in some feature space be-
tween the target sound and the mixture of audio samples
in the database corresponding to the notes in the score; in
the orchestral setting, valid scores may contain dozens of
instruments sounding simultaneously.

Generally, target-based assisted orchestration systems
consist of a combinatorial optimization algorithm and a
constraint solver that are jointly optimized to find valid
solutions. A key step in the optimization involves gener-
ating a large number of combinations of sounds from the
database and then comparing the features of each mixture
of sounds with the target sound. Because of the high com-
putational cost required to synthesize a new audio file and
then compute features for every combination of sounds, in
practice, existing systems instead estimate the features of
each new mixture using precomputed features of the indi-
vidual source files making up the combination. Currently,
state-of-the-art systems use a simple linear combination to
make these predictions, even if the features in use are not
themselves linear.

In this work, we explore neural models for estimating
the features of a mixture of sounds from the features of
the component sounds, finding that standard features can
be estimated with accuracy significantly better than that of
the methods currently used in assisted orchestration sys-
tems. We present quantitative comparisons and discuss the
implications of our findings for target-based orchestration
problems.

c© Jon Gillick , Carmine-Emanuele Cella, David Bamman.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jon Gillick , Carmine-Emanuele Cella,
David Bamman. “Estimating Unobserved Audio Features for Target-
Based Orchestration”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

1. INTRODUCTION

In many music information retrieval and signal processing
contexts, we are required to reason about signals that are
themselves the sum of multiple sources. Whether the sum-
ming comes from instruments in a multi-track recording,
voices in a group conversation, or simply from noise in the
signal, we generally need to consider the full set of sources
that make up an audio signal.

Much work in MIR deals with pulling apart the sources
in a signal, either in the most straightforward sense via
source separation [3,4], or through any of a number of clas-
sification tasks such as tagging [11, 31], instrument recog-
nition [14, 18], or automatic transcription [16, 26]. A sep-
arate body of work deals with the inverse problem, that
of putting sources together: work in applications like as-
sisted orchestration [8] and automatic mixing [13,25] aims
to guide people through the task of combining signals to-
gether with the help of a machine in the loop.

In the cases of both separation and combination, tasks
can be solved presumably because the source components
and the summed signal are sufficiently correlated; the more
correlated a source is with the mixture, the easier it is to
identify, and as more signals are summed together, cor-
relations between the combination and any single source
tend to diminish. In a computational setting, these corre-
lations are of course measured through a set of features of
the signals, whether they be hand-engineered features like
FFT and MFCC, or modern features learned by neural net-
works.

There are some cases, however, in which we can ob-
serve the source signals of a mixture, but it is impractical
or impossible to actually compute the features of the signal
in question; these are the cases that we investigate in this
work. Broadly speaking, there are two primary settings in
which we may be unable to observe the features of audio
signals:

1. We do not have access to the signals.

2. Computing the features for all relevant signals is
computationally expensive.

The first setting is commonly encountered in MIR, in
which, as with many fields centered around media that may
be under copyright or other protections, it is quite common
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for researchers to have access to pre-computed features
but not to raw data itself. For example, the audio files of
the million songs that comprise the Million Song Dataset
[5], which serves as a benchmark for many common MIR
tasks, cannot be legally distributed. Instead the data con-
tains common audio features like MFCC, chroma, note on-
sets, and spectral centroids. 1 Though this dataset and oth-
ers like it are attractive because of their size and scope,
they have been of limited use as source material for con-
structing additional audio mixtures. As semi-supervised
and self-supervised approaches to machine learning have
become more competitive with fully supervised systems,
large datasets even of weakly labeled source material are
becoming more useful for research in areas like source sep-
aration [15, 24]; estimating the features of mixtures might
be one path towards making use of this data in new con-
texts.

The second setting in which we cannot observe audio
features, which is the focus of this work, is the case where
the computational cost of calculating an exponential num-
ber of audio mixtures is prohibitively high. This computa-
tional bottleneck often arises in the aforementioned body
of work that attempts to automatically combine signals to-
gether during the course of tasks like target-based orches-
tration. In this context, learning algorithms need to ex-
plore a combinatorial space of potential solution sets, mak-
ing it infeasible to compute the real features of all possi-
ble mixtures of signals. Moreover, methods for narrowing
down this set of possible solutions, such as reinforcement
learning algorithms, are generally iterative, requiring on-
line evaluation of a reward function before the next set of
candidates can be explored. Because these methods both
have a large solution space and need to be evaluated iter-
atively, features must be computed on the fly, making fast
feature computation, or accurate estimation, a necessity.

In this work, we take steps to explore the potential of
machine learning models for predicting audio features of
a mixture of sounds that we are unable to observe, fo-
cusing on the task of target-based assisted orchestration
[2, 6, 8]. Concretely, we consider models of the follow-
ing form: given a feature function f and M individual
signals S1, . . . , SM , we learn mappings from input fea-
tures f(S1), . . . , f(SM ) to the true feature of the mixture
f(S1 + . . . + SM ).

In experiments, we examine one standard feature that
is known to typically behave linearly when summed (FFT
magnitude spectra) and one feature that is less well suited
to linear approximation (MFFC coefficients), investigate
the ability of different models to predict each feature across
a varying number of mixtures ranging from 2 notes to 30,
and discuss the implications of our findings for target-
based assisted orchestration as well as for the broader
range of scenarios in which real audio features cannot be
observed.

Code to reproduce our results can be found
at https://github.com/jrgillick/

1 The full list of fields can be accessed here: https://labrosa.
ee.columbia.edu/millionsong/pages/field-list

audio-feature-forecasting.

2. TARGET-BASED ASSISTED ORCHESTRATION

Musical orchestration, and in many cases, music produc-
tion, consists largely of choosing combinations of sounds,
instruments, and timbres that support the narrative of a
piece of music. Strong orchestration can bring a compo-
sition to life by emphasizing, clarifying, or perhaps ques-
tioning the elements of the music, and through this process,
orchestration can often be a difference-maker to critical or
commercial success [20, 21].

Different musical styles and composition environments
have different constraints (for example, scores for live per-
formance should only require the sounds of the instruments
in the group, whereas the sounds available for use on a
recording are only limited by their stylistic relevance), but
fundamentally, finding the right set of sounds is important
regardless of the context. For composers and producers,
employing MIR systems during the orchestration process
holds the potential to help spark inspiration, solve chal-
lenging problems, or save time.

Though the orchestral setting has been explored exten-
sively in previous work, assisted orchestration methods
hold the potential for application in other styles. For exam-
ple, layering drum samples is common practice in music
production, and MIR-based tools for drum sample search
are beginning to make their way into professional toolk-
its 2 ; existing methods for query-based drum sample re-
trieval [23] could be extended to consider mixtures of drum
samples.

3. RELATED WORK

Existing systems for target-based assisted orchestra-
tion compute spectral similarities using standard spec-
tral features [8] or perceptual descriptors [2], along with
evolution-based methods for exploring the solution space.

Most relevant to our experimental setting is the im-
plementation of the publicly available state-of-the art Or-
chidea system [10], which is based in part on a study con-
ducted in [9] on predicting timbral features of combined
sounds. This study found that for 3 features (Spectral Cen-
troid, Spectral Spread, and Main Resolved Partials), and
for mixtures of up to 4 sounds, predicting the features of
the mixture by a linear combination of the source features
both achieved a low error and did not vary as a function of
the number of mixture components.

Since computing a linear combination has very low
computational cost, this finding enables real-time estima-
tion of thousands of candidate mixtures for use in online
reinforcement learning, making tools like Orchidea practi-
cal for real-world use. The effects on the features of mix-
ing many more components, along with the behavior of
higher-dimensional and richer features, however, have not
yet been investigated.

2 https://www.xlnaudio.com/products/xo
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4. EXPERIMENTS

4.1 Data

For our experiments, we use the OrchDB dataset of indi-
vidually recorded musical notes from a variety of orches-
tral instruments. OrchDB is a streamlined subset of the
Studio Online (SOL), dataset that has been optimized for
assisted orchestration [30]. Collected as part of the Studio
Online project at IRCAM, the full SOL data set contains
over 117,000 instrument samples, including extended tech-
niques and contemporary playing styles. OrchDB, which
contains a curated subset of these samples, has been used
for assisted orchestration since 2008 [7]; the contents of
the data are summarized below:

• OrchDB contains about 20,000 notes with lengths
ranging from about 1 second to 30 seconds.

• Instruments include bassoon, clarinet, flute, horn,
oboe, saxophones, strings, trombone, trumpet, and
tuba.

• Approximately 30 different playing styles are rep-
resented in OrchDB, such as ordinario, pizzicato,
pizzicato Bartók, aeolian, Flatterzung, col legno bat-
tuto; brass instrument samples include a variety of
different types of mutes.

• Notes across the pitch range are included, along
with a range of dynamics from ppp to fff, including
sforzato and crescendo.

4.2 Mixtures of Notes

To train and evaluate models for feature estimation, we par-
tition the dataset into nonoverlapping subsets for training,
development, and testing, choose 6 different numbers of
mixture components M between 2 and 30, and then for
each M , we synthesize a dataset of new audio files by
adding together the raw waveforms of M randomly cho-
sen notes. Finally, we divide the summed signals by M
to keep the amplitudes of the mixture in the same range as
those of the source files.

For each value of M , we synthesize 7500 new audio
mixtures for training, 2000 for development, and 2000 for
testing, creating these new mixtures after partitioning our
data so that no source file that appears in the training set
can be chosen as part of a mixture in the test set. After
synthesizing the mixtures, we compute and store the real
FFT and MFCC features for every mixture for use in train-
ing and evaluating our models.

4.3 Predicting Unobserved Features

With this data in hand, we explore several models for pre-
dicting the features of a mixture of audio signals given the
features of the individual signals. In all experiments, given
a feature function f and M individual signals S1, . . . , SM ,
each model is trained to learn a mapping from input fea-
tures f(S1), . . . , f(SM ) to the true feature of the mixture
f(S1 + . . . + SM ).

Figure 1. Standard Deviations (averaged across all 19 co-
efficients) of the real MFCC coefficients of mixtures of au-
dio files. As M increases, the variance in the MFCC coef-
ficients goes down.

5. MODELS

5.1 Features

For our modeling experiments, we choose two standard
features: 1024-dimensional FFT magnitude spectra and
19-dimensional MFCC coefficients (we discard the first of
20 MFCC coefficients). Our choice of features is meant to
capture the most common MIR settings, so we use the de-
fault FFT and MFCC dimensions specified in the Librosa
library [22] and compute the features on audio files sam-
pled at 22050 Hz using the default window size (2048 sam-
ples) and hop size (512 samples) of the Librosa implemen-
tations. We then follow [8] in flattening both the FFT and
MFCC features from 2-dimensional time-frequency repre-
sentations into 1-dimensional feature vectors by taking a
linear combination of the features at each frame, weighted
by the RMS energy at the corresponding frame.

This method of averaging over time allows us to sum-
marize the spectral characteristics of signals with differ-
ent lengths using a single feature feature vector, while at
the same time ignoring the quieter parts of the signal. In
addition, we preserve the interpretability of the FFT and
MFCC features through this process, which is particularly
useful for inspecting and analyzing our model outputs. Of
course, the downside of this preprocessing step is that we
discard all time-domain information, so we are unable to
predict anything about the envelope or movement of the
sound. Depending on the source material and the down-
stream application, different preprocessing choices might
be more appropriate than averaging over time; for exam-
ple, unpitched percussive sounds require different model-
ing choices from pitched material. Since our data consists
of mostly pitched notes from orchestral instruments, how-
ever, we follow the convention of the assisted orchestration
literature by focusing on timbre independent of time.

Finally, before training or evaluating models, in order
to best align our quantitative results to the expected per-
ceptual results with regards to timbre, we normalize the
FFT feature vectors such that the maximum value is 1. Al-
though in the FFT case, relative magnitudes are known to
be more correlated with perception of timbre than the raw
amplitudes are, magnitudes of MFCC coefficients are im-
portant descriptors of timbre, so we do not normalize the
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MFCC’s, instead predicting the real values.

5.2 Baseline

As a baseline, we compute the element-wise mean of the
feature vectors over the entire training set. This vector is
computed once for each value of the number of mixture
components M . Models that perform better than this base-
line can be said to be capturing some useful information
about how the features sum together. One important fac-
tor to take into account when evaluating results it that as
we increase M , mixing more and more notes together, the
variance in the features of the mixtures decreases, making
the predictive task appear easier. The MFCC features, be-
cause they are much lower dimensional than the FFT’s, are
especially effected by this change in variance; the higher
dimensional FFT features exhibit the same trend but to a
smaller extent, as they can capture a wider range of combi-
nations of signals. For this reason, in Section 6, we report
error metrics as a percentage relative to the error metric of
this baseline at the corresponding value of M . Concretely,
an error of 0.5 would mean that, averaged over the test set,
the sum of squared errors of our predictions was equal to
half of the sum of squared errors obtained by always pre-
dicting the mean of the data set.

5.3 Linear Combination

The first model we examine is the linear combination of
features proposed in [9], which is currently used in state-
of-the-art assisted orchestration systems [10]. This model
implicitly assumes that for a feature f , the feature of the
sum is approximately equal to the sum of the features:

w1f(S1)+. . .+wMf(SM ) ≈ f(w1S1+. . . wMSM ) (1)

When features are linear or can be well approximated
linearly, this method can be a strong baseline. Especially
with high dimensional features like our 1024 FFT magni-
tudes, subtle details that might be difficult to summarize
in an intermediate representation can be easily preserved
with a linear model.

For this model, we combine source features in two
ways, first by taking the element-wise mean of the M
feature vectors as shown in Equation (2) and second by
weighting the features by the corresponding RMS energies
a1 . . . aM of the component signals as in Equation (3):

f̄ =
1

M

∑
fi

(2)

f̃ =

∑
fiai∑
ai

(3)

5.4 MLP

Particularly for nonlinear features, it is reasonable to ex-
pect that nonlinear models have the potential to make bet-
ter estimates. We train multilayer perceptron (MLP) neu-
ral networks to predict both FFT and MFCC features. For

these models, we use a single hidden layer, and we min-
imize the mean squared error (MSE) between the predic-
tions and the targets. For the FFT models, in order to con-
strain the network to output magnitudes between 0 and 1,
we use a ReLU activation followed by a L∞ normaliza-
tion layer as the last stage in our network. Although we
found empirically that sigmoid activations gave similar ac-
curacies, these choices match better with the intuition of
normalization performed in preprocessing. We train all our
neural network models with Tensorflow [1] and Keras [12],
Dropout [27], and the Adam optimizer [19].

Because we are interested in testing our methods on a
variable number of audio mixtures M , we train separate
MLP models for each value of M . As M increases, the
input size and number of parameters in the network in-
creases accordingly; with a feature of dimension D and
a hidden layer of size H , the first layer of these networks
has D ×M ×H trainable parameters.

5.5 LSTM

As we increase the number of mixtures M , a recurrent net-
work architecture is a natural choice to reduce the number
of parameters needed. Intuitively, if a network can learn to
estimate the sum of two signals, the same network should
be able to process M signals in sequence over M steps by
estimating the sum of one signal with the sum of all the
signals processed so far.

5.5.1 Ordered Sets

Because the true sum of M signals is independent of the
order in which they are combined, we experiment with two
approaches inspired by the literature on sequence models
for sets. First, even when no true ordering exists, previous
results demonstrate that the ordering of inputs to factor-
ized probabilistic models still affects the ability of models
to learn [29]. In the case where two semantically valid or-
derings exist, empirical results from machine translation
show that simple changes to the ordering, such as revers-
ing the words in a sentence, can significantly affect model
performance [28]. Based on these results, for this variant
of the model, we sort the signals by their L2 norm before
passing them to LSTM model, such that the source signal
with the highest energy is observed at the final timestep
before outputting a final prediction.

5.5.2 Unordered Sets

Although previous work points to the benefits of ordering
the signals in a consistent way, fixing an ordering prevents
us from implementing a simple but potentially powerful
form of data augmentation - randomly shuffling the order
of mixtures during training. We empirically test the rela-
tive benefits of these two options, reporting results for both
ordered and unordered inputs with the same LSTM archic-
ture.

5.5.3 Residual Connections

Finally, we experiment with one more variation of our
LSTM model, in which we add a residual connection [17]

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

195



between the model inputs at each timestep and the outputs
of the LSTM layer, which allows information to pass di-
rectly from the input to the final layer without having to
be mediated by the nonlinear structure of the LSTM. In-
tuitively, to the degree to which features are linear, this
connection should provide the model with the option to di-
rectly sum up the features as part of its computation.

6. RESULTS

We train and evaluate all of the models across 6 different
numbers of mixtures M ranging from 2 to 30, summariz-
ing the results in Tables 1 and 2 and displaying the trends
across values of M in Figures 2 and 3.

6.1 Predicting FFT Features

As demonstrated in Figure 2, the linear combination out-
perform the neural methods for values of M between 2 and
12, but the LSTM models make up ground and ultimately
begin to overtake the linear combinations at M = 20 mix-
tures. All of the models in the FFT setting trend up in error
towards the baseline as the number of mixtures increases;
with M = 30, all models except for the residual LSTM
cross the threshold of the baseline. These results indicate
several findings:

• While the ordering in which the mixtures are passed
to the LSTM model does not appear to make a sig-
nificant difference here, the residual LSTM model
outperforms the rest of the neural methods at all val-
ues of M , demonstrating increasingly large gains as
the number of mixtures goes up. This suggests that
the residual connection may be enabling the model
to exploit the linearity of features when it is advanta-
geous to do so, while maintaining flexibility to make
better estimations once the signal from the linearity
of the feature fades.

• In confirmation with previous findings [9], these re-
sults suggest that linear approximations of FFT fea-
tures can be quite accurate. As the number of mix-
tures increases, however, these estimates worsen; by
M = 30, the linear approximations are no better
than random.

• Although estimating a high dimensional feature like
the FFT is clearly a challenging task as many
streams of audio are mixed together, these results
show that neural models do possess the potential to
estimate these features to some degree even in set-
tings with many different sources.

6.2 Predicting MFCC Features

Unlike in the case of the FFT features, all of the neural
models outperform the linear combination for both small
and large numbers of mixtures, and as shown in Figure 3,
with more than 6 mixtures, linear combinations of MFCC
features no longer contain a useful signal. We detail our
findings from the MFCC experiments below:

Figure 2. The linear models work well for predicting FFT
features of small numbers of mixtures, but at around M =
20 mixtures, the best performing LSTM model overtakes
the linear combination.

• Because MFCC features are nonlinear, it is not sur-
prising that nonlinear models are able to predict
them better than the linear combination. Relative to
the baseline, however, we can see that for mixtures
of 2, 3, and even 6 different sources, a linear com-
bination of MFFC’s can still be reasonably accurate.
This suggests that in some cases, MFFC features do
behave approximately linearly when summed.

• In contrast to the FFT setting, the residual LSTM
does not appear to offer any gains in comparison
with the other LSTM models. Perhaps because of
the much smaller dimension of the features, the Un-
ordered LSTM model, which we train with data aug-
mentation by randomizing the order in which mix-
tures of processed, performs best.

• As M continues to increase, the accuracies of the
LSTM models flatten out rather than continuing to
approach the baseline. This trend suggests that even
when dozens of notes are mixed together, we may
be still able to estimate certain features of these mix-
tures based only on the features of the source files.

6.3 Computation Time

While the exact computation time of FFT or MFFC fea-
tures depends on the implementation, the length of the au-
dio files, and the availability of parallel processing, esti-
mating features with the networks we explore is, in prac-
tice, significantly faster than computing the real features.
Though it is beyond the scope of this paper to report results
on a comprehensive list of hardware and software config-
urations, as a point of reference, Table 3 displays running
times for parallel computation on our research server con-
taining 20 CPU’s and one Tesla K40 GPU.

7. CONCLUSIONS

In this work, we experiment with neural models for pre-
dicting unobserved audio features based on precomputed
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Model 2 Mixtures 3 Mixtures 6 Mixtures 12 Mixtures 20 Mixtures 30 Mixtures
Baseline 1 1 1 1 1 1
Linear (Mean) 0.44 0.60 0.73 0.85 0.99 1.16
Linear (Energy-Weighted) 0.15 0.25 0.41 0.62 0.83 1.04
MLP 0.72 1.10 1.23 1.24 1.17 1.36
LSTM (Unordered) 0.54 0.69 0.78 0.81 0.89 1.34
LSTM (Ordered) 0.55 0.73 0.85 0.88 0.86 1.35
LSTM (Residual) 0.49 0.67 0.84 0.85 0.81 0.91

Table 1. Mean Squared Error for predicting FFT features across different numbers of mixtures.

Model 2 Mixtures 3 Mixtures 6 Mixtures 12 Mixtures 20 Mixtures 30 Mixtures
Baseline 1 1 1 1 1 1
Linear (Mean) 0.43 0.58 0.81 1.03 1.32 1.54
Linear (Energy-Weighted) 0.36 0.59 0.94 1.30 1.69 2.02
MLP 0.42 0.55 0.71 0.79 0.88 0.93
LSTM (Unordered) 0.30 0.46 0.57 0.63 0.71 0.70
LSTM (Ordered) 0.30 0.46 0.61 0.66 0.73 0.73
LSTM (Residual) 0.32 0.47 0.64 0.71 0.77 0.77

Table 2. Mean Squared Error for predicting MFCC features across different numbers of mixtures.

Figure 3. The neural models outperform the linear combi-
nations significantly, widening the gap as M increases.

features of source files in a mixture, examining the cases of
FFT features, which should behave linearly when summed,
as well as MFCC’s, which are known to be nonlinear. We
find that in the case of nonlinear features, LSTM models
significantly outperform the methods currently in use for
feature estimation, and further, that while the linear pre-
dictors perform well for small numbers of mixtures, as we
mix more and more signals together, the neural models be-
gin to outperform the linear methods as well.

Our results suggest that we may be able to improve cur-
rent assisted orchestration systems [10] by replacing fea-
ture estimation components with LSTM-based nonlinear
predictors. As with any real-world problem that involves
perceptual similarity rather than comparisons in a feature
space, however, more work is needed to understand how
these models may interact with other components of sys-
tems they may be embedded in. Deep neural network mod-

Feature Real LSTM LSTM
(CPU x 20) (CPU x 20 ) (GPU x 1)

FFT (Mix 2) 14.71 0.32 0.07
FFT (Mix 30) 14.71 4.75 1.10
MFCC (Mix 2) 73.50 0.03 0.01
MFCC (Mix 30) 73.50 0.34 0.15

Table 3. Time in seconds to compute or estimate energy-
weighted FFT or MFCC features for the 2000 audio files in
the test set using parallel processing. FFT (Mix 30) refers
to the FFT feature of a mixture of 30 audio files, which
requires 30 autoregressive LSTM steps. LSTM refers to
the Residual LSTM model.

els can and do adapt to any correlations present in the data,
so understanding how these models are making there esti-
mates may be important.

Beyond tasks like assisted orchestration in which we
cannot always observe the features of an audio file be-
cause of computational limitations, we hope that future
work may be able to take advantage of the methods for
feature estimation explored here in order to make creative
use of data like the Million Song Dataset, for which pre-
computed features are available but raw data cannot be dis-
tributed.
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ABSTRACT

A common method to create beat annotations for music
recordings is to let a human annotator tap along with them.
However, this method is problematic due to the limited hu-
man ability to temporally align taps with audio cues for
beats accurately. In order to create accurate beat annota-
tions, it is therefore typically necessary to manually correct
the recorded taps in a subsequent step, which is a cumber-
some task. In this work we aim to automate this correction
step by “snapping” the taps to close-by audio cues—a strat-
egy that is often used by beat tracking algorithms to refine
their beat estimates. The main contributions of this paper
can be summarized as follows. First, we formalize the au-
tomated correction procedure mathematically. Second, we
introduce a novel visualization method that serves as a tool
to analyze the results of the correction procedure for po-
tential errors. Third, we present a new dataset consisting
of beat annotations for 101 music recordings. Fourth, we
use this dataset to perform a listening experiment as well as
a quantitative study to show the effectiveness of our snap-
ping procedure.

1. INTRODUCTION

Identifying the time positions of beats in music record-
ings has been a core task in the Music Information Re-
trieval (MIR) community for a long time. Irrespectively
of whether the goal is to evaluate beat tracking algorithms
or to train new data-driven models for beat detection, it
is necessary to have accurate annotations that describe the
temporal locations of beats in music recordings. The beat
positions of a music recording are often loosely defined as
the time instances where a human would tap along when
listening to it [6]. A straightforward approach to create
beat annotations is therefore to record these taps—for ex-
ample by using a specialized audio player software like
Sonic Visualizer [5], which allows annotators to tap on a
key of the keyboard. This method was used, for exam-
ple, in [20, 21, 25, 26]. However, this procedure is prob-

c© Jonathan Driedger, Hendrik Schreiber, W. Bas de Haas,
and Meinard Müller. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Jonathan Driedger,
Hendrik Schreiber, W. Bas de Haas, and Meinard Müller. “Towards Au-
tomatically Correcting Tapped Beat Annotations for Music Recordings”,
20th International Society for Music Information Retrieval Conference,
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Figure 1. (a) Excerpt of the spectrogram for item 006
from our dataset, (b) taps by the annotator, (c) beat posi-
tions as estimated by [4], (d) automatically corrected taps.

lematic due to the limited ability of humans to accurately
align their taps with acoustic cues that are associated with
beats such as instrument onsets, percussive sound events,
or chord changes [29, 30]. Perception literature indicates
that, depending on the complexity of a recording, the onset
times of two tones must differ by less than 40 millisec-
onds such that they may be perceived as being temporally
aligned [19]. This means that when sonifying human-made
taps with a click track, a click and an audio cue for a beat
have to both fall into an interval of at most 40 milliseconds
such that the click could be perceived as accurately repre-
senting the beat position. 1 This is often not the case as is
illustrated in Figure 1. In Figure 1a, we see a short spec-
trogram excerpt of the song “T’envoler” by Paul Daraiche
(item 006 in our dataset, see Table 1 for the YouTube link).
One can observe the vertical spectral structures originating
from the piano onsets in the song’s intro. The human-made
taps are visualized in Figure 1b. They roughly coincide
with the audio cues, but precede them by about 80 millisec-
onds most of the time. To obtain more accurate beat anno-
tations, several approaches have been used in the past. One
way is to manually correct the taps of a human annotator
in a subsequent step [20,21]. However, manual corrections
are cumbersome to perform since often every single tap has
to be corrected individually—usually in a drag&drop fash-
ion using tools like Sonic Visualizer. Another approach,
which has been used in [15, 24], is to compute an initial

1 Note that the 40 milliseconds constitute an upper bound. Depending
on the quality of the audio cue this threshold may be significantly lower.
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estimate of the beat positions using a beat tracking algo-
rithm. Beat trackers such as [3, 14] actively aim to “snap”
potential beat candidates to close-by audio cues in order to
create accurate results. In Figure 1c, we see the beat posi-
tions as estimated by madmom, a Python library featuring
a state-of-the-art beat tracker [3, 4]. The estimated beats
are well aligned with the audio cues visible in the spec-
trogram. However, we also see that only every other beat
has been captured. Correcting these kinds of errors made
by beat tracking algorithms can be just as cumbersome as
manually correcting the taps of a human annotator.

In this paper, we propose a new way of creating beat
annotations. Our idea is to mostly automate the manual
correction of human-made taps by using the concept of
snapping beat candidates to audio cues. The intuition is
that the taps made by an annotator constitute good beat
candidates that are located in close proximity to the ac-
tual beat positions. Therefore, snapping them to nearby
audio cues should accurately correct the vast majority of
taps. This is visualized in Figure 1d, where the automati-
cally corrected taps are aligned with the audio cues in the
spectrogram. In this paper, we explore this simple idea in a
systematic fashion. First, in Section 2, we model the auto-
matic correction procedure mathematically. Then, in Sec-
tion 3, we propose a novel visualization that can serve as
a tool to reveal rhythmically challenging sections in music
recordings as well as potential errors made by the snap-
ping procedure. Section 4 is dedicated to experiments. In
Section 4.1, we apply our proposed annotation strategy to
create a dataset of beat annotations for 101 music record-
ings from YouTube. In Section 4.2, we then discuss the
results of a listening experiment that shows that human lis-
teners perceive the corrected taps as more accurate than the
original taps. In Sections 4.3, we finally conduct a small
study that investigates the effect of using either the origi-
nal or the corrected taps as ground truth for the quantita-
tive evaluation of different beat tracking algorithms. For
the purpose of reproducibility, we made our Python im-
plementations (snapping procedure and visualizations) as
well as the dataset of beat annotations along with YouTube
identifiers publicly available at [13].

2. PROPOSED PROCEDURE

In this section, we formalize our procedure for the auto-
matic correction of human-made taps. We start by explain-
ing the core ideas in Section 2.1 and discuss choices of
specific processing steps in Section 2.2.

2.1 Basic Principle

The goal of our proposed procedure is to correct the
human-made taps by snapping them to nearby audio cues
in the music recording. Our fundamental assumption is
that each of the taps indicates the rough position of a beat
such that the “real” beat position can be found in close tem-
poral proximity. Given the music recording x : Z → R
(Figure 2a), we first derive an activation curve a : Z → R
(Figure 2b) that is sampled at a sampling rate of fs ∈ R+
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Figure 2. Proposed tap correction procedure. (a) Music
recording x with taps t. (b) Activation curve a. (c) De-
viation function Dt with envelope reflecting the inter-tap-
intervals, tap positions indicated by red line, and deviation
sequence d indicated by light-red dots. (d) Deviation func-
tion Dt̃ with corrected taps t̃ indicated by red line. (e) Ac-
tivation curve a with corrected taps t̃ indicated in red.

(we use fs=100 Hertz as suggested in [4,12,17]). An acti-
vation curve a can be seen as a function whose values a(n)
reflect how likely it is that there is a beat present in the mu-
sic recording x at time n/fs. We discuss different choices
for activation curves in Section 2.2. Along with x and a,
we are also given the sequence of taps t = [t0, . . . , tM−1]
with tm ∈ Z. Each tap tm indicates that the human annota-
tor tapped at time tm/fs. In our example in Figure 2b one
can see that the taps are not well aligned with the peaks in
the activation curve a.

With the activation curve and the taps, we now compute
the deviation function Dt : Z× [0 : M−1]→ R by

Dt(n,m) := wm(n) a(tm + n)

for n ∈ Z,m ∈ [0 : M−1]. Here, wm : Z → R is a Hann
window centered around zero, whose length is defined by
the inter-tap-interval

∆tm := tm+1 − tm

form ∈ [0 : M−2] and we define ∆tM−1:=∆tM−2 (such
that ∆tm is defined for all taps). The reason for using a
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window function is to effectively implement our assump-
tion that the taps are located in close temporal proximity to
the actual beat positions. The more temporal distance be-
tween a tap and a high activation value, the less likely it is
that the activation value reflects the actual beat the tap was
meant to represent. In the visualization of Dt seen in Fig-
ure 2c, the length of wm is indicated with two additional
black lines in each column of Dt. This “envelope” of Dt
serves as a visual representation of the individual inter-tap-
intervals. In our example, the envelope does not exhibit
any significant variation across the shown taps which in-
dicates that the annotator tapped with an almost constant
tempo. However, when looking at the individual activa-
tion maxima in each column ofDt—which can be found at
deviations between 70 and 110 milliseconds—it becomes
obvious that the inaccuracy of the human-made taps is not
just a constant offset but varies over time.

In the next step we compute the deviation sequence
d = [d0, . . . , dM−1], dm ∈ Z, that indicates the individual
corrections we will apply to each tap tm (Figure 2c). There
are several options of how to derive d from Dt which we
discuss in Section 2.2. From t and d we finally compute
the automatically corrected taps t̃ = [t̃0, . . . , t̃M−1] by

t̃m := tm + dm .

Based on t̃ we now can also compute the deviation func-
tionDt̃ (Figure 2d). Note that in this visualization, all high
activation values are now centered around a deviation of
zero. Furthermore, the envelope of Dt̃ does not differ sig-
nificantly from the envelope of Dt which indicates that the
inter-tap-intervals in t̃ are similar to those in the original
tap sequence t. This can be verified when plotting t̃ on
top of the activation curve a where the taps now accurately
align with the peaks (Figure 2e).

2.2 Technical Realization

In traditional music signal processing, a common choice
for activation curves are novelty curves, see for exam-
ple [2, 7, 27]. These functions are designed to reflect sud-
den temporal changes in a music recording’s spectrogram,
which are typically caused by percussive sound events such
as instrument onsets. As beats often go along with these
kinds of sound events it is reasonable to use a novelty curve
as activation curve in our tap correction procedure. We de-
note this activation curve by anov and the resulting devia-
tion function for taps t by Dnov

t .
Another option is using activation curves based on data-

driven models. Recently, models that were trained to trans-
form spectrogram representations of music recordings into
activation curves have significantly improved the quality of
state-of-the-art beat tracking algorithms [16]. For example
in [4], a deep neural network (DNN) using a bidirectional
long-short-term memory architecture is trained on a large
collection of beat-annotated music recordings for that task.
It was shown in [4] that the peaks in activation curves de-
rived using this model align well with beats in the underly-
ing music recordings. Using it in our procedure is therefore
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Figure 3. Excerpts of different deviation functions and
deviation sequences for item 011. (a) Dnov

t with dmax

derived from it. (b) DDNN
t with dmax derived from it.

(c) Dnov
t with dcon derived from it. (d) DDNN

t with dcon

derived from it.

reasonable as well (we use the implementation freely avail-
able in [3]). We denote the resulting activation curves by
aDNN and the deviation function by DDNN

t , respectively.
We also have several choices concerning the derivation

of the deviation sequence d from Dt. A straight-forward
way is to simply pick the deviation that yields the highest
activation value in each column of Dt as

dmax
m := argmax

n
Dt(n,m) .

While this method considers every tap individually, it is
also possible to incorporate some contextual information
into the derivation by defining

dcon:= argmax
[d0,...,dM−1]

Dt(d0, 0)
M−1∏
m=1

Dt(dm,m) T (dm−1, dm),

with T : Z× Z being a transition function defined by

T (i, j) := e−λ|i−j|

with i, j ∈ Z. The sequence dcon can be derived using dy-
namic programming. The idea, inspired by [14, 22], is that
subsequent human taps are unlikely to drastically vary in
their deviation from the actual beat. To reflect this, the use
of the transition function T makes it unlikely to have large
deviation jumps from one tap to the next (we use λ=0.1
in our experiments). Furthermore, this method also allows
us to correct non-event beats [18], meaning taps for which
no cue in the music recording exists. In this case, the acti-
vation curve shows no salient values around the tap and T
favors a constant deviation until there are clear cues in the
activation curve again.

Figure 3 shows the two types of deviation functions
Dnov
t and DDNN

t in combination with the two methods for
deriving the deviation sequences dmax and dcon. We use
item 011 in our dataset as an example (see Table 1). It
is a rather old recording featuring singing voice, acoustic
guitar, mouth-organ, and piano. Comparing Dnov

t in Fig-
ure 3a/c to DDNN

t as seen in Figure 3b/d, we can observe
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item YouTubeID artist song title
006 I3gHugP6bPE Paul Daraiche T’envoler
009 hRFLv29K__o La Sonora Dinamita Escandalo
011 M7u5SdjDSQQ The Lovin’ Spoonful Daydream
025 8jsFGdeWNPo Nicky Jam Juegos Prohibidos
040 1zrxnqejwCk Los Tigres Del Norte Mañanitas Tapatias
046 ebZZpVFUQDY Green Valley Relaja
048 B_e7QbWc5mI Orthodox Celts Rocky Road To Dublin

Table 1. List of dataset items used throughout this pa-
per. The YouTube videos can be found by using the URL
www.youtube.com/watch?v=[YouTubeID].

that Dnov
t is noisier while the structures seen in DDNN

t are
smoother and more salient. This becomes obvious when
comparing the two dmax in Figure 3a and b. While the
dmax based on Dnov

t jumps back and forth between devia-
tions of about −0.2 and +0.2 seconds, dmax for DDNN

t is
more stable, showing only a few jumps between tap indices
115 and 135. The strength of using contextual information
in the computation of the deviation sequence is visible in
Figure 3c, where we see dcon based onDnov

t . Here, similar
as in Figure 3b, most deviation values cluster around −0.2
seconds, except for a short passage of deviation 0 around
tap index 135. This is caused by a single very strong acti-
vation value which does not coincide with a beat position
in the recording. In the deviation function DDNN

t this spu-
rious activation is not present and the deviation sequence
dcon in Figure 3d does not show prominent jumps. When
listening to the sonified automatically corrected taps based
on this deviation sequence, one can hear that they are in
fact very accurate. Overall, we made similar observations
for the vast majority of songs in our dataset. For this rea-
son, we chose the combination of DDNN

t with dcon in our
subsequent experiments and also refer to them by just Dt
and d for the sake of simplicity.

3. ANALYSIS OF AUTOMATED CORRECTIONS

Although the method introduced in the previous section
is capable of automatically correcting the vast majority of
taps, there is still potential for error. To find these errors ef-
ficiently, visualizing the deviation functionsDt andDt̃ can
give helpful insights into the automatic correction process,
point to problematic sections in music recordings, and re-
veal anomalies in the human-made taps. In Figure 4, we
show several examples.

Figure 4a depicts the deviation functions of the original
and automatically corrected taps for item 009. This latin
american song features strong and steady rhythmic pulses,
which is reflected in the activation values visible in Dt. In
each column of Dt, there is basically only one high activa-
tion value. The deviation sequence d nicely captures this
train of high activations, which leads to a very clean devia-
tion function Dt̃. Note that the inter-tap-intervals in Dt̃ are
more regular than inDt, which can be seen by the envelope
of Dt̃ being less noisy than the one of Dt. Based on this
visualization, it is rather safe to assume that the corrected
taps are accurate with virtually no errors. One thing note-
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Figure 4. Deviation functions Dt (left) and Dt̃ (right)
for excerpts of different items from our proposed dataset.
(a) Item 009 (2:25 to 3:23), (b) item 025 (2:12 to 3:22),
(c) item 048 (3:30 to 4:18), (d) item 046 (2:21 to 3:49),
(d) item 040 (0:37 to 1:13).

worthy about this example is that d has a fairly constant
offset of about −90 milliseconds, meaning that almost all
original taps were about 90 milliseconds behind the beat.
This was caused by technical problems in the process of
recording the taps of the human annotator, which caused
delays between the physical taps and the registered times.

In Figure 4b, we see the deviation functions for item
025. This hip hop song again has a very clear and promi-
nent beat, which is reflected in the activations in Dt. How-
ever, around the 200th beat, the song has a short part with-
out any percussions. This manifests in Dt as a blurry sec-
tion, which is caused by low and diffuse activation values.
Since this indicates that there are fewer audio cues that
the procedure can utilize to correct the original taps, such
sections should be manually inspected after the automatic
correction step. In this particular example the inspection
showed that no manual corrections were necessary.

As a third example, we see the deviation functions for
item 048 in Figure 4c. In the last part of this Irish folk
song the bass drum plays a swing-like rhythm. This pattern
causes the activation structures as seen in Dt with strong
activations around deviation zero and weaker ones at about
±200 milliseconds for every other tap. In the computation
of the deviation sequence d, this lead to an error at tap in-

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

203



dex 510, where the tap was incorrectly snapped to one of
the activations caused by the rhythmic ornaments. This
single tap, misplaced by the correction procedure, can be
easily detected in our visualization, since it caused a dis-
tinct structure in the envelope of Dt̃, where it manifested
in a “lightning” pattern.

A similar error can be seen in Figure 4d, which shows
the deviation functions of an excerpt from item 046. This
acoustic song featuring vocals, guitar, and keyboard is
pretty challenging for beat tracking due to the lack of
strong audio cues for beats, as can be seen by the rather
noisy activations in Dt. As in the previous example,
the used rhythmic pattern, this time played by the guitar,
causes strong activations at non-beat positions. In the com-
putation of the deviation sequence d, these lead to a section
of about 30 taps that were incorrectly snapped to these off-
beat guitar accents rather than the actual beats. This can
be seen by d being shifted to a deviation of about −0.2
seconds from tap index 210 to 240. The visualization of
d allowed us to easily locate and understand this problem-
atic passage, which could then be corrected manually in a
post-processing step.

As a final example, Figure 4e shows the deviation func-
tions of an excerpt from item 040. This Polka-like song
has a 3/4 time signature, but the third beat in each bar is
consistently played late. 2 The human annotator tapped
through the song in a rather straight fashion, not explicitly
reflecting this rhythmic pattern. The automatic correction
procedure then aligned each tap with the closest instrument
onset, resulting in unevenly spaced corrected taps. This
is visible as regular spike pattern in the envelope of Dt̃.
Whether the corrected taps reflect the “true” beat positions
is dependent on whether one sees the delayed note onsets
as part of the rhythm or mere ornamentation. Either way,
this interesting example was easily revealed by our visual-
ization of the deviation functions.

4. EXPERIMENTS

In this section, we evaluate our proposed procedure. We
first introduce in Section 4.1 a dataset of beat annotations
which we created using our correction procedure. Then,
in Section 4.2, we discuss the results of a listening experi-
ment to show that the corrected taps are actually perceived
as being more accurate than the original taps. Finally, in
Section 4.3, we show how the choice of annotation used
as ground truth influences the evaluation of beat tracking
algorithms.

4.1 The Dataset

In order to show the usefulness of our proposed tap cor-
rection procedure in a real-world annotation scenario, we
applied it to create a new dataset of beat annotations. To
this end, we selected 101 different music recordings avail-
able on YouTube. 3 This collection, which consists of

2 This observed rhythmic pattern is rather unusual for the style of the
song but commonly found in Viennese Waltz.

3 The dataset is part of a Chordify project that assesses the quality of
automatically generated annotations in a large scale industry setting. The

(a) (b)

Figure 5. Percentage of the 41.011 original taps that were
shifted in the two consecutive automatic and manual cor-
rection steps. Note the different scales of the vertical axes.
(a) Creating t̃ from t, (b) creating t̃′ from t̃.

about 7.25 hours of music in total, comprises a variety
of different genres, recording conditions and instrumenta-
tions. Similar to [1, 23], we decided to use music record-
ings from YouTube to ensure reproducibility of our results.
For each of these recordings, a musically experienced an-
notator tapped along to create the tap sequences t using
Sonic Visualizer, adding up to 41.011 individual taps. The
sequences of automatically corrected taps t̃were then com-
puted for each recording using the method described in
Section 2. Each sequence t̃ was then manually inspected
by the first author using Sonic Visualizer. In this step, a
total of 331 incorrect taps were identified across 54 of the
101 sequences and corrected manually. We denote the re-
sulting fully corrected tap sequences by t̃′.

Figure 5 summarizes the distribution of shifts applied to
the individual taps in the two consecutive correction steps.
In Figure 5a we can see that about 25% of the original taps
were shifted by 40 milliseconds or more by the automatic
correction procedure. This means that in case these cor-
rections would have been done manually, about one in four
taps, would have been shifted—even when assuming that
smaller inaccuracies where taps were misaligned with au-
dio cues by less than 40 milliseconds would not have been
considered. To create the fully corrected taps on the other
hand, less than 1% of the 41.011 original taps were shifted
at all, see Figure 5b. The shifts applied in the manual cor-
rection step were equally distributed between very small
and larger shifts which can be seen by the rather constant
slope of the graph.

The dataset containing all three annotations t, t̃, and t̃′

for each recording as well as metadata and the respective
YouTube links is available at [13].

4.2 Listening Experiment

With the creation of the fully corrected taps t̃′, the
main question is whether the applied corrections actually
make the beat annotations perceptually more accurate—
and therefore better. To answer this, we conducted a lis-
tening experiment. For each of the 101 recordings in our
dataset, we created two new recordings by sonifying the
taps t as well as the fully corrected taps t̃′ as a click
track and superimposed each of them on the original mu-

selected recordings reflect a random sample of songs used on Chordify,
weighted by their popularity on the service.
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(a) (b)

Figure 6. Average beat F-measures on our dataset for
four different beat tracking algorithms when using differ-
ent ground truth annotations. (a) Original taps t, (b) fully
corrected taps t̃′.

sic recording. Note that we chose to use the fully corrected
taps t̃′ rather than the automatically corrected taps t̃ be-
cause the difference between t̃ and t̃′ is very small and
we did not want the participants to focus on the few no-
ticeable mistakes made by the automatic correction proce-
dure. Three musically trained people took part in the ex-
periment, none of them being one of the authors. Each par-
ticipant was presented with the 101 pairs of recordings and
asked to pick the recording with the more accurate click
track from each pair. The order in which the two record-
ings of a pair were presented was random and the partici-
pants did not know whether the clicks they heard were the
original taps t or the fully corrected taps t̃′. They were
able to listen to each recording for as long and as often
as they liked before making their decision. Additionally,
they had the opportunity to give comments. The complete
set of answers and comments can be found at [13]. Look-
ing at all 303 given answers individually (three participants
times 101 pairs), 89% of the time the participants found the
fully corrected taps t̃′ to be more accurate than the origi-
nal taps t. For 72% of the 101 pairs, all three participants
even consistently perceived t̃′ to be more accurate than t.
Having a closer look at the participants’ answers and com-
ments, it turned out that in many instances where a partic-
ipant chose the original taps to be more accurate than the
fully corrected taps, the two click tracks were perceived
as being very similar (“Both are about the same quality,
IMO.”). Furthermore, some of the comments also indicate
that sometimes there was also a degree of personal prefer-
ence involved in the decision (“...[the click track] lags like
a proper gospel drummer.”). Overall, the results show that
the fully corrected taps t̃′ are commonly perceived as more
accurate than the original taps t.

4.3 Quantitative Study

As a final experiment, we were interested in the effects of
using either the original taps t or the fully corrected taps t̃′

as ground truth for a quantitative evaluation of beat track-
ing algorithms. We investigated four different algorithms:
The Queen Mary beat tracker (BT1) [10], the librosa beat
tracker (BT2) [14], the Aubio beat tracker (BT3) [8, 9],
and our own implementation of [4] (BT4). Note that the
madmom beat tracker [3,4], which would have an intrinsic
advantage since our tap correction procedure is built upon

the same activation curve, is not among them. For each of
the four beat tracking algorithms, we computed the beat F-
measure [11], a popular beat tracking evaluation measure,
for all recordings in our dataset. We did this two times,
once taking the original taps t as ground truth and once the
fully corrected taps t̃′, see Figure 6a and 6b, respectively.
An important parameter in the computation of the beat F-
measure is the tolerance, which determines the maximal
temporal distance between an estimated beat and a ground
truth beat such that the estimate can be considered correct.
In Figure 6, we see that for a very large tolerance (140
milliseconds and above) it basically makes no difference
whether we use t or t̃′ as ground truth. This makes sense
when recalling that most of the corrections applied were
smaller than 100 milliseconds (see Section 4.1). However,
this changes when considering a smaller, and hence more
realistic tolerance. The default tolerance as implemented
in mir_eval [28], the Python library we used for this evalu-
ation, is 70 milliseconds, indicated by dotted black lines in
Figure 6. At this tolerance, the computed beat F-measures
differ noticeably depending on the ground truth. For exam-
ple, BT4 achieves an average beat F-measure of 0.68 when
the original taps t are used as ground truth, but 0.77 when
the fully corrected taps t̃′ are used. The difference is even
more prominent when comparing BT1 and BT2. Here,
BT1 scores much better (0.65) than BT2 (0.58) when com-
paring the two algorithms based on the original taps. How-
ever, when using the fully corrected taps as ground truth,
the algorithms perform nearly identically (both 0.73). For
smaller tolerances, the differences between the individual
algorithms become even more salient. For example, at a
tolerance of 30 milliseconds and using the original taps as
ground truth, BT1 and BT2 differ in beat F-measure by
0.25 (scoring 0.45 and 0.20, respectively), while differing
by 0.59 (scoring 0.69 and 0.10, respectively) on the fully
corrected taps. This shows that it can make a substantial
difference for quantitative evaluations of beat tracking al-
gorithms whether the underlying ground truth annotations
are “only” human-made taps or corrected ones.

5. CONCLUSIONS

In this paper we proposed and formalized a simple pro-
cedure for correcting tapped beat annotations by automati-
cally “snapping” the tap positions to cues in the underlying
music recording. Furthermore, we proposed a visualiza-
tion that can help identifying errors made by the correction
procedure as well as rhythmically interesting passages in
music recordings. Finally, we created a new dataset for
which we showed that beat annotations corrected with our
procedure are perceived as being more accurate and that
using them for the quantitative evaluation of beat tracking
algorithms may significantly impact the evaluation results.
The last observation motivates us to apply our proposed
correction procedure to beat annotated datasets commonly
used in the MIR community. We believe that our proposed
visualization could help in identifying incorrectly anno-
tated recordings and therefore getting a more realistic view
on the performance of beat tracking algorithms.
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ABSTRACT

Music prediction and generation have been of recurring
interest in the field of music informatics: many models
that emulate listeners’ musical expectancies, or that pro-
duce novel musical content have been introduced over the
past few decades. So far, these models have mostly been
evaluated in isolation, following diverse evaluation strate-
gies. Our paper provides an overview of the new MIREX
task Patterns for Prediction. We introduce a dataset, which
contains monophonic and polyphonic data, both in sym-
bolic and audio representations. We suggest a standard-
ized evaluation procedure to compare algorithmic musi-
cal predictions. We compare two neural network models
to a baseline model and show that algorithmic approaches
can correctly predict about a third of a monophonic seg-
ment, and around half of a polyphonic segment, with one
of the neural network models achieving best results. How-
ever, other approaches to algorithmic music prediction are
needed to achieve a more rounded picture of the potential
of state-of-the-art methods of music prediction.

1. INTRODUCTION

Prediction of future events is fundamental to human and
artificial intelligence, and has therefore been discussed as
a core research interest bridging cognitive psychology and
machine learning [5]. Music, with its complex event se-
quences extending over time, provides an excellent setting
for the study of prediction.

In music cognition, human prediction of future events,
or expectation, is studied from theoretic, behavioral, imag-
ing, and modeling perspectives. Some theoretical work [2,
15] distinguishes between veridical, schematic, and dy-
namic expectations: veridical expectations occur due to
familiarity with a musical piece, schematic expectations
are elicited by familiarity with a genre, and dynamic ex-

c© Berit Janssen, Tom Collins, Iris Ren. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Berit Janssen, Tom Collins, Iris Ren. “Algorithmic ability
to predict the musical future: Datasets and evaluation”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

pectations manifest in-the-moment predictions, when, con-
sciously or subconsciously, a listener becomes attuned to a
pattern in a novel piece. It has been claimed that the plea-
sure we derive from music resides in the tension between
these three forms of expectation [15].

While the full complexity of expectation in music may
still be hard to capture in computational models, the goal
of this paper is to give an overview of how computational
models may emulate human expectations through predic-
tion of future musical events, and how we should evaluate
such models.

Our main contributions are as follows: first, we review
different approaches to modelling expectation in music.
Second, we introduce a dataset on which such models can
be trained and evaluated. Third, we propose two evalua-
tion tasks and associated evaluation measures. 1 Fourth,
we provide the results of a baseline and two more com-
plex models on the tasks. Finally, we discuss findings and
recommendations for future model development and eval-
uation.

2. RELATED WORK

2.1 Approaches to music prediction

2.1.1 Markov models

Markov models have been influential in music prediction:
statistics on transitions between musical events may be
used to generate predictions for unseen musical events.
Musical events may be represented in various ways, such
as pitch, duration, onset, metric weight, and so on. There-
fore, it has been suggested to build distinct models for dif-
ferent combinations of music representations [11]. Markov
models trained on music corpora may very well serve to
model schematic expectation, such as a leading tone to be
followed by an octave. Dynamic (i.e., work-specific) ex-
pectations may also be modelled through a Markovian ap-
proach through training on a musical piece itself, where
the model is incrementally updated as the piece progresses.
The question of how to combine models of various music
representations, or how to combine models trained on cor-
pora (“long-term models”) and models trained incremen-

1 The corresponding MIREX task description, datasets, and evaluation
code can be found at https://tinyurl.com/y455cf97
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tally on a piece (“short-term models”) has been experimen-
tally investigated [26], but on specific styles, which might
not generalize to other musical genres.

Even though some models can theoretically extend over
very long contexts, the question remains whether Marko-
vian models, which are by nature “forgetful”, will cap-
ture longer structure that may facilitate precise predictions,
such as repetition of themes in a Classical piece of music,
or the return of the theme in a jazz performance. [36]

2.1.2 Neural networks

Over the last two decades, interest in neural network mod-
els for music prediction has been increasing. The first at-
tempts in this direction made use of recurrent neural net-
works (RNNs) [23], with an input, hidden and output layer,
which predict future states of sequential input data. Vari-
ants of RNNs, such as long short-term memory models
(LSTM), have also been applied to music [13]. Various ex-
tensions of such models have been presented since [4, 14].

Another class of neural networks, convolutional neural
networks (CNN), is usually used for image data. A musical
composition may also be thought of as an image rendered
in time-pitch or time-amplitude space. Some authors there-
fore applied CNNs to piano roll representations of sym-
bolic music [12], or to audio [34] for music prediction.

While these and other neural network architectures have
resulted in generation and prediction of music, the output
of the models in itself is often not easy to predict. One of
the challenges for neural network models, as for Marko-
vian models, is the degree to which they can capture large-
scale structure in a musical piece, and recreate dynamic
expectations that may arise within a piece in itself.

2.1.3 Pattern discovery

Yet another approach to predicting the musical future is
to search for repeating patterns within the piece. This ap-
proach emulates dynamic expectations of a listener (pat-
terns occur in earlier parts of a piece, leading to predictions
based on later, partially complete occurrences of the same
patterns [6, 26]), but less so schematic expectations.

Various algorithms have been proposed to discover re-
peated patterns within a piece [7, 18, 22, 28, 30, 35], which
differ in the kinds of patterns they aim to discover, in the
way music is represented, and in the algorithms used to
find repetitions [16]. These algorithms have been tested
on benchmarks of annotated patterns, while evaluation by
prediction is suggested but yet-to-be implemented [21].

2.2 Evaluating music prediction

To ascertain how models compare to human expectations,
various approaches have been used: some of them fall in
the domain of music generation, while others fall in the
domain of information theoretic measures.

2.2.1 Information-theoretic measures

In order to investigate musical predictions of a model with
information theoretic measures, the model is trained on a

corpus or a corpus subset, then exposed to a novel musi-
cal piece. For each musical event, the likelihood of that
event according to the model is measured. Alternatively,
the uncertainty of the model after each note in predicting
the following melody note may be recorded. Ratings of
likelihood or uncertainty may then be compared to human
ratings from experimental research.

To compare likelihood as rated by a model to human
ratings, priming experiments may serve as an evaluation
ground: in such experiments, participants had to give an
indication as to how well, given a melodic context, a note
fitted their expectations [17, 31]. There were also exper-
iments on uncertainty, in which participants were asked
to indicate how uncertain they were of what might follow
each note in a Bach chorale [19]. As phrase boundaries of-
ten coincide with points of greater uncertainty, human seg-
mentations have also been occasionally used as a ground
truth for evaluating model predictions [27].

2.2.2 Music generation

A very common way to evaluate predictions from a model
is the demonstration of music generated by a given model
(e.g., [11]). While this is informative, it is not self-evident
how to judge the quality of such an output. Music prac-
titioners of a given genre may be asked as judges [32],
but aesthetic judgments alone may not reveal much about
a model’s shortcomings [1].

Another approach to evaluating music generation
is through comparing generated music with human-
composed melodies. Human compositions can then be
used as the touchstone of how well a model captures struc-
ture and style [20]. We choose this approach by providing
models with a short piece of music, or prime, and instruct
the models to generate a continuation, which we evaluate
against the true continuation. Moreover, we test how suc-
cessfully a model distinguishes between the true continua-
tion and an artificial, foil continuation.

3. A DATASET FOR MUSIC PREDICTIONS

3.1 Dataset construction

We provide small, medium, and large development
datasets (100, 1, 000, and 10, 000 pieces, respectively).
This caters to different approaches to designing mod-
els for the task, some of which are more data-intensive
than others. Each dataset has audio/symbolic and mono-
phonic/polyphonic variants.

Pieces were selected at random from the Lakh MIDI
Dataset (LMD) [29] with the aim of creating primes last-
ing≈ 35 sec according to tempo information. True contin-
uations were selected – and foil continuations generated –
such that onsets (note start times) occurred in a 10 quarter-
note-beat window.

We also constructed a test dataset from another cor-
pus of MIDI files, which is similar in nature to LMD.
The test dataset also contains audio/symbolic and mono-
phonic/polyphonic variants, and provides primes, true and
foil continuations. In keeping with the MIREX guidelines,
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Figure 1. Item from the large, polyphonic variant of the development dataset. Musical provenance unknown.

we will not reveal details about the provenance of the test
dataset. What we can say is that the source for the test
dataset contains approximately 30, 000 files, and that both
this source and LMD are gathered from sites that represent
musical interests and tastes, broadly construed. The num-
ber of items in the test source tagged as “pop”, for instance,
is 9, 165. Other items have similar tags, however, such as
“latin pop”. To our knowledge, no such analysis of genres
exists for the LMD, so remarks about the overlap of gen-
res and content between our training and test datasets are
necessarily speculative.

MIDI files were selected at random, imported using
midi-convert, 2 quantized, and then the following crite-
ria were applied when generating monophonic primes and
continuations:

1. A prime had to contain at least 20 notes;
2. The maximum inter-onset interval in a prime could not

exceed 8 quarter-note beats;
3. A continuation had to contain at least 10 notes;
4. The channel from which material was selected had to

be suitably monophonic prior to skylining (see below),
meaning at least 80% of minimal segments [25] had to
be single notes or rests.

Skylining means to select the highest-sounding notes
at each onset and return only those notes, perhaps with
modified durations, so that the output is truly monophonic.
The rationale for only skylining material that was already

2 https://www.npmjs.com/package/@pioug/
MidiConvert

80% or more monophonic is that skylining inherently poly-
phonic material often results in odd-sounding or implied-
polyphonic output. For polyphonic dataset generation, cri-
teria (1)-(3) were the same, but a replacement for (4) was
needed because parsed MIDI files sometimes contain erro-
neously long notes. In place of criterion (4), polyphonic
dataset generation involved clipping any notes longer than
8 quarter-note beats.

If a prime or continuation did not satisfy one or more
of the above criteria, generation proceeded to the next ran-
domly selected piece (rather than, say, selecting a different
excerpt from the same piece). Approximately 1/6 random
selections passed the criteria, meaning we had to process
6N pieces to produce a dataset of size N .

Our baseline for generating foil continuations is the
Racchman-Jun2015 model [9] described in section 4.
Since previous work has emphasized the need to progress
from Markovian approaches to modeling music [36], this
seemed to be the most appropriate baseline. Examples of
a prime, true and foil continuations are shown in Figure 1.
This excerpt came from an LMD song called “Dirtyluv”.
We were unable to identify further title or artist informa-
tion – an issue when working with this source.

Returning to the discussion of pattern discovery for pre-
diction, the example is annotated with pattern occurrences
A1, A2, B1, B2, . . . , B5 to indicate how such an approach
would be fruitful in this case. The annotating lines are
placed above and below the stave for clarity, but encom-
pass notes from both staves that begin in the indicated time
spans. The prime ends by repeating the first 3 notes of A1.
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Therefore, one reasonable prediction for the continuation
is that it will proceed to restate the remainder of A1. Com-
paring such a prediction to the true continuation, we see
that it would be quite successful – some extra notes in the
left hand in measure 16 are the only difference between A1

and A2. In an analogous fashion, the regularity of occur-
rences of B1, B2, B3 could be used to make a prediction
about B4 and B5 appearing in the true continuation.

3.2 Dataset characteristics

Figure 2 contains three violin plots showing basic dis-
tributional characteristics of the symbolic, monophonic,
medium-size development (“dev”) dataset and the sym-
bolic, monophonic test dataset. Inspection of these plots
suggests that the development and test datasets share sim-
ilar characteristics. A slightly more marked peak can be
seen around inter-onset 0.5 in the primes and true contin-
uations of the test compared to the development datasets
(Figure 2A), and the test dataset has a slightly lower mean
MIDI note number than that of the development dataset
(Figure 2C). While the test dataset is separate from the de-
velopment dataset (LMD) and it would be inappropriate to
report the extent to which they overlap in terms of content,
evidently their distributional characteristics are similar. It
is worth noting that there is healthy representation of “bass
lines” in monophonic – but not polyphonic – variants of the
datasets (see the modal concentration around MIDI note 35
in Figure 2C), as a result of the selection criteria outlined
above.

4. COMPARED MODELS FOR MUSIC
PREDICTION

We compare the output of foil continuations by the first-
order Markov model (see section 3.1), in the following re-
ferred to as baseline model, with two recurrent neural net-
work models, BachProb [10] and Seq2SeqP4P [24].

BachProb is a deep-gated, recurrent neural network
with three consecutive layers. Notes are represented as
triplets of pitch, duration and inter-onset interval with re-
spect to the previous note. Durations and inter-onset inter-
vals are rounded to durations commonly found in musical
scores. BachProb is trained on the development dataset us-
ing truncated back propagation, with separate models for
the monophonic and the polyphonic parts of the dataset.

Seq2SeqP4P is a long short-term memory network with
two layers. Music was represented as the MIDI commands
note-on, note-off, which define when a given pitch starts or
ends, and time shifts between those commands, quantized
to 12 subdivisions per beat. Such a sequence of MIDI com-
mands and time shifts was used as the input to training the
model on the development dataset. By virtue of design,
Seq2SeqP4P was trained only on the monophonic part of
the dataset.

The baseline model consists of a first-order Marko-
vian generator nested in other processes intended to en-
sure the output has long-term repetitive and phrasal struc-
ture [9]. The state space consists of beat of the mea-

A

B

C

Figure 2. Characteristics of the symbolic, monophonic,
medium-size dataset: (A) Inter-onset interval distributions
of development and test datasets; (B) Duration distribu-
tions; (C) MIDI note number distributions.
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sure on which notes occur, and MIDI note numbers rela-
tive to tonal center. The Markov generator alone, called
Racchman-Jun2015, is a useful benchmark, because any
longer structures that emerge here do so by chance.

5. EVALUATION

We evaluate music prediction in two ways:

• Explicit task. Models are provided with a prime, from
which they generate continuations. The output of the
models is then judged according to how many events
of the true continuation they correctly predicted (metric
definitions below).

• Implicit task. Models are provided with correct and foil
continuations after a prime, from which they have to se-
lect the correct continuation.

5.1 Explicit task

For the explicit task, the evaluation proceeds as follows:
within a time interval of ten quarter notes, we step through
the time line by small time increments. We choose a time
increment of t = 0.5 quarter notes, i.e., an eighth note.

We represent each note in the true and algorithmic con-
tinuation as a point in a two-dimensional space of onset
and pitch, giving the point-set P for the true continuation,
and Q for the algorithmic continuation. We calculate dif-
ferences between all points pi in P and qj in Q, which
represent the translation vectors T to transform a given al-
gorithmically generated note into a note from the true con-
tinuation [8, 33].

We then search for the largest set match achievable
through translation with any vector, leading us to the num-
ber of correctly predicted notes cp:

cp(P,Q) = max
T
|{qj |qj ∈ Q ∧ qj +T ∈ P}| (1)

We define recall as the number of correctly predicted
notes, divided by the cardinality of the true continuation
point set P. Since there exists at least one point in Q which
can be translated by any vector to a point in P, we subtract
1 from numerator and denominator to scale to [0, 1].

Rec = (cp(P,Q)− 1)/(|P| − 1) (2)
Precision is the number of correctly predicted notes, di-

vided by the cardinality of the point set of the algorithmic
continuation Q, scaled in the same way:

Prec = (cp(P,Q)− 1)/(|Q| − 1) (3)
The F1-score is the harmonic mean of precision and

recall. As the measures we propose are not defined for
cases in which either the true or the algorithmic contin-
uation contain fewer than two events, we start evaluation
from onset 2.0, i.e, two quarter notes after the end of the
prime, which ensures long enough sequences.

5.2 Implicit task

In the implicit task, a prediction model has to judge which
of two continuations after a given prime is the true contin-
uation. The foil is generated by the baseline model (see
Section 4).

To evaluate the implicit task, we measure the success
rate, i.e., the number of cases in which the model correctly
picks the true continuations, divided by the total amount of
decisions undertaken by the model.

6. RESULTS

Our evaluation and results focus on the symbolic variants
of our test dataset. For the monophonic part of the dataset,
we compare all three models, whereas for the polyphonic
part, we only compare BachProb against the baseline, as
Seq2SeqP4P has not been trained on polyphonic data yet.

6.1 Explicit task

For the monophonic dataset, the various models predict
around a third of the events correctly, with BachProb
outperforming the baseline and Seq2SeqP4P slightly, es-
pecially at the start of the predicted continuation (see
Figure 3B).

Seq2SeqP4P predicts more of the notes in the true con-
tinuation correctly than the baseline, but at the cost of pre-
cision (Figure 3A), which means that its F1 score is also
lower overall than the baseline (Figure 3C).

For the polyphonic dataset, BachProb achieves a much
higher recall than the baseline Markov model (Figure 3E).
In precision, it performs close to the baseline, which results
in very similar F1-scores, too (Figure 3D, F).

In general, the recall, precision, and F1 score of the
models decrease as the onset of the generated continuation
increases, even though the baseline model has fairly stable
performance over the evaluated time interval for the mono-
phonic dataset, and Seq2SeqP4P increases in performance
at the start of the continuation.

6.2 Implicit task

BachProb achieves a success rate of 0.85 for the mono-
phonic continuations, i.e., 85% of the true continuations
were identified correctly. For the polyphonic continua-
tions, BachProb scores a success rate of 0.90. Accord-
ing to the binomial distribution, a success rate of 0.54 or
higher constitutes above-chance performance on this task.
At present, Seq2SeqP4P has not been implemented for the
implicit task, so there are no results for it at this stage.

7. DISCUSSION

How events in the recent or more distant past may be ap-
praised – consciously or otherwise – so as to be better
adapted for what lies ahead is a phenomenon that has in-
trigued researchers from diverse disciplines such as cogni-
tive psychology, philosophy, computer science, and music.
In this paper, we focussed on music as a vehicle for study-
ing the ability of computational models to predict continu-
ations of given primes, and described datasets, evaluation
procedures, and results to this end.

BachProb, utilizing a gated recurring neural network,
outperforms the other two models. Seq2SeqP4P, based
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A B C

D E F

Figure 3. (A) Precision, (B) recall, and (C) F1-measure of the three monophonic prediction models; (D) precision, (E) re-
call, and (F) F1-measure of the two polyphonic prediction models. Evaluation measures are not defined for very short
sequences, so evaluation starts at onset 2.0. Shading around the curves indicates one standard error from the mean.

on a long-short term memory model, predicts less musi-
cal material correctly. Arguably, music representation may
be a larger factor in this than network architecture: as the
model reportedly produces repeated pitches in some cases,
and tends to always assign the same durations between
the note-on and note-off events [24], the sequences of de-
coupled pitch and duration related information may not be
suitable for the model to learn musical structure. Repeated
short durations in the output may also explain the high re-
call and low precision of the model.

The overall higher recall, precision and F1-score of
BachProb and the baseline on the polyphonic dataset, as
compared to the monophonic results, is surprising. A pos-
sible explanation may be that repetitive chords, for in-
stance in a piano or guitar part, are frequently present in
the dataset and may be relatively easy to predict. The com-
paratively lower precision of BachProb suggests that while
many notes from the true continuation are generated, there
are also many spuriously generated notes.

For the implicit task, it is remarkable that BachProb
distinguishes between true and foil continuations highly
above chance. While the explicit task shows that the
Markovian continuation reproduces a modest percentage
of notes in the true continuations, the implicit task shows
that BachProb learned details of the musical structure
which could not be emulated by the Markovian foil.

We hope to evaluate more models for music prediction
in the future, which might give us more insights into what
constitutes successful prediction. As such, our proposal of
a dataset and evaluation measures opens up the ground to
discussion of how comparison of music prediction models
may be improved.

First, we need to consider improved, or additional eval-

uation measures for the explicit task: our current approach
to evaluating the explicit task entails that algorithmic con-
tinuations will be evaluated as correct continuations even if
they are shifted in onset or pitch. The proposed measures
may also penalize deviations from a true continuation that
might be almost imperceptible to a human listener, such as
an added chord note, or the reordering of chord tones.

Second, the evaluation of the implicit task also needs
to be reconsidered: it depends heavily on the quality of
the foil continuation. Perhaps the Markov baseline gen-
erates material which is too easily distinguishable from
the true continuation. Moreover, we measure success rate,
which has the advantage of easy interpretation, but does
not take into account a model’s confidence in its distinc-
tion between the true and foil continuation. Alternative foil
continuations, or more fine-grained measures of the mod-
els’ distinctions, would certainly give additional insights
on model performance.

Third, additional tasks and datasets may be needed. We
envision bringing together outcomes of music prediction
models with evidence on human expectations in music.
The continued systematic comparison of various models
for music prediction can teach us much about the successes
and shortcomings of prediction models in relation to each
other, as well as about the influence of music representa-
tion and model parameters. Studies which measure hu-
man responses on their levels of surprise when hearing the
continuation of a musical prime [19], or studies which ask
humans to improvise a continuation [3] may inform im-
proved tasks and evaluation strategies, and underpin mod-
els to predict the musical future.
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ABSTRACT

Connecting large libraries of digitized audio recordings to
their corresponding sheet music images has long been a
motivation for researchers to develop new cross-modal re-
trieval systems. In recent years, retrieval systems based
on embedding space learning with deep neural networks
got a step closer to fulfilling this vision. However, global
and local tempo deviations in the music recordings still
require careful tuning of the amount of temporal context
given to the system. In this paper, we address this prob-
lem by introducing an additional soft-attention mechanism
on the audio input. Quantitative and qualitative results on
synthesized piano data indicate that this attention increases
the robustness of the retrieval system by focusing on dif-
ferent parts of the input representation based on the tempo
of the audio. Encouraged by these results, we argue for
the potential of attention models as a very general tool for
many MIR tasks.

1. INTRODUCTION

Algorithms for content-based search and retrieval play an
important role in many applications that are based on large
collections of music data. In this paper, we re-visit a
challenging cross-modal retrieval problem, namely audio–
sheet music retrieval: given a short audio excerpt, we are
trying to retrieve the corresponding score from a database
of sheet music (stored as images).

Traditional methods for audio–sheet retrieval are based
on common mid-level representations that allow for an
easy comparison of time points in the audio and positions
in the sheet music, see for instance [2, 14, 17, 21]. Typi-
cal examples are spectral features like pitch class profiles
(chroma-features) or symbolic representations. Unfortu-
nately, deriving such mid-level representations is an error-
prone process, as this may involve preprocessing steps
such as music transcription [6, 9, 16, 18, 19, 26], Optical
Music Recognition [7, 15, 24, 25, 28], and sometimes both.

c© Stefan Balke, Matthias Dorfer, Luis Carvalho, Andreas
Arzt, Gerhard Widmer. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Stefan Balke,
Matthias Dorfer, Luis Carvalho, Andreas Arzt, Gerhard Widmer. “Learn-
ing Soft-Attention Models for Tempo-invariant Audio-Sheet Music Re-
trieval”, 20th International Society for Music Information Retrieval Con-
ference, Delft, The Netherlands, 2019.

For a recent overview of different cross-modal retrieval ap-
proaches, see [22].

In [11], an alternative approach has been proposed
that circumvents these problematic preprocessing steps by
learning embeddings directly from the multi-modal data
(see Figure 1 for a schematic overview). Given short snip-
pets of audio and their respective excerpts of sheet music
images, a cross-modal neural network is trained to learn
an embedding space in which both modalities are repre-
sented as 32-dimensional vectors (Figure 1a). The vec-
tors can then be easily compared in the embedding space
by means of a distance function, e. g., the cosine distance
(Figure 1b). The retrieval results are then selected by sort-
ing the candidates by the obtained distances (Figure 1c).
A conceptually similar retrieval approach for videos was
presented in [1].

In essence, the neural network replaces the step of ex-
tracting mid-level features by directly learning a transfor-
mation from the audio and from the sheet music image data
to a common vector space. A limitation of this approach
is that the temporal context (or field of view) of the data
in both modalities is of fixed size. For audio data, this im-
plies that the actual musical content of the window depends
on the tempo a piece is played in. If it is played in a fast
tempo, the audio excerpt will contain a larger amount of
musical content (i. e., more notes) than if the same piece is
played slowly. Obviously, this can lead to large discrepan-
cies between what the model has seen during training, and
the data it will see during test time.

A possible solution to this problem is to let the network
decide the appropriate temporal context for a given audio
query by using a separate attention mechanism [3,8,23,27].
In a recent workshop paper [12], the concept of using a
soft-attention mechanism in a cross-modal retrieval sce-
nario was presented. This allowed the network to deal with
a much larger temporal context at the input than without
attention. In this paper, we substantially extend this idea
with systematic and quantitative experiments with respect
to tempo robustness, as well as giving further details about
the used architecture and the training data. The remainder
of this paper is structured as follows. In Section 2, we in-
troduce the retrieval task and explain the necessary steps to
approach it with end-to-end cross-modal embedding learn-
ing. Section 3 reports on systematic experiments that show
the benefits of using a dedicated attention network on au-
dio spectrograms, to improve retrieval results compared to
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(a) (b)

Query

Best Match

Retrieval Results
1. Bach (0.1)
2. Beethoven (0.13)
3. Mozart (0.18)
4. Bach (0.2)
5. Mussorgsky (0.23)

(c)

Figure 1: Illustration of the cross-modal retrieval application. (a) Audio snippet serves as input query to the embedding
network. The attention network selects the “relevant” region of the audio spectrogram. (b) 2-dimensional visualization
of the embedding space. The nearest neighbors are selected as candidates. (c) Ranked list of candidates sorted by their
distances to the query embedding.

the current state of the art. Furthermore, we present qual-
itative examples to highlight the intuitive behavior of the
attention network and conclude the paper in Section 4.

2. AUDIO–SHEET RETRIEVAL

We consider a cross-modal retrieval scenario (Figure 1):
given an audio excerpt as a search query, we wish to re-
trieve the corresponding snippet of sheet music of the re-
spective piece. We approach this retrieval problem by
learning a low-dimensional multimodal embedding space
(32 dimensions) for both snippets of sheet music and ex-
cerpts of music audio (Figure 1a). We desire for each
modality a projection into a shared space where semanti-
cally similar items of the two modalities are projected close
together, and dissimilar items far apart (Figure 1b). Once
the inputs are embedded in such a space, cross-modal re-
trieval is performed using simple distance measures and
nearest-neighbor search. Finally, the retrieval results are
obtained by means of a ranked list through sorting the dis-
tances in an ascending order (Figure 1c).

The embedding space is trained with convolutional neu-
ral networks (CNN). Figure 1a sketches the network archi-
tecture. The baseline model (without attention) consists
of two convolutional pathways: one is responsible for em-
bedding the sheet music, and the other for embedding the
audio excerpt. The key part of the network is the canon-
ically correlated (CCA) embedding layer [13]. This layer
forces the two pathways to learn representations that can
be projected into a shared space. The desired properties
of this multimodal embedding space are enforced by train-
ing with pairwise ranking loss (also known as contrastive
loss) [20]. This is the basic structure of the model recently
described and evaluated in [11]. This attention-less model
serves as a baseline in our experiments, i. e., the input au-
dio (or sheet music) has to be sliced into excerpts of a given
size (e. g., 2 s). However, when processing performed mu-
sic, the temporal context captured by the fixed-size input

Audio (Spectrogram) Sheet-Image
92× {42, 84, 168} 160× 200

2x Conv(3, pad-1)-24 - BN


Attention Network

MaxPooling(2)
2x Conv(3, pad-1)-48 - BN

MaxPooling(2)
2x Conv(3, pad-1)-96 - BN

MaxPooling(2)
2x Conv(3, pad-1)-96 - BN

MaxPooling(2)
Conv(1, pad-0)-32 - Linear

GlobalAvgPooling + Softmax
Mult(Spectrogram, Attention)

2x Conv(3, pad-1)-24 - BN 2x Conv(3, pad-1)-24 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-48 - BN 2x Conv(3, pad-1)-48 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-96 - BN 2x Conv(3, pad-1)-96 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-96 - BN 2x Conv(3, pad-1)-96 - BN
MaxPooling(2) MaxPooling(2)

Conv(1, pad-0)-32 - Linear - BN Conv(1, pad-0)-32 - Linear - BN
Dense(32) + Linear Dense(32) + Linear

Embedding Layer + Ranking Loss

Table 1: Overview of the network architecture. The up-
per part describes the attention network, the lower part the
embedding part. Conv(3, pad-1)-24: 3×3 convolution, 24
feature maps and zero-padding of 1. We use ELU activa-
tion functions on all layers if not stated otherwise [10].

excerpts varies, based on the current tempo of the piece.
This attention-less model trains and operates on fixed-

size input windows from both modalities. In other words,
the musical content provided to the CNN may contain
significantly less or more information—especially note
onsets—than excerpts it has been trained on. One may
of course compensate this with data augmentation, but a
more general solution is to simply let the model decide how
much information is needed from the audio.

For this purpose, we explore a soft-attention mecha-
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nism. First, we substantially increase the audio field of
view (number of spectrogram frames), up to a factor of
four. Next, we add to the model the attention pathway h,
which should learn to restrict the audio input again by fo-
cusing only at those parts that appear relevant for an effi-
cient search query. As detailed in Table 1, this attention
mechanism is implemented as a separate CNN. The output
of this CNN is a probability density function a which has
the same number of frames as the audio spectrogram. Be-
fore feeding the spectrogram to the audio embedding net-
work g, we multiply each frame with its attention weight.
This enables the model to cancel out irrelevant parts of
the query and focus on the important information. In the
following experiments, we show that adding this attention
network in combination with the longer temporal context,
substantially improves the results in the considered audio–
sheet retrieval task.

3. EXPERIMENTS

This section reports on the conducted retrieval experi-
ments. We start by describing the data used for training and
testing the models, and the data augmentation steps applied
during training. Afterwards, we present the results for the
two main experiments, both dealing with audio–sheet re-
trieval: given an audio excerpt, retrieve the corresponding
snippet of sheet music of the respective piece. Finally, we
look at the attention-layer’s behavior for five examples and
discuss benefits and limitations of the approach.

3.1 Data Description and Training

We use a dataset of synthesized classical piano music,
called MSMD [11]. In version 1.1, MSMD comprises
467 pieces by 53 composers, including Bach, Mozart,
Beethoven and Chopin, totalling in over a thousand pages
of sheet music and 15+ hours of audio, with fine-grained
cross-modal alignment between note onsets and noteheads.
The main changes from version 1.0 (as used in [11]) to ver-
sion 1.1 are that we cleaned the test set from broken pieces
and set all note velocities to a value of 64. The scores and
audio are both synthesized using the score engraving soft-
ware LilyPond 1 and FluidSynth. 2

During training, we augment the sheet music by resiz-
ing and shifting the image. For augmenting the audio, we
vary the tempo between 95 and 110 % and sample from
a pool of three different piano soundfonts. For details of
these augmentation steps, we kindly refer the reader to the
explanation given in [11]. After training convergence, we
refine the used CCA embedding layer on the whole training
set. The reason for this is that during training, the covari-
ance estimates used in the CCA projection are only based
on the number of samples contained in the mini-batch.

For testing, we select 10,000 audio–sheet music pairs
from an unseen testset, where the synthesized audio is ren-
dered with a separate, hold-out piano soundfont. The ren-
dering procedure for the sheet music remains the same.

1 http://www.lilypond.org
2 http://www.fluidsynth.org

Model R@1 R@5 R@25 MRR MR

BL1-SC [11] 13.67 34.62 57.44 0.24 15

BL2-SC 34.25 54.68 70.62 0.44 4
BL2-MC 36.59 60.52 77.21 0.48 3
BL2-LC 27.66 51.79 70.34 0.39 5

BL2-SC + AT 38.41 59.95 74.36 0.48 3
BL2-MC + AT 46.54 68.45 81.10 0.57 2
BL2-LC + AT 53.16 74.42 85.35 0.63 1

(a) Un-refined CCA layer.

Model R@1 R@5 R@25 MRR MR

BL1-SC [11] 19.12 44.16 66.63 0.31 8

BL2-SC 48.91 67.22 78.27 0.57 2
BL2-MC 47.08 68.19 80.82 0.57 2
BL2-LC 43.46 68.38 82.84 0.55 2

BL2-SC + AT 55.43 72.64 81.05 0.63 1
BL2-MC + AT 58.14 76.50 84.60 0.67 1
BL2-LC + AT 66.71 84.43 91.19 0.75 1

(b) Refined CCA layer.

Table 2: Overview of the experimental results. (a) Lists
the results without and (b) with a refinement of the CCA
layer. All experiments used 10,000 candidates and were
conducted on MSMD-v1.1 (R@k = Recall@k, MRR =
Mean Reciprocal Rank, MR = Median Rank).

The above described augmentation steps are disabled dur-
ing testing. In terms of performance, the refinement step of
the CCA layer yields an increase in performance of around
0.07 up to 0.15 in terms of mean reciprocal rank (MRR) on
the test set (see Table 2 for details). The used dataset , 3 as
well as the implementation along with trained models , 4

are publicly available.

3.2 Experiment 1: Attention

In the first experiment, we investigate the influence of the
additional attention network. We systematically increase
the temporal context of the audio representation from a
short context (SC, 42 frames = 2.1 s), over a medium (MC,
84 frames = 4.2 s), to a long context (LC, 168 frames
= 8.4 s). The results are summarized in Table 2. As
evaluation metrics we use different Recalls (R@1, R@5,
R@25 ∈ [0, 100], higher is better), the mean reciprocal
rank (MRR ∈ [0, 1], higher is better), as well as the me-
dian rank (MR ∈ [1, 10000], lower is better). In the fol-
lowing discussion, we focus on the results of the refined
CCA layer, as given in Table 2b.

As a baseline (BL1-SC), we use the network architec-
ture as described in [11], which uses the short context (SC).
For this model, approximately 20% of the queries are on
rank 1 (R@1 = 19.12) and in almost 70% of the audio

3 https://github.com/CPJKU/msmd/tree/v1.1
4 https://github.com/CPJKU/audio_sheet_

retrieval/tree/ismir-2019
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Model ρ = 0.5 ρ = 0.66 ρ = 1 ρ = 1.33 ρ = 2

BL1-SC [11] 0.20 0.27 0.31 0.30 0.22

BL2-SC 0.44 0.52 0.57 0.56 0.46
BL2-MC 0.46 0.53 0.57 0.55 0.43
BL2-LC 0.44 0.50 0.55 0.51 0.35

BL2-SC + AT 0.55 0.63 0.63 0.64 0.56
BL2-MC + AT 0.54 0.61 0.67 0.67 0.62
BL2-LC + AT 0.64 0.69 0.75 0.73 0.64

Table 3: Mean Reciprocal Rank (MRR) for different mod-
els and different tempo ratios ρ ∈ {0.5, 0.66, 1, 1.33, 2}.
For example, ρ = 0.5 stands for half of the original tempo
and ρ = 2 for doubling the tempo. The listed models cor-
respond to the refined CCA models as listed in Table 2b
with the same test set size of 10,000 candidates.

queries, the relevant sheet image is within the first 25 ranks
(R@25 = 66.63). As a second baseline (BL2-SC), we
slightly adapt the original architecture by exchanging the
global average pooling layer (before the embedding layer)
by a dense layer for each modality (see the non-attention
part of Table 1 for details). With this adaptation, the results
improve significantly to R@1 = 48.91, R@25 = 78.27, and
a median rank MR = 2, instead of MR = 8 for BL1.

By increasing the temporal context on BL2 to medium
sized context (BL2-MC), mean reciprocal rank (MRR =
0.57) and median rank (MR = 2) stay unchanged. When
increasing the temporal context to the long context (BL2-
LC), the model degrades in performance, e. g., R@1 drops
from 48.91% for SC to 43.46% for LC and the MRR from
0.57 to 0.55. Adding the attention network to the audio
input (BL2-SC + AT) improves the results by 7, 5, and 3%
for the recalls, as well as 0.05 for the MRR compared to
BL2-SC. The more context is given to the network, the
better the performance metrics get, e. g., R@1 improves
from 58.14 (BL2-MC + AT) to 66.71 (BL2-LC + AT).
The MRR, improves from 0.63 (BL2-SC + AT), over 0.67
(BL2-MC + AT), up to 0.75 (BL2-LC + AT).

We derive two main observations from these results.
First, optimizing the network architecture is important;
dropping the global average pooling in favour of a fully-
connected dense layer lifted the results to another level.
The reason could be that the fully-connected layer better
retains the structure of the input spectrogram than the av-
erage pooling and in addition can be more selective on
relevant input parts, e. g., by setting weights to zero. Sec-
ond, the attention network enables the network to deal with
larger temporal context sizes. From a signal processing
perspective, one would expect that more context (and thus
longer queries) would always help since it increases the
specificity of the query. However, since we squash this
information into a 32-dimensional embedding vector, it
seems that too much information (e. g., too many onsets in
the audio), actually harms the retrieval quality when not
using attention.

 

Sonatine
Johann André (1741-1799)

Moderato ma con moto.
Opus 34. I.
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Figure 2: Example of tempo variations within a piece by
Johann André - Sonatine (Op. 34, I.). The three boxes be-
low the sheet music show the attention output, and the cor-
responding audio spectrogram for the respective excerpt.

3.3 Experiment 2: Tempo Robustness

In a second experiment, we explicitly test the system’s ro-
bustness to global tempo changes. For this purpose, we
re-rendered the MSMD test dataset with various tempo ra-
tios ρ ∈ {0.5, 0.66, 1, 1.33, 2}, where ρ = 0.5 stands for
halving and ρ = 2 for doubling the original tempo. The
results are given in Table 3. For the sake of brevity, we
only show the mean reciprocal rank (MRR) for the refined
CCA models.

In general, we observe a similar trend as in the first
experiment. While the original baseline approach (BL1-
SC) performs rather poorly (0.20 to 0.31), exchanging the
global average pooling layer (BL2-SC) helps to improve
the performance (0.44 to 0.57). The best attention model
(BL2-LC + AT) yields values ranging from 0.64 to 0.75. In
this experiment, we would have expected that the improve-
ment holds true for all testsets rendered at different global
tempi. However, the numbers tell a slightly different story.
To understand this, we had to go back to the generation
of the MSMD dataset. Recall that the dataset is generated
from LilyPond files obtained from the Mutopia Project. 5

These files contain tempo specifications which are retained
in the synthesis pipeline. The specified tempi vary in a
range between 30 and 182 bpm (mean tempo = 106 bpm,

5 https://www.mutopiaproject.org
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(a) (b) (c) (d) (e)

Figure 3: Illustration of the sheet music, input attention (normalized), and spectrogram for five examples from the MSMD
test set. (a) L. v. Beethoven - Piano Sonata (Op. 79, 1st Mvt.), (b) J. S. Bach - Goldberg Variations: Variatio 12 (BWV
988), (c) J. S. Bach - French Suite VI: Menuet (BWV 817), (d) R. Schumann - Album for the Youth: Untitled (Op. 68, Nr.
26), and (e) M. Mussorgsky - Pictures at an Exhibition VIII: Catacombae.

std. dev. = 25 bpm). This distribution of tempi implies that
all experiments we perform on the original MSMD testset
(ρ = 1) already test for a variety of tempi. Synthesizing
this dataset with different tempo factors—as done in our
second experiment—shifts and stretches this distribution.
In the edge cases (ρ = 0.5 and ρ = 2), this leads to un-
realistic tempi, e. g., 15 bpm or 364 bpm, producing input
audio windows with absurdly low or high onset density.

In summary, all of the tested models have in common
that they work best for the original testset tempo (ρ = 1)
and have similar relative performance drops for the tempo
variations. However, the attention model is able to keep the
retrieval results at a much higher level than all the other
models. In the following section, we take a closer look
at some examples from the MSMD test set to get a better
intuition of the soft-attention mechanism and how it reacts
to tempo deviations.

3.4 Examples

In the experiments above, we have seen that the attention
models improve the retrieval results by a considerable mar-
gin. Another positive aspect of the soft-attention mecha-
nism is that its behavior is directly interpretable—a rare
case in the deep learning landscape. For all the presented
examples, we provide further videos with audio on an ac-
companying website, along with detailed instructions for
reproduction. 6

Figure 2 shows the sheet music for Johann André’s
Sonatine, Op.34. The piece starts with a calm part with
mainly legato quarter notes at 103 bpm. The first (blue)
box shows the corresponding attention output and the au-

6 http://www.cp.jku.at/resources/2019_
ASR-TempoInv_ISMIR

dio spectrogram for measure five. The attention output is
relatively flat with a small peak in the middle of the audio
excerpt. In bar 17, the note density changes, with eighth
notes in the left hand entering the scene. As shown by the
second (red) box, the attention layer reacts to this by build-
ing up a more distinct focus around the center, placing less
weight on the outer parts of the spectrogram. In the third
part beginning with measure 24, the “tempo” (more pre-
cisely: the perceived “speed”, in terms of events per time
unit) essentially doubles, which is reflected in a high peak
and narrow distribution in the attention output (green right
box). From these three examples, it also becomes clear
that tempo and note density are essentially two sides of the
same coin for the attention network.

In Figure 3, we show examples from the testset with
different global performance tempi, along with the sheet
music excerpt, the attention weights, and the spectrogram.
The fastest piece, with around 250 bpm, is shown in Fig-
ure 3a. The corresponding attention output is very focused
on the middle part of the audio spectrogram, trying to con-
centrate the attention to the notes that actually appear in
the sheet music snippet. The second example (b) is rather
slow with 95 bpm. However, through the use of 16th and
32th notes, the main melody gets a double-time feel, thus
the actual tempo is perceived at around 190 bpm. In Fig-
ure 3c, the tempo is at 115 bpm. The attention output starts
to widen up, allowing more temporal context to reach the
actual embedding network. This trend goes in Figure 3d
when the tempo 78 bpm. Figure 3e shows an extreme ex-
ample where the piece mainly consists of chords with long,
dotted half notes. Here, the attention has to use the com-
plete temporal context of the audio spectrogram to match
the score information with the audio.

The examples demonstrate that depending on the spec-
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Figure 4: Entropy of the input attention vs. the number of
onsets in the respective audio frame.

trogram content, the model indeed attends to whatever it
believes is a representative counterpart of the target sheet
music snippet. Since the fixed-size sheet snippets contain
roughly similar numbers of notes, as the density of note
heads on the printed page tends to be independent of the
tempo of the piece, attention is sharply peaked when the
density of onsets in the audio is high, and conversely is
distributed more evenly when there are fewer notes in the
audio excerpt.

4. SUMMARY

In this paper, we have described a soft-attention mecha-
nism that helps to overcome the fixed window sizes uses in
Convolutional Neural Networks. In our end-to-end audio–
sheet music retrieval application, the results improved sub-
stantially compared to the state of the art. By looking at
a number of examples from the retrieval results, the soft-
attention mechanism showed an intuitive and interpretable
behavior.

This appealing and intuitive behavior is summarized in
Figure 4, which shows the entropy of the attention distri-
bution in relation to the number of onsets contained in the
audio excerpt, for all 10,000 test samples. The entropy is a
measure of flatness of the attention output: a flat function
gives high entropy, a very narrow function low entropy.
The downward trend in the figure confirms our observa-
tions from above: the more onsets in the respective audio
spectrogram, the narrower the attention distribution.

Given the improved retrieval performance and the in-
tuitive behavior of the attention model, we think this is
a promising line of research for reducing the sensitivity
of cross-modal music retrieval models to the audio input
window size. To this end, our experiments were con-
ducted on synthesized piano recordings. However, re-
sults in [11] indicate that the embedding models trained
on this data generalize to real scores and performances.
A possible next step would be to investigate whether the
attention mechanism reacts to local tempo changes as
occuring frequently in real performances (e. g., ritardandi
and accelerandi). Furthermore, it would be interesting to

leave the piano music domain and extend the model to
cope with differences in timbre, (e. g., orchestral music) as
done in [4] for the challenging Barlow–Morgenstern sce-
nario [5].
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ABSTRACT

Arab-Andalusian music was formed in the medieval Is-
lamic territories of the Iberian Peninsula, drawing on lo-
cal traditions and assuming Arabic influences. The ex-
pert performer and researcher of the Moroccan tradition of
this music, Amin Chaachoo, is developing a theory whose
last formulation was recently published in La Musique
Hispano-Arabe, al-Ala (2016), which argues that cen-
tonization, a melodic composition technique used in Gre-
gorian chant, was also utilized for the creation of this reper-
toire.

In this paper we aim to contribute to Chaachoo’s theory
by means of tf-idf analysis. A high-order n-gram model
is applied to a corpus of 149 prescriptive transcriptions
of heterophonic recordings, representing each as an un-
ordered multiset of patterns. Computing the tf-idf statistic
of each pattern in this corpus provides a means by which
we can rank and compare motivic content across nawabāt,
distinct musical forms of the tradition. For each nawba,
an empirical comparison is made between patterns identi-
fied as significant via our approach and those proposed by
Chaachoo. Ultimately we observe considerable agreement
between the two pattern sets and go further in proposing
new, unique and as yet undocumented patterns that occur
at least as frequently and with at least as much importance
as those in Chaachoo’s proposals.

1. INTRODUCTION

The rich culture developed in the medieval Islamic terri-
tories of the Iberian Peninsula known as Al-Andalus gave
birth to a refined musical and literary tradition that com-
bines local musical practices with Middle Eastern Arabic
poetry and sensibilities. The core of this tradition is the
singing of s. anā‘i‘ (plural of s. an‘a) or poems either by a
choir accompanied by an instrumental ensemble or by a

c© Thomas Nuttall, Miguel García Casado, Víctor Núñez
Tarifa, Rafael Caro Repetto, Xavier Serra. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Thomas Nuttall, Miguel García Casado, Víctor Núñez Tarifa,
Rafael Caro Repetto, Xavier Serra. “Contributing to new musicologi-
cal theories with computational methods: The case of centonization in
Arab-Andalusian music”, 20th International Society for Music Informa-
tion Retrieval Conference, Delft, The Netherlands, 2019.

soloist. These s. anā‘i‘ are performed in suites known as
nawabāt (plural of nawba), which also include orchestral
pieces and both instrumental and vocal solo improvisations
[6, 13]. The migration of Andalusian population to North
Africa brought this tradition to this region, were it survived
to this date after the disappearance of Al-Andalus in the
15th century. Nowadays, it is considered the classical mu-
sical repertoire in countries such as Morocco, Algeria, and
Tunisia, in each of which it developed local characteris-
tics, and is commonly known (among other names [22])
as Arab-Andalusian music. In this paper, we focus on the
Moroccan repertoire of this tradition, which is known as
al-Āla [6].

1.1 Music Theory and Centonization

Nawba is the essential form of Arab-Andalusian music.
All the s. anā‘i‘ and other pieces in one nawba are com-
posed in one single mode, known in this tradition as t.āb‘
(plural t.ūbu‘). In the specific case of the Moroccan al-Āla
repertoire, pieces from certain nawabāt were lost during
the process of oral transmission, so that the surviving ones
where attached to other nawabāt according to modal sim-
ilarity. In the 18th century, the scholar al-Haiek fixed the
number of nawabāt in the al-Āla tradition to eleven (Table
1) [6].

The scholar and expert performer of al-Āla Amin Chaa-
choo is researching and developing a theoretical frame-
work for this tradition. Chaachoo argues that regarding
its musical aspect, Arab-Andalusian music heavily draws
on local Iberian practices, and especially on plainchant in
terms of compositional principles. A main argument for
this proposal is the nature of Arab-Andalusian t.ūbu‘, which
lack the microtonalities and nuances of Arabic maqam.
Chaachoo, in his publication La música andalusí al-Ála [5]
characterizes each t.āb‘ with a particular ascending and de-
scending scale, a fundamental degree similar to the finalis
of Gregorian modes, and one or two dominant degrees. In
his more recent La Musique Hispano-Arabe, al-Ala [6], he
also proposes the concept of a "persistent degree," inspired
in the reciting tone from plainchant.

One of the most original proposals by Chaachoo is the
use of centonization as the basic technique for melodic cre-
ation in Arab-Andalusian music. Centonization, from latin
cento meaning patchwork, is defined by Paolo Ferretti as
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melodic composition by synthesis of pre-existing musical
units known as centos [11], and is generally associated to
melodic creation in Gregorian chant [1, 7]. Chaachoo ar-
gues that the melodic material in Arab-Andalusian music
is also created by combination of centos, thus strengthen-
ing the connection between this tradition and Iberian lo-
cal practices. The author associates these melodic units
or centos to specific t.ūbu‘ (See Fig.1), so that one partic-
ular t.āb‘ is characterized by a set of centos. To the best
of our knowledge, Chaachoo’s is the first attempt to ex-
plain melodic creation of Arab-Andalusian music through
the concept of centonization.

Figure 1: Score example with the characteristic centos of
the piece Btayhi Rasd Dayl of Nawba 4

1.2 Motivation

The use of centonization as composition technique in
Arab-Andalusian music is still being developed by Chaa-
choo. Already published in two recent works [5,6], the list
of centos per t.āb‘ slightly varies from its first formulation
to the second, as the theory is being consolidated. Chaa-
choo draws on his lifetime experience as performer and
instructor of this music, as well as in his analytic work as a
musicologist, for the definition of each t.āb‘ list of charac-
teristic centos 1 . Therefore, our main goal is to contribute
to the development of Chaachoo’s theoretical work with
findings from computational analysis of melodic patterns
in a dataset of machine readable music scores.

Preliminary experiments with this dataset shows that,
if we were to try and identify the nawba to which a spe-
cific score belongs by simply counting the occurrences of
centos unique to the t.ūbu‘ that constitute it as specified by
Chaachoo, we would be unsuccessful. In fact, attempting
to do so on the corpus used in this study results in a mis-
classification rate of 80%. This is due to certain nawabāt
relying heavily on very general melodic sequences located
around the tonic and the dominant of the modes, these gen-
eral sequences can be found in many of the centos docu-
mented by Chaachoo as being specific to a certain t.āb‘ (and
therefore nawba).

Our aim is to quantify the importance of particular
melodic patterns with respect to nawabāt and provide an
empirical ranking of melodic content for each. We must
therefore rely on an approach that considers more than just

1 Personal communication

frequency of occurrence, one that normalises for general-
ity, putting forward new proposals, as to the melodic con-
stitution of each nawba [6].

2. RELATED WORK

There exists many studies into melodic pattern recognition,
summaries of which have been made by Jansen et al. [15]
and more recently Ren et al. [24]. Lack of agreement on
the current state-of-the-art stems from the difficulty in eval-
uating approaches, with expertly annotated ground truth
often required for performance measurement, more often
than not on a study-by-study basis.

In no deviation from this trend we draw on the work of
Chaachoo [6] for validation of our results and go further in
suggesting/supplementing his studies with unique insights
of our own. Accordingly, we aim to approach this investi-
gation with interpretability in mind, seeking to build upon
the string-based, frequency approaches found in [8,14,16],
where patterns are represented by counting the number of
instances of re-occurring sub-sections of notes in a musi-
cal sequence and their significance computed by compar-
ing these counts, ignoring potential interaction between
non-consecutive notes. The appeal of this method is that
the theory is intuitive to a non-specialist and aligns with
what a musician might consider important when character-
ising a musical piece melodically, an important considera-
tion when wishing to contribute to and communicate with
Chaachoo and his works.

The choice to consider only consecutive notes as be-
longing to the same pattern is supported by the nature of
the music scores in our dataset (see section 3.1). These
scores are manual transcriptions by Chaachoo himself
from a collection of representative recordings. Due to the
heterophonic nature of this music tradition, and the ana-
lytical purpose of the music scores, they contain only the
common melodic line underlying the actual rendition of
the choir and instruments in the orchestra. This rather pre-
scriptive character of the transcriptions results in a repre-
sentation of the music more theoretical than fine detailed,
thus permitting the assumption that centos are literally re-
peated in the score, without the modifications of the orna-
mentation in actual performance.

As mentioned in the previous section however, simple
frequency alone is not sufficiently powerful in character-
ising nawba. A more desirable attitude would be proba-
bilistic, as found with Conklin in [9]. Conklin puts forth
a novel method of computing pattern significance by com-
paring the probability of occurrence in a corpus with the
probability of occurrence in an anti-corpus, patterns over-
represented in the former are said to be distinct to that.
Our tf-idf approach is very similar, the probability of oc-
currence of each pattern in a score is normalised by how
likely it is to occur across all other scores.
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Nawba
number

Nawba transliter-
ated name

Number
of
Scores

1 raml al-māya 19
2 al-isbahān 13
3 al-māya 13
4 rasd al-d

¯
āyl 18

5 al-istihlāl 24
6 al-rasd 10
7 garībat al-h. usayn 13
8 al-h. iŷāz al-kabīr 10
9 al-h. iŷāz al-māšriqī 15
10 ‘irāq al-‘aŷam 7
11 al-‘uššāq 7

Table 1: Distribution of Scores across nawabāt

3. METHODOLOGY

Our analysis is implemented in Python, the code for which
is available on Github 2 should the reader wish to repro-
duce this work. We use the music21 library [10] for pro-
cessing scores and adopt the same convention for acciden-
tal notes in our reporting as in this toolkit, that is ‘#’ for a
sharp and ‘-’ for a flat.

It is worth noting that we do not take into account any
note/rest duration in this analysis, this decision is based on
Chaachoo’s theory which proposes the set of centos with
no variation in their durations. Furthermore, we omit all
octave information from our data, observing that melodic
lines in our corpus very rarely jump between octaves and
that same omission is made by Chaachoo in his work.

3.1 Dataset

Our dataset is a subset of 149 scores across all 11 Moroc-
can nawabāt from the CompMusic Arab-Andalusian cor-
pus [25] of Dunya [23]. It has been selected such that
each score is accompanied with the relevant t.āb‘ metadata
(and hence allows us to identify the nawba to which they
belong). Each score is represented as an ordered list of
consecutive notes (all scores are monophonic) with rests
included. Table 1 shows the number of scores for each
nawba.

3.2 Pre-processing

In analogy to a bag-of-words representation of a docu-
ment, we represent each score as a bag-of-patterns. That
is, we extract from each every possible n-gram up to a
specified length, N . Any n-gram (or pattern as they will
from here on be referred to as) that contains a rest, R, is
discarded. For example, the bag-of-patterns for a score of
[G, E, F, F, R, E, G, E] is:

N = 2: [GE, EF, FF, EG, GE];
N = 3: [GE, GEF, EF, EFF, FF, EG, EGE, GE];

2 https://github.com/MTG/quantifyingcentones

N ≥ 4: [GE, GEF, GEFF, EF, EFF, FF, EG, EGE, GE]

This method of motivic representation - where every
possible sub-pattern is included alongside its parent pat-
terns down to minimum length - is said to satisfy the Sub-
motif Existence Axiom (SEA), first proposed in [18] and
realised by Buteau in [2–4, 12].

3.3 TF-IDF Algorithm

Pattern importance is computed using the tf-idf statistic.
Tf-idf, short for term frequency–inverse document fre-
quency, is a numerical statistic that is intended to reflect
how important a word is to a document in a collection or
corpus [26]. With each of our 149 scores in bag-of-patterns
form, we compute the tf-idf for each pattern on a score by
score basis, using sub-linear term frequency so as to down-
weight very popular or very rare terms.

Averaging our tf-idf values for each pattern for each
nawba provides a metric for pattern importance per nawba.

3.4 Post-processing

A common problem in melodic pattern recognition by
computational means is in dealing with the large quantity
of results. As is typical of such methods, a set of selec-
tion rules is required. After applying the tf-idf algorithm
to identify significant patterns, they are filtered according
to the following:

1. We consider a pattern having occurred less than 50
times per score per nawba as being insufficiently fre-
quent given our data size, this choice is informed
by inspecting the frequency of patterns identified by
Chaachoo as characteristic.

2. We do not consider strings that contain less than
three notes or more than ten notes a pattern, these
are discarded. This decision is informed by refer-
ring to existing literature on melodic composition of
Arab-Andalusian music [6, 20, 25] and is somewhat
justifiable intuitively, the same lower bound can be
found in [9, 21] for example.

3. Any pattern that is a substring of another pattern
in our selection of significant patterns (subject to
previous selection rules) is discarded in favour of
the longer pattern. A similar approach is adopted
in [9, 14, 17, 19].

4. RESULTS AND EVALUATION

For each nawba we rank its pattern content by our aver-
aged tf-idf, cross-referencing our findings with the patterns
identified as characteristic of the nawba from Chaachoo.

4.1 Visualising Patterns Importance

Fig.2 and Fig.3 show the top ranked patterns for nawba 1
and 2 respectively. Each bar is coloured such that patterns
identified as characteristic of the nawba by Chaachoo are
black, patterns that themselves contain patterns identified
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Figure 2: Ranked pattern importance for Nawba 1

by Chaachoo as characteristic of the nawba are grey and
hitherto undocumented patterns white. Each bar is anno-
tated with the average frequency of occurrence of that pat-
tern in that nawba; that is the total number of occurrences
in the corpus as a proportion of how many scores we have
for that nawba (Table 1). These two examples are repre-
sentative cases in which the most relevant patterns are a
mix of Chachoo’s patterns and new ones. Fig.4 displays
the same score excerpt as in Fig.1 but with the new recog-
nized relevant patterns for the nawba.

Table 3 presents the top 10 (where 10 exist) patterns de-
termined by our analysis to be most characteristic of each
nawba. The patterns identified by Chaachoo as character-
istic of the nawba are bolded, those that themselves con-
tain patterns identified by Chaachoo as characteristic of the
nawba are italicized.

4.2 Evaluation

As a method of evaluating which patterns are most char-
acteristic of each nawba, we compare the classification
power of the patterns identified in this study to those doc-
umented by Chaachoo in [6] through a simple classifier.

4.2.1 Simple Classifier

An l2 regularised logistic regression model is applied to
our corpus of 149 scores, we use a 60/40 train/test split and
the frequency of occurrence of each pattern as features. In
total, there are 184 patterns from Chaachoo’s literature and
182 from our own.

We bootstrap our accuracy score on test 100 times. The
results are displayed in Table 2.

Figure 3: Ranked pattern importance for Nawba 2

Pattern Set µ σ

Chaachoo 70.8 4.9
Ours (Table 3) 72.2 5.0

Table 2: Bootstrapped accuracy when classifying nawba
using two pattern sets (n=100)

5. DISCUSSION

The patterns discovered by this analysis are found to be as
predictive as those of Chaachoo for classifying nawabāt
and 44% of our top 109 patterns match the centos out-
lined in his works. Furthermore, we have demonstrated
that in Arab-Andalusian music of the Moroccan tradition
there exists at least 61 unique melodic patterns that occur
as frequently (and in many cases more frequently) as those
identified and documented to date and with at least as much
significance as measured via our normalised frequency ap-
proach.

From a musical perspective it is clear that our patterns
share some similarities; they constitute very simple cells,
based on the relevant degrees of the t.āb‘ (tonic and domi-
nant). Since Arab-Andalusian music has uniform melodic
contour and intervals rarely larger than a third, some of
these new patterns could probably be clustered into other
more generic groups. This could mean that we are not dis-
covering new important material rather than variations of
the known centos proposed previously by Chaachoo.

6. CONCLUSIONS

Our methodology is not without its limitations. The vari-
ability of our results is conditioned by factors such as
whether we include rests in our patterns (and if so to what
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Nawba Most Characteristic Patterns

1
EFG, FGF, GFEDC, DCD, FEF,

CDEF, AAG, DCB, AGFED, FGA

2
CDEF, CBA, EFE, FEF, FEDCB,

GFEDC, GAGFE, AGFED, DCBC, DEFG

3
B-AG, EEF, FGEF, FGA, DCB,

AGFEDC, GAGFE, EFEDC, CEE, DEFG

4
CDEC, ECD, DEFG, GAGFE, EDCDE,

CDEF, AGFEDC, FAG, CDC, CCD

5
ABC, DCBA, FAG, AGFEDC, EDCB,
GAGFE, DEFG, BCD, EDE, CBAG

6
EDC, AGED, ABAGE, EDECD, EF#GA,

F#GAG, GF#G, GAB, AGG, GGA

7
EDE, GAGFE, DEFG, CDE, FGA,

AGFED, AAG, GFEDC, CCD, DCD

8
E-DC, GAGF#E-, AGF#E-D, DEF#, BAGF#,

EF#GAG, CBAG, DCB, BCB

9
EFG, FEF, FGF, FGA, FFG,

AGFED, GFEDC, GAG, DEF, EFE

10
BAGF#E, GF#ED, F#GAG, CBAG, EF#GA,

EDC, GAB, GGA, DCBA, ABC

11
GAG, GFED, DED, GAB, FEDC,
ABC, EDCB, GGA, EFE, CBAG

Table 3: Top 10 most characteristic patterns per nawba.
Those bolded exactly match patterns identified by Chaa-
choo. Those italicized are superstrings of one of those
identified by Chaachoo

Figure 4: Score example with the new patterns discovered
of the piece Btayhi Rasd Dayl of Nawba 4

length), the minimum frequency of occurrence for a pat-
tern to be considered significant and maximum/minimum
pattern length. The alteration of these and others like them
would likely have marked consequences for our results.
The justification for our decision was driven by necessity
and intuition but would indeed benefit from further collab-
oration with experts of the tradition.

A further limitation exists in our inability to compare
the significances computed here with other methods given
that the tf-idf statistic is proportional to corpus size and
hence only comparable within our training corpus.

However, as one of the first computational analysis on
Arab- Andalusian music, we hope to have contributed to

the musicological theory around centonization and hope
that our approach may serve as a first reference for pat-
tern recognition in Arab-Andalusian music, establishing
the principles and basis for future and helpful study for
musicological theories that can contribute to a better un-
derstanding and preservation of the musical tradition.
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ABSTRACT

The task of speech and music detection aims at the au-
tomatic annotation of potentially overlapping speech and
music segments in audio recordings. This metadata ex-
traction process finds important applications in royalty col-
lection for broadcast audio. This study focuses on deep
neural network architectures made to process sequential
data, and a series of recent architectures that have not
yet been applied for this task are evaluated, extended and
compared with a state-of-the-art architecture. Moreover,
different training strategies are evaluated, and we demon-
strate the advantages of a pre-training procedure with low-
quality data that facilitates the combination of heteroge-
neous datasets. The study shows that Temporal Convolu-
tion Network (TCN) architectures can outperform state-of-
the-art architectures. In specific, the novel non-causal TCN
extension introduced in this paper leads to a significant im-
provement of the accuracy.

1. INTRODUCTION

The location of speech and music segments in large
amounts of audio recordings is an important metadata in-
formation especially in the context of royalty collection in
broadcasting. The task of speech and music detection is a
multi-label problem, each frame can be labeled as music,
speech, both, or neither of both. Assuming potential over-
laps between the classes makes speech and music detection
a complex and unsolved task, as opposed to a simple dis-
crimination of segments into either speech or music [12].
Apart from royalty collection, a speech and music detec-
tion system can be useful to extract the relevant parts of the
audio on which to apply other meta-data extraction such as
speech-to-text, genre classification or music fingerprinting.

The first approaches to speech/music detection – dis-
cussed in the work of Carrey et al. [5] – focused on manu-
ally designed features and subsequent classification. More
recently, features are automatically learned from spectro-
gram images using deep neural networks for various au-
dio tasks [4, 7, 14, 22, 27, 33, 37]. End-to-end learning sys-

c© Quentin Lemaire, Andre Holzapfel. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Quentin Lemaire, Andre Holzapfel. “Temporal Convolu-
tional Networks for Speech and Music Detection in Radio Broadcast”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

tems with waveform-audio input have been compared with
spectrogram-based learning, with better results of the lat-
ter approach [16]. This may however be due to the lack of
sufficient data in the particular case, as discussed by Pons
et al. [24].

Recently, the Temporal Convolutional Network (TCN)
[2] showed promising results on tasks involving sequential
data. No study to date has compared the TCN architecture
with other deep learning architectures such as Recurrent
Neural Networks (RNN) for the task of speech and music
detection. A key contribution of this paper is the investiga-
tion of a novel non-causal TCN architecture. This is of spe-
cial interest to various applications where real-time analy-
sis is not a constraint. The results of this study demonstrate
that TCN architectures can outperform RNN. The final sys-
tem is compared with the state of the art on the MIREX
dataset 1 with results that further document the high per-
formance of the non-causal TCN.

Another contribution of this paper is the use of an effi-
cient pre-training procedure with low-quality data that fa-
cilitates the combination of heterogeneous datasets. We
compiled the most extensive data resource available un-
til now for the task of speech and music detection, and
trained and tested networks using this heterogeneous data
resource. Our results document the advantage of the pre-
training procedure, and we provide the code of this study
as a toolbox for the systematic comparison of system ar-
chitectures for the speech and music detection task.

The following section is a review of existing work
with neural networks on speech and music detection and
tasks that employ similar methods. Section 3 explains the
method that will be applied in this study. Section 4 presents
the results that are discussed in Section 5. Finally, Section
6 draws various conclusions about this work.

2. BACKGROUND

The speech and music detection problem is a sound event
detection problem. It applies to an audio stream containing
temporal segments of speech and/music in arbitrary posi-
tions. Segments of speech and audio may overlap. Fur-
thermore, some parts of the audio might contain neither
music nor speech, but task-irrelevant content such as envi-
ronmental sounds, footsteps or keyboard typing sounds.

1 https://www.music-ir.org/mirex/wiki/2018:
Music_and/or_Speech_Detection
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Figure 1 shows an overview of the processing chain typ-
ically applied in speech/music detection and other related
tasks, such as acoustic event detection. The following sub-
sections provide an overview of examples of these steps
from the literature.

Figure 1: Overview of the processing chain

2.1 Pre-Processing & Spectrogram Extraction

The most commonly used features in the literature are the
Mel-scaled log-magnitude spectrograms [14,18,22,27,33].
To obtain them, a Short-Time Fourier Transform (STFT) is
computed from the audio sample containing the discrete-
time signal. Only the magnitudes are kept and a Mel-scaled
Filterbank is applied. Finally, the obtained coefficients are
put on a log magnitude scale and normalized.

Data augmentation is a pre-processing solution that ar-
tificially creates new data based on the available ones by
applying various manipulations either in the time-domain
[27] or on the spectrograms [29].

2.2 Network Architectures

In the context of deep neural networks, there are two dif-
ferent ways described in the literature to handle the speech
and music detection task (or related tasks). The first possi-
bility is to treat the audio as non-sequential data by work-
ing on small excerpts independently which is mainly used
for classification tasks. The state-of-the-art architectures
are based on the Convolutional Neural Networks (CNN)
[14, 19, 27, 33].

The second possibility is to use a sequence model for
the audio. An audio sample is injected into the network
and each frame will be classified as music, speech, both
music and speech or neither of both. The state-of-the-art
architectures are mainly based on the Bidirectional Long
Short-Term Memory (B-LSTM) [18, 22], which are a type
of RNN.

Since the systems have been evaluated on differing test
sets, no conclusion regarding the best performing architec-
ture can be obtained from the above cited work. More-
over, music and speech have different temporal and spec-
tral properties than environmental sounds, and it is there-
fore not clear if results from other tasks apply to speech
and music detection.

2.2.1 Convolutional, Long Short-Term Memory, Fully
Connected Deep Neural Networks (CLDNN)

Information from the long-term context in past and future
can be very relevant for the classification and especially
for borderline cases. It motivates the use of sequential
models for the detection tasks. However, CNNs have ob-
tained state-of-the-art results in image and audio feature
extraction, which motivated the combination of RNN and

Figure 2: Visualization of a stack of dilated causal convo-
lutional layers. Source: [35]

CNN in the CLDNN architecture [26] to use the strength
of both. CLDNN are divided into three sections: first, the
input goes through several convolutional layers. Then, the
result goes through a classic LSTM network and finally,
several fully connected (FC) layers are applied. This ar-
chitecture was shown to outperform CNN, RNN or DNN
based approaches on various datasets [26]. This architec-
ture has also been reused in several subsequent audio and
music related studies [4, 7, 10], but has so far not been ap-
plied to speech and music detection.

2.2.2 Temporal Convolutional Network (TCN)

Recently, the Temporal Convolution Network (TCN) was
introduced [2] as a simple and flexible architecture using
CNN for sequential learning. This architecture is based on
the previous work trying to use only CNNs for sequential
learning [13, 35] but it remains much simpler. A TCN cell
is based on causal and dilated convolutions, and on residual
blocks [15]. Figure 2 illustrates a dilated causal convolu-
tional layer. Dilated convolutions permit to retrieve infor-
mation from far in the past without extensive computation.

TCN architectures have not been used for speech and
music detection yet. Therefore, within this paper, we com-
pare four architectures: the standard TCN, a novel non-
causal extension of the TCN, the BLSTM and the CLDNN
architectures. This non-causal TCN architecture is de-
signed to combine the strengths of both BLSTM and CNN
architectures: the bidirectional long-term memory of the
BLSTM architecture and the performance and paralleliz-
ability of the CNN architecture.

2.3 Post-processing and Evaluation

The network output vector contains two coefficients be-
tween 0 and 1, one for speech and one for music, and
commonly 0.5 is used as a threshold for the labeling deci-
sion [18, 30]. A probabilistic model has been used by [11]
to smooth the output and reduce the noise.

Two evaluation methods for speech and music detection
– segment-level evaluation and event-level evaluation [21]
– are applied within MIREX 1 and in most related studies.
Segment-level evaluation compares the labels of segments
of fixed size given by the algorithm with the ground-truth
labels. Event-based evaluation takes the whole ground-
truth events into account and a time-window tolerance is
allowed. This evaluation is either made on the on-set of
the events or on both the on-set and the off-set.
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3. METHODOLOGY

3.1 Datasets

A larger amount of previously compiled datasets have
been obtained and combined for this study (MUSAN Cor-
pus [31] (MUSAN), GTZAN Speech and Music Dataset
[34] (GTZAN), Scheirer & Slaney Music Speech Cor-
pus [28] (SSMSC), MuSpeak Speech and Music Detection
Dataset 2 (MuSpeak), OFAI Speech and Music Detection
Dataset [30] (OFAI), ESC-50: Dataset for Environmen-
tal Sound Classification [23] (ESC)). In addition, a newly
compiled dataset (Sveriges Radio dataset) was included as
well, which is composed of songs from different genres
that are played on the radio (42h 57mn) and of speech files
(17h 24mn) that are extracted from radio programs.

Table 1: Categorization of the datasets according to the
precision of their labels.

Low-quality datasets (LQ) High-quality datasets (HQ)
MUSAN, GTZAN OFAI

SSMSC, ESC MuSpeak
Sveriges Radio dataset

The datasets can be separated into two families regard-
ing the precision of their labels, "low-quality datasets"
(LQ) and "high-quality datasets" (HQ) as presented in Ta-
ble 1. The HQ datasets are labeled at the frame-level,
which precisely corresponds to the goal of the speech and
music detection task to classify each frame of the audio.
On the other hand, the LQ datasets are labeled at the
file-level, which assumes that all the frames in the audio
recording have the same label. It corresponds to a low-
precision version of the targeted system (e.g. pauses in
speech are not annotated).

The datasets were split into training, validation, and
test set (if not already done in the source material). HQ
datasets were split into 70% training set, 20% validation
set and 10% test set, and LQ datasets into 80% training
set and 20% validation set, because labels are not precise
enough to be used for testing. The resulting data collection
contains about 78h15mn / 86h54mn / 15mn / 8h49mn of
speech, music, both speech and music, and task-irrelevant
data in the LQ data, and 47h12mn of audio combining
all the previous categories in the HQ data, making it the
most extended data resource compiled so far for the task
of speech and music detection.

3.2 Architectures

Three previous sequential architectures and one novel ex-
tension will be compared in this paper. All four architec-
tures are followed by a dense layer that reduces the number
of coefficients to 2, one for music and one for speech, and
by a sigmoid activation to have coefficients between 0 and
1. The range of allowed values for hyper-parameter were
chosen to cover the ranges previously presented in litera-

2 http://mirg.city.ac.uk - visited 09/11/2018

ture, and are listed in the following tables for each archi-
tecture. In each case, a dropout randomly selected from
0.05 and 0.5 was added.

Figure 3: Visualization of a stack of dilated non-causal
convolutional layers. The architecture presented in Figure
2 was made non-causal to take both past and future into
account for the prediction. The kernel size had to be in-
creased by 1.

The TCN architecture as introduced in [2] is causal.
In this paper, we propose a novel extension of the TCN
that takes future data into account, the non-causal TCN
(ncTCN). To this end, the dilated convolutions were made
non-causal, as shown in Figure 3. The use of non-causal
dilated convolutions was previously shown to be success-
ful for image processing with the Dilated Temporal Fully-
Convolutional Neural Network (DTFCN) architecture [6].

Table 2: Hyperparameters for the four architectures.

Architecture 1: B-LSTM

Num. of layers 1, 2, 3, 4
Units by layer 25, 50, 75, ... 250

Architecture 2: CLDNN

Num. of layers 1, 2, 3
Kernel size (conv. layers) 3, 5 or 9
Number of LSTM layers 1, 2, 3
Units per LSTM layer 25, 50, 75, ... 150
Num. of fully-connected layers 1, 2, 3
Units per fully-connected layer 25, 50, 75, ... 150
Architectures 3 & 4: TCN & non-causal TCN (ncTCN)

Num. of layers 1, 2, 3, 4
Num. of stacks 3, 4, 5, ... 10
Kernel size 3, 5, 7, ... 19
Skip some connections true/false
Dilatations [20, 21, ..., 2ND ]

ND = 3, 4, ..., 8
Num. of filters by layer 8, 16, 32

3.3 Comparison methodology

The study in this paper is composed of two phases: The
first phase conducts a comparison of four sequential neural
network architectures (B-LSTM, CLDNN, TCN, ncTCN)
for the speech and music detection task. In order to fa-
cilitate the comparison in a reasonable time, two assump-
tions were made. First, the neural network architecture
achieving the best performances on a sub-training set is
likely to achieve the best performances on the total training
set. And, second, the neural network architecture achiev-
ing the best performance with a restricted number of pa-

3
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rameters is likely to perform best without this restriction.
Therefore, the comparison was done with a limited num-
ber of parameters and on a sub-dataset. A Bayesian hyper-
parameter optimization with a Tree of Parzen Estimators
(TPE) surrogate [3] was performed for each architecture
on the OFAI and the MuSpeak datasets, with the number
of hyper-parameters restricted to 1 million. The best set of
hyper-parameters was then used to train each architecture
over more epochs to get a final validation loss, and the ar-
chitecture achieving the lowest validation loss was kept for
the second phase.

In the second phase, the best-performing architecture
from the first phase is further optimized without limiting
the number of hyper-parameters. This hyper-parameter op-
timization was done on OFAI, MuSpeak, and ESC to have
a more balanced dataset between music, speech, and task-
irrelevant content. Then the architecture was trained on
more training data and evaluated on the test set. However,
due to the heterogeneity in the quality of the labels, ex-
plained in Section 3.1, only the high-quality datasets rep-
resent the target of the network. Therefore, four strategies
to take advantage of both HQ and LQ data were compared.
The four strategies were to (1) train the network on the
high-quality datasets, (2) to train the network on the low-
quality datasets, (3) to train the network on both the low
and the high-quality datasets at the same time, and (4) to
pre-train the network on the low-quality datasets and then
train on the high-quality datasets to fine-tune the parame-
ters.

The final system was evaluated on two different test
sets. The first test set is the in-house test set described in
subsection 3.1 and it shows the generalization of the sys-
tem on similar data. In order to compare the system with
several state-of-the-art algorithms, and to assess the gener-
alization of the system on data different than the one used
for the training, the dataset number 2 of the 2018 MIREX
Competition 1 [11] was used as a second test set.

The evaluation methods and parameters from MIREX
2018 were applied for comparisons, using the implemen-
tation of sed_eval [21]. The segment-level evaluation was
conducted with segments of 10ms. The event-level eval-
uation was performed with a tolerance time-window size
of 500ms on on-set only and both on-set and off-set. Pre-
cision, Recall, and F-measure were computed for segment
level (Ps, Rs, Fs), and event-level (Pe, Re, Fe).

3.4 Pre-processing

Before the training, the audio samples were re-sampled to
22.05 kHz mono audio samples split into files of 90 s. Then
a Short Time Fourier Transform (STFT) with a Hann win-
dow, a frame length of 1024 and a hop size of 512 samples
was computed. Only the squared magnitude (the power
spectrum) was kept and saved for the training. During the
training, data augmentation was applied to the saved spec-
trograms and then, a Mel-filterbank with 80 triangular fil-
ters between 27.5 Hz and 8 kHz was applied. Finally, the
data were put on a logarithmic scale and normalized to a
zero mean and unit variance over the training set.

The data augmentation pipeline applied to each spectro-
gram used the implementation and paramatrisation of [29],
applying time stretching, pitch shifting, Gaussian filtering,
loudness manipulation, and block mixing. Data from the
HQ datasets and LQ data labeled as task-irrelevant content
was augmented without block mixing. Otherwise, cou-
ples of speech and of music spectrograms were created,
passed individually in the data augmentation pipeline and
then each couple was mixed together with random over-
lap. It helps to have a more balanced dataset by artificially
creating overlaps between speech and music.

Broadcast audio is characterized by overlaps between
speech and music, for instance in jingles, commercial ads,
and transitions between pieces of music. Data augmenta-
tion helps to obtain larger overlaps that resemble this char-
acteristics of broadcast audio.

3.5 Training

To allow parallel computation and to speed up the back-
ward pass, mini-batches are used with a sequence length
of 270 and a batch size of 32. Binary cross-entropy was
minimized during training, and stochastic gradient descent
with momentum m = 0.9 [25] was used. When the vali-
dation loss did not improve after three epochs, the learning
rate was divided by 10. Dropout [32] was used and the
training was stopped whenever the validation loss had not
improved in 5 consecutive epochs.

3.6 Post-processing

A threshold of 0.5 was applied to the output of the net-
works. A simple strategy was applied to smooth the output
and delete spurious breaks or events. To this end, thresh-
olds for the minimal duration of speech (Dursp) and music
(Durmus) events were defined, respectively. Furthermore,
thresholds for the minimal duration of a break in speech
(Brksp) and music (Brkmus) were defined. In order to
specify values for these four duration thresholds, the train-
ing set was analyzed to obtain statistics on the lengths of
the events and the breaks. To choose the best values be-
tween the relevant values found with the analysis, each set
of values was evaluated on the validation set and the set
achieving the best performances was selected. The effect
of post-processing will be analyzed separately in the re-
sults.

3.7 Implementation

The implementation is done with Keras [9] using Tensor-
Flow as a backend [1] and the library keras-tcn 3 is used
for the TCN implementation. The code is provided as a
new framework for speech and music detection that allows
comparison between configurations with different archi-
tectures, datasets and hyper-parameters. The implemen-
tation has been made available on GitHub. 4

3 https://github.com/philipperemy/keras-tcn
4 https://bit.ly/2XcuzsJ
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4. RESULTS

4.1 Comparison

After each hyper-parameter optimization, the best config-
uration has been trained until the early-stopping. Figure
4 shows the micro-averaged [36] ROC curve of the 4 dif-
ferent architectures. The architecture that achieved the best
performances under the constraints of the experiment is the
non-causal TCN. All three architectures that have not yet
been applied to this task (ncTCN, TCN, CLDNN) outper-
form the BLSTM architecture.

Figure 4: ROC curve micro-averaged over speech and mu-
sic.

4.2 Dataset strategies

A new hyper-parameter optimization allowing for a big-
ger range of hyper-parameters was performed for the best-
performing architecture (ncTCN). The batch size was re-
duced to 16 to allow the GPU to work with bigger architec-
tures. The resulting architecture was trained with the four
different strategies explained in Section 3.3. The strategy
that achieved the lowest validation loss (Table 3) on the tar-
geted high-quality dataset (HQ loss) is pre-training on the
low-quality dataset, and subsequent training on the high-
quality dataset (Strategy 4).

Table 3: Validation loss of the different strategies to use
on high and low quality datasets.

Strategy LQ loss LQ/HQ loss HQ loss
(1) LQ 0.097 0.125 0.232
(2) HQ 0.365 0.323 0.096

(3) LQ/HQ 0.098 0.101 0.136
(4) Pre-train 0.222 0.181 0.070

4.3 Post-processing (PP)

The high-quality training set was analyzed to set the four
duration thresholds for the post-processing (see Section

3.6). The 1st, 5th and 10th percentiles were considered
to obtain threshold values. For instance, in the case of the
5th percentile for the music event duration, it means that
95 % of the music events in the training set have a length
exceeding the threshold. Table 4 presents the evaluation of
the system with several post-processing methods based on
the values from the different percentiles.

Table 4: F-measures for segment-level evaluation (Fs) and
event-level evaluation (Fe) on the high-quality validation
set by percentile. Underlined values denote statistically
significant differences to the value one row above (paired-
sample t-test, p < 0.05).

PP
Fs (segment) Fe (event)

All Mus. Sp. All Mus. Sp.
None 0.973 0.982 0.951 0.182 0.247 0.129
1st 0.973 0.982 0.950 0.510 0.589 0.417
5th 0.973 0.982 0.950 0.544 0.615 0.454
10th 0.971 0.981 0.949 0.547 0.617 0.459

The different impact of the post-processing on the seg-
ment and on the event-level evaluation is caused by the fact
that a small modification at the frame level has a limited
impact on the segment-level evaluation, but it can have a
significant impact on the event-level evaluation. The set of
values from the 5th percentile was selected for the rest of
the evaluation since it represents a good compromise be-
tween a decrease in the segment-level evaluation and an
increase in the event-level evaluation.

4.4 Evaluation of the ncTCN

Table 5: Segment-level evaluation of the final system

All Music Speech
Fs 0.968 0.971 0.957
Ps 0.963 0.969 0.944
Rs 0.973 0.973 0.971

The results of the segment-level and event-level evalu-
ations on the test set 1 are presented in Table 5 and Ta-
ble 6, respectively. For the segment-level evaluation, the
proposed non-causal TCN system obtains an F-measure of
0.971 for the music and of 0.957 for the speech. Due to the
marginal effect of post-processing on the segment level,
only results with post-processing are depicted. For the
event-level evaluation, the system obtains clearly superior
results with the post-processing. For example, the overall
F-measure on both onset and offset increases from 0.151
without post-processing to 0.417 with post-processing.

Finally, the non-causal TCN was evaluated on the
dataset 2 of the 2018 MIREX competition. The results
are presented in Table 7 and Table 8 and the results of
the other systems are taken from the MIREX website 1 .
For the segment-level evaluation, the system obtains the
best F-measure (0.946) on speech. On music, the system
obtains an F-measure of 0.879 and the best system of the
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Table 6: Event-level evaluation of the final system. Un-
derlined values denote statistically significant difference
to the value without pre-processing (paired-sample t-test,
p < 0.05).

Ons. On/Offs.
PP All Mus. Sp. All Mus. Sp.

No
Fe 0.248 0.248 0.248 0.151 0.177 0.115
Pe 0.153 0.146 0.165 0.930 0.104 0.760
Re 0.650 0.828 0.499 0.394 0.587 0.231

Yes
Fe 0.653 0.782 0.519 0.417 0.590 0.236
Pe 0.733 0.778 0.671 0.447 0.587 0.305
Re 0.589 0.787 0.422 0.376 0.593 0.192

competition obtains 0.923. For the event-level evaluation,
the system obtains the best F-measure of 0.162 for the on-
set evaluation of the music. For the other cases, the system
does not come first but achieves good results and comes
second in 2 of the 3 remaining cases.

Table 7: Comparison with other algorithms on test set
2 of MIREX 2018 for segment-level evaluation. Archi-
tectures [8](a, b, c) use a Multi-layer Perceptron to clas-
sify both Mel-Frequency Cepstral Coefficient and features
extracted by a SampleCNN [17] architecture. Architec-
tures [20](a) are based on a logistic regression classifier
and architectures [20](b, c) are based on a Deep Residual
Network [15].

Music Speech

Algo. Fs Ps Rs Fs Ps Rs

[8, a] 0.786 0.813 0.760 0.846 0.967 0.751
[8, b] 0.759 0.768 0.750 0.789 0.975 0.663
[8, c] 0.797 0.797 0.797 0.823 0.964 0.718

[20, a] 0.923 0.977 0.875 0.933 0.913 0.953
[20, b] 0.916 0.925 0.907 0.914 0.933 0.896
[20, c] 0.879 0.979 0.797 0.897 0.829 0.978
ncTCN 0.879 0.790 0.990 0.946 0.949 0.943

5. DISCUSSION

Based on the curves from Figure 4, our experiments sug-
gest that the TCN-based architectures are outperforming
the RNN-based architectures. Moreover, the TCN-based
architectures train faster than the RNN-based architectures
at similar sizes (around 80s/epoch for the TCN-based ar-
chitectures and 340s/epoch for the RNN-bases architec-
tures), results that corroborate conclusions [2] in different
task contexts. The proposed non-causal TCN achieves bet-
ter results than the causal TCN.

We also demonstrated that pre-training the neural net-
work on a low-quality dataset prior to training it on the
high-quality dataset improves the validation loss. Table 3
highlights the difference between the different strategies
and it shows that the HQ loss function goes down from
0.096 to 0.070 by pre-training the network on low-quality

Table 8: F-measure comparison with other algorithms on
the test set 2 of MIREX 2018 for the event-level evaluation
and a tolerance time-window of 500ms.

Algorithm
Music Speech

Ons. On/Offs. Ons. On/Offs.
[8, a] 0.087 0.023 0.223 0.077
[8, b] 0.073 0.020 0.192 0.051
[8, c] 0.068 0.015 0.206 0.052
[20, a] 0.141 0.016 0.063 0.002
[20, b] 0.154 0.031 0.116 0.021
[20, c] 0.152 0.022 0.080 0.015
ncTCN 0.162 0.0169 0.216 0.070

datasets, it represents a relative improvement of 27 %. The
analysis of the training set provides relevant thresholds for
the post-processing method. Those values allow an im-
provement for the event-level evaluation on the validation
set without harming the segment-level evaluation. Results
on the test set (Table 5 and 6) confirm this analysis made
on the validation set. Instead of applying some thresholds,
more sophisticated probabilistic models may further im-
prove the post-processing.

For the event-level evaluation, the overall results of all
algorithms are much lower compared to the segment-level
results. It shows one of the limits of the event-level eval-
uation: it is difficult to standardize precise boundaries for
the events and especially the speech events. The results
of the event-level evaluation highly depend on the rules
that have been chosen during the annotation of the training
set. Therefore, the segment-level evaluation might be more
relevant to compare different algorithms on a test set with
unknown annotation rules.

End-to-end learning may be considered an important
area for future research. Pre-training an end-to-end learn-
ing solution on low-quality datasets and fine-tuning it on
high-quality datasets might be a viable solution to over-
come the expensive price of labeling data. This method
was shown to be successful in this study and it might be
suitable for other tasks.

6. CONCLUSION

In this paper, various architectures have been compared in
a speech and music detection task. The findings are con-
sistent with previous studies, demonstrating that convolu-
tional architectures can yield better performance and are
faster to train than RNN-based architectures for sequence
modeling. Furthermore, the novel non-causal TCN can
improve performance when real-time computation is not
a constraint. Low-quality data was successfully used to
improve the system performance on high-quality data. It
provided a better starting point for the learning phase and
it converged faster towards a lower minimum. Through the
MIREX evaluation, the final system has demonstrated to
perform well in relation to the state of the art. This en-
courages further exploration of TCN and non-causal TCN
architectures for sequence modeling tasks.
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ABSTRACT

Emotional aspects play an important part in our interac-
tion with music. However, modelling these aspects in MIR
systems have been notoriously challenging since emotion
is an inherently abstract and subjective experience, thus
making it difficult to quantify or predict in the first place,
and to make sense of the predictions in the next. In an
attempt to create a model that can give a musically mean-
ingful and intuitive explanation for its predictions, we pro-
pose a VGG-style deep neural network that learns to pre-
dict emotional characteristics of a musical piece together
with (and based on) human-interpretable, mid-level per-
ceptual features. We compare this to predicting emotion
directly with an identical network that does not take into
account the mid-level features and observe that the loss
in predictive performance of going through the mid-level
features is surprisingly low, on average. The design of our
network allows us to visualize the effects of perceptual fea-
tures on individual emotion predictions, and we argue that
the small loss in performance in going through the mid-
level features is justified by the gain in explainability of
the predictions.

1. INTRODUCTION

Emotions – portrayed, perceived, or induced – are an im-
portant aspect of music. MIR systems can benefit from
leveraging this aspect because of its direct impact on hu-
man perception of music, but doing so has been challeng-
ing due to the inherently abstract and subjective quality
of this feature. Moreover, it is difficult to interpret emo-
tional predictions in terms of musical content. In our quest
for computer systems that can give musically or percep-
tually meaningful justifications for their predictions [17],
we turn to the notion of ‘mid-level perceptual features’
as recently described and advocated by several researchers
[1, 5]. These are musical qualities (such as rhythmic com-
plexity, or perceived major/minor harmonic character) that
are supposed to be musically meaningful and intuitively

c© Shreyan Chowdhury, Andreu Vall, Verena Haunschmid,
Gerhard Widmer. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Shreyan Chowdhury,
Andreu Vall, Verena Haunschmid, Gerhard Widmer. “Towards Explain-
able Music Emotion Recognition: The Route via Mid-level Features”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

recognizable by most listeners, without requiring music-
theoretic knowledge. It has been shown previously that
there is considerable consistency in human perception of
these features; that they can be predicted relatively well
from audio recordings; and that they also relate to the per-
ceived emotional qualities of the music [1].

That is the motivation for the work to be reported here.
Our goal is to use mid-level features as a basis for pro-
viding explanations of (and thus get further insights into,
or handles on) a model’s emotion predictions, by training
it to recognize mid-level qualities from audio, and predict
emotion ratings from the mid-level predictions. Further,
we wish to quantify the cost – in terms of loss of predictive
performance – incurred by this detour. We will call this the
‘cost of explainability’.

Focusing our study on a specific benchmark dataset la-
belled with both perceived emotional qualities and mid-
level perceptual features, we first establish our basic VGG-
style model architecture [16], showing that it can learn
the two individual prediction tasks (mid-level from audio,
emotion from mid-level) from appropriate ground-truth
data, with accuracies that are at least on par with previously
published models. We then present a network with nearly
identical architecture that learns to predict emotional char-
acteristics of a piece by explicitly going through a mid-
level feature prediction layer. We compare this to predict-
ing emotion directly, using an identical network with the
exception of the mid-level layer, and find that the cost of
going through the mid-level features is surprisingly low,
on average. Finally, we show that by training the network
to learn to predict mid-level and emotions jointly, the re-
sults can be further improved. A graphical overview of the
general scenario is shown in Figure 1.

The fact that in our model, emotions are predicted from
the mid-level by a single fully-connected layer, allows us
to measure the effects of each of the features on each emo-
tion prediction, providing the basis for interpretability and
simple explanations. There are a number of application
scenarios in which we believe this could be useful; some
of these will be briefly discussed in the final section.

The remainder of this paper is structured as follows:
Section 2 briefly discusses related work on which this re-
search is based. In Section 4 the datasets that provide us
with emotion and mid-level annotations are described. The
three different approaches to modelling emotion are sum-
marized in Section 5. Experimental results and a demon-
stration of interpretability are given in Sections 6 and 7.
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Figure 1: Three different architectures are compared for
predicting emotion from audio.

We discuss our findings and conclude in Section 8.

2. RELATED WORK

In the MIR field, audio-based music emotion recognition
(MER) has traditionally been done by extracting selected
features from the audio and predicting emotion based on
subsequent processing of these features [7]. Methods such
as linear regression, regression trees, support vector re-
gression, and variants have been used for prediction as
mentioned in the systematic evaluation study by Huq et
al [6]. Techniques using regression-like algorithms have
generally focused on predicting arousal and valence as
per the well-known Russell’s circumplex model of emo-
tion [15]. Deep learning methods have also been employed
for predicting arousal and valence, for example [18], that
investigated BLSTM-RNNs in tandem with other meth-
ods, and [3], that used LSTM-RNNs. Others such as [12]
and [9] use support vector classification to predict the emo-
tion class. Aljanaki et al. [2] provide a summary of entries
to the MediaEval emotion characterization challenge and
quote results for arousal and valence prediction.

Deep neural networks are preferable for many tasks
due to their high performance but can be considered black
boxes due to their non-linear and nested structure. While
in some fields such as healthcare or criminal justice the
use of predictive analytics can have life-affecting conse-
quences [14], the decisions of MIR models are generally
not as severe. Nevertheless, also in MIR it would be de-
sirable to be able to obtain explanations for the decisions
of a music recommendation or search system, for various
reasons (see also Section 8). Many current methods for ob-
taining insights into deep network-based audio classifica-
tion systems do not explain the predictions in a human un-
derstandable way but rather design special filters that can
be visualized [13], or analyze neuron activations [8]. To
the best of our knowledge, [19] is the only attempt to build
an interpretable model for MER. They performed the task
of feature extraction and selection and built models from
different model classes on top of them. The only inter-
pretation offered is the reporting of coefficients from their

logistic regression models, without further explanation.

3. MID-LEVEL PERCEPTUAL FEATURES

The notion of (‘mid-level’) perceptual features for charac-
terizing music recordings has been put forward by several
authors, as an alternative to purely sound-based or statis-
tical low-level features (e.g., MFCCs, ZCR, spectral cen-
troid) or more abstract music-theoretic concepts (e.g., me-
ter, harmony). The idea is that they should represent musi-
cal characteristics that are easily perceived and recognized
by most listeners, without any music-theoretical training.
Research on such features has quite a history in the fields
of music cognition and psychology (see [5] for a compact
discussion). Such features are attractive for our purposes
because they could provide the basis for intuitive explana-
tions of a MIR system’s decisions, relating as they do to
the musical experience of most listeners.

Various sets of such perceptual features have been pro-
posed in the literature. For instance, Friberg et al.’s
set [5] contains such concepts as speed, rhythmic clar-
ity/complexity, articulation, dynamics, modality, overall
pitch hight, etc. In our study, we will be using the seven
mid-level features defined by Aljanaki & Soleymani [1],
because they come with an openly available set of anno-
tated audios (see below). We recapitulate the features and
their definitions in Table 1, for convenience.

4. DATASETS

For our experiments, we need music recordings annotated
both with mid-level perceptual features, and with human
ratings along some well-defined emotion categories. Our
starting point is Aljanaki & Soleymani’s Mid-level Percep-
tual Features dataset [1], which provides mid-level fea-
ture annotations. For the actual emotion prediction ex-
periments, we then use the Soundtracks dataset, which is
contained in the Aljanaki collection as a subset, and comes
with numeric emotion ratings along 8 dimensions.

4.1 Mid-level Perceptual Features Dataset

The Mid-level Perceptual Features Dataset [1] consists of
5000 song snippets of around 15 seconds each annotated
according to the seven mid-level descriptors listed in Table
1. The annotators were required to have some musical ed-
ucation and were selected based on passing a musical test.
The ratings range from 1 to 10 and were scaled by a factor
of 0.1 before being used for our experiments.

4.2 Emotion Ratings: The Soundtracks Dataset

The Soundtracks (Stimulus Set 1) 1 dataset, published by
Eerola and Vuoskoski [4], consists of 360 excerpts from
110 movie soundtracks. The excerpts come with expert
ratings for five categories following the discrete emotion
model (happy, sad, tender, fearful, angry) and three cate-
gories following the dimensional model (valence, energy,

1 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/projects2/past-
projects/coe/materials/emotion/soundtracks
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Perceptual Feature Question asked to human raters
Melodiousness To which excerpt do you feel like singing along?
Articulation Which has more sounds with staccato articulation?

Rhythmic Stability
Imagine marching along with the music.

Which is easier to march along with?

Rhythmic Complexity
Is it difficult to repeat by tapping?

Is it difficult to find the meter?
Does the rhythm have many layers?

Dissonance
Which excerpt has noisier timbre?

Has more dissonant intervals (tritones, seconds, etc.)?

Tonal Stability
Where is it easier to determine the tonic and key?

In which excerpt are there more modulations?

Modality (‘Minorness’)
Imagine accompanying this song with chords.
Which song would have more minor chords?

Table 1: Perceptual mid-level features as defined in [1], along with questions that were provided to human raters to help
them interpret the concepts. (The ratings were collected in a pairwise comparison scenario.) In the following, we will refer
to the last one (Modality) as ‘Minorness’, to make the core of the concept clearer.

tension). This makes it a suitable dataset for musically con-
veyed emotions [4]. The ratings in the dataset range from 1
to 7.83 and were scaled by a factor of 0.1 before being used
for our experiments. As stated above, all the songs in this
set are also contained in the Mid-level Features Dataset, so
that both kinds of ground truth are available.

5. AUDIO-TO-EMOTION MODELS

In the following, we describe three different approaches
to modeling emotion from audio, all based on VGG-style
convolutional neural networks (CNNs). The architectures
are summarized in Figure 2. For all models, we use an
Adam optimizer with a learning rate of 0.0005 and a batch
size of 8, and employ early stopping with a patience of 50
epochs to prevent overfitting.

In terms of preprocessing, the audio samples are first
converted into 149-point spectrograms calculated on ran-
domly selected 10-second sections of the original snip-
pets. The audio is resampled at 22.05 kHz, with a frame
size of 2048 samples and a frame rate of 31.25 frames per
second, and amplitude-normalized before computing the
logarithmic-scaled spectrogram. This results in input vec-
tors of size 313×149. These spectrograms are used as in-
puts for the following model architectures.

5.1 A2E Scheme

The first model, which we term “A2E", is the most straight-
forward one. The spectrograms are fed into a VGG-style
CNN to directly predict emotion values from audio. This
is the leftmost path in Figure 2. This model is not inter-
pretable due to its black box architecture and is used as a
baseline and for computing the cost of explainability when
comparing to more interpretable but possibly worse per-
forming models.

5.2 A2Mid2E Scheme

In order to obtain a more interpretable model, an interme-
diate step is introduced. First, a VGG-style network is used
to predict mid-level features from audio. This model is
trained on the mid-level features dataset described in Sec-
tion 4.1 above. Next, a linear regression model is trained
to predict the 8 emotion ratings in the Soundtracks dataset
from the 7 mid-level feature values that we get as an output
from the mid-level predictor network. This corresponds to
a fully connected layer with 7 input units and 8 outputs and
linear (identity) activation function – see the middle path in
Figure 2. We call this scheme “A2Mid2E". A linear model
is chosen because its weights can easily be interpreted to
understand the importance of each mid-level feature in pre-
dicting the emotion ratings.

5.3 A2Mid2E-Joint Scheme

In an attempt to replace the step-wise training of two sep-
arate models with a single model that, ideally, could learn
an internal representation useful for both prediction tasks,
while keeping the interpretability of the linear weights,
we propose a third architechture, called “A2Mid2E-Joint"
(rightmost path in Figure 2). This network learns to pre-
dict mid-level features and emotion ratings jointly, but still
predicts the emotions directly from the mid-level via a lin-
ear layer. This is achieved by the second last layer having
exactly the same number of units as there are mid-level
features (7), followed by a linear output layer with 8 out-
puts. From this network, we extract two outputs – one from
the second last layer ("mid-level layer"), and one from the
last layer ("emotion layer"). We compute losses for both
the outputs and optimize the combined loss (summation of
both the losses).

6. EXPERIMENTS

The audio clips are preprocessed as described in Section 5
to obtain the input spectrograms. During training, one ran-
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Valence Energy Tension Anger Fear Happy Sad Tender Avg.
Mid2E (Aljanaki) 0.88 0.79 0.84 0.65 0.82 0.81 0.73 0.72 0.78
Mid2E (Ours) 0.88 0.80 0.84 0.65 0.82 0.81 0.74 0.73 0.79
A2E 0.81 0.79 0.84 0.82 0.81 0.66 0.60 0.75 0.76
A2Mid2E 0.79 0.74 0.78 0.72 0.77 0.64 0.58 0.67 0.71
A2Mid2E-Joint 0.82 0.78 0.82 0.76 0.79 0.65 0.64 0.72 0.75
CoEA2Mid2E 0.02 0.05 0.06 0.10 0.03 0.02 0.02 0.08 0.05
CoEA2Mid2E-Joint -0.02 0.01 0.02 0.06 0.02 0.01 -0.04 0.03 0.01

Table 2: Summaries of the different model performances on predicting emotion. The last two rows show the “cost of
explainability” (CoE), as the difference between our baseline (A2E) and the newly proposed models (A2Mid2E, A2Mid2E-
Joint). A positive cost indicates a loss in performance.

  Conv (5, stride-2, pad-2) -- 64 -- BN -- ReLU 

  Conv (3, stride-1, pad-1) -- 64 -- BN -- ReLU 

  MaxPool (2) + Dropout (0.3) 

  Conv (3, stride-1, pad-1) -- 128 -- BN -- ReLU 

  Conv (3, stride-1, pad-1) -- 128 -- BN -- ReLU 

  MaxPool (2) + Dropout (0.3) 

  Conv (3, stride-1, pad-1) -- 256 -- BN -- ReLU 

  Conv (3, stride-1, pad-1) -- 256 -- BN -- ReLU 

  Conv (3, stride-1, pad-1) -- 384 -- BN -- ReLU 

  Conv (3, stride-1, pad-1) -- 512 -- BN -- ReLU 

  Conv (3, stride-1, pad-0) -- 256 -- BN -- ReLU 

  Adaptive Average Pooling 2D (1,1) 

  Linear (256x8) Linear (256x7) Linear (256x7) 

  Linear (7x8) 

A2E A2Mid2E A2Mid2E-Joint

Linear (7x8)

Emotions

Mid-level features

Emotions Emotions Mid-level 
features

14
9

313

Figure 2: The same architecture from the first layer up to
the ‘Adaptive Average Pooling 2D’ layer is shared by all
networks.

dom 10-second snippet from each spectrogram is taken
as input. We optimize the mean squared error, and use
Pearson’s correlation coefficient as the evaluation metric
for emotion rating prediction. Each of the paths (A2E,
A2Mid2E, A2Mid2E-Joint) is run ten times and the av-
erage correlation values are reported. Each run has a dif-
ferent seed which reshuffles the train-test split.

6.1 Verifying our Basic Architecture

Before going any further, we first want to verify that our
VGG-style network model performs on par with compa-
rable methods on the basic component tasks of predicting
mid-level features from audio (A2Mid) and emotions from
(given) mid-level features (Mid2E).

For the A2Mid scenario (Table 3), we train in two ways:
first on the entire Mid-level features dataset with 8% test
set selected as described in [1]. We call this A2Mid+. This
is the result that should be directly compared to column 1.
Second, we train only on the songs from the Soundtracks
dataset with 20% test set, and call this A2Mid. The column
‘Joint’ in Table 3 gives the mid-level predictions produced
by our A2Mid2E-Joint model. As can be seen, our models
are broadly comparable to the results reported in [1], with
A2Mid+ and Joint performing slightly better, on average.

Regarding the prediction of emotions from given mid-
level feature annotations (Table 2, first two rows), there is
not much space for deviation, as the models used by Al-
janaki [1] and us are very simple.

Mid-level
feature

Aljanaki A2Mid+ A2Mid Joint

Melodiousness 0.70 0.70 0.69 0.72
Articulation 0.76 0.83 0.84 0.79
R. Stability 0.46 0.39 0.39 0.34
R. Complexity 0.59 0.66 0.45 0.46
Dissonance 0.74 0.74 0.73 0.74
Tonal Stability 0.45 0.56 0.61 0.63
Minorness 0.48 0.55 0.51 0.57

Table 3: Correlation values for mid-level features predic-
tions using our models, compared with those reported by
Aljanaki et al. [1].

6.2 Quantifying the Cost of Explainability

We now compare our three model architectures (A2E,
A2Mid2E, A2Mid2E-Joint) on the full task of predicting
emotion from audio, We train on the Soundtracks dataset
as described above, with 10 runs with randomly selected
train-test 80:20 splits. The A2E model serves as reference
for the subsequent models with explainable linear layers.
The results can be found in Table 2.

In the case of direct emotion prediction (A2E), the fi-
nal layer is connected to 256 input nodes. However, in the
A2Mid2E scheme, due to the fact that we introduce a bot-
tleneck (viz. the 7 mid-level predictions) as inputs to the
subsequent linear layer predicting emotions, our hypothe-
sis is that doing so should result in a decrease in the perfor-
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mance of emotion prediction. We calculate this cost as the
difference in correlation coefficients between the two mod-
els for each emotion. The results (rows A2E and A2Mid2E
in Table 2) reflect the expected trend, but as can be seen,
the decrease in performance is quite small (less than 7% of
the original correlation coefficient on average).

6.3 Joint Learning of Mid-level and Emotions

Further improvements in the performance of the mid-level-
based network can be obtained by training jointly on the
mid-level and emotion annotations (as described in Sec-
tion 5.3). This model reduces the cost even further, as can
be seen in Table 2, row A2Mid2E-Joint. The decrease in
performance is now less than 1.5% of the correlation co-
efficients for the A2E case on average. We believe this is
acceptable in view of the possibility of obtaining explana-
tions from this network (see below).

7. OBTAINING EXPLANATIONS

Since the mapping between mid-level features and emo-
tions is linear in both proposed schemes (A2Mid2E,
A2Mid2E-Joint), it is now straightforward to create
human-understandable explanations. Linear models can
be interpreted by analyzing their weights: increasing a nu-
merical feature by one unit changes the prediction by its
weight. A more meaningful analysis is to look at the ef-
fects, which are the weights multiplied by the actual feature
values [10]. An effects plot shows the distribution, over a
set of examples, of the effects of each feature on each tar-
get. Each dot in an effects plot can be seen as the amount
this feature contributes (in combination with its weight) to
the prediction, for a specific instance. Instances with ef-
fect values closer to 0 get a prediction closer to the inter-
cept (bias term). Figure 3 shows the effects of the model
A2Mid2E-Joint.

First we will show how this can be used to provide
model-level explanations and then we will explain a spe-
cific example at the song level.

7.1 Model-level Explanation

Before a model is trained, the relationship between fea-
tures and response variables can be analyzed using correla-
tion analysis. The pairwise correlations between mid-level
and emotion annotations in our data are shown in Figure 4.
When we compare this to the effect plots in Figure 3, or the
actual weights learned for the final linear layer (Figure 5)
it can be seen that for some combinations (e.g., valence
and melodiousness, happy and minorness) positive corre-
lations go along with positive effect values and negative
correlations with negative effect values, respectively. This
is not a general rule, however, and there are several ex-
amples (e.g., tension and dissonance, energy and melody)
where it is the other way around. The explanation for this
is simple: correlations only consider one feature in isola-
tion, while learned feature weights (and thus effects) also
depend on the other features and must hence be interpreted

predicted annotated
#153 #322 #153 #322

valence 0.28 0.39 0.38 0.46
energy 0.37 0.50 0.37 0.54
tension 0.40 0.46 0.50 0.56
anger 0.28 0.23 0.15 0.22
fear 0.41 0.27 0.18 0.28
happy 0.17 0.21 0.17 0.17
sad 0.20 0.23 0.27 0.28
tender 0.18 0.23 0.10 0.10

Table 4: Emotion prediction profiles for the two example
songs #153 and #322.

in the overall context. Therefore it is not sufficient to look
at the data in order to understand what a model has learned.

To get a better understanding, we will look at each emo-
tion separately, using the effects plot given in Figure 3. In
addition to the direction of the effect – which we can also
read from the learned weights in Figure 5 (but only be-
cause all of our features are positive) – we can also see the
spread of the effect which tells us more about the actual
contribution the feature can have on the prediction, or how
different combinations of features may produce a certain
prediction.

7.2 Song-level Explanations

Effect plots also permit us to create simple example-based
explanations that can be understood by a human. The fea-
ture effects of single examples can be highlighted in the
effects plot in order to analyze them in more detail, and in
the context of all the other predictions. To show an inter-
esting case we picked two songs with similar emotional but
different midlevel profiles. To do so we computed the pair-
wise euclidean distances between all songs in emotion (dE)
and midlevel space (dMid) separately, scaled both to the
range [0, 1] and combined them as dcomb = dE−(1−dMid).
We then selected the two songs from the Soundtracks
dataset that maximised dcomb. The samples are shown
in Figure 3 as a red square (song #153) and a blue dot
(song #322). The reader can listen to the songs/snippets by
downloading them from the Soundtracks dataset page 1 .

As can be seen from Figure 3 and from the emotion
prediction profile of the two songs (see Table 4), both
songs have relatively high predicted values for tension and
energy, but apparently for different reasons: song #322
more strongly relies on “minorness" and “articulation" for
achieving its “tense" character; on the other hand, its rhyth-
mic stability counteracts this more strongly than in the case
of song #153. The higher score on the “energy" emotion
scale for #322 seems to be primarily due to its much more
articulated character (which can clearly be heard: 153 is
a saxophone playing a chromatic, harmonically complex
line, 322 is an orchestra playing a strict, staccato passage).
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Figure 3: Effects of each mid-level feature on prediction of emotion. The boxplots show the distribution of feature effects
of the model ‘A2Mid2E-Joint’ helping us to understand the model globally. Additionally, two example songs (blue dots,
red squares) are shown to provide song-level explanations (see Section 7.2 for a discussion).
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Figure 4: Pairwise correlation between mid-level and
emotion annotations.

8. DISCUSSION AND CONCLUSION

Model interpretability and the possibility to obtain expla-
nations for a given prediction are not ends in themselves.
There are many scenarios where one may need to under-
stand why a piece of music was recommended or placed
in a certain category. Concise explanations in terms of
mid-level features would be attractive, for example, in rec-
ommender systems or search engines for ‘program music’
for professional media producers, where mid-level quali-
ties could also be used as additional search or preference
filters 2 . As another example, think of scenarios where we
want a music playlist generator to produce a music pro-
gram with a certain prevalent mood, but still maintain mu-
sical variety within these limits. This could be achieved by
using the mid-level features underlying the mood/emotion
classifications to enforce a certain variability, by sorting or
selecting the songs accordingly.

There are several obvious next steps that need to be
taken in the research. The first is to extend this analysis
to a larger set of diverse datasets and emotion-related di-

2 A demonstration of mid-level explanations of emotional variability
in multiple versions of songs can be found in
https://shreyanc.github.io/ismir_example.html
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Figure 5: Weights from the linear layer of the ‘A2Mid2E-
Joint’ model.

mensions. 3

Second, we plan to extend the models and sets of per-
ceptual features. One rather obvious (and obviously rele-
vant) perceptual dimension that is conspicuously missing
from our (Aljanaki & Soleymani’s) set of mid-level fea-
tures is perceived speed (which is not the same as tempo).
Adding this intuitive musical dimension is an obvious next
step towards improving our model. Of course, this will
require an appropriate ground truth for training.

Generally, the relation between the space of musical
qualities (such as our mid-level features) and the space
of musically communicated emotions and affects deserves
more detailed study. A deeper understanding of this might
even give us means to control or modify emotional quali-
ties in music by manipulating mid-level musical properties.

3 In fact, we do have preliminary results on a second dataset – the
MIREX-like Mood Dataset) of [11], which is also covered by the Mid-
level Perceptual Features Dataset of [1] and differs from Soundtracks in
that is comes with discrete mood labels. The results confirm the general
trends reported in the present paper, but because of the different emo-
tion/mood encoding scheme, further optimisations on our models may
still improve the results further.
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ABSTRACT

Audio-based cover song detection has received much
attention in the MIR community in the recent years. To
date, the most popular formulation of the problem has been
to compare the audio signals of two tracks and to make a
binary decision based on this information only. However,
leveraging additional signals might be key if one wants
to solve the problem at an industrial scale. In this paper,
we introduce an ensemble-based method that approaches
the problem from a many-to-many perspective. Instead of
considering pairs of tracks in isolation, we consider larger
sets of potential versions for a given composition, and create
and exploit the graph of relationships between these tracks.
We show that this can result in a significant improvement
in performance, in particular when the number of existing
versions of a given composition is large.

1. INTRODUCTION

With the rise of online streaming services, it is becoming
easier for artists to share their music with the rest of the
world. With catalogs that can reach up to tens of millions of
tracks, one of the rising challenges faced by music stream-
ing companies is to assimilate ever-better knowledge of
their content – a key requirement for enhancing user and
artist experience. From a musical perspective, one highly in-
teresting aspect is the detection of composition similarities
between tracks, often known as the cover song detection
problem. This is, however, a very challenging problem from
a content analysis point of view, as artists can make their
own version of a composition by modifying any number
of ingredients – instruments, harmonies, melody, rhythm,
structure, timbre, vocals, lyrics, among others.

Over the years, it has become customary in the Mu-
sic Information Retrieval (MIR) literature to address the
cover song detection problem in what is arguably the most
challenging setting. Indeed, most papers attempt to detect
composition relationships between pairs of tracks based on
their two audio signals only – in other words, completely
out of context and without using any metadata information.
While this well-defined task makes sense from an academic
perspective, it might not be the optimal approach for solving

c© Marc Sarfati, Anthony Hu, Jonathan Donier. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Marc Sarfati, Anthony Hu, Jonathan Donier.
“Community-based cover song detection”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

the problem at an industrial scale [4].
The second starting point of our work is the fact, often

mentioned in cognitive science, that commonly observed
patterns are represented and stored in a redundant fashion
in the human brain, which makes them more likely to be
retrieved, recognised and identified than patterns that are
observed less frequently [14]. If true, this would apply to
our assessment of composition similarities as well. The
main idea behind our work is that the corpus of existing
versions of a composition can be precisely a substitute for
these multiple representations.

Following these guiding intuitions, we turn to a new
use case, where we do not just have pairs but a pool of
candidates that are likely to be instances of some given mu-
sical work (according e.g. to some first metadata analysis).
We then compare these candidates not only to one refer-
ence version (e.g. the original track, if it exists) but also
to other candidate versions. We then build a graph of all
these versions to identify composition clusters. Sometimes,
when hundreds or thousands of versions of a given work
exist (which is quite common in the catalogue of a stream-
ing company), this ensemble-based approach can result in
substantial improvements on the cover detection task.

In Section 2 we present a review of the literature on cover
identification. In Section 3, we present the 1-vs-1 cover
identification algorithm that we use throughout the paper,
which is heavily based on [23]. The main contribution of
this paper lies in Section 4, in which we present the new
use case for cover identification described in the previous
paragraph.We then showcase our method with examples in
Section 5 and discuss some challenges in Section 6.

2. RELATED WORK

A number of possible approaches to cover song identifica-
tion [12,15] have been developed in the last decade. The au-
thors of [9] introduced a first solution to this problem which
has been used as a starting point for many subsequent stud-
ies. The main idea is to extract a list of beat-synchronous [6]
chroma features from two input tracks and quantify their
similarity by applying dynamic programming algorithms to
a cross-similarity matrix derived from these features. This
algorithm has been refined in [8] by adding a few modifica-
tions such as tempo biasing. Harmonic Pitch Class Profile
(HPCP) features (chroma features) have proven very useful
in cover identification [9, 18–20] as they capture meaning-
ful musical information for composition. Other features
have subsequently been introduced, such as self-similarity
matrices of MFCC features [23, 24]. To take advantage
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of the complementary properties of different types of fea-
tures, [23] further introduced a method to combine sev-
eral audio features by fusing the associated cross-similarity
matrices, which resulted in a significant increase in per-
formance compared to single-feature approaches. Having
extracted audio features from two tracks to be compared,
most methods use dynamic programming (either Dynamic
Time Warping or the Smith-Waterman algorithm [22]) to
assign a score to the pair [9, 23, 24]. One drawback of these
methods is that they are computationally expensive and can-
not be run at scale. Scalable solutions have been developed
by mapping audio features to smaller latent spaces. For
instance, [1, 13] use Principal Component Analysis (PCA)
to compute a condensed representation of audio features
which they use to perform a large-scale similarity search
(e.g. a nearest neighbor search). In the same vein, [10, 17]
use deep neural networks to learn low-dimensional repre-
sentations of chroma features.A smaller number of papers
take an ensemble-based approach and report increases in
performance. In particular, [3, 23] leverage the network
of songs using Similarity Network Fusion thereby fusing
scores obtained via different methods, while [21] investigate
several clustering methods and report in particular that the
original song tends to be central within their communities.

3. PAIRWISE MATCHING

As mentioned above, our ensemble-based cover identifica-
tion method consists of two steps. For a given work, we
proceed to: (i) a pairwise (1-vs-1) comparison of all the
tracks in a pool of potential candidates, (ii) a clustering of
these candidates based on the results of step (i). In this
section we present the 1-vs-1 cover song identification al-
gorithm (i) which will be used as a starting point for our
ensemble-based approach, and evaluate its performance on
two distinct cover datasets.

3.1 The algorithm

For the purposes of this work, any 1-vs-1 similarity mea-
sure could be used for step (i), as we are mainly interested
in quantifying the impact of step (ii) on the overall perfor-
mance. We have chosen to rely on an implementation of
the algorithm introduced in [23], as the algorithm achieves
the best results to date on the Covers80 [7] and MSD (Cov-
ers1000) datasets [2]. For a high-level overview of the
pipeline, please refer to Figure 2 in [23]. As with most
algorithms presented in Section 2, it can be decomposed
into two stages: first, it extracts a list of meaningful audio
features from the two tracks to be compared, then it com-
putes a similarity score based on these. The details of this
method are not directly relevant to our work, so we will
focus here on a quantitative assessment of its performance,
to give the reader a quantitative idea of our starting point.
More details on the algorithm can be found in [23].

3.2 Quantitative evaluation of the 1-vs-1 method

We evaluate our implementation of [23] on two different
datasets, and compare it with the numbers reported in the

original paper as well as with a publicly available imple-
mentation of [23] by its author. 1 To make the comparison
more interpretable, we evaluate two versions of our imple-
mentation with two sets of parameters: Params1 mimics
the parameters used in [23], and should therefore produce
numbers that very similar to those described in the original
paper, while Params2 uses shorter 8-beats-long blocks.

We first compare the algorithms on the widely used Cov-
ers80 dataset [7] to enable comparison with other published
methods. The dataset is composed of 160 tracks that are
divided into two sets (A and B) of 80 tracks each, with
every track in set A matching one (and only one) track in
set B. For each of the 160 tracks, we compute its score with
all the other 159 tracks and report the rank of its true match.
Table 1 reports the Mean Rank (MR) of the true match (1
is best), the Mean Reciprocal Rank (MRR) [5], as well as
the Recall@1 (R@1) and Recall@10 (R@10). We also
compute the so-called Covers80 scores by querying each
track in set A against all the tracks in set B and reporting
the number of matches found with rank 1. 2 Overall, our
results are close to the ones reported in [23] – even though
we could not quite reach the numbers given in their paper.

Covers80 Internal
Dataset

MR MRR R@1 R@10 Covers80
score Recall Recall

(no Jazz)
[23] paper 7.8 0.85 82.4% 89.9% 68/80 - -
[23] code 8.6 0.77 71.7% 91.2% 62/80 73.2% 81.8%
Params1 10.5 0.81 78.6% 85.5% 64/80 79.2% 87.8%
Params2 13.2 0.75 73.0% 80.5% 60/80 85.8% 95.1%

Table 1: Comparison of our implementations (Params1
and Params2) against the implementations of [23], on the
Covers80 dataset and on our internal dataset. The recall
rates for the internal dataset correspond to a false positive
rate of 0.5%. For each column, the best performance is
printed in bold.

To complement this baseline, we have created an in-
ternal dataset of 452 pairs of covers grouped into several
categories, obtained by metadata filtering based on the key-
words Acoustic Cover, Instrumental Cover, Karaoke, Live,
Remix, Tribute as well as some Classical and Jazz covers.
Such granularity allows us to compare the performance of
our algorithm across genres and cover types, providing a
new perspective on the problem, as shown in Table 2. We
have tested the two versions of our algorithm on the 452
positive pairs and 10,000 negative pairs selected uniformly
at random. We selected the classification threshold to en-
sure a very low false positive rate below 0.5%. Results are
presented in Table 1. Our algorithm reaches 85.8% recall,
versus 73.2% for the publicly available implementation
of [23] 3 . Note that jazz is the most challenging genre to

1 https://github.com/ctralie/GeometricCoverSongs
2 Each track from set A is now queried against the 80 tracks from set B,

instead of all other 159 tracks.
3 As the computational time is much higher for this algorithm, we only

computed the false positive rate using 500 negative pairs.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

245



detect, as jazz covers include a lot of improvisation that can
be structurally different from their parent track (see Table
2). If we remove jazz covers from the dataset, the recall
increases to 95.1% with the Params2 implementation.

Type Acoustic Instr. Karaoke Live Remix Tribute Classical Jazz
# of pairs 57 63 46 57 31 53 77 68

Recall 94% 84 % 97% 100% 93 % 96 % 100 % 35 %

Table 2: Recall rates for each genre in our internal dataset,
with a < 0.5% false positive rate.

In view of these results, we will use our own implemen-
tation with Params2 throughout the rest of this paper, as it
is faster and performs best on our internal dataset, which is
larger and more diverse than Cover80.

3.3 Distributions of scores

Figure 1 presents the histogram of pairwise scores for all the
positive and negative pairs in our internal dataset. The dis-
tribution of scores for the negative pairs is short-tailed and
tightly concentrated around s = 2. This means that above
s ' 5, all the pairs can be matched with high confidence.
The distribution of scores for the positive pairs is much
wider. As we can see from the histogram, a non-negligible
fraction of these pairs lies below the classification threshold
(dashed vertical line) and thus cannot be detected with this
1-vs-1 method. The purpose of the next section will be to
apply an ensemble method to a pool of candidate versions
of a given work, to bring these undetected candidates above
the threshold by exploiting the many-to-many relationships
between the candidates.
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Figure 1: Histogram of the scores for positive (blue) and
negative (green) pairs on our internal dataset. The threshold
corresponds to the threshold used for Table 2.

4. ENSEMBLE ANALYSIS

While the 1-vs-1 algorithm we presented in Section 3 gives
satisfying results overall, it still struggles on covers that
are significantly different from their original track. Here
we show how analyzing a large pool of candidate covers
for one given reference track can improve the quality of
the matching. The intuition behind this idea is that a cover

version can match the reference track poorly, but match an-
other intermediate version which is closer to the reference.
For instance, an acoustic cover can be difficult to detect on a
1-vs-1 basis, but might match a karaoke version which itself
strongly matches the reference track. We therefore turn to a
new use case, where we not only compare single pairs (e.g.
one reference track against one possible cover), but instead
start from a pool of candidates that are all likely to be in-
stances of some given composition (or work). Usually, this
pool corresponds to candidates that have been pre-filtered
according to some non-audio related signal, e.g. their title,
and might comprise up to a few thousands candidates, de-
pending on the popularity of the work and the specificity of
the pre-filtering step.

(a) Computing
scores versus the
reference track

(b) Computing all
pairwise scores

(c) Final graph

Figure 2: Direct (a) vs. ensemble-based approach (b)-(c).

4.1 Computing all pairwise scores

Given a set of N candidate versions of a work, we first com-
pare all possible pairs of candidates within the set, resulting
in N(N−1)

2 distinct scores {sij}1≤i<j≤N . As mentioned
above, if the candidates have been pre-filtered using some
metadata-matching algorithm, N typically varies from a
few dozen to a few thousand candidates.

4.2 Scores to distances

Figure 1 shows that almost all negative pairs have scores
between 0 and 4 while scores above 8 always correspond
to positives. Scores above 8 should thus indicate a high
probability of a true match regardless of the score, while a
variation in score around 4 should have a significant impact
on that probability. To account for this fact, we convert
our scores into more meaningful distances using a logistic

function: dij =
(
1 + e−

sij−m
σ

)−1
, where sij is the score

associated to pair (i, j) and dij is the resulting distance.
We have found that the values σ = 0.5 and m = 4.3 work
well with the distance-collapsing algorithm introduced in
the next section.

4.3 Collapsing the distances

Let D = {dij} denote the pairwise distance matrix be-
tween all pairs of candidates (see Figure 3, top left). The
idea behind the ensemble-based approach is to exploit the
geometry of the data to enhance the accuracy of the clas-
sification – for example, the fact that a track can match
the reference track better through intermediate tracks than
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directly. We use a loose version of the Floyd-Warshall algo-
rithm [11] to update the distances in D, such that the new
distances satisfy the triangular inequality most of the time 4 .
The method is presented in Algorithm 1.

Algorithm 1 Loose Floyd-Warshall
1: procedure COLLAPSEDISTANCES(distance matrix D)
2: while D still updates do
3: for i, j in 1..N do
4: D̃(i, j)← min(2)

k 6=i,jD(i, k) +D(k, j) + η

5: D(i, j)← min
(
D(i, j), D̃(i, j)

)

Here min(k)(x) denotes the kth smallest value of a vec-
tor x. Using k > 0 allows to gain robustness as several
short paths are required to merge clusters. We have found
that the algorithm is slightly more robust when imposing
a penalty η > 0 for using an intermediate node, which
we have set to η = 0.01 after performing a grid-search
optimization.

Figure 3 shows the distance matrix before (top left) and
after (top right) updating the distances using Algorithm
1, for a set of candidates versions of Get Lucky by Daft
Punk. We can see that the updated distance matrix has
a more neatly defined division between clusters of tracks.
The figure shows one large cluster in which all tracks are
extremely close to each other (the white area), a few smaller
clusters (white blocks on the first diagonal) and a number
of isolated tracks that match only themselves.
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Figure 3: Top: The Floyd-Warshall algorithm applied to
the distance matrix of Get Lucky, with (left) original dis-
tance matrix and (right) the distance matrix after applying
the Floyd-Warshall algorithm. For better visual interpre-
tation, tracks are reordered along the axes according to
proximity. Darker shades correspond to larger distances.
Bottom: dendrogram representation of the hierarchical clus-
tering on the Floyd-Warshall distance matrix.

4 The distances that would be obtained by applying the original Floyd-
Washall algorithm to D would always satisfy the triangular inequality, but
the resulting configuration would be very sensitive to outliers. Our method
is more robust to outliers, as it requires to find more than one better path
to update the distance between two points.

4.4 Hierarchical clustering

We then proceed to a clustering of the tracks using the
updated distance matrix defined in 4.3, denoted D′. We use
hierarchical clustering with centroid linkage [16] as we have
no prior knowledge on the number of clusters in the graph.
Figure 3 (bottom) shows a dendrogram representation of
the hierarchical clustering applied to D′. In this example,
if we apply a relatively selective threshold, we find one
major cluster (colored in blue in Figure 3) that contains
97% of the true positives and no false positives. Most other
clusters contain a single element, which are all the negative
tracks and the remaining 3% of the positives. If we set the
clustering threshold lower, then we can get more granular
clusters within a same work.

4.5 Final score

In order to assign each track a final score that measures
its similarity to the reference track, we use the cophenetic
distance to the reference track that is produced by the hier-
archical clustering (i.e. the minimum distance threshold for
which they would find themselves in the same cluster as the
reference track). Each track is thus assigned a final score
in 0 − 100, simply taken equal to 100 × (1 - cophenetic
distance), such that exact matches have a score of 100.

5. ANALYSIS OF REAL WORLD EXAMPLES

5.1 Data

We now apply the above to real world data. Our dataset
consists of 10 sets of candidates that correspond to 10 works
that we want to find the versions of. These 10 works span
multiple genres and musical styles, including Hip Hop,
R&B, Rap, Pop and Jazz. For a given work, we create the
set of candidates by performing a metadata search of the
given work’s title on the whole Spotify catalogue, which
we then annotate manually. Across the given works that
we study, this produces sets of candidates whose sizes vary
from a few hundred to a few thousand candidate tracks.
Each set includes a reference track, which will be the anchor
point for that composition. More details on the dataset can
be found in Table 3.

Work # tracks % positives Reference
artist

Airplane 811 19% B.o.B
Believer 2552 5% Imagine Dragons

Blurred Lines 386 71% Robin Thicke
Bodak Yellow 110 78% Cardi B
Brown Sugar 721 5.8% D’Angelo

Embraceable You 1319 94% Sarah Vaughan
Get Lucky 657 83% Daft Punk

Halo 2995 7.9% Beyoncé
Heartless 1747 5.3% Kayne West
Imagine 2044 50% John Lennon

Table 3: The “10 works” dataset. For each work, we have
selected a reference track that will be our anchor point for
that composition. Click on a work to play the reference
track in the browser.
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5.2 Outline of the analysis

For each of these works, we analyze the set of candidates
following the steps outlined in the previous two sections,
providing us with two sets of outputs for each work: (a)
the direct score, defined as the output of the 1-vs-1 algo-
rithm between each candidate and the reference track, as
described in Section 3 (rescaled between 0 and 100); (b) the
ensemble-based score, produced by the method described
in Section 4 (also between 0 and 100).

In the next section we start by quantitatively evaluat-
ing our ensemble-based approach (b) against the direct
approach (a), before turning to some qualitative examples.

5.3 Quantitative results

We define two different metrics to evaluate the direct and
the ensemble-based methods:

Ranking metric: For each work, we pick the value of
the threshold that minimizes the number of classification
errors, and report the number of errors. We call this a
ranking metric as the number of errors is minimized when
positives and negatives are perfectly ranked, regardless of
their scores. We also report the corresponding recall and
false positive rates for this threshold.

Classification metric: We fix a universal classification
threshold and compute the corresponding number of classi-
fication errors.

Ranking errors - direct
Work Best thr. False negatives False positives Both

Abs. Rel. Abs. Rel. Abs. Rel.
Airplane 12.1 33 21.9% 1 0.2% 34 4.2%
Believer 18.2 6 5.2% 0 0.0% 6 0.2%

Blurred Lines 10.1 19 7.0% 9 8.3% 28 7.3%
Bodak Yellow 6.1 6 7.0 % 6 33.3% 12 10.9%
Brown Sugar 12.1 2 4.8% 1 0.1% 3 0.4%

Embraceable You 4 0 0% 74 98.7 % 74 5.6 %
Get Lucky 10.1 17 3.1% 3 2.6% 20 3.0%

Halo 11.1 8 3.4% 8 0.3% 16 0.5%
Heartless 12.2 15 16.3% 2 0.1% 17 1.0%
Imagine 15.2 72 7.1% 17 1.7% 89 4.4%

(a) Direct approach.

Ranking errors - ensemble-based
Work Best thr. False negatives False positives Both

Abs. Rel. Abs. Rel. Abs. Rel.
Airplane 70.7 4 2.6% 3 0.5% 7 0.9%
Believer 85.9 0 0.0% 0 0.0% 0 0.0%

Blurred Lines 52.5 0 0.0% 0 0.0% 0 0.0%
Bodak Yellow 29.3 9 10.5% 0 0.0% 9 8.2%
Brown Sugar 70.7 0 0.0% 1 0.1% 1 0.1%

Embraceable You 40.4 22 1.8 % 19 25.3 % 41 3.1 %
Get Lucky 78.8 5 0.9% 2 1.7% 7 1.1%

Halo 98.0 4 1.7 % 20 0.7% 24 0.8%
Heartless 83.8 8 8.7% 1 0.1% 9 0.5%
Imagine 96.0 1 0.1% 5 0.5% 6 0.3%

(b) Ensemble-based approach.

Table 4: Optimal thresholds and corresponding results for
the ranking metric.

Table 4 shows the results for the ranking metric for each
work in our dataset. For the optimal thresholds, we report
the number of false negatives, false positives and the sum

of both (i.e. the total number of classification errors). We
also compute the corresponding false negative rate, false
positive rate and total error rate.

Table 4a shows the ranking results for the direct ap-
proach. Interestingly, the number of false negatives tends to
be higher than the number of false positives. 5 This is in line
with the histogram in Figure 1, which shows a short-tailed
distribution for the negatives and a wider distribution for
the positives. Overall, the error rate lies between 0− 10%,
corresponding to a recall rate between 80% and 97% and
a false positive rate below 10% (except for Bodak Yellow
and Embraceable You which have a very small number of
negatives to begin with – the latter case is in fact degenerate
as nearly all tracks are classified as matching).

Table 4b shows the ranking results for our ensemble-
based approach. The number of ranking errors is substan-
tially lower than for the direct approach, including both the
number of false positives and false negatives, as the total
error rate goes down below 1% in most cases. Again, the
main exception is Bodak Yellow, which has the smallest
number of candidates. 6 Embraceable You is the second
most challenging work, but remarkably its threshold is no
longer degenerate, meaning that the method has now found
a way to separate the candidates. Notably, the number of
false negatives no longer outnumbers the number of false
positives: the ensemble-based approach has successfully
caught most of the difficult tracks that poorly matched the
reference track. Among the few tracks that are still missed,
several are actually very close to the threshold, and only a
handful are still completely undetected (cf Table 7).

Table 5 shows the results for the classification metric.
The universal threshold for each approach is defined as the
median of the optimal thresholds obtained in the ranking
experiment above. Again, we report the number of false
negatives, the number of false positives and the sum of
both. We also compute the corresponding false negative
rate, false positive rate and total error rate. Here again, the
results of the ensemble-based approach are overall superior
to the direct approach, mostly due to an increase in recall.
Although Table 5a is quite similar to Table 4a, which is a
sign that the threshold on direct scores can be chosen in a
nearly universal way, Table 5b differs considerably from
Table 4b for some specific works (namely Halo, Imagine
and Believer). This happens as the optimal threshold is
significantly higher on these works (often > 95%), letting a
large number of false positives above the 78.8% threshold.

5.4 Examples

For each work, we can identify the cases where the
ensemble-based approach has allowed us to detect previ-
ously undetected tracks, and trace back the optimal path
that joined the reference track and the newly found track.
Table 6 shows a few examples of such paths for various
works. For each example, the reference track is shown at

5 Embraceable You is an exception, as its threshold is degenerate and
all tracks are classified as matching.

6 It was also a genuinely difficult example and we struggled to annotate
it.
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Classification errors - direct
Work Thr. False negatives False positives Both

Abs. Rel. Abs. Rel. Abs. Rel.
Airplane 12.1 33 21.9% 1 0.2% 34 4.2%
Believer 12.1 4 3.5% 91 3.7% 95 3.7%

Blurred Lines 12.1 28 10.3% 0 0% 28 7.3%
Bodak Yellow 12.1 49 57 % 0 0% 49 44.5%
Brown Sugar 12.1 2 4.8% 1 0.1% 3 0.4%

Embraceable You 12.1 753 60.5 % 3 4 % 756 57.3 %
Get Lucky 12.1 23 4.2% 1 0.9% 24 3.7%

Halo 12.1 12 5.1% 4 0.1% 16 0.5%
Heartless 12.1 15 16.3% 2 0.1% 17 1.0%
Imagine 12.1 49 4.8% 94 9.3% 143 7%

(a) Direct approach.

Classification errors - ensemble-based
Work Thr. False negatives False positives Both

Abs. Rel. Abs. Rel. Abs. Rel.
Airplane 78.8 9 6.0% 1 0.2% 10 1.2%
Believer 78.8 0 0.0% 27 1.1% 27 1.1%

Blurred Lines 78.8 2 0.7% 0 0.0% 2 0.5%
Bodak Yellow 78.8 19 22.1% 0 0.0% 19 17.3%
Brown Sugar 78.8 2 4.8% 1 0.1% 3 0.4%

Embraceable You 78.8 70 5.6 % 1 1.3 % 71 5.4 %
Get Lucky 78.8 5 0.9% 2 1.7% 7 1.1%

Halo 78.8 0 0 % 163 5.9% 163 5.4%
Heartless 78.8 7 7.6% 4 0.2% 11 0.6%
Imagine 78.8 0 0% 158 15.6% 158 7.7%

(b) Ensemble-based approach.

Table 5: Universal threshold and corresponding results for
the classification metric.

Work Depth Main artist (& link) Direct
scores

Ensemble-based
scores

0 John Lennon 100 100
Imagine 1 Classic Gold Hits 60.0 99.99

2 A Perfect Circle 21.6 97.9
3 Yoga Pop Ups 8.6 97.9
0 Kanye West 100 100

Heartless 1 The Fray 34.1 99.85
2 William Fitzsimmons 9.5 90.7
0 Daft Punk 100 100

Get Lucky 1 Samantha Sax 40.4 99.95
2 Dallas String Quartet 6.9 86.6
0 Beyonce 100 100

Halo 1 LP 27.6 99.96
2 Dion Lee 7.96 99.16

Halo 0 Beyonce 100 100
1 Karaoke Universe 20.5 99.96

Halo Halo 2 Fajters 7.45 99.35

Table 6: Some examples of tracks that are undetected by
the direct approach and captured by the ensemble-based ap-
proach, in the ranking experiment. The scores that are above
the detection thresholds for each method are displayed in
bold (the corresponding detection thresholds can be found
in Table 4). Click on an artist to play in the browser.

the top of the cell (depth 0), and the newly found track at the
bottom of the cell (depth > 1), with the intermediate tracks
that allowed to bridge the gap in between. All the examples
are true positives, except for the last example (Halo Halo by
Fajters), which has been erroneously matched to a karaoke
version of the reference track.

What about the tracks that are still undetected? Table 7
shows examples of tracks that are still undetected by our

Work Main artist - Title Direct
score

Ensemble
-based
score

Get Lucky The Getup - Get Lucky 6.4 24.9
Halo Amanda Sense - Halo 12.4 94.3

Imagine Dena De Rose - Imagine 10.4 86.2
Embraceable Earl Hines - Embraceable You 9.6 36.3

You Samina - Embraceable You 5.8 17.0
Heartless Bright Light - Heartless 11.9 50.3

Rains - Heartless 6.4 47.7
Bodak Yellow Josh Vietti - Bodak Yellow 5.8 14.2

J-Que Beenz - Bodak Yellow 5.6 13.0
Airplanes Em Fresh - Airplanes 5.5 66.1

Lisa Scinta - Airplanes 9.6 55.0

Table 7: Some example of tracks that are undetected by
the ensemble-based approach in the ranking experiment,
with their scores for both methods. Click on a title to play
in the browser.

ensemble-based approach for a couple of works. No clear
pattern emerges – apart from the fact that they are often in
a very different musical style from the original.

6. DISCUSSION

One main challenge associated with our ensemble-based
approach is how to correctly handle transitivity. This issue
emerges from the fact that compositions are not mutually
exclusive. For example, a medley might constitute a bridge
between two distinct composition groups, which our algo-
rithm would then merge together (which is undesirable).
There are probably at least two ways around this issue:
one is metadata-based (i.e. identify these potential outliers
from the metadata and exclude them from the graph com-
putation), while another is to detect them directly from the
graph structure (identify bridges between otherwise unre-
lated clusters).

7. CONCLUSION

In this paper, we consider the following formulation of the
cover song identification problem: among a pool of can-
didates that are likely to match one given reference track,
find the actual positives. We have introduced a two-step
approach, with a first step that computes pairwise similari-
ties between every pair of tracks in the pool of candidates
(for which any known 1-vs-1 approach can be used), and a
second ensemble-based step that exploits the relationships
between all the candidates to output final results. We have
shown that this second step can significantly improve the
performance compared to a pure 1-vs-1 approach, in partic-
ular on the ranking task, where the error rate is down from
a few percents to less than 1% in general. The classification
task is naturally more challenging as the optimal threshold
might vary from work to work, suggesting that the method
would be best exploited as a complement to human anno-
tations – where the human’s task would mainly be to find
the optimal threshold for the classification. Automating this
last step turned out to be non-trivial and is left for future
work.
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ABSTRACT

Events in music frequently exhibit small-scale temporal
deviations (microtiming), with respect to the underlying
regular metrical grid. In some cases, as in music from the
Afro-Latin American tradition, such deviations appear sys-
tematically, disclosing their structural importance in rhyth-
mic and stylistic configuration. In this work we explore the
idea of automatically and jointly tracking beats and micro-
timing in timekeeper instruments of Afro-Latin American
music, in particular Brazilian samba and Uruguayan can-
dombe. To that end, we propose a language model based
on conditional random fields that integrates beat and onset
likelihoods as observations. We derive those activations
using deep neural networks and evaluate its performance
on manually annotated data using a scheme adapted to this
task. We assess our approach in controlled conditions suit-
able for these timekeeper instruments, and study the micro-
timing profiles’ dependency on genre and performer, illus-
trating promising aspects of this technique towards a more
comprehensive understanding of these music traditions.

1. INTRODUCTION

Across many different cultures, music is meter-based, i.e.,
it has a structured and hierarchical organization of pulsa-
tions. Within this metrical structure, the different pulsa-
tions interact with one another and produce the sensation
of rhythm, inducing responses in the listeners such as foot
tapping or hand clapping. In the so-called “Western” mu-
sic tradition, that hierarchical structure often includes the
beat and downbeat levels, where the former corresponds
to the predominant perceived pulsation, and the latter has

c© Magdalena Fuentes, Lucas S. Maia, Martı́n Rocamora,
Luiz W. P. Biscainho, Hélène C. Crayencour, Slim Essid, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Magdalena Fuentes, Lucas S. Maia,
Martı́n Rocamora, Luiz W. P. Biscainho, Hélène C. Crayencour, Slim Es-
sid, Juan P. Bello. “Tracking Beats and Microtiming in Afro-Latin Amer-
ican Music Using Conditional Random Fields and Deep Learning”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

a longer time-span that groups several beats into bars. In
some cases, the events in music present small-scale tempo-
ral deviations with respect to the underlying regular met-
rical grid, a phenomenon here referred to as microtiming.
The interaction between microtiming deviations and other
rhythmic dimensions contribute to what has been described
as the sense of ‘swing’ or ‘groove’ [8, 9, 30]. The sys-
tematic use of these deviations is of structural importance
in the rhythmic and stylistic configuration of many musi-
cal genres. This is the case of jazz [9, 10, 20, 38], Cuban
rumba [2], Brazilian samba [32, 39] and Uruguayan can-
dombe [22], among others. Consequently, the analysis of
these music genres without considering microtiming leads
to a limited understanding of their rhythm.

Samba and candombe are musical traditions from Brazil
and Uruguay, respectively, that play a huge role in those
countries’ popular cultures. Both genres have deep African
roots, partly evidenced by the fact that their rhythms result
from the interaction of several rhythmic patterns played by
large ensembles of characteristic percussive instruments.
Candombe rhythm is structured in 4/4 meter, and is played
on three types of drums of different sizes and pitches—
chico, repique and piano—, each with a distinctive rhyth-
mic pattern, the chico drum being the timekeeper. 1 Samba
rhythm is structured in 2/4 meter, and comprises sev-
eral types of instruments—tamborim, pandeiro, chocalho,
reco-reco, agogô, and surdo, among others. Each instru-
ment has a handful of distinct patterns [16], and more than
one instrument may act as the timekeeper. Because of this
combination of several timbres and pitches, the texture of a
samba performance can become more complex than that of
a candombe performance, where only three types of drums
are present. Nevertheless, both rhythms have in common
that they exhibit microtiming deviations at the sixteenth
note level [22, 28, 32], with no deviations in the beat posi-
tions. 2 This is illustrated in Figure 1 for the recording of
a tamborim playing in the samba de enredo style.

1 In this musical context, the role of timekeeper is assigned to an instru-
ment that plays an invariable rhythmic pattern (i.e., an ostinato) usually
at a high rate, thus defining the subdivision of the beat.

2 In other musical forms, such as waltz, microtiming may be mostly
on beats.
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1.1 Related Work

Microtiming has been studied in the context of Music In-
formation Retrieval (MIR) for many years [2, 8, 17]. Be-
sides the interest in characterizing microtiming for musi-
cological studies, it is important for music synthesis appli-
cations, since it is a central component for “humanizing”
computer generated performances [18]. Depending on the
musical context, microtiming can take the form of tempo
variations, like rubato or accelerando, or small-scale devi-
ations of events with respect to an underlying regular met-
rical grid [22]. Therefore, in order to study microtiming
deviations one has to know the expected position of the
events within the metrical grid and the actual articulated
positions—which can be inferred from information related
to the onset positions, the tempo and/or the beats.

Most of the proposed methods for microtiming analysis
are based on manually annotated data. Laroche et al. [27]
proposed a method for the joint estimation of tempo, beat
positions and swing in an ad-hoc fashion. The proposal ex-
ploits some simplifications: assuming constant tempo and
swing ratio, and propagating beat positions based on the
most likely position of the first beat. More recent works
perform semi-automatic analysis still relying on informed
tempo [9, 10], or using an external algorithm for its esti-
mation [30]. Within the context of candombe and samba,
microtiming characterization has also been addressed us-
ing either semi-automatic or heuristic methods [17,22,32].

In other rhythm-related MIR tasks such as beat and
downbeat tracking, graphical models (GM) such as hidden
Markov models or dynamic Bayesian networks are widely
used [4, 19, 25, 36]. GMs are capable of encoding musi-
cal knowledge in a flexible and unified manner, providing
structure to the estimations and usually a gain in perfor-
mance for different models across genres [14]. In partic-
ular, Conditional Random Fields (CRFs) are discrimina-
tive undirected GMs for structured data prediction [37].
CRFs relax some conditional independence assumptions
of Bayesian Networks, which allows for modeling com-
plex and more general dependency structures, thus mak-
ing them appealing for music modeling. CRFs have been
applied in MIR tasks such as beat tracking [13] or audio-
to-score alignment [21], and have been successfully com-
bined with deep neural networks (DNNs) [11, 15, 24].

1.2 Our Contributions

This work takes a first step towards fully-automatic track-
ing of beats and microtiming deviations in a single for-
malism, applied to the analysis of two (usually underrepre-
sented) Afro-Latin American music genres, namely Brazil-
ian samba and Uruguayan candombe. More precisely, we
introduce a CRF model that uses beat and onset activations
derived from deep learning models as observations, and
combines them to jointly track beats and microtiming pro-
files within rhythmic patterns at the sixteenth note level.
To the best of our knowledge, this is the first work that ex-
plores the use of CRFs for tracking microtiming and beats
jointly. This temporal granularity is in accordance with the
type of microtiming deviations present in the music tradi-

tions under study. Following previous works [9], we derive
microtiming labels from annotated onsets and use them to
evaluate the proposed system, attaining promising results
towards more holistic and descriptive models for rhythm
analysis. We also study the usefulness of this approach
in controlled conditions, as a first assessment of its ca-
pabilities. We explore our microtiming representation in
some applications, namely the extraction of microtiming
profiles of certain instruments, and the study of differences
between musical genres based on their microtiming traits.

2. PROPOSED METHOD

2.1 Language Model

The proposed language model consists of a linear-chain
CRF [26, 37]. Formally, the conditional probability of a
label sequence y = (y1, ..., yT ) of length T given an input
sequence of observations x = (x1, ..., xT ) is given by:

p(y|x) =
1

Z(x)

T∏
t=1

ψ(yt, yt−1)φ(yt, xt), (1)

where ψ is the transition potential and φ is the observation
potential. They play a role similar to transition and obser-
vation probabilities in dynamic Bayesian networks or hid-
den Markov models, with the difference that the potentials
in a CRF do not need to be proper probabilities, hence the
need for the normalization factor Z(x).

In our model, depicted in Figure 2, the output labels y
are a function of three variables that describe the position
inside the beat, the length of the beat interval in frames,
and the microtiming within the beat-length pattern at the
sixteenth note level. Formally,

yt := (ft, lt,mt), (2)

where ft is the frame counter with ft ∈ F = {1, ..., lt},
lt ∈ L = {lmin, ..., lmax} is the number of frames per
beat, which relates to the tempo of the piece; and the mi-
crotiming mt ∈ M = {m1, ...,mN}. The observations
x are based on estimated beat and onset likelihoods, as de-
tailed later. The problem of obtaining the beat positions
and microtiming profiles is then formulated as finding the
sequence of labels y∗ such that y∗ = arg maxyp(y|x).

2.1.1 Microtiming Tracking

Both in samba and candombe, timekeeper instruments usu-
ally play a beat-length rhythmic pattern that articulates sev-
eral sixteenth notes [16], as shown in Figures 1 and 3 for
the tamborim. In order to provide a common framework
for comparing both music genres, we focus our study on
the microtiming deviations of beat-length rhythmic pat-
terns articulated by timekeeper instruments in groups of
four sixteenth notes. 3 To that end, we consider the fol-
lowing hypothesis, which we explain further below:

• The tempo is constant within a beat.

3 Note that minor adjustments to the proposed model allow for the
tracking of microtiming deviations in other kinds of rhythmic patterns.
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Figure 1. Example of microtiming deviations at the sixteenth note level for a beat-length rhythmic pattern from the
tamborim in samba de enredo.

• The microtiming profile changes smoothly only at
beat transitions.

• The tempo is between 120 and 135 BPM, to ensure
an appropriate temporal resolution.

We define the microtiming descriptor m at frame t as:

mt := (m1
t ,m

2
t ,m

3
t )

wheremi
t :=

∆i
t

lt
∈ [ i4 +δiL,

i
4 +δiU ], and ∆i

t is the distance
in frames between an articulated sixteenth note and the be-
ginning of the beat interval, as shown in Figure 1. Thus,
each mi

t models the position of the i-th sixteenth note with
respect to the beginning of the beat, relative to the total beat
length. For instance, the value of the microtiming descrip-
tor for a rhythmic pattern of four isochronous sixteenth
notes, i.e., located exactly on an equally-spaced metrical
grid, is m = (0.25, 0.50, 0.75), indicating the articulation
of events at 1/4, 1/2 and 3/4 of the beat interval respec-
tively. To account for different microtiming profiles, the
value of mi

t is estimated within an interval determined by
lower and upper deviations bounds, δiL and δiU , modeled as
positive or negative percentages of the beat interval length.
The proposed microtiming descriptor provides an intuitive
idea of how the articulated sixteenth notes deviate within
the rhythmic pattern from their isochronous expected po-
sitions. It is independent of tempo changes, since it is nor-
malized by the estimated beat interval length, allowing for
studies on microtiming–tempo dependencies.

The definition of the microtiming descriptor mt can be
related to the swing-ratio, s, proposed in previous work
[9,30], though the two differ in various aspects. The swing-
ratio is defined in terms of the inter-onset intervals (IOIs)
of a long–short rhythmic pattern, such that s ≥ 1 is the
ratio between the onbeat IOI (longer interval) and the off-
beat IOI (shorter interval). In contrast, the mt descriptor
is composed by three microtiming–ratios, mi

t, whose IOIs
are defined with respect to the beginning of the beat instead
of the previous onset as in [9, 30]. However, it is possible
to convert the model proposed here into the swing-ratio by
redefining m as ms := m1

t , and then, from the estimated
ms, computing s =

m1
t

1−m1
t

. With such modifications, the
model could be applied to the studies presented in [9, 30].

ft−1 ft

lt−1 lt

mt−1 mt

xt−1 xt

Figure 2. CRF graph. Observations and labels are indi-
cated as gray and white nodes respectively.

2.1.2 Transition Potential ψ

The transition potential is given in terms of ft, lt, and mt

(see Equation 2) by:

ψ(yt, yt−1) := ψf (ft, ft−1, lt, lt−1)ψm(mt,mt−1, ft−1, lt−1)

Similar to [13,25], we force frame counter ft to increase
by one, at each step, up to the maximum beat length con-
sidered, and to switch to one at the end of the beat. Beat
duration changes are unlikely (i.e., tempo changes are rare)
and only allowed at the end of the beat. We constrain these
changes to be smooth, giving inertia to tempo transitions.
Those rules are formally expressed by:

ψf (ft, ft−1, lt, lt−1) :=



1 if ft = (ft−1 mod lt−1) + 1,
ft−1 6= lt−1

1− pf if lt = lt−1,
ft = 1, ft−1 = lt−1

pf
2

if lt = lt−1 ± 1, ft = 1
0 otherwise

The microtiming descriptor mt changes smoothly and
only at the end of the beat, that is:

ψm(mt,mt−1, ft−1, lt−1) :=



1 if mt = mt−1,
ft−1 6= lt−1

1− pm if mt = mt−1,
ft−1 = lt−1

pm
2

ifmt
i = mt−1

i ± 0.02 ∀i,
ft−1 = lt−1

0 otherwise
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In the transition potential, pf and pm represent the prob-
ability of changing the beat interval length (i.e., tempo) and
the probability of changing the microtiming profile at the
end of the beat, respectively. The values of 1−pf and pf/2
were chosen following previous works, whereas 1 − pm
and pm/2 were similarly set in order to make the possible
microtiming transitions equally likely.

Sincemi
t is given in percentage with respect to the inter-

beat-interval (IBI), the resolution with which microtiming
can be estimated in the model is also percentual, and it is
given by the relation between the sampling rate SR of the
features and the BPM: res = BPM

60SR . It has been shown in
the literature that a resolution of 0.02 of the IBI is sufficient
for representing microtiming deviations [17, 32]. To keep
computational complexity low but at the same time guaran-
teeing a resolution res = 0.02, we use observation features
sampled at 110 Hz and we study pieces whose tempo is
within range of 120 to 135 BPM. Note that these assump-
tions are valid in the music under study, and they could
be adapted to a different music genre, e.g. increasing sam-
pling rate to increase the BPM interval.

2.1.3 Observation Potential φ

The observation potential depends on the beat and onset
likelihoods, the frame counter ft and the microtiming mt:

φ(ft,mt, xt) :=


bt if ft = 1

ot − bt if ft
lt
∈mt

1− ot otherwise

where bt and ot are beat and onset likelihoods, respectively.
The onset likelihood was estimated using the ensemble of
recurrent neural networks for onset activation estimation
from madmom [3]—we refer the interested reader to [5,12]
for further information. We designed a simple DNN for the
beat likelihood estimation and trained it on candombe and
samba. 4 It consists of 6 layers, namely: batch normal-
ization, dropout of 0.4, bidirectional gated recurrent unit
(Bi-GRU) [6] with 128 units, batch normalization, another
identical Bi-GRU layer, and a dense layer with two units
and a softmax activation.

We use a mel-spectrogram as input feature for the DNN.
The short–time Fourier transform is computed using a win-
dow length of 2048 samples and a hop of 401 samples, to
ensure a sampling rate of 110 Hz with audio sampled at
44.1 kHz. We use 80 mel filters, comprising a frequency
range from 30 Hz to 17 kHz.

3. DATASETS

In our experiments we use a subset of the candombe dataset
[35] and the BRID dataset [29] of Brazilian samba.
candombe dataset: it comprises audio recordings of
Uruguayan candombe drumming performances in which
ensembles of three to five musicians play the three differ-
ent candombe drums: chico, piano and repique. It has

4 The training proved necessary because the timekeeper pattern of can-
dombe rhythm has a distinctive accent displaced with respect to the beat
that misleads beat–tracking models trained on “Western” music [34].

separated stems of the different drums, which facilitates
the microtiming analysis. We focus our study on the chico
drum, which is the timekeeper of the ensemble. We select
a subset of the recordings in the dataset, in which the chico
drum plays a beat-length pattern of four sixteenth notes,
for a total of 1788 beats and 7152 onsets.
BRID dataset: it consists of both solo and ensemble per-
formances of Brazilian samba, comprising ten different in-
strument classes: agogô, caixa (snare drum), cuı́ca, pan-
deiro (frame drum), reco-reco, repique, shaker, surdo,
tamborim and tantã. We focus our study on the tam-
borim, which is one of the timekeepers of the ensemble.
We select a subset of the solo tracks, in which the tam-
borim plays a beat–length rhythmic pattern of four six-
teenth notes (shown in music notation 5 in Figure 3), for
a total of 396 beats and 1584 onsets.

Figure 3. Example of the beat-length rhythmic pattern of
the tamborim from the samba dataset in music notation.

3.1 Ground-Truth Generation

The microtiming ground-truth is inferred following the ap-
proach of [9], in which the onsets are used to derive the
swing-ratio annotations. Analogously, we compute the
microtiming ground-truth using the annotated onsets, ob-
taining one value of m = (m1,m2,m3) for each beat.
In order to mitigate the effect of onset annotation errors
and sensori-motor noise, we use a moving-median filter to
smooth the microtiming ground-truth, with a centered rect-
angular window of length 21 beats, as shown in Figure 4.
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Figure 4. Example of the microtiming values for a chico
drum recording in the candombe dataset. Dark and light
lines represent the ground-truth with and without median
filtering, respectively.

5 The symbol ‘>’ refers to an accent, and ‘↓’ implies to turn the tam-
borim upside down and execute the strike backwards.
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4. EXPERIMENTS

4.1 Experimental Setup

We investigate the performance of the model and whether
the microtiming descriptor is useful for analyzing the mu-
sic at hand. To that end, we scale the candombe dataset to
match the size of the samba dataset at test time by selecting
excerpts in each track. We assess the model’s performance
using manually annotated onsets and beats, from which
we derive our ground-truth as explained in Section 3.1.
To evaluate if the microtiming estimation affects the beat
tracking, we compare the model’s performance with a sim-
plified version of it that only tracks beats. This version has
only variables ft and lt (see Figure 2); the same potential
ψf is used, and the observation potential is simply bt (the
beat likelihood) at beat positions and 1− bt otherwise. We
assess the microtiming estimation by: varying the pm mi-
crotiming transition parameter—allowing smooth changes
within the piece or no changes at all; and varying the toler-
ance used on the F-measure (F1) score. Finally, we discuss
our main findings on the potential of jointly tracking beats
and microtiming.

4.1.1 Implementation, Training and Evaluation Metrics

The DNN beat likelihood model is implemented in Keras
2.2.4 and Tensorflow 1.13.1 [1, 7]. We use the Adam op-
timizer [23] with default parameters. Training is stopped
after 10 epochs without improvement in the validation loss,
to a maximum of 100 epochs. We train the network with
patches of 500 frames and a batch size of 64, leaving one
track out and training with the rest, which we split in 30%
and 70% for validation and training respectively, among
the same genre. The onset activation was obtained with
madmom version 0.16.1 [3], and the mel-spectra was com-
puted using librosa 0.6.3 [31].

We evaluate the model using the F1 score for beat track-
ing with a tolerance window of 70 ms, as implemented
in mir eval 0.5 [33]. To evaluate the microtiming esti-
mation, we first select the correctly estimated beats, then
compute F1 for each estimatedmi

t with tolerance windows
of different lengths, and the overall score as the mean F1
(F1mt =

∑
i F1mi

t
/3).

4.2 Results and Discussion

The results on the microtiming tracking are depicted in
Figure 5, which shows the F1 scores as a function of the
tolerance. The different colors represent the different pm
values. We evaluate the model for the set of values pm =
{0, 0.001, 0.06}, that is no, very unlikely and more likely
microtiming changes respectively. Those values were ob-
tained from statistics on the data in preliminary experi-
ments. We searched for microtiming ratios within the in-
terval [0.25, 0.29]×[0.42, 0.5]×[0.67, 0.75], for microtim-
ing dimensions i = 1, 2, 3 respectively. This corresponds
to δL = (0,−0.03,−0.08) and δU = (0.04, 0, 0). 6 As il-

6 Symmetric windows around the isochronus sixteenth note positions
were used for the microtiming ratios in preliminary experiments with no
gain in tracking performance and a higher computational burden.
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Figure 5. Mean microtiming F-measure score on the two
datasets.

lustrated in Figure 5, we found that the restriction of a con-
stant microtiming profile (pm = 0) along the piece relates
to a worse performance, specially with small tolerances.
We hypothesize that this occurs because in some samba ex-
cerpts the microtiming ratio changes are percentually big-
ger than those tolerances, leading to an inaccurate estima-
tion. From considering the dependency of the F1 score
with respect to the tolerance, we observe that is possible to
achieve a reasonable F1 score from 0.025 on. The results
with the best compromise in terms of variance and median
are achieved with pm = 0.001, which aligns with the hy-
pothesis that microtiming profiles change very smoothly
over time. We explored different tolerances since we are
working with frames which are noisy, and the comparison
with the smoothed ground truth still makes sense with large
tolerances.
We found that the beat tracking performance of the model
reaches a 95.7% F1 score, being equivalent to the beat
tracking only version. The high F1 score in beat tracking
is not surprising given that the DNN was trained using data
of the same nature (acoustic conditions and genre) and the
sets are homogeneous. As mentioned before, state-of-the-
art beat tracking systems based on DNNs fail dramatically
in this specific scenario [34], particularly tracking the beats
in time-keeper instruments in candombe, because the data
is too different from what was used in their training. We do
not consider this as a challenging beat tracking case, but a
training stage was needed to perform adequately.

During our experiments we observed that the microtim-
ing descriptor mt could be used to help beat tracking in
some cases. Informing the microtiming profile a priori,
by setting δiL and δiU , can disambiguate beat positions by
helping the joint inference. This could allow to apply non
pre-trained beat tracking models to candombe recordings,
which usually fail in estimating the beat location by dis-
placing it one sixteenth note (due to an accent in the rhyth-
mic pattern). Aligned to that idea, the model could be use-
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ful in scenarios where onsets from other instruments are
present. Besides, when the beat tracking is incorrect, the
obtained microtiming profile can be descriptive of the type
of mistake that occurs by contrasting the obtained profile
with the expected one. The same case mentioned before—
a lag of a sixteenth note in the beat estimation—shows in
the microtiming estimation as unexpected forward posi-
tions in the second and third sixteenth notes, with a syn-
chronous fourth one, which is the candombe microtiming
profile lagged by a sixteenth note position.
Microtiming description and insights: Figure 4 illustrates
an example of microtiming profile for an excerpt of the
candombe dataset. This example shows the microtiming
variations per beat interval along the complete recording.
In the performance of the example, the rhythmic pattern
is played with the same microtiming profile in the whole
track. This microtiming template is characteristic of some
patterns of candombe drumming [34], and it is present in
several recordings of the dataset. We noticed that micro-
timing profiles do not present significant variations within
tempo changes in the candombe dataset. However, the pre-
sented method can be used to characterize curves of mi-
crotiming vs. tempo that could be informative of musical
phenomena for other music genres or datasets.
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Figure 6. Microtiming distribution depending on style,
view of the plane m2

tm
3
t , denoted as m2m3 for simplic-

ity. A dot at (0.50, 0.75) indicates the expected position of
a beat that shows no microtiming, that is, where all onsets
are evenly spaced.

As shown in Figures 6 and 7, the microtiming descriptor
mt encodes musical features that are informative about
the music genre, instrument type or performer. These
two figures show the microtiming profile for all beats
from tamborim and chico recordings, using the annota-
tions for better visualization. Firstly, by observing the ‘no-
microtiming’ reference in the figures that corresponds to
mt = (0.25, 0.50, 0.75), it becomes clear that both samba
and candombe present considerable microtiming devia-
tions in their time-keeper instruments. Even though the
rhythmic patterns from both instruments present deviations
that tend to compress the IOI in a similar manner, the mi-
crotiming profile differs for each music style, being more

drastic in the case of the tamborim. This analysis should be
extended to other samba instruments in order to determine
if differences are due to the rhythmic pattern of a particular
instrument; or if different patterns within the same genre
tend to follow the same microtiming profile (characteristic
of the genre). Figure 7 shows the microtiming profiles of
each performer. It is quite clear that performers tend to be
consistent with their microtiming, opening the perspective
of studying microtiming profiles for performer characteri-
zation, as was done for jazz [9].
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Figure 7. Microtiming distribution depending on per-
former (top musician plays candombe and the others play
samba). A dot at (0.25, 0.50, 0.75) indicates the point of
no microtiming.

5. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a language model that per-
forms automatic tracking of beats and microtiming devi-
ations in a single formalism. We applied this model to
Afro-Latin American music, particularly Brazilian samba
and Uruguayan candombe, and we focused our study on
beat–length rhythmic patterns of timekeeper instruments,
with four articulated sixteenth notes. The promising results
we obtained with our method using a ground-truth derived
from annotated onsets indicate it can facilitate automatic
studies of these rhythms. This work intends to take a fur-
ther step towards holistic systems that produce consistent
and coherent estimations of music content.

As future work, we plan to extend our model to de-
scribe the microtiming profile depending on the nature of
the rhythmic pattern being played, i.e., whether they ar-
ticulate 2, 3, 4 or more notes, and to explore the useful-
ness of our model in challenging scenarios in comparison
to heuristic methods.
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ABSTRACT

Musical harmony analysis is usually a process of unfolding
and interpreting the hierarchical structure of music. Com-
putational approaches to such structural analysis are still
challenging, owing to the fact that the boundary between
different harmonic states (such as chord functions) is not
explicitly defined in the audio or symbolic music data. It is
a novel approach to improve chord recognition by jointly
identifying chord change using end-to-end sequence learn-
ing. In this paper, we propose the Harmony Transformer,
a multi-task music harmony analysis model aiming to im-
prove chord recognition through incorporating chord seg-
mentation into the recognition process. The integration of
chord segmentation and chord recognition is implemented
with the Transformer, a deep sequential learning model
yielding fruitful results in the field of natural language pro-
cessing. A non-autoregressive decoding framework is also
adopted here in aid of concatenating the two highly corre-
lated tasks. Experiments of both chord symbol recognition
and functional harmony recognition on audio and symbolic
datasets demonstrate that explicitly learning the hierarchi-
cal structural information of musical data can facilitate and
improve the harmony recognition.

1. INTRODUCTION

Automatic chord recognition is a hallmark research topic
in the field of music information retrieval (MIR) and has
been widely studied. In the past decade, this problem
has been dealt with by using a variety of deep learn-
ing methods ranging from multi-layer perceptrons (MLPs)
[1] to more complex models such as convolutional neu-
ral networks (CNNs) [2–6] and recurrent neural networks
(RNNs) [7–11]. Hybrid systems such as convolutional re-
current neural network (CRNN) are also introduced to the
chord recognition task for taking advantage of different
neural networks [12–15].

In spite of the significant achievements for deep learn-
ing models to advance the state of the art, further improve-
ment in the chord recognition task appears to be limited

c© Tsung-Ping Chen and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Tsung-Ping Chen and Li Su. “Harmony Transformer: Incorporat-
ing Chord Segmentation into Harmony Recognition”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

and has reached a glass ceiling [4]. Such limitations may
result from the incompetence for deep learning methods
to infer the hierarchical structure of music based on frame-
level data. An overlooked tendency in many previous stud-
ies is that the majority of chord recognition models regard a
music piece as a concatenation of semantically incomplete
segments, and therefore are ineffective to capture complex
musical grammar such as chord transition [13]. Figure 2
(see Section 4.4) depicts an example where an RNN model
cannot segment chord boundaries adequately when arpeg-
gios or key modulation exists. This problem was dealt
with by integrating temporal knowledge such as the metric
and beat information [16, 17], by adding post-processing
such as hidden Markov models (HMM) [18,19], or by fea-
ture engineering such as the harmonic change detection
function (HCDF) [20] and beat-synchronous audio fea-
tures [21]. One recent study attempted to solve this prob-
lem by incorporating models which recognize chords at
different levels, i.e., the frame level and the chord level,
and the cooperative models gained improved chord recog-
nition results [14].

In this paper, we propose the Harmony Transformer,
which jointly integrates chord recognition and chord seg-
mentation into an end-to-end chord recognition system.
The Harmony Transformer is based on the Transformer,
a deep neural network nowadays applied to a wide variety
of sequence modeling problems such as machine transla-
tion [22], natural language understanding [23], music gen-
eration [24], and so forth. For the encoder-decoder archi-
tecture of the Transformer, we assign the chord segmen-
tation task to the encoder, and the chord recognition task
to the decoder. This division allows the chord recogni-
tion network to benefit from the prediction of the chord
segmentation. In comparison to other designs using RNN,
which is considerably time-consuming owing to heavy se-
quential computations, the Transformer is more effective
in speed, as it enforces parallelization to process sequen-
tial data. The Harmony Transformer is also capable of a
complex analytic scenario—harmonic function 1 recogni-
tion [25]. Our experiment results highlight the advantage
of the proposed model to improve both the chord sym-
bol recognition and the harmonic function recognition. To
the best of our knowledge, this is the first work that con-
nects the chord segmentation task with the chord recog-
nition task through the Transformer framework. We hope

1 ‘Harmonic function’ refers to the diatonic function in music which
denotes the relationship of a chord to a tonal center.
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that our contribution facilitates more developments in au-
tomatic chord recognition.

2. HIERARCHICAL STRUCTURES AND CHORD
RECOGNITION

The chord recognition can be formulated as a sequence la-
beling task [26] that assigns a categorical label (e.g., chord
name) to each element of a given sequence (e.g., musical
sequence). Considering the sequential and structural na-
ture of music, chord recognition task resembles many nat-
ural language processing (NLP) problems, in such a way
that both the sequential arrangements of chords in mu-
sic and words in language are dominated by higher-level
rules—the function of harmony and the grammar in lan-
guage. A compelling recognition model for music or lan-
guage is, therefore, expected to unfold the intrinsic hierar-
chical structure of the sequences. A typical example is the
part-of-speech (POS) tagging task in NLP, which assigns a
specific part of speech to each word in a sentence. Albeit
many words can represent more than one part of speech
at different times, deep learning models have shown their
ability to regulate local-level assignments with a given con-
text, and demonstrated satisfactory performance. 2

On the other hand, the chord recognition results in re-
cent years still could not be satisfactory [1,8,13–15]. A pri-
mary difference between language and music is that each
word in the input sentence of the POS tagging task repre-
sents a semantically meaningful unit, whereas the musical
segments to be labeled in the chord recognition task are
not necessary harmonically completed. It can be argued
that the unsatisfying achievements in the chord recogni-
tion task can be associated with the deficiency of explicit
knowledge of the harmonic boundaries within a musical
sequence. Since the sequential property and the hierarchi-
cal structure are shared characteristics between language
and the harmonic progression, it would be advantageous
to introduce the segmentation information of harmony in
higher-level musical hierarchy into deep learning models
of chord recognition.

Recent research tackled the hierarchical issue of frame-
wise chord recognition using two RNN-based models to
separately predict the duration and the transition of each
chord in a parallel fashion [14]. Concretely, frame-wise
chord predictions are first generated through a CNN-based
acoustic model, which are then simultaneously fed into the
two RNN-based models—the chord duration model and
the harmonic language model to predict the time points of
chord change at the frame level and the chord progression
at the chord level respectively. The two RNN-based mod-
els are trained separately from the acoustic model, and are
utilized as language model which computes the probability
distribution of each token sequentially.

It has been demonstrated that incorporating musical hi-
erarchy is promising to improve chord recognition. Nev-

2 The per-token accuracy of the POS tagging task had surpassed
96% in 2000. For an overview of the state of the art of the
POS tagging task, see: https://aclweb.org/aclwiki/POS_
Tagging_(State_of_the_art).

ertheless, the local assignment of chord labels in practice
is dependent successively on the knowledge from differ-
ent hierarchical levels. We hence argue that 1) the chord
change and the chord progression should be modeled in a
vertical rather than a horizontal manner; in other words,
we suppose that the chord recognition problem belongs to
a higher level in the musical hierarchy than the chord seg-
mentation problem, and the recognition of chords should
base on the result of segmentation. 2) The models process-
ing higher-level information such as the two RNN-based
language models should be trained jointly with the lower-
level ones. In this study, we propose a new framework that
predicts chord progression for a given sequence according
to the chord segmentation result, and is trained in an end-
to-end manner.

3. THE HARMONY TRANSFORMER

The proposed model, as shown in Figure 1, follows the
encoder-decoder architecture of the Transformer [22],
while adopting a non-autoregressive framework for treat-
ing segmentation as the intermediate before the recogni-
tion process [27]. The encoder of the Harmonic Trans-
former performs the chord segmentation task from the in-
put data sequence (e.g., chroma), and the decoder performs
the chord recognition task from the input data sequence
along with the segmentation result from the encoder.

3.1 Basic units

The Harmony Transformer model is built on two computa-
tional units, that is, multihead-head attention (MHA) and
feed-forward network (FFN). The MHA unit takes three
inputs Q, K, and V, which stand for queries, keys, and
values, respectively. The three inputs are matrices with the
first dimension representing the number of time steps and
the second dimension being the number of feature; the fea-
ture sizes of the three inputs are usually the same, while
their number of time steps may be different.

In general, the MHA unit computes a weighted sum of
V based on the similarity between Q and K. To be more
exact, the inputs are first ‘transformed’ through an atten-
tion mechanism which outputs a head (denoted as D). The
MHA unit is then constructed by concatenating multiple
heads out of several attention mechanisms:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V , (1)

Di = Attention(QWQ
i ,KWK

i ,VWV
i ) , (2)

MHA(Q,K,V) = Concat(D1, · · · ,Dh)WD , (3)

where h is the number of heads, Di is the ith head, and
d is the dimension of feature. WD ∈ Rd×d, and WQ,
WK, WV ∈ Rd× d

h are all learnable parameter matrices.
Note that if Q = K = V, such attention mechanism is
called self-attention as the three inputs stand for the same
sequence; if Q 6= K = V, such attention mechanism is
called encoder-decoder attention in the case when K and
V come from the encoder and Q comes from the decoder.
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Figure 1. The architecture of the Harmony Transformer. During training, the chord change prediction penc from the
encoder is used to calculate the segmentation loss, while the decoder output Odec is used to calculate the recognition loss.

On the other hand, the FFN unit is constructed by two
fully-connected layers parameterized by weighted matri-
ces and bias vectors (W1,W2,b1,b2) and one activation
function in between the two layers:

FFN(X) = ReLU(XW1 + b1)W2 + b2 , (4) 3

where X is also a matrix like Q, K, or V, and
ReLU(X) := max(0,X) is the element-wise rectified lin-
ear unit activation. In practice, both the MHA and the FFN
computations include residual connections [28] and layer
normalization [29]:

MHA∗(Q,K,V) = LayerNorm(MHA(Q,K,V) + Q) ,

FFN∗(X) = LayerNorm(FFN(X) + X) .

In the rest of the paper, we omit the ∗ symbol for sim-
plicity. More detailed descriptions of MHA and FFN can
be found in Section 3.2 and Section 3.3 of [22].

3.2 Input embedding

We denote the sequence of frame-level features (e.g., pi-
ano roll or chromagram) with T time steps as X :=
[x1, . . . ,xT ]T, 4 in which xt is a feature vector of X at
time t. The data representation entering the Harmony
Transformer at time t, as denoted by X′t here, is a seg-
ment of X around t: X′t := [xt−τ , · · · ,xt+τ ]T, where the
length of the segment is 2τ+1. For the embedding process,
the encoder (or decoder) maps each X′t into an encoder (or

3 Note that the two additions in the equation are element-wise addi-
tions which will ‘broadcast’ the bias vectors to the same dimensions as
the matrices to be added.

4 In our notation, the normal T means the transpose of a matrix, while
the italic T indicates the number of time steps.

decoder) embedding through MHA and FFN units, then
flattens it into a vector eenct (or edect ). More specifically,
the embedding vector et which is to be fed into time step t
of either the encoder or the decoder is:

et = Flatten(FFN(MHA(X′t,X
′
t,X

′
t))W

e), (5)

where We is the parameter matrix to be learned, and
the encoder and the decoder use different set of parame-
ters. The embedding sequences for the encoder and the
decoder are then Eenc = [eenc1 , · · · , eencT ]T and Edec =
[edec1 , · · · , edecT ]T, respectively.

Moreover, since the computational units mentioned in
Section 3.1 are intrinsically unaware of the sequential or-
der of their inputs, the positional information is added to
the feature embeddings. In this work, we adopt the abso-
lute positional encoding composed of sinusoidal functions,
as used in [22]:

PEt,i =

{
sin(t/10000

i
d ) if i is even,

cos(t/10000
i
d ) if i is odd,

(6)

where t = 1, . . . , T is the time step, d is the embedding
size, and i = 1, . . . , d is the index of the embedding di-
mension. And PEt,i is added into the ith element of et.

3.3 Encoder: chord segmentation

The encoder is composed of L layers, each of which com-
prises a self-attention MHA unit and a FFN unit. In-
spired by [30], L softmax-normalized parameters are in-
troduced to the encoder for weighting the hidden states
of each layer. Formally, for the embedded sequence of
the encoder, Eenc, the encoder computes hidden states

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

261



Henc
l := [henc

l,1 , · · · ,henc
l,T ]T at layer l, where hl,t denotes

the output at time t in the lth layer:

Henc
l = FFN(MHA(Henc

l−1,H
enc
l−1,H

enc
l−1)) ,

Henc
0 = Eenc .

(7)

The hidden states of all layers are then weighted by
the softmax-normalized parameters αenc := {αenc

l }Ll=1

to produce a weighted-sum representation Renc :=
[renc1 , · · · , rencT ]T with renct =

∑L
l=1 α

enc
l henc

l,t , which is
later taken as one of the inputs of the decoder. The pur-
pose of using the weighted sum of hidden states from all
layers instead of using the output of the last layer is that
different layers tend to encode specific information which
individual tasks may rely on to different extents [30–33].

To predict chord change, Renc is then fed into a fully-
connected layer followed by a sigmoid activation. That is,
the likelihood of chord change at time t is estimated by
the equation: penct = sigmoid(wTrenct ), where w are the
parameters to be learned for mapping each renct in Renc

into a real number. And the segmentation loss is calcu-
lated with penc := {penct }Tt=1 during training, as depicted
in Figure 1. In order to make use of the chord change pre-
diction for the later part of the chord recognition task, we
utilize deterministic binary neurons (DBNs) [34, 35] to bi-
narize the real-valued chord change probabilities with hard
thresholding. Accordingly, the final output of the encoder
oenc := {oenct }Tt=1 is a sequence of binary chord segmen-
tation prediction, which is 1 at the point of chord change,
or 0 otherwise: oenct = 1 if penct > 0.5 and oenct = 0 if
penct ≤ 0.5. That means, when oenct = 1, there is a chord
change at time t. For example, for a source sequence of
6 segments, oenc = [1, 0, 0, 1, 1, 0, ] means that there are
three chord regions with the first region containing three
segments, the second containing one segment, and the fi-
nal containing two segments.

3.4 Decoder: segmentation-informed chord
recognition

Similar to the encoder, the decoder also consists of L lay-
ers, while in each layer, there is an additional encoder-
decoder attention module besides the MHA and the FNN
modules to imitates the classical attention mechanism in
sequence-to-sequence models [36, 37]. Different from the
encoder, the input of the decoder is derived from three
sources: Edec, oenc, and Renc. First of all, the embed-
ded sequence of the decoder Edec is regionalized in line
with oenc to generate Ēdec. Precisely, let c := {ck}Kk=1 be
the K time steps where chord changes, i.e., oencck

= 1, then
the regionalization unit in Figure 1 replaces each member
edect in Edec with average pooling:

ēdect :=
1

ck+1 − ck

ck+1−1∑
i=ck

edeci for t ∈ [ck, ck+1) , (8)

and the resulting embedding is Ēdec := [ēdec1 , · · · , ēdecT ]T.
Next, the decoder takes the original embedding Edec, the
regionalized embedding Ēdec, and the weighted-sum rep-
resentation Renc to compute hidden states of the decoder

Hdec
l = [hdec

l,1 , · · · ,hdec
l,T ]T at layer l with the three mod-

ules in the layer:

Hdec
l = FFN(MHA(Zdec

l ,Renc,Renc)) , (9)

Zdec
l = MHA(Hdec

l−1,H
dec
l−1,H

dec
l−1) , (10)

Hdec
0 = Edec + Ēdec + Renc . (11)

The intuition of adding the regionalized embeddings
Ēdec to the decoder inputs is to guide the model to recog-
nize the sequence with the segmentation-level, or chord-
level information; and using Renc is to take the advantage
of the explicit alignment information of the sequence la-
beling problem for the encoder-decoder architecture [38].

Then, the decoder weighs the hidden states of all lay-
ers, as does in the encoder, with the softmax-normalized
parameters αdec := {αdec

l }Ll=1 to produce the final pre-
sentation Rdec of the decoder inputs:

Rdec = [rdec1 , · · · , rdecT ]T =
L∑
l=1

αdec
l Hdec

l . (12)

Finally, the representation Rdec is fed into a fully-
connected layer followed by a softmax activation to pre-
dict the probability distribution over the chord vocabulary
for each time step t in the source sequence:

Odec = [odec
1 , · · · ,odec

T ]T = softmax(RdecWO), (13)

where WO is the parameter matrix of the fully-connected
network which maps each rdect in Rdec into a vector of the
chord vocabulary size. And the recognition loss is calcu-
lated with Odec.

We denote the ground truth labels of chord change and
chord symbol as ôenc and Ôdec respectively. The total loss
function Ltotal in the Harmony Transformer is:

Ltotal := λ1BCE(penc, ôenc) + λ2CCE(Odec, Ôdec) , (14)

where BCE is the binary crossentropy, CCE is the categor-
ical crossentropy, and λ1 and λ2 are coefficients used for
balancing the two cross entropies. The two terms in (14)
correspond to the segmentation loss and the recognition
loss in Figure 1, respectively. 5

4. EXPERIMENTS

4.1 Data

The proposed model is evaluated on both audio and sym-
bolic datasets. For the audio part, we use the McGill
Billboard dataset, which consists of 890 musical pieces
sampled from the Billboard chart slots [39]. 6 For the
symbolic data, we use the BPS-FH dataset, in which the
first movements of Beethoven’s 32 piano sonatas are in-
cluded [25]. The chord annotations are available in the
two datasets; chord segmentation labels are further derived
from the chord annotations for the supervised training of
the chord segmentation task.

5 The implementation can be found at https://github.com/
Tsung-Ping/Harmony-Transformer.

6 The dataset can be found at http://ddmal.music.mcgill.
ca/research/billboard.
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Dataset BLSTM FK HT HT∗ F1 (Seg.)

Billboard 77.03 78.90 82.68 83.00 57.15
BPS-FH 78.87 - 83.96 84.18 66.65

Table 1. The chord symbol recognition results in term of
WCSR score. BLSTM stands for the 1-layer bidirectional
RNN using LSTM cells; both HT and HT∗ denote the pro-
posed model, except the tonal centroid vector is added into
the input feature of the latter. The F1 scores of the chord
segmentation of HT are shown in the rightmost column.

Function BLSTM HT

Key 72.62 78.35
Degree 47.75 65.06
Secondary 48.23 68.15
Quality 53.31 74.60
Inversion 61.59 62.13

F1 (Seg.) - 67.34

Table 2. The accuracy (in %) of harmonic function recog-
nition. Note that Degree stands for the accuracy of cor-
rectly predicting both the primary and secondary degrees,
and Secondary indicates the accuracy of correctly predict-
ing the degrees of secondary chords. The segmentation
result (with F1 measure) is shown in the bottom row.

4.1.1 Audio data

For each piece in the McGill Billboard dataset, the non-
negative-least-squares (NNLS) chromagram is computed
with the Chordino VAMP plugin, [40] in which the default
settings of the plugin are adopted. Combining the 12-D tre-
ble chroma and the 12-D bass chroma, for each track we
obtain a 24-by-T -dimensional chromagram, where T rep-
resents the length of the track. 7 Each input sequence for
the Harmony Transformer contains 100 segments (around
23 sec), and is generated through a sliding window of
frame size 21 with hop size 5. Following [13] (see Sec-
tion 2.2), pieces with id numbers smaller than 1000 are
used for training, and the remaining for testing; also, iden-
tical pieces are filtered out. As a result, there are 5,647
sequences for training and 1,628 sequences for testing.

4.1.2 Symbolic data

We represent the piano sonatas in the BPS-FH dataset as
pianorolls with the pitch ranging from A0 to G#7 (middle
C = C4), where the duration of each note is measured in
term of crotchet beats, and is quantized to 32th note. The
length of each sequence is 64, and each element in the se-
quence is a pianoroll segmented with window size of 33
and hop size of 2. As the input element for the Harmony
Transformer, each pianoroll segment is flattened into a vec-

7 For more information of the Chordino VAMP plugin and the
NNLS chromagram, please refer to http://www.isophonics.
net/nnls-chroma.

tor whose length is 84×33. We use 4-fold cross-validation
for evaluation; the number of sequences of each fold varies
from 368 to 585.

4.1.3 Data augmentation

All the training data are augmented with key modulation
and thus expanded to 12 times.

4.2 Experimental trials

For the Harmony Transformer (denoted as HT), we use the
embedding size d = 512, the number of heads h = 8, and
the number of layers of both the encoder and the decoder
L = 2. The two coefficients λ1 and λ2 in the loss function
are set to be 3 and 1 respectively. The chord symbol recog-
nition task is conducted for both audio and symbolic data,
and the harmonic function recognition task, as defined in
[25], is further applied to the symbolic dataset. Besides,
we employ the tonal centroid vector [20], which models
the relationship between chords in a 6-D tonal space, as
the additional input feature of the HT for better represent-
ing the input data.

4.2.1 Chord symbol recognition

The chord symbol recognition model has a 26-dimensional
output, in which 24 of them represent major and minor tri-
ads, 1 represents ‘others’ for chords other than major or
minor triads, and the remaining one represents the ‘no-
chord’ case. The weighted chord symbol recall (WCSR)
is used as the evaluation metric. We employ a 1-layer bidi-
rectional RNN using LSTM cells of 512 hidden units (ab-
breviated as BLSTM) as the baseline for the evaluations of
the two datasets. Additionally, we include the best evalua-
tion result achieved by the ConvNet-HMM model (denoted
as FK here) in [13] (see Section 3) for the comparison of
the evaluation on audio data. The FK model is similar to
the Madmom audio chord recognition framework, 8 which
achieves many state-of-the-art scores in the MIREX Audio
Chord Estimation (ACE) campaign. 9

4.2.2 Harmonic function recognition

We formulate the harmonic function recognition task as a
multi-task learning problem, in which the model outputs
segment-wise predictions of the 5 chord functions: local
key of 24 classes, primary degree of 21 classes, secondary
degree of 21 classes, chord quality of 10 classes, and chord
inversion of 4 classes. We use the classification accuracy
to measure the performance of the proposed model. The
BLSTM, as mentioned in Section 4.2.1, is also employed
for comparison. For more information about the terminol-
ogy of harmonic function, please refer to [25].

8 https://madmom.readthedocs.io/en/latest/
modules/features/chords.html.

9 See https://www.music-ir.org/mirex/wiki/2018:
Audio_Chord_Estimation_Results. The algorithm denoted as
FK2 in the website is part of the Madmom audio processing framework.
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Figure 2. The predictions of harmonic function by the proposed model HT and the BLSTM, where maj, min, and dom. 7th
stand for major, minor, and dominant seventh, respectively. Wrong predictions are marked in red. The example here is an
excerpt from Beethoven’s piano sonata No. 14, Op. 27-2, Mvt. 1, MM. 4-7.

4.3 Hyperparameters and training

The model is trained with the Adam optimization method
of the learning rate = 10−4, β1 = 0.9, β2 = 0.98,
ε = 10−9. To avoid overfitting, we employ dropout [41] of
rate = 0.6 and label smoothing [42] of the value εls = 0.1.
In addition, because the encoder output contains discrete
variables, i.e., the binary chord segmentation predictions
oenc, we utilize a straight-through estimator along with the
slope annealing trick [43] to estimate the derivative gradi-
ent during backpropagation.

4.4 Evaluation results

Table 1 shows the evaluation results of the chord sym-
bol recognition task. For the Billboard dataset, the per-
formance of the Harmony Transformer outperforms the
BLSTM and the FK by 5.65% and 3.78% respectively. For
the BPS-FH dataset, our model also surpasses the BLSTM
by 5.09%. When we employ the tonal centroid vector for
the input feature, the proposed model further boosts the
recognition results. This indicates that the explicit infor-
mation of harmonic change is useful for chord recognition.
The fact that the proposed model outperforms the BLSTM
in both audio and symbolic data exhibits our model’s ca-
pability of sequence learning even though the model con-
sists of no temporally recurrent computation. In addition,
based on the same training and evaluation data, the pro-
posed model performs better than the FK and therefore
may compete with the ACE framework of Madmom. Nev-
ertheless, the F1 scores for the segmentation task are not
satisfied due to the low recall rates (57.10% and 58.69%
for Billboard and BPS-FH). This indicates the challenge to
identify the exact time when chord changes.

For the harmonic function recognition task, the HT out-
performs the BLSTM in all of the five chord functions, as

shown in Table 2. In particular, for local key, chord degree,
secondary chord degree, and chord quality, the HT outper-
forms the BLSTM greatly by 5.73%, 17.31%, 19.92%, and
21.29%, respectively. This indicates that our model is able
to deal with challenging cases such as the key modulation,
and chords with special harmonic function. Figure 2 gives
an example of such instances. The HT correctly predicts
the chord progression in terms of local key, chord degree,
and chord quality, except that the timing of modulating to
E major is slightly later than the ground truth. Notably, the
F minor triad at the second half of measure 6, functioned as
a pivot chord in a common chord modulation, is precisely
identified by our model in spite of the key change. In con-
trast, the BLSTM not only fails to recognize the degree of
some chords in this example, but also mistakes the minor
triads as major ones, such as in measure 4.

5. CONCLUSION AND FUTURE WORK

We have demonstrated that the Harmony Transformer is
competent in harmony analysis. Built upon the commonal-
ity of musical chord recognition and natural language pro-
cessing, we emphasize the importance of modeling seg-
mental and hierarchical structures in music. The encoder-
decoder architecture and the non-autoregressive decoding
in the Harmony Transformer enhance the flexibility in
modeling chord sequences. Specifically, the end-to-end
combination of chord segmentation and chord recognition
contributes great benefits to the chord symbol recognition,
as well as to the joint recognition of five harmony func-
tions, a challenging task that relies heavily on the contex-
tual and structural information in music. Our model has
the potential to be further improved by using the segmen-
tation results to learn the word-level embedding, which has
also witnessed success in natural language processing.
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ABSTRACT
This paper describes a music structure analysis method that
splits music audio signals into meaningful segments such
as musical sections and clusters them. In this task, how
to model the four fundamental aspects of musical sections,
i.e., homogeneity, repetitiveness, novelty, and regularity,
in a unified way is still an open problem. Here we pro-
pose a solid statistical approach based on a homogeneity-
, repetitiveness-, and regularity-aware hierarchical hidden
semi-Markov model. The higher-level semi-Markov chain
represents a sequence of sections that tend to have reg-
ularly spaced boundaries. The timbral features in each
section are assumed to follow emission distributions that
are homogeneous over time. The lower-level left-to-right
Markov chain in each section represents a chord sequence
whose sequential order is constrained to be a repetition of
a chord sequence in another section of the same cluster.
The whole model can be trained unsupervisedly based on
Bayesian sparse learning where unnecessary sections auto-
matically degenerate. The proposed method outperformed
representative methods in segmentation and clustering ac-
curacies with estimated sections having similar statistical
properties as the ground truth data.

1. INTRODUCTION

Music structure analysis is a long-standing research topic
[1] because detection of meaningful segments called musi-
cal sections (e.g., intro, verse, bridge, and chorus sections
in popular music) from music audio signals forms a ba-
sis of music information retrieval (MIR). In general, music
structure analysis involves a segmentation step that splits
music signals into sections [2–9], a clustering step that cat-
egorizes such sections into several classes [10–18], and a
labeling step that gives each section a concrete label such
as “verse A”, “verse B”, or “chorus” [19–21]. We here
tackle the segmentation and clustering for popular music.

In previous studies, sections of popular music have
been characterized in three aspects, i.e., homogeneity refer-

c© G. Shibata, R. Nishikimi, E. Nakamura, and K. Yoshii.
Licensed under a Creative Commons Attribution 4.0 International Li-
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Figure 1. Music structure analysis based on homogeneity
of timbral features, repetitiveness of chord progressions,
and regularity of section durations.

ring to the intra-section characteristics and repetitiveness
and novelty referring to the inter-section relationships [1].
More specifically, homogeneity means that musical char-
acteristics (e.g., timbral features such as mel-frequency
cepstrum coefficients (MFCCs)) are consistent within a
section. Repetitiveness means that the same sequence of
some musical elements (e.g., chroma features and chord
progressions) of a section is repeated in sections of the
same class. Novelty means that musical characteristics
change abruptly at a boundary between sections. In addi-
tion, regularity of section durations has often been focused
on [8–10] because there are typical lengths such as four or
eight measures in popular music.

Most studies on music structure analysis, however, have
focused on only one of the above aspects or consider some
of them in a separate and/or ad-hoc manner, as reviewed
in Section 2. Joint computational modeling of these four
aspects is thus the central issue in music structure analysis.
Instead of manually designing segmentation and cluster-
ing criteria based on these aspects, we pursue a statistical
approach to data-driven music structure analysis.

In this study, we propose a statistical music structure
analysis method that simultaneously deals with the ho-
mogeneity, repetitiveness, and regularity of musical sec-
tions in a probabilistic framework (Fig. 1). We formu-
late a unified probabilistic model called a hierarchical hid-
den semi-Markov model (HHSMM) that represents the hi-
erarchical generative process of musical sections, chord
sequences, and music audio signals (timbral features and
chroma features). This model has two sequences of latent
states in a hierarchical manner. The upper-level sequence
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represents a series of section classes following a semi-
Markov model with explicit regularity (duration) modeling
and the lower-level sequence represents chords following a
section-conditioned left-to-right Markov model. To repre-
sent the intra-section homogeneity of timbral features, the
MFCCs of a section are assumed to be generated from an
upper-level state corresponding to the section. To repre-
sent the inter-section repetitiveness of chord progressions,
the chroma features of a section are assumed to be sequen-
tially generated from lower-level states. Given a music au-
dio signal as observed data, the whole model can be trained
unsupervisedly using Gibbs sampling and Viterbi training,
where unnecessary sections are automatically degenerated
during the Bayesian sparse learning.

The main contribution of this study is to propose a solid
Bayesian approach to music signal analysis based on a
fully generative model that can deal with the homogene-
ity, repetitiveness, and regularity of sections in a unified
way. This enables unsupervised learning unlike another
statistical approach based on deep discriminative models
[6–8] that require section annotations for supervised train-
ing. Since these two approaches have a mutually comple-
mentary relationship, our results open up a door to deep
Bayesian integration of discriminative and generative mod-
els in a variational autoencoding framework (audio signal
→ sections→ audio signal) [22] for further improvement.

Another important contribution is to investigate the sta-
tistical characteristics of musical sections estimated by the
proposed method in comparison with representative meth-
ods. Our method is shown to be able to yield distributions
of section durations, of the numbers of section classes used
for representing music audio signals, and of the metrical
positions of section boundaries much more similar to those
of the ground-truth data than the other methods.

2. RELATED WORK

Homogeneity, repetitiveness, novelty, and regularity have
been considered to be important for music structure anal-
ysis. The most standard approach to music structure anal-
ysis is to use the self-similarity matrix (SSM) of acoustic
features such as chroma features and MFCCs, whose ele-
ment represents the acoustic similarity between two time
frames (Fig. 2). In an SSM, the homogeneity, repeti-
tiveness, novelty, and regularity are observed as block-
diagonal structure, short stripes parallel to the diagonal
line, grid patterns, and grid intervals, respectively. One
or some of these four aspects have been used for segmen-
tation and clustering tasks in music structure analysis.

2.1 Segmentation
Foote [2] proposed a novelty-based method that detects
peaks from a time-varying novelty curve obtained by shift-
ing and convoluting a checkerboard kernel along the diag-
onal elements of an SSM. Jensen [3] attempted to find sec-
tion boundaries that minimize a homogeneity- and novelty-
based cost function. While Goto [19] originally pro-
posed a lag SSM in which repetitions appear not as stripes
but as vertical lines and calculated a novelty curve over
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Figure 2. Self-similarity matrix (SSM) of MFCC features
(part of RWC-MDB-P-2001 No. 25).

time lags, Serrà [4] proposed another novelty curve over
time frames. Peeters and Bisot [5] successfully integrated
these two methods [4, 19] for better segmentation. Ull-
rich et al. [6] pioneered a supervised approach based on a
convolutional neural network (CNN), which was extended
to deal with both coarse- and fine-level boundary anno-
tations [7]. Sargent et al. [9] pointed out the effective-
ness of focusing on the regularity to favor structural seg-
ments of comparable size. Maezawa [8] developed a long
short-term memory (LSTM) network with homogeneity-,
repetitiveness-, novelty-, and regularity-based cost func-
tions. In this study we take an unsupervised approach
based on a homogeneity-, repetitiveness-, and regularity-
based generative model. To keep the model simple, incor-
poration the aspect of novelty is left for future work.

2.2 Clustering

Cooper et al. [12] sequentially performed music segmen-
tation [2] and section clustering based on intra- and inter-
section statistical characteristics. Goodwin et al. [13] at-
tempted to efficiently detect off-diagonal stripes in an SSM
as repetitions using dynamic programming. To deal with
repetitiveness and homogeneity, Grohganz et al. [14] con-
verted a repetitiveness-dominant SSM with off-diagonal
stripes into a homogeneity-dominant SSM with block-
diagonal structure. Nieto et al. [15] used a convex variant
of non-negative matrix factorization for section segmenta-
tion and clustering. McFee et al. [16] proposed a method
that encodes repetitive structures into a graph and performs
spectral clustering for graph partitioning.

Several studies took a statistical approach based on
generative models for joint segmentation and clustering.
Aucouturier et al. [11] used a standard hidden Markov
model (HMM). Ren et al. [17] proposed a nonparametric
Bayesian extension of an HMM that can estimate an appro-
priate number of sections. Barrington et al. [18] proposed
a nonparametric Bayesian extension of a switching linear
dynamical system (LDS) that also has the ability of au-
tomatic model complexity control. While these methods
mainly focused on the homogeneity, our method simul-
taneously considers the homogeneity, repetitiveness, and
regularity and can incorporate prior knowledge about the
statistical characteristics of sections (e.g., durations and
metrical positions) in a data-driven manner.
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3. PROPOSED METHOD

This section describes the proposed statistical method for
music structure analysis.

3.1 Problem Specification
Our problem is formulated as follows:

Input: A chroma feature sequence Xc = xc1:B ∈ RB×12
and an MFCC sequence Xm = xm1:B ∈ RB×12 obtained
from a given music audio signal. They are computed in
units of beats estimated by a beat tracking method [23].
Output: Boundaries and classes of sections.

Here, B is the number of beats (quarter notes) and a sub-
script©a:b represents the sequence (©a, . . . ,©b).

We use 12-dimensional chroma features obtained by ag-
gregating all spectral information of each pitch class into
a single element. We also use 12-dimensional MFCCs as
timbral features.

3.2 Model Formulation
The proposed model consists of two-level hierarchical
Markov chains and an acoustic model as shown in Fig. 3.
The upper-level Markov chain describes the section-level
structure (i.e., section classes and durations) and the lower-
level Markov chain describes the internal structure of each
section. The states of these Markov chains are latent vari-
ables that represent abstract musical structure. The acous-
tic model connects the abstract structure with the observed
musical features (chroma vectors and MFCCs).

3.2.1 Upper-Level Markov Chain

The upper-level Markov chain is an ergodic semi-Markov
model. The sequence of section classes Z = z1:T (zτ ∈
{1, . . . , NZ}) and their durations D = d1:T (dτ ∈
{1, . . . , ND}) are generated by the model, where T is the
number of sections, NZ is the number of distinct section
classes, andND is the maximum duration of a section. The
generative process is described as follows:

p(z1, d1) = ρz1ψd1 , (1)

p(zτ , dτ |zτ−1, dτ−1) = πzτ−1zτψdτ , (2)

where ρz and πzz′ are the initial and transition probabilities
of section classes and ψd is the duration probability.

3.2.2 Lower-Level Markov Chain

The lower-level Markov chain is a left-to-right Markov
model with NK states. The state sequence of this model
describes the internal structure of a section corresponding
to the chord progression, where each state is expected to
correspond to a chord. We consider such a Markov chain
for each section class. The model continues state transi-
tions for each beat from the start time of a section until its
duration passes. The state sequence Kτ = kτ,1:dτ (kτ,t ∈
{1, . . . , NK}) is generated as follows:

p(kτ,t|zτ , kτ,t−1) = φ
(zτ )
kτ,t−1kτ,t

, (3)

where zτ and dτ are the corresponding section class and
duration, and φ(zτ )kk′ is the transition probability from state
k to state k′.

Observation

Latent States

upper
states

lower
states

duration !

chroma

MFCC

"

#

Figure 3. The proposed generative model.

The left-to-right Markov model meets a condition that
the initial state has kτ,1 = 1 and kτ,t1 ≤ kτ,t2 for t1 < t2.
We introduce a hyperparameter σ that describes the maxi-
mum number of states that may be skipped in a transition; a
transition from state k to state k+σ is possible but a larger
skip is forbidden. In this way, the model can describe rep-
etitions with some variations, which is another important
aspect of musical structure. K denotes K1:T .

3.2.3 Acoustic Model

The acoustic model describes the generative processes of
the chroma features xcb ∈ R12 and MFCCs xmb ∈ R12 by
using output probabilities that are defined conditionally on
the section classes Z and their internal states K. The repet-
itiveness is represented by applying the same set of output
probabilities to all sections of the same class. The output
probabilities of chroma features χcz,k depend on both Z and
K to represent the sequential structure of chord progres-
sions. To capture the homogeneity of timbre characteris-
tics of each section, the output probabilities of MFCCs χmz
are assumed to depend only on Z. Thus we have

p(xcb,x
m
b ) = χczb,kb(x

c
b)χ

m
zb
(xmb ), (4)

where zb and kb are the section class and the internal state
at beat b, respectively. The output probabilities are de-
scribed as multivariate Gaussian distributions:

χcz,k(x
c
b) = N (xcb|µcz,k, (Λc

z,k)
−1), (5)

χmz (xmb ) = N (xmb |µmz , (Λm
z )−1), (6)

where µcz,k and Λc
z,k are the mean and precision for the

chroma features, and µmz and Λm
z are defined similarly.

3.2.4 Prior Distributions

To find an effective number of distinct section classes, we
formulate a Bayesian HHSMM by putting conjugate prior
distributions. We put Dirichlet prior distributions for the
categorical distributions as follows:

ρ ∼ Dirichlet(aρ), (7)

ψ ∼ Dirichlet(aψ), (8)

πz ∼ Dirichlet(aπ), (9)

φ
(z)
k ∼ Dirichlet(aφ), (10)

where ρ = ρ1:NZ , ψ = ψ1:ND , πz = πz(1:NZ), φ
(z)
k =

φ
(z)
k(1:NK), and aρ, aψ , aπ , and aφ are Dirichlet parame-

ters. When these parameters are small, the transition prob-
abilities of section classes become sparse. The model can
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thus capture repetitions regardless of small acoustic varia-
tions and remove unnecessary section classes.

Since section durations tend to be the integer multiples
of four measures in popular music (see Fig. 4), such a sta-
tistical tendency can be incorporated in the prior distribu-
tion. Specifically, we use as aψ the empirical distribution
of section durations aψemp multiplied by a constant factor.
Since the structure of section classes is quite different over
individual musical pieces, we put uniform Dirichlet prior
distributions for their transition probabilities.

Finally, we put Gaussian-Wishart prior distributions on
multivariate normal distributions as follows:

µcz,k,Λ
c
z,k ∼ N (µcz,k|mc

0, (β
c
0Λ

c
z,k)
−1)W(Λc

z,k|Wc
0, ν

c
0),

µmz ,Λ
m
z ∼ N (µmz |mm

0 , (β
m
0 Λm

z )−1)W(Λm
z |Wm

0 , ν
m
0 ),

where mc
0, βc0, Wc

0, νc0, mm
0 , βm0 , Wm

0 , and νm0 are hyper-
parameters.

3.3 Bayesian Learning
Letting Θ = {ρ,ψ,π,φ,µ,Λ}, we aim to calculate
the posterior distribution p(Z,D,K,Θ|Xc,Xm). Since
this is analytically intractable, we use the Gibbs sampling
method. We first sample the latent variables Z, D, and
K from the distribution p(Z,D,K|Θ,Xc,Xm) and we
then sample the model parameters Θ from the distribution
p(Θ|Z,D,K,Xc,Xm). Iterating this process, we obtain
samples from the true posterior distribution.

3.3.1 Sampling Latent Variables

We use the forward filtering-backward sampling algorithm
for sampling the upper- and lower-level latent variables Z,
D, and K. We introduce variables zb and db that denote the
class and duration of a section starting at beat b−db+1 and
ending at beat b. We also define the marginalized output
probabilities for this section ωzb(x

c
b−db+1:b,x

m
b−db+1:b),

which can be calculated by the forward algorithm for the
lower-level Markov chain.

In the forward filtering step for the upper-level model,
we initialize and update the forward variables αb(zb, db) =
p(zb, db,x

c
1:b,x

m
1:b) as follows:

αb(zb, db = b) = ρzbψdbωzb(x
c
1:b,x

m
1:b), (11)

αb(zb, db) (12)

=
∑
z′,d′

αb−db(z
′, d′)πz′zbψdbωzb(x

c
b−db+1:b,x

m
b−db+1:b).

In the backward sampling step, the latent variables Z
and D are sequentially sampled in the reverse order:

p(zB , dB |Xc,Xm) ∝ αB(zB , dB). (13)

When variables zb and db are already sampled, the vari-
ables zb′ and db′ at beat b′ = b− db are sampled according
to the probability

p(zb′ , db′ |zb:B , db:B ,Xc,Xm) ∝ αb′(zb′ , db′)πzb′zb .
(14)

Next, the latent variables K are sampled using the sam-
pled Z and D. Each set of variables Kτ is sampled by
forward filtering-backward sampling for the lower-level
model of section class zτ . Here we use a beat index t ∈
{1, . . . , dτ} considered in relative to the section boundary.

In the forward filtering step, we calculate the probabilities
ζτ,kτ,t recursively as follows:

ζτ,kτ,1 = p(kτ,1,x
c
1,x

m
1 |zτ , dτ )

= δkτ,11χ
c
zτ ,1(x

c
1)χ

m
zτ (x

m
1 ), (15)

ζτ,kτ,t = p(kτ,t,x
c
1:t,x

m
1:t|zτ , dτ ) (16)

=

 ∑
kτ,t−1

ζτ,kτ,t−1
φ
(zτ )
kτ,t−1kτ,t

χczτ ,kτ,t(x
c
t)χ

m
zτ (x

m
t ).

In the backward sampling step, the latent variables K are
sequentially sampled in the reverse order as follows:

p(kτ,dτ |zτ , dτ ,xc1:dτ ,x
m
1:dτ ) ∝ ζτ,kτ,dτ , (17)

p(kτ,t|zτ , dτ , kτ,t+1:dτ ,x
c
1:dτ ,x

m
1:dτ ) ∝ ζτ,kτ,tφ

(zτ )
kτ,tkτ,t+1

.

(18)

3.3.2 Sampling Model Parameters

We use the Gibbs sampling method for updating the model
parameters as follows:

ρ ∼ Dirichlet(aρ + bρ), (19)

πz ∼ Dirichlet(aπ + bπz ), (20)

ψ ∼ Dirichlet(aψ + bψ), (21)

φ
(z)
k ∼ Dirichlet(aφ + bφ

(z)
k ), (22)

Λc
z,k ∼ W(Wc

z,k, ν
c
z,k), (23)

µcz,k|Λc
z,k ∼ N (mc

z,k, (β
c
z,kΛ

c
z,k)
−1), (24)

Λm
z ∼ W(Wm

z , ν
m
z ), (25)

µmz |Λm
z ∼ N (mm

z , (β
m
z Λm

z )−1), (26)

where bρ ∈ RNZ , bπz ∈ RNZ , bψ ∈ RND , and bφ
(z)
k ∈

RNK are vectors counting the sampled data. bρz is 1 if z =
z1 and 0 otherwise, bπzz′ counts the number of transitions
from state z to state z′, bψd counts the number of times that

sampled sections have a duration of d, and bφ
(z)
k

k′ counts the
number of transitions from state k to state k′ in the lower-
level model of section class z. The parameters mc

z,k, βcz,k,
Wc

z,k, and νcz,k are calculated as follows:

βcz,k = βc0 +Nz,k, νcz,k = νc0 +Nz,k, (27)

mc
z,k =

1

βcz,k
(βc0m

c
0 +Nz,kx

c
z,k), (28)

(Wc
z,k)
−1 = (Wc

0)
−1 +Nz,kS

c
z,k

+
βc0Nz,k
βc0 +Nz,k

(xcz,k −mc
0)(x

c
z,k −mc

0)
T, (29)

where we have defined

Nz,k =
B∑
b=1

δzbzδkbk, (30)

xcz,k =
1

Nz,k

B∑
b=1

δzbzδkbkx
c
b, (31)

Scz,k =
1

Nz,k

B∑
b=1

δzbzδkbk(x
c
b − xcz,k)(x

c
b − xcz,k)

T. (32)

The parameters mm
z , βmz , Wm

z , and νmz can be calculated
similarly.
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3.3.3 Refinements

We introduce two refinements to facilitate the learning pro-
cess. First, since the samples from the Gibbs sampler are
not necessarily local optimums of the posterior distribu-
tion, we apply Viterbi training in the last step of the pa-
rameter estimation. Specifically, we apply the Viterbi algo-
rithm (instead of the forward filtering-backward sampling
algorithm) to estimate the latent variables and update the
model parameters to the expectation values of the posterior
probabilities (instead of samples from those probabilities).
It is known that Viterbi training is generally efficient for
finding an approximate local minimum [24].

Second, we introduce a weighting factor wdur(≥ 1) for
the duration probability to enhance its effect. Specifically,
we replace the probability factor ψdb in the forward algo-
rithm (11) and (12) with (ψdb)

wdur . Similar replacements
are applied to the Viterbi training step as well as to the fi-
nal estimation step of latent states explained in Section 3.4.
Increasing the weighting factor has the effect of lowering
the temperature and putting more focus on more frequent
section durations.

3.4 Estimation of Musical Sections
After training the model parameters, we compute the max-
imum a posteriori (MAP) estimate of the latent variables
(musical sections). Specifically, we maximize the posterior
probability p(Z,D|Θ,Xc,Xm) with respect to latent vari-
ables Z and D. This can be solved by integrating out the
lower-level states K and applying the Viterbi algorithm for
hidden semi-Markov models [25] to the upper-level model.

4. EVALUATION
4.1 Experimental Conditions
We used the RWC popular music database [26] with struc-
ture annotations [27] for evaluation. Out of the 100 pieces
in the data, we used 85 musical pieces in consistent 4/4
time for simplicity. For running the proposed method, we
obtained chroma features using the deep feature extrac-
tor [28] and MFCCs using the librosa library [29]. Beat
information was obtained using the madmom library [23].
The empirical distribution aψemp of section durations was
trained using the piece-wise cross validation among the 85
pieces. For parameter estimation, we iterated the Gibbs
sampling 15 times and the Viterbi training 3 times, which
took roughly around 5 times the duration of an input signal
with a standard CPU.

The hyperparameters of the proposed models were set
as follows: NZ = 12, ND = 40, NK = 16, σ = 1,
wdur = 4, aρ = 0.1 · I, aπ = I, aψ = 50 · aψemp,
aφ = I, mc

0 = E[Xc], βc0 = 8, Wc
0 = (νc0 cov[X

c])−1

with νc0 = 96, mm
0 = E[Xm], βm0 = 4, and Wm

0 =
(νm0 cov[Xm])−1 with νm0 = 80, where I denotes a vector
with all entries equal to 1. The first three parameters NZ ,
ND, and NK were determined by consulting the statistics
of the annotated data (see Fig. 4). According to the data,
most songs have 12 or less sections and most sections have
a length of 40 beats or less. If we expect a section length of
32 beats (8 measures) and a chord duration of 2 beats, the

Method
F0.5 (%)

(segmentation)
Fpair (%)

(clustering)

VMO [30] 8.72 28.5
CNMF [15] 17.4 41.7

SCluster [16] 23.4 45.5
Proposed 33.0 54.3

Table 1. Evaluation results.

expected number of chords in each section is 16. The value
of σ is set to 1 for simplicity. The other parameters were
determined by a coarse optimization w.r.t. the two evalua-
tion measures explained below. Each parameter was opti-
mized by a grid search, fixing the other parameters. Further
optimization of the parameters is left for future work.

For comparison, we ran variable Markov oracle (VMO)
[30], convex non-negative matrix factorization (CNMF)
[15], and spectral clustering (SCluster) [16], which
were available in the music structure analysis framework
(MSAF) [31]. We used the default settings in the MSAF.

We evaluated the quality of segmentation and clustering
in the same way as MIREX [32]. The quality of segmenta-
tion is evaluated by the F-measure F0.5 of section bound-
aries [33] defined as follows. An estimated boundary is ac-
cepted as correct if there is a boundary in the ground truth
data within the range of ±0.5 seconds. The precision rate
is the percentage of correct estimates. The recall rate is the
percentage of true boundaries that are correctly estimated.
The F-measure F0.5 is defined as the harmonic mean of the
precision and recall.

The quality of clustering is evaluated by the pairwise F-
measure Fpair [34] defined as follows. We compare pairs
of frames (with a length of 100 ms) that are labeled with the
same class in an estimation result with those in the ground
truth. The precision, recall, and F-measure are defined as

Ppair =
|PE ∩ PA|
|PE |

, Rpair =
|PE ∩ PA|
|PA|

, (33)

Fpair =
2PpairRpair

Ppair +Rpair
, (34)

where PE denotes the set of similarly labeled frame pairs
in the estimation and PA denotes that in the ground truth.
These values are calculated by the mir_eval library [35].

4.2 Experimental Results
The results in Table 1 show that SCluster had the best F0.5

and Fpair among the three conventional methods. The F-
measures obtained by VMO were very low and the es-
timated results included many unnatural short segments
(see Fig. 4). This was presumably caused by the imple-
mentation in the MASF. In both F0.5 and Fpair, the pro-
posed method significantly outperformed the three com-
pared methods.

Next, let us examine the estimated results more closely
(Fig. 4). The distribution of section durations for the pro-
posed model was similar to that of the ground truth. In par-
ticular, both distributions have peaks at the 32 beats (eight
measures) and 16 beats (four measures). In contrast, the
distributions for the results of the other three methods were
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Figure 4. The left panels show the distributions of section durations, those of metrical positions of section boundaries,
and those of the numbers of section classes in the estimated results and ground truth data. The right figure shows example
results by the proposed and the three existing methods (RWC-MDB-P-2001 No. 29). The lower-level states are obtained
by the Viterbi algorithm and the reconstructed features indicate the mean values of the corresponding output probabilities.

significantly different from that of the ground truth. This
result clearly demonstrates the effect of explicitly mod-
elling the section durations to capture their regularity. We
also found that the distribution of metrical positions of sec-
tion boundaries for the ground truth data was similar to that
for the proposed method, but significantly different from
those for the conventional methods.

The numbers of section classes in the ground truth
data were roughly distributed in the range from eight to
twelve. The distribution for the proposed model had a sim-
ilar shape, though it is slightly shifted to the lower side.
This result demonstrates the nontrivial ability of the pro-
posed method to automatically find the appropriate number
of section classes, even though it often finds the number
smaller than the actual value. On the other hand, the distri-
butions for the other methods were much more sparse; they
found more or less the same number of section classes for
all the tested pieces. In particular, CNMF and SCluster
estimated too few section classes.

From these analyses, we find that the results of music
structure analysis by the proposed method have much more
similarity with the human annotated results than the com-
pared existing methods. It is also important to point out
that these results could not be made clear only by looking
at the F-measures. The F-measures are not sufficient for
evaluating results of music structure analysis.

We can observe these tendencies in the example results
(Fig. 4). Particularly, CNMF and SCluster estimated too
few section classes and irregular section durations. For the
proposed method, we see that sections of the same class
had similar lower-level sequences of latent states. This
suggests that the model successfully captured repeated
chord progressions in the sections of the same class. We
can also observe that the proposed model often used only a
part of lower-level states, which might be improved by im-

posing more constraints on the lower-level Markov chain.
For a fair comparison, we remark that parameters of the

three existing methods were not optimized using our train-
ing data. Since we used limited data containing only J-pop
pieces, adapting the parameters of these methods to this
particular musical style may improve their performance to
some extent. In addition, using the state-of-the-art beat
tracker [23] to obtain reliable beat information and using
that as input to those three methods may also improve their
accuracy. However, it is unlikely that these methods can be
refined to reproduce the aforementioned statistics of sec-
tions simply by re-training the parameters.

5. CONCLUSION
We have presented a statistical method for music struc-
ture analysis based on a Bayesian HHSMM that describes
intra- and inter-section structures in a unified way. Three of
the most important aspects of musical sections, homogene-
ity, repetitiveness, and regularity are incorporated into the
model. Music segmentation and section clustering are per-
formed jointly by unsupervised Bayesian learning of the
model, and musically important characteristics such as the
repetitive structure and the distribution of section durations
are incorporated by the Bayesian extension. The experi-
mental results showed that the proposed method achieved
segmentation and clustering accuracies significantly better
than the representative existing methods.

For future work, we plan to refine the model to incor-
porate the aspect of novelty and to deal with more hierar-
chies [16] because music has a hierarchical structure, from
motive and phrase to section and section group [36]. Our
unsupervised learning approach is complementary to an-
other approach based on deep discriminative models [6–8].
A promising direction is to integrate these models into a
variational autoencoding framework [22].
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ABSTRACT

Unaccompanied vocal music is a central part of West-
ern art music, yet it requires excellent skills for singers to
achieve proper intonation. In this paper, we analyze into-
nation deficiencies by introducing an intonation cost mea-
sure that can be computed from choir recordings and may
help to assess the singers’ intonation quality. With our ap-
proach, we measure the deviation between the recording’s
local salient frequency content and an adaptive reference
grid based on the equal-tempered scale. The adaptivity
introduces invariance of the local intonation measure to
global intonation drifts. In our experiments, we compute
this measure for several recordings of Anton Bruckner’s
choir piece Locus Iste. We demonstrate the robustness of
the proposed measure by comparing scenarios of different
complexity regarding the availability of aligned scores and
multi-track recordings, as well as the number of singers per
part. Even without using score information, our cost mea-
sure shows interesting trends, thus indicating the potential
of our method for real-world applications.

1. INTRODUCTION

Unaccompanied vocal music constitutes the nucleus of
Western art music and the starting point of polyphony’s
evolution. Despite an increasing number of studies [1,4,5,
8–11,16,17,21] dating back to the 1930s [29], many facets
of polyphonic a cappella singing are yet to be explored and
understood. A central challenge of a cappella singing is the
adjustment of pitch in order to stay in tune relative to the
fellow singers. Even if choirs achieve locally good intona-
tion, they may suffer from intonation drifts slowly evolving
over time [8–10,15–17,21,23]. Thus, one has to deal with
different intonation issues that refer to harmonic (or verti-
cal) and melodic (or horizontal) intonation. In Fig. 1, we
show how these different aspects of intonation quality may
be visualized separately. Our schematic example illustrates
the assessment of note-wise pitch deviations (color-coded)
in the presence of a global pitch drift. Fig. 1a shows the

c© Christof Weiß, Sebastian J. Schlecht, Sebastian Rosen-
zweig, Meinard Müller. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Christof Weiß, Se-
bastian J. Schlecht, Sebastian Rosenzweig, Meinard Müller. “Towards
Measuring Intonation Quality of Choir Recordings: A Case Study on
Bruckner’s Locus Iste”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.
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Figure 1. Note-wise analysis for polyphonic music.
(a) Global intonation matching a fixed reference grid.
(b) Global intonation higher than a fixed reference grid.
(c) Intonation drift shown against a fixed reference grid.
(d) Intonation drift with deviations from an adaptive grid.

idealized situation, where each note-wise pitch lies on a
fixed reference grid. In Fig. 1b, all pitches are sharp (too
high) compared to the same reference grid. The intonation
quality, however, should be considered equivalent in both
cases. Fig. 1c illustrates a different situation with down-
ward intonation drift. Using a fixed reference grid, the de-
viations gradually accumulate. To compensate for this, one
can use an adaptive reference grid [12, 15, 31] so that the
vertical intonation quality is separated from the horizontal
intonation drift. The residual pitch deviations—relative to
the adaptive grid—only refer to vertical intonation prob-
lems (Fig. 1d), which are in the focus of our analysis.

In this paper, we propose an intonation cost measure
that can be computed from choir recordings and may help
to assess the singers’ intonation quality. Developing such
a measure encompasses two central challenges: (i) accu-
rate estimation of the local salient frequency content from
a choir recording, and, (ii) reliable measurement of intona-
tion quality corresponding to human perception on the one
hand and to music theory on the other hand.

Concerning the estimation of the local salient frequency
content (i), recordings of polyphonic choir pieces con-
stitute extremely difficult scenarios. Often, the different
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parts of a musical composition are highly correlated both
in rhythm (joint on- and offsets) and harmony (overlap of
partials). In the case of a mix recording (single-track), this
leads to overlaps in time–frequency representations, which
makes the estimation of fundamental frequencies (F0s) [3]
or partial tracking [25] hard. On the other hand, captur-
ing intonation at the sub-semitone level requires high fre-
quency resolutions. One can leverage these problems using
dedicated recording scenarios where singers are isolated
acoustically [5] or recorded sequentially [4]. Alternatively,
special devices such as Larynx microphones [6, 16, 28] or
additional score information [9] can help to simplify the
F0-estimation problem [18, 27]. In Section 3.2, we detail
the strategy used for this paper’s experiments.

For assessing intonation quality (ii), we aim towards de-
veloping a robust intonation cost measure. Ideally, a high
value of this measure indicates passages of low intonation
quality. Hereby, intonation quality may relate to human
perception such as the measure proposed in [30] based on
psychometric curves [26]. On the other hand, intonation
quality may be guided by music theory or historical per-
formance practice [9]. In particular, choirs often aim for
just intonation, which involves complex adjustment strate-
gies according to the harmonic context [10]. In contrast to
such ideas, we follow a simplified approach based on 12-
tone equal temperament (12-TET). Even though 12-TET
is not considered to be the ideal intonation practice for
Western choir performance, it is a first approximation and
can provide useful feedback [15]. As a major advantage,
our strategy estimates the sub-semitone intonation quality
for any type of notated chord irrespective of its harmonic
consonance—in contrast to other methods [30] that mea-
sure a mixture of harmonic consonance and intonation.

As our main contribution, we propose a 12-TET-based
intonation cost measure (Section 2). Inspired by prior
work [15, 24], we accumulate the overall deviation of
frequency components from an adaptive 12-TET grid
weighted by their corresponding amplitudes. For testing
this measure, we compiled a small but diverse dataset of
Anton Bruckner’s Graduale Locus Iste using different per-
formances (Section 3). We evaluate the robustness of our
method by comparing scenarios of varying complexity re-
garding the availability of aligned scores and multi-track
recordings (Section 4.1). Finally, we apply our method to
different performances and show its benefit for assessing
the overall intonation quality of a recording (Section 4.2).
Section 5 concludes the paper and gives an outlook on fu-
ture work and practical applications.

2. MEASURING INTONATION QUALITY

In the following, we describe the computation of an into-
nation cost measure based on frequency deviations from a
12-tone equal-temperament (12-TET) grid.

2.1 Intonation Cost Measure

The proposed measure operates on a set of N frequency
components P := {(f1, a1), . . . , (fN , aN )}, where each
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Figure 2. Grid deviations ∆τ (fn) in cents of frequency
components fn (solid gray lines) from a 12-TET grid
(dashed blue lines) shifted by τ . The corresponding am-
plitudes an are indicated by the grayscale colors.

tuple (fn, an) ∈ P denotes the frequency fn and ampli-
tude an of an individual component.

First, we convert a given frequency f in Hertz (Hz) to
cents by

Fcent(f) := 1200 · log2

(
f

f0

)
, (1)

where f0 := 55 Hz is an arbitrary but fixed reference fre-
quency. We compute the deviation of the frequency com-
ponent f from a 12-TET grid

∆τ (f) := min
i∈Z
|Fcent(f)− τ − 100i| , (2)

where τ ∈ [−50, 50[ specifies the overall grid shift in
cents, see Fig. 2. Applying a Gaussian-like function to the
grid deviation ∆τ (f), we define the intonation cost (IC)
Θτ as

Θτ (P) :=

∑
(f,a)∈P a

(
1− exp

(
−∆2

τ (f)
2σ2

))
∑

(f,a)∈P a
, (3)

where the deviations are weighted and then normalized by
the corresponding amplitudes. Due to the normalization,
we obtain Θτ (P) ∈ [0, 1] where Θτ (P) = 1 indicates the
maximal IC. The parameter σ adjusts the cost for deviating
from the grid. As suggested by [24], we choose a value of
σ = 16 cents. To obtain invariance to pitch drifts, i.e.,
variation of the reference frequency, we choose the grid
shift τ in an adaptive way so that the IC is minimized:

τ∗ := arg min
τ∈[−50,50[

Θτ (P). (4)

We then define the intonation cost Θ as

Θ(P) := Θτ∗(P). (5)

For instance, in a scenario where a choir performs with
good local intonation but is affected by a pitch drift, τ∗

slowly changes over time while Θ is constantly small.

2.2 Example with Synthetic Signals

In the following, we illustrate the properties of the IC mea-
sure Θ(P) by means of synthetic examples. To this end,
we define a harmonic tone xf : R → R with K partials
and fundamental frequency f as

xf (t) :=

K∑
k=1

ak · sin (2πkft) , (6)
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Figure 3. ICs Θτ for two harmonic tones xduad with an
interval of size If1,f2 in cents and three grid shifts: adap-
tive grid τ∗, fixed grid τ = 0, and, fixed grid τ = −25.
The F0 of the lower tone is fixed at f1 = 220 Hz.

where t denotes time and

ak := sk−1 (7)

denotes the geometrically decaying partial amplitudes for
some s ∈ [0, 1] and k = 1, . . . ,K. Thus, the set of fre-
quency components of signal xf is

P[xf ] := {(f, a1), (2f, a2), . . . , (Kf, aK)}. (8)

Let xduad := xf1 + xf2 be the sum of two harmonic tones
whose fundamental frequencies differ by the interval

If1,f2 := |Fcent(f2)− Fcent(f1)| (9)

given in cents. Consequently, P[xduad] = P[xf1 ]∪P[xf2 ].
Fig. 3 shows Θ(P[xduad]) for two harmonic tones with

K = 16 and s = 0.6 for different interval sizes If1,f2 . The
lower fundamental frequency is set to f1 = 220 Hz such
that ∆0(f1) = 0. Θ(P[xduad],) is minimal for If1,f2 being
an integer multiple of 100 cents. However, Θ(P[xduad])
does not reach zero as some partial frequencies k · f of
a harmonic tone do not lie on the 12-TET grid even if
the fundamental frequency f does. For example, the third
partial 3f1 = 660 Hz leads to ∆0(3f1) ≈ 2 cents and the
fifth partial 5f1 = 1100 Hz leads to ∆0(5f1) ≈ 14 cents.
Since the minimal values are close to zero, this effect
is small for a partial decay of s = 0.6. On the other
hand, even a quarter tone interval If1,f2 = 50 cents does
not lead to the maximal IC of 1, since the grid deviation
∆τ∗(k · f1) ≈ ∆τ∗(k · f2) ≈ 25 cents for τ∗ = 25 cents.
Fig. 3 further shows that the IC of a fixed grid shift τ = 0 is
similar to the adaptive grid τ∗, while a fixed shift τ = −25
significantly increases the overall IC. It is important to note
that the IC with adaptive grid shift τ∗ is invariant to the
choice of f1 while a fixed grid shift is not. Further, the min-
imal and maximal values depend on the amplitude decay s
and on the Gaussian width σ. Since the IC measure relates
to a 12-TET grid, the IC curve is periodic in interval size
with a period of 100 cents. As a consequence, each musical
interval is only evaluated by its deviation from the 12-TET
scale—regardless of its harmonic consonance quality.

In Fig. 4, we expand the previous example to three har-
monic tones xtriad := xf1 +xf2 +xf3 with f1 ≤ f2 ≤ f3.
For instance, the intervals If1,f2 = 400 cents, If2,f3 =
300 cents describe an equal-tempered major triad. The
colors in Fig. 4 indicate Θ(P[xtriad]) with respect to the

Figure 4. IC Θ for three harmonic tones xtriad. The plot
axes indicate the size of the lower and upper interval in
cents, If1,f2 and If2,f3 respectively.

lower and upper intervals, If1,f2 and If2,f3 , respectively.
Similar to Fig. 3, we observe a periodic structure with pe-
riod 100 cents as the IC is invariant to the musical intervals.
Thus, the measure is equally suited for estimating the into-
nation quality of both consonant and dissonant triads.

3. EXPERIMENTAL SCENARIO

This section describes the experimental scenario for apply-
ing our intonation cost measure to choir recordings.

3.1 Dataset

We compiled a small but diverse dataset of performances
of Anton Bruckner’s Gradual Locus iste WAB 23 (see
Fig. 5). This choir piece is in Latin and lasts approximately
three minutes. It is musically interesting, contains sev-
eral melodic and harmonic challenges—such as the highly
chromatic middle part—but also harmonically clear pas-
sages, and covers a large part of each voice’s tessitura.

Central to this dataset is a publicly available 1 multi-
track recording from the Choral Singing Dataset (CSD)
[4]. The performance of 16 singers from the semi-
professional Anton Bruckner choir (Barcelona) was
recorded in a studio setting. The four musical parts—
soprano, alto, tenor, and bass—were recorded sequen-
tially using directional hand-held microphones. Rhyth-
mic and harmonic synchronization was ensured by a con-
ducting video and an acoustic reference (MIDI version of
the piece). Due to this recording scenario, the individual
singers’ tracks exhibit a small amount of bleeding from
other singers of the same part (e. g., soprano 2, 3, and, 4
slightly bleed into soprano 1 track). Interactive intonation
or adaptation across musical parts was not possible since
the parts were recorded in isolation and each singer lis-
tened to the reference MIDI signal while singing—this also
prevented substantial pitch drifts. The restricted interac-
tion limits the usability of the data to study intonation and

1 https://zenodo.org/record/1319597#.XJor8ShKhaR
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Figure 5. Anton Bruckner, Locus iste WAB 23, beginning.

adaptation phenomena in choir performances. Neverthe-
less, since this paper focuses on measurement strategies,
the multi-track data provides an excellent resource. To ad-
dress subsets of the multi-track recording, we refer to the
signals of the four soprano voices as xS1, xS2, xS3, and
xS4, and to the first voices of the alto, tenor, and bass as
xA1, xT1, and xB1, respectively. We denote the mixed sig-
nal of the first voices of each part as xSATB1 and the mixed
signal of all 16 voices as xSATB. We further manipulated
the original tracks xorig with the digital audio correction
software Melodyne 2 to augment the dataset: xnote is gen-
erated by quantizing the median pitch of each note event
onto a 12-TET grid with reference frequency f0 = 55 Hz.
xfine is generated by quantizing the complete F0-trajectory
onto the 12-TET grid. To assist our analysis, we use addi-
tional score information from the aligned MIDI file.

In addition to this multi-track recording, we collected
several commercial 3 and freely available 4 performances
of the piece. As a reference for the real audio measure-
ments, we sonified the piece with harmonic tones (Sec-
tion 2.2) using random pitch deviations sampled from
Gaussian distributions with different standard deviations.

3.2 Measuring Frequency Content

As discussed in Section 1, the extraction of salient fre-
quency content from choir recordings is challenging. In
the case of a mix recording, we have to blindly estimate all
partial frequencies using a partial tracking algorithm such
as [25]. For choir music, partial tracking can be simplified
as the singing voice’s partial frequencies are located quite
precisely at integer multiples of an estimated F0. To esti-
mate F0-trajectories for the CSD, we can use the individual
tracks of the multi-track recording. Due to the bleeding of
other voices from the same part, traditional F0-estimation
techniques [7, 20] may have problems. Therefore, we use
a salience-based method similar to Melodia [27]. We com-
pute a log-frequency representation using instantaneous
frequency estimation [2, 14, 27] and binning with a reso-
lution of 1 cent. Subsequently, we estimate F0-trajectories
using dynamic programming [22]. As post-processing, we
apply median filtering with a filter length of 101 frames
and downsample by a factor of 50 obtaining trajectories
with a time resolution of 290 ms.

2 https://www.celemony.com
3 Philharmonia Vocalensemble Stuttgart (Profil Medien 2006), Chor

des Bayerischen Rundfunks (Decca 2012), Choir of St John’s College
Cambridge (Classic Mania 2007), NDR Chor Hamburg (Carus 2015)

4 Internet Archive, https://archive.org/details/LocusIste

In the case of the CSD, we can exploit additional score
information from the aligned MIDI file [13]. We restrict
the F0-estimation to rectangular time–frequency regions
(“constraint regions”) derived from onsets, durations and
center frequencies of the aligned MIDI notes, including a
frequency tolerance of ±60 cents around the center fre-
quencies (according to 12-TET with reference 440 Hz).
Such additional information is particularly helpful when
estimating F0-trajectories from a mix recording. 5 Espe-
cially, the constraint regions prevent the common confu-
sion of the F0 with higher partials.

4. RESULTS

In our experiments, we investigate the robustness of the
proposed intonation measure for different scenarios of the
CSD where either score information or multi-track record-
ings are not used (Section 4.1). Furthermore, we com-
pare the measure’s behaviour for different synthetic and
real performances of Locus Iste (Section 4.2).

4.1 Local Analysis and Visualization

As a visual orientation, we show in Fig. 6a a piano roll rep-
resentation of the entire piece, generated from the aligned
MIDI file. Considering the subset of each part’s first voice
xS1, xA1, xT1, and xB1, we estimate F0-trajectories as de-
scribed in Section 3.2 and compute the local, sub-semitone
deviation of the F0-estimate from the corresponding MIDI
reference. The deviations are color-coded with a range of
±60 cents. While there seems to be no significant global
drift (which is not surprising because of the CSD’s record-
ing scenario, see Section 3.1), we observe a slight domi-
nance of notes sung flat (negative deviation) except for the
alto part, which is sharp more often.

The main results are shown in Figures 6b–g, which indi-
cate IC values throughout each performance. We compute
the IC measure Θ(P) of the set P comprising the frequen-
cies (F0 and higher partials) and amplitudes from all parts
that are, according to the aligned score, active in a frame.
Assuming that the human voice’s partials are harmonic, we
calculate the first 16 partial frequencies from the measured
F0-trajectories and extract the corresponding amplitudes
from the log-frequency spectrogram. For computing Θ,
we use the adaptive grid shift proposed in Section 2.1. To
remove local outliers, we post-process the IC curves using
a moving median filter with a length of 21 frames.

The blue, solid line in Fig. 6b shows the resulting IC
curve for xorig, computed from the individual tracks for
the first voice of each part xS1, xA1, xT1, and xB1 using
score constraints. For silent regions (e. g., after 160 sec),
the IC is zero since no constraint region is active. Due
to the adaptive grid shift, the IC is small for monophonic
passages where only one singer is active (see, e. g., the pas-
sage at 80 sec). For some of the consonant chords (e. g., at
110 sec), we observe low IC values of about 0.2. During
the highly chromatic three-part passage (80–110 sec), the

5 We do not use harmonic summation as in [27] to avoid smearing of
other parts’ partials into the constraint regions for mix recordings.
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Figure 6. Intonation cost (IC) curves for different CSD versions of Locus Iste. (a) Piano roll representation with a log-
frequency axis where C2 corresponds to 1200 cents, C3 to 2400 cents etc. The colors encode the deviation of the first voice
of each part (xS1, xA1, xT1, xB1) from the MIDI reference. (b) IC curves for xS1, xA1, xT1, xB1 with score constraints
from four individual tracks. The blue curve corresponds to xorig, the red curve to xnote, and the green dashed curve to xfine.
(c) IC curves as in (b) without score constraints. (d) IC curves for mixed signal xSATB1 with score constraints. (e) IC curve
for mixed signal of all voices xSATB with score constraints. (f) IC curve computed from all 16 individual tracks xS1, xS2,
. . . , xB4 with score constraints. (g) Individual IC curves for the four tracks of each part with score constraints.

IC increases, thus indicating that the singers have difficul-
ties to stay in tune in this passage.

As a sanity check, we compare the results for xorig to
the the pitch-corrected versions xnote and xfine. As we ex-
pected, the note-wise corrections xnote (red curve) obtain

lower values than xorig—with only minor peaks that may
be caused by pitch fluctuations during a note event. If we
correct such local fluctuations as in xfine (green, dashed
curve), the IC is almost constantly zero.
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In Fig. 6c, we repeat the experiment of Fig. 6b with-
out using score constraints. In this case, F0-estimation is
less reliable and, in particular, confusions between F0 and
higher partials may occur. However, since many partials
lie on the same 12-TET grid as the F0 (octave-related par-
tials) or very close to that (2 cents for fifth-related partials),
the IC measure is largely invariant to such confusions. The
high similarity between Fig. 6b and Fig. 6c confirms the
IC measure’s robustness to F0-extraction errors. Only for
silent passages (e. g., after 160 sec or at the beginning), we
obtain higher IC values due to erroneously extracted fre-
quency components. 6 We conclude that our strategy is,
in principle, applicable for any multi-track recording and
does not necessarily require score information.

To test the applicability in absence of multi-track
recordings, we compute the IC curve from the mix signal
xSATB1 using score constraints (Fig. 6d). Due to the con-
straints, confusions with higher partials cannot occur, but
partials of other parts may leak into the same constraint
regions, thus affecting the estimated F0s and partials’ am-
plitudes. The comparison of Fig. 6b and Fig. 6d indicates
that such phenomena only slightly affect the IC measure.

Next, we measure the IC from the CSD’s full record-
ing xSATB (all 16 voices). F0-estimation is more chal-
lenging since the four singers of each part contribute to
the same constraint regions. The resulting ICs (Fig. 6e)
exhibit slightly lower values than in previous cases. We
assume that having several voices per part stabilizes the
F0-estimation to some degree. Overall, we see a similar
trend between Fig. 6d and Fig. 6e. This might be an ef-
fect of mutual influence between the singers of each part.
To further investigate the multiple-singer effect, we show
in Fig. 6f the IC curves computed from all 16 individual
tracks xS1, xS2, . . . , xB4. We obtain higher IC values than
in Fig. 6e, especially for the monophonic passages (e. g., at
48 sec). Due to the score constraints, this must be caused
by deviations between the singers of a part, sometimes de-
noted as dispersion [4]. To analyze this, we repeat the ex-
periment for each part separately (Fig. 6g). The resulting
curve supports our hypothesis since. For instance, the high
value at around 48 sec (Fig. 6f) is mainly caused by the
basses’ dispersion (dotted curve in Fig. 6g).

4.2 Global Analysis of Different Performances

Since our experiments on the CSD have shown the robust-
ness of our method even for mix recordings, we finally
compare the global IC values of multiple synthetic and
real performances of Locus Iste. We align the MIDI file
to all performances [13], use the resulting constraint re-
gions for extracting F0-trajectories [27], and compute the
IC curves. In Fig. 7, we show the statistics of the en-
tire curves over time (median, mean, and standard devi-
ation). First, we report values for sonifications using har-
monic tones as defined in Eq. (6). To simulate detuning,
we shifted each note’s fundamental frequency by a random
value sampled from a Gaussian distribution with variance

6 This problem could be leveraged using a suitable algorithm for voice
activity detection [19] or on-/offset detection in vocal music [6].

Harmonic tones, detuned 𝑑𝑑 = 0 cents

Harmonic tones, detuned 𝑑𝑑 = 15 cents

Harmonic tones, detuned 𝑑𝑑 = 30 cents

Choir Samples SibeliusSounds

First voices 𝑥𝑥SATB1, corrected 𝑥𝑥
First voices 𝑥𝑥SATB1, corrected 𝑥𝑥

First voices 𝑥𝑥SATB1, original 𝑥𝑥
All voices 𝑥𝑥SATB, original 𝑥𝑥

All voices 𝑥𝑥SATB, with strong reverb

Internet Archive 2013

Philharmonia Vocalensemble 1979

Chor des Bayerischen Rundfunks 2012

Choir of St John's College 1996

NDR Chor Hamburg 2000
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Figure 7. Statistics of the intonation cost measure Θ over
full recordings of different type.

d2. For d = 0 cents, the mean IC is almost zero. For d =
15 cents and d = 30 cents, the IC gradually increases as
expected. The average IC of a sample-based sonification 7

is moderately higher than the rendition with ideal harmonic
tones, which suggests that some choir effects such as dis-
persion are also synthesized. Both corrected versions of
the CSD show very low IC values, with xfine even lower
than xnote. In contrast, the versions based on the origi-
nal recording xorig have high IC values, where the differ-
ence between first voices only (xSATB1) and the full mix
(xSATB) as well as the effect of adding artificial reverbera-
tion is marginal. All commercial recordings performed by
professional choirs obtain lower IC than the CSD record-
ing. Several effects might contribute to this observation.
Besides the singers’ level of training, commercial record-
ings often feature larger choirs (60 singers or more) and
long natural reverberation (recorded in churches). In line
with the authors’ subjective judgment, the recording by
NDR Chor Hamburg exhibits the best intonation quality
according to the IC measure. 8 Overall, this experiment
indicates that the proposed IC measure may serve as a first
indicator for a choir recording’s global intonation quality.

5. CONCLUSIONS

In this paper, we proposed a strategy for measuring the in-
tonation quality of choir recordings. Although robust ex-
traction of salient frequencies is challenging, the measure
produced meaningful and reliable results once multi-track
recordings are available or score information can be uti-
lized. Even though the insights from such a measure are
limited, it might be a first indicator for the overall intona-
tion quality and, thus, could be useful for choir singers or
choir directors in performances and rehearsals.

7 Using Sibelius Sounds, see https://www.avid.com/sibelius
8 A 30-seconds mp3 thumbnail of this recording is available at

https://www.carusmedia.com/images-intern/medien/80/
8346600/8346600.010s.t1_010.mp3
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ABSTRACT

Guitar tablature is a popular notation guitarists use to learn
and share music. As it stands, most tablatures are created
by an experienced guitarist taking the time and effort to
annotate a song. As the process is time consuming and re-
quires expertise, we are interested in automating this task.
Previous approaches to automatic tablature transcription
break the problem into two steps: 1) polyphonic pitch es-
timation, followed by 2) tablature fingering arrangement.
Using a convolutional neural network (CNN) model, we
can jointly solve both steps by learning a mapping directly
from audio data to tablature. The model can simultane-
ously leverage physical playability constraints and differ-
ences in string timbres implicit in the data to determine the
actual fingerings being used by the guitarist. We propose
TabCNN, a CNN for estimating guitar tablature from audio
of a solo acoustic guitar performance. We train and test our
network using microphone recordings from the GuitarSet
dataset [24], and TabCNN outperforms a state-of-the-art
multipitch estimation algorithm. We also introduce a set
of metrics to evaluate guitar tablature estimation.

1. INTRODUCTION

Given the popularity of the guitar as an instrument for both
professional musicians and amateur hobbyists, there have
been numerous previous works addressing the problem of
automatic guitar transcription. Automatic guitar transcrip-
tion is a task which aims to generate a symbolic transcrip-
tion instructing a guitarist how to perform, given an au-
dio recording of a guitar performance. In general, the task
of polyphonic transcription is challenging, due to the fact
that when multiple different pitches sound at once, their
overtones may overlap in the frequency domain, making it
hard to tell which pitches are sounding. Despite the nar-
rowed focus on a single instrument, transcription of solo
guitar audio remains challenging. Since it has six strings,
the guitar can produce up to six pitches at a given time. The
guitar is also capable of producing a wide variety of tim-
bres, stemming from differences in guitar models, guitar

c© Andrew Wiggins, Youngmoo Kim. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Andrew Wiggins, Youngmoo Kim. “Guitar Tablature Es-
timation with a Convolutional Neural Network”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

Figure 1. Multiple fingerings (3 bottom staves) can be
used to play a given score (top staff) on guitar. These are
just 3 of many possible fingerings. In each tablature staff,
the horizontal lines represent the 6 guitar strings, and num-
bers on them indicate the fret on that string to be activated.

strings, audio effects, and strumming, plucking, and pick-
ing styles.

Perhaps the greatest challenge in automatic guitar tran-
scription, however, arises from the symbolic representation
of guitar music. Rather than using score notation, guitarists
commonly use tablature notation to compose, share, and
learn music. While music scores display the arrangements
of pitches in time, tablature notation additionally indicates
which guitar strings and positions along the fretboard were
activated to produce the sounding pitches. On guitar, most
notes can be played in numerous locations along the fret-
board. Figure 1 provides an example of this. These identi-
cal pitches played in different locations differ in timbre and
can give different characteristics to an overall performance.
In order to effectively transcribe a guitar performance from
audio, a system needs to estimate both the pitches and fin-
gerings changing over the course of the performance.

Previous works have approached automatic tablature
transcription by splitting the problem into two separate
steps [5, 6, 25, 26]. First, the systems perform a multip-
itch estimation on the audio, which determines the set of
pitches sounding over the course of the audio. Then, us-
ing the estimated pitches, a tablature is arranged, usually
by choosing a fingering that maximizes physical ease of
play. These methods are designed to output a valid tabla-
ture given the detected pitches, but not necessarily the true
fingering used by the guitarist during the performance.

In this paper we propose TabCNN 1 , a guitar tablature
estimation system which outputs the actual fingerings used

1 Source code: https://github.com/andywiggins/tab-cnn
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by the guitarist at the frame-level from audio of a solo per-
formance on a standard 6-string acoustic guitar. The pro-
posed system uses a convolutional neural network (CNN)
to learn a direct mapping from audio signal to guitar tabla-
ture.

The next section provides background on some related
work in automatic guitar transcription and the use of CNNs
in music information retrieval. In Section 3 we outline
our methodology, including the dataset, preprocessing, and
proposed system architecture. In Section 4, we evaluate the
proposed system for multipitch estimation and tablature es-
timation. We further discuss the system performance in
Section 5. Finally, in Section 6 we give our conclusions
and suggest future work.

2. RELATED WORK

2.1 Automatic Tablature Transcription

Several previous works have addressed the problem of au-
tomatic tablature transcription by performing multipitch
estimation and then arranging tablature by optimizing the
physical ease of play. Burlet and Fujinaga outlined a
framework for a guitar transcription web application [5].
Their framework combines a preexisting polyphonic tran-
scription algorithm proposed by Zhou and Reiss [28] with
a novel guitar tablature arrangement algorithm that creates
a directed acyclic weighted graph of string-fret combina-
tions and finds an optimal path using the A* search al-
gorithm. In [6], Burlet and Hindle utilized the aforemen-
tioned tablature arrangement algorithm in conjunction with
a novel multipitch estimation algorithm, using deep belief
networks to learn framewise pitch estimates from the short-
time Fourier transform. Yazawa et al. used latent harmonic
allocation (LHA) for multipitch estimation and arranged
tablature by filtering the LHA results based on a set of spa-
tial and temporal playability constraints [26]. In [25], the
authors applied knowledge of each guitarist’s proficiency
to further filter the pitches estimated from LHA and gener-
ate a sensible tablature arrangement.

Few previous approaches to automatic tablature tran-
scription that we found seek to learn the true fingering used
by the guitarist. In [3], Barbancho et al. used peak-picking
from the magnitude spectrum to determine fundamentals
and partials for candidate pitches and then analyzed the
inharmonicity of the partials to determine the most likely
string each pitch was played on. The system’s performance
on “free chords” – i.e., not recognition of predetermined
chords, or strictly monophonic playing – is respectable, but
is limited to a maximum of 4 pitches sounding simultane-
ously. In [13], Kehling et al. proposed a system that applies
the Blind Harmonic Adaptive Decomposition algorithm
proposed in [7] for multipitch estimation. After aggre-
gating framewise pitch estimates into note estimates, their
system applies Support Vector Machines to classify var-
ious performance parameters, including the guitar string
each note was played on. The authors show good perfor-
mance for this system for notewise multipitch estimation
and guitar string estimation, but they do not evaluate the

system directly for framewise tablature estimation.

2.2 Related Tasks

There have been a number of works that tackle different
problems related to automatic guitar transcription. For
guitar chord recognition, Barbancho et al. used a hidden
Markov model (HMM) to transcribe guitar chords and fin-
gerings from acoustic features [2]. In [12], Humphrey and
Bello approached chord recognition using a convolutional
neural network model to output tablature, and this model
was trained using a pop music dataset, rather than audio of
isolated guitar performances. Hrybyk and Kim used video
data in conjunction with audio of solo guitar performances
to recognize guitar chords [11].

Regarding the problem of tablature arrangement from
symbolic data (not audio), Tuohy and Potter combined a
neural network model with a local heuristic-climber to take
pieces composed for other instruments and arrange them
for guitar [23]. In [18], Mistler used deep neural networks
to arrange guitar tablature from sheet music by predicting a
fretting cost function and predicting string-fret activations
directly.

The problem of arranging solo guitar covers of pop
songs was addressed by Ariga et al., who proposed a sys-
tem which processes pop music audio and generates tabla-
ture arrangements that can scale in difficulty [1]. Finally,
in the area of automatic music generation, McVicar et al.
built an algorithmic composition system to compose tabla-
tures for rhythm and lead guitar parts from an input chord
progression [17].

2.3 CNNs for Automatic Music Transcription

While, to our knowledge, the task of guitar tablature esti-
mation has not been approached using convolutional neural
networks, CNNs have shown promise for the similar task
of automatic piano transcription. In [21], Stigita et al. pro-
posed a hybrid neural network model for piano transcrip-
tion that combines a CNN for framewise acoustic mod-
elling and a recurrent neural network (RNN)-based music
language model. Kelz et al. provided a comparison of var-
ious network-based approaches to framewise transcription
of piano audio, and the authors argued that the high ac-
curacy and low parameter amount offered by CNNs, com-
pared to other classes of deep neural networks, gives them
a “distinct advantage” for piano transcription [14].

The use of CNNs has also been explored for various
other tasks within music information retrieval such as mu-
sical tempo estimation [20], key classification [15], singing
voice detection [19], and instrument classification [9, 10].

3. METHODOLOGY

3.1 Dataset

Since we are interested in learning tablatures for the ex-
act fingerings used by the guitarist, it is important that
the dataset contains audio of an actual guitar performance.
Previous approaches to guitar transcription utilize audio
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Figure 2. The proposed TabCNN network architecture. The input is a constant-Q spectrogram image of solo acoustic guitar
audio. There are a series of 2D convolutional layers followed by a max pooling layer, which learn to extract spatial features
relevant for guitar tablature estimation. The dense layers and final softmax function aim to use the learned representation
to predict fret-number labels for each of the 6 guitar strings.

data that was automatically generated using MIDI to play-
back audio samples [5, 6, 25, 26]. As a result, the audio
does not represent a performance of specific guitar finger-
ings. This is problematic for our purposes since there is no
ground truth tablature.

We employ the GuitarSet dataset [24], which consists
of audio recordings of solo acoustic guitar performances.
This dataset was created using a guitar equipped with a
hexaphonic pickup. The signals from each individual gui-
tar string were processed separately to produce a frame-
level pitch annotation for each of the 6 guitar strings. This
dataset enables the ground truth fretting used by the gui-
tarist to be easily accessible. Since the guitar used re-
mained in standard tuning, we can use these pitch estima-
tions to determine the corresponding frets being fingered
over the course of the performance. While the hexaphonic
signals were used by the GuitarSet authors to create the
ground truth annotations, our system uses only the mono-
phonic microphone signal of each song to estimate the tab-
lature.

The GuitarSet contains audio recordings of 360 solo
guitar performances, each approximately 30 seconds in
length. These performances span every key and cover a
variety of styles including bossa nova, rock, and funk. The
guitarists were instructed to play two different versions of
each song: soloing, which contains mostly single notes,
and comping, which means playing chords. Six different
guitarists contributed to the dataset, each performing to a
provided chord progression, but interpreting it in their own
way.

3.2 Audio Preprocessing

During the preprocessing stage, we first downsample the
audio from 44100 Hz to 22050 Hz, making the assump-
tion that there is not too much relevant information above
11025 Hz, in order to reduce the dimensionality of the in-
put signals. We normalize each audio clip by its maximum
value, to account for any major amplitude differences be-
tween clips.

As CNNs are useful in learning spatial features from

images, we are interested in transforming the raw audio
data into an image representation. The Short-Time Fourier
Transform (STFT), commonly used to represent a signal
changing over time and frequency, is not a desirable choice
for CNNs because of its high dimensionality. Addition-
ally, since the task at hand involves recognizing musical
pitches, it would be advantageous to use a representation
with a frequency axis that is linearly spaced with respect to
pitch. This allows pitch-invariant features to be learned by
the network. For these reasons we employ the constant-Q
transform (CQT), which greatly reduces the dimension of
the frequency axis by linearly spacing the frequency bins
with respect to musical pitch.

Motivated by previous work [12], we use a CQT with
192 bins, spanning 8 octaves. This equates to 24 bins per
octave, or 2 bins per semitone. We use a hopsize of 512
samples, which corresponds to a frame rate of about 43
frames per second, a rate sufficient for framewise analysis
[10]. Using a sliding context window, we generate input
images centered around each frame. In our experiments,
we observed the best results using a context window of 9
frames. We pad either side of the CQT with zeros so that
the beginning and ending frames of each clip can have a
full 9-frame-long context window. Thus, input samples are
of size 192 × 9 at each frame.

3.3 Label Preprocessing

To obtain annotations for each individual frame of audio,
we sample the stringwise pitch annotations at the same
frame rate of approximately 43 frames per second. For
each sampled MIDI pitch value, we round it to the nearest
integer, which corresponds to finding the nearest musical
pitch. Depending on which string the pitch was played on,
we subtract the corresponding string’s open pitch value.
The resulting integers correspond to the frets that were ac-
tivated to produce the sounding pitches. A value of zero
indicates that the string was plucked open (while no frets
were being pressed). Since there are 19 frets used on the
acoustic guitar, and a string may at times be closed (not
produce any sound), this results in 21 different fret classes
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that each string may be in during any given frame: open,
closed, or any one of the 19 frets. We convert each string’s
label to a one-hot representation, resulting in label size of
6 × 21 at each frame.

3.4 Network Architecture

The structure of our neural network model is generally
inspired by popular models in computer vision, such as
AlexNet [16] and VGGNet [22], which both contain se-
ries of convolutions followed by a sub-sampling operation.
These architectures terminate in dense layer connections.
When using this type of CNN architecture, the expectation
is that the early convolutional layers act as a hierarchy of
feature extractors, learning spatial filter coefficients that re-
sult in feature maps useful for the given classification task.
We interpret the final dense layers and output connection
to act as a classifier that processes the features to output a
final decision or prediction.

The proposed network structure for TabCNN is shown
in Figure 2. First, there is a series of three convolutional
layers, each with a filter size of 3 × 3. The first convolu-
tional layer has 32 filters, and the latter two each have 64.
These parameters were determined empirically, based on
experiments with the validation data. Each convolution is
immediately followed by a Rectified Linear Unit (ReLU)
activation. Activation functions, in general, allow for com-
plicated, nonlinear mappings to be learned, and the ReLU
activation has been shown to train faster [16] and produce
better results [8] than alternatives.

The resulting feature maps are subsampled by a 2 ×
2 max pooling layer, which introduces a slight translation
invariance in both time and frequency. The structure is
then flattened and followed by a dense layer of dimension
128, this size determined empirically in our experiments.
After this dense layer, a ReLU activation is applied. This is
connected to a second dense layer of dimension 126, which
is reshaped to 6 × 21. The output shape comes from the 6
guitar strings and the 21 different fret classes a string can
be assigned. Finally, a softmax activation is applied to each
of the 6 rows. As a result, similar to the network described
in [12], our model learns to output an estimation of six
probability mass functions, which represent the probability
of each fret class for each string.

3.5 Training Procedure

For training the model, we design a loss function by view-
ing the problem as 6 simultaneous multiclass classification
problems. For multiclass classification, a common prac-
tice is to optimize the categorical cross-entropy between
the predictions and the targets [10]. For our loss function,
we compute the categorical cross-entropy for each string
and sum these values. The loss function is computed as
in Eqn (1). We use zij to denote an activation at frame
i on string j that belongs to fret class Czij . The term
p[zij ∈ Czij ] is the probability output by the network of zij
belonging to class Czij . N is the total number of frames in
the mini batch.

Loss = − 1

N

6∑
j=1

N∑
i=1

log p[zij ∈ Czij ] (1)

We train using the ADADELTA optimization algorithm
[27], which adapts learning rates for parameters based on
a window of previous gradient values. We use an initial
learning rate of 1.0 and a mini batch size of 128 training
samples. We train for 8 epochs, as we noticed overfitting
when training for longer. We also employ dropout regu-
larization to combat overfitting, with a dropout rate of 0.25
applied immediately after the max pooling layer, and a sec-
ond dropout rate of 0.5 applied after the first dense layer.

4. EVALUATION

To evaluate the proposed system, we first review multipitch
estimation metrics from the literature [6] and assess the
quality of the system as a polyphonic pitch detector. Then,
since there are no standards for evaluating the performance
of a tablature estimation system, we introduce a set of met-
rics to measure performance in estimating tablature for the
actual fingering used during the performance. In our eval-
uations we use 6-fold cross validation, holding out one of
the 6 guitarists to test on, while training on the remaining
5. We average our numerical results over the 6 folds of
data, testing with a total number of 472,560 frames.

4.1 Multipitch Estimation Metrics

In the following equations, we use Y to denote a binary
matrix of size N × 44, where N is the total number of
testing frames, and the matrix represents the presence or
absence of each pitch for each frame of audio. (The guitar
can produce a total of 44 distinct pitches.) Ygt contains
the ground truth pitch detections for the testing set, while
Ypred contains the predicted pitch detections during testing.
We use e to denote a vector of all ones, and � to denote
element-wise multiplication.

4.1.1 Multipitch Precision

We compute multipitch precision using Eqn (2), which cal-
culates the number of correctly identified pitches divided
by the total number of predicted pitches. This metric mea-
sures how frequently the pitches that are detected are in
fact correct.

ppitch =
eT (Ygt � Ypred)e

eTYprede
(2)

4.1.2 Multipitch Recall

We also compute multipitch recall using Eqn (3), which
calculates the number of correctly identified pitches di-
vided by the the total number of ground truth pitches. This
metric measures how frequently pitches existent in the sig-
nal are are detected by the system.

rpitch =
eT (Ygt � Ypred)e

eTYgte
(3)
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System ppitch rpitch fpitch

TabCNN 0.900 ±
0.016

0.764 ±
0.043

0.826 ±
0.025

Deep
Salience

0.778 ±
0.092

0.562 ±
0.099

0.646 ±
0.078

Table 1. Multipitch estimation metrics for our system,
TabCNN, compared against a baseline, the Deep Salience
f0-estimation algorithm introduced in [4], from experi-
ments carried out in [24]. For all metrics, we report the
mean and standard deviation over the entire dataset.

4.1.3 Multipitch F-measure

Finally, we compute multipitch F-measure using Eqn (4),
which is the harmonic mean of multipitch precision and
recall. This metric summarizes the system’s overall per-
formance for multipitch estimation.

fpitch =
2ppitchrpitch

ppitch + rpitch
(4)

4.2 Multipitch Estimation Results

The evaluation results of TabCNN for multipitch estima-
tion, alongside a baseline algorithm, are shown in Table
1. For a benchmark, we look to the GuitarSet paper [24],
in which the authors employ the Deep Salience multiple-
f0 estimation algorithm in [4] to transcribe framewise
pitch estimations for the GuitarSet data. 2 Deep Salience,
although not designed specifically for guitar transcrip-
tion, achieves a multipitch F-measure of 0.646. The pro-
posed system TabCNN outperforms these baseline results,
achieving a multipitch F-measure of 0.826.

Looking at a recent multipitch system designed specif-
ically to operate on guitar signals, in [6] Burlet and Hin-
dle report a multipitch F-measure of 0.71 before frame
smoothing with a Hidden Markov Model (HMM), and
an F-measure of 0.77 afterward. Our system’s multip-
itch F-measure of 0.826 without any temporal smoothing
is promising. However, these results cannot be compared
too closely since the authors were evaluating on a different
dataset.

Our results reveal that the proposed system behaves
conservatively for multipitch estimation. The multipitch
precision being significantly larger than the multipitch re-
call indicates that the system will more often make an er-
ror by missing a detection, rather than reporting a pitch not
actually present in the signal. This is a common behavior
for multipitch estimation systems, as a pitch can be easily
missed if it is able to blend in to the overtones of another
pitch present at the same time. We noticed that this often
occurs with pitches an octave apart; the higher pitch will
often be missed, as it may appear to just be overtones of
the lower pitch.

2 We acknowledge and thank the authors of [24] who have granted us
access to the full numerical results from the experiments conducted in the
work.

4.3 Tablature Estimation Metrics

We use Z to denote a binary matrix of size N × 120, N
being the total number of testing frames. The dimension of
120 arises from all possible sounding string-fret combina-
tions on guitar (6 × 20). This matrix represents the pres-
ence or absence of each string-fret combination for each
frame of audio. Zgt contains the ground truth tablature de-
tections for the testing set, while Zpred contains the pre-
dicted tablature detections during testing. Again, we use e
to denote a vector of all ones and� to denote element-wise
multiplication.

4.3.1 Tablature Precision

We define tablature precision, which calculates the num-
ber of correctly identified string-fret combinations divided
by the total number of predicted string-fret combinations.
This metric measures how frequently the tablature detected
is in fact correct.

ptab =
eT (Zgt � Zpred)e

eTZprede
(5)

4.3.2 Tablature Recall

We also introduce tablature recall, which calculates the
number of correctly identified string-fret combinations di-
vided by the the total number of ground truth string-fret
combinations. This metric measures how frequently tabla-
ture existent in the signal is detected by the system.

rtab =
eT (Zgt � Zpred)e

eTZgte
(6)

4.3.3 Tablature F-measure

We define multipitch F-measure, which is the harmonic
mean of tablature precision and recall. This metric sum-
marizes the system’s overall performance for tablature es-
timation.

ftab =
2ptabrtab

ptab + rtab
(7)

4.3.4 Tablature Disambiguation Rate

Finally, we introduce a tablature disambiguation rate
(TDR) which is computed by dividing the total number
of correctly identified string-fret combinations by the total
number of of correctly identified pitches. This metric mea-
sures how frequently pitches that are correctly identified
are assigned the correct tablature.

TDR =
eT (Zgt � Zpred)e

eT (Ygt � Ypred)e
(8)

4.4 Tablature Estimation Results

The tablature estimation evaluation results for TabCNN are
shown in Table 2. While, to our knowledge, there are no
prior approaches to directly compare these metrics to, the
results are respectable, as each tablature metric is not too
far below its multipitch counterpart. As in multipitch esti-
mation, the proposed system achieves a higher tablature
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System ptab rtab ftab TDR

TabCNN 0.809 ±
0.029

0.696 ±
0.061

0.748 ±
0.047

0.899 ±
0.033

Table 2. Tablature estimation results for the proposed
system, TabCNN, using the metrics we introduce to mea-
sure performance in fingering prediction. For all metrics,
we report the mean and standard deviation over the entire
dataset.

precision than tablature recall. This implies that errors
made by the system are more often due to missed string-
fret combinations than predicting fingerings not present in
the signal. The TDR of 0.899 indicates that over 89%
of correctly identified pitches are assigned the correct fin-
gering. This value is promising given that the majority of
pitches playable on guitar can be played in multiple loca-
tions.

5. DISCUSSION

Viewing the predicted tablature alongside the ground
truth 3 , the system appears to output correct string-fret ac-
tivations a good amount of the time, with the occasional
error. To better understand these results, Figure 3 contains
examples of 3 common types of errors made by the pro-
posed system.

False alarms occur when a string-fret combination that
is predicted is not actually present in the input signal. This
type of error negatively impacts the tablature precision
metric. In Figure 3 (a), a false alarm occurs when an F3
pitch is mistakenly detected on the 3rd fret of the D-string.
This specific error likely happened because the overtones
of the F2 pitch, which is present, could be mistaken for
the presence of the F3 pitch an octave up. Also, the pre-
dicted fingering is a chord shape commonly used by gui-
tarists called a “power chord.”

Missed detections occur when the system fails to detect
a string-fret combination that is present in the input signal.
These errors hurt the tablature recall score. In Figure 3 (b),
the presence of the A[4 pitch on the 4th fret of the e-string
is missed by the system. This type of error could be due
to the note having been played quietly or having mostly
faded out by the current frame, but still technically being
active according to the ground truth. Also, this specific
error can be attributed to octave confusion, since the A[4
could easily be mistaken for overtones of A[3 note, which
was activated on the 6th fret of the D-string.

Finally, miss-frettings occur when a pitch is correctly
detected, but it is assigned the incorrect string-fret combi-
nation. This is essentially a simultaneous false alarm and
missed detection, so both the tablature precision and tab-
lature recall are negatively affected. However, the TDR
metric most directly represents how often this third type of
error is avoided. In Figure 3 (c), the A[4 pitch is detected

3 As supplementary materials, video demonstrations showing pre-
dicted and ground truth tablature synced with input audio are available
at: https://github.com/andywiggins/tab-cnn

Figure 3. Fretboard diagrams showing examples of 3 com-
mon error types made by TabCNN. In each diagram, the
vertical lines are guitar strings, and the horizontal lines are
the frets. The circles indicate positions of the guitarist’s
fingers on the fretboard. An “X” over a string means that
string is not sounding.

as an activation on the 4th fret of the e-string. However, the
pitch was actually played on the 9th fret of the B-string. In
this is specific case, there were no other pitches simulta-
neously present to cause confusion. Instead, this error is
likely due to the system’s failure to predict the correct gui-
tar string based on timbre.

Overall, we observed that errors often occur at the be-
ginning or end of a note. A strategy for improving estima-
tion performance could be the incorporation of a temporal
smoothing algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed TabCNN, a convolutional
neural network (CNN) approach to tablature estimation
from audio of a solo acoustic guitar performance. Our
system performs competitively in guitar multipitch estima-
tion, while providing the advantage of additionally predict-
ing the true fingering used by the guitarist. The guitar com-
munity, which frequently shares music in tablature form,
can benefit from a system that automates the arduous task
of transcribing tablature, while retaining nuance from the
original performance, in the form of the exact fretboard
positions being used.

Looking ahead to future work, the approach in this pa-
per could be integrated into an end-to-end tablature tran-
scription system. A temporal smoothing method could be
added to aggregate these framewise tablature estimations
into a note-level transcription. Additionally, we hope that
the tablature estimation metrics introduced in this paper
can serve to evaluate future guitar transcription approaches
that aim to predict the guitarist fingering.
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ABSTRACT

Previous approaches in singer identification have used one
of monophonic vocal tracks or mixed tracks containing
multiple instruments, leaving a semantic gap between these
two domains of audio. In this paper, we present a system
to learn a joint embedding space of monophonic and mixed
tracks for singing voice. We use a metric learning method,
which ensures that tracks from both domains of the same
singer are mapped closer to each other than those of dif-
ferent singers. We train the system on a large synthetic
dataset generated by music mashup to reflect real-world
music recordings. Our approach opens up new possibili-
ties for cross-domain tasks, e.g., given a monophonic track
of a singer as a query, retrieving mixed tracks sung by the
same singer from the database. Also, it requires no addi-
tional vocal enhancement steps such as source separation.
We show the effectiveness of our system for singer iden-
tification and query-by-singer in both the in-domain and
cross-domain tasks.

1. INTRODUCTION

Singing voice is often at the center of attention in popu-
lar music. We can easily observe large public interest in
singing voice and singers through the popularity of karaoke
industry and singing-oriented television shows. A recent
study also showed that some of the most salient compo-
nents of music are singers (vocals, voice) and lyrics [5].
Therefore, extracting information relevant to singing voice,
i.e., to singers, from music signals, is an important area of
research in music information retrieval (MIR) [9, 11]. The
relevant tasks include singing voice detection [16], singing
melody extraction [14, 28], singer identification [12, 21],
and similarity-based music retrieval [8, 22].

Modern singer information processing systems have
been designed to work with only one of monophonic or
mixed music signals [15,21,34]. Then, given both types of
signals for analysis, we question whether the system can
extract information relevant to singing voice that is trans-
ferable between between monophonic and mixed tracks. In

c© Kyungyun Lee, Juhan Nam. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Kyungyun Lee, Juhan Nam. “Learning a joint embedding space
of monophonic and mixed music signals for singing voice”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

our experiment, we observe that systems trained with only
one type of signals do not perform well, when tested with
another type. To address this limitation, we introduce a new
problem of cross-domain singer identification (singer-ID)
and similarity-based retrieval, in which we regard mono-
phonic and mixed music signals as two different audio
domains. Cross-domain problems have been explored in
computer vision and recommender systems, for example,
image retrieval from user sketches to real images [29] and
user preference modeling from movies to books [6]. In
MIR, information transfer between monophonic and mixed
tracks can open up new possibilities for singer-based re-
trieval systems. Some examples are: 1) given a user’s vocal
recording in a karaoke application, finding popular singers
who sound similar to the user, and 2) given a studio vo-
cal track of a singer, retrieving all tracks (monophonic and
mixed) relevant to the singer from a large music database.

To learn a joint feature representation of data from both
monophonic and mixed tracks, we adopt a metric learn-
ing method, which forces tracks from the same singer to
be mapped closer to each other than those from others
(Section 3.2). To acquire sufficient training data, we create
a synthetic dataset by performing a simple music mashup
on two public datasets: vocal recordings from DAMP [30]
and background tracks from musdb18 [25] (Section 3.1.1).
We present experiments to demonstrate that our system
is able to extract singer-relevant information from both
monophonic and mixed music signals, and share the infor-
mation between the two domains (Section 4). Source code,
trained models, example audios and detailed information
about the dataset are available 1 .

2. RELATED WORK

Cross-domain systems have not yet been examined regard-
ing singing voice analysis. Nonetheless, a common chal-
lenge in singer information processing systems is to ex-
tract singing voice characteristics from music signals in the
presence of background accompaniment music. The most
direct way to obtain vocal information is to use mono-
phonic vocal tracks. Recently, Wang et al. [34] trained a
siamese neural network on monophonic recordings from a
subset of the DAMP dataset. Their model scored higher on
singer classification but lower on song classification com-
pared to a baseline model. This implies that the model was
able to learn singing voice characteristics, rather than the

1 http://github.com/kyungyunlee/mono2mixed-singer
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content of a music piece, such as its melody or lyrics. How-
ever, since music of our interest is often mixed tracks, this
approach has limitations.

Several works have handled mixed audio signals by en-
hancing vocal signals through source separation or melody
enhancement [8, 15, 21]. Given recent advances in source
separation [32], this approach may bring improved results
for most singing voice analysis systems. Another common
choice is using audio features that represent human voice
or singing voice, such as mel-frequency cepstral coeffi-
cients (MFCCs) [2, 15]. With the success of deep neural
networks, it is even possible to learn appropriate features
from more general audio representations, i.e., short-time
Fourier transform (STFT) or even raw audio. We take this
last approach and train our model to be a feature extractor
for a given input audio represented by a mel-spectrogram.

Depending on the target task, background music can be
helpful. An example is singer recognition in popular mu-
sic [19]. This is because singing style is often dependent
on the genre or mood of the music, and singers tend to per-
form in similar genres throughout their careers. However,
our work focuses on learning the actual characteristics of
singing voice, independent from background music.

3. METHODS

In this section, we describe the data generation pipeline,
model configuration and training strategy for learning a
joint representation of monophonic and mixed tracks for
singing voice.

3.1 Data generation

For training cross-domain singer-ID and retrieval systems,
a sufficiently large number of monophonic and mixed track
pairs per singer is needed. Existing singing voice datasets,
such as MIR-1K [10], iKala [3] and Kara1K [1], provide
the monophonic and mixed track pairs, but they have a
small number of singers or only a few tracks per singer. An
alternative option may be to perform singing voice detec-
tion (SVD) and vocal source separation on a large dataset,
but the audio quality can be degraded.

In this work, we choose to utilize the DAMP dataset,
which contains vocal-only recordings from mobile phones
of around 3,500 users from the Smule karaoke app (there
are 10 full-length songs per user). This serves as the main
ingredient to generate our synthetic singer dataset. As
a preprocessing step, we perform a simple energy-based
SVD to remove silent segments. Then, 1000 singers are
chosen for training stage and additional 300 singers are
put aside for testing. The original DAMP dataset pro-
cessed with SVD, DAMP-Vocal, is used as the monophonic
dataset; the synthesized mixed track dataset, DAMP-Mash
(detailed in section 3.1.1), is used as the mixed track
dataset in this work.

3.1.1 Mashup: DAMP and musdb18

A music mashup is a way of creating music by carefully
mixing two or more tracks from several different pre-
recorded songs. Inspired by such work, we automatically

Tempo

Beat

Key

SVDVocal trackVocal trackVocal 
tracks

Vocal trackVocal trackBackground 
tracks

Vocal trackVocal trackMixed 
tracksGain

Search & 
match

Figure 1: Mashup pipeline to generate synthetic dataset,
DAMP-Mash.

generate a synthetic singer dataset, called DAMP-Mash, by
combining vocal recordings from the DAMP dataset with
background tracks from the musdb18 dataset. Instead of
random mixing, we build a pipeline (Figure 1) to identify
the "mashability" [4] between tracks. Our mashability cri-
teria requires 3-second long vocal and background tracks
to have the same tempo and key. Once the two segments
pass the mashability test, they are mixed at their nearest
beat location. Before mixing, we adjust the loudness by
balancing the root-mean-square energy between both seg-
ments.

Tempo detection and beat tracking are performed at
track-level using librosa 0.6.2 [20]. On the other hand, key
is determined locally at 3-second long segments by using
the Krumhansl-Schmuckler key finding algorithm [13] on
chromagrams. As a result, vocal segments within the same
song end up being mixed with multiple different back-
ground tracks. Thus, we view our synthetic dataset as be-
ing genre-independent. This mashup pipeline can be also
regarded as a data augmentation technique.

3.2 Model

3.2.1 Skeleton model

A 5-layer 1-D convolutional neural network (CNN) is the
skeleton of larger networks used in this paper. First four
convolutional layers have 128 filters of size 3, each fol-
lowed by a maxpooling layer of size 3. The last convolu-
tional layer consists of 256 filters of size 1 to output a final
embedding vector of 256 dimensions. All convolution op-
erations are done on the temporal dimension only. The final
embedding vector will be used to represent input audio and
to perform tasks described in Section 4. Batch normaliza-
tion and Leaky ReLU [17] are applied to all convolutional
layers, and dropout of 50% is applied after the last convo-
lutional layer to prevent overfitting.

The input is a 3-second long audio of at least 70%
singing voice frames. The sample rate of audio is 22050
Hz and we compute an STFT using a 1024-sample long
Hanning window with 50% overlap. We then convert it
to a mel-spectrogram with 128 bins and apply logarithmic
compression on the magnitude. As a result, the input shape
is 129 frames by 128 bins.

3.2.2 Embedding model

The outcome of metric learning is a mapping function from
inputs to output vectors in an embedding space, where in-
puts of the same class are closer to each other than those
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Figure 2: Configuration of CROSS model. The anchor net-
work (left) is for modeling monophonic tracks; the rest is
for modeling mixed tracks.

from different classes. Specifically, we build our model
upon a triplet network, which consists of three potentially
weight-sharing networks that takes three inputs: anchor,
positive (same class as the anchor) and negative (differ-
ent class as the anchor) items. This architecture can be ex-
tended to take multiple negative items [31] to overcome the
limitation of learning from only one negative example. For
model configuration, we closely follow the work of [24],
using 4 negative items. We also use a type of margin-based
ranking loss, called hinge rank loss, with cosine similarity
as our metric [7].

Thus, the loss function for a given set of anchor (pi),
positive (p+) and negative (p−) feature vectors is:

loss(pi, p) =
∑
p−

max[0, α−S(pi, p+)+S(pi, p−)] (1)

where S is a similarity score:

S(pi, pj) = cos(pi, pj) =
pi · pj

||pi|| · ||pj ||
(2)

and α indicates the margin, which is fixed to 0.1 after per-
forming a grid search on values between 0.01 and 1.0. Neg-
ative tracks are selected through negative sampling among
tracks that do not belong to the singer of the anchor item.
We tested a more difficult negative sampling strategy of
selecting the four highest scoring items among twenty ran-
domly chosen negative samples, but the model showed mi-
nor improvement with an increase in computation time. In-
vestigation on negative sampling is left as our future work.

We choose metric learning for three main reasons. First,
by giving a higher similarity score to any pair of tracks
performed by the same singer, the model can learn to iden-
tify the singer from a track regardless of it being mono-
phonic or mixed. Thus, it is especially suitable for training
cross-domain systems. Second, using singer identity as the
only ground truth to measure similarity between two tracks
will force the model to focus only on singing voice. Since
DAMP-Mash is genre-invariant, the only common compo-
nent in two tracks is going to be related to singing voice.

Thus, we may expect the model to perform a feature-level
source separation on mixed tracks. Lastly, the model can
be trained on a larger number of singers without increas-
ing the number of parameters. On the other hand, a clas-
sification model that uses a softmax layer will need to in-
crease the output layer size to match the number of training
singers [24].

We explore our ideas with three models, which differ in
the type of data used for training:

• MONO: all inputs are monophonic tracks

• MIXED: all inputs are mixed tracks

• CROSS: anchors are monophonic, while positive and
negative items are mixed tracks (Figure 2)

Our main idea in this work is reflected in the CROSS
model, for which the hinge rank loss ensures that the cosine
similarity between monophonic and mixed tracks from
the same singer is scored higher than that from different
singers. MONO and MIXED models are reference models
for comparison.

While networks within MONO and MIXED model share
weights, in CROSS model, the anchor network and the rest
do not share weights. Thus, it yields two separate feed-
forward networks, each designed specifically for its corre-
sponding domain (Figure 2). As a result, depending on the
domain of an input audio, one of the two networks is used
as the feature extractor. Each network is configured with
the skeleton model described in Section 3.2.1.

3.2.3 Pre-training via classification

Metric learning is known for its difficulty in optimiza-
tion [35, 36]. To alleviate this problem, we train a classi-
fication model and use it to initiate the learning of the em-
bedding models. The classification model has one linear
layer added to the skeleton model (Section 3.2.1) and pre-
dicts the correct singer with a softmax probability. Instead
of fully training it, we remove the last output layer after
30 epochs and use it to continue the training in a metric
learning style. We do not freeze any layers.

4. EXPERIMENTS & EVALUATION

4.1 Test scenarios

Two main tasks for evaluation are singer identification and
query-by-singer. In both tasks, a music signal to be ana-
lyzed (source) is queried to a collection of data (target) to
retrieve desired information. Depending on the domain of
source and target data, we design three test scenarios:

• Mono2Mono: both source and target data are mono-
phonic (in-domain)

• Mix2Mix: both source and target data are mixed (in-
domain)

• Mono2Mix: source data is monophonic, but the target
data is mixed (cross-domain)

Each task is evaluated on all three test scenarios.
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4.2 Task 1: Singer identification

Dataset : We select 300 singers unseen from the train-
ing stage for evaluation. For each singer, we use 6 tracks
for building singer models and set aside 4 tracks as query
tracks, resulting in 1200 queries. Depending on the domain
of source and target data, DAMP-Vocal (monophonic) and
DAMP-Mash (mixed) dataset are used accordingly.

Description : As in [23, 27], singer identification is to de-
termine the correct singer of the query track among the 300
candidate singer models. All queries and singer models
are represented as 256 dimensional feature vectors; a track
vector is an average of 20 feature vectors computed from 3-
second long segment of the same track and a singer model
is an average of 6 track vectors from the same singer. We
made predictions by computing cosine similarity (2) be-
tween the query track and all the singer models. Then, the
singer with the highest score is chosen.

For our baseline, we train a Gaussian Mixture Model-
Universal Background Model (GMM-UBM), which is
commonly used in speaker recognition systems [26]. Each
singer model is adapted through maximum a posteriori
(MAP) estimation from a single singer-independent back-
ground model. All models are composed of 256 com-
ponents with MFCCs of dimension 13 as input. We
train 2 GMM-UBMs, one with monophonic tracks for
Mono2Mono and the other with mixed tracks for Mix2Mix.

We report both top-1 and top-5 classification accuracy.
They represent the proportion of correct guesses out of
1200 queries in total. Top-5 accuracy is calculated by con-
sidering a prediction as being correct if the ground truth
singer appears within the top 5 highest scoring singers.

4.3 Task 2: Query-by-singer

Dataset : As in the singer recognition task (Section 4.2),
same 300 singers are used for evaluation. 6 tracks from
each singer are selected to build a collection of 1800 tracks
to represent a search database and 4 tracks are used as test
queries.

Description : Given a query track, the task is to retrieve
tracks that are performed by the same singer among the
track database. We compute the similarity (Equation (2))
between the query track and all the tracks in the database,
and rank them based on their similarity scores. This can
be applied to singer-based music recommender systems to
discover singers with similar singing voice characteristics.

We report precision and recall-at-k as well as mean av-
erage precision (mAP) score, where k is set to 5 to resem-
ble music retrieval systems. Given a query track performed
by singer A, precision-at-k (Pr@k) refers to the proportion
of tracks that are performed by A and are recommended
among k items; recall-at-k (R@k) refers to the proportion
of tracks that are performed by A and are recommended
out of all the tracks performed by A (6 tracks in total) in
the database. Unlike Pr@k and R@k, mAP takes into ac-
count the actual order of the recommended tracks. Thus, it
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Figure 3: Singer identification results for MONO, MIXED
and CROSS on different test scenarios. The solid section
points to the top-1 accuracy (also written above each bar)
and the hatched section points to the top-5 accuracy.

is useful for music recommender systems, where it is im-
portant that relevant items are not only retrieved, but also
with higher confidence than false positive items.

4.4 Results
In Figure 3 and Figure 4, we observe a large performance
variation for MONO and MIXEDmodels across different test
scenarios. Both models perform well in Mono2Mono and
Mix2Mix, respectively. However, their performances drop
significantly in other scenarios, especially for Mono2Mix.
This is expected, because these models have not been
trained to handle cross-domain scenarios.

On the other hand, CROSS model performs well on all
three test scenarios, benefiting from two jointly trained net-
works that can each handle monophonic and mixed tracks.
We see that it is the only model that is able to match and
compare the singer identity between tracks from differ-
ent domains. Also, its performances on Mono2Mono and
Mix2Mix are on par with the MONO and MIXED models.
This is a useful observation, since training only the CROSS
model can still give good performance on all three test sce-
narios, avoiding the effort of training separate models for
each scenario. Note that the baseline model, GMM-UBM,
shows the best performance in Mono2Mono, but not so
well in Mix2Mix. Result for Mono2Mix is omitted, since
it is close to random prediction. When there is no back-
ground music, GMM-UBM with MFCCs are efficient in
characterizing singing voice.

As mentioned in Section 3.2.3, we show the effect of
using a pre-trained network on singer identification task
(Figure 5). CROSS model (blue stars) shows the largest
performance improvement compared to the other two mod-
els. We assume that comparing the singer identity between
monophonic and mixed track is more difficult than com-
paring between tracks of the same domain. Therefore, a
pre-trained model, which learned to somewhat identify
singers from an input audio, serves as a hint to focus on
signals relevant to singing voice. Using a pre-trained model
not only improved the accuracy, but also accelerated the
learning process.

Regarding background music as noise and singing voice
as the signal, signal-to-noise ratio (SNR) has a large im-
pact on the performance of singing voice analysis sys-
tems [16]. We change the SNR of the test data and show
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results on singer recognition task for MIXED and CROSS
models in Figure 6. Since Mono2Mono deals with only
monophonic tracks, the change in performance exhibited
in Mono2Mono (right) is due to the overall loudness of the
track, not SNR. Therefore, as the performance change on
Mix2Mix (left) shows a similar trend across different SNR,
it implies that models trained on DAMP-Mash dataset is
able to identify singing voice in more difficult conditions.
This is a great benefit for singing voice analysis systems.

4.5 Evaluation on Popular Music Recordings

As our system is trained with a synthetic dataset, we evalu-
ate it on popular music recordings to ensure that the trained
system can also generalize to real-world data.

Dataset : Million Song Datatset (MSD) contains 1,000,000
tracks and 44,745 artists from popular music recordings.
As done in [23], we filter the dataset to select artists
with substantial vocal tracks using singing voice detec-

MIXED CROSS POP Random
Acc. 0.291 0.282 0.393 0.002

Top-5 Acc. 0.511 0.491 0.664 0.01

Table 1: Accuracy result on singer recognition on dataset
of popular music recording, MSD-Singerdataset

tion (SVD). This dataset is referred to as MSD-Singer 2 .
For comparison, we train a model, named POP, on 1000
artists from MSD-Singer dataset. We used 17 30-second
long tracks for each artist for training. 500 singers, unseen
from the training stage, are used for evaluation. 15 tracks
of each singer are used for building singer models and 5
tracks are used as query tracks.

Description : The task is equivalent to singer identifica-
tion in Section 4.2, only with a different dataset. The result
from the POP model is the upper bound, as it is trained and
tested on MSD-Singer dataset; meanwhile, MIXED and
CROSS models are trained on DAMP-Mash and DAMP-
Vocal dataset.

Result: The result shown in Table 1 compares MIXED and
CROSS models with POP model and a random classifier. It
shows that even though our models are trained only with
the synthetic dataset, they are also able to identify singing
voice in popular music. Therefore, we can confirm that
DAMP-Mash dataset is able to represent the popular music
to some degree and that our models are able to generalize
to real-world recordings. We believe that the results will
improve with a better automatic mashup pipeline. Training
the CROSSmodel on source separated MSD-Singer dataset
is also left as a future work.

5. EMBEDDING SPACE VISUALIZATION

We visualize the embedding space learned by the MIXED
and CROSS models to understand how they each process
monophonic and mixed tracks. From DAMP-Voice and
DAMP-Mash dataset, we select 25 singers unseen from the
training stage and highlight 10 with colors for better visu-
alization. 20 tracks are plotted for each singer: 10 mono-
phonic vocal tracks and their corresponding mixed tracks.
After feature extraction, we reduce the dimension of each

2 Details provided at http://github.com/kyungyunlee/MSD-singer
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Figure 7: Singer embedding space from MIXED model
(top) and CROSS model (bottom). The label numbers are
player IDs from the DAMP dataset. The colors on the left
column refers to monophonic vocal tracks; the right col-
umn refers to mixed tracks. Best viewed in color.

feature vector from 256 to 2 dimensions using t-distributed
stochastic neighbor embedding (t-SNE) [18]. Each dot on
the embedding space represents a track. For visualization,
we use a paired color palette and assign lighter color to
monophonic tracks. Since both monophonic and mixed
tracks are from the same singer, an ideal embedding space
will show clusters of 20 tracks for each singer.

Figure 7 shows the embedding space learned from the
MIXED model. There is a noticeable gap between the
features of monophonic tracks and that of mixed tracks,
which means that the model differentiates monophonic and
mixed tracks, rather than finding similar singing voice.
Still, we can see that the model is able to cluster tracks
from the same singer within the same domain. However,
in Figure 7, the monophonic and mixed track features of
the same singer are mapped close to each other. This ex-
plains why the CROSS model shows good performance on
cross-domain tasks. We can observe that it is able to trans-

fer singer information across two domains.

6. MOTIVATION FOR FUTURE WORK

Improvement on music mashup: Our mashup pipeline
has a large room for improvement. Besides errors produced
from existing algorithms, such as key detection, more ef-
forts can be put towards mixing two tracks with a good
balance as in real-world recordings. A good automatic
mashup system can benefit many areas of research in MIR.
The creativity and limitless choices of techniques that can
be applied to generate a mashup imply that a large amount
of multitrack dataset can be generated for many tasks of
interest.

From track to singer modeling: In this work, we use
an average of several track-level feature vectors to build
singer models. However, in case of singers with highly
varying vocal characteristic between different tracks and
taking into account the “album effect”, averaging may not
always be the best choice. Exploring GMMs with multiple
mixtures or principal component analysis (PCA) can be an
interesting future direction.

Going beyond singing voice: Although we have focused
on singing voice, our methods can be tested with tasks
involving other instruments, such as multiple instrument
recognition. The same mashup technique can be applied
to create a dataset, by replacing the monophonic vocal
tracks with any instrument of interest. Data generation with
mashup may yield better results for instrument recognition
in real-world recordings compared to the method proposed
in [33], where only two monophonic instrument tracks are
used to create a random mix.

7. CONCLUSION

In this paper, we introduced a new problem of cross-
domain singer identification and singer-based music re-
trieval to allow information transfer between monophonic
and mixed tracks. Through data generation using music
mashup, we were able to train an embedding model to out-
put a joint representation for singing voice from tracks re-
gardless of their domain. We evaluated on three different
test scenarios, which include both in-domain and cross-
domain cases. A huge advantage of CROSS model is that it
performs well not only on the cross-domain scenario, but
also on commonly observed in-domain scenarios. There-
fore, by training only the CROSSmodel, it yields two mod-
els, one for each domain. Additional evaluation on varying
SNR and on popular music dataset demonstrated that the
model is robust to background music and can also be gen-
eralized beyond our synthetic dataset.

To conclude, we believe that cross-domain systems can
enable many interesting applications related to singing
voice, as well as in MIR. Specifically, our future inter-
ests include improving the quality of the mashup dataset
and performing comparisons between singing voices of
karaoke users and that of popular singers.
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ABSTRACT

Voice interfaces have rapidly gained popularity, introduc-
ing the opportunity for new ways to explore new interac-
tion paradigms for music. However, most interactions with
music in current consumer voice devices are still relatively
transactional; primarily allowing for keyword-based com-
mands and basic content playback controls. They are less
likely to contextualize content or support content discovery
beyond what users think to ask for. We present an approach
to dynamically augment the voice-based music experience
with background information using story generation tech-
niques. Our findings indicate that augmentation can have
positive effects on voice-based music experiences, given
the right user context and mindset.

1. INTRODUCTION

Voice-enabled devices, such as “smart speakers” like Ama-
zon’s Echo, Apple’s HomePod, Google Home, or Sonos
One, have reached the mainstream. In particular, listening
to music is a popular use case for such devices [23, 25].
Finding music to listen to and discovering music on these
devices can be a challenge as the interactions supported
by voice-enabled speakers are relatively limited by current
interaction models.

Prior research suggests listeners employ music search
to learn and explore about new content to consume. Lis-
teners seek background information to stay informed about
their favorite artists, genres, and songs, and use it as a re-
lationship builder with others [19]. This exploratory mind-
set, however, is relatively rare on music streaming apps be-
cause catalog-based entity search does not support this user
need well [13]. Augmenting listening experiences and con-
versational interactions have the potential to support these
exploratory user goals but leveraging them for a good user
experience remains a challenge.

c© Morteza Behrooz, Sarah Mennicken, Jennifer Thom,
Rohit Kumar, Henriette Cramer. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Morteza
Behrooz, Sarah Mennicken, Jennifer Thom, Rohit Kumar, Henriette
Cramer. “Augmenting Music Listening Experiences on Voice Assis-
tants”, 20th International Society for Music Information Retrieval Con-
ference, Delft, The Netherlands, 2019.

Learning about background information is sometimes
a part of the listening experience itself. Often, such in-
formation is presented together with the music playback
to contextualize the content. For example, user interfaces
of several music streaming services, such as Apple Music,
Pandora, and Spotify, include a section for additional infor-
mation beyond basic track metadata for artists, albums, and
playlists. Sometimes, songs are contextualized further by
displaying the lyrics, stories, or background information
associated with certain parts of the songs (e.g., “Behind
the Lyrics” feature on Spotify [27]).

In this paper, we provide a method for how voice-based
content consumption can be automatically augmented with
background information and present the development and
study of a prototype inspired by story generation methods.

We make the following contributions:
• Introduction of a type of content augmentation to

contextualize voice-based content consumption with
background information in Section 3.

• Detailed design of an approach taking playlists as in-
put and utilizing weighted graphs to generate textual
music augmentations, inspired by story generation
in Section 3.

• Identification of best practices for using augmen-
tation and conversation in voice-based music con-
sumption in Section 5.

2. RELATED WORK

2.1 Listener Information Needs and Music Search

When listeners search for music, they have multiple in-
formation needs that they may be trying to fulfill. These
user needs help to shape how listeners approach their mu-
sic search goals. For instance, listeners may be in the
mindset of looking for something specific or they may be
in the mindset where they are open to multiple types of
music-related information. Prior research has suggested
that users of a streaming music service have distinct mind-
sets when they are searching for music [13]. In a focused
mindset, users have one particular item in mind. Catalog,
entity-based search interfaces favor this particular mind-
set and queries that align with the structure of available
metadata. In an analysis of Google Answers queries, Bain-
bridge et al. [3] found that users typically (81.3% of the

303



time) expressed needs through bibliographic queries, us-
ing performer, title of work, or date of recording. Li et
al. [17] also observed that typed searches on a streaming
music platform are typically focused, suggesting that the
modality and design of the current feature supported this
type of mindset.

Listeners also have broader information needs that are
not met by catalog-based entity searches commonly sup-
ported in online music services. Lee et al. [15] observed
that people use cloud music services that store listeners’
music libraries to listen to music that they were unfamiliar
with, suggesting that music discovery and exploration is an
important user need. In addition, listeners indicated they
search for information about the artists and music for learn-
ing purposes [14]. Users of a streaming music platform,
however, tended not to use the search feature to deeply
learn about a specific type of music and left the platform to
fulfill that need [13].

2.2 Voice Assistants and Music Consumption

Voice-enabled speakers currently allow music listeners to
search for content (e.g., by saying “play Jazz” or “play
Time by Pink Floyd”) and control the music playback (e.g.,
play/pause/skip and volume controls). In fact, these basic
playback controls form the most common category of user
commands [25]. While many of these speakers can be used
in conjunction with a secondary device that has a graphi-
cal user interface (GUI), voice interaction is increasingly
becoming a primary modality for consuming music [25],
which increases the importance of evolving and improving
the music experience through voice. Notably though, the
voice-only smart speaker experience does not offer much
in the way of discovery or background information, and
such lack of contextualization and grounding can reduce
music discovery and listener’s emotional investment [26].

Our work focuses on contextualizing the voice-based
music experience with relevant background information.
This idea shares similarities to music radio shows, where
the hosts provide relevant information about the content
they play and add other talking points in between songs.
In [4], radio’s interaction of speech and content is framed
as a special kind of narrative, in which the DJ or radio host
is the narrator. One of the main challenges in creating an
experience like radio shows is maintaining the “flow” of
the music, and balancing the spoken words and songs, as
this is one of the main skills of the radio hosts [2]. Our user
study seeks to learn more about how to achieve a balance
between this flow and providing background information.

2.3 Story Generation

Story generation is the problem of automatically selecting
a sequence of events that meet a certain criteria and can
be narrated as a story [18]. Story generation and our ap-
proach to augment the music listening experience share the
goal to generate sequences of textual content given specific
constraints. While there are many different approaches to
generate stories [12, 20, 28], ours is similar to planning-
based approaches which also commonly use graph repre-

Figure 1. The system architecture of our prototype.

sentations to map the space of story events and the pos-
sible constraints of a valid or optimal progression of the
storyline. In [18] such constraints are reflected by logical
precedence rules, while our method utilizes edge weights
and pathfinding to extract a preferred storyline. Similar to
PlotShot [9] we apply this a graph-based approach to gen-
erate a sequence of text for a given form of input media.
Inspired by these different approaches, we take playlists as
input and utilize graphs with edge weights that denote con-
tent preferences to generate textual music augmentations.

3. APPROACH AND PROTOTYPE

Our prototype takes ordered playlists as input, finds rel-
evant background information and relationships for the
songs it contains, and chooses a subset of that informa-
tion for being used in the output (illustrated in Fig. 1). We
call every piece of information that comes in between two
consecutive songs a segue. Every segue describes a prede-
fined property, such as some information or characteristic,
of the next song or a relationship between the current and
the next song.

While our approach is not limited to playlists as input,
we decided to use them as a starting point given that songs
in a playlist typically contain more variety in the meta-
data as opposed to an individual artist’s album. Moreover,
songs in a playlist often have an implicit reason for having
been grouped together (e.g., being of the same genre, suit-
ing a specific mood or situation [21], artist similarity, etc.)
We kept the original order of playlist songs to preserve pos-
sible semantic reasons behind curation by playlist creators.

3.0.1 Music Metadata

Our prototype uses a set of metadata and background in-
formation about songs, artists, and albums. Table 1 shows
some sample entries of qualitative facts about songs and
artists consisting of short extractions from publicly avail-
able sources of background information (e.g., Wikipedia).

3.0.2 Segue Library and Grammar Library

Table 2 contains a few examples for segues. Each segue
has a natural language generation (NLG) template result-
ing in a “segue text” when realized. Our segue library
contains 21 segues. The authoring effort for creating new
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Table 1. Songs’ metadata examples.
Property Applicable Enti-

ties
Example

Name Artist, Album,
Song

Drake, Scorpion, Wild
Thoughts

Genre Album, Song Hip Hop
Qualitative fact Artist, Song Rihanna’s real name is

Robyn Rihanna Fenty.

segues simply depends on the complexity of the segue
logic.

Inspired by the story generation concept of grammars
[7], we defined a simple construct in our system to al-
low prioritizing authored sequences of segues that are pre-
sumed to be interesting. For instance, by preferring a
sequence of ArtistFact, ArtistOriginJump, and
ArtistFact, an augmentation can focus on the back-
ground of songs and their artists. Grammars are an instru-
ment for professional authorship and editorial opinion to
be reflected in the system.

3.1 Generating a Sequence of Segues

First, our prototype accesses available metadata about
songs, artists, and albums appearing in the playlist. Then
it finds all the matching segues for every two consecutive
songs which results in a list of segue options for each such
position. For the entire playlist, we get a list of these lists,
which we call the story possibility space. Given that the
choice of a segue at each position in this space is indepen-
dent of other positions, the story possibility space forms
a graph and the search problem for finding a sequence of
augmentations becomes a problem of finding the best path
in this graph. To do so, we use a set of heuristics and pref-
erences which are reflected in a weighting function. These
scores are assigned as weights to the edges that represent
those transitions in our graph.

weight(s1, s2) = diff(s1, s2)

+ spref1 + spref2

− lengthiness+ silence reward

+ playlist reward

+ positional preference

Several variables enable weighting absolute and rel-
ative preferences. diff(s1, s2) enables avoiding repeti-
tion between consecutive segues. Static “segue prefer-
ence scores” sprefi give specific segues authored prefer-
ence. For example, pointing out a change of genre be-
tween two consecutive songs might be more interesting
than simply stating title and artist of the next song. Terse
responses are often preferred in conversational interactions
[10], hence lengthiness punishes a segue if it has a long
text and silence reward rewards a graph edge if the pre-
vious segue is long but the next segue is NullSegue.
playlist reward represents that some segues fit better
to a specific type of playlist, such as ArtistQualFact in
artist-focused playlists. positional preference is used
for segues that make only sense at a specific part of a

playlist. For example, a playlist introduction with a short
authored description only makes sense at the beginning.

Given a weighted graph, we first look for and choose
any possible grammar matches. A grammar is a match if
there exists a path in a sub-graph of the story possibility
space, where the sequence of nodes in that path matches
the grammar’s sequence of segue types. Edge weights do
not have a role in finding a grammar match. If two gram-
mars overlap, we choose the path representing one of them
at random.

For the portions of the story possibility space where no
grammar match is found, we use the edge weights to find
the best path, one with the heaviest sum of weights. If a
given portion of the overall graph that needs pathfinding
is larger than 5 playlist positions, we find the path step by
steps in windows of size 5. In doing so, we ensure that each
such window does not contain any segue types that exist in
the previous window, and hence avoiding local repetition
of segue types.

To exemplify conversational interactions, we identify
possible interaction points in which we could trigger a
short dialog and let the user response determine which
segue option comes next. We do so by checking against
simple logic definitions, e.g., if there are specific types of
segues in the next list of segue options (see Table 3.)

After the full graph path is determined, we use the re-
alized segue text of the segues in the chosen path, and
insert these segue texts in between the songs. An exam-
ple excerpt of an augmented playlist is shown in Table 4.
Our prototype can generate augmentations for any given
playlist as long as it has access to the metadata for the
songs in that playlist. For our evaluation, we decided to
focus on three popular types of playlists to start with those
based on an artist, a genre, or listener popularity.

4. EVALUATION

To better understand how our method of adding contextual
information to smart speaker experiences affects music lis-
tening, we conducted a two-phased study within Spotify.

In phase 1, we gathered feedback from two professional
writers who are familiar with the music domain to elicit ex-
pert feedback on the content of the segues. They received
the written output of our prototype generated for one rep-
resentative example of each playlist type: artist, genre, and
listener popularity. While we invited them to provide any
type of feedback, we specifically asked them to share their
views on the contents of individual segues and describe
how they would approach writing similar content from a
professional perspective as writers. After they returned
their comments, we conducted a semi-structured interview
with both of the writers which took about 45 minutes.

In phase 2, we conducted an internal evaluation with
nine Spotify employees (four female, five male) from var-
ious parts of the organization to identify potential future
improvements and establish a first understanding of user
needs. Participants were in their early 20s to late 40s from
non-technical functions (such as design, marketing, or op-
erations) and located in various locations across the United
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Table 2. Examples for segues, their logic description, and samples for their realized text.
Segue Type Logic Description NLG template Realized text
NullSegue Always a match regardless of the

songs.
N/A N/A

MundaneSegue Always a match regardless of the
songs.

Next song is next song name by
next song artist name.

Next song is Time by Pink Floyd.

ArtistOriginJump Musical origin of the previous
song’s artist is different than the
next one’s.

From prev city where
prev artist name’s musical
origins are, to next city where
next artist name’s are.

From Los Angeles where Tupac’s
musical origins are, to New York
City, where Biggie’s are.

SameYearSameArtist Previous and next song share the
same artist and release year.

Just like the last song, the next song is
from next song release year
by next song artist name.

Just like the last song, the next song
is from 2007 by Rihanna.

Table 3. Examples for conversational augmentations.
Voice Prompt User Re-

sponse
Voice Response

From when do
you think this last
song was?

Correct That’s right. But the next song,
called Shook Ones, Pt. II takes us
into a different era. All the way to
1995. (DifferentEraSegue)

Wrong Actually, it’s from 2007.
The next song called Shook
Ones, Pt. II and [...].
(DifferentEraSegue)

Question! Are
you more
interested in the
artist’s
background or
the genre?

Genre The genre of the upcoming
song is called “Latin Trap”.
(NextGenreSegue)

Artist Next song is by Cardi B. Here’s
a fun fact about their biography...
(ArtistQualFact)

Table 4. Example excerpt of an augmented playlist....
ˇ “ ˇ “== Juicy by The Notorious B.I.G.

Here’s The Next Episode by Dr. Dre and Snoop Dogg.
ˇ “ ˇ “== The Next Episode by Dr. Dre

Now switching from the 2001 (Explicit Version) album to one called
The Best of 2Pac - Pt. 1: Thug.
ˇ “ ˇ “== California Love by 2Pac

The last song was from 2007. The next song called Shook Ones, Pt.
II takes us into a different era. All the way to 1995.

ˇ “ ˇ “== Shook Ones, Pt. II by Mobb Deep
Just like the last song, this song was released in 1995.

ˇ “ ˇ “== Gangsta’s Paradise by Coolio
The last and the upcoming song both are described as dark groovy....

States. Each session included a semi-structured interview
in which we asked participants about their previous expe-
rience with voice assistants and whether or how they look
for additional content around music. Each participant was
asked to listen to a demo audio file for one of our three
playlist types. After answering a short questionnaire, they
also interacted with our envisioned conversational experi-
ence in a short Wizard-of-Oz (WoZ) demo where an ex-
perimenter controlled which content to play. Each playlist
type was presented to three users who were randomly as-
signed to a condition.

The demo consisted of ten shortened songs (first and
last 15 seconds) and ten segues (one intro segue, nine tran-
sition segues) which were generated using our proposed

method and then read by a text-to-speech (TTS) engine.
Overall, they had a duration of 5:30-5:50 minutes. The
short WoZ section to convey the conversational experience
covered three songs only, but between the songs the TTS
voice prompted the participant with a potential question
such as “Question! Are you more interested in the artist’s
background or the genre?”. Depending on the answer the
experimenter chose the next audio file to play to continue
the experience. Table 3 shows two examples.

We recorded and transcribed all sessions. Two of the
co-authors went independently through the transcripts, first
categorizing them for their relevance to the stated research
questions and then doing an affinity analysis [5] moving
relevant quotes between the high-level categories to derive
our findings.

5. FINDINGS

We identified various factors that influence the perception
and usefulness of including contextual information in mu-
sic listening experiences.

5.1 Addressing Listener Needs and Contexts

Music is consumed in vastly different situations, playing a
different role for listener’s needs in each one. We found
that listeners’ perceived usefulness of the voice-based
augmentations heavily depends on the situation and its
unique needs.

Augmentations enable music discovery and education.
Augmentations are well received when listeners are in an
exploratory mindset. Our participants expressed special in-
terest in voice augmentations to learn about content that is
new to them. P4 said: “[Talking about a playlist contain-
ing new songs] I’m like ‘Wait, what band is this?’ [...]
‘What other songs can I listen to from them.’ ” P6 de-
scribed their interest in being able to learn about (niche)
genres through such augmentations: “I feel like metal
would work really well for this because a lot of bands have
a lot of history behind them [...] it’s the opposite of trendy
[...] people are still listening to music that was written and
performed 20 years ago consistently.”

Similarly, editor 2 saw them as a way of discovering
less-known artists by providing information about them:
“[When choosing music automatically] you might end up
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skewing the information toward [...] the top-selling artists
of all time; yet obviously there are hugely influential artists
that have not sold a lot of records but have impacted other
artists and bands.” Lastly, P1 brought up the need to
identify the right occasions for adding information: “I
like that it’s just another way to get to know an artist
that you already like and I would potentially like if it
was getting to know an artist that you don’t know. What
I wouldn’t like is if it’s in between.” This highlights a
potential for leveraging listener’s level of affinity for an
artist they already know, or the predicted level of affinity
for a new artist, in determining the quantity or focus of the
augmentations.

Activities determine needs for and appropriateness of
augmentations. Music often supports a specific listener
activity. We found that activities with low cognitive load,
such as doing chores or cooking, were commonly men-
tioned as appropriate contexts for voice-based augmenta-
tions. P8 said: “The perfect experience [is] if I’m at home
doing something fun like cooking or something not fun
like cleaning.” Activities that require a higher level of fo-
cus but that listeners consciously choose to support with
background music were perceived to be less suitable. Par-
ticipants mentioned several examples where the music is
serving such an activity-supporting focus like working out,
studying, or relaxing and felt that any addition to the mu-
sic could get into the way of that primary activity. “I need
[the music] to keep the motivation going, keep the music
going.” (P8)

5.2 Selection of Appropriate Content for
Augmentations

The next category of our findings relates to the content of
the augmentation and what it focuses on.

Personalizing augmentations improves the experience.
The level of affinity with an artist or genre varies signif-
icantly across listeners, and the same is true for the level
of familiarity with background information. For example,
using a sub-genre to describe a song might be very interest-
ing to someone familiar with the general genre, but vague
and uninteresting to someone who is only a casual listener
of that type of content. P3 said: “[...] a high, medium,
low, [or] novice/expert setting [would be good], because
I’m not an expert on this, so I don’t understand [some of
the segues].” Similarly, P1 saw an opportunity to point out
to them if they are listening to an artist for the first time:
“Say it’s the first time I’ve listened to an artist, I think it
would be cool to learn more about that artist.”

Another frequently mentioned interest for person-
alization was to allow the listener to adjust the topics
that the augmentations focus on (e.g., artist life or genre
information). P9 said: “If I could somehow customize
like what’s being said by the voice to choose like facts
or historical whatever, I think that’d be cool.” Editors
had similar views. Editor 2 said: “we’ve got one end of
the spectrum there is music nerds. They’ve already put

their hands in the air and said, ‘Please give me more as
much as you can.”’ The same editor then drew a parallel
between customization of content and augmentation: “can
I add another layer of personalization to this which is,
please make [the augmentation] minimal [or] please tell
me as much as you can about this artist or this genre.”

Augmentations could explain recommendations or
present relevant news. Our study subjects mentioned
other types of information that would be useful for them
to hear. Music listeners increasingly delegate their choice
of music content to streaming services, which use various
algorithmic and machine learning methods to choose songs
that they believe the listener might enjoy. However, listen-
ers usually do not get any explanation for why a partic-
ular set of content is chosen for them. P4 said: “It kind
of guides you to know how they’re piecing together this
playlist for you. It’s like, ‘this is why we’re playing this
song for you’,” and P3 mentioned: “A lot of times for [au-
tomatically generated playlists], I’m like why do I have this
song, it would be great if [the voice] could tell me.” Allud-
ing to the same point, Editor 1 noted: “With just the bare
information the name, the title, and to give more informa-
tion and background obviously [one can] provide a much
deeper experience for users and give users the reason why
they should continue listening.”

Contextual needs of music listeners often extend to their
awareness of the current happenings in the music world.
Most prominently, our participants expressed interest in
hearing about tours and relevant news headlines. P1 said:
“If they were on tour in my area, that’s something I’d want
to know,” and P5 mentioned: “There’s a lot of news always
with musicians, whether it’s a controversy or other things
[...] if you had some of that, like why is this song popu-
lar right now or what’s going on with this song.” Editor 1
brought up the same point, and discussed the following as
an example: “Let’s say [an artist] passes away [...], and
you insert a little nugget of information to inform people
about that. And then the next song is [by the same artist].
I mean [...] that might make it even more important for
maybe someone to listen.”

5.3 Appropriate Presentation of Augmentations

Our last category of findings offers insights about the
delivery and presentation of the augmentation content.

TTS voice needs to be trustworthy, high quality and fit-
ting. The synthesized voice in which the segues are pre-
sented to the listener was one of the most common topics
brought up by our participants; most prominently, the qual-
ity of the TTS voice as described by P5: “With the DJ kind
of idea, I think the sound of the thing makes a big differ-
ence; so [...] that computery voice takes me out of the
moment”. Despite the quality of the TTS, participants
seemed to establish a connection with the agent behind the
voice, and explicitly expressed a preference for knowing or
at least being able to trust the agent. For instance, P2 said:
“Using someone’s voice who is an authority on the genre
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or playlist [is better] [...] there’s a difference between that
voice telling me little tidbits and somebody like [reference
to a Jazz musician].”

Participants mentioned they would like specific prop-
erties of the voice, such as gender and accent, to be
personalized, either based on the current content or their
general preferences. For instance, P4 said: “I like [it]
when people have the Google or Waze, the driving apps,
and you can change the accent.” P5 noted: “I think it
would be cool if it was kind of genre-based [...] yea if it’s
tied to genre or playlist type of thing.” Editor 1 pointed out
to voice’s gender as well, saying: “It’d be really jarring
to hear like a very male voice [on] Ani DiFranco or Riot
grrrl playlists or a very feminist playlist”.

Augmentations should not be frequent. Participants
expressed a preference for segues that connect the previous
and the next songs (e.g., by highlighting similarities or
differences) over segues that focus solely on the next song.
For example, P3 said: “I like this [...] it tells me a little
bit about what I just listened to [...] and then it sets me up
into what the next song is going to be,” and P5 mentioned:
“I [liked] that some of them attempt to link the previous
song to the next song.” While semantic continuity is valu-
able, the frequency of augmentations should not be too
high, and segues should not come in between every two
songs. We included a representation of an intentional skip
(NullSegue in Table 2), but it formed either zero or just
one out of the 10 generated segues that each participant
experienced. Five of our participants (P1, P2, P4, P5,
and P8) believed the augmentation was too frequent. P1,
for instance, said: “I definitely in no scenario want [to
hear the segues] after every single song”. Lee et al. [16]
found that different user personas have a varying desire
for engagement when interacting with music information
retrieval systems, which needs to be taken into additional
consideration when designing such augmented listening
experiences.

Participants enjoyed the conversational augmentations.
Our conversational augmentations showcased the ability to
ask about the music that is being played, and this was well
received by our participants. Most of them (seven out of
nine) counted the conversational demo as more fun and in-
teresting than the non-conversational case. When probed
on the reasons, participants frequently pointed out the abil-
ity to interact. P4, for instance, said: “You kind of feel like
there’s this other entity that you’re having a conversation
with.” In another example, P7 said: “I think I like this bet-
ter [than the non-conversational demo]. It was more fun
[because of] the interaction aspect of it.” However, two
of the participants (P1 and P3) could not imagine them-
selves using the conversational experience in any situation
and generally disliked it. Both participants attributed this
dislike to usually preferring a “leaned-back” music con-
sumption mindset, as P3 said: “I don’t want it asking me
questions. I actually hated it. It wasn’t lean back and was
trying to get me to interact...”

6. LIMITATIONS AND FUTURE WORK

Our results indicate that augmenting voice-based music
consumption with background information addresses some
of the listener needs that are commonly ignored in current
experiences [1, 6]. But similar to how different listening
situations affect musical preferences [22], we need to in-
vestigate situation-specific preferences for augmentations
to understand when music listening is a passive [8], flow-
like [11] experience which should not be interrupted.

Our augmentations did not have a “narrative coherence”
[24], i.e., a coherent story about a particular topic. In the
music context, such narratives could be based on a variety
of topics, such as recent events, genres, or artists, all of
which were mentioned by our study participants as well.
For instance, a dynamically generated augmentation about
the history of a genre could focus on songs that represent
the turning points of it or have other musical significance.
Access to more metadata and large semantic models that
capture music-related relationships between various enti-
ties can help a story generator in achieving this goal.

In terms of presentation, our evaluation suggests that
the quality of the TTS engine seems to be particularly im-
portant for music listening experiences. We suspect that
the imperfections of the TTS might be more apparent due
to a general focus on the audio quality, both for music and
voice output. In other use cases for voice assistants, the
focus is often more on retrieving the requested informa-
tion; however, this hypothesis requires further research.
Changing the voice’s accent or gender, based on explicit
listener preference, was stated as an interest by several par-
ticipants; doing so automatically, such as based on a lis-
tener model or audio content, is not only very difficult, but
also poses the risk of reinforcing stereotypes of societal
and cultural associations for certain types of music.

To minimize negative effects of breaking the audio flow
of the music experience, a smoother transition between
augmentations and music content is needed. For exam-
ple, by matching audio properties of the augmentation with
those of the surrounding music content, similarly to the
techniques used by radio show hosts to match the nearby
songs in their ending and beginning [2].

7. CONCLUSIONS

Consuming music via voice assistants is currently a lim-
ited experience. While enabling transactional requests for
catalog search and basic playback controls, listeners may
miss out on context or history of the consumed content. To
better support an exploratory mindset for discovering mu-
sic, we introduce a method that uses story generation tech-
niques to augment the voice-based music experience with
relevant background information in between the songs.
Our results indicate that adding contextual information to
voice-based music interactions can improve smart speaker
experience and meet listener needs for music discovery and
background information. However, there are also limita-
tions to when the augmentations are desirable based on
playback context and listener’s mindset and activities.
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ABSTRACT

This paper introduces a novel recurrent model for music
composition that is tailored to the structure of polyphonic
music. We propose an efficient new conditional probabilis-
tic factorization of musical scores, viewing a score as a col-
lection of concurrent, coupled sequences: i.e. voices. To
model the conditional distributions, we borrow ideas from
both convolutional and recurrent neural models; we argue
that these ideas are natural for capturing music’s pitch in-
variances, temporal structure, and polyphony. We train
models for single-voice and multi-voice composition on
2,300 scores from the KernScores dataset.

1. INTRODUCTION

In this work we will think of a musical score as a sam-
ple from an unknown probability distribution. Our aim
is to learn an approximation of this distribution, and to
compose new scores by sampling from this approximation.
For a broad survey of approaches to automatic music com-
position, see [9]; for a more targeted survey of classical
probabilistic approaches, see [3]. We note the success of
parameterized, probabilistic generative models in domains
where problem structure can be exploited by models: con-
volutions in image generation, or autoregressive models in
language modeling. This work examines autoregressive
models of scores (Section 3): how to evaluate these mod-
els, how to build the structure of music into parameterized
models, and the effectiveness of these modeling choices.

We study the impact of structural modeling assump-
tions via a cross-entropy measure (Section 4). It is rea-
sonable to question whether cross-entropy is a good surro-
gate measure for the subjective quality of sampled compo-
sitions. In theory, a sufficiently low cross-entropy indicates
a good approximation of the target distribution and there-
fore must correspond to high-quality samples. In practice,
we observe of other generative modeling tasks that learned

c© John Thickstun, Zaid Harchaoui, Dean P. Foster, Sham
M. Kakade. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: John Thickstun, Zaid Har-
chaoui, Dean P. Foster, Sham M. Kakade. “Coupled Recurrent Models
for Polyphonic Music Composition”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

models do achieve sufficiently low cross-entropy to pro-
duce qualitatively good samples [4, 19, 29]. Studying the
cross-entropy allows us to explore many models with vari-
ous structural assumptions (Section 5). Finally, we provide
a qualitative evaluation of samples from our best model
to demonstrate that these models have sufficiently small
cross-entropy for samples to exhibit a degree of subjective
quality (Section 6). Supplementary material including ap-
pendices, compositional samples, and code for the experi-
ments is available online. 1

2. RELATED WORKS

In this work, we consider both single-voice models
and multi-voice, polyphonic models. Early probabilis-
tic models of music focused on single-voice, monophonic
melodies. The first application of neural networks to
melody composition was proposed by [28]. This work
prompted followup [18] using an alternative data repre-
sentation inspired by pitch geometry ideas [25]; the rela-
tive pitch and note-embedding schemes considered in the
present work can be seen as a data-driven approach to cap-
turing some of these geometric concepts. For recent work
on monophonic composition, see [12, 23, 26].

Work on polyphonic music composition is considerably
more recent. Early precurors include [15], which considers
two-voice composition, and [5], which proposes an expert
system to harmonize 4-voice Bach chorales. The harmo-
nization task became popular, along with the Bach chorales
dataset [1]. Multiple voice polyphony is directly addressed
in [16], albeit using a simplified preprocessed encoding of
scores that throws away duration information.

Maybe the first work with a fair claim to consider poly-
phonic music in full generality is [2]. This paper proposes
a coarse discrete temporal factorization of musical scores
(for a discussion of this raster factorization and others,
see Section 3) and examines the cross-entropy of a vari-
ety of neural models on several music datasets (including
the Bach chorales). Many subsequent works on polyphonic
models use the dataset, encoding, and quantitative metrics
introduced in [2], notably [30] and [13]. We also note re-
cent, impressive work on the closely related problem of
modeling expressive musical performances [11, 20].

Many recent works focus exclusively on the Bach

1 http://homes.cs.washington.edu/~thickstn/ismir2019composition/
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chorales dataset [7, 10, 17]. The works [7, 17] evaluate
their models using qualitative large-scale user studies. The
system proposed in [7] optimizes a pseudo-likelihood, so
its quantitative losses cannot be directly compared to gen-
erative cross-entropies. The generative model proposed
in [17] could in principle report cross entropies, but this
work also focuses on a qualitative study. Quantitative
cross-entropy metrics on the chorales are analyzed in [10].
Both [7] and [10] propose non-sequential Gibbs-sampling
schemes for generation, in contrast to the ancestral sam-
plers used in [17] and in the present work.

3. FACTORING THE DISTRIBUTION OVER
SCORES

Polyphonic scores consist of notes and other features of
variable length that overlap each other in quasi-continuous
time. Scores contain a vast heterogenous collection of in-
formation, much of which we will not attempt to model:
time signatures, tempi, dynamics, etc. We will there-
fore give a working definition of a score that captures the
pitch, rhythmic, and voicing information we plan to model.
We define a score of length T beats as a continuous-
time, matrix-valued sequence x, where xt ∈ {0, 1}V×2P

for each time t ∈ [0, T ]. Specifically, for each voice
v ∈ {1, . . . , V } and each pitch p ∈ {1, . . . , P} we set

xt,v,p = 1 iff pitch p is on at time t in voice v, (1)

xt,v,P+p = 1 iff pitch p begins at time t in voice v. (2)

Both “note” bits (1) and “onset” bits (2) are required to
represent a score, expressing the distinction between a se-
quence of repeated notes of the same pitch and a single
sustained note; see Appendix C for further discussion.

Let q denote the (unknown) probability distribution over
scores x. Score are high dimensional objects, of which we
have limited samples (2,300 – see Section 4). Rather than
directly model q, we will serialize x, factor q according
to this serialization, and model the resulting conditional
distributions q(·|history). There are many possible ways
to factor q; in the remainder of this section we review the
popular raster factorization, and propose a new sequential
factorization based on voices.

Raster score factorization. Many previous works fac-
tor a score via rasterization. If we sample a score x at con-
stant intervals ∆ and impose an order on parts and notes,
we can factor the distribution q over scores as q(x) =

T/∆∏
k=1

V∏
v=1

2P∏
p=1

q(xk∆,v,p|x1:k∆, xk∆,1:v, xk∆,v,1:p). (3)

Throughout this work, a slice 1:i is inclusive of the first
index 1 but does not include the final index i.

This factorization generates music in sequential ∆-
slices of time. Some prior works directly model the
(high-dimensional) distribution xk∆; this approach was pi-
oneered by [2], using NADE to model the conditional dis-
tributions q(xk∆|x1:k∆). Others impose further order on
notes (and voicings, if they choose to model them) and fac-
tor the distribution into binary conditionals as in (3). Notes

are typically ordered based on pitch, either low-to-high [7]
or high-to-low [17].

Sequential voice factorization. Putting full scores
aside for now, consider factoring a single voice v, i.e.
a slice x1:T,v,1:2P of a score. By definition, a Kern-
Scores voice is homophonic in the sense that its rhythms
proceed in lock-step: a voice consists of a sequence
of notes, chords, or rests, and no notes are sustained
across a change point. 2 Instead of generating raster time
slices, suppose we run-length encode the durations be-
tween change points in v. We denote these change points
by cv0, . . . , c

v
Lv

where Lv is the number of change points in
voice v. Let D be the number of unique distance between
change points, and define a run-length encoded voice r ∈(
{0, 1}D ⊕ {0, 1}N

)Lv . At each index k ∈ {1, . . . , Lv},
rk = (rk,0, rk,1) with rk,0 ∈ {0, 1}D and rk,1 ∈ {0, 1}N
such that

rk,0 = 1dk where dk =
cvk+1 − cvk

∆
∈ N,

rk,1,p = 1 iff pitch p begins at time cvk in voice v.

The durations dk correspond to note-values (quarter-note,
eighth-note, dotted-half, etc.). We proceed to factor the
voice sequentially as p(r) =

Lv∏
k=1

q(rk,0|r1:k)

P∏
p=1

q(rk,1,p|r1:k, rk,0, rk,1,1:p). (4)

Sequential score factorization. We now consider a
sequential factorization that interlaces predictions in the
score’s constituent voices. The idea is to predict voices
sequentially as we did in the previous section, but we must
now choose the order across voices in which we make pre-
dictions. The rule we choose is to make a prediction in the
voice that has advanced least far in time, breaking ties by
the arbitrary numerical order assigned to voices (ties hap-
pen quite frequently: for example, at the beginning of a
score when all parts have advanced 0 beats). This ensures
that all voices are generated in near lock-step; generation
in any particular voice never advances more than one note-
value ahead of any other voice.

Mathematically, we can describe this factorization as
follows. First, we impose a total order on change points
cvk across voices by the rule cvk < cuk′ for all v, u if k < k′

and cvk < cuk if v < u. Define L ≡
∑V
v=1 Lv . For index

i ∈ {1, . . . , L} let αi and βi denote the index and voice of
the corresponding change point according the the total or-
dering on change points. We define a sequentially encoded
score s ∈ ({0, 1}D ⊕ {0, 1}N )L by

sk,0 = 1dk where dk =
cβk

αk+1 − cβk
αk

∆
∈ N,

sk,1,p = 1 iff pitch p begins in voice βk at time cβk
αk
.

And we factor the distribution sequentially by q(s) =

L∏
k=1

q(sk,0|s1:k)
P∏
p=1

q(sk,1,p|s1:k, sk,0, sk,1,1:p). (5)

2 For polyphonic instruments like the piano, we must adopt a more re-
fined definition of a voice than “notes assigned to a particular instrument;”
see Appendix B for details.
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4. DATASET AND EVALUATION

Dataset. The models presented in this paper are trained
on KernScores data [24], a collection of early modern,
classical, and romantic era digital scores assembled by
musicologists and researchers associated with Stanford’s
CCARH. 3 The dataset consists of over 2,300 scores
containing approximately 2.8 million note labels. Ta-
bles 1 and 2 give a sense of the contents of the dataset.

We contrast this dataset’s Humdrum encoding with the
MIDI encoded datasets used by most works discussed in
this paper. 4 MIDI was designed as a protocol for com-
municating digital performances, rather than digital scores.
This is exemplified by the MAPS [6] and MAESTRO [8]
datasets, which consist of symbolic MIDI data aligned to
expressive performances. While this data is symbolic, it
cannot be interpreted as scores because it is unaligned to
a grid of beats and does not encode note-values (quarter-
note, eighth-note, etc). Some MIDI datasets are aligned to
a grid of beats, for example MusicNet [27]. But heuristics
are still necessary to interpret this data as visual scores. For
example, many MIDI files encode “staccatto” articulations
by shortening the length of notes, thwarting simple rules
that identify note-values based on length.

Evaluation. Let q̂ be an estimate of the unknown prob-
ability distribution over scores q. We want to measure the
quality of q̂ by its cross-entropy to q. Because the entropy
of a score grows with its length T , we will consider a cross-
entropy rate. By convention, we measure time in units of
beats, so the cross-entropy rate has units of bits per beat.

Defining cross-entropy for a continuous-time process
generally requires some care. But for music, defining the
cross-entropy on an appropriate discretization will suffice.
Musical notes begin and end at rational fractions of the
beat, and therefore we can find a common denominator
d of all change points in the support of the distribution q
(for our dataset d = 48). For a score of length T beats,
we partition the interval [0, T ] into constant subintervals
of length ∆ ≡ 1/d and define a rate-adjusted, discretized
cross-entropy

HP(q||q̂) ≡ E
x∼q

[
− 1

T∆
log q̂(x0, x∆, x2∆, . . . , xT )

]
.

(6)
Proposition 1 in Appendix F shows that we can think of ∆
as the resolution of the score process, in the sense that any
further refinement of the discretization d yields no further
contributions to the cross entropy.

Definition 6 is independent of any choice about how we
factor q: it is a cross entropy measure of the joint distri-
bution over a full score. As we discussed in Section 3,
there are many ways to factor a generative model of scores.
These choices lend themselves to different natural cross-
entropies, each with their own units. By measuring in units
of bits per beat at the process resolution ∆ as defined by
Definition 6, we can compare results under different fac-
torizations.

3 http://kern.ccarh.org/
4 A notable exception is [16], which uses data derived from the Kern-

Scores collection considered here.

Computational cost. Raster models are expensive to
train and evaluate on rhythmically diverse music. A raster
model must be discretized at the process resolution ∆ to
generate a score with precise rhythmic detail. The pro-
cess resolution ∆ of a corpus containing both triplets and
sixty-fourth notes is ∆ = 3 × 16 = 48 positions per beat.
Corpora with quintuplet patterns require a further factor of
5, resulting in ∆ = 240. To generate a score from a raster
factorization requires ∆ predictions per beat; to ease the
computational burden of prediction, when the raster ap-
proach is taken scores are typically discretizing at either 1
or 2 positions per beat [2]. Unfortunately, this discretiza-
tion well above the process resolution leads to dramatic
rhythmically simplification of scores (see Appendix C).

In contrast, a sequential factorization such as (4) or (5)
requires predictions proportional to the average number
of notes per beat, while maintaining the rhythmic detail
of a score. The KernScores single-voice corpus averages
≈ 1.25 notes per beat, requiring 1.25 predictions per beat
for sequential factorization versus ∆ predictions per beat
for raster factorization. The KernScores multi-voice cor-
pus averages ≈ 5 notes per beat, requiring 5 predictions
per beat for sequential factorization, an order of magni-
tude less than the ∆ ≈ 50 predictions per beat required for
raster prediction.

5. MODELS AND WEIGHT-SHARING

Modeling voices allows us to think of the polyphonic com-
position problem as a collection of correlated single-voice
composition problems. Learning the marginal distribution
over a single voice v is similar in spirit to classical mono-
phonic tasks. Learning the distribution over KernScores
voices generalizes this classical task to allow for chords:
formally, a monophonic sequence would require the vec-
tor rk,1 ∈ {0, 1}N described in Section 3 to be one-hot,
whereas our our dataset includes voices where this vector
is multi-hot, expressing intervals and chords (e.g. chords
in the left hand of a piano, or double-stops for a violin).

We will explore two modeling tasks. First we consider
a single-voice prediction task: learn the marginal distribu-
tion over a voice v, estimating the conditionals that appear
in the factorization (4). Results on this task are summa-
rized in Table 3. Second we consider a multi-voice pre-
diction task: learn the joint distribution over scores, esti-
mating the conditionals that appear in the factorization (5).
Results on this task are summarized in Table 4.

5.1 Representation

Like our choice of factorization, we are faced with many
options for encoding the history of a score for prediction.
Some of the same computational and modeling consider-
ations apply to both the choice of a factorization and the
choice of a history encoding, but these are not inherently
connected decisions. For the single-voice task, we use the
encoding r introduced to define the sequential voice fac-
torization in Section 3.

For the polyphonic task, we also encode history using a
run-length encoding. Let c1, . . . , cK denote change points
in the full score x, let dvj ≡ (cvj+1−cvj )/∆ ∈ N, and define
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Bach Beethoven Chopin Scarlatti Early Joplin Mozart Hummel Haydn

191,374 476,989 57,096 58,222 1,325,660 43,707 269,513 3,389 392,998

Table 1. Notes in the KernScores dataset, partitioned by composer. The “Early” collection consists of Renaissance vocal
music; a plurality of the Early music is composed by Josquin.

Vocal String Quartet Piano

1,412,552 820,152 586,244

Table 2. Notes in the KernScores dataset, partitioned by
ensemble type.

a sequence e ∈ ({0, 1}D+1 ⊕ {0, 1}P )K×V where

ek,v,0,0:D = 1dpj iff ck = cvj for some cvj in voice v,

ek,v,0,D = 1 iff ck is not a change point in voice v,

ek,v,1,p = 1 iff pitch p begins in voice v at time ck.

This is not the fully serialized encoding s used to define
a score factorization (for discussion of a fully sequential
representation, see [20]). At each time step k for which
any voice exhibits a change point, we make an entry in e for
every voice; we refer to ek as a frame. This requires us to
augment our alphabet of duration symbolsD with a special
continuation symbol that indicates no change (comparable
to the onset bits in the encoding x). An advantage of this
representation over sequential or raster representations is
that more history can be encoded with shorter sequences.

For a fixed voice v, let r̃ ≡ e:,v be a single-voice slice
of the score history. Observe that r̃ 6= r, where r is the run-
length encoding used for the single-voice task. The slices
r̃ are spaced out with aforementioned continuation sym-
bols where there are change points in other voices. With
the single-voice encoding r, simple linear filters can be
learned that are sensitive to particular rhythmic sequences:
e.g. groups of four eighth notes, or three triplet-quarter
notes. This is not the case for r̃; rhythmic patterns can be
somewhat-arbitrarily broken up by continuation symbols.

These observations might lead us to consider raster en-
codings for multi-voice history, which restore the effec-
tiveness of simple linear filters at the cost of increasing the
dimensionality of the history encoding. We find that re-
current networks for the single-voice task are unhampered
when retrained on r̃: compare experiments 21 and 22 in
Table 3. Performance falls slightly when learning on r̃,
but this is to be expected because history interspersed with
continuations is effectively a shorter-length history.

For both the single-voice and multi-voice tasks, we
truncate the history at a fixed number of frames prior to
the prediction time. We explore several history lengths in
the experiments and observe diminishing improvement in
quantitative results for windows beyond the range of 10-20
frames of e: see experiment group (1,2,6,7) in Table 4.

5.2 Single-voice models

Using factorization (4), we explore fully connected, con-
volutional, and recurrent models for learning the con-

ditional distributions q(rk,0|r1:k) over note-values and
q(rk,1,n|r1:k, rk,0, rk,1,1:p) over pitches. We build separate
models to estimate rk,0 and rk,1,p, with respective losses
Losst and Lossn. In the remainder of this section, we con-
sider opportunities to exploit structure in music by shar-
ing weights in our models. Quantitative results for single-
voice models are summarized in Table 3, with additional
details available in Appendix A.

Autoregressive modeling. To build a generative
model over conditionally stationary sequential data, it of-
ten makes sense to make the autoregressive assumption
q(rk|r1:k) = q(rk′ |r1:k′) for all k, k′ ∈ N. We can then
learn a single conditional approximation q̂(rk|r1:k) and
share model parameters across all time translations.

Scores are not quite conditionally stationary; the distri-
bution of notes and rhythms varies substantially depending
on the sub-position within a beat. To address this, we fol-
low the lead of [13] and [7] and augment our history tensor
with a one-hot location feature vector ` that indicates the
subdivision of the beat for which we are presently making
predictions. 5 Compare the loss of duration models (Losst)
with and without these features in experiment pairs (3,4),
(6,7), (10,11), (12,13), and (15,16).

Relative pitch. We can perform a similar weight-
sharing scheme with pitches as we did with time. Instead
of building an individual predictor for each pitch condi-
tioned on the notes in the history tensor, we adopt an idea
proposed in [13]: build a single predictor that conditions
on a shifted version of the history tensor centered around
the note we want to predict. Convolving this predictor over
the pitch axis of the history tensor lets us make a prediction
at each note location, as visualized by Figure 1.

As with time, the distribution over notes is not quite
conditionally stationary. For example, a truly relative pre-
dictor would generate notes uniformly across the note-
class axis, whereas the actual distribution of notes concen-
trates around middle C. Therefore we augment our history
tensor with a one-hot feature vector 1p that indicates the
pitch p for which we are making a prediction. This al-
lows us to take full advantage of all available information
when making a prediction, while borrowing strength from
shared harmonic patterns in different keys or octaves. We
compare absolute pitch-indexed classifiers (linp) to a sin-
gle, relative pitch classifier (lin) in Table 3: compare the
loss of pitch models (Lossp) in experiment groups (2,3,4),
(5,6,7), (8,9,10), (11,12,13), and (15,16).

Relative pitch models serve a similar purpose to key-
signature normalization [17] or data augmentation via
transposition [7]. Building this invariance into the model

5 Location can always be computed from a full history. But we truncate
the history, so this information is lost unless it is explicitly reintroduced.
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Figure 1. Left: an absolute pitch predictor learns individual classifiers for each pitch-class. Right: a relative pitch predictor
learns a single classifier and translates the data along the frequency axis to center it around the pitch to be predicted.
Whereas the absolute predictor decides whether C5 is on given the previous note was A4, the relative predictor decides
whether the note under consideration is on given the previous note was 3 steps below it.

offers an alternative approach, avoiding data preprocessing
or the introduction of hyper-parameters. We find that train-
ing with transpositions in the range ±5 semi-tones yields
no performance increase for relative pitch models.

Pitch embeddings. Borrowing the concept of a word
embedding from natural language processing, we consider
learned embeddings c of the pitch vectors rk,1 (ek,v,1 for
the multi-voice models). For recurrent models, we do not
see performance benefits to learning these embeddings:
compare experiments 20 and 21 in Table 3. However, we
do find that we can learn compact embeddings (16 dimen-
sions for the experiments presented in this paper) without
sacrificing performance, and using these embeddings re-
duces computational cost. We also find that using a 12 di-
mensional fixed embedding of pitches f, in which we quo-
tient each pitch class by octave, reduces overfitting for the
rhythmic model while preserving predictive accuracy.

5.3 Multi-voice models

Using the factorization (5), we now explore ways to
capture correlations between the voices and model the
conditional distributions q(sk,0|s1:k) over note-values and
q(sk,1,p|s1:k, sk,0, sk,1,1:p) over notes. We build separate
models to estimate rk,0 and rk,1,p, with losses Losst and
Lossp in Table 4 respectively. The same structural observa-
tions that we made about scores for the single-voice mod-
els apply to multi-voice modeling; all multi-voice mod-
els considered in this paper use the three weight-sharing
schemes considered for single-voice models. We explore
an additional weight-sharing opportunity below for the
multi-voice task: voice decomposition.

The effectiveness of recurrent models for the single-
voice modeling task, and the representational considera-
tions in Section 5.1, motivate us to consider extensions of
the recurrent architecture to capture structure in the multi-
voice setting. One natural extension of the standard recur-
rent neural network to model multiple, concurrent voices
is a hierarchical architecture, illustrated in Figure 2:

hk,v(e) ≡ a
(
W>v hk−1,v(e) +W>e c (ek,v)

)
,

gk(e) ≡ a

(
W>g gk−1(e) +W>hv

∑
u

hk,u(e)

)
.

(7)

The first equation is a standard recurrent network that
builds a state estimate hk,v of a voice v at time index k
based on transition weights Wv , an input embedding c,

# History Arch Loc? Relative? Pitch? Embed? Loss

1 r(1) bias no no no no 10.07
2 r(1) linear no no no no 8.05
3 r(1) linear no yes no no 6.29
4 r(1) linear yes yes yes no 6.12
5 r(1) fc no no no no 5.92
6 r(1) fc no yes no no 6.05
7 r(1) fc yes yes yes no 5.70

8 r(5) linear no no no no 7.91
9 r(5) linear no yes no no 5.76

10 r(5) linear yes yes yes no 5.63
11 r(5) fc no no no no 4.90
12 r(5) fc no yes no no 4.80
13 r(5) fc yes yes yes no 4.69
14 r(5) fc yes yes yes yes 4.63

15 r(10) linear no yes no no 7.88
16 r(10) linear yes yes yes no 5.53
17 r(10) fc yes yes yes yes 4.55
19 r(10) cnn yes yes yes yes 4.42
20 r(10) rnn yes yes yes no 4.37
21 r(10) rnn yes yes yes yes 4.36

22 r̃(10) rnn yes yes yes yes 4.52

Table 3. Single-voice results. We define r(m) ≡ rk−m:k

(a truncated history of length m); r̃(m) is defined likewise,
based on the alternate encoding r̃ discussed in Section 5.1,
Representation. The Relative flag indicates the use of a
relative-pitch classifier, and the Loc, Pitch, and Embed
flags indicate the use of location features, pitch features,
and pitch embeddings, discussed in Section 5.2. For addi-
tional details of these experiments, see Appendix A.

input weights We, and non-linear activation a (we use a
ReLU activation). We integrate the state of each voice
(weights Whv) into a global state gk given the previous
global state gk−1 (weights Wg). Because voice order is
arbitrary in our dataset, we sum (i.e. pool) over their
states before feeding them into the global network. At
each time k, we use the learned state of each voice to-
gether with the global state to make a note-value predic-
tion: ŝk,0 = lin(hk,βk

(e), gk(e)), where lin is a log-linear
classifier. We make pitch predictions sk,1,p ∈ {0, 1} us-
ing the same architecture. We learn a single, relative-pitch
classifier for sk,1,p ∈ {0, 1} in all multi-voice experiments
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Figure 2. Coupled state estimation of Mozart’s string quartet number 2 in D Major, K155, movement 1, from measure 1,
rendered by the Verovio Humdrum Viewer. A recurrent network models the state hk,v of each voice v at step k, based on
the previous state hk−1,v and the current content of the voice. Another recurrent network models of the global state gk of
the score at step k based on the previous global state gk−1 and a sum of the current states of each voice. Subsequent notes
(purple) in each voice are predicted using features of the global state and the state of the relevant voice. See Equations 7
for a precise mathematical description of this model.

(section 5.2, Relative pitch). We do not share weights be-
tween the note-value and pitch models.

Voice decomposition. Decomposing a score into multi-
ple voices presents us with an opportunity to share weights
between voice models by learning a single set of weights
Wv in equation (7), rather than learning unique voice-
indexed weights Wvi for each voice vi. Indeed, because
voice indices are arbitrary, the weights Wvi will converge
to the same values for all i; sharing a single set of weights
Wv accelerates learning by enforcing this property. All
score models presented in Table 4 share these weights.

# History Architecture Loss Losst Lossn
(voice/global) (total) (time) (notes)

1 3 / 3 hierarchical 14.05 5.65 8.40
2 5 / 5 hierarchical 13.40 5.35 8.04
6 10 / 10 hierarchical 12.87 5.12 7.75
7 20 / 20 hierarchical 12.78 5.01 7.76

8 10 independent 18.63 6.56 12.08

Table 4. Multi-voice results. The “hierarchical” archi-
tecture is defined by equations (7). Voice and global his-
tory refer to the number of time steps used to construct the
states hk,v and gk respectively. Experiment 8 is a baseline
where the voice models are completely decoupled (equiva-
lent to single-voice Experiment 22 in Table 5; the average
number of voices per score is 4.12). Results are reported
on non-piano test set data (see Appendix B for discussion
of piano data). For additional experiments and ablations,
see Appendix A.

6. CONCLUSION

To gain insight into the quality of samples from our mod-
els, we recruited twenty study participants to listen to a
variety of audio clips, each synthesized from either a real
composition or from sampled output of Experiment 6 in
Table 4. For each clip, participants were asked to judge

whether the clip was written by a computer or by a hu-
man composer, following a procedure comparable to [21].
The clips varied in length, from 10 frames of a sample e
(2-4 seconds; the length of history conditioned on by the
model) to 50 frames (10-20 seconds). Participants become
more confident in their judgements of the longer clips, but
even among the longest clips (around 20 seconds) partici-
pants often identified an artificial clip as a human compo-
sition. Results are presented in Table 5; see Appendix E
for further study details.

Clip Length 10 20 30 40 50

Average 5.3 5.7 6.6 6.7 6.8

Table 5. Qualitative evaluation of the 10-frame hierarchi-
cal model: Experiment 6 in Table 4. Twenty participant
were asked to judge 50 audio clips each, with lengths vary-
ing from 10 to 50 frames. The scores indicate participants’
average correct discriminations out of 10: 5.0 would in-
dicate random guessing; 10.0 would indicate perfect dis-
crimination.

These results superficially suggest that we have done
well in modeling the short-term structure of the dataset (we
make no claims to have captured long-term structure; in-
deed, the truncated history input to our models precludes
this). But it is not clear that humans are good–or should
be good–at recognizing plausible local structures in mu-
sic without context. See [14, 22] for criticism of musical
Turing tests like the one presented here. It is also unclear
how to use such studies to make fine-grained comparisons
between models (as we have done quantitatively through-
out this paper). It is not even clear how to prompt a user
to discriminate between such models. Therefore we re-
emphasize the interpretation of this qualitative evaluation,
proposed in Section 1, as a perceptual grounding of the
quantitative evaluation considered throughout this work.
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[5] Kemal Ebcioğlu. An expert system for harmonizing
four-part chorales. Computer Music Journal, 1988.

[6] Valentin Emiya, Roland Badeau, and Bertrand David.
Multipitch estimation of piano sounds using a new
probabilistic spectral smoothness principle. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 2010.

[7] Gaëtan Hadjeres, François Pachet, and Frank Nielsen.
Deepbach: a steerable model for bach chorales gener-
ation. International Conference on Machine Learning,
2017.

[8] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian
Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse Engel, and Douglas Eck. Enabling
factorized piano music modeling and generation with
the maestro dataset. arXiv preprint arXiv:1810.12247,
2018.

[9] Dorien Herremans, Ching-Hua Chuan, and Elaine
Chew. A functional taxonomy of music generation
systems. ACM Computing Surveys (CSUR), 50(5):69,
2017.

[10] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam
Roberts, Aaron Courville, and Douglas Eck. Counter-
point by convolution. International Society for Music
Information Retrieval Conference, 2017.

[11] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M Dai, Matthew D Hoffman, Mon-
ica Dinculescu, and Douglas Eck. Music transformer.
2019.

[12] Natasha Jaques, Shixiang Gu, Richard E. Turner, and
Douglas Eck. Tuning recurrent neural networks with
reinforcement learning. International Conference on
Learning Representations Workshop, 2017.

[13] Daniel D. Johnson. Generating polyphonic music us-
ing tied parallel networks. International Conference on
Evolutionary and Biologically Inspired Music and Art,
2017.

[14] Anna Jordanous. A standardised procedure for evaluat-
ing creative systems: Computational creativity evalua-
tion based on what it is to be creative. Cognitive Com-
putation, 4(3):246–279, 2012.

[15] Teuvo Kohonen. A self-learning musical grammar, or
‘associative memory of the second kind’. International
Joint Conference on Neural Networks, 1989.

[16] Victor Lavrenko and Jeremy Pickens. Polyphonic mu-
sic modeling with random fields. ACM International
Conference on Multimedia, 2003.

[17] Feynman Liang, Mark Gotham, Matthew Johnson,
and Jamie Shotton. Automatic stylistic composition of
bach chorales with deep lstm. International Society for
Music Information Retrieval Conference, 2017.

[18] Michael C. Mozer. Neural network music composition
by prediction: Exploring the benefits of psychoacous-
tic constraints and multi-scale processing. Connection
Science, 1994.

[19] Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. arXiv
preprint arXiv:1601.06759, 2016.

[20] Sageev Oore, Ian Simon, Sander Dieleman, Dou-
glas Eck, and Karen Simonyan. This time with feel-
ing: Learning expressive musical performance. arXiv
preprint arXiv:1808.03715, 2018.

[21] Marcus Pearce and Geraint Wiggins. Towards a frame-
work for the evaluation of machine compositions. In
Proceedings of the AISB’01 Symposium on Artificial
Intelligence and Creativity in the Arts and Sciences,
pages 22–32, 2001.

[22] Marcus T Pearce and Geraint A Wiggins. Evaluating
cognitive models of musical composition. In Proceed-
ings of the 4th international joint workshop on compu-
tational creativity, pages 73–80. Goldsmiths, Univer-
sity of London, 2007.

[23] Adam Roberts, Jesse Engel, Colin Raffel, Curtis
Hawthorne, and Douglas Eck. A hierarchical latent
vector model for learning long-term structure in music.
arXiv preprint arXiv:1803.05428, 2018.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

317



[24] Craig Stuart Sapp. Online database of scores in the
humdrum file format. International Society for Music
Information Retrieval Conference, 2005.

[25] Roger N. Shepard. Geometrical approximations to
the structure of musical pitch. Psychological Review,
1982.

[26] Bob L. Sturm, Joao Felipe Santos, Oded Ben-Tal, and
Iryna Korshunova. Music transcription modelling and
composition using deep learning. Conference on Com-
puter Simulation of Musical Creativity, 2016.

[27] John Thickstun, Zaid Harchaoui, and Sham M.
Kakade. Learning features of music from scratch. In
International Conference on Learning Representations
(ICLR), 2017.

[28] Peter M. Todd. A connectionist approach to algorith-
mic composition. Computer Music Journal, 1989.

[29] Aäron Van Den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw
audio. SSW, 125, 2016.

[30] Raunaq Vohra, Kratarth Goel, and J. K. Sahoo. Mod-
eling temporal dependencies in data using a dbn-lstm.
IEEE International Conference Data Science and Ad-
vanced Analytics, 2015.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

318



HIT SONG PREDICTION:
LEVERAGING LOW- AND HIGH-LEVEL AUDIO FEATURES

Eva Zangerle, Ramona Huber, Michael Vötter
University of Innsbruck, Austria

firstname.lastname@uibk.ac.at

Yi-Hsuan Yang
Academia Sinica, Taipei, Taiwan
yang@citi.sinica.edu.tw

ABSTRACT

Assessing the potential success of a given song based on
its acoustic characteristics is an important task in the music
industry. This task has mostly been approached from an in-
ternal perspective, utilizing audio descriptors to predict the
success of a given song, where either low- or high-level
audio features have been utilized separately. In this work,
we aim to jointly exploit low- and high-level audio features
and model the prediction as a regression task. Particularly,
we make use of a wide and deep neural network architec-
ture that allows for jointly exploiting low- and high-level
features. Furthermore, we enrich the set of features with
information about the release year of tracks. We evaluate
our approach based on the Million Song Dataset and char-
acterize a song as a hit if it is contained in the Billboard Hot
100 at any point in time. Our findings suggest that the pro-
posed approach is able to outperform baseline approaches
as well as approaches utilizing low- or high-level features
individually. Furthermore, we find that incorporating the
release year as well as features describing the mood and
vocals of a song improve prediction results.

1. INTRODUCTION

The task of predicting hit songs aims to infer the poten-
tial (commercial) success of a given song, possibly before
the release of the song [18]. This is particularly interesting
for the music industry as it allows to find potentially suc-
cessful songs, promising songwriters and composers, to al-
locate budget for promotion, and to identify key elements
that are pivotal for the success of a song. A natural next
step would be the automatic generation of musical pieces
which actually exhibit these features that have been shown
to be crucial for success. To this end, the hit song predic-
tion task has been tackled from two perspectives [12, 23]:
an internal perspective, which relies solely on (musical)
features extracted from the audio, and an external perspec-
tive, which models aspects of the musical ecosystem, for
instance by incorporating social media or market data.

c© Eva Zangerle, Ramona Huber, Michael Vötter, Yi-
Hsuan Yang. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Eva Zangerle, Ramona
Huber, Michael Vötter, Yi-Hsuan Yang. “Hit Song Prediction: Leverag-
ing Low- and High-Level Audio Features”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

In this work, we take on the internal perspective, focus-
ing on audio descriptors of a song to predict its success.
While this might not capture all the aspects that are rele-
vant for the musical success of songs (e.g., social media
trends and events [25], psychological issues [18] or social
influence [9, 20]), we believe that it is still an important
problem that can be approached on its own and possibly
enriched with external information at a later stage.

Approaches focusing on internal factors have mostly
modeled hit prediction as a classification or regression
problem solved by traditional approaches or, more re-
cently, deep learning [23, 24]. The features used to char-
acterize songs range from low-level Mel-Frequency Cep-
stral Coefficients (MFCC) [6], melodic features [8], tem-
poral features [10], lyrics features [21] to high-level audio
features describing e.g., the danceability of songs [7, 17].
While both of these feature types have been individually
shown to contribute to hit prediction, they have yet to be
exploited jointly for this task.

Recently, Demetriou et al. [5] have investigated the
most influential features when it comes to users liking or
disliking a song in a user study. They have shown that the
most significant features of a song are its ability to evoke
emotions, vocals of the singer, beat and rhythm and the
lyrics. Along these lines, we are particularly interested in
investigating whether these features are also influential in
the task of hit song prediction. Interiano et al. [12] have
shown that audio descriptors relevant for the success of a
song change over time and that musical fashion is rather
short-lived, rendering it hard to exploit past data to pre-
dict future trends. Despite approaches to predict the re-
lease year of songs based on acoustic features [2] and the
use of temporally weighted regression methods to account
for changing features over time [7], this fact has not yet
been explicitly explored for hit song prediction. Incorpo-
rating release year information into our hit song prediction
approach to reflect the dynamics of success on the music
market is another distinguishing feature of this work.

Consequently, we shed light on the following two re-
search questions (RQ) in this study:
RQ1: How can we predict hit songs based on acoustic fea-
tures extracted from the song’s audio in a deep learning
scenario?
RQ2: Which role do individual features (or groups of fea-
tures) and the release year of a song play in this task?

To answer these research questions, we model the pre-
diction of hit songs as a regression task. We extract low-
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and high-level features from the audio of each track and
feed these into a deep neural network architecture, where
low-level features are fed into the deep part of the network
to distill dense representations thereof, whereas high-level
features are fed into the wide part of the network to be
utilized directly. This also allows feeding the release year
of a song into the network as a high-level feature. Utiliz-
ing the dense computed dense representations of low-level
features in combination with high-level features, we subse-
quently compute a regression task to predict a track’s peak
ranking position.

The contribution of this paper lies in the following as-
pects: (i) we present a novel regression approach towards
hit song prediction using neural networks which combines
wide (high-level) and deep (low-level) acoustic features;
(ii) we show that mood and vocals (the features identi-
fied as being crucial when it comes to liking and disliking
a song [5]) are also of high relevance for the hit predic-
tion task; (iii) we show that adding the release year as a
high-level feature allows for further improvements, imply-
ing that contextualizing the song temporally is important
due to the short-lived trends in music [12]; (iv) this is the
first work that utilizes solely data from the public domain
for this task. For reproducibility and to encourage follow-
up research along this line, we also make public the data
underlying our experiments 1 .

The remainder of this paper is structured as follows.
Section 2 provides information about the dataset underly-
ing our analyses. Section 3 details our proposed approach
towards the prediction of hit songs. Section 4 presents the
experiments we conducted and the results obtained. Sec-
tion 6 concludes this paper and discusses future work.

2. DATASET

We base our experiments on the widely used and freely
available Million Song Dataset (MSD) [2], which con-
tains one million songs that are representative for western
commercial music released between 1922 and 2011. The
dataset contains release year information for 515,576 of the
MSD songs [2]. As we are interested in the impact of the
release year information on hit song prediction quality, we
constrain our dataset to those songs that we can obtain the
release year information for. In contrast to previous stud-
ies on hit song prediction, our dataset fully stems from the
public domain. Please refer to Table 1 for an overview of
the datasets utilized in existing work and their availability.

To extract low- and high-level audio features for every
song, we rely on representative 30 seconds samples for
each of the songs in the Million Song Dataset. We make
use of the Essentia framework [3] to extract low- and high-
level features from the audio (cf. Section 3.1 for details)
and dropped all songs in the MSD where we could not de-
termine all those features.

Moreover, our approach requires distinguishing be-
tween hits and non-hits of musical success [15]. Along
the lines of previous research [13, 21], we define a song

1 https://doi.org/10.5281/zenodo.3258042

Paper Data PD AV

[23, 24] KKBOX listening data, audio no no
[6] in-house audio database, UK, US, AUS charts no no
[8] in-house audio database, UK charts no no
[21] lyrics features, Billboard charts no no
[7, 17] Echonest features, UK charts yes no
[18] HiFind database of music no no

this MSD dataset, Essentia features yes yes

Table 1. Datasets utilized for internal hit song prediction.
Notation: PD—dataset stems from public domain, AV—
dataset is publicly available.

as successful if it is featured in the weekly Billboard Hot
100 2 at least once. Therefore, we crawl the Billboard Hot
100 from the according website for the years 1954 until
2018. To find songs in the Billboard Hot 100 matching the
songs contained in the Million Song Dataset, we compare
both the artist name and track title for each song pair in the
two sets and only consider exact matches as hit songs. Af-
ter that, we dropped duplicates (determined based on artist
name and track title). This provides us with a set of 5,832
hit songs and hence, positive samples for which we ex-
tract their highest rank in the charts. For negative samples
(and hence, non-hits) sampled from the MSD, it is impor-
tant to ensure that they are not accidentally hits. Hence,
we used to following procedure based on the set of songs
for which we have release year information and Essentia
features. Firstly, we compute a fuzzy matching ratio 3 be-
tween all MSD songs and the set of hit songs by concate-
nating the artist name and track title with a delimiter and
selecting the best matching pairs thereof. Based on this
matching procedure, we gather a pool of non-hits where
the title fuzzy matching ratio is less or equal than 40. We
determined this threshold by preliminary experiments and
manually inspecting results. We only consider the title ra-
tio here as it is possible that an artist has multiple further
songs, that we nevertheless aim to include in our set of
possible non-hits and hence, we do not include artist simi-
larity in this computation. The resulting dataset contains a
substantially higher number of non-hits (89,235) than hits
(5,832), hence it is highly imbalanced (6.1% positive vs.
93.9% negative instances). To overcome this imbalance,
we decided to randomly draw 5,832 samples from the pool
of non-hits to get a balanced dataset for our experiments.

3. HIT SONG PREDICTION

In this section, we detail our approach on hit-song predic-
tion. We first present the features utilized to characterize
songs and then detail the neural network-based approach.

3.1 Song Features

Previous research in the field of hit song prediction has re-
lied on utilizing either low- or high-level features of songs.

2 https://www.billboard.com/charts/hot-100
3 The ratio of matching tokens between the two strings is based on

Levenshtein distance as implemented by Python’s fuzzywuzzy library.
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Category Features

mood acoustic, aggressive, electronic, happy, party, relaxed, sad [14]; Hu and Downie’s 5 clusters of mood [11]
genre blues, classic, country, disco, hip-hop, jazz, metal, pop, reggae, rock [22]
voice voice, instrumental, female voice, male voice
rhythm/beat bpm, beats count, bpm histogram, beats loudness, beats loudness band ratio, onset rate, danceability
chords chords strength, chords change rate, chords number rate, chords key, chords scale, harmonic pitch class profile,

tuning strength and frequency

Table 2. Feature categories and the Essentia features each category contains.

Low-level features allow capturing acoustic descriptors
like loudness, dynamics, and spectral shape of a signal,
rhythm descriptors or tonal information [19]. In contrast,
high-level features are computed from low-level feature
models and capture abstract concepts such as mood, gen-
res, vocals or music type [19]. In this work, we aim to
combine those two types of features. The intuition here is
that while low-level features allow for a detailed descrip-
tion of the acoustic characteristics of a song, high-level fea-
tures complement this detailed view with abstract concepts
such as mood or danceability, resulting in a more holistic
description of a song.

Based on the dataset presented in Section 2, we propose
to extract low- and high-level features based on a given
MP3 file of a song containing a 30 seconds preview. Par-
ticularly, we make use of the Essentia toolkit [19], a well-
established and widely used extraction library for audio
descriptors. For the extraction of low-level features, we
rely on Essentia’s pre-compiled extractors 4 , which pro-
vide a variety of spectral, time-domain, rhythm, and tonal
descriptors. This provides us with 40 basic features (e.g.,
MFCCs, dissonance or silence rate), 11 rhythm features
(e.g., beats per minute or onset-rate) and 13 tonal features
(e.g., key or harmonic pitch class profiles) that serve as
low-level input for our task.

For high-level features, we again rely on Essentia and
utilize the provided pre-trained high-level classification
models 5 to compute high-level features based on the low-
level features previously extracted. These features include
musical genre, mood, timbre, vocals/voice, or danceability.

In this work, we hypothesize that features identified as
salient in users liking/disliking a song [5] are also relevant
for the task of hit song prediction. To assess the relative
importance of these different features, we rely on the cate-
gories of features proposed by Demetriou et al. [5] and per-
form a matching between Demetriou’s categories of fea-
tures and our dataset’s features. As our approach is based
on internal features only, we are not able to match all of
Demetriou’s categories (e.g., lyrics). We argue that this is
still a valid approach as this work is focused on internal
aspects of a song. We hence make use of the following
feature categories: mood, genre, voice, rhythm/beat, and
chords. The first three contain solely high-level features
computed by Essentia, whereas the latter two stem from
both Essentia’s low- and high-level features. Table 2 shows

4 http://essentia.upf.edu/documentation/extractors_out_of_box.html,
music 1.0 extractor of Essentia v.2.1.-beta2 was used.

5 http://essentia.upf.edu/documentation/streaming_extractor_music.html

the assignment of individual low- and high-level features
to those categories. As previous research has shown that
musical fashion and trends are highly dynamic and short-
lived [12], we are also interested in the impact of informa-
tion about the release year of a song. The idea here is that
providing temporal context in terms of the release year of
a song can contribute to improved prediction performance
as the characterization and embedding of the song is im-
proved. Hence, we extract the release year information for
each song from the Million Song Dataset and treat it as a
high-level feature.

3.2 Regression Wide and Deep Network

The core idea of our approach is to combine low- and high-
level acoustic features to characterize tracks as those two
types of features capture different aspects and characteris-
tics of a track (on different levels of abstraction). Given
the differences between these two feature types in terms of
the amount of features, complexity, and diversity, we aim
to reflect this in the architecture of the neural network used
for hit prediction. Therefore, we utilize a network archi-
tecture inspired by the structural concept of the Wide and
Deep network architecture by Cheng et al. [4]. While our
proposed solution is in fact quite different from the original
model 6 , we believe that the distinction and notion of deep
and wide features describes our scenario well. Hence, we
will nevertheless use this notion of wide and deep features
and the corresponding network parts.

Figure 1 presents an overview of the proposed network
architecture. This architecture allows training a wide linear
model alongside a deep neural network while distinguish-
ing two types of features: wide features can be regarded
as abstract, high-level features that can directly be used for
further computation, whereas deep features in the deep part
of the network are used to learn dense, lower-dimensional
representations of input features. In our scenario, low-level
features can be considered deep features, whereas high-
level features are wide features. Based on the wide fea-
tures and the computed dense representations of the deep
features, we aim to perform a regression task for predicting
the peak position a song will reach in the charts. This can
also be used to distinguish hits and non-hits by using any
position larger than 100 as a threshold value. As for the im-
plementation of the deep part of the network, the goal here

6 The original wide and deep approach was designed for a recom-
mendation scenario, where the wide part is used to model user-item co-
occurrences and the deep part is used to learn low-dimensional latent de-
scriptors of queries and items.
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concatenation layer

release year
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output: regression score

Figure 1. The wide and deep network architecture em-
ployed for hit song prediction.

is to use the sparse low-level features as input and to com-
pute meaningful dense representations of audio descriptors
to be processed further.

Low-level features comprise a variety of different fea-
ture formats: e.g., aggregations of frame-based features
across the song or per-frame values for a set of frequency
bands—rendering a sparse, complex set of feature repre-
sentations, where also the computed individual values stem
from a broad range. Practically speaking, our approach
has to be able to cope with nested input features of vary-
ing size, complexity and value ranges. We chose to flatten
these input arrays into one-dimensional arrays that can be
fed into the deep part of the network.

The purpose of the deep part of the network is to ag-
gregate feature vectors to a one-dimensional representation
of the original input features, which are subsequently fed
into the regression part of the network. We create multiple
groups of low-level features corresponding to the feature
categories and their components presented in Table 2. Each
group is then fed into a single feature aggregation block
(FAB) in the deep part of the network. We chose to model
each FAB as a dense layer utilizing a sigmoid activation
function as this has been shown to be effective for feature
selection in deep neural networks [16]. The input size is
chosen to fit the number of values in the feature group and
the output size is one. This results in a single value per fea-
ture group which is the newly computed higher-level repre-
sentation of this group. The resulting features computed by
the FABs in the deep part of the network are subsequently
merged with the features that we feed into the wide part
of the network. This concatenation (merge) layer is fol-
lowed by two dense layers with batch normalization and a
ReLU activation function. These two dense layers have the
same size as the concatenation layer. To ultimately com-
pute the final result of the regression task, we add another
dense layer with output size one and no activation function
to ensure that the computed result is in the desired range of
possible ranking positions (1–150).

Each high-level feature is represented by classes, where
each class is assigned a probability value (range [0, 1]).
In the special case of two complementing classes such as
danceable and not danceable, we chose to only use one of

these two probabilities (in the above example, the prob-
ability of a song being danceable) to model this feature.
We use the resulting values as input for the wide part of
the neural network. Feeding categorical values such as the
tonal key into the network is realized by previously con-
verting them to a one-hot encoded vector representation.
Further, it should be mentioned that we normalized all in-
put (feature) values to the range [0, 1] using a min-max-
scaler. Feeding the release year into the neural network is
realized by adding another high-level feature (normalized
to [0, 1]).

4. EXPERIMENTS AND RESULTS

Here, we first present the experimental setup used and sec-
ondly, we present and discuss the results obtained.

4.1 Experimental Setup

We base our experiments on the dataset presented in Sec-
tion 2 and experiment with two different regression tasks:
predicting the highest rank of a song in the Billboard Hot
100. For non-hits, we set the highest rank achieved to 150.
We chose to use a ranking of 150 to describe non-hits to
make the difference between hits and non-hits in terms of
ranking more explicit based on preliminary experiments.
Due to the high imbalance of hit and non-hit instances in
the dataset, we chose to randomly downsample the neg-
ative class to achieve balanced classes 7 . Subsequently,
we applied five fold cross validation on the remaining in-
stances.

We trained the proposed network architectures with
mean squared error (MSE) as loss function and a batch
size of 32. The neural network was implemented based on
Tensorflow [1], utilizing Keras. As optimizer, we used the
adaptive learning rate optimization algorithm, Adam. As
for the number of epochs used for training the network, we
experimented with values between 10 and 200. All input
data is scaled to [0, 1]. As we experimented with a wide va-
riety of different setups, training epochs, etc., we utilized
a grid search approach to determine the best configuration
and present the best obtained results in Section 4.2. Natu-
rally, the underlying network was trained and optimized in-
dividually for each input feature set. For the evaluation and
comparison of the proposed regression approaches, we use
root mean squared error (RMSE) and the mean absolute
error (MAE). To also derive a measure of how well these
approaches perform when it comes to actually predicting
hit songs, we also present the accuracy values for each
approach. These were computed based on the results of
the regression computation and classifying all tracks with
a predicted ranking of less than 100 as hits and a predicted
ranking larger than 100 as non-hits. However, we consider
this two-class classification an easier task than the regres-
sion task based on the actual ranking. Here, we argue that
the accuracy evaluation allows us to get an intuition on how

7 Manual inspection showed that the release year distribution of the
test- and training datasets are comparable.
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well the regression results may be used to generally distin-
guish hits from non-hits.

To assess the relative importance of feature classes, we
base our evaluation on the following classes, combinations
thereof and the combination of individual features stem-
ming from those classes:

• LL: basic low-level acoustic features as presented in
Section 3.1.

• LL-filtered: a subset of the low-level feature set
that we have identified as highly relevant in our pre-
liminary feature selection experiments 8 . We argue
that pre-selecting a smaller feature set contributes to
both runtime and performance (cf. Section 4.2 for
results).

• chords: chords features as presented in Table 2, ex-
tracted from low-level Essentia features.

• rhythm: rhythm and beat features as presented in
Table 2, extracted from low-level Essentia features.

• HL: all high-level acoustic features, information
about the release year of the track, including the fol-
lowing sub-categories: voice, mood, genre and re-
lease year (cf. Table 2 for details on the contained
features).

Please note that depending on the feature set uti-
lized, we adapt the way we utilize the neural network
accordingly—i.e., for the low-level feature set, we uti-
lize the deep part of the proposed neural network only,
whereas, for the high-level feature set, we utilize the wide
part of the network only and for any combination of high-
and low-level features, we exploit both parts of the full
wide and deep network.

We propose to conduct two experiments to answer our
research questions: Experiment 1 aims to assess the per-
formance of the proposed wide and deep network architec-
ture. Therefore, we utilize the proposed low-level features
in the deep part of the network and the proposed high-level
features in the wide part of the network aiming to show that
the proposed architecture achieves superior results than (i)
a linear regression baseline as well as (ii) utilizing the two
parts of the network individually, relying solely on either
low- or high-level features. Based on the results of Ex-
periment 1, Experiment 2 aims to investigate the relative
importance of individual feature subsets in the wide and
deep neural network. To do so, we experiment with dif-
ferent feature sets (low- and high-level) and compare their
prediction performance.

As baselines to compare our approach to, we chose to
utilize traditional linear regression 9 , which we apply to
the same feature sets.

8 Feature set comprises: dissonance, spectral features (centroid,
spread, skewness, kurtosis, flatness db, flux, rolloff, decrease, energy),
low energy ratio, avg. loudness, barkbands, erbbands, melbands, MFCCs
and HFCs.

9 We experimented with a number of linear regression algorithms (e.g.,
ridge, lasso or elastic net regularization), where linear regression obtained
the best results.

Approach RMSE MAE Acc.

HL (wide) 57.11 48.50 72.08%
LL-filtered+chords+rhythm (deep) 63.94 54.15 65.50%
LL, chords, rhythm (deep) 60.82 52.09 66.94%
HL+LL-filtered+chords+rhythm (wide + deep) 56.05 45.12 74.23%
HL+LL+chords+rhythm (wide + deep) 55.45 43.84 75.04%

HL (baseline) 58.10 50.38 71.01%
LL-filtered+chords+rhythm (baseline) 223.20 57.68 65.97%
LL+chords+rhythm (baseline) 8.54×109 7.92×106 68.47%
HL+LL-filtered+chords+rhythm (baseline) 504.90 52.98 72.56%
HL+LL+chords+rhythm (baseline) 6.41109 5.95×79 73.91%

Table 3. Results for highest rank prediction on full feature
sets. Both the values of RMSE and MAE are the lower the
better; the best results are printed in bold font.

4.2 Results and Discussion

In the following, we discuss the findings of the two exper-
iments conducted.

Experiment 1 aimed to investigate the performance of
the wide and deep parts of the network individually but
also combined in a full wide and deep architecture. Here,
we deliberately include all low- and high-level feature sets
proposed. Table 3 depicts the results of this experiment. As
can be seen, the proposed wide and deep network approach
outperforms the baseline approaches across all evaluation
measures. This approach achieves the lowest RMSE and
MAE values of 55.45 and 43.84 when relying on all low-
level features. Using the filtered set of low-level features
reaches an RMSE of 56.05 and an MAE of 45.21. When
inspecting the results of the network-based approaches that
utilize solely either low- or high-level features (which we
also consider as representative baseline methods), we ob-
serve that utilizing solely high-level features provides us
with reasonable results, suggesting that high-level features
indeed capture the abstract characteristics of songs well. In
contrast, utilizing only low-level features achieves higher
RMSE and MAE values. These observations our initial hy-
pothesis as we find that the combination of low- and high-
level features is indeed able to substantially outperform
approaches utilizing these feature sets individually. The
linear regression baseline approaches in the bottom half
of the table achieve the best results when utilizing solely
high-level features (MAE of 50.38).

When inspecting the accuracy evaluation, we can ob-
serve that the highest accuracy value of 75.04% is achieved
by the proposed network approach, again utilizing both
high- and low-level features. Interestingly, for the linear
regression baselines, while RMSE and MAE values are
substantially higher than our proposed approach, we can
observe that accuracy values are within a reasonable mar-
gin, albeit still lower than the proposed wide and deep ap-
proach. We lead this discrepancy back to the fact that we
assign non-hits a rank of 150. The observed error mea-
sures suggest that the predicted ranks computed by linear
regression are very high, leading to such high error mar-
gins. This is particularly the case when utilizing the full
set of low-level features, holding a substantially higher set
of features and hence, posing a more complex regression
task. However, given the reasonable accuracy results and
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the fact that the regression model indeed seems to capture
the distinction between hit- and non-hit songs well (with a
wide margin between predicted rankings for hits and non-
hits) and hence, can be considered a reasonable baseline.
To conclude and to answer RQ1, our experiments show the
proposed wide and deep neural network-based approach
combining low- and high-level features is a suitable ap-
proach towards hit song prediction.

Experiment 2 aimed to analyze the relative importance
of individual features and classes thereof. Therefore, we
evaluated different feature sets in the proposed wide and
deep network. As the LL basic features have shown to
outperform the filtered set of basic low-level features, we
restrain the results presented here to the full low-level fea-
ture set. Please note that due to space constraints, we only
list the best performing and informative configurations and
their obtained results.

For low-level features (including chords and rhythm
features), we hardly find differences in their performance
(across all combinations with high-level features). Differ-
ences in RMSE and MAE between different feature vari-
ations are very subtle and do not show a clear pattern re-
garding best performing features. We conclude that nei-
ther chords nor rhythm features are particularly pivotal for
hit song prediction. Hence, in the following, we restrain
the presented results to the full set of low-level features
(LL-filtered, chords, rhythm). Table 4 depicts the results
of these analyses.

For high-level features, we can observe that year in-
formation profoundly contributes to the prediction perfor-
mance, improving every experiment by 12–13%, when
added to set of high-level features. This confirms our hy-
pothesis that due to short-lived fashion and trends in the
music industry, embedding songs in their temporal context
by adding release year information allows modeling these
dynamics efficiently for hit song prediction. Furthermore,
we can observe that—along the lines of Demetriou et
al. [5]—voice, mood, and genre features are also important
for this task. Our experiments show that the combination
of high-level features improves RMSE and MAE; the best
results are obtained when utilizing low-level, rhythm, and
chords features in combination with release year, voice,
mood and genre features (hence, the full feature set). In-
specting the performance of single HL features (such as
e.g., mood) in combination with low-level features shows
that year has the highest impact on the evaluation mea-
sures, with genre, mood and voice leading to higher error
measures. Combining those high-level features, however,
allows to substantially increase performance in all evalu-
ated measures. While the differences between these dif-
ferent feature sets are partly subtle, the patterns detected
are stable across all our experiments. To answer RQ2, we
find that the release year information is the most important
high-level feature. Our experiments also show that voice
and mood descriptors contribute to the hit prediction task,
which is in line with previous findings regarding salient
features in regards to whether people like or dislike a song.

Features LL Features HL RMSE MAE Acc.

LL, rhythm, chords year, voice, mood, genre 55.45 43.84 75.04%

LL, rhythm, chords year, genre 55.93 45.80 73.84%
LL, rhythm, chords year, mood 57.12 45.66 73.55%
LL, rhythm, chords year, voice 56.63 46.04 72.04%

LL, rhythm, chords genre 64.14 52.84 65.11%
LL, rhythm, chords mood 61.77 52.82 67.92%
LL, rhythm, chords voice 61.18 52.50 68.00%
LL, rhythm, chords year 57.51 46.35 72.29%

LL, rhythm, chords year, mood, voice 56.22 45.53 74.46%
LL, rhythm, chords year, genre, mood 57.35 45.38 73.63%
LL, rhythm, chords year, genre, voice 56.06 45.66 73.60%

Table 4. Results for highest rank prediction on feature sets
(best results are printed in bold font).

5. LIMITATIONS

We acknowledge that our dataset and our definition of a
successful song are biased towards western, commercial
music. While we believe that this approach is legitimate, it
remains to be shown that our approach can be extended to
other types of music and possibly other characterizations
of success. However, we believe that due to using audio
features, the approach taken is generalizable. Another lim-
itation is the prevalent problem of class imbalance among
hits and non-hits as the current setting does not reflect the
real distribution of classes. We aim to experiment with
unbalanced distributions between hits and non-hits as part
of our future work to perform the evaluation in scenario
that captures the real-world distribution better. Further-
more, our approach takes an internal perspective based on
the audio signal to characterize the track and to predict its
success. Here, we have to acknowledge that this model
naturally does not include any external factors such as in-
formation about the artist (e.g., whether he/she has been on
the charts before), marketing strategies of music labels or
the relation with special events (e.g., songs being played at
Super Bowl).

6. CONCLUSION

In this paper, we have presented a novel approach for the
task of hit song prediction. Particularly, we propose to
combine low- and high-level audio features of songs in a
deep neural network that distinguishes low- and high-level
features to account for their particularities. Our experi-
ments on the Million Song Dataset suggest that the combi-
nation of these two types of features in the proposed net-
work architecture can indeed improve the prediction per-
formance. Furthermore, we find that incorporating the re-
lease year of songs into the wide part of the network allows
for temporally contextualizing songs and hence, reflecting
musical trends and fashions. In addition, we can show that
mood and voice are salient features for this task. Future
work includes experimenting with more complex network
architectures to allow for improved feature selection and
the computation of latent features within the network as
well as analyzing and utilizing those features that distin-
guish hits from non-hits.
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ABSTRACT

This paper focuses on Cover Song Identification (CSI),
an important research challenge in content-based Music
Information Retrieval (MIR). Although the task itself is
interesting and challenging for both academia and indus-
try scenarios, there are a number of limitations for the
advancement of current approaches. We specifically ad-
dress two of them in the present study. First, the num-
ber of publicly available datasets for this task is limited,
and there is no publicly available benchmark set that is
widely used among researchers for comparative algorithm
evaluation. Second, most of the algorithms are not pub-
licly shared and reproducible, limiting the comparison of
approaches. To overcome these limitations we propose
Da-TACOS, a DaTAset for COver Song Identification and
Understanding, and two frameworks for feature extraction
and benchmarking to facilitate reproducibility. Da-TACOS
contains 25K songs represented by unique editorial meta-
data plus 9 low- and mid-level features pre-computed with
open source libraries, and is divided into two subsets. The
Cover Analysis subset contains audio features (e.g. key,
tempo) that can serve to study how musical characteris-
tics vary for cover songs. The Benchmark subset contains
the set of features that have been frequently used in CSI re-
search, e.g. chroma, MFCC, beat onsets etc. Moreover, we
provide initial benchmarking results of a selected number
of state-of-the-art CSI algorithms using our dataset, and
for reproducibility, we share a GitHub repository contain-
ing the feature extraction and benchmarking frameworks.

1. INTRODUCTION

Cover songs play an important role in the history of
recorded music. Weinstein [42] argues that cover songs

c© Furkan Yesiler, Chris Tralie, Albin Correya, Diego F.
Silva, Philip Tovstogan, Emilia Gómez, Xavier Serra. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Furkan Yesiler, Chris Tralie, Albin Correya, Diego F.
Silva, Philip Tovstogan, Emilia Gómez, Xavier Serra. “Da-TACOS: A
Dataset for Cover Song Identification and Understanding”, 20th Interna-
tional Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

are peculiar to rock music, and some iconic early rock
bands, like The Beatles, The Rolling Stones and Led Zep-
pelin, recorded cover songs at the beginning of their ca-
reers. Artists from other genres eventually followed this
trend of reinterpreting recorded musical works. More re-
cently, audio and video online streaming platforms have
given rise to a great volume of fan versions of numerous
original songs, including so-called “Youtube covers”. Cat-
aloguing and tracking cover versions of songs are impor-
tant both from a historical and a legal standpoint, since
there is sometimes a fine line between creative license and
plagiarism [22]. However, this task often requires automa-
tion via content-based MIR strategies due to the explosion
of recordings across many repositories.

Automatic Cover Song Identification (CSI) systems
must contend with the myriad changes of musical facets
that can occur among versions. While cover songs may
share some musical characteristics, such as melody, har-
mony or chord progression, they are not identical musical
works. According to Serrà [28], one can categorize mu-
sical transformations between cover versions into 8 main
groups: timbre (due to production techniques and/or due
to instrumentation), tempo, timing, structure, key, har-
monization, lyrics and noise. Given this, the vast ma-
jority of CSI systems focus solely on the tonal content
[3, 8, 31, 33, 35], a characteristic thought to be least altered
between a song and its cover versions. Such systems work
on top of features which are invariant to these transforma-
tions, incorporating techniques such as beat-synchronous
features [12] to control for changes in tempo, or Optimal
Transposition Index (OTI) [29] to control for changes in
key.

In spite of Serrà’s taxonomy and intuition about what
makes a cover, to our knowledge, there are no large-scale
studies quantifying the extent to which the aforementioned
musical attributes change among cover versions. Further-
more, a variety of CSI algorithms have been designed un-
der different assumptions about what makes a cover, each
with different goals and trade-offs in mind, but the com-
munity lacks a large-scale open source dataset to compare
their performance; the largest benchmark set to date is the
SecondHandSongs dataset (SHS), a subset of the Million
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Song Dataset [4], with 18,196 songs but this contains pro-
prietary features. Motivated by both of these problems,
we propose a new dataset, which we call “Da-TACOS”; a
DaTAset for COver Song Identification and Understand-
ing (Section 3). This dataset consists of 25,000 songs
with a variety of audio descriptors, including low level
features such as frame level HPCPs/MFCCs, beat onsets,
and higher level information such as key, tempo, and audio
tags. We then split our collection of songs into two subsets.
The Cover Analysis subset is used to quantify what makes
a cover by looking at changes in key, local onset deviation,
tempo, rhythm, and audio tag descriptions (Section 4). In
our analyses, we also introduce some tools not previously
seen in the MIR community, such as ShapeDNA [25] and
topological time series analysis [26]. The Benchmark sub-
set is used for detailed benchmarking of a set of represen-
tative CSI algorithms selected across years of work on this
topic (Section 5). After we set the stage with our prelim-
inary experiments, we expect this dataset will enable re-
searchers to continue to explore both the what is a cover
question and benchmarking in more detail.

2. RELATED WORK

Most CSI systems have 3 main building blocks [23]: fea-
ture extraction, feature post-processing, and similarity es-
timation. An extensive review of the traditional cover song
identification systems can be found in Serrà et al. [30]. In
this section, we present a brief overview of these building
blocks, the datasets for this task, and the observed limita-
tions of current approaches.

Traditional CSI systems begin with low level feature
extraction from the audio. The most common audio de-
scriptors used in those systems are Pitch Class Profiles
(PCP), or Chroma features, which represent the tonal con-
tent of songs via the octave-folded energies for each of
the 12 pitch classes used in Western music theory. The
task at hand informs which strategy is chosen, and to im-
prove robustness, different variants of Chroma features
[31,34] were used in the CSI literature for this task. More-
over, many audio descriptors such as pitch salience [27],
chord profiles [16], self-similarity MFCC [39], cognition-
inspired descriptors [2] were also utilized; however, they
suffer from lower performance scores in isolation com-
pared to PCPs.

After the feature extraction, several feature post-
processing steps can be applied to achieve invariances in
several musical facets such as key, tempo and structure.
Key invariance can be obtained using OTI [29] or the 2D
Fourier Transform Magnitude (2DFTM) coefficients of the
tonal features [14]. Beat-synchronous features are used to
achieve tempo invariances [12, 38]. Similarity Matrix Pro-
file (SiMPle) [35], which is a “representation of the simi-
larity join between subsequences”, can be useful to control
for structural invariance or to obtain audio thumbnails of
songs which can be later used to estimate the similarity of
two songs [34].

The final step of this general CSI system framework is
the similarity estimation. For certain representations, e.g.

2DFTM, this step may consist of only a simple distance
function such as Euclidean or Cosine distances. However,
for more accurate smaller scale algorithms, a quadratic
alignment algorithm is often used to obtain tempo or struc-
tural invariance. Since global alignments between versions
don’t often exist in practice, CSI researchers put more em-
phasis on the Local Alignment methods such as Smith-
Waterman algorithm [36] that is designed to detect align-
ments among all possible subsequences by incorporating
local constraints. Depending on these constraints, many
versions of this algorithm were proposed, e.g. Qmax [31]
and Dmax [8]. The longest alignment is taken as the cover
similarity measure/distance generally after normalizing it
to the length of the reference track.

A number of previous works also explored combining
different features and similarity measures to improve their
systems. Salamon et al. [27] combine the distance values
obtained with Qmax for melody, accompaniment and bass
line. Chen et al. [8] use a technique called Similarity Net-
work Fusion (SNF) [41] to integrate the similarity matrices
obtained with Qmax and Dmax for the final similarity esti-
mation. Tralie [38] uses SNF to combine cross-similarity
matrices obtained with using HPCP and MFCC features to
get a final similarity score.

Over the years, new methods were proposed by the MIR
community to solve specific problems of the CSI task;
however, due to the O(N2) complexity of local alignment
algorithms, some have focused on alternative algorithms
that scale better. With the introduction of the SHS dataset
[4], techniques such as audio fingerprinting [3], database
pruning strategies [24] and multi-modal approaches [10]
were also explored in the literature. But the performance
scores of these scalable approaches obtained for SHS were
not satisfactory. Thus, a trade-off between efficiency and
robustness exists in the CSI task as well as in many other
MIR tasks, and the “Holy Grail” algorithm for CSI that is
both scalable and robust is still missing.

Although a large amount of previous works exist for
CSI task, there are only a few public datasets available for
benchmarking. Covers80, released by Ellis [13], contains
80 cliques, or cover groups, with 2 songs per clique. Al-
though small in terms of size, this dataset includes audio
files of the songs, which provides an opportunity for de-
veloping new features or fine-tuning the existing feature
extraction algorithms. The YoutubeCovers dataset [33]
contains 50 cliques with 7 songs per clique, and instead
of audio files, pre-computed Chroma, CENS and Chroma
DCT-Reduced log Pitch (CRP) features are included in this
dataset. SHS is a subset of Million Song Dataset, and it
contains pre-computed features extracted with EchoNest
API 1 for 12960 songs in 4128 cliques for the training sub-
set and 5236 songs in 726 cliques for the test subset [4].
Although comparatively larger in size, SHS comes with
features pre-computed with proprietary algorithms which
makes it impossible to reproduce or even use other audio
descriptors for the CSI task.

Based on the limitations of current CSI systems and dif-

1 http://the.echonest.com/
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ficulty in comparing them, we propose a new dataset, and
public frameworks for feature extraction and benchmark-
ing to give CSI research a uniform direction. Our contri-
butions can be summarized as follows:

• The largest benchmark set with 15,000 songs includ-
ing state-of-the-art audio features for CSI

• The Cover Analysis subset with 10,000 songs for
musicological studies

• First large-scale quantitative analysis on modified
musical characteristics

• Open Source frameworks for feature extraction and
benchmarking specifically created for the CSI task

• Open Source implementations of seven state-of-the-
art systems and their initial benchmarking results

3. DA-TACOS: DATASET FOR COVER SONG
IDENTIFICATION

For facilitating benchmarking and providing a set of anal-
yses regarding links among cover songs, here, we propose
a new dataset for CSI research. Da-TACOS, a DaTAset
for COver Song Identification and Understanding, contains
commercial or live recordings of 25,000 songs that are dis-
tributed into 2 subsets: the Cover Analysis subset and the
Benchmark subset with 10,000 and 15,000 songs, respec-
tively. The song annotations are collected from Second-
HandSongs.com 2 , and are licenced under Creative Com-
mons BY-NC 3.0 3 . Metadata for each song includes song
title, name of the performer, original song title, name of
the original writer and release year.

We have also matched the original metadata with Mu-
sicBrainz 4 [37] to obtain the MusicBrainz ID (MBID),
length and genre tags. Most songs belong to rock, pop,
metal and jazz genres. The average length of songs in the
dataset is 3.59 minutes.

Along with the metadata, we share low- and mid-level
features pre-computed with open source feature extraction
libraries from MIR community; a comprehensive list can
be found in Table 1. To increase the reliability of our re-
sults and assist future works, we share a common feature
extraction framework, with which we obtained the feature
values, in our GitHub repository.

In particular, Da-TACOS addresses two needs of the
current state of CSI research. First, in Section 2, we men-
tioned the difficulty of benchmarking CSI systems, and
with this dataset, we take a step toward tackling this chal-
lenge. We provide a large set of pre-computed features
that have been constantly used in CSI research, and we
provide initial benchmarking results of a selected number
of state-of-the-art CSI systems. Second, to our knowledge,
our benchmark subset is the largest dataset to date for com-
paring the performances of CSI systems. We see this as an
opportunity to scale up CSI research to discover methods
that are more likely to be used in real world scenarios. We

2 http://secondhandsongs.com
3 https://creativecommons.org/licenses/by-nc/3.0/
4 https://musicbrainz.org

Benchmark Cover Analysis
HPCP Essentia [7]
MFCC ""
Key ""
CENS Librosa [21]
Tempogram ""
Beat Onsets Madmom [5]
Tempo ""
CREMA CREMA [18]
Auto-tagger Choi et. al [9]

Table 1. List of features provided in each subsets of Da-
TACOS and the related feature extraction libraries used.

believe that having a large dataset for benchmarking will
have a positive effect on the direction of future research
for this task.

3.1 The Cover Analysis subset

Our first subset is dedicated to a series of analyses to un-
derstand the changes in musical characteristics when a new
version of a song is created. This subset includes 10,000
songs in 5,000 cliques, a pair of cover songs for each
clique. Out of all songs, we were able to match 6,821 songs
with a MBID. The information regarding feature extraction
and results of our analyses can be found in Section 4.

3.2 The Benchmark subset

The second subset of Da-TACOS is designed for bench-
marking purposes. This subset includes total of 15,000
songs: 13,000 songs in 1000 cliques with 13 songs each,
and 2,000 songs that do not belong to any clique, acting
as noise in the data. For this subset 10,027 songs have
MBIDs, and an initial benchmark of a selected set of CSI
systems can be found in Section 5.

4. WHAT IS A COVER?

In this section, we exploit the features to explore the fre-
quency and intensity of a subset of Serrà’s [28] posited
changes between cover versions. The analyses below are
performed on the Cover Analysis subset of Da-TACOS.
While key and tempo are straightforward to compare, we
devise custom distance measures to compare timing, struc-
ture, and semantic aspects, e.g. instrumentation, genre. In
these latter cases, we compare distributions of the corre-
sponding distances between true cover pairs in this subset
to all other non-cover pairs in the subset. To quantify the
extent to which the true cover and non-cover distributions
differ in these cases, we report the 2-sample Kolmogorov-
Smirinov (KS) score, with its associated p-value, which in-
dicates the statistical significance of the difference between
two distributions.

4.1 Results

4.1.1 Key

Using a key estimation algorithm [15], we considered all
pairs with both songs exceeding a confidence of 0.75,
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Figure 1. (Left) Distribution of halfsteps between key es-
timates for cover pairs with a reported key change. (Right)
Distribution of tempo ratios between cover pairs.

which was 4288/5000 pairs. Among these, 69.3%, were
reportedly in a different key. The distribution of said half-
step shifts is shown in Figure 1. Thus, the use of OTI in
many CSI algorithms is justified. One caveat is that the
key estimation algorithms report a single estimate which is
either major or minor. Under this scheme, the key estima-
tion algorithm reported that 17.5% of the pairs shifted from
major to minor. However, upon spot checking, it was clear
that many of these examples either switched keys at differ-
ent times, or they were in modes beyond major and minor.
In the absence of more sophisticated algorithms, expert ear
trained individuals would be needed to determine how of-
ten changes beyond simple transpositions occur.

4.1.2 Tempo

We now examine tempo ratios between cover pairs by
picking out the tempo with the maximum confidence from
a state-of-the-art tempo estimator [6]. The right of Fig-
ure 1 shows the results. There is a slight peak around 2
which is likely due to “octave errors” from pieces which
can be subdivided into 4/4. Beyond that, at the first quar-
tile is a 1.03x change in tempo, in the second quartile is a
1.11x change in tempo, and in the third quartile is a 1.53x
change in tempo. Thus, half of the songs are quite stable,
but in the 50-75% quartile, we have a fair number of songs
with a significant tempo change which can’t easily be ex-
plained by a direct tempo doubling mistake, and which are
likely “real.” Hence, tempo is often a factor which needs
to be controlled for when analyzing cover versions.

4.1.3 Structure

One particularly successful approach to multiscale music
structure analysis uses eigenvectors of the Graph Lapla-
cian, or “spectral clustering” [19]. While one can compare
agreement of this technique to that of human annotators
on the same piece of music [18], this representation does
not immediately extend across versions of songs. We in-
stead use the eigenvalues of the Graph Laplacian, which
we stack up into a Euclidean vector which can be compared
across songs. This has been referred to as “Shape DNA” in
the context of 3D shape analysis of triangle meshes [25].
In our case, we use feature fused SSMs [40] downsam-
pled to a common dimension of 256×256, followed by 30

eigenvalues of a random walk Laplacian.

Figure 2. An example of fused similarity matrices of
“The Wizard” by Uriah Heep (upper left), a cover by Blind
Guardian (lower left), and “Million Pieces” by The Piano
Tribute Players (upper right), which is unrelated. The cor-
responding Shape DNAs are shown in the lower right.

Figure 2 shows an example of Shape DNA between a
pair of covers and a third, unrelated song. Even though
the cover pairs’ similarity matrices do not align perfectly
and contain other variations, their shape DNAs are close,
while they are both different from an unrelated song with
a different structure. Figure 3 shows the distributions of
shape DNA differences between true cover and non-cover
pairs. The KS score between the two distributions is 0.22
(p � 0.001), indicating that while large structural changes
do occur between cover versions (e.g. added/deleted sec-
tions), it is overall more likely for cover songs to share
structure than random pairs of songs.

Figure 3. Distributions of shape DNA differences between
pairs of songs as a means of assessing structural changes.

4.1.4 Timing

We now turn to timing, which we define as local changes
in tempo over time. We first extract N beat onset estima-
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Figure 4. An example of r[t] functions and their associ-
ated persistence diagrams for the song “24 Hours” by Joy
Division and Versus. Both songs speed up in the chorus
and slow down in the verse, so they each contain several
local mins with high persistence which are born during the
verses. They each also contain some low amplitude wob-
bling which shows up as dots near the diagonal.

tion times b[t], t = 1, 2, . . . N using the technique of Krebs
[17], down to a resolution of 10 milliseconds. We then
extract unit-less local tempo estimates by convolving b[t]

with a Gaussian derivative b′[t] = b[t] ∗ (−te−t
2/2), fol-

lowed by a sliding window average of width 20 to smooth
out noise. Finally, we divide b′[t] by its median to obtain
a relative, tempo-normalized local tempo deviation r[t];
r[t] > 1 if a song has sped up locally, and r[t] < 1 if it
has slowed down locally.

The left column of Figure 4 shows r[t] for two dif-
ferent versions of the same song. Note the multi-scale
features of r[t], from small wobbles in tempo to large
changes that persist over a section. To capture all scales
in one distance measure which can tolerate missing beats
and added/deleted sections, we turn to the “lower star fil-
tration,” a watershed method from topological data analy-
sis [11]. This summarizes a time series in a “persistence di-
agram” 5 (PD). This has been used, for instance, on speed
time series of drivers to quantify driving behavior [26].

The right column of Figure 4 shows PDs for the r[t]
functions for an example cover pair, with the birth and
death values of the points with 4 largest “persistence”
(death-birth) marked. To compare PDs between two differ-
ent songs, we use persistence images [1], which transform
a diagram into birth-persistence space and place a Gaus-
sian over each point, whose magnitude is proportional to
the persistence. Figure 5 shows the distributions of Eu-
clidean distances between peristence images for true cover

5 A multiset of points whose x-coordinates correspond to local mins
where pools of water form as water rises from bottom to top (“birth
events”), and and whose y-coordinates correspond to local maxes paired
to these mins where two pools merge together (“death events”)

Figure 5. Distribution of persistence image distances of
lower star filtrations relative tempo functions between pairs
of songs.

Figure 6. Distributions of f-measures for auto tagging for
true cover pairs and non-cover pairs.

pairs and non-cover pairs. Though the distributions are
quite similar, the KS score is 0.095 (p � 0.001), indicating
that though relative timing can be different (as evidenced
by Figure 4 where one song speeds up more in the chorus
relative to the other), the difference is less for covers than
for random pairs.

4.1.5 Semantic Aspects

To analyze semantic aspects of the songs such as mood,
instrumentation and “genre” without explicitly defining
them, we turn to auto tagging techniques of Choi et al. [9]
which use log-mel spectrograms as input to return a set of
tags which qualitatively describe the songs. Since the auto
tagger returns many tags with low confidence, we only take
tags which are in the 90th percentile over all confidences,
which is a confidence value of 0.062. If p is the fraction
of tags in song A contained in the set of tags for song B,
and r is the fraction of tags in song B contained in the tags
for song A, then the f-measure between two songs is de-
fined as 2pr/(p + r), which is 1 if they are in complete
agreement and 0 if they have nothing in common. Figure 6
shows the distribution of f-measures between true cover
and non-cover pairs. While the distributions are overall
quite similar, the f-measures are skewed slightly lower for
non covers. The KS score between the two distributions is
0.118 (p � 0.001), indicating these two distributions are

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

331



different by more than chance; thus, we can conclude that
although less frequent than between two random songs,
stylistic changes occur between cover pairs.

5. BENCHMARKING

As mentioned in Section 3, Da-TACOS contains a bench-
mark subset of 15,000 songs for comparative algorithm
evaluation. In this section, we present the results on seven
different state-of-the-art algorithms on this data. To the
best of our knowledge, this is the first work comparing
these algorithms for CSI on a publicly available, large-
scale dataset with features obtained with open source al-
gorithms.

5.1 Methodology

One of the main limitations of current CSI research is the
lack of a public framework to compare the performance of
different systems. We acknowledge that the audio cover
song identification task in the Music Information Retrieval
Evaluation eXchange (MIREX) 6 addresses this. However,
MIREX data is not publicly available, and it restricts the
evaluation to a limited time window per year. According to
the results from previous MIREX, [32] is still an algorithm
which may be considered in the state-of-the-art CSI sys-
tem. We chose to benchmark six other unsupervised algo-
rithms which more recently presented good results on CSI
for comparison in this competition [8,14,31,35,38,39]. In
their original implementations, these algorithms differ with
the features used, a large scale or small scale design goal,
their ability to combine distance measures or fusing more
than one feature set [8, 38], exploitation of network struc-
ture of songs [8, 38], the application of beat-synchronous
features [14, 38, 39], or a combination of these properties.
In our work, we have the opportunity to control for imple-
mentation details that can greatly impact performance [20]
both by sharing features across all algorithms, and by using
common implementations of some sub-algorithms, includ-
ing OTI, Similarity Network Fusion (SNF) [41] (for [38]
and [8]), and QMax alignment [31].

5.2 Results

The empirical evaluation of CSI algorithms is another
point in which published papers differ greatly. Com-
monly, different authors use different subsets of evalua-
tion measures. For this reason, we used a large number
of evaluation measures assessing the results, namely Mean
Rank (MR), Mean Reciprocal Rank (MRR), Median Rank
(MDR), Mean Average Precision (MAP), and the counting
of correctly identified versions in top 1 and top 10.

In addition to using HPCPs as Chroma features for all
the algorithms, we also use CREMA chord model features
[18], sampled at the same rate, as a drop-in replacement
for Chroma on all algorithms.

Table 2 presents the results obtained by all the algo-
rithms considered in our evaluation, with a simplified ver-

6 https://www.music-ir.org/mirex/wiki

sion of Tralie’s early fusion [38] which uses a weighted
average in the early fusion stage instead of SNF for speed.

MR MRR MDR MAP Top 1 Top 10

FTM2D [14] H 207 0.314 15 0.126 3954 6131
C 155 0.523 1 0.275 7185 9072

Simple [35] H 358 0.362 13 0.165 4916 6361
C 142 0.555 1 0.332 7739 9391

Dmax [8] H 155 0.562 1 0.292 7939 9320
C 134 0.571 1 0.322 7981 9611

LateFusion [8] H 210 0.604 1 0.410 8761 9880
C 177 0.621 1 0.454 8897 10223

Qmax [31] H 119 0.606 1 0.333 8630 9931
C 113 0.611 1 0.365 8625 10212

Qmax* [32] C 104 0.619 1 0.373 8766 10246
SSM [39] M 434 0.273 39 0.096 3540 5139

EarlyFusion [38] H 116 0.680 1 0.426 9843 10861
C 120 0.672 1 0.416 9667 10829

Table 2. Performance statistics of all algorithms. H stands
for HPCP, C for CREMA and M for MFCC.

Overall, we find the CREMA improves results over
HPCP, which suggests an adoption of CREMA for future
research. We are particularly surprised at how well the
large-scale FTM2D algorithm performs with CREMA.

6. CONCLUSION

In this work, we have presented a new public dataset, Da-
TACOS, for analyzing how a number of musical facets
vary among cover songs and benchmarking CSI systems.
Our “what is a cover” analysis takes Serrà’s [28] categories
of modifiable musical characteristics as a basis, and the
results demonstrate large variations between cover pairs
across all of the aspects we examined, which supports
Serrà’s claims on the subject. However, the same analyses
among non-cover pairs show a larger variation than cover
pairs, and this can be interpreted as there are some links
remaining among cover songs.

Moreover, we created a framework that includes open
source implementations of seven state-of-the-art unsuper-
vised CSI algorithms to facilitate the future work in this
line of research. Using this framework, researchers can
easily compare existing algorithms on different datasets,
and we encourage all CSI researchers to incorporate their
algorithms into this framework in order to support Open
Science principles. Our feature extraction and benchmark-
ing frameworks as well as instructions to can be found in
our GitHub repository 7 .

Our future work includes constructing several other
subsets based on various characteristics of songs (e.g. sub-
sets based on genre and release year), as well as training
sets for supervised algorithms, to identify the further needs
of CSI research. We believe that a better understanding of
the relationships among cover songs is valuable both for
musicological aspect of this line of research and for ad-
vancing the state of the art in CSI research.

7 https://github.com/furkanyesiler/acoss
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ABSTRACT

Music is hierarchically structured, both in how it is per-
ceived by listeners and how it is composed. Such struc-
ture can be elegantly captured using probabilistic gram-
matical models similar to those used to study natural lan-
guage. They address the complexity of the structure us-
ing abstract categories in a recursive formalism. Most
existing grammatical models of musical structure focus
on one single dimension of music–such as melody, har-
mony, or rhythm. While these grammar models often work
well on short musical excerpts, accurate analysis of longer
pieces requires taking into account the constraints from
multiple domains of structure. The present paper pro-
poses abstract product grammars–a formalism which in-
tegrates multiple dimensions of musical structure into a
single grammatical model–along with efficient parsing and
inference algorithms for this formalism. We use this model
to study the combination of hierarchically-structured har-
monic syntax and hierarchically-structured rhythmic in-
formation. The latter is modeled by a novel grammar of
rhythm that is capable of expressing temporal regularities
in musical phrases. It integrates grouping structure and
meter. The combined model of harmony and rhythm out-
performs both single-dimension models in computational
experiments. All models are trained and evaluated on a
treebank of hand-annotated Jazz standards.

1. INTRODUCTION

Music is hierarchically organized, which is probably most
evident in the structure of harmonic sequences. Grammat-
ical models of music describe both local and non-local re-
lations between musical objects such as notes or chords
by assuming a latent hierarchical structure. Originally
inspired by Schenkerian analysis and generative linguis-
tics [9], grammatical models have been used in music the-
ory [14, 19, 24, 25], computational musicology [1, 5, 6, 13,
16, 27], music information retrieval [3, 4, 12, 18, 26], and
increasingly also music psychology [7, 20]. Consider for

c© Daniel Harasim, Timothy J. O’Donnell, Martin
Rohrmeier . Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Daniel Harasim, Timothy J.
O’Donnell, Martin Rohrmeier . “Harmonic Syntax in Time Rhythm Im-
proves Grammatical Models of Harmony”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

example the Jazz chord sequence C6 D7 Dm7 G7 C6 of the
A-part of the Jazz standard Take the A-Train. A hierarchi-
cal analysis of this sequence is shown in Figure 1a. The
progression D7 Dm7 G7 forms a dominant phrase inside
the tonic phrase C6 D7 Dm7 G7 C6, exhibiting a non-local
harmonic relationship between the chords D7 and G7. The
nesting of the phrases moreover illustrates the idea of how
pieces can be decomposed into hierarchically-structured
constituents (subtrees) which stand in part-whole relation-
ship with one another [6]. Figure 2 displays a typical case
of a non-local harmonic relation in Jazz harmony.

To analyze hierarchical harmonic structures, music the-
orists make use of many additional structural features such
as melody, rhythm, voice-leading, and form, for disam-
biguation. From this perspective, the latent harmonic
structure of a piece cannot be fully inferred from sequences
of chord symbols alone. Most existing grammatical mod-
els of harmony, however, do not take these other domains
of musical structure in account. In this paper, we propose
a novel formalism that combines models of different musi-
cal features. The mathematical idea is similar to Coupled-
context-free Grammars [17]. We extend that approach by
a probabilistic model and apply the general construction to
improve models of harmonic syntax by incorporating har-
monic rhythm.

1.1 Problem Setting

Existing grammatical models of harmony typically do not
capture how harmonic structure is laid out in time [21],
as shown in Figure 1a. This analysis captures informa-
tion such as the dependencies between different kinds of
musical phrase (tonic, dominant, subdominant), ordering,
and hierarchical constituency, but contains no information
on the duration of chords. This paper extends models of
harmonic syntax to include rhythmic structure illustrated
in Figure 1b. This figure shows how the musical phrases
in Figure 1a are laid out in time by progressively assign-
ing constituents to a metrical grid consisting of eight mea-
sures. The inclusion of the metrical domain reveals previ-
ously hidden structure. In the first step, the root of the har-
monic tree is assigned to the entire eight bars. In the sec-
ond step, the tonic phrase is split into equal halves which
are assigned to bars 1-4 and bars 5-8 of the metrical grid.
In the third step, the second half of the piece is split into
equal halves, introducing a V in the first part of the split
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and limiting the tonic scale degree to the second part. The
fourth step, in contrast, splits the first half (measures 1–
4) into two and assigns the second half of this split to the
second half of the progression (measures 5–8). Measures
3 and 4 are said to be a harmonic upbeat to measures 5
and 6. In the following, we present an integrated model
of harmony and phrase rhythm [22] that accounts for the
structural differences of the steps three and four. Note that
we therefore assume the existence of hypermeter, the ex-
tension of metrical structures within a single measure to
relations between measures [11].

We propose an approach that models the upbeat and the
downbeat of harmonic constituents separately. Figure 1c
shows a hierarchical analysis integrating harmonic syntax
and harmonic rhythm. In this notation, the durations of
upbeats are separated from the durations of downbeats by
the symbol ⊕. The symbol 	 is used to indicate the “time
stealing” from generation step 3 in Figure 1b.

2. GRAMMATICAL MODELS

2.1 Abstract Context-Free Grammars

The following two definitions are adopted from [6], where
further explanation and examples can be found.

A (non-probabilistic) Abstract Context-free Grammar
G = (T,C,C0,Γ) consists of a set T of terminal symbols,
a set C of constituent categories, a set of start categories
C0 ⊆ C, and a set of partial functions

Γ := { r | r : C 7→ (T ∪ C)∗ } , (1)

called rewrite rules or rewrite functions. The arrow 7→ is
used throughout the paper to denote partial functions and
dom(r) denotes the set of arguments for which a partial
function r is defined. A sequence β ∈ (T ∪ C)∗ can be
generated from a sequence α ∈ (T∪C)∗ by one rule appli-
cation of a rewrite function r ∈ Γ, denoted by α −→r β,
if there exist α1, α2 ∈ (T ∪ C)∗ and A ∈ C such that
α = α1Aα2 and β = α1r(A)α2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals α ∈ T ∗ if there exists a start category α1 ∈ C0, and
α2, . . . , αn ∈ (C ∪ T )∗ such that

α1 −→r1 α2 −→r2 · · · −→rn α, (2)

where ri is always applied to the leftmost category of αi
for i ∈ { 1, . . . , n− 1 }. The set of derivations of α is
denoted by D(α). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

A Probabilistic Abstract Context-free Grammar is an
Abstract Context-free Grammar where each category A ∈
C is associated with a random variable XA over rewrite
functions r such that the probability P(XA = r) is positive
if and only if r(A) is defined, that is A ∈ dom(r). In the
following, we also use the notation p(r | A) = P(XA = r)
and p(A −→r α) = P(XA = r) 1(r(A) = α). The prob-
ability p(d) of a derivation d = r1 . . . rn of a sequence
of terminal symbols α ∈ T ∗ is defined as the product∏n
i=1 P(ri | Ai) where in each step ri is applied to a cat-

egory Ai ∈ C. The probability of α is then defined as
p(α) =

∑
d∈D(α) p(d).

I

I

I

C6

V

V

V

G7

II

Dm7

V/V

D7

I

C6

(a) Generative syntax tree of the harmonic structure. The leafs of
the tree are the chord symbols of the A-part. The internal nodes
show scale degrees with respect to C major as latent categories.
Subtrees form harmonic constituents. The nested structure of the
subtrees shows how complex constituents are build from simpler
constituents [6].

1: | I | | | | | | | |

2: | I | | | | I | | | |

3: | I | | | | V | | I | |

4: | I | |V/V | | V | | I | |

5: | I | |V/V | | II | V | I | |

6: |C6 | |D7 | |Dm7 |G7 |C6 | |
(b) Schematic generation of the chord sequence including their
metrical positions. Each row consists of 8 measures and shows
one step in the generation process. Chords are tied over follow-
ing “empty” measures. The third and the fourth step show the
two basic kinds of harmonic preparation with respect to their
metrical placement. In step three, the preparation of the I by
the V pushed the I back by two measures while in step four, the
preparation of V by V/V protrudes into the time domain of the
preceding I.

I(1)

I
(

1
4 ⊕

1
2

)
I
(

1
4

)

C6
(

2
8

)

V
(

1
4 ⊕

1
4

)
V
(

1
4

)
V
(

1
8

)
G7
(

1
8

)II
(

1
8

)
Dm7

(
1
8

)
V/V

(
1
4

)

D7
(

2
8

)

I
(

1
2 	

1
4

)

C6
(

2
8

)
(c) Generative syntax tree of the harmonic structure with inte-
grated rhythmic information. The numbers in parentheses de-
note the duration of the constituents relative to the whole pro-
gression. The branch I(1) −→ I( 1

2
	 1

4
) I( 1

4
⊕ 1

2
) is an in-

stance of a split that anticipates the upbeat preparation of G7 by
D7. Because of a 2 measures long upbeat, the left child is 2 mea-
sures shorter and the right child is 2 measures longer than in a
preparation without an upbeat.

Figure 1: Hierarchical analysis of the A-part of the Jazz
standard Take the A-Train in C major, considering the
structural domains of harmony and rhythm.
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I(16)

I(2⊕8)

I(2)

C4(2)

V(2⊕6)

V(2⊕2)

V(2)

V

G7(1)

II

Dm7(1)

V/V(2)

V/V(1)

D7(1)

II/V(1)

Am7(1)

[II/V(2⊕2)

[II/V(2)

A[4(2)

V/[II/V(2)

Bm7 E7 B[m7 E[7

I(8	2)

I(2⊕2)

I(2)

C4(2)

[VII(2)

[VII(1)

B[7(1)

IV(1)

Fm7(1)

I(2	2)

C4(2)

Figure 2: Hierarchical analysis of the Jazz standard Half Nelson, integrating harmonic and rhythmic structure. In this tree,
a duration of 1 corresponds to one measure for the sake of readability (the whole tune spans 16 measures). The non-local
dependency between the chords A[4 and G7 constitutes a characteristic harmonic relation of the tune.

2.2 Product Grammars

This paper proposes to improve generative grammar mod-
els of harmony by forming a product of a harmony gram-
mar and a rhythm grammar.

Let G = (T,C,C0,Γ) and G′ = (T ′, C ′, C ′0,Γ
′) be

two PACFGs and let ar(r) denote the arity of a rule r,
which is defined as the length of its right-hand side. The
product grammar

G ./ G′ = (T × T ′, C × C ′, C0 × C ′0,Γ ./ Γ′) (3)

is constructed from the Cartesian products of the sets of ter-
minals, categories, and start categories. The rewrite func-
tions of G ./ G′ are all pairs of functions of equal arity,

Γ ./ Γ′ = { (r, r′) ∈ Γ× Γ′ | ar(r) = ar(r′) } . (4)

For a product category (A,A′) ∈ C×C ′ and rewrite func-
tions r ∈ Γ and r′ ∈ Γ′ of equal arity, the application of
(r, r′) to (A,A′) is defined component-wise,

(r, r′)(A,A′) = (r(A), r′(A′)). (5)

By abuse of notation, the right-hand side of this equation
does not stand for a pair of sequences, but a sequence of
pairs. The probability of a product rule application is de-
fined as the product of the probabilities of the rule applica-
tion components,

p((r, r′) | (A,A′)) = p(r | A) p(r′ | A′). (6)

That is, the choice of rule r is set to be independent of A′

and r′, and the choice of r′ is independent of A and r in
the generative process.

A helpful intuition of product grammars is that they
compute the intersection of two sets of derivation trees for
a sequence. The derivation trees of the grammar G ./ G′

are exactly those which are derivations in both G and G′

if the labels of the trees (terminals and categories) are ig-
nored. The probability of a derivation in G ./ G′ is then
also equal to the product of its corresponding derivations
in G and G′.

2.3 Rhythm Grammar

2.3.1 Full Rhythm Grammar

A rhythmic category a ⊕ b consists of two rational num-
bers a ∈ Q and b ∈ Q such that 0 ≤ a, 0 < b, and
a+ b ≤ 1. The first number a is called the upbeat and the
second number b is called the downbeat of the category.
The intuition behind the symbol ⊕ is that the total length
of a rhythmic category equals the sum of its two compo-
nents, λ(a ⊕ b) := a + b, where λ is the function that
denotes the length of the rhythmic constituent as a pro-
portion of the overall piece, which is fixed to be the unit
1 ∈ Q. The condition 0 ≤ a forbids negative upbeat parts,
0 < b ensures positive category lengths, and a + b ≤ 1
ensures that no category is longer than the whole piece.
For convenience, we use two additional short-hand nota-
tions: a category with no upbeat is denoted by the length
of its downbeat, b = 0 ⊕ b. The category of a rhythmic
constituent that loses a portion c of its downbeat (formerly
with length b) to the upbeat of the following rhythmic con-
stituent is denoted by b 	 c := 0 ⊕ (b − c). In this case
λ(b	 c) = b− c, too.

The start category of the rhythmic grammar is 1, the
length of the piece, and any category with zero upbeat
is allowed to be a terminal (leaf node). The essential
grammar rules are given by two families of rewrite func-
tions, one family of partial functions for splitting the up-
beat components of categories usplitv : C 7→ C∗ and
one family of total functions for splitting the downbeats
dsplituv : C → C∗,

usplitu(a⊕ b) := ((1− u)a⊕ ua) (0⊕ b)
(7)

dsplitvw(a⊕ b) := (a⊕ (1− v − vw)b) (vwb⊕ wb),

where u, v, w ∈ Q such that 1
2 < u ≤ 1 and a > 0 in

the first equation, and 0 ≤ v < 1 and 0 < w < 1 in the
second equation. The parameter u represents the downbeat
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proportion of the upbeat, v is the upbeat proportion of the
second category of a downbeat split, andw is the downbeat
proportion of the second category of a downbeat split.

In other words: The upbeat split rule usplitu sepa-
rates the upbeat from the downbeat and optionally splits
the upbeat again into a new upbeat and downbeat. For ex-
ample for u = 1 and u = 2

3 :

1
4 ⊕

2
4

2
4

1
4

3
8 ⊕

4
8

4
8

1
8 ⊕

2
8

and

In contrast, the downbeat split dsplitvw ignores the up-
beat and splits the downbeat. It optionally introduces a
new upbeat preparation. For example for v, w = 0, 1

2 and
v, w = 1

2 ,
1
2 :

1
4 ⊕

2
4

1
4

1
4 ⊕

1
4

1
4 ⊕

2
4

1
8 ⊕

1
4

1
4 ⊕

1
8

and

One rule unary(a⊕b) := a⊕b is added to the grammar
to ensure compatability with grammars that use rewrite
rules of arity one.

The probability of a rhythmic rewrite functions does not
depend on the particular rhythmic category that it rewrites,
but only on whether or not the category has an upbeat of
length zero. This enables a maximal sharing of probability
mass by preserving consistency with the constraints of the
rewrite rules. More precisely,

1 = p(unary | a⊕ b) (8)

+
∑

1
2<u≤1

p(usplitu | a⊕ b)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | a⊕ b)

for a > 0 and

1 = p(unary | 0⊕ b) (9)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | 0⊕ b).

For practical applications, the parameters u, v, and w are
limited to a finite set of rational numbers to put a proper
normalized prior on the rule distributions.

2.3.2 Simplified Rhythm Grammar

For comparison, we additionally consider a simplified ver-
sion of the rhythm grammar presented above which does
not explicitly model upbeats. The rhythmic categories
and the terminals of this grammar are rational numbers
0 < a ≤ 1 representing constituent durations relative to
the full piece. Apart from the technical unary rule, the rules
of the grammar form a family of total rewrite functions

splits(a) := (sa) (a− sa). (10)

The parameter 0 < s < 1 is called the temporal split ratio
of the rule. The probabilities of the rewrite rules are set to

be independent from the category they rewrite. Therefore,

1 = p(unary) +
∑
a∈Q

p(splita). (11)

2.4 Harmony Grammar

The harmony grammar used in this paper is a standard
probabilistic context-free grammar (Σ, N, S,R) in Chom-
sky normal form. It consists of a set Σ of chord sym-
bols as terminal symbols, a set of copies of chord symbols
N as non-terminal symbols, a distinguished start symbol
S ∈ N , and a set of standard rewrite rules

R ⊆ {A −→ B1 B2 | Bk ∈ N,A = B1 or A = B2 } .

In particular, rules of the form A −→ A A are included by
this definition. Each non-terminal symbol A is also asso-
ciated with a random variable XA over rewrite rules that
have A as their left-hand side. The symbols, rules, and
parameters of the grammar are read from dataset of tree
annotations described in the next section.

Note that since every rewrite rule of a standard context-
free grammar can be interpreted as a partial function with
a singleton domain,

dom(A −→ α) = {A } for all α ∈ (Σ ∪N)∗, (12)

every standard context-free grammar is also an Abstract
Context-free Grammar and can be used in the product
grammar construction.

3. DATASET

This study uses a dataset of 75 hand-annotated tree analy-
ses of Jazz chord sequences from the iRealPro dataset [23].
The tree annotations were performed by the authors and a
student assistant. Each chord sequence is annotated with a
single binary tree that spans the whole piece. In contrast to
the introductory examples of this paper, the internal nodes
of each tree in the data are not labeled by scale degrees
but chord symbols. depth one subtrees corresponds to a
rule of the grammar described in the previous section. Fig-
ure 3 shows the absolute frequencies of the 20 most fre-
quent harmonic rewrite rules from the dataset, after each
sequence was transposed to the root of C. Rules of the
form A −→ A A, called prolongation rules, and rules
of the form A −→ B A for A 6= B, called preparation
rules, are the most used rule schemes.

The dataset additionally includes the length of each
chord in quarter notes. The chord durations of each piece
are divided by the total duration of the piece. From
the chord durations and the harmonic tree annotations,
the duration of each constituent (subtree) can be calcu-
lated automatically as shown in Figure 4. The temporal
split ratios of the rule applications–as introduced in Equa-
tion 10–are then in turn calculated from the durations of
the constituents. Consider for example the rule application
G7( 5

32 ) −→ F4( 2
32 ) G7( 3

32 ) from Figure 4. Its temporal
split ratio is 2

5 .
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Figure 3: Absolute frequencies of the 20 most frequent
harmonic rewrite rules of the tree annotations. All se-
quences are transposed to the common root C. Major-
seventh chords are denotes as Cˆ7 and A[ˆ7.

C6( 8
32 )

C6( 7
32 )

C6( 2
32 )G7( 5

32 )

G7( 3
32 )

G7( 2
32 )F]∅7( 1

32 )

F4( 2
32 )

F4( 1
32 )C7( 1

32 )

C4( 1
32 )

Figure 4: Tree annotation of the last chords of St. Thomas.
Chord durations are shown relative to the total duration of
the tune, 2

32 corresponds to one measure. The durations of
the inner nodes are calculated automatically.

Figure 5: Absolute frequencies of the 10 most frequent
split ratios of annotated tree constituents. The split ratio
of a binary rewrite rule is defined as the time proportion
of the left child. The y-axis is plotted using a logarithmic
scale.

The 10 most frequent temporal split ratios are shown in
Figure 5. The split ratio 1

2 is by far the most frequent one.
Most of the remaining ratios can be expressed either as
n−1
n or as 1

n for some n ∈ N. The former arise for example
from chains of descending fifths or applied dominants that
accumulate time step by step in the temporal order of the
piece. The latter arise from upbeat preparations that can
be understood using the rhythmic categories described in
Section 2.3.1. Two rhythmic rewrite rules that explain a
split ratio of 1

n are
(
n
m

)
−→

(
n
2

m 	
n
2−1

m

) (
n
2−1

m ⊕
n
2

m

)
and

(
1
m ⊕

n−1
m

)
−→

(
1
m

) (
n−1
m

)
, where m ∈ N. The

former results from a downbeat split with w = 1
2 and the

latter results from an upbeat split with u = 1.

4. PARSING WITH PRODUCT GRAMMARS

A naive approach to parsing against a product grammar
would enumerate all product categories and memoize the
inverted rewrite rules on these categories. In this section,
we show how the inefficient blow-up of the number of cat-
egories can be avoided using the independence assumption
of Equation 6.

Consider an Abstract Context-Free Grammar in Chom-
sky normal form. The standard CYK algorithm–here used
to calculate the probability of a sequence of terminals
w ∈ T ∗ of length n, indexed from 0 to n − 1–can be for-
mulated recursively by the equations

p(A, i, i) =
∑
r∈Γ

p(A −→r wi) (13)

and

p(A, i, j) (14)

=

j−1∑
k=i

∑
r∈Γ

p(A −→r B1 B2)p(B1, i, k) p(B2, k + 1, j)

where A,B1, B2 ∈ C and i, j ∈ N such that 0 ≤ i < j ≤
n − 1. The probability of the sequence is then given by
p(w) =

∑
A∈C0

p(A, 0, n− 1).
Given a product grammar G ./ G′, a sequence of prod-

uct terminals can be parsed utilizing Equation 6,

p((A,A′), i, i) =
∑

(r,r′)∈Γ./Γ′

p(A −→r wi) p(A
′ −→r′ w

′
i)

(15)

and

p((A,A′), i, j) =

j−1∑
k=i

∑
(r,r′)∈Γ./Γ′

p(A −→r B1 B2)

(16)

p(A′ −→r′ B
′
1 B
′
2)p((B1, B

′
1), i, k) p((B2, B

′
2), k + 1, j)

It is therefore sufficient to parse the component grammars
individually at each step. In other words, the combined
grammar is computed on-the-fly to achieve efficiency.
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5. EXPERIMENTS

We compare four product grammars that integrate har-
monic and rhythmic structure. Additionally, we report the
performances of their single-domain components and of
a random baseline. As first component, we consider the
harmony grammar presented in Section 2.4, trained either
on the annotations in the original keys of the tunes or on
the annotations after each tune was transposed to C ma-
jor. As second component, we consider the full rhythm
grammar presented in Section 2.3.1 that distinguishes up-
beats and downbeats of constituents, and its simplification
that uses the total length of the constituents, presented in
Section 2.3.2. All models are trained and evaluated on
the dataset described in Section 3. Apart from the full
rhythm grammar, all models are trained by counting the
harmonic rewrite rules or the temporal split ratios present
in the dataset. The full rhythm grammar is trained using
variational Bayesian inference [8]. Every model predicts
the latent tree structure of a given sequence using the max-
imum a posteriori tree. One-fold cross validation was ap-
plied to avoid overfitting to the data: 75 times the model
was trained on 74 sequences and evaluated on the remain-
ing sequence.

5.1 Evaluation Metric and Baseline

The similarity of two trees is calculated as the unlabeled
tree accuracy, defined as follows. Let α be a sequence of
n terminals, left-to-right indexed from 0 to n − 1, let t be
a tree with α as leafs, and let s be a subtree of t. The
span of s is defined as the pair of the index of its left-most
child and the index of its right-most child. The set of spans
of t consists of the spans of all subtrees of t that are not
leafs. The unlabeled tree accuracy of a tree prediction t to
the respective Goldstandard tree t∗ is then defined as the
cardinality of the correctly predicted spans, divided by the
total amount of spans of t∗.

Given a chord sequence of length n, the random base-
line uniformly samples one tree from the set of all binary
trees with n leafs.

5.2 Results and Discussion

The results of the computational experiments are shown in
Figure 6. All combined models of harmony and rhythm
perform significantly better than the single-domain har-
mony grammars and all models perform significantly bet-
ter than the random baseline (p < 0.01 using 2-sample
bootstrap tests). There is no statistical difference observ-
able between the not transposed and the transposed har-
mony models. Surprisingly, the single-domain rhythm
grammars perform much better than the single-domain har-
mony grammars. This is, however, only possible because
we consider the unlabeled tree accuracy. Other measures
such as perplexity would reveal the obvious incapability of
the rhythm grammars to predict chord sequences.

Both rhythm grammars improve the harmony models
similarly. As discussed in Section 3, the simplified ver-
sion of the proposed rhythm grammar is also able to cap-

Figure 6: One-fold cross-validated tree accuracies of the
tested models and the random baseline. The error bars
show 95% bootstrap confidence intervals. The combined
models of harmony and rhythm perform significantly bet-
ter than the plain harmony grammars.

ture some complex rhythmical structures. The music-
theoretically more sophisticated formalism, however, fa-
cilitates the interpretation and explanation of the observed
split ratios.

6. CONCLUSION

The usage of rhythmical information is shown to signifi-
cantly improve the performance of harmonic syntax mod-
els. The empirical comparison between a music-theoretical
motivated model and its simplified version shows that both
models improve the harmony grammar equally well. The
simplified model can therefore be used as an algorithmic
proxy of the more expressive model. This might, how-
ever, only be true for rhythmically regular structures such
as the harmonic rhythm of chord sequences from Jazz stan-
dards. It is, moreover, surprising how much information is
already contained in the rhythm of the sequences, which
underpins the importance of the rhythmic dimension of
music [10]. In these sequences, both the harmonic syn-
tax and the phrase rhythm work together to strengthen the
intentionality of the music.

The here proposed model of interaction between har-
mony and rhythm is also capable to describe the interaction
of pitch and rhythm in melodies. A rewrite function for
syncopation could be added for future applications, since
syncopation is an essential part of melodic rhythm.

The general product grammar construction presented in
this paper integrates multiple domains of structure using
strong independence assumptions. Future research can ex-
tent the formalism, explicitly modeling inter-domain de-
pendencies. We hope that the presented approach will
prove to be useful for applications such as rhythm quanti-
zation [2], the definition of similarity metrics [5], and com-
putational composition assistance [15].
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ABSTRACT

Music Inpainting is the task of filling in missing or lost
information in a piece of music. We investigate this task
from an interactive music creation perspective. To this end,
a novel deep learning-based approach for musical score
inpainting is proposed. The designed model takes both past
and future musical context into account and is capable of
suggesting ways to connect them in a musically meaningful
manner. To achieve this, we leverage the representational
power of the latent space of a Variational Auto-Encoder and
train a Recurrent Neural Network which learns to traverse
this latent space conditioned on the past and future musical
contexts. Consequently, the designed model is capable of
generating several measures of music to connect two musi-
cal excerpts. The capabilities and performance of the model
are showcased by comparison with competitive baselines
using several objective and subjective evaluation methods.
The results show that the model generates meaningful in-
paintings and can be used in interactive music creation
applications. Overall, the method demonstrates the merit
of learning complex trajectories in the latent spaces of deep
generative models.

1. INTRODUCTION

Over the last decade, machine learning techniques have
emerged as the tool of choice for the design of symbolic
music generation models [1] with deep learning being the
most widely used [2]. Deep generative models have been
successfully applied to several different music generation
tasks, e.g., monophonic music generation [3–5], polyphonic
music generation [6,7] and creating musical renditions with
expressive timing and dynamics [8, 9]. However, most of
these models assume sequential generation of music, i.e,
the generated music depends only on the music that has
preceded it. In other words, the models rely only on the past
musical context. This approach does not align with typical
human compositional practices which are often iterative
and non-sequential in nature. In addition, the sequential

c© Ashis Pati, Alexander Lerch, Gaëtan Hadjeres. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Ashis Pati, Alexander Lerch, Gaëtan Hadjeres.
“Learning To Traverse Latent Spaces for Musical Score Inpainting”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

past context future context

inpainting result

?

Generative
Model

Figure 1: Musical Score Inpainting task schematic. A gen-
erative model needs to take past and future musical contexts
into account to generate a sequence that can connect them
in a musically meaningful manner.

generation paradigm places severe limitations on the degree
of interactivity allowed by these models [10, 11]. Once
generated, there is no way to tweak specific parts of the
generation so as to conform to users’ aesthetic sensibilities
or compositional requirements.

In this paper, we seek to address these problems by
incorporating future musical context into the generation
process. Specifically, the task is to train models to fill in
missing information in musical scores, duly taking into
account the complete musical context — both past and
future. In essence, this is similar to inpainting where the
objective is to reconstruct missing or degraded parts of
any kind of media [12]. For music, inpainting has been
traditionally used for restoration purposes [13] or to remove
unwanted artifacts such as clipping [14, 15] and packet
loss [16]. However, we investigate models for Musical
Score Inpainting (see Figure 1 and Section 3.1) as tools
for music creation which can aid people in (i) getting new
musical ideas based on specific styles, (ii) joining different
musical sections together, and (iii) modifying or extending
solos. In addition, such models can allow interactive music
generation by enabling users to change the musical context
and get new suggestions based on the updated context.

Our main technical contribution is a novel approach
for musical score inpainting which relies on latent
representation-based deep generative models. These models
are trained to compress information from high-dimensional
spaces, e.g., the space of all 1-bar melodies, to low-
dimensional latent spaces. While these latent spaces have
been shown to be able to encode hidden attributes of musi-
cal data (see Section 2.3), the primary form of interaction
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with latent spaces has been using simple operations such
as attribute vectors [17, 18] or linear interpolations [19, 20].
Using the proposed method (see Section 3), we demonstrate
that Recurrent Neural Networks (RNNs) can be trained us-
ing latent embeddings to learn complex trajectories in the la-
tent space. This, in turn, is used to predict how to fill in miss-
ing measures in a piece of symbolic music. Our secondary
contributions are: (i) a stochastic training scheme which
helps model training and generalization (see Section 3.4),
and (ii) a novel data encoding scheme using uneven tick
durations that allows encoding triplets without substantial
increase in sequence length (see Section 3.5). The effective-
ness of the proposed method is demonstrated using several
objective and subjective evaluation methods in Section 4.

2. RELATED WORK

2.1 Audio & Music Inpainting

The first applications of audio inpainting methods were
restoration-oriented [13,14, 16, 21,22] using different meth-
ods such as matrix factorization [14], non-local similarity
measures [22] and audio similarity graphs [16]. While these
techniques have been useful for audio-based tasks, they are
not easily extendable to symbolic music.

For inpainting in the symbolic domain, the early attempts
were based on Markov Chain Monte Carlo (MCMC) meth-
ods which allowed users to specify certain constraints, e.g.,
which notes to generate and which to retain [23, 24]. An-
other approach, proposed by Lattner et al., used iterative
gradient descent to force the output of a deep generative
model to conform to a specified structural plan [25]. How-
ever, methods based on MCMC (which rely on repeated
sampling), and those using iterative gradient descent are
slow during inference time and hence unsuitable for inter-
active applications. More recently, Hadjeres et al. proposed
the AnticipationRNN framework [10] which used a pair of
stacked RNNs to enforce user-defined constraints during
inference. This allowed selective regeneration of specific
parts of the music (generated or otherwise) using only two
forward passes through the RNN-pair and enabled real-time
generations.

2.2 Variational Auto-Encoders

The Variational Auto-Encoder (VAE) [26] is a type of gen-
erative model which uses an auto-encoding [27] framework;
during training, the model is forced to reconstruct its in-
put. The architecture comprises an encoder and a decoder.
The encoder learns to map real data-points x from a high-
dimensional data-space X to points in a low-dimensional
space Z which is referred to as the latent space. The de-
coder learns to map the latent vectors back to the data-space.
VAEs treat the latent vector as a random variable and model
the generative process as a sequence of sampling operations:
z ∼ p(z), and x ∼ p(x|z), where p(z) is a prior distribu-
tion over the latent space, and p(x|z) is the conditional pdf.
Variational inference [28] is used to approximate the pos-
terior by minimizing the KL-divergence [29] between the
approximate posterior q(z|x) and the true posterior p(z|x)

MeasureVAE

Decoder

MeasureVAE

Encoder

MeasureVAE

Encoder

p

f

LatentRNN

p

f

i i

Figure 2: Schematic of the proposed approach. The pre-
trained MeasureVAE encoder is used to convert the past and
future context sequences (Cp and Cf ) into their respective
latent vector sequences (Zp andZf ). The LatentRNN learns
to traverse the latent space of MeasureVAE to output a latent
vector sequence Zi which is passed through the pre-trained
decoder to output the inpainted musical sequence Ci.

by maximizing the evidence lower bound (ELBO) [26].
The training ensures that the reconstruction accuracy is
maximized and realistic samples are generated when latent
vectors are sampled using the prior p(z).

2.3 Leveraging Latent Spaces for Music Generation

Latent representation-based models such as VAEs have
been found to be quite useful for several music generation
tasks. Bretan et al. used the latent representation of an
auto-encoder-based model to generate musical phrases [30].
Lattner et al. forced the latent space of a gated auto-
encoder to learn pitch interval-based representations which
improved the performance of predictive models of mu-
sic [31, 32]. Latent spaces of music generation models
have also been used to explicitly encode and control musi-
cal attributes [3, 20, 33, 34], inter-track dependencies [35]
and musical genre [36]. These studies show that trained
latent spaces are able to encode hidden attributes of musical
data which can be leveraged for different music generation
tasks. However, latent space traversals have been relying on
simpler methods such as attribute vectors [17, 18] or linear
interpolations [19, 20].

3. METHOD

3.1 Problem Statement

We define the score inpainting problem as follows: given
a past musical context Cp and a future musical context Cf ,
the modeling task is to generate an inpainted sequence Ci
which can connect Cp and Cf in a musically meaningful
manner. In other words, the model should be trained to
maximize the likelihood p(Ci | Cp, Cf). Without much loss
of generality, we assume that Cp, Cf , and Ci comprise of np,
nf , and ni measures of music, respectively.

3.2 Approach

The key motivation behind the proposed method is that
the latent embeddings of deep generative models of music
encode hidden attributes of music which can be leveraged to
perform inpainting. Firstly, we train a VAE-model, referred
to as MeasureVAE, to reconstruct single measures of music,
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Figure 3: MeasureVAE schematic. Individual components
of the encoder and decoder are shown below the main
blocks (dotted arrows indicate data flow within the individ-
ual components). z denotes the latent vector and x̂ denotes
the reconstructed measure.

i.e., the latent vectors of this model z ∈ Z map to individual
measures of music. Once trained, the encoder of this model
can be used to process sequences Cp and Cf and output
corresponding latent vector sequencesZp andZf . Secondly,
we train an RNN-based model, referred to as LatentRNN,
to take as input the past and future latent vector sequences
(Zp and Zf ) and output a third latent vector sequence Zi

which can be passed through the decoder of MeasureVAE
to obtain Ci.

Effectively, the LatentRNN model learns to traverse the
latent space of the MeasureVAE model so as to connect
the provided contexts in a musically meaningful manner.
The inference is fast since it only requires forward passes
through the two models. This overall approach is shown in
Figure 2. We call this joint architecture InpaintNet. While
we restrict ourselves to 4/4 monophonic melodic sequences
in this paper, the approach can be extended to other time sig-
natures and polyphonic sequences as well. The individual
model architectures are discussed next.

3.3 Model Architectures

3.3.1 MeasureVAE

The MeasureVAE architecture (see Figure 3) is loosely
based on the hierarchical recurrent MusicVAE architec-
ture [3] which proved successful in modeling individual
measures of music.

The encoder consists of a learnable embedding layer (op-
erating on tick-level) followed by a bi-directional RNN [37].
The concatenated hidden state from both directions of the
RNN is then passed through two identical parallel linear
stacks to obtain the mean µ and variance σ which are used
to sample the latent vector z via z ∼ N (µ, σ2).

The decoder follows a hierarchical structure where the
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Figure 4: LatentRNN schematic. The Past-Context and
Future-Context-RNNs encode Zp and Zf , respectively.
The Generation-RNN initialized using a concatenation of
context-RNNs embeddings is unrolled ni times to get Zi.

sampled latent vector z is used to initialize the hidden state
of a beat-RNN which is unrolled b times (where b is the
number of beats in a measure). The output at each step of
the beat-RNN is passed through a linear stack before being
used to initialize the hidden state of a tick-RNN which is
unrolled t times (where t is the number of events/ticks in a
beat). The outputs of the tick-RNN are individually passed
through a second linear stack which maps them back to
the data-space. The hierarchical architecture mitigates the
auto-regressive nature of the RNN and forces the decoder to
use the latent vector more efficiently (as advocated in [3]).

3.3.2 LatentRNN

The LatentRNN model (see Figure 4) consists of 3 sub-
components. There are 2 identical bi-directional RNNs,
referred to as Past-Context-RNN and Future-Context-RNN,
which process the latent vector sequences for the past and
future contexts (Zp and Zf ), respectively. These are un-
rolled for np and nf times in order to encode the context
sequences, respectively. The final hidden states of the two
context-RNNs are concatenated and then used to initial-
ize the hidden state of a third RNN, referred to as the
Generation-RNN, which is unrolled ni times. The outputs
of the Generation-RNN are passed through a linear stack
to obtain ni latent vectors corresponding to the inpainted
measures.

The hyper-parameters for the model configurations are
chosen based on initial experiments and are provided in
Table 1. For the RNN layers in both models, Gated Recur-
rent Units (GRU) [38] are used.

3.4 Stochastic Training Scheme

We propose a novel stochastic training scheme for training
the model. For each training batch, the number of mea-
sures to be inpainted ni and the number of measures in
the past context np are randomly sampled from a uniform
distribution. Thus, the number of measures in the future
context becomes nf = N − ni − np, where N is the total
number of measures in each sequence of the training batch.
Using these, the input sequences are split into past, future
and target sequences and the model is trained to predict

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

345



Measure VAE

Embedding Layer i=dict size, o=10

EncoderRNN n=2, i=10, h=512, d=0.5

Linear Stack 1
Linear Stack 2 i=1024, o=256, n=2, non-linearity=SELU

BeatRNN n=2, i=1, h=512, d=0.5

TickRNN n=2, i=522, h=512, d=0.5

Linear Stack 3 i=512, o=1024, n=1, non-linearity=ReLU

Linear Stack 4 i=512, o=dict size, n=1, non-linearity=ReLU

Latent RNN

Past-Context-RNN
Future-Context-RNN n=2, i=256, h=512, d=0.5

Generation RNN n=2, i=1, h=1024, d=0.5

Linear Stack i=2048, o=256, n=1, non-linearity=None

Table 1: Table showing configurations of both models. n:
Number of Layers, i: Input Size, o: Output Size, h: Hidden
Size, d: Dropout Probability, SELU: Scaled Exponential
Linear Unit [39], ReLU: Rectifier Linear Unit

the target sequence given the past and future context se-
quences. This stochastic training scheme ensures that the
model learns to deal with variable length contexts and can
perform inpaintings at arbitrary locations.

3.5 Data Encoding Scheme

We use a variant of the encoding scheme proposed by Had-
jeres et al. [24] for our data representation. The original en-
coding scheme quantizes time uniformly using the sixteenth
note as the smallest sub-division. For each sub-division or
tick, the note which starts on that tick is represented by a
token corresponding to the note name. If no note starts on a
tick, a special continuation symbol ‘__’ is used to denote
that the previous note is held. Rest is considered as a note
and has a special token. The main advantages of this encod-
ing scheme are (i) it uses only a single sequence of tokens,
and (ii) uses real note names (e.g., separate tokens for A#
and Bb) which allows generation of readable sheet music.

However, a limitation of using the sixteenth note as the
smallest sub-division is that it cannot encode triplets. The
naive approach of evenly subdividing the sixteenth note
divisions to encode triplets increases the sequence length
a factor of 3 which can make the sequence modeling task
harder. To mitigate this limitation, we propose a novel
uneven subdivision scheme. Each beat is divided into 6
uneven ticks (shown in Figure 5). This allows encoding
triplets while only increasing the sequence length by a factor
of 1.5. Consequently, each 4/4 time signature measure is a
sequence of 24 tokens.

4. EXPERIMENTS

The proposed method is compared with two baseline meth-
ods (see Section 4.1) using a dataset of monophonic folk
melodies in the Scottish and Irish style taken from the
Session website [5]. For the purposes of this work, only

D4, __, __, G4, __, __, G4, __, F#4, __, G4, __, F#4, __, __, G4, __, __, A4, __, __, C5, __, __

1 Beat

0 1/4 1/3 1/2 2/3 3/4 1

Figure 5: Figure showing the data representation. The to-
ken string on the bottom demonstrates the encoding scheme
for the measure displayed on the top-left. Top-right shows
the proposed uneven tick-duration scheme for each beat.

melodies with 4/4 time signature in which the shortest note
is greater than or equal to the sixteenth note are consid-
ered resulting in approx. 21000 melodies. Implementation
details and source code are available online. 1

4.1 Baseline

The performance of the proposed method is compared
with the AnticipationRNN model proposed by Hadjeres et
al. [10]. This model, referred to as Base-ARNN, uses a stack
of 2 LSTM-based [40] RNN layers. Each of the 2 RNNs
comprises of 2 layers with a hidden size of 256. In addition
to the note-sequence tokens, this model also uses additional
metadata information, i.e., tokens to indicate beat and down-
beat locations as part of the user-defined constraints. For
more details, the readers are directed to [10].

The original model operates on tick-level sequences and
inpainting locations are specified in terms of individual
tick locations. Hence, the inpainting locations may or may
not be contiguous. In order to make a fair comparison, a
second variant of the AnticipationRNN model is considered,
referred to as Reg-ARNN, where the stochastic training
scheme from Section 3.4 is used instead.

4.2 Training Configuration

The MeasureVAE model was pre-trained using single
measures following the standard VAE optimization equa-
tion [26] with the β-weighting scheme [41, 42]. In order to
prioritize high reconstruction accuracy, a low value of β =
1e−3 was used. Pre-training was done for 30 epochs re-
sulting in a reconstruction accuracy of approx. 99%. While
this seems to be better than results in [3], we attribute this
to the shorter duration of generation (single measures) and
the differences in datasets and data encoding. MeasureVAE
parameters were frozen after pre-training and no gradient-
based updates were performed on these parameters during
the InpaintNet model training.

The Adam algorithm [43] was used for model training,
with a learning rate of 1e−3, β1 = 0.9, β2 = 0.999, and
ε = 1e−8. To ensure consistency, all models were trained
for 100 epochs (with early-stopping) with the same batch-
size using a sub-sequence length of 16 measures (384 ticks).
For the InpaintNet and Reg-ARNN models, the number of
measures to be inpainted and the number of past measures
were randomly selected: ni ∈ [2, 6], np ∈ [1, 16− 1− ni].
This ensured that past and future contexts each contain at

1 https://github.com/ashispati/InpaintNet
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Model Variant Test NLL
Base-ARNN 0.662

Reg-ARNN 0.402

InpaintNet (Our Method) 0.300

PastInpaintNet 0.643

FutureInpaintNet 0.481

Table 2: Table showing the average token-wise NLL
(nats/token) on the held-out test set (lower is better). Inpaint-
Net outperforms both baselines. The last two rows show
the results for the ablation models described in Section 4.4.

least 1 measure. For the baseline models, teacher-forcing
was used with a probability of 0.5.

4.3 Predictions on Test Data

Two experiments were conducted to evaluate the predictive
power of the models.

The first experiment considered the average token-wise
negative log-likelihood (NLL) on a held-out test set. The
results (see first 3 rows of Table 2) indicate that our pro-
posed model outperforms both baselines, showing an im-
provement of approx. 25% in the NLL over the Reg-ARNN
model and approx. 55% over the Base-ARNN model.

The next experiment compared the models by varying
the number of measures to be inpainted. Figure 6 shows the
average token-wise NLL when ni was increased from 2 to
8. Again, our proposed model outperforms both baselines.
It should be noted that since the sub-sequence length is con-
stant at 16 measures, increasing ni means that the available
context is reduced. Thus, there is an expected drop in the
performance with increasing ni as the models are forced to
make longer predictions with less contextual information.
However, the InpaintNet model performs better even when
forced to predict beyond the training limit of 6 measures.

4.4 Ablations Studies

In order to further ascertain the efficiency of the pro-
posed approach, ablation studies were conducted to evalu-
ate the benefit of adding past and future context informa-
tion. Specifically, we trained two variants of the InpaintNet
model which relied on only one type of contextual infor-
mation. The first model, referred to as PastInpaintNet only
considered the past context Cp as input whereas the second
model, referred to as FutureInpaintNet considered only the
future context Cf . The last two rows of Table 2 summarize
the performance of these ablation models. It is clear that
both past and future contexts are important for the modeling
process. In addition, we also tried training a variant of the
InpaintNet model with an untrained (randomly initialized)
MeasureVAE model. This model failed to train properly
achieving an NLL of approx. 1.33. This indicates that a
structured latent space where latent vectors are trained to
encode hidden data attributes is important for training the
LatentRNN model.
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Figure 6: Figure showing token-wise NLL (nats/token) for
different number of inpainted measures on the held-out test
set (lower is better). InpaintNet outperforms both baselines.
Models were trained to predict only 2 to 6 measures.

4.5 Qualitative Analysis

Considering that we are primarily interested in the aes-
thetic quality of the inpaintings, we encourage the readers
to browse through the inpainting examples provided in the
supplementary material. 2 We consider some of those ex-
amples in the analysis below.

Figure 7 shows sample inpaintings by the models for
one of the melodies in the test set. While the Base-ARNN
model collapses to produce long half notes which do not
effectively reflect the surrounding context, the other two
models do better. Both the Reg-ARNN and InpaintNet
model generate rhythmically consistent inpaintings. The
InpaintNet, in particular, mimics the rhythmic properties
of the context better. For instance, measures 7 and 10 of
the inpainted measures match the rhythm of measures 6, 14,
and 15. Also, measure 8 matches measure 16. However,
the use of G (subdominant scale degree in D-major) in the
half-note to end measure 8 is unusual. We observed that
in other examples also, the InpaintNet model occasionally
produces pitches which are anomalous — either out-of-key
or not fitting in the context. The Reg-ARNN model, on the
other hand, tends to stay in key. Additional examples are
provided in the supplementary material.

One advantage of working with the latent space is that
the sampling operation, inherent in the VAE inference pro-
cess, ensures that for the same context we can get different
inpainting results. Figure 8 shows three such generations
for the context of Figure 7. It is interesting to note that the
base rhythm is retained across all three inpaintings. This
feature is particularly interesting from an interactive music
generation perspective, as this model can be used to quickly
provide users with multiple ideas and will be investigated
further in future work.

4.6 Subjective Listening Study

To evaluate the perceived quality of the inpainted measures,
a listening test was conducted to compare our proposed
model against the two baselines. A set of 30 melodies from
the held-out test set were randomly selected and their first

2 https://ashispati.github.io/inpaintnet/
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Past Context Future Context

Inpainted Measures

a.

b.

c.

d.

Figure 7: Figure showing the inpaintings generated by different models for the same context. From top to bottom — a.:
Base-ARNN, b.: Reg-ARNN, c.: InpaintNet, d.: Original Melody.

Figure 8: Figure showing different inpaintings (using the
InpaintNet model) for the same context as Figure 7.
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Figure 9: Figure based on the subjective listening study
showing the probability that the InpaintNet model is rated
higher. Analysis is based on the Bradley-Terry model [44,
45]. The proposed model loses against the real data but
performs at par with the baseline models.

16 measures were extracted. The models were then used
to inpaint 4 measures (measure number 7 to 10) in these
melodic excerpts. Participants were presented with pairs
of melodic excerpts and asked to select the one in which
they thought the inpainted measures fit better within the sur-
rounding context. In some of the pairs, one melodic excerpt
was the real data (without any inpainting). Each participant
was presented with 10 such pairs. A total of 72 individuals
participated in the study (720 comparisons). The location
of the inpainted measures was kept consistent across all
examples so as to prevent confusion among participants and
allow them to focus better on the inpainted measures.

The Bradley-Terry model [44,45] for paired comparisons
was used to get an estimate of how the proposed model per-
forms against the baselines and the real data (see Figure 9).
While the proposed model expectedly has a very low proba-
bility of winning against the real data (wins approx. 1 out
of 5 times), it performs only at par with the baseline models
(with probability approx. 0.5). Significance tests using the

Wilcoxon signed rank test were further conducted which val-
idated that differences between the proposed model and the
baselines were not statistically significant (p-value > 0.01).
This was unexpected since the proposed model showed sig-
nificant improvement over the baselines in the NLL metric.
Further dividing the study population into two groups differ-
ing in musical proficiency (based on the Ollen index [46])
showed that, comparatively, the group with greater musical
proficiency favored the generations from the InpaintNet
model more than the group with less musical proficiency.

Additional analysis revealed that cases where the Inpaint-
Net model performed the worst (maximum losses against
the baselines), had anomalies in the predicted pitch similar
to those discussed in Section 4.5. Specifically, they either
had a single out-of-key note (e.g., F note in G-Major scale)
or used a pitch or interval not used in the provided contexts.
We conjecture that it is these anomalous pitch predictions
which lead to poor perceptual ratings in spite of the model
performing better in terms of modeling rhythmic features.
This will be analyzed further in future studies.

5. CONCLUSION

This paper investigates the problem of musical score in-
painting and proposes a novel approach to generate multi-
ple measures of music to connect two musical excerpts by
using a conditional RNN which learns to traverse the latent
space of a VAE. We also improve upon the data encoding
and introduce a stochastic training process which facilitate
model training and improve generalization. The proposed
model shows good performance across different objective
and subjective evaluation experiments. The architecture
also enables multiple generations with the same contexts,
thereby, making it suitable for interactive applications [47].
We think the idea of learning to traverse latent spaces could
be useful for other music generation tasks also. For instance,
the architecture of the LatentRNN model can be changed to
add contextual information from other voices/instruments
to perform multi-instrument music generation. Future work
will include a more thorough investigation of the anoma-
lies in pitch prediction. A possible way to address that
would be to add the context embedding as input at each step
of unrolling the LatentRNN or use additional regularizers.
Another promising avenue for future work is substituting
RNNs with attention-based models [48] which have had
success in sequential music generation tasks [9].
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ABSTRACT

While Georgia has a long history of orally transmitted
polyphonic singing, there is still an ongoing controversial
discussion among ethnomusicologists on the tuning sys-
tem underlying this type of music. First attempts have
been made to analyze tonal properties (e. g., harmonic and
melodic intervals) based on fundamental frequency (F0)
trajectories. One major challenge in F0-based tonal anal-
ysis is introduced by unstable regions in the trajectories
due to pitch slides and other frequency fluctuations. In
this paper, we describe two approaches for detecting sta-
ble regions in frequency trajectories: the first algorithm
uses morphological operations inspired by image process-
ing, and the second one is based on suitably defined bi-
nary time–frequency masks. To avoid undesired distor-
tions in subsequent analysis steps, both approaches keep
the original F0-values unmodified, while only removing
F0-values in unstable trajectory regions. We evaluate both
approaches against manually annotated stable regions and
discuss their potential in the context of interval analysis for
traditional three-part Georgian singing.

1. INTRODUCTION

Polyphonic singing plays a vital role in many musical cul-
tures. One of the oldest forms of polyphonic singing can
be found in Georgia, a country located in the Caucasus re-
gion of Eurasia. The traditional three-part songs, which
are typically passed down orally from one generation to the
next, are acknowledged as Intangible Cultural Heritage by
the UNESCO. Although being a long-studied subject, the
non-tempered nature of traditional Georgian vocal music is
still discussed controversially among musicologists [7,33].
So far, musicological studies on traditional Georgian music
have mostly been conducted on the basis of manually tran-
scribed field recordings. Such approaches are problematic,
since important tonal cues (as well as many other perfor-
mance aspects) are likely to get lost in the transcription

c© Sebastian Rosenzweig, Frank Scherbaum, Meinard
Müller. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Sebastian Rosenzweig, Frank
Scherbaum, Meinard Müller. “Detecting Stable Regions in Frequency
Trajectories for Tonal Analysis of Traditional Georgian Vocal Music”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.
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Figure 1. Detection of stable regions in F0-trajectories for
a three-part singing recording. (a) Original F0-trajectories.
(b) F0-trajectories restricted to stable regions. (c) Har-
monic interval histogram based on (a). (d) Sharpened har-
monic interval histogram based on (b). The histograms
in (c) and (d) were computed considering the entire Erko-
maishvili dataset.

process. The importance of field recordings in research on
Georgian vocal music has raised the demand for computer-
based methods to assist ethnomusicologists in analyzing
the audio material.

One source of central importance for ethnomusicolog-
ical research is a collection of audio recordings of the
former master chanter Artem Erkomaishvili (1887–1967).
The collection, which was created at the Tbilisi State Con-
servatory in 1966, comprises 101 three-part songs. Each
chant was recorded in a three-stage “dubbing” process us-
ing tape recorders, where Erkomaishvili successively sung
the individual voices with previously recorded voices be-
ing played back. In the study [20], a semi-automatic
salience-based approach was applied to determine funda-
mental frequency (F0) trajectories of all three voices. The
extracted F0-annotations are publicly available. 1 In a
follow-up study [31], the authors determined from these
trajectories harmonic (vertical) as well as melodic (hori-
zontal) intervals, which give cues on the tonal organiza-
tion [21, 22] of Georgian vocal music.

1 https://www.audiolabs-erlangen.de/resources/MIR/2017-
GeorgianMusic-Erkomaishvili
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In general, studies on tonal analysis (see, e. g., [14,
15, 17, 31]) have shown that the usage of previously ex-
tracted F0-trajectories leads to various challenges. For ex-
ample, as a stylistic element of traditional Georgian mu-
sic, sung notes often start, end, or are continuously con-
nected using pitch slides, see Figure 1a. Furthermore, au-
tomated F0-estimation procedures typically introduce in-
accuracies such as extraction errors, outliers, or smooth-
ing artifacts. Consequently, tonal analysis of Georgian vo-
cal music based on highly fluctuating and error-prone F0-
trajectories is problematic. For example, when computing
harmonic interval statistics (as illustrated by Figure 1c),
such artifacts may lead to an increased noise level and
a less salient peak structure in the computed histograms.
When analyzing melodic intervals, the presence of fre-
quency variations (such as pitch slides) have a strong neg-
ative impact on subsequent analysis results. To alleviate
such issues, contributions such as [17, 31] apply (semi-
automatic) post-processing procedures to remove unstable
regions in the trajectories and derive note-like events with
a stable pitch. Note that for other scenarios (e. g. the tonal
analysis of Hindustani Raga [29]), non-stable regions may
contain musically important information.

Motivated by such tonal analysis applications, we
present in this paper two automatic approaches that aim at
identifying stable regions in frequency trajectories. Tech-
nically speaking, such regions correspond to horizontal
structures (up to some tolerance) of trajectories. In acous-
tical and musical terms, such regions relate to pitched
sounds where a singer has tuned into a harmonically sta-
ble pitch synchronized to other singers. In this context,
our goal is to remove all frequency values in unstable
regions, while keeping the original frequency values un-
modified in the stable ones (see Figure 1b). For accom-
plishing this task, we introduce two conceptually different
approaches—one based on morphological operations and
the other one based on binary masking. Furthermore, we
evaluate both approaches against manually annotated sta-
ble regions and indicate their potential for interval analysis
using the Erkomaishvili recordings as example.

The remainder of this paper is organized as follows. We
discuss related work in Section 2, then give a technical de-
scription of our approaches in Section 3, and summarize
our experiments in Section 4.

2. RELATED WORK

In the following, we give an overview on work that is re-
lated to detecting stable regions in F0-trajectories. First,
we want to note that stable region detection is not equiva-
lent to F0-based transcription. In general, automated mu-
sic transcription (AMT) aims at converting a music record-
ing into some form of music notation [1, 2, 13]. In this
process, many AMT systems apply temporal and spectral
quantization of previously extracted F0-trajectories to de-
rive pitches, onsets, and offsets of note events [3, 4, 6, 10,
15,16,18,23,30]. Rather than using quantized or modified
F0-trajectories for our analysis, we aim at using trajecto-
ries restricted to stable regions (that may or may not corre-

spond to note events) while leaving the original F0-values
unmodified.

Detecting stable, transitional, and fluctuating patterns
in F0-trajectories plays an important role for various tasks
such as vibrato detection [5, 26, 37], singing style classifi-
cation [24, 27], and motif detection [12, 25]. For example,
in [35–37], the authors address the problem of detecting
portamento (note transition) regions in Chinese string mu-
sic. In [15], the authors identify stable regions as an im-
portant step towards transcribing recordings of Flamenco
singing. In [19], the authors propose a vocal trajectory seg-
mentation algorithm based on hysteresis defined on pitch–
time curves. However, the underlying octave equivalence
assumption may not be fulfilled in traditional Georgian vo-
cal music. For a recent overview article of singing voice
analysis, we refer to [11].

Furthermore, there are various studies on Indian Raga
music, which are related to our work. In [9], a global pitch
histogram (“pitch inventory”) of the whole recording is
computed. Then, informed by the histogram’s peaks, sta-
ble regions are derived using empirically chosen thresholds
for duration and fluctuation tolerance. In [14], the authors
compute the local slope of the F0-trajectory and obtain sta-
ble regions by thresholding and quantization. However,
due to the underlying scale assumptions, such approaches
can not be directly applied to analyzing traditional Geor-
gian singing, where pitch drifts may occur over the course
of the song.

3. STABLE REGION DETECTION

In this section, we formalize the notion of a frequency
trajectory as used in this work (Section 3.1). Then, to
motivate the subsequent procedures, we introduce a sim-
ple median-based filtering approach (Section 3.2). As our
main technical contributions, we introduce two conceptu-
ally different approaches for determining stable regions in
frequency trajectories—one based on morphological op-
erations (Section 3.3) and the other one based on binary
masking (Section 3.4).

3.1 Frequency Trajectories

To account for the logarithmic nature of human pitch
perception, we convert frequency values into the log-
frequency domain. To this end, we fix a reference fre-
quency ωref given in Hertz (Hz). In the following, we set
ωref = 55 Hz. Then, an arbitrary frequency value ω is
converted into the logarithmic domain by defining

Fcents (ω) := 1200 · log2

(
ω

ωref

)
, (1)

which measures the distance between ω and ωref in cents.
In this paper, we model a frequency trajectory as a function

γ : Z→ R ∪ {∗}, (2)

which assigns to a given time index n ∈ Z either a real-
valued frequency value γ(n) ∈ R (given in cents) or the
symbol γ(n) = ∗ (when the frequency value is left to be
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Figure 2. Effect of median filtering. (a) Original trajectory
γ. (b) Median-filtered trajectory γMedian. (c) Activation
regions of γ (black) and γMedian (red).

unspecified). In our implementation, we use a time reso-
lution of 5.8 ms per time index and a frequency resolution
of 10 cents. Figure 2a shows a frequency trajectory, which
will serve as our running example in the remainder of this
section. In the first two seconds, two notes are played on a
piano without interruption. Subsequently, in the next two
seconds, there are two sung notes smoothly connected by
a pitch slide. Finally, the recording contains a note sung
with vibrato.

3.2 Median Filtering

For tonal analysis based on frequency trajectories, one of-
ten applies some kind of filtering to remove outliers and
other undesired pitch fluctuations [17, 32]. For example,
by applying a median filter of odd length L ∈ N, one ob-
tains a smoothed trajectory γMedian defined by

γMedian(n) := median
{
γ(n− L−1

2 : n+ L−1
2 )
}

(3)

for n ∈ Z. In this definition, the symbol ∗ is handled as
−∞. Figure 2b shows γMedian of our running example
using L = 69 (corresponding to 0.4 sec). This example
shows how median filtering introduces smoothing while
removing outliers (such as the peak around the third sec-
ond). However, the non-stable transition between the two
sung notes remains after filtering. This is not what we aim
at. First, we do not want to change frequency values in sta-
ble regions (with the goal not to introduce smoothing ef-
fects in subsequent tonal analysis steps). Second, we aim
at explicitly detecting unstable regions, which can then be
removed from the frequency trajectory. In the following,
we present two conceptually different approaches that ful-
fill these requirements.

3.3 Morphological Approach

The first approach, which is inspired by work of Vávra et
al. [34], uses morphological operations as known in image
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Figure 3. Morphological approach for detecting stable re-
gions. (a) Frequency trajectories γ (black), γLmax (green),
and γLmin (orange). (b) Morphological gradient ∆L with
threshold τ = 90. (c) Trajectory γMorph restricted to stable
regions. (d) Activation regions for γ (black) and γMorph

(red).

processing. Applying these operators to frequency trajec-
tories, dilation corresponds to max filtering, and erosion to
min filtering. Given a trajectory γ, this results in a dilated
trajectory γLmax and an eroded trajectory γLmin defined by

γLmax(n) := max
{
γ(n− L−1

2 : n+ L−1
2 )
}
, (4a)

γLmin(n) := min
{
γ(n− L−1

2 : n+ L−1
2 )
}
, (4b)

for n ∈ Z, where L ∈ N is assumed to be an odd in-
teger. In max filtering, the symbol ∗ is handled as −∞,
whereas in min filtering it is handled as +∞. Figure 3a
shows the resulting trajectories γLmax and γLmin for our run-
ning example using L = 43 (corresponding to 0.25 sec).
In a next step, we define the difference ∆L between the
dilated and eroded trajectories, also termed morphological
gradient [28]:

∆L(n) := γLmax(n)− γLmin(n) (5)

for n ∈ Z, where we set ∆L(n) = ∗ whenever γLmax(n) or
γLmin(n) are not defined. As shown in Figure 3b, the differ-
ence ∆L is large in non-stable parts (e. g., around the third
second), whereas it is small in stable parts (e. g., within
each of the piano notes). Fixing a suitable threshold τ > 0
(given in cents), we define the trajectory γMorph by setting

γMorph(n) :=

{
γ(n), for |∆L(n)| ≤ τ ,
∗, otherwise.

(6)

The threshold τ can be seen as a tolerance parameter that
specifies the maximally allowed fluctuation under which a

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

354



Fr
eq

ue
nc

y
(B

in
s)

 
(a)

Fr
eq

ue
nc

y
(B

in
s)

 

(b)

Fr
eq

ue
nc

y
(B

in
s)

 

(c)

Time (s)

(d)

C
en

ts
 (!

"#
$=

55
Hz

) 

(e)

Figure 4. Masking approach for detecting stable regions.
(a) Binary representation ΓR. (b) Max-filtered representa-
tion ΓβR. (c) Median-filtered binary mask Γβ,LR . (d) Tra-
jectory γMask restricted to stable regions. (e) Activation
regions for γ (black) and γMask (red).

trajectory is still considered to be stable. The resulting tra-
jectory γMorph for our running example is depicted in Fig-
ure 3c using a threshold of τ = 90 cents. As shown in
Figure 3d, the morphological approach succeeds in iden-
tifying stable regions. However, it also introduces a trun-
cation at both sides of sudden jumps (e. g., around the first
and fourth second) by half the filter length (L−1)/2. In the
next section, we show how this truncation effect can be re-
duced by applying a 2D-masking approach involving some
median filtering. Finally, we want to note that considering
the morphological gradient is conceptionally similar to the
approach based on Gaussian derivate filtering as described
in [15]. In our approach, the threshold parameter τ can be
adjusted dynamically to account for characteristics of in-
dividual trajectories, e. g. by considering the p-quantile of
the morphological gradient ∆L.

3.4 Masking Approach

We now introduce an alternative approach for detecting
stable trajectory regions, which works in the 2D-domain.

In a first step, we encode a trajectory γ as a binary 2D-
representation ΓR : Z × Z → {0, 1}. Given a frequency
resolution of R ∈ R (given in cents), ΓR is defined by

ΓR(n, b) :=

{
1, for

⌊
γ(n)
R + 0.5

⌋
= b,

0, otherwise,
(7)

with time index n ∈ Z and frequency bin index b ∈ Z
(corresponding to a logarithmic frequency axis). Figure 4a
shows the binary representation ΓR using R = 10 cents
for our running example. In the second step, we introduce
some tolerance in frequency direction by vertically apply-
ing a max-filtering using a filter length parameter β ∈ N0

(specified in bins). This results in the representation ΓβR
defined by

ΓβR(n, b) := max{ΓR(n, b− β : b+ β)}. (8)

This operation is illustrated by Figure 4b using β = 5
(leading to a frequency width of 2β + 1 = 11 bins cor-
responding to 110 cents). In a third step, inspired by an
algorithm for Harmonic–Percussive Source Separation [8],
a median filter of odd length L ∈ N is applied in horizontal
direction yielding a representation Γβ,LR :

Γβ,LR (n, b) := median
{

ΓβR(n− L−1
2 : n+ L−1

2 , b)
}
. (9)

Applying horizontal median filtering suppresses vertical
structures (e. g., pitch slides), while enhancing horizontal
structures (corresponding to stable regions), see Figure 4c
for an illustration when using L = 43 (corresponding to
0.25 sec). In the fourth step, the output trajectory γMask is
obtained by setting

γMask(n) :=

{
γ(n), if Γβ,LR (n, b) = 1,
∗, otherwise,

(10)

with b =
⌊
γ(n)
R + 0.5

⌋
. This last step can be thought of

as “masking” the input trajectory γ using the binary mask
Γβ,LR . Figure 4d shows the resulting trajectory γMask for
our running example. Note that, even though the mask-
ing procedure involves some quantization parameter R,
the final trajectory γMask coincides with the original tra-
jectory γ in stable regions. Similar to the parameter τ
for computing γMorph, the parameter β controls the fre-
quency tolerance within stable regions for γMask. As also
indicated by our running example, the truncation effects at
sudden jumps introduced by the morphological approach
have been eliminated by our masking approach (compare
γMorph and γMask around the first and fourth second).
While the 2D-masking approach is computationally more
expensive than the 1D-morphological approach, it allows
for processing multiple (non-overlapping) trajectories at
the same time. Furthermore, one may account for weighted
trajectories (e. g., trajectories with assigned amplitude or
confidence values) by using real-valued instead of binary
masks. Note that both algorithms do not enforce conti-
nuity of output trajectories. In particular, strict parameter
settings (e. g. small τ and small β) may result in fluctu-
ating sound events (e. g. a note sung with strong vibrato)
being split up into several disconnected regions.
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Figure 5. Precision, recall, F-Measure, and survival rate ρ of parameter sweeps averaged over five recordings (see Table 1).
The parameter settings chosen for subsequent experiments are marked with red stars. (a) Morphological approach. (b)
Masking approach.

ID
γAnno γMorph γMask

ρ P R F ρ P R F ρ

001 61% 0.82 0.94 0.88 70% 0.82 0.94 0.88 71%
002 79% 0.94 0.85 0.89 72% 0.93 0.87 0.90 74%
010 68% 0.87 0.92 0.89 72% 0.84 0.95 0.89 77%
087 78% 0.88 0.98 0.93 87% 0.87 0.98 0.92 88%
110 74% 0.90 0.96 0.93 79% 0.88 0.97 0.92 80%

Table 1. Precision (P), recall (R), F-Measure (F), and sur-
vival rate (ρ) evaluated on the basis of manually annotated
F0-trajectories for five Erkomaishvili recordings.

4. EVALUATION

In this section, we report on experiments that indicate the
role of the parameters and the behavior of the morpholog-
ical and the masking approach. In Section 4.1, we numer-
ically compare both approaches using a set of manually
annotated stable regions in F0-trajectories from the pub-
licly available Erkomaishvili dataset [20]. Using suitable
parameter settings, we then apply both algorithms to the
trajectories of all 101 recordings in the dataset (see Sec-
tion 4.2). It turns out that a consistent detection of stable
regions using the two conceptually different approaches is
a good indicator that the results are musically meaningful.
Finally, in Section 4.3, we demonstrate the potential of our
approaches for enhancing harmonic interval distributions.

4.1 Evaluation Measures and Parameters

In order to compare the algorithms’ performance, we anno-
tated stable regions of F0-trajectories extracted from five
representative Erkomaishvili recordings. To this end, we
used an interactive interface described in [20] to manually
remove all unstable trajectory regions that correspond to
note transitions and other artifacts. As evaluation metrics,
we use standard precision (P), recall (R) and F-measure
(F) computed frame-wise on the basis of the trajectories’
activations. First, all frames with no specified frequency
value in the original trajectory (γ(n) = ∗) are left uncon-
sidered. Frames classified as stable by our approaches are
counted as true positives (TP) if they agree with frames an-
notated as stable, otherwise they are counted as false pos-

itives (FP). Furthermore, frames annotated as unstable are
counted as false negatives (FN), if they are classified as
unstable. Then,

P :=
TP

TP + FP
, R :=

TP

TP + FN
, F :=

2 · P · R
P+ R

. (11)

Note that P := 0 for TP + FP = 0, R := 0 for
TP + FN = 0, and F := 0 for P + R = 0. Furthermore,
we introduce an evaluation measure referred to as survival
rate and denoted as ρ. This measure, which indicates the
percentage of remaining trajectory values after filtering, is
defined as follows:

ρ :=
|{n : γStable(n) 6= ∗}|
|{n : γ(n) 6= ∗}|

· 100, (12)

with γStable = γMorph for the morphological approach,
γStable = γMask for the masking approach and γStable =
γAnno for an annotated trajectory γAnno.

In order to analyze the algorithms’ behavior for differ-
ent parameter settings, we conduct parameter sweeps over
L, τ , and β, using a fixed frequency resolution of R = 10
cents. For each evaluation metric, we construct a matrix
with each entry corresponding to a metric’s value for a
specific parameter setting averaged over the five annotated
recordings. The resulting matrices for precision, recall, F-
measure, and survival rate are depicted in Figure 5a for the
morphological approach and in Figure 5b for the masking
approach. The visualizations show that τ and β play a sim-
ilar role: high values of τ and β make the approaches more
tolerant to local frequency fluctuations in the trajectories,
thus increasing the survival rates. In contrast, when de-
creasing τ and β, less values remain in the filtered trajec-
tories, leading to lower survival rates. Furthermore, note
that increasing the filter length L leads to an increase in
precision and a decrease in recall for both approaches. In
the case of the morphological approach, very large filter
lengths lead to a survival rate of ρ = 0 (nothing is remain-
ing), which also leads to a precision of zero.

For our further experiments, we use fixed parameter set-
tings for both approaches that correspond to maxima in
the F-measure matrices (see red stars in Figure 5). The
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P R F ρ (γMorph) ρ (γMask)

µ 0.89 0.94 0.92 73% 77%
σ 0.02 0.01 0.02 5% 5%

Table 2. Evaluation of the masking approach against the
morphological approach considering the trajectories of all
101 recordings of the Erkomaishvili dataset (with fixed pa-
rameter settings from Section 4.1). The mean µ and stan-
dard deviation σ refer to statistics taken over the dataset.

morphological approach reaches a maximum F-measure of
0.90 for τ = 150 cents and L = 29 bins, whereas the
masking approach reaches a maximum F-measure of 0.90
for β = 2 bins and L = 41 bins. Using these parameter
settings, the evaluation results for our five annotated ex-
amples (IDs correspond to songs on the publicly available
website 2 ) are given in Table 1. From the table, we can see
that both approaches are able to detect stable regions in all
five examples. We want to note that the optimal parame-
ter settings vary from song to song, depending on the oc-
curring note durations, characteristics of pitch slides, and
other performance aspects. As an alternative to a fixed set-
ting, one may chose the parameters in a song-dependent
way, e. g., by fixing the survival rate. In summary, our
experiments on the Erkomashvili dataset showed that the
specific choice of parameters is not crucial within a certain
range (see also the F-measure matrices of Figure 5).

4.2 Consistency

The two approaches for detecting stable regions in trajec-
tories are conceptually different. Nevertheless, in the case
of the five annotated recordings, both approaches worked
successfully and performed in a similar fashion. Based
on the hypothesis that a consistent performance of both
approaches is a necessary condition for obtaining mean-
ingful results, we applied both approaches independently
to all 101 recordings of the Erkomaishvili dataset. We
then compared the results by evaluating the trajectories ob-
tained by the masking approach against the trajectories ob-
tained by the morphological approach using the evaluation
metrics defined in Section 4.1. The mean µ and standard
deviation σ (taken over the dataset) of the evaluation re-
sults are shown in Table 2. The numbers indicate that
both approaches deliver similar results on average with a
small standard deviation. Furthermore, both approaches
roughly exhibit the same average survival rate for the cho-
sen parameter settings. Beyond these overall measures, we
also looked at recordings where the two approaches deliv-
ered less consistent results. A manual inspection revealed
that these recordings often contain speech-like passages
(rather than singing) and extremely short notes such as in
the songs with ID 022 and ID 074. Results for all 101
recordings are publicly available through audio–visual in-
terfaces. 3

2 https://www.audiolabs-erlangen.de/resources/
MIR/2017-GeorgianMusic-Erkomaishvili

3 https://www.audiolabs-erlangen.de/resources/
MIR/2019-ISMIR-StableF0
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Figure 6. Harmonic interval distributions obtained from
the entire Erkomaishvili dataset.

4.3 Harmonic Interval Analysis

In the following, we want to demonstrate the potential of
the presented approaches for interval analysis of Georgian
vocal music by computing harmonic interval size distri-
butions from the filtered trajectories. To this end, similar
to [20,31], we superimpose the filtered trajectories of lead,
middle and bass voice and determine the frame-wise inter-
vals for each voice pair (as indicated in Figure 1). Then,
by accumulating the occurrences of the different intervals
over time, we obtain interval histograms. These histograms
are normalized (using the `1-norm) to obtain distributions.
Figure 6 shows three such distributions obtained by consid-
ering all 101 recordings of the Erkomaishvili dataset. The
first distribution (black solid line) is based on the original
F0-trajectories. The second distribution (solid red line) is
obtained by considering only stable regions after morpho-
logical filtering. (Here, we use the parameter setting dis-
cussed in Section 4.1. Filtering with the masking approach
leads to similar distributions.) Note that the filtering leads
to a sharper interval distribution emphasizing the peaks at
the harmonically relevant intervals while not changing the
respective peak locations. Using stricter parameter settings
leads to a further sharpening (see red doted line in Fig-
ure 6). However, overdoing the filtering may drastically
reduce the survival rate. This, in turn, may lead to a dis-
tortion or even a loss of peak structures corresponding to
relevant harmonic intervals.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented two conceptually different ap-
proaches for detecting stable regions in frequency trajec-
tories, which perform equally well with respect to a set
of manually annotated trajectories. Rather than advocat-
ing a specific parameter setting, our goal was to introduce
these concepts in a mathematical rigorous way, while high-
lighting their potential using the Erkomaishvili dataset as
example scenario. Going beyond harmonic interval anal-
ysis, future work will be concerned with applying these
filtering techniques for the analysis of melodic intervals,
singer interaction, and intonation drifts—aspects of fore-
most importance in ethnomusicological research on tradi-
tional Georgian vocal music.
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ABSTRACT

This paper introduces the AcousticBrainz Genre Dataset, a
large-scale collection of hierarchical multi-label genre an-
notations from different metadata sources. It allows re-
searchers to explore how the same music pieces are anno-
tated differently by different communities following their
own genre taxonomies, and how this could be addressed
by genre recognition systems. Genre labels for the dataset
are sourced from both expert annotations and crowds, per-
mitting comparisons between strict hierarchies and folk-
sonomies. Music features are available via the Acoustic-
Brainz database. To guide research, we suggest a con-
crete research task and provide a baseline as well as an
evaluation method. This task may serve as an example
of the development and validation of automatic annota-
tion algorithms on complementary datasets with different
taxonomies and coverage. With this dataset, we hope to
contribute to developments in content-based music genre
recognition as well as cross-disciplinary studies on genre
metadata analysis.

1. INTRODUCTION

Content-based music genre recognition (MGR) is a pop-
ular task in Music Information Retrieval (MIR) re-
search [27]. The goal is to build systems that can pre-
dict the genre or subgenre of unknown music recordings
(tracks, songs) using music features automatically com-
puted from audio of those recordings. Such research can
be supported by recent developments in the context of
the AcousticBrainz 1 project, which facilitates access to
a large dataset of music features [21] and metadata [22].

1 https://acousticbrainz.org

c© Dmitry Bogdanov, Alastair Porter, Hendrik Schreiber,
Julián Urbano, Sergio Oramas. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Dmitry
Bogdanov, Alastair Porter, Hendrik Schreiber, Julián Urbano, Sergio Ora-
mas. “The AcousticBrainz Genre Dataset: multi-source, multi-level,
multi-label, and large-scale”, 20th International Society for Music Infor-
mation Retrieval Conference, Delft, The Netherlands, 2019.

AcousticBrainz is a community database containing mu-
sic features extracted from over four million distinct au-
dio files 2 uniquely identified by public MusicBrainz Iden-
tifiers (MBID) 3 and thus tied to rich textual metadata.
Users who contribute to the project run software on their
computers to process their personal music collections and
submit features to the AcousticBrainz database. Based on
these features, additional metadata not already included in
MusicBrainz, like mood, tempo, key, and genres can be
estimated from content-based features in the database.

To facilitate new research in MGR, we have curated
four supplemental genre datasets mapped to recordings in
AcousticBrainz and containing fine-grained, hierarchical
genre annotations, derived from both crowdsourced labels
and expert annotations. Each of the four datasets contains
multiple labels featuring hundreds of subgenres covering
in total over 2,086,000 recordings, which are connected to
AcousticBrainz via MBIDs. We refer to the combination
of the four datasets and the music features from Acoustic-
Brainz as the AcousticBrainz Genre Dataset. The four
main characteristics of this new dataset are:

• Multi-source. It allows us to explore how the same mu-
sic can be annotated differently by communities who
follow their own genre taxonomies, and how this can be
addressed when developing and evaluating MGR sys-
tems. This is especially valuable, because it has been
previously noted that the evaluation of MGR systems is
difficult due to subjectivity in genre annotations, with
little inter-annotator agreement [8]. We are not aware of
any other dataset offering such a unique and comprehen-
sive view on genres.

• Multi-level. We provide information about the hier-
archy of genres and subgenres within each annotation
source. Previous research typically used a small num-
ber of broad genre categories. According to Sturm’s
2012 survey [26], the most popular public datasets
for automatic genre recognition were GTZAN and IS-
MIR04 [7, 13, 28], with 10 and 6 genres, respectively.
Only 3.7% of the surveyed systems used 25 or more la-

2 As of April 2019.
3 https://musicbrainz.org/doc/MusicBrainz_Identifier
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Dataset GTZAN Rosamerica FMA USPop KPop MSD RWC Ballroom ISMIR04 Acousticbrainz
[28] [14] [9] [1] [17] [2] [12] [13] [7]

Recordings 1,000 400 106,574 7,000 1,894 1,000,000 100 698 729 692,217–1,935,991
Genres 10 8 16 10 7 No1 10 9 6 15–31
Subgenres — — 161 — — — 33 — — 265–745
Hierarchical No No Yes No No No Yes No No Yes
Multi-Label No No Yes No No No No No No Yes
Audio Yes Yes2 Yes No No No3 Yes Yes Yes No
Public ID No No Yes No No Yes No No No Yes

1 While the original dataset only contains free-form tags and no explicit genre labels, there have been several attempts to map MSD-tracks to
genres [10, 23, 24]. 2 Available upon request. 3 7-Digital previews have been available.

Table 1: Popular genre recognition datasets, compared to the proposed AcousticBrainz Genre Dataset.

bels. In contrast, our dataset contains dozens of genres
and hundreds of subgenres.

• Multi-label. Genre recognition is often treated as a sin-
gle category classification problem, likely because ex-
isting datasets are often single-label (e.g., GTZAN [28]
or Ballroom [13]; see Table 1). Yet, previous studies
suggest that if there is a diversity of responses in terms
of genre labels to any particular recording, the standard
evaluation methodology that uses single genre category
as ground truth is not adequate [8,20]. Our data is intrin-
sically multi-label, which allows treating genre recogni-
tion as a multi-label classification problem.

• Large-scale. MIR research is often performed on small
music collections. We provide a very large dataset with
audio features for over two million recordings annotated
with genres and subgenres. However, we only provide
precomputed features, not audio.

Compared to popular MGR datasets (see Table 1), the
AcousticBrainz Genre Dataset is unique in that it is the
only one that has all of these characteristics, which opens
up interesting research opportunities. The remainder of the
paper is structured as follows. We describe the dataset in
detail in Section 2. In Section 3, we report on how the data
has already been used for a task held within MediaEval
2017–18 [3, 4]. Section 4 describes a baseline implemen-
tation, and finally Section 5 presents our conclusions.

2. DATASET

The AcousticBrainz Genre Dataset dataset consists of
genre annotations (Section 2.1) and precomputed mu-
sic features (Section 2.2), distributed in predefined
splits (Section 2.3). All related information about the
dataset including downloads, data format, and baselines is
available online. 4

2.1 Genre Annotations

We provide four datasets with genre and subgenre anno-
tations extracted from different online metadata sources.
Two sources feature expert annotations using a strict tax-
onomy, two others use free-form tags from users: 5

4 https://mtg.github.io/acousticbrainz-genre-dataset
5 The resulting genre metadata is licensed under CC BY-NC-SA4.0

license, except for data extracted from the AllMusic database, which is

• AllMusic 6 and Discogs 7 are based on editorial meta-
data databases maintained by music experts and enthusi-
asts. These sources contain explicit genre/subgenre an-
notations of music albums following predefined genre
taxonomies. To build the datasets we assumed that the
annotations for an album also correspond to all of the
recordings it contains. AllMusic data has been previ-
ously used [23] to provide genre annotations for the Mil-
lion Song Dataset [2], while Discogs has been recently
proposed as an alternative source of genre metadata for
MIR [5]. To retrieve annotations from these sources we
used the artist, album name and year metadata associ-
ated with each recording in AcousticBrainz. AllMusic
has no publicly available API, and therefore we used a
scraper to parse HTML data directly from the website.
For Discogs, its public API was used. Annotations in
AllMusic contain up to three levels of hierarchy, which
we simplified to two levels by taking the most generic
and the most specific annotations.

• Lastfm 8 is based on a collaborative music tagging
platform with large amounts of genre labels provided
as folksonomy tags by its users for music record-
ings. Tagtraum 9 is similarly based on genre labels
collected from users of the music tagging application
beaTunes. 10 To retrieve labels from the Lastfm API
and genre annotations from the Tagtraum database we
queried them using used artist names and recording ti-
tles. We then automatically inferred a genre/subgenre
taxonomy and annotations from these labels following
the algorithm proposed in [24]. This procedure exploits
the fact that co-occurrences for genres are usually asym-
metrical. For example, while Alternative Rock almost
always co-occurs with Rock, Rock does not necessarily
co-occur with Alternative Rock. This lets us derive a hi-
erarchy. We performed manual post-processing to con-
solidate spelling variations and to remove location and
era names (e.g., “50s”, “Canadian”) or labels that were
clearly not a genre (e.g., “awesomelyrics”).

Each source’s genre taxonomy varies in class space,

released for non-commercial scientific research purposes only.
6 https://allmusic.com
7 https://discogs.com
8 https://last.fm
9 http://www.tagtraum.com

10 https://www.beatunes.com
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Dataset AllMusic Discogs Lastfm Tagtraum

Type Explicit Explicit Tags Tags
Annotation level Album Album Track Track

Recordings 1,935,991 1,290,489 806,627 692,217
Release groups11 233,789 169,109 164,290 98,333

Genres 21 15 30 31
Subgenres 745 300 297 265
Genres/track 1.33 1.37 1.14 1.13
Subgenres/track 3.14 1.70 1.28 1.72

Table 2: Overview of the AcousticBrainz Genre Dataset.
Data is split in 70/15/15% for training, validation and test.

specificity, and breadth, and has its own definitions for the
classes (i.e., the same label may have different meanings in
difference sources). Most importantly, annotations in each
source are multi-label: there may be multiple genre and
subgenre annotations for the same music recording. It is
guaranteed that each recording has at least one genre label,
but subgenres are not always present.

Table 2 provides an overview of the entire Acoustic-
Brainz Genre Dataset. The bottom rows show the size of
the genre taxonomies in each source. Compared to the oth-
ers, the AllMusic taxonomy comprises few genres, but is
much richer in terms of subgenres. Conversely, the Tag-
traum taxonomy has the most genres, but the least number
of subgenres. Figure 1 shows the distributions of genres in
all four sets, where we can appreciate clear biases towards
pop, rock and electronic. 12 This bias seems less acute in
the Discogs and Lastfm sets. Figure 2 shows how label
counts are distributed in all four datasets. In terms of gen-
res, most recordings are annotated with only one genre,
with some having as many as 8 genres in AllMusic and
Discogs. In terms of subgenres, most recordings in the
simpler Tagtraum and Lastfm sets are annotated with 1 or 2
subgeners, but in the more complex AllMusic and Discogs
sets we find 10 or more subgenre annotations for some
recordings. We can see that the distribution in AllMusic
is quite smooth, while in the other sets we see clear biases
towards 1 genre and 1 or 2 subgenres. We did not aim to
create a representative or unbiased dataset, instead collect-
ing as much data as possible for recordings in Acoustic-
Brainz. We understand that biases likely exist due to the
coverage of MusicBrainz, AcousticBrainz, and the sources
of genre information.

A more detailed picture of the complexity and similar-
ity among datastets can be made in terms of entropy of the
label distributions. In particular, we may compute the con-
ditional entropy of a dataset X given another dataset Y :

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)
, (1)

where X and Y are the taxonomies of X and Y , respec-
tively. Eqn (1) computes the amount of information needed

11 https://musicbrainz.org/doc/Release_Group
12 Details on the genre/subgenre taxonomies and their distributions are

reported on the dataset website.

Allmusic Discogs Lastfm Tagtraum

Allmusic 59.6 39.6 28.9 33.3
Discogs 35.4 21.2 15.1 17.8
Lastfm 32.1 19.2 11.2 16.0

Tagtraum 29 17.7 11.6 10.6

(a) Genre and subgenre labels.

Allmusic Discogs Lastfm Tagtraum

Allmusic 1.94 2.40 1.62 1.49
Discogs 2.37 2.15 1.57 1.50
Lastfm 2.87 2.88 1.18 1.8

Tagtraum 2.09 2.00 1.17 0.67

(b) Only genre labels.

Table 3: Conditional pseudo-entropy H̃(X|Y ) between
pairs of datasets, where X is the dataset in the row and
Y the one in the column.

to describe a recording in X given its labels in Y . For sim-
plicity, we ignore the multi-label nature of the data and set
p(x) equal to the probability that a recording contains the
label x, ignoring the other labels in the same recording.
As a byproduct, this allows us to compute H(X|X) 6= 0,
understood as the amount of information needed to fully
describe a recording in X when some label in X is already
known. To make this distinction explicit, let us refer to this
as conditional pseudo-entropy H̃ .

Table 3a shows the conditional pseudo-entropies when
considering both genre and subgenre labels. As the di-
agonal shows, the AllMusic dataset is much more com-
plex than the others, as anticipated by the high number
of subgenres in the taxonomy and the smooth distribu-
tion shown in Figure 2. Interestingly, the Lastfm column
shows that knowing Lastfm labels provides the most in-
formation when predicting labels in the other taxonomies,
only surpassed by known labels in the target taxonomies
(diagonals). Lastfm and Tagtraum are the most similar
sets, with AllMusic and Discogs being the most dissimilar.
This suggests that labels produced by different non-expert
user communities and following no common guidelines,
are more similar than those produced by different set of
experts following different guidelines.

Table 3b shows similar results, but considering only the
genre labels. The pseudo-entropies are orders of magni-
tude smaller because genres encode less information, and
as a result relative differences among datasets are also
smaller. Discogs is the most complex dataset because of
its higher variability in the number of genres per recording
(see rows in Figure 2), followed by AllMusic. This time,
we see that Tagtraum provides the most information when
predicting labels in another taxonomy. As before, the most
similar sets are Lastfm and Tagtraum, and the most dissim-
ilar are AllMusic and Discogs.

2.2 Music Features

We provide music features precomputed from audio for
all music recordings. All features are taken from the
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Figure 1: Distributions of genre labels.
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Figure 2: Distributions of label counts. Box heights represent the amount of recordings with the number of genre labels
indicated in the row, and widths represent the amount of recordings with the number of subgenre labels in the column.

AcousticBrainz database and were extracted from audio
using Essentia, an open-source library for music audio
analysis [6]. They include features characterizing over-
all loudness, dynamics, and spectral shape of the sig-
nal, rhythm descriptors (including beat positions and BPM
value), and tonal information (including chroma features,
keys and scales). 13 Only a statistical characterization of
time frames is provided (bag of features), that is, no frame-
level data is available. The features for each recording are
provided in a JSON file. 14

2.3 Training, Validation and Test Sets

We provide four training sets and four validation sets with
all data publicly available, and four test sets with a hid-
den ground truth. The training and validation sets can be
used for the evaluation of MGR systems (Section 3.3). The
test sets do not include a publicly available ground truth
and have anonymized MBIDs; they are reserved for fu-
ture MGR challenges. Nevertheless, it is possible to run an
evaluation on the test sets upon request. 15

The datasets were created by a random split of the full
data ensuring that:
• No recording appears in more than one set;
• No recordings in any set are from the same release

groups present in other sets (e.g., albums, singles, EPs);
• The same genre and subgenre labels are present in all

three sets for the same source;
• Genre and subgenre labels are represented by at least

40 and 20 recordings from 6 and 3 release groups in
training and validation/test sets, respectively.
The approximate split ratios of the datasets are 70% for

training, 15% for validation, and 15% for testing. Par-

13 More details are available online: http://essentia.upf.edu/
documentation/streaming_extractor_music.html

14 An example JSON file: http://acousticbrainz.org/api/v1/
6bb7e980-791c-44b5-9024-cc7c90bc8230/low-level?n=0

15 Please, contact the authors.

titioning scripts are provided to create training-validation
splits ensuring these characteristics in the data. The four
ground truths partially overlap. The full intersection of all
training sets contains 247,716 recording, while the inter-
section of the two largest sets, AllMusic and Discogs, con-
tains 831,744 recordings.

All data are published in JSON and TSV formats; de-
tails about the formats are available online. Each recording
in the training and validation sets is identified by an MBID,
which can be used by researchers to gather related data.
Importantly, our split avoids the “album effect” [11], which
leads to a potential overestimation of the performance of a
system when a test set contains recordings from the same
albums as the training set. We don’t filter for the artist
effect, in order to preserve some low-count tags and to ad-
dress the fact that artists can release albums with different
broad genres. MusicBrainz artist IDs allow researchers to
perform this filtering if desired. The training sets addi-
tionally include information about release groups of each
recording, which may be useful for researchers in order to
avoid this effect when developing their systems.

3. RESEARCH TASK

MGR systems typically attempt to predict a single label per
recording. Given that the AcousticBrainz Genre Dataset
features multiple hierarchical labels from different sources,
we suggest the following two subtasks designed for the
datasets introduced in Section 2.

3.1 Subtask 1: Single-source Classification

This task, depicted in Figure 3a, explores conventional sys-
tems, each one trained on a single dataset. Researchers
make predictions for the test set of each dataset separately,
using their respective class spaces (genres and subgenres).
These predictions will be produced by a separate system
for each dataset, trained without any information from the
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(a) Subtask 1: Single-source classification
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(b) Subtask 2: Multi-source classification

Figure 3: Suggested tasks for the AcousticBrainz Genre Dataset.

other sources. This subtask can serve as a baseline for the
multi-source classification task described below.

3.2 Subtask 2: Multi-source Classification

This task (Figure 3b) explores the combination of several
ground-truth sources to train, but still make predictions for
each test set separately, again following the corresponding
genre class spaces. These predictions may be produced by
a single system for all datasets or by one system for each
dataset. Researchers are free to make their own decisions
about how to combine the training data from all sources.

3.3 Evaluation

The development of an appropriate methodology that mod-
els each subtask as a single experiment with a “source”
factor and replicated observations, is an interesting point
that we leave for future research. For simplicity, we fol-
low traditional evaluation on each test dataset separately,
as if they were four independent experiments. As for met-
rics, we propose ROC AUC, precision, recall and F-score
at the label level for a system-oriented view, and also at
the recording level for a user-oriented view. We do not use
hierarchical metrics because the hierarchies in the Lastfm
and Tagtraum datasets are not explicit. Instead, we com-
pute metrics at different levels:
• Per recording: using all labels, only genre labels, or only

subgenre labels
• Per label: using all recordings
• Per genre label: using all recordings
• Per subgenre label: using all recordings

The ground truth does not necessarily contain subgenre
annotations for some recordings, so we only considered
recordings containing subgenres for the evaluation at the
subgenre level. We provide evaluation scripts for develop-
ment purposes and two simple baselines:
• Random baseline reproduces the joint distribution of la-

bels as found in the training sets.
• Popularity baseline always predicts the most popular

genre in the training set.
In the context of the MediaEval 2017–18 task, 16 re-

searchers were expected to create predictions for both sub-

16 Task details and evaluation results are available online: https://
multimediaeval.github.io/2018-AcousticBrainz-Genre-Task

tasks, reporting whether they used the entire data avail-
able for development or only its parts for every submission.
Overall, we received over 100 submissions from 7 research
teams covering both subtasks.

4. BASELINE

In this section we present our baseline approach for the
proposed MGR tasks. This baseline employs an oversim-
plistic deep learning architecture for the single-source task
and a fusion approach that demonstrates the possibilities of
merging different genre ground truth sources in the multi-
source task. To this end, we explore how stacking deep fea-
ture embeddings obtained on different datasets can benefit
MGR systems. We propose an early fusion approach, sim-
ilar to the one proposed in [19] for multi-modal genre clas-
sification. The approach incorporates knowledge across
datasets by stacking deep feature embeddings learned on
each dataset individually and using those as an input to
predict genres for each dataset.

4.1 Input Features

We use all available features provided for the challenge.
As a pre-processing step, we apply one-hot encoding for
a few categorical features related to tonality (key_key,
key_scale, chords_key, and chords_scale) and
standardize all features (zero mean, unit variance). In total,
this amounts to 2669 input features.

4.2 Neural Network Architecture

A simple feedforward network (extractor network) is used
to predict the probabilities of each genre given a track. The
network consists of an input layer of 2669 units (the size
of the feature vector for an input recording), followed by
a hidden dense layer of 256 units with ReLu activation,
and the output layer where the number of units coincides
with the number of genres to be predicted in each dataset.
Dropout of 0.5 is applied after the input and the hidden
layer. As the targeted genre classification task is multi-
label, the output layer uses sigmoid activations and is eval-
uated with a binary cross-entropy loss.

Mini-batches of 32 items are randomly sampled from
the training data to compute the gradient. The Adam [15]
optimizer is used to train the models, with the suggested
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Subtask AllMusic Discogs Lastfm Tagtraum

Single-source 0.648 0.759 0.828 0.802
Multi-source 0.812 0.886 0.906 0.887

Table 4: ROC AUC on validation datasets.

default parameters. The networks are trained for a maxi-
mum of 100 epochs with early stopping on validation loss.
Once trained, we extract the 256-dimensional vectors from
the hidden layer for the training, validation, and test sets.

The model architecture is used to train a multi-label
genre classifier on each of the four datasets. The models
are trained on 80% of the training set and validated after
each epoch using the other 20% using the provided split
script with release group filtering. Predictions are com-
puted for the validation and test sets.

4.3 Embedding Fusion Approach

One model per dataset is trained. These models serve for
predictions in Subtask 1. For Subtask 2, the given mod-
els are used as feature extractors. All four models share
the same input format, so input feature vectors from one
dataset can be used as input to a model trained on other
datasets. For each model we feed all tracks from the train-
ing, validation and test sets of each dataset, and obtain the
activations of the hidden layer as a 256-dimensional fea-
ture embedding. Therefore, for each track in each dataset
we obtain four different feature embeddings, coming from
each of the four previously trained models.

Given the four feature embeddings of each track, we
apply the `2-norm to each of them and then stack them to-
gether into a single 1024-dimensional feature vector. We
obtain new feature vectors for every track in the training,
validation and test sets of each dataset. We use these fea-
ture vectors as input to a fusion network where the input
layer is directly connected to the output layer. Dropout of
0.5 is applied after the input layer. The output layer is ex-
actly the same as in the extractor network, where sigmoid
activation and binary cross-entropy loss are applied. The
fusion network is trained following the same methodology
and partitions described for the extractor network. We train
a fusion network per dataset, and obtain the genre probabil-
ity predictions of the validation and test sets for Subtask 2.

4.4 Predictions Thresholding

The predictions made by each model are continuous, while
the task requires binary prediction of genre labels. We ap-
ply a plug-in rule approach thresholding the prediction val-
ues to maximize the evaluation metrics. As an example,
we decided to maximize the macro F-score, and applied
thresholds individual for each genre label [18].

4.5 Results and Analysis

Full results and code for the baseline are available at the
dataset website. Table 4 presents the ROC AUC metric on
the validation sets. Table 5 presents the final results af-
ter applying thresholding. We can clearly see the benefit

Dataset
AllMusic Discogs Lastfm Tagtraum

Single-source

Per recording P 0.016 0.069 0.075 0.124
(all labels) R 0.579 0.538 0.446 0.507

F 0.030 0.119 0.124 0.194

Per label P 0.023 0.076 0.074 0.097
(all labels) R 0.492 0.249 0.238 0.232

F 0.032 0.095 0.095 0.115

Multi-source

Per recording P 0.142 0.286 0.266 0.299
(all labels) R 0.475 0.545 0.476 0.513

F 0.195 0.339 0.305 0.349

Per label P 0.065 0.108 0.115 0.127
(all labels) R 0.155 0.210 0.220 0.223

F 0.074 0.122 0.133 0.140

Table 5: Precision, recall and F-scores on validation
datasets produced by our baseline approach.

of models based on the embedding fusion approach com-
pared to the models trained individually on each dataset.
While the individual models (Subtask 1) are hardly usable,
the combined models got a significant improvement in per-
formance.

In our baseline, we focused on optimizing macro F-
score, however choosing this metric for threshold opti-
mization can have a negative effect on micro-averaged
metrics. In the case of infrequent subgenre labels and an
uninformative classifier, an optimal, but undesirable strat-
egy may involve always predicting those labels [18]. In-
deed, this was the case for the individual models, but the
fusion models did not have this issue.

Overall, we may expect further improvements in perfor-
mance by means of a more sophisticated network architec-
ture (e.g., [16, 25]). The baseline is available online at the
dataset webpage.

5. CONCLUSIONS

We have presented the AcousticBrainz Genre Dataset,
a large-scale dataset of music features and hierarchical
multi-label genre annotations from different sources. This
is unique data for MIR research, as it allows researchers
to explore how the same music pieces are annotated differ-
ently by different communities following their own genre
taxonomies, and how this could be addressed by genre
recognition systems. To this end, we have proposed a re-
search task for building MGR systems based on music fea-
tures available in the AcousticBrainz database and to ex-
plore how multiple sources of genre annotations can be
combined by MGR systems. This task was already held
within the MediaEval 2017–18 evaluation campaigns, and
it may serve as an example of the development and valida-
tion of automatic annotation algorithms on complementary
datasets with different taxonomies and coverage.
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ABSTRACT

Cultural products such as music tracks intend to be appre-
ciated and recognized by a portion of the audience. How-
ever, no matter how highly recognized a song might be at
the beginning of its life, its recognition will inevitably and
progressively decay. The mechanism that governs this de-
creasing trajectory could be modelled as a forgetting curve
or a collective memory decay process. Here, we propose a
composite model, termed T-REC, that involves chart data,
YouTube views, Spotify popularity of tracks and forgetting
curve dynamics with the purpose of estimating song recog-
nition levels. We also present a comparative study, involv-
ing state-of-the-art and baseline models based on ground
truth data from a survey that we conducted regarding the
recognition level of 100 songs in Sweden. Our method is
found to perform best among this ensemble of models. A
remarkable finding of our study pertains to the role of the
number of weeks a song remains in the charts, which is
found to be a major factor for the accurate estimation of
the song recognition level.

1. INTRODUCTION

Music is a form of art that attracts the vast majority of
global population and has a remarkable impact on people’s
emotions and behavior. In particular, in-store consumer
purchase behavior has been related to background music
in the research literature [9, 21, 22, 31]. Also, the role of
music popularity, liking and recognition levels in shopping
intentions [4, 35] and the perception of time [2] has been
investigated. Background music providers supply compa-
nies with music playlists with the purpose of optimizing
the in-store experience of their customers and their brand
perception. Having effective means of estimating song
recognition can provide such companies with a useful tool
for generating better playlists. Motivated by the above, in
this paper we propose an accurate song recognition model

c© Christos Koutlis, Manos Schinas, Vasiliki Gkatziaki,
Symeon Papadopoulos, Yiannis Kompatsiaris. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Christos Koutlis, Manos Schinas, Vasiliki Gkatziaki, Symeon Pa-
padopoulos, Yiannis Kompatsiaris. “Data-driven song recognition esti-
mation using collective memory dynamics models”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

as basis for experimentally measuring the impact of song
recognition on in-store purchase behavior. 1

Although song recognition is the focus of this paper,
song popularity is more frequently encountered in the re-
search literature. The popularity of songs is a concept used
to express how much attention a certain song currently
receives. There have been attempts towards determining
song popularity making use of the online available infor-
mation from posts in microblog websites [12, 23, 28, 29]
and in the blogosphere [1], search queries and number of
shared files in peer-to-peer networks [17, 28], play counts
in social media music sites such as Last.fm [3, 29], the
amount of time of radio play, the music industry awards
that it received [25] and popularity indices provided by
streaming platforms such as Spotify [3]. Of course the
traditional ways of determining music popularity such as
the Billboard Magazine chart are also used for comparison
with the modern web-based popularity indices [16, 17].

Music exhibits its own complex dynamics in terms of
popularity growth and decay while the means used to pro-
mote it in the public constantly evolve and capitalize on
the advances and trends of digital media and communica-
tion technologies. During the last decade, researchers have
investigated special attributes of songs that may lead to a
successful release [8, 15, 36], and have attempted to suc-
cessfully predict hit songs [6, 16]. However, while song
popularity is a research topic that has attracted intense aca-
demic interest the level of a music track’s recognition is a
notion that has been significantly less studied.

As song recognition we define the fraction of the au-
dience that recognizes (comprehend that they have heard
it before) a specific music track through audio exposure.
This notion is different from the notion of song popular-
ity as a song might no longer be trending (for instance an
old song no longer placed in the charts) but at the same
time a considerable portion of the music audience might
recognize its tune. To further illustrate this differentiation,
in Table 1 we present the most popular songs of 2018 2

and most recognized songs of all time 3 . It is apparent that
songs on the left column currently overwhelm the charts
and online playlists, but songs on the right column are

1 We consider atmospherics, such as high/low recognition music, as
causal factors for consumer behavior in stores.

2 According to Spotify’s “Top Tracks of 2018” list.
3 According to experimental results obtained by “Hooked On Music”

(http://www.hookedonmusic.org.uk/) and published on BBC’s webpage
(https://www.bbc.com/news/science-environment-29847739).
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Top 2018 songs Top recognized songs
God’s plan/Drake Wannabe/Spice Girls
SAD!/XXXTENTACION Mambo No 5/Lou Bega
rockstar/Post Malone Eye Of The Tiger/Survivor
Psycho/Post Malone Just Dance/Lady Gaga
In My Feelings/Drake SOS/ABBA
Better Now/Post Malone Pretty Woman/Roy Orbison
I like It/Cardi B Beat It/Michael Jackson
One Kiss/Calvin Harris I Will Always Love You/Whitney Houston
IDGAF/Dua Lipa Don’t You Want Me/The Human League
FRIENDS/Marshmello I Don’t Want To Miss A Thing/Aerosmith

Table 1: Left column: top 2018 songs in terms of popular-
ity. Right column: top recognized songs of all time.

surely recognized by a very high percentage of the pop-
ulation even though they are not currently popular.

To estimate the portion of the audience that recognize a
music track, one should take into account the cognitive as-
pects of the problem. That is to say, collective memory dy-
namics and more precisely the mechanisms that govern its
initial increase and its decay after the initial period of pop-
ularity. For the more general concept of human memory
decay many studies have been conducted [10,11,20,24] in-
dicating forgetting curves with exponential decay dynam-
ics. Music-specific research has adopted exponential for-
getting curves [7, 14] for song “freshness” assessment, as
well. A method with double exponential dynamics was
proposed as a general memory decay model [5], while log-
normal dynamics were employed to model the dynamics of
scientific paper impact [33]. Equally important is to take
into account the notions of learning curves [26] and over-
learning [27] in order to determine the initial amount of
learned information and the velocity of forgetting. In many
studies researchers argue for the significant role of (i) rep-
etition of a stimulus in learning [10, 13, 19, 26, 27] and (ii)
the degree of original learning in the velocity of forget-
ting [10, 20, 30, 34]. Namely, the more exposed to a stim-
ulus humans are the higher the initial amount of learned
information is and the slower they forget it.

Here, we propose T-REC, a song recognition model that
takes as input the chart positions a track has gained along
with the respective dates, its current YouTube views and
Spotify popularity. T-REC also considers sigmoid learning
curve dynamics, exponential decay forgetting curve dy-
namics and a decay rate being a function of the number
of weeks each track is maintained in the charts, which we
consider here as a proxy of the original learning degree. In
other words, the number-of-weeks feature is an indicator
of how strongly the audience is exposed to a specific tune
and as it increases, the forgetting procedure (i) starts from a
higher point and (ii) decelerates further, as indicated by the
related research literature on human memory. Eventually,
T-REC results in the estimation of song recognition levels
per market and globally. Other competitive models are also
considered for comparison purposes. We have conducted
a survey for the estimation of the current level of recogni-
tion of 100 songs in Sweden, which we then use as ground
truth for the evaluation of our method’s performance and
for comparison with the other methods. We make the re-
sulting data available for the community [18].

2. MATERIALS AND METHODS

2.1 Data

For estimating the recognition levels of music tracks, our
starting point was a list of tracks provided by Soundtrack
Your Brand, a collaborating background music provider.
The list consists of 39,466 tracks from 21,450 artists and
from 75 countries. We also make use of data from 211
charts, 198 track charts and 13 singles charts, that span
long periods of time (in some cases from the 60s until to-
day) from 62 countries around the globe including Swe-
den. We also used the Spotify API to annotate chart entries
with the Spotify id and International Standard Recording
Codes (ISRC) 4 of each of the songs. Since our user study
was carried out on a Swedish population, we present the
monitored charts for Sweden along with the corresponding
monitored periods in Table 2.

chart name since until
Spotify Daily Chart 2017-01-01* 2018-03-06
Spotify Weekly Chart 2016-12-23 2018-03-01
Veckolista Svenskt Topp-20 2015-01-17 2018-06-15
Veckolista Singlar 1988-01-16 2018-06-15
Veckolista Heatseeker 2015-01-10 2018-06-15
Veckolista Svenska Singlar 2015-01-10 2015-01-16
SINGLES TOP 100 1975-11-08 2018-06-01
Sweden Top 20 2001-06-12 2018-07-07
Sweden Singles Top 100 2017-12-29 2018-07-05

Table 2: The list of Swedish charts we used in this study.
The first column presents the chart name, the second and
third columns present the start and end dates of monitoring
respectively. *All dates are in YY-MM-DD format.

Most songs do not make it in the charts, thus we ad-
ditionally employ YouTube views and Spotify popularity
of tracks as current track popularity proxies. Knowing the
Spotify id of the tracks and the id of an associated offi-
cial video in YouTube 5 , we retrieved these two signals
by using the public APIs offered by Spotify and YouTube
respectively. The intuition behind the use of these two
metrics, is that they reflect the exposure of a song in two
widely used platforms. Number of video views in YouTube
is a direct measure of how many people heard a song. On
the other hand, although Spotify popularity is a score gen-
erated internally by Spotify and the exact formula is not
known, that score reflects the actual number of streams a
song received recently. Therefore, we can safely assume
that a song having a high popularity score is currently lis-
tened more than songs with a lower score.

2.2 Models

2.2.1 T-REC

The proposed song recognition model builds upon three
main components, the recognition growth that represents
the level of recognition a track reaches during its initial

4 https://isrc.ifpi.org/
5 To this end, we used the Soundiiz (www.soundiiz.com) service,

which supports playlist conversion between platforms.
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prosperity time (when it is placed in charts), the recog-
nition decay that represents the collective memory decay
process (i.e. the mechanism of collective forgetting of
songs) and the recognition proxy-based adjustment that ad-
justs the recognition level of tracks, which is especially
useful for tracks with no chart information.

Having annotated chart entries with the corresponding
ISRC, we were able to retrieve the positions of tracks in
the Swedish charts of Table 2. These are then used to es-
timate their recognition growth (in Sweden) according to
Equation 1:

g(t) =


100 · cK+1−rK(t)

cK
· σ1,

if track in chart K at time t
0, otherwise

(1)
where cK is the number of tracks in chart K, rK(t) is
the rank of the track in chart K at time t ∈ [t0, ttoday] 6

and σ1 = σ1(θ0, θ1, x) = (1 + e−θ1·x+θ0)−1 adjusts the
rank’s importance using an S-shaped learning curve with
x ∈ (0,+∞) and θ0, θ1 ∈ R. The logistic part of the
model is incorporated to control the importance of a chart
position given the number of weeks x the track has re-
mained in the charts. If a track remained in the charts for
only one week its rank’s importance would be a lot lower
(54.9%) compared to it remaining for 20 weeks (98.2%).
Therefore, in the first case the decay process will begin
from a much lower point. The value of g(t) is assigned to
all g(ti) with ti ∈ [t−n+1, t] according to the chart’s fre-
quency e.g. if it is weekly n = 7. If a track gains multiple
values at a single date, the maximum value is used.

Towards formally defining the recognition decay, we
build on findings from research literature in the area of hu-
man memory, and more precisely on the concept of for-
getting curves. A forgetting curve is the rule by which
the memory regarding a specific learned item is reduced.
In our case we consider as learned items the music tracks.
Hence, we aim at estimating the function that describes the
forgetting procedure that has been proposed to be expo-
nentially decreasing in many studies [20, 24]. We also opt
for the exponentially decreasing forgetting curve for song
recognition but at a less steep rate. It is natural to con-
sider that the level of recognition decay is impossible to be
higher than the level of recognition growth at its peak for a
particular track. Also, each time the track reemerges in the
charts the forgetting procedure restarts from a new higher
point of recognition. Additionally, we consider a variable
decay rate as a reasonable consideration would be that not
all songs’ recognition decays with the same velocity. The
recognition decay is defined in Equation 2:

d(t) =

{
g(t), if d(t− 1) ≤ g(t)

σ2 · d(t− 1) + (1− σ2) · g(t), otherwise
(2)

where σ2 = σ2(φ0, φ1, x) = (1 + e−φ1·x+φ0)−1 is the
recognition retention percentage with x being the number

6 As t0 we set the song’s release date and as ttoday the current date.

of weeks the track has remained in the charts and g(t) is
the previously defined in Equation 1 recognition growth.
If a track has remained for a long time in the charts its
retention percentage would be considerably high and its
forgetting process would be rather slow, while if a track
has remained in the charts for only few weeks its retention
percentage would be low and its forgetting process fast.

The first logistic function σ1 controls the initial recog-
nition level from which the decreasing trajectory begins
and the second logistic function σ2 controls the velocity of
recognition decay, both individually per track.

To model the recognition proxy-based adjustment, we
consider a multiple linear regression model with input the
track’s current Spotify popularity index (PS) and the log-
transformed YouTube views (PY T ) as in Equation 3:

s(ttoday) = α0 + α1 · log(PY T ) + α2 · PS (3)

The composite T-REC model is defined as a linear com-
bination of recognition decay and recognition proxy-based
adjustment at ttoday:

T-REC = w0 + w1 · d(ttoday) + w2 · s(ttoday) (4)

2.2.2 Competitive Models

In order to perform a comparative study, four competitive
models are employed for the task of song recognition es-
timation. Two of them are well-known regression models,
one is related to collective memory decay while the last
one is the plain Spotify popularity index (PS).

The first model is based on Multiple Linear Regression
(MLR) and the second on Random Forests (RF). The log-
transformed YouTube views and the Spotify track popu-
larity are considered as inputs to these models and actual
recognition as their target. MLR actually corresponds to
the proxy-based adjustment introduced in Equation 3. The
third competitive model is the state-of-the-art log-normal
decay model (LOGN) [33] that Wang et al. developed for
modelling the decay process of scientific paper citations.
We use the form of this model that is presented in the sup-
plementary material of [5], namely Equation 5:

l(t) = e

[
ln
(

λ√
2πσ

(ct+m)
)
−µ2

]
· t

µ

σ2
−1 · e−

ln2(t)

2σ2 (5)

where t is time, ct = m

[
eλΦ
(
ln(t)−µ

σ

)
− 1

]
, Φ(·) is the

cumulative distribution function of the normal distribution
and λ, µ, σ, m are arbitrary parameters.

2.2.3 Optimization and Evaluation

We consider a holdout strategy (70% training, 30% test) for
the models’ evaluation as described in [32]. The optimiza-
tion of all models’ parameters is performed in the training
set by the truncated Newton algorithm as implemented by
the SciPy package. We use as objective function the mean
absolute error between measured (by the user study) and
computed (by each model) song recognition.
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class # fraction Sweden

gender male 521 50.05% 50.24%
female 520 49.95% 49.76%

age

18-24 54 5.19% 18.15%*
25-34 422 40.54% 22.46%
35-44 277 26.61% 20.01%
45-54 244 23.44% 21.12%
55-65 44 4.22% 18.26%

Table 3: Demographics of the test population and Sweden
(normalized within the group of people between 15 and 65
years old). *This figure refers to 15-24 age group.

The models’ performance is then evaluated in the test
set by the mean absolute error (MAE) between the mea-
sured and the computed recognition as in Equation 6:

MAE =

∑k
i=1 | xi − yi |

k
(6)

where k is the number of tracks, xi is the measured recog-
nition for track i and yi is the computed recognition for
track i. A perfectly accurate model would lead to a MAE
value of 0.

2.3 User study

To proceed with the user study, we employed an initial and
much simpler version of the recognition score. This initial
version had a constant decay rate across all tracks and for
the tracks with no chart data the average recognition score
of the closest, in terms of YouTube views and Spotify pop-
ularity, tracks was considered as their recognition score. 7

After the assignment of the initial recognition score
(corresponding to the time the survey was conducted) to
each of the 39,466 tracks, we formed two lists. One list
containing the 600 most recognized tracks in Sweden and
a second containing the 600 least recognized tracks in Swe-
den. 8 Consequently, 50 tracks were randomly chosen out
of each of these two lists as representative of high and low
recognition tracks.

A study was then conducted in order to obtain the actual
recognition percentages for each of these 100 songs among
a test population of 1041 annotators in Sweden. 9 We di-
vided the initial list of 100 songs in 10 groups of 10 songs
(5 of low and 5 of high recognition level in a randomized
order), then each participant listened to 30-second samples
of all the songs of one group and for each song he/she in-
dicated whether he/she recognized it or not. We had ∼100
respondents per song 10 so we got a score 0-100 based on
the percentage of respondents who responded positively.

7 The rationale behind the alterations on this model that led to T-REC
is illustrated in the results section.

8 Given that recognition estimation is the result of a sampling process,
we expect measurements in the extremes (i.e. least and most recognised
songs) to be less noisy than in intermediate recognition levels. This mo-
tivated our choice to perform the initial song selection out of two distinct
sets (high, low).

9 The study was performed through the Cint survey platform (https:
//www.cint.com/).

10 Some variability was due to the fact that not all respondents com-
pleted the process successfully.

θ0 θ1 φ0 φ1 α0

0.233 0.043 0.847 0.029 1.299
α1 α2 w0 w1 w2

0.999 -0.093 22.586 0.452 0.928

Table 4: Parameter values for T-REC after fitting.
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Figure 1: The logistic parts of recognition growth (rank’s
importance) and recognition decay (retention percentage)
components as formed after the model fitting.

We consider the recorded responses as ground truth for
our experiments and we evaluate our model as well as the
competitive models on this basis. Demographics of the test
and Swedish population 11 are illustrated in Table 3. We
observe divergent age demographics, yet almost identical
gender demographics between the test and actual popula-
tion. As the selection of annotators was carried out by Cint,
we could not better approximate the Swedish population
distribution. Despite the over-representation of some age
groups and under-representation of others, T-REC is still
a sound methodology; given a different population sample
to learn from, the model tuning step (section 2.2.3) would
lead to a slightly different recognition estimation model.

3. RESULTS

The analysis of the survey data shows that the initial recog-
nition score classified the tracks effectively with 50/50
(100%) correctly labeled as low and 37/50 (74%) correctly
labeled as high recognition (measured recognition <50%
is considered as low, while >50% as high). The 13 songs
that were falsely classified as high recognition actually ob-
tain a smaller recognition score than the rest (on average
6 units lower). Despite the promising classification per-
formance the measured recognition was in many cases far
from the computed score especially in cases of tracks with
no chart data. Thus, we developed the updated version of
the recognition score (T-REC) described in section 2.2.1.

Table 4 presents the parameter values of T-REC after
optimization. The model gives significant weights on both
recognition decay (w1) and recognition proxy-based ad-
justment (w2) components, but considers YouTube views

11 Sources: statista.com/statistics/521717/sweden-population-by-age/,
statista.com/statistics/521540/sweden-population-by-gender/
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Figure 2: T-REC components (recognition growth, decay and proxy-based adjustment) for two highly recognized songs.

(α1) as more important than Spotify popularity (α2) for the
under study problem. The impact of the rest of the param-
eters on the final model, namely the shape of the two lo-
gistic functions that control the recognition growth (θ0, θ1)
and recognition decay (φ0, φ1) components is illustrated
in Figure 1. The logistic part of recognition growth (rank’s
importance) is less steep than the logistic part of recogni-
tion decay (retention percentage), indicating that a music
track will need almost 7 weeks in the charts to achieve a
very slow rate towards oblivion, but at least 25 weeks to
achieve its highest contemporary recognition.

Moreover, two examples of how T-REC models the
mechanism of song recognition decay are illustrated in
Figure 2. As illustrated in Figure 2a, the song “Rude Boy”
by Rihanna stayed in Swedish charts for 19 weeks, and ac-
cording to the recognition decay component it maintained
99.9% of its initial recognition. Consequently, the recog-
nition proxy-based adjustment input adjusts T-REC very
close to the measured recognition (error=3.11). A different
example presented in Figure 2b shows that Mariah Carey’s
“All I Want for Christmas Is You” initially was not a big
hit in Sweden, remaining for only three weeks in the charts
back in 1995. Afterwards, its recognition exhibited a sig-
nificant decrease during the next decade, but after 2007
when the song kept reemerging in the charts every year its
recognition decay rate slowed down and both its recogni-
tion growth and decay components grew larger. The recog-
nition proxy-based adjustment component adjusts T-REC a
little lower. Although we lack ground truth for this song to
compare it to T-REC’s estimation (as it was not in the sur-
vey’s lists), we believe that 80.99% recognition is closer to
the real recognition rate 12 than the 98.99% computed by
the recognition decay component, which is obviously too
high even for a massive hit such as this.

Figure 3 illustrates the performance of T-REC on es-
timating the actual current recognition level of songs in
Sweden. Most of the points are concentrated close to the
identity line except for some tracks of intermediate recog-

12 Or only slightly underestimating it given that the top-3 measured
recognition percentages of our survey are 89.42, 85.57 and 84.61.
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Figure 3: Scatter plot with the T-REC recognition score
on the y axis and measured recognition on the x axis.

nition levels, which are overestimated. Table 5 compares
the performance of T-REC with the one of all competitive
models in terms of average MAE. All models (except for
Spotify popularity index) are trained on 100 different train-
ing sets, each containing 70 randomly selected tracks out
of the initial set of 100 tracks and then their MAE is mea-
sured on the 100 corresponding test sets, each containing
the remaining 30 tracks. T-REC exhibits the best perfor-
mance among all models with a very high statistical signif-
icance level as indicated by the p-value=10−17, according
to the Wilcoxon signed rank paired test. 13

As additional information we provide long lists of Top-
100 recognized songs and the corresponding Top-10 artists
(according to T-REC) for Sweden and USA, in the sup-
plementary material. Furthermore, we compare T-REC’s
Top-N lists with Billboard’s “The Hot 100’s All-Time Top
100 Songs” list.The results show that T-REC assigns top
scores to most of these songs as well. This fact also holds
(but to a lower degree) when the chart data from “The Hot
100” are omitted from the input list of charts.

The diverging behaviour of the songs with intermediate
recognition level in Figure 3 is also apparent in YouTube

13 This is the maximum p-value among all four comparisons.
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model AMAE
PS 20.63
MLR (Equation 3) 11.30
RF 10.27
LOGN (Wang et al. 2013 [33]) 22.00
T-REC 8.50

Table 5: Average MAE over 100 randomly selected test
sets for T-REC, Spotify popularity (PS), Multiple Linear
Regression (MLR), Random Forest (RF) and log-normal
(LOGN) models. For Spotify popularity we computed
once the mean absolute error over all 100 tracks.
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Figure 4: Scatter plot - y axes: YouTube views (log) and
Spotify popularity, x axis: measured recognition.

and Spotify indices as shown in Figure 4. One possible ex-
planation for this behavior is that 15 out of these 17 songs
have been released during the last three years and they still
are in their initial popularity phase. Thus, there has not
passed a considerable amount of time in order for these
tracks to experience significant recognition decay, which
T-REC would likely capture. As exemplified in Figure 5
the more recent the track the bigger the error our model
produces, which is a limitation of the proposed model,
even though the average errors in all periods are small (the
maximum is 9.5) and less than any other compared model.

Finally, we would like to elaborate on the rationale be-
hind the refinements that we performed on our model in
order to take its final form (Equation 4). In Figure 4 a lin-
ear interaction is observed between (i) the log-transformed
YouTube views and Spotify popularity and (ii) the mea-
sured recognition, with Pearson correlation coefficients
0.79 and 0.71 respectively. Thus, we incorporated the mul-
tiple linear model with the corresponding input quantities
as recognition proxy-based adjustment component in the
final T-REC formula. The consideration of a constant de-
cay rate in the formula of recognition decay is not plausi-
ble, since it would further lead to a zero rate as the best
choice after model fitting, which is highly unrealistic, as
the model would degenerate into the recognition growth
component. As a result, the final form of T-REC includes
a variable decay rate across music tracks that depends on

1950-1970 1970-1990 1990-2010 2010-today
period

0
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8

M
AE

Figure 5: Mean absolute error of T-REC on tracks released
in different periods of time.

the number of weeks the track has remained in the charts.
This refinement resulted in significantly lower errors show-
casing the major role of the number-of-weeks feature in
song recognition estimation. More specifically, the initial
recognition score achieved a MAE of 12.32, while T-REC
a much lower MAE of 8.50 as presented in Table 5.

4. CONCLUSIONS

In this work, we studied collective memory dynamics with
regards to song recognition. We proposed a model for the
approximation of the corresponding decreasing trajectory
and the estimation of the current song recognition level.
Our recognition model comprises three main components:
a) growth, b) decay, and c) proxy-based adjustment and
it leverages chart data, YouTube views, Spotify popularity
and forgetting curve dynamics. Also, our method consid-
ers different recognition decay rates and initial recognition
levels per song, according to the number of weeks the song
has remained in the charts.

We compared our model to other state-of-the art and
baseline models on the task of accurately estimating the
current recognition level of songs. To this end, we con-
ducted a study in Sweden in order to measure the recog-
nition level of 100 songs, which we then used as ground
truth for the models’ evaluation. The experimental results
showed that our method exhibits great performance on this
task, much better than the competitive models with a high
statistical significance level.

Finally, we reached two remarkable conclusions:
1. according to our model’s parameters, a music song

needs almost 7 weeks in the charts to achieve a very
slow velocity towards oblivion and at least 25 weeks
to achieve its highest contemporary recognition;

2. the role of the number-of-weeks feature incorpo-
rated in our model through the logistic functions is
found to be of utmost importance for the accurate
estimation of a song’s recognition level.

Future work will include extensions that alleviate the de-
viation of recent tracks’ recognition estimation and also
account for demographic-specific estimations.
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ABSTRACT

We explore a novel way of conceptualising the task of
polyphonic music transcription, using so-called invertible
neural networks. Invertible models unify both discrimina-
tive and generative aspects in one function, sharing one set
of parameters. Introducing invertibility enables the practi-
tioner to directly inspect what the discriminative model has
learned, and exactly determine which inputs lead to which
outputs. For the task of transcribing polyphonic audio into
symbolic form, these models may be especially useful as
they allow us to observe, for instance, to what extent the
concept of single notes could be learned from a corpus of
polyphonic music alone (which has been identified as a se-
rious problem in recent research). This is an entirely new
approach to audio transcription, which first of all necessi-
tates some groundwork. In this paper, we begin by looking
at the simplest possible invertible transcription model, and
then thoroughly investigate its properties. Finally, we will
take first steps towards a more sophisticated and capable
version. We use the task of piano transcription, and specif-
ically the MAPS dataset, as a basis for these investigations.

1. INTRODUCTION

For practitioners who apply deep neural network models
to music information retrieval tasks, interpretability of pre-
dictions is of great interest. Knowing what the model was
able to learn from the data, and examining the underly-
ing causes for a prediction increases trust in the model.
Being aware of the reasons for a classification result al-
lows us to discover whether the model has learned rules
that would pass a basic sanity check with a domain ex-
pert, or if it has picked up on seemingly irrelevant factors
present in the data, which made it possible for the network
to solve the task in a different, unexpected, possibly un-
wanted way [31]. There are quite a few ways to obtain
an explanation from a neural network. Several methods
use the gradient of an output with respect to the input as
a starting point, such as [28, 32]. There are also meth-
ods that aim to provide model agnostic explanations, for

c© Rainer Kelz, Gerhard Widmer. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Rainer Kelz, Gerhard Widmer. “Towards Interpretable Poly-
phonic Transcription with Invertible Neural Networks”, 20th Interna-
tional Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.
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ŷ

velocity

note phase

ẑ
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Figure 1: Computing the framewise transcription ŷ and
nuisance variables ẑ from spectrogram input x. The pre-
dictions [ŷ; ŷzpad; ẑ] are then used to exactly reproduce
x̂. The elementwise difference x− x̂ is negligible. An in-
depth discussion of this figure is deferred until Section 4.2.

instance [24, 27], and a specialization of one of the afore-
mentioned methods to MIR systems [23] in particular.

Beyond providing explanations for predictions, a model
should ideally be able to provide an answer to the ques-
tion “What do you consider representative examples for a
concept of interest?”. Taking first steps towards producing
models that are able to derive semantic information from
the input, and are able to answer this question, we explore
invertible neural networks (INNs) with respect to inter-
pretability of predictions, their potential to identify biases
and confounding factors inherent in the training dataset,
and ability to generate samples for a semantic concept of
interest.

Additionally, we consider ways in which these models
could enable us to locate ambiguous or uncertain predic-
tions on unlabeled data, to provide eventual users of the
MIR model with hints on where manual postprocessing of
the predictions might be advisable. We choose to conduct
our investigation in the context of polyphonic piano tran-
scription and provide a first glimpse at the capabilities of
INNs in Figure 1. The input x to the INN is a magni-
tude spectrogram of an excerpt from a polyphonic piano
piece, the output is split into a semantic part y containing
variables of interest, and a nuisance part z, optimistically
containing all other factors of variation that are irrelevant
for the MIR task the model was trained for. From these
two output vectors, a hypothetical, perfectly converged in-
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vertible model can faithfully reproduce the input, down to
a negligible numerical difference.

Invertible neural networks are parametrized, nonlinear
and bijective functions, trainable from matched pairs, sim-
ilar to any other neural network in a supervised learning
task. The architectures we consider here are all constructed
in such a way that the inverse is available in closed form.

Networks designed in this fashion have a few desir-
able properties. They are both discriminative and gener-
ative models unified in one function, sharing one set of pa-
rameters. To put this into context, training a transcription
system also yields a synthesizer, and vice versa training a
synthesizer yields a transcription system. The term “syn-
thesizer” is used rather loosely here, as the transcription
system is trained with magnitude spectrograms.

This setup enables a direct interpretation of predictions
by looking at what samples the model produces, condi-
tioned on the predictions. This can potentially be extended
until after eventual postprocessing steps, to see whether the
generated samples are still close to the input in data space.

Furthermore, in order for a practitioner to understand
whether the discriminatively trained network has learned
to distinguish multiple concepts reasonably well, she can
directly obtain samples from the model for each different
concept. As an illustrative example, we choose the task of
transcribing polyphonic audio into a symbolic format. This
is a multi-label problem, assigning multiple note labels
to each (quantized) point in time. Transcription systems
based on neural networks are commonly learned from cor-
pora containing large amounts of polyphonic music. Due
to having the inverse available to us in closed form, we are
able to sample all different single notes from the network
to directly see whether the concept of single, isolated notes
could be learned by training on our polyphonic corpus, or
if multiple notes have been “smeared” together, and could
not be disentangled from each other, or if the concept could
not be learned at all. To the best of our knowledge, this is
still an open problem that mostly affects polyphonic tran-
scription systems based on neural networks, as discussed
in [20].

2. RELATED WORK

Invertible neural networks were first introduced in [6] and
rediscovered in [2]. They define a nonlinear, bijective
mapping between inputs and outputs. They can be used
to transform arbitrarily complex distributions into simple,
factorized distributions. This concept became more widely
known as normalizing flows, introduced in [11], general-
ized in [33], and has been used in [8] for density estima-
tion, and improving variational inference in [26]. Various
types of (more expressive) normalizing flows have been
introduced in [9,34,35]. In [21] normalizing flows are em-
ployed as generative models for high resolution samples
comparable to those produced by high resolution genera-
tive adversarial networks (GANs), e.g., [18].

With a greater focus on the invertibility aspect, [1] uses
bijective architectures to approximate physical processes
with a well defined forward model, in order to obtain the

posterior distribution over inputs conditioned on desired
outputs. We adopt parts of their terminology and training
procedure. The differences will be discussed in more detail
in Section 3. In [17] injective and bijective i-RevNets are
introduced, architectures similar to ResNets [14], which
are invertible up to the last layer. In [16], fully invertible
RevNets in conjunction with a new objective function are
used to train classifiers which are more robust against ad-
versarial attacks. We borrow their term “nuisance” vari-
ables to describe what information is supposed to end up
in the output vector z.

Distribution matching in this work is done using the
sliced Wasserstein distance. Introduced in [4, 25] as a dis-
tance measure for texture synthesis in a computer graphics
setting, it has been used for encouraging the codes of au-
toencoders to follow a proposal distribution [22], and has
also been directly applied to generative modeling of im-
ages, replacing the domain regressor in GANs [7].

Finally, we draw inspiration from [13] where a
transcription-resynthesis system was introduced, consist-
ing of three separately trained parts, a transcription system,
a language model and a (neural) synthesizer.

3. METHOD

We adhere closely to the invertible neural network archi-
tectures described in [1], with a minor modification to the
training procedure that will be outlined after the formal in-
troduction of invertible neural networks. Our notation also
loosely follows the one used in [1]. Given a data space X ,
a label space Y and a nuisance space Z , we consider a di-
rectly invertible neural network as a parametrized function
fθ : X → Y ×Z where we have access to its closed form
inverse f−1θ : Y × Z → X .

The function fθ maps the input into a label space that
carries semantic information that we are interested in, and
maps the rest of information into a nuisance space. Given
both the semantic and nuisance information, we are able to
obtain the input again via f−1θ .

There are a few different ways such a function can be
implemented in practice, and they all come with various
different architectural constraints. We will first define a
small invertible building block with relatively weak capa-
bilities. These building blocks are then used to construct a
more expressive function.

A necessary structural restriction to a bijective block is
that the dimensionality of the input must match the dimen-
sionality of the output. Another restriction concerns the
inner workings of blocks, so their inverse is available in
closed form. We adopt the affine coupling layer design
in [1], which is a more expressive version of the one in [9].
Its internal structure can be seen in Figure 2. The layer
takes as input a vector u, whose dimensions are first shuf-
fled with a fixed random permutation matrix and then split
into two halves u1,u2. Dimension shuffling causes the
splits to be different from layer to layer and facilitates in-
teraction between components whose indices might be far
apart in the input vector. The permutation matrix is in-
verted by simply transposing it.
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Figure 2: This sketch depicts the structure of the particular
version of affine coupling layers we use. a) The operations
as they are applied in the forward direction. b) The opera-
tions as they are applied in the backward direction. c) The
parametrization of the s1|2 and t1|2 transforms. The cexp
function is only applied after the s1|2 transforms.

Different operations are then applied to each half, af-
ter which the halves are concatenated again to yield the
output v. Equations (1) – (4) show the exact expressions
used to compute results in both directions.

v1 = cexp(s2(u2))� u1 ⊕ t2(u2) (1)

v2 = cexp(s1(v1))� u2 ⊕ t1(v1) (2)

u2 = (v2 	 t1(v1))� cexp(s1(v1)) (3)

u1 = (v1 	 t2(u2))� cexp(s2(u2)) (4)

Operations ⊕,	,�,� (addition, subtraction, multipli-
cation, division) are applied elementwise. The function
cexp is defined as cexp(x) = exp(c · atan(x)) with c > 0
being a hyperparameter. Its purpose is to constrain the out-
put to a reasonable range, and to prevent runaway growth
of activations. The transforms s1|2 and t1|2 are arbitrarily
parametrizable functions, modeling input dependent scal-
ing and translation respectively. All transforms are imple-
mented as standard neural networks, and are not required
to be invertible, because the transformed half of the output
vector can be inverted using the untransformed half. The
network structures we use are shown in Figure 2c.

If the dimensionalities of input and output vectors do
not match, the vectors are padded with zeros during in-
ference, or small scale Gaussian noise during training, to
encourage the network to ignore the additional padding di-
mensions, as done in [1].

Each update of the model involves three passes, one for-
ward pass, and two backward passes. Each pass has its own
set of objective functions. The joint objective function to
be minimized consists of a weighted sum of these terms.
We specify the following notation: vectors are in boldface,
writing vectors in square brackets separated by semicolons
[a;b] denotes concatenation. The vector x is the input to
the model, y is the semantic part of the groundtruth, and z
is a sample from a proposal distribution, which we choose
to be N (0, I). The padding vectors used during training
are denoted as xpad and yzpad respectively, and are drawn
from N (0, ε) for each update, with ε > 0 a hyperparame-
ter. Symbols with a circumflex always refer to model out-
puts with a direct counterpart in the groundtruth. We de-

Algorithm 1 Sliced Wasserstein Distance dSWD(A,B)

Let S ← 0 and A,B ∈ Rn×d (two samples)
For 1 ..m do
p← p′/‖p′‖ such that p′ ∼ N (0, I) and p′ ∈ Rd×1
a← sort[Ap]; b← sort[Bp]
S ← S + ‖a− b‖22/n

Return S/m

note a zero vector of a size appropriate in the context it
appears in as 0. A sample from the model will be written
as xsam. Equation (5) fully specifies all inputs and outputs
for an invertible neural network used in the forward direc-
tion, equation (6) does the same in the backward direction,
and (7) specifies how samples are drawn.

[ẑ; ŷzpad; ŷ] = f([x;xpad]) (5)

[x̂; x̂pad] = f−1[ẑ;yzpad; ŷ] (6)

[xsam; x̂pad] = f−1[z;0;y] (7)

Having defined these quantities, we can now proceed
with defining the individual loss terms that will make up
the joint objective function. Mean squared error (8) is
used to fit the labels from the groundtruth, and the re-
construction of the input (9). We deviate from [1] and
use the sliced Wasserstein distance (dSWD) [25] instead
of the maximum mean discrepancy (dMMD), to measure
the distance between distributions, as we found it to be
better behaved for high dimensional data. The intuition
behind dSWD is to decompose the high dimensional opti-
mal transport problem into m 1-dimensional ones, by ran-
domly projecting samples A and B onto lines, allowing the
resulting 1-dimensional problems to be solved by comput-
ing the distance between sorted components. In equation
(10), dSWD is used to minimize the distance between sam-
ples from the joint distribution over the outputs [ŷ; ẑ] and
samples from the joint distribution over the labels and the
proposal distribution [y; z]. Please note that following the
advice laid out in [1], no gradient information from this
objective is propagated back over ŷ, to not unduly disturb
the label fitting process. Informally stated, the purpose of
including y and ŷ in the distribution matching process is
to “group” samples together for which ẑ needs to follow
a Gaussian distribution, resulting in the distributions p(ŷ)
and p(ẑ) to gradually decouple, and become independent
of each other, with the side effect of erasing label infor-
mation from ẑ. dSWD is also used in (11), to minimize
the distance between the distribution of samples generated
from the model and the groundtruth.

Ly(y, ŷ) = MSE(y, ŷ) (8)

Lx̂(x, x̂) = MSE(x, x̂) (9)

Lyz([y; z], [ŷ; ẑ]) = SWD([y; z], [ŷ; ẑ]) (10)

Lxsam
(x,xsam) = SWD(x,xsam) (11)

Lxpad
(xpad, x̂pad) = MSE(xpad, x̂pad) (12)

Lyzpad
(yzpad, ŷzpad) = MSE(yzpad, ŷzpad) (13)
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Finally, the padding dimensions are taken care of with
mean squared error terms (12) and (13), to encourage the
network to disregard information in these dimensions. Fol-
lowing advice in [1], the individual loss terms that sum up
to the joint objective are weighted such that their magni-
tudes are approximately equal to each other, by restarting
the optimization process multiple times and adjusting the
weights until this condition is met.

4. EXPERIMENTS

This section is split into multiple parts, starting out with
a description of the data preparation procedure, followed
by an empirical assessment of the usability of INNs for
practitioners in subsection 4.1, a critical examination of
the interpretability of a trained model in subsection 4.2,
and finally an analysis of how well the concept of sin-
gle notes could be learned from a polyphonic corpus in
subsection 4.3.

All model training, testing and generative sampling ex-
periments were carried out with the MUS subset of the
MAPS corpus [10]. This subset contains 210 polyphonic
piano pieces rendered with 7 sample based synthesizers,
and 60 recordings of a YAMAHA Disklavier in two dif-
ferent recording conditions. After removing all synthe-
sized pieces that also occur in the set of recordings, we
are left with 139 pieces for training, and the 60 Disklavier
recordings for testing, according to the procedure outlined
in [12]. Evaluation measures are computed individually
for each piece in the test set, and the mean over all pieces
is reported. Groundtruth information is available as tem-
porally aligned MIDI files. Sustain pedal control values
are quantized, and the pedal considered fully engaged if
its MIDI control value exceeds 64. All offsets of notes that
are sounding while sustain is in effect are extended in time,
until the pedal is released again.

The label information y that the model has to learn
is derived from the MIDI groundtruth and consists of 3
parts: the note phase, its velocity and instrument infor-
mation. For each piano key, the temporal evolution each
note is modeled with an exponentially decaying curve, de-
fined as curve(τ) = 0.99τ · 5, with 0 ≤ τ < duration.
It starts at the onset of a note, lasts for its duration, and
drops off immediately after the offset. The velocity part
is derived from the MIDI velocity value scaled into the in-
terval [0, 1]. This procedure is also outlined in Figure 3,
and repeated for each of the 88 piano keys. Finally, in-
struments are numbered from 0 to 8, corresponding to one
of the 7 sample banks or alternatively one of the two mi-
crophone conditions for the Disklavier recordings, and are
one-hot encoded. For each (quantized) point in time t
all three parts are concatenated into the vector yt, having
9 + 88 + 88 = 185 components. This particular label
vector derivation is chosen so that yt contains all neces-
sary information to generate spectrogram frames for dif-
ferent instruments and notes at the right volume and the
right stage of a notes’ temporal evolution without any ad-
ditional context information from neighboring frames. The
length of zt was treated as a hyperparameter, and selected

Figure 3: This illustration shows how the note phase and
velocity part of the label information y is derived for mul-
tiple notes played by a single key.

via cross validation on a small subset of the training set.
Its length appears to have negligible influence given all the
other settings, and was set to 9 for all models subsequently
used. The corresponding data xt are magnitude spectro-
grams processed by a semi logarithmic filterbank, and the
resulting bins bt are elementwise processed by the func-
tion log(1 + bt), approximating human loudness percep-
tion to finally yield a vector xt of length 144. All spectral
feature extraction and filtering is done with the madmom
library [3]. The frame rate at which pairs (xt,yt) are ex-
tracted from the audio and MIDI files is 25 frames per
second. As all input is processed in a framewise fash-
ion everywhere, we omit the subscript t, denoting time
in frames, for all plots and most equations to not add ad-
ditional clutter. To increase the capacity of the INN, we
add zero padding vectors to both input (xpad) and output
dimensions (yzpad), so the number of components in the
padded vectors sum up to 256 in total. Training follows the
procedure outlined in Section 3, and all code is released 1

to facilitate reproducability.

4.1 Usability for MIR tasks

As a kind of quantitative viability test, the capability of
INNs (in combination with simple temporal models) to
produce predictions useful to MIR practitioners, is exam-
ined. We train small recurrent networks (RNNs) on the
framewise predictions ŷ obtained from the INN, in the
hope to obtain cleaner, denoised framewise predictions ŷ′.
The types of RNN cells we use are either LSTM [15] or
GRU [5] cells. In a first attempt, RNNs with very limited
capacity - 4 hidden units / cells for all keys - are employed.
An input sequence to the RNN consists of the note phase
and the velocity part of a single key over the whole length
of the piece, leading to an input dimension of 2. The RNNs
should output a smoothed, denoised version of the note
phase and velocity sequence, and an additional framewise
note activity indicator between 0 and 1, and thus all have 3
outputs. The binary piano roll used to compute framewise
performance measures is obtained by thresholding the note
activity indicator output of the RNNs at 0.5. Training pro-
ceeds one full sequence at a time, picked uniformly at ran-
dom from all 139 · 88 single key sequences derived from
all pieces in the training set. The models with highest F1-
measure on a subset of the training set are then evaluated
on the test set.

In order to evaluate framewise performance for a piece,
we produce framewise transcriptions for all keys with the
INN. Each key is then separately smoothed, denoised, and

1 https://github.com/rainerkelz/ISMIR19
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Method P R F1

INN + GRU (S) 79.74 63.73 70.84
INN + LSTM (S) 80.12 63.91 71.10

INN + biGRU (L) 81.72 64.81 72.29

CNN only [12, 19] 81.18 65.07 71.60
CNN + RNN-NADE [12, 29] 71.99 73.32 72.22

CNN + LSTM [12] 88.53 70.89 78.30

Table 1: Framewise performance of different combina-
tions of acoustic and temporal models on the testset.

its activity is inferred over the length of the piece. We re-
port the results for the small models in Table 1, suffixed
with “(S)”. We would like to note that there was next to no
hyperparameter tuning done, aside from getting the learn
rates for the two different RNN cell types approximately
in the right regime. A slightly larger version uses 3 lay-
ers of bi-directional GRU cells with 8 hidden units, and
dropout [30] with a probability of 0.5, applied to the out-
put of each recurrent layer, before it is passed on to the
next. Results in the table for this type of RNN are suffixed
with “(L)”. The INN has 5 invertible layers, and 990.720
parameters in total. The parameter counts for the recurrent
model variants “GRU (S)”, “LSTM (S)” and “biGRU (L)”
are 111, 143 and 3123 respectively.

We can see that the combination frame-
wise INN + biGRU performs on par with the
CNN + RNN-NADE combination in terms of frame-
wise performance, and slightly outperforms the standalone
CNN. The last three rows in Table 1 are taken from [12],
who re-implemented the approaches in [19] and [29], and
ostensibly performed additional hyperparameter tuning to
improve upon the original results. They also provide the
current state of the art results for this train and test protocol
in the last row, achieved by supplying an additional onset
target to the network during training.

4.2 Interpretability of results

This section considers how the ability to modify the out-
put of the model, and then using it in the backward direc-
tion, can assist the practitioner in determining the causes
in the data that led to a particular prediction. We start
with a thought experiment, and get closer to reality step
by step. Let us assume the model works perfectly, and
given an input x, the model routes all semantic informa-
tion (note phases, velocities, instrument) into the ŷ vector,
all nuisance information (other acoustic variability, such as
microphone characteristics, room reverberation or actual
noise) ends up in ẑ which is distributed asN (0, I), and the
padding vector ŷz is exactly zero. Sampling zs ∼ N (0, I)
and using f−1([ŷ,0, zs]) to obtain the corresponding input
xs will change only nuisance characteristics in the input.
This would also mean that we have full control over the se-
mantic content of the input. We could add or delete notes
in the input simply by adding or zeroing them out in ŷ,
much like we can insert or delete a symbolic MIDI note,
the implication being that every output has a directly inter-
pretable correspondence in the input.
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Figure 4: Gradually denoising the predictions with simple,
ad-hoc rules, zero padding and sampling z ∼ N (0, I). In
practice, this would be done iteratively, always keeping an
eye on how the overall structure of the input is affected.
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ẑ

xsam x− xsam

0

0.9

2

0

1

0

0.6

0

5

-3
0
3

0

0.9

2

-1

0

1

xsam = f−1
θ ([z; 0; y])

Figure 5: The hypothetical case where all predictions
could be perfectly denoised. For purely demonstrational
purposes, this was accomplished through consultation of
an oracle, but one could imagine this to be achievable
through interaction with the system. Although quite a bit
of detail is missing, the majority of the structure in the
original input is nonetheless recognizable in the generated
sample.

A closer look at Figure 1 reveals what can realistically
be achieved just by training a framewise INN with a rather
limited amount of polyphonic data. It is immediately no-
ticeable that ẑ does not appear to be normally distributed.
There are still patterns discernible, making it apparent that
it still contains semantic information. Similar patterns also
exist in ŷzpad (not shown).

It is also observable that the information that is routed
into ŷ is somewhat noisy. We can now attempt to “sep-
arate the wheat from the chaff” by using the INN in the
backward direction with cleaned up predictions. Figure 4
shows what happens when the predictions are partially de-
noised by setting all predictions below a certain threshold
to zero, ignoring the padding vector by zeroing it out, and
sampling z from a unit normal distribution. These simple,
ad-hoc rules cannot get rid of all the noise and discontinu-
ities in the predictions, but are useful to determine which
outputs can be ignored by observing their (collective) im-
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Figure 6: Interquantile ranges of the framewise Euclidean
distances between isolated reference notes and samples
from the model. The reference notes stem from an unseen
instrument.
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Figure 7: Samples from the model for single notes.

pact on the sample. Figure 5 depicts what can be generated
by the model, assuming that the denoising process of the
predictions were perfect, by consulting an oracle about the
true contents of y. In all figures discussed in this section,
the same excerpt from the test set was used, meaning the
model has never seen any of the examples during training.

4.3 Concept Understanding

Returning to a question raised in the introduction, in this
section the model will be systematically queried about spe-
cific semantic concepts. Arguably, a polyphonic transcrip-
tion system should be able to transcribe isolated notes.
The MAPS dataset provides both renderings and record-
ings of isolated notes, which we utilize to formulate our
queries. For each of the 88 keys, 30 samples are drawn
from the model, using the groundtruth y paired with the
reference recording for the key and z ∼ N (0, I). This
ensures that each sample has the same length as the ref-
erence. For each frame at time t in a sample, the Eu-
clidean distance to the corresponding frame of the ref-
erence recording is measured, and p-quantiles are com-
puted on the resulting lists of framewise distances, with
p ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. Figure 6 depicts the
interquantile range [0.05, 0.95] as light gray, the range
[0.25, 0.75] in a darker shade, and the median as a black
line. It becomes immediately apparent that samples for
rarely occuring (possibly omitted) notes, such as those in
the lower and higher octaves, are highly dissimilar from the
reference recordings, and indicate that these particular iso-
lated notes could not be learned by the network (Figure 7).
Admittedly, this question could have been answered for a
regular feedforward network as well, but would have ne-
cessitated more labeled reference data of the same instru-
ment. The ability to sample from the model allows us to
sidestep the rather cumbersome way of aggregating predic-
tion errors, as was necessary in [20], to arrive at a similar
conclusion.

4.4 Improving Models with temporal context

The invertible models investigated so far all take single
frames as input, without temporal context information. We
trained fully invertible RevNets [16,17] on a variety of dif-
ferent context lengths, but were not yet able to observe
either quantitative or qualitative improvements over the
framewise models. RevNets tend to become rather large
in terms of the number of parameters, input and output
padding is not as straightforward as for framewise models,
the input and output space dimensionality is much larger,
making the sliced Wasserstein distance gradually less ef-
fective due to an increase in necessary computational re-
sources, which in turn further slows down training. Finally,
the amount of training data we use may simply be insuffi-
cient for higher capacity models. However, we believe that
all these issues have appropriate remedies. An immediate
next step would be to apply the same models to the much
larger MAESTRO dataset [13]. We leave these steps for
future work though.

5. CONCLUSION

The viability of invertible neural networks for a selected
MIR task was shown quantitatively in terms of transcrip-
tion performance and a brief numerical analysis of single
concept understanding. A qualitative investigation of the
direct interpretability of outputs back in input space was
conducted. There is ample room for improvement, such as
using an adversarial distance for distribution matching in
both input and output space, or alternatively using the inde-
pendent cross-entropy objective from [16] in latent space.
The objective for the semantic part of the output space
could be similarly augmented to encourage the disentan-
glement of (predictions for) individual notes. Another ob-
vious improvement would be to skip the computation of
filtered spectrograms altogether, and feed in waveforms to
obtain models that can in turn generate waveforms we can
directly listen to.

Beyond the interpretability aspect, we are confident that
invertible neural networks will prove to be useful for other
MIR tasks as well, such as musical content-aware style
transfer (this is already doable with the models used in this
work, by simply changing the instrument encoding when
sampling, although changing from one piano to a different
one is not as exciting as changing it into a trumpet). These
models could also be adapted for (blind) source separation,
to name only two examples.
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ABSTRACT

Deep Learning models have shown very promising re-
sults in automatically composing polyphonic music pieces.
However, it is very hard to control such models in order to
guide the compositions towards a desired goal. We are in-
terested in controlling a model to automatically generate
music with a given sentiment. This paper presents a gen-
erative Deep Learning model that can be directed to com-
pose music with a given sentiment. Besides music gener-
ation, the same model can be used for sentiment analysis
of symbolic music. We evaluate the accuracy of the model
in classifying sentiment of symbolic music using a new
dataset of video game soundtracks. Results show that our
model is able to obtain good prediction accuracy. A user
study shows that human subjects agreed that the generated
music has the intended sentiment, however negative pieces
can be ambiguous.

1. INTRODUCTION

Music Generation is an important application domain of
Deep Learning in which models learn musical features
from a dataset in order to generate new, interesting music.
Such models have been capable of generating high quality
pieces of different styles with strong short-term dependen-
cies 1 [2]. A major challenge of this domain consists of
disentangling these models to generate compositions with
given characteristics. For example, one can’t easily con-
trol a model trained on classical piano pieces to compose
a tense piece for a horror scene of a movie. Being able
to control the output of the models is specially important
for the field of Affective Music Composition, whose major
goal is to automatically generate music that is perceived
to have a specific emotion or to evoke emotions in listen-
ers [19]. Applications involve generating soundtracks for
movies and video-games [18], sonification of biophysical
data [3] and generating responsive music for the purposes
of music therapy and palliative care [9].

Recently, Radford et al. [13] showed that a genera-
tive Long short-term memory (LSTM) neural network can

1 Supporting strong long-term dependencies (music form) is still an
open problem.

c© Lucas N. Ferreira, Jim Whitehead. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Lucas N. Ferreira, Jim Whitehead. “Learning to Generate
Music With Sentiment”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

learn an excellent representation of sentiment (positive-
negative) on text, despite being trained only to predict the
next character in the Amazon reviews dataset [6]. When
combined to a Logistic Regression, this LSTM achieves
state-of-the-art sentiment analysis accuracy on the Stan-
ford Sentiment Treebank dataset and can match the per-
formance of previous supervised systems using 30-100x
fewer labeled examples. This LSTM stores almost all
of the sentiment signal in a distinct “sentiment neuron”,
which can be used to control the LSTM to generate sen-
tences with a given sentiment. In this paper, we explore
this approach with the goal of composing symbolic music
with a given sentiment. We also explore this approach as a
sentiment classifier for symbolic music.

In order to evaluate this approach, we need a dataset of
music in symbolic format that is annotated by sentiment.
Even though emotion detection is an important topic in
music information retrieval [7], it is typically studied on
music in audio format. To the best of our knowledge, there
are no datasets of symbolic music annotated according to
sentiment. Therefore, we created a new dataset composed
of 95 MIDI labelled piano pieces (966 phrases of 4 bars)
from video game soundtracks. Each piece is annotated by
30 human subjects according to a valence-arousal (dimen-
sional) model of emotion [15]. The sentiment of each piece
is then extracted by summarizing the 30 annotations and
mapping the valence axis to sentiment. The same dataset
also contains another 728 non-labelled pieces, which were
used for training the generative LSTM.

We combine this generative LSTM with a Logistic
Regression and analyse its sentiment prediction accuracy
against a traditional classification LSTM trained in a fully-
supervised way. Results showed that our model (genera-
tive LSTM with Logistic Regression) outperformed the su-
pervised LSTM by approximately 30%. We also analysed
the generative capabilities of our model with a user study.
Human subjects used an online annotation tool to label 3
pieces controlled to be negative and 3 pieces controlled to
be positive. Results showed human annotators agree the
generated positive pieces have the intended sentiment. The
generated negative pieces appear to be ambiguous, having
both negative and positive parts.

We believe this paper is the first work to explore sen-
timent analysis in symbolic music and it presents the first
disentangled Deep Learning model for music generation
with sentiment. Another contribution of this paper is a la-
belled dataset of symbolic music annotated according to
sentiment. These contributions open several direction for
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future research, specially music generation with emotions
as both a multi-class problem and as a regression prob-
lem. Moreover, these methods could be applied to create
soundtrack generation systems for films, video games, in-
teractive narratives, audio books, etc.

2. RELATED WORK

This paper is related to previous work on Affective Al-
gorithmic Music Composition, more specifically to works
that process music in symbolic form in order to generate
music with a given emotion. A common approach for this
problem consists of designing a rule-based system to map
musical features to a given emotion in a categorical or di-
mensional space [19]. For example, Williams et al. [18]
propose a system to generate soundtracks for video games
where each game’s scene graph (defining all the possi-
ble branching of scenes in the game) is annotated accord-
ing to a valence-arousal model. A second-order Markov
model is used to learn melodies from a dataset and are
then transformed by a rule-based system to fit the anno-
tated emotions in the graph. Davis and Mohammad [4]
follow a similar approach in TransPose, a system that com-
poses piano melodies for novels. TransPose uses a lexicon-
based approach to automatically detect emotions (categor-
ical model) in novels and a rule-based technique to create
piano melodies with these emotions.

There are a few other approaches in the literature to
compose music with a given emotion. Scirea et al. [16]
recently presented a framework called MetaCompose de-
signed to create background music for games in real-time.
MetaCompose generates music by (i) randomly creating
a chord sequence from a pre-defined chord progression
graph, (ii) evolving a melody for this chord sequence us-
ing a genetic algorithm and (iii) producing an accompani-
ment for the melody/chord sequence combination. Mon-
teith et al. [10] approaches Affective Algorithmic Music
Composition from a Machine Learning perspective to learn
melodies and rhythms from a corpus of music labeled ac-
cording to a categorical model of emotion. Individual Hid-
den Markov models and n-grams are trained for each cate-
gory to generate pitches and underlying harmonies, respec-
tively. Rhythms are sampled randomly from examples of a
given category.

Deep Learning models have recently achieved high-
quality results in music composition with short-term de-
pendencies [2]. These models normally are trained on a
corpus of MIDI files to predict the next note to be played
based on a given note. In general, these models can’t be
manipulated to generate music with a given emotion. For
example, in the system DeepBach, Hadjeres et al. [5] use a
dependency network and a Gibbs-like sampling procedure
to generate high-quality four-part chorales in the style of
Bach. Roberts et at. [14] train recurrent variational autoen-
coder (VAEs) to reproduce short musical sequences and
with a novel hierarchical decoder they are able to model
long sequences with musical structure for both individual
instruments and a three-piece band (lead, bass, and drums).

The majority of the deep learning models are trained

to generate musical scores and not performances. Oore et
al. [11] tackles this problem by training an LSTM with a
new representation that supports tempo and velocity events
from MIDI files. This model was trained on the Yamaha
e-Piano Competition [1], which contains MIDI captures
of ~1400 performances by skilled pianists. With this
new representation and dataset, Oore et al. [11] generated
more human-like performances when compared to previ-
ous models.

3. MODEL

We propose a Deep Learning method for affective algorith-
mic composition that can be controlled to generate music
with a given sentiment. This method is based on the work
of Radford et al. [13] which generates product reviews (in
textual form) with sentiment. Radford et al. [13] used a
single-layer multiplicative long short-term memory (mL-
STM) network [8] with 4096 units to process text as a se-
quence of UTF-8 encoded bytes (character-based language
modeling). For each byte, the model updates its hidden
state of the mLSTM and predicts a probability distribution
over the next possible byte.

This mLSTM was trained on the Amazon product re-
view dataset, which contains over 82 million product re-
views from May 1996 to July 2014 amounting to over 38
billion training bytes [6]. Radford et al. [13] used the
trained mLSTM to encode sentences from four different
Sentiment Analysis datasets. The encoding is performed
by initializing the the states to zeros and processing the se-
quence character-by-character. The final hidden states of
the mLSTM are used as a feature representation. With the
encoded datasets, Radford et al. [13] trained a simple lo-
gistic regression classifier with L1 regularization and out-
performed the state-of-the-art methods at the time using
30-100x fewer labeled examples.

By inspecting the relative contributions of features on
various datasets, Radford et al. [13] discovered a single
unit within the mLSTM that directly corresponded to sen-
timent. Because the mLSTM was trained as a generative
model, one can simply set the value of the sentiment unit
to be positive or negative and the model generates corre-
sponding positive or negative reviews.

3.1 Data Representation

We use the same combination of mLSTM and logistic re-
gression to compose music with sentiment. To do this, we
treat the music composition problem as a language model-
ing problem. Instead of characters, we represent a music
piece as a sequence of words and punctuation marks from a
vocabulary that represents events retrieved from the MIDI
file. Sentiment is perceived in music due to several features
such as melody, harmony, tempo, timbre, etc [7]. Our data
representation attempts to encode a large part of these fea-
tures 2 using a small set of words:

• “n_[pitch]”: play note with given pitch number: any
integer from 0 to 127.

2 Constrained by the features one can extract from MIDI data.
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t_120 v_76 d_whole_0 n_50 n_54 n_57
v_92 d_eighth n_86 . . v_84
d_quarter_1 n_81 . .

Figure 1: A short example piece encoded using our pro-
posed representation. The encoding represents the first two
time steps of the shown measure.

• “d_[duration]_[dots]”: change the duration of the
following notes to a given duration type with a given
amount of dots. Types are breve, whole, half, quar-
ter, eighth, 16th and 32nd. Dots can be any integer
from 0 to 3.

• “v_[velocity]”: change the velocity of the following
notes to a given velocity (loudness) number. Veloc-
ity is discretized in bins of size 4, so it can be any
integer in the set V = 4, 8, 12, . . . , 128.

• “t_[tempo]”: change the tempo of the piece to a
given tempo in bpm. Tempo is also discretized in
bins of size 4, so it can be any integer in the set
T = 24, 28, 32, . . . , 160.

• “.”: end of time step. Each time step is one sixteenth
note long.

• “\n”: end of piece.

For example, Figure 1 shows the encoding of the first
two time steps of the first measure of the Legend of Zelda
- Ocarina of Time’s Prelude of Light. The first time step
sets the tempo to 120bpm, the velocity of the following
notes to 76 and plays the D Major Triad for the duration
of a whole note. The second time step sets the velocity
to 84 and plays a dotted quarter A5 note. The total size
of this vocabulary is 225 and it represents both the com-
position and performance elements of a piece (timing and
dynamics).

4. SENTIMENT DATASET

In order to apply the Radford et al. [13] method to com-
pose music with sentiment, we also need a dataset of MIDI
files to train the LSTM and another one to train the lo-
gistic regression. There are many good datasets of music
in MIDI format in the literature. However, to the best of
our knowledge, none are labelled according to sentiment.
Thus, we created a new dataset called VGMIDI which is

composed of 823 pieces extracted from video game sound-
tracks in MIDI format. We choose video game soundtracks
because they are normally composed to keep the player
in a certain affective state and thus they are less subjec-
tive pieces. All the pieces are piano arrangements of the
soundtracks and they vary in length from 26 seconds to
3 minutes. Among these pieces, 95 are annotated accord-
ing to a 2-dimensional model that represents emotion using
a valence-arousal pair. Valence indicates positive versus
negative emotion, and arousal indicates emotional inten-
sity [17].

We use this valence-arousal model because it al-
lows continuous annotation of music and because of its
flexibility—one can directly map a valence-arousal (v-a)
pair to a multiclass (happy, sad, surprise, etc) or a binary
(positive/negative) model. Thus, the same set of labelled
data permits the investigation of affective algorithmic mu-
sic composition as both a classification (multiclass and/or
binary) and as a regression problem. The valence-arousal
model is also one of the most common dimensional models
used to label emotion in music [17].

Annotating a piece according to the v-a model consists
of continuously listening to the piece and deciding what
valence-arousal pair best represents the emotion of that
piece in each moment, producing a time-series of v-a pairs.
This task is subjective, hence there is no single “correct”
time-series for a given piece. Thus, we decided to label
the pieces by asking several human subjects to listen to the
pieces and then considering the average time-series as the
ground truth. This process was conducted online via Ama-
zon Mechanical Turk, where each piece was annotated by
30 subjects using a web-based tool we designed specifi-
cally for this task. Each subject annotated 2 pieces out of
95, and got rewarded USD $0.50 for performing this task.

4.1 Annotation Tool and Data Collection

The tool we designed to annotate the video game sound-
tracks in MIDI format is composed of five steps, each one
being a single web-page. These steps are based on the
methodology proposed by Soleymani et al. [17] for anno-
tating music pieces in audio waveform. First, participants
are introduced to the annotation task with a short descrip-
tion explaining the goal of the task and how long it should
take in average. Second, they are presented to the defi-
nitions of valence and arousal. In the same page, they
are asked to play two short pieces and indicate whether
arousal and valence are increasing or decreasing. More-
over, we ask the annotators to write two to three sentences
describing the short pieces they listened to. This page is
intended to measure their understanding of the valence-
arousal model and willingness to perform the task. Third,
a video tutorial was made available to the annotators ex-
plaining how to use the annotation tool. Fourth, annotators
are exposed to the main annotation page.

This main page has two phases: calibration and annota-
tion. In the calibration phase, annotators listen to the first
15 seconds of the piece in order to get used to it and to de-
fine the starting point of the annotation circle. In the anno-
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Figure 2: Screenshot of the annotation tool.

tation phase they listen to the piece from beginning to end
and label it using the annotation circle, which starts at the
point defined during the calibration phase. Figure 2 shows
the annotation interface for valence and arousal, where an-
notators click and hold the circle (with the play icon) inside
the v-a model (outer circle) indicating the current emotion
of the piece. In order to maximize annotators’ engagement
in the task, the piece is only played while they maintain a
click on the play circle. In addition, basic instructions on
how to use the tool are showed to the participants along
with the definitions of valence and arousal. A progression
bar is also showed to the annotators so they know how far
they are from completing each phase. This last step (cali-
bration and annotation) is repeated for a second piece. All
of the pieces the annotators listened to are MIDI files syn-
thesized with the “Yamaha C5 Grand" soundfont. Finally,
after the main annotation step, participants provide demo-
graphic information including gender, age, location (coun-
try), musicianship experience and whether they previously
knew the pieces they annotated.

4.2 Data Analysis

The annotation task was performed by 1425 annotators,
where 55% are female and 42% are male. The other 3%
classified themselves as transgender female, transgender
male, genderqueer or choose not to disclose their gender.
All annotators are from the United States and have an av-
erage age of approximately 31 years. Musicianship expe-
rience was assessed using a 5-point Likert scale where 1
means “I’ve never studied music theory or practice” and
5 means “I have an undergraduate degree in music”. The
average musicianship experience is 2.28. They spent on
average 12 minutes and 6 seconds to annotate the 2 pieces.

The data collection process provides a time series of
valence-arousal values for each piece, however to create a
music sentiment dataset we only need the valence dimen-
sion, which encodes negative and positive sentiment. Thus,
we consider that each piece has 30 time-series of valence
values. The annotation of each piece was preprocessed,
summarized into one time-series and split into “phrases” of
same sentiment. The preprocessing is intended to remove
noise caused by subjects performing the task randomly to
get the reward as fast as possible. The data was prepro-
cessed by smoothing each annotation with moving average

Figure 3: Data analysis process used to define the final
label of the phrases of a piece.

and clustering all 30 time-series into 3 clusters (positive,
negative and noise) according to the dynamic time-warping
distance metric.

We consider the cluster with the highest variance to be
noise cluster and so we discard it. The cluster with more
time series among the two remaining ones is then selected
and summarized by the mean of its time series. We split
this mean into several segments with the same sentiment.
This is performed by splitting the mean at all the points
where the valence changes from positive to negative or
vice-versa. Thus, all chunks with negative valence are con-
sidered phrases with negative sentiment and the ones with
positive valence are positive phrases. Figure 3 shows an
example of this three-steps process performed on a piece.
All the phrases that had no notes (i.e. silence phrases) were
removed. This process created a total of 966 phrases: 599
positive and 367 negative.

5. SENTIMENT ANALYSIS EVALUATION

To evaluate the sentiment classification accuracy of our
method (generative mLSTM + logistic regression), we
compare it to a baseline method which is a traditional
classification mLSTM trained in a supervised way. Our
method uses unlabelled MIDI pieces to train a generative
mLSTM to predict the next word in a sequence. An ad-
ditional logistic regression uses the hidden states of the
generative mLSTM to encode the labelled MIDI phrases
and then predict sentiment. The baseline method uses only
labelled MIDI phrases to train a classification mLSTM to
predict the sentiment for the phrase.

The unlabelled pieces used to train the generative mL-
STM were transformed in order to create additional train-
ing examples, following the methodology of Oore et al.
[11]. The transformations consist of time-stretching (mak-
ing each piece up to 5% faster or slower) and transposition
(raising or lowering the pitch of each piece by up to a ma-
jor third). We then encoded all these pieces and transfor-
mations according to our word-based representation (see
Section 3.1). Finally, the encoded pieces were shuffled and

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

387



90% of them were used for training and 10% for testing.
The training set was divided into 3 shards of similar size
(approximately 18500 pieces each – 325MB) and the test-
ing set was combined into 1 shard (approximately 5800
pieces – 95MB).

We trained the generative mLSTM with 6 different sizes
(number of neurons in the mLSTM layer): 128, 256, 512,
1024, 2048 and 4096. For each size, the generative mL-
STM was trained for 4 epochs using the 3 training shards.
Weights were updated with the Adam optimizer after pro-
cessing sequences of 256 words on mini-batches of size
32. The mLSTM hidden and cell states were initialized
to zero at the beginning of each shard. They were also
persisted across updates to simulate full-backpropagation
and allow for the forward propagation of information out-
side of a given sequence [13]. Each sequence is processed
by an embedding layer (which is trained together with the
mLSTM layer) with 64 neurons before passing through the
mLSTM layer. The learning rate was set to 5 ∗ 10−6 at the
beginning and decayed linearly (after each epoch) to zero
over the course of training.

We evaluated each variation of the generative mLSTM
with a forward pass on test shard using mini-batches of size
32. Table 1 shows the average 3 cross entropy loss for each
variation of the generative mLSTM.

mLSTM Neurons Average Cross Entropy Loss
128 1.80
256 1.61
512 1.41

1024 1.25
2048 1.15
4096 1.11

Table 1: Average cross entropy loss of the generative mL-
STM with different amount of neurons.

The average cross entropy loss decreases as the size of
the mLSTM increases, reaching the best result (loss 1.11)
when size is equal to 4096. Thus, we used the variation
with 4096 neurons to proceed with the sentiment classifi-
cation experiments.

Following the methodology of Radford et al. [13], we
re-encoded each of the 966 labelled phrases using the final
cell states (a 4096 dimension vector) of the trained genera-
tive mLSTM-4096. The states are calculated by initializing
them to zero and processing the phrase word-by-word. We
plug a logistic regression into the mLSTM-4096 to turn it
into a sentiment classifier. This logistic regression model
was trained with regularization “L1” to shrink the least im-
portant of the 4096 feature weights to zero. This ends up
highlighting the generative mLSTM neurons that contain
most of the sentiment signal.

We compared this generative mLSTM + logistic regres-
sion approach against our baseline, the supervised mL-
STM. This is an mLSTM with exactly the same architec-
ture and size of the generative version, but trained in a

3 Each mini-batch reports one loss.

fully supervised way. To train this supervised mLSTM,
we used the word-based representation of the phrases, but
we padded each phrase with silence (the symbol “.”) in
order to equalize their length. Training parameters (learn-
ing rate and decay, epochs, batch size, etc) were the same
ones of the the generative mLSTM. It is important to notice
that in this case the mini-batches are formed of 32 labelled
phrases and not words. We evaluate both methods using a
10-fold cross validation approach, where the test folds have
no phrases that appear in the training folds. Table 2 shows
the sentiment classification accuracy of both approaches.

Method Test Accuracy
Gen. mLSTM-4096 + Log. Reg. 89.83 ±3.14
Sup. mLSTM-4096 60.35 ±3.52

Table 2: Average (10-fold cross validation) sentiment clas-
sification accuracy of both generative (with logistic regres-
sion) and supervised mLSTMs.

The generative mLSTM with logistic regression
achieved an accuracy of 89.83%, outperforming the super-
vised mLSTM by 29.48%. The supervised mLSTM accu-
racy of 60.35% suggests that the amount of labelled data
(966 phrases) was not enough to learn a good mapping be-
tween phrases and sentiment. The accuracy of our method
shows that the generative mLSTM is capable of learning,
in an unsupervised way, a good representation of sentiment
in symbolic music.

This is an important result, for two reasons. First, since
the higher accuracy of generative mLSTM is derived from
using unlabeled data, it will be easier to improve this over
time using additional (less expensive) unlabeled data, in-
stead of the supervised mLSTM approach which requires
additional (expensive) labeled data. Second, because the
generative mLSTM was trained to predict the next word
in a sequence, it can be used as a music generator. Since
it is combined with a sentiment predictor, it opens up the
possibility of generating music consistent with a desired
sentiment. We explore this idea in the following section.

6. GENERATIVE EVALUATION

To control the sentiment of the music generated by our mL-
STM, we find the subset of neurons that contain the senti-
ment signal by exploring the weights of the trained logistic
regression model. Since each of the 10 generative models
derived from the 10 fold splits in Table 2 are themselves
a full model, we use the model with the highest accuracy.
As shown in Figure 4, the logistic regression trained with
regularization “L1” uses 161 neurons out of 4096. Unlike
the results of Radford et al. [13], we don’t have one single
neuron that stores most of the sentiment signal. Instead, we
have many neurons contributing in a more balanced way.
Therefore, we can’t simply change the values of one neu-
ron to control the sentiment of the output music.

We used a Genetic Algorithm (GA) to optimize the
weights of the 161 L1 neurons in order to lead our mL-
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Figure 4: Weights of 161 L1 neurons. Note multiple
prominent positive and negative neurons.

STM to generate only positive or negative pieces. Each
individual in the population of this GA has 161 real-valued
genes representing a small noise to be added to the weights
of the 161 L1 neurons. The fitness of an individual is
computed by (i) adding the genes of the individual to the
weights (vector addition) of the 161 L1 neurons of the gen-
erative mLSTM, (ii) generating P pieces with this mL-
STM, (iii) using the logistic regression model to predict
these P generated pieces and (iv) calculating the mean
squared error of the P predictions given a desired senti-
ment s ∈ S = {0, 1}.

The GA starts with a random population of size 100
where each gene of each individual is an uniformly sam-
pled random number −2 ≤ r ≤ 2. For each generation,
the GA (i) evaluates the current population, (ii) selects 100
parents via a roulette wheel with elitism, (iii) recombines
the parents (crossover) taking the average of their genes
and (iv) mutates each new recombined individual (new
offspring) by randomly setting each gene to an uniformly
sampled random number −2 ≤ r ≤ 2.

We performed two independent executions of this GA,
one to optimize the mLSTM for generating positive pieces
and another one for negative pieces. Each execution op-
timized the individuals during 100 epochs with crossover
rate of 95% and mutation rate of 10%. To calculate the
fitness of each individual, we generated P=30 pieces with
256 words each, starting with the symbol “.” (end of time
step). The optimization for positive and negative genera-
tion resulted in best individuals with fitness 0.16 and 0.33,
respectively. This means that if we add the genes of the
best individual of the final population to the weights of the
generative mLSTM, we generate positive pieces with 84%
accuracy and negative pieces with 67% accuracy.

After these two optimization processes, the genes of
the best final individual of the positive optimization were
added to the weights of the 161 L1 neurons of the trained
generative mLSTM. We then generated 30 pieces with
1000 words starting with the symbol “.” (end of time step)
and randomly selected 3 of them. The same process was
repeated using the genes of the best final individual of the

negative execution. We asked annotators to label this 6
generated pieces via Amazon MTurk, using the the same
methodology described in Section 4.1. Figure 5 shows
the average valence per measure of each of the generated
pieces.

Figure 5: Average valence of the 6 generated pieces, as
determined by human annotators. with least variance.

We observe that the human annotators agreed that the
three positive generated pieces are indeed positive. The
generated negative pieces are more ambiguous, having
both negative and positive measures. However, as a whole
the negative pieces have lower valence than the positive
ones. This suggests that the best negative individual (with
fitness 0.33) encountered by the GA wasn’t good enough to
control the mLSTM to generate complete negative pieces.
Moreover, the challenge to optimize the L1 neurons sug-
gests that there are more positive pieces than negative ones
in the 3 shards used to train the generative mLSTM.

7. CONCLUSION AND FUTURE WORK

This paper presented a generative mLSTM that can be con-
trolled to generate symbolic music with a given sentiment.
The mLSTM is controlled by optimizing the weights of
specific neurons that are responsible for the sentiment sig-
nal. Such neurons are found plugging a Logistic Regres-
sion to the mLSTM and training the Logistic Regression
to classify sentiment of symbolic music encoded with the
mLSTM hidden states. We evaluated this model both as a
generator and as a sentiment classifier. Results showed that
our model obtained good classification accuracy, outper-
forming a equivalent LSTM trained in a fully supervised
way. Moreover, a user study showed that humans agree
that our model can generate positive and negative music,
with the caveat that the negative pieces are more ambigu-
ous.

In the future, we plan to improve our model to generate
less ambiguous negative pieces. Another future work con-
sists of expanding the model to generate music with a given
emotion (e.g. happy, sad, suspenseful, etc.) as well as with
a given valence-arousal pair (real numbers). We also plan
to use this model to compose soundtracks in real-time for
oral storytelling experiences [12].
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ABSTRACT

Recent efforts to model the compositional processes of
Milton Babbitt have yielded a number of computationally
challenging problems. One of these problems, known as
the all-partition array problem, is a particularly hard vari-
ant of set covering, and several different approaches, in-
cluding mathematical optimization, constraint satisfaction,
and greedy backtracking, have been proposed for solving
it. Of these previous approaches, only constraint program-
ming has led to a successful solution. Unfortunately, this
solution is expensive in terms of computation time. We
present here two new search heuristics and a modification
to a previously proposed heuristic, that, when applied to
a greedy backtracking algorithm, allow the all-partition
array problem to be solved in a practical running time.
We demonstrate the success of our heuristics by solving
for three different instances of the problem found in Bab-
bitt’s music, including one previously solved with con-
straint programming and one Babbitt himself was unable
to solve. Use of the new heuristics allows each instance of
the problem to be solved more quickly than was possible
with previous approaches.

1. INTRODUCTION

Milton Babbitt (1916–2011) was a composer of serial mu-
sic, whose work constituted a substantial contribution to
12-tone music theory and composition [2–6]. His works
and the compositional techniques he developed have been
studied extensively by music theorists and noted for their
complexity [10, 13, 15, 18]. Recent computational work
has shed further light on this complexity by looking, in
particular, at a 12-tone structure and method of compo-
sition that Babbitt developed, known as the all-partition
array [7, 9, 19, 20].

Satisfying all the constraints necessary to construct an
all-partition array is challenging, not least because it in-
volves solving a difficult variant of the set-cover prob-
lem [7, 8, 12]. In this paper, we present an improvement

c© Brian Bemman, David Meredith. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Brian Bemman, David Meredith. “Backtracking search heuris-
tics for solving the all-partition array problem”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

to a previous method, based on greedy backtracking, that
applies two new search heuristics and a modification of a
third heuristic that was originally proposed in [9]. These
heuristics aim to facilitate the satisfaction of the most chal-
lenging of the all-partition array constraints when using a
backtracking algorithm (to be discussed in section 4).

In section 2, we review the all-partition array and fol-
low this with an overview in section 3 of recent computa-
tional work on solving the all-partition array problem. We
focus in particular on the procedural greedy backtracking
approach proposed in [9] to which the heuristics proposed
in this paper have been applied. In section 4, we present
our new heuristics and give pseudo-code for one possible
implementation. In section 5, we demonstrate the effec-
tiveness of the new heuristics by using them to discover
solutions to three instances of the all-partition array prob-
lem. We report and compare the average running times as
well as the number of required backtracks for these three
solutions. We also provide a complete solution to one of
these instances as evidence of correctness. Finally, in sec-
tion 6, we summarize our results and propose some possi-
ble directions for future work.

2. THE ALL-PARTITION ARRAY

Constructing an all-partition array starts with an I×J ma-
trix, A, in which each entry is an integer between 0 and
11, representing a pitch class, and where each row contains
J/12 twelve-tone rows. In this paper, we focus on matrices
where I = 6 and J = 96 because these figure prominently
in Babbitt’s music [14], and so far have proved difficult to
generate [7, 9]. The resulting set of 48 tone rows in the
matrix must be closed under any combination of transpo-
sition, inversion and retrograde. 1 Matrix A will therefore
contain 48 occurrences of each of the integers from 0 to
11. It is important to note that not all organizations of these
pitch classes in A will prove successful in constructing an
all-partition array, but a desirable trait is for pitch classes to

1 The exact instance of the type of 6 × 96 matrix shown throughout
this paper has the following form:

A =


R5 I4 RI7 P2 R11 P8 RI1 I10
RI4 P11 R2 I1 RI10 I7 R8 P5

P3 R0 I11 RI8 P9 R6 I5 RI2
RI5 I2 R3 P0 RI11 I8 R9 P6

I6 R1 P4 RI3 I0 RI9 P10 R7

P7 R10 I9 R10 P1 R4 I3 RI6

,

where P0 = 〈0, 1, 6, 8, 2, 7, 10, 11, 3, 5, 4, 9〉.
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Figure 1: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with a single region defined by a partition (in dark
grey) whose “shape” is represented as the integer composition,
IntComp12(3, 3, 2, 2, 2, 0).

be evenly distributed [7]. However, the exact organizations
which prove successful are still unknown [16, p. 284].

As shown in [20], a complete all-partition array is a cov-
ering of matrix, A, by K sets, each of which is a partition
of the set {0, 1, . . . , 11} whose parts (1) contain consecu-
tive row elements from A and (2) have cardinalities equal
to the summands in one of the K distinct integer partitions
of L = 12 (e.g., 6+6 or 5+4+2+1) containing I or fewer
unordered summands greater than zero. 2 Figure 1 shows a
6×12 excerpt from a 6×96 pitch-class matrix, A, and one
set forming a region in A containing every pitch class ex-
actly once and corresponding to an integer partition, whose
exact “shape” is more precisely represented as the integer
composition, IntComp12(3, 3, 2, 2, 2, 0) [9]. 3

There are a total of 58 distinct integer partitions of 12
into 6 or fewer non-zero summands [14]. This means that
the number of pitch classes required of an all-partition ar-
ray having K regions, exceeds the number of entries in its
matrix by (K · 12)− (I ·J). When I = 6 and J = 96, this
difference is 120. On the musical surface, these 120 addi-
tionally required pitch classes are found through horizontal
repetitions of at most one in each row from any one con-
tiguous region to the next. As shown in [20], these horizon-
tal row repetitions can be found instead through horizontal
overlaps. These overlaps greatly simplify any computa-
tional model for generating an all-partition array because
the matrix can remain fixed in size.

Figure 2 shows the same 6 × 12 excerpt from
Figure 1, now with a second region corresponding to
a distinct partition defined by the integer composition,
IntComp12(1, 0, 4, 3, 0, 4) (in light grey), with two over-
laps shared with the first region. Note how the second
region (in light grey) formed by its composition shares
two overlapped locations (in rows 1 and 3) which lie at
the rightmost column of the first region. A complete all-
partition array of the type considered here is based on an
I = 6 and J = 96 matrix containing K = 58 distinct
regions with 120 overlaps.

The constraints of the all-partition array are motivated

2 As in [20], we denote an integer partition of a positive integer, L,
by IntPartL(s1, s2, . . . , sI) and define it to be an ordered set of non-
negative integers, 〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si and s1 ≥

s2 ≥ · · · ≥ sI .
3 As in [20], we define an integer composition of a positive integer, L,

denoted by IntCompL(s1, s2, . . . , sI), to be an ordered set of I non-
negative integers, 〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si. Unlike an

integer partition, however, the summands in an integer composition need
not be in descending order of size.

Figure 2: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with two regions defined by distinct integer parti-
tions. Note that the region formed by the second composition,
IntComp12(1, 0, 4, 3, 0, 4) (in light grey), overlaps two loca-
tions (rows 1 and 3) from the first region.

by Babbitt’s desire for maximal diversity [14], which is the
exhaustive presentation of as many musical parameters as
possible (e.g., all 12 pitch classes, 48 tone rows, and K
partitions). This makes the all-partition array problem ap-
propriate for methods used in combinatorial optimization
or constraint satisfaction, which often rely on either max-
imizing some objective function or strictly satisfying a set
of constraints, respectively.

3. PREVIOUS COMPUTATIONAL WORK ON THE
ALL-PARTITION ARRAY PROBLEM

Efforts to solve the all-partition array problem have re-
sulted in a number of different approaches [9, 19, 20]. In
[20], an integer programming (IP) model expressed the
problem as a set of linear (in)equalities and managed to
solve significantly smaller instances of the problem for
matrices with six rows and up to 24 columns (requiring
(J + 2)/2 regions which fix the number of overlaps to be
12). Solving for a matrix of this size required in excess of
30 minutes (Gurobi Optimizer v6.0 solver [1] running on
a 2 GHz Intel Core i7 laptop with 8 GB RAM), and the
computational time drastically increased with an increase
in the number of columns. This suggests that solving for
larger matrix sizes, such as the ones considered in this pa-
per, would prove intractable for this IP model.

The first computational method to automatically gen-
erate an all-partition array from a pitch class matrix was
a constraint programming (CP) model, described in [19].
This model solved a 4×96 matrix (requiring 34 regions and
24 overlaps) by splitting the whole of the matrix in half and
solving each smaller sub-matrix before re-joining them to
form a complete solution. Solving the second sub-matrix
was made easier by discovering certain “easy-to-find” par-
titions and excluding these from the first sub-matrix. Find-
ing a solution still required over 30 minutes (Sugar v2-1-0
solver [17] running on a 2 GHz Intel Core i7 laptop with 8
GB RAM) and this method of splitting the matrix unfortu-
nately excludes possible solutions. Moreover, it is still un-
clear whether this model could be used to efficiently solve
other instances of the all-partition array problem.

The heuristics proposed in this paper are intended to
be used with the procedural greedy backtracking algorithm
originally proposed in [9]. Figure 3 gives pseudo-code for
a simplified version of the main backtracking procedure
originally presented in [9].
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BACKTRACKINGBABBITT()

1 C←
⊕K

i=1〈〈〉〉 I Lists of candidates
2 k ← 1
3 while 0 < k ≤ K
4 if C[k] is empty
5 P← FINDUNUSEDPARTITIONS(. . .)
6 C[k]← FINDCANDIDATES(P, . . .)
7 if C[k] is empty
8 k ← k − 1 I Backtrack
9 else
10 k ← k + 1 I Proceed
11 else I Backtracked to previously visited k
12 Select next overlaps for current candidate in C[k]
13 if current overlaps for current candidate is nil
14 Current candidate becomes next candidate in C[k]
15 if current candidate is nil
16 C[k]← 〈〉 I Make empty
17 k ← k − 1
18 else
19 Select first overlaps (if any) for current candidate
20 k ← k + 1
21 else
22 k ← k + 1
23 return C

Figure 3: Pseudo-code for a simplified version of the
BACKTRACKINGBABBITT algorithm originally presented in [9].
Note that

⊕n
i=1〈xi〉 = 〈x1, x2, . . . xn, 〉, the assignment opera-

tor is denoted by ‘←’ and scoping is indicated by indentation.

The algorithm shown in Figure 3 works from left to
right in a given matrix. For each region, indexed by k,
it first finds the partitions that have not yet been used in
positions 1 to k (line 5) and then finds a list of candidate
compositions (i.e., C[k]) from these unused partitions (line
6) that form valid regions in the matrix according to the
constraints discussed in section 2. If there are no candidate
compositions, the algorithm backtracks by decrementing
k by 1 (lines 7–8), otherwise it proceeds by increment-
ing k by 1 (line 10). In the event that the algorithm has
backtracked to a previously visited k containing candidates
(line 11), the next set of overlaps for the current candidate
in C[k] is chosen (line 12). If there are no overlaps remain-
ing (line 13) then the next candidate in C[k] is chosen. The
algorithm then backtracks if there are no remaining candi-
dates (lines 16–17) or proceeds after selecting the first set
of overlaps (if any are available) for this new current can-
didate (lines 19–20). Note that we have provided here only
those details necessary for understanding how our heuris-
tics have been implemented (see section 4). 4

Even with the help of the search heuristics described
in [9], the algorithm above proved unable to generate a
complete solution to the all-partition array problem after
100, 000 backtracks when tested on a 6 × 96 matrix. In
the following section, we discuss why this failure likely
occurred.

4 More detailed pseudo-code for the original backtracking algo-
rithm can be found in [9] and an improved implementation (writ-
ten in Julia v.1.1.0 [11]) with our proposed heuristics can be found
in the following repository: https://github.com/brianm2b/
generate-all-partition-arrays.

4. PROPOSED BACKTRACKING SEARCH
HEURISTICS

As noted in [9], a greedy deterministic backtracking algo-
rithm for solving the all-partition array problem based on a
depth-first search procedure which finds candidate regions
from left to right in a given matrix will incur considerable
computational cost in terms of time without sufficiently
good heuristics for limiting the amount of backtracking re-
quired. When attempts were made to use this algorithm
to solve for a 6 × 96 matrix, much of the backtracking
was concentrated towards the far right of the matrix after
the algorithm had already successfully discovered most of
the required partitions. This means that the algorithm was
unable to use the few remaining unused partitions to find
compositions capable of forming successful regions (ac-
cording to the constraints discussed in section 2) from the
remaining matrix elements. If one relaxes the constraint
that missing pitch classes from the final region must come
from overlaps from previous contiguous regions and, in-
stead, allows these pitch classes to be added to the end of
the matrix, then the problem becomes significantly more
tractable. As it turns out, this is exactly what Babbitt was
forced to do in many of his works [7,13]. It is these matri-
ces, found for example in Babbitt’s About Time (1982) and
Arie da Capo (1974), that are the focus of this paper, as no
known solution which satisfies all constraints exists. 5

Figure 4 illustrates two scenarios for forming a final re-
gion in a nearly complete all-partition array where only
one partition remains to be used. In Figure 4(b) the fi-
nal region fails to cover one entry in the matrix due to an
overlap of pitch class 9 (row 2) with the previous region.
In Figure 4(c), every entry is covered, but pitch class 9 is
added to the end (row 3) instead of overlapping with the
previous region.

4.1 First Proposed Search Heuristic

The first of our proposed search heuristics is based on a
simple assumption regarding the difficulty of finding a fi-
nal region noted above. By excluding from the left-to-
right search those partitions that successfully form regions
in the final position K at the far right-hand side of A, it
will be easier not only to form a complete matrix cover-
ing (Figure 4(c)), but also to avoid violating the constraint
that all missing pitch classes from any one region must be
overlaps (Figure 4(b)).

Let us suppose Pk, 1 ≤ k ≤ K, is the set of all unused
partitions not found in the sequence of selected candidate
compositions from 1 up to k and R is the set of partitions
that have been found to successfully form regions at K.
The modified set of all unused partitions, P ′k, from 1 up to
k is given by

P ′k =


Pk \R, if (|Pk ∩R| = r ∧

|Pk| > r); and
Pk, otherwise,

(1)

5 See [13] for an example of an all-partition array of this type that
forms an incomplete solution to the all-partition array problem.
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(a) A nearly covered matrix and complete all-partition ar-
ray with 9 uncovered pitch classes and one unused parti-
tion, IntPart12(7, 1, 1, 1, 1, 1), remaining.

(b) An unsuccessful matrix covering where a single pitch-
class 2 remains uncovered by the final region. Note that
all missing pitch classes from the uncovered elements in
(a) are overlaps with previous contiguous regions.

(c) A successful matrix covering by the final region where
pitch-class 2 from (b) has been covered, requiring that the
missing pitch class 9 is added to the end of the matrix
instead of overlapping with the previous region (as in (b)).

Figure 4: A 6×96 pitch-class matrix with 57 of its K = 58 par-
titions in (a) and two possible ways in (b) and (c) to ensure that the
final unused partition, IntComp12(1, 1, 1, 1, 1, 7) (in light grey),
forms a region containing every pitch class exactly once—both
of which result in an incomplete solution to the all-partition array
problem. For clarity, greyed out pitch classes belong to regions
formed by partitions that have not been shown.

where r, 0 ≤ r ≤ |R|, denotes a specified number of par-
titions in R to exclude from Pk. The first case in Eqn (1)
states that the modified set of all unused partitions, P ′k, is
the set difference of all unused partitions from 1 up to k
and those found in R when (1) the number of partitions at
the intersection of Pk and R is equal to r, and (2) the num-
ber of unused partitions is greater than r. When either of
these two conditions are not met, P ′k is simply all unused
partitions remaining (i.e., Pk). Collectively, these cases al-
low for partitions from R to be freely chosen so long as at
least r partitions from R remain unused until there are r
regions left to be found.

4.2 Second Proposed Search Heuristic

The second of our proposed heuristics is based in part on
a modification to one originally proposed in [9]. A cen-
tral feature of both heuristics, however, is that they work
on the assumption that, since the matrix from which an all-
partition array is constructed is regular (i.e., not ragged),
regions should be chosen at each k so as to minimize the
“raggedness” of their right hand column locations in each
row. We make two significant improvements to this orig-
inal heuristic which allow us to (1) work with a modifi-
cation of the problem in which additionally required pitch

classes appear as overlaps and not horizontal repetitions
[20] and (2) minimize the raggedness of regions at each k
in a way which takes into account both how far off from
and in which direction their right hand column locations
are from “ideal” locations specified in (1) while correcting
for this same error found in the previous k − 1 region.

For the first of our improvements, let us suppose
we have a list of candidate compositions, Ck =
〈ck,1, ck,2, ...ck,N 〉 (corresponding to e.g., line 6 in
Figure 3), at position k, where 1 ≤ k ≤ K. Ideally, af-
ter choosing a composition for k, the rightmost column lo-
cation of each row in this composition’s region would be
J · k/K. This rightmost column location after choosing
ck,n from Ck we denote l′k,n,i for a matrix row, i. For ex-
ample, if we let L′k,n be equal to 〈l′k,n,1, . . . , l′k,n,I〉, then
the second region shown in Figure 2 would be L′k,n =
〈3, 3, 5, 5, 2, 4〉. To measure the raggedness or degree of
difference in a region’s rightmost column locations, Dk,n,
that results from choosing ck,n in a fixed-size matrix, we
use the following formula, based on city-block distance:

Dk,n =

I∑
i=1

∣∣l′k,n,i − J·k
K

∣∣ , (2)

where |x| denotes the absolute value of x. The term,
J · k/K, specifies for any given region and row at k an
“ideal” column location in a fixed-size matrix containing
overlaps rather than in a potentially ragged matrix contain-
ing horizontal repetitions as in the original construction of
an all-partition array. 6 This modification simplifies the
modeling of the problem and aligns it with other proposed
models [19, 20].

Our second improvement is based on the observation
that Eqn (2) computes the magnitude and not the direction
of the difference in each row between a region’s right hand
column location and its ideal location. This means, for ex-
ample, that it is not possible to distinguish between two re-
gions that are equally ragged according to Dk,n but where
one may be short of its ideal column locations and the other
is longer. For this reason, we propose the use of an adjust-
ment which captures for a given k how far off and in which
direction the region chosen at k − 1 is from its ideal col-
umn locations defined by the right hand term in Eqn (2).
We can express this adjustment by defining for a region at
k the rightmost column location for a matrix row, i, before
choosing ck,n from Ck, which we denote lk,i. For exam-
ple, if we let Lk,i be equal to 〈lk,1, . . . , lk,I〉, then, for the
second region shown in Figure 2, Lk,i = 〈3, 3, 2, 2, 2, 0〉.
Our second heuristic then is given by

Sk,n =
I∑

i=1

∣∣∣(l′k,n,i − J·k
K

)
+
(
lk,i − J·(k−1)

K

)∣∣∣ , (3)

where the adjustment, expressed as the difference lk,i −
J·(k−1)

K , has been added to the difference shown in Eqn (2).

6 In [9], this “ideal” column location was expressed as 12k/n, where
n is the number of matrix rows, due to the use of horizontal repetitions.
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The absolute value of this sum is then taken and the result-
ing positive value is summed over all rows of i to form the
final measure of adjusted raggedness, Sk,n. Use of Eqn (3)
has the effect of preventing the accumulation of regions
having the same directional error, either too short or too
far past the ideal column locations for each row.

4.3 Modified backtracking algorithm with improved
search heuristics

Whether only the magnitude of difference from an ideal lo-
cation (Eqn (2)), or the magnitude and direction of this dif-
ference (Eqn (3)), is used, the goal of both heuristics is to
minimize the degree of raggedness in the column locations
of any one region formed by a candidate composition at
k. We propose using a greedy strategy, for implementation
with the backtracking algorithm proposed in [9], in which,
for each k, we choose the candidate composition, cn, in Ck

that minimizes either Dk,n or Sk,n. As a given region may
have more than one possible set of overlaps (or none), we
sort each region’s sets of overlaps for each cn according
to whichever set results in the smallest value for the single
heuristic, either Dk,n or Sk,n, used globally throughout the
search. The first of our heuristics shown in Eqn (1) can be
implemented in two parts: one which occurs before the
backtracking search begins and the other during the search
when unused partitions from 1 up to k are found. Our two
other heuristics shown in Eqn (2) and Eqn (3) can be im-
plemented simply during the search when sorting the list
of discovered candidate compositions in each Ck.

In Figure 5, asterisks indicate our modifications to the
original backtracking algorithm in Figure 3 required to im-
plement the new heuristics. Prior to the start of the back-
tracking search, the FINDCANDIDATES function finds the
set of partitions, R, that prove successful in forming re-
gions at K, as required in Eqn (1) (see line 2 in Figure 5).
These partitions are then passed to the function for find-
ing unused partitions from 1 up to k in line 6, which re-
turns a sorted set of lexicographically ordered composi-
tions grouped by partition, P′. In line 7, the pool of candi-
dates for the kth region is chosen from this returned set. In
line 11, the set of candidates found at k is sorted according
to the value assigned to each candidate by either Eqn (2) or
(3) (but not both).

5. SOLUTIONS

As evidence of the correctness for the modified backtrack-
ing algorithm in Figure 5 and a demonstration of its perfor-
mance using our proposed heuristics, we solved for three
different instances of matrices of two sizes found in Bab-
bitt’s works. Table 2 shows the approximate times in sec-
onds and fewest number of backtracks required by our
heuristics to solve these three matrices (Julia v.1.1.0 [11]
running on a 2.4 GHz Intel Core i5 laptop with 8 GB
RAM).

For the purposes of bench marking, all solving times
shown in Table 2 were averaged over three runs and termi-
nated after 2 × 107 backtracks if no solution was found.

BACKTRACKINGBABBITT*()
1 C←

⊕K
i=1〈〈〉〉 I Lists of candidates

2* R← FINDCANDIDATES(. . .)
3 k ← 1
4 while 0 < k ≤ K
5 if C[k] is empty
6* P′ ← FINDUNUSEDPARTITIONS(R, . . .)
7* C[k]← FINDCANDIDATES(P′, . . .)
8 if C[k] is empty
9 k ← k − 1 I Backtrack
10 else
11* C[k]← SORTBYHEURISTICS(C[k])
12 k ← k + 1 I Proceed
13 else I Backtracked to previously visited k
14 Select next overlaps for current candidate in C[k]
15 if current overlaps for current candidate is nil
16 Current candidate becomes next candidate in C[k]
17 if current candidate is nil
18 C[k]← 〈〉 I Make empty
19 k ← k − 1
20 else
21 Select first overlaps (if any) for current candidate
22 k ← k + 1
23 else
24 k ← k + 1
25 return C

Figure 5: Pseudo-code for a simplified version of modifi-
cations to the BACKTRACKINGBABBITT algorithm originally
posed in [9] required to implement our new heuristics, expressed
in Eqn (1), Eqn (2), and Eqn (3). The ’*’ denotes modified lines
to the original implementation shown in Figure 3.

The reported solutions were found by running the algo-
rithm with the given set of heuristics for all values of the
parameter, r, from 1 to |R| (where |x| denotes cardinality)
and selecting the one which resulted in the fewest number
of respective backtracks. The first of these matrices was
constructed manually by Babbitt and no known complete
solution has existed prior to our solving it here using P ′

(r = 11) and D, and P ′ (r = 13 = |R|) and S—the lat-
ter of which resulted in a fewer number of backtracks. The
complete solution to this matrix using the best combination
of heuristics appears in Table 1 below. The second matrix
in Table 2 was constructed manually by a student of Bab-
bitt named David Smalley [9] and at least one known so-
lution (discovered by Smalley) existed prior to our solving
it here using P ′ (r = 22 = |R|) and D, and P ′ (r = 18)
and S. The final matrix was previously solved in [19] us-
ing constraint programming in≈ 30 minutes, however, the
combination of P ′ (r = 1 where |R| = 7) and S dis-
covered a solution in ≈ 22 minutes. Overall, this matrix
required the highest number of backtracks (over 5 million
in the best case) of all matrices tested here. In all cases, we
have used P ′, as solving using either D or S alone proved
infeasible within the specified backtracking limit. Simi-
larly, using P ′ alone also proved unsuccessful.

The significant difference in solving times and number
of required backtracks in Table 2 for each of the matrices
using one set of heuristics or another is interesting to note.
The only difference between the first and second matrices,
for example, is their organization of pitch classes, as both
are the same size and require the same number of regions
and overlaps. However, using P ′ and D solves the second
matrix in approximately 1 second and 2377 backtracks but
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29A843 -30 -071 -1 -1B6 -6 5 43
70B -B 15 -56 9 -92 -28A34B0

349B5A 1 2 -2 -2 6870 -0 9
8102 6 -6 -67A -A39B4 -4 -45 -5 -5 21860743B -B9A50786 21A
6 5 -50A4 -4,B,8 -8 -873 -3129A -A -A 5640B8397
7 -78139 -9 2 56A0B -B 4387 -791 -12

6412 6313 5413 322212 53212 5314 5421 43213 7312 913 822 93

-3 A82 9 651 -1B07 -7 -7A32489
-0 -05716 9 -9A2438B 6 -6 -67 51094A8
-9 453BA72 861 -10BA -10539 4 1 08 67
5 B943 0168 27AB3 -35492768 -8 0 14935A B

-721 4 -4 5A06B -B -B2 -23
5A46B098 -83172BA6 450 -07 2 -23198 5

831 814 543 741 5321 732 84 4214 5212 715 623 7221

-9 -9 05B1 67 -72 38A -A490 157
321 075 -5 B632A -A8 -894 -4 165 -5 7B03 824

2B43 -3 -3 59A160 -027 8 -89 -9A3
87 2061A 95 3 4B 61 -12

798 -816 -6BA04 -45 817 -792 -230B -B 64A5
-5064BA -A 12 7938B 04 -46 5A1 8 9 732B -B60

632 43212 52213 522 5322 4322 4322 6214 3321 42212 4222 34

6B 8342 -2A 96 175 0B8 924 -4A36 -67 -7 -7
9A 76 -61 -1B -B -B5 -5098
-35 -5 B4780 -02 -2 1 63 AB9 5 -5
0874 B 53 -3A -A96 70 -02 -2
21 -19 -9 78 -830 546A -A B271 -13 -38 -89AB460 58913274B0A6

-0A 54 -4 3297 18 -854 -40AB6921 -13

424 42312 5231 26 3313 4231 3241 43 3223 8212 7213 12

B105498A23 -36B5701A9 -9 -94283 0 -0B7561
42 3A -A501B76 3A429856B17 -70 34 8A92

418207 6 54B93A 7620185A9B 34 706812
-281 459BA3

-6 -65 293187
7 8 B -B4A05 6

10 12 921 62212 75 651 11 1 6321 10 2 642 62

Table 1: A generated all-partition array which solves one instance of the all-partition array problem based on a 6 × 96 matrix having
58 distinct regions and 120 overlaps. Each box contains the elements in A belonging to a region formed by a distinct integer partition,
where a dash indicates those that overlap. Note that partitions are denoted using a shorthand notation, e.g., 43, where the base indicates
the length of a part and the exponent denotes its number of occurrences. The integers 10 and 11 are the letters A and B, respectively.

P ′, D P ′, S

Matrix A time (s) backtracks r time (s) backtracks r

1. Babbitt(6, 96) 176.92 583724 11 3.88 5909 13
2. Smalley(6, 96) 1.25 2377 22 96.03 231933 18
3. Babbitt(4, 96) 3791.94 14224645 1 1321.09 5390388 1

Table 2: Approximate times and fewest number of required
backtracks for solving three different matrices using the search
heuristics, P ′, D, and S.

using P ′ and S is significantly more costly. The reverse
is true of these sets of heuristics in the first matrix. This
result appears to support the findings reported in [20], that
each matrix represents a unique problem space, which, in
our case, may require the use of heuristics with different
considerations. Contrary to what one might expect, how-
ever, the smaller third matrix actually proved more difficult
than the larger and more combinatorially expansive matri-
ces (i.e., requiring more regions) with a best-case solving
time and number of backtracks roughly 3 orders of mag-
nitude greater. Finally, it is important to note that while
the best solving times and number of backtracks for the
first two matrices are low, their use of values greater than
1 for the parameter, r, in P ′ means that some potential so-

lutions are excluded, namely, those in which one or more
of these r partitions in P ′ appear at positions, k, where
k ≤ K − r. This is not true, however, in the third ma-
trix, where only one of the possible partitions in P ′ was
excluded (i.e., r = 1).

6. CONCLUSION

In this paper, we provided improvements to an existing
backtracking algorithm in the form of three search heuris-
tics which proved successful in solving the all-partition ar-
ray problem for three different instances found in Babbitt’s
music. Our findings demonstrate that, when used together,
our proposed heuristics allow the backtracking approach
to outperform other approaches. However, it is also ap-
parent from our results that the solving time and number
of required backtracks required is highly dependent on the
specific matrix given as input. In future work, it would
prove useful to investigate methods of analyzing the orga-
nization of pitch classes in a matrix prior to searching and
using these findings to modify the ideal column locations
accordingly during the search.
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ABSTRACT

Expositions of Sonata Forms are structured towards two
cadential goals, one being the Medial Caesura (MC). The
MC is a gap in the musical texture between the Transition
zone (TR) and the Secondary thematic zone (S). It appears
as a climax of energy accumulation initiated by the TR,
dividing the Exposition in two parts. We introduce high-
level features relevant to formalize this energy gain and to
identify MCs. These features concern rhythmic, harmonic
and textural aspects of the music and characterize either the
MC, its preparation or the texture contrast between TR and
S. They are used to train a LSTM neural network on a cor-
pus of 27 movements of string quartets written by Mozart.
The model correctly locates the MCs on 14 movements
within a leave-one-piece-out validation strategy. We dis-
cuss these results and how the network manages to model
such structural breaks.

1. INTRODUCTION

1.1 Sonata Form

The classical sonata form shaped many musical works in
the classical and the romantic period. It began to appear
in the second half of the 18th century but was not formal-
ized until the early 19th century. Recent theories on sonata
forms emerged in the last decades, with various points of
views [5, 7, 13], but nevertheless agree on its higher-level
structure, involving Exposition, Development and Recapit-
ulation sections, and optional Introduction or Coda sec-
tions.

According to Hepokoski and Darcy, an Exposition may
be either a two-part exposition, featuring two contrasting
thematic zones, or a continuous exposition, with only one
thematic zone [13]. The two-part exposition is character-
ized by two strong punctuation breaks (Figure 1). The
first one is the Medial Caesura (MC) which closes the first
part of the exposition. The second one is the Essential
Expositional Closure (EEC), which is a Perfect Authen-
tic Cadence (PAC) that concludes the Secondary thematic

c© Laurent Feisthauer, Louis Bigo, Mathieu Giraud. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Laurent Feisthauer, Louis Bigo, Mathieu
Giraud. “Modeling and learning structural breaks in sonata forms”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

Figure 1. Structure of the two-part exposition in a sonata
form, from Hepokoski and Darcy [13].

zone (S). The lack of a clearly articulated MC is the main
difference between the two-part exposition and the contin-
uous exposition [12]. Figure 1 shows the two-part exposi-
tion of a sonata form with its two punctuation points.

1.2 Formalizing Medial Caesuras

The MC is a “break in texture” [21] or a “textural
change” [12] built around a cadence (most of the time, a
half cadence (HC)), that acts as a boundary between TR
and S. According to Hepokoski and Darcy, the MC has
two fonctions [12, 13]: It closes the first part of the Expo-
sition, concluding a process of energy gain initiated during
the TR. It makes the second part available, opening a space
for S thanks to that energy accumulated in TR. 1 Whether
or not TR is modulatory, the MC is the point when the mu-
sic reaches a structural dominant. 2 This dominant may be
prolonged by neighbor motion, a repeated dominant pedal
and a strong forte, and may be emphasized by hammer
strokes (or hammer blows), that are repetitions of the fi-
nal dominant chord. The whole process is concluded by
the actual articulation of the MC. There can be a general
pause on all voices, but there can also be a caesura-fill, that
is a small melodic pattern or a sustained note or chord that
“bridges the gap” to the S zone.Two examples of MCs are
presented on Figure 2 and Figure 3.

1 Hepokoski and Darcy suggest that the MC “may be thought of as
metaphorically analogous to the moment of the opening of elevator doors
onto a higher floor.” [13]

2 This structural dominant is the arrival point of the associated HC [6],
what follows being considered as post-cadential.

398



Figure 2. Mozart, Piano sonata in A minor, K310, 1st movement, mm15–24. The arrival point of the half cadence is
on the downbeat of m16 (circled in orange). The measures 16 to 21 have a prolongational function. They are built on
a dominant pedal (in blue) and a speeding-up harmonic oscillation between dominant and minor tonic of C minor. The
dominant tension is reinforced by the forte/piano/forte contrast at m16, m18, and m20. This leads to a triple hammer blow
(THB) at m22 (green) and the actual articulation of the MC on the fourth beat of m22 (red). Then caesura-fill at the right
hand (lighter blue) leads to S and its new thematic unit.

Hepokoski and Darcy classify MCs according to the ca-
dence occuring before the break and their position inside
the Exposition [12]. A first-level default MC is associated
with a HC in the secondary key 3 and can be denoted by
V:HC MC (III:HC MC or v:HC MC in minor mode). This
MC generally occurs between 25 and 50% of the length
of the exposition, and sometimes at 60%. A second-level
default MC considers a HC in the primary key (I:HC MC,
between 15 and 45% of the length). A third-level default
MC is caracterized by a PAC in the secondary key (V:PAC
MC, III:PAC MC, or v:PAC MC), and occurs between 50
and 70%, sometimes at 75% of the length. The least en-
countered option, fourth-level default, is a PAC or an im-
perfect authentic cadence (IAC) in the primary key (I:PAC
MC or IAC MC), generally at the end of P. In this case, S
follows P without TR.

Another point of view on MCs is given by
Richards [20], who identifies in 2013 seven signals,
underlying the beginning of the secondary theme (S):
tonic harmony of the new key, beginning function,
preparation by a phrase-ending chord, textural gap of a
medial caesura, change in texture, change in dynamics
and characteristic melodic material. Each signal can be
encountered in a strong or weak form. For example, the
“Tonic harmony of new key” signal is strong when the
chord encountered on the first downbeat is a tonic chord

3 The secondary key is often the dominant major (V) for major mode
primary key and the relative major (III) or the dominant minor (v) for
minor mode primary key.

in the secondary key. It is weak when that chord is not the
tonic of the secondary key, or when the chord is the tonic
of another key due to a temporary modulation.

Somehow, a “textbook” MC, like the one displayed on
Figure 2 is heard when all these signals, either on MC or
on start of S, are strong. Of course, MCs in the classical
repertoire do not strictly follow these rules and are rather
heard with many deformations, like the one presented on
Figure 3.

1.3 Medial Caesura, Sonata Form and MIR

Working on high-level music structures is a challenge for
Music Information Retrival (MIR) research [19]. To our
knowledge, no previous study in MIR has specifically tar-
geted MC. However, several authors worked on sonata
forms and designed algorithms to model or retrieve parts
of its structure, on audio signals [15, 26] and on symbolic
data [2, 22]. Sears and colleagues worked especially on
cadences, by demonstrating that terminal events from ca-
dential context are the most predictable thanks to a finite-
context model (IDyOM) [23]. We previously worked on
sonata form structure identification, modeling the MC as
one state in Hidden Markov Models with 14 or 18 states
and using a Viterbi algorithm to find back the sections from
symbolic features [1, 4]. We also worked on PAC and HC
detection thanks to features extraction and a SVM model.
While PAC detection seems satisfying, HC detection was
kind of disappointing due to the lack of characteristic fea-
ture for this cadence type [3].
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Figure 3. Mozart, String Quartet in D minor,
K421, 1st movement, mm22-24. This MC is
weak: No dominant arrival, no lock on degree V,
nor hammer strokes, and energy depletion rather
than a gain. This MC weakness can be due to
a I:HC MC denial on the third beat of m14 not
shown on this figure (dominant arrival at m12).
The composer delays the arrival of S and contin-
ues into TR, maybe to create surprise.

Modeling MCs is a challenging subject even amongst
music theorists. As the MC is a striking event, playing a
role in the high-level structure, one may wonder whether it
is possible to model and predict MCs with computational
musicology methods. This study tries thus to model fea-
tures relevant to identify structural breaks such as the MC.
We propose such features that may be specific to MCs,
based on music theorist works [13, 20] (Section 2) and
present a neural network model that we train on a corpus
of expositions in Mozart string quartets (Section 3). We fi-
nally discuss the occurences of the features, detail how the
network manages to model the MC, and propose perspec-
tives to further their study (Sections 4 and 5).

2. FEATURES INDICATING THE MEDIAL
CAESURA

We mostly here introduce features to model high-level sig-
nals leading to the Medial Caesura, taking inspiration from
Hepokoski and Darcy as well as from Richards [13,20]. To
find the MC, we want to model the MC, but also its prepa-
ration and the textural contrast with the beginning of S.
We also use low-level features inspired by dedicated ex-
traction software as jSymbolic [18]. This section details
13 features that are estimated on each beat of the music
piece. The features are then used in the next section to
train a neural network to model the MC. In contrast to fre-
quent uses of neural networks that consist in automatically
identify most relevant features, this research aims to vali-
date the efficiency of a set of pre-determined theory driven
features to model medial caesura.

In the following, given a onset b, the [b, b + 1[ inter-
val means that we consider each note actually sounding in
that interval, including notes whose onset is b (or before,
but still sounding on b) but excluding notes whose onset
is b+ 1.

2.1 Rhythm, energy and textural features

Preparations of MCs are expected to be passages of high
rhythmic intensity as a consequence of the repetition of
the pedal and the forte. It might even be the most obvious
way of gaining musical energy. We also expect a change
of rythmic density between TR and S and a beat filled with
silence on the articulation of the MC.

Modeling textural changes with precision is a challeng-
ing topic in computational musicology [11]. To try to cap-
ture these “breaks in texture” between the end of TR and

the beginning of S, we implement the following low-level
features, for each beat b:

• f-rhythm-density counts the number of notes in
[b, b+ 1[,

• f-rest counts the number of voices not sounding on
b.

We add these features, as the textural/energy change can
be seen on the range of voices:

• f-mean-pitch is the mean of the MIDI values of
pitches in [b, b+ 1[,

• f-range-pitch is the difference between the maxi-
mum and minimum MIDI values of pitches in [b, b+
1[.

We also keep track of the position in the piece:

• f-time is the current beat number divided by the total
number of beat in the score.

We propose one high-level feature specific to MCs:

• f-hammer-blow tracks double, triple or more ham-
mer strokes (see THB on Figure 2). To estimate this
feature, the set of pitches on b are compared to sets
of pitches on previous beats. This feature reaches its
maximum when the set of pitches is the same for b
for at least 2 previous beats.

2.2 Harmonic Features

We expect a (functional) dominant lock during the few
beats before the articulation of the MC (whether it is a
dominant on primary key or on secondary key).

Moreover, whether a TR is modulatory or not, we ex-
pect to encounter accidentals during TR or at least the be-
ginning of S due to neighbor motion during the phase of
prolongation of dominant and use of the dominant of the
secondary key.

Algorithms for detecting local tonalities work well [17,
24] but tend to average variations over a window (often
a few beats or measures). We propose rather two sets of
features adapted to the detection of the MC.

Functional harmony compatibility. Functional harmonic
analysis is a challenging problem in itself [9,25]. The idea
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Figure 4. Estimation of the current diatonic scale on
mm27-29 of Mozart’s 1st movement of String Quartet
No. 13 in D minor (K173). The D minor harmonic scale
is given on the left. f-cs-rel stands for f-current-scale-
relative.

here is to assert how compatible is a current harmony to
a harmonic function, but without actually classifying the
harmonies.

For a given functional harmony (as for example f-
predominant, that may be either a ii or a IV/iv), we de-
fine a compatibility profile h : P → [−1, 1] that asserts
how compatible a pitch p ∈ P is to the given harmony.
The pitch is given relative to the tonic of the primary key.
Given a set of notes c = {p1, p2, ...} from a given offset,
the feature computes

∑
p∈c h(p). The actual computation

weights notes by their length in the given beat.
The compatibility profile h could be learned as profiles

used in tonality detection [17]. We selected here a simpler
approach and encoded two pitches lists coming for musical
knowledge, one with relevant pitches, the other with irrel-
evant pitches. We define five such features, each one with
a particular list of relevant and irrelevant pitches:

relevant irrelevant
h(p) = 1 h(p) = −1

f-maj-tonic 1, 3, 5 ]4, 7
f-min-tonic 1, [3, 5 ]4, 7
f-predominant 2, 4, ]4, [6, 6, 1, [2 3, 5, 7
f-dominant-of-dominant 2, ]4, [6, 6, 1, [3 3, 4, 5, ]5, 7
f-dominant 5, 7, 2, 4, 6, [6 1, ]5

These pitch lists suppose that we have a pitch space with
the pitch spelling information. Pitches p that are not listed
count for h(p) = 0.

Harmony landscape and current scale. To better capture
the occurrence of new accidentals, we model the current
scale. It is a diatonic scale containing the seven pitches
with, for each of them, the last accidental encountered
(Figure 4). We expect it to be different of its initial state at
the beginning of the piece and to vary a lot just before the
MC. We estimate two features on this scale :

• f-current-scale-diff counts the number of pitches
differences in the current scale in ]b − 1, b] related
to the initial current scale.

Tonality Cadence MC Tempo
K80.1 G Major V:HC 1 Adagio
K80.2 G Major V:HC 1 Allegro
K156.1 G Major I:HC 2 Presto
K156.2 E minor III:HC 1 Adagio
K157.1 C Major I:HC 2 N.A.
K157.2 C minor III:IAC 4 Andante
K158.1 F Major V:HC 1 Allegro
K159.1 B[ Major V:HC 1 Andante
K159.2 G minor III:PAC 3 Allegro
K168.1 F Major I:HC 2 Allegro
K168.2 F minor V:HC 1 Andante
K169.1 A Major I:PAC 4 Molto Allegro
K171.3 C minor v:HC 1 Andante
K171.4 E[ Major V:HC 1 Allegro assai
K172.1 B[ Major V:HC 1 Allegro spiritoso
K172.2 E[ Major V:HC 1 Adagio
K172.4 B[ Major V:PAC 3 Allegro assai
K173.1 D minor v:HC 1 Allegro moderato
K387.1 G Major V:HC 1 Allegro vivace assai
K421.1 D minor III:PAC 3 Allegro
K428.1 E[ Major V:PAC 3 Allegro non troppo
K428.2 A[ Major I:HC 2 Andante con moto
K465.1 C Major V:HC 1 Adagio + Allegro
K465.4 C Major V:HC 1 Allegro
K499.3 G Major V:HC 1 Adagio
K589.1 B[ Major V:PAC 3 Allegro
K590.1 F Major V:HC 1 Allegro moderato

Table 1. The corpus contains 27 expositions (21 in major,
6 in minor) in Mozart String Quartets. "MC" denotes the
MC type as designed by [12].

• f-current-scale-relative further weights this count by
+1 when the scale “gains” a sharp (or “loses” a flat)
and by −1 in the other case.

For example, on the Figure 4, the current scales are
compared with the D minor harmonic scale (primary key,
with B[ and C]). On the downbeat of measure 28, three
pitches are changed (A[, E[, B\), so f-current-scale-diff
is 3 and f-current-scale-relative is 1− 2 = −1.

3. LEARNING STRATEGY

3.1 Network Layout

A Long Short-Term Memory neural network (LSTM) is
built to predict the position of the Medial Caesura in the
pieces of the corpus (Figure 5).

The network takes vectors of values describing the beats
of the pieces as input. The identification of a Medial
Caesura at a particular beat requires also to look at several
past beats and possibly future beats. This is partly taken
into account by the LSTM, but we further directly provide
to the network the feature values over a time window. A

features
9 × 13

LSTM(10)
300

output
1

Figure 5. Network layout
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vector describing a beat includes thus the 13 feature values
corresponding to this beat but also those corresponding to
the p previous beats and the n next beats. In this exper-
iment, we set p = 4 and n = 4 which results in input
vectors of size 9× 13 = 117.

The input layer is fully connected to a recurrent hidden
layer including 300 units. The time step of the LSTM is
set to 10, meaning that 10 consecutive vectors are used
to compute the probability of a MC occuring at one beat.
Finally, the hidden layer is fully connected to the output
layer that is a single unit. A sigmoid function scales the
output value as a probability in the interval [0, 1].

3.2 Model Training

To avoid overfitting, the position of the Medial Caesura in
a piece of the corpus is predicted with a model that has
been trained on the whole corpus minus the piece itself.
This is referred as leave-one-piece-out validation process.

The 13 features are computed at every beat of every
piece in the training set. Each piece is represented as a
sequence of feature vectors of size 117, each vector being
associated with a specific beat.

Every feature vector of the training set is associated
with a label having a value 1 (presence of an annoted MC
in the next 5 beats) or 0 (otherwise). During the training,
pairs (feature vector, label) are presented to the network by
batches of size 200. An Adam optimization algorithm up-
dates the unit weights to minimize a binary cross-entropy
loss function over 60 epochs.

Given the small number of medial caesura in the cor-
pus, there was no preliminary selection of a separated test
set. This research primarily focuses on the validation of the
musical features rather than the classifier itself. For these
reasons, the number and sizes of hidden layers, the batch
size and the number of epochs as the optimization algo-
rithm were selected among the most common values given
the dimension and the quantity of input datas, with mini-
mum optimization process in order to avoid over-fitting.

4. EVALUATION

4.1 Two-part expositions in Mozart’s String Quartets

Mozart wrote 23 string quartets totaling 86 movements, in-
cluding 42 in sonata form [16]. Many of these quartets are
encoded as .krn Humdrum files [14] that we downloaded
from the humdrum-mozart-quartets repository at
github.com/musedata/. Some of these movements
were left out because of unavailable clean encodings or
of other technical inconsistencies including the absence of
Medial Caesura. The corpus used finally contains 27 two-
part expositions totaling 4179 beats. Medial Caesura anno-
tations were taken from the sonata form annotation dataset
we proposed in [1] and available at www.algomus.fr/
data. These annotations include P, TR, MC, S, and C sec-
tions. Table 1 lists these 27 movements with their MC level
default. We denote by K171.4 the 4th movement of K171.

P TR MC S C
f-rhythm-density 0.442 0.517 0.524 0.557 0.577
f-hammer-blow 0.080 0.087 0.143 0.070 0.059
f-rest 0.223 0.194 0.099 0.229 0.181
f-mean-pitch 0.770 0.768 0.786 0.782 0.766
f-range-pitch 0.373 0.434 0.508 0.420 0.441
f-time 0.053 0.150 0.189 0.270 0.350
f-maj-tonic 0.679 0.621 0.593 0.575 0.595
f-min-tonic 0.650 0.598 0.581 0.561 0.588
f-predominant 0.568 0.553 0.576 0.545 0.521
f-dominant-of-dominant 0.493 0.537 0.594 0.561 0.525
f-dominant 0.629 0.670 0.737 0.699 0.719
f-current-scale-diff 0.065 0.182 0.262 0.228 0.237
f-current-scale-relative 0.008 0.069 0.094 0.146 0.134

Table 2. Average value of the features according to the
section on the whole corpus.

0.000 0.200 0.400 0.600 0.800 1.000

f-dominant-of-dominant

-3 -2 -1 0 +1 +2 +3 +4

f-current-scale-relative

Figure 6. Distribution of two features relevant for MC
identification. From bottom to top, P (brown), TR (blue),
MC (red), S (green), and C (purple).

4.2 Implementation

We encoded feature extraction within the Python music21
framework [10]. The pitch space is Base40, modeling full
pitch spelling information. Features described in Section 2
are computed at each beat of each piece and have their
values scaled between 0 and 1 through min-max normal-
ization. These features values are available as open data
at www.algomus.fr/data. The neural network has
been implemented with the Python framework Keras [8].

4.3 Features distribution

Table 2 shows the average values of each feature depending
on the sections, and Figure 6 details the distribution of two
relevant features. Several features have larger values on
the MC, notably f-dominant-of-dominant and f-dominant.
As expected, the features on tonic harmonies have higher
values on P and TR, while features on dominant harmonies
have higher values on the MC and S and C sections. The
current-scale features are very low on P (initial tonal sta-
bility), but are then mostly activated on the other sections
as the music moves to another key, and preferably one with
more sharps. The f-current-scale-diff is maximal around
the MC, reflecting the harmonic oscillations and tonal in-
stability at this place. This behaviour is less visible on f-
current-scale-relative. Indeed, we observe sometimes here
a modal instability (as in Figure 2) that means more flats
before the MC in major mode. Other relevant features
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correct predictions

K157.1
K157.2
K158.1
K159.1
K168.1
K168.2
K169.1
K171.3
K172.1
K172.4
K387.1
K428.1
K428.2
K465.4

wrong predictions

K080.1
K080.2
K156.1
K156.2
K159.2
K171.4
K172.2
K173.1
K421.1
K465.1
K499.3
K589.1
K590.1

Figure 7. MC in the reference annotation (red marks on
bold segments, representing ±4 beats) and predicted by
the model (blue marks).

Figure 8. Probability curves for each beat to be an MC
along four pieces of the corpus, two with correct MC pre-
dictions (top) and two with wrong MC predictions (bot-
tom). Below each curve is the structure of the exposition
in the reference annotation (P/TR/MC/S/C), and the red
dashed lines emphasize the position of the MCs.

for the MC are, as expected, f-hammer-blow, and f-range-
pitch, emphasizing the octave leap down often found on
hammer blows.

4.4 MC prediction

In order to predict the position of the MC in an unseen
piece, the sequence of vectors representing its beats are

presented to the network. The position of the MC is iden-
tified at the offset where the network gives the maximum
probability. We consider that a prediction is correct when
the predicted MC is less than 4 beats before or after the an-
notated MC which seems reasonable given the progressive
aspect of the MC phenomena.

Figure 7 displays the location at which the MC is iden-
tified as the MC original annotations for each piece of the
corpus. The network correctly locates the MC of 14 of the
27 pieces of the corpus. This is a improvement from our
previous work [1] where the model found only 8 MCs out
of the same 27 pieces. Due to the small size of the corpus,
we did not find any significant correlation between the ac-
curacy of the prediction and the piece mode, tempo, or MC
type. For example, MCs are correctly estimated in 11 out
of 21 pieces in major mode and in 3 out of 6 pieces in mi-
nor mode.

Figure 8 displays the estimation of the probability of
having a MC at each beat of four pieces of the corpus.
These probabilities are computed by different models that
have been trained on the whole corpus, except on the piece
on which the prediction is performed. The model works
well on some pieces. In K157.1, the highest peak predicts
well the MC. The second highest peak, on beat 76, is also
noteworthy as it is an HC ending the P section. Other peaks
are not well explained. In K168.1, there is a unique peak
at the correct position of the MC. The model fails to pre-
dict the MC in other pieces. In K421.1 (see also Figure 3),
a MC is wrongly predicted with high confidence about 40
beats too early, at measure 14. This false prediction is ac-
tually a denied MC. In K589.1, there are more candidates
for the MC location, but with low estimated probabilities,
under 0.2. Another peak triggers the detection around beat
60, where there are two beats with only rests.

5. CONCLUSION AND PERSPECTIVES

We proposed theory driven features modeling structural
breaks such as the Medial Caesura. Trained with only these
features and without any other note information, the model
succeeds in identifying about half of the MCs of the cor-
pus. This is notable given the diversity of the realisations
of MCs in such a small corpus. The success of the predic-
tions does not seem to be correlated with the tempo, mode
or the MC type.

The model might probably be improved both by en-
larging the corpus and by taking into account additional
elements that can not be retrieved from the files used in
these experiments, such as dynamics. Features were se-
lected based on music theory. It could be worth learning
also more lower-level elements used in their computations,
such as note pitches and durations. Furthermore, the per-
formance of the model might be improved by consider-
ing additional musical features that have been proposed for
other MIR tasks such as cadence detection or sonata form
retrieval.
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ABSTRACT

In music and audio production, attenuation of spectral res-
onances is an important step towards a technically correct
result. In this paper we present a two-component system
to automate the task of resonance equalization. The first
component is a dynamic equalizer that automatically de-
tects resonances, to be attenuated by a user-specified fac-
tor. The second component is a deep neural network that
predicts the optimal attenuation factor based on the win-
dowed audio. The network is trained and validated on em-
pirical data gathered from a listening experiment. We test
two distinct network architectures for the predictive model
and find that an agnostic network architecture operating
directly on the audio signal is on a par with a network
architecture that relies on hand-designed features. Both
architectures significantly improve a baseline approach to
predicting human-preferred resonance attenuation factors.

1. INTRODUCTION AND RELATED WORK

Equalization is part of the audio mixing and mastering
process. It is a redistribution of the energy of the signal
in different frequency bands. The process has been tra-
ditionally performed by skilled sound engineers or mu-
sicians who determine the proper equalization given the
characteristics of the input audio. Recently methods have
been developed for semi-automatic and automatic equal-
ization. These methods include automatic detection of fre-
quency resonances [1], equalization derived from expert
practices [7], and conformation to a target spectrum [15].
Equalization profiles may also be derived from semantic
descriptors [5]. Appropriate equalization settings can be
found through different means, for example by compar-
ing the input source to previously equalized content [20],
or by formulating equalization as an optimization problem
where inter-track masking is used as the cost function [10].
Some automated equalization functionalities are featured
in commercial products 1 2 .

1 www.izotope.com/en/products/mix/neutron
2 www.soundtheory.com/home

c© Maarten Grachten, Emmanuel Deruty, Alexandre Tan-
guy. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Maarten Grachten, Emmanuel
Deruty, Alexandre Tanguy. “Auto-adaptive Resonance Equalization us-
ing Dilated Residual Networks”, 20th International Society for Music In-
formation Retrieval Conference, Delft, The Netherlands, 2019.

The use of machine learning, in particular neural net-
works, to solve audio production related tasks is recent.
Automatic mixing tasks that have been addressed in this
way include automatic reverbation [6], dynamic range
compression [18], and demixing/remixing of tracks [17].
To our knowledge, there is no documented example of the
use of neural networks for automatic equalization.

A specific form of equalization used both in mixing and
mastering is the attenuation of resonating or salient fre-
quencies, i.e. frequencies that are substantially louder than
their neighbors [2]. Salient frequencies may originate from
different phenomena, such as the acoustic resonances of a
physical instrument or an acoustic space. They are consid-
ered a deficiency in the sense that they may mask the con-
tent of other frequency regions. One particular difficulty
in resonance attenuation (RA) is finding the right amount
of attenuation. For example, too much attenuation may un-
mask noise that would otherwise remain unheard, or flatten
the spectrum to the point of garbling the original audio.

The subject of this paper is the automation of the RA
process using machine learning. We limit our study to
neural networks as the state of the art machine learning
technique. Our method fully automates the RA process. It
includes 1) a 0.5s windowed RA process that can be con-
trolled with a single parameter—the resonance attenuation
factor (RAF), 2) a deep neural network that predicts the at-
tenuation factor from the input audio, making the process
auto-adaptive [21].

For the training and validation we conduct a listen-
ing experiment determining optimal RAFs for a set of
tracks, as chosen by sound engineers. We compare a neu-
ral network architecture that operates directly on the au-
dio signal to a more traditional approach that includes a
feature-extraction stage yielding a set of features com-
monly used in MIR. Results show that both approaches
perform equally well, and significantly outperform a base-
line.

The paper is organized as follows. Section 2 describes
the RA process. The listening experiment is described in
Section 3. The design, training, and evaluation of the pre-
dictive models is presented in Section 4, and conclusions
are presented in Section 5.

2. RESONANCE EQUALIZATION

Traditionally RA has been a manual task where a sound
engineer determines the resonating frequencies by ear or
using a graphical tool, in order to reduce the energy of the
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Figure 1. Resonance equalization block diagram; White
and gray blocks represent data and processes respectively;
The green block depicts the single user-controlled param-
eter; The symbols �, ∗ and − represent elementwise vec-
tor/vector multiplication, elementwise scalar/vector multi-
plication, and unary negation respectively.

signal in those frequencies by an appropriate amount [16].
In this section, we describe a procedure that identifies res-
onating frequencies autonomously, and reduces the energy
in those frequencies by a factor that is controlled by the
user. The procedure works on overlapping audio windows
that must be large enough to allow for spectral analysis at
a high frequency resolution.

Figure 1 displays a block diagram of the RA process,
where each element is denoted by a letter. We will use
these letters to refer to the corresponding elements in the
diagram. First the audio signal is used to compute a
power spectrum weighted by Equal-Loudness Contours
(ELC) [12] at a fixed monitoring level of 80 phon (Fig-
ure 1, element d) to reflect the perceptual salience of the
signal energy at different frequency bands. The value of
80 phon is chosen in relation to the procedure detailed in
Section 3.3. The ELC-weighted power spectrum (e) con-
sists of 400 log-scaled frequency bands.

Resonances (i) are determined by smoothing ELC-
weighted power spectrum 3 (e) to obtain (g) and comput-
ing the elementwise differences (e) minus (g), setting nega-
tive elements to zero (h). The negative of the resonances is
then scaled by the user defined RAF (l), transformed back
to a linear scale and converted back to the shape of the
original spectrum using interpolation (h). The result (o) is
a vector of scaling factors (one per DFT bin). Multiplying
the original spectrum (c) with the scaling factors gives the
corrected spectrum (q) which—by the inverse DFT (r)—
yields the corrected audio signal (s).

3. LISTENING EXPERIMENT

A listening experiment was carried out to obtain ground
truth in terms of optimal RAFs for a set of audio tracks. In

3 using zero-phase low-pass filtering over the spectral bins

the experimental design of the listening test it proved un-
practical to ask subjects to set a varying RAF. Therefore we
chose relatively homogeneous music fragments (excluding
transitions between different sections of songs) and asked
subjects for a single attenuation factor for the whole frag-
ment, ensuring relatively homogeneous sound fragments.

3.1 Participants

A group of 15 subjects was recruited for the experiment,
around Paris (France). All subjects are recognized pro-
fessionals in the industry. Nine subjects specialize in stu-
dio recording (Classic/Jazz/Pop/Rock/Movie Music, audio
post-production), three are experts in live music, and three
are composer/music producers. The average age was 32
(min: 24, max: 42). The subjects were recruited and paid
as if they were working on a commercial project.

3.2 Data

A set of 150 audio tracks was used for the listening exper-
iment. The tracks are excerpts from longer pieces, with a
mean duration of 46 seconds and a standard deviation of
16 seconds. All tracks were processed using Nugen AMB
R128 4 so that they were aligned to the same median loud-
ness. The set comprised contemporary pop and rock mu-
sic, as well as film scores. Of this set, 131 tracks were
unique recordings, while the remaining 19 tracks were
variants of some of the unique 131 recordings, with dif-
ferences in mixing. None of the tracks were previously
mastered.

3.3 Procedure

The listening experiment took place in a recording studio,
where participants listened to the audio tracks individually,
using studio monitors, at a measured loudness of 80 dBC–
a typical listening loudness during audio production. The
participants were presented with a web interface in which
they could listen to each track with different degrees of
RA, ranging from 0 (no attenuation) to 1 in 17 steps. They
could select their preferred degree of RA, or alternatively
decline to select any version, indicating that none of the
versions sounded acceptable. The tracks were separated
from each other by 10 seconds of pink noise surrounded
by a short silence to give the participants a fixed reference.
Sessions of 50 tracks were alternated with breaks.

3.4 Results and discussion

Basic statistics of the results per subject are given in Ta-
ble 1. Subject 13 stands out because of the number of
missing ratings (21 versus a median of 1 over all subjects).
Subjects 1 and 15 have abnormally high rates of 0.0 rat-
ings (72 and 58 respectively, versus a median of 16 over all
subjects). Finally, Subject 7 stands out in terms of median
rating (0.469 versus a median of 0.188 over all subjects).

To see how strongly the ratings are linearly related
among subjects, we compute the Pearson correlation for

4 nugenaudio.com/amb
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Subject # No rating # 0.0 Min Median Max

s01 1 72 0.0 0.062 0.750
s02 0 2 0.0 0.188 0.812
s03 2 25 0.0 0.125 0.812
s04 2 7 0.0 0.250 1.000
s05 4 25 0.0 0.156 0.750
s06 0 22 0.0 0.125 0.875
s07 0 2 0.0 0.469 0.875
s08 8 9 0.0 0.312 1.000
s09 0 9 0.0 0.250 0.750
s10 1 17 0.0 0.188 0.812
s11 1 16 0.0 0.250 1.000
s12 2 25 0.0 0.188 1.000
s13 21 13 0.0 0.312 1.000
s14 0 3 0.0 0.250 0.875
s15 0 58 0.0 0.188 1.000

Table 1. Rating statistics per subject. Outlying values are
highlighted in bold (see text).
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Figure 2. Subject rating correlation coefficients.

each pair of subjects (Figure 2). Apart from Subjects 13
and 15 (and to a lesser degree Subject 1) who appear to
have different rating patterns from the majority of the sub-
jects, the figure shows weak to moderate positive correla-
tions between all subjects. This suggests that in spite of
different preferred rating ranges, subjects made their judg-
ments according to common criteria.

4. PREDICTING OPTIMAL ATTENUATION

In this section we describe the design and experimental
validation of two modeling approaches to predict optimal
attenuation factors from audio. The models are ultimately
intended to be used in a real-time plugin for audio worksta-
tions. Although the real-time implementation is beyond the
scope of this paper, it does guide some important design
decisions for the modeling. Most importantly it implies a
causal design in which the track cannot be analyzed as a
whole in order to estimate the optimal attenuation factor.
On the other hand, the audio latency upper-bound for real-
time operation (maximum observed audio latency in real-

time commercial plug-ins is 4096 samples) is too low for
accurate prediction of the attenuation factor. This implies
that the attenuation factor that will be applied at time t will
be estimated from a windowed part of the signal (immedi-
ately) before t. Whether the predicted attenuation factor is
still approximately valid for the signal at time t depends on
the length of the window in relation to how quickly the res-
onance characteristics of the signal can change. Our aim is
to target long range phenomena—3 seconds or longer, the
time scale used for short-term loudness in EBU R128 [9].
From this perspective we consider a window size of 0.5s a
good trade-off, offering sufficient data for an informed pre-
diction and at the same time being short enough to adapt to
changes in resonance characteristics at the 3s time-scale.

We describe and test two alternative neural network ap-
proaches to the problem of predicting optimal attenuation
factors. The first is a more traditional approach in which a
feature set is computed from an audio window, from which
the attenuation factor is predicted. The second approach
skips the intermediate feature representation. Instead, it
takes the stereo PCM signal directly as input to a neural
network that predicts the attenuation factor.

4.1 Feature-based prediction (FFN)

Performing regression or classification tasks on audio us-
ing feature descriptions of the audio has been the predomi-
nant approach for the past decades, and is based on the in-
tuition that the prediction is determined by characteristics
of the signal that can be defined explicitly and computed
from the audio. These descriptors often capture spectral
characteristics of the signal, but may also approximate per-
ceptual characteristics, such as loudness. Many audio de-
scriptors that have been proposed in the literature over time
are implemented in a software library called Essentia [4].
The descriptors used in this study are listed in Table 2.
All descriptors are available in the Essentia library, except
harmonics-to-noise ratio [3] and stereo width (two descrip-
tors, computed as the correlation between channels and ab-
solute difference in RMS between channels, respectively),
for which we used our own implementation.

The features are computed on shorter timescales (typi-
cally 1024 samples) than the 0.5s audio window for which
our prediction will be made. Thus the feature computa-
tion stage returns a vector of values for each feature. We
summarize each of these vectors by 7 statistics: the mean,
median, standard deviation, skew, kurtosis, the 10th per-
centile, and the 90th percentile. This yields a total of 679
values per data instance, based on which a prediction must
be made.

The network consists in a stack of linear layers (also
called dense, or fully connected), each of which is followed
by a batch normalization (BN) layer and a layer of recti-
fied linear units (ReLU). The BN layer transforms the dis-
tribution of the output activations of the preceding linear
layer to zero mean and unit variance by keeping track of
mean and variance during the training of the model. The
ReLU layer performs a non-linear transformation by set-
ting negative output activations of the preceding layer to
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MFCC (13 values)
GFCC (13 values)

inharmonicity
pitch

pitch salience
spectral complexity

spectral crest
spectral decrease
spectral energy

spectral flux
spectral rms

spectral rolloff
spectral strong peak

zero-crossing rate
spectral flatness dB

high frequency coefficient
barkbands (30 values)

pitch instantaneous confidence
silence rate (at 20/30/60dB)

odd-to-even harmonic energy ratio
spectral energy band (4 values)

tristimulus (3 values)
spectral contrast (6 values)
spectral valley (6 values)
stereo width (2 values)

harmonics-to-noise ratio

Table 2. List of audio descriptors used in the FFN.

zero. The number of linear layers and their sizes are not
fixed in advance but determined using a hyper-parameter
optimization scheme (Section 4.3). A final linear layer is
added after the last ReLU layer. This layer has a single
output—the predicted RAF.

4.2 Signal-based prediction (DRN)

In this section we describe a convolutional neural network
that takes slices of a stereo PCM signal of the audio as in-
put and provides an estimate of the optimal attenuation fac-
tor. Note that even for a window of moderate size and sam-
ple rate this quickly leads to tens of thousands of samples
to be taken as model inputs. As opposed to a feature vec-
tor however, the inputs are ordered along a meaningful di-
mension (time), in which patterns can be identified, and are
thus amenable to convolution. This approach, which was
pioneered in [14], exploits the fact that such data display
local patterns that may occur at different locations in the
data. The strength of convolutional networks is that they
learn to recognize patterns independently of their absolute
location, and at the same time the convolution operation
is much more space efficient than the “fully-connected”
matrix dot product using in feed-forward neural networks,
allowing for larger models. By stacking convolutional lay-
ers on top of each other it is possible to detect patterns of
increasing size, and by interleaving the convolution opera-
tion with so-called pooling or sub-sampling operations, the
patterns become somewhat invariant to local deformations.

However promising, the potential of traditional convo-
lutional networks has been limited by a number of factors.
Two limitations have been addressed by recent extensions
of the traditional convolutional network approach, namely
dilated convolution, and residual networks. We integrate
both extensions in our convolutional network for predict-
ing RA, and discuss each of them briefly before we de-
scribe the global architecture of the model.

4.2.1 Dilated convolution

An approach often used with traditional convolution in or-
der to create high-level feature representations of data is
pooling using max or average aggregation functions. For
instance, max-pooling sub-samples the input by selecting
maximal elements in a sliding window, typically using a

sliding step (stride) equal to the size of the pooling win-
dow. Stacking convolution/pooling operations leads to fea-
tures with increasing receptive fields, meaning that the fea-
tures can describe patterns of increasing size. However, it
comes at the cost of resolution loss: The relative position
of features becomes less precise as their size increases.

On the contrary, dilated convolution achieves high-level
features without loss of resolution. Rather than increasing
stride, it increases the receptive field of the features by “di-
lating” the convolution kernels. A normal convolution of
the kernel k with the signal s involves multiplying kernel
elements with contiguous signal samples (τ is a discrete
variable that increases in steps of 1):

(k ∗ s)(t) =
∞∑

τ=−∞
k(τ) s(t− τ) (1)

In convolution with dilation factor d ∈ Z+ on the other
hand the kernel elements are multiplied with signal sam-
ples that are equally spaced at d samples:

(k ∗d s)(t) =
∞∑

τ=−∞
k(τ) s(t− dτ) (2)

By stacking convolutional layers with increasing dila-
tion factors the higher level filter kernels aggregate infor-
mation over input ranges of exponentially increasing size,
even if the size the kernels (in terms of parameters) does
not increase, and the resolution remains intact. This ap-
proach has proven successful in image processing tasks
such as semantic segmentation [23].

4.2.2 Residual blocks

Another issue with convolutional networks is that as they
grow deeper in order to capture higher level patterns, it be-
comes harder to optimize the lower level convolutional lay-
ers. This is directly related to the fact that for low level fea-
ture activations to influence the output of the model, they
must pass through multiple layers of convolutions. Some-
times however, it is desirable for low level features to be
able to directly influence the output of the model, not just
to figure as a building block for higher level features.

This observation has led to the proposal of the residual
block as a sub-structure used in deep networks [11, 24], an
adaptation of which is depicted in Figure 3. In this struc-
ture the information flows from input to output through two
pathways in parallel. The left pathway involves a typical
convolution layer with configurable parameters: the ker-
nel size k, number of kernels n, and dilation factor d. The
right pathway convolution uses kernels of size 1 (the dila-
tion factor is thus irrelevant), and thus does not compute
any features from the input. Instead, it outputs n linear
combinations of the input to ensure shape compatibility for
elementwise addition to the n feature maps of the left path-
way. The pathways further include batch normalization
operations. After the elementwise sum of the pathways
a rectified linear unit allows for a non-linear response.

The term “residual” refers to the fact that the left path-
way only needs to account for variance in the output that
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Figure 3. Building blocks for the FFN and DRN models.
Left: Standard block (See Section 4.1); Right: Residual
block (See Section 4.2.2).
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Resonance Attenuation
Factor

Dilated Residual Network

Figure 4. FFN and DRN architectures.

cannot be modeled as linear combinations of the input—
the right pathway. Thus, increasing the number of layers
does not hamper the ability of the network to account for
its output in terms of lower level features.

4.2.3 DRN architecture

Figure 4 shows the complete model consisting of multi-
ple residual blocks. Note that the residual blocks main-
tain the original temporal dimension of the data, which
amounts to a size of 11025 for 0.5s of audio sampled at
22050Hz. The temporal pooling operation reduces this
number by down-sampling the output using window-wise
averaging, and is followed by two dense layers with inter-
mediate batch-normalization and non-linearity in order to
produce an estimated RAF.

4.3 Experiments

In this section we describe the training and evaluation pro-
cedure of both model architectures described above. We

use the human ratings of the 150 tracks gathered in the lis-
tening experiment to train and evaluate both architectures.

4.3.1 Procedure

Evaluation Criterion Predicting optimal RAFs for
given tracks is a regression problem, suggesting the mean
squared error of the predictions with respect to the optimal
value (the target) as an objective to be minimized. How-
ever, given the variance in the ratings across subjects in the
ground truth, it may be hard to determine a unique optimal
value per track. Using the mean or median of the ratings
per track as a target has the drawback that the mean squared
error objective does not differentiate between tracks with
different degrees of rater consensus. Ideally, we wish to
impose a lower penalty on errors from the mean rating
when the rater consensus is low. We do so by generaliz-
ing the mean squared error objective as follows. Rather
than defining the objective function to be minimal only for
a single value, we define it to be minimal whenever the
prediction lies within a specified interval that varies from
one data instance to another. For a given data instance con-
sisting of an audio track A ∈ A and a set of ratings F we
define the zero penalty interval as [ Pl(F), Ph(F) ], where
Pl(F) and Ph(F) denote the l-th and h-th percentiles of
the ratings F, respectively, with l ≤ h. We refer to this
objective (which is novel to the best of our knowledge)
as the mean squared bounds error with bounds l , h , or
MSBE (l, h). We use l = 35 and h = 65 throughout the
experiments.

Formally, given a dataset D consisting of pairs (A,F),
the MSBE (l, h) of a model f : A→ R is defined as:

MSBE (l, h)(f,D) =
1

|D|
∑

(A, F) ∈ D

L
(l, h)
A,F (f), (3)

where

L
(l, h)
A,F (f) =

(
[ f(A)− Ph(F) ]

+
+

[ f(A)− Pl(F) ]
−
)2
. (4)

The brackets [ · ]+ and [ · ]− denote the positive and
negative parts respectively.

Hyper-parameter optimization We use Bayesian opti-
mization to find the optimal hyper-parameters for each of
the models, most importantly the depth of the networks and
the hidden layer sizes. This is a heuristic to speed up the
search for appropriate hyper-parameter values compared to
an exhaustive grid search. The particular form of optimiza-
tion we use is based on a gaussian process approximation
of the loss as a function of the hyper-parameters. This ap-
proximation gives rise to the upper confidence bound [13],
which estimates the expected loss for hyper-parameter set-
tings that have not yet been tested, and is used as a guide
to search the space of hyper-parameters [22].

Apart from the depth of the models and the hidden
layer sizes, the optimization involved hyper-parameters to
control the training procedure: the learning rate, and the
thresholds for early stopping, and learning rate reduction.
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FFN DRN

Depth 3 Std. Blocks 10 Res. Blocks
Blk. Size (Low/Mid/High) 500 / 250 / 250 100 / 100 / 300
Temporal Pooling – 300
Final Std. Block Size – 10

Table 3. Optimal configuration for the FFN and the DRN
architectures as found by hyper-parameter optimization.

95% CI

Model Mean Std. dev. Low High

Baseline 0.237 0.103 0.194 0.280
FFN 0.159 0.082 0.124 0.194
DRN 0.154 0.080 0.121 0.188

Table 4. Means, standard deviations, and the 95% confi-
dence interval (CI) for the mean MSBE (35 , 65) per model.

Cross-validation To perform the hyper-parameter opti-
mization we use two partitions of the dataset into a test
set (10 tracks), a validation set (10 tracks), and a train set
(130 tracks). For each of the test tracks we compute the
MSBE (35 , 65) loss on 100 randomly selected 0.5s frames.
The criterion used to optimize the hyper-parameters is the
average frame-wise loss across both test sets.

With the best hyper-parameters found for the FFN and
DRN architectures, respectively, we perform a further five
fold cross-validation. To this end, we use the same dataset,
but exclude the 20 test tracks used for hyper-parameter op-
timization. We repeat the five fold cross validation five
times using different random seeds to reduce the effect of
partitioning of the data into folds and model parameter ini-
tializations on the result.

Baseline We define a baseline approach as a reference
for evaluating the FFN and DRN architectures. It consists
in computing the mean RAF over all tracks in the training
set, and using this value as a prediction for the test set,
irrespective of the input audio.

4.3.2 Results and discussion

The optimal configuration for FFN and DRN architectures,
as found by hyper-parameter optimization, are shown in
Table 3. Figure 5 shows the results of these architectures
on repeated five fold cross validations. A one-way repeated
measures ANOVA reveals a significant effect of model on
MSBE (35 , 65) (F2, 72 = 6.55, p = 0.002). A post-hoc
Tukey HSD test at α = 0.05 indicates that DRN and FFN
differ significantly from the baseline. The effect size of
DRN over baseline corresponds to Cohen’s d = 0.88,
whereas the FFN over baseline effect size is d = 0.82.
The difference between DRN and FFN is not significant.

Table 3 shows that the FFN architecture works best
when it is comparatively shallow (three standard blocks,
the minimal depth tested), whereas the DRN architecture
performs better when it is deep (10 residual blocks, the
maximal depth tested). This trend is consistent in a review
of the 10 best FFN and DRN architectures as found in the
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Figure 5. Boxplot of MSBE (35 , 65) cross-validation re-
sults for baseline, FFN, and DRN models; Horizontal lines
in the boxes denote the median, triangles the mean values.

hyper-parameter optimization, omitted here for the sake of
brevity. The layer sizes however do not show a similarly
consistent trend, and vary considerably throughout the 10
best FFN and DRN architectures.

The fact that both approaches show similar prediction
accuracies is in line with a general trend in the deep learn-
ing literature that computational tasks can be solved with-
out the need for hand-designed features.

At the same time, the roughly equivalent performance
of the FFN and DRN measured here is at odds with a mul-
titude of cases where end-to-end deep networks clearly
outperform prior state-of-the-art methods that rely on a
hand-designed feature extraction stage, especially in im-
age processing [25]. For audio tasks such as automatic
tagging however, this does not seem to be the case how-
ever [8]—where end-to-end approaches require large train-
ing data sets in order to outperform spectrogram-based
approaches [19]. Given the small data set used here—
especially in combination with inter-subject variance and
the non-uniform distribution of the ratings—this may ex-
plain why the DRN does not outperform the FFN.

5. CONCLUSION
We have proposed a method to attenuate automatically
identified resonances by a user-controlled factor, and gath-
ered ground-truth data for the optimal attenuation factor
from sound engineers. The data—revealing general con-
sensus in ratings among subjects—were used to train and
evaluate two types of neural networks to estimate optimal
resonance attenuation factors. The results show a domain-
agnostic dilated residual network operating directly on the
audio signal performs on a par with a neural network op-
erating on a set of commonly used audio features. Al-
though this does not discredit the feature-based approach
to the resonance attenation problem per se, it does show
that further improvements—if possible—will require spe-
cially crafted features based on expert domain knowledge.

The proposed system is a fully auto-adaptive resonance
equalization system in which the attenuation factor is cho-
sen automatically by a deep neural network. To our knowl-
edge, this system is the first documented self-adaptive
equalizer based on neural networks. Future work includes
a real-time implementation of the presented model as a
real-time plugin that can be used in audio work stations.
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ABSTRACT 

There has been little research considering eye movement 
as a measure when assessing user interactions with music 
information retrieval (MIR) systems, whereas many stud-
ies have adopted conventional user-centered measures 
such as user effectiveness and user perception. To bridge 
this research gap, this study investigates users' eye move-
ment patterns and measures with two music retrieval tasks 
and two interface presentation modes. A user experiment 
was conducted with 16 participants whose eye movement 
and mouse click behaviors were recorded through profes-
sional eye trackers. Through analyzing visual patterns of 
eye gazes and movements as well as various metrics in 
prominent Areas of Interest (AOI), it is found that users’ 
eye movement behaviors were related to task type. Be-
sides, the results also disclosed that some eye movement 
metrics were related to both user effectiveness and user 
perception, and influenced by user characteristics. It is also 
found that some eye movement and user effectiveness met-
rics can be used to predict user perception. This study al-
lows researchers to gain a deeper insight into user interac-
tions with MIR systems from the perspective of eye move-
ment measure. 

1. INTRODUCTION 

With the rapid development of Music Information Re-
trieval (MIR) as a field, user has been increasingly recog-
nized as playing an essential or central role in the process 
of music retrieval [14][25]. Users’ interactions with MIR 
systems have been drawing researchers’ attention for the 
purposes of evaluating MIR techniques [13] and interfaces 
[5] from users’ perspectives, as well as improving under-
standing of users [19].   

Various approaches have been utilized to collect data of 
user interactions with MIR systems including listening his-
tories [26], click streams in system logs [11], user surveys 
or diaries [32], etc. A series of user-centered metrics have 
then been proposed and used to measure users’ interactions 
including those in user effectiveness (e.g., number of songs 
listened to) [11] and user perceptions (e.g., emotion, 

satisfaction) [32]. To facilitate this process, various track-
ing techniques have been employed through off-the-shelf 
software tools and/or self-development apps [11][32].  

As an alternative approach to measuring users’ interac-
tions with various stimuli (e.g., computer systems, web in-
terface, learning materials), eye movement has been used 
to explore the relationship between human’s cognitive pro-
cess and their behaviors [3]. It is believed that people’s 
cognition can be reflected by their eye movement patterns 
[27][30]. Nowadays, fast-developing high-tech devices 
enable researchers to acquire eye tracking data in an accu-
rate and reliable manner, such as eye tracking glasses and 
eye movement sensors. Compared to measures that rely on 
users’ self-report, eye tracking data are objective and thus 
could help avoid possible response bias [4]. With current 
(wearable) technology, the process of collecting eye move-
ment data is becoming less obtrusive. If relevant method-
ologies and techniques are appropriately applied to MIR 
studies, measurements of eye movement could be poten-
tially helpful for analyzing and evaluating user interactions 
with MIR systems. 

This study aims to explore the application of eye move-
ment measure to investigating user interactions with a MIR 
system, through a user experiment involving different MIR 
tasks and interface modes. The relationships between eye 
movement measure and traditional measures such as user 
effectiveness and user perception are analyzed. Possible 
influence of user characteristics (e.g., gender) is also taken 
into account. The findings are expected to provide empiri-
cal evidence on exploiting eye movement data in studying 
user interactions in MIR. 

2. RELATED WORK 

2.1 User Interactions in MIR 

Users’ interactions with MIR systems have been mostly 
studied in the context of user-centered evaluation of MIR. 
Compared with the system-centered evaluation paradigm, 
user-centered evaluation is not as popular, but is increas-
ingly adopted, with the recognition of users being the cen-
ter of MIR [25]. It is advocated that user interactions pro-
vide a more direct way to understand how human perceive 
and use MIR systems, as serving the users is arguably the 
ultimate goal of MIR systems [14]. Another purpose of 
studying user interactions in MIR is for designing interac-
tive systems where users’ behavioral, psychological and 
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physiological measures could serve as input as well as 
feedback to systems [15][11][32].    

To date, a number of user-centered measures and met-
rics have been applied in studying user interactions in 
MIR. Conventional user-centered metrics including those 
of user effectiveness and user perception [16] have been 
adopted in MIR, such as number of songs found, task com-
pletion time and user satisfaction, etc. Besides, enjoyment 
has been recognized as an important aspect of user percep-
tion unique in MIR [18]. Along with the line of research 
considering the casual-leisure nature of music retrieval, 
new metrics were proposed for evaluating MIR, including 
novelty, aesthetics, and content quality [12].  

To collect and analyze the aforementioned measures 
and metrics, a range of methods have been employed. Tra-
ditional methods of user studies such as survey, interview 
and observations are included [18] and further developed 
to work with current technologies such as experience sam-
pling with mobile apps [32]. Interactive behaviors are of-
ten recorded as system logs with the support of software 
tools that can track mouse clicks and keyword input [11]. 
More recently, with the development of wearable technol-
ogy, studies started to collect users’ physiological signals 
while they interact with MIR systems [22]. Nevertheless, 
to date there has been little research investigating user-
MIR interactions with eye movement measure [29] which 
has been recognized as effective in capturing people’s cog-
nitive process and used in a number of domains.  

2.2 Eye Movement Tracking and Cognitive Behaviors   

It is recognized that eye movement can reflect human cog-
nitive behaviors. In recent years, eye movement has been 
used in the domain of text retrieval, particularly on the in-
fluence of search interface design on users’ search behav-
iors [6], as well as the relationships between document rel-
evance and users’ cognitive efforts [8]. Eye movement has 
also been widely employed in studies on people’s reading 
behaviors such as identifying the sections focused on by 
readers during reading process [24]. In the education do-
main, there are many studies benefited from analyzing 
learners’ eye movement such as computer programming 
[23], language learning [1], and music education [20].  

In leveraging eye movement data, an important step is 
to find concrete measurements that can describe eye move-
ment in an accurate and reliable manner. Fixation and sac-
cade are two primary measures of eye movement, which 
are regarded as plausible evidences to detect cognitive pro-
cessing during interactive tasks such as information re-
trieval [4]. Fixation indicates that a person stares at certain 
location and lasts for a period of time, presumably to pro-
cess certain cognitive tasks, while saccade is a dynamic 
visit between two fixations [19]. Furthermore, investiga-
tors have often attempted to categorize eye movement be-
haviors into different patterns so as to interpret possible 
cognitive implications by comparing the patterns 
[4][8][24][30]. Relatedly, visualization of eye movement 

patterns such as heatmaps of eye gazes and plots of eye 
scan paths is also a viable and frequently adopted approach 
to making sense of eye movement data [4]. For instance, 
based on the positions of intensive fixations and the speed 
of saccades, authors of [30] found the correlation between 
eye fixation and participants’ learning performance.  

MIR also involves cognitively intensive activities where 
eye movement has great potential in studying user-system 
interactions. An existing research gap is that very few user 
studies have considered eye movement as a measurement 
of interactions between user and MIR systems, even 
though there are studies exploiting eye movement in music 
psychology [17] and music performance [31]. Therefore, 
this study aims to bridge the gap by providing empirical 
evidence on studying interactive MIR systems from an 
eye-tracking approach. 

3. RESEARCH QUESTIONS 

Aiming to showcase how eye movement measures can be 
used in MIR research, this study considers multiple con-
structs in typical MIR research settings: retrieval tasks, 
system interface modes, user-centered measures as well as 
user characteristics. Specifically, through conducting a 
user experiment involving these factors, this study focuses 
on three research questions as follows:  
Q1. To what extent do different music retrieval tasks and 
system interfaces have effect on users’ eye movement 
measure? 
Q2. To what extent is eye movement measure related to 
user effectiveness and user perception measures? 
Q3. To what extent is eye movement related to user char-
acteristics (e.g., gender, music listening habit)? 

To answer these research questions, a set of hypotheses 
are formulated. There are two hypotheses under Q1: 
H1: eye movement measure differs in different task types. 
H2: eye movement measure differs in different interface 
modes. 

Under Q2, there are three hypotheses as well: 
H3: eye movement measure is related to user effectiveness 
measures. 
H4: eye movement measure is related to user perception 
measures. 
H5: eye movement and user effectiveness measures can 
predict user perception. 

Under Q3, one hypothesis is formulated: 
H6: eye movement measure is related to user characteris-
tics. 

Answers to Q1 will have methodological implications 
on the extent to which eye movement can be used in MIR 
task/system design and evaluation. Answers to Q2 can re-
veal how eye movement measures are related to commonly 
used measures of user behaviors and whether they can be 
complimentary to one another in the context of MIR. In 
particular, the answer to whether or not user perception, as 
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a subjective measure, is predictable by other objective 
measures can have the potential of facilitating MIR re-
searchers and system designers to better understand users’ 
perceptions through objective measures. User characteris-
tics (e.g., background in music training) have been recog-
nized as influential in MIR process[19][25], and Q3 is to 
investigate their relationship with eye movement measure.  

4. METHORDS 

To fulfill the goals of this study, a user experiment was 
conducted with a mood-aware MIR system. During the ex-
periment, users’ eye movement and other user-centered 
measures were collected. This section describes details of 
the system, tasks, experiment procedure and data analysis. 

4.1 The System 

Moodydb is an online MIR system that supports searching 
and browsing music by mood [13]. Based on spectrum fea-
tures extracted from the music audio, this system classifies 
music into five mood categories, namely passionate, 
cheerful, bittersweet, silly/quirky and aggressive [10]. 
There were 750 songs in the system when the study was 
conducted, with 738 Western popular pieces (from the 
U.S. and the U.K.) and 12 Chinese popular songs. The 
pieces were unevenly distributed across the mood catego-
ries with bittersweet being the largest class (226 songs) and 
silly/quirky being the smallest (35 songs). The rest catego-
ries contained 141 – 184 songs. When a user input singer’s 
name or song’s title in query box, it will prompt a set of 
songs that match the textual query. After user chooses one 
of the songs as a seed song, the system will retrieve a group 
of songs with similar mood to the seed song and display 
them as recommended songs to the user.  

The system interface is presented in two different ways; 
one is in a traditional list-based layout and the other is vis-
ualization of album covers based on nested figures as in 
the treemapping display method [28]. As shown in Figure 
1, the List layout ranks the recommended songs from the 
top of the screen down according to how similar the moods 
of the recommended songs are to that of the seed song. The 
Visual layout shown in Figure 2 uses the size of the album 
covers to represent the degree of similarity: the larger size 
an album image is in, the more similar the song is to the 
seed song in term of music mood.  

4.2 Tasks and Topics 

There were two music information retrieval tasks designed 
for this study: searching and browsing. As for searching, 
the participant was given a seed song (e.g., Irreplaceable 
by Beyoncé) to start with, and then make use of the system 
as a search engine to find other songs whose moods are 
similar to that of seed song. As for browsing, the partici-
pant was required to browse music in a given (seed) mood 
(e.g., bittersweet) and find songs in the mood. For each 
task, there were two topics that had different seed songs 
(for the searching task) or different seed moods (for the 

browsing task), making a total of four topics. All partici-
pants conducted both tasks (searching and browsing) with 
both interface modes (List and Visual), making a 2 * 2 ex-
periment design. All participants conducted the same top-
ics (same seed songs /moods) but the task and interface 
mode combinations were ordered in a Graco-Latin square 
arrangement to counterbalance possible sequence effect. 

 
Figure 1. List-based interface mode in the system 

 
Figure 2. Visual-based interface mode in the system 

4.3 Procedure 

The experiment started with a pre-session questionnaire 
about demographic information, music knowledge, and 
general music information behaviors of the participants. 
After that, a research assistant demonstrated how the sys-
tem could be used and the participants used the system for 
several minutes to familiarize with the system. An eye 
tracking sensor, Tobii T60, was used to collect data of par-
ticipants’ eye movements. Calibration was done with the 
eye tracker before a participant started working on each 
topic, with the assistance of a researcher. After completing 
all four topics (which covers both tasks and interface 
modes), participants were inquired about the feelings of 
the experiment through a post questionnaire. The experi-
ment lasted for approximately one hour, and each partici-
pant was paid a nominal remuneration upon completing 
the experiment.   
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4.4 Measures 

The following user-centered measures are used to answer 
the three research questions raised in this study. 

User effectiveness was used to assess user performance 
in the experiment. It included four metrics: (a) Number of 
songs found to fulfill each topic; (b) Number of songs 
played during the process of working on each topic; (c) 
Completion time of each topic (measured in minute); (d) 
Number of mouse clicks during the process of working on 
each topic. The first metric came from answers submitted 
by the participants while others were recorded by Tobii 60. 

User perception was used to understand users’ feelings 
after they completed each topic. It included three metrics: 
(a) Task easiness; (b) Preference on the given seed song; 
(c) Satisfaction with songs found. Measured by a 7-point 
Likert scale, the perception degree ranges from the most 
negative to the most positive. Take task easiness as an ex-
ample: point 1 means the user felt the topic not easy at all, 
while point 7 means he/she felt the topic very easy.  

Eye movement was described statistically with five 
metrics: (a) Fixation Duration; (b) Fixation Count; (c) 
Visit Duration; (d) Total Visits Duration; (e) Visit Count. 
Metrics related to duration such as fixation duration and 
visit duration is measured by second. It is noteworthy that 
fixation and visit are two different concepts; the former in-
dicates that participants’ eyes fixate on one point, while the 
latter measures a process of saccade (i.e. moving the eye 
gaze from one point to another). 

The eye movement metrics are calculated in defined Ar-
eas of Interest (AOI). In this study, the interface of system 
is divided into four AOIs based on their functions in the 
music retrieval process. They are (a) Search Box; (b) Seed 
Song; (c) Recommended Songs; (d) Player, which are 
shown in Figure 3. It is noteworthy that a Visit Duration in 
an AOI is defined as the interval of time between the first 
fixation inside the AOI and the first subsequent fixation 
outside the AOI. Besides, while the Visit Duration 
measures the duration of each individual visit within an 
AOI, Total Visit Duration measures the sum of duration of 
all the visits within an AOI. In addition to the metrics in 
each AOI, we also take the total across all AOIs into ac-
count. Statistics of the eye movement metrics in each AOI 
are generated by the Tobii Studio Analyzer.  

4.5 Data Analysis 

Hypotheses proposed under the research questions are 
tested using corresponding statistical tests. H1 and H2 
compare metrics between two tasks and two interface 
modes respectively, for which pair wised t-tests are ap-
plied. H3 and H4 investigate relationships between met-
rics, and thus correlation analysis is used, including Pear-
son’s correlation (for numerical metrics) and Spearman’s 
correlation (for ordinal metrics). Linear regression is used 
to test H5 which concerns the predictive power of the met-
rics to user perception. Last but not least, H6 is tested 

through point-biserial correlation analysis (for binary met-
rics) and Spearman’s correlation analysis. For cases where 
multiple tests are conducted, Bonferroni corrections are 
conducted to control type I errors [9].  

 
Figure 3. Four AOIs in this study 

Besides, visualization as a data analysis method was 
used in this study as well. There are a number of visuali-
zation types in eye movement analysis, such as gaze plot 
and heat map. In this study, we used heat map to compare 
eye movement in two interface modes. Examples of heat 
map are shown in Figures 4 and 5 where aggregated time 
of fixations on the screen are illustrated by different colors. 
Red represents the most fixations or longest time period, 
while green is the least and shortest. The varying colors 
infer that the levels are in between. 

5. RESULTS AND DISCUSSIONS 

5.1 Participants 

A combination of purposive and convenient sample meth-
ods was recruited in the user experiment, including 16 Jap-
anese undergraduate and graduate students (8 female). 
Their ages ranged from 19 to 50, with a mean of 22.9 and 
a median of 21. The standard deviation of the age was 7.37. 
They were from a range of majors including Science, Med-
icine, Economics, Law and Humanities. A majority of 
them (11) were able to play an instrument while 5 of them 
could not. About half of them (7) searched for music fairly 
frequently, at least several times a week. While the rest of 
them searched music at least one a month. In term of how 
often they listened to music, 6 of them rated weekly, 7 
daily, and 3 multiple times a day.     

5.2 Influences of Task Types or Interface Modes on 
Eye Movement 

This section aims to answer Q1 and test H1and H2. Table 
1 presents means and standard deviation (in parenthesis) 
of eye movement metrics with significant difference in 
corresponding AOIs between the browsing and searching 
tasks, detected by paired t-test after Bonferroni correction 
[7]. As Table 1 shows, during the searching task, partici-
pants had longer fixation duration and more fixation count 
in areas of seed song as well as more visit count in total 
AOIs. Therefore, our hypothesis H1 is partially supported.  
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It is not surprising that there were more eye movement 
in the seed song area during searching task as users needed 
to compare the seed song and retrieval results, while there 
was no need for such comparison during the browsing task. 
The difference on visit count in total AOIs could possibly 
be attributable to the fact that comparing seed songs and 
retrieved songs would need a user to move eye gazes be-
tween the two AOIs which in turn generated more visits. 

 
Measure Browsing Searching p value 
FixDur 

in SeedSong 
16.22 

(10.91) 
27.66 

(15.33) .001* 

FixCnt 
in Seedsong 

69.56 
(39.37) 

109.72 
(59.86) .001* 

VisCnt 
in Total 

114.22 
(48.98) 

152.69 
(69.50) .000* 

Table 1. Eye movement measures with significant differ-
ences between browsing tasks and searching tasks  

The paired t-test on interface mode did not generate sig-
nificant results after Bonferroni correction, and thus H2 is 
not supported. This can be explained by the fact (and lim-
itation) that the difference between the two interface 
modes is actually within an AOI, the recommended song 
AOI (Figure 3). This calls for alternative methods to com-
pare the two interface modes.  

To compare eye movement in a qualitative manner, we 
present the heat maps of the two interface modes in Figures 
4 and 5 respectively. As is shown in Figure 4, fixations 
from the list-based interface mode disperse along with the 
positions of the recommended songs. In contrast, in visual-
based interface mode (Figure 5), fixations of participants 
nearly concentrate on the center of recommended songs 
area. In addition, although, by convention, the List mode 
ranks highly relevant results up in the list, Figures 4 shows 
that participants did not only focus on the top rows. For the 
Visual mode, while more relevant results (with bigger al-
bum images) could appear anywhere in the recommended 
song area, participants’ attention seem to have focused on 
the middle only (Figure 5). These observations are some-
what anti-intuitive and worthy of future investigation. 

 
Figure 4. Eye fixation heat map of the List interface mode  

 
Figure 5. Eye fixation heat map of the Visual interface mode 

5.3 Relationships among Eye Movement, User Effec-
tiveness and User Perception Measures 

This section aims to answer Q2 and tests H3 to H5. To test 
H3, Pearson’s correlation coefficients were calculated for 
user effectiveness metrics on interval scales: number of 
songs found in each topic, number of songs played in each 
topic and completion time of each task. Significant results 
after Bonferroni corrections are shown in Table 2. 

 
Effectiveness Eye Movement Coefficient p value 

Completion 
Time 

TotVisDur  
in RecomSong .416 .001* 

TotVisDur  
in Total .476 .000* 

Table 2. Correlation between eye movement and user ef-
fectiveness (Pearson) 

As we can see in Table 2, completion time has signifi-
cant correlations with total visit duration in recommended 
songs and in total AOIs, and the correlations were moder-
ately positive (coefficient > 0.3). In other words, when us-
ers spent more time moving their eyes within the recom-
mended song areas, the more time they would need to com-
plete the tasks. In contrast, other two effectiveness metrics 
have no significant correlation with eye movement. Thus, 
our Hypothesis H3 is partially supported.  

To test H4, Spearman’s correlation coefficients were 
calculated for user perception metrics on ordinal scales: 
task easiness; satisfaction with songs found; preference on 
seed song. The significant results after Bonferroni correc-
tion are shown in Table 3. 

Perception Eye Movement Coefficient p value 

Satisfaction 
with Songs 

Found 

VisDur in Total .396 .001* 
VisCnt in  
SeedSong -.403 .001* 

Table 3. Correlation between eye movement and user per-
ception (Spearman) 

As is shown in Table 3, satisfaction with songs found 
has significantly moderate correlation with visit duration 
in total AOIs and visit count in seed song (coefficient > 
0.3). Interestingly, the correlations were positive and 
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negative respectively. In other words, the more time users 
spent in moving their eyes around the AOIs, the more sat-
isfied they would be with the songs they found. However, 
the more times their eyes visited the seed song area, the 
less satisfied they would be with the found songs. One pos-
sible explanation of the former relationship could be from 
the perspective of enjoyment [18]: satisfied users presum-
ably enjoyed the task and thus they spent more time look-
ing around on the system interface. For the latter relation-
ship, visiting the seed song area might have been an effort 
one had to pay in order to complete the task (e.g., compar-
ing the seed song to a recommended song), and thus re-
peated visits to this area would entail more efforts and less 
satisfaction. As there is no significant correlation between 
the other two perception metrics (task easiness, preference 
on seed song) and eye movement, our hypotheses H4 is 
partially supported. 

To test hypothesis H5, we ran a linear regression anal-
ysis on predicting user perception from eye movement and 
user effectiveness. To save space, only significant varia-
bles in the prediction models are reported (Table 4). As we 
can see in Table 4, several eye movement metrics have sta-
tistically significance in predicting participants’ satisfac-
tion with songs found (one user perception metric). In ad-
dition, it is noteworthy that the number of songs found, a 
user effectiveness measure, was significant in predicting 
all the three metrics of user perceptions. Thus, our hypoth-
esis H5 is partially supported. This finding that users’ eye 
movement and user effectiveness can contribute to predict-
ing user perception measure has methodological implica-
tions in that eye movement and user effectiveness 
measures can be captured automatically in unobtrusive and 
objective manners. This can potentially provide novel and 
reliable methods for detecting user perceptions which have 
to rely on self-report to collect in traditional methods.  

Perception Metrics Coeffi-
cient Beta t p 

Task Easiness # of songs found .443 2.400 .021* 

Satisfy with 
Songs Found 

VisDur in Player .533 2.308 .026 
VisDur in Total .774 3.012 .004 
VisCnt in Search 

Box -.984 -2.346 .024 

VisCnt in 
RecomSong .718 2.127 .040 

# of songs found .510 3.505 .001 
Like Seed 

Song # of songs found .453 2.572 .014 

*: significant at p < 0.05 level; R2 = .334, .586, .394 for the 
three predictive models respectively  
Table 4. Regression analysis on user perception 
 

5.4 Relationship between Eye Movement Measure and 
User Characteristics 

To answer Q3 and test H6, we calculated point-biserial 
correlation coefficients for user characteristics metrics on 
binary scales: gender (Male=1, Female=2), and being able 

to play music instrument (Y=1, N=2). We also ran Spear-
man’s correlation on two ordinal variables, frequency of 
listening to music and frequency of searching for music. 
Results with significant correlation after Bonferroni cor-
rection are shown in Table 5. 

Characteristics Eye Movement Coefficient p value 

Listening Freq 
VisCnt in Total .436 .001* 
VisCnt in Seed-

Song .485 .001* 

Table 5. Correlation between eye movement and user 
characteristics  

As shown in Table 5, frequency of listening to music 
(one user characteristic) has significant and moderately 
positive correlation with visit count in Total AOIs and that 
in the seed song area. The more often users listened to mu-
sic, the more times their eyes visited the seed song area and 
all AOIs. As visit count of the eyes is related to attention 
[4], This result is possibly related to the enthusiasm that 
these users had in music. Nevertheless, other three user 
characteristics have no significant correlation with eye 
movement. Thus, our hypothesis H6 is partially supported.  

6. CONCLUSION AND FUTURE WORK 

This is an empirical study on using eye tracking method to 
analyze user interactions with MIR systems. We analyzed 
eye movement metrics in four AOIs and most of our hy-
potheses were partially supported by the results. Specifi-
cally, some eye movement metrics differed between dif-
ferent retrieval tasks. Furthermore, some eye movement 
metrics were related to user effective and user perception 
measures. It is potentially useful in research methodology 
that some metrics of eye movement and user effectiveness 
can be used to predict user perception. There was no sig-
nificant difference on eye movement metrics on the differ-
ent interface modes, which calls for alternative analysis 
methods beyond AOI-based ones. Also, through compar-
ing visualized heat maps, we found that fixations of partic-
ipants may not follow patterns found in text retrieval, 
which warrants further investigation.  

This study aims to stimulate and encourage more work 
to utilize eye tracking in MIR research. There is much 
room for future work in investigating eye movement with 
different MIR tasks, use cases and user groups. It could be 
paradigm shifting if more findings in future work support 
deriving users’ subjective perception (i.e. satisfaction, per-
ceived difficulty) from unobtrusive and objective 
measures including eye movement. 
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ABSTRACT

Symbolic melodic similarity is based on measuring a pair-
wise distance between two songs from diverse perspec-
tives. The distance is usually summarized as a single value
for song retrieval. This obscures observing the details of
similarity patterns within the two songs. In this paper,
we propose a cross-scape plot representation to visualize
multi-scaled melody similarity between two symbolic mu-
sic encodings. The cross-scape plot is computed by stack-
ing up a minimum local distance between two segments
from each of the two songs. As the layer goes up, the seg-
ment size increases and it computes incrementally more
long-term distances. This hierarchical representation al-
lows for capturing the location and length of similar seg-
ments between two songs in a visually intuitive manner.
We show the effectiveness of the cross-scape plot by eval-
uating it on examples from folk music collections with
similarity-based categories and plagiarism cases.

1. INTRODUCTION

Melodic similarity is a key concept in the field of ethnomu-
sicology, music analysis, musicology, music psychology,
copyright issues in music, and music information retrieval
[13]. From music analysis to content-based retrieval, a
great deal of effort and attention have been paid to quanti-
tative measurement of melodic similarity using knowledge
from various domains [5, 12, 13, 18–20, 22, 25]. The ap-
plications of melodic similarity include song retrieval and
classification, music indexing, and music alignment sys-
tems [3].

When evaluating the similarity of two songs, it is essen-
tial to extract information about what parts and how long
they are similar to each other. For example, considering a
plagiarism case, a short three-second segment can be re-
garded as qualitatively significant if it can be easily rec-
ognized as a chorus or hook of a popular song [10]. If the
similar parts of these two songs are meaningfully similar or
substantially similar [9], even if the other parts of the two

c© . Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: . “A Cross-Scape Plot
Representation for Visualizing Symbolic Melodic Similarity”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

songs are different, people may effectively recognize it as
a plagiarized song [10]. However, existing similarity mea-
sures often summarize the distance as a single value for
song retrieval. This obscures the details of similar pattern
within the two songs. This way, even if the two songs has
almost identical parts locally, the overall similarity may be
diluted by the calculation for the entire song.

In this paper, we tackle this issue by proposing a
cross-scape plot representation that visualizes multi-scaled
melody similarity between two symbolic music. The cross-
scape plot is computed by stacking up a minimum lo-
cal distance between two segments from each of the two
songs. We segment songs from small to large units, and the
local similarity is performed by a sequence-based similar-
ity algorithm for all possible segments of the two songs. As
the layer goes up, the segment size increases and it com-
putes progressively more long-term distances. This results
in a hierarchical visual representation with a triangular or
trapezoidal shape.

The cross-scape plot provides rich information in an in-
tuitive way, which a single value derived from most simi-
larity measures cannot provide. Even with a simple glance,
we can observe various characteristics of similarity, such as
the location and length of similar parts by the pattern shape
in the plot, and the overall similarity by the color. Even
when the melody has the same similarity value in a sin-
gle measurement, the visual representation can be very dif-
ferent. We show this aspect with examples from classified
folk songs Meertens Tune Collections (MTC-ANN) [21]
and music plagiarism cases. We also validate the multi-
scaled melodic similarity by summarizing it into a similar-
ity value and conduct a melody classification experiment
on MTC-ANN.

2. MULTI-SCALE SIMILARITY ANALYSIS

This section describes three steps of multi-scaled similarity
analysis to obtain the cross-scape plot.

2.1 Feature Extraction

Many choices of features have been extracted for melodic
similarity analysis including pitch, pitch interval, duration,
onset, duration weighted pitch sequence or metric weights
[7]. In this study, we use pitch interval as a pitch feature
and inter-onset interval ratio as a rhythmic feature. Pitch
interval is computed by the pitch difference between two
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Figure 1: An example of pitch interval and inter-onset in-
terval ratio of the rhythm extracted from melody.

successive notes. This is invariant to key of the songs. The
pitch interval is limited to the range within 2 octaves in our
setting. Inter-onset interval (IOI) ratio is computed from
the relative IOI of three successive notes. This is invari-
ant to tempo of the songs. The IOI is quantized to the unit
of 0.5 and limited not to exceed 4 in our setting. Figure 1
shows that a melody is converted to a sequence of the pitch
and rhythm features. We analyze similarity for both feature
sequences independently.

2.2 Multi-segmentation

Multi-segmentation is the process of dividing the melody
sequence into smaller sub-sequences of all sizes. This idea
was inspired by Sapp’s work [15, 16]. Sapp proposed a
plotting method called scape plot that can display the re-
sults of an analysis of segments of varying lengths as a sin-
gle image. The scape plot is a simple but effective method
to understand similarity patterns that occur on every pos-
sible timescale. The scape plot was named in landscape
because it shows small-scale features similar to the fore-
ground of the picture, as well as large-scale features sim-
ilar to the background. The original scape plot method
was designed for structural analysis of harmony in musi-
cal scores [15] and has been applied in a variety of ways in
different contexts, for example, tonality analysis [14, 27],
musical performance analysis [17, 24] and audio thumb-
nailing [8].

Following the approach, we segment the sequence into
multi-scale units from the smallest to the entire sequence.
Figure 2 is an example of dividing the features sequences
into the different sizes. The sequence ABCDE is divided
into 15 sub-sequences by sequentially grouping them into
units of the smallest unit (that correspond to segment size
of 1) to the maximum of 5, which is the length of the en-
tire sequence (that correspond to segment size of 5). For-
mally speaking, given the sequence of melody features,
S = (x1, x2, ..., x|S|) where |S| is the length of S, let snk
denote the kth sub-sequence with the length n of S so that
snk = (xk, xk+1, ..., xk+n−1), 1 <= k <= |S| − n + 1.
These sub sequences sn are used to obtain the local dis-
tance between two songs. The following section describes
how to calculate the local similarity using these multiple
sub-sequences of melody.

Figure 2: Example of multiple segments of melody. The
sequence ABCDE is divided into 15 sub-sequences.

2.3 Similarity Calculation

We use the multi-segmentation to compute multi-scale
similarity between two songs. We first define the distance
measure between two segments.

2.3.1 Distance Measure

In order to obtain the local distance of each segment, we
adopt edit distance [11], the most commonly used string
matching similarity calculation method in music research
[5]. The edit distance, also known as the Levenshtein dis-
tance, is a metric that computes the minimum number of
operations needed to transform one sequence into the other.

The operations between sequences include deletion,
insertion, and substitution of symbols. To find out
the minimum path to obtain edit distance, we use dy-
namic programming algorithm known as Wagner––Fischer
algorithm. For the compared melodic sequence Sa =
(a1, a2, ...an), and the Sb = (b1, b2, ...bm), where ai and
bj are features of the melody. 1 We set 1 to the cost of
deletion, insertion and 2 to the cost of substitution.
Let d(i, j) denote the edit distance of sub-sequence
(a1, a2, ...ai), (b1, b2, ...bj). The calculation of edit dis-
tance D(Sa, Sb) = d(n,m) is defined using a recursive
algorithm as below [6]:

d(i, 0) = i,

d(0, j) = j,

d(i, j) =


d(i− 1, j − 1) if ai = bj

min


d(i− 1, j) + 1

d(i, j − 1) + 1 if ai 6= bj

d(i− 1, j − 1) + 2

for 1 ≤ i ≤ n, 1 ≤ j ≤ m
(1)

The final local distance between two sub-sequences, de-
noted by D, is the normalized value of of D(Sa, Sb) di-
vided by the maximum possible distance (i.e., when the
two sequences are completely different) as follows:

D(Sa, Sb) =
D(Sa, Sb)

(|Sa|+ |Sb|)× 2
(2)

1 S can be either a whole melody, or a sub-sequence of it, and it can
be pitch interval and the inter-onset interval ratio.
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Figure 3: An example of minimum local distance calcula-
tion between Sa and Sb

We particularly define the minimum local distance be-
tween a melody Sa and snk(b), a sub-sequence of Sb at the
kth position with length n:

LDmin(Sa|snk(b)) = min
∀sn

(a)
∈Sa

D(sn(a), s
n
k(b)) (3)

Because LDmin(Sa|snk(b)) is a minimum distance be-
tween a segment snk(b) and all possible sub-sequences of
Sa with the same length n, it is not a commutative oper-
ation. However, we call it distance because it shows the
distance between snk(b) and most-matched segment in Sa.
For example, suppose that there are two melody sequences
to be compared, Sb is a longer melodic sequence, and Sa

is shorter (see Figure 3). Sa and Sb can be divided into
sub-sequences. 2 The figure shows the LDmin value of the
first segment for each n. For example, LDmin(Sa|s11(b))
is 1 because in the first sub-sequence with n = 1 (“Z”
in the example) does not match any sub-sequences of Sa.
As the number of notes shared by Sa and Sb increases,
LDmin(Sa|snk(b)) becomes smaller, that is, the degree of
similarity increases. Note that since the lengths of two
melodies are different, the maximum size of the n is the
length of Sa (the shorter).

2.3.2 Multi-scale Similarity Stack

After the operation for all segments is performed, it forms a
multi-scale similarity stack for Sa and Sb. The multi-scale
similarity stack is important for similarity analysis, and
also for cross-scape plot visualization (see Figure 5) which
will be discussed in Section 3. In this study, we obtain a
multi-scale similarity stack based on segments of longer
songs. 3 Thus, the maximum of the x-axis of the multi-
scale similarity stack becomes the length of the longer
song, while the maximum of the y-axis is the length of the
shorter melody, respectively. For a given pair of melodic
sequences Sa and Sb, with |Sa| ≤ |Sb| we can calculate
LDmin(Sa|snk(b)) for all sub-sequences with length n for
all possible n in Sb against Sa. As a result, we create a two-
dimensional multi-scale similarity stack (MSS) defined as
below 4 :

2 For readability, features are noted as letters.
3 The opposite case, comparing segments of the song based on shorter

songs, is also possible, but this is not covered in this study.
4 Elements of the matrix only valid for

1 ≤ n ≤ |Sa|, 1 ≤ k ≤ |Sb| − n+ 1

MSS(Sa|Sb) = [an,k]|Sa|×|Sb|,

an,k = 1− LDmin(Sa|snk(b))
(4)

We can also summarize MSS and calculate the overall
similarity as a single value. In this case, we discard a subset
of elements in MSS which corresponds to similarity be-
tween segments less than three notes. To compensate low
similarity values between longer sequence, we also define
a weighted multi-scale similarity stack, wMSS, where the
weight λ is a function of n. Finally, the overall similarity
SimSa,Sb

of two songs is obtained by averaging wMSS.
This overall similarity is derived in the same way for both
pitch interval and inter-onset interval ratio of rhythm.

wMSS(Sa|Sb) = [λ(n)× an,k]|Sa|×|Sb|,

an,k = 1− LDmin(Sa|snk(b)),
λ(n) = 0.5 + 0.5× n/|Sa|

(5)

Finally, the overall similarity Sim(Sa, Sb) of two songs is
obtained by averaging the weighted multi-scale similarity
stack:

Sim(Sa, Sb) = mean((wMSS(Sa|Sb))n,k)n≥3) (6)

This overall similarity can be computed in the same way
for both pitch and rhythm features but using different
weights. We implemented the algorithm using MATLAB
and MIDI Toolbox [4]. The source code is available at the
Github repository. 5

3. CROSS-SCAPE PLOT

This section introduces the visualization method using the
multi-scaled similarity of two melody sequences. As afore-
mentioned, this method was inspired by [15, 16]. While
previous studies using the original scape-plot method fo-
cused on analyzing a single song based on self-similarity,
this study applies the idea to analyzing the similarity of
two different songs.

3.1 Procedure

Figure 4 illustrates the procedure of drawing the cross-
scape plot using the multi-scale similarity stack. We ar-
range the sub-sequences on top of each other to have the hi-
erarchical patterns. Also, to increase readability, the multi-
scale similarity stack is center-aligned. Unlike the original
scape plot, the cross-scape plot has a trapezoidal shape be-
cause it is computed from two songs with different lengths.
The more different the lengths of the two songs, the more
likely the shape of the trapezoid. The x-axis indicates the
position of the longer melody. The y-axis represents the
segment size.

The cross-scape plot displays local similarity with a
color. As the local similarity is higher, the color becomes
darker, and vice versa. To distinguish the two features, we

5 https://github.com/saebyulpark/cross_
scapeplot_visualization

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

425



Figure 4: An illustration of steps for drawing a cross-scape plot.

Figure 5: An example of a cross-scape plot by comparing similarities between two songs. The pixel value and the density
of the color indicate the similarity score between the two sub-sequences.

set red to the cross-scape plot of the pitch feature and green
to that of the rhythm feature. These different colors allows
to easily recognize where and how the two songs are sim-
ilar simply inspecting the plot. Figure 5 is an example of
cross-scape plots where two songs are taken from the same
tune family in the MTC-ANN datasets. The left part is the
plot for the pitch feature and the right is for the rhythm fea-
ture. Through the cross-scape plot on the left, we can see
that these two pieces are very similar in the middle parts.
in the middle parts of the pitch feature, and the uppermost
color suggests that the overall similarity is between 0.6 and
0.7. On the right plot, the rhythm feature shows a similar-
ity with a certain periodicity in the latter part. Also, the
slightly right part of the center represents a high similarity
(black or 1) in the same way as the pitch feature, so we can
assume that the melody of a particular part is nearly iden-
tical. Overall, a type of tendency is found where a large
segment has a larger distance and a smaller segment has a
smaller local distance. This is because the smaller the seg-
ment size is less distinct, the higher the probability that the
segment is present in both songs.

3.2 Case Study: Toy Example

Figure 6 is a toy example of the cross-scape plot show-
ing the similarity between the melodies generated such that
they have the same edit distance between pitch interval se-
quences. One pair has exactly matching at a specific part

of the melody (Song 1 and 2, left part of Figure 6). In the
other pair, the specific parts are not exactly the same, but
they are slightly similar overall (Song 1 and 3, right part of
Figure 6). In this example, the edit distance alone yields the
same distance between the melodies (in both casesD = 12
for pitch interval sequences). However, we can see that the
first half of the song is exactly the same for both pitch and
rhythm in the case of songs 1 and 2. On the other hand, the
pitch features of Songs 1 and 3 are generally similar at ran-
dom, but the rhythm is apparently similar to the latter half
of the song. In this way, we can see various perspectives
on the similarity of melody features even though they have
the same similarity value.

3.3 Case Study: Plagiarism Cases

The benefits of cross-scape plots become more important
for issues that require a certain level of qualitative judg-
ment, such as originality or substantial similarity of pla-
giarism. Figure 7 shows cross-scape plots of the cases in
our ongoing plagiarism research project. These two exam-
ples are cross-scape plots of songs with court rulings on
copyright infringement. In both cases (Mood Music v. De
Wolfe 6 : left side of figure and MCA Music v. Earl Wil-
son 7 : right side of figure), copyright infringement is ruled
by the court or settled between the parties, where plagia-

6 Mood Music v. De Wolfe, 1. Ch. 119 (1976).
7 MCA Music v. Earl Wilson 425 F. Supp. 443 (S.D.N.Y. 1976)
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Figure 6: Toy example of an exact match pair and an over-
all similar pair of cross-scape plots

Figure 7: Cross-scape plots of plagiarism cases (Mood
Music v. De Wolfe: top of the figure and MCA Music v.
Earl Wilson: bottom of the figure).

rism is acknowledged. We show these cases because these
are either the most confusing (case 1 where 93.5% of the
participants were confused) or less confused (case 2 with
0% confusion rate) cases in a trial experiment in which the
implicit memory task is performed (High confusion means
two songs are very similar to each other). 8

Although both are cases of copyright infringement, the
ways in which similarities appear are very different. In Mu-
sic v. De Wolfe, most parts of the song are almost identi-
cal on all sides of the pitch and rhythm features. On the
other hand, in MCA Music v. Earl Wilson, the rhythm fea-
tures are generally similar, but the pitch features are dif-
ferent. Thereby, for the case MCA Music v. Earl Wilson,
it can be assumed that the plagiarism judgment is based
on other factors such as rhythm, harmony, arrangement or
lyrics rather than the tonal characteristics of the melody. 9

8 This experiment is an ongoing project; a similar experiment and re-
sult can be found in [28]

9 Indeed, in spite of the defendant’s arguments contending fair use

Figure 8: Cross-scape plots on examples of MTC-ANN.
The three pairs on the top belong to the same tune family
whereas the three on the bottom belong to different tune
families.

In this way, gaining rich information about similarities can
be of great help in making this kind of intuitive and sophis-
ticated decision regarding of similarity.

3.4 Case Study: MTC-ANN

Figure 8 shows more examples of cross-scape plots show-
ing how different pairs of MTC-ANN represent similari-
ties of different characteristics. The three pairs on the top
are similarities between songs in the same tune family, the
three on the bottom are for those included in other tune
families. The similarity of the two songs decreases from
left to right. Looking at these pairs, we can observe that
similarities in pitch, rhythm, position, and lengths of sim-
ilar parts appear in a variety of ways, even in pairs in the
same group.

4. MELODY CLASSIFICATION

We can utilize the outcome of cross-scape plots for the
symbolic melodic similarity task. In this section, we con-
duct the task with a classification experiment using sum-
marized similarity derived from the multi-scale similarity
stack.

4.1 The dataset

We used the annotated corpus of the Meertens Tune Col-
lection (MTC-ANN), version 2.0.1 [21] for the evaluation.
It contains 360 melodies divided into 26 tune families an-
notated by musicological experts. The MTC-ANN dataset
has been used in a variety of music studies. This allowed
us to compare our model with recent studies of measuring
melodic similarity.

of parody, infringement was considered based on identical bass line,
a general harmonic similarity and certain specialized rhythmic patterns
(https://blogs.law.gwu.edu/mcir/case/mca-music-v-earl-wilson/).
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CSR AUC MAP
Pitch Interval 0.95 0.89 0.68

Inter-onset Interval Ratio 0.76 0.82 0.49
Combined 0.96 0.91 0.71

Table 1: Results for the proposed model

Figure 9: Accuracy that varies with the weighting value of
the pitch feature and the rhythm feature.

4.2 Similarity Measures

We performed the classification of MTC-ANN songs into
the same tune family with each of pitch and rhythm fea-
tures or their combinations. We compared the performance
to those from previous work that conducted the same task
over the last three years [1, 2, 26].

4.3 Evaluation Metrics

We used the three evaluation metrics following the previ-
ous works.

Classification Success Rate (CSR) represents a cor-
rectly classified rate of the total when the melody is in-
dexed into the same tune family using k-Nearest Neigh-
bors (k-NN) classifier to which the melody with the high-
est similarity belongs. This evaluation method was used in
all reference papers to be compared.

Area Under the Curve (AUC) is calculated by adap-
tively modifying the decision threshold of the similarity
score. In this case, the songs within the same tune family
is assigned to a ground truth. The ranking scores are then
calculated and averaged.

Mean Average Precision (MAP): has the same ground
truth as the one used in the AUC calculation. The songs
are sorted by the similarity score and the songs that have
the same tune family with the query song are treated as
a correct one. We repeat this procedure by adjusting the
number of correct answers and averaged the whole scores.

4.4 Evaluation Results

Table 1 shows the results of the proposed model to clas-
sify 360 songs of MTC-ANN into 26 family tunes, using
pitch features, rhythm features and both of them. In ad-
dition, Figure 9 shows the plot of CSR when the relative
weight in computing the overall similarity (λ in Equation
6) between two features changes from 0 to 1. the highest
score is obtained when the weight (pitch weight) ranges
between 0.67 and 0.7.

CSR AUC MAP
Boot [1] 0.92 - -

Bountouridis [2] 0.94 - 0.70
Walshaw [26] 0.93 0.89 -

Proposed 0.96 0.91 0.71

Table 2: Comparison with previous studies using the
MTC-ANN dataset

As a result of the classification evaluation, the melody
of a family group is sufficiently classified by a single pitch
feature, whereas a rhythm feature has a limitation in per-
forming a classification task alone. In addition, classifica-
tion with pitch and rhythmic features combined with ap-
propriate weights has achieved the highest performance,
which indicates that pitch and rhythm together comple-
ment the similarity of the melody, although the pitch fea-
ture contributes to it more.

4.5 Comparison with Recent Studies

Table 2 provides a comparison with recent studies that
performed classification of MTC-ANN using the entire
melody. The results show that our approach not only pro-
vides the visualization but also comparable performance to
them.

5. DISCUSSION AND CONCLUSION

We proposed a cross-scape plot which visualizes symbolic
melodic similarity between two songs based on multi-
segmentation analysis. With the examples of folk songs
and plagiarism cases, we showed that the cross-scape plot
can reveal the melodic similarity in various ways. We
also performed a classification task of the MTC-ANN
dataset based on the summarized similarity derived from
the method.

The proposed method used edit distance but this can
be replaced with with other sequence-based distances. On
the other hand, however, it has already been shown that
many studies yield high classification results when se-
quence alignment techniques are used as a measure of sim-
ilarity between folk songs [23]. Thus, the high classifica-
tion performance in this study may reflect the advantages
of the alignment method used as the main distance. There-
fore, the performance evaluation of the present method as
a measure of similarity requires further study to experi-
ment with more data sets and distance measures. Besides,
since only segments with the same length are compared
and are performed based only on shorter melodies, there is
a limitation that some loss of information can occur. There
is also a disadvantage that this method is time-consuming
because it repeatedly performs calculations among all the
segments. Despite several limitations, we believe that this
multi-scaled approach provides a wealth of insight that will
help us to understand the properties of similarity.
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ABSTRACT

An enormous corpus of music for the lute, spanning some
two and half centuries, survives today. Unlike other mu-
sical corpora from the same period, this corpus has un-
dergone only limited musicological study. The main rea-
son for this is that it is written down exclusively in lute
tablature, a prescriptive form of notation that is difficult
to understand for non-specialists as it reveals little struc-
tural information. In this paper we present JOSQUINTAB,
a dataset of automatically created enriched diplomatic
transcriptions in MIDI and MEI format of 64 sixteenth-
century lute intabulations, instrumental arrangements of
vocal compositions. Such a dataset enables large-scale
content-based computational analysis of music in lute tab-
lature hitherto impossible. We describe the dataset, the
mapping algorithm used to create it, as well as a method to
quantitatively evaluate the degree of arrangement (good-
ness of fit) of an intabulation. Furthermore, we present
two use cases, demonstrating the usefulness of the dataset
for both music information retrieval and musicological re-
search. We make the dataset, the source code, and an im-
plementation of the mapping algorithm, runnable as a com-
mand line tool, publicly available.

1. INTRODUCTION

An enormous corpus of music for the lute, roughly span-
ning the sixteenth, seventeenth, and first half of the eigh-
teenth century, and containing an estimated 60,000 indi-
vidual pieces in circa 860 sources, printed and manuscript,
survives today [27]. Although the lute was one of the most
widely used instruments during these two and a half cen-
turies, and this corpus is thus extremely rich in informa-
tion about daily musical practice, up until the present day
it has not undergone the same critical musicological study
as other musical corpora from the same period. The main
reason for this is that the notation used to write down lute
music, lute tablature, is notoriously difficult to understand
for non-specialists [18, 28]. This is because lute tablature
is a purely prescriptive form of notation: like all forms of

c© Reinier de Valk, Ryaan Ahmed, Tim Crawford. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Reinier de Valk, Ryaan Ahmed, Tim Craw-
ford. “JOSQUINTAB: A dataset for content-based computational analysis
of music in lute tablature”, 20th International Society for Music Informa-
tion Retrieval Conference, Delft, The Netherlands, 2019.

instrumental tablature [12], it merely provides the actions
a player must take—in this case, where to place the fin-
gers on the fretboard and which strings to pluck—rather
than the sounds and musical edifice these actions produce,
which a descriptive form of notation does [20,29]. In prac-
tice, this means that lute tablature, as opposed to mensural
forms of notation, conveys virtually no information about
the structure, polyphonic or other, of the music it encodes,
making it hard to comprehend a prima vista.

In this paper we propose to address the problem of the
marginal position of music in lute tablature within musi-
cological research by providing JOSQUINTAB, a dataset
of 64 automatically created enriched diplomatic transcrip-
tions—literal transcriptions annotated with voice, key,
and mensuration information—of a selection of sixteenth-
century lute and vihuela (the lute’s Spanish counterpart)
intabulations, instrumental arrangements of vocal compo-
sitions, as well as a mapping algorithm for creating such a
dataset, and an implementation thereof, runnable as a com-
mand line tool. The proposed dataset enables large-scale
content-based computational analysis of music in lute tab-
lature, which, in the absence of some notion of the music’s
polyphonic structure, has hitherto not been possible. The
command-line tool allows researchers to extend the dataset
by creating their own transcriptions.

In summary, the main contributions of this paper are:
• a dataset of 64 automatically created enriched diplo-

matic transcriptions of lute intabulations, each in the
original and in an unornamented version;

• a mapping algorithm for creating such a dataset;
• an implementation of the mapping algorithm,

runnable as a command line tool.
Furthermore, we provide:
• a method to quantitatively evaluate the degree of

arrangement (goodness of fit) of an intabulation,
which is incorporated in the mapping algorithm;

• two use cases, demonstrating the usefulness of the
dataset for both music information retrieval (MIR)
and musicological research.

In the spirit of open science and reproducible research, we
aim to make the resources we contribute FAIR (findable,
accessible, interoperable, and reusable) [32]. We do so
by using recommended formats—MIDI and MEI—for the
dataset, 1 and by making the dataset, the source code for
the mapping algorithm, and the command line tool pub-
licly available.

1 https://www.loc.gov/preservation/resources/rfs/
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The remainder of the paper is structured as follows.
In Section 2, we sketch the scholarly and scientific back-
ground against which this research is carried out. In Sec-
tion 3 we describe the contents of JOSQUINTAB and the
preprocessing that the data we build on requires, and in
Section 4 the mapping algorithm by means of which we
create JOSQUINTAB, the method to evaluate the dataset
quantitatively, and the command line tool. Section 5 is
dedicated to the use cases, and in Section 6, conclusions
and directions for future work are presented.

2. BACKGROUND IN MUSICOLOGY AND MIR

2.1 Lute tablature: A brief introduction

When in the late fifteenth century lutenists began playing
polyphonic music on their instrument, this entailed a need
for an accommodating, score-like, notation. Several ap-
proaches were developed simultaneously, crystallising into
three principal systems, whose modern names refer to their
regions of origin: French, Italian, and German lute tabla-
ture [1]. 2 From these three, the French system would out-
live the other two, from the seventeenth century on becom-
ing the primary system. The former two systems use let-
ters (French) or numbers (Italian), indicating where on the
fretboard the fingers must be placed, on a six-line ‘staff’,
each line of which represents a course (string pair) to be
plucked. The German system is more abstract—it does not
use a staff—and consists of a collection of glyphs (letters,
numbers, and special characters, often varying per author)
representing unique course-fret combinations.

2.2 Transcription practices

Figure 1, which shows an example of the Italian system,
perfectly demonstrates the problem with lute tablature. Be-
low a deceivingly simply notational surface, structurally
rather complex music may lie hidden—and it requires a
significant amount of expertise to infer the information not
notated. The traditional musicological solution to ‘unlock’
this corpus for research is the preparation of scholarly edi-
tions, commonly in paper format, in modern music nota-
tion. Some of these are ‘literal’ or diplomatic transcrip-
tions, recording the information given in the source exactly
as it appears [17] (i.e., providing only pitch and minimal
duration information), thus involving a minimum of inter-
pretation but in turn revealing little about the polyphonic
structure of the music, while others are full-fledged poly-
phonic transcriptions, involving a maximum of interpreta-
tion, and therefore often accompanied by a critical appara-
tus motivating the choices made.

Preparing scholarly editions is time-consuming and
specialist work—all the more so in the latter case. This
is one of the reasons why recent times have seen at-
tempts at automatic transcription of lute tablature. Com-
puters are ideally suited for fast (and large-scale) literal
transcription—in fact, this can be achieved fairly easily

2 The vihuela players generally adopted the Italian system; vihuela
tablature, especially the upside-down variant that equals modern guitar
tablature, is sometimes referred to as Spanish tablature.

with many of the music notation software packages, pro-
prietary or open-source, available today. Automatic poly-
phonic transcription of lute tablature, however, has proven
to be quite challenging [8, 13, 14], and in MIR research is
still considered an open problem. Thus, despite ongoing
efforts in musicology and MIR—both concerning content-
based [22, 23] and bibliographical research [11]—only a
fraction of the lute repertory has been explored up until the
present day, and much work remains to be done.

2.3 Sixteenth-century lute music and intabulations

Sixteenth-century lute music is generally considered to fall
into three categories [3]: (i) original compositions, i.e.,
idiomatic, abstract works in varying degrees of counter-
point, such as fantasias, ricercares, or preludes; (ii) set-
tings of dance tunes; and (iii) intabulations, i.e., instru-
mental arrangements of vocal compositions. It is the latter
category—by far the largest of the three, by itself taking
up at least approximately half of the music [3]—we focus
on in this paper. Up until today, intabulations have largely
escaped in-depth musicological research—mostly on the
grounds that as non-original works, they would be inferior
compositions, which, especially when heavily ornamented,
served no other goal than to demonstrate the player’s vir-
tuosity. While it is doubtlessly true that certain arrange-
ments are less exciting than others, a fact that should not
be overlooked is that intabulations are highly informative
about contemporary compositional and performance prac-
tices [6,18,19,26], giving insights into, e.g., ornamentation
techniques [4] or the application of musica ficta, i.e., chro-
matic alterations not notated in vocal music [5].

Intabulations generally remain close to their vocal mod-
els: contemporary treatises on the subject of intabulating
prescribe that the intabulator take over as much of the vo-
cal model as is technically possible on the instrument [24];
several existing in-depth studies of selected intabulations
[2, 4,5, 25,30] support this. It is exactly the resulting close
relation between model and intabulation that facilitates the
mapping approach presented in this paper.

3. JOSQUINTAB

As its name reveals, the dataset exclusively contains intab-
ulations of vocal compositions by Josquin des Prez (c.
1450-1521), an earlier-generation composer highly popu-
lar among sixteenth-century intabulators [3, 21]. Accord-
ing to the New Josquin Edition, no less than 18 chansons,
17 motets (most of them in multiple parts), various parts
of 17 mass sections, and even eight complete masses have
been intabulated [16]—adding up to at least 60 works, de-
pending on how one counts.

In creating the dataset, which we do by mapping
machine-readable tablature encodings (in TabCode format
[10, 28]) onto MIDI renderings of editions of the vocal
models (as explained in detail in Section 4), 3 we build
on two existing, high-quality data repositories. The tab-
lature encodings were retrieved for a previous study [22]

3 See also http://www.ecolm.org/.
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Figure 1. Francesco Spinacino, Intabulatura de lauto, Libro primo (Venice, 1507), Adiu mes amours, first system.

from Sarge Gerbode’s Lute Page, 4 a curated repository of
encodings made by amateur enthusiasts; the MIDI render-
ings of editions of the vocal models (as well as scores in
PDF format of the same editions, used for reference) are
retrieved from the GitHub repository for the Josquin Re-
search Project (Center for Computer Assisted Research in
the Humanities, Stanford University), 5 which aims to pro-
vide ways to search and analyse scholarly edited scores of
polyphonic early music. 6

Our eventual goal is for the dataset to contain tran-
scriptions of all intabulations of Josquin compositions, in-
cluding all dubious attributions (but excluding the spuri-
ous ones). This inclusive approach is taken as scholarly
opinion on the matter of the authenticity of a significant
number of pieces tends to change constantly [31]. 7 How-
ever, while the Josquin Research Project repository pro-
vides editions of all vocal models, the Lute Page repository
only contains intabulations of nine of the chansons, 10 of
the motets (in 21 parts in total), and 12 of the mass sections
parts, where approximately half of the chansons and motet
parts have been intabulated more than once. (For practical
reasons, for now we ignore the eight complete masses, all
of which appear in a single print and are therefore some-
what of an exception; moreover, we only look at printed
sources, facsimiles of which, needed for error checking,
are generally easier to come by.) As Table 1 shows, this
yields a dataset of 64 pieces (60658 data points). Each
piece is represented by (i) a machine-readable encoding of
the tablature in TabCode format; (ii) a MIDI rendering of
the vocal model; (iii) a tuple (see below) of MIDI render-
ings of the created transcription; (iv) a tuple of MEI ren-
derings (containing score and tablature) of the created tran-
scription; and (v) a CSV file with the mapping details. 8

In many of the intabulations, a ‘net’ of ornamentation
has been added to the original notes, like a superstructure
imposed on the music [5]. We provide each transcription
both in the ornamented, original version and in a version
stripped of the ornamental net (the procedure by which this
is done is explained in more detail in Section 4). The lat-
ter is expected to be more useful for analysis tasks that are
complicated by large amounts of ornamentation, such as
the one in Use Case 2 (see Section 5.2). Furthermore, it

4 See http://www.gerbode.net/. The files were converted
from the proprietary Fronimo format into TabCode.

5 https://github.com/josquin-research-project/
6 http://josquin.stanford.edu/
7 See https://www.cmme.org/database/projects/14/

for a project born because of this exact reason.
8 https://github.com/reinierdevalk/data/

must be noted that tablature only provides a ‘minimum’
duration for each note, applying to all notes in a chord
(see Figure 1). We have made no attempt at reconstruct-
ing the notes’ actual duration, i.e., at determining their
offset—which is not a trivial problem as it depends on mul-
tiple contextual factors (e.g., counterpoint, phrasing, etc.).
At this point, it is therefore important to stress that the
transcriptions created are not full-fledged editions in the
musicological sense of the word, and are not intended as
such—rather, they serve to facilitate large-scale content-
based computational analysis.

3.1 Preprocessing: Alignment issues

The mapping algorithm takes as input an encoding of the
tablature in TabCode format and a MIDI rendering of the
vocal model. In order for it to function optimally, these
files must be aligned both in terms of pitch (i.e., the appro-
priate lute tuning must be used) and time (i.e., they must
span the same number of bars). 9 In the ideal case, only the
tuning needs to be provided—but in practice, most of the
tablature encodings require a number of small corrections,
and in some cases even additions, all of them necessary
to ensure temporal alignment. Currently, these need to be
carried out in a manual preprocessing step.

There are four types of corrections, three of which ap-
ply to the encodings. First, almost all encodings require
the mensuration signs used to be adapted in order for the
nominal beat level to correspond to that in the MIDI file
(in most cases this results in augmentation—e.g., a change
of a 2

2 mensuration to a 2
1 mensuration—or, conversely, a

reduction; but in some cases they are actually incorrect);
moreover, a small number of encodings require lacking
mensuration signs to be added. Second, a small number of
encodings require unspecified triplets to be made specific.
Third, a small number of encodings require the correction
of syntactic errors that render them non-parsable (techni-
cally, this type of correction does not affect any alignment
issues). 10 The fourth and last type of correction applies to
the MIDI renderings of the vocal models, which all require
the key signature meta message to be set.

Furthermore, there is one type of addition, which again
applies to the encodings only, and which results in length-
ening them. A substantial number of encodings—29 in

9 The standard tuning used for the six-course sixteenth-century lute is
one where the courses are tuned in perfect fourths with a major third in
the middle. The lowest-sounding course was generally tuned to nominal
G or A, but several other tunings occured as well.

10 We make no attempt at correcting any incorrectly encoded notes.
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Vocal model Voices I Vocal model Voices I
Absalon fili mi 4 1 Missa Hercules Dux Ferrarie, 4, 2, 4 1, 1, 1
Benedicta es, pt. 1–3 6, 2, 6 4, 3, 3 Sanctus–Pleni sunt–Osanna
Fecit potentiam 2 1 Missa Pange lingua, Benedictus 2 1
In exitu Israel de Egypto, pt. 1–3 4 1, 1, 1 Missa Sine nomine, Cum sancto 4 1
Inviolata, pt. 1–3 5 1, 1, 1 Qui belles amours 4 2
Memor esto verbi tui, pt. 1–2 4 1, 1 Adieu mes amours 4 3
Pater noster, pt. 1–2 6 2, 2 Comment peult avoir joye 4 1
Preter rerum seriem, pt. 1–2 6 3, 2 Faulte d’argent 5 1
Qui habitat in adjutorio, pt. 1–2 4 2, 2 Je ne me puis tenir 5 3
Stabat mater, pt. 1–2 5 2, 1 La plus des plus 3 1
Missa De beata virgine, Cum 4, 5, 5 2, 1, 1 Mille regretz 4 2
sancto–Credo–Crucifixus Plus nulz regretz 4 1
Missa Faysant regretz, Qui tollis– 4, 4, 3, 4 1, 1, 1, 1 Si j’ay perdu 4 1
Sanctus–Pleni sunt–Osanna

Table 1. JOSQUINTAB: 36 motet part intabulations (ranging in size from 234–2238 notes; median 1257.5 notes; total 43557
notes); 13 mass section part intabulations (260–1141 notes; median 343 notes; total 5942 notes); 15 chanson intabulations
(483–1250 notes; median 686 notes; total 11159 notes). I = number of intabulations.

total—contain fewer bars than their vocal models. In most
cases, this is obviously due to an error on behalf of the
intabulator, i.e., accidental omission. Given a sequence of
bars {b1, ..., bn−1, bn}, where bar b1 has the same ending as
bar bn−1, all bars between b1 and bn may easily be skipped
unwittingly (a scribal error known as homoeoteleuton in
manuscript studies [9]). In exceptional cases, however,
omission is intentional. Omissions are countered by insert-
ing rests into the intabulation at the appropriate position.

Apart from an encoding and a MIDI rendering, the map-
ping algorithm must also be given the appropriate tuning,
as well as the appropriate reduction: the factor by which
the durations in the tablature must be multiplied (or di-
vided) in order for its nominal beat level to correspond to
that of the vocal model. The reduction can be a positive
integer greater than 1, in which case it amounts to an aug-
mentation; a negative integer, in which case it amounts to a
reduction; or 1, in which case the durations do not change.
Although determining the tuning and reduction is strictly
speaking not a preprocessing step, this information must
be given as input to the mapping algorithm, and must thus
be established—currently, manually—prior to running it.

4. MAPPING ALGORITHM

The mapping algorithm itself is fairly straightforward and
traverses the music chord by chord (where a chord is any
event that has one or more notes in it), from left to right.
Given a tablature encoding and a MIDI representation of
the vocal model, first, an ordered list T is made, containing
the union of the chord onset times in both tablature and
MIDI. Then, two two-dimensional matrices with |T | rows
are constructed: the grid G, containing, for each onset time
Ti, onset, pitch, voice, and duration information for the
chord at Ti in the MIDI (or null values when there is no
chord); and the mask M , containing, for each onset time
Ti, onset, pitch, duration and note index information for
the chord at Ti in the tablature (or null values when there is

no chord). The grid and mask are traversed jointly, row by
row, and in the process a list of voice labels V is created.
A voice label is a binary vector encoding all voices onto
which a note is mapped. Let mask row Mi,∗ represent a
tablature chord and grid row Gi,∗ a MIDI chord at onset
Ti. If Mi,∗ is non-null, i.e., there is a chord in the tablature
at Ti, the following steps are taken.

1. If Mi,∗ contains a single note whose duration is less
or equal than the ornamentation threshold (a pre-set
parameter) and Gi,∗ is null, 11 i.e., there is no chord
in the MIDI at Ti (see Figure 2, horizontal brackets),
the note is flagged as ornamental. Null is added to
V , the note is added to a running list O, and Steps
2-4 below are skipped.

2. Each note in Mi,∗ is mapped to a voice by finding
the voice that goes with its counterpart in Gi,∗. A
note can be mapped to multiple voices.

(a) If a match is found, a voice label is added to V .
(b) If no match is found (see Figure 2, single

brackets and non-bracketed sharps), null is
added to V , and the note is added to U , the
list of unmapped notes in Mi,∗.

3. If U is not empty, the notes in it are mapped—in one
go—to the available voices (any voices not yet occu-
pied by a note in Mi,∗). To this end, for each avail-
able voice in the MIDI, the last note with an onset
that is less than Ti in that voice is added as a pitch-
voice tuple to a list A. Then, the cheapest mapping
of U onto A is calculated, where the cost is based on
pitch distance. All corresponding null voice labels
in V are replaced, and all mapped notes removed
from U . (If, after this process, there are still un-
mapped notes—which can happen if Mi,∗ contains
more notes than there are voices in the model—this
step is repeated, now considering all voices as avail-

11 As ornamentation threshold we use the value two levels below beat
level (e.g., in 2

1 or 3
1 mensuration, a quarter note).
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Figure 2. Francesco Spinacino, Adiu mes amours, opening bars (see Figure 1). Mapping algorithm output. The tablature
contains all notes from the vocal model; bracketed notes and sharps are additions. Full note durations are inferred.

able. As a result, voices can have more than one note
mapped onto them.)

4. (Optional.) If Mi−1,∗ is ornamental, the cheapest
connection of the last note in O to Mi,∗ is calculated
(where the cost is again based on pitch distance), and
all notes in O are mapped onto the voice onto which
the note in Mi,∗ that yields the cheapest connection
has been mapped. In case of a tie, the cheapest con-
nection of the first note in O to Mi−1−|O|,∗ (i.e.,
the chord immediately before that first note) is de-
cisive. All corresponding null voice labels in V are
replaced, and O is cleared.

When the grid and mask have been traversed, the al-
gorithm combines the created list of voice labels V with
an internal representation of the tablature created from the
encoding, and, retaining the key and mensuration informa-
tion from the MIDI, returns this as a track-separated MIDI
file and an MEI rendering thereof. If Step 4 is included,
these contain all ornamentation that is in the tablature; if it
is skipped, they remain unornamented.

4.1 Evaluation method

There are four categories of mismatches. If in Step 1 a
note is flagged, it is considered an ornamentation. Else,
if in Step 2(b) no match is found for a note, and in Step
3 it is mapped at cost 0), it is considered a repetition (see
Figure 2, single brackets); else, if there is a semitone dis-
crepancy between it and a note in A, but they are the same
pitch class, it is considered musica ficta (see Figure 2,
non-bracketed sharps); else, it is considered an alteration.
These categories are hierarchical and mutually exclusive.

This classification enables us to quantitatively evaluate
the degree of arrangement (goodness of fit) of an intabu-
lation in a granular manner. We measure the degree of ar-
rangement by means of the mapping ratio m = |N |−|M |

|N | ,
where N is the set of all notes, and M the set of all mis-
matches. At the highest level of granularity, which re-
sults in the lowest m, M is equal to the total of all or-
namentations, repetitions, instances of musica ficta, and
alterations—i.e., to the total of mismatches across all four
categories. It can be argued, however, that not all cate-
gories carry the same weight. Repetitions, for example, are
idiomatic for lute music because of the instrument’s short

sustain, and have only little harmonic and melodic im-
pact; and instances of musica ficta, which have a stronger
harmonic and melodic impact (but no rhythmic impact),
are nothing but inflections, different ‘flavours’ of the same
pitch class. Thus, it makes sense not to include mismatches
falling into these categories in M , or at least to weight
them differently. We therefore redefine m as

m =
|N | − (o|Mo|+ r|Mr|+ f |Mf |+ |Ma|)

|N |
, (1)

where Mo, Mr, and Mf are the sets of all ornamentations,
repetitions, and instances of musica ficta; o, r, and f their
respective weighting parameters; and Ma is the set of all
alterations (N , as above, is the set of all notes).

Genre Ornamented Unornamented
o, r, f r, f
1, 1, 1 1, 0, 0 0, 0, 0 1, 1 0, 0

Motets 0.52 0.66 0.92 0.70 0.89
Mass sections 0.70 0.83 0.96 0.80 0.95
Chansons 0.57 0.69 0.94 0.75 0.92
All 0.54 0.68 0.93 0.72 0.90

Table 2. Mapping ratio m at different levels of granularity.
Values are weighted averages, where each per-piece ratio
is weighted by the number of notes in the piece.

Table 2 shows the mapping ratio, averaged per genre, at
the highest level of granularity (i.e., the most strict case,
with all parameters set to 1), at an intermediate level (with
only o set to 1), and at the lowest level (i.e., the most lenient
case, with all parameters set to 0) for the ornamented tran-
scriptions, as well as at the highest and lowest level for the
unornamented transcriptions, where the intermediate level
does not apply. The table shows that, on average, at least
half of the notes (m = 0.54) in the ornamented transcrip-
tions, and approximately three quarters (m = 0.72) in the
unornamented transcriptions, have an exact match in the
vocal models. The ratios increase considerably—to 0.68
and 0.90, respectively— if we consider repetitions and mu-
sica ficta to be matches as well. The table also shows that,
generally, the intabulations are fairly heavily ornamented,
as the ratio at the lowest level of granularity (m = 0.93) is
much higher than that at the other levels.
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4.2 Command line tool

The Java implementation of the mapping algorithm,
TabMapper, 12 can be run as a command line tool. A
single transcription is created with the command

$ tabmapper tab.tc model.mid <t> <r> -n

where tab.tc is the TabCode encoding of the intab-
ulation, model.mid the MIDI rendering of the vocal
model, <t> and <r> are the tuning and reduction (see
Section 3.1), and -n is an optional argument indicating
that the transcription created should be unornamented. A
set of transcriptions is created with the command

$ tabmapper list.csv -n

where list.csv is a CSV file specifying, for each piece,
the name of the TabCode file, that of the MIDI file, the
tuning, and the reduction, and -n is again optional.

5. USE CASES

Two use cases demonstrate the usefulness of the dataset for
both MIR and musicological research.

5.1 Use Case 1: Voice separation

Use Case 1 shows how the dataset can serve to train ma-
chine learning models for voice separation in lute tablature
[13,14], which can be used for automatic polyphonic tran-
scription of music in lute tablature. Voice separation can be
defined as “the task of separating a musical work consist-
ing of multi-note sonorities into independent constituent
voices” [7]. From an MIR perspective, this task is consid-
ered an open problem. As with many supervised machine
learning tasks in MIR, a lack of labelled data to train and
evaluate models on hinders progress. This is a particularly
pressing issue in the case of tasks related to music in lute
tablature. Apart from our own manually created dataset
containing 15 pieces (11641 data points) [13, 14], to our
knowledge there currently exist no other datasets of voice-
annotated tablature.

Automatic data creation can be a solution. However,
data created by means of a rigid algorithm is less consis-
tent in terms of transcription quality than data created man-
ually, where each individual situation can be addressed on
its own terms—and this may result in a model having more
difficulty learning the task, and consequently, generalising
worse. An experiment confirms this. In [13], we train and
evaluate neural networks on nine four-voice pieces (8892
data points); our best-performing model achieves a gen-
eralisation accuracy of 79.63%. A model with the same
architecture 13 trained and evaluated on the 28 four-voice
pieces (26215 data points) in JOSQUINTAB yields a gener-
alisation accuracy of only 64.47%. 14 We hypothesise this

12 https://github.com/reinierdevalk/tabmapper/
13 We now use the backward processing mode [13], and train using a

validation set, doubling the number of training iterations and decreasing
the amount of regularisation applied by a factor of 10.

14 Values are cross-validation averages, where the dataset is partitioned
along its individual pieces.

to be partly due to inconsistencies in the data; however, an
analysis of the results reveals that an error propagation is-
sue particular to imitative music, as discussed in [15], also
plays a substantial role. As the dataset grows and inconsis-
tencies are ironed out statistically, performance improve-
ment is expected. Despite its current subpar performance,
this model can already be reliably used for automatic poly-
phonic transcription.

5.2 Use Case 2: Cross-corpus melodic matching

Use Case 2 shows how the dataset can be applied for
melodic matching across heterogeneous—in this case, in-
strumental versus vocal—corpora. A major goal of au-
tomatic transcription of tablature is the ability to search
freely for musical quotations occurring between corpora in
tablature and in standard notation. Our dataset provides an
important stepping stone in this direction. Using the unor-
namented transcriptions created, we are able to do a further
processing step in order to create search strings for Early
Music Online Search, 15 a tool that uses OMR to enable
full-text searches into sixteenth-century printed music.

Our initial results are promising. Eight pieces exist in
both corpora, of which we are able to successfully search
and match four. Not only are we able to match the individ-
ual pieces, but also the individual voice parts within each
piece are correctly identified. In three additional cases,
our search matches not with the correct piece, but rather
with another piece by the same composer—showing that
our search method enables the identification of common
stylistic features. This shows the potential of transcribing
a larger tablature corpus in order to identify hitherto un-
known vocal models.

6. CONCLUSIONS AND FUTURE WORK

In this paper we present JOSQUINTAB, a dataset of auto-
matically created enriched diplomatic transcriptions of 64
lute intabulations. We describe the contents of the dataset,
the mapping algorithm used to create it, and we show how
we can quantitatively evaluate it. Two use cases illustrate
how the dataset can be used for content-based computa-
tional analysis within and across corpora, demonstrating its
usefulness for MIR and musicological research. We make
the dataset, the source code, and an implementation of the
mapping algorithm publicly available.

There are many ways in which this work can be ex-
tended. One is to further automate the preprocessing
(alignment, determination of tuning and reduction) that the
data currently requires. Another is to parameterise certain
functionality of the mapping algorithm (e.g., the value of
the ornamentation threshold) in order to allow more flexi-
bility in the transcription creation. A third is to extend the
dataset so that it includes all intabulations of Josquin com-
positions, and those of other composers as well. It is clear
that the work presented opens many new research avenues,
which we plan to explore in future work.

15 http://www.doc.gold.ac.uk/usr/265/
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ABSTRACT

This work presents a novel dataset comprised of audio and
jury evaluations for rhythmic pattern reproduction perfor-
mances by students applying for a conservatory. Data was
collected in-loco during entrance exams where students
were asked to imitate a set of rhythmic patterns played by
teachers. In addition to the pass or fail grades provided
by the members of the jury during the exam sessions, a
subset of the data was also evaluated by external annota-
tors on a 4-level scale. A baseline automatic assessment
system is presented to demonstrate the usefulness of the
dataset. Preliminary results deliver an accuracy of 76% for
a simple pass/fail logistic regression classifier and a mean
average error of 0.59 for a linear regression grade estima-
tor. The implementation is also made publicly available to
serve as baseline for alternative assessments systems that
may leverage the dataset.

1. INTRODUCTION

Automatic assessment of music performances is an im-
portant audio signal processing application drawing in-
creased attention over the past few years. The Massive
Open Online Course (MOOC) methodology has recently
contributed to the growth of online music courses, at-
tracting a large number of students. In this scenario, au-
tomatic assessment methodologies have the potential to
largely reduce the instructor load of assessing student sub-
missions. Moreover, due to its subjective nature, the
task of evaluating students performances can be very diffi-
cult [4,14,24], sometimes even preventing different evalu-
ators from reaching an agreement while assessing the same
performance [17, 22]. Automatic evaluations may circum-
vent this obstacle by defining clear and objective goals that
must be achieved in order to succeed in a musical perfor-
mance.

c© . Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: . “A dataset of rhyth-
mic pattern reproductions and baseline automatic assessment system”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

While some authors leverage their evaluation tools us-
ing linear measures to quantify similarity between pairs of
reference and performance [20], most of the recently pro-
posed assessment systems rely on machine learning based
models for this task. Earlier models were trained with la-
beled data and hand-crafted audio features targeting at the
prediction of grades for performances. Such methodology
is applied in Nakano et al. [13] for improving the state-of-
art for singing voice assessment. The authors gathered data
from the AIST-HDB dataset [9] to train a model able to
predict good/poor classifications for singing performances.
Bozkurt et al. [4] have also suggested a supervised learn-
ing method for singing voice assessment, but this time con-
ducting their own data collection procedures inside a music
conservatory. The collected data containing jury evalua-
tions was fed into a machine learning model whose accu-
racy was reported as 74% for binary pass/fail predictions.
Singing assessments following similar methodologies and
including classification systems were previously proposed
by Schram et al. [16] and Molina et al. [12]. Both authors
aimed at the automatic evaluation of voice performances
by training machine learning models with audio features
and targeted scores.

Recent advances in unsupervised learning led re-
searchers to also rely on learned metrics to support their as-
sessment systems. Unlike the aforementioned supervised
procedures, these techniques delegate to the model itself
the task of figuring data patterns directly from raw audio
data, clustering similar observations into equivalent groups
and using such information to predict assessments. Exam-
ples of such methodology include the results discussed by
Wu and Lerch in [24], where authors modeled a feature
learning approach specially designed for assessing percus-
sive performances recorded during band auditions. This
very same data source leveraged Pati et al. [14] in their
similar study also tackling the problem of modeling music
assessment by means of learned features. They have pro-
posed the application of deep neural networks capable of
capturing non-linear aspects of performances that would
better correlate with reference’s features. These recent
studies encourage the use of unsupervised feature learning
rather than supervised methods, reporting that the former
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outperforms the latter in most of the cases.
Audio corpora play a critical role in every assessment

system, as the decision functions used for predicting evalu-
ations are trained on the corpora. In their work, Li et al [10]
delivered an important contribution by reviewing several
commonly-used music datasets made publicly available for
MIR tasks. This systematic review also describes impor-
tant information regarding the nature of each dataset (e.g.
available content, total audio durations, types of annota-
tions) and points out to a lack of datasets with annota-
tions related to rhythmic assessment, we argue. Specifi-
cally regarding the rhythmic dimension, the dataset pro-
vided by the Florida Bandmasters Association (FBA) has
been commonly adopted [14,21,23,24] and is, to the extent
of our knowledge, the only dataset that currently includes
rhythmic performances that are annotated with grades. It
is comprised of audio performances from band auditions
recorded in the Florida state between 2013 and 2015, in-
cluding jury assessments for different music aspects (musi-
cality, note accuracy, rhythmic accuracy, tone quality, etc.).

This present work is an effort to address the shortage of
music datasets designed for rhythmic assessment. The pre-
sented data was collected during the rhythmic sessions of
entrance exams based in a music conservatory, where stu-
dent performances were recorded and evaluated by mem-
bers of a jury. Data curation procedures were applied
over this raw dataset (including 1040 student performance
recordings) in order to extract a subset of (80) perfor-
mances which were submitted to an extra evaluation, this
time in a 4-level scale (i.e. grades ranging from 1 to 4). The
resulting subset featured with annotated data was fed to a
simple machine learning rhythmic assessment system in
order to demonstrate the use of the dataset in this scenario.
A binary pass/fail logistic classifier and a linear regression
grade estimator are implemented, the former delivering a
maximum accuracy of 76% while the latter pointing to a
minimum mean average error of 0.59 when tested over a 5-
fold cross validation. Both the complete rhythmic dataset
and the re-annotated subset are made publicly available.
The implementation of the proposed rhythmic assessment
system is also openly shared to serve as baseline for com-
parisons with similar approaches.

2. THE MAST RHYTMIC DATASET

The Musical Aptitude Standard Test (MAST) Rhythmic
Dataset is a collection of rhythmic performances and refer-
ences recorded in the Istanbul Technical University (ITU)
Turkish Music Conservatory during entrance exams. In
Turkey, these assessments are commonly applied to sup-
port the evaluation of the musical aptitude of applicants,
determining whether or not they should be accepted to
study in the institution. Categorizations are preferably
achieved during jury-assisted exams when students are in-
dividually auditioned and evaluated according to multiple
musical aspects (e.g. chord recognition, melodic singing,
rhythm playing). For the rhythmic session students are
asked to imitate reference performances by usually clap-
ping hands or tapping a hard surface.

The rhythmic patterns included in the dataset are taken
from the jury based qualification exams of the years 2015
and 2016. The rhythmic assessment portion of the entrance
exams in these years was composed of two types of rhyth-
mic pattern reproduction questions; rhythm one in a simple
meter (4/4) and rhythm two in a compound meter (7/8, 9/8,
10/8 or a 5/4). In order to ensure the confidentiality of the
questions asked in the exam and minimize the chance of a
memorization and the leakage of these pattern outside of
the examination areas, the applicants chose randomly from
10 different question packages, each package having a dif-
ferent version of the two types of rhythmic patterns stated.
Thus, there are 20 different rhythms for each year making
up the total of 40 distinct rhythmic patterns in our dataset.

Besides taking into consideration the two types of
rhythms, the exam preparation committee designed the
questions such that each pattern should be employing sim-
ilar rhythmic values (quarter-note, eight-note, sixteenth-
note and a triplet) and similar number of notes. The ap-
plicants were expected to perform above a threshold of
success regardless of the package the selected. Later, it
was observed that, while there may be differences in terms
of difficulty for different packages which might affect an
applicant’s test score, there wasn’t any significant relation-
ship observed between the selected packages and the suc-
cess of the candidates [1].

The jury committee consists of three members and the
candidates are expected to reproduce the rhythmic pattern
after it has been played two times by a member of the com-
mittee. The jury gives a full grade (10pts) and moves on
to the next question if the candidate’s performance is an
exact reproduction (or nearly). If there are flaws in the re-
production, then the candidate is exercised by performing
the rhythmic pattern divided to two halves separately, after
which the rhythmic pattern is played for reproduction one
last time. The evaluation at this stage may have three out-
comes, either the participant receives a partial grade (8pts)
if it is an exact reproduction (since he/she couldn’t perform
an exact reproduction at the beginning), if it still has 1-2 er-
rors the jury gives a minor grade (4 pts), and no points are
given if the performance has more than 2 errors. The evalu-
ations of the jury member can show variances at this stage
due to individual preferences (e.g. for some a consistent
tactus may be more important than missing an attack, for
some it is the accentuation and the phrasing). Due to these,
in our dataset we have only selected those performances
in which there was an unanimously consensus among jury
members that it was an exact (or nearly exact) reproduction
or a failure (all giving 0 pts.).

In general, to allow reinspection of the execution
of these exams, each applicants performance is video
recorded by the ITU conservatory directorate. For our
purposes – and to ensure anonymity - these recordings
were converted to wave files and then cropped so that each
recording consisted of the candidates performances only.
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Figure 1. Distribution of grades assigned by the distinct annotators. The x-values indicate the performance index while the
y-values stand for the average grade assigned. Error bars describe the standard deviation for all evaluations

3. USER ANNOTATIONS

In order to contribute to a more complete validation over
the collected data, the original dataset - which originally
only contained pass/fail classifications provided by mem-
bers of a jury - was also annotated with a higher resolu-
tion (4-level) grading. Since the re-assessment of all the
1040 student performances comprised by the full dataset
would require high human resources, the original data was
sampled. This convenience sampling initially filtered 20
references with low rhythmic complexity, followed by the
selection of four noise-free student performances for each
reference - two from each pass/fail class, totaling 80 sam-
pled student performances and 20 jury member perfor-
mances (that serve as the reference/target rhythmic pattern
for grading a student performance via comparison).

This subset of performances (from now on addressed as
re-annotated subset) was submitted to evaluation sessions
completed by seven annotators (male: six, female: one)
and aided by a custom evaluation tool (depicted in Fig-
ure 2) developed for a similar data collection task. During
these sessions, the annotators could hear in sequence the
rhythmic reference and student performance (with a one
second silence in-between) as many time as desired until
feeling comfortable to choose between one of the available
grades: 1 - Completely off, 2 - Major errors, 3 - Minor er-
rors, 4 - Perfect. Although no advanced music skills were
considered mandatory to support the assessment of quite
simple rhythmic patterns, authors tried to select annota-
tors with some relevant music background. Besides, the
graders were provided with a custom rubric documenting
the musical aspects that should be taken into consideration
when assigning grades. They were asked to assess the sim-
ilarity of the student performance to the reference in terms
of the beat and duration patterns, discarding tempo differ-
ences.

Evaluation sessions could be interrupted and resumed
by annotators at any moment using the session control fea-
ture provided by the tool. Figure 1 presents the distribution
of averaged grades assigned by annotators to all the sam-
pled performances. Nearly half (38) of evaluated perfor-
mances had unanimous assessments while the rest of them
presented some deviations (mean: 0.49, max: 0.97).

Figure 2. Annotation tool used during the custom evalua-
tion sessions

4. DATA PREPARATION

The detection of rhythmic events is an issue recurrently ad-
dressed via extraction of onset times from raw audio [6–8].
Onset features are primarily encoded as onset vectors con-
taining the moments when signal-disturbing events (e.g.
chord attack, drum kick) happen. Multiple similarity mea-
sures have already been proposed for the comparison of
onset vectors, including distance between vectors [18] and
error measures [15]. In this present work we propose a
hybrid model that benefits from both aforementioned sim-
ilarity measures to predict rhythmic assessments.

For the onset detection, our audio processing mod-
ule relies on the OnsetDetection algorithm implemented
by the Essentia library [3] 1 . All references and perfor-
mances comprised by the re-annotated subset were sam-
pled at a rate of 44.1kHz and the resulting frames were
provided to the onset detection algorithm to allow for
feature extraction. The onset extractor is parameterized
with default values (window size: 1024 samples, hop
size: 512 samples) and three methods for onset extraction
are tested and compared: High Frequency Content detec-
tion (HFC) [11], Spectral Flux detection (FLUX) [19] and
Complex-Domain spectral difference (COMPLEX) [2].

The recordings in the dataset are not aligned in time, nor
cropped with a fixed offset before/after the first/last onset.
Hence the first and the last onset are considered as bound-
aries of each performance. For the use of vector distance
measures applied to same-sized vectors, binary vectors are

1 https://essentia.upf.edu
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computed applying a fixed-numbered (60) grid on the time
axis (i.e. for each recording, the duration between the first
and last onset is divided into 60 time bins and a binary
value (onset/non-onset) is stored in the vector for each bin).
We opted for 60 bins for each rhythmic performance, since
this number is divisible by two, three, four, five, and six,
which are the common multipliers for most rhythmic pat-
terns.

Figure 3 presents an example of a visual representation
for onsets times before and after the quantizing procedures
that we have just described. The relative positions for the
original onsets are plotted in dashed lines and circle stems,
while the quantized information is drawn in solid lines and
triangle stems. All the quantized, unquantized onsets and
scaling information are also included into the re-annotated
dataset for further use.

5. BASELINE ASSESSMENT SYSTEM

This work introduces a baseline automatic assessment sys-
tem for rhythmic performances of students. Regression
models are trained with vector similarities aiming at the
modeling of the rhythmic evaluations detailed in the re-
annotated subset.

The feature set for both models described below in-
cludes eight different similarity measures: two strictly re-
lated to the rhythmic domain (beat difference and Perci-
val’s similarity [15]), four text-distance approaches (Lev-
enshtein, Damerou-Levenshtein, Jaro and Jaro-Winkler)
and two vector-distance measures (Hamming and Yule).
This last subset of features was selected according to
their reported benefits in comparing vector with boolean
data [5]. Since the nature of these measures resulted in
different distance ranges, all features were normalized in
order to range within a common scale.

Two different types of evaluations are targeted by the
proposed assessment systems. A grade estimation is im-
plemented through a linear regression model while catego-
rizations between pass/fail classes are predicted by a logis-
tic regression classifier. The overall ’true’ grade of a per-
formance is calculated via removing the highest and lowest
grades and averaging the rest, which is an approach similar
to the one usually applied in music conservatories. Binary
categorization is modeled by judging as accepted (pass)
all performances whose average grades are greater than or
equal to three, rejected (fail) otherwise.

All machine learning implementations are written in
Python 3.6.7 using scikit-learn 2 modules.

6. RESULTS

Both mentioned datasets are now made publicly available
for further investigation. The complete rhytmic dataset
(MAST rhythm dataset) 3 is a collection of 3721 audio
files cropped from recordings of conservatory entrance ex-
aminations in Turkey (summer 2015 and summer 2016).
1040 of the recordings are student performances graded

2 https://scikit-learn.org
3 https://zenodo.org/record/2620357

Classifier Ac. Pr. Rc.

Logistic Regression (FLUX) 63% 66% 83%
Logistic Regression (COMPLEX) 72% 75% 83%
Logistic Regression (HFC) 76% 79% 78%

Table 1. Performance measures (accuracy, precision and
recall) for classifiers trained with different onset features

by a jury of 3 instructors as pass or fail. The rest of
the recordings are jury performances of the same rhyth-
mic patterns in various sessions. The re-annotated subset
(MAST rhythm re-annotated subset) 4 is a balanced sam-
ple (in terms of pass-fail graded samples) extracted from
the complete dataset, assessed by seven annotators in a 4-
level grid and onset information for 80 performances, ac-
counting for 20 distinct rhythmic patterns (references). All
the code supporting the implementation of our automatic
assessment systems is also shared as Jupyter notebooks at
Github 5 .

The designed models are evaluated according to how
well they predict assessment for unseen test data. Our eval-
uation relied on a 5-fold cross validation (test size: 20%)
for both models. The performance results for the logis-
tic classifier are summarized in the learning curves shown
in Figure 4 and states a maximum accuracy of 76% when
trained with HFC data. The complete comparison stating
accuracy, precision and recall results from various onset
features can also be examined in Table 1.

For the linear grade estimator, the performance anal-
ysis consisted of measuring the errors observed between
the predicted grades and the expected values. Our esti-
mator was compared with baseline naive versions whose
projected evaluations are modeled using uniform and ran-
dom distributions. Results are summarized in Table 3 and
indicate that our approach provides better predictions (yet
with a small margin) than the naive estimators regardless
of the trained feature, with HFC once again delivering the
best performance. As for the influence of specific features
over the decision function, the coefficients suggested by
the linear regression (Table 2) encourage us to infer that
Jaro, Jaro-Winkler and Hamming distances are the features
whose influences are higher over grading predictions.

Our final evaluation is carried out by crossing data from
the two proposed datasets. Models trained with sampled
data from the re-annotated dataset were provided with all
performances coming from the complete dataset in order
to verify how well the trained assessment systems would
behave when asked to predict evaluations for new unseen
data. All the 1040 performances comprised by the full
dataset were submitted to the same pre-processing steps
described in Section 4 and the resulting similarity mea-
sures were tested against both the logistic classifier and lin-
ear estimator trained with HFC features (since it’s the ex-
traction method that delivers the best performance). Here
accuracy is calculated according to the number of predic-

4 https://zenodo.org/record/2619499
5 https://github.com/MTG/mast-rhythm-analysis
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Figure 3. Example of waveform and onset information (detection method: HFC) before and after quantizing procedures.
The stems in both ends relate with the fact that audios were prior cropped to range from first to last onsets

Feature Coefficient Intercept

Beat Difference -44.31

-54.85

Rhythmic Similarity 72.71
Levenshtein -8.94
Damerau-Levenshtein 11.17
Jaro -8229.71
Jaro-Winkler 6894.59
Hamming -988.81
Yule Similarity 188.32

Table 2. Feature coefficients and intercept for the linear
regression model trained with HFC onsets. Features with
higher influence over predictions are highlighted

Estimator MAE MSE R2

Fixed grading to 2 1.12 1.71 -1.52
Fixed grading to 3 0.71 0.76 -0.04
Random grading 0.99 1.52 -1.53
Linear Regression (FLUX) 0.69 0.69 0.01
Linear Regression (COMPLEX) 0.59 0.57 0.23
Linear Regression (HFC) 0.59 0.50 0.21

Table 3. Comparison between error measures (Mean Av-
erage Error, Mean Squared Error and R-squared) observed
in predictions for naive estimators and proposed model
trained with different features

tions matching the jury evaluations (pass/fail). Final re-
sults report a matching rate of 65% for the binary predic-
tions while the grade estimator guessed the right class for
70% of the unseen data.

7. CONCLUSIONS

The present study is an attempt to address the lack of
data sources designed for automatic rhythmic assessment.
Student performances for a set of rhythmic patterns were
recorded and evaluated by a jury during entrance exams
conducted in a music conservatory. An additional data
annotation step was also carried out with seven annota-
tors, this time grading a subset of these performances with
grades ranging from one to four. The re-annotated sub-
set trained an automatic assessment system able to predict

Figure 4. Learning curve for the pass/fail logistic classifier

students evaluations for rhythmic tasks. Models delivered
a maximum accuracy of 76% for a binary (pass/fail) classi-
fier and presented a minimum mean average error of 0.59
when predicting grades in a linear fashion, also pointing
to Jaro, Jaro-Winkler and Hamming distances as the best
model predictors. When compared with the data remained
from the re-annotation process, the baseline assessment
system predictions matched the jury-labeled data in about
70% of the cases.

All the aforementioned artifacts are now made public
for further investigation. Both the full dataset and the re-
annotated subset can be freely accessed and used to sup-
port assessment systems that builds on more sophisticated
techniques to predict student grades for rhythmic lessons.
Besides, the proposed implementation is also made avail-
able as Jupyter notebooks that can be examined and used
as baseline in comparative studies.
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ABSTRACT

Neural networks have been used to learn a latent “musi-
cal space” or “embedding" to encode meaningful features
and provide a method of measuring semantic similarity be-
tween two musical passages. An ideal embedding is one
that both captures features useful for downstream tasks
and conforms to a distribution suitable for sampling and
meaningful interpolation. We present two new methods for
learning musical embeddings that leverage context while
simultaneously imposing a shape on the feature space dis-
tribution via backpropagation using an adversarial compo-
nent. We focus on the symbolic domain and target short
polyphonic musical units consisting of 40 note sequences.
The goal is to project these units into a continuous low di-
mensional space that has semantic relevance. We evaluate
relevance based on the learned features’ abilities to com-
plete various musical tasks and show improvement over
baseline models including variational autoencoders, adver-
sarial autoencoders, and deep structured semantic models.
We use a dataset consisting of classical piano and demon-
strate the robustness of our methods across multiple input
representations.

1. INTRODUCTION

Music is inherently complex. A single motif can be de-
scribed along a multitude of dimensions. Some of these
dimensions may describe the motif in broad terms and cap-
ture properties that offer a more aggregate representation
including tonality, note density, complexity, and instru-
mentation. Others may consider the sequential nature and
temporal facets of music such as syncopation, harmonic
progression, pitch contour, and repetition. While these fea-
tures may describe specific attributes about the music, they
are intrinsically related and when combined can be used to
predict or classify higher level musical descriptors such as
genre, style, or even mood and emotion.

In recent years, neural networks have been used to
learn a low dimensional latent “musical space” or “em-
bedding" to encapsulate such features and provide a

c© Mason Bretan, Larry Heck. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Mason Bretan, Larry Heck. “Learning Semantic Similarity in
Music via Self-Supervision”, 20th International Society for Music In-
formation Retrieval Conference, Delft, The Netherlands, 2019.

method of measuring semantic similarity between two mu-
sical passages [26]. Ideally, the embedding f(x) ∈ Rd
for a passage x is learned such that the Euclidean dis-
tanceDi,j = ||f(xi)− f(xj)||2 between two passages de-
scribes their semantic relationship. For the task of au-
tonomous music generation learning this space effectively
is important in order to influence the generator such that
its outputs conform to human expectations. This is par-
ticularly true in interactive applications where a machine’s
response is typically conditioned on a human performer.
Thus, an effective embedding is one that is capable of in-
terpreting music in a manner which correlates with human
perception.

Previously, musical embeddings have been learned us-
ing restricted boltzman machines (RBMs) [9, 22, 27],
autoencoders (with various denoising techniques) [2, 3],
siamese network models [4,13,23], word2vec models [11],
and sequence prediction models [1, 6, 18]. Variational au-
toencoders (VAEs) have also demonstrated some success
with monophonic inputs [25]. VAEs learn a normally dis-
tributed latent space which has shown to make sampling
and embedding manipulation more effective [15]. Though
VAEs are useful for constraining the statistical properties
of the learned space, it has also been shown that, like word
embeddings in language, improved features can be learned
when networks are trained to reconstruct the context. The
resulting features perform well on prediction and composer
classification tasks [2].

An ideal embedding is one that both captures useful fea-
tures and conforms to a distribution suitable for sampling
and meaningful interpolation. In this work, we present two
methods for learning musical embeddings. The methods
leverage context and simultaneously impose a shape on the
feature space distribution via backpropagation using an ad-
versarial component. We focus on the symbolic domain
and target short musical units such as a three second clip
or a sequence consisting of a small of number notes. The
goal is to project these units into a continuous low dimen-
sional space that has semantic relevance. We evaluate rel-
evance based on the learned features’ abilities to complete
several music-related tasks. We use a dataset consisting of
classical piano and demonstrate that it is possible impose
a prior distribution on the embeddings while maintaining
the quality of the features.
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2. RELATED WORK

One possible scenario for learning a space which encodes
semantic similarity is to explicitly label pairs of musical
units as being similar and train a model in a supervised
fashion, thus, pulling units labeled as similar closer to-
gether and pushing non-related units further apart in the
latent space. This type of metric learning can be effective,
however, the requirement for constructing such a dataset
makes it challenging. In this work we focus on self-
supervised methods that don’t require explicitly labeled
data.

RBMs, autoencoders, and prediction are all examples
of self-supervised learning paradigms. They rely on what
is readily available in the data to serve as a proxy to hu-
man labeled data, thus, autonomously constructing the su-
pervising signal. Many of the methods have been inspired
from the natural language processing community includ-
ing skip-gram and language models [20]. For example,
both [11] and [18] used skip-gram inspired techniques to
embed chords. The learned tonal space had similarities to
the circle of fifths. Context is also leveraged in [4] where
a Deep Structured Semantic Model (DSSM) is used learn
one, two, and four bar embeddings [12]. Such siamese net-
work techniques have proven useful for learning semantic
similarity in language. In [21] labeled pairs were used to
train siamese networks to effectively learn sentence simi-
larity. A pairwise ranking loss was similarly used for the
task of hit song prediction [30].

RBM and autoencoder methods don’t leverage context,
but have still demonstrated the ability to learn good fea-
tures compared to manually designed features. This is
particularly true in the audio domain [9, 16, 29]. In [7]
autoencoders were used to learn a latent space encoding
timbre. Autoencoders are particularly useful because they
inherently support contain a generative component and if
learned effectively the embeddings can be manually ma-
nipulated for interactive applications [3]. VAEs, in par-
ticular, have shown promise and utility for music because
the latent space is regularized in a manner that makes sam-
pling and manipulation more convenient and meaningful
[15, 24, 25].

The methods in this work are inspired by adversarial
autoencoders [19]. Like VAEs, the goal of this type of
autoencoder is to constrain the latent codes to some arbi-
trary prior distribution. However, instead of using a KL-
divergence penalty, the autoencoder incorporates an adver-
sarial method to train the distribution of the latent codes to
match that of the prior distribution.

While both VAEs and adversarial autoencoders are use-
ful for generation, it has been shown that autoencoder fea-
tures are not as effective for downstream tasks compared
to methods that include context or prediction [2]. In this
work we propose a solution that computes a pairwise loss
based on context and includes an adversarial component to
regularize the latent space.

3. METHODS

We present two methods. At a high level the embed-
dings of semantically similar units should be geometrically
closer in the latent space than units that are dissimilar. For
each method the objective is to learn a space that achieves
this by leveraging context while adhering to a predefined
distribution. In lieu of explicitly labeled data we train the
networks using the assumption that two adjacent units (i.e.
two adjacent measures in a composition) are related. In
other words the distance between two adjacent units should
be smaller than two random units in the database.

3.1 Adversarial DSSM

Our first method is a modified implementation of the
DSSM. If q(z) represents the aggregated posterior distri-
bution of all the embeddings of length d generated by the
DSSM f(x) for x ∈ X then the goal here to is match q(z)
to a prior distribution p(z) we define as zi ∼ Nd(µ, σ2)
where µ = 0 and σ2 = 1. This is achieved by connecting
a discriminator to the last layer of the DSSM as shown in
Figure 3. This discriminator is trained adversarially in co-
alescence with the generator which also happens to be the
DSSM itself.

The standard DSSM training procedure is well-suited
for metric learning as it explicitly trains parameters to pro-
duce embeddings that are closer together (according to
a distance metric) for related items while pushing non-
related items away. However, the number of negative
examples and the ratio of easy to hard examples is usu-
ally greatly biased towards the easy-end. This often pro-
duces poor performance since many examples can satisfy
the constraint with a very small loss that provides no real
meaningful update during backpropagation [5]. This typi-
cally leads to high inter-class and low intra-class variance
making fine grained categorization or meaningful similar-
ity measures (important for music) challenging or impos-
sible.

To address this problem a bootstrapping method was
used in [5] in which particularly difficult examples were
manually mined from the dataset and used during different
stages of training. In this work, the adversarial component
naturally helps to mitigate this problem by enforcing the
prior distribution. The network parameters must find a way
to achieve the desired similarity metric, but adhere to a dis-
tribution that does not allow for a learned space in which
most examples can easily satisfy the similarity constraint.

The adversarial DSSM is trained in two stages: 1) Us-
ing the standard DSSM technique compute a softmax loss
with negative examples and 2) Using the adversarial net-
work train the generator and discriminator so that the gen-
erator is trained to produce embeddings that look as if they
have been sampled from the predefined distribution p(z).
Thus, the parameters are being optimized according to two
different losses with one learning the similarity metric and
the other learning to describe the data such that the aggre-
gated posterior distribution of the embeddings are Gaus-
sian and continuous.
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Figure 1. Architectures for a) Adversarial DSSM and b) Adversarial Adjacency Model

For the first part the network is trained using Euclidean
similarity.

sim(X̃ , Ỹ ) =
1

1 +D(X̃ , Ỹ )
(1)

Negative examples are included in a softmax function to
compute P(R̃|Q̃) where ~R is the reconstructed vector and
~Q is the input vector.

P(R̃|Q̃) =
exp(sim(Q̃ , R̃))∑
d̃εD exp(sim(Q̃ , d̃))

(2)

The network learns the parameters by minimizing the fol-
lowing loss function using gradient descent:

L = −log
∏

(Q,R)

P(R̃|Q̃). (3)

For the second part generative adversarial network
(GAN) training procedures are used [8]. First, the ad-
versarial discriminator is trained to distinguish between
the generated embeddings and vectors sampled from q(z).
Second, the generator (also the DSSM or f(x)) is trained
to fool the discriminator. We use a deterministic version of
the GAN where stochasticity comes solely from the data
distribution. In other words no additional randomness is
incorporated.

Training alternates between the DSSM and GAN pro-
cedures until Eqn. 3 converges. We found that a higher
learning rate for the GAN procedures (particularly for up-
dating the generator) relative to the DSSM loss was nec-
essary in order to get the desired results. Otherwise, the
GAN based updates had very little to no effect resulting in
a model with a very similar behavior to the vanilla DSSM
without the adversarial component.

3.2 Adversarial Adjacency Model

The second method we propose is also inspired by siamese
network paradigms. However, unlike the DSSM, the em-

beddings are not directly optimized for the desired met-
ric. Instead, a classifier is trained to determine whether two
units are related or not. Though, because we use adjacency
as the self-supervising surrogate signal in lieu of manu-
ally designed similarity labels the classifier is really being
trained to determine whether two units would be contigu-
ous or not in a composition.

A simple version of this classifier would concatenate
both units into a single input and be trained to produce a bi-
nary classification from this concatenated vector. Our goal,
however, is to be able to embed a single unit and having a
network which requires two units as input would prevent
this. Therefore, we use tied weights in which the lower
layers of the network are identical and the embeddings are
not concatenated until several layers deep into the network
(see Figure 3). In other words the two inputs are embedded
independently, but use the same parameters to do so.

A much smaller classifier is attached to the top of the
concatenated embeddings to discriminate between related
and non-related inputs. By using only a couple layers to
perform the actual discrimination most of the good features
for classification will need to be learned by the embedding
portion. This enforces the network to embed an input in a
manner that not only efficiently encodes itself, but also can
effectively distinguish itself from unrelated inputs. Our
thinking was that hopefully the network would achieve this
by embedding related units closer together. (Note, for ease
of comparison the architecture of the embedding network
here is identical to the DSSM network in the previous sec-
tion).

Like the previous method we attach an adversarial com-
ponent to the end of the embedding portion of the net-
work. The goal is the same in that the aggregated posterior
distribution of the embeddings should conform to a pre-
defined distribution. The model is trained in two stages:
1) Train the classifier to discriminate between related and
non-related inputs and 2) Train the embeddings to fit a
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prior distribution using the GAN scheme. Therefore, the
embedding portion of the model is updated during both
stages.

For the first part the classifier is trained using cross en-
tropy with two classes (related and non-related).

−
M∑
c=1

y′c log(yc) (4)

where M = 2, y′ is the predicted probability and y is the
ground truth. The GAN portion is trained similarly to the
previous method. We found that this method was inher-
ently more stable than the previous method and much less
tuning of the learning rates between the two losses were
necessary.

4. EXPERIMENTS

In order to test the various networks and training proce-
dures we used a collection of piano compositions from 27
artists. The distribution of compositions among artists is
depicted in Table 4. At least two songs from each artist
were held out for testing. We augmented the data by trans-
posing each piece into all keys. This also prevented the net-
works from simply learning the bias any composers might
have had for specific key signatures. We also augmented
the data by altering the tempo randomly within a range of
.95 to 1.05 of the original.

Composer Num. Train Songs Num. Test Songs
Albeniz 15 2

J.S. Bach 8 2
Bartok 21 4

Beethoven 30 4
Borodin 8 2
Brahms 31 5

Burgmueller 10 2
Byrd 34 4

Chopin 49 6
Clementi 17 2
Couperin 10 2
Debussy 10 2
Galuppi 6 2
Grieg 17 2

Handel 20 3
Haydn 20 3

Scott Joplin 57 4
Liszt 17 2

Mendelssohn 16 2
Mozart 22 3

Mussorgsky 9 2
Rachmaninov 10 2

Ravel 5 2
Scarlatti 6 2
Schubert 30 4

Schumann 25 3
Tschaikovsky 13 2

Table 1. Piano Music Dataset.

4.1 Baseline Models

We compare our methods against four baseline models for
a total of six methods:

1. Variational autoencoder (VAE)
2. Adversarial autoencoder (AAE)
3. Deep structured semantic model (DSSM)
4. Adjacency Discriminator (AdjD)
5. Adversarial deep structured semantic model (A-DSSM)
6. Adversarial Adjacency Discriminator (A-AdjD)

4.2 Input Representation

Often performance of a music-based model is ultimately
determined by the input representation of the data. There-
fore, we test our system using two different input represen-
tations.

Figure 2. Two representations for encoding middle ’C’
(midi note 60) and a 33ms interval to the next pitch. Input
representation #1 uses a two-hot encoding that discretizes
time in 10ms chunks. Input representation #2 uses a single
floating point value for both pitch and time.

The first representation is inspired by Google Magenta’s
event based method [28] in which each event is one-hot en-
coded. Because much of the data does not include relevant
volume information we do not include it in our representa-
tion. We also use only the onset time and use a fixed dura-
tion for each note, therefore, it is not necessary to include
note off events. This was primarily to simplify the input
space and attempt to better interpret the results. Pitch is
represented in a one-hot manner on a vector representing
midi values 24 to 96. We encode intervals between pitch
events discretely in 10ms intervals from 0 to 2000ms, thus,
the time portion of the vector consists of 200 values. The
single vector for all possible events including pitch and in-
terval has a length of 272. A two-hot encoding method is
used so both the pitch and interval before the next pitch is
encoded using the 272 values (see Figure 4.2).

The second representation is much less conventional.
We represent both pitch and time intervals continuously.
The pitch of a note is represented by a single floating point
value determined by its midi value and the interval between
notes is also represented by a single floating point value
determined by the number of milliseconds. Therefore a
vector for a single event only has a length of two (4.2).

On the surface, this continuous pitch representation
does not make a lot of sense as the Euclidean distance
in this space does not really translate to pitch distances
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that are particularly meaningful in Western music or pi-
ano. An autoencoder trained to reconstruct this input using
a Euclidean-based loss is unlikely to learn many relevant
musical features. However, the two methods proposed in
this work do not compute the loss in the original space.
The adversarial DSSM optimizes the latent space by com-
puting the loss directly on the embeddings and the adver-
sarial adjacency model optimizes the latent space through
a classification task using a cross entropy loss. Therefore,
we hypothesize that our methods should be more robust
against varying input representations compared to models
that compute a loss in the original space (e.g. autoen-
coders). Additionally, a method that is robust when us-
ing this representation can be useful for styles of music or
particular instruments in which continuous pitch represen-
tations are more appropriate.

In this continuous representation the pitches and in-
tervals are standardized to a mean of zero and standard
deviation of one. In our experiments we did not find a
difference in our final results when compared to using
non-standardized input vectors, however, the learning was
faster using standardized vectors.

We focus on short musical units consisting of exactly
40 notes. This means that the input vector to the network
using the first representation has a length of 10880 (40 *
272). The input vector using the second representation has
a length of only 80 (40 pitches and 40 intervals). Forty
notes was chosen because it provides enough content to
capture local structure, yet, the vector length using the first
representation is not overwhelmingly large.

4.3 Architectures

The first layer of the network is convolutional using a filter
with an input length equivalent to a vector containing one
note and one interval (i.e. 272 for the first representation
and 2 for the second). The filter is convolved over the entire
vector using an equivalent stride length (272 or 2), thus,
the filter learns to encode a single pitch and interval. After
this initial convolutional layer all remaining layers are fully
connected.

For each method the portion of the network which per-
forms the embedding is the same aside from marginal dif-
ferences in the number of parameters for the first convolul-
tional layer between the two representations. The network
encodes the input into a 32-dimensional vector. Each net-
work has eight layers between the final embedding and in-
put vector and uses residual connections [10] as depicted
in Figure 3.

It is plausible that higher capacity networks (both wider
and deeper) may improve results further, however, the pri-
mary objective in this work is to compare various training
methods and not architectures. We designed this architec-
ture because it allowed us to leverage the utility of deep
learning and specific techniques (e.g. convolution, residual
connections, etc.), yet, it is not too large that training time
would become problematic during experimentation. Each
layer uses LeakyReLU and the parameters are updated us-
ing Adam optimization [14, 17].

4.4 Experiments

We perform five different experiments based on music-
related tasks. Performance on these tasks will be used to
determine the efficacy of the learned latent space and fea-
tures for the various models.

Ranking The primary measure for evaluation is based
on a ranking task. Given a reference unit and a group of
100 units consisting of 99 random units from the database
and one unit that is adjacent to the reference (either be-
fore or after) the task is to rank all 100 units according
to their Euclidean distance to the reference in the latent
space. This is repeated for each unit in the test set and
a mean rank is reported where the a lower rank indicates
a higher similarity. The assumption is that adjacent units
should be geometrically closer in the latent space relative
to non-adjacent units.
Composer Classification We evaluate how useful the
learned features are for classifying the units according to
their composers. Using the embeddings as inputs we train
a simple two layer network to perform classification. In the
test set there are 27 possible composers. Though works by
these composers are seen during the training phase, the test
set consists of unique compositions that were not available
during training.
Pitch Chroma Prediction We evaluate whether the em-
bedding retains enough information about the input units to
reconstruct a unit’s chromagram representation. We train
a two layer network to minimize a softmax function (Eqn.
3) over cosine similarity. Thus, in Eqn. 2 we replace the
Euclidean similarity (Eqn. 1) with sim(X̃ , Ỹ ) = X̃T ·Ỹ

|X̃ ||Ỹ | .
The positive example is the true chroma extracted from the
unit computed directly from the original input vector. Neg-
ative examples come from chroma extracted from random
units in the data.
Note Density Regression We evaluate whether the embed-
ding retains enough information about the input units to
describe their note density. Because we use a fixed num-
ber of notes per unit the network is trained to predict the
unit’s duration in seconds. We use root mean square error
(RMSE) to measure performance.
Forward Prediction We evaluate whether a sequential
model can be trained to predict the embedding of the
next unit in a composition given a sequence of the pre-
vious seven units. This task is related to the first Ranking
task, but focused on generation and prediction rather than
general distances in the learned manifold. We train two
stacked LSTM cells, each with 200 units, to predict the
next step of a sequence. Specifically, at each time step,
the input to the network is a the 32-dimensional embed-
ding vector of a 40 note unit xi. We train this network
to predict the 8th unit, xi+7 given the previous 7 units
xi, zi+1, . . . xi+6. This means that 280 notes of context
are provided before the prediction is made.

For each given target xi+7 as described above, we cre-
ate a set of 32 embedding vectors: one is f(xi+7), the true
embedding for the target. The other 99 vectors are em-
beddings of randomly selected units in the data set. The
Euclidean distance is measured between the output of the
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LSTM and the encodings of each unit. The distances are
then sorted and ranked similarly to the first Ranking exper-
iment.

5. RESULTS

The results for each experiment are reported in Tables 2-6.

Method Representation #1 Representation #2
VAE 10.8 12.3
AAE 9.9 12.3

DSSM 11.2 14.8
AdjD 5.8 6.3

A-DSSM 8.8 9.2
A-AdjD 5.1 5.6

Table 2. Ranking Results. Geometric means are reported
for the adjacency ranking task. A lower score indicates a
better result.

Method Representation #1 Representation #2
VAE .11 .087
AAE .11 .091

DSSM .18 .10
AdjD .26 .26

A-DSSM .23 .19
A-AdjD .27 .28

Table 3. Composer Classification Macro-F1 scores are
reported for the composer classification task. A higher
score indicates a better result.

Method Representation #1 Representation #2
VAE .56 .43
AAE .57 .44

DSSM .34 .27
AdjD .71 .68

A-DSSM .72 .67
A-AdjD .83 .78

Table 4. Chroma Predication Geometric means of cosine
similarities between predicted and ground truth chroma. A
higher score indicates a better result.

Method Representation #1 Representation #2
VAE .33 .28
AAE .33 .29

DSSM .20 .18
AdjD .26 .20

A-DSSM .21 .19
A-AdjD .21 .19

Table 5. Note Density Regression RMSE values are re-
ported for note density regression. The deviations were
measured in seconds. A lower score indicates a better re-
sult.

Method Representation #1 Representation #2
VAE 5.9 8.7
AA 5.9 8.6

DSSM 10.7 11.5
Adj 2.7 3.0

A-DSSM 4.8 5.2
A-Adj 2.6 2.7

Table 6. Forward Prediction Geometric means are re-
ported for the adjacency ranking task. A lower score indi-
cates a better result.

5.1 Discussion

The vanilla DSSM performed relatively poorly on all tasks
except for note density regression. Without the adversar-
ial component it learns the most significant feature (in this
case note density in time), yet, fails to learn much more
beyond this. By fitting the latent space to a prior distribu-
tion, the adversarial component seems to do what it was
designed for – preventing the model from satisfying the
similarity constraint without actually learning too many
meaningful features.

Our adjacency discriminator model worked reasonably
well even without the adversarial training. We found that
without the adversarial component the latent embeddings
were naturally fairly close to a Gaussian distribution, thus,
adding an adversarial discriminator had much less of an ef-
fect than when used with the DSSM. Though the additional
fine tuning did improve performance across the tasks albeit
marginally.

Finally, the differences in performance for the two input
representations were much less pronounced for our meth-
ods. This suggests our proposed methods (the Adversarial
Adjacency Discriminator in particular) may be useful for
non-Western music and instruments capable of continuous
pitch spaces.

6. CONCLUSION

In this work we described new approaches to self-
supervised metric learning. The learned features showed
improved results on downstream tasks over various base-
line methods. Most importantly, the quality of the features
were either improved or maintained when imposing a prior
distribution on the embeddings. The next steps for this
work are to: 1) develop decoders from the latent spaces
learned from our methods and 2) measure the perceptual
significance of the learned space.
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ABSTRACT

In this paper, we introduce a method for converting an in-
put probabilistic piano roll (the output of a typical multi-
pitch detection model) into a binary piano roll. The task is
an important step for many automatic music transcription
systems with the goal of converting an audio recording into
some symbolic format. Our model has two components:
an LSTM-based music language model (MLM) which can
be trained on any MIDI data, not just that aligned with au-
dio; and a blending model used to combine the probabil-
ities of the MLM with those of the input probabilistic pi-
ano roll given by an acoustic multi-pitch detection model,
which must be trained on (a comparably small amount of)
aligned data. We use scheduled sampling to make the
MLM robust to noisy sequences during testing. We ana-
lyze the performance of our model on the MAPS dataset
using two different timesteps (40ms and 16th-note), com-
paring it against a strong baseline hidden Markov model
with a training method not used before for the task to our
knowledge. We report a statistically significant improve-
ment over HMM decoding in terms of notewise F-measure
with both timesteps, with 16th note timesteps improving
further compared to 40ms timesteps.

1. INTRODUCTION

The ultimate goal of the task of Automatic Music Tran-
scription (AMT) is to convert an audio signal into some
form of human- or machine-readable music notation [2].
This process is divided into two main steps. First, an
acoustic model performs multi-pitch detection by convert-
ing an input acoustic signal into a posteriogram: a pseudo-
piano roll matrix which contains the probability of each
pitch being present at each timestep according to the acous-
tic model. Next, a music language model (MLM) is used
to enforce some musicality on the results, converting the
posteriogram into a human-readable format.

While it is desirable to run these two models jointly—
and some systems have been designed in such a way

∗Authors 1 and 2 contributed equally to this work.

c© Ycart, McLeod, Benetos, Yoshii. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Ycart, McLeod, Benetos, Yoshii. “Blending acoustic and
language model predictions for automatic music transcription”, 20th In-
ternational Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

with success, either with relatively simple MLMs (e.g.,
[19,20]), or for performing a simpler task than AMT (e.g.,
chord detection [15])—the search space and resulting com-
putation quickly becomes too large to be feasible for more
complex probabilistic MLMs which explicitly model mu-
sical structure (e.g., [22]). Furthermore, such MLMs have
typically been designed to take as input MIDI (or MIDI-
like) data which consists of lists of musical notes, rather
than the typical posteriogram output of acoustic models.

However, the conversion of a posteriogram into MIDI
is not a trivial task, and has not been the focus of much
research until recently. A naive approach is simple thresh-
olding of the posteriogram, and a simple two-state (on/off)
HMM has also been proposed [17]. Some more sophisti-
cated models have attempted to use neural networks as im-
plicit MLMs to incorporate some prior musical knowledge
into their systems (e.g., [21,24]), but often, they bring only
modest improvement [21] or the MLM is only used in rare
occasions [24] (see Section 2 for a more complete discus-
sion on these and other related systems). The main issues
that we identify with these previous attempts to incorporate
MLMs are (1) the MLM fails to capture musical features
because of an inappropriately short timestep which over-
emphasizes self-transitions [25], and (2) the MLM is not
robust to noise during decoding.

Our main contributions are to:
1. compare the use of a musically-relevant timestep for

MLM decoding—specifically a 16th note, as recom-
mended in [25]—to the more standard 40ms.

2. train the MLM with scheduled sampling [3], making
it more robust to noise at test time.

3. propose a novel “blending” model which dynami-
cally merges probabilities from the acoustic model
and the MLM rather than using a simpler method
such as a linear combination.

4. describe a new training method for a previously-
proposed post-processing HMM [17], leading to a
significant improvement in F-measure over the stan-
dard maximum likelihood approach.

For contribution (1), note that in a realistic setting, using
a 16th note timestep would require a beat-tracking algo-
rithm. However, in this proof-of-concept experiment, we
consider 16th note locations as given, and leave the integra-
tion of a noisy 16th note timestep for future work. It should
be noted that a 16th note timestep was already investigated
in [27] for polyphonic sequence transduction, which con-
cluded that although an improvement is observed when
using 16th note timesteps, it is attributed only to the fact
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that the resulting outputs are quantized to the ground truth
metrical grid. By contrast, we show here that a 16th-note
MLM brings improvement for language model decoding
beyond quantisation of the output.

We conduct our experiments using a state-of-the-art
piano-specific acoustic model [13] (although our system
could be applied to a variety of musical instruments and
styles). Overall, we show that our full system with the
16th note timestep, scheduled sampling, and the blending
model, leads to a significant improvement in F-measure
over both the baseline and the proposed HMM, with iden-
tical timesteps.

2. RELATED WORK

The most basic strategy for binarizing time-pitch posteri-
ograms is simple thresholding, where outputs below some
value are set to 0 while all others are set to 1 (e.g., in
[9, 11, 13]). Slightly more sophisticated is to use a two-
state (on/off) HMM for each pitch (proposed in [17], used
in, e.g., [6, 7]), where results tend to be cleaner with fewer
spurious notes using this method. Still, the musicality of
such a model is limited, as it considers each pitch inde-
pendently, and does not consider more than one previous
frame for each transition.

Recently, deep learning methods have also been used
for this task, typically using some form of RNN. They
can be broadly grouped into performing one of two tasks:
transduction or language model decoding.

Transduction methods aim to convert one sequence of
symbols into another (here, the output of an acoustic model
into a binary piano roll). Examples include [5], which uses
an architecture combining an RNN with a Restricted Boltz-
mann Machine (RBM), and [27], which investigated the
performance of an LSTM-based model. One drawback of
transduction methods is that they require aligned MIDI and
audio recordings for training. Similarly, they are trained on
one specific acoustic model’s outputs, and do not necessar-
ily generalize to other acoustic models.

With language model decoding methods, an MLM is
trained to assess the likelihood of an output sequence. Im-
portantly, such a model is trained on symbolic data, inde-
pendent of any acoustic model. For example, [21] uses an
RNN-RBM as a language model, combined with various
neural acoustic models. Similarly, [24] uses an RNN-RBM
language model, but instead of using a fixed framerate, it
operates on frames corresponding to detected inter-onset-
intervals. Our method belongs to this second category of
language model decoders, with the caveat that one compo-
nent of it, the blending model, requires training on aligned
pairs of input and output, though much less than would be
needed to train a neural transduction model.

As mentioned, using an MLM has brought only lim-
ited improvement to the performance of AMT systems in
the above studies. One reason for this lack of substantial
improvement in [21] might be the use of an inappropriate
timestep for language modelling: the MLM operates on
32ms timesteps, a duration much shorter than the typical
duration of a note, and unrelated to the tempo of the piece
being analyzed. Indeed, [25] hints at the fact that for poly-

Figure 1. The proposed system.

phonic music sequence prediction, using a small time-step
only results in a smoothing effect due to the predominance
of self-transitions, and using a musically-relevant time step
such as a 16th note allows the network to learn more in-
teresting musical properties. To that end, [24] describes
an MLM which uses note-based timesteps. However, the
MLM was only used in the rare case that a note onset was
detected without a corresponding pitch. Using the MLM
over the whole note sequence resulted in decreased perfor-
mance over simple thresholding, possibly due to the dis-
crepancy between training using perfect inputs and decod-
ing noisy sequences (this issue was also noted in [21]).

3. PROPOSED SYSTEM

Our system takes as input a probabilistic piano roll, specif-
ically the output of the acoustic model from [13]. That
model is a CNN which takes as input a spectrogram with
logarithmically-spaced frequency bins and log-magnitude
with a timestep of 40ms, and is a benchmark acoustic
model for piano transcription.

Our system’s inputs are in the form of matrix I ∈
RNp×T , where T is the length of the input in frames,
Np = 88 (one row per key on a piano keyboard), and
each element Ip,t contains the probability of a pitch p be-
ing present at frame t. Our output is the binary matrix
O ∈ {0, 1}Np×T , where Op,t is 1 if pitch p is present at
frame t, and 0 otherwise.

Our system flow is shown in Fig. 1. It consists of two
main components: an LSTM-based language model (see
Section 3.1), which predicts the presence of each pitch at
a frame given the previous frames; and a blending model
(see Section 3.2), which combines the input acoustic prior
with the LSTM’s priors at each frame, and outputs a fi-
nal combined probability distribution over pitches at each
frame. The search process for finding the most probable
output according to our system is detailed in Section 3.3.

3.1 Language Model

The language model has the same architecture as described
in [25]. It is a single-layer LSTM, with a hidden layer of
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size 256 and sigmoid outputs of size Np. It is trained to
predict which pitches might be present in the next frame of
a binary piano roll, given all the previous (binary) frames,
using cross-entropy between the output of the network and
the actual next frame as training loss. Two different MLMs
were trained, one operating on 40ms timesteps, and one on
16th note timesteps. We use Lp,t to denote the MLM’s
output corresponding to pitch p at frame t.

During a typical training procedure, the input sequences
from which the network learns are taken directly from
the ground truth. Such an MLM learns to make predic-
tion based only on perfect musical sequences. However,
during inference, the MLM must make predictions based
on potentially noisy sequences, as input frames are ob-
tained from previous predictions and noisy acoustic multi-
pitch detections. This discrepancy hinders performance
of MLMs, as noted in [21] and [24]. To solve this prob-
lem, we use scheduled sampling [3]: during training, at
each timestep, instead of always using the ground-truth
frame, we randomly choose either the ground-truth frame
(with probability pGT ), or a frame sampled from predic-
tions made by the MLM at the previous timestep. Training
starts with pGT = 1, and pGT is decreased as training pro-
gresses, allowing the MLM to progressively become more
robust to noisy inputs and recover from previous mistakes.

One limitation is that the noise the MLM adapts to is
not the same the MLM sees at test time, since samples are
drawn using the acoustic model’s outputs as well at test
time. We could sample from a distribution that does the
same during training, but we choose not to, because (1)
[3] mentions that even adding uniform noise helps perfor-
mance, so exactly matching noise distributions is less im-
portant, and (2) this would require paired audio and MIDI
data for MLM training (as acoustic model predictions must
be made from audio), which is available in smaller quanti-
ties than MIDI data alone.

3.2 Blending Model

The intuition behind the blending model is that the MLM
and the acoustic model might each perform better or worse
in certain situations, so combining their probabilities with
a constant weight may achieve poor results. The blending
model’s job is to learn the situations in which each model
performs well, and output the combined prior for a pitch at
a frame based on both the probabilities from the acoustic
model and the MLM, as well as some surrounding context.

It is a feed-forward neural network with l 1 hidden lay-
ers with 5 nodes each followed by an output layer with a
single sigmoid. For each pitch p at time t, it takes as input:
(1) the acoustic and language priors at that pitch and frame
(Ip,t and Lp,t), (2) the sample history at that pitch for the
previous hist 1 frames (Op,t′ for max(0, t− hist) ≤ t′ <
t), and (3) nine additional hand-crafted features, described
in Table 1, resulting in an input vector of length 11 + hist.

The sample history allows the model to learn if there
are certain situations in which the LSTM performs partic-
ularly well or poorly. Features 1–4 model how peaked the

1 See Section 4.5 for details on the training of l and hist.

Feature Description Equation
1–2 Uncertainty Eqn. (1)
3–4 Entropy Eqn. (2)
5–6 Mean

∑
p′<Np

Ip′,t
Np

7–8 Flux Ip,t − Ip,t−1
9 Pitch p

Np

Table 1. The features used for the blending model. For
equations written using I , the second feature is calculated
identically with L.

output distribution from each model is (and thus how cer-
tain it might be) but with different nonlinear properties.
Features 5–6 model the expected polyphony, features 7–
8 model how fast-changing each model’s predictions are,
and feature 9 allows the blending model to learn if either
model performs better or worse for high or low pitches.

Uncertainty =
∑

p′<Np

{
(1− Ip′,t)

2 Ip′,t > 0.5

(Ip′,t)
2 Ip′,t ≤ 0.5

(1)

Entropy =
1

log2(Np)

∑
p′<Np∧Ip′,t 6=0

−Ip′,tlog2(Ip′,t) (2)

We create two versions of the blending model. First, a
weight model (WM) which outputs a weight wp,t, which is
used to calculate a blended prior Pp,t as a weighted sum:
Pp,t = wp,tIp,t + (1 − wp,t)Lp,t. Second, a prior model
(PM) which outputs Pp,t directly. The main difference be-
tween the two models is that WM can only ever result in a
Pp,t that lies somewhere between Ip,t and Lp,t, while PM
can always output any Pp,t between 0 and 1.

3.3 Search Process

Since our model’s search space has a branching factor of
2Np at each frame, we cannot perform a global search.
Therefore, we use Viterbi decoding [23] with beam search
using a beam of size b and a branching factor k. Specifi-
cally, at each frame, we save only the b most probable his-
tories to that point. Then, for each of those at frame t, using
the blending model’s output distribution Pp,t, we sample
the k most probable samples using Algorithm 2 from [5]
(again saving only the top b from the b ∗ k resulting hy-
potheses). The sample at frame t is denoted St, and is a set
containing the pitches active at that frame. The probability
of a sample St, given the blended priors Pp,t is:

P (St) =
∏

p′∈St

Pp′,t

∏
p′<Np∧p′ /∈St

1− Pp′,t (3)

Beam search has the drawback that the beam can easily
become saturated with only slight variations of the most
probable hypothesis. Therefore, similar to [21] and [15],
we use a hashed beam search. We consider any two hy-
potheses which are identical for the past h frames to be
duplicates of each other for our purposes, and only save
the most probable of them.

The final output O of our system is constructed using
the sample history of the most probable state in the beam,
such that Op,t is 1 if p ∈ St and 0 otherwise.
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4. EXPERIMENTS

4.1 Data

For our experiments, we use the MAPS dataset [10], which
contains MIDI-aligned recordings of various classical mu-
sic pieces, some as played by an upright Disklavier, and
some synthesized using high-quality piano samples. We
create the exact same test set as was used in [13] (which
was created in the same way as Configuration II from
[21], with the additional constraint that only the Disklavier
recordings were used). We create our training and valida-
tion sets slightly differently because the blending model re-
quires a reasonably-sized validation set on which to train.
From the remaining synthesized pieces, we choose 20 to
become the validation set (counting multiple synthesized
recordings of a single piece as only 1), and use the remain-
ing pieces for training. This results in final split sizes of
59 pieces for test, 105 for training, and 32 for validation.
The decrease in training set size compared to [13] does not
seem to affect the performance of the acoustic model. We
train the acoustic model on the whole pieces, but our eval-
uation is performed on the first 30 seconds of each record-
ing, as is usually done, e.g. in [13].

To train our MLM, we use MIDI files taken from the
Piano-midi.de 2 dataset. This dataset currently holds 324
pieces of classical piano music from various composers,
with both quantised note durations and expressive timings.
Every piece in MAPS can be found in the Piano-midi.de
dataset, as these files were used to create MAPS. To avoid
training the MLM with pieces later used for testing, we
split the dataset using the same pieces as in the MAPS
splits: all the pieces in the MAPS test set are used for test-
ing (52 pieces), all the pieces in the MAPS validation set
are used for validation (20 pieces), and all the remaining
pieces are used for training (252 pieces).

We use two different timesteps in our experiments:
40ms (the resolution of [13]); and 16th-note, in which the
input is divided into 16th-note frames based on the metri-
cal grid. For the 16th-note timesteps, we use the metrical
annotations from the A-MAPS dataset [26]. To downsam-
ple the acoustic prior for the 16th-note timesteps, we take
the average of its original 40ms frames for the duration
of each new frame. Before evaluation, we upsample our
outputs back to 40ms timesteps, assigning each resulting
frame the value of the corresponding output frame.

4.2 Metrics

We report both framewise and two versions of notewise
precision (P), recall (R), and F-measure (F1), each of
which is averaged across all recordings in the test set. The
frame-based metrics are standard as used in the MIREX
Multiple-F0 Estimation task [1], comparing the output pi-
ano roll to the ground truth piano roll, using 40ms frames
(after upsampling when using 16th-note timesteps). Since
our model does not output onsets and offsets explicitly, we
treat any output 1 not preceded by a 1 as an onset, and any 0
not preceded by a 0 as an offset. We treat the ground truth
the same after first converting it into a piano roll. Thus,

2 http://piano-midi.de/

our “notewise” metrics do not correspond with notes ex-
actly, but rather as close as our output format can get. We
leave an analysis using proper notes for future work.

We also perform two post-processing steps for the note-
wise metrics, for all methods: (1) minimum duration prun-
ing, where we remove any notes shorter than 50ms; and
(2) gap filling, where we fill rests shorter than 50ms. Ad-
ditionally, we report both onset-only (On) and onset-offset
(OnOff) notewise results. For On, a note is considered
correct if its pitch is correct and its onset time is within
50ms of the ground truth, and for OnOff, we add the con-
straint that the offset is such that the note duration is within
20% of ground truth (or 50ms, whichever is biggest).
Both are as described for note-tracking in [1], and we use
mir_eval [18] to perform all calculations.

As argued in [12], the most relevant metrics are the
notewise metrics. Indeed, a poor transcription system
could still score high in terms of framewise F1 if its only er-
rors correspond to short spurious notes and fragmentation
of held notes. When discussing our results, we thus con-
centrate mainly on the notewise metrics. Furthermore, the
onset-only metrics are the most commonly-used ones for
the task, and onsets are much more perceptually important
(and salient) than offsets [4, 8]. Thus, our main evaluation
concentrates on onset metrics, and we discuss the OnOff
metrics only in Section 5.4.

4.3 Configurations

Besides the two versions of our blending model described
in Section 3.2 (WM and PM), we use a baseline blend-
ing model: a constant weight (CW) model, which always
calculates Pp,t similarly to WM, but using the constant
wp,t = 0.8 for all p and t (a value set in an ad hoc fash-
ion on the validation set). CW should indicate whether the
adaptability of the blending model is important for perfor-
mance. For each blending model, we train a version both
with and without scheduled sampling (using +S to denote
its use) for each timestep.

There is a risk with PM that the blending model might
choose to dismiss the MLM input completely. With WM,
even if the MLM is not used to choose the weight, it will
still have an influence on the resulting probabilities, unless
the blending model’s output is exactly 1. To see whether
our improvement comes from the MLM or simply the use
of the blending model, we also train a blending model
which is identical to configuration PM+S, except that any
of its inputs which come from the MLM’s predictions are
set to 0 at both train time and test time (this includes the
MLM prediction itself as well as various features which
use the MLM’s output). We call this configuration PM-A,
and present a brief discussion of its results in Section 5.2.

4.4 Baselines

We compare our models against that of [13], retrained with
our training and validation sets. We threshold its output at
a 0.5, setting all values ≥ 0.5 to 1 and all others to 0.

We also compare our model against a common HMM
baseline [17] where each pitch is represented by a simple
2-state (on/off) HMM, run independently. Typically, the
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Method
40ms timesteps 16th note timesteps

Framewise On-Notewise Framewise On-Notewise
P R F1 P R F1 P R F1 P R F1

[13] 73.0 65.5 68.3 54.2 65.7 58.1 75.2 65.5 69.2 70.9 63.6 65.9
HMM 74.6 63.9 68.0 64.0 62.2 61.9 73.7 69.4 70.7 74.4 66.4 69.1

CW 73.7 64.9 68.2 61.2 63.3 61.1 76.6 61.6 67.3 76.1 55.7 63.0
CW+S 73.9 64.8 68.2 61.3 63.3 61.3 76.6 61.5 67.3 74.8 55.9 62.6

WM 73.0 64.8 67.9 63.0 60.8 61.0 77.2 62.6 68.0 75.6 61.4 66.7
WM+S 75.1 62.3 67.3 67.6 60.2 62.8 77.8 61.2 67.5 79.4 58.5 66.0

PM 81.8 50.8 60.8 57.0 66.5 59.9 77.2 63.9 69.1 72.4 66.4 68.3
PM+S 79.7 57.4 65.6 61.4 65.6 62.6 77.6 64.2 69.3 76.8 68.7 71.7

Table 2. Results of all experiments, with all timesteps, with the best values in bold. CW uses our constant weight model,
WM uses the weight model, and PM uses the prior model. +S denotes the use of scheduled sampling in training.

HMM raises precision and lowers recall, removing short
spurious notes from the output. In [17], one HMM is
trained per pitch class. For transposition invariance, we
instead train a single HMM, and use it for all pitches. In
previous work, it has been standard to use maximum like-
lihood estimation (MLE) to set the transition probabilities
(by counting transitions in some training set), and to treat
the input probabilistic piano roll directly as the observa-
tion probabilities. We instead learn the transition prob-
abilities with Bayesian Optimization (BO) [16] to maxi-
mize the notewise F1 on the validation set. There are only
two probability values to search for (since P (off|S) =
1 − P (on|S)). We use the validation set instead of the
larger training set so that the HMM has noisier observa-
tions during training (for both MLE and BO), and we set
the initial state probabilities to a uniform distribution.

The resulting HMM is one which is much more likely
to change states: for 40ms timesteps, P (on|off) is 0.004
with MLE and 0.493 with BO, and P (off|on) is 0.167 with
MLE and 0.196 with BO. 16th-note timesteps see a simi-
lar change. Specifically, the probability for transitioning
from off to on is much greater, likely because the observed
data is much more accurate at note onsets, and thus the
model can safely trust those values in most cases. The
BO-trained HMM leads to a significant increase in both
framewise and notewise F1 for both timesteps compared to
the MLE-trained HMM (MLE results omitted).

4.5 Training

The MLM is trained using the Adam optimizer [14] with a
learning rate of 0.001. Piano rolls are cut into smaller se-
quences of 750 frames for 40ms timesteps and 300 frames
for the 16th-note timesteps. We augment the data by trans-
posing each sequence by a number of semitones randomly
chosen between -5 and 7 at each epoch, so that each tonal-
ity is equally represented without shifting the note range
too much. We use early stopping, such that if the cross-
entropy evaluated on the validation dataset does not de-
crease for 200 epochs, training is stopped, and the best
model so far is kept. For scheduled sampling, we decrease
pGT linearly from 1 to 0.7 over 500 epochs. Validation is
done using a fixed value of pGT = 0.7, and we use early
stopping once the schedule is finished (after 500 epochs).

The blending model is trained on the validation set to

maximize On-notewise F1. Training data is generated by
running our MLM on the first 30 seconds of each piece in
the validation set with a fixed weight of 0.8 and a beam size
of 10. We save a data point—containing the priors, a sam-
ple history of length hist, and features—for each (frame,
pitch, hypothesis) triple for which the acoustic prior differs
from the language prior by at least ∆min. Bayesian Opti-
mization for 200 iterations is used to search for the values
of ∆min and hist (up to 10 for 16th-note timesteps and up
to 50 for 40ms timesteps), and how many hidden layers l
to use (1–4 of size 5).

The parameters for the beam search are set in an ad
hoc fashion on the validation set. The beam size b and the
branching factor k have small effects, where larger values
lead to better results, but slower computation, and we use
b = 50 and k = 5 for evaluation. The hash length h has
an effect where smaller values force the model to perform
a more global search, but with less ability to make deci-
sions based on frames further in the past. We use a value
of h = 12 for evaluation.

5. RESULTS

Full framewise and On-notewise results are in Table 2.
Overall, we can see that for 40ms timesteps, PM+S and
WM+S outperform all other models in the On-notewise F1

(p < 10−3 with a paired t-test, which we use for all signif-
icance tests), but WM+S does not significantly outperform
PM+S. For 16th note timesteps, PM+S is significantly bet-
ter than all other models for On-notewise F1 (p < 10−6).
The baselines achieve the best framewise results—HMM
for 16th-note (p = 0.021 over PM+S) and [13] for 40ms
(not significant). This makes sense, as our blending models
are optimised for On-notewise F1. Moreover, our MLM is
designed to take advantage of knowledge of musical struc-
ture, which is more clear at the note level.

In the following sections, we investigate the impact of
each component of our system: the timestep (5.1), sched-
uled sampling (5.3), and the blending model (5.2). The
OnOff-notewise metrics are presented in Section 5.4.

5.1 Timestep

It is clear that using 16th-note timesteps improves the re-
sults (framewise for the baselines and On-notewise for all
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methods). Similar results were seen in [27], which showed
that the improvement was mainly due to quantisation of
the output. Here, the increase in performance of [13] is
due entirely to this quantisation. However, when perform-
ing the same quantisation procedure to the output of the
40ms-timestep PM+S, we see framewise and On-notewise
F1 of only 63.6 and 62.9 respectively, significantly worse
than PM+S with a 16th-note timestep (p < 10−6 for
both). PM also sees a significant improvement when us-
ing a 16th-note timestep directly (p < 10−8 for both), as
well as WM+S, but for On-notewise F1 only (p = 0.01).
Weaker or insignificant effects are seen for our other mod-
els, both framewise and On-notewise. This shows that
for our MLM, much of its improvement with 16th-note
timesteps is due to its ability to learn more musical patterns
at that scale, particularly when the full system has the abil-
ity to take advantage of that knowledge. In the following
sections, therefore, we concentrate on the results with the
16th-note timestep.

5.2 Blending model

The adaptability of WM and PM clearly allow them to out-
perform CW, and the wider output range of PM leads to
improvement over WM (p = 0.018 for WM over CW with-
out scheduled sampling, p < 10−6 for all other pairs), al-
though WM’s precision is greater. For the framewise met-
rics, a similar pattern is seen, though the effect is weaker
(p < 0.001 for PM over WM, p = 0.048 from WM over
CW, and not significant for WM+S over CW+S).

To see whether our improvement comes from the MLM
or simply from the use of the blending model, we evalu-
ate the PM-A configuration. This model achieves an On-
notewise F1 of 65.1 with a 16th-note timestep, significantly
worse than PM+S (p < 10−9), which shows that both the
MLM and the blending model play an important part in
our system’s performance. In the following sections, we
concentrate on PM results.

5.3 Scheduled sampling

We can see that PM+S performs significantly better over-
all than PM for On-notewise (p < 10−7), but not frame-
wise F1 (p = 0.50). Looking at the results in a piecewise
fashion leads to an interesting conclusion about where that
improvement comes from. In Figure 2, we plot the note-
wise F1 of [13] (x-axis, a proxy for the noisiness of the
input) against the increase in On-notewise F1 for PM+S
over PM (y-axis) for each piece in our test set. Here, it can
be seen that PM+S outperforms PM by a greater margin
in exactly those cases that we expect scheduled sampling
to help: when the input is noisier. This correlation is sig-
nificant (p = 0.02), but with high variance (R2 = 0.09).
Overall, we can conclude that scheduled sampling does in-
deed lead to improved performance with noisy inputs.

5.4 Onset-offset Evaluation

Table 3 presents the OnOff-notewise results for the two
baselines and our overall best performing model (PM+S),
where it can be seen that our model significantly outper-
forms the other systems (p < 10−5 for both timesteps).

Figure 2. Increase of On-notewise F1 of PM+S over PM
plotted against On-notewise F1 of [13] for each piece. Dot-
ted line shows linear correlation (p = 0.02, R2 = 0.09).

Method 40ms timestep 16th-note timestep
P R F1 P R F1

[13] 31.8 37.7 33.8 41.0 37.3 38.5
HMM 37.8 36.5 36.5 41.3 37.5 38.8
PM+S 41.5 43.2 41.8 47.7 43.3 45.0

Table 3. Results using the OnOff-notewise metrics. PM+S
uses our prior model with scheduled sampling.

This is promising, and it seems that the MLM might have
learned some rhythmic components of musical structure.

6. CONCLUSION

In this paper, we have presented a system for convert-
ing a posteriogram output of an acoustic multi-pitch de-
tection system into a binary piano roll. Our system con-
sists of an LSTM-based MLM and a feed-forward neural
blending model to combine the MLM outputs with those
from the acoustic model. We have shown that our system
performs significantly better than thresholding the poste-
riogram, as well as post-processing it with a new strong
baseline HMM. We have further shown that (1) scheduled
sampling helps the MLM perform better in the case of
noisy inputs, and (2) the use of a 16th-note timestep al-
lows the MLM to learn musical structures better than with
a 40ms timestep.

To that end, in future work, we intend to investigate the
use of noisy 16th-note labels from a beat-tracking system,
rather than the ground truth labels that we have used here.
Furthermore, we will perform a systematic ablation study
for the input features of the blending model. We also in-
tend to analyze our results in a more qualitative fashion
in future work with listening tests. Our own subjective
conclusions are that our system does often produce more
musical results than the baselines, but a proper listening
test would show more objectively whether that is the case
throughout the test set, and what aspects of the resulting
piano rolls become more musical in which cases. In the
meantime, we provide some examples of our model’s per-
formance as supplementary material 3 , along with the code
to reproduce our experiments 4 .

3 c4dm.eecs.qmul.ac.uk/ycart/ismir19.html
4 github.com/adrienycart/MLM_decoding
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ABSTRACT

Hierarchical models of music allow explanation of highly
complex musical structure based on the general principle
of recursive elaboration and a small set of orthogonal op-
erations. Recent approaches to melodic elaboration have
converged to a representation based on intervals, which al-
lows the elaboration of pairs of notes. However, two prob-
lems remain: First, an interval-first representation obscures
one-sided operations like neighbor notes. Second, while
models of Western melody styles largely agree on step-
wise operations such as neighbors and passing notes, larger
intervals are either attributed to latent harmonic properties
or left unexplained. This paper presents a grammar for
melodies in North Indian rāga music, showing not only
that recursively applied neighbor and passing note oper-
ations underlie this style as well, but that larger intervals
are generated as generalized neighbors, based on the tonal
hierarchy of the underlying scale structure. The notion of
a generalized neighbor is not restricted to rāgas but can be
transferred to other musical styles, opening new perspec-
tives on latent structure behind melodies and music in gen-
eral. The presented grammar is based on a graph represen-
tation that allows one to express elaborations on both notes
and intervals, unifying and generalizing previous graph-
and tree-based approaches.

1. INTRODUCTION

North Indian classical music (Hindustani music) provides
valuable evidence for theories of syntactic musical organi-
zation. Like Western art music, it takes the form of aes-
thetic communication with an attentive and experienced
audience, and is also a subject of theoretical discourse.
Like most music outside the Western canon, it is nor-
mally unwritten, depending instead on memorization and
improvisation. Instead of a system of chordal harmony or
polyphony, Indian music comprises a solo melody against
a complex background drone (of at least two pitches).
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Melodic elaboration is prized as a means of musical ex-
tension and aesthetic enhancement: it operates at many
levels, from the ornamentation of a single pitch, to the ex-
pansion of a phrase, to the architecture of a piece or perfor-
mance. Melodic coherence is ensured by selecting one of a
set of modes (rāga), each comprising a scale, a pitch hierar-
chy, and a set of licensed pitch transitions; any phrase that
evokes a different rāga from the one selected is regarded
as an error. It has been noted that Indian music resem-
bles language in several respects [17], and a rāga could be
understood as a melodic grammar, in which melodies are
constructed by recursive elaboration over a hierarchically
organized set of pitches.

The idea of understanding music in a hierarchical fash-
ion goes back to Schenker [21], and has developed through
the integration of impulses from generative linguistics and
the theory of formal grammars since the 1980s [24, 1, 11,
20, 16]. Approaches most commonly addressed harmonic
structure [23, 18, 19, 3, 5] and melody [4, 12]. Several ap-
proaches proposed simplified formalizations of Schenke-
rian theory and corresponding computational implementa-
tions [12, 13, 27, 10]. There is still comparably little dis-
cussion concerning the extent to which such hierarchical
frameworks extend to non-Western forms of music. Nar-
mour’s theory of melodic processes is explicitly directed to
capture melodies outside the Western canon as well [15].
The application of Schenkerian methods to non-Western
music has been discussed by Stock [25]. More recently, it
has been proposed to adapt analytical tools from Schenke-
rian analysis and the GTTM to Indian music [14, 2].

This paper links with this discourse and proposes a gen-
eralized formal model of North Indian melodic and phrase
structure. A common shortcoming in previous models of
melodic elaboration is the treatment of leaps, which are
usually either attributed to a latent harmonic structure that
is assumed to be known [12, 9], or modelled as probabilis-
tic intervals [4, 6] without explicit restrictions. This paper
introduces a formalism for relating leaps in North Indian
music to a latent tonal hierarchy that is stated explicitly.
With respect to this hierarchy, leaps can be viewed as in-
stances of generalized neighbor- and passing-note relations
that take into account the stability of a pitch in a scale. As
will be argued, the generalized neighbor idea applies be-
yond North Indian music to some degree.

A central question for elaborative models concerns the
representation of the music. Since formal grammars – the
standard formalism for recursive elaboration – operate on
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Figure 1: Rāga Multānī with pitches in an approximate
Western notation. The notated duration denotes the hier-
archical level, i.e. relative stability, of each pitch; arrows
indicate a constraint on the resolution direction of an un-
stable pitch.

strings of objects, most models of musical elaboration rep-
resent music as a sequence of objects, such as notes or
chords. As a consequence, these models mostly focus on
melodic [4, 6, 12] or homophonic settings [8].

A desirable property of a formal grammar is that it
is context-free, meaning that elaborations on a single ob-
ject are independent from the objects around it. Systems
that are based on strings of notes have problems with be-
ing context-free since some elaboration operations (such
as passing notes) depend on two notes [11]. Because of
this, more recent approaches have been based on strings
of intervals [12, 27, 4], which allow elaborations of both
single notes and pairs of notes while remaining context-
free. However, in an interval grammar, notes are repre-
sented implicitly and redundantly (as part of an incoming
and outgoing interval). In addition, all notes generated by
elaboration are derived from two parent notes, which is un-
intuitive for single-sided operations. As a unification and
generalization of both approaches, this paper suggests a
graph-based representation in which both notes and inter-
vals are represented explicitly, with a graph grammar de-
scribing the elaboration rules. This goes beyond descrip-
tions of derivations as graphs, which is already an estab-
lished practice [12, 27, 10].

2. MELODIC OPERATIONS

Melody in Indian music is based on a set of modes called
rāgas. A rāga is not only a collection of pitches that may
be used, it also establishes a hierarchy of stability among
these pitches. Stable pitches are those that can serve as
resting points, while less stable pitches tend to move to-
wards their more stable neighbors. Some pitches in a rāga
have a preferred resolution direction and must resolve to
the closest pitch in that direction. An example of a rāga
with its scale, tonal hierarchy, and directional constraints
is shown in Figure 1. The relative stabilities indicated in
Figure 1 is based on observation of normal practice in this
rāga.

The melodic elaboration of a rāga is performed most
completely and systematically (though not exclusively)
in ālāp: a type of improvisation in which the scale and
melodic features of the rāga are gradually exposed in
phrases unfolding an arch-shaped trajectory, starting from
the root (scale-degree 1) and reaching the octave above (or
higher) before finally returning to the root (a process called
vistār or “scalar expansion” [26]). This background struc-
ture is filled and elaborated recursively, generating a com-

� ���� � ��� ���� � ��
Figure 2: A short Multānī phrase and its derivation.

d ∈ DM 1 [2 [3 ]4 5 [6 7

δM (d) l ↓ l l l ↓ l
λM (d) 4 0 2 1 3 0 2

Table 1: A formal description of the rāga Multānī, showing
the direction and hierarchical level of each scale degree (as
shown in Figure 1). [2 and [6 are directed downwards and
can therefore only be used before 1 and 5, respectively.

plex foreground melody. Elaboration follows mainly two
principles, inserting either passing or neighbor notes.

Passing notes fill intervals that are larger than steps.
They can occur close to the surface (such as the [2 in
[3 [2 1), but can also be understood to characterize de-
pendencies in the background (e.g., filling the top-level in-
terval 1 - 1′ with a 5). Two kinds of passing elaborations
can be distinguished: Either a single note is introduced that
subdivides the interval, potentially leaving non-step inter-
vals that can be further elaborated; or the interval is filled
with all scale notes enclosed by the interval.

Neighbor notes can be inserted before or after an exist-
ing note. While passing notes relate to both notes of an
interval, neighbors are subordinate to single notes. When
embellishing a note with a neighbor, a trade-off can be
made between pitch proximity and stability: While un-
stable neighbors need to be very close to the main note’s
pitch, more distant neighbors can occur if they are suffi-
ciently stable. In general, a pitch can only be perceived as
a neighbor to some reference pitch if no pitch in the in-
terval between the two is more stable than the proposed
neighbor in the given mode.

Figure 2 shows the steps needed to derive a phrase using
neighbors and passing notes. Starting with a single 1, the
note is duplicated and elaborated twice, first with a lower
neighbor 7, then with an upper neighbor [3. Finally, the
space between [3 and 1 is filled with a passing [2.

3. MODES AND GENERALIZED NEIGHBORS

The idea of modes and generalized neighbors can be given
a formal description: A mode M is a triple

M := (D, δ, λ)

δ : D → {↑, ↓, l}
λ : D → N

where DM is a totally ordered set of scale degrees, δM is
a function indicating the direction in which a scale degree
is allowed to move, and λM returns the hierarchical level
of a scale degree. For example, the rāga Multānī (Figure
1) would be formalized according to Table 1.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

463



7′ 1 [2 [3 ]4 5 [6 7 1′ [2′

hi
er

ar
ch

ic
al

le
ve

l

Figure 3: The upper and lower neighbors (dark) of [3
(black) in the Multānī rāga. Only pitches that can be
reached without skipping a more stable pitch are neigh-
bors. [2 is not a neighbor since it is directed downwards
and can only be a neighbor to 1.

The same scale degree can be used as a pitch in different
octaves, so pitches are indicated as scale degrees together
with “′” for octaves above and “′” for octaves below the
default octave. The pitches of adjacent octaves are adjacent
as well: 7′ is directly below 1 and 1′ is directly above 7.
As a result, a mode gives rise to a set of pitches PM , which
corresponds to Z while scale degrees correspond to Z|D|.
For convenience, δM and λM are assumed to be defined on
pitches as well and return the values of the corresponding
scale degrees.

The set of pitches between a pitch p1 and a pitch p2 is
the set of pitches in the open interval (p1, p2) that agree
with the direction of the interval:

∆M (p1, p2) =


{p ∈ PM | p1 < p < p2 ∧ δM (p) 6=↓}

if p1 < p2

{p ∈ PM | p1 > p > p1 ∧ δM (p) 6=↑}
if p1 > p2.

The neighbors of a pitch p ∈ PM are then all pitches
n ∈ PM that have a higher level than all pitches between p
and n. In addition, the direction of n must agree with the
direction from n to p:

nbM (p) = {n ∈ PM | p 6= n

∧ ∀q ∈ ∆M (n, p) : λM (q) < λM (n)

∧ n� p},

where

n� p =


δM (n) 6=↑ if p < n

δM (n) 6=↓ if p > n

true otherwise.

Thus, every pitch is a neighbor to p only if it can be reached
from the reference pitch without skipping a more stable
pitch than the neighbor, as illustrated in Figure 3. Directed
pitches can only be inserted as left neighbors since they
must move towards their resolution.

When a single passing note is generated, the passing
note must be a neighbor to both notes of the interval it is in-
serted in. However, in this case the inserted note is moving
away from the first note, so the direction is not towards the

reference note but towards the neighbor. A reverse neigh-
bor r ∈ rnbM (p) is defined in analogy to a neighbor but
with inverted direction:

rnbM (p) = {r ∈ PM | p 6= r

∧ ∀b ∈ ∆M (p, r) : λM (b) < λM (r)

∧ p� r},

For example, a passing [2 in the sequence [3 [2 1 is a
neighbor to 1 but a reverse neighbor to [3, as it is directed
away from [3 and towards 1.

Finally, a fill is the list of all pitches between two pitches
p1 and p2, sorted according to the direction of the interval
(p1, p2) and restricted to pitches agreeing with that direc-
tion (as given by ∆M ).

fillM (p1, p2) =

{
sort(∆M (p1, p2), asc) if p1 < p2

sort(∆M (p1, p2), desc) otherwise.

4. A FORMAL GRAMMAR OF RĀGA MELODIES

4.1 Representing Melodies as Graphs

As seen in Section 2, the two fundamental elaboration
types – passing and neighbor notes – operate on two dif-
ferent musical entities: While neighbors elaborate single
notes, passing notes fill intervals between two notes, elab-
orating both notes at the same time. As a consequence, two
main formalisms describing hierarchical elaboration have
emerged, note grammars and interval grammars.

Note grammars generate strings of notes, with deriva-
tion rules replacing single notes by several new notes. The
resulting hierarchical structure is a tree of notes as shown
in Figure 4a. However, elaborating single notes is prob-
lematic for passing notes, as they elaborate two notes. Not
only is the resulting hierarchy ambiguous (the passing note
must be attached to either its predecessor or its successor),
but from a generative perspective, a passing note can only
be derived from one of its parents. Thus, deciding where a
passing note may be inserted becomes a context-sensitive
problem.

Interval grammars [4, 9, 6, 12] solve the passing note
problem (and two-sided operations in general) by elabo-
rating pairs of notes, or intervals. Inserting a new note
replaces an existing interval with two new intervals. The
melody is then represented as a string of intervals with each
note being represented twice, once as the second note of an
interval and once as the first. To avoid this redundancy in
notation, derivations are usually not given as trees (Figure
4b) but as outerplanar graphs (Figure 4c), giving each note
two parents. However, for one-sided operations like neigh-
bors, interval-based elaboration is conceptually mislead-
ing, as only one of the parent notes is considered while the
other is ignored. This can lead to unwanted subordination
of conceptually independent neighbors, as will be argued
below.

As a unification and generalization of note- and
interval-based systems, a graph-based representation of
melodies is suggested here, representing notes as nodes
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1[3

[2[3
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(a) Two analyses using note elaboration.
The passing [2 must be attached either to
the 1 on its right or to the [3 on its left.

o→ n

1→ no→ 1

1→ 1

[3→ 1

[2→ 1[3→ [2

1→ [3

o→ 1

7′ → 1o→ 7′

(b) An analysis of the phrase using inter-
val elaboration. The passing [2 is gener-
ated in the interval [3→ 1.

o

7′

1

[3

[2

1

ninit
dup→

nb→
nb→pass

(c) The same analysis as in 4b, displayed
as an outerplanar graph.

Figure 4: Conventional formal analyses of the phrase in Figure 2.

5

]4
7
[6

5nb→← nb pass

1

(a)

5
]4

7
[6

5← nbnb→pass

(b)

5

]4
ε

7
[6

5split
← nb nb→pass

(c)

Figure 5: Three possible derivations of 5 ]4 7[6 5.

o

7′

1

ε

[3

[2

1

ninitdup→nb→
split

nb→
pass

Figure 6: An analysis of the phrase in Figure 2 using the
rāga grammar. Dark edges indicate the subgraph induced
by removing non-note nodes (o,n, ε).

and note transitions as edges. Using graphs as the basis
for elaboration has both conceptual and practical implica-
tions. Conceptually, graphs represent both notes and note
transitions explicitly, which allows the use of both enti-
ties as a starting point for elaboration. Practically, while
graphs can represent strings of objects (such as melodies)
as a special case, they can easily describe much more com-
plex structures, which potentially allows the description of
elaboration operations in non-monophonic music. How-
ever, special cases such as monophony can still be de-
fined graph-theoretically, ensuring consistency under elab-
oration. Thus, graphs provide a common framework for
both melodic grammars and more complex formalisms.

While graphs in principle allow operations on both
nodes and edges, a much simpler and more consistent sys-
tem is obtained by operating only on edges, resulting in an
edge-replacement graph grammar. All operations are then
defined on edges (i.e., node transitions) with one-sided op-
erations ignoring one node of the edge. One-sided opera-
tions still introduce an edge between the unused note and
the new one in order to allow further elaboration between
them. In order to express the independency between the
new and the ignored note, a dummy node (written as ε) can

be introduced first between any two notes. A dummy node
does not generate a note and is analogous to the empty
string in a conventional grammar.

Only strictly one-side operations can be performed on
edges adjacent to a dummy node. This restriction ex-
presses the independence between one-sided elaboration
notes and their opposite side, and permits a more appropri-
ate hierarchy: Suppose two one-sided neighbors are gen-
erated between two 5s, a ]4, as a right neighbor to the first
5 and a 7 as a left neighbor to the second 5 with a passing
[6, resulting in 5 ]4 7[6 5 (Figure 5). Without a dummy
node, either 7 or ]4 is subordinate to the other, depending
on which is generated first (Figures 5a and 5b). By first
introducing a dummy node, both neighbors can be derived
independently (Figure 5c). Moreover, as dummy nodes are
removed after the derivation, the resulting graph structure
only retains edges that express elaboration dependence.
Thus, dummy nodes allow the derivation to formally fol-
low edge replacement while semantically expressing both
one-sided and two-sided operations.

4.2 Formal Definition of the Grammar

A melody is formally represented as a directed linear graph
with notes as nodes and transitions between notes as edges
directed in time. The beginning and end of the melody are
marked with the special nodes o and n, respectively. The
derivation is started from a single 1:

o→ 1M → n,

with 1M indicating the root of mode M .
Derivation rules follow an edge-replacement paradigm:

edges can be replaced with new subgraphs, retaining the
nodes adjacent to the original edge. Some rules use only
one of the adjacent nodes. In this case, a wildcard symbol
(∗ ∈ PM ∪ {o,n, ε}) is used for the ignored node. The
special symbol ε represents the empty melody and can be
used to split an edge into two parts that may be elaborated
independently. Only one-sided operations can be used on
edges adjacent to an ε, o, or n.

For a given mode M the rāga grammar Grāga
M is defined

as the graph grammar (T ,N , I,R) with

T := {n1 → n2 | n1 ∈ PM ∪ {o, ε}, n2 ∈ PM ∪ {n, ε}}
N := {}
S := o→ n

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

465



as terminals T , non-terminals N , and initial graph S; and
the following replacement rulesR:

initialize:
(o→ n)⇒ (o→ 1M → n)

duplicate left: ∀p ∈ PM :
(p→ ∗)⇒ (p→ p→ ∗)

duplicate right: ∀p ∈ PM :
(∗ → p)⇒ (∗ → p→ p)

left neighbor: ∀p ∈ PM , n ∈ nbM (p) :
(∗ → p)⇒ (∗ → n→ p)

right neighbor: ∀p ∈ PM , n ∈ nbM (p) ∧ δM (p) =l :
(p→ ∗)⇒ (p→ n→ ∗)

passing: ∀p1, p2 ∈ PM , n ∈ rnbM (p1) ∩ nbM (p2) :
(p1 → p2)⇒ (p1 → n→ p2)

fill: ∀p1, p2 ∈ PM :
(p1 → p2)⇒ (p1 → f1 → . . .→ fn → p2)
where f1, . . . , fn = fill(p1, p2)

split: ∀p1, p2 ∈ PM :
(p1 → p2)⇒ (p1 → ε→ p2).

In this description, rules are given as templates that are in-
stantiated for all (combinations of) pitches. A more elegant
and efficient description is possible, if rules are considered
to be functions on classes of structured symbols [7], allow-
ing them to look inside their inputs.

Since the rāga grammar generates linear graphs, it
is still possible to display derivations with outerplanar
graphs. Figure 6 shows a derivation of the example phrase
from Figure 2 using the rāga grammar. Each operation
used to derive the phrase is written in the triangle formed
by the old edge it replaces and the new edges it inserts.
Later derivation graphs will omit operations and edge di-
rections to remove visual clutter, as both are clear from the
context.

In Figure 6, the ε inserted between the two 1s separates
them and allows independent generation of neighbors. In
particular, it would be possible to generate another right
neighbor to the first 1 without subordinating it to the [3, or
vice versa.

While the full derivation graph displays all derivation
steps as they are formalized (i.e., as edge replacements),
it does not distinguish one-sided and two-sided operations.
Removing all non-note nodes (o,n, ε) and the adjacent
edges induces a subgraph in which two-sided operations
still use two edges while one-sided operations adjacent to
non-note nodes only use one edge. The resulting graph
resembles both note trees and outerplanar graphs in differ-
ent regions, depending on the type of operation being used
there. Thus, using ε nodes is an analytical option that re-
veals independencies between adjacent parts of the graph.

The graph grammar Grāga is a special case of a graph
grammar that is formally equivalent to a context-free gram-
mar on strings of notes. Therefore, it can parse melodies
efficiently. The context-free grammar can be obtained in

o
1

5
1′

5

1

ninit← dup
nb→pass pass

Figure 7: The spine modeling the deep structure of the
octave expansion in an ālāp.

two steps: First, the graph representation is transformed
to an interval representation in all parts of the grammar.
Second, a set of rules is added for generating notes from
intervals by taking the second note of each interval and
generating empty strings (ε) where necessary.

In a directed linear graph, edges are totally ordered by
their direction, so the graph can be transformed into a se-
quence of edges (e.g., a → b → c becomes (a, b)(b, c)).
Let e be the function that transforms linear graphs to se-
quences of edges. Then the context-free melody grammar
G(GM) := (T,N, I,R) induced by a melody-graph gram-
mar GM is defined as follows:

TG :=PM

NG :=(PM ∪ {o, ε})× (PM ∪ {ε,n})
SG :=e(SG) = (o,n)

RG :={e(l)⇒ e(r) | l⇒ r ∈ RG}∪
{(x, p)⇒ p | p ∈ PM , x ∈ PM ∪ {o,n, ε}}∪
{(x, n)⇒ ε | n ∈ {ε,n}, x ∈ PM ∪ {o,n, ε}}.

5. DISCUSSION

A main motivation for introducing generalized neighbors
is that they allow modelling leaps in the background struc-
ture of North Indian music. Figure 7 shows the architecture
of a typical ālāp in rāga Multānī. The melody slowly as-
cends from 1 to 1′ via 5 and returns back to 1 (again via
5). The upper 1′ can be seen as a very stable and distant
neighbor of 1 while the 5s in between are (again stable and
distant) passing notes. Each stage of this spine is then fur-
ther elaborated by neighbors and passing notes, using in-
creasingly less stable pitches and smaller intervals (Figure
8).

North Indian music is not the only style of music in
which melodies are based on hierarchical modes. If other
mainly mode-based styles also follow the elaboration prin-
ciples of passing notes and neighbors, then the grammar
defined in Section 4 should permit sensible analyses for
these cases. Consider, for example, the melody of Nun
komm der Heiden Heiland (based on the Dorian mode)
and a phrase from the Jazz standard Moanin’ (based on
a Blues scale). Their respective derivations (shown in Fig-
ure 9) suggest plausible reductions of the surface melody
in both cases. Moreover, the proposed relations between
notes match the intuitions of generalized neighbors and
passing notes.

A natural generalization of the mode-based approach is
to consider the mode as a latent variable that can change
over the course of the piece but still organizes elaboration
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Figure 8: This example represents selected phrases, in order of performance, excerpted from the ascending part of an ālāp
in rāga Multānī, recorded by the sitarist Dharambir Singh [22]. For reasons of space, one phrase has been selected for each
of the stations between 1, 5 and 1′. Surface ornamentation and rhythmic durations have been omitted.
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1← dup← dupnb→ ← nb
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← nb nb→
← nb← nbfill

Figure 9: The first two phrases from Nun komm der Hei-
den Heiland and Moanin’ (without repetitions), and their
derivations based on a Dorian and a Blues scale, respec-
tively.

locally. Depending on the style, this hierarchy can be con-
stant over longer regions of the piece or change rather fre-
quently. The latter case occurs when harmonies are con-
sidered as the latent structure, as they also define a tonal
hierarchy, ranging from the root to non-chord notes.

However, there are two issues concerning generalized
neighbor elaboration on harmonies. First, when the la-
tent hierarchy changes, it is not obviously clear what
should happen at the transition point. This is not an is-
sue when these transitions are rare and elaboration across
these boundaries is avoided. However, when harmonies
take the role of the latent hierarchy, then transitions oc-
cur more often and elaborations frequently cut across har-
monic changes. Moreover, as melodic elaboration happens
on every level of reduction, it can even be considered to
generate harmonic change in the background, such as the
passing 2̂ in the Ursatz, generating a V harmony.

Second, not all leaps in melodies can be explained as
generalized neighbors. The melody of Take the A-Train
(Figure 10), for example, features several leaps which can-
not be consistently explained as neighbors. While the ini-

��������� � �� ���

�� �� � � ����� � ��� �� �

�� ����� ��� ������ ���
Figure 10: The A part of Take the A-Train and a summary
of its underlying lines.

tial G4 and E5 might be seen as neighbors to C5, the de-
scent to E4 in the end is left unexplained by that. Instead,
it is more plausible to assume a set of several independent
lines: A higher line descends from E5 to C5, a lower line
from G4 to E4, and an intermediate line that connects G4

and C5. Internally these lines behave according to elabora-
tion principles (passing notes in this case), but the surface
melody freely switches between the lines. This suggests
that the organizing latent structure in this case is a set of
implicit lines, although the elaboration and coordination
of these lines might still be governed by a mode or a har-
monic sequence as another layer of latent structure.

6. CONCLUSION

This paper proposed a generalized graph grammar formal-
ism to model North Indian rāga music. We propose that
passing and neighbor note elaborations are both necessary
and (in their generalized form) sufficient operations of re-
cursive rāga melody. This strengthens their status as fun-
damental musical principles across cultures. As the two
operations are based on different objects (intervals and
notes), models of elaboration should be able to represent
both notes and intervals explicitly.

The notion of a generalized neighbor, based on a tonal
hierarchy, shows that melodic leaps do not happen arbi-
trarily but can be related to a latent background structure.
Understanding and modelling this background structure is
necessary for a deeper understanding of melodic elabora-
tion.
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ABSTRACT

Automatic transcription of polyphonic music remains a
challenging task in the field of Music Information Retrieval.
One under-investigated point is the post-processing of time-
pitch posteriograms into binary piano rolls. In this study,
we investigate this task using a variety of neural network
models and training procedures. We introduce an adversar-
ial framework, that we compare against more traditional
training losses. We also propose the use of binary neuron
outputs and compare them to the usual real-valued outputs
in both training frameworks. This allows us to train net-
works directly using the F-measure as training objective.
We evaluate these methods using two kinds of transduc-
tion networks and two different multi-pitch detection sys-
tems, and compare the results against baseline note-tracking
methods on a dataset of classical piano music. Analysis of
results indicates that (1) convolutional models improve re-
sults over baseline models, but no improvement is reported
for recurrent models; (2) supervised losses are superior to
adversarial ones; (3) binary neurons do not improve results;
(4) cross-entropy loss results in better or equal performance
compared to the F-measure loss.

1. INTRODUCTION

Automatic music transcription (AMT) is a core MIR prob-
lem [25]. Its aim is to extract what is played in a music
signal into a human-readable score. Much of the literature
has focused on the intermediate goal of detecting when and
which notes were played, also called multi-pitch detection
and note-tracking. It is a long-discussed topic, yet, unless
it is constrained to a specific instrument and instrument
model [17], it remains a challenging task, in particular in
the case of polyphonic music [2].

Many AMT systems use a two-step workflow [3, 13].
First an acoustic model estimates the pitches present in
each audio frame and produces a non-binary posteriogram
representation over time and pitch. Then a post-processing
step is applied to obtain a binary piano-roll representation,
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or a MIDI-like note-based representation (we focus here
on piano-roll representation). The former task has been
extensively discussed in the literature, but the latter has
received much less attention.

Recent transcription and transduction models are com-
monly neural networks trained with a traditional maximum
likelihood framework that assumes pitches to be indepen-
dent [20, 23, 41]. Although this provides a simple and sta-
ble training loss, it can lead to unrealistic estimates as the
model tries to cover all the modes of the output probability
distribution [35]. More recently, Generative Adversarial
Networks (GANs) [18] were proposed to rectify this issue,
as they do not rely on an explicit likelihood and tend to-
wards realistic outputs with high likelihood under the true
output distribution. In GANs, a generator network makes
its outputs as realistic as possible while a discriminator
classifies examples as real (from the training set) or fake
(created by the generator), which in turn gives feedback to
improve the generator. GANs have made a breakthrough in
high-quality image generation and reconstruction [8], and
were subsequently also applied to symbolic music gener-
ation [39] and singing voice separation [36]. For AMT,
GANs could help produce better transcriptions by taking
into account correlations across both time and pitch.

The output of neural networks used in previous ap-
proaches [20,23,41] is real-valued to enable training by gra-
dient descent.To obtain a piano roll at test time, the network
outputs are binarised with a threshold as a post-processing
step. However, this can lead to overly-fragmented notes,
as in [41], when the output values are close to the thresh-
old. Binary neurons [4] offer an alternative by integrating
the binarisation of outputs into training while still allowing
gradient back-propagation.

In this paper, we perform a comparative study of various
neural-network-based methods for polyphonic sequence
transduction, focusing on classical piano music. We sys-
tematically compare the influence of certain design choices,
namely the network architecture, the training loss and the
type of outputs. In particular, we introduce a GAN frame-
work and assess its performance by comparing it to simpler
training losses such as cross-entropy. We also evaluate
whether binary neurons can bring improvements in this con-
text as suggested for symbolic music generation [15] by
making generator outputs binary and thus more similar to
the real examples. In addition, we propose a method to
directly use the F-measure as a training objective by us-
ing binary neurons. Each of these methods is evaluated
with both a recurrent neural network (RNN) and a novel
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convolutional network as transduction model. These de-
sign choices are evaluated using inputs from two different
multi-pitch detection systems (a piano-specific [23] and a
multi-instrument acoustic model [5]). All experiments are
conducted using a representation based on 16th note time
steps, which can improve results [41] and reduce the input
dimensionality compared to regular timesteps in the order
of 10ms and thus the required training and test time.

Our paper is organised as follows. In Section 2, we
describe previous work. Section 3 presents the dataset used.
In Section 4, we detail the architecture used for our various
sub-models, and the training objectives are described in
Section 5. We present our evaluation metrics in Section 6,
and describe our experiments and their results in Section 7.
Finally, we discuss the limitations of our proposed methods
along with future directions in Section 8.

2. RELATED WORK

2.1 Polyphonic Music Sequence Transduction

AMT acoustic models yield a posteriogram, which is a real-
valued time-pitch representation that reflects the likelihood
of pitches being present at different points in time, either as
probabilities (between 0 and 1) or as saliences (unbounded).
Polyphonic music sequence transduction aims to convert
these posteriograms into a binary piano-roll representation
(also called note tracking). Aside from simply threshold-
ing the posteriogram, one of the most popular methods
involves pitch-wise Viterbi decoding [31], where each pitch
is considered as a 2-state (on/off) hidden Markov model
(HMM).

More recently, a series of neural network-based meth-
ods has been proposed. In [6], a model combining a Re-
stricted Boltzmann Machine (RBM) with a recurrent neural
network (RNN) was proposed for symbolic music mod-
elling. It was later used for AMT [7], using an audio rep-
resentation from a Deep Belief Network as input. The
same architecture was also used as a language model for
piano-roll post-processing [34], to evaluate the likelihood
of symbolic sequences rather than using it as a transduc-
tion model. In [41], a simpler Long Short-Term Memory
(LSTM) model achieved improved performance when using
musically-relevant time steps, but mostly because resulting
outputs are quantized to the ground truth metrical grid.

2.2 Generative Adversarial Networks

Since their introduction in 2014, GANs have enjoyed con-
siderable attention [18]. The main appeal in using GANs
is that the model’s likelihood only needs to be implicitly
defined [29]. In contrast, defining a suitable and tractable
likelihood function is difficult for complex output spaces
such as the space of natural images, so simplistic assump-
tions are often made about the output density. In our con-
text, a GAN could generate a coherent segment of music in
one pass through the network, while other methods either
have to assume independent outputs for each pitch and time-
frame [17,20,23,41], or condition each output dimension on
all previous ones in an auto-regressive fashion [34], which
requires a computationally intensive decoding process.

Applications of GANs are increasing rapidly and cover
a wide variety of fields [32, 36]. For music modelling, this
includes the C-RNN-GAN [28], which uses an RNN to
output note events with continuous duration, onset time,
pitch and velocity, instead of the discrete values used in the
MIDI representation. The MuseGAN [14] generates dis-
crete piano-roll music representations. Here, a continuous-
output generator is used and the training data is simply
treated as being continuous despite its discrete nature.

GANs can also be used for conditional prediction mod-
els [26, 35, 36], where the output space is complex and
high-dimensional and defining a suitable loss function is
difficult. For these reasons we investigate GANs for AMT
in this paper.

2.3 Binary neurons

Training a network with discrete outputs is challenging be-
cause back-propagation does not yield gradients from non-
differentiable operations. Various methods have been pro-
posed to solve that issue, such as REINFORCE [27,37], and
the straight-through estimator [4, 21]. Binary neurons were
used with GANs in the context of music generation [15], as
it is very easy for the discriminator to separate binary, real
samples from generated ones that have real values between
0 and 1. This can make generator training ineffective, as
the discriminator’s feedback focuses on only making the
real-valued generator outputs more binary. They are re-
ported as improving over a similar system with non-binary
outputs [15] by being easier to train and yielding better
results. More generally, binary outputs are appealing in our
context, as they integrate the thresholding process into the
network, removing the need for thresholding real-valued
network outputs to obtain a binary piano-roll representation
at test time and finding an optimal threshold value on an
extra validation set.

3. DATASET

For our experiments, we use the MAPS dataset [16]. It
contains MIDI files of polyphonic piano music, along with
aligned audio renditions, generated using synthetic pianos
and a Disklavier acoustic piano. It contains 238 pieces of
classical music (18h total duration), with some pieces per-
formed more than once, on different pianos. We split it into
training, validation and test sets similarly to [23], where the
test set features only acoustic piano and the training set only
synthetic piano recordings, to obtain realistic performance
estimates. We also ensure there is no overlap of pieces
between the training and test set, and create a validation set
by removing 10 random examples from the training set.

Rhythm annotations for this dataset are available in the
A-MAPS annotations [40]. We use these annotations, in
order to run our experiments using a time step of a 16th note.
There are two main reasons for that choice. First, it was
shown in [41] that using a 16th note time step can improve
transcription performance over time steps of a fixed frame
duration in seconds. Moreover, using 16th note time steps
instead of fixed steps (usually on the order of 10 ms) results
in a much more compact representation and faster training,
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Figure 1. Overview of the whole transcription process. We focus on the second step.

enabling large-scale experiments. However, it introduces
some imprecision when dealing with extra-metrical notes
and tuples. In addition, the required beat positions are
not usually available as annotations and would thus have
to be obtained with a beat-tracking algorithm. Since we
use beat annotations in our study, lower results than the
ones reported here might be obtained in the presence of
beat-tracking errors.

4. MODELS

The general workflow for our task is described in Figure 1.
First an acoustic model produces a non-binary posteriogram.
Then, this posteriogram is converted into a binary piano roll
by a transduction model. Although this study focuses on
the latter, we present both in this section.

4.1 Acoustic models

We use our transduction models with two different kinds
of acoustic model outputs. The first model, described in
[23], is a convolutional neural network (CNN) operating on
spectrograms with logarithmically-spaced frequency bins
and log-magnitude. It was designed specifically for piano
transcription, and was trained on the MAPS dataset. At
each time step, it outputs predictions for Np = 88 pitches
as probabilities between 0 and 1. We call this model Kelz.

The second model, described in [5], also uses CNNs,
with a custom input representation that stacks harmonically-
shifted Constant-Q transform representations of the signal.
It was designed as a general multi-pitch detection system,
and was trained on a multi-instrument dataset that includes
piano. Besides, it has a frequency resolution of 20 cents,
and has a smaller frequency span than a piano keyboard.
In order to adapt it for piano transcription, we average the
frequency bins that correspond to a given MIDI pitch. In
this case, Np = 73. It has to be noted that this averaging
leads to lower activations. We call this model Bittner.

In both cases, outputs are then downsampled to a 16th
note time step. To do so, we use the best-performing method
in [41] referred to as step: let M and N be the original and
downsampled posteriograms respectively, p a pitch, n a
16th note step, and i and j the time steps corresponding to
n and n+ 1 respectively, we have:

s = i+ round(
j − i
4

), N [p, n] =

∑s
k=iM [p, k]

s− i+ 1

4.2 Transduction model architectures

Our transduction models take the output of an acoustic
model as input and are trained independently from the
acoustic models. We compare two different kinds of
transduction models. The first model is a Long Short-Term
Memory (LSTM) network [22] with the same architecture
as described in [41]. It has Np inputs per time step, one
hidden layer with 100 hidden nodes, followed by a fully
connected layer with Np outputs.

The second model is a newly-designed CNN that uses a
series of convolutions with filter sizes (1) 5× 5, (2) 5× 1
with dilation of 12 × 1, and (3) 5 × 15, to capture both
frequency and temporal correlations. A 1× 1 convolution
processes the combined output from convolutions (2) and
(3), whose output is combined with the output from convo-
lution (1) using another 1× 1 convolution. While all above
convolutions have 32 channels and use LeakyReLU activa-
tions, the final 1×1 convolution has only one filter and does
not use an activation. Both models are closely matched in
terms of the number of parameters at about 80, 000.

4.3 Real-valued vs. Binary outputs

We use two different strategies to convert the unnormalised,
real-valued outputs obtained from the model. The first one
is real-valued sigmoid outputs: the output of the network
for each pitch is simply sent through a sigmoid. At test
time, the outputs are binarised using a single threshold for
all pitches, chosen to maximise frame-wise F on the valida-
tion set. The second strategy employs deterministic binary
neurons, as described in [14]. Here, the output of the net-
work for each pitch is sent through a sigmoid, and then
thresholded at 0.5. This thresholding operation, however, is
not differentiable, which makes it impossible to use gradient
descent as training method. Therefore, we use the sigmoid-
adjusted straight-through estimator [12], that was shown to
provide good results [14]. It ignores the thresholding op-
eration during back-propagation and instead multiplies the
current gradient by the derivative of the sigmoid function.

4.4 Baseline methods

We compare our system against two baseline post-
processing methods. The first binarises all outputs using
a threshold optimised as explained in Section 4.3 (as op-
posed to using a fixed threshold of 0.5 as done in [23]). The
second one, introduced in [31], and later used in various
systems [10, 11], is to model each pitch by an on/off HMM,
and then decode the most likely sequence of hidden states
using the Viterbi algorithm. The initial probabilities and
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transition parameters are computed from ground truth anno-
tations, one set of parameters per pitch. The observations
for ‘on’ and ‘off’ states are modelled as beta distributions,
each fitted to the acoustic model outputs on the validation
dataset. These distributions are fitted using data from all
pitches and shared between them due to the rarity of ex-
tremely low and high pitches.

5. TRAINING OBJECTIVES

The networks are trained using the Adam optimiser [24]
on sequences of 64 timesteps. For cross entropy and F-
measure, we use a learning rate of 10−2, as advised in [41].
With GANs, the learning rate is 10−3 for the discriminator,
and 5 · 10−4 for the generator. Early stopping is used: after
no improvement in validation framewise F for 30,000 iter-
ations (checked every 1000 iterations), training is stopped
and the best model is kept.

5.1 Cross-entropy loss

As a commonly used baseline objective, we use the binary
cross-entropy (CE) loss averaged over all entries ŷt in the
predicted piano-roll ŷ as loss for the transducer model:

E(x,y)∼Pd
1

NtNp

Np∑
p=1

Nt∑
t=1

yt,p log ŷt,p + (1− yt,p) log(1− ŷt,p)

(1)

where yt,p ∈ {0, 1} indicates whether a note at timestep
t ∈ J1, NtK with pitch index p ∈ J1, NpK is active, and
Pd denotes the joint distribution of acoustic model outputs
and transcriptions. While this loss is conceptually simple
and allows fast and stable training, it relies on the strong
assumption that each note activity can be determined inde-
pendently from all others, although some note combinations
are more likely to occur than others. Since the model can-
not assign high probability to specific note combinations,
only to individual notes, it would assign high probability
to all involved notes. Unrealistic note combinations might
then be obtained when independently sampling from these
probabilities.

5.2 F-measure loss

In most cases, transduction and transcription models are
trained with CE, but finally evaluated with frame- or note-
wise F-measure. To close this gap between training and test-
ing, we propose maximising the F-measure directly during
training. However, this requires a binary piano roll instead
of real-valued network outputs. As a solution, we employ
binary neurons introduced in Section 4.3. By replacing P
andR in the formula for F by their complete expressions
(see Section 6), simplifying the equation, and using the two
identities TP(t) =

∑Np

p=1 yt,p · ŷt,p and FN(t) + FP(t) =∑Np

p=1 |yt,p − ŷt,p| where TP(t), FP(t) and FN(t) are the
numbers of true positives, false positives and false negatives
at time step t, respectively, we obtain

F =

∑Nt

t=1

∑Np

p=1 2 · yt,p · ŷt,p∑Nt

t=1

∑Np

p=1

[
2 · yt,p · ŷt,p + |yt,p − ŷt,p|

] (2)

as our F-measure loss, which only makes use of differen-
tiable operators. The only exception is the absolute value
function, whose gradient is undefined only at 0, which oc-
curs in the above equation if yt,p = ŷt,p. Since the model
output ŷt,p does not need to change in that case, we assign
it a gradient of 0. In conjunction with binary outputs, we
can thus use gradient descent to maximise F . It has to be
noted that a similar, non-binary version of F-measure was
proposed as training loss in [30]. We only investigate the
binary F-measure here.

5.3 Adversarial loss

We adapt the improved Wasserstein GAN [19] framework
for the adversarial loss to our conditional generation case,
by using a discriminator network Dθ : x, y → R that takes
a transcription y as input with the corresponding acoustic
model output x as condition. It is trained to output scalar
values that minimise the loss (see Equation (3) in [19]):

L(θ) = Ex∼Pr
[Dθ(x,Gφ(x))]− Ex,y∼Pd

[Dθ(x, y)]

+ λ Ex∼Pr,ŷ∼Pi(x)[(||∇ŷDθ(x, ŷ)||2 − 1)2],
(3)

where Pr denotes the distribution of real acoustic model out-
puts. The third term regularises the discriminator network
responses to stabilise generator training. It is weighted by
the scalar hyper-parameter λ (we use λ = 10), and involves
drawing Pi(x), which yields ŷ = r ·Gφ(x)+(1−r)·y with
a weight r uniformly chosen from [0, 1] that interpolates
between the generator output Gφ(x) and the ground truth
transcription y for the input x.

During training, the generator is updated once using the
negative of the first term in (3) as loss, before the discrim-
inator is trained on (3) for 5 iterations to re-estimate the
Wasserstein distance between real and generator samples.

As discriminator, we use a convolutional network similar
to [42]. First, a 5× 1 convolution with dilation of 12 and
16 channels is computed to capture relationships between
octaves, and concatenated to the input features for further
processing. Afterwards, a 3× 3 convolution with a stride of
two is applied four times, using 16, 32, 64, and 128 filters,
respectively. The downsampled feature map is processed
by a dense layer with 16 nodes, and by another dense layer
with a single output and linear activation. All layers except
the final one use LeakyReLU activations.

6. EVALUATION METRICS

We evaluate the performance of our system using the com-
mon MIREX transcription metrics [1], in both frame-wise
and note-wise configurations. With frame metrics, the out-
put and the ground truth are compared frame-by-frame. The
metrics are computed directly on the 16th-note-timestep
piano-rolls. With note metrics, the system output and the
ground truth are viewed as a list of notes. A note is correctly
detected if its pitch matches the ground truth and its onset
is within a tolerance threshold of the correct onset. The
threshold usually used is 50ms, however, since we operate
on 16th note timesteps, we require that onset times corre-
spond exactly to the ground truth. The offsets are usually
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Figure 2. Model comparison across training objectives, transducer and acoustic models. Bars correspond to median
improvement over simple thresholding, error bars correspond to maximum and minimum improvement across runs. * means
that the bar was truncated for readability purposes.

not taken into account as they are difficult to estimate prop-
erly with percussive sounds such as piano notes. We use
the mir_eval implementation [33] to find the maximal
match between the two lists. In both cases, the precision
(P), recall (R) and F-measure (F ) are computed as per [1].
These metrics are computed for each recording, and then
averaged over sets of recordings.

7. RESULTS

We evaluate every possible combination of acoustic and
transduction model as well as training loss and output type
(continuous or binary neurons). To account for variability in
training, we run every experiment 3 times and report results
of the model that reaches the median frame F performance.
To assess differences in performance across different condi-
tions, we perform paired Wilcoxon signed-rank tests using
the piece-wise results from each median model. All median
results are given in Table 1 for Kelz, and Table 2 for Bittner.
We also plot the absolute improvement over simple thresh-
olding for frame and note F in Fig. 2. The error bars show
the best and worst of the 3 runs.

7.1 Transduction model and acoustic model

The two transduction models (CNN and LSTM) clearly
behave very differently. Most of the time, the CNN model
improves the results compared to simple thresholding. On
average, across all configurations, the CNN provides an
average increase of 2.56% frame-wise and 3.39% note-
wise F . In particular, the CE-trained CNN improves for
Kelz by 3.1% frame and 8.2% note F , while for Bittner,
it reaches 8.3% frame and 9.7% note F . This difference
in improvement can be explained by the fact that the Kelz
acoustic model overfits a lot on the training set, reaching
around 92% frame F on the training set alone, but only
around 81% on the validation set. As a result, it is more
difficult for transduction models to generalise with the Kelz
model as input, as training and test data differ. The Bittner
model is much more stable across subsets with 62% frame
F on the training set, and 63% on the validation set, as it

was trained on a completely separate dataset.
On the other hand, the LSTM model performs worse

than thresholding in every configuration. This contradicts
the improvement in frameF reported in [41] achieved using
an LSTM, although one could argue that the experimen-
tal setup is quite different regarding the LSTM inputs, the
lengths of training sequences, and dataset splits. We tried
using training sequences of 256 instead of 64 timesteps and
also tried a bi-directional LSTM to check whether a lack
of context explains our result, but results did not improve.
Since we observe much better training set than test set per-
formance (e.g. the LSTM with CE loss on the Bittner model
achieves about 80% on training but only 57% frame F on
the test set), we suspect that strong overfitting is the sole
reason. This effect might be amplified as training and test
sets do not share any pieces or pianos, and synthetic pianos
are used for training and real pianos for testing. Since the
partitions used in [41] do share pianos, the improvement
reported therein could be partly due to overfitting to the
particular pianos featured in the training set. Our CNN
appears to generalise better in this regard.

7.2 Comparing training objectives

Since our LSTM model does not generalise to the test set,
we exclude it from the following comparisons between train-
ing objectives. It appears that supervised losses consistently
outperform adversarial losses (p < 10−9 for frame and note
F ). Additionally, GANs performance varies more between
training runs than with supervised losses. This contradicts
the expected result that GANs should be more effective. Us-
ing binary neurons also failed to improve the performance
of our system. In particular, in the context of GANs, non-
binary neurons are significantly better than binary neurons
for both frame and note F (p < 0.02), except for Bittner in
terms of note F (p = 0.33). This shows that the findings
of [14] do not generalise to our application, at least when
we compare with strong CE-based models. GANs might
require more data to realise their potential, better ways of
training with discrete outputs, or more perceptually mean-
ingful evaluation metrics to capture the improvement in
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Metric Thresh HMM Cross-entropy F-measure WGAN WGAN-Binary
LSTM CNN LSTM CNN LSTM CNN LSTM CNN

Fr
am

e F 67.9 49.6 66.8 70.8 66.5 70.4 64.7 69.7 64.1 68.7
P 70.9 74.1 72.6 73.4 70.2 72.2 72.5 74.1 74.4 73.9
R 66.7 40.1 63.2 69.6 64.6 70.1 59.8 67.2 57.8 65.5

N
ot

e F 45.0 43.8 43.4 53.2 43.1 51.6 40.4 49.4 41.1 46.9
P 44.0 82.4 42.8 50.9 39.3 50.7 39.5 50.1 40.5 44.6
R 47.5 31.3 45.6 57.1 49.4 53.9 43.0 50.0 43.6 51.0

Table 1. Results as percentages for median models with Kelz input. Bold corresponds to best values across models.

Metric Thresh HMM Cross-entropy F-measure WGAN WGAN-Binary
LSTM CNN LSTM CNN LSTM CNN LSTM CNN

Fr
am

e F 58.8 61.5 52.1 66.3 35.8 66.0 43.4 58.8 41.1 56.8
P 59.6 52.6 48.0 68.5 26.9 69.3 43.9 58.7 35.9 61.9
R 61.5 79.6 60.5 66.1 65.4 65.3 47.7 60.9 50.8 56.4

N
ot

e F 44.6 48.4 39.3 53.4 31.9 53.1 30.1 43.2 36.2 44.0
P 42.2 62.5 35.7 49.3 25.2 50.7 27.6 40.8 34.4 44.8
R 48.6 40.4 45.1 59.9 45.6 57.3 34.5 47.2 39.2 44.5

Table 2. Results as percentages for median models with Bittner input. Bold corresponds to best values across models.

output quality. Additionally, improvements or alternatives
to binary neurons might be needed to stabilise training fur-
ther, as we observed high variance in training loss between
batches compared to using a CE loss.

We find that using our F-measure loss results in slightly
worse F than when using the CE loss with Kelz (decrease
of 0.4 in frame- and 1.6 in note-wise F , p < 0.02), but no
significant differences with Bittner. This might be explained
by the use of 16th note timesteps that strongly smooths the
inputs and outputs, reducing the risk of fragmented notes
substantially. Also, the binary outputs could make training
more difficult due to the approximations used to overcome
the non-differentiability problem; and because we perform
threshold tuning on the validation dataset for the CE setting,
thereby giving the CE model the chance to fit its parameters
more to the validation set, whereas it is only used for early
stopping with the F-measure loss.

The theoretical advantages of binary neurons do not
translate into performance improvements, but they are con-
ceptually elegant since they do not require a separate thresh-
old tuning after training. Overall, the basic CE loss remains
the best performing for our task.

7.3 Comparison against baseline

We compare the best-performing model on both inputs (i.e.
CNN trained with CE loss) with both baseline systems.
CNN post-processing improves substantially over both base-
lines, for both acoustic models, with both frame and note F
(p < 0.01). Surprisingly, the HMM post-processing yields
significantly worse results than simple thresholding on Kelz
for frame F , but not significantly for note F . It seems to
be too conservative, outputting a note only when it is long
enough and with high enough activation, a problem already
noted in [41]. On Bittner however, HMM post-processing
significantly improves results over thresholding (p < 10−9

for frame F , p = 0.08 for note F). This can be attributed
to the fact that the thresholded outputs contain a particularly

high proportion of fragmented notes, because activations
are very low in general, with many values around the thresh-
old. The HMM successfully smooths them.

8. CONCLUSION

In this study, we proved that post-processing a posteriogram
with a convolutional network model can improve transcrip-
tion performance compared to several baseline methods.
Various other tasks include similar discretisation problems,
such as polyphonic sound event detection [9] or automatic
drums transcription [38], and could probably benefit from
this finding. We showed that some theoretically-motivated
approaches did not actually result in increased performance
as evaluated by the F-measure: WGANs do not perform
better than a simple CE loss, binary neurons do not im-
prove WGANs for this task, and training directly with the
F-measure as loss is not better than using CE and then
thresholding outputs as a post-processing step. We also
showed that the results obtained in [41] actually do not
generalise to the case where the recording conditions of test
and training datasets differ, highlighting the importance of
carefully selecting dataset partitions in future work.

This study resulted in many unexpected results that
prompt us to investigate further. More transduction ar-
chitectures could be investigated, such as C-RNNs. Data
augmentation (e.g. pitch transposition) could provide suf-
ficient data to make GANs worthwhile over CE. The F-
measure loss could also improve further with other methods
for back-propagating through the binary neurons. The fact
that binary neurons seemed to improve results with Kelz
and the LSTM model is also a good motivation to keep
exploring their use with various architectures. Finally, all
these configurations were evaluated with standard metrics.
Especially for the WGAN models, it would be interesting
to see whether the performance increases in ways that are
not captured by the F-measure metric but turn out to be
perceptually important in listening tests.
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ABSTRACT

Similarity measures are indispensable in music informa-
tion retrieval. In recent years, various proposals have
been made for measuring melodic similarity in symboli-
cally encoded scores. Many of these approaches are ulti-
mately based on a dynamic programming approach such
as sequence alignment or edit distance, which has various
drawbacks. First, the similarity scores are not necessar-
ily metrics and are not directly comparable. Second, the
algorithms are mostly first-order and of quadratic time-
complexity, and finally, the features and weights need to
be defined precisely. We propose an alternative approach
which employs deep neural networks for end-to-end simi-
larity metric learning. We contrast and compare different
recurrent neural architectures (LSTM and GRU) for rep-
resenting symbolic melodies as continuous vectors, and
demonstrate how duplet and triplet loss functions can be
employed to learn compact distributional representations
of symbolic music in an induced melody space. This ap-
proach is contrasted with an alignment-based approach.
We present results for the Meertens Tune Collections,
which consists of a large number of vocal and instrumen-
tal monophonic pieces from Dutch musical sources, span-
ning five centuries, and demonstrate the robustness of the
learned similarity metrics.

1. INTRODUCTION

The question of how melodic similarity can be computa-
tionally modeled is of crucial importance for various Mu-
sic Information Retrieval (MIR) tasks [35]. One classic
MIR scenario is a user posing a sung or hummed query
to a retrieval system in order to retrieve resembling pieces
of music from a music collection [6, 24]. This query-
by-humming scenario requires melodic matching methods
that are robust against different kinds of melodic variation
arising from imprecise memory or limited singing skills.
Melody matching is also an important aspect in cover-song
detection, where the predominant melody contains infor-

c© F. Karsdorp, P. van Kranenburg, E. Manjavacas. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: F. Karsdorp, P. van Kranenburg, E. Man-
javacas. “Learning Similarity Metrics for Melody Retrieval”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

mation for song identification [29]. Musicologists benefit
from melodic similarity measures for exploring and map-
ping folk songs [19, 30], or other collections with mono-
phonic musical material, such as themes from classical
compositions [18], or score incipits [34]. Finally, mu-
sic similarity detection plays an important role in cases of
copyright violation [31], where objective similarity mea-
sures can support the court in making decisions.

In this paper, we present a Neural Network approach
for melodic similarity learning. The neural encoders learn
complex mappings from input sequences into distributed
melody representations. The primary aim of our system
is to be employable for music retrieval. In addition to ac-
curately modeling melodic similarity, desirable properties
of a retrieval system are speed and indexability. Neural
Networks very well accommodate both. Generally, once
trained, a neural network can compute results very fast by
making use of GPUs. Moreover, indexability is served by
the application of similarity metrics on top of the learned
encodings [3].

Various other approaches to melodic similarity have
been taken [35], including sequence alignment and other
dynamic programming approaches, such as edit distance
and dynamic time warping, and, recently, Recurrent Neu-
ral network representations [4, 9, 11, 16, 27, 30, 33]. In this
study, we contrast our approach with a sequence align-
ment method that has been successfully applied in the con-
text of folk melodies. Alignment-based methods suffer
from at least three drawbacks. First, they typically are
first-order, taking into account only adjacent items in se-
quences. Second, they have quadratic time-complexity. Fi-
nally, an alignment score is not a proper metric. Our neural
network approach overcomes these disadvantages but does
so at the cost of being a supervised learning algorithm.

2. DATA AND FEATURES

2.1 Data sets

The Meertens Tune Collections (MTC) 1 contains a se-
ries of data sets with melodic material from Dutch sources
(mainly manuscripts, printed sources, and audio record-
ings), spanning five centuries of music history [20, 22].
These data sets are subsets of the Dutch Song Database,
maintained by the KNAW Meertens Institute [21]. The lat-

1 http://www.liederenbank.nl/mtc/
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Figure 1. Complementary Cumulative Distribution Func-
tion of the tune family sizes in the subset of MTC-FS-INST
2.0 which we use in our experiments.

est release, MTC-FS-INST 2.0, contains 18,109 digitized
melodies with rich metadata. Many of these melodies oc-
cur in more than one source. Due to oral and semi-oral
transmission, these different occurrences typically show
melodic variation. As an example, Figure 3 depicts three
variant melodies, illustrating the kind and extent of varia-
tion. To denote such a group of variant melodies, we adopt
the concept of tune family from folk song research [1]. In a
long-term effort, the collection specialists of the Meertens
Institute aim to identify each melody in terms of tune fam-
ily membership.

In this paper, we use MTC-FS-INST 2.0, which reflects
the diversity of the contents of the Dutch Song Database.
One main distinction in the data set is between vocal and
instrumental music as illustrated in Figure 2. Generally,
the instrumental part of the data set dates from the 17th
and 18th centuries. It contains melodies that were played
in bars and brothels as well as theaters and upper-class pri-
vate settings. The vocal part of the data set mainly consists
of songs from the 19th and 20th centuries. As a whole, the
data set provides a rich variety in melodic styles, which
renders it a perfect source for training general purpose
melodic similarity measures.

To obtain training, development, and test sets, we filter
and split the data set. First, we exclude all 5,765 unla-
beled melodies and all 3,008 singleton tune families. This
leaves a selection of 9,336 melodies in 2,094 tune fami-
lies. The complementary cumulative distribution function
of the class sizes is presented in Figure 1. The distribution
of class sizes is heavy-tailed.

An important criterion to measure the level of success
achieved by the metric learning approach is its capability
to cluster together tune melodies belonging to families un-
seen during training. In order to make this possible, we
perform a controlled test set split, ensuring that all in-
stances from a proportion of tune families do not appear
in the training data. The actual proportions of seen and un-
seen families is shown in Table 1 together with further data
set size statistics. 2

2 Supplementary material, data sets and code to replicate the exper-
iments are available from https://github.com/fbkarsdorp/

# Mel # TF # TF in Train µ|TF| σ|TF|

Train 5,975 1,572 3.80 5.06
Dev 1,492 495 255 3.01 1.64
Test 1,869 611 287 3.06 1.55

Table 1. Composition of the subsets of MTC-FS-INST
2.0 used for training, development and testing. The table
provides the number of melodies (Mel) and tune families
(TF) in each set, the number of tune families that are shared
with the training set, and mean and standard deviation of
tune family sizes.

FS
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Figure 2. Number of melodies per year in MTC-FS-
INST 2.0. The plot displays frequencies for instrumental
melodies (INST) and vocal melodies (FS).

2.2 Features

Melodies are represented as sequences of notes, and notes
as sets of feature-values. Since the MTC provide a rich
melody encoding, including key, meter, and phrase bound-
aries, we can assemble a diverse feature-set in which var-
ious musical parameters are represented: pitch, metric
structure, rhythm, tonality, and phrase structure. See the
supplementary material for an exact list of features.

3. METHODOLOGY

Our approach is based on two components. First, we
deploy distributional melody encoders implemented with
Neural Networks. Secondly, we train the encoders with
Stochastic Gradient Descent to minimize a Contrastive
Loss that we describe below.

3.1 Distributional Encoder

An input melody from the dataset xi ∈ X can be rep-
resented by a sequence xi = [x(i,1), . . . , x(i,k)] of length
k = |xi|, where each x(i,t) is a bundle of m features ex-
plained in Section 2.2. For simplicity, we refer to the jth

feature of sequence step t as xjt , thus dropping data set in-
dices. Our goal is to compute an encoding h = f(x) as a
function of the input sequence x, parameterized by a Neu-
ral Network f(x).

The encoding process can be described as follows. We
first process each time step in the input sequence indepen-
dently by concatenating all features into a single vector
et = [e1t ; . . . ; e

m
t ]. Categorical features are first encoded

into a one-hot vector and projected into their own embed-
ding space with model parameters Wj ∈ RJxE , where J

melodic-similarity.
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Figure 3. Three members of tune family Daar was laatstmaal een ruiter 2, showing various kinds of melodic variation.

is the total number of possible values of the jth categori-
cal feature and E is the dimensionality of the embedding
space. Continuous features are normalized to have a mean
of 0 and standard deviation of 1. For all feature types, the
sequences are padded at the beginning and the end using
special symbols in the case of categorical features and the
feature mean after re-scaling for continuous features. The
resulting sequence of input embeddings is fed to a stack of
recurrent layers 3 with the tth hidden activation at layer l
given by h(t,l) = RNNl(h(t,l−1), h(t−1,l)).

We also experiment with bidirectional RNNs, which ex-
tend each RNN layer with an additional RNN run back-
wards. In the case of the bidirectional RNN, the final
melody embedding is given by the concatenation of the
last activations of the forward and backward RNNs at the
last layer: h = [

−−−−→
h(k,|L|);

←−−−−
h(1,|L|)]. In the case of the unidi-

rectional RNN, the embedding is given by a feature-wise
max-pooling operation over the sequence of activations
at the last layer, with the pth output feature defined by
hp = max([h(1,|L|)]p, . . . , [h(k,|L|)]p). Instead of tradi-
tional RNN cells [7], we use LSTM [14] and GRU [5] cells
which have been shown to offer stronger performance and
better training behavior.

3.2 Contrastive Loss

The goal of our approach is to learn a distributional en-
coder such that melodic sequences of the same class are
embedded into neighboring regions and far from melodic
sequences belonging to different families. To this end, we
train the encoder using a contrastive loss [12].

3.2.1 Duplet Loss

Let the encodings of two input sequences with tune family
labels yi and yj be denoted by xi and xj . The goal we
want to achieve is that the similarity between xi and xj is
high when yi and yj are equal, and low otherwise. More
formally, we seek to achieve the following inequality:

D(xi, xj) < D(xi, xk) + α (1)

∀(xi, xj , xk) ∈ X | yi = yj ∧ yi 6= yk, where D is a dis-
tance function and α is a pre-specified margin. In order to
achieve this goal, we optimize a contrastive loss function
defined over input pairs that is therefore known as the du-
plet loss. The contrastive loss function is decomposed in a
positive term L+:

L+(xi, xj) = (β)D(xi, xj)
2 (2)

3 During preparatory work, we also experimented with convolutional
stacks but found no improvements over the recurrent counter-part, which
was, therefore, singled out for the purpose of the present study.
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Figure 4. Visualization of the two loss variants with a hard
margin and a soft margin.

and a negative term L−:

L−(xi, xj) = max(0, α−D(xi, xj))
2 (3)

where β is a parameter used to weight the contribution of
the negative term. 4 The two terms can be combined into
a single loss function with the help of a variable Yi,j that
takes value of 1 for yi = yj and 0 when yi 6= yj :

LD(xi, xj) = (Yij)L+(xi, xj)+(Yij−1)L−(xi, xj) (4)

For the current study, we restrict ourselves to the cosine
distance as defined by Eq. 5:

D(xi, xj) = 1− f(xi) · f(xj)
‖f(xi)‖‖f(xj)‖

(5)

Naturally, other distance functions are equally applica-
ble, but the two-sided boundedness of the cosine distance
(i.e. distances fall between [0, 2]) allows more efficient op-
timization of the parameters α and β. Moreover, the loss
specified above employs a soft margin. By contrast, [28]
propose the use of a hard margin, effectively reducing the
loss to zero if it falls below some value. With the hard
margin, the negative term in Eq. 3 becomes:

L−(xi, xj) =

{
(1−D(xi, xj))

2 D(xi, xj) < α

0 otherwise
(6)

Figure 4 visualizes the two loss variants. In the experi-
ments below, we compare both versions of the loss.

3.2.2 Triplet Loss

The triplet loss [13, 32] differs from the duplet loss in that
it considers input example triplets xi, xj , xk consisting
of a positive example xi, a negative example xj such that

4 The scaling parameter β and margin α are optimized on a develop-
ment data set, which we will discuss below.
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yj 6= yi and an anchor xk such that yk = yi. The triplet
loss shares the goal of the duplet loss from Eq. 1, but em-
ploys anchor positive examples to ensure that the distance
between any two instances of the same family is less than
the distance to an instance of a different family by at least
a pre-specified margin α. More formally, the triplet loss is
defined by Eq. 7:

LT (xi, xj , xk) = max(0, D(xi, xk)−D(xj , xk) + α)
(7)

The triplet loss, therefore, presents a more relaxed form
than the duplet loss, allowing instances of the same fam-
ily to occupy larger regions. As opposed to the composite
form of the duplet loss, the triplet loss is simple. However,
the triplet loss is more heavily dependent on the quality of
the sampled negative examples and anchors, which might
lead to poorer training dynamics.

3.3 Online Duplet and Triplet Mining

We train our encoder using mini-batches of duplets or
triplets from the data set. The number of possible du-
plets and triplets grows, respectively, quadratically and cu-
bically with the number of instances in the data set, which
renders exhaustive training costly. Feasibility aside, train-
ing with all possible duplets or triplets is not desirable as a
large proportion of the resulting duplets and triplets make
it either too easy or too difficult to fulfill the objective of
Eq. 4 and Eq. 7. Such examples prevent the network from
learning, and lead to slower convergence.

As suggested by [32] in the context of face recognition,
efficient and fast converging training can be achieved by
online selection of ‘hard’ duplets or triplets, i.e. the most
dissimilar positive examples, and the least dissimilar neg-
ative examples. We apply this approach by first sampling
a mini-batch of k instances per each of n sampled unique
tune families. Subsequently, using the current model we
compute the encodings of all n× k instances and for each
instance we sample positive and negative, or anchor and
negative examples from the mini-batch. In the case of the
duplet loss, for each instance we select all possible pos-
itive examples (i.e. all other instances in the mini-batch
from the same family) and an equal number of negative
examples from the least dissimilar negatives. In the case
of the triplet loss, for each instance xi we select pairs of
anchor xk and negative example xj such that the distance
between positive and anchor is smaller than the distance
between negative and anchor, while the difference between
the distances lies inside the margin α:

0 < D(xi, xk)−D(xj , xk) < α (8)

In case no negative example can be found that satisfies this
condition, we select a random negative.

3.4 Baseline: Alignment

We compare our results with the performance of a previ-
ously proposed alignment method [23]. In this method, the
Needleman-Wunsch-Gotoh algorithm is used [10], which
computes a global alignment score for two sequences of

symbols. The alignment is constructed by inserting gaps at
appropriate locations in the sequences following a dynamic
programming approach. The alignment score is based on a
similarity function for symbols and a gap scoring scheme.
The Gotoh-variant of the algorithm applies an affine gap
scoring function in which the continuation of a gap obtains
a different score than the opening of a gap, opposed to the
basic variant of the algorithm in which all gaps obtain the
same score. We use the best scoring configuration in [23],
which uses pitch, metric weight and the position of a note
in its phrase.

3.5 Evaluation

We formulate the task of tune family identification as a
ranking problem: given a query melody qi and a data set of
melodies X, qi /∈ X , the models should provide a ranked
list of the melodies in X . To evaluate how well our mod-
els solve this problem, we measure the performance of the
models by means of three evaluation measures: (i) ‘Av-
erage Precision’, (ii) ‘Precision at rank 1’, and (iii) ‘Sil-
houette Coefficient’. Each of these measures addresses a
different aspect of the performance quality of the mod-
els. First, Average Precision (AP) addresses the ques-
tion whether given a query melody, all or most relevant
melodies are high up in the ranking:

AP =

∑N
k=1 P (k)× rel(k)

number of relevant melodies
, (9)

where k is the position in the ranked list of N retrieved
melodies. P (k) represents the precision at position k,
and rel(k) = 1 if the melody at position k is relevant,
rel(k) = 0 otherwise. By computing the average AP over
all query melodies, we obtain the Mean Average Precision
(MAP). As a second ranking measure, we focus on the Pre-
cision at rank 1 score (P@1), which computes the fraction
of queries for which the highest ranked sequence is rel-
evant. Third and finally, we compare these two ranking
based evaluation measures with the Silhouette Coefficient,
which is a measure of cluster homogeneity and separation.
The Silhouette Coefficient contrasts the mean similarity
between a sample and all other samples from the same fam-
ily with the similarity of that sample with members of other
families. By taking the average over all silhouette scores,
we obtain a measure of cluster homogeneity ranging from
-1 (incorrect clustering) to 1 (perfect clustering). 5

3.6 Training and Hyper-Parameter Optimization

The networks were trained on the training data sets spec-
ified in Table 1. We use the Adam optimizer [17] and
stop training after no improvement in MAP score was
made on the development data for ten consecutive epochs.
The neural network consists of a large number of hyper-
parameters, making hyper-parameter tuning expensive and
time-consuming. Following [2], we perform a random-
ized hyper-parameter search, in which we train n differ-

5 See the Supplementary Materials for more information.
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MAP P@1 Sil.

all seen unseen

RNND 0.72 0.71 0.73 0.78 0.34
RNNT 0.71 0.70 0.71 0.77 0.29
Alignment 0.69 – – 0.78 0.23

Table 2. Best evaluation scores for the development data.
RNND is an RNN with duplet loss, and RNNT is an RNN
with triplet loss.

MAP P@1 Sil.

all seen unseen

RNND 0.72 0.70 0.74 0.78 0.33
RNNT 0.68 0.64 0.71 0.75 0.28
Alignment 0.67 – – 0.78 0.22

Table 3. Evaluation scores for the test data. RNND is an
RNN with duplet loss; RNNT is an RNN with triplet loss.

ent models with random hyper-parameter settings sampled
from parameter-specific, relatively flat distributions. 6

4. RESULTS

Table 2 presents the results for the development data set
with MAP scores for the best performing models trained
with duplet (RNND) and triplet loss (RNNT ). The best
RNND achieves a MAP of 0.72, which is markedly better
than the Alignment method (0.69), and slightly better than
the best RNNT (0.71). However, as will be discussed in
more detail below, RNNT models are significantly harder
to optimize than RNND models (at least for the current
data set). The columns ‘seen’ and ‘unseen’ represent MAP
scores for queries of which the corresponding tune fami-
lies were either seen or unseen during training. Crucially,
the scores are almost equivalent, indicating that the neural
networks are capable of actually learning a similarity met-
ric, and not just a clustering or classification procedure,
in which the systems learn to assign sequences to known
class labels and data points. The performance differences
between the models are further expressed by the Silhou-
ette coefficient, which indicates superior performance of
the RNND model. However, note that for P@1, all sys-
tems perform equally well.

The best performing models were employed to encode
the melodies in the test set. The test results in Table 3 show
a similar picture. Again, RNND outperforms the other
systems. Note that the performance of RNNT slightly
dropped in comparison to the development results and that
the performance difference with respect to RNND has be-
come larger. Overall, the RNNs appear to have adequately
learned how to form compact distributional representations
of symbolic music in an induced melody space. This ca-
pability is further illustrated by the two-dimensional pro-

6 The full list of hyper-parameters and the predefined priors are listed
in Section 2 of the Supplementary Materials.

INST
FS

9128_0
13885_0
11112_0
2955_0
9668_1
1876_0
720_0

Figure 5. Two-dimensional UMAP [25] projection of the
induced melody space obtained with RNND. The left
subplot visualizes the positions of instrumental melodies
(INST) and vocal melodies (FS). The subplot to the right
highlights the positions of a small number of randomly
chosen tune families.

jection of the melody space in Figure 5. The left subplot
demonstrates that the learned representations clearly sep-
arate vocal (FS) from instrumental melodies (INST). The
subplot to the right serves as a validation of the cluster-
ing capabilities of the encoder. It highlights the positions
of a small number of randomly chosen tune families, the
members of which all cluster together.

4.1 Hyper-Parameter Importance

We assess the importance of the different hyper-parameters
of the neural networks by modelling their influence on
the MAP scores resulting from the randomized parameter
search [26]. To this end, we fit the following linear regres-
sion model:

MAPi ∼ N (µi, σ) (10)

µi = γ + βlli + βmmi + βhhi + βddi (11)

+βbbi + βcci + βlmlimi,

where Eq. 10 specifies the likelihood function with mean
µ and standard deviation σ, and Eq. 11 represents the lin-
ear model. Here, γ represents the intercept of the linear
model, li is the loss type of model i (i.e. triplet or duplet
loss), mi is the margin value α, hi is the dimension of the
hidden layer, di refers to the embedding dropout value, bi
dummy encodes whether a model employed bidirectional
versus unidirectional RNNs, and ci is the cell type of the
RNN (i.e. LSTM or GRU). Since the margin functions dif-
ferently in the triplet and duplet loss, we model the inter-
action between margin and loss type (βlmlimi). All cat-
egorical predictors are dummy encoded, and the contin-
uous predictors are zero centered. β priors are sampled
from uninformative Normal distributions, N (0, 1), and σ
is sampled from a weakly regularizing half-Cauchy prior
with location 0 and scale 1.

Table 4 presents the posterior distribution estimates of
the model along with their estimation errors, their 95%
credible intervals (CI95), and the R̂ statistic. 7 The mean

7 Since the linear model is Bayesian, the credible intervals can be inter-
preted straightforwardly as the 95% probability that the estimates fall in
a particular range. The ‘No U-Turn Sampler’ (NUTS) was used for sam-
pling [15], which is a specific type of Hamiltonian Monte Carlo (HMC).
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Estimate Error l-CI95 u-CI95 R̂

γ 0.66 0.00 0.65 0.67 1.0
βl -0.08 0.01 -0.09 -0.07 1.0
βm 0.01 0.01 -0.02 0.04 1.0
βd -0.05 0.02 -0.09 0.00 1.0
βb 0.03 0.01 0.02 0.04 1.0
βc -0.05 0.00 -0.06 -0.04 1.0
βh 0.02 0.00 0.01 0.03 1.0
βlm -0.18 0.02 -0.22 -0.13 1.0
σ 0.04 0.00 0.04 0.04 1.0

Table 4. Posterior distribution estimates for the hyper-
parameters of the Neural Networks. In addition to the
mean estimates, the table provides the estimation errors,
95% Credible Intervals, and the R̂ statistic.
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Figure 6. Marginal effects plot showing the interaction be-
tween loss type (i.e. Duplet and triplet loss) and the margin
α.

intercept γ = 0.66 represents the mean posterior esti-
mate of MAP values for unidirectional models, fit with
GRU cells (ci = 0), duplet loss (li = 0) and mean (i.e.
0) values for the continuous predictors. Given this base
model, several interesting observations can be made. First,
as suggested by the negative βl estimate, triplet loss mod-
els markedly underperform duplet loss models with, ce-
teris paribus, a mean drop in performance of 0.08. Sec-
ond, employing larger hidden dimensions (βh) and using
bidirectional RNNs (βb) both positively influence the MAP
scores. Third, on average adding too much dropout hurts
performance (βd = −0.05). Fourth, the strong negative
posterior distribution estimate for the interaction between
the margin α and loss type indicates that careful tuning
of α is especially important for the triplet loss. By con-
trast, different values of α barely impact the performance
of duplet loss models. The marginal effects plot in Fig-
ure 6 highlights this interaction. Finally, RNNs trained
with GRU cells markedly outperform models trained with
LSTM cells (βc = −0.05). Figure 7 illustrates this perfor-
mance difference. Additionally, the plot demonstrates the

R̂ is a statistic to assess the convergence of the sampler, and should be be-
low 1.1 [8]. For more information about the convergence and parameters,
see the Supplementary Information.
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Figure 7. Marginal effects plot of RNN cell type (i.e.
LSTM or GRU) and bidirectional versus unidirectional
RNNs.

benefits of employing bidirectional RNNs, which consis-
tently outperform unidirectional models.

5. CONCLUSION & FUTURE WORK

This paper proposed a method for end-to-end melody sim-
ilarity metric learning using deep neural networks. We
trained distributional melody encoders to minimize Du-
plet and Triplet Contrastive loss functions with which we
achieve state-of-the-art retrieval performance on a large set
of instrumental and vocal melodies. A thorough statistical
analysis of the hyper-parameters of the Neural Networks
indicates that on average Duplet Loss RNNs are easier to
tune and less sensitive to specific hyper-parameter settings.
Additionally, RNNs trained with GRU cells consistently
outperform LSTM cell implementations. Our system has
several major advantages over more traditional, alignment-
based methods. First, thanks to its ability to infer com-
plex interactions between input variables, the Neural Net-
work approach is less sensitive to specific feature combi-
nations and feature selection. Second, as shown by our
study, the Neural Network approach displays more robust-
ness, achieving similar MAP scores across exclusive sets
of tune families (seen vs unseen).

For future work, we have the following three recom-
mendations. First, the applicability of the proposed ap-
proach should be carefully examined on more diverse data
sets, in order to test for the cross-domain robustness of the
learned similarity metrics. Second, a more extensive and
thorough comparison (including error analysis) with other
existing melodic similarity methods is desired to highlight
advantages and possible disadvantages of the neural sys-
tems. Finally, we acknowledge that, while successful, the
proposed architecture still leaves room for improvement.
Inspired by progress in similarity metric learning within
the fields of Paraphrase Detection and Semantic Textual
Similarity, we would like to experiment with more expres-
sive neural architectures and feature extraction to explore
the performance limits of the Neural Network approach on
melodic similarity metric learning.
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ABSTRACT

We propose a multi-task learning approach for simultane-
ous tempo estimation and beat tracking of musical audio.
The system shows state-of-the-art performance for both
tasks on a wide range of data, but has another fundamental
advantage: due to its multi-task nature, it is not only able to
exploit the mutual information of both tasks by learning a
common, shared representation, but can also improve one
by learning only from the other. The multi-task learning
is achieved by globally aggregating the skip connections
of a beat tracking system built around temporal convolu-
tional networks, and feeding them into a tempo classifica-
tion layer. The benefit of this approach is investigated by
the inclusion of training data for which tempo-only anno-
tations are available, and which is shown to provide im-
provements in beat tracking accuracy.

1. INTRODUCTION

By definition, the music analysis tasks of tempo estimation
and beat tracking are highly interconnected. Considering
the goal of a beat tracking system is to produce a sequence
of time instants that reflect how a human listener might tap
their foot in time to a piece of music, we understand the
tempo as the rate at which these beats occur, as measured
in beats per minute (BPM). With the exception of a spe-
cific class of musical recordings which are both perfectly
quantised (i.e. adhering strictly to a fixed metronome), and
which begin precisely at the onset of a beat, e.g. drum
loops, tempo information alone is insufficient to derive the
beats since it provides no information about phase. In prac-
tice, a more flexible and musically realistic approach to
beat tracking is required to contend with deviations from
purely isochronous beat sequences without a trivial phase
component. These deviations can take the form of contin-
uous changes in tempo and/or timing which are common
in expressive musical performances, more abrupt “step”
changes in tempo, or short pauses after which a previously
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established tempo is resumed [21]. The presence and ex-
tent of these deviations from isochrony have been identi-
fied as contributing to the difficulty of musical examples
for computational beat tracking [14] as well as for human
annotators annotating ground truth [27].

When reflecting on the history of computational ap-
proaches for beat tracking, we consider that the role and
usage of data has fundamentally changed. For the earli-
est work in beat tracking in the 1990s [18, 37], annotated
data was scarce. By the mid-to-late 2000s, several beat
tracking datasets (both public and private) came into use
[12, 19, 20, 22, 24, 29] and were widely adopted as the pri-
mary means for reporting beat tracking performance. Even
allowing for parameter optimisation or some training to
maximise the performance of beat tracking algorithms on
given datasets, a closed loop (in a strict end-to-end sense)
did not exist between annotated data and beat tracking al-
gorithms until the advent of deep neural network (DNN)
approaches [7]. Both the high learning power and explicit
use of annotations of DNN approaches led to a significant
leap in the state of the art.

Similarly, tempo induction algorithms formerly tried to
identify the main periodicity of musical accent features,
such as band-passed signals, discrete onsets or a con-
tinuous detection function by means of auto-correlation
[1, 13, 36], resonating comb filters [29, 37] or Fourier
analysis [9], and available data was only used to evalu-
ate the algorithms. The first attempts to learn something
meaningful from data for tempo estimation sought to de-
vise ways to choose among multiple tempo hypotheses
[15, 16, 26, 38, 45] or to predict the perceptual tempo [35].
Only recently, DNN approaches have been used to infer
tempo directly from spectral features [40].

At the present time, DNN approaches are highly preva-
lent among music analysis and generation research within
the music information retrieval (MIR) community, and
thus access to large amounts of high-quality annotated data
is of paramount importance for the development and train-
ing of new models. For beat tracking, the hand annota-
tion of beat locations is particularly arduous due to the
need to make several hundred temporally-dependent an-
notations per full piece of music, and the work-load only
increases in the presence of challenging musical and sig-
nal conditions [27]. By contrast, global tempo annotation,
while still dependent on some approximate beat marking,
can typically be created with far less effort. As a result,
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there is a far greater amount of tempo annotated data avail-
able than for beat tracking.

Our motivation is therefore towards a new approach for
beat tracking which can be trained not only on beat annota-
tions but also from tempo-only annotated data. We formu-
late this as a multi-task learning problem [8] for simulta-
neous tempo estimation and beat tracking. Our hypothesis
is that due to the multi-task nature, we can not only ex-
ploit the mutual information of both tasks by learning a
common, shared representation, but also improve one by
learning only from the other.

We implement our multi-task approach by extending a
recent beat tracking system [11] built around temporal con-
volutional networks (TCNs) [2, 44]. The primary addition
in this paper takes the form of globally aggregating the skip
connections of the TCN and feeding them into a tempo
classification layer. A graphical overview of the inputs and
outputs of our system is shown in Figure 1, with details of
the architecture in Figure 2.

We evaluate our proposed multi-task system on a wide
range of existing beat- and tempo-annotated datasets and
compare performance against reference systems in both
tasks. Our results demonstrate that the multi-task formu-
lation achieves state-of-the-art performance in both tempo
estimation and beat tracking. The most notable increase
in performance occurs on a dataset where the network has
been trained on tempo labels but whose beat annotations
remain totally unseen by the network.

The remainder of this paper is structured as follows.
In Section 2 we provide an overview of the existing beat
tracking approach and then detail our multi-task formula-
tion. In Section 3 we conduct a rigorous evaluation of beat
tracking and tempo estimation. Finally, in Section 4 we
discuss the context of the results and propose areas for fu-
ture work.

2. APPROACH

In this section, we provide an overview of the beat tracking
system [11] around which our multi-task learning approach
is formulated. Following this, we describe the extension
for multi-task learning via the inclusion of an additional
output layer which performs tempo classification.

2.1 Beat Tracking Approach

The underlying beat tracking approach is inspired by two
well-known deep learning methods: i) the WaveNet model
[44] which uses dilated convolutions for generative audio
synthesis by learning directly on raw audio waveforms,
and ii) the current state of the art in musical audio beat
tracking [4, 6], which uses a bi-directional long short-term
memory (BLSTM) recurrent architecture. Based on the
work of Bai et al. [2], who demonstrated improved per-
formance of TCNs over recurrent architectures for numer-
ous sequential data analysis and classification tasks, we
developed a TCN approach for musical audio beat track-
ing [11] which, at a high-level, addressed the substitution
of the BLSTM in [4, 6] with a TCN. However, since the
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Figure 1: Signal flow of a 5 second audio excerpt through
the proposed multi-task system. From the time domain sig-
nal (a), a logarithmic magnitude spectrogram is computed
(b). This input representation is processed by intermediate
convolutional and max pooling layers to obtain a single 16-
dimensional feature (c), which is fed into the TCN. Both
targets and predictions for beats and tempo are shown in
(d) and (e), respectively.
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TCN from WaveNet is both causal and operates on raw au-
dio, several modifications were required, which are sum-
marised below.

Instead of using raw audio as input, the dilated con-
volutions are performed on a highly sub-sampled low-
dimensional feature representation (cf. Figure 1c). This
16-dimensional feature vector is derived by applying mul-
tiple convolution and max pooling operations to a log mag-
nitude spectrogram of the input audio signal. The spectro-
gram is computed with a window and FFT size of 2048
samples, a hop size of 441 samples (i.e. 100 frames per
second for audio sampled at 44100Hz), and filtered with
a bank of overlapping triangular filters with 12 bands per
octave covering a frequency range of 30 to 17, 000Hz (cf.
Figure 1b). Alternating convolutional and max pooling
layers are applied to slices of 5 frames in length to re-
duce the dimensionality both in time and frequency to a
single dimension. The convolutional layers contain 16 fil-
ters each, with kernel sizes of 3 × 3 for the first two, and
1× 8 for the last layer. The intermediate max pooling lay-
ers apply pooling only in the frequency direction over 3
frequency bins. A dropout [42] rate of 0.1 is used with the
exponential linear unit (ELU) [10] as activation function.

The main TCN component from WaveNet was modified
to operate non-causally, meaning that, for any time frame
of the input representation, the dilated convolutions extend
in both directions (i.e. back to the past and forward to the
future). This provides a receptive field which is centred
on the time frame in question, rather than directed solely
towards the past.

In terms of the parameterisation of the TCN approach
we used 11 layers with 16 1-dimensional filters of size 5
and geometrically spaced dilations ranging from 20 up to
210 time frames. The resulting receptive field is ∼ 81.5
seconds. We applied spatial dropout with rate 0.1 and used
the ELU activation function instead of the gated activations
of WaveNet. As output we used a single sigmoid unit. In
order to obtain a final beat tracking output, the beat ac-
tivation function produced by the network was passed to
a dynamic Bayesian network, approximated by a hidden
Markov model, from [31]. For further details on the TCN
approach for beat tracking, see [11].

In this work we slightly changed the architecture of [11]
by adding another 1 × 1 convolution layer with 16 filters
into the residual path of the TCN layers (cf. Figure 2). We
found that this layer helped to increase tempo estimation
performance.

2.2 Multi-Task Extension

We extend this beat tracking system to be able to estimate
the tempo of a musical piece by adding a second output
branch to the network. As output, a classification layer
with linear spacing as in [40] is used. It has 300 units, rep-
resenting a tempo range from 0 (indicating that the piece
has no tempo) up to 300BPM. This additional output al-
lows for multi-task learning of the whole system, the de-
tails of which are outlined in Figure 2. In order to be able
to process input sequences of variable length, global aver-

age pooling (over time) is used to aggregate the features
for the tempo classification layer.

While it is possible to feed the output of the TCN (or
indeed the output of any other sequential beat tracking
model) directly to the tempo classification layer, in practice
we found that using a beat activation function led to rea-
sonable “coarse” tempo estimation performance (i.e. de-
termining whether a musical piece is either fast or slow),
but lacked absolute precision. However, utilising skip con-
nections of the TCN boosted tempo estimation accuracy
considerably. Our intuition is that this way the subtleties
of the intermediate representation of the dilated convolu-
tions (which represent different time scales) are preserved
and can be better exploited.

In the original WaveNet [44], skip connections were
used to speed up convergence and enable training of deep
models. Since the TCN beat tracking system [11] has only
11 layers, skip connections were not needed to success-
fully train a model and thus were not utilised. In this work,
we branch off the skip connections at the same location
as in WaveNet (i.e. from the 1 × 1 convolutions inside the
TCN layers), but use them solely for the tempo branch of
the network (cf. Figure 2).

We aggregate the skip connections of the individual lay-
ers by summation. Since the 1 × 1 convolutions have 16
filters each, this results in a single 16-dimensional fea-
ture vector for classification. Compared to concatenat-
ing the skip connections, this low-dimensional input to the
tempo classification layer reliably prevents over-fitting to
the training data. We apply dropout [41] with rate 0.5
before feeding this vector in the final tempo classification
layer with a softmax function. During inference, quadratic
interpolation of the output probability distribution is used
to determine the final tempo in BPM.

The whole system has only 29,901 trainable parame-
ters, from which the multi-task tempo classification exten-
sion accounts for 5,100. We contrast our compact model
with the reported 2.9M parameters of the current state of
the art in tempo estimation [40].

2.3 Network Training

To train the system, we represent annotated beat train-
ing data as impulse trains at the same temporal resolution
as our input feature (i.e. 100 frames per second). To al-
low for slight deviations of the annotated beat locations
and partially address the imbalance between the number of
beat and non-beat frames, we use the neighbouring frames
of the annotated beat positions as positive examples, but
weight them by a scaling factor of 0.5 (cf. Figure 1d).

Given beat annotations, we derive tempo annotations by
counting the inter-beat-intervals (IBI) to build a histogram.
We smooth this histogram with a Hamming window of size
15 frames (i.e. 150ms) to counteract small fluctuations of
the beat annotations and determine the most dominant IBI
by quadratic interpolation. This interval is then converted
to tempo in BPM and mapped to tempo targets represent-
ing integer BPM values. In a similar way to the widening
of the beat annotations, we smooth the tempo targets, but
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Figure 2: Structure of the neural network with the TCN for
beat tracking (left) and the multi-task extension for tempo
estimation (right).

extend the range to ±2 BPM, weighting the neighbouring
BPM targets with 0.5 and 0.25, respectively. We then nor-
malise the tempo targets to form a probability distribution
(as shown in Figure 1e) in order for it to be usable with the
softmax activation function.

For training, we combine the cross-entropy losses of
both network outputs by weighting them equally. Since
the training sequences have different lengths, we train on
whole sequences and minimise the combined loss with
stochastic gradient descent (i.e. using a batch size of 1). We
use Adam [28] with an initial learn rate of 0.002, and re-
duce it by a factor of 5 whenever the validation loss reaches
a plateau and stop training if no improvement in validation
loss is observed for 50 consecutive epochs or if a maxi-
mum of 150 epochs have elapsed. To avoid exploding gra-
dients, we clip the gradients to a maximum norm of 0.5.
If only tempo targets are present for training, we mask the
loss of the beat tracking output. This way, only the error of
the tempo output is backpropagated through the network
and used to update the weights. It is important to note,
that even in this scenario the shared beat and tempo feature
representation gets adapted and optimised.

3. EXPERIMENTS AND EVALUATION

For experiments and evaluation we use the datasets listed
in Table 1. Those listed in the upper part are used for train-
ing using 8-fold cross validation, and those in the lower

part are independent test sets held back for evaluation only.
If available, updated annotations are used and indicated by
additional references. We chose these datasets in order to
be able to compare the performance of our proposed sys-
tems to the best performing reference systems for both beat
tracking and tempo estimation.

Dataset files length

Ballroom [23, 32] 1 685 5 h 57 m
Beatles [12] 180 8 h 09 m
Hainsworth [24] 222 3 h 19 m
Simac [20] 595 3 h 18 m
SMC [27] 217 2 h 25 m
HJDB [25] ∗ 235 3 h 19 m

ACM Mirum [35] ? 1410 15 h 05 m
GiantSteps [30, 39] ? 664 22 h 05 m
GTZAN [33, 43] 999 8 h 20 m

Table 1: Datasets used for training (upper half), and testing
(lower half). The ∗ symbol denotes that only tempo anno-
tations were used during training and beat annotations are
used for evaluation only, and the ? symbol indicates those
datasets for which only tempo annotations exist.

The HJDB (Hardcore, Jungle, Drum & Bass) dataset
is used to demonstrate the effectiveness of our multi-task
extension w.r.t. its ability to improve beat tracking perfor-
mance using only the tempo annotations of this set. This
dataset was chosen, since its distinct music style is not well
represented within any of the other training sets.

3.1 Beat Tracking Evaluation

We compare our proposed multi-task system to existing
state-of-the-art beat tracking systems, namely to the un-
derlying TCN approach presented in [11], and the two
BLSTM approaches for beat [4] and joint beat and down-
beat tracking [6]. Our goal is that the inclusion of the
tempo classification layer is never detrimental to the per-
formance of the beat tracking component.

Following the de facto standard for beat tracking evalu-
ation, we report a set of different metrics with the parame-
terisation defined in [12]. We use the standard F-measure,
as well as the continuity based measures CMLc and CMLt
which require the beats to be tracked at the correct met-
rical level, as well as AMLc and AMLt which also allow
alternate metrical interpretations such as double/half and
offbeat. They either consider only the longest consecutive
correctly tracked segment (xMLc) or all correctly tracked
beats of a musical piece (xMLt).

From the results given in Table 2 it can be seen that all
systems achieve essentially the same level of beat tracking
accuracy, independent of the evaluation method. There are,
however, smaller deviations from this general tendency.
The beat output of the downbeat tracking system [6] per-
forms slightly better on the Ballroom set, which might be

1 The 13 identified duplicates were removed: http://media.aau.
dk/null_space_pursuits/2014/01/ballroom-dataset.html
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due to the characteristic rhythmic patterns which can be
better exploited by explicit modelling of whole bars.

F CMLc CMLt AMLc AMLt

Ballroom
BLSTM [4] 0.917 0.832 0.849 0.905 0.926
BLSTM [6] 0.938 0.872 0.892 0.932 0.953
TCN [11] 0.933 0.864 0.881 0.909 0.929
Multi-task 0.931 0.864 0.883 0.908 0.930

Hainsworth
BLSTM [4] 0.884 0.769 0.808 0.873 0.916
BLSTM [6] 0.871 0.732 0.784 0.849 0.910
TCN [11] 0.874 0.755 0.795 0.882 0.930
Multi-task 0.877 0.756 0.798 0.880 0.928

SMC
BLSTM [4] 0.529 0.296 0.428 0.383 0.567
BLSTM [6] 0.516 0.307 0.406 0.429 0.575
TCN [11] 0.543 0.315 0.432 0.462 0.632
Multi-task 0.535 0.295 0.415 0.440 0.613

GTZAN
BLSTM [4] 0.864 0.750 0.768 0.901 0.927
BLSTM [6] 0.856 0.716 0.744 0.876 0.919
TCN [11] 0.843 0.695 0.715 0.889 0.914
Multi-task 0.847 0.702 0.724 0.886 0.916

Table 2: Beat tracking results on datasets used for train-
ing with 8-fold cross validation (top), and on completely
unseen test data (bottom).

Given these results, we infer that the multi-task system
achieves at least the same performance as the same system
without the multi-task extension.

3.2 Multi-Task Evaluation

In the previous section, our evaluation focused on the use
of both tempo- and beat-annotated training data within
our multi-task model. In order to test our hypothesis
that tempo-only information can indeed lead to improved
beat tracking accuracy, and thus demonstrate the ability of
multi-task learning to strengthen one target by learning ad-
ditionally from the other, we perform a further experiment.
To this end, we add a new dataset, but only use its tempo
annotations for training.

We believe that the effect of this learning strategy
should be most visible when performed with data, which is
otherwise underrepresented in the training set. In our opin-
ion, the HJDB dataset is a perfect fit since it contains musi-
cal genres from the early 1990s, namely Hardcore, Jungle,
and Drum & Bass, which are characterised by their very
distinct rhythmic structure. For the details on this dataset,
see [25].

We train our new multi-task approach in two different
ways. Once with the data as outlined in Table 1, but with-
out HJDB (i.e. as in the previous section), and once includ-
ing the tempo annotations of this dataset.

Inspection of the first two rows of Table 3 reveals
that both the original TCN beat tracking system, and the
system with the multi-task extension achieve roughly the

F CMLc CMLt AMLc AMLt

HJDB
TCN [11] 0.842 0.802 0.810 0.903 0.912
Multi-task 0.850 0.800 0.804 0.921 0.927
Multi-task ∗ 0.882 0.848 0.858 0.937 0.947

Table 3: Multi-task learning beat tracking results on the
HJDB dataset. All results obtained with 8-fold cross vali-
dation. The ∗ symbol denotes that tempo annotations of the
HJDB set were used as additional targets during training.

same performance across all evaluation methods. How-
ever, once the additional tempo information is utilised (last
row marked with the ∗ symbol), the performance increases
by up to ∼ 5 percentage points. The jump in accuracy is
best observed in the CMLc and CMLt evaluation methods.
This indicates that the system is able to exploit the addi-
tional information to track the beats at the correct metrical
level more often than without this information. Within the
context of the HJDB dataset where the “correct” metrical
level is largely unambiguous, we consider this to be an im-
portant contribution.

3.3 Tempo Evaluation

Further to the beat tracking oriented evaluation results re-
ported in the previous two sections, we also explore the ef-
fectiveness of our proposed approach for the task of global
tempo estimation. To discover how our multi-task ap-
proach compares to the state of the art, we contrast its
performance against four reference systems [5, 17, 36, 40].
Following the established evaluation practice for tempo es-
timation [23] we report the Accuracy 1 and Accuracy 2
scores with a tolerance of ±4% for each of these methods,
with the results shown in Table 4.

Given that human perception of tempo is known to be
subjective [34], this very reasonably manifests in multiple,
valid interpretations of the beat among listeners and thus
more than one acceptable tempo. Thus, in the context of
automatic tempo estimation, it may not be realistic to ex-
pect to obtain near perfect performance on the Accuracy 1
score on datasets of arbitrary musical makeup. To this end,
we rely on the Accuracy 2 score (which permits so-called
“tempo octave errors”) to better gauge performance.

On all of the reported datasets in Table 4, our proposed
approach is the only one to consistently obtain an Accu-
racy 2 greater than or equal to 0.938, which shows the high
potential of our method to accurately find tempo across di-
verse musical data. Even with the stricter Accuracy 1 eval-
uation, our method achieves at least a score of 0.697 which
is ahead of all other methods, albeit by a small margin. It
is important to stress that the ACM Mirum, GiantSteps, and
GTZAN datasets are completely unseen by our multi-task
approach, and this pattern even holds for HJDB when not
included in the training set.

Concerning the HJDB set, we can observe a differ-
ent overall pattern of performance compared to the other
datasets, with a much smaller gap between Accuracy 1 and
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Accuracy 1 Accuracy 2

ACM Mirum
Gkiokas et al. [17] 0.725 0.979
Percival and Tzanetakis [36] 0.733 0.972
Böck et al. [5] 0.741 0.976
Schreiber and Müller [40] 0.795 0.974
Multi-task 0.757 0.977
Multi-task ∗ 0.749 0.974

GiantSteps
Gkiokas et al. [17] 0.721 0.922
Percival and Tzanetakis [36] 0.506 0.956
Böck et al. [5] 0.589 0.864
Schreiber and Müller [40] 0.730 0.893
Multi-task 0.697 0.958
Multi-task ∗ 0.764 0.958

GTZAN
Gkiokas et al. [17] 0.651 0.931
Percival and Tzanetakis [36] 0.658 0.924
Böck et al. [5] 0.697 0.950
Schreiber and Müller [40] 0.694 0.926
Multi-task 0.697 0.939
Multi-task ∗ 0.673 0.938

HJDB
Gkiokas et al. [17] 0.783 0.911
Percival and Tzanetakis [36] 0.285 1.0
Böck et al. [5] 0.796 0.868
Schreiber and Müller [40] 0.902 0.991
Multi-task 0.826 0.962
Multi-task ∗ † 1.0 1.0

Table 4: Tempo estimation results on completely unseen
data. The ∗ symbol denotes that tempo annotations of the
HJDB set were used as additional targets during training,
the † symbol results obtained with 8-fold cross validation.

Accuracy 2 for most systems. Echoing the situation in the
beat tracking evaluation in Table 3, we believe that this is a
direct result of the unambiguous tempo for these styles of
music. Looking across the performance of the other algo-
rithms on HJDB, we discover that the method of Percival
and Tzanetakis [36], while it also obtains a perfect score
for Accuracy 2, is largely unable to identify the annotated
tempo as shown by the disproportionately low score for
Accuracy 1.

When trained with the additional tempo annotations of
the HJDB set, our multi-task method is the only one able
to detect the correct tempo for all pieces of this dataset
for both Accuracy 1 and then trivially for Accuracy 2. Al-
though results are obtained with cross-validation, this was
to be expected because of the homogeneity of the dataset.
Accuracy 1 on the GiantSteps set also greatly benefits from
this additional training material, since this dataset contains
a huge proportion of music labelled with the musical genre
“drum and bass”. On the other hand, having access to this
kind of data (the system of Schreiber and Müller [40] was
trained on an extended version of the GiantSteps dataset)
can in turn result in very good scores on the HJDB set.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a novel formulation for the
simultaneous estimation of tempo and beat from musical
audio signals within a multi-task learning framework. Via
an extensive evaluation of both beat tracking and tempo
estimation, we have demonstrated that our proposed multi-
task approach leads to state-of-the-art performance across
a wide variety of test datasets and relevant evaluation meth-
ods. Perhaps most critically, we have shown that, within
this multi-task learning framework, we can improve the
performance of beat tracking by providing it tempo-only
annotations. In light of the challenges of obtaining high-
quality annotated data for training beat tracking systems,
the ability to profit from alternative training data which is
both far more prevalent and easier to annotate, may have a
significant impact on beat tracking moving forward.

In order to train our model, we made use of all of the
available beat and tempo annotations within the allocated
training sets in Table 1, and subsequently provided addi-
tional tempo-only annotations for evaluation on the HJDB
dataset. We consider this split between beat and tempo
annotated data to be one that is worthy of further explo-
ration, in particular by seeking to understand how little
beat annotated data is sufficient to achieve the same per-
formance, assuming we can supplement the model with
additional tempo annotations. This reduction of beat in-
formation could be posed in two ways, either by a lower
number of fully annotated excerpts/pieces, or by restrict-
ing the duration of annotated sections across many pieces.
If successful, the latter option would offer the possibility
to rapidly increase the availability of training data by dras-
tically reducing the burden of annotating long pieces of
music—at least for those with roughly constant tempo.

We frame this discussion within the computational con-
text of our proposed multi-task approach and the TCN beat
tracker [11] which it extends. As previously stated, our
multi-task model is highly effective in terms of objective
performance, but with a fraction of the number of weights
of other state-of-the-art approaches. This has two particu-
larly beneficial properties. First, it allows for very efficient
training (thanks in part to the ease of parallelisation of di-
lated convolutional models compared to recurrent archi-
tectures). Second, the training of networks with very few
weights drastically reduces the degrees of freedom of the
network, and hence strongly mitigates over-fitting. Thus,
when looking beyond the limited domain of existing an-
notated datasets and considering generalisation capabili-
ties of beat tracking and tempo estimation methods (and
the subsequent re-use of this information for end-users) on
totally unseen data, we believe that such “compact” deep
models are worthy candidates for future research.

Supplementary material can be found online at
https://github.com/superbock/ISMIR2019 with
executable code and pre-trained models being included in
madmom [3] (https://github.com/CPJKU/madmom).
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ABSTRACT

We present a pilot study on ways to increase inter- and
intra-rater agreement in quantification of general similar-
ity between pieces of music. By using a more controlled
group of human subjects and carefully curating song ma-
terial, we try to increase overall agreement between raters
concerning the perceived general similarity of songs. Re-
peated conduction of the experiment with a two week lag
shows that intra-rater agreement is higher than inter-rater
agreement. Analysis of the results and interviews with test
subjects suggests that the genre of songs was a major fac-
tor in judging similarity between songs. We discuss the
impacts of our results on evaluation of respective machine
learning models and question the validity of experiments
on general music similarity.

1. INTRODUCTION

One of the successful applications of Music Informa-
tion Retrieval (MIR) is the automatic recommendation of
music or creation of playlists as is now commonplace
and ubiquitous in music streaming services like Spotify,
Deezer, Pandora or Tidal. These services often recom-
mend music which is in some way similar to what users
have been listening before. Therefore objective assess-
ment of the quality of such services requires a quantifi-
cation of similarity between recommended songs that mir-
rors the human perception of music similarity. Previous re-
search [6, 8, 10, 14, 20] has shown that perception of music
similarity is highly subjective with low inter-rater agree-
ment. This is especially true for perception of general mu-
sic similarity. Because it is not meaningful to have compu-
tational models that go beyond the level of human agree-
ment, these levels of inter-rater agreement present a natural
upper bound for any algorithmic approach [6,10,15,22,25].
To overcome this principal problem, a range of solutions
have been proposed including better control of subject
groups and song material, analysis of more specific as-
pects of music similarity, personalization of recommenda-
tions or holistic evaluation of complete MIR systems in

c© Arthur Flexer and Taric Lallai. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Arthur Flexer and Taric Lallai. “Can we increase inter- and
intra-rater agreement in modeling general music similarity?”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

specific use cases [6, 20]. In this paper we present a pilot
study on the feasibility to improve inter-rater agreement in
modeling music similarity by confining subject groups and
carefully curating song material. We also report on levels
of intra-rater agreement when the experiment is repeated
with a two week time-lag. To the best of our knowledge,
levels of intra-rater agreement have never been explored in
MIR so far.

2. RELATED WORK

It seems a fundamental fact that human perception of mu-
sic is highly subjective with potentially low inter-rater
agreement. To give one example, if different human sub-
jects are asked to rate the same song pairs according to
their perceived similarity, only a certain amount of agree-
ment can be expected due to a number of subjective fac-
tors [6, 20] like personal taste, musical expertise, familiar-
ity with the music, listening history, current mood, etc. The
same holds for annotation of music where different human
subjects will not always agree on genre labels or other se-
mantic tags. It was shown [23] that the performance of
humans classifying songs into 19 genres ranges from mod-
est 26% to 71% accuracy, depending on the test subject. A
study [14] on transcription of chords found that annotators
disagree on about 10% of harmonic annotations. A related
study [10] on chord annotation showed that annotators, if
given full freedom to choose chords, tend to use different
chord-label vocabularies, with overlap among all annota-
tors being less than 20%. Audio-based grounding of ev-
eryday musical terms also showed problematic results [1].

Going even further, the argument has been made [29]
that music itself does not exist without the psycho-
physiological effect of a stimulus on humans. Therefore
no such thing as an immovable ‘ground’ exists in the con-
text of music, which itself is subjective, highly context-
dependent and not constant. A similar conclusion has been
drawn in a study on the feasibility of automatically anno-
tating acousmatic music [9]. The same problem is also
well known in general IR, where already fifty years ago
it has been documented that the implicit use orientation
strongly influences manual rating of retrieved items [4].

Connected to this problem, a certain level of inter-rater
agreement naturally presents an upper bound for any algo-
rithmic approach trying to provide models which are valid
for a multitude of users. Whenever these models are tested
by new users, there will be a certain amount of disagree-
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ment making it impossible that these computational mod-
els surpass the level of human agreement. This has been
documented [6,8,20] for the MIREX 1 tasks of ‘Audio Mu-
sic Similarity and Retrieval’ (AMS) and ‘Music Structural
Segmentation’ (MSS). MIREX (‘Music Information Re-
trieval Evaluation eXchange’) is an annual evaluation cam-
paign for MIR algorithms [5]. Since our experiment re-
ported in Section 4 is closely connected to the MIREX task
of ‘Audio Music Similarity and Retrieval’ (AMS), we now
review previous results concerning rater agreement in the
AMS task [6]. The essence of the AMS task was to have
human graders evaluate pairs of query/candidate songs ac-
cording to their general similarity. The query songs were
randomly chosen from a test database and the candidate
songs are recommendations automatically computed by
participating algorithms. The human graders rated whether
these query/candidate pairs “sound similar” using both a
BROAD (‘not similar’, ‘somewhat similar’, ‘very similar’)
and a FINE score (from 0 to 10 or from 0 to 100, depend-
ing on the year the AMS task was held, indicating degrees
of similarity ranging from failure to perfection).

Only in the year 2006 2 every query/candidate pair in
the AMS task has been evaluated by three different hu-
man graders, which makes 2006 the only year inter-rater
agreement can be accessed. The average Pearson correla-
tion between pairs of graders was found to be at the rather
low level of 0.40. The same authors [6] also derived an
upper bound based on ratings within the highest interval of
scores, where query/candidate pairs that have been rated
between 9 and 10 by one grader have received an average
rating of 6.54 by the respective other two graders. This
was explained to constitute an upper bound BAMS as the
maximum of average scores that can be achieved within
the AMS evaluation setting, based on a considerable lack
of agreement between human graders. What sounds very
similar to one of the graders will on average not receive
equally high scores by other graders. For AMS the upper
bound has already been reached in 2009 by a number of
algorithms [6].

Related results exist for the MIREX ‘Music Structural
Segmentation’ (MSS) task, where an upper bound for MSS
has been reported which is already within reach for some
genres of music [6]. Additional results for music structure
analysis [15, 25] and segment boundary recognition [22]
exist. The level of inter-rater agreement has also been
explored for melody extraction [2, 3, 18], metrical struc-
ture [17], rhythm and timbre similarity [16] as well as
chord estimation [12]. An interesting new approach [11]
is to use deep learning to account for different annotator
styles in the task of chord labeling, essentially personaliz-
ing chord labels for individual annotators.

To the best of our knowledge, intra-rater agreement has
so far not been explored in MIR, but in general IR it is a
well documented fact that items are judged differently over
time, even by the same people [19].

1 http://www.music-ir.org/mirex
2 https://www.music-ir.org/mirex/wiki/2006:

Audio_Music_Similarity_and_Retrieval

3. EXPERIMENT

Our experiment is closely connected to the MIREX task
of ‘Audio Music Similarity and Retrieval’ (AMS) as re-
viewed in Section 2. We still aim at quantification of
general similarity among song pairs by human graders,
but try to increase inter- and intra-rater agreement by in-
troducing a number of changes. Essential differences of
our experiment include: (i) a more controlled group of
human graders; (ii) carefully curated song material; (iii)
query/candidate pairs are not results of algorithmic recom-
mendation but of constrained random assignment.

Participants: In selecting test subjects for this study,
we were aiming at a more uniform group of persons com-
pared to the MIREX AMS task, where participants were
drawn form the larger MIR community without any re-
strictions and without collecting any personal data. The
major selection criteria for taking part in our study was to
have had musical training in the past in some way, which
should give all participants a comparable background in
music. We also selected participants from an essentially
young age group, which resulted in all participants hav-
ing been born after 1984 and their age ranging from 25 to
34 years. The sample consisted of three females and three
males. All participants were personal contacts of one of
the authors.

Song Material: Contrary to the MIREX AMS task with
songs from nine genres, songs in this study belong to only
five different genres. The genres are: (i) American Soul
from the 1960s and 1970s with only male singers singing;
(ii) Bebop, the main jazz style of the 1940s and 1950s,
with excerpts containing trumpet, saxophone and piano
parts; (iii) High Energy (Hi-NRG) dance music from the
1980s, typically with continuous eighth note bass lines,
aggressive synthesizer sounds and staccato rhythms; (iv)
Power Pop, a Rock style from the 1970s, with chosen
songs being guitar-heavy and with male singers; (v) Rock-
steady, which is a precursor of Reggae with a somewhat
soulful basis. The full list of songs can be found here.

The five genres were chosen to have small stylistic over-
lap. All songs originate between the 1940s and 1980s,
making it more unlikely that participants are overly famil-
iar with the music since all of them have been born after
1984. For every genre, we chose 18 songs. To further en-
sure unfamiliarity of song material to participants, we pro-
ceeded as follows. The songs were mainly chosen with the
help of the recommendations of similar songs and artists
on the music platform Spotify. For each genre, we always
started with one stereotypical artist of the genre and then
searched for other similar songs using the similar artist
function of Spotify, with the goal of finding similar music
from rather unknown artists. The criterion for each song’s
degree of popularity was to have under 50.000 accesses on
Spotify. Post-experiment questioning confirmed that very
few songs were familiar to the participants. No artists ap-
pears more than once on the song list. Within genres, we
tried to find a homogeneous set of songs in order to evoke
high similarity ratings which are crucial for determination
of upper bounds in rater agreement. For presentation in the
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questionnaire, 15 seconds of a representative part of every
song (usually the refrain) were chosen and normalized to
89db to control for volume effects.

Questionnaire: The study was conducted online at
www.soscisurvey.com, which is a free-access platform to
compile questionnaires also allowing to include audio files.
The first page of the questionnaire contained an introduc-
tion that explains the purpose of the study, the expected
temporal effort as well as the note that the collection of
data is held anonymously. Subsequently, the procedure
of the study was explained to the participants. The sub-
jects were asked to “assess the similarity between the query
song and each of the five candidate songs by adjusting the
slider” and “to answer intuitively since there are no wrong
answers”. Before starting with the assessment, a test page
was shown consisting of one randomly chosen query song
and five randomly chosen candidate songs of all five gen-
res. That was done to introduce all five genres and to give
an idea of the variation of the song material used in the
study.

For the main part of the questionnaire the pairings of
query and candidate songs were determined as follows.
The complete song material consists of excerpts of 90
songs with a duration of 15 seconds, with 18 songs be-
longing to each of the 5 genres. We randomly drew 3 songs
of each genre as query songs yielding a total of 15 query
songs. For every query song we randomly chose five can-
didate songs with the constraint that at least one of them
belongs to the same genre as the corresponding query song.
This yields 15 groups of 6 songs each, with the sequential
order being held constant for all participants. Each group
contains one query song paired with each of the five can-
didate songs of the group. In sum, comparisons of five
pairs had to be made for every group yielding a total of
15× 5 = 75 pairs. The participants were asked to indicate
their rating of the similarity on a slider ranging from 0 to
100 %. The more similar a pair was assessed, the higher
the percentage was, and the further to the right the slider
had to be shifted.

At the end of the questionnaire, data regarding gender,
age and musical education and experience was collected.
On the last page of every questionnaire, the subjects had
the possibility to leave a comment.

About two weeks after filling in the first questionnaire
at time point t1, all subjects filled in the same questionnaire
with identical randomized items a second time (time point
t2). The test page as well as the questions about the per-
sonal experiences with music were omitted in the second
round of surveys.

4. RESULTS

First we analyse the degree of inter-rater agreement by
computing the Pearson correlation ρ between graders for
the 75 pairs of query/candidate songs. The correlations be-
tween graders S1 to S6 are given in Table 2 for time t1
and in Table 3 for time t2. The correlations range from
0.59 to 0.86, with an average of 0.73 at t1 and 0.75 at
t2 (see also Table 1 for an overview of results). This is

t1 t2 t1→ t2
ρ 0.73± .065 0.75± .065 0.80± .103

B80 67.7± 19.5 57.5± 25.6 82.1± 14.6

ρAMS 0.40± .027
BAMS

80 61.65± 27.0

Table 1. Overview of results for time points t1, t2 and be-
tween t1 and t2 (t1→ t2). Shown are average correlations
ρ and upper bounds B80 ± standard deviations, also for
MIREX AMS task (last two lines).

considerably higher than ρAMS = 0.40 which has been
reported for the MIREX AMS task 2006 [6]. The dif-
ferences in correlation between ρAMS and correlations in
our experiment are also statistically significant at both t1
(|t| = |8.3322| > t95,df=16 = 2.120) and t2 (|t| =
|8.8519| > t95,df=16 = 2.120). Therefore the inter-rater
agreement over the full range of scores in our experiment
is increased compared to the MIREX AMS task.

Next we explore the level of agreement for specific in-
tervals of scores. We plot the average score of a rater i
for all query/candidate pairs, which he or she rated within
a certain interval of scores v, versus the average scores
achieved by the other five raters j 6= i for the same
query/candidate pairs. We therefore explore how human
graders rate pairs of songs which another human grader
rated at a specific level of similarity. The average re-
sults across all raters and for intervals v ranging from
[0, 1], (1, 2]... to (9, 10] are plotted in Figure 1 for t1 and
in Figure 2 for t2. It is evident that there is a certain de-
viation from the theoretical perfect agreement which is in-
dicated as a dashed line, especially for time t2. Pairs of
query/candidate songs which are rated as being very sim-
ilar (score between 90 and 100) by one grader are on av-
erage only rated at around 72.9 by the five other raters at
t1 and at only 55.17 at t2. On the other end of the spec-
trum, query/candidate pairs rated as being not similar at all
(score between 0 and 10) receive average scores of 17.4
(t2) and 16.1 (t2) by the respective other raters.

In a previous study [6] an upper bound BAMS has been
reported based on scores within the highest interval. Since
for our experiment only 4 (out of 75 song pairs × 6 raters
= 450) scores are higher than 90 for t1 and only 15 for
t2, we compute a broader upper bound based on all scores
between 80 and 100. There are 37 such scores for t1 and
47 for t2. This upper bound B80 is 67.7 for t1 and 57.5 for
t2 (see Table 1). If we multiply scores from AMS 2006 by
ten for better comparability and compute a similar upper
bound BAMS

80 this yields 61.65. Since our upper bounds
B80 are either above (t1) or below (t2) the upper bound
BAMS

80 , we have to conclude that our experiment was not
able to raise the upper bound in modeling general music
similarity.

Next we looked at intra-rater agreement measured be-
tween time points t1 and t2. The Pearson correlation ρ be-
tween t1 and t2 for the 75 pairs of query/candidate songs
for graders S1 to S6 are given in Table 4. The correla-
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S1 S2 S3 S4 S5 S6
S1 1.00 0.77 0.74 0.72 0.74 0.82
S2 1.00 0.72 0.75 0.62 0.83
S3 1.00 0.70 0.67 0.76
S4 1.00 0.64 0.80
S5 1.00 0.64
S6 1.00

Table 2. Inter-rater correlation at time t1, with mean
0.73± .065 standard deviation.

S1 S2 S3 S4 S5 S6
S1 1.00 0.79 0.73 0.77 0.74 0.83
S2 1.00 0.73 0.74 0.75 0.86
S3 1.00 0.69 0.69 0.80
S4 1.00 0.59 0.79
S5 1.00 0.73
S6 1.00

Table 3. Inter-rater correlation at time t2, with mean
0.75± .065 standard deviation.
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Figure 1. Average score inter-rater agreement for different
intervals of scores (solid line) ± one standard deviation
(dash-dot lines) at time t1. Dashed line indicates theoreti-
cal perfect agreement.
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Figure 2. Average score inter-rater agreement for different
intervals of scores (solid line) ± one standard deviation
(dash-dot lines) at time t2. Dashed line indicates theoreti-
cal perfect agreement.

S1 S2 S3 S4 S5 S6
0.81 0.85 0.75 0.81 0.64 0.95

Table 4. Intra-rater correlation between times t1 and t2,
with mean 0.80± .103 standard deviation.

tions range from 0.64 to 0.95, with an average of 0.80,
which is somewhat higher than inter-rater correlation of
0.73 and 0.75 at time t1 and t2 (see Table 1). The dif-
ferences between inter-agreement correlations and intra-
agreement correlation are however not statistically signifi-
cant, neither for t1 (|t| = |−1.9742| < t95,df=19 = 2.093)
nor for t2 (|t| = |−1.3682| < t95,df=19 = 2.093).

Similar to what we did for inter-rater agreement,
we also plotted the average score of a rater i for all
query/candidate pairs, which he or she rated within a
certain interval of scores v at time t1, versus the aver-
age scores achieved by the same rater i for the same
query/candidate pairs at time t2 in Figure 3. Compared
to Figures 1 and 2, we see better agreement within persons
between t1 and t2, with intra-agreement being very close
to theoretical perfect agreement (dashed line) for scores
ranging from 0 to 50, but also from 90 to 100.

We also computed an upper bound B80 based on rat-
ings within the interval (80, 100], where query/candidate
pairs that have been rated between 80 and 100 by a grader
i at t1 have received an average rating of 82.1 by the same
grader i at t2. This is higher than the upper bound for inter-
rater agreement at both t1 (67.7) and t2 (57.5). The dif-
ferences between inter-agreement upper bounds and intra-
agreement upper bound are statistically significant, both
for t1 (|t| = |−4.2537| > t95,df=220 = 1.960) and t2
(|t| = |−5.7121| > t95,df=19 = 1.960) Therefore we con-
clude that the upper bound within participants measured
with a two week time lag is higher then the upper bound
based on inter-rater agreement.

Because a number of participants in this study com-
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Soul Bebop High Energy 70s Rock Rocksteady
Soul 46.9 16.2 - 38.3 25.1

Bebop 19.3 73.4 10.4 6.7 14.3
High Energy 30.4 8.1 71.2 32.0 15.5

70s Rock 17.4 - 20.9 48.2 11.0
Rocksteady 35.0 - 23.3 13.3 66.1

Table 5. Genre confusion matrix at time t1, shown are average scores per genre combination.

Soul Bebop High Energy 70s Rock Rocksteady
Soul 46.6 13.5 - 36.4 19.6

Bebop 16.5 64.7 10.2 9.5 11.6
High Energy 33.3 5.8 58.6 29.8 15.8

70s Rock 18.6 - 16.8 50.6 11.0
Rocksteady 26.1 - 15.9 8.8 62.5

Table 6. Genre confusion matrix at time t2, shown are average scores per genre combination.

mented that the genre of the songs was an important
factor when evaluating the similarity of songs, we anal-
ysed the results with respect to genre also. In Tables 5
and 6 we present genre confusion matrices at times t1 and
t2. Just to give one example, the first entry in the first line
in Table 5 shows that whenever both query and candidate
song were from genre ‘Soul’, on average such pairs have
been judged at 46.9 by the graders. The average score for
query songs from ‘Soul’ and candidate songs from ‘Be-
bop’ was 16.2, etc. An entry with a dash (‘-’) signifies that
none such query/candidate pairs existed in our question-
naire. The confusion matrices are not symmetric, since
there is a difference whether a song from a certain genre is
used as a query or a candidate song.

At both times t1 and t2, average scores in the main diag-
onals are higher then all off-diagonal entries. This shows
that participants indeed rated similarities within genres
higher than between genres, at least on average. For both
times t1 and t2 average scores are highest within genre ‘Be-
bop’, followed by ‘Rocksteady’ and ‘High Energy’. Genre
‘Soul’ has lowest within genre scores and considerable off-
diagonal confusion with e.g. ‘70s Rock’.

To make clearer how often query/candidate pairs within
one genre were rated higher than pairs with mixed gen-
res, we computed average R-precision. In our scenario, for
each of the 15 groups of songs (consisting of one query
and five candidate songs), R is equal the number of can-
didate songs with genre identical to the respective query
song. For our questionnaire R ranged from 1 to 4. When
we order all five candidate songs from highest to lowest
score, R-precision is then the fraction of candidate songs
with correct genre among the first R candidate songs. Av-
erage R-precision across questionnaires of all all six par-
ticipants is 0.86 for t1 and 0.88 for t2. These high values
corroborate self-reports by participants that genre was an
important aspect when rating similarity of songs.
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Figure 3. Average score intra-rater agreement for differ-
ent intervals of scores (solid line) ± one standard devia-
tion (dash-dot lines) between times t1 and t2. Dashed line
indicates theoretical perfect agreement.

5. DISCUSSION

Our principal reason for conducting this research and ex-
periment is the quest to raise the level of rater agreement
when judging music similarity. This is needed to quan-
tify the success of computational models of music sim-
ilarity which are used in automatic music recommenda-
tion services. Previous research has criticized the low
level of inter-rater agreement and derived an upper bound
for algorithms modeling music similarity, which has been
reached already in 2009 and has not been outperformed
ever since [6]. As a matter of fact, the respective MIREX
task (AMS) has been dormant since 2015. In an attempt to
improve the AMS task, we have conducted an experiment
with a more controlled group of participants and with more
carefully curated song material.

The overall inter-rater agreement measured via correla-
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tion could indeed be increased compared to the AMS task.
However the upper bound, which is only based on higher
scores of music similarity, is not improved compared to
AMS. Therefore our new version of the AMS task based on
more controlled participants and better curated song mate-
rial is not better suited to measure differences between al-
gorithms that have already reached the AMS upper bound.

One proposal to overcome the problem of upper bounds
in measuring music similarity is to personalize models, i.e.
to have separate models of music similarity for individ-
ual persons. Certainly this is what many commercial ser-
vices do by offering individual recommendations tailored
to their users. This of course brings us to the question how
stable assessment of music similarity is within persons, i.e.
when the same persons have to judge music similarity re-
peatedly. The result concerning this intra-rater agreement
in our experiment is divided. On the one hand the overall
agreement as measured via correlation could not be im-
proved, or at least not sufficiently to allow for statistical
significance. On the other hand the upper bound could in-
deed be raised, opening up the possibility to better measure
progress in computational models of personalized music
similarity.

For future efforts to improve on the original AMS task
design, one should probably rethink which songs from
what genre to use. In our experiment, genres were so dis-
tinct that at least some participants used membership to a
certain genre as the main criterion when assessing similar-
ity between songs. This might impact generalizability of
our results when judging music similarity within individ-
ual genres. It is also not completely clear, what contribu-
tion to improvements our more controlled group of sub-
jects had. We are however convinced that the more uni-
form group of subjects with a certain musical expertise did
lower variation of results. The same holds for the rather
young age of participants and the choice of generally not
well known song material. Post experiment questioning of
participants corroborated that very few songs were known
to them, hence less connotations to influence assessment
of similarity existed.

One should also point out that this is a pilot study with
only six participants. A higher number of test subjects
might have allowed for more statistically significant re-
sults, e.g. concerning differences between inter and intra-
rater correlations. Future work should also explore alterna-
tives to Pearson correlation like generalizations of Kappa
measures to the interval scale, which take into account the
possibility of rater agreement occurring by chance (e.g.
intra-class-correlation [24]). Another open question is
whether a time lag of more than two weeks might change
results on intra-rater agreement.

A possible route to further improvements is to ask a
more specific question than just assessing general music
similarity, as in the original AMS task and in the experi-
ment reported in this paper. Criticism of this unclear ab-
stract notion of general music similarity brings us to the
concept of ‘validity’ of our experiment. A valid experi-
ment is an experiment that actually measures what the ex-

perimenter intended to measure (see e.g. [27] or [28] for
a discussion in relation to MIR). Precisely this intention
of the experimenter in the original MIREX AMS task is
completely unclear, since it is rather dubious what gen-
eral music similarity is supposed to mean in the first place.
The argument that users apply very different, individual
notions of similarity when assessing the output of music
retrieval systems has been made before [20]. After all, mu-
sic similarity is a multi-dimensional notion including tim-
bre, melody, harmony, tempo, rhythm, lyrics, mood, etc,
with many of these dimensions meaning different things to
different people. It has also been noted before that eval-
uation of abstract music similarity without reference to a
specific usage scenario is not very meaningful [7, 21]. It
is therefore our belief that the intention of a music sim-
ilarity experiment can only be made clearer if it will be
tied to a user scenario, e.g. creating a playlist for a specific
occasion. Identifying specific use cases has already been
advocated as a method for better problem definition [26] in
MIR. Previous reviews [13] of user studies in MIR could
serve as valuable input for formalization of the use cases.

6. CONCLUSION

We have presented a pilot study aimed at improving
experiments to measure general music similarity. By using
a more controlled group of subjects and music material
from more well defined genres, we were able to improve
overall inter-rater agreement but did not succeed in raising
an upper bound for models of music similarity, which
constitutes an obstructive glass ceiling for any machine
learning approach. We did however succeed in raising this
upper bound for intra-rater agreement, which corroborates
the rationale of personalizing music services. We also
discussed the doubtful validity of experiments on general
music similarity making it clear that definition of a specific
use case might be necessary for conduction of a truly valid
experiment. The fact that MIR needs to care much more
about the proper design of its experiments is also the main
insight going beyond the scope of this paper. Although
a small but growing number of publications concerning
design and evaluation of MIR experiments exists, they
have so far not been able to change the research culture of
MIR as a whole.
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ABSTRACT

We describe the AIST Dance Video Database (AIST Dance
DB), a shared database containing original street dance
videos with copyright-cleared dance music. Although danc-
ing is highly related to dance music and dance informa-
tion can be considered an important aspect of music in-
formation, research on dance information processing has
not yet received much attention in the Music Information
Retrieval (MIR) community. We therefore developed the
AIST Dance DB as the first large-scale shared database
focusing on street dances to facilitate research on a variety
of tasks related to dancing to music. It consists of 13,939
dance videos covering 10 major dance genres as well as
60 pieces of dance music composed for those genres. The
videos were recorded by having 40 professional dancers
(25 male and 15 female) dance to those pieces. We care-
fully designed this database so that it can cover both solo
dancing and group dancing as well as both basic choreogra-
phy moves and advanced moves originally choreographed
by each dancer. Moreover, we used multiple cameras sur-
rounding a dancer to simultaneously shoot from various
directions. The AIST Dance DB will foster new MIR tasks
such as dance-motion genre classification, dancer identi-
fication, and dance-technique estimation. We propose a
dance-motion genre-classification task and developed four
baseline methods of identifying dance genres of videos in
this database. We evaluated these methods by extracting
dancer body motions and training their classifiers on the
basis of long short-term memory (LSTM) recurrent neural
network models and support-vector machine (SVM) mod-
els.

1. INTRODUCTION

The Music Information Retrieval (MIR) community started
with standard music information such as musical audio
signals and musical scores, and then extended its scope to
other types of music-related multimodal information such

c© Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki,
Masataka Goto. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Shuhei Tsuchida,
Satoru Fukayama, Masahiro Hamasaki, Masataka Goto. “AIST Dance
Video Database: Multi-Genre, Multi-Dancer, and Multi-Camera Database
for Dance Information Processing”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

Figure 1. Snapshots of AIST Dance Video Database (AIST
Dance DB), which features multiple genres (10 major
dance genres), multiple dancers (solo and group danc-
ing by 40 professional dancers), and multiple cameras (at
most 9 video cameras surrounding a dancer). These color
snapshots are cropped to enlarge dancers in videos.

as images, videos, lyrics, and social-media data. Since
dance music – a popular target of MIR research [7, 19,
20, 22, 33, 40, 42, 46, 55, 61, 66, 80] – is originally written
for dance and has a strong connection to dance motions,
dance information, that is, any kind of information related
to dance, such as dance music, dance motions, and dancers,
can be considered an important aspect of music information
that the MIR community should cover. Research on dance
motions, however, has not yet received much attention in
the community. The goal of this research is to develop a
dance information database including original dance videos
with copyright-cleared dance music and make it publicly
available to the community so that research on dance can
attract more attention in the community and new MIR tasks
related to dance can emerge in the future.

As a sub-area of MIR research, we propose defining
dance information processing as meaning various types
of processing and research related to dance information.

501



First, it is necessary for dance information processing to
handle dance music. There have been studies on tradi-
tional dance tunes [7, 22, 40, 61], electronic dance mu-
sic [19, 42, 46, 55, 66, 80, 82], and dance-music classifi-
cation [20, 33]. Second, it is important for dance infor-
mation processing to advance research related to dance
motions. There have been various related studies such as
on dance-motion choreography generation driven by mu-
sic [2, 28, 29, 32, 52, 53, 73], rhythm estimation from dance
motions in dance videos [18], music retrieval by dance mo-
tions [75], controlling music tempo by dance motions [37],
dance-motion identification [60], and dance-motion genre
classification [43]. In addition, research on dance motions
could have good synergy with research on performer mo-
tions made during musical performances [30, 47, 48, 51, 67]
since both deal with music-related human body move-
ments. This emerging field of dance information processing,
however, has lacked a large systematic dance information
database that is available to researchers for common use
and research purposes.

We therefore built the AIST Dance Video Database (AIST
Dance DB), the first large-scale copyright-cleared database
focusing on street dances (Figure 1). The AIST Dance DB
consists of 13,939 original dance videos covering 10 major
street dance genres (break, pop, lock, waack, middle hip-
hop, LA-style hip-hop, house, krump, street jazz, and ballet
jazz) and 60 original pieces of dance music composed for
these genres, each having 6 different musical pieces with
different tempi. We had 40 professional dancers (25 male
and 15 female), each having more than 5 years of dance ex-
perience, dance to those pieces. In addition to 13,890 videos
for which each of the 10 genres has 1,380 videos, we added
49 videos that cover 3 typical dancing situations (showcase,
cypher, and battle) in which a group of dancers enjoy danc-
ing. The database is carefully designed to cover both solo
dancing (12,990 videos) and group dancing (949 videos) as
well as both basic choreography moves (10,800 videos) and
advanced moves (3,139 videos) originally choreographed
by each dancer. We used at most nine video cameras sur-
rounding a dancer to simultaneously shoot from various
directions.

To the best of our knowledge, such street dance videos
have not been available to researchers, so they will become
valuable research materials to be analyzed in diverse ways
and used for various machine-learning purposes. For exam-
ple, the AIST Dance DB will foster new MIR tasks such
as dance-motion genre classification, dancer identification,
and dance-technique estimation. As a basic task of dance
information processing, we propose a dance-motion genre-
classification task for street dances. We developed four
baseline methods for identifying dance genres of a subset
of the dance videos in this database and evaluated them by
extracting dancer body motions and training their classifiers
on the basis of long short-term memory (LSTM) recurrent
neural network models and support vector machine (SVM)
models. In our preliminary experiments, we tested the meth-
ods on 210 dance videos of 10 genres done with 30 dancers
and found that dance genres were identified with a high ac-

curacy of 91.4% when a 32-sec excerpt was given; however,
the accuracy dropped to 56.6% when a 0.67-sec excerpt was
given. These results can be used as a baseline performance
for this task.

2. RELATED WORK

Since the importance of research databases has been widely
recognized in various research fields, researchers interested
in dance have also spent considerable effort on building
dance-related databases [62]. For example, the Martial Arts,
Dancing and Sports Dataset [82] has six videos for both
the hip-hop and jazz dance genres. These videos were
shot from three directions, and the video data includes
depth information. However, six videos for each genre
is not enough for some tasks, and the videos do not contain
enough professional dance motions to effectively express
the characteristics of each genre. Several relatively small
dance datasets have also been published [14, 17, 63, 79].

Some databases not only have dance videos but also
provide different types of sensor data. Stavrakis et al. [70]
published the Dance Motion Capture Database, which pro-
vides high-quality motion capture data as well as dance
videos. This database includes Greek and Cypriot dances,
contemporary dances, and many other dances such as fla-
menco, the belly dance, salsa, and hip-hop. Tang et al. [72]
also used a motion capture system to build a dance dataset
that contains four dance genres: cha-cha, tango, rumba,
and waltz. Essid et al. [23] published a dance dataset that
consists of videos of 15 salsa dancers, each performing 2 to
5 fixed choreographies. They were captured using a Kinect
camera and five cameras. This dataset is unique since all
video data contain inertial sensor (accelerometer + gyro-
scope + magnemeter) data captured from multiple sensors
on the dancers’ bodies. All these databases, however, do not
handle street dance videos performed by multiple dancers
and recorded with multiple camera directions.

Although YouTube-8M [1] and Music Video Dataset
[65] were not built for research on dance, the former con-
tains 181,579 dance videos and the latter contains 1,600
music videos including dance-focused videos. It is diffi-
cult to use these videos for dance information processing
because the videos are not organized from this viewpoint.
In comparison, the AIST Dance DB contains videos that
are systematically recorded and organized to have attributes
such as dance genre names, the names of basic dance moves,
labels of dance situations, and information on dancers and
musical pieces.

3. AIST DANCE VIDEO DB

3.1 Design policy

We designed the AIST Dance DB by considering the fol-
lowing three important points.

• Suite of video files of original dance and audio files
of copyright-cleared dance music
To analyze and investigate the relationships between
a musical piece and the dance motions that go along
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Figure 2. Overview of AIST Dance DB. Each of 10 dance genres has 1,389 videos that consist of 4 categories: Basic
Dance (120 dances in 1,080 videos for basic genre-specific dance moves with 4 impressions (ChoreoType): intense, loose,
hard, and soft), Advanced Dance (21 dances in 189 videos for advanced dance moves originally choreographed by each
individual dancer), Group Dance (10 dances in 90 videos for group dance done with 3 dancers having different original
choreographies), and Moving Camera (10 dances in 30 dolly-shot videos with moving camera). Other 49 Situation Videos
consist of Showcase (3 dances in 24 videos assuming stage dance performances done by 10 dancers in front of audiences),
Cypher (2 dances in 10 videos where 10 dancers line up in a circle and keep dancing in turns), and Battle (3 dances in 15
videos where 2 dancers face each other and dance).

with the piece, we first asked professional musicians
to create pieces of dance music in different genres for
our database, then recorded dance videos in which pro-
fessional dancers danced while listening to one of the
musical pieces. As a result, each video includes not
only dance motions but also the musical piece used as
background music.

• Variety of dance genres and choreographies
Since processing diverse dance information would re-
quire a variety of genres and choreographies, we ensured
such a variety by including 10 dance genres, 40 male
and female dancers, different numbers of dancers (solo
dancing and group dancing), different choreographies,
and different levels of difficulty in choreography (basic
choreography moves and original advanced moves).

• Shooting from various directions
To analyze the same dance motions from different views
and angles, we used multiple video cameras surrounding
a dancer so that the cameras can simultaneously shoot
from various directions. Even if some body parts cannot
be seen from the front camera, they can be seen from
the back camera.

3.2 Contents

An overview of the AIST Dance DB is shown in Figure 2.
We built it on the basis of the design policy discussed in
Section 3.1. The AIST Dance DB consists of 1,618 street

dances in 13,939 videos: 13,890 videos of 10 street dance
genres and an additional 49 Situation Videos of 3 different
situations. The dance genres were decided in consultation
with experts on street dances and divided into Old School
styles (break, pop, lock, and waack), which are dance styles
from about the 1970s to 1990s, and New School styles
(middle hip-hop, LA-style hip-hop, house, krump, street
jazz, and ballet jazz), which are dance styles since about
the 1990s.

The database also includes 60 musical pieces that are
categorized into 10 dance genres. The tempi of the 6 pieces
for each genre except for house were set to 80, 90, 100, 110,
120, and 130 beats per minute (BPM); the tempi of the 6
pieces for house were set to 110, 115, 120, 125, 130, and
135 BPM since slow tempi are not fitting for house.

To cover choreographic variations within dance genres,
we had 40 professional dancers (25 male and 15 female)
participate in video recordings in a professional studio. At
least three dancers were assigned to each genre. All dancers
had more than 5 years of dance experience. All videos
were recorded in full color, although dancers mainly wore
monotone clothing when dancing.

For each of the 10 dance genres, we recorded a total of
1,380 videos consisting of 1,080 basic choreography dance
videos, 189 advanced choreography dance videos, 90 group
dance videos, and 30 dance videos with a moving camera
for dolly-in and dolly-out shots. All camera positions were
fixed except for the moving camera. As shown in Figure
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2, we also recorded 49 Situation Videos that consist of 24
videos for showcase, 10 videos for cypher, and 15 videos
for battle. Dancers were asked to choreograph their dance
to fit the given genre. Basically, each choreography was
shot in one take; however, it was taken again when there
was a clear mistake. The location of the front camera was
designed carefully to capture the full body of the dancer,
and the other cameras were located to capture as much
of the dancer’s body as possible except for group dance.
This database is available at https://aistdancedb.
ongaaccel.jp.

4. DANCE-MOTION GENRE CLASSIFICATION

To illustrate the utility of the AIST Dance DB, we tackled
the dance-motion genre-classification task. Since genre
classification of music is a popular research topic in the MIR
community, genre classification of dance motions could be
a good starting point, which would also have applications
such as personalized dance-video recommendation.

We developed four baseline methods to provide baseline
results. We investigated four research questions the answers
of which could contribute to research on dance-motion
genre classification: (RQ1) “Can we classify the 10 genres
by using their video frames only?”, (RQ2) “How many
video frames should be used to train a model?”, (RQ3) “Is
the ease of classification different by dance genre?”, and
(RQ4) “Can beat positions help improve classification ac-
curacy?”.

4.1 Experimental Conditions

As a dataset for our experiments, we created a subset of the
advanced choreography dance videos. The dataset consists
of 210 dance videos shot from the front camera only and
covers the 10 dance genres. Each genre has 21 dance videos
by 3 dancers, each of whom uses 7 original choreographies.
In total, the dataset covers 210 different choreographies by
30 different dancers. The musical piece in each video has
64 beats (4 beats × 16 measures in four-four time), where
the term “beat” denotes a quarter note.

We split 210 dance videos into a training set (126 videos),
a validation set (14 videos), and a test set (70 videos). For
each genre, 14 videos by two dancers were used for the
training and validation sets, and 7 videos by the remaining
dancer was used for the test set. Every dancer and every
choreography in the training and validation sets thus does
not appear in the test set.

4.2 Methods

An overview of our baseline methods is shown in Figure 3.
Each method is trained to classify an excerpt of the input
video into one of the 10 dance genres. In the first step of
motion-feature extraction, we use the OpenPose library [12]
to estimate the dancer’s skeleton (body pose and motion) in
all video frames (60 frames per second). This can reduce
the dependency on the AIST Dance DB since the estimated
body pose and motion do not have original RGB pixel
information.

Since both pose and motion are important elements that
characterize dancing, we obtain dancer poses by calculating
21 joint angles from the skeleton per video frame. Each
joint angle is then converted into two dimensional values
θx and θy by calculating the sine and cosine of the angles
to make the distance calculation between angular values
easier. As a result, we convert the 21-dimensional angular
values into a 42-dimensional feature vector. Let us represent
this feature vector at the n-th frame of the i-th video as
v

(i)
θ (n)(1 ≤ n ≤ N (i) and 1 ≤ i ≤ I), where N (i) is

the number of frames in the i-th video and I is the number
of videos in the dataset. When some joints in the video
have not been detected, we substitute zeros for the values
that correspond to the undetected joints. Our methods then
represent the body motions by calculating the velocity and
acceleration between frames. The velocity v

(i)
∆θ(n) and

acceleration v(i)
∆2θ(n) at the n-th frame are calculated as

follows:

v
(i)
∆θ(n) = v

(i)
θ (n)− v

(i)
θ (n− 1), (1)

v
(i)
∆2θ(n) = v

(i)
∆θ(n)− v

(i)
∆θ(n− 1). (2)

We then concatenate the above three: v(i)
θ (n), v(i)

∆θ(n), and
v

(i)
∆2θ(n), into one 126-dimensional vector v(i)(n).

In the second step, we aggregate the 126-dimensional
vectors representing body motions within a unit (temporal
interval) determined if using beat positions or not. All beat
positions are automatically determined by the tempo of each
musical piece. Below are the details of the two methods:

• Adaptive method: when using beat positions, the vectors
are aggregated within four kinds of tempo-dependent
variable length units: we used one, two, three, or four
beats as one unit. The length La corresponding to a beat
ranges from 27 to 45 video frames as the tempo ranges
from 80 to 135.

• L-fixed method: the vectors are aggregated within vari-
ous fixed-length units. The length L of one unit is 20,
40, 60, ..., or 500 video frames.

Each method calculates a unit-level feature vector for
every unit in the video. It calculates the mean vector and
standard deviation vector (126 dimensions each) among
body motions from the nstart-th to nend-th video frames
of every unit and concatenates those vectors into the 252-
dimensional unit-level vector of the k-th unit ṽ(i)(k).

In the third step, each method calculates a window-level
feature vector. We use five different window lengths to
aggregate unit-level feature vectors into a window-level one
to see how many video frames are necessary to identify a
dance genre. The window-level feature vector is obtained by
concatenating all unit-level vectors ṽ(i)(k) within a window
of 2, 4, 8, 16, and 32 units, respectively. The window is then
shifted by 1 unit to obtain the next window-level feature
vector. We thus obtain five different window-level feature
vectors.

In the fourth step, we prepare four baseline methods
by combining adaptive or L-fixed methods with LSTM-
based or SVM-based models. Each method classifies every
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Figure 3. Overview of four baseline methods for dance-motion genre-classification task: (1) L-fixed method with LSTM-
based model, (2) L-fixed method with SVM-based model, (3) adaptive method with LSTM-based model, and (4) adaptive
method with SVM-based model.

Figure 4. Comparison of the genre-classification accuracy
of the L-fixed method with the LSTM-based model with
regard to different combinations of the number of frames per
unit and the number of units. Blank indicates that combined
size of frames exceeds the length of video.

window-level feature vector into the 10 dance genres. For
the LSTM-based model, we use a bi-directional recurrent
neural network (RNN) with one layer of LSTM [39] cell.
The network outputs a 10-dimensional one-hot vector rep-
resenting dance genres. A rectified linear unit activation
function is applied to the output of the LSTM. Batch normal-
ization is applied to the output layer of the dense layers. We
use cross entropy as the loss function and a batch size of 10.
We train this model with a learning rate of 5e− 4 through
100 epochs and record the trained model at the minimum
validation loss. This model is implemented in PyTorch [57].
For the SVM-based model, we first obtain 200-dimensional
vectors by using principal component analysis to reduce the
dimension of the training data, then train the SVM model.
Finally, we estimate the dance genre of every window-level
feature vector in a video by using these two models.

5. RESULTS

To answer RQ1 in Section 4, we investigated the accuracy
of dance-motion genre classification using three-fold cross-

validation (each fold used a different dancer for the test set).
We first calculated the ratio of the correct estimation for
every dance genre, then averaged over genres to obtain the
genre-classification accuracy. The best genre-classification
accuracy was 91.4% when we used the L-fixed method
with the LSTM-based model where the number of frames
was 60 and the number of units was 32. In this dataset, we
found that dance genres can be estimated with relatively
high accuracy. In the case of the L-fixed method with the
SVM-based model, however, the best accuracy was dropped
to 84.0%.

To answer RQ2 in Section 4, we analyzed the genre-
classification accuracy when the number of frames per unit
and the number of units were changed as shown in Figure
4. We found that dance-motion genre classification can be
executed with an accuracy of 56.6% by using only 0.67 sec
corresponding to 40 frames (20 frames per unit × 2 units)
of a video. This was much shorter than we expected.

To answer RQ3 in Section 4, we conducted an analysis
by creating a confusion matrix for the L-fixed method with
the LSTM-based model and found that krump is relatively
easy to estimate and house is relatively difficult to estimate.
We also found that the estimation performance depends on
the number of frames per unit and the number of units to
calculate the input to the classifiers. With a small number
of frames and units, street jazz and ballet jazz were easily
confused by the classifier and the estimation accuracy of
house dropped. This can be understood from the fact that
street jazz and ballet jazz contain similar poses and house
contains many movements that are commonly found in
other dance genres, such as simple lateral movements.

To answer RQ4 in Section 4, we confirmed that the
highest accuracy of the adaptive method using musical beats
was 83.4% and that of the L-fixed method was 91.4%, both
with the LSTM-based model. In the case of the adaptive
method with the SVM-based model, the best accuracy was
further dropped to 80.7%. In this way, the preliminary
answer to RQ4 was not positive. Since there would be
much room for improvement when using beat positions, we
leave this for future research.
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6. DISCUSSION

6.1 Dance information processing

As shown in Figure 5, dance information processing can
be classified into four categories: (a) dance-motion analy-
sis, (b) dance-motion generation, (c) dance-music analysis,
and (d) dance-music generation. The goal of (a) dance-
motion analysis is to automatically analyze every aspect of
dance motions including dance-motion genre classification,
dancer identification, dance-technique estimation, structural
analysis of choreographies, and dance-mood analysis. A
typical research topic of (b) dance-motion generation is
to automatically generate motions for dance robots and
computer-graphics dancers so that their motions can be
natural and indistinguishable from human motions. As de-
scribed at the beginning of this paper, research related to
dance music, including (c) dance-music analysis and (d)
dance-music generation, has been popular in the MIR com-
munity. There is still room for improvements regarding
analyzing and classifying dance music in more depth and
generating dance music in various styles and for various
purposes.

Furthermore, our research community could investigate
various interactions between those categories as well as
advance each of the four categories. For example, we could
combine (a) dance-motion analysis and (c) dance-music
analysis. Analyzed dance motions would be helpful for
structural analysis of musical pieces in dance music videos.
Analyzed music structure could be used to analyze dance
motions in a context-dependent manner. Another interest-
ing topic of research is to find musical pieces suitable for
dance motions, which will be useful for developing auto-
matic DJ systems that recommend musical pieces suitable
for various dancers on dance floors and at dance events.
Analyzing the relationships between dance motions and
music in existing dance videos is also important to develop
systems for assisting people in creating and editing more at-
tractive music-synchronized videos. We could also combine
(a) dance-motion analysis and (b) dance-motion generation.
If three-dimensional dance motions can be accurately ex-
tracted from a large collection of existing dance videos, they
could be useful for automatic dance-motion-generation sys-
tems based on machine learning. If dance styles of dancers
can be analyzed and modeled, it could become possible to
transfer those styles to artificial computer-graphic dancers
or robot dancers.

Dance information processing will naturally use mul-
timodal dance information for different research top-
ics. There have been many related studies such as on
dance-practice support [3, 8, 11, 15, 16, 24, 36, 49, 68,
71], choreography-creation support [25, 59, 81], dance-
performance augmentation [6,9,10,13,26,27,31,38,45,56,
76,78], dance-group support and analysis [35,50,54,69,77],
dance archive [44, 58, 64, 83], dance performance align-
ment [21, 34], dance video editing [5, 41, 74], and dance-
style transfer [4]. We look forward to advances in this
emerging research field of dance information processing.

Figure 5. Overview of dance information processing.

6.2 AIST Dance Video Database

We believe that the AIST Dance DB will contribute to the
advancement of dance information processing as other re-
search databases have also contributed to the advancement
of their related research. In particular, this database will
advance research on dance-motion analysis (Figure 5). In
addition to the dance-motion genre-classification task we
discussed in this paper, it is possible to develop systems
that can classify dance videos into advanced dance, basic
dance, moving camera, and group dance, as shown in Fig-
ure 2. Since various dancers dance to the same musical
pieces in this database, their individual differences can be
analyzed in depth, and such analyzed results could be use-
ful in developing dancer-identification systems. The basic
dance videos could be useful for analyzing subtle individual
differences of motions since all the dancers have the same
basic motions. By using videos recorded from different
directions, systems that can recognize dance motions from
any direction could also be developed. As we illustrated
in Section 4.2, using image-processing technologies, such
as OpenPose, makes it possible to extract dance motions
from dance videos for use in machine learning for various
purposes including automatic dance-motion generation.

From the viewpoint of the MIR community, it is essen-
tial for the AIST Dance DB to include 60 pieces of dance
music in synchronization with dance motions. This will
lead to various research topics such as dance-music classifi-
cation with or without using dance motions, dance-motion
classification with or without using dance music, and de-
tailed multimodal analysis of the correlation between dance
motion and music. Furthermore, since this database is pub-
licly available, it can be used for designing benchmarks of
evaluating technologies.

7. CONCLUSION

The main contributions of this work are threefold: 1) we
built the first large-scale shared database containing original
street dance videos with copyright-cleared dance music, 2)
we proposed and discussed a new research area dance in-
formation processing, and 3) we proposed a dance-motion
genre-classification task and developed four baseline meth-
ods. We hope that the AIST Dance DB will help researchers
develop various types of dance-information-processing tech-
nologies to give academic, cultural, and social impact.
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ABSTRACT

This work aims to characterize microtiming variations in
traditional Shetland fiddle music. These microtiming vari-
ations dictate the rhythmic flow of a performed melody,
and contribute, among other things, to the suitability of
this music as an accompaniment to dancing. In the con-
text of Shetland fiddle music, these microtiming variations
are often referred to as lilt. Using a corpus of 27 tradi-
tional fiddle tunes from the Shetland Isles, we examine
inter-beat timing deviations, as well as inter-onset timing
deviations of eighth note sequences. Results show a num-
ber of distinct inter-beat and inter-onset rhythmic patterns
that may characterize lilt, as well as idiosyncratic patterns
for each performer. This paper presents a first step towards
the use of Music Information Retrieval (MIR) techniques
for modelling lilt in traditional Scottish fiddle music, and
highlights its implications in the field of ethnomusicology.

1. INTRODUCTION

The Shetland Isles is an archipelago situated 100 miles
north of the Scottish mainland (Figure 1). The distinctive
music-culture of the Isles reflects a wide range of influ-
ences from around the North-Atlantic, including mainland
Scottish, Scandinavian, and North-American, in particular.
The earliest evidence of a performance tradition on violin,
or fiddle, in the Shetland Isles dates from the eighteenth
century, but there is also evidence of a pre-violin string-
instrument tradition that dates to a much earlier time. How-
ever, it was over the course of the nineteenth century and
into the twentieth century that the modern instrument es-
tablished itself as an important component of ceremonies
and rituals where dancing often played an important role
[3]. The fact that solo fiddle music was used for dancing
had a great influence on performance practice, with com-
mentators often referring to the ‘lilt’ of a musician’s perfor-
mance when describing its suitability as an accompaniment
to dancing. Even though a strict definition of lilt does not
exist, the term often refers to the rhythmic flow imparted to
the music by the performers. The term lilt bears a resem-
blance to the concept of swing in Jazz performance, where

c© Estefanía Cano, Scott Beveridge. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Estefanía Cano, Scott Beveridge. “Microtiming analysis in
traditional Shetland Fiddle music”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.
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Figure 1: The Shetland Isles

notated consecutive eighth notes are not played with equal
duration, often approximating a tied triplet notation with a
2:1 ratio [4]. Given that an exact definition of lilt does not
exist, and that many rhythmic elements could potentially
play a role in imparting this dance feel to the music, this
paper focuses on understanding general trends in micro-
timing variations in Shetland fiddle music. With this work
we hope to bring a better understanding of what "playing
with lilt" might entail.

2. RELATED WORK

The first systematic analysis of lilt in Shetland fiddle music
was carried out by Peter Cooke in 1986 [3]. In this work,
an electrokymograph, an early device used to measure vari-
ations in pressure, was used to capture the pitch contour
and envelope of sound from a live fiddle performance. This
was then used to manually calculate note onsets and ap-
proximate note durations. Anecdotal observations made
by Cooke show eighth note durations that are rarely equal,
with ratios of consecutive eighth notes in the range of 4:3
to 2:1. This long-short duration pattern is reminiscent of
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Performer Region Title Tr. ID

Willie
Hunter

Mainland

Aandowin at da Bow 81352
Caald Nights o Winter 81349
Come Again Ye’r Welcome 89928
Da Aald Hill Grind 81386
Da Forfeit o da Ship 81351
Fram Upon Him 81353
Garster’s Dream 81354

Bobby
Peterson

Mainland

The Flowers of Edinburgh 80293
Clean Pease Strae 36653
Glen Grant 36656
Kebister Head 80295
MacDonald’s Reel 80294
The Fishers Hornpipe 36646
The Millers Hornpipe 36647
Willafjord 36644

John
Jamieson
Irvine

Whalsay Auld Reel o Whalsay 91259

Robert
Bairnson

Mainland

Da Burn o’Finnigirth 50890
Da Hill o’Finnigirth 50890
Mangaster Voe 50888
Oliver Jack 50889
The Headlands 50888
Willafjord 50889

Andrew
Poleson

Whalsay

Greigs Pipes 96869
Lady Mary Ramsay 96896
Supple Sandy 100412
Unknown Reel 96861
Up da Stroods da Sailor Goes 100411

Table 1: The Shetland fiddle corpus. All the recordings
were made between 1955 - 1977 and are available in the
Tobar an Dulchais collection.

swing in jazz performances [4, 6]. The seminal work car-
ried out by Cooke in the 80s has seen a recent resurgence
of interest, and has been the focus of recent analysis using
state-of-the art computational analysis methods [1].

Swing research in fiddle music has also been carried out
in the context of Irish traditional music [9]. In this work,
a simple pitch detection and autocorrelation approach was
used to estimate note durations and calculate ‘swing per-
centages’. This method was proposed to detect the pres-
ence of swing in both synthesized and audio recordings.

Given its central role in the Jazz repertoire, swing has
received considerable attention in this domain [2, 4, 6]. In
[6], Friberg and Sundström examine the relationship be-
tween swing ratio and tempo in a number of popular jazz
recordings. Using spectrograms obtained from the cymbal,
the swing ratio was calculated based on the timing of suc-
cessive eighth notes. The reported swing ratio ranged be-
tween 3.5:1 at low tempi to 1:1 at high tempi. In a later re-
examination of this work, [4] applied automatic techniques
to estimate swing ratios from a larger corpus of jazz record-
ings. The results support the initial findings of Friberg and
Sundström with the added benefit that they can be applied
at scale. Microtiming variations play an important role in
a number of other music traditions including Ragtime syn-
copation [10], Samba rhythms [7], and Jembe music from
Mali [8]. 3. METHOD

This work represents an initial step towards the computa-
tional analysis of microtiming variations in Shetland fid-
dle music. As a starting point, it was necessary to com-
pile a relevant fiddle data set. Once the recordings had

been selected, all the tunes were transcribed to traditional
music notation by an expert musicologist (Sect. 3.1). To
be able to extract accurate timing information, each tran-
scription was aligned in time with its corresponding audio
track. For the alignment, the transcriptions were exported
in MIDI format, and a MIDI-to-audio synchronization al-
gorithm was used (Sect. 3.2). Finally, the time-aligned
transcriptions were analyzed to extract timing information
in the symbolic domain (Sect. 3.3). In the following sec-
tions, we provide a detailed description of all the steps in
our analysis.

3.1 Fiddle Corpus

The fiddle corpus compiled in this work comprises 27
recordings of solo fiddle tunes available in the Tobar an
Dualchais website.1 Tobar an Dualchais is a collabora-
tive project aimed at the digitization and preservation of
Gaelic and Scottish recordings. The recordings in the cor-
pus are field recordings made on a Nagra III reel-to-reel
tape recorder with Sennheiser microphones. These were
captured as monophonic wave files at 22.1kHz, 16 bit res-
olution. Table 1 provides a description of the corpus. Five
performers are included, three from Mainland Shetland
and two from the island of Whalsay (see Fig.1 for a map
of the Shetland Isles). Track IDs from the Tobar and Du-
alchais collection are also provided to allow future research
on the same corpus. For more information on the corpus
see our accompanying website.2

The entire corpus was transcribed by a musicologist
from the University of Aberdeen in Scotland (with exper-
tise on Shetland fiddle traditions), providing us with tran-
scriptions in conventional music notation for each of the
27 tunes.

3.2 MIDI-to-audio Synchronization

To calculate microtiming variations, the 27 transcriptions
were exported in MIDI format and synchronized to their
corresponding audio tracks. Synchronized MIDI transcrip-
tions allow us to find the exact location in time of note
onsets. For the MIDI-to-audio alignment, the method pro-
posed in [5] was used. This method represents both the
audio and MIDI streams as a combination of chroma and
chroma onset features. The optimal alignment between
audio and MIDI is obtained through dynamic time warp-
ing (DTW) using dynamic programming. Two difficul-
ties were observed with the automatic synchronization.
First, synchronization of the initial bars was inaccurate
for some tunes, resulting in noticeably asynchronous au-
dio and MIDI notes. Second, given that the tuning of
certain files (or segments of the files) often lays between
two consecutive semitones, the algorithm struggled to deal
with these pitch variations and resulted in inaccurate align-
ments. To account for these inaccuracies in the automatic
synchronization, the annotations of the complete corpus

1 http://www.tobarandualchais.co.uk/
2 https://github.com/ecanoc/ShetlandFiddles
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Figure 2: Schematic depiction of our onset-based analysis
on a segment of the tune Clean Pease Strae. Beat-level
analysis: (a) Beats of equal length (straight version) (b)
Beats with timing deviations (lilt version). Sequence anal-
ysis: (c) Eighth notes of equal length (straight version) (d)
Eighth notes with timing deviations (lilt version).

were then manually fine-tuned by two professional musi-
cians using Sonic Visualiser 3 .

3.3 Onset-based Analysis

The synchronized MIDI transcriptions are used to ana-
lyze microtiming variation in our corpus. Two different
analyses were conducted: (a1) Microtiming variations on
the beat level, and (a2) Microtiming variations in eighth
note sequences. Given that accurate annotations of the
note offsets are not available or easily extracted, we fo-
cus on measuring time intervals between onsets in this
study. For the beat-level analysis (a1), we calculate time
intervals between consecutive beats in the bar. We re-
fer to these intervals as inter-beat-intervals (IBI). For the
eighth-note-sequence analysis (a2), we calculate time in-
tervals between consecutive eighth notes in the sequence.
We refer to these intervals as inter-onset-interval (IOI).

Our analysis can be better understood by looking at
Fig. 2, where a segment of the tune Clean Pease Strae
is displayed. For the beat level analysis, Fig. 2a shows
inter-beat-intervals (IBI) of equal length. This is referred
to as the straight version of a performance. Our study
seeks to understand whether deviations from the straight
version exist, and whether performers slightly shorten or
stretch the beats when playing with lilt. This scenario is
depicted in Fig. 2b, where beats 1 and 3 are slightly longer
than beats 2 and 4. Similarly, we analyze sequences of
eighth notes in all tunes, and focus on measuring inter-
onset-intervals (IOI) for sequences of four eighth notes (for
4
4 meter), and sequences of three eighth notes (for 6

8 me-
ter). This can be seen in Figs. 2c and 2d, where the straight
and lilt versions of the two eighth note sequences in the bar

3 https://www.sonicvisualiser.org/
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Figure 3: Total number of bars, note sequences and tunes
(shown in boxed numbers above) per performer in the
Shetland fiddle corpus.

are shown, respectively. As with the beat-level analysis,
we seek to understand whether performers slightly shorten
or stretch the eighth notes when playing with lilt. In Fig
2d, the eighth notes 1 and 3 in the sequences are slightly
longer than notes 2 and 4.

3.3.1 Practical Considerations

To facilitate the analysis of our corpus, we implemented
an algorithm for pattern detection in MIDI files. The al-
gorithm includes methods to detect relevant information
such as downbeats, rhythm sequences (eighth notes, quar-
ters, etc), double-stops, pitch sequences, etc. Supported
by our pattern detection algorithm, the following consid-
erations were taken: (1) Given that our analysis uses note
onsets to detect inter-beat-intervals (IBI), only those bars
where an onset was present (a note was played) on each
of the beats in the bar were considered. While this means
that parts of the performance were discarded in our anal-
ysis, it also completely removes the need to perform beat
annotations, and relies entirely on the performers’ onsets
to calculate timing. (2) For the eighth-note-sequence anal-
ysis, only complete sequences of four eighth notes in 4

4

bars, and three eighth notes in 6
8 bars were considered. We

restrict our analysis to sequences whose first eighth note
coincides with an on-beat. Here again, we completely rely
on the performer’s onsets to calculate inter-onset-intervals
(IOI) and timing variations. (3) A song-wise mean nor-
malization of IBI and IOI was performed for the beat-level
analysis and for the sequence analysis, respectively. This
normalization allows us to remove differences in beat and
note duration dictated by the different tempi of the tunes,
and allows us to make direct comparisons between tunes.
(4) In our corpus, only three tunes out of the 27 are written
in 6

8 . These three tunes are all performed by Willie Hunter,
and hence, conclusions with respect to the usage of tim-
ing in 6

8 bars are restricted to the ones revealed by Willie
Hunter’s performances. (5) In all tunes where double-stops
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Figure 4: Results for all performers and all tunes in 4
4 bars in the corpus. (a) Beat-level analysis, and (b) Note-sequence

analysis. Significant differences are highlighted (* p-value < 0.05: Wilcoxon signed-rank test for pairwise comparisons)

were detected, only the onset of the lower note was used in
our calculations.

Figure 3 shows a summary of the number of tunes,
complete bars found and complete sequences found per
performers in the corpus using our pattern detection algo-
rithm.

4. RESULTS

4.1 Annotation reliability

To assess the reliability of the annotations, five of the
tracks in the corpus were annotated by the two expert an-
notators. As a measure of annotator agreement, we use
Chronbach’s alpha coefficient α. For simplicity, we re-
fer to the annotators as a1 and a2 in the following. The
agreement between annotators was extremely high with
α(a1, a2) = 0.9995. It is important to consider, that the
starting point for both annotators was the MIDI synchro-
nization obtained with the method proposed in [5]. Hence,
we also calculate the Chronbach’s coefficient between the
automatic MIDI synchronization M , a1, and a2, resulting
in α(a1,M) = 0.9999, and α(a2,M) = 0.9995. These
results validate both the reliability of our final annotations,
and the high accuracy obtained by the automatic synchro-
nization in the first place. Only minor modifications were
required in order to obtain the final annotations from the
automatically synchronized ones. These results also vali-
date the usage of the method in [5] as an efficient approach
for MIDI-to-audio synchronization of fiddle recordings,
and opens the possibility to further enlarge our corpus in
the future.

4.2 Onset-based analysis

In the following sections, we present our results in a top-
down manner, starting with trends observed over the entire
corpus, followed by a performer-wise analysis, and con-

cluding with a comparative analysis of the tune Willafjord
(the only tune performed by two perfomers in our corpus).
To summarize the results, boxplots are presented both for
the beat-level and sequence analyses. In all the figures,
the boxplots represent the minimum and maximum val-
ues (whiskers), and the first, second (median) and third
quartiles (box). In addition, the mean values for each dis-
tribution are displayed with colored circles. We present
normalized note and beat durations in our plots (see Sect.
3.3.1).Values smaller than 1 show IOIs and IBIs shorter
than that of the mean. Similarly, values larger than 1 show
IOIs and IBIs longer than that of the mean.

4.2.1 Corpus analysis

Pairwise differences of the mean IOIs and mean IOBs of
the entire corpus are calculated using the Wilcoxon signed-
rank test at a 5% significance level (p-value < 0.05). Re-
sults for the corpus analysis are presented in Fig. 4 where
the contribution of all performers and all tunes in 4

4 meter
are displayed.

Figure 4a shows the results of the beat-level analysis for
all performers and tunes in 4

4 bars. The pairwise compar-
isons revealed the normalized beat duration of beat 3 to be
significantly shorter than 1 and 4. The slight shortening of
beat 3 across all performers might indicate an attempt to
delineate the on-beats in the 4

4 bar.
Figure 4b shows the results of the sequence analysis.

Note 3 in the sequence is significantly longer than all other
eighth notes in a sequence. In addition, we see a significant
difference between note 2 and note 4, with note 4 slightly
shorter than note 2. In contrast, no significant difference
was found between notes 1 and 2 in the sequence, appear-
ing to be performed mostly in a straight manner .

4.2.2 Performer-wise analysis

In this section, we analyze possible performer idiosyn-
crasies both on the beat level and on the note sequence
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Figure 5: Performer-wise beat-level results. Significant
differences are highlighted (* p-value < 0.05: Wilcoxon
signed-rank test for pairwise comparisons)

level.
On the beat level, significant differences are evident in

only two of the five performers, Willie Hunter and Bobby
Peterson, with the other performers mostly showing beats
of equal length. As seen in Fig. 5, the general trend in
both Hunter and Peterson is to slightly shorten the third
beat. These results support the trend observed in the cor-
pus analysis of beats in Fig. 4a. In Willie Hunter, beat 3 is
significantly shorter than beats 2 and 4, but beats 1 and 3
appear to be mostly played with the same duration. In con-
trast, beat 3 in Bobby Peterson is significant shorter than
beats 1 and 4, but not than beat 2. Beat 1 in Bobby Peter-
son appears to be slightly prolonged, showing significant
difference with all other beats.

On the note-sequence level, significant differences are
evident in five performers as displayed in Fig. 6. John
Jamieson only performs one tune in our corpus, and no
eighth note sequences were found in it. In this analysis, we
also include the results for the three tunes in 6

8 performed
by Willie Hunter. For the 6

8 tunes, we consider sequences
of three consecutive eighth notes. In Willie Hunter’s 6

8

sequences, we see a tendency to slightly shorten note 2.
These differences are significant with respect to note 1 and
3. In Hunter’s 4

4 sequences, note 3 is significantly longer
than all the others, a pattern that we also observe in Bobby
Peterson. However, for Bobby Peterson, we additionally
see a slightly shortened note 4 (significant with respect to
note 2 and 3), and a tendency to lengthen note 2 with re-
spect to 1. In contrast, Robert Bairnson appears to play
mostly straight sequences, with a slightly shorter note 3
with respect to 1. As mentioned by Cooke in [3], the short-
ening of the 3rd note may be related to bowing: if notes 2,
3, and 4 are played with one bow, the middle note if often
shortened and accented. The influence of bowing on lilt
falls beyond the scope of this study, but calls for further
future investigation. Andrew Poleson on the other hand,

shows a consistent shortening of note 2, with significant
differences with respect to all other notes.

It appears that a tendency to play pairs of eighth notes
(either 1-2 or 3-4) in a long-short (LS) pattern might ex-
ist, with Willie Hunter ( 44 ) and Bobby Peterson showing a
LS pattern in notes 3-4, and Andrew Poleson in notes 1-2.
These results also go in hand with observations made by
Cooke in [3].

4.2.3 Comparative analysis of the tune Willafjord

To analyze differences between performers, we compare
the two versions of the tune Willafjord in our corpus; one
performed by Bobby Peterson, the other by Robert Bairn-
son. Here we focus specifically on the differences at the
note sequence level, and perform pairwise comparisons of
the four notes sequence. Given that there are differences
between the two performances, a direct correspondence
between the sequences that we compare cannot be estab-
lished, and hence, we treat them as unmatched pairs. To do
so, the Wilcoxon sum-rank test is performed at a 5% sig-
nificance level (p-value < 0.05). The tests reveal significant
differences in IOIs for all of the eighth note positions, sug-
gesting completely different performing practices by the
two fiddlers for the tune Willafjord.

Our comparative analysis of the tune Willafjord gives
a tantalizing insight into the source of such performer id-
iosyncrasies. These can be further elucidated in the bi-
ographies of Bobby Peterson and Robert Bairnson in Pe-
ter Cooke’s original ethnographic account. Although both
men lived on the main island of Shetland (approximately
23 miles apart), Bobby Peterson spent a great deal of his
young life as sailor on a whaling ship. There, he was
subject to a great many influences including hearing and
learning tunes from other sailors from Scotland and Scan-
dinavia. He learned the fiddle mostly be ear, in fact the first
tune he ever learned was the focus of our analysis, the tune
Willafjord. In contrast, Robert Bairnson, although only a
short distance away, was fairly isolated as infrastructure on
the Shetland Isles in the early 20th century made travelling
very difficult. Bairnson also lived in a district where reli-
gious attitudes deemed music and dancing sinful. He was
taught formally by a local minister, learning notation at the
same time. Therefore he lacked the ‘indigenous repertory’
of other Shetlanders [3, p. 20]. These biographies go some
way to explaining why such clear difference can be ob-
served between performers, and in particular, the straight
playing of Bairnson versus the more lilting performance of
Peterson.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented microtiming analysis of a corpus
of traditional Shetland fiddle music. The corpus, created
specifically for this study, was first annotated by expert an-
notators using automatic MIDI-to-audio synchronization
as a starting point. We examined inter-beat-interval tim-
ing deviations, as well as inter-onset-interval timing devi-
ations of eighth note sequences to find the elusive qualities
of lilt. We first analyzed the corpus as a whole, moving to
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Figure 6: Performer note-sequence results. Significant differences are highlighted (* p-value < 0.05: Wilcoxon signed-rank
test for pairwise comparisons)

performer-based analysis, and finalized with a comparative
study of a tune played by two performers.

In general, the beat-level analysis indicates a tendency
to slight shorten beat 3 in the bar. The note-sequence anal-
ysis, suggests the use of long-short patterns in pairs of
eighth notes (either 1-2 or 3-4). Even though these emerg-
ing patterns in the data may suggest what playing with lilt
entails, it is clear that lilt also encompasses idiosyncratic
aspect of performance practice. Further investigation is re-
quired in order to understand how these patterns relate to
other aspects of music performance such as bowing, accen-
tuation, repertoire-specific performing styles, tempo, etc.

With this work, we have reached three important mile-
stones in our research: (1) We have produced high-quality
annotations for our corpus that will serve as the foundation
and ground-truth for more powerful computational models,
(2) we have validated the use of a state-of-the-art MIDI-to-
audio synchronization algorithm for the task at hand, and
(3) we have revealed microtiming variation patterns in fid-
dle music from the Shetland Isles.
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ABSTRACT

This paper describes the digitization process of a large col-
lection of historical piano roll recordings held in the Stan-
ford University Piano Roll Archive (SUPRA), which has
resulted in an initial dataset of 478 performances of pi-
anists from the early twentieth century transcribed to MIDI
format. The process includes scanning paper rolls, digitiz-
ing the hole punches, and translating the pneumatic expres-
sion codings into MIDI format to create expressive perfor-
mance files. We offer derivative files from each step of
this process, including a high resolution image of the roll,
a “raw” MIDI file of hole data, an “expressive” MIDI file
that translates hole data into dynamics, and an audio file
rendering of the expressive MIDI file on a digital piano
sample. This provides digital access to the rolls for re-
searchers in a flexible, searchable online database. We cur-
rently offer an initial dataset, “SUPRA-RW” from a selec-
tion of “red Welte”-type rolls in the SUPRA. This dataset
provides roll scans and MIDI transcriptions of important
historical piano performances, many being made available
widely for the first time.

1. INTRODUCTION

1.1 Background

Piano rolls are among the most important historical mu-
sic storage formats, utilizing holes on a scrolling paper roll
to activate keys automatically by a pneumatic mechanism
built into a piano. There are many types of piano rolls with
varying degrees of autonomous playback prescribed by the
roll system. We focus here on the “reproducing roll”, one
that reproduces automatically notes, timings, and expres-
sive details of a live performance.

By late 1904 the German company Michael Welte and
Söhne developed the first “reproducing player piano”, the
Welte-Mignon [7]. This was a high-end, fully autonomous

c© Zhengshan Shi, Craig Stuart Sapp, Kumaran Arul, Jerry
McBride, Julius O. Smith III. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Zhengshan
Shi, Craig Stuart Sapp, Kumaran Arul, Jerry McBride, Julius O. Smith
III. “SUPRA: Digitizing the Stanford University Piano Roll Archive”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

self-playing instrument capable of reproducing all features
of an original performance of a pianist, including details of
timing, dynamics and pedaling. The process involved cap-
turing and coding expressive details into the hole punches
on the edges of rolls which then cued the pneumatic mech-
anisms in the piano to alter hammer velocities instanta-
neously. These codings were created by skilled techni-
cians who made judgements about the expressive effects
they could generate using the pneumatic parameters avail-
able for manipulation in each system. The resultant play-
back of a reproducing roll sounds like a recreation of an
individual musical performance.

The reproducing player piano quickly became a com-
mercial success that attracted the most important artists of
the day to make recordings on the medium. Composers
recorded playing their own works on roll include Claude
Debussy, Maurice Ravel, Gustav Mahler, Sergie Prokofiev,
Sergei Rachmaninoff, Edvard Grieg, Alexander Scriabin,
Enrique Granados, Igor Stravinsky, George Gershwin, and
Scott Joplin, among others.

A variety of proprietary reproducing roll systems were
produced by over a dozen companies , each one incompat-
ible with the others. The most important of these include
Welte-Mignon, Hupfeld, Ampico, Duo-Art, and Phillips
Duca. Some companies developed multiple formats. Welte
maufactured three formats: Welte T-100 (red Welte), Welte
T-98 (green Welte), and Welte-Licensee.

1.2 SUPRA

Stanford University’s Player Piano Project [13] is a multi-
departmental effort begun in 2014 by the Archive of
Recorded Sound to address the obstacles faced by re-
searchers who wish to study piano rolls and pneumatic
instruments. Stanford now holds one of the largest roll
collections in the world, with more than 16,000 rolls and
a dozen pneumatic roll playing instruments. The collec-
tion includes a variety of roll types, including thousands
of reproducing rolls. A dedicated roll scanner was built by
the project to generate image scans of rolls for preserva-
tion and digitization. The Stanford University Piano Roll
Archive (SUPRA) is the online database of roll images
generated by the scanning effort. It aims to provide a vir-
tual experience of piano rolls including a high resolution
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color image of the roll and a digitally synthesized audio
rendition of each roll. In order to create accurate audio
files of reproducing rolls, algorithms that model the pneu-
matic expression systems of each format must be created.
This process of “emulation” (i.e. emulating the pneumatic
system through a digital means) is important if the expres-
sive content of reproducing rolls are to be accurately tran-
scribed. This paper outlines the end-to-end process under-
taken to scan, digitize, and create emulation algorithms for
a subset of 478 Welte T-100 reproducing rolls that will be
made accessible through the online SUPRA database.

2. PRIOR WORK

Efforts at scanning and digitizing piano rolls have been un-
dertaken by hobbyists and enthusiasts with private collec-
tions, but with inconsistent results and incomplete docu-
mentation [1, 15, 18]. More recently a number of institu-
tional projects have been initiated [2, 3, 8–10]. Much of
this work has focused on non-reproducing rolls, those rolls
lacking expression coding [8, 12]. Most institutional ef-
forts do not provide audio file transfers of the rolls at this
point [2, 3, 9]. In some cases only documentation of the
rolls is offered but not complete roll scans [3].

A number of dedicated roll scanners have been con-
structed [1,9,12,15,18]. However, some projects utilize flat
bed scanners which require images to be stitched together
leading to potential errors [8]. Peter Phillips’s unique de-
sign of a “pneumatic roll reader” offers some advantages,
but does not allow for an archival image [14]. Anthony
Robinson has done impressive work with scanner design
and is able to produce quality roll scans [15]. These are,
however, in gray scale and at modest resolution.

There is not much published work on the topic of em-
ulation although there have been some well publicized ef-
forts at utilizing emulations to playback reproducing rolls.
Colmnares et al. [6] provide some theory behind the topic
and relies on the work of Wayne Stahnke, one of the pi-
oneers in modeling pneumatic roll systems. Stahnke pro-
duced two commercially successful emulated transfers of
Rachmaninoff’s playing on Ampico reproducing rolls that
garnered critical acclaim [17], however the algorithms and
detailed procedures of his work remain unpublished. Pe-
ter Phillips’s recent doctoral thesis provides comprehen-
sive documentation and experimental justification for his
emulation procedures and is the most thorough discussion
published thus far [14]. Our work here follows closely on
his effort and also on our prior work to create an emulation
for the Welte Licensee format [16].

3. THE SUPRA-RW DATASET

We chose to begin the SUPRA database with Welte T-100
rolls as these were the first reproducing piano rolls made.
These important recordings have received very little atten-
tion from roll scanning efforts because they require a scan-
ner capable of managing the significantly greater width of
these rolls. Expression emulation of Welte T-100 rolls is
also among the most complex of reproducing roll formats.

Figure 1: A sample from a red Welte roll. It is divided into
four sections: bass expression, bass notes, treble notes, and
treble expression.

Welte T-100 rolls are often referred to as “red Welte
rolls” because they were generally punched on red paper.
They are 12.9 inches (32.8 cm) wide, and have 100 perfo-
ration tracks (holes), eight per inch across, evenly spaced.
A sample from a red Welte roll is shown in Figure 1. The
first and last ten perforation tracks are used for expression,
and the middle 80 tracks are used for notes from C1 to G7.

The SUPRA-RW dataset is the result of the digitization
of 478 Welte T-100 rolls in Stanford’s collection. It con-
sists of about 52 hours of piano roll performances, with an
average length of 6 minutes and 32 seconds. The database
allows users to search, view images, download and listen
to audio emulations of the rolls.

Our digitization procedure results in the following files
and derivatives in sequence:

(a) Archival TIFF image at 300 DPI (dots per inch) and
24-bit color.

(b) JPEG files derived from the archival TIFF.
(c) Uncompressed grayscale TIFF file (that utilizes the

green color channel of the original scan) allowing
efficient access to high resolution detail of the holes.

(d) Raw MIDI file that captures all hole data extracted
from the grayscale TIFF file.

(e) Expressive MIDI file that merges multiple holes into
single musical notes, applies emulation algorithms
to control for individual note dynamics, and adds
pedaling. Metadata such as title and composer is
also added to this file.

(f) Audio files (WAV and M4A) rendered by running
the expressive MIDI file through the Ivory Keys II
software synthesizer.

The SUPRA-RW dataset as well as the software are
available online 1 at a Creative Commons Attribution-
Non-Commercial-ShareAlike 4.0 International license
(CC BY-NC-SA 4.0) 2 .

1 https://supra.stanford.edu
2 https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 2: Stanford’s piano roll scanner built by Swope De-
sign Solutions of San Francisco, California. A Welte T-100
piano roll is shown on the scanner.

4. ROLL DIGITIZATION

4.1 Scanning

Piano rolls are digitized using a dedicated roll scanner built
in conjunction with Swope Design Solutions and based on
designs by Anthony Robinson 3 . The scanner (Figure 2)
uses a line-scan camera (DALSA Spyder3 Color 4k) trig-
gered by a rotary encoder on a glass cylinder that tracks the
movement of the paper roll that passes over it. The target
resolution of the images is 300 DPI, with the experimen-
tally measured DPI being 301.50 ± 0.25 across the width
of a roll and 300.25 ± 0.25 along the length of the roll.

The scanner can image a roll up to 5× playback speed,
although the typical acquisition speed is 2–3×. An origi-
nal uncompressed color image is typically 1–4 GB in size.
The line-scan camera takes pictures that are 2 pixels high
and 4096 pixels wide. One row of pixels is used to mea-
sure the green color channel, and the second row contains
interleaved red and blue color pixels. The adjacent images
from the camera are 50% overlapped such that a red/blue
row from one image is aligned with the green row of the
next image. Since the green channel has twice the resolu-
tion of the red or blue channels, the green channel is used
for hole data extraction from the images.

3 For more details and a video of the scanner in action, see
https://library.stanford.edu/blogs/stanford-libraries-blog/2018/10/piano-
roll-scanner-update.
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Figure 4: Drift analysis for a sample roll. The total drift
range is 25px from left to right. The arrow near the start of
the roll indicates a manual shift by the scanner operator.

4.2 Drift Correction and Hole Detection

The paper of an original piano roll can warp due to age and
poor storage conditions. In such cases, paper holes may
drift and misalign with the corresponding tracker bar hole
and trigger the incorrect note. Figure 3 shows the spacing
between the rectangular tracker bar holes and the circular
holes of the piano roll paper. When the paper shifts by
more than one mm (about 13 pixels), a paper hole will start
to bleed the vacuum in an adjacent tracker bar hole. If the
overlap is large enough, an incorrect note will be triggered
on the player piano. Thus, a first step in extracting the
musical holes from a roll image involves identifying and
cancelling this drift.

Figure 4 plots the drift of a sample roll throughout its
length. There is an initial sudden shift of about 15 pix-
els at the start of the roll caused by the scanning operator
moving an adjustment bar. For the next 25 feet the drift is
minimal, at only a few pixels. Then starting at around 27
feet, an oscillation with an amplitude of 20 pixels begins
to be observed. This oscillation has a frequency of about
5–6 feet and is common in many Welte T-100 scans. We
determined this to be due to inconsistencies in the paper, as
well as mechanical properties of the scanner relating to the
tension and alignment of the supply and take-up spools.

For a sample of 60 red rolls, the average total drift range
was 20.8 ± 10.8 pixels, where the spacing between note
columns was 37.75 px. Five of the rolls had a total drift
that would cause them to produce incorrect notes if played
without correction on a player piano, and 25 had a drift that
may cause problems. The largest total drift throughout the
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scan of a roll was 55.7 px, and the smallest was 2.7 px over
the length of a roll.

To calculate the drift correction along the length of a
piano roll, the edges of the paper are identified, and these
edges are low-pass filtered to remove defects such as edge
tears from the edge analysis. When the left and right edges
of the paper move suddenly in parallel, this indicates that
the scanner operator moved the adjustment bar during the
scanning process.

This left-right drift is cancelled out by adjusting the hor-
izontal position by the negated drift value at that position
on the roll. The centroid (center-of-mass) for each musi-
cal hole is identified in the image, and then assigned a cor-
rected position by subtracting the drift offset at the centroid
position. Figure 5 shows the results of this drift correction
for a single tracker bar position. After adjusting for drift,
the hole centroids for a track are clustered within a stan-
dard deviation of less than one pixel (1/300th of an inch),
compared to a range of 18 pixels before the adjustment.

Finally, a Discrete Fourier Transform (DFT) is applied
to the drift-corrected hole centroid histogram (window size
4096, zero padding by a factor of 16). The spacing of
the hole tracks is obtained by searching for the peak har-
monic in the expected region of the DFT. The offset of the
spacings is locked to the track position with the most hole
punches.

4.3 Defect Analysis

The drift adjustment also allows for increased accuracy in
identifying holes that are not quite aligned with any in-
tended tracker hole. Such errors can be removed in this
step. Figure 6 illustrates such a problematic hole. In this
example, the green-highlighted hole at the bottom left cor-
ner of the figure is caused by a tear in the original paper.
This hole is not aligned on any of the expected hole centers
that are indicated by purple vertical lines. The blue holes
indicate alignment as expected.

Other statistical measures of hole shapes are also used
to detect aberrant holes. For example, the angle of the ma-
jor axis of the hole is expected to align with the length of
a roll, except for circular single-punch holes. Holes less
than 1/6 of the expected area of a single punch are auto-
matically excluded. These are typically small defects in the

Figure 6: Unintentional hole in paper (bottom left) and
intentional holes (upper right).

paper, such as dirt or large pieces of cellulose in the paper
that have fallen out over time. Holes wider than the ex-
pected spacing between holes are also flagged as potential
problems.

4.4 Bridge Removal

Long holes on piano rolls are often split into several
smaller holes to avoid weakening the paper, however they
sound as a single longer note when played back on a pneu-
matic instrument. This process is called “bridging”. Our
raw MIDI files retain the bridging information, thus mak-
ing them suitable for punching new paper copies of the
rolls (what are called “recuts") that retain these separa-
tions. This detail is also important for master-roll recon-
struction analysis. Our expressive MIDI files however re-
move this bridging to produce the resultant sound of the
roll. Adjacent holes are taken to merge into single notes
when the spacing between holes is less than 1.37× the
diameter of the punches. Figure 6 illustrates such a case
where the two blue holes in the upper right corner repre-
sent a single note and would be merged.

5. ROLL EMULATION

5.1 The Pneumatic System

A player piano is powered by suction, utilizing pneumatic
valves that regulate vacuum pressure created by an electric
motor. As shown in Figure 7, when a roll passes over the
tracker bar, a hole on the paper allows air to leak into the
lower section of the valve box, causing the air below to
change to atmospheric air pressure. As it moves the valve
pouch upwards, the vacuum thus travels to the pneumatic
and collapses it, causing the pneumatic to move, which
strikes a piano key. However, on a reproducing piano, a
further series of pneumatic controls, the “expression box”,
regulates the precise rate of change in the suction level of
the “dynamic” pneumatic. There is one expression box for
each half of the keyboard, thus allowing dynamic changes
to only occur on one half at a time, however the changes
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(a)

(b)

Figure 7: Basic components in a player piano. (a) When
not reading a hole. (b) When reading a hole.

can occur very rapidly over time 4 .
Thus, the dynamic pneumatic can do one of the follow-

ing:
(a) Remain stationary.
(b) Open or close slowly, producing the effect of a slow

crescendo or decrescendo (suction level increases or
decreases slowly).

(c) Open or close quickly, producing the effect of a fast
crescendo or decrescendo (suction level increases or
decreases quickly).

5.2 Expression Emulation of Welte T-100 Rolls

The process of emulation involves understanding how the
expression box (or equivalent component in other formats)
affects suction pressure on the dynamic pneumatics for
each key over time. The expression system for Welte T-100
rolls involves ten parameters (including pedals) that can af-
fect independently or in combination the dynamic result at
any given time. Table 1 shows the possible parameters and
their locations as expression hole tracks. There are par-
allel holes for each expression regulation on each side of
the piano because, as mentioned above, the pneumatic ex-
pression mechanism is split in half across the keyboard.
The damper (sustain) pedal plays a role in the dynamics

4 The original technology used by reproducing roll companies to cap-
ture dynamic information from the live performer remains unclear. One
theory suggests that the dynamics were translated into perforations from
expression lines drawn by styli attached to pneumatics that were con-
nected to expression regulators. Others have suggested a combination
of electro-pneumatic valves and a dynamic rotor. A more detailed in-
vestigation of this question is beyond the scope of this paper but further
information can be found in other sources [11, 14].

Bass Section Treble Section
14: Bass Mezzoforte off 113: Treble Mezzoforte off
15: Bass Mezzoforte on 112: Treble Mezzoforte on
16: Bass Crescendo piano 111: Treble Crescendo piano
17: Bass Crescendo forte 110: Treble Crescendo forte
18: Bass Forzando piano 109: Treble Forzando piano
19: Bass Forzando forte 108: Treble Forzando forte
20: Soft-pedal off 107: Sustain-pedal off
21: Soft-pedal on 106: Sustain-pedal on
22: Motor off 105: Electric cutoff
23: Motor on 104: Rewind
24-66: Notes C1 to F#4 67-103: Notes G4 to G7

Table 1: MIDI note number and corresponding perforation
track information (encoded in the raw MIDI files).

because it affects the collective sustain and decay of notes
played.

We begin by encoding each hole track as a MIDI note
number in the raw MIDI file. The function of each hole
track on red Welte rolls is summarized in Table 1. Holes
of the bass expression tracks (MIDI Note Number 14—19)
control the dynamics of notes below F#4 and those of the
treble expression tracks (108—113) control the dynamics
of notes above G4. Holes for pedal movements (20—21,
and 106—107) apply to all notes. Notes (pitches) on the
keyboard are holes 24–103.

The “Mezzoforte on” and “Mezzoforte off” hole tracks
control a pneumatic hook (which is often referred to as
the “mezzoforte hook”) that prevents the expression pneu-
matic from fully opening or closing. The damper (sustain)
pedal and una corda (soft) pedal are controlled by lock-
and-cancel valves: holes in one track turn on the valve,
and holes in an adjacent track turn it off, allowing the hole
to have a continuing effect once triggered.

The “Crescendo forte” and “Crescendo piano” hole
tracks produce slow crescendos (increasing dynamics).
They are also controlled by lock-and-cancel valves. This
means once a perforation of “Crescendo forte” is trig-
gered, the dynamic will increase until it is cancelled by
“Crescendo piano”. The “Forzando forte” and “Forzando
piano” produce fast crescendos and decrescendos. They
are controlled by a single continuous roll perforation, un-
like lock-and-cancel valves, so the pneumatic is powered
for the length of the perforation. When the crescendo
and forzando tracks are not activated, a steady slow de-
crescendo results. In fact, a slow decrescendo is effectively
constantly activated due to its connection to ambient air
pressure.

To calculate the rate at which the crescendo or de-
crescendo operates, we examined original Welte T-100 test
rolls, manuals and other sources [5,14]. A test roll contains
a number of specific note and dynamic tests that allow a
technician to adjust the fine regulation of the player piano.
The slow crescendo, slow decrescendo, fast crescendo, and
fast decrescendo rates are regulated by test 3 through 6
in the T-100 test-roll manual. Test 3 regulates the slow
crescendo rate to the mezzoforte hook. Test 4 regulates the
fast crescendo and decrescendo. Test 5 regulates the re-
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Crescendo type Travel between Time (ms)
Slow Crescendo min. to mezzoforte 1190
Slow Decrescendo mezzoforte to min. 2380
Fast Crescendo min. to mezzoforte 200 to 300
Fast Decrescendo max. to min. 70 to 210

Table 2: Crescendo type and the time it takes to travel
between two dynamic levels.

lease from fortissimo touch to piano touch. Test 6 regulates
the combination of crescendo and decrescendo. These tests
would have been used in conjunction with the judgement
of a trained technician. Even as specified, they allow for a
small range of results to the tests.

Based on this research, we chose rates for these pa-
rameters as shown in Table 2. We have chosen to model
pneumatic pressure changes during execution of the slow
crescendo and decrescendo as a non-linear function (one-
pole filter), whereas that of the fast crescendo and de-
crescendo is modelled as a linear function. We apply the
following constraints to map pneumatic pressures to MIDI
velocity levels: the mininum velocity (softest level) is 35,
mezzoforte (medium level) is 65, and the maximum (loud-
est level) is 90. In addition, the overall velocity of bass
notes are assigned to be about 5 velocity levels lower than
the treble notes.

5.3 Tempo Configuration

Most piano rolls formats are played with a speed written at
the start of a roll by the manufacturer; however, Welte T-
100 rolls do not have this indication. Test rolls and manuals
do suggest that these rolls are to be played at single set
speed, however Welte player instruments curiously come
with a speed-adjustment lever. It has been theorized that
this lever may have allowed for small adjustments needed
by poorly regulated instruments. We deduce the general set
tempo from an examination of test rolls and sources to be
approximately 9.46 ft./min., but accept a potential range
of ± 0.5 ft./min.

Timings of notes in image-extracted MIDI files are ex-
pressed in delta-time ticks (pulses) that represent one pixel
row in the original image. This allows notes in the MIDI
file to be linked to their source locations in the scanned
rolls. To translate roll speed into MIDI playback speed, we
first set the initial MIDI tempo to 60 BPM. Then we calcu-
late ticks (or pulses) per quarter note (TPQ, or PPQ, in the
file header) by multiplying the roll speed with a factor that
converts ft./min. into pixels/sec.:

factor =
feet
min

× 300pixel
inch

× 12inch
feet

× 1min
60second

= 60

So a speed of 9.46 ft./min. is used to set the TPQ value in
the MIDI header to 568.

5.4 Paper Acceleration

The take-up spool on a player piano rotates at a constant
speed, while the diameter of the spool increases as paper is
wound around it. This causes an acceleration of the paper

Tracker
bar hole

Paper hole
releases vacuum

Vacuum
resumes

E�ective length
of hole

Figure 8: Schematic of paper hole moving across trackbar
(not to scale).

over time. Since the MIDI file time unit represents spatial
distance on the roll, tempo changes are given in the MIDI
file to emulate this acceleration. Based on our research
and sources, we set this to be a 0.22% acceleration rate per
foot [4]. The result is a more accurate tempo across the
length of the roll.

5.5 Hole Extension

Another correction we apply concerns the effective length
of paper holes over the tracker bar. The pneumatic valve
is actually triggered before the paper hole completely lines
up with the tracker bar hole, as enough of the ambient air
pressure is generated by a portion of the hole. Thus the
effective length of the hole is actually longer than it is on
the paper, as illustrated in Figure 8. Compensating for this
extension is especially important for the forzando piano
and forte expression tracks because they are fast-acting and
sensitive to small variations in time. We approximate the
extra time the valve is open by measuring the length of a
Welte-Mignon tracker bar hole and multiplying it by 0.75.

5.6 Audio Rendition

We provide high-quality audio transfers of the expressive
MIDI files in SUPRA-RW by rendering them through Syn-
thogy Ivory II Pianos in Steinberg Cubase. The resulting
wav and m4a files should generate a result that compares
favorably to a Welte T-100 roll played on an original Welte-
Mignon pneumatic instrument.

6. CONCLUSION

In this paper, we describe the creation of the SUPRA-RW
dataset which includes scanning, symbolic music extrac-
tion, pneumatic system modeling, and performance render-
ing via emulation. These procedures will apply with some
variation (especially in emulation algorithms) to other re-
producing roll formats and should be useful for those
working to digitize large collections.

There is much work to do with reproducing (and non-
reproducing) rolls. Our project will continue to study
pneumatic expression mechanisms and we plan to create
emulations for other roll formats. This will support online
access to the thousands of rolls in Stanford’s collection and
will grow the SUPRA database.
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ABSTRACT

Autoregressive neural networks, such as WaveNet, have
opened up new avenues for expressive audio synthesis.
High-quality speech synthesis utilizes detailed linguistic
features for conditioning, but comparable levels of con-
trol have yet to be realized for neural synthesis of musi-
cal instruments. Here, we demonstrate an autoregressive
model capable of synthesizing realistic audio that closely
follows fine-scale temporal conditioning for loudness and
fundamental frequency. We find the appropriate choice of
conditioning features and architectures improves both the
quantitative accuracy of audio resynthesis and qualitative
responsiveness to creative manipulation of conditioning.
While large autoregressive models generate audio much
slower than real-time, we achieve these results with a more
efficient WaveRNN model, opening the door for exploring
real-time interactive audio synthesis with neural networks.

1. INTRODUCTION

Expressive musical instruments, whether digital or acous-
tic, enable players to use relatively low-dimensional ges-
tures to control perceptual qualities of audio such as pitch,
dynamics, and timbre in real time [5,10]. Progress in Neu-
ral Audio Synthesis, directly rendering audio with deep
neural networks, has revolutionized the field of speech syn-
thesis [13,15,18,19] by replacing hand-designed functions
with data-driven design, and is similarly poised to cre-
ate a brand new class of expressive musical instruments
[1, 3, 4, 6, 12].

Much of this progress is due to deep autoregressive
models, such as WaveNet [18] and Tacotron [15, 19].
While these models can generate a wide range of realis-
tic audio, using them as expressive musical instruments is
not straightforward as they require fine-grained domain-
specific conditioning information, such as phonemes [18]
or mel-spectrograms [15] for speech, and are prohibitively
slow at generating audio.

c© Lamtharn Hantrakul, Jesse Engel, Adam Roberts, Chen-
jie Gu. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Lamtharn Hantrakul, Jesse Engel,
Adam Roberts, Chenjie Gu. “Fast and Flexible Neural Audio Synthesis”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.
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Figure 1. Real-time neural synthesizer architecture. Fun-
damental frequency (F0) and loudness features are fed
through a conditioning stack and upsampled to audio rate.
Using our Pitch/Cents representation, F0 is split into pitch
one-hot embeddings and continuous deviations in cents.
The latent features are concatenated and fed into a Wa-
veRNN which generates audio autoregressively. Audio
samples can be heard in the online supplement 1 .

In this paper, we make progress in overcoming these
challenges by using domain-specific conditioning features
to drive a simpler and more efficient WaveRNN [7] model
to generate audio of musical instruments. We explore
a variety of conditioning features and architectures and
demonstrate that a WaveRNN-based model driven by time-
distributed and fine-scale musical features is capable of
synthesizing realistic audio faster than real time. Our key
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findings include:

• Fine-grain control over loudness. By condition-
ing on extracted loudness features, WaveRNNs can
resynthesize audio that closely matches the origi-
nal loudness, from long attacks and decays to fast
changes like a tremolo.

• Fine-grain control over pitch. By conditioning
on extracted fundamental frequency features, Wav-
eRNNs can resynthesize audio that closely matches
the original frequencies, from a constant pitch, to
subtle vibratos and large glissandos.

• Feature selection. Conditioning on perceptual loud-
ness consistently outperforms using amplitude en-
ergy, while conditioning on discrete pitches and con-
tinuous cents outperforms using a single continuous
frequency feature.

• Real-time generation. Since the models are built
around WaveRNN, even unoptimized kernels syn-
thesize audio faster than real-time in batch mode.
We show our results hold for casaul conditioning
stacks, opening the door for low-latency interactivity
with a properly optimized implementation.

Audio for all examples shown in this paper can be found
in the online supplement 1 .

2. RELATED WORK

2.1 Musical Conditioning

WaveNet autoencoders can infer a latent conditioning sig-
nal from raw audio [4]. This enables unique opportunities
for timbre transfer and morphing [2,12], but the latent code
is relatively high dimensional and unintuitive to manipu-
late due to entanglement of perceptual attributes.

Discrete pianorolls can serve as an intuitive intermedi-
ate representation to control generation of realistic poly-
phonic audio in focused domains such as solo piano per-
formance [6,9]. However, many instruments have dynamic
pitch and volume that cannot be captured with discrete pi-
anorolls. In contrast, this work examines using continuous
pitch and loudness conditioning to create a synthesizer ca-
pable of such dynamic control.

2.2 Fast Synthesis

A successful approach to speeding up generation is ren-
dering audio in parallel. Parallel Wavenet [17] distills
a teacher WaveNet model into a student network that
generates audio in parallel using inverse autoregressive
flows. This dramatically reduces inference latency but re-
quires training several networks and carefully tuning sev-
eral heuristic losses. Other flow-based models such as
WaveGLOW [14] can train audio generation flows directly,
but so far have only been successful at inverting spectro-
grams. Generative adversarial networks provide another

1 http://bit.ly/2GcCPNV

approach to parallel generation and GANSynth [3] recently
proved four orders of magnitude faster than WaveNet base-
lines by generating magnitudes and phases in the spectral
domain. However, these models are not capable of han-
dling fine-scale conditioning or variable-length sequences
considered here.

The streaming nature of autoregressive models makes
them uniquely suited for real-time performance. Wav-
eRNN and LPCNet [7,16] are single-layer recurrent neural
networks that reduce complexity to generate 24kHz 16-bit
speech at speeds up to 4×real time, even on mobile device
CPUs. These models can also run inference in a stream-
ing fashion; a critical requirement for interactive and live
applications.

WaveRNN in particular, achieves its performance
through a set of architectural and engineering innovations,
including 1) the representation of 16-bit audio as a tuple
of two 8-bit integers, which enables efficient parameteri-
zation of the neural network using a dual-softmax layer, 2)
special GRU cells for the two 8-bit integers which achieves
high quality synthesized audio, and 3) custom kernels on
GPUs and CPUs for dense and sparse models respectively.

3. EXPERIMENTAL DETAILS

3.1 Dataset

We focus our work on a smaller subset of the NSynth
dataset [4] identical to GANSynth [3]. These total 70,379
examples, comprising mostly of strings, brass, woodwinds
and mallets with pitch labels within MIDI range 24-84 (F0
of ∼32-1000 Hz). Each sample is 4 seconds long and sam-
pled at 16KHz, resulting in 64,000 dimensions.

3.2 WaveRNN

Our WaveRNN model consists of a 1280-unit GRU, two
640×512 fully connected layers (projection) and two
512×256 fully connected layers (logits). The output has
two size-256 softmax layers, each predicting 8 bits of the
audio (16 bits in total). The model size is on par with
WaveRNN for speech synthesis [7]. Compared to other
fast audio synthesis models (Parallel WaveNet [17], GAN-
Synth [3], and WaveGlow [14]), WaveRNN has a simpler
training setup: the training loss is simply negative log-
likelihood and the set of hyper-parameters to tune is small.

3.3 Conditioning

Our work explores conditioning with fine-grain pitch and
amplitude control. Details of the conditioning architecture
are shown in Figure 1. Below we motivate the choice of
representation, followed by the choice of conditioning ar-
chitecture.

3.3.1 Amplitude Representation

We experiment with two representations for amplitude:
Root Mean Square (RMS) Energy and an A-weighted Log
Amplitude Loudness.
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Figure 2. Audio resynthesized from extracted features. Spectrograms of examples from the NSynth dataset and and audio
resynthesized from audio features (loudness and fundamental frequency) extracted from the original audio. The bottom row
shows the loudness features of the original audio and resynthesized audio. Spectral and loudness contours, and fundamental
frequency contours (not shown), are largely reproduced by the resynthesized audio. These samples, and those in the other
Figures, were produced with the best performing Loudness + Pitch/Cents conditioned model.

Energy: Energy is computed from the STFT of the
waveform with hop_length=64 and n_fft=2048,
yielding energy vectors of length 1000 for 4 seconds of
audio (250 Hz). For training, we normalize these values
across the entire dataset.

Loudness: There are many detailed psychometric mod-
els of perceived loudness [11]. For clarity, we opt for a
simple A-Weighting of the power spectrum, which places
greater emphasis on higher frequencies, followed by log-
scaling. The loudness vector is centered and has equal
length to energy. The exact computational steps are in-
cluded in the Appendix.

3.3.2 Amplitude Conditioning

Wave2Midi2Wave [6] successfully conditioned a WaveNet
to generate realistic piano audio based on a convolutional
stack encoding a pianoroll. We adopt a similar architec-
ture for encoding amplitude. The conditioning network
consists of a stack of 12 dilated convolution layers (with
dilations 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32), followed by
three transposed convolutions with stride 2. All convolu-
tion layers have 512 filters with kernel size 3. For causal
conditioning, we simply zero-pad and shift the receptive
fields to not include future context.

3.3.3 Fundamental Frequency

We use CREPE [8], a recent and data-driven pitch track-
ing model with state-of-the-art performance. With hop size
of 64, CREPE produces a vector of frequencies of length
1000. We convert these into MIDI pitch using librosa’s
hz_to_midi() function. From this point, we explore
different representations of pitch.

Normalized Frequency: Dividing the vector of MIDI
values by 127.0 yields a normalized vector representing
pitch on a linear scale.

Octaves/Notes/Cents: We experiment with splitting
the F0 vector into an octave one-hot R5, note one-hot R12

and a continuous vector of floats for cents. Each compo-
nent is a vector of length 1000.

Pitches/Cents: Our most effective representation con-
sists of a pitch one-hot R60 and a continuous vector of
floats for cents. Each component is a vector of length 1000.

3.3.4 Fundamental Frequency Conditioning

For normalized frequency, we use the same convolutional
stack as for amplitude features.

For Octave/Notes/Cents and Pitches/Cents, we use sep-
arate conditioning stacks for the one-hot component and
continuous component (shown in Figure 1). The vector of
continuous cents is encoded using the same convolutional
stack as amplitude features.

For one-hot features, we use a mulitilayer perceptron
(MLP) encoder network. The one-hots first pass through
an embedding layer and then projected via a series of fully
connected (FC) layers with RELU non-linearity into a fi-
nal target dimensionality. For Octave/Notes/Cents, the two
branches of encoders for octave and notes each use embed-
ding units 1024 and FC units 2048, 1024, 512. The final
octave and note activations are concatenated to produce a
tensor of shape (1024, 1000). For Pitches/Cents, a single
pitch encoder is used with embedding units 1024 and FC
units of 2048, 1024 and 256. The final activation shape is
(256, 1000). Unlike the convolutional stacks, the one-hot
MLP encoding stacks are causal by definition.

3.4 Conditioning the WaveRNN

All conditioning features are time-series with lower sam-
pling frequency (250Hz) than audio. To be used as local
conditioning vectors by WaveRNN they are upsampled via
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replication to 16 KHz, concatenated and added as an addi-
tional bias term in the GRU gate equations.

3.5 Training

During training, the model is tasked with resynthesiz-
ing the high dimensional audio as accurately as possi-
ble, combining the low dimensional conditioning inputs
and teacher-forced previous “outputs” to autoregressively
make next-step predictions. We minimize the negative log-
likelihood loss of the WaveRNN’s coarse and fine logits,
which is computed via softmax cross-entropy.

The system was implemented in TensorFlow and each
model trained on 1 Million steps. We use the ADAM op-
timizer with epsilon of 1e-8, momentum of 0.9, max gra-
dient norm of 1.0 and an exponential moving average rate
of 0.9999. Learning rate decay is 0.7 for every 100k steps.
We fine-tuned models over batch sizes of 128, 256 and 512
and learning rates of either 9e-5 or 1e-4, and report best
performing models.

4. METRICS

Resynthesis: Since log-likelihood is not a direct measure
of sample quality, we quantitatively evaluate our models
through the task of resynthesis. Audio features are ex-
tracted from the source audio and used to synthesize a new
sound with the same features. Some examples of resyn-
thesis are shown in Figure 2. We take the L1 distance of
extracted features between the orignal and resynthesized
audio to be the fine-scale perceptual error in resynthesis.
Aditionally, since the NSynth dataset has labels for pitch
and instrument family (a proxy for timbre), we use these la-
bels to train a classifer which we use to evaluate the global
similarity of the resynthesis. The classifier has identical
structure to the ones implemented in [4] and [3], and we
provide complete details in the Appendix. We calculate
each metric on resynthesized audio from the full test set of
17,600 samples.

Loudness L1 distance: The loudness vector is ex-
tracted from the synthesized audio and L1 distance com-
puted against the input’s conditioning loudness vector
(ground truth). A better model will produce lower L1

distances, indicating input and generated loudness vectors
closely match. Note this distance is not back-propagated
through the network as a training objective.

F0 L1 distance: Pitch tracking using CREPE, like with
any pitch tracker, is not completely reliable. Instabilities
in pitch tracking, such as sudden octave jumps at low vol-
umes, can result errors not due to model performance and
need to be accounted.

CREPE outputs a useful confidence in its prediction of
F0 for every frame. By examining the accuracy of pitch
tracking on ground truth audio, we found that applying a
confidence threshold of 0.85 filtered out areas of unreliable
pitch tracking and yielded the best trade-off against false
positives. Only F0 from time frames above this threshold
are considered in our analysis. For models representing
pitch using Octaves/Notes/Cents and Pitches/Cents, we re-

Pitch 24 Pitch 36 Pitch 43

Pitch 48 Pitch 55 Pitch 60

Pitch 67 Pitch 72 Pitch 79

Figure 3. Synthesizing audio at different pitches with the
same loudness envelope.

compute the equivalent normalized frequency. The F0 L1

distance is reported in MIDI space for easier interpretation;
an average F0 L1 of 1.0 corresponds to a semitone differ-
ence.

F0 Outliers: Audio examples with F0 confidence be-
low 0.85 for the full length of the example indicate a fail-
ure of pitch tracking and are considered “outliers” of the
measurement. 398 ground truth audio samples in the test
set are categorized as outliers, producing a baseline for this
metric of 398/17600 = 0.02. For generated audio, exam-
ples completely below the 0.85 confidence threshold, are
similarly removed. By inspection, we also found L1 dis-
tances above an octave to correspond to pitch tracking fail-
ures and remove the samples as outliers. Better performing
models have lower values close to the 0.02 baseline.

Pitch Error: The classifier pitch prediction gives a
more global measurement of pitch correspondence during
resynthesis. On ground truth samples, the classifier has a
0.06 error rate, which is the best that generated samples
can hope to achieve.

Instrument Family Error: Instrument family labels
are a rough measure of timbral similarity. We assume that
if the original and resynthesized audio have similar timbre
then they should be classified as the same instrument fam-
ily. Although the classifier is not perfect, with an error rate
of 0.22, it is state-of-the-art for the task and dataset, pro-
viding a rough measure of relative performance between
models.

5. RESULTS AND DISCUSSION

5.1 Resynthesis

Table 1 shows the quantitative metrics for models with dif-
ferent conditioning on the resynthesis task. Models with
causal conditioning are given in parentheses next to their
non-causal equivalents.
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Signal Processing CREPE NSynth Classifier
Loudness (L1) F0 (L1) F0 Outliers Pitch Error Family Error

Loudness 0.14 (0.33) 6.20 (6.89) 0.57 (0.66) 0.98 (0.99) 0.75 (0.85)
Loudness + Normalized Frequencies 0.16 (0.24) 1.42 (4.17) 0.07 (0.15) 0.35 (0.81) 0.60 (0.82)
Loudness + Octave/Note/Cents 0.11 (0.14) 1.21 (1.81) 0.07 (0.08) 0.33 (0.25) 0.61 (0.78)
Loudness + Pitch/Cents 0.10 (0.10) 0.94 (1.00) 0.06 (0.07) 0.16 (0.12) 0.53 (0.72)
Ground Truth - - 0.02 0.06 0.22

Table 1. Ablation study showing detailed conditioning improves resynthesis accuracy. Loudness is extracted directly from
the audio as described in Section 3.3.1. CREPE is used for tracking fundamental frequency (F0), and a classifier pretrained
on the NSynth dataset is used to predict pitch and instrument family (see Appendix). Models with causal convolutions in
their conditioning stacks have their numbers in parentheses, while the rest use non-causal convolutions. Conditioning on
F0 in Pitch/Cents tuples outperforms both Octave/Note/Cents tuples and frequencies as normalized floats, and the trend
holds for both causal and non-causal conditioning.

F0 representations: A clear trend is present across
all metrics: performance improves as F0 conditioning
moves from Normalized Frequency, to Octave/Note/Cents,
to Pitch/Cents representations. Interestingly, this improve-
ment is not only present in the frequency-based metrics
(F0 L1, F0 Outliers, Pitch Error), but in the metrics for
volume and timbre as well (Loudness L1, Family Error).

Qualitatively, we found the models to have different
failure modes. Models trained with Octaves/Notes/Cents
conditioning held correct fundamental frequencies more
reliably than Normalized Frequency, but would on rare oc-
casions be completely offset by a large and erroneous inter-
val for the length of the note. This ambiguity seems to arise
from discontinuities at octave boundaries, such as between
MIDI notes B2 and C3 that are close in absolute frequency.
While Normalized Frequency does not suffer from this ef-
fect, we found many models trained on this representation
produced audio that would dip “flat” in frequency. This
could be due to the reduced effective range of input, which
needs to cover the entire range of frequencies on a normal-
ized continuous scale. Unlike speech, slight deviations in
frequency are perceived as notes being out of tune.

Non-causal vs Causal: The trends in F0 condition-
ing are reinforced by the fact they are shared between
both causal and non-causal variants of the models. Non-
causal conditioning allows incorporating future informa-
tion into current predictions which helps performance in
almost cases. Despite this, the best performing models see
less of a performance drop, which is promising for future
low latency applications. Increasing the capacity of the
causal encoder stack may achieve parity in performance.

Energy vs Loudness: Table 1 in the Appendix justi-
fies the preference for loudness over energy as a condition-
ing signal. We compare variants of the best performing
model (Loudness + Pitch/Cents vs. Energy + Pitch/Cents)
and find the loudness-conditioned model outperforms the
energy-conditioned model on all metrics. It is worth em-
phasizing that Loudness L1 is a fair evaluation metric in
this case because it is not used as a loss during training and
is more aligned to human perception.

Missing Conditioning: Finally, Table 1 in the Ap-
pendix also compares a model conditioned only with
Loudness to one conditioned only with Pitch/Cents. Pre-
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Figure 4. Interpolating in loudness conditioning.

dictably, each does better than the other on their respec-
tive metrics, and fails on the other complementary metrics,
demonstrating that both levels of conditioning are required.
Interestingly, the Instrument Family Error is lower for the
loudness-conditioned model, indicating aspects of timbre
are likely more highly correlated with loudness contours
than pitch contours.

Timbre: In the absence of timbre conditioning, the
models learns to correlate timbre with pitch and loudness
contours in the NSynth dataset. For example, the combi-
nation of a short decay and high F0 vector is a mallet-like
sound whereas a long decay and low F0 vector is a cello-
like sound. This is evidenced by the reduced Instrument
Family Error in tandem with lower Loudness and F0 L1

distances. Naively adding instrument family conditioning
and spectrogram conditioning did little to improve the met-
rics or control of generated timbre. We believe exploring
new methods of timbre control is a rich area for future re-
search and would enable applications like interactive in-
strument morphing.

5.2 Creative Conditioning

We perform qualitative studies with modified out-of-
dataset conditioning vectors. All examples are generated
with the Loudness + Pitch/Cents model, and audio for all
examples can be found in the online supplement 1 .

Interpolation of Loudness vectors: On the bottom
row of of Figure 4, we show three loudness vectors. The
left and right vectors were selected from the test set to
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Figure 5. Applying tremolo to loudness conditioning.
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Figure 6. Applying vibrato to frequency conditioning. F0
extracted with CREPE.

demonstrate two extremes: fast decay (left) and long sus-
tain (right). The middle is a synthetic linear interpolation
of the two vectors. The top row shows spectrograms for au-
dio synthesized by our model conditioned on each of these
loudness vectors with the same F0 vector held at constant
pitch. The model is able to closely adhere to the loudness
curves even for the interpolated example. More impor-
tantly, the spectrogram reveals how loudness conditioning
functions more than a naive “amplitude envelope”, since
the harmonic content changes non-linearly with the loud-
ness signal. This rich behavior draws an analogy to the
behavior of real acoustic instruments, where varying exci-
tation introduces rich non-linear changes to the harmonic
spectra based on the characteristics of the instrument.

Tremolo: Figure 5 shows the spectrogram (top) and ex-
tracted loudness vector (bottom) for an example with in-
creasing an increasing intensity of tremolo (left-to-right)
added to the original loudness vector. The generated au-
dio closely tracks the loudness contours through diverse
modulation of harmonic content. Note how the reduction
in power is uneven across the frequency spectrum, damp-
ening higher harmonics more than fundamental frequen-
cies. A naive multiplicative tremolo would reduce power
equally across all frequency bands.

Vibrato: Figure 6 shows audio synthesized from a
baseline F0 vector with constant pitch. The middle vector
adds a tremolo of a semitone while the rightmost vector
adds a tremolo of about 2 semitones. The loudness vector
is held constant in the synthesized audio. As seen by os-
cillations in frequency of the corresponding spectrograms,
the model can generate audio reflective of increasing inten-
sities of vibrato.
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Figure 7. Re-synthesis of out-of-domain input contours
extracted from a live vocalist singing "Somewhere over the
rainbow". Break in F0 corresponds to silence.

Out-of-domain inputs: Figure 7 shows audio re-
synthesized from conditioning signals extracted from a vo-
calist singing “Somewhere Over the Rainbow”. The model
was never trained on sequences longer than 4 seconds,
nor samples with fast-moving amplitude and pitch varia-
tions such as the jump in “Some-where”. Nonetheless, the
model is able to generalize and synthesize audio tightly
following these modulations. This opens the door for a
variety of interactive applications. The user can provide
input contours extracted from live singing, guitar playing
or generate these directly from a MIDI Polyphonic Expres-
sion (MPE) controller or touchscreen interface.

5.3 Generation Speed

For this work, we draw the distinction between “real-time
throughput” (producing x seconds of audio in wall time
less than or equal to x seconds), and “low-latency gen-
eration” (producing audio with little to no delay from a
conditioning input).

The original WaveRNN paper [7] achieved both through
systems optimizations of the underlying kernels. These op-
timizations motivate our use of WaveRNN for future ap-
plications, but are not yet implemented in this paper. De-
spite this, even with unoptimized kernels, we see dramatic
speedups over traditional WaveNet models and are able to
achieve faster than real-time throughput speeds for batches
of audio on commonly available hardware. For example,
our best performing model generates 82 seconds of audio
(batch size 21) in 60 seconds on an NVIDIA GTX 1080
GPU (∼ 1.4× real time).

6. CONCLUSION

In this work, we demonstrate state-of-the-art synthesis of
musical instrument sounds with fine-grain temporal con-
trol over loudness and pitch. The model learns tight corre-
lations between loudness and pitch, being able to introduce
non-linear spectral modulations beyond a naive tremolo or
vibrato. The comparable performance between non-causal
and causal models points towards streaming applications
such as a low-latency re-synthesis guitar pedal or live vo-
cal effect.
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ABSTRACT

A vital aspect of Indian Classical Music (ICM) is Raga,
which serves as a melodic framework for compositions and
improvisations alike. Raga Recognition is an important
music information retrieval task in ICM as it can aid nu-
merous downstream applications ranging from music rec-
ommendations to organizing huge music collections. In
this work, we propose a deep learning based approach to
Raga recognition. Our approach employs efficient pre-
possessing and learns temporal sequences in music data
using Long Short Term Memory based Recurrent Neural
Networks (LSTM-RNN). We train and test the network on
smaller sequences sampled from the original audio while
the final inference is performed on the audio as a whole.
Our method achieves an accuracy of 88.1% and 97 % dur-
ing inference on the Comp Music Carnatic dataset and its
10 Raga subset respectively making it the state-of-the-art
for the Raga recognition task. Our approach also enables
sequence ranking which aids us in retrieving melodic pat-
terns from a given music data base that are closely related
to the presented query sequence.

1. INTRODUCTION

Carnatic and Hindustani music are the two main branches
of Indian Classical Music (ICM), which underlies most of
the music emanating from the Indian subcontinent. Ow-
ing to the contemplative and spiritual nature of these art
forms and varied cultural influences, a lot of emphases is
placed on melodic development. Raga, which governs var-
ious melodic aspects of ICM, serves as a framework for
compositions and improvisations. Krishna et al. [20] de-
fine a Raga as the “collective melodic expression that con-
sists of phraseology which is part of the identifiable macro-
melodic movement”. A major portion of contemporary In-
dian Music including film, folk and other forms of music
heavily draw inspiration from ICM [10, 12].

Numerous melodic attributes make Ragas distinctive in
nature, such as the svara (roughly, a musical note), the
gamaka (for example oscillatory movement about a given

c© Sathwik Tejaswi Madhusudhan, , Girish Chowdhary. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Sathwik Tejaswi Madhusudhan, , Girish
Chowdhary. “DeepSRGM - Sequence classification and ranking in In-
dian Classical music with deep learning”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

note, slide from one note to another etc [17]), arohana and
avarohana (upward and downward melodic movement)
and melodic phrases/ motifs [12, 20]. Emotion is another
attribute that makes Ragas distinctive. Balkwill et al. [2]
conducted studies on the perception of Ragas and observed
that even an inexperienced listener is able to identify emo-
tions portrayed by various Ragas. Given the importance
of Raga in ICM, Machine Learning (ML) based automatic
raga recognition can aid in organizing large audio libraries,
labeling recording in the same, etc.

We believe automatic raga recognition has tremendous
potential in empowering content-based recommendation
systems pertaining to ICM and contemporary Indian mu-
sic. However, Raga recognition is not a trivial problem.
There are numerous examples where two or more Ragas
have the same or a similar set of notes but are worlds
apart in the musical effect they produce due factors like
the gamaka, temporal sequencing (which has to abide by
the constraints presented in the arohana and avarohana),
as well as places of svara emphasis and rest. Raga identi-
fication is an acquired skill that requires significant train-
ing and practice. As such, automatic Raga classification
methods have been widely studied. However, existing
methods based on Pitch Class Distributions (PCD) disre-
gard the temporal information and are highly error-prone,
while other methods (reviewed in detail in Section 2) are
highly dependent on preprocessing and hand made fea-
tures, which limit the performance of such methods.

In this work, we introduce a deep learning based solu-
tion to Raga recognition and Raga content-based retrieval.
First, we reformulate the problem of Raga recognition as
a sequence classification task performed using an LSTM
RNN based architecture with attention. We then show that
the same network, with minimal fine-tuning based on the
triplet margin loss [27], can be used for sequence ranking.
We introduce sequence ranking as a new sub-task of auto-
matic Raga recognition. In this configuration, the model
can be used to perform Raga content-based retrieval. A
user provides the model with a query sequence and the
model returns sequences that are very closely related to the
presented query. This can aid in downstream applications
like recommendation systems and so on.

Deep learning has proven to be an indispensable asset
due to its flexibility, scalability, learning abilities, end to
end training, and most importantly, unprecedented success
in modeling unstructured spatial and temporal data over
the past few years. Our work draws inspiration from the
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successes in [26, 27] introduce a convolutional neural net-
work based recommendation system for music which over-
comes and outperforms various drawbacks of traditional
recommendation systems like collaborative filtering, a bag
of words method, etc. It also leverages LSTM-RNN and
attention based models which have proven to be extremely
effective in tasks like sequence classification, sequence to
sequence learning, neural machine translation, image cap-
tioning task, etc., all of which directly deal with sequences.

To summarize, the main contributions of our work are
as follows :

• We present a new approach to Raga recognition us-
ing deep learning using LSTM based RNN architec-
ture to address problem of Raga recognition.

• With our approach we obtain 97.1 % on the 10 Raga
classification task and 88.1 % accuracy on the 40
Raga classification task on the Comp Music Carnatic
Music Dataset (CMD), hence improving the state-
of-the-art on the same.

• We introduce sequence ranking as a new sub task
of Raga recognition, which can be used in creating
Raga content based recommendation systems.

Note that we refer to our Raga recognition (i.e sequence
classification) model as SRGM1 and the sequence ranking
model as SRGM2 throughout the paper.

2. RELATED WORKS

Broadly speaking, ML methods for Raga classification can
either be PCD based or sequence based. Many of the
previous works have focused on PCD based methods for
Raga recognition [6, 7, 18] with Chordia et al. [4], cur-
rently holding the best performing results for PCD based
methods with an accuracy of 91%. [17] presents an in-
depth study of various distribution based methods for Raga
classification. Although an intuitive and an effective ap-
proach, the major shortcoming of PCD based methods is
that it disregards temporal information and hence is error
prone. To overcome this, previous works have used Hidden
Markov Models based approach [19], convolutional neural
networks based approach [21], arohana avarohana based
approach [23] among various other methods.

[9, 24] employ Raga phrase-based approach for Raga
recognition. [11] use an interesting phrase-based approach
inspired by the way in which seasoned listeners identify
a Raga. This method is currently the state-of-the-art on
a 10 Raga subset of CMD. [12] introduces Time Delayed
Melodic Surface(TDMS) which is a feature based on delay
co-ordinates that is capable of describing both tonal and
temporal characteristics of the melody given a song. With
TDMS, the authors achieve state-of-art performance on the
CMD.

While the PCD based methods ignore the temporal in-
formation, many works like assume that the audio is mono-
phonic. Works like [19,23] attempt to take advantage of the
temporal information by extracting arohana and avarohana.

Pitch tracking
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and note quantization 

Audio 
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Random Sampling

Deep learning based
audio source

separation model

Predicted Class label
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Word embedding 
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Dense layer 1  
Dense layer 2 
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Figure 1. Figure shows various preprocessing steps and
model architecture for SRGM1 (refer Section 3)

Although arohana and avarohana are critical components
to identifying a Raga, they do not contain as much infor-
mation as the audio excerpt itself. Most previous works
heavily rely on prepossessing and feature extraction, most
of which are handcrafted, which can prove to be a limita-
tion as it only gets harder to devise ways to extract complex
and rich features.

3. RAGA RECOGNITION AS A SEQUENCE
CLASSIFICATION PROBLEM (SRGM1)

Sequence classification is a predictive modeling problem
where an input, a sequence over space or time, is to be
classified as one among several categories. In modern
NLP literature, sentiment classification is one such exam-
ple, where models predict sentiments of sentences. We ar-
gue that the Raga recognition is closely related to the task
of sequence classification, since any audio excerpt in ICM
involving vocals/melody instruments, can be broken down
as a sequence of notes spread over time. To reformulate
Raga recognition as a sequence classification task, we treat
the notes obtained via predominant melody estimation as
words, the set of all words form the vocabulary and each
Raga as a class. We detail our approach to raga recognition
as below.

3.1 Preprocessing

3.1.1 Deep Learning based audio source separation

Audio recordings available as part of CMD accurately rep-
resent live ICM concerts with vocalists accompanied by
various string, wind, and percussion instruments. How-
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ever, for the purposes of raga recognition, analyzing the
vocals is sufficient. We believe that the presence of other
elements in the audio interferes with the performance of
the classifier and hence we include audio source separa-
tion as a preprocessing step. We use Mad-TwinNet [8], a
deep neural network based approach capable of recover-
ing vocals from a single channel track comprised of vocals
and instruments. It uses a Masker Denoiser architecture
combined with twin networks (a technique used to regular-
ize recurrent generative networks). We use the pre-trained
model made publicly available by the authors.

3.1.2 Pitch tracking

Our model analyzes the melody content of audio excerpts
to perform Raga recognition, hence pitch tracking is an es-
sential preprocessing step. To perform pitch tracking, we
use the python API [15] for Praat [3] which is an open
source software for the analysis of speech and sound.

3.1.3 Tonic Normalization and note quantization

ICM utilizes a relative scale that is based on the Tonic note
of the performer. Since the Tonic can vary in different ren-
ditions of the same raga, recognizing and accounting for
the tonic note is extremely important. [11] have made nu-
merous features, including Tonic of audio excerpts, avail-
able as part of CMD. We normalize the pitch tracked array
of every audio in CMD by using the following:

fn = 1200∗ log2( f/T ) (1)

where f is the frequency after pitch tracking (in Hz), T is
the frequency of the Tonic (in Hz) and fn is the tonic nor-
malized frequency. The above expression results in 100
cents in a half step, for instance, E and F. Empirically we
observe that it is sufficient to have just 5 levels in a half
step. However, we leave this as a hyperparameter on the
model. Hence the expression for obtaining a tonic normal-
ized note is given by:

fp = round(1200∗ log2( f/T )∗ (k/100)) (2)

where k is number of desired levels in a half step. For
instance, k = 5 when number of desired levels between two
consecutive notes are 5.

3.1.4 Random sampling

The pitch tracked sequences of audio excerpts from CMD
have a length of at least 5 ∗ 105 steps. It is impractical to
train a Recurrent neural network on sequences with such
length as it increases training time considerably. Also, the
network would struggle to retain information over such
large sequences. Hence, we train the network on subse-
quences, which are smaller sequences randomly sampled
from the pitch tracked audio excerpt. It is random in that
the start index is randomly selected. We sample Nr number
of times from every audio excerpt. Length of the subse-
quence is chosen carefully as it impacts the models train-
ing considerably. We observe that smaller sequences tend
to confuse the model. An ideal value for the length of the
subsequence is 4000-5000 steps.

3.1.5 Choosing an appropriate value for Nr

Eq (3), determined empirically, gives the appropriate value
for Nr, based on the length of the subsequence Lr and max-
imum of the set of lengths of all pitch tracked audio ex-
cerpts Lmax.

Nr = d2.2∗Lmax/Lre (3)

3.2 Model Architecture

At the core of our model (refer figure 1) is the LSTM
[13, 22] based recurrent neural network, which is a pop-
ular choice for sequence classification and sequence to se-
quence learning tasks. We experiment with various con-
figurations for the LSTM block and emperically find that
a single LSTM layer with a hidden size of 768 works the
best. The word embedding layer, which appears prior to
the LSTM layer, converts each note that appears in the
subsequence into a 128-dimensional vector. The LSTM
block is followed by an attention layer. Our implemen-
tation closely follows soft alignment as described in [1].
The attention layer is followed by two densely connected
layers, the first of which has 384 hidden units and the sec-
ond one has hidden units equal to the number of classes
represented in the training dataset. This is followed by a
softmax layer, which converts the output of the final dense
layer into a probability distribution over the given number
of classes i.e, a vector of length equal to the number of
classes and sums to one.

3.3 Model training and Optimization

We train the model for over 50 epochs, with a batch size of
40 (i.e, 40 subsequences are fed to model at each training
step) and an initial learning rate of 0.0001. We employ
dropout [25] in the dense layer and batch normalization
[14] after the LSTM layer to reduce over fitting.

3.3.1 Loss Function

Since we are dealing with a classification problem with
number of classes greater than 2, the categorical cross en-
tropy is the best suited loss function. The categorical cross
entropy loss (CCE) is computed as follows:

CCE =−
N

∑
i=1

yi, j ∗ log(pi) (4)

Where N is the number of classes, yi, j is an indicator func-
tion which is 1 only when i = j, j is the training label for
the given subsequence, pi is the ith entry of the probability
vector (which is the output of the model).

3.3.2 Optimization

Random sampling dramatically increases the size of the
data set (the size would be 480*Nr, where 480 is the num-
ber of recordings in CMD). This makes it hard to fit all
these samples on a single computer. Hence we use the Dis-
tributed asynchronous stochastic gradient descent training
algorithm [5]. We use the Adam [16] optimizer to update
the gradients during training.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

535



Triplet margin loss 

Positive  
example Reference Negative 

 example

Triplet Sampling Layer

P Q R 

Word Embedding

LSTM Layer

Soft attention

Dense 1 

Dense 2 

Figure 2. Schematic diagram for the sequence ranking al-
gorithm. P, Q and R are the copies of the same model and
hence have the same architecture.

4. SEQUENCE RANKING AND RETRIEVAL
(SRGM2)

A fully trained sequence ranking model will be able to cre-
ate feature embeddings such that the L2 distance between
the feature embeddings of a pair of sequences is directly
proportional to how similar the sequences are. In this
work we fine tune a pre-trained Raga recognition model
(SRGM1, from the previous section) using the triplet mar-
gin loss and evaluate its ability in retrieving subsequences
similar to query subsequence. The demonstrated ability to
retrieve similar sounding musical pieces is a unique and
highly useful feature of our method.

4.1 Preprocessing

The preprocessing steps used in the training of SRGM1 ap-
ply to sequence ranking. We start with audio source sepa-
ration followed by pitch tracking, tonic normalization and
finally random sampling.

4.2 Model architecture

The network architecture of the sequence ranking model is
shown in 2. P, Q, and R are modified copies of pre-trained
SRGM1 network (Note: the diagram shows P, Q, and R
as different blocks. However, in practice, the triplets are
passed through the same network one after the other). The
modifications being, 1) absence of softmax activation at
the end of the network 2) Dense 2 is altered to have 600
hidden units in place of 40 (or 10 depending on the dataset
it was trained on).

4.3 Triplet sampling

The triplet sampling layer supplies the model with triplets
such that one pair is similar to each other and the other
pair is dissimilar. We consider two sequences to be similar
if they are from the same raga and are dissimilar if they are
from different ragas. The procedure for sampling triplets
is as follows:

• From the collection of all subsequences, sample a
subsequence Pre f randomly (uniform random).

• Let Pre f belong to raga Ri

• Select another phrase P+ from the same raga Ri ran-
domly (uniform random) such that P+! = Pre f

• Randomly (uniform random) choose another Raga
R j such that R j! = Ri from the set of all Ragas R

• Sample P− from Raga R j randomly (uniform ran-
dom).

4.4 Model training and Optimization

Similar to the training of SRGM1, we employ dropout on
the dense layers of the model. Since we are fine-tuning
SRGM1, we do not have to train the word embeddings and
the LSTM layers. Triplet sampling can be offline (before
training) or online (during training). Although it reduces
training time, offline sampling is extremely inefficient as it
requires a lot of memory (RAM). Hence we sample triplets
as and when required. The sequence ranking model is op-
timized based on the triplet margin loss, given by:

L = min(D(P+,Pre f )−D(P−,Pre f )+M,0) (5)

where P is the feature embedding obtained for any input P
using the model. D(.) is a distance function (the most com-
mon choice is the Euclidean distance) and M is the margin
(common choice 1). Similar to SRGM1, we use distributed
asynchronous stochastic gradient descent for training the
model with Adam optimizer.

5. DATASET, INFERENCE AND EVALUATION
METHODOLOGY

5.1 Dataset

In this work, we use the Carnatic Music Dataset [11] made
available by the Comp Music group. The Comp Music
data set consists of high-quality recordings of live ICM
concerts. This dataset comprises of 124 hours of 480 com-
mercially available recordings that are stored in the mp3
format.

The dataset contains 12 full-length recordings per Raga
and features 40 different Ragas (hence 480 recordings).
These recordings feature numerous artists, a wide variety
of compositions and a diverse set of Ragas. The ragas are
diverse in terms of their melodic attributes (refer to Section
1). Therefore, we believe that training and evaluating the
model on this dataset would allow us to assess how well
the model would perform in near real-world scenarios.

5.2 Comparison with prior works

We compare our results with three prior works, [4, 11, 12]
of which [12] is the current state of the art for the Raga
recognition task on the CMD dataset and [11] is the current
state of the art for Raga recognition on the 10 Raga subset
of CMD dataset. Gulati et al. [12] provides a summary of
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Figure 3. Figure gives an overview of the inference pro-
cess for SRGM1 as described in Section 5.3.1

the performance of all of these the three methods on the
CMD dataset. To ensure a fair comparison, we follow the
evaluation strategy as provided in [12] (described in 3.3.1).

5.3 Inference

5.3.1 SRGM1

Although the model is trained on subsequences, during in-
ference, we are interested in determining the Raga of the
audio as a whole. Thus, follow the procedure as shown in
figure 3. First, we split the audio excerpt into numerous
subsequences and obtain the predictions for each of these.
We then perform voting to determine the majority class.
Note, that if the majority class has less than 60% of the
votes we label the classification as incorrect.

5.3.2 SRGM2

For SRGM2, we are interested mostly in the sequences
the model retrieves rather than inference on the audio as
a whole. However, if one desires to make inference on the
audio as a whole, we can adopt the procedure described in
section 3.3.1.

5.4 Evaluation strategy

5.4.1 Evaluation strategy for SRGM1

CMD consists of 12 recordings per Raga. Since we train
the model on subsequences, we have a total of 12*Nr sub-
sequences in every class. Therefore, this is a balanced
classification problem and accuracy is a suitable metric
for evaluation. Authors in [12] use leave-one-out cross-
validation strategy for evaluation where one of the 12
recordings for every Raga is used as test data and the re-
maining 11 are used as the training data. We adopt the
same approach to evaluate our model as it enables us to

Method CMD-10 Ragas CMD-40 Ragas
SRGM1 95.6% 84.6%
SRGM1 Ensemble 97.1% 88.1%
MF - 81.5 %
MKL - 86.7 %
MB - 86.7 %
EV SM 91.7 % 68.1 %
EPCD 82.2 % 73.1 %

Table 1. Table summarizes performances of various mod-
els on the CMD dataset and its 10 Raga subset. Refer to
Section 6.1

make fair comparison of our results with previous works.
We also present a confusion matrix for the observed results
to further investigate the performance of SRGM1.

Gulati et al. [11] use stratified 12 fold cross-validation.
To be able to compare our results to theirs on the 10 Raga
subset of CMD, we adopt the same strategy. As an alterna-
tive evaluation strategy, we hold out 5 of the 12 recordings
from every class as the test set and train the model on the
rest.

5.4.2 Evaluation strategy for SRGM2

A suitable evaluation metric for SRGM2, a sequence rank-
ing model, is the “precision at top-k” measure which is
popular score used to evaluate information retrieval sys-
tems. Precision at top k is defined as the proportion of re-
trieved items in the top-k set that are relevant to the query.
We consider a retrieved subsequence to be relevant when it
belongs to the same Raga as the query subsequence. The
expression for precision at top-k hence becomes :

Pk =
∑

k
i=1 Iyi,c

k
(6)

Pavg =
∑

n
i=1 Pki

n
(7)

Where Pk is precision at top k evaluated on one query sam-
ple, Iyi is an indicator function which is 1 only when yi
which is the Raga of the ith retrieved sample is same as c
which is the Raga of the query sample. Pavg is the top-k
precision averaged over the complete dataset.

6. RESULTS AND DISCUSSION

We present a summary of results in table 1 where we
compare the performance of our model with [12], [11]
and [4]. MF , MKL and MB represent 3 variations of
TDMS [12] which uses euclidean distance, KL divergence
and Bhattacharya distance respectively. EV SM represents
vector space model [11] for Raga recognition while EPCD
represents pitch class distribution based method presented
in [4].

We observe that our method performs better than the
current state-of-the-art on both 10 Raga subset of CMD
and the CMD as a whole. We obtain an improvement of
6 % on the 10 Raga subset of CMD and improvement of
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Figure 4. Figure shows the confusion matrix for the pre-
dictions obtained using SRGM1.

Subsequence
length

Num epochs
to converge

Time per
epoch in sec
(Wall Time)

Hold out
test set

accuracy
500 12 32 88.86

1500 6 58.4 95.5
3000 5 120.1 95.63
6000 3 241.5 97.34

Table 2. Summary of our findings for the study on vari-
ation of model training and performance based on subse-
quence length

2% on CMD using the SRGM1-Ensemble model. The En-
semble model was created using 4 sets of weights for the
same model architecture. For each test sample, we obtain
output from each of the 4 models and then combine them
by summing the log of the outputs of the model to obtain
the final prediction vector for that sample.

The confusion matrix for SRGM1 trained on CMD (40
Ragas) is as shown in figure 4. Note that the confusion ma-
trix is presented for the results obtained on a subsequence
level and not on the audio excerpt level i.e, these are results
before performing inference (refer to Section 4.3.1). There
are no patterns apparent from the confusion matrix. How-
ever, on closely observing the samples on which the model
performs poorly, we see that these samples have very little
information, which can be attributed to events like to long
pauses during the performance, sustaining a particular note
for a prolonged interval, etc.

To further investigate the effect of subsequence length
on the training of a model, we devise an experiment by
using a 4 Raga subset of CMD. We use 36 recordings as
the training set and 12 recordings as the test set. We train
the network until the categorical cross entropy loss reduces
to 0.02. Figure 5 shows a plot of the training loss vs the
number of epochs. It is clearly visible that a model that
is trained on subsequences of length 6000 converges in
lesser number of epochs and has a smooth descent while
the model using subsequences of length 500 makes the
training very noisy and the network takes as long as 12
epochs to attain the same value of the loss. A summary of

Figure 5. The above graph depicts variation in the "train-
ing loss vs epochs" plot with changing subsequence length.

Metric top-30
precision

top-10
precision

Score 81.83 % 81.68 %

Table 3. Summary of performance of sequence ranking on
the top-10 and top-30 precision metrics

our findings has been tabulated in table 2.
We evaluate the sequence ranking model on the metrics

described in section 5.4.2, namely top-10 precision and
top-30 precision. Our findings have been summarized in
table 3. SRGM2 obtains a top-30 precision of 81.83 % and
top-10 precision of 81.68 %. We also conduct a qualitative
analysis of the retrieved samples by inspecting various as-
pects like the range of svaras (notes) observed in the query
to that in the retrieved sample, checking for similar note
progressions, etc. We observe that the sequences retrieved
by the model are similar to the ones in the query. We at-
tach several samples of query subsequences and retrieved
sequences as part of the supplementary material.

7. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel method to address the
problem of Raga recognition. Through various experi-
ments and validation, we are able to demonstrate the ca-
pability of our approach in tackling the problem of raga
recognition. We also introduce sequence ranking as a new
sub-task of raga recognition. We present numerous query
- retrieved subsequence pairs (as part of supplementary
material) which demonstrates the effectiveness of this ap-
proach to mine databases for similar sequences.

We believe that deep learning based approaches have
tremendous scope in MIR pertinent to ICM. As part of fu-
ture work, we would like to further explore the idea of se-
quence ranking as we feel it can be used for tasks like joint
recognition of tonic and Raga. An exciting future research
direction would be to explore the possibility of using deep
learning for generative modeling tasks in ICM. It would
definitely be interesting to see if deep learning models can
replicate the intricate improvisation aspects of ICM.
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ABSTRACT 

This paper presents a convolutional neural network (CNN) 

that uses input from a polyphonic pitch estimation system 

to predict perceived minor/major modality in music audio. 

The pitch activation input is structured to allow the first 

CNN layer to compute two pitch chromas focused on dif-

ferent octaves. The following layers perform harmony 

analysis across chroma and time scales. Through max 

pooling across pitch, the CNN becomes invariant with re-

gards to the key class (i.e., key disregarding mode) of the 

music. A multilayer perceptron combines the modality ac-

tivation output with spectral features for the final predic-

tion. The study uses a dataset of 203 excerpts rated by 

around 20 listeners each, a small challenging data size re-

quiring a carefully designed parameter sharing. With an R2 

of about 0.71, the system clearly outperforms previous sys-

tems as well as individual human listeners. A final ablation 

study highlights the importance of using pitch activations 

processed across longer time scales, and using pooling to 

facilitate invariance with regards to the key class. 

1. INTRODUCTION 

1.1 Modality 

Minor and major modality is a function of scale, harmony 

and tonality and is perceptible even to very young children 

[20]. However, the rich variability of music harmony ren-

ders many compositions hard to classify into a minor or 

major mode. Researchers have therefore investigated mo-

dality as a continuous variable in listening tests, producing 

more or less uniformly distributed averages with high in-

ternal consistency. Such a continuous variable, ranging 

from minor to major, has interchangeably been referred to 

as modality [12-14, 28, 34], mode [1], key mode [33], mode 

majorness [33], and majorness [2, 28, 33]. We will mainly 

use the term “modality” or “minor/major modality”.1 This 

paper aims to improve on previous methodologies for pre-

dicting perceived modality, designing a CNN that is able 

to model associated intricacies of musical harmony.  

In a listener study [14], rated modality had a significant 

correlation (0.3-0.6) with rated speed, articulation, pitch 

(low/high) and timbre/brightness – happy tunes in major 

mode are likely more often performed with a higher artic-

ulation (staccato). This means that a system can be de-

signed to predict perceived modality simply by picking up 

aspects in the audio not directly associated with harmony. 

Music information retrieval (MIR) systems relying on 

such confounding factors of variation have been chal-

lenged by Sturm [37]. The CNN architecture proposed in 

this study tries to minimize these interactions by specifi-

cally targeting properties directly linked to modality, as ex-

panded upon, e.g., in Section 2.4.  

1.2 Previous Studies Predicting Modality 

Two previous studies have attempted to predict perceived 

modality from music audio. The first study [14] used par-

tial least squares regression applied to audio features from 

the MIR toolbox [28, 29]. Two models were tried, the first 

using dedicated modality features and the second also in-

cluding other spectral features. They were evaluated on the 

same two datasets used in the present study (Section 5.1), 

reaching an R2 of 0.43 (0.38) and 0.47 (0.53) respectively 

(results for the second model in parenthesis).  

A second study [1] have instead used the Inception v3 

architecture [38] applied to a mel-frequency spectrogram. 

Results on a dataset of 5000 15 seconds (s) excerpts with 

lower ground truth consistency was R2 = 0.23 (based on 

the Pearson’s correlation coefficient of 0.48 reported in an 

additional/supplemental paper [2]). The model was devel-

oped to handle numerous perceptual features and may not 

be ideal for modality; the pooling operations applied 

across mel-frequency obfuscates tonal interrelationships at 

ranges larger than the pooling kernels. Since the filters 

span the time dimension, the model may to some extent 

instead make predictions from other aspects of the audio 

that covaries with modality, as outlined in Section 1.1.  

1.3 Pitch Chroma and Deep Layered Learning 

Chroma features, imposing spectral energies across a wide 

frequency range onto the twelve pitch classes of a musical 

octave, have a long tradition in MIR [15, 17, 35]. Pitch 

chromas have also been derived both from MIDI data and 

estimated through the autocorrelation function in the past 

[39]. A problem with the chroma is that it often is affected 

by interferences and becomes noisy [23]. Researchers have 

used various techniques to mitigate these issues, including 

harmonic percussive source separation [40] and cepstral 

whitening [31]. A multilayer perceptron (MLP) has also 

been used, with chord annotations defining ground truth 

pitch classes [23]. In this paper, we instead use the output 

from a high accuracy/resolution polyphonic pitch tracking 

system [8]. The pitch transcription is reshaped and fed as 

input to a CNN so that several pitch chromas emphasizing  © Anders Elowsson. Licensed under a Creative Commons 

Attribution 4.0 International License (CC BY 4.0). Attribution: Anders 

Elowsson, Anders Friberg. “Modeling Music Modality with a Key-Class 

Invariant Pitch Chroma CNN”, 20th International Society for Music In-

formation Retrieval Conference, Delft, Netherlands, 2019. 

1Since “mode” and “modality” have a wider scope, perhaps “modalite” 

could be a useful nomenclature for future studies.  
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different octaves can be learned within its first layer. The 

full architecture thus uses intermediate targets to restruc-

ture the learning problem according to the inherent organ-

ization of music. Such a “deep layered learning” approach 

[6], learning intermediate equivariant music representa-

tions, has been used for various MIR problems in recent 

years [e.g., 5, 19, 26]. 

1.4 CNNs and Ensemble Learning 

The CNN proposed in this study use filter kernels operat-

ing across pitch/pitch class, pitch octaves and time scales, 

applying the same processing to each time frame. Previous 

CNNs for harmony processing have instead used filter ker-

nels operating across time and frequency, for tasks such as 

key estimation [22, 25] and chord recognition [18, 24].  

A CNN trained two times with randomly initialized pa-

rameters will generally produce two different predictions 

to the same input data. This is something that makes neural 

networks useful for ensemble learning [16]. The average 

(ensemble) prediction from several models containing 

more or less decorrelated errors will be better than ran-

domly choosing one of them [32, 36]. Ensemble learning 

is used in this paper, as specified in Section 4. 

1.5 Overview of the Paper 

This paper presents a pitch chroma CNN architecture for 

predicting perceived modality. Section 2 describes how the 

pitch activation input to the CNN is computed and struc-

tured. In Section 3, the network architecture and training 

procedure is outlined. Section 4 describes how several 

CNNs were combined into an ensemble, and how a global 

prediction was made using additional features in an ensem-

ble of MLPs. The two datasets and the evaluation proce-

dure is described in Section 5, and results presented in Sec-

tion 6. Section 7 presents an ablation study, testing how 

the design of the model affect predictive performance, and 

Section 8 offers conclusions. 

2. PREPARING THE INPUT REPRESENTATION 

2.1 Defining a Start and End Time for Each Excerpt 

A start and end time were first determined for each musical 

excerpt (ME) so that the CNN would not have to make any 

predictions for silent parts in the beginning and end. A 

magnitude log-frequency spectrogram with 60 bins per oc-

tave was computed as described in [8] (pre-filtering). Let 

x be a vector representing the frequency response in time 

frame i. The overall magnitude of that time frame, across 

all frequency bins, was then defined as 

𝑚𝑖 = √𝑥
2̅̅ ̅,                                         (1) 

using the elementwise square and arithmetic mean, and 

forming m as a vector across time. The signal level was 

defined as 𝐿𝑖 = 20 log10𝑚𝑖, and the resulting vector fil-

tered with a Hann window of width 61 frames (0.35 s). The 

average signal level of the ME was instead defined as 

𝐿𝑎 = 20 log10 �̅�. The first time frame with a signal level 

within 10 dB of 𝐿𝑎  defined the start, and the last frame 

within 10 dB of 𝐿𝑎 defined the end of the ME.   

2.2 Pitchogram 

The input to the CNN was extracted from the Pitchogram 

representation computed with an existing machine learn-

ing system [8]. That system uses two stages to compute the 

Pitchogram. First, a sparse filter kernel operates across a 

log-frequency spectrogram to compute activations corre-

sponding to tentative fundamental frequencies (f0s), up-

sampled through parabolic interpolation to a centitone res-

olution. These tentative f0s are then analyzed in a deeper 

network and computed activations inserted at the corre-

sponding pitch bin in the Pitchogram. The Pitchogram thus 

contains f0 activations and has a pitch resolution of 1 

cent/bin and a time resolution of 5.8 ms/frame.  

2.3 Extracting Semitone-spaced Pitch Vectors 

The Pitchogram was down-sampled to 1 bin/semitone be-

fore processing by the modality CNN. To do this, a Hann 

window of height 141 bins (cents) was first applied across 

pitch to smooth the pitch response. Then, to adjust MEs 

that deviate globally from standard tuning (specifying A4 

to a frequency of 440 Hz), the Pitchogram of each ME was 

“tuned”. This was especially important for some of the 

MEs from the film music datasets (Section 5.1), where the 

orchestral performances had different tunings. The tuning 

was achieved by locating the maximum activation in a vec-

tor v of length 100, where each element corresponds to the 

sum of pitchogram activations at a specific cent value (i.e., 

all bins 47 cents above standard tuning were summed as 

the 47th entry of the vector). Only one vector was computed 

for each ME (i.e., global tuning). The whole Pitchogram 

was then shifted ±50 cent based on the index of the maxi-

mum element. Finally, semitone-spaced activations were 

extracted between MIDI pitch 26-96, resulting in a pitch 

vector for each frame of height 71.  

2.4 Varying Time Scales 

We assume that listeners use pitch information at varying 

time scales to form an overall impression of the modality 

of a piece of music. At the shortest time scale, concurrent 

tones can form harmonic relationships that sound more 

like a major chord or a minor chord. At slightly longer time 

scales, tones played in succession may together imply the 

mode of the chord. At even longer time scales, the combi-

nation of tones and their relative activation may resemble 

key profiles/tonal hierarchies [27] that are more or less in-

dicative of a major or minor tone scale. We wanted to de-

velop a model that was agnostic to various factors that may 

covary with modality, such as accentuation (see Section 

1.1), in the hope that our model would then generalize bet-

ter to other datasets lacking these covariations. This pre-

cluded many models tracking variations in pitch activa-

tions across time (e.g., recurrent neural networks). There-

fore, in order to still account for tonal relationships evolv-

ing over time, the pitch response was smoothed across time 

with filters of varying width, producing pitch vectors re-

sponding at varying time scales. The smoothing was done 

with Hann windows of width 

𝑤 = 10 × 3𝑛  + 1                          (2) 
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where n varied between 1-5. The shortest Hann window 

therefore had a width of 31 frames (0.18 s) and the longest 

a width of 2431 frames (14.1 s). Since the unfiltered pitch 

vector was also included, the processing was applied at six 

different time scales. The smoothed pitch vectors were fi-

nally stacked across width, as shown in the left pane of 

Figure 1. This enabled the system to combine them during 

processing with a filter of width and stride 6 (Section 3.1). 

2.5 Octave Spaced Depth (Chroma) 

The proposed CNN computes a pitch chroma within its 

first layer. To facilitate this, the pitch vector was divided 

into 5 overlapping sections spaced an octave apart, each 

covering 23 semitones. The sections were concatenated 

across depth, resulting in aligned pitch classes (facilitating 

chroma processing within the CNN with filters extending 

across depth). This depth dimension is illustrated for a sin-

gle time frame in the right pane of Figure 1. The CNN in-

put of each time frame was thus prepared. It can be under-

stood as a 23 ×  6 ×  5 three-dimensional tensor, where 

height (23) represents pitch class, width (6) represents dif-

ferent time scales and depth (5) represents pitch octaves.    

 

Figure 1. Two dimensions of the 3D-tensor input to the 

CNN for a single time frame, consisting of pitch activation 

from [8] restructured across pitch, time scale and pitch 

class. The time frame is taken 8 seconds into ME No 4 in 

the film clips dataset, where a G♯ minor chord was played. 

The left pane consists of activations at varying time scales 

in the third octave. The right pane consists of the different 

pitch octaves, shown at the shortest time scale.  

2.6 Segmentation 

Each ME was divided into 6 overlapping segments of 

length 9 seconds (1550 time frames). Since no ME was 

longer than 54 seconds, these segments spanned the entire 

ME. Each segment of an ME was assigned the same 

ground truth annotation that had been established from lis-

tener ratings (Section 5.1). Since each frame (input tensor) 

had 23 × 6 × 5 = 690 input values, each segment had 

slightly above a million input values (690 × 1550).  

3. CNN ARCHITECTURE AND TRAINING 

3.1 CNN Architecture 

The CNN that was applied to each 9 seconds segment is 

shown in Figure 2. The same processing architecture was 

applied to each time frame of the segment. Convolutional 

filters always operated across unspanned dimensions, and 

zero-padding was never utilized, thereby shrinking the 

output space when applying the filters. Rectified linear 

units (ReLUs) were used as activation functions. Since the 

dataset in the study was small (203 MEs), it was important 

(and a challenge) to keep the number of learnable param-

eters small while retaining the ability to model the intrica-

cies of musical harmony. The network had a total of 413 

learnable parameters, including parameters for the batch-

normalization that was applied after each ReLU layer.  

As shown in the figure, the first chroma layer is used 

for converting input tensors to pitch chromas. Two filters 

learn weights for each octave, operating across pitch 

(height) and time scales (width). The two resulting pitch 

chromas are split into two branches, and processed with 1 

and 5 filters respectively in the subsequent harmony anal-

ysis layer. This was done to reduce the total number of pa-

rameters while still achieving the following objectives: 

• Allow the system to use two pitch chromas so that it 

could, for example, independently filter and account 

for information in the bass and higher pitches.  

• Output 6 different activations for each time scale and 

pitch class from the harmony analysis layer using only 

12 × 6 + 6 = 78 filter parameters.  

Each filter used for harmony analysis spans an octave so 

that all pitch classes are taken into account when compu-

ting an activation (attempts at dividing the harmony anal-

ysis into two layers with shorter filters gave slightly lower 

results). Since the input has a height of 23, each filter is 

applied at 12 positions when operating across pitch, one 

for each pitch class. Thus, the input and filter sizes are the 

minimum sizes for which the same combination of all pitch 

classes at various keys can be subjected to the same filters.    

The two branches were concatenated across depth and the 

next filter (orange) then spanned the various time scales. 

The subsequent max pooling filter (purple) provides invar-

iance with regards to the key class that the music was per-

formed in, since it spans all 12 pitch/key classes. Based on 

the max pooling design, it can be expected that the previ-

ous layers of the CNN learn to either react to minor or ma-

jor chords, minor or major tonal hierarchies, or various 

combinations thereof. The strongest indications of both 

major and minor modality across key are then passed to 

the subsequent fully connected (locally) layer (orange) for 

further processing. This layer is implemented as 7 filters 

that span the entire local input space (a fully connected 

layer would instead span the entire segment, something 

that is not desirable). A second filter (orange) combines the 

previous activations into a single frame prediction.  

Finally, average pooling (purple) of the frame predic-

tions is applied across the entire 9 seconds segment to pro-

duce a segment prediction (red) as a regression output.  
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Figure 2. The CNN architecture for predicting perceived modality, shown for a single input tensor (time frame). Neigh-

boring time frames are faded and dashed. All dimensions (except singleton) are indicated with black or colored numbers, 

and the number of filters is indicated with white numbers. White arrows indicate batch normalization followed by ReLUs. 

In the chroma layer, two filters (green and blue) compute pitch chromas from the input. The two chromas are processed to 

analyze the relationship between different pitch classes. Various time scales are then combined through six filters (orange), 

and max pooling applied (purple) to provide invariance with regards to the key class of the music. A fully connected layer 

is implemented through filters (orange) that span the entire feature space for a specific time frame. Finally, one filter is 

used to compute a frame prediction, and average pooling is applied to generate a prediction for the entire segment (red).  

3.2 Training 

The system was evaluated with 10-fold cross-validation, 

(Section 5.2). For each fold, the CNN was trained with the 

Adam optimizer [21], using the mean-squared-error loss 

function, an initial learning rate of 0.01, and a drop factor 

(every epoch) of 0.98. The gradient decay factor was set to 

0.9 and the factor for L2 regularization was set to 0.0001. 

A mini-batch size of 32 (segments) was used, shuffling the 

training data every epoch. The CNN was trained for 25 

epochs. If the computed R2 on the training split (the tracks 

used for training in each of the ten folds) was below 0.83 

after 25 epochs, the network was reinitialized and training 

restarted (to avoid networks stuck in a local minimum). 

This happened in around 3 % of the cases. We tested the 

main model without the restarting condition in the ablation 

study (Section 7.1), which produced a minimal difference. 

Note that there was no validation stopping, for the same 

reasons as outlined in [10]: small validation sets are unreli-

able performance indicators, and maximizing performance 

for individual networks will not necessarily maximize 

performance of ensembled (Section 4) networks. 

4. GLOBAL ESTIMATES AND ENSEMBLING  

Two different global estimates were computed for each 

ME, one estimate from an ensemble of the CNN (ECNN), 

and one estimate from an ensemble of MLPs (EMLP) re-

fining the output activations from each CNN. 

4.1 CNN 

The CNN modality prediction for each ME was computed 

as the average of all frame predictions (see Figure 2). This 

means that the local CNN architecture up until average 

pooling was applied to each frame at run-time.  

We used ensemble learning to improve the accuracy of 

the CNN predictions (Section 1.4). Ten CNNs were trained 

for each fold, and the average of their predictions was used.  

4.2 Additional MLP 

In addition, another global estimate was computed for each 
ME with an EMLP, using the global CNN prediction and 

input features from the Pitchogram and spectrogram. The 

intention was to use and examine the effect of various (po-

tentially confounding) features in the audio that the CNN 

was designed to not model. 

Pitch activations in the tuned Pitchogram were averaged 

across time and summed to a vector, indexing into the vec-

tor based on each bins’ distance to the closest semitone (0-

50 cents). The 6 first discrete cosine transform  (DCT III) 

components of the vector were then extracted as features. 

These features capture the extent and shape of micro-tun-
ing deviations (PT) across the track (e.g., from vibrato).  

We also computed both a vibrato suppressed (VS) and 

vibrato enhanced (VE) spectral flux (SF), using the max-

filtering processing strategy first described in [9], devel-

oped to model perceived speed from onset densities in 

pitched instruments. The processing was applied to the 

whitened log-frequency signal level spectrogram com-

puted as described in [8]. The VE SF was computed by 

subtracting the VS SF from the regular half-wave rectified 

bin-wise SF, thereby retaining energy only in the bins sup-

pressed in the VS SF. For both versions, we computed the 

mean across time after half-wave rectification, producing 
an SF vector across frequency. The 6 first DCT compo-

nents were extracted from these vectors as features. We 

then used the same log-frequency spectrogram, computed 

the mean across time, and extracted the first 6 DCT com-

ponents of the resulting vector (spectral distribution, SD). 

The average CNN output activation from all frames 

(Section 4.1) was also used as an input feature (naturally, 

this was the most important feature). In summary, the MLP 

had 1 + 6 × 4 = 25 input features, divided into four feature 

groups (PT, VS, VE and SD) and one CNN prediction. 

The MLP was rather small and resembled the MLP de-

veloped for predicting performed dynamics in [10]. It had 

two hidden layers each consisting of 8 neurons. The net-

work was trained for 5 epochs with the Levenberg-
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Marquadt optimization [30]. Hyperbolic tangent (tanh) 

units were used as activation functions in all layers except 

for the last linear output activation. Each input feature was 

normalized by its minimum and maximum value to the 

range ±1. Ensemble learning was used, taking the average 

prediction of 20 MLP models. Since the ECNN consisted 

of 10 CNNs, and since one EMLP was trained for each 

CNN, the final prediction in each fold was computed as an 

average of 10 ×  20 = 200 MLP models.  

5. DATASETS AND EVALUATION PROCEDURE 

5.1 Datasets 

The dataset for the study was assembled from two music 

audio datasets. The first dataset (D1) consists of 100 audio 

excerpts of popular music (average length 30 s) that were 

produced from MIDI [14]. The second dataset (D2) from 

[4] consists of 110 audio excerpts of film music (average 

length 15 s). As previously noted [7], the film music da-

taset contains duplicates. Seven duplicates were found and 

removed, reducing the size of D2 down to 103 MEs. The 

MEs are polyphonic and use a wide range of instruments. 

The overall modality had previously been rated by two 

groups of 19 and 21 listeners for the two datasets. Listeners 

were asked to rate the modality of each excerpt on a quasi-

continuous scale between minor (1) and major (10), listen-

ing on high-quality loudspeakers. The ratings were aver-

aged across listeners, producing a single ground truth rat-

ing of perceived modality for each ME. Reliability was rel-

atively high, with a standardized Cronbach’s alpha (CA) 

[3, 11] of 0.94 and 0.97 for the two datasets.  

The datasets were pooled into a single dataset (203 

MEs), which was used for training and testing.  

5.2 Evaluation Procedure 

The accuracy of the model was computed with the coeffi-

cient of determination, R2, between predictions and ground 

truth annotations. We used the square of Pearson’s corre-

lation coefficient (including an intercept).  

The models were evaluated with 10-fold cross-

validation, using a stratified sampling so that each training 

set contained about the same number of MEs from D1 and 

D2. To improve the reliability of the results, the complete 

experiment was repeated ten times, re-partitioning the val-

idation split each time.2 To get 95 % confidence intervals 

(CIs), ten results (R2s) were sampled with replacement and 

the mean computed, repeating the procedure 106 times. 

The resulting distribution of mean R2s could then be used 

for extracting CIs; it indicates the reliability of the test re-

sults based on its variation over test runs.  

6. RESULTS 

6.1 Main Results 

The final result for the ECNN and the ECNN in combina-

tion with the global EMLP is presented in Table 1.  

 

 

 

Model R2 95 % CI D1 D2 

ECNN 0.672 0.665-0.679 0.645 0.710 

ECNN+EMLP 0.716 0.710-0.722 0.710 0.745 

Table 1. Squared correlation (R2) between the ground truth 

ratings of perceived modality in music audio and the pre-

dictions of the two proposed models; also measured indi-

vidually within the two datasets (D1 and D2). 

The full system reached an R2 of 0.716 for the predic-

tions of perceived modality in the two datasets (corre-

sponding to a correlation, r, of 0.846). The predictions 

from the CNN ensemble without the subsequent EMLP, 

minimizing contributions from confounding factors of var-

iation, were almost as accurate, with an R2 of 0.672.  

As seen in Table 1, the second dataset (D2) consisting 

of film clips was easier to predict than the first one (D1). 

This difference is in line with results of the previous study 

on the same datasets that reported an R2 of 0.43 (full 

model, 0.38) for D1 and 0.47 (full model, 0.53) for D2. The 

higher CA (Section 5.1) for this dataset indicates that lis-

teners also had stronger agreement when rating it. Figure 3 

shows predictions in relation to ground truth annotations. 

 

Figure 3. Predicted modality (x-axis) in relation to rated 

modality (y-axis) for datasets D1 (blue) and D2 (green) in 

one of the test runs (R2 = 0.706) for the ECNN+EMLP. 

The dashed grey line indicates perfect prediction. Numbers 

indicate the index of each ME for future comparisons. 

6.2 Comparison with Previous Systems and Humans 

Figure 4 provides context regarding the prediction accu-

racy. The proposed system (blue bars) clearly outperforms 

previous systems (Section 1.2, white bars). Note that [1] 

was tested on a different dataset, so differences in predic-

tive performance should be interpreted with caution. Hu-

man performance (circles) was computed from the listen-

ers of the original listening test using a similar strategy as 

proposed in [10]. The performance of n listeners was de-

rived by sampling (with replacement) n listeners and com-

puting the R2 between their mean rating and the mean rat-

ing from the non-sampled listeners. The procedure was re-

peated 105 times, using the 105 results to compute a mean 

and 95 % CIs. For n = 1, sampling is not applicable, and 

the 95 % CIs were defined as the listener with the second 

lowest and second highest R2. 

2Running the main 10-fold cross-validation experiment ten times took 

about 5.5 days, training the ECNN with a GeForce GTX 1080 GPU         

(5 days; 10 × 10 × 10 = 1 000 CNNs) and the EMLP  using 5 parallel 

i7-6700K CPU threads (0.5 days; 10 × 20 × 10 × 10 = 20 000 MLPs). 
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Figure 4. Modality estimation results (R2) of the proposed 

system (blue), previous systems (white), individual human 

listeners (green circle), and ensembled human listeners 

(red circles). Black lines indicate 95 % CIs. 

7. ABLATION STUDY 

7.1 CNN 

Important stages of the CNN architecture were examined 

by training the ECNN with various alterations of the CNNs. 

The different stages/properties tested were:  

Time scales: None-2431 – All different time scales (Sec-

tion 2.4) were tested separately.  

Key class invariance pooling (Pool): Avg – A CNN using 

average pooling instead of max pooling. Conv – A fully 

convolutional architecture that instead reduced the pitch 

dimension through four layers with two filters of height 

{5 4 3 3}, followed by a single filter of height 1. 

Input: Mag – Using a magnitude log-frequency spectro-

gram as input, computed as described in [8] (pre-filtering). 

dB – Using the whitened log-frequency signal level spec-

trogram from [8]. For both versions, the spectrum covered 

the same range of 71 semitones, using overlapping trian-

gular filters to reduce the frequency resolution.  

Pitch chroma (PC): Mean – The mean of the five octaves 

was computed directly and passed as input, using 6 har-

mony analysis filters in the first layer 

Results relative to the main CNN model are shown in 

Figure 5 and conclusions of the experiment provided in 

Section 8. The same validation split was used for all tests 

to increase consistency. This split was also used for the 

main model for computing a performance reference. 

 

Figure 5. The variation in R2 for different CNN settings in 

relation to the main CNN model. The 95 % CIs (±0.007) 

from the main experiment are indicated by the grey area.3  

 

7.2 MLP 

We also tested various combinations of EMLP input fea-

tures.4 The results shown in Figure 6 indicate that a com-

bination of SF features with vibrato suppression (VS) and 

vibrato enhancement (VE) was important.  

 

Figure 6. The change in R2 in relation to the ECNN results, 

when using various EMLP feature groups (Section 4.2). 

Black lines indicate 95 % CIs for the relative improvement 

over the ECNN in each test run. 

8. CONCLUSIONS 

A convolutional neural network for predicting perceived 

modality in music was implemented. Its predictive perfor-

mance was well above that of previous systems as well as 

the average human listener, performing better than around 

95 % of the human annotators. It requires the combined 

ratings of 3 listeners to reach the same predictive perfor-

mance as the model. The CNN used pitch activations from 

a pitch tracking system as input; the ablation study showed 

that this input representation improves performance sub-

stantially in relation to spectral input (Mag and dB). The 

methodology of max pooling across key classes to provide 

invariance seems beneficial since it improved performance 

in relation to a fully convolutional model. However, aver-

age pooling, in which the network instead has to rely on 

earlier ReLUs to discard irrelevant activations in certain 

key classes seems to be an equally attractive, or even bet-

ter, option for achieving key class invariance.  

The CNN was restricted from using filters operating 

across time, to reduce the influence of irrelevant confound-

ing factors of variations, such as accentuation and spectral 

fluctuations. Instead, the CNN received input filtered to 

account for different time scales. The ablation study indi-

cates that a time scale of around 4-5 seconds is the most 

relevant and that instantaneous time scales, only using har-

monic information from concurrent tones, significantly re-

duces performance. Performance only dropped slightly 

when the pitch chroma layer of the CNN was discarded 

and the mean (across octaves) pitch chroma instead used 

as input (Mean PC, Figure 5). The small size of the dataset 

likely reduces the importance of this CNN layer; tracking 

interactions between pitches in different registers requires 

more learnable parameters, which requires more input data 

for generalization.  

We hope that the results can inspire further develop-

ment of CNN architectures accounting for musical invari-

ances, including, and beyond, key class and pitch class. 
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3Note that these CIs define the 95 % range within which the mean of ten  

complete 10-fold cross-validation runs varies. The ECNN ablation 

study used one complete 10-fold cross-validation run per architecture. 

4All feature groups were tested with the same global CNN activation as 

an additional feature, and evaluated across the full ten experimental runs. 
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ABSTRACT

This paper investigates end-to-end learnable models for
attributing composers to musical scores. We introduce
several pooled, convolutional architectures for this task
and draw connections between our approach and classi-
cal learning approaches based on global and n-gram fea-
tures. We evaluate models on a corpus of 2,500 scores
from the KernScores collection, authored by a variety of
composers spanning the Renaissance era to the early 20th
century. This corpus has substantial overlap with the cor-
pora used in several previous, smaller studies; we com-
pare our results on subsets of the corpus to these previous
works.

1. INTRODUCTION

Models for attributing composers to musical scores have
been extensively studied in the music information retrieval
community. The composer classification question has been
posed for a variety of corpora, from Renaissance com-
posers [2,3], to the narrow (and challenging) case of Haydn
and Mozart string quartets [5,8,12,22], and to various col-
lections of classical era composers (most of the other pa-
pers discussed in Section 2). In this work we study an ex-
pansive collection of scores, from 13th century sacred mu-
sic by Guillaume Du Fay to 20th century ragtimes by Scott
Joplin.

A major challenge of this task is learning from limited
data. While the corpus considered here is larger than most,
this is largely due to the number of composers considered
(19): for specific composers, we have at most 466 scores
(Bach) and as few as 22 (Japart). Small datasets are an
inherent problem for composer classification: the corpus
used in this work contains, for example, all of the Bach
chorales and all of the Mozart string quartets. We cannot
resurrect these composers and have them write us more
scores to include in our corpus. This situation contrasts
starkly with many learning problems, where substantial
progress can be made by collecting massive datasets and
exhaustively training an expressive model (usually a deep
neural network) with “big data.”

c© Harsh Verma, John Thickstun. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Harsh Verma, John Thickstun. “Convolutional Composer Clas-
sification”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

Further complicating this task, an individual score is it-
self a high dimensional object: the average score in our
corpus consists of thousands of notes, each of which is en-
coded as a high dimensional vector to represent its pitch
and value. Learning from a small number of examples in
a high dimensional space is a formidable problem; thus
much work on composer classification focuses on feature
engineering, feature selection, dimensionality reduction,
or some combination of these approaches to construct low-
dimensional representations of scores to learn from.

In this paper we take a different approach: we dispense
with feature engineering and explore end-to-end classifiers
that operate directly on full scores. Specifically, we in-
vestigate shallow convolutional neural networks with an
aggressive pooling operation. In this setting, all but the
most impoverished linear classifiers achieve 100% train-
ing accuracy. We rely on implicit regularization introduced
by the network structure and first-order optimization with
early stopping to avoid overfitting to training data. While
theoretical understanding of such an approach is in its early
stages [18], we find empirically that this works quite well
for composer classification.

2. RELATED WORK

The earliest works on composer classification [3, 15] ana-
lyzed highly preprocessed corpora of melodic fragments.
Much of the subsequent work on classification focuses on
engineering features to summarize full scores. These ap-
proaches can be broadly categorized, using the terminol-
ogy of [7], into “global” summarization approaches that
compute small sets of summary statistics as a feature set
for each score [2, 5, 6, 10, 12, 16, 22] and local “event” fea-
turizations that extract n-gram counts of a score as fea-
tures [8, 9, 11, 24, 25]. There is also a line of work that
applies compression-based dissimilarity metrics [1,19,20]
to this task, which offers a substantially different perspec-
tive on classification problems.

The present work is most similar in spirit to [3] and [23].
Like [3], we adopt an end-to-end approach to feature learn-
ing using neural architectures. In contrast with [3], we
learn on full scores with minimal preprocessing and con-
sider a multi-class classification task over a broad variety
of composers; this approach is made possible by modern
hardware unavailable to researchers in 2002. We also take
a more systematic approach to architecture exploration,
and identify effective architectures that are simpler than

549



hybrid convolutional-recurrent approach taken in [3].
Like [23], we exploit structure in musical scores using

convolutional models. But where [23] use a fixed Mor-
let or Gaussian convolution filters, the convolutional fil-
ters in this work are parameterized and learned from the
data to maximize classification accuracy. We also explore
multi-layer “deep” convolutional models and demonstrate
improvements using such architectures versus the single
layer of convolutions explored in [23].

Comparing to the substantial body of work that empha-
size feature-engineering, the present work can be seen as
an unified framework for learning global and event fea-
tures. We will draw analogies between linear convolutional
filters and n-gram features, and also demonstrate how con-
volutional models can express many popular global fea-
tures. We will also introduce a global pooling operation
that can be interpreted as an counter that tracks the number
of occurrences of learned features, which is directly analo-
gous to the count and ratio statistics that comprise the bulk
of metrics used in human-engineered featurizations.

3. CORPUS AND DATA REPRESENTATION

We train and evaluate models on a corpus of 2,500 scores
spanning five centuries of choral, piano, and chamber
compositions from the KernScores collection [17]. An
overview of this collection is provided in Table 1. In this
work, we consider each movement of a multi-movement
composition to be a distinct score. Our models extract only
the note data (pitch, note-value, and voicing) from scores,
ignoring all other markings such as time signatures, key
signatures, tempo markings, instrumentation, and move-
ment names. For the Renaissance composers in this col-
lection (Du Fay through Japart) we shorten the length of
all note-values by a factor of 4 to crudely account for the
shift in duration conventions between mensural and mod-
ern notation [4].

We represent a score by lossless encoding of its pitch,
voice, and note-value contents, transcoded from a **kern
file to a binary representation suitable for input to a neural
network. Specifically, we encode a score S as a binary
tensor x ∈ S = {0, 1}T×P×(N+D+1) where T, P,N,D
are defined as follows:

• T - The number of rows of pitch/note-value data in
the score S.

• P - The maximum number of concurrent **kern
columns (spines): 6 for this corpus.

• N - The range of note pitches: 78 for this corpus,
ranging from C1 to F#7.

• D - The number of distinct note values (i.e. dura-
tions): 55 for this corpus.

For each t ∈ {0, . . . , T − 1}, p ∈ {0, . . . , P − 1}, n ∈
{0, . . . , N − 1}, and d ∈ {0, . . . , D − 1} we set

xt,p,n = 1 iff pitch n occurs at time t in spine p,

xt,p,N+d = 1 iff note-value d occurs at time t in spine p,

xt,p,N+D = 1 iff pitch n continues at time t in spine p.

Composer Dates Sub-Collection Scores

Du Fay 1397-1474 Choral 35
Ockeghem 1410-1497 Choral 98
Busnois 1430-1492 Choral 68
Martini 1440-1497 Choral 122
Compere 1445-1518 Choral 27
Josquin 1450-1521 Choral 423
de la Rue 1452-1518 Choral 178
Orto 1460-1529 Choral 43
Japart 1474-1507 Choral 22
Corelli 1653-1713 Trio Sonatas 188
Vivaldi 1678-1741 Concertos 33
Bach 1685-1750 Chorales 370

Well-Tempered Clavier 96
D. Scarlatti 1685-1757 Keyboard Sonatas 59
Haydn 1732-1809 String Quartets 209
Mozart 1756-1791 Piano Sonatas 69

String Quartets 82
Beethoven 1770-1827 Piano Sonatas 102

String Quartets 67
Hummel 1778-1837 Preludes 24
Chopin 1810-1849 Preludes and Mazurkas 76
Joplin 1868-1917 Ragtimes 47

Table 1. Details of the KernScores collection used for
training and evaluation in this paper.

For example, consider how we would encode line 28 of
the **kern excerpt shown in Figure 1. This is the 5th row of
pitch/note-value data in the score, so we will encode data
from this line into x5. The periods “.” in columns (i.e.
spines) 0 and 1 indicate that a note or (in this case) a rest
is continued from a previous line, so we set x5,0,N+D =
1 and x5,1,N+D = 1. Two notes are indicated in spine
2: 8a and 8f. The number “8” indicates an eighth-note
value. Each unique note-value is assigned an (arbitrary)
index; we assign index 15 to the eighth-note value, so we
set x5,2,N+15 = 1. The letters “a” and “f” indicate the
pitches A3 and F4, which lie 33 and 41 semitones above
C1 (the base of our note range) respectively. Therefore we
set x5,2,33 = 1 and x5,2,41 = 1. Finally, spine 3 indicates
an eighth-note F5 so we set x5,3,53 = 1 and x5,3,N+15 = 1.

The encoding defined about is an essentially verbatim
transcoding of the **kern text data to a binary structured
format. Converting from text to this structured format will
allow us to write convolution operations along the time and
pitch axes of the data tensor x. Encoding pitches with bi-
nary indicators inN -dimensional vectors is consistent with
piano roll representations [23] but departs from the exam-
ple of [3], which encodes pitch as a single numerical mag-
nitude. The binary pitch encoding is required to support
convolutions along the pitch domain, which we will intro-
duce later in models (8) and (9).

The binary note-value encoding also differs from the
numerical magnitude encoding used in [3]. We will not
introduce models that convolve over durations (there is no
translation invariant structure to exploit) so the motivation
above for representing pitches with indicators does not ap-
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23: 2..r 2..r 2..r 2..r

24: 8r 8r 8r 8dd

25: =1 =1 =1 =1

26: 1r 1r 8r 4dd

27: . . 8f# 8a .

28: . . 8a 8f# 8ff#

29: . . 8a 8f# 16ee

30: . . . 16dd

Figure 1. Left: An excerpt from a **kern encoding of of Haydn’s Opus 33, No 1, consisting of the first 6 beats of the first
movement. Right: A visual rendering of the first two measures of the same score as sheet music. In the **kern format, time
proceeds from top to bottom, whereas in traditional notation time proceeds left to right. The contents of the beginning of
the 6th beat is highlighted (red) in each format to aid comparison between the **kern format and sheet music.

ply to durations. Rather, we are motivated by the observa-
tion that note-values of similar duration may not be more
alike in any musical sense than note-values with less sim-
ilar duration. We avoid imposing this notion of similarity
a-priori by encoding durations as categorical indicators: in
this encoding, all note-values are equally distant in the Eu-
clidean sense.

We also contrast our note-value encodings with piano
roll representations, such as the representation used in [23].
In a piano roll representation, time is discretized: the value
of a note is indicated implicitly by the number of dis-
crete time-slices over which it is sustained. We choose an
explicit representation of note-values because it more di-
rectly reflects the contents of a written score, and results in
shorter time series overall than discretized representations.

4. PROBLEM FORMULATION

Our aim is to learn a classifier that predicts a composer y
given a score x. There are C ≡ 19 composers in our cor-
pus: we assign each composer a label from 0 to C − 1.
We will construct a model fθ : S → {0, 1}C that assigns
vector fθ(x) to a score x where each component fθ(x)i in-
dicates model’s (un-normalized) confidence that composer
i wrote score x. We predict ŷθ(x) ≡ arg maxi fθ(x)i, the
composer the model has most confidence in.

We evaluate our models via accuracy on holdout sets
xholdout, where accuracy is the zero-one loss defined by

Accuracy(xholdout) =
1

n

n∑
i=1

1(ŷθ(xholdout
i ) = yi).

Here 1 : Bool→ {0, 1} is the indicator function: 1(p) = 1
if the proposition p is true, otherwise 1(p) = 0. The re-
sults in Section 6 report 10-fold cross validated accura-
cies. It is standard practice in the machine learning com-
munity to report results on a single holdout set. But for
for the small datasets considered in composer classifica-
tion, cross-validating is essential to cut down the variance
of estimated accuracy.

Given a collection of labeled scores (training data)
{(x1, y1), . . . , (xn, yn)} and a parameterized family of

models {fθ : θ ∈ Θ} we learn an optimal model fθ by
empirical risk minimization of the negative log-likelihood
under the softmax-normalized probability distribution of
model outputs:

min
θ∈Θ

n∑
i=1

− log

(
exp(fθ(xi)yi)∑C
k=1 exp(fθ(xi)yk)

)
. (1)

For each of iteration of 10-fold cross-validation, in addi-
tion to the holdout fold xholdout, we hold out a second fold
as validation data and optimize the objective (1) on the re-
maining 8 folds. We train our models using the Adam op-
timizer [13], regularizing with retrospective early stopping
at the point with best accuracy on the validation fold.

5. MODELS

Every model class fθ that we consider in this paper takes
the following general approach.

1. Compute a set of local features at or around each
time index in the score.

2. Average these features across time (“pool” the fea-
tures, in neural networks parlance) into a single
global feature vector.

3. Construct a linear classifier on top of this global fea-
ture vector to predict the composer of the score.

The approach above is motivated by the need to man-
age the high-dimensionality of a score: given even the first
5 indices of the score tensor x described in Section 3, we
can easily fit a classifier that achieves 100% training ac-
curacy but fails to generalize to new data. As discussed
in Section 2, the classical approach to this overfitting phe-
nomenon is to reduce a score to a low-dimensional sum-
mary of pre-determined features and fit a classifier to this
summary. The present work aims to learn features from
scratch, but if we permit our model to learn any features it
wants then it will simply overfit to the training data.

We therefore cripple our models in two ways. First,
step 1 of the general approach above limits our model to
learn features that are local in scope. We will allow our
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models to learn features that are sensitive to correlations
between co-occurring notes (harmony), or between short
sequences of notes (melody, rhythm). But by construc-
tion, our models will not be able to learn features that cap-
ture correlations between (for example) the first and last
notes of a score. This precludes us from learning certain
high-level patterns that could have predictive power (e.g.
Mozart is more likely to repeat a section verbatim than
Bach) but saves of us from learning a multitude of spu-
rious patterns that appear to have predictive power on the
training data but fail to generalize to new observations.

Second, step 2 of the general approach prevents our
model from learning features that occur at fixed time loca-
tions. As discussed above, even knowing the first 5 indices
of the score tensor is enough to easily identify every score
in the corpus. By pooling features together across time,
we force our models to classify based on the overall preva-
lence of the features it learns, rather than the occurrence of
a particular feature at a particular time.

Note that classical approaches to feature engineering
largely follow the same modeling restrictions outlined
above. The engineered features used in e.g. [6] (Table 1,
page 7) or [2] (Table 1, page 2) consist primarily of overall
frequencies, prevalences, and rates of occurrence. These
features capture properties of either a single time index or
short sequences, aggregated across an entire score. The
use of n-gram features also fits this mold: an n-gram is by
definition a local feature of n time indices, and an n-gram
featurization computes aggregate (i.e. pooled) counts of
the occurrences of each particular n-gram across a score.
The use of genuinely non-local features is rare. They are
used in [12]: see for example the “maximum fraction of
overlap with opening material within first half of move-
ment” feature. The use of these features may account for
the effectiveness of [12] in the Haydn versus Mozart clas-
sification task, which our models underperform on.

5.1 Sub-sampling Scores

The approach outlined above requires us to average fea-
tures across entire scores. Each score in our corpus has a
unique length, ranging from 10 to 4000 time indices. As
a practical matter, it is difficult to deal with such variable-
length data in machine-learning systems; our tools are de-
signed to operate efficiently on homogeneous batches of
data. One solution to this problem is to sub-sample scores;
for example, [23] train models on the first s quarter notes
where s = 70 or s = 400. Those authors found that
the larger sample consistently outperforms the smaller one.
We confirm this finding with the experiments in Table 2,
which show that our models consistently perform better
with larger samples of the score.

We therefore make the following compromise between
using all available information from a score and operating
on homogeneous inputs: we sample the first s, middle s,
and last s indices from our score x, resulting in 3s time
indices sampled from each score. We use s = 500 for
all experiments except the experiments in Table 2 that ex-
plore how models behave as we vary this hyperparameter.
The average score in our corpus has 534 time indices, so

Sample Size
Model 10 20 50 100 250 500
Histogram (Eqn 2) 50.0 59.0 62.0 63.0 66.1 64.2
Voices (Eqn 5) 60.0 61.6 63.9 72.0 75.5 76.9
Hybrid (Eqn 9) 59.3 62.1 68.9 77.1 79.9 81.7

Table 2. Comparison of model accuracies using a variety
of samples sizes: accuracy uniformly increases with larger
samples of the scores. See referenced equations (Eqn) for
formal definitions of the models.

for most scores this means we sample the entire score (for
scores shorter than 500 time indices we pad out our sample
with zeros). Only for scores longer than 1, 500 time indices
(there are 117 in our corpus) do we lose any information
with this approach.

5.2 Histogram Models

The simplest models we consider are histogram models.
Averaging the input data x over voices and time gives us a
histogram vector h ∈ {0, 1}N+D+1:

h(x; θ) =
1

TP

T∑
t=1

P∑
p=1

xt,p.

Multiplying this histogram by a weight matrix Wθ ∈
R(N+D+1)×C with parameterized entries gives us a sim-
ple linear model:

fθ(x) = W>θ h(x; θ). (2)

No features are learned in this model; all that is learned
are the linear weights Wθ on the histogram features. The
model can be interpreted as a simplified version of the
global feature models discussed in Section 2. In this case,
the global features are the prevalences at which each of the
N +D + 1 note and duration symbols occur in a score.

5.3 Voice Convolutional Models

Now let’s consider a simple neural model inspired by n-
gram features. Let k be a number of features we desire to
learn and n be a number of time indices. Define the func-
tion relu : R → R by t 7→ t1(t > 0). Given a weight
matrix W 1

θ ∈ Rn(N+D+1)×k we can construct a “convolu-
tional” feature representation ht,p ∈ RT×P×k at each time
index t in each voice p defined by

ht,p(x; θ) = relu
(
(W 1

θ )>xt:t+n,p
)
. (3)

We define xt:t+n to be a slice of x from index t to in-
dex t + n (non-inclusive); when t + n > T , we pad
x with zeros. We then pool these features across voices
and time to construct a single, global feature representa-
tion h ∈ Rk, to which we can apply a linear classifier with
weights Wθ ∈ Rk×C :

h(xt; θ) =
1

TP

T∑
t=1

P∑
p=1

ht,p(x; θ),

fθ(x) = (Wθ)
>h(x; θ).

(4)
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This is a non-linear model (because of the non-linear
relu “activation”) and we can view h as a learned fea-
ture representation of the score x. The weights (“filters”)
W 1
θ learn to extract k relevant patterns of length n from

voices, analogous to–but more expressive and compact
than–classical n-gram featurizations. In our experiments
we set k = 500 and n = 3; the choice of n is consis-
tent with the pervasive use of 3-grams features in prior
work [8, 9, 12, 24].

5.4 Deeper Representations

A natural way to extend the convolutional feature extrac-
tion discussed in Section 5.3 is to compose multiple lay-
ers of convolutions. Given the feature representation ht,p
given by Equation 3 and a parameterized weight tensor
W 2
θ ∈ Rnk1×k2 , we can construct a second layer of fea-

tures

h2
t,p(x; θ) = relu

(
(W 2

θ )>ht:t+n,p(x; θ)
)
.

We can loosely interpret such a representation as building
hierarchical features of features. In principle we can build
arbitrarily deep stacks of features in this way; in our exper-
iments, we were unable to realize significant gains using
architectures with more than two convolutional layers.

Building a classifier over these features proceeds iden-
tically to the shallower models:

hconv(x; θ) =
1

TP

T∑
t=1

P∑
p=1

h2
t,p(x; θ)

fθ(x) = (Wθ)
>hconv(x; θ).

(5)

For this model we set n = 3, k = 300, and k2 = 300.

5.5 Full-Score Convolutional Models

The models considered in Sections 5.3 and 5.4 are largely
monophonic: they extract features from individual voices
(although they classify based on a pool of these features
gathered from all the voices). Notably, those models have
no ability to capture harmonic patterns in the interactions
between voices. We now consider a model that can capture
these interactions.

Let W 1
θ ∈ RnP (N+D+1)×k, W 2

θ ∈ Rnk×k2 and con-
sider the model

ht(x; θ) = relu
(
(W 1

θ )>xt:t+n
)
∈ RT×k,

h2
t (x; θ) = relu

(
(W 1

θ )>ht:t+n
)
∈ RT×k2,

h(xt; θ) =
1

T

T∑
t=1

h2
t (x; θ),

fθ(x) = (Wθ)
>h(xt; θ).

(6)

We parameterize this model with n = 3, k = 300 and
k2 = 300. This model is strictly more expressive than
the part-wise models (4) or (5), capable of capturing pat-
terns that the part models can’t. However, the underperfor-
mance of this model (6) relative to less expressive models
(4) and (5) suggest that it is prone to capture spurious pat-
terns, leading to overfitting (compare results in Table 3).

5.6 Harmonic Models

All the models considered so far treat pitch classes as cat-
egorical data. We recognize, for example, that C4 is dis-
tinct from E4 or G4, but not that C4 is 4 semi-tones below
E4 and 7 semi-tones below G4. This section introduces a
model that exploits this structural order of pitch-classes, by
convolving along the pitch-axis of the input tensor.

For notational convenience, we decompose the in-
put tensor x = f ⊕ d into separate pitch components
f ∈ {0, 1}T×P×N and note-value components d ∈
{0, 1}T×P×(D+1). Let W 1

θ ∈ RjP×k and convolve along
the pitch-axis to construct a features ht,n(f; θ) ∈ RT×N×k:

ht,u(f; θ) = relu
(
(W 1

θ )>ft,:,u:u+j

)
.

Here j is a hyper-parameter indicating the height of the
convolution; analogous to the width-n hyperparameter in
our time-domain convolutions for models (4), (5), and (6).
Unlike the time domain, we find that setting a large value
of j (in our models, j = N/2) is desirable; a similar phe-
nomenon is observed for frequency-domain convolutions
in [21].

We proceed to pool the features ht,u together across the
pitch domain to construct ht ∈ RT×k:

ht(f; θ) =
1

N

N∑
u=1

ht,u(f, θ). (7)

The idea of this pooling is to construct a feature-set that
is invariant to pitch translation. We are interested in learn-
ing features such as, for example, the occurrence of gen-
eral major chords rather than the occurrence of a particular
major chord such as the one rooted at A3. The pooling op-
eration above precludes us from learning the latter type of
feature.

We then construct a second layer of features to inte-
grate the harmonic features ht together with the note-value
features dt. Using weights W 2

θ ∈ Rk×k2 and W 3
θ ∈

R(D+1)×k2 we build h2
t (x; θ) ∈ RT×k2 . We then pool

the representations h2
t across time and construct a linear

classifier on the resulting representation:

h2
t (x; θ) = relu

(
(W 2

θ )>ht(f; θ) + (W 3
θ )>dt

)
,

hharmonic(xt; θ) =
1

T

T∑
t=1

h2
t (x; θ),

fθ(x) = (Wθ)
>hharmonic(xt; θ).

(8)

We parameterize this model with k = 64 and k2 = 500.

5.7 Hybrid Models

Looking back at the models we’ve introduced, observe that
the voice models (4) and (5) exploit temporal structure
within voices, but pool away any harmonic patterns be-
tween voices. In contrast, the harmonic model (8) exploits
harmony between voices but pools away any sequential
patterns across time indices. The full-score convolutional
model can capture both types of structure, but is prone to
capture spurious patterns and overfit.
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This motivates the introduction of our final, hybrid
model that weakly combines temporal and harmonic mod-
els to increase predictive power without overfitting. The
idea is to feed the input tensor separately through temporal
and harmonic models to construct features representations
hconv (5) and hharmonic (8) respectively. We combine these
features in a final, linear layer using weights W c

θ ∈ Rk2×C
and Wh

θ ∈ Rk2×C to make a prediction:

fθ(x) = (W c
θ )>hconv(x; θ) + (W h

θ )>hharmonic(x; θ). (9)

Because temporal and harmonic information are only com-
bined in the final linear layer, this model is unable to learn
expressive relationships between these features, such as the
classical XOR relationship [14]. As we see in Table 3, this
combination increases accuracy over either the temporal or
harmonic models on their own.

6. RESULTS AND CONCLUSIONS

The results of all models discussed in this paper, evalu-
ated on the full corpus, are presented in Table 3. We sort
the rows in this table by the number of scores for each
composer; we observe a trend towards increasing accuracy
when we have more data (with some outliers).

Models

Composer (2) (4) (5) (6) (8) (9)

Japart 0.0 13.6 13.6 9.1 18.2 13.6
Hummel 41.7 54.2 66.7 62.5 87.5 91.7
Compere 0.0 25.9 22.2 25.9 40.7 37.0
Vivaldi 30.3 94.4 91.6 54.5 45.5 54.5
Du Fay 45.7 82.9 74.3 71.4 80.0 74.3
Orto 0.0 18.6 37.2 25.6 46.5 48.8
Joplin 85.1 91.5 93.6 93.6 95.7 91.5
D. Scarlatti 44.1 59.3 62.7 78.0 79.7 72.9
Busnois 13.2 48.5 48.5 51.5 60.3 60.3
Chopin 55.3 54.2 64.5 72.4 76.3 68.4
Ockeghem 13.3 55.1 69.4 52.0 66.3 72.4
Martini 44.3 68.0 75.4 59.8 68.0 73.8
Mozart 34.8 56.3 61.6 63.6 70.2 67.5
Beethoven 72.2 82.2 83.4 78.7 84.0 89.3
de la Rue 27.5 57.9 71.3 63.5 73.6 79.2
Corelli 89.4 89.9 86.2 93.1 93.6 95.2
Haydn 85.6 75.6 71.3 79.9 82.3 83.7
Josquin 81.1 78.7 76.4 75.9 77.3 82.3
Bach 92.3 95.7 96.1 97.2 97.2 97.6

Overall 64.2 75.4 76.9 75.5 79.8 81.7

Table 3. Results of the 19-way classification problem on
the full corpus for each model considered in this paper.

To compare with previous work, we train additional
models on subsets of the corpus. We invite comparisons
between the results in Table 4 and the results of [2], and
between the results in Table 5 and the results of [6]. These
comparisons are imperfect: neither [2] nor [6] report the
precise scores used in their experiments. Nevertheless our
corpus is derived from the same KernScores sources as [2]

Bach Orto Fay Ock. Josq. Rue
Bach 100.0 0.0 0.0 0.0 0.0 0.0
Orto 0.0 39.5 0.0 7.0 51.2 2.3
Du Fay 0.0 0.0 82.9 11.4 5.7 0.0
Ockegham 0.0 2.0 5.1 81.6 9.2 2.0
Josquin 0.7 1.4 1.2 3.3 84.4 9.0
de la Rue 1.1 0.0 0.0 0.6 25.8 72.5

Bach Orto Fay Ock. Josq. Rue
(9) 100.0 39.5 82.9 81.6 84.4 72.5

KNN [2] 94.5 38.9 42.9 70.0 60.6 80.6
SVM [2] 98.5 33.3 25.0 60.0 60.0 87.1

Table 4. (Top) Confusion matrix for the hybrid model
(9), trained and evaluated on a 6-composer subset of the
corpus. Compare to the results in Tables 3 and 4 (page
6) of [2]. (Bottom) Accuracy comparisons of our hybrid
model to the KNN and SVM models from [2].

Bach Haydn Beethoven
Bach 99.8 0.2 0.0

Haydn 3.4 93.3 3.3
Beethoven 3.0 10.6 86.4

Bach Haydn Beethoven
(9) 99.8 93.3 86.4

SVM [6] 94.6 80.3 64.8

Table 5. (Top) Confusion matrix for the hybrid model (9),
trained and evaluated on a 3-composer subset of the cor-
pus. Compare to the results in Table 9 (page 18) of [6].
(Bottom) Accuracy comparisons of our hybrid model to
the SVM model from [6].

and [6], and contains a comparable number of scores to
the counts reported in [6]. Therefore we believe our sub-
sets are similar to the corpora used in these works and that
comparison is meaningful. For future reference, the exact
dataset used for the present work can be found online. 1

For the popular Haydn versus Mozart string quartet
classification task [5,8,12,22], we were unsuccessful. The
standard evaluation metric for this task is LOOCV, which
we could not perform due to the computational expense
of our models. With 10-fold cross validation, we observed
exceedingly high variance upon repeat optimizations of the
same model. However none of our optimizations exceeded
80%. Due to imbalance between Haydn and Mozart quar-
tets (209 versus 82 scores) a classifier that simply predicts
Haydn given any input achieves 71.8%.

Overall, we conclude that the convolutional models pro-
posed in this paper perform quite well. We find this no-
table, given that success in neural modeling is often as-
sociated with much larger datasets. Furthermore, we do
not believe that the potential of these methods has been
exhausted; further investigation may yield even better con-
volutional architectures for composer classification.

1 http://homes.cs.washington.edu/~thickstn/ismir2019classification/
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ABSTRACT

Early musical sources in white mensural notation—the
most common notation in European printed music dur-
ing the Renaissance—are nowadays preserved by libraries
worldwide trough digitalisation. Still, the application of
music information retrieval to this repertoire is restricted
by the use of digitalisation techniques which produce an
uncodified output. Optical Music Recognition (OMR) au-
tomatically generates a symbolic representation of image-
based musical content, thus making this repertoire reach-
able from the computational point of view; yet, further
improvements are often constricted by the limited ground
truth available. We address this lacuna by presenting a
symbolic representation in original notation of Il Lauro
Secco, an anthology of Italian madrigals in white men-
sural notation. For musicological analytic purposes, we
encoded the repertoire in **mens and MEI formats; for
OMR ground truth, we automatically codified the reper-
toire in agnostic and semantic formats, via conversion from
the **mens files.

1. INTRODUCTION

White and black mensural notations are both defined by the
use of strictly measurable unambiguous characters, a cod-
ification system introduced for the first time around 1280
in the Ars cantus mensurabilis [15]. Yet, white notation,
unlike its predecessor black notation, passed through min-
imal changes during its period of existence (aprox. 1450–
1600), thus becoming a consolidated European notation
system typical of Renaissance vocal polyphonic music [1].
Furthermore, the development of relatively standardised
musical sources in white mensural notation was also en-
couraged by the advancement of new printing technolo-
gies [12], which led at that time to a prolific production of
early music prints, many of them still available nowadays.

The high cultural and historical value of these musi-
cal sources led to libraries worldwide utilising digitalisa-

© Emilia Parada-Cabaleiro, Anton Batliner, Björn Schuller.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Emilia Parada-Cabaleiro, Anton Bat-
liner, Björn Schuller. “A diplomatic edition of Il Lauro Secco: Ground
truth for OMR of white mensural notation”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

tion mechanisms to preserve them. 1 Considering the of-
ten low quality of such scanned sources, this created a new
challenge for Optical Music Recognition (OMR) systems.
Much effort has already been made on symbolically repre-
senting this repertoire by developing suitable storage and
encoding formats [28, 31] as well as improving OMR per-
formance [5, 19, 24, 34]. Still, OMR technology is not yet
reliable enough to accurately extract the musical content of
some sources [28], making manual encoding—which pro-
vides the ground truth needed to improve the systems—
often necessary. Despite this, digital editions of early mu-
sic in original notation, as that presented in the Measuring
Polyphony Project, 2 are still an exception [9, 20, 29].

We present a diplomatic edition and OMR ground truth
of the anthology Il Lauro Secco—originally printed in
1582 in white mensural notation, previously encoded in
original notation in Lilypond format by [20], and also tran-
scribed in modern notation in **kern and MEI formats by
[21]. To encode the anthology in the original (white men-
sural) notation, we considered **mens [28] and MEI [31]
formats, chosen as the most adequate for manual encoding
and storage, respectively. We also encoded the repertoire in
the so-called ‘agnostic’ and ‘semantic’ formats, chosen as
adequate to provide OMR ground truth [6,27]. These were
automatically generated from the **mens files through
the mens2agnostic and mens2semantic convert-
ers, which we present as a way to reduce human efforts.
A total of 660 codified scores, 150 engraved images, 150
original prints, and the converters are freely available. 3

The paper is laid out as follows: in Section 2, an
overview of related work is given; Section 3 describes our
methodology; Sections 4 and 5 discuss the encoding crite-
ria; finally, in Sections 6 and 7, we deal with limitations of
our work, conclusions, and future directions.

2. PREVIOUS WORK

Manuscripts and prints, since the only remaining source of
Renaissance music, have great value for the conservation
and understanding of this music and its historical context,

1 Gallica (Bibliothèque Nationale de France) and Early Music Online
(British Library) have digitised around 600 musical sources from the 16th
century which are freely accessible and downloadable online.

2 http://measuringpolyphony.org/
3 https://github.com/SEILSdataset/SEILSdataset
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a process in which digital technology plays a fundamen-
tal role [13]. Despite symbolic codification of the musical
content is essential for a systematic study of the considered
repertoire, the lack of a common methodology across the
available digital collections makes their comparison diffi-
cult and might even bias research outcomes [8]. Further-
more, although initiatives such as Tasso in Music Project
[26], 4 Gesualdo Online Project, 5 Marenzio Online Digi-
tal Edition (MODE), 6 Josquin Research Project, 7 or The
Lost Voices Project 8 have as a main goal the codifica-
tion of early musical sources in machine-readable formats,
those preserving the original notation during the symbolic
representation process are still rare [9, 20, 29]. In ad-
dition, despite the limitations of editing music in book
format [35], even recently published—carefully curated—
diplomatic editions of early music present transcriptions in
modern notation of the musical content [10], without pro-
viding any symbolically codified support.

Music XML, considered the best music notation inter-
change format [11], is commonly used to transfer codified
music across different platforms; still, Music XML might
present limitations when working with early music, e. g.,
in the codification of different notations. In this regard, the
Music Encoding Initiative (MEI) has been established [30],
not only covering the encoding of a wide range of nota-
tions but also providing a set of features especially suited
to the digital edition of music such as the inclusion of criti-
cal comments [22]. However, conversion routines between
user-friendly encoding formats which support early nota-
tion, as, e. g., Lilypond [18] 9 and MEI, are still missing.
Indeed, only recently suitable formats for manual encoding
and conversion into MEI, such as the Humdrum represen-
tation scheme **kern [17], have been adapted for mensu-
ral notation, i. e., the representation scheme **mens [28],
which as well as MEI can be rendered with the dedicated
music engraving library Verovio [23] and through the on-
line platform Verovio Humdrum Viewer (VHV [33]).

OMR has been progressively improved, e. g., by pro-
cessing inconsistently notated handwritten scores [16, 25]
and low quality early printed sources [24, 34]. Still, for all
the machine learning systems, an adequate ground truth is
essential to properly set-up an OMR framework. The so-
called ‘annotated dataset’ or ground truth is a version of
the evaluated data in which every instance (musical char-
acter) is identified with the label expected to be predicted.
From a musicological prospective, a digital diplomatic edi-
tion [14], i. e., a symbolically codified source that faithfully
mirrors the original print, would be the most appropriate
approach to encode OMR ground truth of early music.

3. METHODOLOGY

We present a digital diplomatic edition of the anthology
encoded in two open community driven formats with the

4 http://www.tassomusic.org/
5 https://ricercar.gesualdo-online.cesr.univ-tours.fr/
6 http://www.marenzio.org/
7 http://josquin.stanford.edu/
8 http://digitalduchemin.org/
9 http://lilypond.org/

capability to codify white mensural notation: **mens (a
Humdrum representation scheme which presents a user-
friendly encoding syntax [28]), and MEI (which has a spe-
cific module to encode mensural notation [31] and is con-
sidered to be the most appropriate storing format [28]). For
OMR applications, we encoded the anthology’s ‘ground
truth’ in agnostic and semantic formats, i. e., two sym-
bolic representations originally presented for western mod-
ern notation [6] but considered also as being appropriate to
codify early notated sources [27].

3.1 Data description

The Il Lauro Secco anthology is a collection of 30
madrigals—secular polyphonic a cappella compositions—
for five voices, 10 which has been published in a set of sep-
arate ‘partbooks’, i. e., according to a printing format in
which each vocal part is presented in a different book [12].
This means that for each of the 30 madrigals in the an-
thology, five ‘parts’, i. e., individual scores presented in
the corresponding partbooks (we will use the Italian term
particella(s) to refer to these) are presented; no ‘choral
score’, i. e., a score in which all the voices are displayed
over-imposed in the same sheet, is available. Since the
anthology encompasses 150 particellas (30 madrigals x
5 voices), and we considered four encoding formats—
**mens, MEI, agnostic, and semantic—a total of 600 sym-
bolically codified particellas are presented.

For the diplomatic edition, the 150 particellas were en-
coded in **mens and MEI (i. e., a total of 300 files), which
present a faithful representation of the original source. The
MEI files were also engraved with Verovio [23] and saved
as images in pdf format (i. e., 150 files). Additionally, one
choral score with the five voices over-imposed, from the
lower to the higher in the same sheet, was also encoded
in **mens and MEI for each madrigal (i. e., a total of 60
files). Still, the choral scores are only presented to encour-
age / facilitate analysis and performance; thus, they should
not be considered as part of the diplomatic edition: They
do not respect the original’s editorial choice (i. e., part-
book printing), and, contradicting the original print, lyrics
normalisation and musical corrections to preserve vertical
alignment were applied to them.

For the OMR ground truth, the 150 particellas were en-
coded in agnostic and semantic format, yielding a total of
300 files. The agnostic encoding gives the sequential repre-
sentation of the musical symbols by indicating their exact
position within the staff but without providing any musi-
cal meaning [6]. Differently, the semantic representation
gives a simplified version of the scores while still keeping
the musical meaning, e. g., the indication FM (F major) for
modern notation implies that a flat is considered in the key-
signature [6]. To the best of our knowledge, lyrics have not
been considered in any of these formats, neither for men-
sural [27] nor for modern [6] notation; thus, the particel-
las in agnostic and semantic formats do not contain lyrics.
In the future, these might be required to perform Optical

10 Note that the polychoral madrigal composed by Luca Marenzio is not
taken into account [20].
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Character Recognition (OCR) and OMR together. Then,
the codified lyrics and their musical alignment can be re-
trieved from the particellas in **mens and MEI.

3.2 Data conversion and manual encoding

Even though the Il Lauro Secco anthology has already been
codified in original notation [20], since this work employed
the encoding format Lilypond—mostly used as a ‘final’
encoding choice rather than an interchange format [27]—
direct conversion to **mens or MEI was not possible. Con-
sidering this, as starting codified version of the anthol-
ogy, we chose the modern notated transcription encoded
in **kern format [21], which contains a choral score for
each madrigal (i. e., 30 **kern files in total). We converted
the 30 choral scores from **kern to **mens by compil-
ing the filter kern2mens 11 implemented in the Verovio
Humdrum Viewer 12 (VHV [33]). Conversion errors were
corrected (cf. Section 3.3), and aspects exclusive for men-
sural notation—thus missing in the **kern files, as e. g.,
colorature or ligatures—were manually integrated in the
**mens choral scores (cf. Section 4.1).

When the musical content of the 30 choral scores in
**mens was edited according to the original sources—
note, as already mentioned, that a few musical correc-
tions were required in order to preserve vertical alignment
across voices—these were split into the individual parts.
The extraction of the voices in separated files was per-
formed with the Humdrum Toolkit, 13 through the com-
mand extractx of the Humdrum extras, 14 by that gen-
erating five **mens files per madrigal with two spines
(one for music and another for lyrics) each. After that,
the lyrics of the 150 particellas in **mens were manually
‘unnormalised’, i. e., corrected according to the original
source (cf. Section 4.2), and the few musical corrections
in the choral scores to preserve vertical alignment were
also made according to the original. Finally, the **mens
particellas were automatically converted into MEI syntax
through the Verovio command-line interface. 15

For the encoding of the agnostic and the semantic files,
two Python scripts to convert from **mens to both formats,
mens2agnostic and mens2semantic, were created.
Even though agnostic and semantic representations have
already been considered to encode Spanish white mensu-
ral notation [27], the repertoire in this notation, unlike the
music prints considered by us, is handwritten, thus pre-
senting many differences with respect to the white mensu-
ral notation of printed sources [29]. Due to this, for the
agnostic and semantic encoding, we followed specific cri-
teria (cf. Sections 5.1 and 5.2), which were developed from
those originally presented for modern western notation [6].
Since lyrics were not considered for these representations,
before automatically converting the 150 **mens particel-
las, they were removed by extracting the spines with mu-
sical content as individual files.

11 http://doc.verovio.humdrum.org/filters/
12 https://verovio.humdrum.org/
13 http://www.humdrum.org/
14 http://extras.humdrum.org/man/
15 https://www.verovio.org/humdrum.xhtml
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Figure 1. At left, a codified representation of mensural
notation engraved in VHV presents (from left to right) the
following symbols: C2 clef, B flat, R time signature, and
rests of semiminima in line 2 (L2), minima (L3), semibre-
vis (L5), brevis (L3), and longa (L3). At right, an extract of
a original print taken from the Basso part of Belli’s madri-
gal presents (from left to right) rests of: minima in line 1
(L1), brevis (L1), semibrevis (L2), minima (L2), and semi-
minima (L3). Rests position (standard in **mens) is given
considering their proximity to the center of the staff (L3).

3.3 Data post-processing

Musical aspects specific of mensural notation, e. g., ‘pro-
portions’ (transcribed in modern notation with triplets),
were not interpreted in the conversion from **kern to
**mens. Thus, manual post-processing of the **mens files
was required to address the following conversion issues: (i)
16th notes in **kern were converted in **mens as semi-
brevis instead of semifusas; (ii) triplets, used in **kern
to transcribe proportio tripla of tempus imperfectum [1],
i. e., the diminution of the prolatio (reduction of the sub-
division values) by changing from a time signature with
binary meter and binary subdivision (e. g.,S andR ) to an-
other with binary meter and ternary subdivision (e. g., 3
and S 2

3), were not recognised in the conversion, yielding
compilation failure of the **mens files.

Although ‘coloration’ and ‘custos’ can be encoded in
MEI, these are not yet implemented in VHV for **mens
(cf. Section 4.1). Due to this, in the conversion from
**mens to MEI, these were not recognised, but manually
encoded in MEI. Similarly, since lyrics linked to rests are
not supported in VHV (cf. Section 4.2), these were not
recognised in the conversion from **mens to MEI, but also
manually encoded. In **mens representation, unlike in the
original source, rests are indicated in a standard position
within the staff (cf. Figure 1); yet, in the agnostic represen-
tation the original position of the rests should be indicated.
The same applies for accidentals, which in **mens, unlike
in the original source (cf. Figure 3), are displayed in the
same staff position of the note they refer to. Since in the
conversion from **mens to agnostic, the specific position
of rests and accidentals was missing, this was manually
encoded in the agnostic files (cf. Section 5.1).

4. CRITERIA FOR DIGITAL DIPLOMATIC
EDITIONS OF WHITE MENSURAL NOTATION

While MEI is a suitable encoding format for storage,
**mens is more appropriate for manual encoding [28]. The
following criteria will refer mainly to the codification in
**mens; manual interventions in MEI will only be de-
scribed when required. For white mensural notation encod-
ing guidelines in **mens, cf. [28]; 16 for MEI, cf. [32]. 17

16 http://doc.verovio.humdrum.org/humdrum/mens/
17 http://www.verovio.org/features.xhtml?id=mensural
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Figure 2. At left, the rhythmic sequence semibrevis, min-
ima, minima, semibrevis (all blackened), which should be
interpreted as minor color; at right, the transcription of this
fragment of Belli’s madrigal in modern notation [20].

4.1 Musical encoding criteria

Unlike the anthology codified in Lilypond [20], where
different musical aspects are modified w.r.t. the original
source to encourage the analysis and performance of the
repertoire, the present encoding in **mens and MEI tries
to represent the original source as much as possible. For
this, the following criteria were considered:

(i) In previous symbolic versions of the anthology
[20, 21], rests have often been encoded in shorter length
than in the original source. This was due to the use of
barlines, which made it impossible to display rests longer
than a measure. In **mens and MEI encoding, the exact
duration of the rests indicated in the original source was
considered; yet, as in these formats the position of rests
within the staff cannot be defined, the default position dis-
played in the images engraved with VHV might not always
coincide with that given in the original print (cf. Figure 1).

(ii) Stems up to the third staff line (included) are gen-
erally displayed upwards, while above the third space (in-
cluded), they are displayed downwards. This applies al-
ways when engraving codified scores in VHV; yet, for
melodic reasons, notes in the third line of the original
source might also present downwards stems. Thus, the di-
rection of the stems which did not follow the standard dis-
position in the original source was manually specified in
the **mens encoding. Furthermore, since Longa’s stems
in VHV are always engraved downwards, these were also
specified, when needed, according to the original.

(iii) Coloration or ‘blackening’ [1]—used to indicate
rhythms with ternary subdivision (i. e., perfect prolatio)—
is an attribute unique of white mensural notation; thus, it
was not indicated in the modern notated transcription in
**kern [21]. Due to this, coloration was manually encoded
in **mens according to [28] by indicating ‘∼’. Since col-
oration is not yet implemented in VHV, this is not dis-
played when engraving **mens files, and it was also not
correctly converted from **mens to MEI; thus, coloration
was manually encoded in MEI by specifying the note at-
tribute ‘colored="true"’ [32]. As blackened minimas ap-
pear graphically as semiminimas, it depends on the mu-
sicological interpretation whether such a character should
be encoded as the former or the latter. To prevent inter-
pretation bias, coloration was only indicated for brevis and
semibrevis, i. e., the notes which do not have an already
existing equivalent when blackened. Still, from a musi-
cological prospective, the so-called minor color—a semi-
brevis followed by a minima both blackened that must be
performed as a triplet of whole and half notes [1]—should

Figure 3. Two different representations of the accidental
sharp displayed in Marenzio’s madrigal. The first in the
standard position, i. e., aligned to the note; the second not.

be considered; thus, in some cases, semiminimas might be
interpreted as blackened minimas (cf. Figure 2).

(iv) Ligatures—symbols that in mensural notation rep-
resent a combination of two or more notes [1]—were indi-
cated according to the VHV documentation, 18 i. e., notes
within the ligature are delimited with brackets: square
brackets were used for recta ligatures, angle brackets for
obliquous ligatures. However, since the rhythmic stems
of ligatures are not yet implemented in VHV, they are not
displayed when engraving **mens and MEI encoding.

(v) Custodes (singular: custos)—a symbol at the end
of a staff indicating the pitch of the first note in the
next staff [1]—are not yet implemented for **mens en-
coding. Considering this, we introduced the indication
*custos in the particellas in **mens, which although
is not engraved, indicates the exact position where the
custos is displayed, i. e., the end of each staff as shown
in the original source. This might be similar to the in-
dication !!linebreak:original, typically used in
**kern encoding. Unlike in **mens, custodes are already
implemented in MEI encoding [32]; thus, these were man-
ually indicated by adding the event <custos/>, in which
the exact position of the symbol is also indicated by the at-
tributes pitch name (pname) and octave (oct).

(vi) Accidentals in mensural notation present differ-
ences w.r.t. modern notation; e. g., single sharps in men-
sural are indicated with ‘x’, while this symbol indicates
double sharp in modern notation. Furthermore, unlike in
modern notation, accidentals in mensural are not always
aligned—displayed in the same vertical staff position—to
the note they precede (cf. Figure 3). Still, since in **mens
encoding accidentals’ position cannot be specified, these
are displayed, when engraved in VHV, according to the
default alignment; 19 thus, their position in the engraved
images may not coincide with that of the original source.

(vii) Measures were considered in the particellas to in-
dicate staff breaks, i. e., after each *custos, a new mea-
sure was indicated to break the musical content according
to the distribution displayed in the original source. 20

(viii) Clefs, key, and time signatures were indicated at
the beginning of the score (first staff) and within staves, 21

but not at the beginning of consecutive staves, since auto-
matically engraved in VHV. In mensural notation, unlike

18 http://doc.verovio.humdrum.org/humdrum/mens/
19 Despite in MEI the specific position of the accidentals can be speci-

fied, this was not yet performed due to time-constraints.
20 In the ‘choral scores’, in order to facilitate interpretation and analysis,

the numbers of measures are given regularly to fragment the music.
21 Since verovio and VHV are still in development, repetitions within a

staff of the same clef and some time signatures might not be engraved.
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Figure 4. B–flat showed twice for C2 (left) and F3 (right)
clefs, in the Canto and Basso parts of da L’Occa madrigal.

in modern, when having a flat in key signature, this is dis-
played twice for C2 and F3 clefs (cf. Figure 4); yet, only
one is engraved by VHV for **mens and MEI encoding.

4.2 Textual encoding criteria

The lyrics of the particellas encoded in **mens were ‘un-
normalised’ w.r.t. the standardised transcription in **kern
format [21], i. e., they were rewritten according to the
original source. In this process, punctuation was in-
troduced when missing, and modified or removed when
needed. Contractions (e. g., altrov’adopra), abbreviations
(e. g., hãno,~pche, or ij), and the tironian symbol ‘&’, pre-
viously transcribed as ‘et’, were indicated as in the origi-
nal. The arbitrary use of diacritic marks (e. g., più and piu),
letters (e. g., verde and uerde), links between words (e. g.,
invano and in vano), and letter capitalisation was kept in-
consistent across voices as in the original partbooks.

Unlike in the transcription encoded in **kern [21],
lyrics linked to long rests at the beginning of a voice were
encoded in the particellas in **mens and MEI; still, since
these are not supported in VHV, they are not displayed in
the engraved images. Indeed, even though lyrics might be
printed under rest in the original source, these should not
be sung—they are given for performance reasons, to in-
dicate verse sung by the other parts to voices which start
with long rests. Finally, due to graphical limitations, the
two different spellings of the letter ‘s’ (cf. Figure 5) were
indicated with the unique graphical symbol ‘s’.

5. ENCODING CRITERIA FOR OMR GROUND
TRUTH OF WHITE MENSURAL NOTATION

The vocabularies for agnostic and semantic encoding of
modern notation [6] were adapted to the characteristics of
white mensural notation. Thus, aspects typical of modern
notation, such as slurs or dynamics, were not considered,
while elements characteristic of mensural notation, e. g.,
‘ligatures’ and ‘coloration’, were taken into account. Di-
vision and addition dots were indicated as shown by [6]
for modern notation. Note that in white mensural notation,
the following notes are used [1]: maxima, longa, brevis,
semibrevis, minima, semiminima, fusa, and semifusa.

5.1 Criteria for agnostic encoding

Since in the agnostic format, musical symbols are encoded
as graphical objects without musical meaning, for each el-
ement, its position within the staff (line or space) is indi-
cated. Lines and spaces are enumerated from the bottom
to the top: the five lines from L1 to L5, the additional line

Figure 5. Two different representations of the letter ‘s’ in
the word lassi, displayed in Fiorino’s madrigal.

below the staff L0, the one above L6; the four spaces from
S1 to S4, the space below the staff S0, the one above S5.

(i) The position of rests within the staff is not standard-
ised in mensural notation (cf. Figure 1); thus, all the pos-
sible positions were considered in the vocabulary. Still,
since in the conversion from **mens to agnostic, such a
position was not indicated (cf. Sections 3.3 and 4.1–i), this
was manually encoded in the agnostic files.

(ii) The stems whose direction in the original source
did not follow the standard rule (cf. Section 4.1–ii),
were marked with back-slash ‘\’ or slash ‘/’, to indi-
cate downwards and upwards directions, respectively, e. g.,
‘note.semifusa\-L3’. Note that this does not apply to brevis
and semibrevis, i. e., notes without stem.

(iii) Coloration (cf. Section 4.1–iii) was indicated for
brevis, semibrevis, and ligatures by adding ‘∼’ when ap-
plicable, e. g., ‘note.breve∼-S3’ or ‘ligature∼.start-L5’.

(iv) Ligatures (cf. Section 4.1–iv) were indicated by the
word ‘ligature’ instead of ‘note’. Since the considered an-
thology presents only recta ligatures of two notes, in the
vocabulary, only the starting and final notes of the ligature,
without distinction between recta and obliqua, were indi-
cated, e. g., ‘ligature.start-L2’. Still, middle notes, ligature
type, and other attributes could also be defined if needed.

(v) Custodes (cf. Section 4.1–v) were indicated by the
word ‘custos’ followed by their position, e. g., ‘custos-S3’.

(vi) The position of accidentals is not always standard-
ised in mensural notation (cf. Figure 3); still, since in
**mens encoding this cannot be specified (cf. Section 4.1–
vi), in the conversion from **mens to agnostic, the acci-
dentals’ default position was indicated and manually mod-
ified in the agnostic files when required (cf. Sections 3.3).

(vii) Clefs, key, and time signatures were encoded as
in the original source, i. e., also at the beginning of each
staff—note that the agnostic encoding might be split in
staves by introducing a break-line after each custos, if
needed. B–flat in key signature, displayed twice for some
clefs, was also codified, e. g., C2 clef with a B–flat in key
signature (cf. Figure 4) would be encoded in agnostic as
‘clef.C-L2 accidental.flat-L5 accidental.flat-S1’.

5.2 Criteria for semantic encoding

In the semantic encoding, each element is intended with its
musical meaning; thus, no position markers such as staff
line or stem direction are given, since implicitly indicated.

(i) Renaissance music can be grouped into two systems,
durus and mollis, which together with the cleffing, i. e., the
use of standard (up to C1) or high (up to G2) clefs, were
the common criteria used by publishers in the 16th cen-
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Figure 6. Representations of the time signatureR showed
in the Canto (left) and Alto (right) of Fronti’s madrigal.

tury to group madrigals in different collections [7]. Durum,
in Latin, corresponds to B–natural in modern terminology
while molle corresponds to B–flat [12]; thus, madrigals in
durus system (i. e., with B–durum in key signature) would
use the Lydian scale while those in mollis (i. e., with B–
molle in key signature) would use the F major scale [1].
In the semantic encoding, the words ‘mollis’ and ‘durus’
were considered to indicate B–flat and no alteration in key
signature, e. g., ‘keySignature-durus’.

(ii) Accidentals in mensural notation must be inter-
preted according to the musical context, e. g., a sharp might
indicate that a note is natural (instead of sharp) if it previ-
ously was flat, and altered notes might be notated without
accidentals. Indeed, in early music—specially from the
14th century—there was a tendency to use many altered
notes for performance (the so-called musica ficta); still, of-
ten it was not allowed to indicate such altered notes in writ-
ten music, since these did not follow the ‘guidonian rule’ of
the hexachords (the so-called musica retta) written music
was based upon at that time [15]. The theorisation on this
topic creates great interest in the research community [2],
and due to its complexity—which goes beyond the pur-
pose of this paper—we only encode the accidentals printed
in the original source without further interpretations; for a
transcription in modern notation which contains ‘editorial
accidentals’ of the musica ficta, cf. [20].

(iii) Unlike modern notation, where—except for dotted
notes—each note is always divided in two equal neighbour
smaller notes (e. g., a quarter note is divided by two eighth
notes), in mensural notation a non dotted note might be di-
vided not only in two, but also in three neighbour smaller
notes, depending on its ‘mensuration’ [1]. The mensura-
tion of brevis and semibrevis (so-called tempus and pro-
latio) is indicated by the time signature, e. g., S indicates
tempus imperfectum cum prolatione imperfecta [1], i. e., a
duple metre with binary subdivision. While imperfect pro-
latio would be the equivalent of a simple metre in modern
notation (i. e., binary subdivision of each bit), perfect pro-
latio would be the equivalent of a compound metre (i. e.,
ternary subdivision of each bit). 22 In the semantic encod-
ing, mensuration was indicated by adding ‘_imperfect’ or
‘_perfected’ to each note, rest, and ligature, e. g., ‘note-
D4_minima_imperfect’.

6. LIMITATIONS

Beyond the already discussed aspects that might differ be-
tween the engraved images, i. e., the visual representation
of **mens and MEI files engraved by VHV, and the orig-

22 In modern notation, a dot must be added to the quarter note (bit note)
in compound metre while in mensural notation this would not be required.

Figure 7. The anthology presents two different sets of dec-
orative initials, which also contemplate variations of the
same letter. In the musical parts two alternatives of the ini-
tials ‘M’ (left), ‘F’ (middle), and ‘H’ (right) are displayed.

inal source, such as different position of accidentals and
rests, or missing elements (e. g., custos, ligature stems, or
clefs, time, and key signatures in specific cases), other dif-
ferences between the presented diplomatic edition and the
original print should be mentioned. One is the time signa-
ture so-called, the alla breve [1], i. e., R , which indicates,
as well as S , tempus and prolatio imperfect. Although in
the original source, this time signature presents two graph-
ical variants (cf. Figure 6), this is displayed by a unique
symbol in the engraved images (cf. Figure 1). Another el-
ement which is not included in the engraved images is the
use of descriptive or decorative initials, which gained great
relevance in printing music collections since, unlike ordi-
nary text editions, music prints required normally one or
even two woodcut initials for every page [3]. Since the Il
Lauro Secco anthology was the first music collection pub-
lished by Baldini as ducal printer in the court of Alfonso
II d’Este, ornamental elements as the initials (cf. Figure 7)
received special attention in the luxurious collection [4]. 23

7. CONCLUSIONS AND FUTURE WORK

We symbolically codified the Il Lauro Secco anthology in
white mensural notation. For analytic and performance
purposes, a diplomatic edition, encoded in **mens and
MEI formats as well as its engraved images in pdf format,
is provided. For OMR applications, ground truth in agnos-
tic and semantic formats is presented, and the converters
required to automatically generate such files from **mens
encoding are also freely available. The recent development
of a user-friendly encoding format for mensural notation
(**mens) and a suitable encoding interface (VHV) made
this work possible. Yet, given the novelty of these tools,
specific aspects of mensural notation are still being de-
veloped, e. g., the lack of rests’ and accidentals’ position
markers, or a custos indicator. By evaluating these aspects,
we aim at encouraging a further development of the avail-
able tools. Due to the higher standardisation—w.r.t. hand-
written and black mensural notation—of white mensural
notated printed sources, and to the vast array of available
scanned copies, we want to apply the methodology pre-
sented in this work to similar repertoires, thus stimulating
further advance of OMR technology for early music.

23 Given the importance of decorative initials in Renaissance prints, the
possibility to include them in VHV might be something to consider.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

562



8. REFERENCES

[1] W. Apel, The notation of polyphonic music, 900-1600.
Cambridge, MA, USA: The Mediaeval Academy of
America, 1961.

[2] M. Bent, “Diatonic ficta,” in Renaissance music,
K. Kreitner, Ed. New York, NY, USA: Routledge,
2011, pp. 327–374.

[3] J. A. Bernstein, Music printing in Renaissance Venice:
The Scotto press (1539-1572). Oxford, UK: Oxford
University Press, 1998.

[4] K. Butler, “Printed borders for sixteenth-century mu-
sic or music paper and the early career of music printer
Thomas East,” The Library, vol. 19, pp. 174–202,
2018.

[5] J. Calvo-Zaragoza, I. Barbancho, L. J. Tardón, and
A. M. Barbancho, “Avoiding staff removal stage in op-
tical music recognition: Application to scores written
in white mensural notation,” Pattern Analysis and Ap-
plications, vol. 18, pp. 933–943, 2015.

[6] J. Calvo-Zaragoza and D. Rizo, “End-to-end neural
optical music recognition of monophonic scores,” Ap-
plied Sciences, vol. 8, pp. 1–23, 2018.

[7] S. J. Coluzzi, “Black sheep: The phrygian mode
and a misplaced madrigal in Marenzio’s seventh book
(1595),” The Journal of Musicology, vol. 30, pp. 129–
179, 2013.

[8] J. E. Cumming, C. McKay, J. Stuchbery, and I. Fu-
jinaga, “Methodologies for creating symbolic corpora
of western music before 1600,” in Proc. of the Interna-
tional Society for Music Information Retrieval Confer-
ence. Paris, France: ISMIR, 2018, pp. 491–498.

[9] K. Desmond, “Measuring polyphony: A project to
encode and analyse late medieval polyphony,” in
Workshop on SIMSSA XI. Vancouver, BC, Canada:
AMS/SMT, 2016.

[10] M. P. Ferreira, The notation of the Cantigas de Santa
Maria: Diplomatic edition. Lisbon, Portugal: CESEM,
2017.

[11] D. Fober, S. Letz, and Y. Orlarey, “Open source
tools for music representation and notation,” in Proc.
of Sound and Music Computing Conference, Paris,
France, 2004, pp. 91–95.

[12] R. Freedman, Music in the Renaissance. New York,
NY, USA: WW Norton, 2013.

[13] E. Gardiner and R. G. Musto, The digital humanities:
A primer for students and scholars. Cambridge, UK:
Cambridge University Press, 2015.

[14] J. Grier, The critical editing of music: History, method,
and practice. Cambridge, UK: Cambridge University
Press, 1996.

[15] D. J. Grout and C. V. Palisca, A history of Western mu-
sic. New York, NY, USA: Norton, 2001.

[16] J. Hajic jr, M. Dorfer, G. Widmer, and P. Pecina,
“Towards full-pipeline handwritten OMR with musical
symbol detection by U-Nets,” in Proc. of the Interna-
tional Society for Music Information Retrieval Confer-
ence. Paris, France: ISMIR, 2018, pp. 23–27.

[17] D. Huron, “Music information processing using the
Humdrum Toolkit: Concepts, examples, and lessons,”
Computer Music Journal, vol. 26, pp. 11–26, 2002.

[18] H.-W. Nienhuys and J. Nieuwenhuizen, “Lilypond, a
system for automated music engraving,” in Proc. of
the XIV Colloquium on Musical Informatics, Florence,
Italy, 2003, pp. 167–171.

[19] A. Pacha and J. Calvo-Zaragoza, “Optical music recog-
nition in mensural notation with region-based convolu-
tional neural networks,” in Proc. of the International
Society for Music Information Retrieval Conference.
Paris, France: ISMIR, 2018, pp. 23–27.

[20] E. Parada-Cabaleiro, A. Batliner, A. E. Baird, and
B. Schuller, “The SEILS dataset: Symbolically en-
coded scores in modern-early notation for compu-
tational musicology,” in Proc. of the International
Society for Music Information Retrieval Conference.
Suzhou, P. R. China: ISMIR, 2017, pp. 575–581.

[21] E. Parada-Cabaleiro, M. Schmitt, A. Batliner, and
B. W. Schuller, “Musical-linguistic annotations of Il
Lauro Secco,” in Proc. of the International Society
for Music Information Retrieval Conference. Paris,
France: ISMIR, 2018, pp. 461–467.

[22] L. Pugin, “Going digital: Finding the right path for
critical music editions,” in À Fresco: Mélanges offerts
au professeur Étienne Darbellay, B. Boccardo and
G. Starobinski, Eds. Bern, Switzerland: Peter Lang,
2013, pp. 247–268.

[23] L. Pugin, “Interaction perspectives for music notation
applications,” in Proc. of the International Workshop
on Semantic Applications for Audio and Music. Mon-
terey, CA, USA: ACM, 2018, pp. 54–58.

[24] L. Pugin and T. Crawford, “Evaluating OMR on the
early music online collection,” in Proc. of the Interna-
tional Society for Music Information Retrieval Confer-
ence. Curitiba, Brazil: ISMIR, 2013, pp. 439–444.

[25] A. M. Rebelo Silva, “Robust optical recognition of
handwritten musical scores based on domain knowl-
edge,” Ph.D. dissertation, University of Porto, 2012.

[26] E. Ricciardi, “The Tasso in music project,” Early Mu-
sic, vol. 43, pp. 667–671, 2015.

[27] D. Rizo, J. Calvo-Zaragoza, and J. M. Iñesta, “Muret:
A music recognition, encoding, and transcription tool,”

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

563



in Proc. of the International Conference on Digital Li-
braries for Musicology. Paris, France: ACM, 2018, pp.
52–56.

[28] D. Rizo, N. P. León, and C. S. Sapp, “White mensural
manual encoding: From humdrum to mei,” Cuadernos
de Investigación Musical, pp. 373–393, 2019.

[29] D. Rizo, B. Pascual Sánchez, J. M. Iñesta, A. Ez-
querro Esteban, and L. A. González Marín, “Towards
the digital encoding of hispanic white mensural nota-
tion,” Anuario Musical, pp. 293–304, 2017.

[30] P. Roland, “MEI as an editorial music data format,”
in Digitale edition zwischen experiment und standar-
disierung, P. Stadler and J. Veit, Eds. Tübingen, Ger-
many: Max Niemeyer, 2009, pp. 175–194.

[31] P. Roland, A. Hankinson, and L. Pugin, “Early mu-
sic and the music encoding initiative,” Early Music,
vol. 42, pp. 605–611, 2014.

[32] P. Roland and J. Kepper, “Music encoding initiative
guidelines,” Version 3.0.0, 2016.

[33] C. S. Sapp, “Verovio humdrum viewer,” in Music En-
coding Conference (MEC), Tours, France, 2017.

[34] L. J. Tardón, S. Sammartino, I. Barbancho, V. Gómez,
and A. Oliver, “Optical music recognition for scores
written in white mensural notation,” Journal on Image
and Video Processing, pp. 1–23, 2009.

[35] F. Wiering, “Digital critical editions of music: A mul-
tidimensional model,” in Modern Methods for Musi-
cology, T. Crawford and L. Gibson, Eds. London, UK:
Routledge, 2016, pp. 23–45.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

564



THE HARMONIX SET: BEATS, DOWNBEATS, AND FUNCTIONAL
SEGMENT ANNOTATIONS OF WESTERN POPULAR MUSIC

Oriol Nieto1 Matthew McCallum1 Matthew E. P. Davies2
Andrew Robertson3 Adam Stark4 Eran Egozy5

1 Pandora Media, Inc., Oakland, CA, USA
2 INESC TEC, Porto, Portugal
3 Ableton AG, Berlin, Germany

4 MI·MU, London, UK
5 MIT, Cambridge, MA, USA

onieto@pandora.com

ABSTRACT

We introduce the Harmonix set: a collection of annotations
of beats, downbeats, and functional segmentation for over
900 full tracks that covers a wide range of western popular
music. Given the variety of annotated music information
types in this set, and how strongly these three types of data
are typically intertwined, we seek to foster research that
focuses on multiple retrieval tasks at once. The dataset in-
cludes additional metadata such as MusicBrainz identifiers
to support the linking of the dataset to third-party informa-
tion or audio data when available. We describe the method-
ology employed in acquiring this set, including the annota-
tion process and song selection. In addition, an initial data
exploration of the annotations and actual dataset content
is conducted. Finally, we provide a series of baselines of
the Harmonix set with reference beat-trackers, downbeat
estimation, and structural segmentation algorithms.

1. INTRODUCTION

The tasks of beat detection [8], downbeat estimation [2],
and structural segmentation [34] constitute a fundamen-
tal part of the field of MIR. These three musical charac-
teristics are often related: downbeats define the first beat
of a given music measure, and long structural music seg-
ments tend to begin and end on specific beat locations –
frequently on downbeats [10]. The automatic estimation
of such information could result in better musical sys-
tems such as more accurate automatic DJ-ing, better intra-
and inter-song navigation, further musicological insights
of large collections, etc. While a few approaches exploit-
ing more than one of these musical traits have been pro-

c© Oriol Nieto, Matthew McCallum, Matthew E.P. Davies,
Andrew Robertson, Adam Stark, Eran Egozy. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Oriol Nieto, Matthew McCallum, Matthew E.P. Davies, Andrew
Robertson, Adam Stark, Eran Egozy. “The HARMONIX Set: Beats,
Downbeats, and Functional Segment Annotations of Western Popular
Music”, 20th International Society for Music Information Retrieval Con-
ference, Delft, The Netherlands, 2019.

posed [2,11,25], the amount of human annotated data con-
taining the three of them for a single collection is scarce.
This limits the training potential of certain methods, espe-
cially those that require large amounts of information (e.g.,
deep learning [18]).

In this paper we present the Harmonix set: human an-
notations of beats, downbeats, and functional segmentation
for 912 tracks of western popular music. These annotations
were gathered with the aim of having a significant amount
of data to train models to improve the prediction of such
musical attributes, which would later be applied to various
products offered by Harmonix, a video game company that
specializes in musically-inspired games. By releasing this
set to the public, our aim is to let the research community
explore and exploit these annotations to advance the tasks
of beat tracking, downbeat estimation, and automatic func-
tional structural segmentation. We discuss the methodol-
ogy to acquire these data, including the song selection pro-
cess, and the inclusion of standard identifiers (AcoustID
and MusicBrainz) and a set of automatically extracted on-
set times for the first 30 seconds of the tracks to allow other
researchers to more easily access and align, when needed,
the actual audio content. Furthermore, we present a series
of results with reference algorithmic approaches in the lit-
erature with the goal of having an initial public benchmark
of this set.

The rest of this work is organized as follows: Section 2
contains a review of the most relevant public datasets of
the tasks at hand; Section 3 discusses the Harmonix set,
including the data gathering, their formatting, and various
statistics; Section 4 presents numerous benchmarks in the
set; and Section 5 draws some final conclusions and dis-
cusses future work.

2. BACKGROUND

Several datasets with beat, downbeat, and/or segment an-
notations have been previously published, and in this sec-
tion we review the most relevant ones.
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2.1 Beat and Downbeat Tracking Sets

Over the last 15 years, many annotated datasets for beat
and downbeat tracking have appeared in the literature
whose primary purpose has been to allow the comparison
of newly proposed and existing algorithms. However, the
well-known difficulties of sharing the audio component of
large annotated datasets has led to a rather ad-hoc usage of
different datasets within the literature, and to a lesser ex-
tent, the choice of which evaluation metrics are selected to
report accuracy. Conversely, the MIREX evaluation cam-
paign provides a more rigid model for evaluation, by with-
holding access to private test datasets, and instead relying
on the submission of the competing algorithms in order to
compare them under controlled conditions. To this end,
MIREX can be a useful reference point to consider these
two music analysis tasks from the perspective of annotated
data.

The MIREX Audio Beat Tracking (ABT) task 1 first ap-
peared in 2006 and ran on a single dataset [28,30] with the
performance of the submitted algorithms determined using
one evaluation metric, the P-Score. After a brief hiatus, the
task reappeared in 2009 with the addition of a dataset of
Chopin Mazurkas [36], and the inclusion of multiple eval-
uation metrics [5]. The task continued to run in this way
until the incorporation of the SMC dataset [16] in 2012,
from which point it has remained constant. In 2014, the
Audio Downbeat Estimation (ADE) task 2 was launched
which comprised six different datasets from diverse geo-
graphic and stylistic sources: The Beatles [24]; Hardcore,
Jungle, Drum and Bass (HJDB) [15]; Turkish [41]; Ball-
room [21]; Carnatic [42]; and Cretan [17], with the eval-
uation conducted using the F-measure. While the datasets
contained with these two MIREX tasks are by no means
exhaustive, they provide a useful window to explore both
how the audio data is chosen and how the annotation is
conducted for these MIR tasks. To this end, we provide
the following breakdown of different properties including
reference to both MIREX and non-MIREX datasets.

Duration: Unlike the task of structural segmentation,
beat and downbeat tracking datasets can be comprised of
musical excerpts [14, 15, 21, 28] rather than full tracks
[9,12,13,24]. Number of annotators: The initial MIREX
beat tracking dataset [28] was unique in that it contained
the annotations of 40 different people who tapped the beat
to the music excepts. Conversely, other datasets used mul-
tiple annotators contributing across the dataset [16], a sin-
gle annotator for all excerpts [14], or even deriving the
annotations in a semi-automatic way from the output of
an algorithm [24]. Annotation post-processing: Given
some raw tap times or algorithm output, these can either
be left unaltered [28] or, as is more common, iteratively
adjusted until they are considered perceptually accurate by
the annotator(s) [14–16]. Style-specificity: While some
datasets are designed to have broad coverage across a range
of musical styles [13, 14, 23], others target a particular
group of styles [15, 21], a single style [9], the work of a

1 https://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking
2 https://www.music-ir.org/mirex/wiki/2014:Audio_Downbeat_Estimation

given artist [12, 24] or even multiple versions of the same
pieces [36]. Western / Non-Western: Similarly, the make
up of the dataset can target underrepresented non-western
music [33,41,42]. Perceived difficulty: Finally, the choice
of musical material can be based upon the perceived diffi-
culty of the musical excerpts, either from the perspective
of musical or signal level properties [16].

2.2 Structural Segmentation Sets

The task of structural segmentation has been particularly
active in the MIR community since the late 2000s. Simi-
larly to the beat tracking task, several datasets have been
published, and some of them have evolved over time. This
task is often divided into two subtasks: segment boundary
retrieval and segment labeling. All well-known published
datasets contain both boundary and label information. One
of the major challenges with structural segmentation is that
this task is regarded as both ambiguous (i.e., there may be
more than one valid annotation for a given track [26]) and
subjective (i.e., two different listeners might perceive dif-
ferent sets of segment boundaries [4]). This has led to dif-
ferent methodologies when annotating and gathering struc-
tural datasets, thus having a diverse ecosystem of sets to
choose from when evaluating automatic approaches.

The first time this task appeared on MIREX was
in 2009, 3 where annotations from The Beatles dataset
(which also includes beat and downbeat annotations, as
previously described) and a subset of the Real World Com-
puting Popular Music Database (RWC) [13] were em-
ployed. These sets contain several functional segment an-
notations for western (The Beatles) and Japanese (RWC)
popular music. These segment functions describe the
purpose of the segments, e.g.: “solo,” “verse,” “cho-
rus.” A single annotation per track is provided for these
two sets. The Beatles dataset was further revised at the
Tampere University of Technology, 4 and additional func-
tional segment annotations for other bands were added to
The Beatles set, which became known as the Isophonics
Dataset [24]. No beat or downbeat annotations were pro-
vided to the rest of the tracks in Isophonics, and the final
number of tracks with functional structural segment anno-
tations is 300. The number of annotated tracks in RWC is
365.

To address the open problems of ambiguity and sub-
jectivity, further annotations per track from several ex-
perts could be gathered. That is the case with the Struc-
tural Annotations for Large Amounts of Music Informa-
tion (SALAMI) dataset [39], where most of its nearly
1,400 tracks have been annotated by at least 2 musical ex-
perts. Similarly, the Structural Poly Annotations of Music
(SPAM) dataset [32] provides 5 different annotations for
50 tracks. These two sets not only contain functional lev-
els of annotations, but also large and small scale segments
where only single letters describing the similarity between
segments are annotated. Thus, these can be seen as sets
that contain hierarchical data, which pose significant chal-

3 https://www.music-ir.org/mirex/wiki/2009:Structural_Segmentation
4 http://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip
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lenges, since ambiguity and subjectivity span across mul-
tiple layers [26] and remain largely unexploited in the
MIREX competition [7,40]. As opposed to Isophonics and
RWC, these two sets contain highly diverse music in terms
of genre: from world-music to rock, including jazz, blues,
and live music.

The following properties typically define segmentation
datasets: Number of annotators: This can help when try-
ing to quantify the amount of disagreement among anno-
tators [26, 32], or when developing approaches that may
yield more than one potentially valid segmentation. Hier-
archy: The levels of annotations contained in the set. It
typically contains functional, large, and/or small segment
annotations. When only one level of annotations is pro-
vided, these are typically called flat segment annotations.

3. THE HARMONIX SET

In this section we present the Harmonix set, including the
methodology of acquiring the data, its motivation, its con-
tents, and a set of annotation statistics. The Harmonix set
is publicly available on-line. 5

3.1 Data Gathering

The primary motivation of this work is based on the need to
create gameplay data for rhythm-action games (also known
as beat matching games). Many such games exist, from
early pioneers like Parappa The Rapper and Beatmania, to
the rock simulation games Guitar Hero and Rock Band, as
well as community-based games like OSU and more re-
cently, VR games like Beat Saber. In most cases the game-
play data (also referred to as beatmaps), consisting of note
locations in a song, are hand-authored. In certain games,
additional control data may be desirable. For example, in
the rock simulation games, where a 3D depiction of a rock
concert is rendered, it can be desirable to simulate flashing
lights (on the beat) or lighting color palette changes (on
section boundaries). Again, these data tend to be hand-
authored.

Harmonix’s desire was to implement a suite of auto-
matic music analysis tools that estimate certain musical at-
tributes in order to expedite the process of hand-authoring
gameplay data, or in some cases, to fully automate the pro-
cess of creating these data. The songs of the Harmonix set
were gathered and hand-annotated to create a ground-truth
dataset for training and testing these algorithms.

The mix of genres in this corpus were chosen to be typ-
ical of ones used in the rhythm-action games, with a some-
what higher tendency towards EDM and popular songs
suitable for dancing (see Figure 1 for the full genre dis-
tribution). As such, most tend to have a very stable tempo
and a 4/4 time signature. However, we also added a selec-
tion of songs that may not be typical of dance or pop music
to increase variety. Some of these (Classic Rock, Coun-
try, Metal) may have less stable tempo (where drums are
played by actual musicians as opposed to drum-machines

5 https://github.com/urinieto/harmonixset
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Figure 1. Genre distribution of the Harmonix set.

or DAW-based productions) and may deviate from a strict
4/4 meter.

All songs were annotated by trained professional mu-
sicians who regularly work in music production environ-
ments. As the project went on, the majority of annotation
work fell to only a few individuals who became special-
ized in this task. Annotations were created in Digital Au-
dio Workstation software (such as Reaper or Logic). First,
a MIDI tempo track was established that corresponded
to the song audio. Then beats, downbeats, and sections
were coded into the MIDI track using note events and text
events. MIDI files were then exported and automatically
converted to a text-based representation of beats, down-
beats, and named section boundaries. Every song was ver-
ified once by the original annotator.

3.2 Dataset Contents

The Harmonix set contains manual annotations for 912
western popular music tracks, thus being the largest pub-
lished dataset to date containing beats, downbeats, and
function structural segmentation information. The anno-
tations and some of the song-level metadata are distributed
via JAMS [19] files, one per track. This format is cho-
sen given its simplicity when storing multi-task annota-
tions plus song- and corpus-level metadata. Each JAMS
file contains the beat, downbeat, and functional segmen-
tation annotations, plus a set of estimated onsets for the
first 30 seconds of the audio. These onsets are intended
to help aligning the audio in case researchers obtain au-
dio data with different compression formats that might in-
clude certain small temporal offsets. This onset informa-
tion was computed using librosa [27], with their default
parameters. 6

For the sake of transparency and usability, we also pub-
lish the raw beats, downbeats, and segmentation data as
space-separated text files, two per track: one for beats and
downbeats, and the other for segments. We also distribute
the code that converts these raw annotations into unified
JAMS files. Furthermore, we provide other identifiers with
the aim of easily retrieving additional metadata and/or au-
dio content for each song. These identifiers include:

• MusicBrainz 7 : open music encyclopedia including

6 librosa 0.6.3, using Core Audio on macOS 10.13.6.
7 https://musicbrainz.org/
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Figure 3. Standard deviation of the tempo distribution.

unique identifiers for recordings, releases, artists,
etc.

• AcoustID 8 : open source fingerprinting service to
easily match audio content, typically associated with
MusicBrainz identifiers.

Finally, we provide a single CSV file including addi-
tional metadata information such as genre, time signature,
and BPM.

3.3 Data Statistics

In this subsection we provide several data insights obtained
from the annotations to give an objective overview of the
set. In Figure 2 we show the estimated tempo distribu-
tion in beats-per-minute (BPM) per track. These estima-
tions were computed using the track-level median inter-
beat-interval (IBI) for each of the annotated beats in a given
track. There is a clear peak at 128 BPM, which could be
explained by being the most common tempo in electronic
dance music [29]. Furthermore, in Figure 3 we plot the
standard deviation of the IBI. We can clearly see that the
tempo is remarkably steady in this dataset, which is ex-
pected given the type of musical genres it spans.

In terms of segment statistics, we show data based on
certain attributes described in a MIREX meta-analysis of
the segmentation task [40]. In Figure 4 we plot track-level
histograms for the number of segments, and the number
of unique segments (i.e., those with the same associated
label). Both distributions seem to be unimodal and cen-
tered around 10 and 11 for the number of segments per
tracks, and around 6 and 7 for the number of unique la-
bels per track. This differs from the number of unique seg-
ments in The Beatles dataset, which is centered around 4
per track [31].

8 https://acoustid.org/
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Figure 5. Most common segment labels.

Figure 5 shows the frequency in which the most com-
mon segment labels appear in the set. The labels “chorus”
and “verse” dominate the distribution, as these functional
parts are common in western popular music. The plot also
shows potentially repeated labels like “inst” and “instru-
mental.” A further inter-song analysis of the labels might
be necessary to potentially merge certain labels and thus
unify the vocabulary of the set.

We plot in Figure 6 the distribution of the segment
lengths, in seconds, across the entire dataset. As we
showed in Figure 2, there is a majority of tracks at 128
BPM, for which a duration of 15 seconds would corre-
spond to a segment of exactly 32 beats. This, in the com-
mon 4/4 time signature, would result in 8 bars per each
15-second segment in that tempo, and 8 bars are common
in electronic dance music [29].

Finally, and thanks to having access to the annotated
downbeats, we show in Figure 7 the number of segments
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Figure 6. Segment length distribution.
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Figure 7. Number of segments based on their starting beat
position within a bar.

starting at a specific beat within a given bar. We can see
that the vast majority of segments (81.1%) start in a down-
beat. Interestingly, several segments (10%) start in posi-
tion 4, thus showing that 1-beat count-ins are more com-
mon than other types of count-ins on this dataset (a popular
example of a 1-beat count-in song is Hey Jude by The Bea-
tles, where the (1) is on the Jude and Hey is the (4) of the
previous bar).

4. RESULTS

4.1 Beat Results

In order to establish performance baselines over the dataset
for the task of beat-tracking, we have evaluated a num-
ber of openly available beat tracking algorithms on the
dataset [3,8,20,22]. Each of these algorithms can be found
in either the madmom [1] or librosa python libraries. 9 By
running these algorithms in other datasets with the same
metrics, a comparison of datasets could ultimately be per-
formed. The results are also included in the dataset repos-
itory in CSV format. This is intended as a convenience for
any future work that wishes to evaluate novel algorithms
against these benchmarks.

The beat tracking results for the aforementioned algo-
rithms are displayed in Figure 8. They are evaluated across
two metrics, F-Measure, and Max F-Measure, where the
latter refers to the maximum F-Measure obtained per track
when evaluated across double and half-time metrical vari-
ations in the annotated beats provided with this dataset.
In all experiments a tolerance window of ±70 ms was
employed in order to compute the F-Measure. For half-
time metrical variations, both the downbeat and upbeat
alignments were tested for a maximum F-Measure value.
While [8] is the most computationally efficient of the algo-
rithms, we see clear gains in the more recently developed
methods. When investigating the types of errors present in
the beat position estimates from [8], it was found the most
common error was the alignment of beat phase. Often beat
positions landed on the half beat or quarter beat, result-
ing in an F-Measure of 0 when this misalignment is con-

9 We used madmom 0.16.1 and librosa 0.6.3. We noticed a
bias in this librosa version where beats were offset by a consis-
tent number of milliseconds. More specifically, we employed li-
brosa’s beat.beat_track method with default arguments on macOS
10.13.6.
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Figure 8. Beat tracking performance over the Har-
monix set, for the algorithms Ellis [8], Krebs [22], Ko-
rzeniowski [20], Böck 1 - the “BeatDetector” technique
from [3], and Böck 2 - the “BeatTracker” technique from
[3].

sistent throughout the track. When comparing F-Measure
and Max F-Measure metrics, it can be seen that with this
dataset both [8] and the “BeatDetector” algorithm from [3]
have a significant number of double-half time errors, com-
pared to the other algorithms evaluated. Unlike the “Beat-
Tracker” algorithm in [3], the “BeatDetector” algorithm
assumes constant tempo.

4.2 Downbeat Results

Unfortunately, the availability of open source downbeat es-
timation libraries is limited. In order to provide a baseline
for downbeat detection performance with the Harmonix set
specifically, results have been evaluated with the downbeat
detection algorithms available in [1] in addition to Du-
rand’s algorithm [6] 10 , making three algorithms in total.
The algorithms from the madmom python package [1] in-
clude the method proposed in [2] using the annotated beat
positions as input, and the dynamic Bayesian bar track-
ing processor using the input from the RNN bar proces-
sor activation function. The results can be seen in Fig-
ure 9 in terms of F-Measure with a tolerance window of
±70 ms. The superior performance of [2], which has or-
acle annotated beat information, highlights the importance
of reliable beat tracking for downbeat estimation perfor-
mance, and the interdependence between the beat tracking
and downbeat estimation tasks.

4.3 Segmentation Results

There are several open source structural segmentation al-
gorithms available in the Music Structure Analysis Frame-
work (MSAF) [32]. 11 We run the best performing ones on
the Harmonix set: (i) Structural Features [38] to identify
boundaries, and (ii) 2D-Fourier Magnitude Coefficients
(2D-FMC) [31] to label the segments based on their acous-
tic similarity. Constant-Q Transforms [37] are the selected

10 Not open source, shared via private correspondence.
11 MSAF version dev-0.1.8.
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Figure 9. Downbeat tracking performance over the Har-
monix set, for the algorithms Böck A [2] and Böck B - a
dynamic Bayesian network provided within the madmom
package [1], and Durand [6].

audio features given their ability to capture both timbral
and harmonic content, and the default parameters in MSAF
are the ones employed when computing these results. We
use mir_eval [35] to evaluate these algorithms, and re-
port the F-measures for the most common metrics: Hit
Rate with 0.5 and 3 second windows for boundary re-
trieval, and Pairwise Frame Clustering and Entropy Scores
for the labeling process. These algorithms can use beat-
synchronized features, and we ran each algorithm three
times, depending on the following beat information: (i) El-
lis’ estimations, (ii) Korzeniowski’s estimations, and (iii)
annotations from the Harmonix set. Thus, we are able to
assess the segmentation results when employing the worst
and best performing beat trackers from our previous study,
plus those computed using human annotated beats. Song-
level results for these three different runs are available as
CSV files in the dataset repository disclosed above.

In Figure 10 all segmentation results are shown. The
results in turquoise boxplots (on the left side) display the
metrics of the algorithms when running on Ellis’ beat-
synchronized features, those in light pink (in the middle)
correspond to the results computed with Korzeniowski’s
beats, while the purple boxplots (on the right) show those
using annotated beats instead. Given how related boundary
retrieval is with respect to precise beat placement, it is not
unexpected to see an improvement in the boundary metrics
(Hit Rates) when using more accurate beat data. The box-
plots further show that the smaller the time window used
in the Hit Rate metrics the more accurate the beat informa-
tion should ideally be. In other words, Korzeniowki’s beats
yield very similar results than those from human annota-
tions when using a 3 second window, but there is clearly
room for enhancement (in terms of beat tracking) when
using 0.5 second windows, where the segmentation results
using human annotated beats outperform any of the others
that employ estimated ones. On the other hand, it is worth
noting that the label results do not seem to depend as much
on the quality of the beats in order to produce their out-
comes, as the three different runs yield similar results for
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Figure 10. Segmentation results over the Harmonix set,
using Structural Features for boundaries, 2D-FMC for the
labeling process, and three types of beat information.

the Pairwise Frame Clustering and Entropy Scores metrics.
As mentioned in Section 2.2, structural segmentation is a
challenging task especially due to ambiguity, subjectivity,
and hierarchy, and this is reflected in the overall results,
which exhibit notable room for improvement.

5. CONCLUSIONS

We presented the Harmonix set, the largest dataset in
terms of human annotations containing the following three
types of music information: beats, downbeats, and func-
tion structural segments. This set contains mostly western
popular music, with strong emphasis on Pop, EDM, and
Hip-Hop. We provide metadata in terms of genre, song ti-
tle, and artist information along with standard identifiers
such as MusicBrainz and AcoustID plus predicted onset
information to allow easier matching and alignment with
audio data. We discussed a set of results using current al-
gorithms in the literature in terms of beat tracking, down-
beat estimation, and structural segmentation to disclose an
initial public benchmark of the set. Given the rather large
nature of the set and the three different types of music in-
formation contained in it, it is our hope that researchers
employ these data not only to further advance one of these
three MIR tasks individually, but also to potentially com-
bine them to yield superior approaches in the near future.
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ABSTRACT

In this paper, we introduce a novel collection of educa-
tional material for teaching and learning fundamentals of
music processing (FMP) with a particular focus on the
audio domain. This collection, referred to as FMP note-
books, discusses well-established topics in Music Infor-
mation Retrieval (MIR) as motivating application scenar-
ios. The FMP notebooks provide detailed textbook-like
explanations of central techniques and algorithms in com-
bination with Python code examples that illustrate how to
implement the theory. All components including the intro-
ductions of MIR scenarios, illustrations, sound examples,
technical concepts, mathematical details, and code exam-
ples are integrated into a consistent and comprehensive
framework based on Jupyter notebooks. The FMP note-
books are suited for studying the theory and practice, for
generating educational material for lectures, as well as for
providing baseline implementations for many MIR tasks,
thus addressing students, teachers, and researchers.

1. INTRODUCTION

Music information retrieval (MIR) is an exciting and chal-
lenging area of research. Music not only connects people
but also relates to many different research disciplines in-
cluding signal processing, information retrieval, machine
learning, musicology, and psychoacoustics. In its begin-
nings, research in MIR has borrowed many ideas and con-
cepts from more established disciplines such as speech
processing or computer linguistics. After twenty years, the
MIR field has matured to an independent research area that
has many things to offer to signal processing and other re-
search disciplines [16]. In particular, thanks to the rich and
challenging domain of music, there are many MIR tasks
that can serve as motivation application scenarios for in-
troducing, explaining, and studying techniques for audio
processing, time-series analysis, and information retrieval.

In this paper, we introduce the FMP notebooks, which
provide educational material for teaching and learning fun-
damentals of music processing. One primary goal of these

© Meinard Müller, Frank Zalkow. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Meinard Müller, Frank Zalkow. “FMP Notebooks: Educational
Material for Teaching and Learning Fundamentals of Music Processing”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

Part Title Notions, Techniques & 
Algorithms HTML IPYNB

Basics

Basic information on Python, Jupyter
notebooks, Anaconda package 
management system, Python 
environments, visualizations, and 
other topics 

[html] [ipynb]

Overview
Overview of the notebooks 
(https://www.audiolabs-
erlangen.de/FMP)

[html] [ipynb]

Music 
Representations

Music notation, MIDI, audio signal, 
waveform, pitch, loudness, timbre [html] [ipynb]

Fourier Analysis 
of Signals

Discrete/analog signal, sinusoid, 
exponential, Fourier transform, 
Fourier representation, DFT, FFT, 
STFT

[html] [ipynb]

Music 
Synchronization

Chroma feature, dynamic 
programming, dynamic time warping 
(DTW), alignment, user interface

[html] [ipynb]

Music Structure 
Analysis

Similarity matrix, repetition, 
thumbnail, homogeneity, novelty, 
evaluation, precision, recall, F-
measure, visualization, scape plot

[html] [ipynb]

Chord 
Recognition

Harmony, music theory, chords, 
scales, templates, hidden Markov 
model (HMM), evaluation

[html] [ipynb]

Tempo and Beat 
Tracking

Onset, novelty, tempo, tempogram, 
beat, periodicity, Fourier analysis, 
autocorrelation

[html] [ipynb]

Content-Based 
Audio Retrieval

Identification, fingerprint, indexing, 
inverted list, matching, version, cover 
song

[html] [ipynb]

Musically 
Informed Audio 
Decomposition

Harmonic/percussive separation, 
signal reconstruction, instantaneous 
frequency, fundamental frequency 
(F0), trajectory, nonnegative matrix 
factorization (NMF)

[html] [ipynb]

Figure 1. Overview of FMP notebooks.

notebooks is to give an exciting and easy-to-understand in-
troduction to MIR with a particular focus on audio-related
analysis and retrieval tasks. Following the textbook [13],
the notebooks treat many well-established MIR tasks as
summarized in Figure 1. Within each MIR task, fun-
damental algorithmic approaches and techniques are dis-
cussed in detail. Going beyond and complementing tra-
ditional toolboxes, the FMP notebooks closely combine
textbook-like explanations with Python code examples. In-
terleaving technical concepts, mathematical details, code
examples, illustrations, and sound examples within a uni-
fying and interactive Jupyter notebook framework helps
to bridge the gap between theory and practice. Further-
more, the notebooks can be easily adapted to generate ed-
ucational material (such as figures and sound examples)
for lectures and to realize baseline approaches for many
MIR tasks. The FMP notebooks (as well as HTML ex-
ports) are accessible under a Creative Commons license at:
https://www.audiolabs-erlangen.de/FMP

There are some excellent software toolboxes such
as essentia [2], librosa [12], madmom [1],
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Marsyas [20], or the MIRtoolbox [7], which provide
open source software for MIR and music processing ap-
plications. We will give an overview of related toolboxes
in Section 2. While such toolboxes aim at implementing
a wide range of MIR functionalities, the main goal of the
FMP notebooks is to promote the understanding of MIR
concepts. Therefore, rather than providing compact and ef-
ficient code, the programming style used in the FMP code
examples is simple and explicit with a flat functional hier-
archy (at the cost of having some redundancy). The math-
ematical notation and the naming conventions used in the
FMP notebooks are carefully matched to establish a close
relationship between theory and practice. Furthermore, the
notebooks allow a user to generate appealing multimedia
objects such as figures and sound examples, which may
be useful for lectures and scientific publications. In sum-
mary, educational and didactic considerations are the main
guide in the development of the FMP notebooks. As such,
we hope that these notebooks nicely complement existing
open source toolboxes, fostering education and research in
MIR.

The remainder of the paper is organized as follows.
In Section 2, we review related software frameworks and
toolboxes for audio and music processing. Then, in Sec-
tion 3, we deal with the structure, content, and implemen-
tation of the FMP notebooks. In Section 4, we give some
concrete examples of how the FMP notebooks can be used
for learning and teaching music processing and MIR. Con-
clusions can be found in Section 5.

2. RELATED WORK

As said before, the main aim of the FMP notebooks is to
help users to gain a deeper understanding of essential MIR
techniques. Providing explicit and simple code examples
(by consciously introducing redundancies), the notebooks
are not intended to form a toolbox in a stricter sense. In-
stead, the FMP notebooks reimplement, integrate, and ap-
ply various functions that are also provided by existing
toolboxes. In the following, we give a summary of open-
source toolboxes that have been specifically designed for
supporting MIR research.

There are a number of comprehensive and well-
document toolboxes that provide modular source code
for processing and analyzing music and audio signals.
Prominent examples are the Marsyas toolbox [20], the
MIRtoolbox [7], the jAudio toolbox [10], and the
essentia library [2]. All these collections provide code
for audio feature extraction as well as for MIR appli-
cations including music classification, melody extraction,
beat tracking, and structure analysis.

There are also various toolboxes that focus on spe-
cific MIR applications such as the Chroma Toolbox
[14] for chroma feature extraction, the Constant-Q
Toolbox [19] for computing time-frequency transforms,
the TSM Toolbox [3] for time-scale modification, the
Tempogram Toolbox [5] for tempo and pulse track-
ing, and the SM Toolbox [15] as well as the MSAF
toolbox [17] for audio structure analysis. While most

of these toolboxes cover more traditional MIR techniques,
the recent Python library madmom [1] also offers code
for MIR approaches that employ deep learning techniques.
Other useful toolboxes provide code for the evaluation of
MIR approaches such as the mir eval library [18] or for
data augmentation such as the Audio Degradation
Toolbox [9] or the muda library [11]. Other use-
ful sources are the MIR notebooks 1 provided by Steve
Tjoa as well as the companion website 2 of the textbook [8]
on audio content analysis, which offers code for hands-on
experience in audio and music processing. Furthermore,
Xambó et al. [22] introduce a browser-based learning en-
vironment for teaching MIR and programming in high-
schools.

In particular, we want to draw attention to the Python
package librosa [12], which provides basic functions
as well as advanced processing pipelines for several mu-
sic and audio analysis tasks. librosa also comprises
a gallery of advanced examples 3 , which nicely illus-
trate how to use the package for approaching MIR tasks
such as onset detection, music synchronization, harmonic-
percussive separation, and audio structure analysis. The
FMP notebooks are inspired by librosa and integrate,
extend, and complement elements offered by this package.
While librosa is designed to be an easy-to-use toolbox
with convenient presets, the emphasis of the FMP note-
books is on the educational side providing detailed expla-
nations of theoretical and practical aspects. We hope that
the FMP notebooks serve as a good basis for carrying on
with more advanced techniques as provided by powerful
toolboxes such as librosa, essentia, or madmom.

3. STRUCTURE OF NOTEBOOKS

The FMP notebooks are structured in ten parts as shown
by the table of Figure 1. Part 0 (also containing this
table) is the starting notebook, which is opened when
calling https://www.audiolabs-erlangen.de/FMP.
Besides giving an overview, this notebook also provides in-
formation on the license (Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License),
the main contributors, and some links to related toolboxes.
Part B provides basic introductions to the Jupyter note-
book framework, the Python programming language, and
other technical concepts underlying these notebooks (see
Section 3.1). The main body of the FMP notebooks, which
covers different music processing and MIR scenarios, con-
sists of Part 1 to Part 8 (closely following the eight chap-
ters of the textbook [13]). These parts are described in
Section 3.2.

3.1 Technical Framework

The notebooks of Part B serve different purposes. First,
these notebooks describe the main tools used for devel-
oping the FMP notebooks. Second, they give short intro-

1 https://musicinformationretrieval.com/
2 https://www.AudioContentAnalysis.org
3 https://librosa.github.io/librosa/advanced.

html
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ductions of the relevant technical concepts while providing
links to more detailed tutorials. Third, the notebooks give
examples for best practices in programming as well as for
generating and using code, figures, and sound elements. In
the following, we describe the technical framework under-
lying the FMP notebooks while summarizing the content
of Part B.

3.1.1 Jupyter Notebook

The FMP notebooks are based on the Jupyter notebook
framework. This open-source web application allows users
to create documents that contain live code, text-based in-
formation, mathematical formulas, plots, images, sound
examples, and videos. Jupyter notebooks are often used as
a publishing format for reproducible computational work-
flows [6]. They can be exported to a static HTML format,
which makes it possible to generate web applications that
can be accessed through standard web browsers with no
specific technical requirements. Part B introduces some
relevant elements of the Jupyter framework including prac-
tical aspects such as the most important Jupyter operators
and keyboard shortcuts.

3.1.2 Installation

To run the FMP notebooks, one needs to install Python,
Jupyter, and additional Python packages. In Part B, we in-
troduce the Anaconda Python distribution with its package
and environment manager, which allows for quickly in-
stalling, running, and updating the required software pack-
ages. Furthermore, we provide a file which specifies an
environment called FMP. This environment comprises all
packages (specified by name and version number) needed
for the FMP notebooks. Giving a step-by-step description,
we explain how to use Anaconda to set up this environ-
ment.

3.1.3 Multimedia

One notebook of Part B gives a short overview of how to
integrate multimedia objects (in particular, audio, image,
and video objects) into a Jupyter notebook. Rather than
being comprehensive, we only give a selection of possi-
bilities as used in the other parts of the FMP notebooks.
In particular, we discuss two alternatives: a direct integra-
tion of images, video, and audio elements using HTML
tags as well as an integration using the Python module
IPython.display.

3.1.4 Python

In the FMP notebooks, we use Python as the program-
ming language. The reason for this choice is that Python is
a open-source general-purpose language, which is widely
used in scientific computing and offers plenty of resources
in data sciences and machine learning. Furthermore, being
a beginner-friendly language, it suits the didactic orienta-
tion of the FMP notebooks well. Part B contains a short in-
troduction to Python summarizing the most important data
types, control structures, and functions as occurring in later
parts of the FMP notebooks. One of our design principles

is to keep the required programming skills at an elementary
level. Furthermore, one finds code examples that illustrate
how to create appealing figures, process audio files, and
program interactive plots.

3.1.5 Numba

As one side topic, we also give a short introduction to the
Python package Numba, which offers an open source just-
in-time (JIT) compiler that translates a subset of Python
code into fast machine code. Even though not crucial from
a functionality point of view, this package can be used to
significantly speed up (sometimes a factor of 100) some of
the implementations offered by the FMP notebooks.

3.1.6 Further Topics and Summary

Further topics covered by Part B are descriptions of rel-
evant Python libraries, some basic information of the ver-
sion control system Git, and links to tools that are helpful
for music processing and MIR.

In summary, with having the notebooks of Part B, our
goal is to make the FMP notebooks self-contained (at least,
to a high degree). Rather than trying to be comprehensive,
we give useful and instructive code examples that become
relevant in the other parts. Furthermore, Part B also mo-
tivates and documents how the FMP notebooks were cre-
ated.

3.2 Music Processing and MIR Scenarios

The main music processing and MIR topics covered by the
FMP notebooks are organized in eight parts, which follow
the eight chapters of the textbook on Fundamentals of Mu-
sic Processing [13]. The notebooks include introductions
for each MIR task, provide important mathematical defi-
nitions, and describe computational approaches in detail.
One primary purpose of the FMP notebooks is to provide
audio-visual material as well as Python code examples that
implement the computational approaches described before.
Additionally, the FMP notebooks provide code that allows
a user to experiment with parameters and to gain an under-
standing of the computed results by suitable visualizations
and sonifications. These functionalities also make it easily
possible to input different music examples and to gener-
ate figures and illustrations that can be used in lectures and
scientific articles. This way, the FMP notebooks comple-
ment and go beyond the textbook [13], where one finds a
more mathematically oriented approach to MIR. In the fol-
lowing, we summarize the main content of the music pro-
cessing and MIR scenarios covered by the FMP notebooks.

Part 1 (Music Representations). Musical information
can be represented in many different ways. In this part, we
cover three widely used music representations: sheet mu-
sic, symbolic, and audio representations. Besides introduc-
ing basic terminology that is used throughout the following
FMP notebooks, we provide Python code to study musical
and acoustic properties of audio signals including aspects
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such as frequency, pitch, dynamics, and timbre. For ex-
ample, there are code snippets for comparing different tun-
ing systems (equal-tempered, Pythagorean, harmonic se-
ries) and for generating Shepard tones.

Part 2 (Fourier Analysis of Signals). In this part, we ap-
proach the Fourier transform (used as the main signal pro-
cessing tool in these notebooks) from various perspectives.
We provide code to better understand complex numbers
and exponential functions, which form the basis for the
discrete Fourier transform (DFT). Also, the fast Fourier
transform (FFT)—an algorithm of great beauty and high
practical relevance—is covered in theory and practice. As
another important topic, we discuss the short-time Fourier
transform (STFT). In this context, we address issues such
as sampling, padding, and axis conventions—issues that
are often neglected in theory—from a practical perspec-
tive.

Part 3 (Music Synchronization). The objective of music
synchronization is to temporally align different versions of
the same underlying piece of music. Considering this sce-
nario, we provide code examples for generating chroma-
based music features, which capture properties that are re-
lated to harmony and melody. In this context, we also ad-
dress issues of high practical relevance including tuning,
logarithmic compression, as well as spectral and temporal
resolution—aspects that have a significant influence on the
features’ properties. Furthermore, we study an alignment
technique known as dynamic time warping (DTW), a con-
cept that is applicable for the analysis of general time se-
ries. For its efficient computation, we discuss an algorithm
based on dynamic programming—a widely used method
for solving a complex problem by breaking it down into a
collection of simpler subproblems.

Part 4 (Music Structure Analysis). In this part, we ad-
dress a central and well-researched area within MIR known
as music structure analysis. Given a music recording, the
objective is to identify critical structural elements and to
segment the recording according to these elements. Within
this scenario, we discuss fundamental segmentation prin-
ciples based on repetitions, homogeneity, and novelty—
principles that also apply to other types of multimedia be-
yond music. In particular, we provide code for generating,
visualizing, and understanding self-similarity matrices and
for modifying their structural properties using a variety of
enhancement strategies. The notebooks also cover clas-
sical approaches for novelty detection and audio thumb-
nailing. Finally, we introduce scape plot representations
and demonstrate how this concept can be used to generate
beautiful visualizations of time-dependent properties in a
compact and hierarchical way.

Part 5 (Chord Recognition). Another essential and long-
studied MIR task is the analysis of harmonic properties of
a piece of music by determining an explicit progression
of chords from a given audio recording—a task often re-
ferred to as automatic chord recognition. Within this sce-
nario, we first discuss some basic theory of harmony in-
cluding concepts such as intervals, chords, and scales. To

better understand these musical concepts, the notebooks
provide code for generating and interacting with suitable
sound examples. Furthermore, we introduce a simple base-
line system for chord recognition based on a template-
based matching procedure. This system is then extended
by hidden Markov models (HMMs)—a concept of central
importance for the analysis of temporal patterns in time-
dependent data streams including speech, gestures, and
music. Besides algorithmic aspects and their implemen-
tation, we use the chord recognition scenario to illustrate
the importance of feature design choices and the effect of
temporal smoothing strategies. Such issues become of cru-
cial importance when comparing, understanding, and ex-
ploring the potential of more involved chord recognition
systems (e. g., based on deep learning).

Part 6 (Tempo and Beat Tracking). Tempo and beat are
fundamental properties of music. In this part, we introduce
the basic ideas on how to extract tempo-related information
from audio recordings. A first task, known as onset detec-
tion, aims at locating note onset information by detecting
changes in energy and spectral content. The notebooks not
only introduce the theory but also provide code for imple-
menting and comparing different onset detectors. To de-
rive tempo and beat information, note onset candidates are
analyzed concerning quasiperiodic patterns. This second
step leads us to the study of general methods for local peri-
odicity analysis of time series. In particular, we introduce
two conceptually different methods: one based on Fourier
analysis and the other one based on autocorrelation. Fur-
thermore, the notebooks provide code for visualizing time-
tempo representations, which deepen the understanding of
musical and algorithmic aspects. Finally, the FMP note-
books cover fundamental procedures for predominant local
pulse estimation and global beat tracking.

Part 7 (Content-Based Audio Retrieval). A central topic
in MIR is concerned with the development of search en-
gines that enable users to explore music collections in a
flexible and intuitive way. In this part, we discuss au-
dio retrieval strategies that follow the query-by-example
paradigm: given an audio query, the task is to retrieve
all documents that are somehow similar or related to the
query. Within this scenario, we discuss the issue of speci-
ficity, which refers to the degree of similarity between the
query and the database documents. First, we deal with
the problem of audio identification (a retrieval task of high
specificity), where the objective is to identify the particular
audio recording that is the source of the query. In particu-
lar, we introduce the main ideas of an audio identification
system based on spectral peaks—a technique used in many
commercial applications such as Shazam [21]. Then, the
notebooks cover two related retrieval tasks of lower speci-
ficity referred to as audio matching and version identifi-
cation, where the goal is to identify recordings with per-
formance variations and other versions (e. g., cover songs).
The main goals of the notebooks are to provide code for
baseline systems and for gaining a better understanding of
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Figure 2. The matrix DFTN and a visualization of its real
and imaginary parts for the case N = 32.

the practical requirements of the different retrieval tasks.

Part 8 (Musically Informed Audio Decomposition). In
the final part on audio decomposition, the notebooks cover
challenging research directions that are related to source
separation. Within this wide research area, we consider
three subproblems: harmonic–percussive separation, main
melody extraction, and score-informed audio decomposi-
tion. Within these scenarios, the notebooks offer detailed
explanations and implementations of essential techniques
including instantaneous frequency estimation, fundamen-
tal frequency (F0) estimation, spectrogram inversion, and
nonnegative matrix factorization (NMF). These techniques
are useful for a variety of general multimedia processing
tasks beyond source separation and music processing. Be-
sides algorithmic and computational aspects, we again en-
counter in this part of the notebooks a variety of acous-
tic and musical properties of audio recordings. Providing
tools and instructive scenarios for gaining a good under-
standing of such properties is a central and overarching
objective of the FMP notebooks.

4. EXAMPLES

In this section, we give some short examples that illustrate
some of the educational aspects of the FMP notebooks.

We start with a classical signal processing topic. Given
a discrete signal x = (x(0), x(1), . . . , x(N − 1))> ∈
RN of length N , the discrete Fourier transform (DFT)
is defined by X(k) :=

∑N−1
n=0 x(n) exp(−2πikn/N) for

k ∈ [0 : N − 1]. The vector X ∈ CN can be in-
terpreted as frequency representation of the time-domain
signal x. The FMP notebooks approach the DFT in vari-
ous ways, including the usage of inner products and their
geometric interpretation. Defining the complex number
σN := exp(−2πi/N), Figure 2 shows the matrix DFTN

(given by DFTN (n, k) = σnk
N for n, k ∈ [0 : N−1]) along

with a visualization of its real and imaginary parts. Fur-
thermore, the notebooks explain how to evaluate the DFT
efficiently using the fast Fourier transform (FFT). The gen-
eral idea of the FMP notebooks is not to shy away from
mathematics. Instead, the notebooks provide rigorous in-
troductions to the theory, which are interleaved with code
examples that further explain, implement, and visualize ab-
stract concepts.

(a)

(b)

(d)

(c)

(e)

Figure 3. Time-domain signal (a) and its STFT without
padding (b/c) and with zero-padding (d/e).

To recover time information hidden in the Fourier do-
main, the main idea of the short-time Fourier transform
(STFT) is to consider only small sections of the signal.
These sections are obtained by multiplying shifted ver-
sions of a window function with the original signal and
by computing a Fourier transform for each of the result-
ing windowed signals. This results in a sequence of spec-
tral vectors, also called frames. In practice, the correct
physical interpretation of discrete objects such as samples,
frames, and spectral coefficients can be tricky. Also, there
are many different conventions when applying window-
ing. Figure 3 shows a signal (two subsequent sinusoids
of 1 Hz and 5 Hz, respectively) and its STFT. In the FMP
notebooks, we explain how to correctly interpret discrete
parameters, discuss different windowing conventions (in-
cluding padding), and show how to correctly visualize fea-
ture representations (taking a centric view).

For Western music, one often uses a twelve-tone equal-
tempered scale, where the 12 pitch classes correspond to
the twelve chroma values {C,C],D,D], . . . ,B}. Aggre-
gating all spectral information that relates to a given pitch
class into a single coefficient, a spectrogram can be trans-
formed in a chromagram, see Figure 4. This example also
demonstrates how to generate accurate and visually ap-
pealing figures, which can be a tricky and time-consuming
effort. In the FMP notebooks, we give numerous examples
on how to enhance, place, and align figure elements. In
Figure 4, for example, a waveform (given in samples) and
a chromagram (given in frames) are visually aligned using
a common time axis (given in seconds). Furthermore, us-
ing an adapted colormap enhances essential structures in
the chromagram. Finally, the size and the placement of the
three subplots are controlled using a grid structure.

Such chromagram representations, which particularly
capture harmonic and melodic properties of an audio
recording, have turned out to be a powerful tool for various
MIR tasks. One such task is music synchronization, where
the objective is to automatically link different versions of
the same piece of music. Figure 5 shows a synchronization
result when aligning two different recordings of the be-
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(a)

(b)

Figure 4. Waveform (a) of a C-major scale and resulting
chromagram (b).

Figure 5. Chromagram representations of two different
recordings of the beginning of Beethoven’s Fifth Sym-
phony and resulting synchronization result (aligned time
positions are indicated by red lines).

ginning of Beethoven’s Fifth Symphony. Using a chroma-
based alignment procedure based on dynamic time warp-
ing as an example approach, the FMP notebooks provide
a detailed treatment of music synchronization including a
musically informed motivation, algorithmic descriptions,
implementation details, graphical representations, and ap-
plication scenarios.

Chromagrams are also commonly used representations
for tasks such as structure analysis and chord recognition.
Figure 6 shows the annotated score as well as a chord
recognition result obtained from an audio recording of the
The Beatles’ song “Let It Be.” The FMP notebooks not
only describe and implement computational approaches,
but also discuss the results in a musically informed fashion
by looking at real-world music and audio examples. Fur-
thermore, common evaluation measures such as precision,
recall, and F-measure are introduced including a discus-
sion of their benefits and limitations within concrete MIR
scenarios.

In our final example, we consider a task that is often re-
ferred to as harmonic–percussive separation (HPS), where
the goal is to decompose a given audio signal into two
parts: one consisting of the harmonic and another one of
the percussive events of the original signal [4]. Since this
task is very instructive from an educational point of view,
it was included in the FMP notebooks. First, the task is
suited to reflect on acoustic qualities of sound sources, see

C G Am F C G F C

Figure 6. Chord recognition result for the first measures
of The Beatles’ song “Let It Be.”

(a)

(b)

(c)

Figure 7. Spectrogram (a) of a recording consisting of
violin sounds (harmonic components) superimposed with
castanet clicks (percussive components). Furthermore, the
figure shows filtered spectrograms (b) and derived binary
masks (c).

Figure 7a. Second, the HPS approach discussed involves
fundamental (vertical and horizontal) filtering techniques
applied to a spectrogram representation, see Figure 7b.
Third, it involves spectral masking techniques related to
Wiener filtering, see Figure 7c. Finally, one requires signal
reconstruction techniques by inverting a modified STFT.
The FMP notebooks deal with these central topics using
the HPS scenario as motivation and illustration.

5. CONCLUSIONS

The FMP notebooks put together a package for studying
central MIR tasks providing detailed explanations, math-
ematical details, code examples, instructive sound exam-
ples, and illustrative figures within a unifying framework.
While going hand in hand with existing toolboxes such as
librosa [12], the FMP notebooks complement existing
MIR resources with the aim to bridge the gap between
theory and practice and by providing educational mate-
rial useful for teaching and learning fundamentals of music
processing.
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ABSTRACT

Sight-reading requires a musician to decode, process, and
perform a musical score quasi-instantaneously and without
rehearsal. Due to the complexity of this task, it is difficult
to assess the proficiency of a sight-reading performance,
and it is even more challenging to model its human as-
sessment. This study aims at evaluating and identifying
effective features for automatic assessment of sight-reading
performance. The evaluated set of features comprises task-
specific, hand-crafted, and interpretable features designed
to represent various aspect of sight-reading performance
covering parameters such as intonation, timing, dynamics,
and score continuity. The most relevant features are identi-
fied by Principal Component Analysis and forward feature
selection. For context, the same features are also applied
to the assessment of rehearsed student music performances
and compared across different assessment categories. The
results show potential of automatic assessment models for
sight-reading and the relevancy of different features as well
as the contribution of different feature groups to different
assessment categories.

1. INTRODUCTION

Sight-reading, also known as prima vista, describes the
task of reading and performing an unknown piece of music
from its musical score with little or no preparation. It is
a challenge to most students who are learning a musical
instrument.

Sight-reading performance reflects the player’s ability
in different aspects including reading music, applying fin-
gering and playing techniques, and interpreting music in a
relatively short time. As an important skill for musicians,
sight-reading is often part of school curricula as well as
auditions for professional orchestras [6]. The assessment of
sight-reading in auditions and teaching environments faces
multiple difficulties. While there are efforts to make human
assessments comparable and “less subjective,” for example
by using grading rubrics, the fairness of the assessment
can be impacted by bias effects (gender, ethnicity, general

c© Jiawen Huang, Alexander Lerch. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jiawen Huang, Alexander Lerch. “Automatic Assessment of
Sight-reading Exercises”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

appearance, etc.), fatigue effects after hours of listening and
assessing, as well as individual preferences and tolerances
for various error types. An automatic assessment system
can potentially provide objective, repeatable, and unbiased
assessments. Thus, it could be helpful both as a tool avail-
able to judges to inform their decisions as well as a tutoring
system for students providing feedback in individual prac-
tice sessions. It can also help understand the important
performance parameters of sight-reading assessment and
how they compare to the assessment of general (student)
music performances.

In this study, we create a prototype and investigate the
feasibility of a sight-reading assessment system by design-
ing interpretable features for the task and evaluating the
system on a large database of professionally rated record-
ings. We also inspect commonalities and differences of
feature sets for the assessment of sight-reading vs. prepared
performances of sheet music. More specifically, we per-
form feature selection and detailed feature analysis on a
score-aligned hand-crafted feature set, identify the most
effective features for sight-reading assessment and observe
the difference in the assessment ratings of sight-reading and
a rehearsed performance.

The paper is structured as follows: the related work
on sight-reading assessment is introduced in Sect. 2 and
the evaluated features are presented in Sect. 3. Section 4
explains the experiments and discusses the results of the
feature analysis. The final Sect. 5 gives concluding remarks
and outlines future work.

2. RELATED WORK

2.1 Sight-reading skills and parameters

Sight-reading involves coordination of auditory, visual, spa-
tial, and kinesthetic systems to produce an accurate and
musical performance [11]. In sight-reading exercises, mul-
tiple layers of visual information are processed simultane-
ously when reading the score while playing the instrument.
Besson et al. has demonstrated distinct processing between
melodic and rhythmic information [2]. This indicates that
pitch accuracy and rhythmic accuracy can be treated as
two independent assessment categories. Elliott found a
strong positive relationship between wind instrumentalists’
general sight-reading ability and the ability to sight-read
rhythm patterns [5]. This suggests that features containing
rhythmic information are important for assessing a sight-
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reading performance. While intonation, rhythm, and tone
quality are typical properties to be assessed, in many cases
only an overall rating is given without details on individual
properties [1, 4].

2.2 Automatic assessment

There is only a limited number of publications for the auto-
matic assessment of sight-reading. Cheng et al. developed
a real-time system for sight-reading evaluation of piano mu-
sic [4]. The real-time system transcribes the polyphonic mu-
sic and detects wrong notes. Commercial interest is shown
by the existence of systems such as Sight Reading Prac-
tice and Assessment 1 and SightReadPlus 2 , which aims
at assessing a student playing and tracking the progress of
sight-reading.

The automatic assessment of sight-reading has many sim-
ilarities to the assessment of music performance in general.
Therefore, we should expect similar features to be relevant
for both tasks and take advantage of the broader spectrum
of publications in general performance assessment. Abeßer
et al. designed a feature set consisting of 138 features based
on the pitch contour of students’ vocal and instrumental per-
formances, applied feature selection and used the selected
features to train a Support Vector Machine (SVM) [1]. They
found that features describing the similarity of score and
audio, and the variability of note durations are the most
impactful features. Fukuda et al. presented a piano tutoring
system which applied non-negative matrix factorization for
transcription and DTW for audio-to-score alignment [8].
They basically use, similar to Cheng et al. [4], the number
of detected mistakes as core information for performance
assessment. Wu et al. proposed assessing a performance
independent of the musical score using features based on
pitch, amplitude, and rhythm histograms [16]. Vidwans et
al. extracted a set of pitch, dynamics, and tempo features
after aligning the performance to the score with Dynamic
Time Warping (DTW) [15]. Their work is followed by Gu-
rurani et al., who investigated the impact of hand-crafted
descriptors for the assessment of student alto saxophone
technical exercises by feature selection [9]. The results
reveal that score-aligned features have a higher correlation
with human assessments than score-independent features.

More recently, deep learning methods have been ap-
plied to automatic performance assessment [14]. Although

1 http://standardassessmentofsightreading.com,
Last access: 2019/04/10

2 http://mymusicta.com/products, Last access: 2019/04/10
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deep learning might be a useful tool to achieve better per-
formance for the prediction, the current success of such
approaches is often impeded by the available dataset sizes
which are often insufficient to train the models properly. A
maybe even more important drawback of deep learning is
that the interpretability is lost in the hidden layers, so that
systems based on deep learning might not be able to give
meaningful detailed feedback to a student. This is the main
reason why we focus on hand-crafted, knowledge-based
features in this study.

3. FEATURE EXTRACTION

3.1 Overview

The flow chart of feature extraction process is shown in
Figure 1. 3 Given a recording of a student’s sight-reading
exercise, the pitch contour is extracted by pYIN [12] from
the audio signal (sample rate 44.1 kHz, window and hop size
1024 and 256 samples, respectively). This pitch contour is
then aligned to the score of that piece using a modified DTW
algorithm which we refer to as Jump-enabled Dynamic
Time Warping (JDTW), a DTW variant which can account
for repeated score passages. After the alignment, features
that capture pitch, rhythmic, and dynamics properties are
extracted. The following sections will introduce JDTW, the
extracted features, and the inference model.

3.2 Jump-enabled Dynamic Time Warping

Intuitively, we expect the main difference between sight-
reading and the performance of a rehearsed piece of music,
besides a higher likelihood of errors and more variability
in tempo, to be in a higher probability of the student stop-
ping and restarting from a preceding score position after a
pause. The frequent occurrence of these jumps has been
verified through informal dataset analysis. As standard
alignment approaches such as DTW cannot properly handle
such jumps, a modification of the DTW algorithm is neces-
sary to properly align the audio sight-reading performance
to the score (in our case in MIDI format). Therefore, we
propose a Jump-enabled Dynamic Time Warping (JDTW)
which is able to handle these repetitions in the students’
sight-reading performance. The approach is inspired by Fre-

3 Source code can be accessed at https://github.com/
jhuang448/FBA_code_2019
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Figure 3. Illustration of paths of index pairs for a sequence
X of length N = 9 and a sequence Y of length M = 7. Left:
original DTW; Right: JDTW.

merey et al.’s jumpDTW [7] but uses different constraints
in terms of potential jump positions and jump lengths.

Dynamic Time Warping (DTW) is a commonly used
path finding technique based on dynamic programming to
find an optimal alignment between two time series through
a pair-wise distance matrix [13]. It has been widely used
in speech recognition and musical information retrieval. It
only allows sequential alignment, which means that we can
neither walk back in a sequence nor jump in time. Given
the two sequences X := (x1, x2, ...xN ) (audio) of length
N ∈ N and Y := (y1, y2, ...yM ) (midi) of length M ∈ N,
the recursion formula of the accumulated cost matrix D of
the classical DTW is as follows:

D(n,m) = min{D(n− 1,m− 1), D(n− 1,m),

D(n,m− 1)}+ c(xn, ym) (1)

for 1 < n ≤ N and 1 < m ≤ M ; c(xn, ym) is a measure
of distance between xn and ym.

The modified accumulated cost matrix DJ for JDTW
introduces an additional cost term J(n,m) as follows:

DJ(n,m) = min{DJ(n− 1,m− 1), DJ(n− 1,m),

DJ(n,m− 1), J(n,m)}+ c(xn, ym) (2)

in which J(n,m) is the minimum accumulated cost for a
path jumping to point (n,m):

J(n,m) ={
min
i≤I
{DJ(n− 1,m+ i) + p}, pause before n

∞, otherwise
(3)

for 1 < n ≤ N and 1 < m ≤ M , where I is the largest
distance in notes allowed for a jump and p is the penalty for
jumps. Figure 3 illustrates the paths of the original DTW
and the JDTW for an example.

3.2.1 Parametrization and implementation

The adjustment of two JDTW parameters is essential: I ,
the maximum length of a jump in notes, and p, the penalty
of the jump itself. The parametrization with the lowest
accumulated cost is found empirically from a simulated
validation set of 120 synthesized sound files, leading to
the values of I = 3 and p = 3 · mean(C), in which C
is the cost matrix between X and Y (meaning that the

Index Group Description

1–8 Pitch
Mean and std of pitch dev.
(mean, std, max, min)

9–11 DTW cost
Cost of whole path, jumped
path and correct path

12–14 Tempo var.
Slope dev., number and
distance of jumps

15–16 NIR, NDR
% of silence inserted
% of short notes

17–18 Tempo (local)
Inversed tempo per note
(mean, std)

19–24 Tempo (IOI)

Crest, bin resolution,
skewness, kurtosis,
roll-off, power ratio of
the IOI histogram

25–32 Dynamics
amplitude envelope and
amplitude spikes
(mean, std, max, min)

Table 1. Overview of extracted features.

penalty depends on the average cost).All other DTW-related
parametrizations follow standard settings.

Two details are noteworthy in the context of the current
implementation: (i) after obtaining the pitch contour from
the audio and before computing the alignment, silent frames
are temporarily removed from both pitch contour and MIDI
sequence, and (ii) the distance between pitch contour xn

and MIDI pitch ym is computed after tuning frequency
adjustment as the octave-independent wrapped distance to
eliminate pYin’s frequent octave errors, however, a small
penalty of 1 is added for distances equal or higher than 12
to account for possible octave jumps in the score. After
successful application of JDTW, each audio frame is aligned
to a note in the MIDI sequence.

3.3 Feature set

The evaluated feature set can be divided into seven cate-
gories: pitch, DTW cost, tempo variation (DTW-based),
note matches, tempo (local), tempo (Inter-Onset-Interval-
based), and dynamics. Table 1 lists all 32 features explained
below with their feature indices.
• Pitch (d = 8): For each note, the mean and the

standard deviation of the pitch deviation from the
MIDI pitch is computed. Then, these features are
aggregated over the whole performance using mean,
standard deviation, maximum, and minimum of each
series. The resulting eight features are used to capture
intonation accuracy.

• DTW cost (d = 3): As a result of the alignment, we
can compute three cost metrics from the path. The
first one is the overall cost of the whole JDTW path.
The second cost is the cost of the discarded parts, i.e.,
the accumulated cost of all the repeated parts except
the last run. The third cost is the overall cost of the
path ignoring these discarded parts. These three cost
features are normalized by the length of the overall
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path, and are a measure of pitch similarity between
the two sequences.

• Tempo variation (DTW-based) (d = 3): In addi-
tion to the cost-based features, additional features
can be extracted from the alignment path. We ex-
tract the deviation of the path slope from the diagonal
of the matrix, the number of jumps, and the total
accumulated distance of jumps.

• Note matches (d = 2): The Note Insertion Ratio
(NIR) is a feature representing additional notes in
the student performance, and the Note Deletion Ra-
tio (NDR) represents the missing notes in the per-
formance. As the alignment is performed on pitch
contour after removing all the silent frames, these
frame have to be inserted back. It is possible that a
note is split into multiple notes and that very short
(less than 3 frames) notes occur. The NIR is the dura-
tion ratio of the inserted silence to the total duration
of pitched region. The NDR is the duration ratio of
very short notes to the duration of pitched region.
• Tempo (local) (d = 2): The mean and the standard

deviation of the inverse of the tempo per note is an
estimate of the overall (inverse) tempo and its vari-
ability. For example, an eighth note lasting 1 s results
in an inverse local tempo of 8 notes

1 s .
• Tempo (IOI-based) (d = 6): From the histogram of

Inter-Onset-Intervals, the crest factor, bin resolution,
skewness, kurtosis, roll-off, and the peak power ratio
(ratio of the sum of the peak values to the sum of
all histogram values) are extracted. These features
describe general tempo characteristics.

• Dynamics (d = 8): For every note, the standard de-
viation of the envelope as well as amplitude spikes
(number of sharp amplitude changes within a note)
is computed. Similar to the pitch features, the mean,
standard deviation, maximum, and minimum are ag-
gregated over all notes. The resulting eight features
are used to capture the dynamic properties of the
performance.

4. METHODOLOGY

Our assessment system follows a general machine learning
setup as visualized in Figure 2. Our evaluation aims at
not only investigating the general feasibility of assessing
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Figure 5. Explained variance for each principle component.

sight-reading automatically, but also an analysis of which
features are most relevant. Furthermore, a general music
performance assessment is compared with sight-reading
assessment in order to identify similarities and differences
between the two tasks.

This section first introduces the dataset used. Then, fea-
ture analysis is performed with Principal Component Anal-
ysis and forward feature selection. Finally, the performance
and features of sight-reading assessment and general music
performance assessment is studied.

4.1 Dataset

The dataset used for this study is provided by the Florida
Bandmasters Association (FBA). It consists of audio record-
ings of Florida All-State auditions of middle and high
school students in the three years 2013, 2014, and 2015.
Each recording consists of exercises such as etudes, scales,
and sight reading and provides one expert assessments per
exercise in four categories: musicality, note accuracy, rhyth-
mic accuracy, and tone quality. For this study we focus on
the first three categories. Only a subset of this dataset is
used: we are focusing on the sight-reading exercise played
by middle school student performers for the instrument Alto
Saxophone. The recordings of technical exercise are used
to compare sight-reading assessment with the assessment
of prepared and rehearsed performances. There are a total
of 391 students’ audition recordings in the 3 years. Each
recording contains technical exercise, sight-reading exer-
cise, and other sections. The total lengths of technical and
sight-reading exercise recordings are 192 minutes and 344
minutes, respectively. As the rating scales differ over years
and categories (most of the ratings are given within 0–10,
others have the ranges 0–5, 0–15, and 0–20), they are all
linearly mapped to our target range [0, 1].

The musical score of the sight-reading exercise has been
transcribed manually after reviewing multiple highly-rated
performances from the three years.

4.2 Principal Component Analysis

Principal Components Analysis is a method to linearly trans-
form a set of possibly correlated variables into a set of uncor-
related variables (components). For the presented analysis,
we will use both the covariance matrix of the features and
the PCA loading matrix.
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The covariance matrix of the features is shown in
Figure 4. It can be observed that —unsurprisingly— fea-
tures are correlated with each other within groups. This is
true for pitch features (1–3) and (5–7), DTW cost features
(9–11), Tempo variation features (13,14), Tempo (IOI) fea-
tures (20–23), as well as Dynamics features (25,26) and
(27–29). This expected result shows that features within
one group carry similar information and verifies that the
proposed feature grouping is reasonable.

In addition to high correlation within each feature group,
some high correlation is observed across groups. The pitch
features (1–7), for instance, are highly correlated with DTW
cost features (9–11). This is the case because the DTW-
cost features are the accumulated difference between the
pitch being played and the reference pitch. The cost of
the jumped path (10) is highly correlated with number and
distance of jumps (13,14). All of these three features are a
measure of the amount of jumps in the performance. The
std of the amplitude envelope (26) is also correlated with
the jump features. One possible reason for this is that a high
number of pauses and jumps might significantly impact
the amplitude variation. Other feature correlations are less
interpretable; for example, the correlation between min of
amplitude spikes (32) and mean of the inverse local tempo
(17) is not easily explained.

Figure 5 displays the explained variance by principal
components. The eigenvalue of the first component is con-
siderably higher than that of the following components.
The first five components explain 60% of the total variance.
The loading matrix, shown for these first five components
in Figure 6, indicates that the first component is mostly a
combination of pitch features (1–7) and the pitch-related
DTW cost features (9–11). Both the second and the third
component are combinations of rhythmic IOI features with
the second focusing on tempo (20) and the third component
mostly describing tempo variation (21–23). While the in-
terpretation of the fourth component is difficult, the fifth
component clearly represents dynamics (27–29).

4.3 Inference

A SVM Regression model is trained using the extracted
features. As a linear kernel gave comparable results to
an RBF kernel, the linear kernel was chosen for sake of
simplicity. Libsvm [3] is used as implementation.

4.4 Forward Feature Selection

While the PCA gives us insights into feature correlation and
which features contribute most to explaining the variance in

the feature set, it is of limited use in deciding which features
contribute most to the assessment task. In order to identify
these, we apply forward feature selection [10]. As this
selection approach ’wraps’ the target regression algorithm,
the selected features will be task-relevant. Forward feature
selection is performed on the SVR model with 5-fold cross-
validation. The used metric to evaluate success is the R-
squared value, which is a common metric for the evaluation
of regression systems.

The result of the selection process is a list of features
ordered according to their relevance for the task. The in-
dices of the first 10 selected features for each assessment
category are listed in Table 2. This table also compares
the selected feature sets for sight reading with the sets for
a rehearsed student performance. The R-squared results
depending on the number of selected features, comparing
the sight-reading exercise with the technical exercise, are
shown in Figure 7.

4.4.1 Discussion

Figure 7 shows that the R-squared value starts to converge
after about 10 iterations of the feature selection. The highest
R-squared for musicality and rhythmic accuracy is higher
for the practiced performance, while that for note accuracy
is higher for sight-reading.

Of the selected features listed in Table 2, two of the dy-
namics features (25,26) rank high for both practiced perfor-
mance and sight-reading for all three assessment categories.
These two features are the mean and std of the amplitude
standard deviation per note. Apparently, the steadiness of
loudness plays an important role in assessing the perfor-
mance.

Looking closer into the Note Accuracy row of Table 2,

Category Practiced Sight-reading

Musicality
25,16,21,15,5,
26,11,1,6,18

25,6,32,15,29,
7,26,5,24,23

Note Acc.
9,20,17,3,28,
14,25,21,26,23

26,6,32,15,7,
23,2,9,3,11

Rhythm Acc.
25,21,16,13,26,
18,5,11,2,1

25,6,32,23,15,
29,31,8,20,1

Table 2. The first 10 selected features in forward feature
selection. Colors represent different feature groups: cyan
for pitch, purple for DTW cost, grey for tempo variance,
apricot for note matches, orange for tempo (local), pink
for tempo (IOI) and green for dynamics.
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Figure 7. The R-squared curves in feature selection.

we can observe that six of the ten selected features
(2,3,6,7,9,11) for sight-reading are features which con-
tribute highly to the first (pitch-related) PCA component.
This is not the case for technical exercise, indicating that
the pitch features contain more relevant information for
sight-reading than for practiced performance. This is also
indicated by feature 6 ranking highly in all three assess-
ment categories for sight-reading but not for practiced per-
formance. This feature is one of the aggregated features
(standard deviation of absolute differences between played
pitch and reference pitch) and is thus a measure of pitch
steadiness.

For the assessment categories Musicality and Rhythmic
Accuracy, more dynamics features are selected for sight-
reading exercise than for the practiced performance. The
reason for this might be a different expectation for the two
exercises. It might be that, either due to the low complexity
of the score or little time for preparation, a dynamically
steady performance is preferred by the judges.

During feature selection, the R-squared curve reaches its
maximum at about 10–20 iterations and drops dramatically
when nearly all the features are selected. This is unexpected
behavior for an SVM. A possible reason may be that the
dataset is not large enough to train an SVR with all the
features or that there might be some ’misleading’ features
in the feature set.

According to the results above, the automatic assessment
of sight-reading is even more challenging than assessing a
practiced performance, which performs in the range that we
expect (compare [9]) but not so well that it could be con-
sidered solved. The higher R-squared for Note Accuracy
indicates that our features, especially the intonation fea-
tures, model this category better for sight-reading than for
technical exercise. The low R-squared values for Musicality
and Rhythmic Accuracy indicate that we essentially can-
not model the human assessments either due to irrelevant
features or noisy ground truths. It means that the judges
assess the two kinds of exercises differently for these cat-
egories and that our regression model fails to capture the
information important for sight-reading.

5. CONCLUSION

We presented a feature set of 32 hand-crafted features for the
assessment of sight-reading and evaluated them for middle
school alto saxophone performances. The feature analysis
included PCA and forward feature selection based on the
R-squared of the output from an SVR. We can identify the
relevant assessment dimensions in the first few principal
components and find that the assessment of sight-reading
in general is highly influenced by dynamics, and that the
assessment of Note Accuracy is mostly focused on pitch-
related features. Judging from the absolute results, we can
see that the automatic assessment of sight-reading is still
an unsolved problem and that the presented features can
model a human assessment only imperfectly. In order to
be usable in a realistic scenario, we need to either identify
additional, more relevant features or move towards state-
of-the-art, uninterpretable feature learning solutions. As
compared to a practiced and prepared performance, we can
identify some commonalities and some differences in the set
of relevant features, but the most striking difference is the
gap of model performance between assessment categories.
Further work is needed to identify where the cause for this
gap can be found.

It is likely that rehearsed and sight-reading exercises do
not share the same assessment criteria even if the categories
are named identically. The performance, as imperfect as
it might be, is not assessed by score deviations alone, so
that our feature might not represent all critical factors. An
additional complication is that in our dataset, we only have
the assessment from one judge for each performance. The
effect of possible subjectivity and uncertainty makes are
complicated task even more challenging. More effort is
needed to be able to explain the logic behind the assess-
ment given by judges with quantitative and interpretable
indicators before they can be used in music education.
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ABSTRACT

Research on style transfer and domain translation has
clearly demonstrated the ability of deep learning-based al-
gorithms to manipulate images in terms of artistic style.
More recently, several attempts have been made to extend
such approaches to music (both symbolic and audio) in or-
der to enable transforming musical style in a similar man-
ner. In this study, we focus on symbolic music with the goal
of altering the ‘style’ of a piece while keeping its original
‘content’. As opposed to the current methods, which are
inherently restricted to be unsupervised due to the lack of
‘aligned’ data (i.e. the same musical piece played in multi-
ple styles), we develop the first fully supervised algorithm
for this task. At the core of our approach lies a synthetic
data generation scheme which allows us to produce virtu-
ally unlimited amounts of aligned data, and hence avoid
the above issue. In view of this data generation scheme,
we propose an encoder-decoder model for translating sym-
bolic music accompaniments between a number of differ-
ent styles. Our experiments show that our models, al-
though trained entirely on synthetic data, are capable of
producing musically meaningful accompaniments even for
real (non-synthetic) MIDI recordings.

1. INTRODUCTION

Artistic style transfer has become a well-established topic
in the computer vision literature and is becoming of in-
creasing interest in other areas of computer science, espe-
cially music and natural language processing. More gen-
erally, we are dealing with a family of style transforma-
tion tasks, where the goal is to alter the style of a piece of
data (e.g., an image, a musical piece, a document) while
preserving – to some extent – its content. In the music
domain, a solution to these problems would have exciting
industrial applications, not only as a way to generate new
music automatically (as an alternative to fully automatic
music composition, which still seems to be a distant goal),
but also as a tool for music creators, allowing them to eas-
ily incorporate new styles and ideas into their work.

© Ondřej Cífka, Umut Şimşekli, Gaël Richard. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Ondřej Cífka, Umut Şimşekli, Gaël Richard. “Su-
pervised Symbolic Music Style Translation Using Synthetic Data”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

In computer vision, the most popular task in this direc-
tion is style transfer, where the algorithm has two inputs:
the ‘content’ image to transform and a ‘style’ image, bear-
ing the style that we wish to impose on (or transfer to)
the content image. On the other hand, work done on mu-
sic so far has mostly focused on a different task, which
we refer to as style translation. Contrary to style transfer,
only the ‘content’ input is given, and the goal is to render
it in a target style which is known in advance and usually
learned from a large set of examples. Note that although
this second task is often also referred to as ‘style trans-
fer’ in the context of music and text generation, we claim
that this conflicts with how the term is traditionally under-
stood [11,13,38], and that the term ‘translation’ is more ap-
propriate and in line with other prior work [17, 24, 28, 40].

The focus of our work is on the latter task, and more
specifically, on accompaniment style translation for sym-
bolic music. In particular, given a piece of music in a sym-
bolic representation, our goal is to generate a new accom-
paniment for it in a different arrangement style while pre-
serving the original harmonic structure. Even though our
approach is generic, to narrow down our scope, we focus
on generating bass and piano tracks.

A major difficulty of the music style translation task is
that there are no publicly available ‘aligned’ or ‘parallel’
datasets (containing examples of the same music played in
different styles). As a result, recent works closely related
to ours [4, 5] have adopted unsupervised learning frame-
works – variational autoencoders (VAE) [19] and Cycle-
GANs [40] – and applied them to genre-labeled datasets.
However, these extensions to symbolic music have not yet
permitted to obtain results as compelling as those on im-
ages [22, 40], text [20, 39], and music audio [28].

In this study, we adopt a different strategy to overcome
the lack of aligned data, which is to synthesize it. Syn-
thetic training data has proven useful for music informa-
tion retrieval tasks such as chord recognition [21] and fun-
damental frequency estimation [25, 32], and is also pop-
ular for tasks like semantic segmentation in computer vi-
sion [30, 36]. In our case, synthetic data opens up the pos-
sibility for supervised learning techniques known from the
machine translation field. Moreover, it allows us to work
with fine-grained style labels, as opposed to genre labels,
which may be too vague or ambiguous for such purposes.

Our main contributions are as follows:
• We propose a supervised, end-to-end neural model

for symbolic music style translation, along with a
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training data generation scheme.
• Our model is able to translate into a large number

of different styles by conditioning a single decoder
on the target style. To our knowledge, this is the
first time this technique has been applied to music
translation with some success.

• To evaluate the performance of our model, we pro-
pose an objective metric of music style similarity.

• We show that an approach to music style translation
based entirely on synthetic data is viable and gen-
eralizes well to more ‘natural’ inputs, even in unre-
lated styles.

We believe that our approach will foster new directions in
this line of research; some of these will be briefly discussed
in the conclusion. The source code of our system, built
using TensorFlow, is available online. 1

2. RELATED WORK

The work performed so far in the area of music style trans-
formation is relatively small in volume but fairly diverse,
since, as noted in [8], the transformations can work with
different music representations as well as on different con-
ceptual levels.

To our knowledge, the only work on music style trans-
fer – in the original sense, as discussed in the introduction –
has been done on audio. Some approaches [9, 35] com-
bine signal decomposition techniques with musaicing [41]
(a form of concatenative synthesis). In [14], the authors
attempt to transfer ‘sound textures’ from a recording by
means of techniques adapted from image style transfer,
but without specific focus on the musical aspects. In both
cases, the transformation is largely limited to timbre.

The problem of unsupervised music audio translation is
tackled in [28], where the authors train a neural network
to translate between a number of domains. For symbolic
music, style translation is studied in [4, 5], adapting unsu-
pervised learning techniques from computer vision. A dif-
ferent approach is proposed in [23], consisting in training a
model on the target style only and then using pseudo-Gibbs
sampling to transform a given piece of music.

Finally, we should mention more ‘constrained’ prob-
lems from the symbolic music domain which can also be
framed as style translation tasks, e.g. (re-)harmonization
[16,29] and expressive performance generation [12,24,37].

3. SYNTHETIC DATA GENERATION

Since we are in a supervised setting, our approach requires
a large amount of paired examples where each pair consists
of one musical fragment arranged in two different styles.
Given that no such dataset is currently available, we cre-
ated a synthetic one, generated using RealBand from the
Band-in-a-Box (BIAB) software package [2].

First, we downloaded chord charts of around 3.5K
songs in the BIAB format from a popular online archive
[3]. We used BIAB to generate arrangements of these
songs in different styles and filtered the resulting MIDI

1 https://git.io/musicstyle

files to keep only those in 4
4 or 12

8 time. 2 We then
chopped those files into segments of 8 bars, splitting notes
that overlap segment boundaries.

We selected a total of 70 styles from the ‘0 MIDI’ and
‘1 MIDI’ style packs included in Band-in-a-Box 2018, rep-
resenting a wide variety of popular music genres. Each
style contains up to 5 accompaniment tracks (drums, bass,
piano, guitar, strings). 3 We generated each song in 3 ran-
domly picked styles, providing 2 ×

(
3
2

)
= 6 training pairs

per segment, or around 658K training examples in total.
An example of a possible training pair is shown in Fig. 1.

In all experiments, we used 2,809 songs for training,
46 songs as a validation set and 46 songs for evaluation,
each in 3 examples in different styles. The song names,
along with the styles used for each song, are included in
the supplementary material [7].

4. PROPOSED MODEL

We propose an architecture based on RNN encoder-
decoder sequence-to-sequence models with attention [1],
commonly employed in machine translation and other ar-
eas of natural language processing. This choice is moti-
vated by the successes of RNNs on symbolic music gen-
eration [10, 15, 33, 34] and by the ability of the attention
mechanism to condition the generation on arbitrary input
data without a prior alignment.

Our model is designed so that it is capable of translat-
ing music between a potentially large number of different
styles. This is achieved by conditioning the decoder on
the target style. An obvious advantage of this design is
efficiency: to translate between n styles, we only need to
train a single model, compared to n models (one for each
target style; possibly with a shared encoder as in [28]) or
even Θ(n2) models (one for each pair of styles, e.g. [4,5]).
Other implications of this choice are investigated in Sec-
tion 6.2.

On the other hand, to simplify the task and facilitate
evaluation, we train a dedicated model for each target in-
strument track. Our output representation and decoder ar-
chitecture are chosen accordingly and would not necessar-
ily be suitable for generating several independent tracks.

Input and output representation. A common choice
of representation of symbolic non-monophonic music for
neural processing is a piano roll. We use a binary-valued
piano roll with 128 pitches and 4 columns per beat (quarter
note) to encode our input.

For representing the output (and also as an alternative
input representation), we opted for a MIDI-like encoding,
which – unlike a piano roll – is straightforward to model
using an RNN decoder. Specifically, following [33], we
encode the music as a sequence of 3 types of events, each
with one integer argument:

• NoteOn(pitch): start a new note at the given pitch;

2 The time signature depends on the style as well as on the song itself.
A song originally in 4

4 may have a 12
8 arrangement and vice versa.

3 These 5 labels are not always accurate; for example, some styles have
two guitar tracks, one of which is labeled as piano.
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Figure 1: Six bars of an accompaniment (piano and bass) for a 12-bar blues, generated using BIAB in a ‘jazz swing’ style
(top) and a ‘samba’ style (bottom). The timing is only approximate. The input chord sequence is displayed at the top.
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Figure 2: A bar of music, represented as a piano roll (top
right) and as a sequence of 20 event tokens (bottom).

• NoteOff(pitch): end the note at the given pitch;
• TimeShift(delta): move forward in time by the

specified amount, measured in 12ths of a beat.
NoteOn and NoteOff take values in the range 0–127,
whereas TimeShift is within 1–24. 4 In contrast to [33],
our representation is tempo-invariant and we do not model
dynamics. Fig. 2 illustrates both representations.

Model architecture and training. The proposed model
consists of an encoder and a decoder; the former serves
to compute a dense representation of the input, while the
latter generates the output event sequence, conditioned on
the encoded input and the target style.

The architecture of the encoder depends on the type of
input representation:

• If the input is a piano roll, we use a two-layer convo-
lutional network (CNN), followed by a bidirectional
RNN with a gated recurrent unit (GRU) [6]. The
CNN serves to compress the input, resulting in a se-
quence of 1280-dimensional vectors with 2 vectors
per bar. The bidirectional GRU then adds the ability
to incorporate information from a wider context.

• If the input is a sequence of tokens, we use an em-
bedding layer, also followed by a bidirectional GRU.

We refer to the two variants of the model as ‘roll2seq’ and
‘seq2seq’, respectively.

The decoder is also implemented using a GRU, condi-
tioned on the target style and equipped with a feed-forward

4 When encoding the piano track, we compress the sequences by also
including a NoteOff(All) event which ends all currently active notes.

c3

s1

s2

s3

sT ′

+

hfw
1 hbw

1

hfw
2 hbw

2

hfw
3 hbw

3

hfw
T hbw

T

·α31·α32

·α33

·α3T

. . .

z </s>

z y2

<s>
y1

z y3
y2

y1

z

yT ′−1

c1

c2

cT ′

Figure 3: The attention-based decoder. During the i-th de-
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j ]

to obtain the context vector ci, which in turn is used as in-
put for the decoder cell to compute the next state, si.

attention mechanism [1] acting on the encoder outputs.
More precisely, as illustrated in Fig. 3, the i-th decoder
state si is computed as

si = GRU([ci,W
sz,W eyi−1], si−1),

where [·] denotes concatenation, z and yi−1 respectively
denote the one-hot encoded representations of the target
style and the previous output event, W s,W e are the corre-
sponding embedding matrices, and ci is the context vector.
The latter is a weighted average of the encoder outputs,
computed by the attention mechanism. The purpose of at-
tention is to provide an alignment between the encoder and
decoder states. The need for this alignment arises from the
fact that the positions in the output sequence are not lin-
ear in time (due to the chosen encoding), and the decoder
therefore needs to be able to move its focus flexibly over
the input. For a complete description of attention, see [1].

The training pipeline is portrayed in Fig. 4b. Each train-
ing example consists of a song segment x in one style (the
source style) along with the corresponding segment y in a
different style (z, the target style). We train the model by
minimizing the loss on y while passing x to the encoder
and conditioning the decoder on z.

The models are trained using Adam [18] with learning
rate decay and with early stopping on the development set.
Our configuration files with complete hyperparameter set-
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(a) Data generation (b) Training

BIAB

chord chart

encoder

decoder
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sty
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z

Figure 4: A scheme of the training pipeline. (a) We use
BIAB to generate each song in different arrangement styles
(see Section 3). (b) The model is trained to predict the
target-style segment y given a source segment x and the
target style z (see Section 4).

tings are included with the source code.
Once the model is trained, we perform style translation

using greedy decoding, i.e. by taking the most likely output
token at every step (and using that as input in the next step).
We also explored random sampling with different softmax
temperatures, but found that this leads to a higher number
of errors (i.e. invalid sequences or incorrect timing) and
does not significantly improve the quality of the outputs.

5. EVALUATION METRICS

When evaluating a style transformation, we need to con-
sider two complementary criteria: how well the trans-
formed music fits the desired style (style fit) and how much
content it retains from the original (content preservation).
Note that it is trivial (but useless) to achieve perfect results
on either of these two criteria alone, so it is essential to
evaluate both of them.

In this section, we describe ‘objective’, automatically
computed metrics for both criteria. Even though we be-
lieve these metrics are sound and well-motivated, we ac-
knowledge the limitations of automatic metrics in general
and encourage the reader to listen to the provided example
outputs [7] to get a real sense of their quality.

Content preservation. We use a content preservation
metric similar to the one proposed by [23], computed by
correlating the chroma representation of the generated seg-
ment with that of the corresponding segment in the source
style. This is motivated by the fact that we expect the out-
put to follow the same sequence of chords as the input.
More precisely, we compute chroma features for each seg-
ment at a rate of 12 frames per beat and smooth each of
them using an averaging filter with a window size of 2
beats (24 frames) and a stride of 1 beat (12 frames). Fi-
nally, we calculate the average frame-wise cosine similar-
ity between the two sets of chroma features.

Style fit. In some of the recent music style transformation
works [4,5], the quality of a transformation is measured by
means of a binary style classifier trained on a pair of styles.

However, the merit of such evaluation is limited, since a
high classifier score merely demonstrates that the output
has some of the distinguishing features of the target style,
and not necessarily that it actually fits the style. For this
reason, we aim for a more interpretable metric of style fit.

As observed by [16, 26, 31], musical style is well cap-
tured in pairwise statistics between neighboring events.
Drawing inspiration from the features proposed in [26], we
devise a key- and time-invariant style representation which
we call the style profile.

To compute the style profile, we consider all pairs of
note onsets less than 4 beats apart and at most 20 semitones
apart, and record the time difference and interval for each
pair. In other words, we define the following multiset of
ordered pairs:

S = {(tb − ta, pb − pa) | a, b ∈ notes, a 6= b,

0 ≤ tb − ta < 4, |pb − pa| ≤ 20},

where tx is the onset time of the note x (measured in frac-
tional beats) and px is its MIDI note number. We then
obtain the style profile as a normalized 2D histogram of S
with 6 bins per beat and one bin per semitone, and flatten
it to get a 984-dimensional vector.

Finally, to quantify the style fit of a particular set of out-
puts, we compute their style profile and measure its cosine
similarity to a reference profile. Note that an 8-bar segment
may not be sufficient to obtain a reliable style profile; in-
stead, we always aggregate the statistics over a number of
segments. In particular, we put forward two variants of the
style fit metric, obtained as follows:

(a) Compute a style profile aggregated over all outputs
of a model in a given target style and measure its
cosine similarity to the reference.

(b) Compute a style profile for each translated song sep-
arately and measure its cosine similarity to the ref-
erence. We report the mean and standard deviation
over all songs.

We refer to (a) and (b) as ‘macro-style’ and ‘song-style’,
respectively. In both cases, the reference style profile is
extracted from the training set, separately for each track.

While we do not claim that this metric is able to dis-
tinguish between broad style categories (such as genres),
yet it can definitely capture the differences and similarities
between specific ‘grooves’, which makes it well-suited for
our purpose. This is illustrated in Fig. 5, showing the pair-
wise similarities between the profiles of the bass tracks of
different BIAB styles, with clearly visible clusters of jazz,
rock or country styles.

6. EXPERIMENTAL RESULTS

In our experiments, we focus on generating the bass and
piano tracks, and we train a dedicated model for each
of them. For each track, we consider two scenarios:
generating the track given only the corresponding source
track (BASS→BASS, PIANO→PIANO), and using all non-
drum accompaniment tracks from the input (ALL→BASS,
ALL→PIANO).
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Figure 5: Pairwise cosine similarities of selected style pro-
files computed on training bass tracks. The styles are or-
dered based on a hierarchical clustering of the profiles.

For BASS→BASS, we compare the seq2seq and roll2seq
architectures defined in Section 4. For all other pairs,
where the input is non-monophonic, we only employ
roll2seq, since the sequential representation grows dispro-
portionately in length in these cases and the computational
cost of the attention mechanism becomes too heavy.

We evaluate our models on our synthetic test set gener-
ated by BIAB and on the Bodhidharma MIDI dataset [27].
The latter is a diverse collection of 950 MIDI recordings
annotated with genre labels. We filtered and pre-processed
the dataset in the same way as the synthetic test set and we
extracted the bass and piano tracks. 5

We also made extensive attempts to train the recent
models of [4,5, 23] on our data using the source code pub-
lished by the authors, but unfortunately without success.
This has prevented us from comparing these models with
our proposal. Nonetheless, the provided outputs [7] can
serve as a basis for perceptual comparison.

6.1 Evaluation

For a comprehensive evaluation of each model, we trans-
lated all inputs to all 70 styles and calculated the content
preservation and style fit metrics. The results (averaged)
are presented in Fig. 6.

We provide two baselines for each track (bass and pi-
ano): ‘source’, which is simply the same track before the
translation, and ‘reference’, which is a track generated by
BIAB based on the chord chart (only available for the syn-
thetic test set). As expected, the style fit is low for the
source track (measured with respect to the target style) and
close to 1 for the reference track. Our models’ outputs gen-
erally do not fit the target style as perfectly as the reference
does, but still score high compared to the source.

5 To form the bass track, we retrieve all notes assigned to any Bass
instrument. For the piano track, we use the Piano and Organ classes.

As for content preservation, we can notice that the refer-
ence value is quite low (0.78 for BASS and 0.79 for PIANO).
This should not be too surprising, since we are comparing
accompaniments in two different styles, which might have
different pitch-class distributions; moreover, there is some
random harmonic variation within each style (see e.g. bars
5–6 in Fig. 1). The results achieved by our models on the
synthetic test set are very close to the reference. To illus-
trate the value range of the metric, we provide the results
obtained by a ‘randomized’ baseline (shown as ‘random’
in Fig. 6), where we randomly permuted the reference seg-
ments for each style (obtaining a reference with the correct
style, but the wrong content). The resulting value is very
low (0.16 for BASS and 0.31 for PIANO) compared both
to the true reference and to our models, indicating that the
metric is useful and the models are performing well.

On Bodhidharma, content preservation is generally
weaker than on the synthetic test set. One interpretation
can be that the encoder simply fails to extract the content
information accurately, since it was trained on a different
domain. However, we also find that the models often make
timing errors on Bodhidharma inputs, leading to misalign-
ment between the input and the output, which may also
cause the content preservation metric to drop.

On the other hand, the style fit on Bodhidharma is close
to the results on the synthetic test set (and not consistently
lower or higher), and the difference to ‘source’ (i.e. the cor-
responding input track) is more marked, perhaps reflecting
a higher style variability in the Bodhidharma data.

Upon listening, we clearly observe that the outputs are
musical and seem to both fit the target style and follow
the harmonic structure of the inputs. Besides, even though
the piano and the bass tracks are generated independently,
they sound surprisingly coherent. However, as mentioned
above, we also observe occasional timing errors (espe-
cially in heavily syncopated grooves), which become more
prominent when the bass and piano tracks are combined.
A potential remedy for this issue would be to modify the
encoding to make it more robust, e.g. by representing the
timing in a beat-aware manner.

We also note that the single-track models output har-
monically incorrect notes more often than the ALL models;
this is expected, since their input is less harmonically rich.
This effect is clearly audible (especially in BASS, where
important scale degrees are often missing in the input),
but cannot be captured by the content preservation metric,
which is computed against the same input.

6.2 Comparison with a single-pair model

All models presented so far were trained on music in 70
different styles, as opposed to a single style pair. To inves-
tigate the effect of this choice, we picked a pair of fairly
dissimilar styles – ZZJAZZSW (‘Jazz Swing Variation’)
and TWIST (‘Twist Style’, categorized as ‘Lite Pop’) –
and generated a new training, validation and test set with
each song rendered in these two styles only. To increase
the amount of data, we performed this twice for each song
(with different results), obtaining 2 × 2 = 4 training pairs
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Figure 6: Evaluation results on content preservation and style fit. ‘Source’ is the original track (bass or piano), ‘reference’
is a track generated by BIAB in the target style and ‘random’ is a random permutation of the references. For ‘song-style’,
we plot the mean and the standard deviation over all songs and target styles.
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Figure 7: Comparison of a single-style-pair model (1→1)
and a full model (70→70) on the ZZJAZZSW→TWIST
style pair.

per segment.
We used this new dataset to train single-style-pair ver-

sions of all models (in the ZZJAZZSW→TWIST direction
only), preserving the original architectures except for the
conditioning on the target style. We compare these ‘1→1’
models to the full versions (70→70) on two sets of inputs:

• the synthetic test set in the ZZJAZZSW style;
• the ‘Swing’ section of Bodhidharma (23 songs).

In Fig. 7, we show the results for the two variants of the
ALL→BASS model. While the performance on the syn-
thetic data seems to be the same, the scores of the 1→1
model drop considerably on the Bodhidharma data, sug-
gesting that the model is overfitted to the ‘synthetic’ swing
style. On the other hand, the performance of the 70→70
model stays high, showing that training on many different
styles helped the model generalize to real swing.

6.3 Style embedding analysis

Neural representation spaces are often found to exhibit a
meaningful geometry, and our learned style embedding
space is no exception. As an example, Fig. 8 shows a
projection of the embeddings labeled by the ‘feel’ of each

Even 8ths
Even 16ths
Swing 8ths
Swing 16ths

Figure 8: Style embeddings learned by the ALL→PIANO

model, labeled with ‘feel’ annotations provided by BIAB.
Dimensionality reduction was performed using linear dis-
criminant analysis (LDA) with the feel labels as targets.

style, with ‘even’ and ‘swing’ feel styles being clearly sep-
arated. We include more plots in the supplementary mate-
rial and also make available an interactive visualization. 6

7. CONCLUSION

In this study, we focused on symbolic music accompani-
ment style translation. As opposed to the current methods,
which are inherently restricted to be unsupervised due to
the lack of aligned datasets, we developed the first fully
supervised algorithm for this task, leveraging the power
of synthetic training data. Our experiments show that our
models are capable of producing musically meaningful ac-
companiments even for real MIDI recordings.

We believe that these results point to interesting re-
search directions. First, synthetic data seem to be an ex-
cellent resource for music style translation, and could be
used as a starting point even for unsupervised learning, al-
lowing to validate a given approach before moving on to
more challenging, unaligned datasets. Second, our super-
vised approach could be used to address more general mu-
sic transformation tasks, and we are already working on an
extension in this direction.

6 https://bit.ly/2G5Jgnq
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ABSTRACT

Analogy-making is a key method for computer algorithms
to generate both natural and creative music pieces. In gen-
eral, an analogy is made by partially transferring the music
abstractions, i.e., high-level representations and their rela-
tionships, from one piece to another; however, this proce-
dure requires disentangling music representations, which
usually takes little effort for musicians but is non-trivial
for computers. Three sub-problems arise: extracting la-
tent representations from the observation, disentangling
the representations so that each part has a unique semantic
interpretation, and mapping the latent representations back
to actual music. In this paper, we contribute an explicitly-
constrained variational autoencoder (EC2-VAE) as a uni-
fied solution to all three sub-problems. We focus on dis-
entangling the pitch and rhythm representations of 8-beat
music clips conditioned on chords. In producing music
analogies, this model helps us to realize the imaginary sit-
uation of “what if ” a piece is composed using a different
pitch contour, rhythm pattern, or chord progression by bor-
rowing the representations from other pieces. Finally, we
validate the proposed disentanglement method using ob-
jective measurements and evaluate the analogy examples
by a subjective study.

1 Introduction
For intelligent systems, an effective way to generate high-
quality art is to produce analogous versions of existing ex-
amples [15]. In general, two systems are analogous if they
share common abstractions, i.e., high-level representations
and their relationships, which can be revealed by the paired
tuples A : B :: C : D (often spoken as A is to B as C is to
D). For example, the analogy “the hydrogen atom is like
our solar system” can be formatted as Nucleus : Hydrogen
atom :: Sun : Solar system, in which the shared abstrac-
tion is “a bigger part is the center of the whole system.” For
generative algorithms, a clever shortcut is to make analo-
gies by solving the problem of “A : B :: C : ?”. In the
context of music generation, if A is the rhythm pattern of
a very lyrical piece B, this analogy can help us realize the

c© Ruihan Yang, et al. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Rui-
han Yang, et al. “Deep Music Analogy Via Latent Representation Disen-
tanglement”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

imaginary situation of “what if B is composed with a rather
rapid and syncopated rhythm C” by preserving the pitch
contours and the intrinsic relationship between pitch and
rhythm. In the same fashion, other types of “what if” com-
positions can be created by simply substituting A and C
with different aspects of music (e.g., chords, melody, etc.).

A great advantage of generation via analogy is the abil-
ity to produce both natural and creative results. Natural-
ness is achieved by reusing the representations (high-level
concepts such as “image style” and “music pitch contour”)
of human-made examples and the intrinsic relationship be-
tween the concepts, while creativity is achieved by recom-
bining the representations in a novel way. However, mak-
ing meaningful analogies also requires disentangling the
representations, which is effortless for humans but non-
trivial for computers. We already see that making analo-
gies is essentially transferring the abstractions, not the ob-
servations — simply copying the notes or samples from
one piece to another would only produce a casual re-mix,
not an analogous composition [11].

In this paper, we contribute an explicitly-constrained
conditional variational autoencoder (EC2-VAE), a condi-
tional VAE with explicit semantic constraints on interme-
diate outputs of the network, as an effective tool for learn-
ing disentanglement. To be specific, the encoder extracts
latent representations from the observations; the semantic
constraints disentangle the representations so that each part
has a unique interpretation, and the decoder maps the dis-
entangled representations back to actual music while pre-
serving the intrinsic relationship between the representa-
tions. In producing analogies, we focus on disentangling
and transferring the pitch and rhythm representations of 8-
beat music clips when chords are given as the condition
(an extra input) of the model. We show that EC2-VAE
has three desired properties as a generative model. First,
the disentanglement is explicitly coded, i.e., we can spec-
ify which latent dimensions denote which semantic factors
in the model structure. Second, the disentanglement does
not sacrifice much of the reconstruction. Third, the learn-
ing does not require any analogous examples in the training
phase, but the model is capable of making analogies in the
inference phase. For evaluation, we propose a new metric
and conduct a survey. Both objective and subjective eval-
uations show that our model significantly outperforms the
baselines.
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2 Related Work
2.1 Generation Via Analogy

The history of generation via analogy can trace back to
the studies of non-parametric “image analogies” [15] and
“playing Mozart by analogy” using case-based reason-
ing [29]. With recent breakthroughs in artificial neural
networks, we see a leap in the quality of produced anal-
ogous examples using deep generative models, including
music and image style transfer [7, 13], image-to-image
translation [18], attribute arithmetic [3], and voice imper-
sonation [12].

Here, we distinguish between two types of analogy
algorithms. In a broad sense, an analogy algorithm is
any computational method capable of producing analo-
gous versions of existing examples. A common and rel-
atively easy approach is supervised learning, i.e., to di-
rectly learn the mapping between analogous items from
labeled examples [18, 27]. This approach requires little
representation learning but needs a lot of labeling effort.
Moreover, supervised analogy does not generalize well.
For example, if the training analogous examples are all
between lyrical melodies (the source domain) and synco-
pated melodies (the target domain), it would be difficult to
create other rhythmic patterns, much less the manipulation
of pitch contours. (Though improvements [1, 21, 32] have
been made, weak supervision is still needed to specify the
source and target domains.) On the other hand, a strict
analogy algorithm requires not only learning the represen-
tations but also disentangling them, which would allow the
model to make domain-free analogies via the manipulation
of any disentangled representations. Our approach belongs
to this type.

2.2 Representation Learning and Disentanglement

Variational auto-encoders (VAEs) [22] and generative ad-
versarial networks (GANs) [14] are so far the two most
popular frameworks for music representation learning.
Both use encoders (or discriminators) and decoders (or
generators) to build a bi-directional mapping between the
distributions of observation x and latent representation z,
and both generate new data via sampling from p(z). For
music representations, VAEs [2,9,24,30] have been a more
successful tool so far compared with GANs [31], and our
model is based on the previous study [30].

The motivation of representation disentanglement is to
better interpret the latent space generated by VAE, con-
necting certain parts of z to semantic factors (e.g., age for
face images, or rhythm for melody), which would enable
a more controllable and interactive generation process. In-
foGAN [5] disentangles z by encouraging the mutual in-
formation between x and a subset of z. β-VAE [16] and
its follow-up studies [4,20,30] imposed various extra con-
straints and properties on p(z). However, the disentangle-
ment above are still implicit, i.e., though the model sepa-
rates the latent space into subparts, we cannot define their
meanings beforehand and have to “check it out” via latent
space traversal [3]. In contrast, the disentanglement in
Style-based GAN [19], Disentangled Sequential Autoen-

coder [23], and our EC2-VAE are explicit, i.e., the mean-
ings of different parts of z are defined by the model struc-
ture, so that the controlled generation is more precise and
straightforward. The study Disentangled Sequential Au-
toencoder [23] is most related to our work and also deals
with sequential inputs. Using a partially time-invariant en-
coder, it can approximately disentangle dynamic and static
representations. Our model does not directly constrain z
but applies a loss to intermediate outputs associated with
latent factors. Such an indirect but explicit constraint en-
ables the model to further disentangle the representation
into pitch, rhythm, and any semantic factors whose obser-
vation loss can be defined. As far as we know, this is the
first disentanglement learning method tailored for music
composition.

3 Methodology
In this section, we introduce the data representation and
model design in detail. We focus on disentangling the la-
tent representations of pitch and rhythm, the two funda-
mental aspects of composition, over the duration of 8-beat
melodies. All data come from the Nottingham dataset [10],
regarding a 1

4 beat as the shortest unit.

3.1 Data Representation

Each 8-beat melody is represented as a sequence of 32 one-
hot vectors each with 130 dimensions, where each vector
denotes a 1

4 -beat unit. As in [24], the first 128 dimensions
denote the onsets of MIDI pitches ranging from 0 to 127
with one unit of duration. The 129th dimension is the hold-
ing state for longer note duration, and the last dimension
denotes rest. We also designed a rhythm feature to con-
strain the intermediate output of the network. Each 8-beat
rhythm pattern is also represented as a sequence of 32 one-
hot vectors. Each vector has 3 dimensions, denoting: an
onset of any pitch, a holding state, and rest.

Besides, chords are given as a condition, i.e., an extra
input, of the model. The chord condition of each 8-beat
melody is represented as a chromagram with equal length,
i.e., 32 multi-hot vectors each with 12 dimensions, where
each dimension indicates whether a pitch class is activated.

3.2 Model Architecture

Our model design is based on the previous studies of [24,
30], both of which used VAEs to learn the representa-
tions of fixed-length melodies. Figure 1 shows a compar-
ison between the model architectures, where Figure 1(a)
shows the model designed in [30] and Figure 1(b) shows
the model design in this study. We see that both use bi-
directional GRUs [6] (or LSTMs [17]) as the encoders (in
blue) to map each melody observation to a latent represen-
tation z, and both use uni-directional GRUs(LSTMs) (with
teacher forcing [26] in the training phrase) as the decoders
(in yellow) to reconstruct melodies from z.

The key innovation of our model design is to assign a
part of the decoder (in orange) with a specific subtask: to
disentangle the latent rhythm representation zr from the
overall z by explicitly encouraging the intermediate output
of zr to match the rhythm feature of the melody. The other
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(a) Vanilla sequence VAE. (b) EC2-VAE model.

Figure 1: A comparison between vanilla sequence VAE [30] and our model with condition and disentanglement.

part of z is therefore everything but rhythm and interpreted
as the latent pitch representation, zp. Note that this explic-
itly coded disentanglement technique is quite flexible —
we can use multiple subparts of the decoder to disentangle
multiple semantically interpretable factors of z simultane-
ously as long as the intermediate outputs of the correspond-
ing latent factors can be defined, and the model shown in
Figure 1(b) is the simplest case of this family.

It is also worth noting that the new model uses chords as
a condition for both the encoder and decoder. The advan-
tage of chord conditioning is to free z from storing chord-
related information. In other words, the pitch information
in z is “detrended” by the underlying chord for better en-
coding and reconstruction. The cost of this design is that
we cannot learn a latent distribution of chord progressions.

3.2.1 Encoder

A single layer bi-directional GRU with 32 time steps is
used to model Qθ(z|x, c), where x is the melody input,
c is the chord condition, and z is the latent representation.
Chord conditions are given by concatenating with the input
at each time step.

3.2.2 Decoder

The global decoder models Pφ(x|z, c) by multiple layers
of GRUs, each with 32 steps. For disentanglement, we
split the latent representation z into two halves zp and zr,
each being a 128-dimensional vector. As a subpart of the
global decoder, the rhythm decoder models Pφr (r(x)|z)
by a single layer GRU, where r(x) is the rhythm feature of
the melody. Meanwhile, the rhythm is concatenated with
zp and chord condition as the input of the rest of the global
decoder to reconstruct the melody. We used cross-entropy

loss for both rhythm and melody reconstruction. Note that
the overall decoder is supposed to learn non-trivial rela-
tionships between pitch and rhythm, rather than naively
cutting a pitch contour by a rhythm pattern.

3.3 Theoretical Justification of the ELBO Objective
with Disentanglement

One concern about representation disentanglement tech-
niques is that they sometimes sacrifice reconstruction
power [20]. In this section, we prove that our model does
not suffer much of the disentanglement-reconstruction
paradox, and the likelihood bound of our model is close
to that of the original conditional VAE, and in some cases,
equal to it.

Recall the Evidence Lower Bound (ELBO) objective
function used by a typical conditional VAE [8] constraint
on input sample x with condition c:

ELBO(φ, θ) = EQ[logPφ(x|z, c)]
−KL[Qθ(z|x, c)||Pφ(z|c)] ≤ logPφ(x|c)

For simplicity, D denotes KL[Qθ(z|x, c)||Pφ(z|c)] in the
rest of this section. If we see the intermediate rhythm out-
put in Figure 1(b) as hidden variables of the whole net-
work, the new ELBO objective of our model only adds the
rhythm reconstruction loss based on the original one, re-
sulting in a lower bound of the original ELBO. Formally,

ELBOnew(φ, θ)

= EQ[logPφ(x|z, c)]−D + EQ[logPφr (r(x)|zr)]
= ELBO(φ, θ) + EQ[logPφr

(r(x)|zr)]

where φr denotes parameters of the rhythm decoder.
Clearly, ELBOnew is a lower bound of the original ELBO
because EQ[logPφr

(r(x)|zr)] ≤ 0.
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Moreover, if the rest of global decoder takes the orig-
inal rhythm rather than the intermediate output of rhythm
decoder as the input, the objective can be rewritten as:

ELBOnew(φ, θ)

= EQ[logPφ(x|r(x), zp, c) + logPφ(r(x)|zr, c)︸ ︷︷ ︸
with x |= zr|r(x),c and r(x) |= zp

]−D

= EQ[logPφ(x, r(x)|z, c)]−D
= EQ[Pφ(x|z, c) + logPφ(r(x)|x, z, c)]−D
= ELBO(φ, θ)

The second equal sign holds for a perfect disentanglement,
and the last equal sign holds since r(x) is decided by x,
i.e., Pφ(r(x)|x, z, c) = 1. In other words, we show that
under certain assumptions ELBOnew with disentanglement
is identical to the ELBO.

4 Experiments
We present the objective metrics to evaluate the disentan-
glement in Section 4.1, show several representative exam-
ples of generation via analogy in Section 4.2, and use sub-
jective evaluations to rate the artistic aspects of the gener-
ated music in Section 4.3.

4.1 Objective Measurements

Upon a successful pitch-rhythm disentanglement, any
changes in pitch of the original melody should not af-
fect the latent rhythm representation much, and vice versa.
Following this assumption, we developed two measure-
ments to evaluate the disentanglement: 1) ∆z after trans-
position, which is more qualitative, and 2) F-score of an
augmentation-based query, which is more quantitative.

4.1.1 Visualizing ∆z after transposition

We define Fi as the operation of transposing all the notes
by i semitones, and use theL1-norm to measure the change
in z. Figure 2 shows a comparison between Σ|∆zp| and
Σ|∆zr| when we apply Fi to a randomly chosen piece
(where i ∈ [1, 12]) while keeping the rhythm and under-
lying chord unchanged.

Figure 2: A comparison between ∆zp and ∆zr after
transposition.

Here, the black bars stand for Σ|∆zp| and the white bars
stand for the Σ|∆zr|. It is conspicuous that when augment-
ing pitch, the change of zp is much larger than the change
of zr, which well demonstrates the success of the disentan-
glement.

It is also worth noting that the change of zp to a certain
extent reflects human pitch perception. Given a chord, the
change in zp can be understood as the “burden” (or diffi-
culty) to memorize (or encode) a transposed melody. We
see that such burden is large for tritone (very dissonant),
relatively small for major third, perfect fourth & fifth (con-
sonant), and very small for perfect octave.

Due to the space limit, we only show the visualization
of the latent space when changing the pitch. According to
the data representation in Section 3.1, changing the rhythm
feature of a melody would inevitably affect the pitch con-
tour, which would lead to complex behavior of the latent
space hard to interpret visually. We leave the discussion
for future work but will pay more attention to the effect of
the rhythm factor in Section 4.3.

4.1.2 F -score of Augmentation-based Query

The explicitly coded disentanglement enables a new eval-
uation method from an information-retrieval perspective.
We regard the pitch-rhythm split in z defined by the model
structure as the reference (the ground truth), the operation
of factor-wise data augmentation (keeping the rhythm and
only changing pitch randomly, or vice versa) as a query in
the latent space, and the actual latent dimensions having
the largest variance caused by augmentation as the result
set. In this way, we can quantitatively evaluate our model
in terms of precision, recall, and F-score.

Figure 3: Evaluating the disentanglement by data
augmentation.

Pitch Rhythm
pre. rec. F -s. pre. rec. F -s.

EC2-VAE 0.88 0.88 0.88 0.80 0.80 0.80
Random 0.5 0.5 0.5 0.5 0.5 0.5

Table 1: The evaluation results of pitch- and rhythm-wise
augmentation-based query.

Figure 3 shows the detailed query procedure, which is
a modification of the evaluation method in [20]. After
pitch or rhythm augmentation for each sample, ~v is calcu-
lated as the average (across the samples) variance (across
augmented versions) of the latent representations, normal-
ized by the total sample variance ~s. Then, we choose
the first half (128 dimensions) with the largest variances
as the result set. This precision, recall and F-score of
this augmentation-based query result is shown in Table 1.
(Here, precision and recall are identical since the size of
the result set equals the dimensionality of zp and zr.) As
this is the first tailored metric for explicitly coded disen-
tanglement, we use random guess as our baseline.
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4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody
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contour indeed adds some reasonable modification (e.g.
flipping the melody) rather than simply transposing down
all the notes. It brings us a little sense of Jazz. Figure 9(b)
shows an example where the key is changed from G major
to G minor. We see melody also naturally transforms from
major mode to minor mode.

4.2.4 Two-way Pitch-Rhythm Interpolation

Figure 10: An illustration of two-way interpolation.

The disentanglement also enables a smooth transition
from one music to another. Figure 10 shows an example
of two-way interpolation, i.e., a traversal over a subspace
of the learned latent representations zr and zp along 2 axes
respectively, while keeping the chord as NC (no chord).
Here, each square is a piano-roll of an 8-beat music. The
top-left (source) and bottom-right (target) squares are two
samples created manually and everything else is generated
by interpolation using SLERP [28]. Note that the rhythmic
changes are primarily observed moving along the “rhythm
interpolation” axis, and likewise for pitch and the vertical
“pitch interpolation” axis.

4.3 Subjective Evaluation

Besides objective measurement, we conducted a subjective
survey to evaluate the quality of generation via analogy.
We focus on changing the rhythm factors of existing music
since this operation leads to an easier identification of the
source melodies.

Each subject listened to two groups of five pieces each.
All the pieces had the same length (64 beats at 120 bpm).
Within each group, one piece was an original, human-
composed piece from the Nottingham dataset, having a
lyrical melody consisting of longer notes. The remaining
four pieces were variations upon the original with more
rapid rhythms consisting of 8th and 16th notes. Two of the
variations were produced in a rule-based fashion by naively
cutting the notes in the original into shorter subdivisions,
serving as the baseline. The other two variations were gen-

erated with our EC2-VAE by merging the zp of the original
piece and the zr decoded from two pieces having the same
rhythm pattern as the baselines but with all notes replaced
with “do” (similar to Figure 8(a)). The subjects always lis-
tened to the original first, and the order of the variations
was randomized. In sum, we compare three versions of
music: 1) the original piece, 2) the variation created by the
baseline, and, 3) the variation created by our algorithm.
The subjects were asked to rate each sample on a 5-point
scale from 1 (very low) to 5 (very high) according to three
criteria:

1. Creativity: how creative the composition is.
2. Naturalness: how human-like the composition is.
3. Overall musicality.

A total of 30 subjects (16 female and 14 male) partic-
ipated in the survey. Figure 11 shows the results, where
the heights of bars represent means of the ratings the and
error bars represent the MSEs computed via within-subject
ANOVA [25]. The result shows that our model performs
significantly better than the rule-based baseline in terms of
creativity and musicality (p < 0.05), and marginally bet-
ter in terms of naturalness. Our proposed method is even
comparable to the original music in terms of creativity, but
remains behind human composition in terms of the other
two criteria.

Figure 11: Subjective evaluation results.

5 Conclusion
In conclusion, we contributed an explicitly-constrained
conditional variational autoencoder (EC2-VAE) as an ef-
fective disentanglement learning model. This model gen-
erates new music via making analogies, i.e., to answer the
imaginary situation of “what if” a piece is composed using
different pitch contours, rhythm patterns, and chord pro-
gressions via replacing or interpolating the disentangled
representations. Experimental results showed that the dis-
entanglement is successful and the model is able to gener-
ate interesting and musical analogous versions of existing
music. We see this study a significant step in music un-
derstanding and controlled music generation. The model
also has the potential to be generalized to other domains,
shedding light on the general scenario of generation via
analogy.
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ABSTRACT

Cross-modal retrieval learns the relationship between the
two types of data in a common space so that an input from
one modality can retrieve data from a different modality.
We focus on modeling the relationship between two highly
diverse data, music and real-world videos. We learn cross-
modal embeddings using a two-stream network trained
with music-video pairs. Each branch takes one modal-
ity as the input and it is constrained with emotion tags.
Then the constraints allow the cross-modal embeddings
to be learned with significantly fewer music-video pairs.
To retrieve music for an input video, the trained model
ranks tracks in the music database by cross-modal dis-
tances to the query video. Quantitative evaluations show
high accuracy of audio/video emotion tagging when eval-
uated on each branch independently and high performance
for cross-modal music retrieval. We also present cross-
modal music retrieval experiments on Spotify music us-
ing user-generated videos from Instagram and Youtube as
queries, and subjective evaluations show that the proposed
model can retrieve relevant music. We present the music
retrieval results at: http://www.ece.rochester.
edu/~bli23/projects/query.html.

1. INTRODUCTION

Music retrieval has been explored for many cross-domain
inputs such as text [27], image [5], location [41], video
[32], vocal imitation [42], and sheet music [29]. To our
knowledge there are few reports focusing on cross-modal
music retrieval given videos from unconstrained sources.
With the proliferation of smart phones, people capture
short videos to communicate moments from their every-
day lives. Learning relationships between music and real-
world videos has many applications including novel mu-
sic query scenarios where a playlist is recommended to fit
user’s surrounding scenes, or automatically soundtrack se-
lection to complement and enhance visual messages on so-
cial media, e.g., Snapchat, Instagram, and Facebook.

Real-world videos can contain any form of video in-
cluding edited or raw content, and music is an inherently
diverse content as well [8]. Thus associating music with

c© Bochen Li, Aparna Kumar. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Bochen Li, Aparna Kumar. “Query by Video: Cross-modal Mu-
sic Retrieval”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.
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Figure 1. A large music database can be queried by real-
world videos from unconstrained sources.

such videos is more challenging than common sounds and
objects, e.g., barking to a dog [1], which has explicit con-
nection on semantic level. One way to bridge real-world
videos and music is via elicited emotions. Previous work
addresses this problem after recognizing each modality in-
dependently as hand-labeled emotion features [5, 32], but
this is not sufficient since hand-labeled emotions (e.g.,
several human-defined emotion tags) are prone to bias
and subjectivity [39], and bottleneck each modality into
a limited non-learnable space. Thus no scalable solution
has been proposed to query from large music databases.
Later a two-stream network structure is proposed for mu-
sic query by music videos [12], where cross-modal embed-
dings are learned directly from music-video pairs. How-
ever, it requires intensive training on music videos (MV)
where the videos were originally created for specific songs,
and the music retrieval performances given videos from
more varieties of sources are not systematically evaluated.

In this paper, we address the music retrieval task on
videos in the wild (Figure 1). Different from previous
work that models each modality independently, we pro-
pose a two-stream network structure to learn the cross-
modal distance in an end-to-end fashion using music-video
pairs, while emotion tags are applied on each branch to
form latent emotion space. Each branch is pre-trained as
audio/video emotion tagging sub-network before feeding
music-video pairs to both for cross-modal distance learn-
ing. This strategy requires fewer music-video pairs for
training, and makes it possible to collect crowdsourced
pairs of music and videos from independent sources. Note
that the tags are only used during training phase to facilitate
the convergence of cross-modal distance learning, and not
necessary during model inference of music query. When
a video queries the system, the model ranks every item of
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an existing music database by Euclidean distance to the in-
put video on the cross-modal embedding. The top ranked
results represent the best matches to the input.

The main contributions of this paper are :

• A first system to address music retrieval from videos
in the wild via learnable emotion space.

• A two-stream network structure and training strategy
with emotion tags as joint constraints to learn cross-
modal embeddings from fewer music-video pairs.

• Subjective evaluations showing promising retrieval
results on real-world datasets.

2. RELATED WORK

2.1 Music, Videos and Emotions

The emotions associated with music and videos have been
thoroughly studied. It has been suggested that emotions
are one of the primary reasons people engage with mu-
sic [15], and psychological studies reveal that people have
emotional reactions on visual stimuli as well [7]. There-
fore a natural way to retrieve music for videos is through
the associations with emotion.

Categorical and dimensional representations have been
used to represent emotion in music [18]. Discrete cat-
egorical tags include terms such as calmness, sadness,
anger, and more. Gracenote 1 has performed a major ef-
fort around tagging the mood in music and provides mood
taxonomies consisting of over 300 categories organized hi-
erarchically. One work finds that the number of mood
categories does not reflect the richness of emotions per-
ceived by humans, or the taxonomy is inherently ambigu-
ous [15]. Dimensional labels typically represent music on
a 2-D plane of valence and arousal [30]. This continuous
representation does not have the taxonomy problem, but
has trouble distinguishing some psychology and emotion
concepts such as nostalgia.

Emotion associated with images and videos have been
also represented categorically [44] and dimensionally [24],
similar to music. Seven emotion tags have been associ-
ated with videos of facial expressions [16, 17]. Eight basic
emotion tags, with 3 variations on each tag are introduced
for labeling unconstrained videos [38]. Movie scenes have
been characterized in the valence-arousal space [3]. In
[11], “Dominance” is introduced as an additional dimen-
sion for characterizing video emotions.

2.2 Cross-modal Audio-Visual Retrieval

Cross-modal retrieval has received increasing attention in
the recent years. One work proposes a two-stream network
structure for audio-vision cross-modal retrieval of common
objects and their respective sounds, such as an image of a
clock paired with the sound of an alarm [1]. This work
has curated a large training dataset of common objects and
sounds from publicly available sources. The cross-modal
correspondence is learned from audio-visual pairs. Similar

1 www.gracenote.com

work has been described with additional modalities of text
[2] and speech [26].

Related work for music includes cross-modal localiza-
tion [43], association [20, 22], and generation [21] of mu-
sic performances. Earlier work for cross-modal music re-
trieval involves extracting distance measurement between
low-level features from video and music segments [40].
Some approaches synchronize video and music after repre-
senting each modality as sequence of 2-D valence-arousal
features [23, 31, 32]. One work uses stochastic emotion
space to bridge video and music [36], and another reports
recommended music for still photo albums by defining a
cross-modal graph on which synsets of mood tags from
images and music are associated [5]. Pairing in these ap-
proaches recognizes each modality as explicit symbolic
representations independently (e.g., hand-labeled emo-
tions) before learning the association. Also, these systems
mostly emphasize temporal inter-dependence, focusing on
pairing a soundtrack to match the visual event with less de-
mand on learning deep semantic representations on emo-
tions.

Learning cross-modal embeddings end-to-end using
cross-modal pairs could result in a deep representations of
the relationships and improved performance at scale in a
music retrieval setting. As presented in [12], music/video
cross-modal retrieval has been modeled by learning from
music-video pairs and presented on music and their respec-
tive music videos, where the videos were intentionally cre-
ated as MV. Without constraining the cross-modal learning
space, it requires intensive training on music-video pairs,
e.g., existing music videos, and is not systematically eval-
uated on the retrieval results for videos from more sources.
In this paper we also learn the embedding space in an end-
to-end fashion using pairs of video and music, but con-
strain the learning space with emotion tags to form latent
emotion space for each modality.

3. APPROACH

3.1 Network Architecture

3.1.1 Video Branch

The video branch consists of a feature extraction mod-
ule followed by fully-connected layers for emotion tag-
ging, left stream in Figure 2. We use pre-trained Inflated-
3D model (I3D) [4] as the visual feature extractor. I3D
was originally proposed for human action recognition from
videos and was trained on the Kinetics dataset [4]. This
pre-trained network has been successfully used for other
video understanding tasks such as video captioning and
audio-visual localization [34].

We input only the RGB frames and ignore optical flow.
The system outputs a concatenation of the inception mod-
ules. We take a global average pool resulting in a 1024-D
feature vector for each whole video of any duration. Next,
we add fully connected layers. Each layer is followed by a
ReLU nonlinearity, except that the output layer is followed
by a sigmoid nonlinearity. Input video frames are resized
to 224×224, and the RGB values are normalized to [-1,
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Figure 2. The two-stream network architecture with emo-
tion constraints on each branch. The dimensions of fully-
connected layer (fc), channel numbers of convolutional
layer (conv), and pool sizes are marked aside each block.
The kernel size for all the convolutional layers is 3×3.

1]. The video network is pre-trained with 27 emotion tags
using binary cross-entropy loss.

3.1.2 Audio Branch

The audio branch consists of a ConvNet structure as a gen-
eral audio tagging framework analogue to [6], right stream
in Figure 2. Each convolutional layer is followed by a
batch normalization and ReLU nonlinearity, and the output
fully-connected layer has a sigmoid nonlinearity. Audio is
trimmed to 10-sec with a sample rate of 12 kHz. Log mel-
spectrograms are computed from input audio with a frame
length of 42.7 ms (with 50% overlapping) and 96 mel-scale
filter banks. The audio network is pre-trained with 7 emo-
tion tags using binary cross-entropy loss.

3.1.3 Cross-modal distance learning

The cross-modal distance learning network is designed to
embed the video and audio into the cross-modal embed-
dings (i.e., the joint feature space in Figure 2) so they can
be directly compared as vector distance. This network
takes the two 256-D penultimate layers from the video
and audio branches to predict if the input music-video pair
match, as a binary classification problem. The 256-D lay-
ers represent latent emotion space that is learned from the
training pairs. The classifier is trained with the contrastive
loss [10] on the Euclidean distance between each modal-
ity’s 64-D cross-modal embedding, after L2 normalization.

3.2 Training

We first pre-train the audio and video branches indepen-
dently as multi-label classifiers to predict emotion tags for

each modality. The training stops when validation loss
does not decrease for 5 consecutive epochs. Then the
cross-modal distance learning framework is trained jointly
while each branch predicts emotion tags. The network is
jointly constrained and the three loss functions are equally
weighted. This strategy constrains the learning space us-
ing emotion tags, and enables cross-modal distance learn-
ing from fewer music-video pairs. We use Adam optimizer
[19], a stochastic gradient descent method, to minimize all
the loss functions. When the model is trained, in practice
all tracks in a music catalog are indexed by the embedding
vector from the cross-modal joint feature space. Given any
query video, the tracks in the database can be ranked by
the Euclidean distance to the embedding vector calculated
from the video. This creates a fast retrieval setup for large
catalogs.

4. DATA

4.1 Training Data

The audio and video branches are pre-trained on indepen-
dent music and video datasets with emotion labels. To train
the cross-modal network we reuse the data from different
modalities to create music-video pairs according to crowd-
sourced annotations about how well each pair matches.

4.1.1 AudioSet

We use the AudioSet [9] to pre-train the audio branch. Au-
dioSet has human-labeled 10-second sound clips drawn
from YouTube videos. We use data from “Music Mood”
Ontology which contains music excerpts that are labeled
with one of 7 music mood categories. We use AudioSet’s
official Unbalanced Train data where we randomly sample
roughly 800 clips from each category for a total of 5.6K
samples. We split it randomly where 80% is used for train-
ing and 20% is used for validation. We use AudioSet’s offi-
cial Eval data as the test set which consists of 354 samples,
roughly 60 for each class, barring invalid download links.
We do not use the videos from AudioSet for cross-modal
distance learning because most contain a specific type of
edited content, which is not suitable for the objective of
retrieving music for videos from unconstrained sources.

4.1.2 Cowen2017

We use the Cowen2017 dataset [7] to pre-train the video
branch. The dataset includes over 2K data samples in-
cluding video clips from daily life, movies, cartoons, game
scenes, artistic work, and more. Each video is annotated by
several subjects who could select up to 27 emotion tags for
each video. The annotations are aggregated so that each
video’s label is 27 emotion tags with a confidence value
between 0 and 1. We split it randomly where and 80% is
used for training and 20% is used to create the test set.

4.1.3 Music-video Pairs

To our knowledge there are no publicly available datasets
that connect diverse videos with music, and contain the
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0 1

Figure 3. Visualizations of the emotion tags for the an-
notated music-video pairs from crowdsourced annotations.
The color shows normalized counts.

respective emotion labels. Our goal is to construct a gen-
eralizable dataset that matches samples from one modality
to the other while all samples have emotion labels. So we
apply crowdsourcing to create music-video pairs from the
same samples in AudioSet and Cowen2017. We follow the
respective splits of training and test set as before so clips
from one set do not appear in the other.

Training a cross-modal network requires positive and
negative music-video pairs. The positive pairs are cre-
ated by collecting binary crowdsourced judgments for ran-
domly paired music and video clips until we have 1000
matches. Detailed crowdsourcing setup is described in
Section 4.3. The negative samples are created from ran-
dom un-annotated music-video pairs. In total we have
class-balanced training set of 2000 pairs. We then perform
the same process to collect another 1000 pairs on the test
set. In Figure 3, we present a heatmap visualization of
the relationship between the emotion tags of the positive
audio-video pairs from the two modalities.

4.2 Real-world Data

To estimate how the system will perform on real-world
data we curate videos and music from popular social media
and music streaming platforms.

4.2.1 Spotify’s Popular Music

We create a dataset of popular music from Spotify, an in-
ternational music streaming platform. We identify popular
Gracenote level 1 worldwide genres where at least 1000
tracks are streamed per day on Spotify. From each of the
30 most popular genres we select 40 of the most popular
songs. The audio is downloaded from Spotify, which re-
sults in 1195 music clips.

4.2.2 The Moments in Time Dataset

We use video clips from the Moments in Time dataset [28]
where each clip is a 3-second video snippet. The dataset
was created for the tasks of action recognition and event
understanding. We pick the first 100 moment categories
(sorted alphabetically) from the Moments in Time Mini (a
subset). From each category we select the first 5 video
samples, totaling 500 video clips as the query videos.

4.2.3 Instagram Videos

Instagram is a social media platform for sharing photos and
short videos. From a new account without search history
we curate the top 20 videos from common photo post cat-
egories [13] : Friends, Food, Gadget, Pets, Activities, Self-
ies, Fashion, and we exclude Captioned Photos because
the text may bias annotators’ judgments and the system is
currently not trained to process text. This results in 140
user uploaded short video clips.

4.3 Crowdsourcing Setup

Crowdsourced judgments are collected to create music-
video pairs in the training and test datasets for cross-modal
distance learning, and for subjective evaluations of music
retrieval performance on real-world datasets. Experiments
are run on the Figure-eight 2 platform which minimizes
malicious activity during annotations and ensure high qual-
ity judgments for researchers.

Annotators are sourced from an international pool and
each annotator is allowed to answer at most 10 questions,
so that relevance judgments would not be overfit to any
small group. Every question is randomly presented to at
least 3 annotators. If the agreement among annotations is
less than 65% per question, the number of annotators is
dynamically increased up to 5 or until there is at least 65%
agreement. Annotators are instructed to “listen in a quiet
place, wear headphones, and watch the entire clip”. The
instructions for each audio-video pair are: “Please tell us
if there is a common emotion theme in the video and the
music, try not to focus on whether you like the music or
the video.” Possible responses are: “yes they match”, “no
they do not match”, and “I am not sure”.

To avoid biasing the pool of contributors we do not use
gold standard screening questions that resemble the an-
notation questions, a common practice on Figure-eight.
Instead to monitor annotation quality and attentiveness,
we monitor whether any annotator’s responses consistently
deviate from the responses of other annotators. If an anno-
tator’s responses are different from the average annotation
in more than 3 questions we flag that individual to analyze
their contributions. We do not find any annotators fall into
this group. In total we have collected thousands of annota-
tions from subjects from 12 countries. Approximately 71%
of the questions have greater than 66% agreement on “yes”
and “no” responses. The remaining has responses split be-
tween “yes”, “no”, and “not sure”, and for this work we
consider the responses as “no” because annotators do not
perceive relevance.

5. EXPERIMENTS

The model performance is evaluated numerically on the
tasks of 1) predicting emotion tags from each branch in-
dependently, 2) predicting if the input audio-video pairs
match, and 3) cross-modal music retrieval, on the anno-
tated datasets. The music retrieval performances are also

2 https://www.figure-eight.com
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Figure 4. Performance of the audio branch for predicting
emotion tags after pre-training. Results are presented as
confusion matrix (left), and AUC on each category (right).
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Figure 5. Performance of the video branch for predicting
emotion tags after pre-training. AUCs are calculated using
a score margin at 0.25.

evaluated on real-world data using crowdsourced subjec-
tive judgments.

5.1 Predicting Audio Emotion Tags

We evaluate the pre-trained audio branch using the la-
beled heldout data from AudioSet. The music emotion
tagging result is evaluated using multi-class classification
metrics. Figure 4 presents the confusion matrix, where
Angry and Scary are likely to get high true positive rates,
while the boundaries between Exciting, Funny, and Happy
are blurred. We observe that angry music is generally noisy
with strong percussion, while scary music has strong inhar-
monic components, as more distinct characteristics.

We also evaluate the model using the area under the
receiver operating characteristic curve (AUC), a statisti-
cal metric that summarizes model’s performance regard-
less of classification threshold. Equivalently, it measures
the performance of binary classifiers (measuring each tag
independently) by ranking scores, i.e., the probability that
a randomly chosen positive is ranked ahead of a randomly
chosen negative. The performance on each emotion tag is
shown in Figure 4, with an average of 87.88%.

5.2 Predicting Video Emotion Tags

The pre-trained video tagging branch is evaluated using
heldout data from Cowen2017. Similar to scored AUCs
[35, 37], we set a score margin on soft ground truth labels
to report the performance. This metric assesses how well
relative differences between video samples in the dataset
can be predicted. It compares the sign of the differences
between any two predictions to sign of the differences of
the respective ground truth ones. Performance is mea-
sured only when the two data points have sufficiently large

Method 2-stream emotion [32] emtoion [5] proposed
Result 38.1% 36.0% 46.8% 68.0%

Table 1. Music retrieval performances on the labeled
datasets compared with three baseline methods.

ground truth differences, e.g., 0.25 as used here. The av-
erage AUC for all tags is 83.79%, as shown in figure 5 on
each tag.

5.3 Predicting Audio-video Pairs

We also evaluate the cross-modal network to understand
overall performance on cross-modal distance learning and
the effects of the emotion tags which constrain the video
and audio branches during cross-modal training. The
cross-modal network predicts the input audio-video pairs
as either positive or negative (matched or not) on the 1000
pairs from test set, and is evaluated as a binary classifier
with a threshold of 0.5. We create a baseline model with
the same two-stream network structure but without pre-
training the branches on emotion tags or joint loss func-
tions. The two models are trained and evaluated with the
same dataset, described in Section 4.1.3. The accuracy of
the proposed model is 79.00% while the baseline achieves
63.30%. Note that this baseline system is a general two-
stream cross-modal distance learning network, e.g., [1],
which usually requires intensive training on a large number
of training pairs. The results indicate that pre-training and
joint constraints on emotion tags is important for cross-
modal distance learning when the training data is limited
and the task includes data with highly diverse.

5.4 Cross-modal Music Retrieval

We reuse the heldout data from Cowen2017 and Audioset
as query videos and the pool of music, respectively, where
for each query video there are on-average 16.2 music sam-
ples from the pool are annotated as ground-truth retrieval.
The music retrieval performance is evaluated by counting
the number of videos that can retrieve a relevant song. For
each query video only the top retrieval is considered, af-
ter ranking all the 354 music tracks. The proposed model
retrieves relevant music for 68.0% of query videos.

We also compare the performance to three baseline
models, as presented in Table 1. The first baseline model is
the same baseline as illustrated in Section 5.3, which share
the same network structure but without emotion tags and
pre-traning to form latent emotion space. It only achieves
satisfactory retrieval for 38.1% of videos.

The second baseline models each modality as continu-
ous emotion representation on the valence-arousal (V-A)
space, analogue to [32]. We implement this by adapt-
ing the proposed model structure, where the output layer
from each branch is replaced with 2-D states to repre-
sent valence and arousal constrained by mean squared er-
ror (MSE) from the ground-truth values as a regression
problem, without the two-stream structure for learning the
cross-modal embeddings. The audio model achieves R2
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Video source Moments in Time Instagram
Result 58.2% 64.3%

Table 2. Music retrieval performance on Spotify music
using query videos collected from new sources.

statistics of 53%/36% for arousal/valence when trained and
evaluated on the 1000Song dataset [33]. The video model
achieves R2 of 75.04%/60.28% for arousal/valence when
trained and evaluated on the AudioSet videos using anno-
tated labels. Both models achieve higher performance than
the original work on emotion prediction [32]. We map the
two modalities in the A-V space and the model achieves
relevant retrievals for 36.0% videos.

The third baseline matches modalities according to
hand-labeled emotion tags, analogue to [5]. To imple-
ment this we modify the model structure to build the cross-
modal distance learning structure from the predicted emo-
tion tags from each branch, instead of the 256-D latent
emotion space. This model achieves relevant retrievals for
46.8% videos.

These experiments show that the proposed approach
outperforms three baseline solutions. Two of the baselines
join the modalities directly on predicted emotion states:
arousal-valence values or explicit emotion tags. It sug-
gests that our model learns deeper relationships between
the modalities in the cross-modal space. Comparing to the
other baseline, the results indicate that when the model is
not constrained with emotion tags, only 2000 audio-video
pairs as training set is too small for the network to learn the
cross-modal embeddings to represent underlying the rela-
tionships between the cross-modal inputs.

5.5 Performance on Real-world Data

We assess how well our proposed model works on real-
world data by collecting human judgments using the
crowdsourcing setup in section 4.3. We use the 500 sam-
ples from the Moments in Time dataset and 140 user-
generated videos from Instagram to retrieve music from a
pool of music clips downloaded from Spotify. The model
can successfully retrieve music for 58.2% and 64.3%
videos, respectively. Music retrieval performance is bet-
ter on Instagram than Moments in Time.

Note that Instagram videos are uploaded by users to vi-
sually share an experience or a mood that incites an emo-
tion [14]. Instead, Moments in Time was created to cap-
ture different actions objectively without capturing senti-
ment [28]. This difference may explain why performance
is higher on the Instagram videos.

5.6 Qualitative Analyses

We qualitatively analyze the latent emotion space learned
from the two-stream model. We take the latent emotion
space from the audio branch and create a t-SNE visualiza-
tion [25], as plotted in Figure 6, to study how the matched
videos localize in this 2-D space. Each dot represents a
music sample from AudioSet, and we color the ones with

Figure 6. The t-SNE visualization of the latent emotion
space from the audio branch. Samples from the “Tender”
tag are in gray. Four randomly selected regions for tender
music are presented in colors representing different emo-
tion concepts: gloomy, ambient, delicate, sweet, each with
the thumbnails of the paired videos displayed.

the original label “Tender” in grey. Among these samples,
we randomly select some from different regions and they
are presented using different colors and with the thumb-
nails of the paired videos from model output. It indicates
that samples close together with similar granular emotions
are usually associated with similar videos. For example,
samples in yellow represent music that sounds serene or
soothing, and associated with outdoor nature scenes. This
suggests that the proposed framework constrained with
emotion tags enables the model to learn a interpretable
emotion space and cross-modal correspondence including
nuances that are no represented in the original tags.

We also investigate some failure retrieval cases and find
most are due to incorrect predictions of video emotions.
Also, several retrievals are matched on emotions but mis-
matched on cultural signals. For example, a video with
people bowing to Beyonce as she wears a crown is paired
with music that sounds “mystical” or “heavenly”, which is
annotated as “mismatch” likely because annotators recog-
nize Beyonce and they are expecting her music. If cul-
tural signals are ignored these retrievals may have been
reasonable matches. Overall, the results indicate that the
system is effective for music retrieval, and we expect im-
provements by incorporating more signals such as culture
or genres.

6. CONCLUSION

We have addressed the problem of music retrieval using
real-world videos from unconstrained sources. We haved
proved that emotion tags can constrain the learning space
and enable cross-modal distance learning from fewer an-
notated cross-modal pairs. Experiments show that our
model can retrieve promising results for user-generated
query videos. As an application, this model can offer novel
music query solutions for daily life videos which can en-
hance visual messages to make sharing more enjoyable.
We also expect this work to have product implications in
the music streaming business. In the future we plan to per-
sonalize the music that is retrieved for users’ tastes.
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ABSTRACT

Western classical music comprises a rich repertoire com-
posed for different ensembles. Often, these ensembles con-
sist of instruments from one or two of the families wood-
winds, brass, piano, vocals, and strings. In this paper, we
consider the task of automatically recognizing instrument
families from music recordings. As one main contribu-
tion, we investigate the influence of data normalization,
pre-processing, and augmentation techniques on the gen-
eralization capability of the models. We report on experi-
ments using three datasets of monotimbral recordings cov-
ering different levels of timbral complexity: isolated notes,
isolated melodies, and polyphonic pieces. While data aug-
mentation and the normalization of spectral patches turned
out to be beneficial, pre-processing strategies such as loga-
rithmic compression and channel-energy normalization did
not lead to substantial improvements. Furthermore, our
cross-dataset experiments indicate the necessity of further
optimization routines such as domain adaptation.

1. INTRODUCTION

In classical music, there are compositions for a variety of
distinct instrumentations. Chamber music, for example,
comprises ensembles of different size, which often consist
of instruments from a specific instrument family such as
woodwinds, brass, piano, vocal, or strings. Typical exam-
ples are brass quintets, piano duos, choirs, or string quar-
tets. While the automatic classification of such monotim-
bral recordings w.r.t. the instrument family is a simplifica-
tion of general instrument recognition, it still constitutes a
challenging task. Successfully tackling this problem could
help to organize and browse classical music collections.
Furthermore, recognizing instrument families from mono-
timbral recordings constitutes the first step towards han-
dling more complicated scenarios such as orchestra record-

c© M. Taenzer, J. Abeßer, S. I. Mimilakis, C. Weiß, M.
Müller, and H. Lukashevich. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: M. Taen-
zer, J. Abeßer, S. I. Mimilakis, C. Weiß, M. Müller, and H. Lukashevich.
“Investigating CNN-Based Instrument Family Recognition for Western
Classical Music Recordings”, 20th International Society for Music Infor-
mation Retrieval Conference, Delft, The Netherlands, 2019.

ings, where we often find passages featured by specific in-
strument families.

In this paper, we approach the task of music instru-
ment family recognition from classical music recordings.
For our experiments, we consider three scenarios using
datasets of monotimbral recordings with different levels
of timbral complexity. We start with analyzing record-
ings of isolated notes (IN) played by an individual in-
strument. Furthermore, we test on isolated, monophonic
melodies (IM) with a natural variety of note durations. For
the third scenario, we consider monotimbral, mostly poly-
phonic music recordings (MP), where one or more instru-
ments of the same instrument family are playing simulta-
neously. In Section 3, we describe these datasets in detail.

To approach the instrument family recognition task, we
make use of a state-of-the-art instrument recognition al-
gorithm [8] based on convolutional neural networks using
spectrogram segments as input. As our main contributions,
we apply this method to the instrument family scenario.
For the MP scenario, we investigate how the model perfor-
mance can be improved using strategies for data augmen-
tation and pre-processing. We systematically test the gen-
eralization capability of the trained models to previously
unseen datasets in a sequence of cross-dataset experiments.

2. RELATED WORK

Traditional algorithms for automatic instrument recogni-
tion (AIR) rely on audio features measuring instrument-
specific timbral properties of music signals. Fuhrmann [4]
provides a comprehensive overview of such techniques.
As an example with a focus on classical music, Eggink
& Brown [3] propose a system to recognize five wind and
string instruments based on partial frequency and magni-
tude features combined with a Gaussian classifier.

Due to the rapid proliferation of deep-learning tech-
niques, most recent publications mainly focus on data-
driven algorithms, which are the focus of this literature
review. These algorithms are trained to learn a direct map-
ping from low-level signal representations such as mel-
spectrograms to higher-level attributes such as instrument
labels. While data-driven approaches require less domain
knowledge, they usually need large amounts of training
data in order to learn models that generalize well to unseen

612



datasets. However, popular AIR datasets such as Med-
leyDB [1], IRMAS [2], or MusicNet [21] are still of lim-
ited size. As a consequence, authors often apply data aug-
mentation techniques such as pitch shifting [7] to virtually
enlarge the number of audio files.

Concerning the generalization capability, AIR ap-
proaches based on deep neural networks (DNNs) show
good performance on particular datasets, but cross-dataset
experiments (as we present in Section 5.2) are rarely per-
formed. Such experiments are crucial for better under-
standing to which extent DNN models generalize to un-
seen datasets with different characteristics. In the related
field of audio event recognition, researchers often observe
this limitation of data-driven algorithms and suggest ad-
ditional domain adaptation steps [5]. Another challenge
is the entanglement between perceptual attributes such as
pitch and timbre in spectrogram representations. Lostanlen
et al. [14] propose weight-sharing strategies for DNN mod-
els in order to derive pitch-invariant representations, which
still maintain good timbre discriminability.

Typical model architectures used in recently proposed
AIR systems are convolutional neural networks (CNNs)
[6–9, 12, 17, 20] and hybrid convolutional-recurrent neural
networks (CRNNs) [7]. Most of the CNN architectures
comprise several convolutional layers for feature learn-
ing and a set of dense layers for classification. Han et
al. [8] proposed such a CNN architecture to recognize
the predominant instrument in polyphonic and multitim-
bral recordings. The authors evaluate different late-fusion
techniques to aggregate frame-level model predictions in
order to obtain song-level instrument labels. This model
has been used and extended in recent AIR literature [6,20].
Takahashi et al. [20] show in a comparative experiment
that using horizontal and vertical filter shapes instead of
symmetrical ones improves recognition performance, but
requires more training time. Hung & Yang [9] tested an
alternative CNN model, which includes residual blocks
with additional skip connections to allow for reducing the
vanishing-gradient problem during training.

Concerning the input representation, most DNN-based
AIR systems process mel-spectrogram segments (patches).
As alternative, Hung & Yang test constant-Q spectrograms
and harmonic-series features as input to the models [9]. Li
et al. [12] propose an end-to-end-learning approach using
a CNN architecture that directly processes raw audio data.
Hung & Yang [9] show that using score information as an
additional cue leads to small improvements in the frame-
level recognition of seven classical instruments.

3. DATASETS

In this section, we describe three datasets that we use for
our instrument family recognition experiments. Regard-
ing the level of difficulty, the isolated-note scenario (IN)
constitutes the simplest task represented by the Studio On
Line Dataset (DB-SOL) presented in Section 3.1. A sce-
nario with increased level of difficulty comprises isolated
melodies (IM), represented by the University of Rochester
Multi-modal Music Performance Dataset (DB-URMP) de-

Table 1: Number of audio files, spectral patches, and aver-
age patches per file for each dataset and experiment.

Dataset Files Patches Patches / file (avg)

Original Datasets (with silent patches)

DB-MTC 50 38078 762
DB-MTC+ 400 304624 762
DB-URMP 149 33693 226
DB-SOL 20604 225273 11

Experiment 1 (silent patches removed)

DB-MTC 50 34163 683
DB-MTC+ 400 281841 705

Experiment 2 (3 classes, silent patches removed)

DB-MTC 30 20900 697
DB-URMP 149 31236 210
DB-SOL 20604 202486 10
DB-M/U/S 20783 254622 12

scribed in Section 3.2. As our most complicated scenario,
we consider monotimbral polyphonic recordings of clas-
sical music realized in the Monotimbral Classical Dataset
(DB-MTC), which comprises recordings of monotimbral,
mostly polyphonic classical pieces (MP, see Section 3.3).
Table 1 summarizes the properties of the three datasets.

3.1 Studio On Line Dataset (DB-SOL)

The Studio On Line dataset 1 , recorded in 2002 at IR-
CAM (Paris), comprises over 25000 isolated note record-
ings from 16 different instruments covering the instrument
families woodwinds, brass, and strings. Recognizing the
instrument family of such isolated note recordings (IN)
constitutes a relatively simple scenario since there is no
spectral overlap of multiple notes. However, the large va-
riety of instrument playing techniques—in particular, fre-
quency modulation techniques such as vibrato and trill—
makes the recognition task more complex. For our exper-
iments, we discarded recordings from DB-SOL that only
comprise mechanical instrument sounds without a clear
pitch as well as breathing and speaking sounds.

3.2 University of Rochester Multi-modal Music
Performance Dataset (DB-URMP)

The University of Rochester Multi-modal Music Perfor-
mance (URMP) Dataset [11] was originally published
to study audio-visual music performance analysis. The
dataset comprises 44 ensemble pieces including duets,
trios, quartets, and quintets, most of which are arrange-
ments of popular classical pieces. For all pieces, multi-
track recordings are available with a total of 149 isolated
instruments tracks. Within each track, one melody instru-
ment from the families woodwinds, brass, and strings is
recorded in isolation. We use these individual tracks as the
basis for our isolated-melodies (IM) scenario.

1 Freely available as part of the Orchids software at http://
forumnet.ircam.fr/product/orchids-en/. In [13], the
dataset was used for evaluating an instrument recognition system.
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3.3 Monotimbral Classical Dataset (DB-MTC)

To test the instrument family recognition task on a realis-
tic scenario, we compiled a dataset consisting of 50 tracks
from commercial recordings. The data comprises mostly
polyphonic classical pieces composed for instruments of
one family. For each of the five families, we included ten
audio files, each from a different CD. The total duration in
minutes for each instrument family is 63.2 (woodwinds),
37.6 (brass), 75.1 (piano), 51.4 (vocal), and 82.8 (strings).

The woodwind class mainly comprises chamber mu-
sic works such as wind quintets by Cambini, Danzi, Hin-
demith, Nielsen, and Reicha, as well as a quartet by
Rossini and a sextet by Janacek. Furthermore, we consider
a serenade by W. A. Mozart, an excerpt from Dvořak’s
Ninth symphony (New World), and a partita for wind en-
semble by Krommer. We are aware of the problem that
wind ensembles often include a french horn, which is a
brass instrument. While this is a typical situation in classi-
cal music, it might influence our recognition experiments.
For the brass selection, we use brass ensemble music for
five to ten players. We consider pieces by ten differ-
ent composers, played by Canadian Brass, German Brass,
Mnozil Brass, and other ensembles. Into the piano class
we placed solo sonatas and fugues by Beethoven, Berg,
C. P. E. Bach, and others, played by different pianists. Re-
garding vocal music, we include music for solo voice—
such as Berio’s Sequenza III—and choirs. The choir pieces
comprise a renaissance composition by Allegri, romantic
pieces by Bruckner and Janacek, modern pieces by Ligeti
and Scelsi, and more. The strings class consists of several
string orchestra pieces by Barber, Hindemith, Lutosławski,
Penderecki, and Rawsthorne. Additionally, we include
chamber music such as string quartets, a quintet by Schu-
bert and a sextet by Brahms. 2

4. SYSTEM OVERVIEW

In the following, we present our system for instrument
family recognition, which consists of three main compo-
nents. The first component (Section 4.1) transforms the
audio signal of a music recording into a mel-based time–
frequency representation. The second component (Sec-
tions 4.2 and 4.3) applies pre-processing techniques such
as normalization or compression to the time–frequency
representation. The third component (Section 4.4) consists
of a CNN that outputs class probabilities and is trained in
a supervised fashion. Figure 1 summarizes the main pro-
cessing steps together with additional details regarding the
network architecture (second and third columns of the fig-
ure).

4.1 Mel-spectogram Representation

For computing the time–frequency representation of the
recordings, we follow the work by Han et al. [8]. We re-

2 Due to copyright issues, we cannot publish the audio files. Instead,
we publish the spectrogram patch tensors and corresponding targets to al-
low for reproducibility of our experiments under https://doi.org/
10.5281/zenodo.3258829.

Figure 1: Reference model proposed by Han et al. [8] with
slight modifications as discussed in Section 4.4. Spectro-
gram patches are processed by successive pairs of convo-
lutional layers followed by batch normalization and ReLU
activation function, max pooling (MaxPool), and global
max-pooling (GlobMaxPool).

sample the audio signals to a sample rate of fs = 22050 Hz
and compute the mel-spectrogram 3 using 128 mel-bands,
a hop size of 512 samples, and a window size of 1024 sam-
ples. Then, we normalize the magnitude in each frequency
band of the mel-spectogram via dividing by the number
of mel-bands. For each recording, we further segment
the resulting mel-spectrogram representation into time–
frequency patches with a length of 43 frames (approx. one
second) with an overlap of 21 frames (approx. 0.5 sec-
onds). This results in a tensor X ∈ RN×43×128, where N
indicates the total number of computed patches. In order
to remove potential silent parts in the recordings, we dis-
card a patch as soon as the mean of its magnitude values is
below 5% of the entire file’s maximal magnitude.

4.2 Spectrogram Dynamic Range Compression

Classical music recordings commonly exhibit a large dy-
namic range. To account for this, we investigate the effect
of pre-processing strategies for compressing the dynamic
range of the mel-spectrograms. In the following, we com-
pare four different approaches for dynamic compression.

The first strategy, denoted as NO, does not apply any
dynamic range compression. In this case, we directly
use the mel-spectrogram as input to the model. The sec-
ond strategy applies logarithmic compression defined by
X ←− log(1 + γX). For our experiments, we consider two
settings with γ = 1 (denoted as LC 1) and γ = 10000 (de-
noted as LC 10000), respectively. As the fourth strategy,
we employ Per-Channel Energy Normalization (PCEN)
proposed in [22] and further studied in [15]. PCEN ap-

3 We use the implementation from librosa (https://librosa.
github.io/librosa/), version 0.6.2.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

614



plies a first-order Infinite Impulse Response (IIR) filter,
which controls the gain of the spectral representation, fol-
lowed by dynamic range compression [22]. In principle,
PCEN enhances prominent spectral characteristics (such
as onsets), while attenuating low-energy frequency bands
that are correlated with reverberation or corrupted by noise
[22]. As the main benefit, the resulting spectral representa-
tion is robust against effects of reverberation and additive
noise. For our experiments, we use PCEN as implemented
in the librosa3 Python library with default parameters
(gain=0.98, bias=2, power=0.5, time_constant=0.4).

4.3 Patch Pre-processing

After the dynamic range compression step of the mel-
spectrogram, we apply another pre-processing technique
in order to normalize the spectral patches before we feed
them to the CNN model. For this patch pre-processing step
(not to be confused with the batch normalization within the
CNN), we compare four different approaches. Let mean(·)
and std(·) denote the computation of the average and stan-
dard deviation, respectively. X:,:,f denotes a slice of the
given tensor X ∈ RN×43×128 for a fixed frequency index
f ∈ {1, . . . , 128}. Similarly, Xp,:,: denotes a slice of the
tensor X for a fixed patch index p ∈ {1, . . . , N}. Based
on this, we define the four approaches as follows:

The first approach (A) performs frequency-based Zero-
Mean and Unit-Variance (ZMUV) normalization following
early approaches for efficiently training DNNs [10]. For
each f ∈ {1, . . . , 128}, it is computed via:

X:,:,f ←−
X:,:,f −mean(X:,:,f )

std(X:,:,f ) + ε
. (1)

The second approach (B) applies global ZMUV normaliza-
tion to the tensor X , following the work presented in [18]:

X ←− X −mean(X)

std(X) + ε
. (2)

The third approach (C) employs local patch pre-processing,
where each patch p ∈ {1, . . . , N} is normalized individu-
ally in the following way:

Xp,:,: ←−
Xp,:,: −mean(Xp,:,:)

std(Xp,:,:) + ε
. (3)

The fourth approach (denoted as “-”) does not apply any
pre-processing: The mel-spectral representation is pro-
vided directly to the CNN model.

For the approaches A and B, we apply ZMUV normal-
ization to the validation and test set using mean and stan-
dard deviation as computed from the training set.

4.4 CNN Model

For our experiments, we adopt a CNN architecture pro-
posed by Han et al. [8], illustrated in Figure 1. The model
is based on a VGG-type architecture [19] and consists of
four blocks that perform convolution operations. Each
block contains a pair of 2D convolutional layers, each

comprising K kernels of size 3×3. After each convolu-
tional layer, we apply batch normalization (BatchNorm)
followed by the Rectified Linear Unit (ReLU) activation
function. At the end of each convolutional block, we use
3 × 3 max-pooling and dropout (with probability 0.25).
Between subsequent convolutional blocks, we increase the
number of channels K by a factor of two.

After the fourth convolutional block, we use a global
max-pooling layer in order to flatten the latent represen-
tation. We give the flattened representation to a fully-
connected feed-forward layer with 1024 units, followed
by the final feed-forward layer that uses a soft-max activa-
tion function. We extend the architecture presented by Han
et al. [8] using additional batch normalization layers after
each convolutional layer. The batch normalization layers
perform ZMUV normalization across each batch of mel-
spectrogram patches. We train the model using categorical
cross-entropy loss, the Adam optimizer with a learning rate
of 10−4, and a batch size of 128. In order to reduce over-
fitting, we implement early stopping during model train-
ing with a patience of 20 epochs. Since the audio files
in DB-MTC substantially differ in length, we use a class-
weighting scheme during training to compensate for class
imbalance, which is computed as an inverse proportion of
the number of training items per class.

5. EXPERIMENTS

In this section, we present our experiments on instrument
family recognition. For Experiment 1 (Section 5.1), we
consider polyphonic, monotimbral recordings using the
DB-MTC dataset and test the improvement strategies dis-
cussed in Section 4. In Experiment 2 (Section 5.2), we in-
vestigate the generalization capabilities of the trained mod-
els in a cross-dataset experiment using the three datasets
described in Section 3. As evaluation measure, we re-
port the micro-average F -score. The F -score is computed
as the harmonic mean between precision and recall on a
patch-level and is not affected by potential class imbalance.

5.1 Experiment 1: Instrument Family Classification
in Monotimbral Classical Music Recordings

In this experiment, we evaluate whether data augmenta-
tion, spectrogram compression, and patch pre-processing
techniques lead to an improved classification performance.
We focus on the MP scenario using the DB-MTC dataset.

5.1.1 Data Augmentation

Due to the small number of 10 audio files per instrument
family in DB-MTC (see Section 3.3), we enlarge the dataset
using the data augmentation techniques shown in Table 2.
We apply algorithms taken from the Audio Degradation
Toolbox [16] that implement brown and white noise, two
room impulse responses, dynamic range compression, and
two kinds of signal attenuation. In total, we create seven
augmented versions of each audio file in the dataset, thus
increasing the size of the dataset from 50 to 400 files. We
refer to this augmented dataset as DB-MTC+.
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Table 2: Overview of applied data augmentation methods.
(def) indicates where default presets from [16] are used.

Abbr. Augmentation Type Approach

Noi Noise Brown noise, SNR -6 dB
White noise, SNR +22 dB

Imp Impulse Response Great Hall (def)
Classroom (def)

Dyn Dynamic Range Compression (def)
Att Attenuation -3 dB

-6 dB

5.1.2 Evaluation Procedure

We systematically evaluate 96 combinations of data aug-
mentation, spectrogram compression, and patch pre-
processing methods as listed in Table 4. For each config-
uration, we perform three validation runs and report the
mean F -score. In each run, we randomly split the dataset
on file level into training (40%), validation (30%), and test
set (30%). We use the additional augmented versions of
the files for the training and validation sets and test only
on the clean, non-augmented signals.

5.1.3 Results

In Table 4, we show the results of Experiment 1. We
observe the highest F -score of 0.89 for a system using
no compression of the mel-spectrogram (NO), frequency-
based patch normalization (A), and a fully augmented
training set. Independent of the applied data augmentation,
the results show that a normalization of spectral patches
before model training is very beneficial if no (NO) or only
mild spectrogram compression (LC 1) is applied. In con-
trast, strong compression (LC 10000) elevates the results
for systems without patch pre-processing (-) much closer
to the regions with pre-processing: Strong spectrogram
compression and the patch normalization techniques have
a similar effect, with the latter tending to have an even
greater impact. At least one of the methods should be
considered for usage. The simple logarithmic compression
strategies outperform the PCEN strategy, which we apply
using default parameters. We assume that using a trainable
PCEN front-end instead seems to be more promising for
future work.

In Table 3, we show a confusion matrix for this exper-
iment using the ideal parameter combination. While the
piano class is recognized best, confusions mainly occur be-
tween vocal and woodwinds or strings, and between wood-
winds and brass. Concerning the latter confusion, both
families are wind instruments and, therefore, exhibit cer-
tain timbral similarity. Furthermore, the presence of french
horns in both classes (as discussed in Section 3.3) might be
problematic.

5.1.4 Baseline System

To compare the CNN-based results to a simple baseline
system relying on standard audio features, we extract 20
mel-frequency cepstral coefficients (MFCC) per spectral
patch Xp,:,: and average them over the patch duration.

Table 3: Confusion matrix for the best parameter con-
figuration in Experiment 1 including all augmentations
(DB-MTC+), averaged over three folds. The overall F -
score is 0.89.

True
Predicted

woo bra pia voc str

woodwinds (woo) 0.92 0.06 0.02 0.00 0.00
brass (bra) 0.20 0.70 0.07 0.00 0.03
piano (pia) 0.01 0.01 0.97 0.01 0.01
vocal (voc) 0.09 0.00 0.01 0.82 0.08

strings (str) 0.00 0.02 0.02 0.02 0.94

This way, each spectral patch is represented by a 20-
dimensional MFCC feature vector. We train a random for-
est classifier with 50 estimators obtaining an F -score of
0.75. This result—which could be further improved by us-
ing data augmentation and more diverse audio features—
indicates that the benefit of our deep learning strategy over
standard approaches is only weak when using datasets of
limited size such as DB-MTC.

5.2 Experiment 2: Cross-Dataset Evaluation

In this experiment, we evaluate how well the CNN model
generalizes to unseen datasets that represent different lev-
els of timbral complexity. Ideally, we expect the model to
learn spectro-temporal patterns that are unique to particu-
lar instrument families so that these patterns are recognized
independent of a dataset’s acoustic characteristics.

5.2.1 Evaluation Procedure

We split all three datasets DB-MTC, DB-SOL, DB-URMP
and, additionally, a combination of them called
DB-M/U/S, into individual training, validation, and
test sets and perform cross-dataset evaluations. Concretely
speaking, we train a model using training and validation
sets taken from one dataset and evaluate using the test
set of another dataset. Due to differences between the
datasets, we restrict ourselves in this experiment to
the three instrument families woodwinds, brass, and
strings which are consistently present over all datasets.
Consequently, we discard piano and vocal recordings
from DB-MTC. Data augmentation and a comparison
with the MFCC-based baseline system are not part of
this experiment as we solely focus on the cross-dataset
performance of the models.

We compare two approaches for splitting datasets into
training, validation, and test sets. We either randomly se-
lect patches (patch-based) or split patches based on
files (file-based) in order to avoid overfitting due to
patches from the same file ending up in both the train-
ing and test sets. For the patch-based approach,
we identify the smallest amount of available patches per
class among the datasets. The smallest class is the brass
class in DB-MTC with 4397 patches. Therefore, for the
patch-based evaluation, we sample the same amount
of patches from all other classes and datasets. We then use
a split ratio of 40%–30%–30% to create training, valida-
tion, and test sets. Hence, each dataset finally consists of
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Table 4: Mean F -scores for the parameter optimization on the DB-MTC dataset (Experiment 1) described in Section 5.1.
The abbreviations for data augmentation methods (first four columns) are introduced in Table 2. The spectrogram com-
pression methods LC 1, LC 10000, and PCEN, as well as the patch pre-processing methods -, A, B, C in the remaining
columns are described in Section 4.2 and Section 4.3, respectively. The optimal parameter configuration (NO, A, full data
augmentation) is highlighted using gray background color. The average standard deviation between F -scores over all three
validation runs is 0.03 (min: 0.003, max: 0.15).

Augmentation Types NO LC 1 LC 10000 PCEN
Noi Imp Dyn Att - A B C - A B C - A B C - A B C

- - - - 0.40 0.78 0.82 0.85 0.34 0.76 0.84 0.84 0.66 0.76 0.82 0.75 0.70 0.67 0.67 0.65
X X X X 0.46 0.89 0.86 0.86 0.49 0.88 0.87 0.85 0.86 0.86 0.85 0.83 0.79 0.80 0.79 0.80
X - - - 0.49 0.87 0.86 0.85 0.49 0.87 0.84 0.86 0.81 0.82 0.82 0.82 0.75 0.76 0.75 0.75
- X - - 0.42 0.86 0.85 0.85 0.42 0.84 0.85 0.85 0.84 0.83 0.81 0.83 0.79 0.77 0.79 0.78
- - X - 0.55 0.81 0.83 0.83 0.45 0.83 0.83 0.85 0.78 0.83 0.79 0.81 0.75 0.74 0.72 0.76
- - - X 0.35 0.81 0.84 0.87 0.36 0.81 0.83 0.82 0.77 0.78 0.78 0.81 0.74 0.72 0.71 0.74

13191 patches. We create the fourth dataset DB-M/U/S
by equally sampling patches from the other datasets.

For the file-based approach, we split each dataset
using the same ratio of 40%–30%–30% on a file level, i. e.,
patches from one file will exclusively end up in one of the
subsets. Here, no further steps are taken to balance out the
amount of patches. Since this procedure leads to class im-
balance, we use class weights as discussed in Section 4.4.
The file-based version of DB-M/U/S is generated by
accumulating all subsets over all datasets. Table 1 sum-
marizes all datasets used in this experiment. For model
training, we pick the parameters that lead to the best result
in Experiment 1, namely no compression (NO) and patch
pre-processing method C. We do not include any augmen-
tations in this experiment.

5.2.2 Results

Table 5 shows the results for the cross-dataset evaluation
on the patch-based data split. Due to the split strat-
egy, the classifier overfits to the training set and naturally
achieves high F -scores on the corresponding test set when
patches are randomly mixed. This overfitting effect is sup-
ported by the fact that adding additional training data from
a different dataset in DB-M/U/S even degrades the perfor-
mance for testing on DB-MTC and DB-SOL.

Table 6 shows the results for the file-based data
split. Due to its large size, DB-SOL has the highest
impact on the model performance in the mixed dataset
DB-M/U/S. When comparing the performance for train-
ing and testing on DB-MTC, the F -score drops by 0.12 for
the file-based split strategy. This confirms our expec-
tations since the DB-MTC dataset has a small number of
files per class and a large variance of file durations.

As a general observation for both split strategies, the
CNN approach for instrument family recognition shows
only a limited capability to generalize well towards unseen
data, which becomes apparent for all cross-dataset combi-
nations in both tables (high values on the diagonal).

6. CONCLUSIONS

In this paper, we investigated a state-of-the-art convo-
lutional neural network model for automatic instrument

Table 5: Resulting F -scores for cross-dataset evaluation
using patch-based dataset split. The rows and columns
of the table indicate the training and test sets for each con-
figuration, respectively.

Training
Test

DB-MTC DB-URMP DB-SOL DB-M/U/S

DB-MTC 0.96 0.70 0.62 0.77
DB-URMP 0.49 0.96 0.61 0.70
DB-SOL 0.64 0.78 0.95 0.79

DB-M/U/S 0.95 0.97 0.91 0.94

Table 6: Resulting F -scores for cross-dataset evaluation
using file-based dataset split.

Training
Test

DB-MTC DB-URMP DB-SOL DB-M/U/S

DB-MTC 0.84 0.60 0.68 0.68
DB-URMP 0.51 0.92 0.69 0.70
DB-SOL 0.69 0.74 0.99 0.94

DB-M/U/S 0.89 0.95 0.99 0.98

family recognition in Western classical music record-
ings. Focusing on monotimbral, polyphonic recordings,
we showed that increasing the amount of training data via
augmentation techniques leads to improved classification
performance. We also found that pre-processing is of cen-
tral importance for achieving a good system. Combin-
ing patch normalization with dynamic compression or per-
channel energy normalization does not further improve the
results, but these techniques may compensate the effect of
patch normalization to some degree. Given that a simple
MFCC-based baseline system already achieves good per-
formance in Experiment 1, the possible superiority of more
complex data-driven methods such as CNNs needs to be
assessed carefully. In a cross-dataset experiment, we fur-
ther tested how well the CNN model generalizes towards
unseen data. Our results indicate that current CNN mod-
els lack generalization capability across different datasets,
thus indicating the need for applying further optimization
methods such as domain adaptation [5].
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ABSTRACT

Chord recognition is an important task since chords are
highly abstract and descriptive features of music. For ef-
fective chord recognition, it is essential to utilize relevant
context in audio sequence. While various machine learning
models such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) have been employed
for the task, most of them have limitations in capturing
long-term dependency or require training of an additional
model.

In this work, we utilize a self-attention mechanism for
chord recognition to focus on certain regions of chords.
Training of the proposed bi-directional Transformer for
chord recognition (BTC) consists of a single phase while
showing competitive performance. Through an attention
map analysis, we have visualized how attention was per-
formed. It turns out that the model was able to divide seg-
ments of chords by utilizing adaptive receptive field of the
attention mechanism. Furthermore, it was observed that the
model was able to effectively capture long-term dependen-
cies, making use of essential information regardless of dis-
tance.

1. INTRODUCTION

The goal of chord recognition task is to output a se-
quence of time-synchronized chord labels when a raw
audio recording of music is given as input. Chords are
highly abstract and descriptive features of music that can
be used for a variety of musical purposes, including auto-
matic lead-sheet creation for musicians, cover song iden-
tification, key classification and music structure analysis
[4, 24, 26]. Since manual chord annotation is labor inten-
sive, time consuming and requires expert knowledge, auto-
matic chord recognition system has been an active research
area within the music information retrieval community.

c© Jonggwon Park, Kyoyun Choi, Sungwook Jeon, Dokyun
Kim and Jonghun Park. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Jonggwon Park,
Kyoyun Choi, Sungwook Jeon, Dokyun Kim and Jonghun Park. “A BI-
DIRECTIONAL TRANSFORMER FOR MUSICAL CHORD RECOG-
NITION ”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

Automatic chord recognition is challenging due to the
fact that 1) not all the notes played are necessarily related
to the chord of the moment and 2) simple one-hot encoding
of chord labels cannot represent the inherent relationship
between different chords. Most traditional automatic chord
recognition systems consist of three parts: feature extrac-
tion, pattern matching and chord sequence decoding. The
most common strategy was to rely on hidden Markov mod-
els (HMMs) [3] for sequence decoding. Recently, many
studies have explored various deep neural networks such as
convolutional neural networks (CNNs) or recurrent neural
networks (RNNs) [23] for chord recognition.

Recently, a novel attention-based network architecture
named Transformer was proposed in [33]. It performs
well without any recurrence or convolution and the use
of Transformer has become popular in various domains.
For example, a bi-directional Transformer model called
BERT achieved state-of-the-art results on eleven natural
language processing (NLP) tasks [10]. In the domain of
music, [13] applied Transformer to a music generation task
and succeeded in creating music with complex and repeti-
tive structure.

In this paper we propose BTC (Bi-directional Trans-
former for Chord recognition). In contrast to the other
chord recognition models that depend on training of sep-
arate feature extractors or adopting additional decoders
such as HMMs or Conditional Random Fields (CRFs) [22],
BTC requires only a single training phase while being able
to obtain results comparable to them. We also visualize
how the model works through attention maps. The atten-
tion maps demonstrate that BTC is able to 1) divide seg-
ments of chords by utilizing its adaptive receptive field and
2) capture long-term dependencies.

2. RELATED WORK

2.1 Automatic Chord Recognition

In the past, most automatic chord recognition systems were
divided into three parts: feature extraction, pattern match-
ing and chord sequence decoding. After applying transfor-
mation such as short-time Fourier transform or constant-q
transform (CQT) to an input audio signal, features are ex-
tracted from the resulting time-frequency domain. Some
examples of such hand-crafted features include chroma
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vectors and the "Tonnetz" [11] representation. For pattern
matching and chord sequence decoding, Gaussian mixture
models with feature smoothing [6, 7] and HMMs [28, 32]
have been the most popular choices, respectively.

With the recent wide acceptance of deep learning in
research communities, there have been many studies ap-
plying it to chord recognition task in various ways. The
very first deep-learning-based chord recognition system
was proposed by [14] where they trained a CNN for major-
minor chord classification. Attempts to apply deep learn-
ing to feature extraction include [16] and [19], where the
former employed a CNN to extract Tonnetz features from
audio data and the latter adopted a deep neural network
(DNN) to compute chroma features. CNN and HMM were
combined for chord recognition in [15] and [35].

In addition to CNN, another popular network architec-
ture for chord recognition is RNN. [5] and [31] explored an
RNN as chord sequence decoding method, relying on deep
belief network and a DNN, respectively. Another branch of
RNN-based chord recognition systems utilize a language
model which predicts only the sequence of chords with-
out considering their durations. This might be helpful when
the number of chord labels is large (e.g. large vocabulary
type, explained in Section 4.1). A large-scale study of lan-
guage models for chord prediction was conducted in [18].
Without audio data, the authors trained just a language
model with the chord progression data only and showed
that RNNs outperformed N-gram models. In their succeed-
ing work [21], they combined the RNN-based harmonic
language model with a chord duration model to complete
the chord recognition task.

Another RNN-based approach is presented in [34]
which trained a CNN feature extractor with large MIDI
(Musical Instrument Digital Interface) data and combined
BLSTM (Bi-directional Long-Short Term Memory) with
CRF for sequence decoder. This BLSTM-CRF model
achieved good performance but has a drawback that its
training procedure involves complex MIDI pre-training.
The model that we propose, on the other hand, is much
simpler to train.

2.2 Attention-based Models

The attention mechanism, first introduced by [2], can be
described as computing an output vector when query, key
and value vectors are given. In sequence modelling tasks
such as machine translation, query and key correspond to
certain elements of the target sequence and the source se-
quence respectively. Each key has its own value. The out-
put is computed as a weighted sum of the values where
the weights are computed from the query and key. Self-
attention refers to the case when query, key and value are
computed from the same input.

Transformer is an attention-based network that relies on
attention mechanism only and does not include recurrent or
convolutional architecture. Utilizing multi-head attention
together with position-wise fully-connected feed-forward
network, it showed significantly faster training speed and
achieved better performance than recurrent or convolu-

tional networks for translation tasks.
Transformer used scaled dot-product as an attention

function:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V (1)

where Q, K and V are matrices of query, key and value
vectors respectively, and dK is the dimension of key.

The use of Transformer has become very popular,
achieving the state-of-the-art results in various domains.
A well-known example is bi-directional encoder represen-
tations from Transformers (BERT) [10]. BERT is a pre-
training model based on masked language model for lan-
guage representations that achieved state-of-the-art results
on eleven NLP tasks. In the domain of music, [13] pro-
posed music Transformer for symbolic music generation.
Music Transformer employed relative attention to capture
long-term structure effectively, which resulted in music
compositions that are both qualitatively and quantitatively
better structured than existing music generation models.

3. BI-DIRECTIONAL TRANSFORMER FOR
CHORD RECOGNITION

3.1 Bi-directional Transformer

Making use of appropriate surrounding frames is essen-
tial for successful chord recognition [7, 8]. This context-
dependent characteristic of the task is the motivation
for applying the self-attention mechanism. With some
modification to the original Transformer architecture, we
present a bi-directional Transformer for chord recognition
(BTC). 1

The structure of BTC is shown in Figure 1. The
model consists of bi-directional multi-head self-attentions,
position-wise convolutional blocks, a positional encoding,
layer normalization [1], dropout [30] and fully-connected
layers. The model takes a CQT feature of 10 second au-
dio signal (Section 4.1) as input. The results of adding po-
sitional encoding are given as input to two self-attention
blocks with different masking directions, indicated as dot-
ted boxes in Figure 1(b). The outputs are concatenated and
are fed into a fully-connected layer so that the output size is
the same as the original input. A stack of N bi-directional
self-attention layers is followed by another fully-connected
layer that outputs logit values. The size of the logit values
is the same as the number of chord labels. These logits are
used to predict the chord and calculate the loss.

The loss function is a negative log-likelihood and all the
model parameters are trained to minimize the loss given by
the following equation (2).

L = −
T∑

t=1

∑
c∈V

yc(t)log(ŷc(t)) (2)

T is the number of total time frames and V is the chord
label set. yc(t) is 1 if the reference label at time t is c and
0 otherwise. ŷc(t) is the output of the model, representing
the probability of the chord at time t being c.

1 https://github.com/jayg996/BTC-ISMIR19
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Figure 1. Structure of BTC. (a) shows the overall network architecture and (b) describes the bi-directional self-attention
layer in detail. Dotted boxes indicate self-attention blocks.

3.1.1 Bi-directional Multi-head Self-attention

BTC employs multi-head self-attention as in the original
Transformer. For each time frame, the input features are
split into nh pieces and provided as input to the multi-head
self-attention with the number of heads, nh. Given I as
an input matrix, the multi-head self-attention can be com-
puted as (3):

Multihead = Concat(head1, ..., headnh
)WO (3)

Qj = (IWQ)j ,Kj = (IWK)j and Vj = (IWV )j are
given as input to the attention function (1) to produce
headj for j = 1, ..., nh. WQ,WK and WV are fully-
connected layers that project the input to the dimension
of Q,K and V , respectively. WO is also a fully-connected
layer that projects the concatenated output of dimension
(nh × dVj

) to the dimension of the final output. Dropout
is applied to the softmax output weights when computing
each headj .

In BTC, self-attention can be interpreted as determin-
ing how much attention to apply to the value of the key
time frame when inferring the chord of the query time
frame. To prevent the loss of information due to the at-
tention being performed to the entire input at once, we
employed bi-directional masking. The forward / backward
direction refers to masking all the preceding / succeed-
ing time frames. The same masked multi-head attention

module as the Transformer decoder was adopted. The bi-
directional structure enables BTC to fully utilize the con-
text before and after the target time frame.

Since the multi-head attention is performed on every
time frame in the sequence, information about the order of
the sequence is lost. We employed the same solution pro-
posed by Transformer to address this issue: adding posi-
tional encoding results to the input, which are obtained by
applying sinusoidal functions to each position. Since rel-
ative positions between two frames can be expressed as a
linear function of the encodings, positional encoding helps
the model learn to apply attention via relative positions.

3.1.2 Position-wise Convolutional Block

To utilize the adjacent feature information in a time
frame, we replaced the position-wise fully-connected feed-
forward network from the original Transformer archi-
tecture with a position-wise convolutional block. The
position-wise convolutional block consists of a 1D con-
volution layer, a ReLU (Rectified Linear Unit) activation
function and a dropout layer, where the whole sequence of
layers is repeated nC times. Input and output channel size
were identical to keep the feature size and sequence length
constant. With the position-wise convolutional block, we
anticipate to search the boundary and smooth the chord
sequence by exploring adjacent information at each time
frame.
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3.2 Self-attention in Chord Recognition

For chord recognition, it is important to utilize not only the
information from the target time frame but also from other
related frames, which we call the context. The network ar-
chitectures such as CNNs or RNNs can also explore the
context, but self-attention is more suitable for the task be-
cause of the following reasons.

First, self-attention has selective usage of attention. In
other words, the receptive field can be adaptive unlike
CNNs where the kernel size is fixed. For example, assume
that the labels for 16 frames are Cs for the first four frames,
Gs and Fs for the next eight frames and Cs for the last four
frames (see Figure 2). Consider the situation of recogniz-
ing Gs in frames 5 to 8. As for a CNN with kernel size of 3,
when recognizing the chord of frame 7, the receptive field
(frame 6 to 8) would be informative enough since all the
frames contain the same chord. However, when inferring
frame 5, the receptive field of frame 4 to 6 contains not
only G but also C. With self-attention, on the other hand,
the model can pay attention to the section of frame 5 to 8
regardless of the target frame’s position.

Another advantage of attention mechanism is its abil-
ity to capture long-term dependency effectively. RNNs can
also utilize distant information but direct access is not
possible. For CNNs, there are two ways to access distant
frames: by stacking layers in depth or by increasing the
kernel size. The former has the same drawback as RNNs
and the latter has the disadvantage that the weight shar-
ing becomes less effective. Unlike these, self-attention has
direct access to other frames no matter how far they are.
Specifically, when recognizing the chord of frame 13, per-
forming attention to first four frames would be helpful
since they all contain C. With RNNs or deep CNNs, infor-
mation that the first four frames were C would inevitably
be diluted while passing through frames 5 to 12.

C C C C G G G G F F F F C C C C

1 4 5 6 7 8 12 13 16

Figure 2. Chord sequence example

4. EXPERIMENTS

4.1 Data and Preprocessing

BTC and other baseline models were evaluated on the
following datasets. A subset of 221 songs from Isophon-
ics 2 : 171 songs by the Beatles, 12 songs by Carole King,
20 songs by Queen and 18 songs by Zweieck; Robbie

2 http://isophonics.net/datasets

Williams [12]: 65 songs by Robbie Williams; and a sub-
set of 185 songs from UsPop2002 3 . These datasets con-
sist of label files that specify the start time, end time and
type of the chord. Due to copyright issue, these datasets do
not include audio files. The audio files used in this work
were collected from online music service providers (e.g.
Melon 4 ), which do not always provide the same audio
files corresponding to the songs in the datasets. Since it
was not possible to get exactly the same audio files, there
were subtle differences in the chord start time of the la-
bel file and audio file. Accordingly we manually matched
the labels to the audio file by shifting the whole label file
back and forth, which resulted in no more than adding or
deleting some “No chord” labels.

Each 10-second-long audio signal (consecutive signals
overlapping 5 seconds) was processed at the sampling rate
of 22,050Hz using CQT with 6 octaves starting from C1,
24 bins per octave, and the hop size of 2048 [34]. The CQT
features were transformed to log amplitude with Slog =
ln(S + ε) where S represents the CQT feature and ε is an
extremely small number. After that, global z-normalization
was applied with mean, variance from the training data.

Pitch augmentation was also employed to the audio
file with pyrubberband 5 package and labels were changed
with pitch variation. Pitch augmentation between -5 ∼ +6
semitones were applied to all the training data.

Two different label types were used: maj-min and large
vocabulary. The maj-min label type consists of 25 chords
(12 semitones × {maj, min} and “No chord”) [20]. The
large vocabulary label type consists of 170 chords (12
semitones × {maj, min, dim, aug, min6, maj6, min7, min-
maj7, maj7, 7, dim7, hdim7, sus2, sus4} and “X chord : the
unknown chord”, “No chord”) [25]. From the label files,
we extracted the chord that matches the time frame of in-
put feature and transformed it to the appropriate label type.

4.2 Evaluation Metric

The evaluation metric was weighted chord symbol recall
(WCSR) score and 5-fold cross validation was applied to
the entire data. When separating the evaluation data from
the training data, there was no song included in both. The
WCSR score can be computed as (4), where tc is the du-
ration of correctly classified chord segments and ta is the
duration of the entire chord segments.

WCSR =
tc
ta
× 100(%) (4)

Scores were computed with mir_eval [27]. Root and
Maj-min scores were used for the maj-min label type.
Root, Thirds, Triads, Sevenths, Tetrads, Maj-min and
MIREX scores were used for the large vocabulary label
type. To calculate the score with mir_eval, the chord recog-
nition results were converted into label files.

3 https://github.com/tmc323/Chord-Annotations
4 http://www.melon.com
5 https://github.com/bmcfee/pyrubberband
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Model
maj-min label type large vocabulary label type
Root Maj-min Root Thirds Triads Sevenths Tetrads Maj-min MIREX

CNN 83.6±1.3 81.8±1.2 83.5±1.4 80.4±1.2 75.5±0.6 71.5±1.9 65.2±1.0 81.9±1.4 79.8±0.7

CNN+CRF [20] 84.0±1.3 83.1±1.4 83.7±1.5 81.1±1.4 76.3±0.8 71.3±1.9 65.7±1.6 82.1±1.5 81.8±1.1

CRNN [25] 83.4±0.8 82.3±0.9 82.9±1.1 80.1±1.0 75.3±0.7 71.3±1.9 65.2±0.9 81.5±1.3 79.9±0.8

CRNN+CRF 83.3±0.8 82.3±1.0 82.7±1.2 79.7±0.9 74.8±0.5 69.5±2.0 63.9±1.0 80.7±1.4 80.2±1.0

BTC 83.8±1.0 82.7±1.0 83.5±1.2 80.8±1.0 75.9±0.5 71.8±1.7 65.5±0.9 82.3±1.2 80.8±0.9

BTC+CRF 83.9±1.0 83.1±1.1 83.5±1.2 80.7±1.1 75.7±0.5 70.7±2.0 64.8±1.1 81.7±1.4 81.4±0.9

Table 1. WCSR scores averaged over the same 5 folds. Numbers next to the scores denote the standard deviations.

4.3 Results

Specific hyperparameters of BTC are summarized in
Table 2. The hyperparameters with the best validation per-
formance were obtained empirically after applying in 5-
fold cross validation. Adam optimizer [17] was used with
initial learning rate of 10−4. Learning rate was decayed
with rate 0.95 when validation accuracy did not increase.
Training was stopped if the validation accuracy did not im-
prove for over 10 epochs.

Since existing studies of chord recognition were evalu-
ated on different datasets, it is difficult to say that a par-
ticular model is the state-of-the-art. Among the models
that were trainable with our datasets, we chose three base-
line models with good performance: CNN, CNN+CRF and
CRNN. CNN is a VGG [29]-style CNN and CNN+CRF
has an additional CRF decoder [20]. CRNN is a com-
bination of CNN and gated recurrent unit [9], named
"CR2" in [25]. The input was preprocessed as mentioned
in Section 4.1 for BTC and CRNN. For CNN+CRF and
CNN, a single label was estimated with a patch of 15 time
frames, in a similar way to [20].

Table 1 shows the performance comparison results of
the baseline models and BTC for two label types. The best
value for each metric is represented in bold. Among the
models without a CRF decoder, BTC showed the best per-
formance for all metrics. Including models with a CRF
decoder, CNN+CRF obtained the best result in most of
the metrics. Still, BTC shows comparable performance to
CNN+CRF, performing better in Sevenths and Maj-min
metrics for the large vocabulary label type.

The main purpose of training a CRF decoder is to
smooth the predicted chord sequences that are often frag-

Bi-directional
self-attention

layer

layer repetition (N ) {1, 2, 4, 8, 12}
self-attention heads (nh) {1, 2, 4}
dimension of Q, K, V
and all the hidden layers

{64, 128, 256}

Position-wise
convolutional

block

block repetition (nC) 2
kernel size 3
stride 1
padding size 1

Dropout dropout probability {0.2, 0.3, 0.5}

Table 2. Hyperparameters of BTC. Hyperparameters with
the best validation performance are shown in bold.

mented. The performances of CRNN+CRF and BTC+CRF
are also presented in Table 1 for comparison. Performance
improvements due to the introduction of CRFs are evident
in CNN but not in BTC and CRNN. This indicates that out-
puts of CNN were fragmented and an additional decoder
training is necessary for better performance. On the other
hand, BTC and CRNN can be trained with only CQT fea-
tures and chord labels. That is, BTC requires only a single
training phase while achieving the performance compara-
ble to that of CNN+CRF.

4.4 Attention Map Analysis

Attention maps demonstrate that each self-attention layer
has different characteristics. Figure 3 shows the attention
map of self-attention layers 1, 3, 5 and 8, trained with the
maj-min label type. The lower / upper triangle of each at-
tention map represents the attention probability of the for-
ward / backward direction self-attention layer. The labels
of the vertical axis and the horizontal axis are the reference
chord and the chord recognition result of the target time
frame, respectively. The cell of i-th row and j-th column
represents the attention probability to the j-th time frame
when inferring the chord of the i-th time frame.

At the first self-attention layer, only neighboring frames
are used to construct the representation of the target frame.
For the third layer, the attention is widely spread over all
time frames, yet still with higher probabilities for nearby
frames than distant frames. At the fifth layer, several ad-
jacent time frames form a group, which appears in a rect-
angular region in the attention map. This means that the
model divides the whole input into some sections, which
is possible due to the adaptive receptive field. The network
focuses only on a few important sections to identify the tar-
get frame, regardless of the distance between section and
the frame. Unlike the fifth layer, attention is more dense in
certain regions at the eighth layer. In particular, the bound-
ary of the high probability region matches that of the final
recognition result.

Specifically, at the fifth layer in Figure 3(c), the refer-
ence chord for region ② is B:min. Region ① shares the
same reference chord B:min and the network assigns high
attention probabilities to region ① for time frames in re-
gion ②. This phenomenon is similar in layer 8 between
①′ and ②′(Figure 3(d)), which results in the correct fi-
nal chord recognition of B:min. In contrast, for region ③
where the reference chord is G, the attention probability is
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(a) Self-attention layer 1 (b) Self-attention layer 3

(c) Self-attention layer 5 (d) Self-attention layer 8

Figure 3. The figures represent the probability values of the attention of self-attention layers 1, 3, 5 and 8 respectively.
The layers that best represent the different characteristics were chosen. The input audio is the song "Just A Girl" (0m30s ∼
0m40s) by No Doubt from UsPop2002, which was in evaluation data.

high at layer 5 but not for region③′ at layer 8. This can be
attributed to G and B:min sharing two notes in common,
since G and B:min consist of (G,B,D) and (B,D,F#) re-
spectively. In other words, attention at layer 5 can be seen
as attention to partial features of chords sharing the same
notes. None the less, the final recognition result after the
last layer is not G but B:min. This is possible because of
the multi-head attention structure: the other heads might
lower the attention probability even if the attention to a
wrong chord is active, leading to the correct result.

On the other hand, there are cases where the recogni-
tion results are wrong in a similar situation. The reference
chord for regions ⑥ and ⑥′ is A. At layer 5, the atten-
tion mechanism seems to work well with high attention
probabilities to region ④,⑤,⑦ and ⑧, where the refer-
ence chords are all As. However, the attention to those re-
gions cannot be seen at the last layer, and the final recogni-
tion result is not A but F#:min. This recognition failure can
be regarded as a result of two notes of F#:min (F#,A,C#)
overlapping with A (A,C#,E).

To summarize, for each target frame in the input audio,

the model uses only neighboring frames at first. At the mid-
dle layers, the model gradually broadens the receptive field
and selectively focuses on time frames with characteristics
similar to that of the target frame. Finally, at the last layer,
the attention is performed on only essential information for
chord recognition.

5. CONCLUSION

In this paper, we presented bi-directional Transformer for
chord recognition (BTC). To the best of our knowledge,
this paper was the first attempt to apply Transformer to
chord recognition. The self-attention mechanism was ap-
propriate for the task that attempts to capture long-term de-
pendency by effectively exploring relevant sections. BTC
has an advantage in that its training procedure is simple
and it showed results competitive to other models in most
of the evaluation metrics. Through the attention map analy-
sis, it turned out that each self-attention layer had different
characteristics and that the attention mechanism was effec-
tive in identifying sections of chords that were crucial for
chord recognition.
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ABSTRACT

In the last few years, several datasets have been released
to meet the requirements of “hungry” yet promising data-
driven approaches in music technology research. Since,
for historical reasons, most investigations conducted in the
field still revolve around music of the so-called “West-
ern” tradition, the corresponding data, methodology and
conclusions carry a strong cultural bias. Music of non-
“Western” background, whenever present, is usually un-
derrepresented, poorly labeled, or even mislabeled, the
exception being projects that aim at specifically describ-
ing such music. In this paper we present SAMBASET,
a dataset of Brazilian samba music that contains over
40 hours of historical and modern samba de enredo com-
mercial recordings. To the best of our knowledge, this is
the first dataset of this genre. We describe the collection of
metadata (e.g. artist, composer, release date) and outline
our semiautomatic approach to the challenging task of an-
notating beats in this large dataset, which includes the as-
sessment of the performance of state-of-the-art beat track-
ing algorithms for this specific case. Finally, we present
a study on tempo and beat tracking that illustrates SAM-
BASET’s value, and we comment on other tasks for which
it could be used.

1. INTRODUCTION

Machine-learning-based systems in music information re-
trieval (MIR) are becoming increasingly complex to cope
with the also expanding number of tasks and the challenges
they propose. In turn, estimating the parameters of these
large models requires more and better data [29], especially
because such data must often be separated into training,
test, and validation sets. Although data augmentation can
be used to alleviate this bottleneck [29], this kind of strat-

c© Lucas S. Maia, Magdalena Fuentes, Luiz W. P. Bis-
cainho, Martín Rocamora, Slim Essid. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Lucas S. Maia, Magdalena Fuentes, Luiz W. P. Biscainho, Martín Ro-
camora, Slim Essid. “SAMBASET: A Dataset of Historical Samba de
Enredo Recordings for Computational Music Analysis”, 20th Interna-
tional Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

egy is not able to solve the cultural bias still present in
existing MIR data, methodologies, and conclusions [38].

Indeed, a great part of the research in this field focuses
on musical traditions usually labeled as “Western”. This is
worrying, since by doing so we risk not being able to fully
evaluate and reproduce specific musical properties found
in some cultures [38]. Some datasets attempt to be uni-
versal and to cover a large number of music styles, but
end up sacrificing the very representation of what they
are trying to portray. This is the case, for example, of
the well-known Ballroom and Extended Ballroom datasets,
whose “Samba” class contains a mixture of songs of dif-
ferent origins, of which only a few examples correspond to
Brazilian rhythms, specifically identifiable as bossa-nova,
pagode, and others [28]. In other datasets, music from non-
“Western” traditions is given generic labels as “Latin”, or
“World” [28]. This underscores the importance of increas-
ing the efforts towards the study of non-“Western” tradi-
tions found throughout the multicultural world we live in.

1.1 Other Culture-Specific Datasets

Here we review some of the existing datasets devoted
to non-“Western” music traditions. One of the biggest
projects today is CompMusic [38], which focuses on
five particular music cultures: Arab-Andalusian, Beijing
Opera, Turkish-makam, Hindustani, and Carnatic. Several
annotations are provided, including melody (e.g. singer
tonics, pitch contours), rhythm and structure (e.g. tala cy-
cles), scores (e.g. for percussion patterns), and lyrics.

There are also some datasets of Latin-American mu-
sic launched with MIR in mind. For instance, the dataset
released in [32] comprises annotated audio recordings of
Uruguayan candombe drumming, suited for beat/downbeat
tracking. Aimed at music genre classification, the Latin
Music Database [39] has Brazilian rhythms—axé, forró,
gaúcha, pagode, and sertaneja—and music from other
traditions: bachata, bolero, merengue, salsa, and tango.
Closer to the topic of this article, two datasets focus exclu-
sively on Brazilian music: intended for music genre clas-
sification, the Brazilian Music Dataset [40] includes forró,
rock, repente, MPB (Brazilian popular music), brega, ser-
tanejo, and disco; meant for beat/downbeat tracking and
rhythmic pattern analysis, the BRID [28] consists of typi-
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cal rhythmic patterns of samba, samba de enredo, partido-
alto and other styles played on Brazilian instruments.

1.2 Our Contributions

In this paper, we present SAMBASET, the first large
dataset of annotated samba de enredo recordings. Be-
sides describing the dataset contents and detailing the beat
and downbeat annotation process, we highlight one possi-
ble (musicological) use of this dataset through a study on
recordings’ tempo across the years, and briefly discuss how
its results agree with expert knowledge about the evolution
of sambas de enredo over the last few decades. Finally,
we draw our concluding remarks and point out other chal-
lenges that can be tackled with SAMBASET.

1.3 Notes on Samba

Samba plays a special role in Brazil’s image overseas. And
every year, the country receives millions of tourists for
Carnival activities in cities such as Salvador and Rio de
Janeiro. Being Brazil’s quintessential rhythm, samba’s de-
velopment is closely related to that of Brazil itself.

Samba’s roots can be traced back to dance and religious
practices from the Afro-Brazilian diaspora [1, 20] and, as
Araujo [1] points out, to the accommodation efforts made
by people of African descent to maintain their heritage and
cultural identity despite slavery and persecution. In many
of these cultural practices, participants would form a roda
(circle) and accompany one or more dancers (positioned
at the center of the roda) by clapping, singing, and occa-
sionally playing instruments [1, 37]. These traditions gave
origin to different cultural manifestations, collectively as-
sociated with the term samba, 1 for example: coco, samba
de roda, partido-alto, samba de terreiro, pagode, among
others. In the post-Abolition period, samba overcame pro-
hibition to become Brazil’s national rhythm.

In the 1930s, the genre evolved to the rhythmic frame-
work that still defines it today—generally characterized by
duple meter (i.e., binary division of the periodically per-
ceived pulsations) and strong syncopation. However, the
idea of syncope—momentary contradiction of the prevail-
ing meter or pulse [36]—can only be adequately applied
to “Western” music, creating a fundamental problem in
music traditions where this disruption of the pulse is the
norm, and not the exception. That is why some authors
prefer to resort to the concepts of commetricity and con-
trametricity [37], which indicate respectively when the sur-
face rhythm confirms or contradicts the underlying meter,
a terminology more commonly used in African music stud-
ies [2, 24, 37]. Therefore, it is more appropriate to say that
samba presents a strong tendency towards contrametricity.

Later developments in samba led to, arguably, the most
internationally famous of all its subgenres, the samba de
enredo. These are sambas subject to an enredo (plot) com-
posed in the context of an escola de samba—popular asso-
ciation for the practice of samba, strongly connected to a

1 Possibly a variation of semba, word for a kind of circle dance practice
in the Angolan Kimbundu language [37].
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Figure 1: Recordings per decade of first performance.

specific community—, and presented at parades in an or-
ganized competition annually held along a so-called Sam-
badrome during Carnival. At the core of every escola de
samba lies the bateria (percussion ensemble). During a
performance, the rhythmic aura of a bateria is created by
the superposition of several cyclical individual parts, as-
signed to each multi-piece instrument set, similarly to what
is observed in percussion ensemble practices throughout
sub-Saharan Africa [1]. The bateria sets the mood of
samba, but recent studies have observed an increase in
the average tempo of bateria performances, an effect at-
tributable to stricter parading time constraints [12, 22, 34].

2. DATASET OVERVIEW

Sambas de enredo are well documented in the phono-
graphic industry. Apart from historical collections, since
1968 the yearly sambas de enredo that competing escolas
de samba will perform at the carnival parade have been
professionally recorded and marketed. Initially available
as LP records, these official compilations began to appear
as CDs in 1990. Since then, the amount of musicians (in-
strumentalists and choir) in each track has only increased.

Currently comprised of audio recordings, annotations
and metadata, SAMBASET covers different eras, from
later renditions of old classics to the most recent sambas
de enredo just out of the Sambadrome. Figure 1 indicates
the distribution of sambas w.r.t. the year they were first
performed (typically, the parading year). Three major col-
lections make up the dataset; in chronological order:

História das Escolas de Samba (HES): a collection
of historical sambas, composed between 1928 and 1974,
from four major escolas de samba, arranged and inter-
preted by the instrumentalists of each escola. Recorded
in 1974, published in four LPs by Discos Marcus Pereira
(redistributed as CDs in 2011), their 48 tracks also include
a few sambas de quadra/de terreiro and partidos-altos.

Escolas de Samba – Enredos (ESE): a collection of his-
torical sambas, composed between 1949 and 1993, from
ten traditional escolas de samba in the voices of many idols
from samba’s history, accompanied by a selected ensem-
ble of instrumentalists and choir. There are a total of 100
tracks recorded and released in 1993 by Sony Music. This
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Genres
Escola SE ST/SQ OT Total
Mangueira 45 3 1 49
Portela 41 5 2 48
Salgueiro 42 5 - 47
Império Serrano 31 5 - 36
Mocidade 35 - 1 36
Beija-Flor 34 1 - 35
Imperatriz 35 - - 35
Vila Isabel 33 - - 33
União da Ilha 27 - - 27
Grande Rio 25 - - 25
Unidos da Tijuca 24 - - 24
Viradouro 18 - - 18
Estácio 16 - - 16
Porto Da Pedra 15 - - 15
Caprichosos 12 - - 12
São Clemente 12 - - 12
Tradição 11 - - 11
Other escolas (7) 14 - - 14
Total 470 19 4 493

Table 1: Number of recordings in SAMBASET separated
by escolas and by genres: samba de enredo (SE), samba
de terreiro/samba de quadra (ST/SQ), and others (OT). 2

collection includes a couple of tracks from different sub-
genres (samba de terreiro and samba-exaltação).

Sambas de Enredo (SDE): official compilations of sam-
bas de enredo recorded by members of the top escolas
from Rio de Janeiro, for each carnival parade between
1994 and 2018. The 25 CDs gather 338 tracks, published
by RCA/BMG/Sony BMG (1994–2006) and by Universal
Music (after 2007), with one samba de enredo per track.

Table 1 gives the number of tracks for each escola de
samba featured in the dataset, by genre. In total, there
are 493 recorded sambas in 486 audio tracks, 3 resulting in
over 40 hrs 30 min of content. All files are stereo with a
sampling rate of 44.1 kHz and 16-bit resolution. Not only
the three different collections allow for the coverage of dif-
ferent time periods, but they also have distinct sonorous
characteristics. In HES, tracks feature only a few musi-
cians playing very naturally and with great expression, as
if they were in a roda. For several tracks in the official
compilation (SDE), on the other hand, more than fifty in-
strumentalists play simultaneously while a choir of around
the same size accompanies the main singer. Finally, ESE
presents smaller ensembles and less expressiveness.

3. METADATA AND ANNOTATIONS

Metadata for albums and tracks were carefully curated and
organized in an XML file. The information therein de-
scribed was primarily obtained from CD booklets and later

2 Some imbalance can be observed in the distributions of both genres
and escolas. However, ST/SQ and OT tracks were only kept for the com-
pleteness of the dataset in regard to the CD collections, and the escolas’
playing styles are not so heterogeneous as to make this imbalance critical.

3 Some tracks in the ESE collection contain more than one samba.

<metadata dataset="SAMBASET"
curator="John Doe"
version="0.0.1">

...
<album title="História das Escolas de Samba − Mangueira"

arranger="Cartola"
producer="J. C. Botezelli"
instrumentalists="Various Artists"
record_label="Discos Marcus Pereira"
year_published="2011"
length="00:29:48"
total_tracks="12"
album_code="HES1"
barcode="7892141643634">

...
<track track_number="6"

title="Vale Do São Francisco"
artist="Cartola"
composer="Cartola and Carlos Cachaça"
year_recorded="1974"
year_first_performed="1948"
genre="samba de enredo"
length="02:49.226"
samplerate="44100"
bpm="78.4"
start_time="00:07.895"
end_time="02:49.226"
checksum="d16974f135f0c374677c0e0db101cfea"/>

...
</album>

...
</metadata>

Figure 2: Metadata file excerpt.

cross-checked with both the União Brasileira de Compos-
itores 4 (lit. Brazilian Union of Composers, UBC) and the
Instituto Memória Musical Brasileira 5 (Brazilian Musical
Memory Institute, IMMuB). Whenever corresponding in-
formation was available, data was also checked against
online database services such as FreeDB, MusicBrainz or
Discogs. Finally, we consulted samba-oriented forums and
websites for additional, conflicting or missing information.

All XML tags can be seen in Figure 2. While most
of these labels are straightforward (e.g. title, composer),
some require further clarification. First, the album_code
refers to a unique code given to each album in the dataset.
Albums from the HES and ESE collections were sequen-
tially numbered, i.e., they are referred to by the codes
HES1 to HES4 and ESE1 to ESE10, respectively. For SDE,
albums were specified via the publishing year, which is
also present in the album’s title (i.e., SDE1994–SDE2018).
The track_number is used with the album_code to name
all audio files (e.g. the metadata in Figure 2 corresponds to
file HES1.06.wav). Track’s start_time and end_time indi-
cate the time each samba starts and ends, respectively. This
is invaluable since many samba de enredo recordings are
preceded by a short introductory speech or song motivating
the performance, or succeeded by a “farewell” shout after
the music has already stopped. The checksum attributes
were filled with the MD5 hash of the track’s WAV file, to
allow the verification of audio data integrity. Finally, mean
bpm values were estimated from the beat annotations de-
scribed in the following.

As of the writing of this paper, SAMBASET has anno-
tations of beat and downbeat produced according to a semi-

4 http://www.ubc.org.br/
5 https://immub.org/
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automatic procedure, after the results of the experiment
described in Section 4. First, automatically-generated
beat annotations were obtained for all audio files using
the DBNBeatTracker system, which is available in the
madmom package [3]—deemed a good candidate for pro-
viding reliable beat estimations (cf. Section 4). In a second
step, these estimations were checked and manually cor-
rected by one of the authors, who addressed eventual phase
errors, and missing/extra beats. Since samba de enredo is
always in duple meter, downbeats could be manually se-
lected during this second phase. This two-step procedure
greatly reduced the amount of manual work necessary to
annotate beats and downbeats for this entire dataset.

4. ANALYSIS OF BEAT TRACKERS’
PERFORMANCE

In this section, we provide a performance analysis of dif-
ferent state-of-the-art beat tracking systems, which were
applied on a subset of short (30-second) excerpts from
SAMBASET. Samples were selected according to a crite-
rion based on the mean mutual agreement between beat
estimation sequences generated by the algorithms under
analysis, inspired by the approach of Holzapfel et al. [21].
This subset was manually annotated using Sonic Visu-
aliser [11] by an expert with an engineering background,
knowledgeable of audio technologies, and with many years
of experience as a practicing musician, in particular of
samba. Estimations were evaluated against this ground
truth using three different types of metrics.

4.1 State-of-the-art Algorithms Considered

Fourteen algorithms (seen in Table 2) were used for sample
selection and performance evaluation. We replaced eight
of the algorithms originally featured in Holzapfel et al. [21]
with six other algorithms released in following years, most
notably those provided in the madmom package [3].

The algorithms are implemented in different program-
ming languages and, in a few cases, require different op-
erating systems. We used the Python implementations of
AUB (version 0.4.9), ELL (provided by the librosa pack-
age [30] version 0.6.2), DEG and MFT (Essentia pack-
age [8] version 2.1-beta5-dev), BO1, BO2, and BO3 (mad-
mom package [3] version 0.16.1); and the available re-
leases of DIX (in Java, version 0.5.8), DAV (Vamp plugin
in conjunction with the Sonic Annotator [10]), IB1 and IB2
(version 1.0 binaries). Finally, the C++ implementation of
KLA was kindly provided by the author.

4.2 Evaluation Measures

Since there is currently no consensus on the evaluation
metrics for the beat tracking task [13], with choices de-
pending on the type of application, in this work we adopted
the following methods 6 :

F-measure [17]: It is defined as the harmonic mean be-
tween precision (ratio between correctly detected and es-
timated beats) and recall (ratio between correctly detected

6 Computed with standard settings using mir_eval [35] version 0.5.

and annotated beats). Generally, an estimated beat is con-
sidered correct if within ±70 ms around an annotation.

Continuity-based measures [19]: Here, an estimated
beat is considered correct if it is within a small toler-
ance around an annotation, the previous estimation has
also been deemed correct, and the inter-beat interval is
consistent with the inter-annotation interval within an-
other tolerance—both generally set to 17.5% of the inter-
annotation interval. CMLt (“correct metrical level”) is the
ratio between correct and annotated beats; accepting phase
errors of half a beat period or octave errors in estimation
yields the AMLt (“allowed metrical level”).

Information Gain [14]: Defined as the Kullback-
Leibler divergence between the observed beat error his-
togram (considering the timing errors of all estimated beats
within a beat-length window around the annotations) and
a uniform one (accounting for a pair of unrelated beat se-
quences), it spans the range [0, log2(K)] bits, where K is
the number of bins in the histograms (usually 40).

4.3 Selection of Ground Truth Excerpts

In [21], Holzapfel et al. presented a method for select-
ing challenging music examples for the beat tracking task
without ground truth annotations. To do so, they first cal-
culate the mean mutual agreement (MMA) between se-
quences estimated by a group of state-of-the-art beat track-
ers. The mutual agreement between two estimated beat se-
quences {i, j} output by different beat tracking systems is
given by the Information Gain in bits:

MAi,j = InfGain(i, j), i 6= j. (1)

For a committee of N beat trackers, they then calculate
the N(N − 1)/2 different mutual agreements and average
them all to obtain the MMA. The researchers show how a
low mean mutual agreement coincides with perceptual and
musical properties that make tapping difficult for humans.
They build a challenging dataset by selecting samples with
MMA < 1 bit, given a committee of five beat trackers.

Later, in [42], they calculate the MaxMA, i.e., the algo-
rithm whose output presents the maximum mutual agree-
ment with the rest of the committee, showing that it pro-
vides the most reliable estimation for that given music ex-
ample. They conduct subjective listening tests to deter-
mine a perceptual threshold for acceptable quality of this
chosen output. This threshold is found to be 1.5 bits, for
the same committee of five beat trackers. Their results also
show a correlation between the test ratings and the MMA.

In this work, we followed a similar approach to select
samples of various difficulties to the state-of-the-art algo-
rithms. As mentioned in 4.1, we collected implementations
of 14 beat tracking systems, removing some (the unavail-
able ones) featured in the original work [21], and adding
others that were presented after its publication. We then
extracted 30-second excerpts from all the different sambas
de enredo in SAMBASET, and computed the MMA be-
tween estimations yielded by the beat trackers for all these
493 files. Figure 3 presents the ordered MMA values for
excerpts from the three collections (HES, ESE, and SDE).
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Beat Tracker CMLt (%) AMLt (%) F-meas. (%) Inf. Gain (bits)
Aubio (AUB) [9] 59.4 65.6 61.9 2.30
BayesBeat-HMM (KR1) [25, 26] 42.7 65.6 67.6 2.27
BayesBeat-PF (KR2) [25, 27] 47.6 52.9 58.0 2.25
*BeatRoot (DIX) [17] 79.4 82.8 86.4 3.15
Davies (DAV) [15] 97.2 97.2 97.5 3.66
*Degara (DEG) [16] 88.3 91.2 89.7 3.40
*Ellis (ELL) [18] 76.9 76.9 78.7 3.35
IBT causal (IB1) [33] 83.4 83.4 86.2 2.45
*IBT non-causal (IB2) [33] 51.1 90.8 80.0 2.49
*Klapuri (KLA) [23] 61.3 63.7 63.1 3.09
BeatTracker (BO1) [5, 7] 98.1 98.1 98.6 3.78
DBNBeatTracker (BO2) [4, 26] 99.5 99.5 99.5 3.80
DBNDownBeatTracker (BO3) [6] 94.0 97.3 97.1 3.68
MultiFeature (MFT) [41] 86.4 86.4 86.8 3.55
Mean 76.1 82.2 82.2 3.09

Table 2: Ground truth performance of each beat tracking algorithm on the audio excerpts of SAMBASET. The best perfor-
mance for each metric is highlighted in bold. The five-member committee proposed in [21] is indicated by an asterisk.
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Figure 3: Collections sorted by MMA mean (solid line), with standard deviation (shaded region). Annotated samples (solid
circles) were chosen as the closest to ten evenly spaced MMA values (solid triangles). One sample was treated as an outlier
(cross) in (b).

For each collection, using the curve obtained from its
excerpts, we determined P evenly spaced MMA values
(including the maximum and minimum points), and se-
lected the excerpts closest to each of these values to anno-
tate. The reasons for this procedure are twofold: first, by
selecting the same number of samples from each collec-
tion, we compensate for the large imbalance between them
(e.g. in SDE there are nearly seven times more excerpts
than in HES), while ensuring that their unique character-
istics will be equally represented in the subset (recalling
the variability in HES is much higher than that in ESE,
or SDE); second, we guarantee that the algorithms will be
compared within a group of samples to which they share
different levels of consensus (and that would possibly pro-
vide a human annotator with a gamut of challenges). In
total, thirty files were manually annotated (P = 10, i.e.,
ten from each collection), totalling just over 1 900 beats. It
should be noted that a moderate number of annotated sam-
ples is sufficient, since we are dealing with a single music
genre, which considerably limits the range of variations
between them.

4.4 Discussion of Results

We see in Figure 3 that, in general, the fourteen beat track-
ing systems show more agreement in estimations for tracks
in the ESE collection, followed by those in SDE, with HES
in last. In fact, for over 50% of the tracks in ESE, the algo-
rithms presented MMA > 3 bits, against slightly under 12%
for SDE tracks and 0% in HES tracks in the same condi-
tions. Considering an MMA > 2.5 bits, those percentages
grow to 95%, 70% and 23%, respectively. This agrees with
the authors’ overall impression that the HES collection is
the most “flavorful”, whereas ESE is less expressive.

Regarding the test with the sampled subset, Table 2
gives the accuracy values for all algorithms, averaged over
the thirty samples. Seven beat trackers perform better than
the mean in all metrics, some of them outperforming the
others by a large margin. In the end, the four best algo-
rithms for our dataset are BO2, BO1, DAV, and BO3.

For the sake of comparison, we also evaluated the 493
excerpts with the five-member committee proposed in [21]
and used in [42]: for 98.6% of the set the committee shows
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Figure 4: Variation of average tempo across the SDE col-
lection with trend lines for three distinct regions and re-
spective confidence intervals (shaded areas).

MMA > 1.5 bits; a single excerpt has MMA < 1 bit. This
indicates that, overall, SAMBASET excerpts are not very
challenging to the algorithms in this committee, which
would provide a good number of acceptable estimations.
Indeed, the good results shown by committee members in
the ground truth performance suggests likewise. This anal-
ysis of state-of-the-art algorithms indicates a safe approach
to semiautomatically annotating beats in this dataset.

5. MUSICOLOGICAL INSIGHTS

Here we investigate the evolution of average tempo in
samba de enredo recordings across the years as represented
in the SDE collection. For each excerpt, we compute the
average tempo in beats per minute (bpm) as the inverse of
the mean inter-beat interval, using the automatically de-
tected beats. Figure 4 shows the average tempo for every
track in SDE, plotted against the release year.

Although no clear trend is apparent from the whole data,
we can readily verify the existence of local trends in three
different regions of the graph. The first region accounts
for the years of 1994 through 1998, and corresponds to the
end of an era of “live” recordings in the Teatro de Lona
(Barra da Tijuca), a large circus-like tent. As Moehn re-
veals on his essay “The Disc is not the Avenue” [31], by
then the recordings were being made with a large number
of musicians from each escola (around sixty) as well as
large choirs from the respective community.

A radical change took place in the production of the
1999 disc: the entire process was moved to the studio and
the number of escola members was reduced, not only to
cut costs, but also to regain control over the sound orga-
nization [31]. Producers wanted the disc to sound “clear”
and, thus, constrained the creative liberties of the bateria’s
directors (e.g. they were not allowed to choose the tempo
of the performance or to follow certain musical conven-
tions that are common in a live performance). This was an
attempt to recover the disc’s marketability (sales had been
dropping in previous years), despite distancing it from the
actual phenomenon of the samba de enredo [31]. In 2010,
“live” recordings were resumed, this time in the Cidade
do Samba (Gambôa). Producers retreated in their interfer-

ence on the soundscape creation, and the escolas were able
to reclaim the final saying in some aspects of the record-
ing, such as the tempo. The larger space provided by the
Cidade do Samba also lead to an increase in the number of
musicians taking part in the recordings: more than 8 000
for the 2014 CD against 1 500 in the 1998 recording [31].

Therefore, the first and third regions of Figure 4 more
closely represent actual samba de enredo performances. In
particular, notice that the average bpm in the third region
is above the averages in the other two regions. This can be
seen as a direct translation to the digital media of the deci-
sions to accelerate the live performances (and the marching
pace), so that the escolas satisfy changes in parading time
limits, as reported by many specialists [12, 22, 34].

6. CHALLENGES

It would be very interesting to enrich this dataset with other
types of annotations. In particular, one could think of gen-
erating ground truths for section boundaries (e.g. verses
and the two different choruses that are very common in
samba de enredo compositions), chord annotations (for in-
struments such as the cavaquinho), and instrument activity.
As in the case of the CompMusic project [38], pitch con-
tour annotations for soloist voices could be produced, as
well as time-aligned lyrics and percussion transcription.

With these annotations, SAMBASET can provide many
challenges to state-of-the-art algorithms in different MIR
tasks. Tracks (specially in SDE) contain a plethora of
simultaneous sounds of different qualities and textures,
e.g. harmonic and percussive instruments, soloists and
choirs. These could pose hard problems to vocal F0 or
chord estimation systems. Also, singing voice annotation
and lyrics could allow the study of soloist’s interpretation
as to phrasing, preferred ornaments, or characteristic syn-
copation; along with the metadata provided, it would be
possible for example, to work on singer classification.

7. CONCLUSION

In this paper, we presented SAMBASET, a large samba
de enredo dataset with rich metadata, beat and downbeat
annotations. We provided a detailed overview of its con-
tents 7 and reported a study on the performance of a group
of state-of-the-art beat trackers over the set. We also moti-
vated one musicological use of the dataset, i.e., the study of
changes in samba de enredo’s rhythmic properties across
several years. We expect that SAMBASET allows for tech-
nical improvements in traditional MIR tasks via new per-
spectives on problem solving that arise from contemplating
cultures different from those to which we are accustomed.
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ABSTRACT

It has been shown that the harmonic series at the tempo
frequency of the onset-strength-function of an audio sig-
nal accurately describes its rhythm pattern and can be used
to perform tempo or rhythm pattern estimation. Recently,
in the case of multi-pitch estimation, the depth of the input
layer of a convolutional network has been used to represent
the harmonic series of pitch candidates. We use a similar
idea here to represent the harmonic series of tempo candi-
dates. We propose the Harmonic-Constant-Q-Modulation
which represents, using a 4D-tensors, the harmonic se-
ries of modulation frequencies (considered as tempo fre-
quencies) in several acoustic frequency bands over time.
This representation is used as input to a convolutional net-
work which is trained to estimate tempo or rhythm pattern
classes. Using a large number of datasets, we evaluate the
performance of our approach and compare it with previous
approaches. We show that it slightly increases Accuracy-1
for tempo estimation but not the average-mean-Recall for
rhythm pattern recognition.

1. INTRODUCTION

Tempo is one of the most important perceptual elements
of music. Today numerous applications rely on tempo
information (recommendation, playlist generation, syn-
chronization, dj-ing, audio or audio/video editing, beat-
synchronous analysis). It is therefore crucial to develop
algorithms to correctly estimate it. The automatic estima-
tion of tempo from an audio signal has been one of the
first research carried on in Music Information Retrieval
(MIR) [11]. 25 years later it is still a very active research
subject in MIR. This is due to the fact that tempo estima-
tion is still an unsolved problem (outside the prototypical
cases of pop or techno music) and that recent deep-learning
approaches [3] [37] bring new perspectives to it.

Tempo is usually defined as (and annotated as) the rate
at which people tap their foot or their hand when listen-
ing to a music piece. Several people can therefore perceive
different tempi for the same piece of music. This is due
to the hierarchy of the metrical structure in music (to deal

c© Hadrien Foroughmand, Geoffroy Peeters. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Hadrien Foroughmand, Geoffroy Peeters. “Deep-
Rhythm for tempo estimation and rhythm pattern recognition”, 20th In-
ternational Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

with this ambiguity the research community has proposed
to consider octave errors as correct) and due to the fact that
without the cultural knowledge of the rhythm pattern(s) be-
ing played, it can be difficult to perceive “the” tempo (or
even “a” tempo). This last point, of course, opens the door
to data-driven approaches, which can learn the specifici-
ties of the patterns. In this work, we do not deal with the
inherent ambiguity of tempo and consider the values pro-
vided by annotated datasets as ground-truth. The method
we propose here belong to the data-driven systems in the
sense that we learn from the data. It also considers both
the tempo and rhythm pattern in interaction by adequately
modeling the audio content. The tempo of a track can of
course vary along time, but in this work we focus on the
estimation of constant (global) tempi and rhythm patterns.

In the following section, we summarize works related
to tempo and rhythm pattern estimation from audio. We
refer the reader to [12,32,44] for more detailed overviews.

1.1 Related works

Tempo estimation. Early MIR systems encoded do-
main knowledge (audio, auditory perception and musical
knowledge) by hand-crafting signal processing and statis-
tical models (hidden Markov, dynamic Bayesian network).
Data were at most used to manually tune some parame-
ters (such as filter frequencies or transition probabilities).
Early techniques for beat tracking and/or tempo estimation
belong to this category. Their overall flowchart is a multi-
band separation combined with an onset strength function
which periodicity is measured. For example, Scheirer [36]
proposes the use of band-pass filters combined with res-
onating comb filters and peak picking; Klapuri [18] uses
the resonating comb filter bank which is driven by the
bandwise accent signals, the main extension is the tracking
of multiple metrical levels; Gainza and Cole [8] propose
a hybrid multiband decomposition where the periodicities
of onset functions are tracked in several frequency bands
using autocorrelation and then weighted.

Since the pioneer works of [11], many audio datasets
have been annotated into tempo. This therefore encour-
ages researchers to develop data-driven systems based on
machine learning and deep learning techniques. Such
machine-learning models are K-Nearest-Neighbors (KNN)
[40], Gaussian Mixture Model (GMM) [33, 43], Support
Vector Machine (SVM) [4, 9, 34], bags of classifiers [20],
Random Forest [38] or more recently deep learning mod-
els. The first use of deep learning for tempo estimation
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was proposed by Böck et al. [3] who proposed a deep Re-
current Neural Network (bi-LSTM) to predict the position
of the beats inside the signal. This output is then used
as the input of a bank of resonating comb filters to de-
tect the periodicity and so the tempo. This technique still
achieves the best results today in terms of Accuracy2. Re-
cently, Schreiber and Müller [37] proposed a “single step
approach” for tempo estimation using deep convolutional
networks. The network design is inspired by the flowchart
of handcrafted systems: the first layer is supposed to mimic
the extraction of an onset-strength-function. Their system
uses as input Mel-spectrograms and the network is trained
to classify the tempo of an audio excerpt into 256 tempo
classes (from 30 to 285 BPM), it shows very good results
in terms of Class-Accuracy and Accuracy1.

Rhythm pattern recognition. While tempo and
rhythm pattern are closely interleaved, the recognition of
rhythm pattern has received much less attention. This is
probably due to the difficulty of creating datasets annotated
in such rhythm pattern (defining the similarity between
patterns — outside the trivial identity case — remains a
difficult task). To create such a dataset, one may con-
sider the equivalence between the rhythm pattern and the
related dance (such as Tango): Ballroom [12], Extended-
ballroom [24] and Greek-dances [14]. Systems to rec-
ognize rhythm pattern from the audio are all very dif-
ferent: Foote [7] defines a beat spectrum computed with
a similarity matrix of MFCCs, Tzanetakis [42] defines a
beat histogram computed from an autocorrelation function,
Peeters [32] proposes a harmonic analysis of the rhythm
pattern, Holzapfel [15] proposes the use of the scale trans-
form (which allows to get a tempo invariant representa-
tion), Marchand [23,25] extends the latter by combining it
with the modulation spectrum and adding correlation coef-
ficients between frequency bands. For a recognition task
on the Extended-ballroom and Greek-dances, Marchand
can be considered as the state-of-the-art.

1.2 Paper proposal and organization

In this paper we present a new audio representation, the
Harmonic-Constant-Q-Modulation (HCQM), to be used as
input to a convolutional network for global tempo and
rhythm pattern estimation. We name it Deep Rhythm
since it uses the depth of the input and a deep network.
The paper is organized as follows. In §2, we describe the
motivation for (§2.1) and the computation details of (§2.2)
the HCQM. We then describe the architecture of the con-
volutional neural network we used (§2.3) and the training
process (§2.4). In §3, we evaluate our proposal for the
task of global tempo estimation (§3.1) and rhythm pattern
recognition (§3.2) and discuss the results.

2. PROPOSED METHOD

2.1 Motivations

From Fourier series, it is known that any periodic sig-
nal x(t) with period T0 (of fundamental period f0 =
1/T0) can be represented as a weighted sum of sinusoidal

components which frequencies are the harmonics of f0:
x̂f0,a(t) =

∑H
h=1 ah sin(2πhf0t+ φh).

For the voiced part of speech or pitched musical in-
strument, this leads to the so-called “harmonic sinusoidal
model” [26, 39] that can be used for audio coding or
transformation. This model can also be used to estimate
the pitch of a signal [21]: estimating the f0 such that
x̂f0,a(t) ' x(t). The values ah can be estimated by
sampling the magnitude of the DFT at the correspond-
ing frequencies ah,f0 = |X(hf0)|. The vector af0 =
{a1,f0 · · · aH,f0} represents the spectral envelope of the
signal and is closely related to the timbre of the audio sig-
nal, hence the instrument playing. For this reason, these
values are often used for instrument classification [29].

For audio musical rhythm, Peeters [30] [31] [32] pro-
poses to apply such an harmonic analysis to an onset-
strength-function . The period T0 is then defined as the du-
ration of a beat. a1,f0 then represents the DFT magnitude
at the 4th-note level, a2,f0 at the 8th-note level, a3,f0 at
the 8th-note-triplet level, while a 1

2 ,f0
represent the binary

grouping of the beats and a 1
3 ,f0

the ternary one. Peeters
considers that the vector a is representative of the specific
rhythm and that therefore af0 represents a specific rhythm
played at a specific tempo f0. He proposes the following
harmonic series: h ∈ { 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33, . . . 8}

Using this, he shows - in [32] that given the tempo f0, the
vector af0 can be used to classify the different rhythm pat-
tern; - in [30], that given manually-fixed prototype vectors
a, it is possible to estimate the tempo f0 (looking for the
f such that af ' a); - in [31] that the prototype vectors a
can be learned (using simple machine-learning) to achieve
the best tempo estimation f0.

The method we propose in this paper is in the continua-
tion of this last work (learning the values a to estimate the
tempo or the rhythm class) but we adapted it to the deep
learning formalism recently proposed by Bittner et al. [2]
where the depth of the input to a convolutional network is
used to represent the harmonic series af . In [2], a constant-
Q-transform (time τ and log-frequency f ) is expanded to
a third dimension which represent the harmonic series af
of each f (with h ∈ [ 12 , 1, 2, 3, 4, 5]). When f = f0, af
will represent the specific harmonic series of the musical
instrument (plus an extra value at the 1

2f position used to
avoid octave errors). When f 6= f0, af will represent (al-
most) random values. In [2], the goal is to estimate the
parameters of a filter such that when multiplied with this
third dimension af it will provide very different values
when f = f0 or when f 6= f0. This filter will then be
convolved over all log-frequencies f and time τ to esti-
mate the f0’s. This filter is trained using annotated data.
In [2], there is actually several of such filter; they consti-
tute the first layer of a convolutional network. In practice,
in [2], the ah,f are not obtained as |X(hf)|; but by stack-
ing in depth several CQTs each starting at different mini-
mal frequencies hfmin. The representation is denoted by
Harmonic Constant-Q Transform (HCQT): Xhcqt(f, τ, h).

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

637



STFT Onset Strength Function HCQTRaw audio STFT in frequency bands
x(t)

<latexit sha1_base64="gHIePtuoIc2473k2RR8MvnjyLHw=">AAACx3icjVHLTsJAFD3UF+ILcemmkZjghrS40CWJG91hIo9EiGnLAA19ZTolEOLCH9Clfo8/YfwD/QD33hlKohKj07Q9c+45Z+bO2JHnxsIwXjPa0vLK6lp2PbexubW9k98tNOIw4Q6rO6EX8pZtxcxzA1YXrvBYK+LM8m2PNe3hmaw3R4zHbhhciUnEOr7VD9ye61hCUuOSOLrJF42yoYa+CMwUFKuFdunj+aFdC/MvaKOLEA4S+GAIIAh7sBDTcw0TBiLiOpgSxwm5qs5wixx5E1IxUljEDunbp9l1ygY0l5mxcju0ikcvJ6eOQ/KEpOOE5Wq6qicqWbK/ZU9VptzbhP52muUTKzAg9i/fXPlfn+xFoIdT1YNLPUWKkd05aUqiTkXuXP/SlaCEiDiJu1TnhB3lnJ+zrjyx6l2eraXqb0opWTl3Um2Cd7lLumDz53UugkalbB6XzUuzWK1gNrLYxwFKdJ8nqOIcNdQpe4B7POJJu9BCbaSNZ1Itk3r28G1od59RwpPI</latexit>

t
<latexit sha1_base64="n/Crv317OzvKiIiDcLEyF/0sYBk="></latexit> ⌧

<latexit sha1_base64="L2lFTqJkYi2LvCci7Xyg57PtzM0="></latexit>

⌧
<latexit sha1_base64="L2lFTqJkYi2LvCci7Xyg57PtzM0="></latexit>

⌧
<latexit sha1_base64="L2lFTqJkYi2LvCci7Xyg57PtzM0="></latexit>

⌧ 0 = 1
<latexit sha1_base64="E5naABUQ17PS4hYfpHM5W1FBtqU="></latexit>

⌧ 0 = T
<latexit sha1_base64="VE5gjAFfIct+PF8iLSbeZHnCY0M="></latexit>

⌧ 0 = 1
<latexit sha1_base64="E5naABUQ17PS4hYfpHM5W1FBtqU="></latexit>

⌧ 0 = T
<latexit sha1_base64="VE5gjAFfIct+PF8iLSbeZHnCY0M="></latexit>

HCQT

HCQM

X(f, ⌧)
<latexit sha1_base64="kTsZ8ytb9JrVLZAWV8AB8QOlcWc="></latexit>

X(b, ⌧)
<latexit sha1_base64="8JixcwbgKV44MEYZYDzkQjioW3Y="></latexit>

Xo(b, ⌧)
<latexit sha1_base64="NAxEoOIIP3SgXzZNS4pCbcYGQCw="></latexit>

Xhcqm(�, ⌧ 0, b, h, )
<latexit sha1_base64="4tDzCJ+3h9uO8RuPPw38AZvX4bI=">AAAC4XicjVG7SsRAFD0b3+/10WkRXESFZUm00HLBxlLBfYArSzKOZjAvk4kgi42dndj6A7Yqfov4B2pv753ZCD4QnZDkzLnnnJk748a+SKVlPRWMnt6+/oHBoeGR0bHxieLkVD2NsoTxGov8KGm6Tsp9EfKaFNLnzTjhTuD6vOEebah644QnqYjCHXka873AOQzFgWCOJKpdnGu2Ox47Ds6WWrEnymZLOtli2XTLpldebhdLVsXSw/wJ7ByUqjNvD+nrvbcVFR/Rwj4iMGQIwBFCEvbhIKVnFzYsxMTtoUNcQkjoOscZhsmbkYqTwiH2iL6HNNvN2ZDmKjPVbkar+PQm5DSxQJ6IdAlhtZqp65lOVuxv2R2dqfZ2Sn83zwqIlfCI/cv3ofyvT/UicYB13YOgnmLNqO5YnpLpU1E7Nz91JSkhJk7hfaonhJl2fpyzqT2p7l2draPrz1qpWDVnuTbDi9olXbD9/Tp/gvpKxV6t2Nt2qbqC7hjELOaxRPe5hio2sYUaZZ/jBre4M5hxYVwaV12pUcg90/gyjOt3bF+dlw==</latexit>

h
<latexit sha1_base64="RPyJnQzk1j2sIm0otPy5j4t40dA="></latexit>

b
<latexit sha1_base64="MX6uDOXtgmyvJQvul84/DkKOUMg="></latexit>

� <latexit sha1_base64="B/cf9entUO82rlrrXFfjNnSlIYw="></latexit>

h
<latexit sha1_base64="RPyJnQzk1j2sIm0otPy5j4t40dA="></latexit>

b
<latexit sha1_base64="MX6uDOXtgmyvJQvul84/DkKOUMg="></latexit>

� <latexit sha1_base64="B/cf9entUO82rlrrXFfjNnSlIYw=">AAACx3icjVHLSsNAFD2Nr1qrVl0KEiyCq5LUhS4LbnTXgn2ALZKk03ZoXiSTYikuXLh1q5/SPxH/QPEnvDNNQS2iE5KcOfecM3Nn7NDlsTCM14y2tLyyupZdz23kN7e2Czu7jThIIofVncANopZtxczlPqsLLlzWCiNmebbLmvbwXNabIxbFPPCvxDhkHc/q+7zHHUtIqh0O+E2haJQMNfRFYKagWMlPax8PB9NqUHhBG10EcJDAA4MPQdiFhZiea5gwEBLXwYS4iBBXdYY75MibkIqRwiJ2SN8+za5T1qe5zIyV26FVXHojcuo4Ik9AuoiwXE1X9UQlS/a37InKlHsb099OszxiBQbE/uWbK//rk70I9HCmeuDUU6gY2Z2TpiTqVOTO9S9dCUoIiZO4S/WIsKOc83PWlSdWvcuztVT9TSklK+dOqk3wLndJF2z+vM5F0CiXzJOSWTOLlTJmI4t9HOKY7vMUFVygijplD/CIJzxrl1qgjbTbmVTLpJ49fBva/SeD95RL</latexit>

b <latexit sha1_base64="MX6uDOXtgmyvJQvul84/DkKOUMg="></latexit>f <latexit sha1_base64="o1heHs1ybhhUrc6SGM69uDHYIZo="></latexit> b <latexit sha1_base64="MX6uDOXtgmyvJQvul84/DkKOUMg="></latexit>

Figure 1. Flowchart of the computation of the Harmonic-Constant-Q-Modulation (HCQM). See text for details.

2.2 Input representation: the HCQM

As mentioned our goal is here to adapt the harmonic repre-
sentation of the rhythm proposed in [30] [31] [32] to the
deep learning formalism proposed in [2]. For this, the
HCQT proposed by [2] is not applied to the audio sig-
nal, but to a set of Onset-Strength-Function (OSF) which
represent the rhythm content in several acoustic frequency
bands. The OSFs are low-pass signals which temporal evo-
lution is related to the tempo and the rhythm pattern.

We denote our representation by Harmonic-Constant-
Q-Modulation (HCQM). As the Modulation Spectrum
(MS) [1] it represents, using a time/frequency (τ ′/φ) rep-
resentation, the energy evolution (low-pass signal) within
each frequency band b of a first time/frequency (τ/f ) rep-
resentation. However, while the MS uses two interleaved
Short-Time-Fourier-Transforms (STFTs) for this, we use a
Constant-Q transform for the second time/frequency rep-
resentation (in order to obtain a better spectral resolution).
Finally, as proposed by [2], we add one extra dimension to
represent the content at the harmonics of each frequency φ.
We denote it by Xhcqm(φ, τ ′, b, h) where φ are the modu-
lation frequencies (which correspond to the tempo frequen-
cies), τ ′ are the times of the CQT frames, b are the acoustic
frequency bands and h the harmonic numbers.

Computation. In Figure 1, we indicate the computa-
tion flowchart of the HCQM. Given an audio signal x(t),
we first compute its STFT, denoted byX(f, τ). The acous-
tic frequency f of the STFT are grouped into logarithmic-
spaced acoustic-frequency-bands b ∈ [1, B = 8]. We de-
note it by X(b, τ). The goal of this is to reduce the di-
mensionality while preserving the information of the spec-
tral location of the rhythm events (kick patterns tend to
be in low frequencies while hit-hat patterns in high fre-
quencies). For each band b, we then compute an Onset-
Strength-Function over time τ , denoted by Xo(b, τ).

For a specific b, we now consider the signal sb(τ) =
Xo(b, τ) and perform the analysis of its periodicities over
time τ . One possibility would be to compute a time-
frequency representation Sb(φ, τ

′) over tempo-frequencies
φ and time frame τ ′ and then sample Sb(φ, τ

′) at the posi-
tions hφ with h ∈ {12 , 1, 2, 3, 4, 5} to obtain Sb(φ, τ

′, h).
This is the idea we used in [32]. However, in the present
work, we use the idea proposed by [2]: we compute a set

of CQTs 1 , each one with a different starting frequency
hφmin. We set φmin=32.7. Each of these CQTs gives
us Sb,h(φ, τ

′) for one value of h. Stacking them over h
therefore provides us with Sb(φ, τ

′, h). The idea proposed
by [2] therefore allows to mimic the sampling at the hφ
but provides the correct window length to achieve a correct
spectral resolution. We finally stack the Sb(φ, τ

′, h) over b
to obtain the 4D-tensors Xhcqm(φ, τ ′, b, h). The computa-
tion parameters (sample rate, hop size, window length and
FFT size) are set such that the CQT modulation frequency
φ represents the tempo value in BPM.

Illustration. For easiness of visualisation (it is diffi-
cult to visualize a 4D-tensor), we illustrate the HCQM
Xhcqm(φ, τ ′, b, h) for a given τ ′ (it is then a 3D-tensor).
Figure 2 [Left] represent Xhcqm(φ, b, h) on a real au-
dio signal with a tempo of 120 bpm. Each sub-figure
represent Xhcqm(φ, b, h) for a different value of h ∈
{ 12 , 1, 2, 3, 4, 5}. The y-axis and x-axis are the tempo fre-
quency φ and the acoustic frequency band b. The dashed
rectangle super-imposed to the sub-figures indicates the
slice of values Xhcqm(φ = 120bpm, b, h) which corre-
sponds to the ground-truth tempo. It is this specific pattern
over b and h that we want to learn using the filters W of
the first layer of our convolutional network.

2.3 Architecture of the Convolutional Neural Network

The architecture of our network is both inspired by the one
of [2] (since we perform convolutions over an input spec-
tral representation and use its depth) and the one of [37]
(since we perform a classification). However, it differs in
the definition of the input and output.

Input. In [2], the input is the 3D-tensor Xcqt(f, τ, h)
and the convolution is done over f and τ (with filters of
depth H). In our case, the input could be the 4D-tensors
Xhcqm(φ, τ ′, b, h) and the convolution could be done over
φ, τ ′ and b (with filters of depth H). However, to sim-
plify the computation, we reduce Xhcqm(φ, τ ′, b, h) to a
sequence over τ ′ of 3D-tensorsXhcqm(φ, b, h) 2 . The con-
volution is then done over φ and b with filters of depth H .

Our goal is to learn filters W narrow in φ and large in
b which represents the specific shape of the harmonic con-

1 For the STFT and CQT we used the librosa library [27].
2 Future works will concentrate in performing the convolution directly

using the 4D-tensors; which would allow to perform smoothing over time.
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Figure 2. [Left] Example of the HCQM for a real audio with tempo 120bpm. [Right] Architecture of our CNN.

tent of a rhythm pattern. We do the convolution over b
because the same rhythm pattern can be played with in-
strument transposed in acoustic frequencies.

Output. The output of the network proposed by [2] is a
2D representation which represents a saliency map of the
harmonic content over time. In our case, the outputs are ei-
ther the C = 256 classes of tempo (as in [37] we consider
the tempo estimation problem as a classification problem
into 256 tempo classes) or the C = 13 (for extended-
ballroom) or C = 6 (for Greek-dances) classes of rhythm
pattern. To do so, we added at the end of the network pro-
posed by [2] two dense layers, the last one with C units
and a softmax activation.

Architecture. In Figure 2 [Right], we indicate the
architecture of our network. The input is a 3D-tensor
Xhcqm(φ, b, h) for a given time τ ′. The first layer is a
set of 128 convolutional filters of shape (φ = 4, b = 6)
(with depth H). As mentioned, the convolution is done
over φ and b. The shape of these filters has been chosen
such that they are narrow in tempo frequency φ (to pre-
cisely estimate the tempo) but cover multiple frequency
acoustic bands b (because the information relative to the
tempo/ rhythm cover several bands). As illustrated in Fig-
ure 2 [Left] the goal of the filters is to identify the pattern
over b and h specific to φ = tempo frequency.

The first layer is followed by two convolutional layers
of 64 filters of shape (4, 6), one layer of 32 filters of shape
(4, 6), one layer of 8 filters of shape (120, 6) (this allows to
track down the relationships between the modulation fre-
quencies φ). The output of the last convolution layer is
then flattened and followed by a dropout with p = 0.5
(to avoid over-fitting [41]), a fully-connected layer of 256
units, a last fully-connected layer ofC units with a softmax
activation to perform the classification into C classes. The
softmax activation vector is denoted by y(τ ′). The Loss
function to be minimized is a categorical cross entropy.

All layers are preceded by a batch normalization [16].
We used Rectified Linear Units (ReLU) [28] for all convo-
lutional layers, and Exponential Linear Units (eLU) [5] for
the first fully-connected layer.

2.4 Training

The inputs of our network are the 3D tensors HCQM
Xhcqm(φ, b, h) computed for all time τ ′ of the music track.

On the other side, the datasets we will use for our ex-
periments only provide global tempi 3 or global rhythm
classes as ground-truths. We therefore have several HC-
QMs for a given track which are all associated with the
same ground-truth (multiple instance learning).

To fix the network hyper-parameters, we split the train-
ing set into a train (90%) and a validation part (10%).
We used the ADAM [17] optimizer to find the parame-
ters of the network with a constant learning rate of 0.001,
β1 = 0.9 , β2 = 0.999 and ε = 1e − 8. We used mini-
batches of 256 HCQM with shuffle and a maximum of 20
epochs with early-stopping.

2.5 Aggregating decisions over time

Our network provides an estimation of the tempo or
rhythm class at each time τ ′. To obtain a global value we
aggregate the softmax activation vectors y(τ ′) over time
by choosing the maximum of the vector y computed as the
average over τ ′ of the y(τ ′).

3. EVALUATION OF THE SYSTEM

We evaluate our proposed system for two tasks: - global
tempo estimation (§3.1), - rhythm pattern recognition
(§3.2). We used the same system (same input represen-
tation and same network architecture) for the two tasks.
However, considering that the class definitions are differ-
ent, we performed two independent trainings 4 .

3.1 Global tempo estimation

Training and testing sets. To be able to compare our
results with previous works, we use the same paradigm
(cross-dataset validation 5 ) and the same datasets as [37]
which we consider here as the state-of-the-art. The train-
ing set is the union of

3 It should be noted that this does not always correspond to the reality
of the track content since some of them have a tempo varying over time
(tempo drift), have a silent introduction or a break in the middle.

4 Future works, will consider training a single network for the two
tasks or applying transfer learning of one task to the other.

5 Cross-dataset validation uses separate datasets for training and test-
ing; not only splitting a single dataset into a train and a test part.
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• LMD tempo: it is a subset of the Lack MIDI dataset [35]
annotated into tempo by [38]; it contains 3611 items
of 30s excerpts of 10 different genres

• MTG tempo it is a subset of the GiantSteps MTG key
dataset (MTG tempo) [6] annotated using a tapping
method by [37]; it contains 1159 items of 2min ex-
cerpts of electronic dance music;

• Extended Ballroom [24]: it contains 3826 items of 13
genres (it should be noted that we removed from the
Ballroom test-set the items existing in the Extended
Ballroom training-set).

The total size of the training set is 8596. It covers mul-
tiple musical genres to favor generalization.

The test-sets are also the same as in [37] (see [38]
for their details): - ACM-Mirum [33] (1410 items), - IS-
MIR04 [12] (464 items), - Ballroom [12] (698 items), -
Hainsworth [13] (222 items), - GTzan-Rhythm [22] (1000
items), - SMC [14] (217 items), - Giantsteps Tempo [19]
(664 items). We also added the RWC-popular [10] (100
items) for comparison with [3]. As in [37], Combined de-
notes the union of all test-sets (except RWC popular).

Evaluation protocol. We measure the performances
using the following metrics:

• Class-Accuracy: it measures the ability of our system
to predict the correct tempo class (in our system we
have 256 tempo classes ranging from 30 to 285bpm);

• Accuracy1: it measures if our estimated tempo is
within ±4% of the ground-truth tempo

• Accuracy2: is the same as Accuracy1 but considering
octave errors as correct

Results and discussions. The results are indicated in
Tables 1, 2 and 3.

Validation of B and H . We first show that the sepa-
ration of the signal into multiple acoustic-frequency-bands
b ∈ [1, B = 8] and the use of the harmonic depth H is
beneficial. For this, we compare the results obtained using
- B = 8 and h ∈ { 12 , 1, 2, 3, 4, 5} (column “new")
- B = 8 but h ∈ {1} (column “h=1")
- B = 1 and h ∈ { 12 , 1, 2, 3, 4, 5} (column “b=1").
Results are only indicated for the “Combined” test-
sets. For all metrics (Class-Accuracy, Accuracy-1 and
Accuracy-2), the best results are obtained using B = 8
and h ∈ { 12 , 1, 2, 3, 4, 5}.

Comparison with state-of-the-art. We now compare
our results with the state-of-the-art represented by the 3
following systems: - sch1 denotes the results published in
[38], - sch2 in [37] and - böck in [3].

According to these Tables, we see that our method al-
lows an improvement for two test-sets: - Ballroom in terms
of Class-Accuracy (73.8) - Ballroom and Giantsteps in
terms of Accuracy1 (92.6 and 83.6) and Accuracy2 (98.7
and 97.9). This can be explained by the fact that the mu-
sical genres of these two test-sets are represented in our
training set (by the Extended-Ballroom and MTG tempo
respectively). It should be noted however that there is no
intersection between the training and test sets. For the IS-
MIR04 and GTZAN test-sets, our results are very close (but

lower) to the one of sch1. For the RWC popular test sets,
our results (73.0 and 98.0) largely outperforms the ones
of böck in terms of Accuracy-1 and Accuracy-2. Finally,
if we consider the Combined dataset, our method slightly
outperforms the other ones in terms of Accuracy1 (74.4).

The worst results of our method were obtained for the
SMC data-sets. This can be explained by the fact that
the SMC data-sets contains rhythm patterns very different
from the ones represented in our training-sets.

While our results for Accuracy2 (92.0) are of course
higher than our results for Accuracy1 (74.4), they are still
lower than the ones of böck (93.6). One reason for this is
that our network (as the ones of sch1 and sch2) is trained to
discriminate BPM classes, therefore it doesn’t know any-
thing about octave equivalences.

3.2 Rhythm pattern recognition

Training and testing sets. For the rhythm pattern recog-
nition, it is not possible to perform cross-dataset valida-
tion (as we did above) because the definition of the rhythm
pattern classes is specific to each dataset. Therefore, as in
previous works [25], we perform a 10-fold cross-validation
using the following datasets:

• Extended Ballroom [24]: it contains 4180 samples of
C=13 rhythm classes: ’Foxtrot’, ’Salsa’, ’Vien-
nesewaltz’, ’Tango’, ’Rumba’, ’Wcswing’, ’Quick-
step’, ’Chacha’, ’Slowwaltz’, ’Pasodoble’, ’Jive’,
’Samba’, ’Waltz’

• Greek-dances [15]: it contains 180 samples of C=6
rhythm classes: ’Kalamatianos’, ’Kontilies’, ’Male-
viziotis’, ’Pentozalis’, ’Sousta’ and ’Kritikos Syrtos’

Evaluation protocol. As in previous works [25], we
measure the performances using the average-mean-Recall
R 6 . For a given fold f , the mean-Recall Rf is the mean
over the classes c of the class-recall Rf,c. The average
mean-Recall R is then the average over f of the mean-
Recall Rf . We also indicate the standard deviation over f
of the mean-Recall Rf .

Results and discussions. The results are indicated in
Table 4. We compare our results with the ones of [25],
denoted as march, considered here representative of the
current state-of-the-art.

Our results (76.4 and 68.3) are largely below the ones
of march (94.9 and 77.2). This can be explained by the
fact that the “Scale and shift invariant time/frequency” rep-
resentation proposed in [25] takes into account the inter-
relationships between the frequency bands of the rhythmic
events while our HCQM does not.

To better understand these results, we indicate in Fig-
ure 3 [Top] the confusion matrices for the Extended Ball-
room. The diagonal represents the Recall Rc of each
class c. We see that our system is actually suitable to
detect the majority of the classes: Rc ≥ 88% for 9
classes over 13. ChaCha, Waltz and WcSwing make R
completely drop. Waltz is actually estimated 97% of the

6 The mean-Recall is not sensitive to the distribution of the classes. Its
random value is always 1/C for a problem with C classes.
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Datasets sch1 sch2 böck new h=1 b=1
ACMMirum 38.3 40.6 29.4 38.2
ISMIR04 37.7 34.1 27.2 29.4
Ballroom 46.8 67.9 33.8 73.8
Hainsworth 43.7 43.2 33.8 23.0
GTzan 38.8 36.9 32.2 27.6
SMC 14.3 12.4 17.1 7.8
Giantsteps 53.5 59.8 37.2 25.5
RWCpop X X X 66.0
Combined 40.9 44.8 31.2 36.8 29.8 32.4

Table 1. Class-Accuracy

sch1 sch2 böck new h=1 b=1
72.3 79.5 74.0 73.3
63.4 60.6 55.0 61.2
64.6 92.0 84.0 92.6
65.8 77.0 80.6 73.4
71.0 69.4 69.7 69.7
31.8 33.6 44.7 30.9
63.1 73.0 58.9 83.6
X X 60.0 73.0
66.5 74.2 69.5 74.4 64.2 67.9

Table 2. Accuracy1

sch1 sch2 böck new h=1 b=1
97.3 97.4 97.7 96.5
92.2 92.2 95.0 87.1
97.0 98.4 98.7 98.7
85.6 84.2 89.2 82.9
93.3 92.6 95.0 89.1
55.3 50.2 67.3 50.7
88.7 89.3 86.4 97.9
X X 95.0 98.0
92.2 92.1 93.6 92.0 82.0 88.4

Table 3. Accuracy2
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Figure 3. Confusion matrix for the Extended Ballroom.
[Top] using h ∈ {0.5, 1, 2, 3, 4, 5} [Bottom] using h ∈
{ 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33, . . . 8}

time as Pasadoble. This can be explained by the fact
that our current harmonic series h ∈ {12 , 1, 2, 3, 4, 5}
does not represent anything about the 3/4 meter specific
to Waltz which would be represented by h = 1

3 . To
verify our assumption, we redo the experiment using this
time exactly the same harmonic series as proposed in

Datasets march new
Extended Ballroom 94.9 76.4 (33.1)
Greek-dances 77.2 68.3 (27.5)

Table 4. Average (std) Recall R for rhythm classification.

[32]: h ∈ { 14 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33, . . . 8}. The cor-

responding confusion matrix is indicated in 3 [Bottom]
where Waltz is now perfectly recognized (97%), however
SlowWaltz is now recognized as Waltz in 97% of the cases
which makes (while the system is better) the average mean-
Recall actually decreases to 74.6%. The low results of
Wcswing can be explained by the (too) small number of
training examples (23).

4. CONCLUSION

In this paper we have presented a new approach for
global tempo and rhythm pattern classification. We have
proposed the Harmonic-Constant-Q-Modulation (HCQM)
representation, a 4D-tensor which represents the harmonic
series at candidate tempo frequencies of a multi-band
Onset-Strength-Function. This HCQM is then used as in-
put to a deep convolutional network. The filters of the
first layer of this network are supposed to learn the spe-
cific characteristic of the various rhythm patterns. We have
evaluated our approach for two classification tasks: global
tempo and rhythm pattern classification.

For tempo estimation, our method outperforms previ-
ous approaches (in terms of Accuracy1 and Accuracy2)
for the Ballroom (ballroom music) and Giant-steps tempo
(electronic music) test-sets. Both test-sets represent music
genres with a strong focus on rhythm. It seems therefore
that our approach works better when rhythm patterns are
clearly defined. Our method also performs slightly better
(in terms of Accuracy1) for the Combined test-set.

For rhythm classification, our method doesn’t work as
well as the state of the art [25]. However, the confusion
matrices indicate that our recognition is above 90% for the
majority of the classes of the Extended Ballroom. More-
over, we have shown that adapting the harmonic series h
can help improving the performances.

Among future works, we would like to study the use
of the HCQM 4D tensors directly, to study other harmonic
series and to study the joint training of (or transfer learning
between) tempo and rhythm pattern classification.
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ABSTRACT

While audio chord recognition systems have acquired
considerable accuracy on small vocabularies (e.g., ma-
jor/minor chords), the large-vocabulary chord recognition
problem still remains unsolved. This problem hinders the
practical usages of audio recognition systems. The diffi-
culty mainly lies in the intrinsic long-tail distribution of
chord qualities, and most chord qualities have too few sam-
ples for model training.

In this paper, we propose a new model for audio chord
recognition under a huge chord vocabulary. The core con-
cept is to decompose any chord label into a set of musically
meaningful components (e.g., triad, bass, seventh), each
with a much smaller vocabulary compared to the size of
the overall chord vocabulary. A multitask classifier is then
trained to recognize all the components given the audio
feature, and then labels of individual components are re-
assembled to form the final chord label. Experiments show
that the proposed system not only achieves state-of-the-art
results on traditional evaluation metrics but also performs
well on a large vocabulary.

Large-vocabulary chord transcription is a difficult task, as
the number of chord qualities is large, and the distribution
of training chord classes is extremely biased. For example,
the Billboard dataset [2], a human-annotated dataset, con-
tains 230 different chord qualities, or equivalently, 2,749
distinct chord classes 1 . While the first 10% chord quali-
ties cover 93.86% of the data, the last 50% chord qualities
only cover 0.35% of the data altogether 2 . Such a long-
tailed chord distribution makes it extremely hard to model
rare chord qualities.

To bypass the problem, former systems typically adopt
two kinds of strategies: chord quality simplification and

1 We here assume that each chord quality can be combined with all
possible 12 roots except for the N chord.

2 In calculation, the chord quality counts are weighted by their dura-
tions.

c© Junyan Jiang, et al. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Junyan
Jiang, et al. “Large-Vocabulary Chord Transcription via Chord Structure
Decomposition”, 20th International Society for Music Information Re-
trieval Conference, Delft, The Netherlands, 2019.
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Figure 1. A visualization of chord quality distribution in
our collected chord dataset. Each chord quality is denoted
by a block whose size is proportional to its number of ap-
pearances. Labels for small blocks are omitted.

The second approach, instead, turns chord label classifi-
cation into a structured estimation problem, and this study
belongs to this category. To achieve this, a unified structure
representation of chord symbols is required. Chromagram-
like representations are often adopted for chord recognition
as it is a direct reflection of acoustic features and often led
to a good performance in practice [16, 20].

However, Chromagram-like representations miss some
of the musical semantics that are important references for
human transcribers. One example features two chords
E:min7/b3 and G:maj6 which are very similar in the
chromagram as they share the same chord notes {G, B, D,
E} and bass G. However, they are quite different in musical

1. INTRODUCTION
chord structure representation. The first approach maps
complex chord qualities into simpler ones (e.g., to map
C:maj7, C:maj9, C:maj11 etc. all to C:maj), and
therefore suppress the number of different chord classes.
Then, a classifier is trained based on the simplified chord
vocabulary. The most common mapped chord vocabulary
is the major/minor vocabulary, which consists of merely
12 major chords, 12 minor chords, and a non-chord label.
However, this is often an over-simplification, especially for
some pop and jazz chords with richer expressions than ma-
jor/minor chords do.
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semantics as one is a major chord and the other is minor.
Moreover, in audio chord recognition, some chord degrees
are more important than others. For example, a wrong triad
is regarded as a more severe problem than a wrong ninth
or other extensions. Such intuition is not directly reflected
in a chromagram-like representation of a chord.

We believe that structured representation is the key to
large-vocabulary chord recognition, yet a more musically
meaningful representation is needed. In this paper, we
propose a new representation method by chord structure
decomposition. We also present a multitask classifica-
tion model comprised of a Convolutional Recurrent Neural
Network (CRNN) and a Conditional Random Field (CRF),
that utilize such representation into the audio chord recog-
nition system.

Audio chord recognition is an important task for content-
based music information retrieval and has been actively
studied for 20 years [22]. Audio chord recognition sys-
tems typically follow a two-stage process: feature extrac-
tion and chord sequence decoding. For traditional mod-
els, chromagram [19, 22, 23] is the most widely used fea-
ture for chord recognition as it reflects the acoustic prop-
erties of a chord. There are also other attempts for hand-
crafted features, such as the tonnetz feature [12]. For the
sequence decoding model, template matching and Hidden
Markov Models (HMMs) [24, 27] are adopted to decode
the most likely chord sequence. Considering the relation-
ship of chord labels and other musical concepts (e.g., beats,
keys), complex HMMs and other Dynamic Bayesian Net-
works (DBNs) are also used for joint decoding [19, 23].

With the development of deep learning, recent stud-
ies begin to focus more on features extracted by neural
networks, such as feed-forward Deep Neural Networks
(DNNs) [16] and Convolutional Neural Networks (CNNs)
[10, 17]. For the sequence decoding phase, beam search
and the Viterbi algorithm are widely used [1,18,28]. While
early papers in this area adopt a small and fixed vocabulary
like the major/minor vocabulary [1,16,17], recent work fo-
cuses more and more on larger vocabularies [7, 8, 20].

Strategies for structured representation of chords has
been widely discussed in the field of music generation and
analysis [4, 9], but not all of them are helpful in the con-
text of chord recognition problem. In audio chord recog-
nition, the HPA system [23] uses two latent variables, the
root-position form and the bass note, to model a chord in a
Hidden Markov Model. McFee and Bello [20] adopt a 36-
D vector to represent a chord, denoting a binary encoding
of its root, bass and chord degrees respectively. Then, a
plain 170-class classifier is adopted to decode chord sym-
bols from the features.

3.1 Chord Structure Representation

Most chord symbols can be regarded as a collection of
musically meaningful components: root, bass (for pos-
sible inversions), a triad type, and a set of extra notes,

Chord Root Triad Bass 7th 9th 11th 13th

G:maj G maj G N N N N

G:maj7 G maj G 7 N N N

G:7(b9) G maj G b7 b9 N N

G:min7/b3 G min Bb b7 N N N

B:hdim7 B dim B b7 N N N

A:sus4(b7) A sus4 A b7 N N N

C:9(13) C maj C b7 9 N 13

N N N N N N N N

Table 1. Some examples of chord structure decomposition.

which usually include certain 7th, 9th, 11th and/or 13th

degrees above the root. Different combinations of these
components form the large chord vocabulary that musi-
cians use. However, the possible choices for each com-
ponent are pretty limited. For example, the 7th

We now formally introduce our chord representation
method. We first define the chord components and their
possible labels:

Root← {N,C,C#/Db,D, ...,B}
Triad← {N,maj,min, sus4, sus2,dim, aug}
Bass← {N,C,C#/Db,D, ...,B}

Seventh← {N, 7,b7,bb7}
Ninth← {N, 9,#9,b9}

Eleventh← {N, 11,#11}
Thirteenth← {N, 13,b13}

Notice that we ignore incomplete triads like C:(1,5)
and C:(1), so these qualities will not appear in the triad
category. To make other chord degrees (e.g., the major 6th

in maj6 and min6) compatible with the representation,
we here adopt octave equivalent versions of these degrees
that match the form of the chord extensions listed above
(e.g., 6th to 13th).

By enumerating distinct labels for these components,
we can map the component labels into numeral values. The
enumerated values are all indexed from 1. We now define
the chord vector, the encoded form of chord used by our
models. The chord vector c = (c1, ..., c6) of a chord C is
defined as a 6-dimension vector. For non-chord class N, all
ci = 1. For any other chord label C, we have:

c1 = (TriadIndex(C)− 1) · 12 + RootIndex(C) + 1

c2

3 = SeventhIndex(C)

c4 = NinthIndex(C)

c5 = EleventhIndex(C)

c6 = ThirteenthIndex(C)

2. RELATED WORK
degree of a

chord, if exists, is most likely to be one among 7, b7 and
bb7 (in dim7 chords). This property is very helpful un-
der the context of audio chord recognition, as the number
of classes for chord label classification can be greatly re-
duced if we break down the chords into these components
and perform classification on each component instead.

3. PROPOSED METHOD = BassIndex(C)

c
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Figure 2. An overview of the system.

3.2 Model Architecture

The proposed chord recognition system consists of two
parts, the feature processor and the decoding model. The
feature processor transforms the low-level audio features
to the frame-wise activations for each chord component
value. The decoding model then decodes the final chord
sequence given the activations. An overview of the system
is shown in Figure 2.

3.2.1 Feature Processor

We first apply the Convolutional Recurrent Neural Net-
work (CRNN), a powerful architecture for audio feature
processing [3, 6, 20], to the input spectrogram. The audio
feature is first fed into convolutional layers. After each
convolutional layer, we perform batch normalization and
then a rectified linear function to introduce non-linearity.
Each convolutional layer adopts a 3 × 3 kernel size with
1× 1 zero padding to the input, except for the last two lay-
ers where no padding is applied on the frequency axis, in
order to reduce the feature size.

After that, we apply a Bi-directional Long Short-Term
Memory (Bi-LSTM) layer to introduce temporal context
for chord recognition. Each direction has a hidden size of
96. Then, for each frame t, a linear unit transforms the hid-
den states for both directions into six vectors s(t,1)...s(t,6).
The softmax function is performed on each vector to get
the activation a(t,1)...a(t,6) for each component of the
chord vector:

a
(t,i)
k =

exp(s
(t,i)
k )∑Ni

k′=1 exp(s
(t,i)
k′ )

∀i = 1...6,∀k = 1...Ni (1)

Here, Ni denotes the vocabulary size of the i-th com-
ponent category. The loss of the neural network given the
ground-truth chord sequence C = {C(1), ..., C(T )} is de-
fined as weighted cross-entropy loss:

L = −
T∑
t=1

6∑
i=1

Ni∑
k=1

w
(i)
k I[k = c

(t)
i ] log(a

(t,i)
k ) (2)

Here, I[·] is the indicator function, and c(t)i denotes the i-
th component of the chord vector of C(t). w(i)

k is the class

weight factor for index k of the i-th component. We will
further explain it in section 3.3.

3.2.2 Chord Decoding Model

To decode the final chord sequence from the activation
vectors a, an intuitive way is to pick the class with the
largest activation values for each component and each
frame. However, this approach tends to produce excessive
chord changes as there is no transition penalty between two
frames. Also, it will be hard if we want to control the out-
put chord vocabulary V . Therefore, we propose a decoding
model by a linear Conditional Random Field (CRF).

The linear CRF takes the following form:

P (C | F) ∝ φ(C(1),F)

T∏
t=2

φ(C(t),F)ψ(C(t−1), C(t))

(3)
Here, F is the audio feature of the whole song and

C = {C(1), ..., C(T )} is the target chord sequence with
each C(i) ∈ V . The observation potential function φ takes
the form:

φ(C(t),F) = exp
6∑
i=1

Ni∑
k=1

I[k = c
(t)
i ] log a

(t,i)
k (4)

where a(t,i) are the activation vectors given by the Convo-
lutional Recurrent Neural Network (CRNN) and c(t) is the
encoded chord vector for C(t).

The transition potential function ψ takes the form:

ψ(C(t−1), C(t)) = exp
(
−d · I[C(t−1) 6= C(t)]

)
(5)

where d = 30 is a hyper-parameter that controls the degree
of transition penalty. A larger d penalize more on chord
transition and vice versa.

3.3 Class Re-weighting

Although we do not directly perform classification on dis-
tinct chord labels, the problem of class imbalance still per-
sists during model training. For example, some chord ex-
tensions are very infrequent in the training set, leading to
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Figure 3. An illustration of why ambiguous class label-
ing causes problems. In this example, the class bound-
aries of the positive class and the negative class cross each
other. Under the maximal likelihood principle, the accu-
racy of the positive class (with smaller prior than the nega-
tive class) is greatly harmed as its data likelihood is mostly
covered by the negative class. Class re-weighting allevi-
ates this problem to some extent.

excessive negative samples and insufficient positive sam-
ples for training. Generally, imbalanced training samples
make the training process biased as the model tends to fo-
cus more on optimizing classes with more samples.

We here stress another issue that potentially aggravates
this bias in learning-based automatic chord recognition
systems. Audio chord annotation is an ambiguous problem
even for human experts [11]. This means that the "ground
truth" chord label of a fixed audio piece may contain un-
certainty if annotated by different experts [15]. This may
cause class boundaries for different labels to cross each
other. In this case, we inevitably suffer from accuracy loss
for the ambiguity between classes, and classes with small
priors often suffer most (see Figure 3 for an example).

To make up for the bias, we introduce the class re-
weighting strategy by introducing a class-wise weight fac-
tor w(i)

k for each possible chord component value in equa-
tion (2). By the re-weighting term, we want classes with
fewer training samples to gain larger weights. We adopt
the following weight term:

w
(i)
k = min


(

n
(i)
k

maxk′ n
(i)
k′

)−γ
, wmax

 (6)

Here, n(i)k denotes the number of training samples for
class k for the i-th component. γ and wmax are hyper-
parameters, where 0 ≤ γ ≤ 1 is the balance factor and
wmax ≥ 1 is the clamping value. A smaller γ will result
in a more balanced weights and vice versa.

As previous chord recognition systems adopt smaller chord
vocabularies compared to us, it is hard to make a direct
comparison between different systems. Therefore, we di-
vide the experiment results into two parts.

In the first part, we will compare the performance of
our system on traditional chord evaluation metrics, most
of which perform evaluations on simplified chord vocabu-
laries. The evaluation metrics are calculated by the python
package mir_eval [26]. In the second part, we will di-
rectly evaluate the system performance on larger chord vo-
cabularies.

4.1 Datasets

We use 1217 songs from Isophonics, Billboard and MARL
collections collected by Humphrey and Bello [11, 20] to
form the dataset. To make a fair comparison, we adopt the
5-fold cross-validation with the same train/validation/test
splits (60% for training, 20% for validation and 20% for
testing) as in [20].

4.2 Pre-processing

We extract the Constant-Q Transform (CQT) spectrogram
from the audio by the librosa [21] package with a sample
rate of 22050 and a hop length of 512. We use the pitch
range from midi note C1 (inclusive) to C7 (exclusive) with
36 filter banks per octave (252 CQT filter banks in total).

Data augmentation is performed by the pitch-shifting
operation (from -5 semitones to +6 semitones) on the train-
ing set. Augmented features are directly calculated by
shifting CQT spectrograms. The annotated chord labels
are shifted accordingly.

4.3 Model Training

We use the Adam optimizer [14] to optimize the neural
network parameters with a scheduled learning rate adjust-
ment. To begin with, we use a learning rate 1e-3. If the
validation loss does not improve in 5 epochs, we decrease
the learning rate by 90%. We stop training after the learn-
ing rate drops below 1e-6.

In each epoch, a 1000-frame segment (approximately
23.2 seconds) is randomly selected from each song. 24
such segments form a mini-batch for gradient calculation.

4.4 Comparative Results

We first evaluate the performance of our system under tra-
ditional metrics proposed by [25]. For different metrics,
the model outputs and ground truth chords are first mapped
to some small vocabularies by removing extra notes and/or
inversions. The scores are calculated by their matching
percentages. The adopted metrics are: root only, root and
thirds, major/minor chords, basic triads, sevenths, tetrads
and MIREX (at least three correct notes between reference
and estimated chords). All of these scoring methods ig-
nore extended chord degrees (e.g., ninth, eleventh and thir-
teenth).

max = 10); (3) ACE18: an early design

4. EXPERIMENTS

To evaluate the effect of our chord representation versus
a plain classifier, we also perform evaluations on a modi-
fied version of the model, which contains a linear layer and
a flat softmax output layer for all possible combinations of
roots and chord types present in the dataset. The model
is denoted by "Flat" in Figure 4. Other compared models
are (1) Ours: the proposed model without re-weighting;
(2) Ours+R: the proposed model trained with re-weighting
factors (γ = 0.5, w
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Figure 4. Comparison of median weighted recall scores.

of our model submitted to the MIREX 2018 contest [13]
trained on the full vocabulary without beat alignment post-
processing; (4) CGRU: A Convolutional Gated Recurrent
Units (CGRU) model by [20]; (5) KHMM: A k-stream
HMM by [5]; (6) DNN: A deep convolutional network
by [11]; (7) Chordino: the classic baseline with template
matching and HMM by [19].

In the results, Our system outperforms the baseline sys-
tems in all metrics, indicating that our system has a good
performance on simplified chord vocabularies, even if the
system is not trained for these vocabularies on purpose.

We can also see that the model with class re-weighting
actually does not outperform the model without class re-
weighting. The main reason is that class re-weighting as-
sumes a more balanced class distribution, which is not the
case of our test dataset. We will show in section 4.5.1
that class re-weighting actually has a better performance if
we penalize the misclassification error of different classes
equally, regardless of their frequency in the test dataset.

4.5 Performance on Large Chord Vocabulary

4.5.1 Evaluation on Common Chord Labels

To evaluate the chord recognition system on a large chord
vocabulary, we first evaluate the system performance on
common chord labels. We construct the target chord vo-
cabulary V that includes the following chord qualities:

• Basic triads: maj, min, aug, dim

• Inverted triads: maj/3, maj/5, min/b3, min/5

• Seventh chords: maj7, 7, min7, dim7, hdim7

• Extended chords: maj9, 9, min9, 11, 13

• Suspended chords: sus4, sus2, sus4(b7)

• Slash chords: maj/2, maj/b7, min/2, min/b7

• Non-chord class: N

All chord qualities except N can be applied to 12 roots,
resulting in 301 distinct chord classes. Under such a con-
straint, the model will not output other chord classes. To
define the evaluation metrics, we use D to denote all pairs
of estimated chords and reference chords (in vocabulary
V ) over the test dataset on the same frame. The per-class
accuracy accchord(C) for chord class C ∈ V can be de-

Model Frame-wise Acc. Class-wise Acc.

No Re-weighting 0.7719 0.3475
(0.3,10.0) 0.7609 0.3745
(0.5,10.0) 0.7459 0.4022
(0.7,20.0) 0.7146 0.3738
(1.0,20.0) 0.6577 0.3832

Table 2. Mean frame-wise accuracy and mean class-wise
accuracy for the proposed model with different class re-
weighting factors (γ,wmax) for training. The re-weighting
factors are shown in the model column.

fined as:

accchord(C) =

∑
(Cest,Cref )∈D I[Cest = C]I[Cref = C]∑

(Cest,Cref )∈D I[Cref = C]

(7)

Othe
rs

min/
b7
min/

2
maj/

b7
maj/

2

sus
4(b

7)
sus

2
sus

4 13 11
min9 9

maj9dim
7

hd
im

7
min7 7

maj7
min/

5
min/

b3
maj/

5
maj/

3
dimau

g
minmaj N

estimation

Others
min/b7
min/2

maj/b7
maj/2

sus4(b7)
sus2
sus4

13
11

min9
9

maj9
dim7

hdim7
min7

7
maj7

min/5
min/b3

maj/5
maj/3

dim
aug
min
maj

N

re
fe

re
nc

e

0.0

0.2

0.4

0.6

0.8

1.0

ratio of confusion

Figure 5. The quality confusion matrix of model trained
with re-weighting factors γ = 0.5, wmax = 10.

We believe that a good chord recognition system should
have high frame-wise accuracy, as well as a low bias
among different chord classes. For example, a system with
high bias may recognize all samples of one chord class
C into another, resulting in a low score for accchord(C).
Therefore, we want the average of accchord(C) over all
chord classes as high as possible in the class-wise measure-
ment. Formally, we define the mean frame- and class-wise
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accuracy as:

accframe =
1

|D|
∑

(Cest,Cref )∈D

I[Cest = Cref ] (8)

accclass =
1

|V |
∑
C∈V

accchord(C) (9)

We evaluate our system with different class re-
weighting parameters under these two metrics. The re-
sults are shown in Table 2. From the results, we can see
that all models with class re-weighting have a lower mean
frame-wise accuracy and a higher mean class-wise accu-
racy compared to the model without class re-weighting.
This indicates that class re-weighting alleviates the class
bias problem to some extent while leading to a trade-off
that the frame-wise accuracy is harmed.

We also show the within-root quality confusion ma-
trix (i.e., quality confusion matrix when the estimated root
is correct) of the model trained with re-weighting factors
(γ = 0.5, wmax = 10) in Figure 5 for error analysis. Two
major trends can be observed. First, most quality errors
are from mapping complex chord qualities to simpler ones.
For example, maj9, 9 and min9 are mapped to maj7, 7
and min7; tetrads are mapped to triads. Second, certain
extended chord qualities like 13 and 11 are hard to be de-
tected. Despite of the label bias, we also suspect that anno-
tated extended qualities may omit some degrees in practice
(e.g., a missing eleventh in a 13 chord) but the omission
is not always annotated in the test set. The misclassifica-
tion of 11 chords to sus4(b7) is also reasonable as a 11
chord without a third and a ninth has the same pitch classes
as a sus4(b7) chord.

4.5.2 Evaluation on Chord Components

To further evaluate the system’s performance on a large
chord vocabulary, we adopt a full chord vocabulary (i.e.,
a chord vocabulary containing all chord qualities present
in the dataset) for the decoding process and evaluate the
class-wise accuracy for each chord component. For the
root and bass category, we are interested in if their rela-
tionship (chord inversion) is correctly detected. The slash
notation is defined as the interval between bass and root.
For example, In the chord quality maj/5, the fifth of the
chord is the bass note. Accuracy on slash notations reflects
the model’s ability to detect chord inversions.

Also, we want to evaluate how class re-weighting af-
fects the accuracy of rare chord component labels. There-
fore, we experiment with different hyper-parameters for
class re-weighting and make a comparison as shown in
Figure 6.

In Figure 6, it is clear to show that the model with no re-
weighting declines to predict certain extensions including
11 and 13. When class re-weighting is adopted, we can
observe an accuracy boost for these components. However,
the trade-off of class re-weighting is the fact that it harms
the accuracy of some other classes as well as providing
false positive predicts.

Also, it can be observed that the accuracy for a specific
component class has a positive correlation with the number
of its appearances in the dataset. Some label components
surely have too few samples for the model to learn the cor-
rect acoustic and semantic properties, resulting in a low
accuracy even if class re-weighting is performed.

In this paper, we propose a method to perform audio chord
recognition on a large chord vocabulary. The core idea of
the model is to recognize each chord component instead
of the whole chord label itself, and each chord compo-
nent has a much smaller vocabulary that is easier for the
model to handle. We show by experiment that the model
acquires state-of-the-art performance on traditional chord
evaluation metrics. Also, we demonstrate its ability to de-
tect rare chord component values.

However, the model still has several unsolved issues.
First, the model still has strong class bias even if we adopt
the re-weighting strategy, and the model performance on
some rarest chord component values are still not satisfac-
tory. Second, the proposed representation is not yet per-
fect. More theoretical analysis and experiments are re-
quired to design the best chord representation method for
the audio chord recognition task.

We also stress the class ambiguity issue with regard to
the datasets. Although a class-balanced dataset is nearly
unfeasible in the realm of audio chord recognition, we
would like to call for datasets with more precise annota-
tions as well as a more thorough analysis of currently avail-
able datasets.

5. CONCLUSION
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ABSTRACT

In this paper, we propose a recurrent neural network
(RNN)-based MIDI music composition machine that is
able to learn musical knowledge from existing Beatles’
music and generate full songs in the style of the Beat-
les with little human intervention. In the learning stage,
a sequence of stylistically uniform, multiple-channel mu-
sic samples was modeled by an RNN. In the composition
stage, a short clip of randomly-generated music was used
as a seed for the RNN to start music score prediction. To
form structured music, segments of generated music from
different seeds were concatenated together. To improve the
quality and structure of the generated music, we integrated
music theory knowledge into the model, such as control-
ling the spacing of gaps in the vocal melody, normalizing
the timing of chord changes, and requiring notes to be re-
lated to the song’s key (C major, for example). This in-
tegration improved the quality of the generated music as
verified by a professional composer. We also conducted
a subjective listening test that showed our generated mu-
sic was close to original music by the Beatles in terms
of style similarity, professional quality, and interesting-
ness. The generated music samples can be downloaded
at https://goo.gl/uaLXoB.

1. INTRODUCTION

Automatic music composition has been an active research
area for the last several decades, and researchers have pro-
posed various methods to model many different kinds of
music. [7,8,12,23,26] used rules and criteria developed by
professional musicians to generate songs. These methods
usually relied heavily on the input of music experts, hand-
crafted rules, consistent intervention during the process of
composition, and fine-tuning the generated music in the

∗This work was done when Yichao Zhou was an intern at Snap Inc.

c© Yichao Zhou, Wei Chu, Sam Young, Xin Chen. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Yichao Zhou, Wei Chu, Sam Young, Xin
Chen. “BandNet: A Neural Network-based, Multi-Instrument Beatles-
Style MIDI Music Composition Machine”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

post-processing stage. Although the quality of the com-
posed music may be quite satisfactory, the composition
process can be time-consuming and the composed music
can be biased toward a particular style. Recently, agnostic
approaches that do not depend on expert knowledge have
been emerging [9]. Instead of relying on music experts,
these methods employ a data-driven approach to learn gen-
eralizable theory and patterns from existing pieces of mu-
sic, and this approach has proven to be effective. For exam-
ple, [2,15] trained a hidden Markov model from music cor-
pora and [10] modeled polyphonic music from the perspec-
tive of the graphic model. With the recent progress made in
deep learning, there have been many research efforts that
have tried to compose music using neural networks: [27]
used a deep convolutional network to generate a melody
conditioned on 24 basic chord triads found in each mea-
sure; [19] generated the drum pattern for songs using an
RNN [13]; [9, 14, 17, 18] described RNN approaches to
modeling and harmonizing Bach-style polyphonic music;
and [5] proposed a multi-layer RNN to model pop music
by encoding drum and chord patterns as one-hot vectors.

While most of the aforementioned machine-learning
methods were able to generate music in some categories
such as Bach chorale and folk music, we found that it is
challenging to use their methods to model songs by the
Beatles. Formed in 1960, The Beatles are arguably one of
the most influential bands of all time. Their primary song-
writers, John Lennon and Paul McCartney, were consid-
ered masters and many of their songs are still well known
today. The Beatles music drew on elements of 50s rock and
roll, and their musical style can be characterized by catchy
vocal melodies, unique chord progressions, and an upbeat,
energetic sound. The standard instrumentation of the Bea-
tles contains vocals, two electric guitars, bass, drums, and
occasional piano.

One difficulty of replicating the Beatles’ music is that
all the component parts depend on each other but have dif-
ferent characteristics. For example, the bass line is often
monophonic while the guitar chords are polyphonic, and
the guitar chords are likely to contain certain notes found
in the bass part. The model needs to be able to gener-
ate different instrumental parts within a uniform musical
structure. In addition, the style of the musical features of-
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ten changes between songs. For example, many Beatles’
songs use monophonic vocal melodies while others use
polyphonic, two-part vocal melodies. The chords in the
Beatles’ music often contain a lot of non-standard combi-
nations of notes that are different from the common chord
triads, with the added complexity that certain chords may
be incomplete and missing one or more of their component
parts. They can be played by either a piano or a guitar,
each of which uses different chord spacing. All of these
variations are challenging to model for a machine learn-
ing algorithm. Moreover, the Beatles are known for using
complex harmonies that can be difficult to classify, with the
added complication that certain chords may be incomplete
or missing one or more of their component parts. Thus it
may not be appropriate to encode the chord progression as-
pect of the music as one-hot vectors [27], as they treat two
similar harmonies differently.

To overcome these difficulties, we introduce BandNet,
an RNN-based, Beatles-style multi-instrument music com-
position machine. We exploit the song structures that can
be commonly found in pop music to generate complete
songs without relying too much on labeled data. Our sys-
tem requires little expert knowledge to use and it can be
successfully trained on a relatively small corpus. We ex-
plain the proposed approach in Section 2 and evaluate the
performance of our algorithm in Section 3.

2. METHODS

2.1 Data Representation

Our BandNet uses MIDI files as input and output and uti-
lizes the same data processing pipeline from Magenta [4].
For each Beatles’ song, we consider the three most impor-
tant channels: the vocal melody, guitar chords, and bass
part. All the channels are allowed to be polyphonic, to
maximize the flexibility of the model.

In our dataset, we include all the songs that use a 4/4
time signature, which means that a quarter note is felt as
the beat, and each measure (a.k.a one bar, a short segment
of music whose boundaries are shown by vertical bar lines
in the score) has four beats. It is reasonable to discretize
note lengths into sixteenth notes. We call the duration of
a sixteenth note a step. Therefore, each measure is dis-
cretized into 16 steps and each beat is discretized into 4
steps.

Because a song may be played by different instruments
with different pitch ranges, we first transpose the pitch by
octave so that the average pitch of each channel in each
song is as close as possible to the global pitch average of
that channel. Next, we transpose each song by -5 to 6 semi-
tones to augment the training data 11 times so that it is able
to generate music in all possible keys. Other approaches,
such as transposing each song to the same key, C major for
example, do not work well for the Beatles’ music because
we have yet to find a reliable way to detect the key of each
song.

01. NXT_CHNL 16. NEW_NOTE(F5)
02. NEW_NOTE(C5) 17. NXT_CHNL
03. NEW_NOTE(G4) 18. NEW_NOTE(C5)
04. NEW_NOTE(E4) 19. NEW_NOTE(G4)
05. NXT_CHNL 20. NEW_NOTE(E4)
06. NEW_NOTE(C3) 21. NXT_CHNL
07. NXT_STEP 22. CNT_NOTE(C3)
08. NEW_NOTE(G5) 23. NXT_STEP
09. NXT_CHNL 24. NEW_NOTE(E5)
10. CNT_NOTE(C5) 25. NXT_CHNL
11. CNT_NOTE(G4) 26. CNT_NOTE(C5)
12. CNT_NOTE(E4) 27. CNT_NOTE(G4)
13. NXT_CHNL 28. CNT_NOTE(E4)
14. CNT_NOTE(C3) 29. NXT_CHNL
15. NXT_STEP 30. NEW_NOTE(C3)

Figure 1: An example showing how we encode an excerpt
from I Want to Hold Your Hand (1964). Notes are quan-
tized to eighth notes rather than sixteenth notes for demon-
stration purposes. The sheet music example is shown at the
top where the scan lines are marked in blue. The encoded
sequence of the sheet music is shown at the bottom.

2.2 Score Encoding

BachBot [17] and Magenta [4] convert polyphonic MIDI
music into a sequence of symbols so that RNN can be used
to model the probabilistic distribution of such a sequence.
We expand their schemes to music with multiple channels.

Figure 1 gives an example showing how we encode the
music score. We create a new type of symbol NXT CHNL,
along with the three existing categories: NEW NOTE,
CNT NOTE, and NXT STEP. The strategy is to scan the
score in a left to right (time dimension), top to bottom
(channel dimension), zig-zag fashion. Each time we meet
a note during the scan, we will first check whether it is
a new note or a continuation of a previous note (e.g., the
second sixteenth interval of an eighth note). We will then
either emit a NEW NOTE or a CNT NOTE symbol depend-
ing on the case, followed by the pitch of that note. When
a channel is polyphonic, the note with higher pitch will al-
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ways be in front of the notes with lower pitch according to
this strategy. When the scan line comes across the bound-
ary of a channel, we will emit a NXT CHNL symbol, and
when the scan line comes across a time step, we will emit
a NXT STEP. Unlike other common methods where each
symbol will represent all the notes inside a time step, we
decompose them into multiple symbols and the advance-
ment of the time step is explicitly expressed using the sym-
bol NXT STEP.

2.2.1 Note Features

With the previous encoding mechanism, we can encode
any of the Beatles’ songs into a sequence S = {Si}Ni=0.
Here Si ∈ S in which S is the set of all the possible sym-
bols. We have |S| = |T | ∗ 2 + 2, where T is the set of
possible pitches.

Because the training data is limited, it is helpful to in-
corporate additional features for each symbol to help the
neural network learn the theory and patterns of the mu-
sic. We pair each symbol Si with its feature Fi when we
feed the encoded sequence into the RNN. We designed two
features for BandNet, i.e., Fi = (Bi, Gi). The feature
Bi ∈ {0, 1}5 contains the beat information. Bi = 1 if and
only if the global time step of ith symbol is a multiple of 2i.
We find that this feature is helpful for the RNN to keep the
style of the chord channel consistent inside a measure. The
second feature Gi ∈ {0, 1} represents whether the melody
will be generated at the current time step. Without this fea-
ture, we find that sometimes BandNet will not generate a
vocal melody due to silences in the melody channel of the
training data (usually because of an instrumental or guitar
solo section). By setting this variable to one or zero, we
can easily control whether we want to generate the vocal
part in a given section of music.

2.3 Network Structure

Figure 2 shows how a classical multi-layer LSTM-RNN
[13] models the probabilistic distribution of the symbol se-
quence. At the bottom layer, each LSTM cell takes the
symbol Si in its one-hot vector form together with the cor-
responding binary feature vector Fi as its input Ii. These
LSTM cells are chained so that they will apply nonlinear
transformations to the previous cell state C1

i−1 and input
Ii and produce the current hidden state h1

i and cell state
C1

i , respectively. In order to increase the nonlinearity of
the model, we make the network deep by stacking multi-
ple layers of LSTM cells. Starting from the second layer,
each cell will take the hidden state from the previous layer
as input. Finally, we apply a linear transformation to the
hidden states in the last layer with softmax to compute the
conditional probability PΘ(Si+1 | I{1···i}), where Θ con-
tains the parameters of the network. We use BPTT [20] to
find the parameters that locally maximizes the likelihood
of the training data.

2.4 Keeping Notes in the Key

By using the LSTM-RNN and the encoding schemes from
previous sections, our generative model is able to compose

multi-instrument music. During the test, we find that the
melody channel generated by the LSTM occasionally con-
tained some unexpected notes. We found that many of
these notes are dissonant because they are not in the key
of the music. We speculate that this is because the Beatles
often used notes in their music that deviated from conven-
tional practices of other popular music. These notes may
work well under some conditions, but the amount of data
does not allow our neural network to learn how to use these
notes in the right context. Therefore, in order to improve
the quality of our music, it is reasonable to filter them out in
BandNet, i.e., restricting the notes that are not in the song’s
key during the generating stage. This can be achieved by
applying a mask to the probability distributions returned by
the neural network and re-normalizing them so that they all
sum to unity.

2.5 Generating a Complete Song

Most of the Beatles’ music has a repetitive and sectional
song structure. Figure 3 shows an example of the structure
in the song Yesterday (1965). This song uses an AABABA
structure, where the A section is called the verse and the B
section is called the chorus. The verse section is repeated
four times, with each repetition being exactly the same or
having only minor differences. It is hard for the RNN to
learn this phenomenon because the distance between two
sections is as long as eight measures, i.e., 128 time steps.
RNN normally cannot carry hundreds of symbols in its
memory across a span of that long. Folk-RNN [25] used
a data format called ABC notation that has an annotation
for repeating sections so that they do not need to deal with
this problem. We do not have such fine-level annotation
in our dataset. Instead, we use a template-based method
to generate structured music. Users of BandNet will first
select a predefined song structure template, e.g., AABA
or ABABCBB, and then BandNet can generate a clip for
each section whose length can vary from 4 to 16 measures.
After that, we assemble the generated clips to form a com-
plete song. Because we do not model the drum pattern in
this work, we assign a precomposed drum pattern for each
section of music, which is beneficial as we can select dif-
ferent styles of drum patterns for different sections of the
song.

The well-known DeepBach [9] and BachBot [17] can
generate a new harmony or re-harmonize an existing
melody from a single instrument, i.e. piano. BandNet can
generate a song with multiple instruments, e.g. guitar, key-
board, bass, and drum. Because we do not have a melody
to condition on, BandNet needs a short sequence of notes,
also known as a seed, to begin a section. Although in the-
ory it is possible not to condition on any seeds, we found
that the resulting music was often unsatisfactory. In order
to avoid depending on a professional musician to compose
note sequences as seeds, we adopt the following strategy:
First, we let BandNet generate long sequences of music
without conditioning on any seeds. Second, we can listen
to these randomly generated segments and mark the clips
that sound most compelling to us. Third, we use these clips
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Figure 2: A diagram showing how an unrolled 3-layer LSTM-RNN works for music composition. Here, symbol Si and
feature Fi are encoded to the vector Ii. LSTM j represents an LSTM cell in the jth layer. Cells in the same layer share the
same parameter. Cj

i and hj
i are the cell state and hidden state of the ith cell in the jth layer. FC represents a fully-connected

layer and its output Oi is fed into a softmax function to produce a distribution over all the possible symbols.

Figure 3: The piano roll of the song Yesterday (1965). It has a song structure AABABA, whose sections are labeled in
green in the Figure. The channels from top to bottom are melody, chords, and bass line.

Melody Chords Bass Overall
CQ SQ CQ SQ CQ SQ ACSQ GSQ

MGT-M 2.60± 1.14 2.70± 0.84 - - - - - 2.65± 0.65

MGT-P - - 3.20± 0.57 2.50± 0.35 - - - 2.85± 0.22

BN 2.90± 0.55 1.50± 0.50 2.70± 0.76 2.40± 0.82 3.30± 0.67 2.40± 0.82 2.53± 0.25 2.60± 0.65

BN-S 2.90± 0.42 2.50± 0.87 3.05± 0.76 2.90± 0.65 3.20± 0.76 3.20± 0.45 2.96± 0.26 2.95± 0.62

BN-SB 2.90± 0.52 3.40± 0.22 2.85± 0.42 3.25± 0.40 3.30± 0.27 3.25± 0.40 3.16± 0.30 3.10± 0.42

BN-SBK 3.85± 0.49 3.75± 0.25 3.45± 0.51 3.45± 0.57 3.75± 0.25 3.65± 0.22 3.65± 0.13 3.90± 0.38

BEATLES 4.45± 0.37 4.80± 0.11 4.20± 0.27 4.75± 0.43 4.40± 0.22 4.95± 0.11 4.59± 0.13 4.65± 0.22

Table 1: Results of a professional composer evaluating the quality of music generated by different models. MGT-M:
Magenta’s MelodyRNN, MGT-P: Magenta’s PolyphonyRNN, BN: BandNet without note features, BN-S: BN with silence
features, BN-SB: BN-S with beat features, BN-SBK: BN-SB while keeping notes in the key, BEATLES: original Beatles’
songs. The definitions of CQ, SQ, ACSQ, and GCQ can be found in Section 3.2.
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as seeds for BandNet to generate all the sections of the
song.

3. EXPERIMENTS

3.1 Settings and Datasets

We collected 183 Beatles MIDI songs from the Internet as
our training dataset. We removed 60 songs from the dataset
because they were either divergent in musical style when
compared with other Beatles’ songs, or were missing im-
portant components such as a clear vocal melody or bass
line. We found that MIDI files in the wild can be messy.
For example, the chords may be divided across three chan-
nels in some MIDI files, while there can be up to eight
channels used for instrumental decoration in others, which
is not necessary for our purposes. We cleaned this dataset
by deleting the unnecessary channels and merging the frag-
mented channels.

Due to the number of songs that the Beatles composed,
the size of our dataset is smaller compared to those used
in the literature [5,17,27], but we found that it is sufficient
to train a reasonably good model. Aside from its influence
in popular music history, there are two reasons why we
choose to use the Beatles’ catalog as our training dataset:
First, the style of the Beatles’ music is relatively consis-
tent when compared to other categories of pop music, and
therefore it is easier for the RNN to learn its underlying
structures. Second, most of the Beatles’ music contains the
elements required by our music generation pipeline, such
as distinct melody, chord, and bass parts, as well as repeat-
ing song structures, which can be missing in genres such
as classical and folk music.

The two most important parameters of the recurrent
neural network were the dimension of LSTM cells and the
number of layers. We found that a 3-layer RNN in which
each LSTM cell had 256 hidden units worked well in prac-
tice.

Our implementation was based on Magenta [4] and Ten-
sorflow [1] for processing the MIDI files and training the
RNN. Because the number of parameters in our network
was large, we applied dropout [24] to alleviate overfit-
ting. We trained our model using the Adam optimizer [16],
which is a variant of stochastic gradient descent that is not
sensitive to the global learning rate. We used 10% songs in
our dataset for cross validation and we stopped the training
process when the error on the validation dataset no longer
decreased. During the training, we clipped the gradients
so that their L2-norms were less than or equal to 1. This
technique was proposed in [24] to alleviate the gradient ex-
plosion problem.

3.2 Quality Scoring by a Professional Composer

In this section, a professional music composer evaluated
the music generated by each subsequent version of Band-
Net. The composer gave two scores for each individual
channel (melody, chords, and bass) based on their musi-
cal content and structure. The Content Quality (CQ) was

defined as how well the notes and rhythms in the gener-
ated music function according to music theory principles
consistent with the music of the Beatles, and the Struc-
ture Quality (SQ) was defined as to what extent the mu-
sic sample exhibits an organizational structure. All scores
were given on a scale of 1 to 5. In addition, we designed
two overall scores to evaluate the overall quality of each
multiple-channel song. The Averaged Content and Struc-
ture Quality (ACSQ) were calculated through averaging
the CQs and SQs of all the channels, and the Group Syn-
ergy Quality (GSQ) score evaluated how well the individ-
ual channels work together to make a unified whole.

The results are shown in Table 1. The score was an
average across five songs under each setting. We found
that model BN was on par with Magenta’s melody and
polyphony generators [4] in terms of content and structure
scores, which is reasonable because models from Magenta
were designed to model melody and chords (as in poly-
phonic music) separately, and modeling them jointly in the
case of BandNet would not improve the score of each in-
dividual channel. After introducing the silence feature, the
GSQ of BandNet increased from 2.6 to 2.95 because we
were able to exclude unusual silences in the melody. By
adding the beat feature, BandNet continued to receive re-
wards in SQs for the melody and chord channels; a pos-
sible explanation for this is that the beat feature gave the
RNN measure and section information, which helped it
learn the structure of the music more efficiently. Both of
these features also improved GSQs, as the normalization
of each individual channel also improved the alignment
between individual parts. Finally, the greatest improve-
ment in both metrics was from the key restriction feature.
This significantly improved the CQs of individual channels
by removing “wrong” notes, and also improved SQs and
GSQs by reducing the amount of notes that were dissonant
with one another across individual channels.

3.3 Subjective Listening

We also conducted a subjective listening experiment to
evaluate the quality of our generated songs from the per-
spective of amateurs. We received 17 responses in this
user study: 16 said that they had never received formal
musical training. In this test, we asked users to listen
to 15 songs. All of the songs were in AABA structure
and each section had a length of 8 measures. The first 5
songs, labeled as group A, were composed by BandNet us-
ing randomly generated seeds; the next 5 songs, labeled
as group B, were composed by BandNet using profession-
ally composed seeds. Each seed was 2 measures in length,
with BandNet generating the remaining 6-measure clip for
each section. Songs in group A and B were generated
randomly without human selection. The last 5 songs, la-
beled as group C (the control group), included relatively
unknown Beatles’ songs, with the intention that listeners
had likely never heard them before. We shuffled the or-
der of the songs so that listeners could not guess whether a
song was composed by BandNet prior to listening. We also
modified the drum patterns for the group C Beatles’ songs,
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Figure 4: Result of a user study that evaluates the performance of different ways to generate music. The x-axis represents
the sources of the music and the y-axis represents the score. The box plot shows the distribution of the average score of
each song rated by the listener. From bottom to top, the horizontal lines of each box show the minimum, the first quartile,
the median, the third quartile, and the maximum of the average score, respectively.

so that listeners could not distinguish them from BandNet-
composed songs based on differences in the drum pattern.

At the beginning, we asked subjects to listen to 5 well-
known songs by the Beatles, such as I Want to Hold Your
Hand (1964), in order to familiarize them with the Beatles
musical style. Next, we asked them to listen to the 15 songs
mentioned above and to answer the following 4 questions
for each song:

Q1: Have you heard this song before?
Q2: Does it sound similar to the music of the Beatles?
Q3: How likely is it that this music was professionally

composed?
Q4: How interesting is this music?

We asked listeners to only choose between “Yes, defi-
nitely!” and “No/Not sure” in Q1; if they answered “Yes”,
we removed their scoring of that song from our results.
This is because a subject may be biased to give a song a
higher score if he had heard it song before. For Q2, Q3,
and Q4, we let users grade each song using a scale from
1 to 5 with an increment of 0.5. Figure 4 shows the dis-
tribution of those scores from 17 responses. The labels in
the horizontal axis, Style Similarity, Professional Sound-
ing, and Interestingness correspond to Q2, Q3, and Q4,
respectively. Each sample in the box plot represents the
average score over 17 responses to a question for a partic-
ular song.

For Q1, about 13.3% of responses indicated that they
had heard those little-known Beatles’ songs, while the per-
centages were only 0% and 1.3% for BandNet-generated
songs using automatically-generated seeds and profes-
sional seeds, respectively. This could be an indicator show-
ing that we did not overfit the training data and just repli-
cated some clips from the original Beatles’ music. For
the rest of the questions, we found that the authentic Beat-
les’ songs constantly outperformed the BandNet-generated
songs, but only by a small margin. In particular, the aver-

age Style Similarity scores for songs in group A, B, and C
are 3.08, 3.02, and 3.22, respectively. The score difference
of Q2 between the authentic and generated songs was less
than 0.202, which showed that BandNet was able to imi-
tate the style of the Beatles relatively well. The average
Professional Sounding scores were 3.29, 3.16, and 3.68,
and the average Interestingness scores were 3.19, 3.13, and
3.68 for songs in group A, B, and C, respectively. The
score gaps of Q3 and Q4 between authentic and generated
songs were approximately 0.5. The musical knowledge
that BandNet learned came primarily from The Beatles,
and in theory may be difficult for an RNN-based machine
learning algorithm to generate more professional and in-
teresting music than The Beatles. Concerning the seeds
used in generation, our experiments have shown that using
professionally-composed seeds did not have a significant
advantage over selecting from randomly-generated seeds
in terms of subjective listening evaluation. This means that
we may no longer need a composer in the loop for gen-
erating a complete song and an amateur would be able to
“compose” a Beatles-style song without the guide of a pro-
fessional by using BandNet.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose an RNN-based, multi-instrument
MIDI music composition machine, which learns musical
knowledge from existing Beatles’ music and automatically
generates music in the style of the Beatles with little hu-
man intervention. We also integrate expert knowledge into
the data-driven based learning process. We prove that our
method is effective in both professional evaluation and
subjective listening tests. Our future work includes explic-
itly modeling the drum parts, designing a better neural net-
work structure, employing Gibbs sampling, improving the
evaluation metrics, and testing BandNet for other genres of
music on a larger dataset.
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ABSTRACT 

Few prior studies on music recommendations investigate 

the context in which users receive the recommendations, 

and what impact the recommendation has on the user. In 

this paper, we aim to better understand the factors that af-

fect people’s decisions as to whether they choose to listen 

to music recommendations and how the recommendations 

impact their music-listening behaviors. We conducted an 

online survey asking about people’s past experiences on 

giving and receiving music recommendations. We found 

that in addition to the aesthetic qualities of music and the 

respondent’s taste, expectations regarding the delivery 

(e.g., timing, persistence) of the recommendations, famili-

arity, trust in the recommender’s abilities, and the rationale 

for suggestions were important factors. We discuss the im-

plications for the design of music recommenders based on 

the findings, including better rationale for and accessibility 

of recommended music, improved saving options, and 

more targeted delivery at specific times. The data also sug-

gests disparities in how people wish to receive music rec-

ommendations and what will influence them to listen to 

recommendations, versus how they would like to offer rec-

ommendations to others. In addition, the findings highlight 

the importance of music recommendations in people’s ex-

isting social relationships and their role in building/im-

proving new relationships. 

1. INTRODUCTION 

Music recommendation has been a well explored topic in 

the field of music information retrieval over the past few 

decades. Much of the recent research related to music rec-

ommendation focuses on improving recommendations for 

individual users or user groups by using various data or 

methods; for instance, user characteristics [22], tags or 

metadata [20, 21], or collaborative filtering [24]. In addi-

tion to more traditional content-based approaches, user be-

havior [6] and social/contextual features [20, 22] have also 

been explored to improve recommendation results.  

However, few studies explore the broader process of us-

ers receiving music recommendations and what happens 

after the recommendations have been made. What kinds of 

contextual factors affect people to choose whether they lis-

ten or not listen to the music recommendations? Are there 

any changes that could be made in the way that people or 

music recommendation systems make the suggestions to 

improve the likelihood of someone listening to them? 

What kind of impact do music recommendations have on 

the user and the social relationships of recommenders and 

recommendees?  

This paper aims to gain a deeper understanding of the 

user context where music recommendations happen, and 

the interaction between music recommendations and un-

derlying social relations. We address the following re-

search questions in this study: 

RQ1: When people do not listen to recommendations, 

what are the reasons they do not do so? 

RQ2: What can be done to improve the chances that people 

will listen to recommendations? 

RQ3: What happens after the music recommendations? 

What are the perceived impacts of music recommenda-

tions on people’s music listening behavior or social life? 

We conclude the study by presenting a set of impli-

cations for designing music recommendation systems 

based on what we learned about people’s post-recommen-

dation behavior. 

2. LITERATURE REVIEW 

2.1 Music Recommendations 

There is little literature about what happens after a user re-

ceives a recommendation, and how the chances of a user 

listening to the recommendation might be increased. Prior 

research seeks to understand the motivations behind shar-

ing [12], but it has not necessarily examined what comes 

next, with regards to the recommendation’s impact on a 

user’s music listening behavior, social practices, and other 

aspects of their lives.  

As commercial music streaming services become the 

primary way that many people access music, machine rec-

ommendation systems have become an important way to 

help music listeners find what they want to hear [19].  Jun 

et al. [11] proposed that there are two primary issues with 

providing “efficient music recommendation” (p. 1934). 

These issues are how accurately a recommender system 

can predict user preference and how accurately a system 

can assist with searching for new music [11]. The research-

ers identified that the flow, or sequence, of songs provided 
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by recommender systems could be improved and sug-

gested blending related recommendations into one seam-

less clip that takes a user’s temporal-spatial information 

into account [12]. 

Studies like Lee et al.’s 2011 paper [12], one of the 

first studies on music sharing behavior via social networks, 

discusses the motivations behind why users share music. 

They examined social music practices on Korean social 

networks like Cyworld and Tisory, finding that “self-ex-

pression, ingratiation, altruism, and interactivity” are the 

main “social motivation factors” driving sharing behaviors 

on social media platforms (p. 716). Previously, most stud-

ies about online sharing music focused on piracy and the 

motivations behind those behaviors (p. 717). Understand-

ing users’ motivations for sharing music and the connec-

tions they make to their music may help in improving the 

likelihood that a recommendation is heard. 

Su et al. [19] set out to examine the reliability of col-

laborative filtering recommender systems. They proposed 

a system called Recommendation by Tag-driven Item Sim-

ilarity (RTIS), which takes both “play counts as implicit 

ratings and item tags as semantic preferences” into account 

(p. 304). Wang et al. [23] examined the effectiveness of a 

sequence-based recommender system that takes contextual 

information into account when providing recommenda-

tions, as “people usually have different [music] prefer-

ences and requirements under different contexts” (p. 231). 

Zhang et al. [25] posit that music recommendation 

systems should, to the extent possible, simulate the kind of 

music recommendation that a friend might provide. Lis-

teners are more likely to listen to recommendations from 

sources they trust, like friends. They built a recommenda-

tion framework called Auralist that used four identified 

factors relating to successful music recommendations: ac-

curacy, diversity, novelty and serendipity. It was found 

that increasing serendipity in machine-based music recom-

mendation improves user reception of recommendations. 

In order for a music recommendation framework to 

be successful, Schedl [16] believes that recommendation 

systems must work at three levels: music content, music 

context, and user context (p. 1). Schedl’s study focuses pri-

marily on user-centric models in MIR and uses of geospa-

tial location data for music recommendation. Based on 

their findings, they present an adaptable mobile player that 

automatically adjusts the playlist given user context. 

2.2 Impact of Music Recommendations on Users 

Music can have a memorable, sometimes lasting, impact 

on one’s everyday life. Leong and Wright [14] examined 

social music practices in the home and the impact that var-

ious music technologies have on “people’s sociality and in 

turn how various social practices affect people’s interac-

tions with technology” (p. 951). They found that partici-

pants that “explore and discover music together… pro-

vided opportunities for bonding, with new discoveries and 

insights into their shared interests in music” (p. 955). 

Boer et al. [3] found that one’s music preferences can 

help facilitate social bonding between strangers. Selfhout 

et al. [17] found that social music rituals and shared music 

preferences can contribute to adolescents’ development of 

friendships. Boer and Abubakar [2] published a study to 

expand the evidence of the positive effects social music 

activities can have on “social cohesion and emotional well-

being” (p. 1). They examined music listening behaviors in 

families and peer groups in four countries: Philippines, 

Kenya, New Zealand, and Germany. They found that 

“across four cultures music listening in families and peer 

groups contributes to family and peer cohesion, respec-

tively” (p. 10).  

North, Hargreaves, and Hargreaves’ 2004 study [15] 

of everyday listening among 346 people provided “initial 

normative data on who people listen with, what they listen 

to (and what their emotional responses to this music are), 

when they listen, where they listen, and why they listen” 

(p. 41). Notably, this study indicated that users’ music 

preferences are situationally dependent, and shifted based 

on where users are and who they are with. It also high-

lighted that music was most often accessed during activi-

ties independent of deliberate music listening, which we 

define in our study as passive listening.  

Our study seeks to build upon the research of Lee and 

Price [13] on user personalities and personality character-

istics and their relation to music information systems. Lee 

and Price identified seven personas that exemplified spe-

cific user music-listening attitudes, behaviors, and traits. 

User personas were indicative of how a user might access 

or curate music, as well as how that user might react to a 

music recommendation. In this study, we will specifically 

explore user behavior and how different personas may 

manifest in the context of music recommendation. 

3. STUDY DESIGN AND METHOD 

In order to understand user attitudes and behavior post-mu-

sic recommendation, we designed a web-based survey. 

Links to the survey were shared via flyer in St. Petersburg, 

FL and Seattle, WA, posted online across various social 

media platforms, and disseminated in-person at local band 

events in St. Petersburg, FL. We received 219 total re-

sponses, with 92% of respondents from the United States, 

2% from Canada, and 6% from other countries.  42% of 

respondents were male and 53% were female, with the re-

maining 6% identifying as other genders or preferring not 

to answer. The average respondent was 28 years old, with 

a youngest age of 15 and an oldest of 70 years old (Median: 

27; Std dev: 9.71). We asked participants when and for 

how long they listened to music in their daily life. Re-

spondents answered that they actively listen to music for 

1-2 hours (Mean: 1.44 hours; Median: 1 hour; Std dev: 

2.01) and passively listen to music for 3-4.5 (Mean: 4.43 

hours; Median: 3 hours, Std dev: 3.69) a day. 95% of re-

spondents typically listened to music through a streaming 

service like YouTube (72%), Spotify (64%), or Pandora 

(27%). Participants listened to music, actively or 

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

664



  

 

passively, during a wide range of activities. 89% of re-

spondents listened to music while driving or commuting, 

77% while working or studying, 74% while exercising, 

73% while cleaning, and 63% while cooking.  

We also asked respondents open-ended questions about 

what happens when they receive or give recommendations. 

Respondent answers were subject to multiple-coder 

grounded theory analysis [5]. Researchers looked for pat-

terns in the answers given by respondents, and proposed 

qualitative codes to describe those patterns. The research-

ers generated a codebook for each question, though some 

questions were similar enough that certain codes could be 

used across multiple questions. The definition of each code 

and the rules for its usage were refined through an iterative 

process. Once codebooks were finalized, the codes were 

applied to responses using a consensus code model [9, 10]. 

Researchers coded answers independently, then met and 

discussed the applicability of codes until there was agree-

ment between the three researchers for each code usage. 

The number of codes assigned to a response was not lim-

ited; some answers could be captured by a single code, 

while others were complex enough to require up to half a 

dozen codes. A copy of the codebook can be accessed at: 

https://tinyurl.com/ISMIR2019LeePritchardHubbles.  

4. RESULTS AND DISCUSSION 

4.1 Reasons for Not Listening to Recommendations 

We asked respondents what influenced their decisions 

when they decided not to listen to a recommendation. Re-

sponses varied significantly depending on whether the rec-

ommendation came from an automated service or from an-

other human being. Three general assessment categories 

were noted: recommendations tended to be rejected be-

cause the recommendation was aesthetically displeasing, 

because the recommender strategy was suboptimal, or be-

cause of external factors out of the control of the recom-

mender. 

For automated recommender services, respondents 

most often tended to judge whether or not to take recom-

mendations based on aesthetic factors such as personal 

taste (71 respondents, 32.42%) or their level of familiarity 

with the artist, song, or genre (69, 31.51%). Respondents 

often rejected recommendations or suggested playlists that 

include artists/songs they know they hate. Other aesthetic 

factors included deciding against the recommendation 

based on descriptive information such as song title, lyrics, 

or style keywords (22, 10.05%). A few respondents also 

judged based on the artist’s general popularity or based on 

visual cues like album art or band photography. Some 

commented on also relying on reviews or their perception 

of the artist (e.g., “If I have heard bad reviews from peers 

or online, or think the band is against my values or pro-

motes things I'm particularly against.” (P20)). Several re-

spondents stated that they will make a quick judgment as 

to whether they will continue to listen to the song or not 

after listening to a short snippet of a song, for about 10-20 

seconds (20, 9.13%).  

“The beginning of the piece. If it doesn't sound catchy 

or doesn't have a decent layout of tone and rhythm, I'll skip 

it. I try to give all music a fair chance but sometimes I only 

have a certain window of listening time and I want to use 

it wisely.” (P192) 

Factors external to the recommender system also played 

a substantial role in rejecting suggestions from automated 

services. Some respondents simply prefer a listening expe-

rience that does not involve recommendations (47, 

21.46%). Other respondents mentioned not being in the 

right mood for the recommendation (34, 15.53%), alluding 

to the situationally-dependent music preferences of users 

[14]. A few also mentioned not having enough time to in-

vestigate recommendations or having inertia or a lack of 

interest. 

“This is my default state. I have to want to listen to a 

suggestion which really means that I’m in an exploratory 

mood.” (P163) 

“My mood mostly. I'm generally resistant to trying new 

things, but I always want to. Conditions must be perfect.” 

(P104) 

Relatively few respondents criticized the recommenda-

tion strategy. Some chose not to listen based on whether 

the recommender service had given poor suggestions in the 

past (22, 10.05%), and a few mentioned annoying or in-

convenient means of delivering suggestions, problems ac-

cessing the recommendations, getting too many recom-

mendations, or simply needing an easy way to remember 

the suggestions. 

“The frequency of the suggestions making them easy to 

ignore and pin as spam.” (P42) 

“I'd love it if I could choose to add recommended music 

to a, ‘listen later,’ or, ‘recommend to me again later,’ list, 

just with the touch of a button.” (P196) 

In some cases, the reasons people do not listen to music 

had nothing to do with the content of the music, but more 

with the context of the song or artist. Several users sug-

gested that content-based music recommendations pro-

vided by recommender services will inherently be limited 

in their ability to predict the likelihood of someone listen-

ing to the music recommendation.   

“Honestly, a lot of reasons I won't listen to something is 

outside the sphere of music. How would a music streaming 

service know I don't want those recs because the fanbase 

is full of white supremacists or because the singer is a sex-

ual predator?” (P7) 

For recommendations that came from other human be-

ings, the recommendation strategy was the most important 

consideration in deciding whether or not to listen. The 

most common human factor was whether the recom-

mender was reliable, or had given good or bad 
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recommendations in the past (62, 28.31%); this considera-

tion was much more prominent for human recommenders 

than for automated systems.  

“Whether or not I think they understand the very spe-

cific type of music I have asked them to suggest to me.  Or 

if I have not solicited them if I will listen if I generally like 

the music they listen to and consider them to have ‘good 

tastes’.” (P49) 

The underlying social relationship that a respondent had 

with a human recommender often played an important role 

in determining what the recomendee did with the music. In 

some cases, the feelings toward the recommender overrode 

other factors like the recommendee’s taste in assessing the 

value of the recommendation.  

“It really depends on the person that gives me the rec-

ommendation. If it is someone I know I have a similar pref-

erence as, then I am definitely going to listen to it. Simi-

larly, if it is someone I am friends with or just in general 

like, I will listen to it even if I don't know their music pref-

erences that well. I won't listen to a song if I don't like the 

person or I know they like a kind of music I don't.” (P38) 

“If I don't like the person I don't listen. If they're a jerk 

but I know they have good taste I check it out but I don't 

get back to them. I tend to associate my favorite songs with 

people I care about who introduced me to them origi-

nally.” (P208)  

Many respondents also mentioned that they easily for-

got recommendations given by other people, and needed a 

means by which to remember them (34, 15.53%). A few 

mentioned annoying or inconvenient recommendation de-

livery tactics, or difficulty accessing the songs.   

“When people recommend music to me, it's also often 

not convenient. When I'm already using a streaming music, 

I'm already relying on them to suggest me new music. 

That's what they are for. However, when a friend recom-

mends me music, it may come at a time when I'm not in the 

mood to explore but want to listen to some familiar favor-

ites. (P178) 

Aesthetic considerations were also important in evalu-

ating human recommendations. Familiarity (47, 21.46%) 

and taste (29, 13.24%) factors also played significant roles 

in deciding to skip recommendations from people, but 

were less prominent than with machine suggestions. Ex-

ternal factors were also less prominent; quite a few re-

spondents said they often did not have time to explore rec-

ommendations (24, 10.96%), and some also mentioned not 

being in the mood, having a lack of interest, or not wanting 

to take recommendations in general.  

4.2 Things That Can Improve the Chance of People 

Listening to Recommendations 

Additionally, we asked respondents what, if anything, 

could be done differently to make them more likely to lis-

ten to recommendations from streaming services or from 

other people, and responses were not dramatically differ-

ent between the two. Two important considerations arose. 

One was the design or delivery strategy of the recom-

mender or recommendation service. The recommender’s 

design (broadly conceived for both services and people - 

when, where, and how the recommender or service chose 

to deliver suggestions) was important to respondents (ser-

vices 36, 16.44%; people 43, 19.63%), as were compo-

nents like whether information about the artist or song was 

provided with the recommendation, why the recommender 

made the suggestion, whether a clip was available for lis-

tening, and whether incentives for listening were provided. 

For recommender systems, the ability to manually change 

parameters was important, as respondents felt that they 

could receive more personalized recommendations.  

“I would be more interested if I would understand why 

those certain songs are being recommended to me (are the 

recommended songs based on similar tunes or because 

people who listen to my type of music like those recom-

mended songs?). I would also probably listen to the rec-

ommended songs more if the recommendations were per-

sonal (such as seeing what types of people are listening to 

it, where it's being listened, what kinds of playlists it often 

appears in).” (P13) 

“Maybe a better attempt at explaining why it was rec-

ommended (e.g., same scene, era, lyrical themes, mood, 

instrumentation, etc. of what I was already listening to).” 

(P66) 

For human recommenders, how often or how enthusi-

astically recommenders persisted in pushing recommenda-

tions, and whether the respondent’s friends or acquaint-

ances also liked the music being recommended, were also 

important factors that influenced people’s decision to lis-

ten or not listen to music.  

“They could mention specific aspects of what I'd like. 

For example, ‘I know you love Neko Case. This singer has 

a similar voice’.” (P4) 

“A good description: the story behind the track creates 

an emotional connection to it and makes you listen more 

attentively. A direct link to the track (preview) available 

from everywhere. Even better if it can be previewed right 

in the messenger.” (P120) 

The social connection between the recommender and 

recommendee was mentioned repeatedly as a factor that 

might encourage to listen to the music: “Make me like 

them? Or at least be charismatic enough and not a horri-

ble garbage person.” (P208); “Make me better friends with 

those other people.” (P26). 

Second, respondents mentioned the importance of the 

content of the recommendations. Whether the recommen-

dations were similar to personal taste - what the respondent 

likes or listens to - was most important (services 47, 

21.46%; people 40, 18.26%). Respondents also mentioned 

basing recommendations on artist or genre/style similarity 

- i.e., musical similarity, rather than closeness to what the 
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recommender likes. Other content factors included 

whether the person or system had a deep, intimate 

knowledge of the respondent; problems with older and 

newer listening desires conflicting (e.g., recommenders 

making recommendations based on old preferences); a de-

sire for new songs unfamiliar to the recommendee; recom-

mendations based on general popularity (or deliberately 

avoiding popular songs); and the ability to compartmental-

ize - to separate out genres or styles and get siloed recom-

mendations for each. Additionally, some users desired 

contextual information about music and artists that may in-

fluence whether they would listen. 

“If they told me WHY they recommended a particular 

artist, or gave me some kind of cool "family tree" of the 

piece they're recommending (e.g., it featured a musician I 

liked).” (P79) 

“If some of the algorithmic rationale was a bit more 

transparent in the messaging to the user (e.g. 'You might 

like this artist because they feature their bassist and you 

like other bass-forward bands' or 'Here is a collaboration 

between an artist you like and a different artist from a 

genre/label you like').” (P161) 

“Essentially I'd like to feel like I'm geeking out about 

the music and somehow digging deeper into things (like 

the feeling of researching things on Wikipedia) rather than 

automatically thrown into a new radio station or a recom-

mendation with no context.” (P174) 

Some respondents also talked about social features that 

aggregate people with similar music tastes or leverage the 

existing social connections among the listeners: “Maybe 

tag artists that many of my friends listen to, sort of indirect 

friend suggestion.” (P68); “Aggregate ‘listeners like you’ 

- functionality where I can see what others with tastes sim-

ilar to me like or are listening to.” (P179). 

We additionally asked what could be done to make it 

more likely that others would listen to music suggestions 

the respondent gave. A broad spectrum of responses mate-

rialized from this question. Common responses included 

providing a means for the person to listen (42; 19.18%), 

having similar music preferences (38; 17.35%), having a 

deep knowledge of the recommendee’s personality or mu-

sic preferences (34; 15.53%), pushing the recommendation 

hard or ginning up excitement about it (30; 13.70%), talk-

ing in person about the recommendation as opposed to via 

distance communication (29; 13.24%); and giving context 

or rationale for why the recommendation was made (24; 

10.96%). In general, we noticed an asymmetric relation-

ship between how participants felt about music recommen-

dations from other people versus the music recommenda-

tions that they were giving to others. Most participants 

were able to articulate with specificity the different criteria 

they use to decide not to listen to music recommendations 

given to them, yet they generally exhibited high confi-

dence that their recommendations to others were in fact 

listened to (further discussed in 4.3).  

4.3 Post-Recommendation 

We asked respondents about moments where giving or re-

ceiving recommendations led them to have more music-

related interactions with another person. 102 (46.58%) 

said conversations followed about the song, artist, lyrics or 

genre, which often led to the discovery of mutual musical 

interests (50; 22.83%) and additional sharing of music (49, 

22.37%). 41 (18.72%) described the opening up of a bond 

or deepening of a friendship with the recommendee, and 

an equal number talked about having shared experiences 

with the recipient, such as going to a concert, checking out 

a record store, or listening to music together at home or on 

trips. Several respondents talked about the depth and last-

ing impact of this kind of experience. 

“Once I shared a particular song with an acquaintance 

and we sat in rapt silence as we listened together, and the 

song ended up sparking one of the best conversations I had 

in my teens. Even now, whenever I hear even one song 

from that album, I remember what it was like when it was 

‘in the air’ so to speak.” (P27) 

“A friend I had spoken to about music prior had talked 

to me about an album and asked me to come over so that 

we could both listen to it on their record player. I was so 

moved listening to the entire album I started crying and 

talked to my friend about it, thus leading to a really deep 

meaningful conversation that deepened our relationship 

and understanding of each other. We eventually became 

best friends and this person is now really important to me.” 

(P82) 

We also asked respondents whether they had shared a 

song, artist, or album with someone they knew in the past 

three months; whether they knew if the person to whom 

they had provided the recommendation actually listened to 

it; and how they knew the recommendation had been lis-

tened to. 148 (67.58%) of respondents responded both that 

they had made a recommendation and that the recommen-

dee had listened to it. By far, the most common means of 

verifying this was through discussion. Of those who said 

the recommendee had listened, 103 (69.59%) said they had 

talked with the recommendee about the recommendation 

in person or via messaging or social media. 43 (29.05%) 

mentioned playing the song for the recipient or listening to 

the songs together, and a few mentioned making follow-up 

inquiries, singing the song for the recipient, or checking in 

on the recipient’s listening or streaming activity within an 

application. 

5. CONCLUSION AND FUTURE WORK 

In this study, we investigated the contexts in which music 

recommendations occur, in order to improve understand-

ing of the impact of music recommendations on people’s 

lives and social relationships (and vice versa). The main 

design implications for recommendation systems based on 

our data analysis are as follows: 
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Needs for providing and receiving recommendations 

are asymmetric: In general, it seemed as if respondents 

were more comfortable broadcasting recommendations 

than receiving them. The systems and strategies that users 

would like designed for themselves to receive music dif-

fered from those they would build to recommend to others. 

They seemed more willing to be forward and persistent 

about pushing the recommendations out than they would 

prefer for recommendations aimed at them.  

 

Music is an important tool for building social relation-

ships: “Companionship (willingness to engage in social 

aspects of music listening)” [13] continued to be an im-

portant aspect related to music recommendations. Servic-

ing people recommendations that come from their friends 

may help introduce a desired human element into the sys-

tems. Facilitating exchange of individual songs between 

people, and presenting these exchanges explicitly as rec-

ommendations, may improve the user experience beyond 

algorithmic or expert-curated recommendations. Auto-

mated suggestions drawn from friends’ listening patterns 

or notifications of friends’ activity (‘Your friend just lis-

tened to: Track X’) may not sufficiently substitute for in-

tentional sharing of recommendations. This intention 

seems to be important, as the importance of a social rela-

tionship often overrode factors like musical tastes and 

preferences. People paid extra attention to music recom-

mendations that came from people they cared about. 

Sometimes they were willing to listen to music that they 

personally had no interest in because they perceived it as 

an opportunity to spark an interesting conversation or have 

a shared experience and potentially improve their relation-

ship with the recommender. 

The co-listening experience was also important to 

many of our respondents. Co-listening was a factor that 

Spinelli et al. [18] identified as a significant social music 

behavior. Hagen & Lüders [7] noted that users on commer-

cial streaming services might choose to follow each other 

to deepen interpersonal relationships, not necessarily be-

cause of “shared music preferences alone” (p. 10). Brown 

and Sellen [4] also discussed the social aspects of consum-

ing music and how users can form or deepen relationships 

through listening to music together. Our findings enrich 

this literature by showing that our respondents viewed co-

listening not simply as a way to ensure or verify that the 

recommendee listens to the recommendation, but also be-

cause that is how shared bonding experiences are created 

[14]; the recommendation could become the foundation or 

catalyst of the social relationship between recommender 

and recommendee. In music recommendation systems, 

perhaps a feature to support co-listening remotely (e.g., 

‘Your friend X is listening to Y. Would you also like to 

listen to it together?’ and the system informing friend X 

that another user chose to co-listen to the song), rather than 

just providing the recommendation, might encourage peo-

ple to be more willing to listen to the recommended song.  

 

People desire for more personalized and contextualized 

recommendations: While the underlying social interac-

tion is important, there is also a persistent desire for better 

algorithmic curation, over and above simple suggestions 

from friends. While recommendation systems have gotten 

more sophisticated and individualized over time, a variety 

of different recommendation requests surfaced - better 

matched to users’ tastes, better matched to specific musical 

styles, better attuned to popularity and extramusical cul-

tural associations, or compartmentalized based on differ-

ent listening sessions. This kind of personalization could 

help meet the needs of the users in the long tail, who have 

stronger needs and wants regarding music recommenda-

tions (those labeled with the “music epicurean” persona by 

Lee & Price [13]). The context of the recommendation was 

also important to many respondents; they wanted to under-

stand why the song was recommended to them, see the mu-

sical and social connections between the songs and artists, 

and know which friends were also listening to or interested 

in the music recommended to them. This desire for more 

contextual knowledge was a common theme for both ma-

chine and human based recommendations. While there is 

a fair amount of research available to support context-

based music recommendation systems [1, 8, 11, 16], few 

have examined what might happen if users are provided 

insight into why an algorithm recommended something. 

 

Some people are simply less interested in recommenda-

tions: In designing services, it may be valuable to note a 

significant recalcitrant population that is unreachable for 

recommendations, either because they do not want new 

music at all, or because they do not want new music from 

the service specifically (persona labeled as “Non-believer” 

in [13]). Part of this population still seems to respond to 

recommendations provided by people they know, espe-

cially if they feel like they can trust them. This trust was 

based on two factors: positive past recommendation expe-

rience, and how well the recommender understood the rec-

ommendee’s musical taste. Designing a system to incorpo-

rate this social aspect of recommendation may help reach 

out to this reluctant population. 

 

Many contextual factors need to be further investigated to 

gain a comprehensive understanding of the impact of mu-

sic recommendations. In our future work, we plan to dive 

deeper into people’s social music behaviors and explore 

perceptions of the value of specific social features such as 

collaborative playlists, co-listening, and music recommen-

dations via videos and other audiovisual media. 
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ABSTRACT

Automatic music transcription is considered to be one of
the hardest problems in music information retrieval, yet
recent deep learning approaches have achieved substan-
tial improvements on transcription performance. These
approaches commonly employ supervised learning mod-
els that predict various time-frequency representations, by
minimizing element-wise losses such as the cross entropy
function. However, applying the loss in this manner as-
sumes conditional independence of each label given the
input, and thus cannot accurately express inter-label de-
pendencies. To address this issue, we introduce an adver-
sarial training scheme that operates directly on the time-
frequency representations and makes the output distribu-
tion closer to the ground-truth. Through adversarial learn-
ing, we achieve a consistent improvement in both frame-
level and note-level metrics over Onsets and Frames, a
state-of-the-art music transcription model. Our results
show that adversarial learning can significantly reduce the
error rate while increasing the confidence of the model
estimations. Our approach is generic and applicable to
any transcription model based on multi-label predictions,
which are very common in music signal analysis.

1. INTRODUCTION

Automatic music transcription (AMT) concerns automated
methods for converting acoustic music signals into some
form of musical notation [4]. AMT is a multifaceted prob-
lem and comprises a number of subtasks, including multi-
pitch estimation (MPE), note tracking, instrument recogni-
tion, rhythm analysis, score typesetting, etc. MPE predicts
a set of concurrent pitches that are present at each instant,
and it is closely related to the task of note tracking, which
predicts the onset and offset timings of every note in audio.
In this paper, we address an issue in the recent approaches
for MPE and note tracking, where the probabilistic depen-
dencies between the labels are often overlooked.

A common approach for MPE and note tracking is
through the prediction of a two-dimensional representation

c© Jong Wook Kim, Juan Pablo Bello. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jong Wook Kim, Juan Pablo Bello. “Adversarial Learning
for Improved Onsets and Frames Music Transcription”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

that is defined along the time and frequency axes and con-
tains the pitch tracks of notes over time. Piano rolls are
the most common example of such representations, and
deep salience [5] is another example that can contain more
granular information on pitch contours. Once such repre-
sentation is obtained, pitches and notes can be decoded by
thresholding [23] or other heuristic methods [17, 25].

To train a model that predicts a two-dimensional target
representation Ŷ ∈ RP×T from an input audio representa-
tion X, where P is the number of pitch labels and T is the
number of time frames, a common approach is to minimize
the element-wise sum of a loss function L:

minimize L(Ŷ,Y) =
P∑
p=1

T∑
t=1

L(Ŷpt,Ypt), (1)

where Y ∈ RP×T is the ground truth. In a probabilis-
tic perspective, we can interpret L as the negative log-
likelihood of the model parameters ϑ of a discriminative
model pϑ(Y|X):

pϑ(Y|X)= e9L(Ŷ,Y)=
P∏
p=1

T∏
t=1

e9L(Ŷpt,Ypt)=
P∏
p=1

T∏
t=1

pϑ(Ypt|X)

(2)
which indicates that each element of the label Y is con-
ditionally independent with each other given the input X.
This encourages the model to predict the average of the
posterior, making blurry predictions when the posterior
distribution is multimodal, e.g. natural images [10].

Music data is highly contextual and multimodal, and the
conditional independence assumption does not hold in gen-
eral. This is why many computational music analysis mod-
els employ a separate post-processing stage after sequence
prediction. One approach is to factorize the joint probabil-
ity using the chain rule and assume the Markov property:

pϑ(Y|X) ≈
P∏
p=1

T∏
t=1

pϑ(Ypt|Y·(t−1),X). (3)

This corresponds to appending hidden Markov models
(HMMs) [36] or recurrent neural networks (RNNs) [17,39]
to the transcription model. The Markov assumption is
effective for one-dimensional sequence prediction tasks,
such as chord estimation [35] and monophonic pitch track-
ing [32], but when predicting a two-dimensional represen-
tation, it still does not address the inter-label dependencies
along the frequency axis.
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There exist a number of models in the computer vision
literature that can express inter-label dependencies in two-
dimensional predictions, such as the neural autoregressive
distribution estimator (NADE) [27], PixelRNN [43], and
PixelCNN [42]. However, apart from a notable excep-
tion using a hybrid RNN-NADE approach [7], the effect
of learning the joint posterior distribution for polyphonic
music transcription has not been well studied.

To this end, we propose a new approach for effectively
leveraging inter-label dependencies in polyphonic music
transcription. We pose the problem as an image translation
task and apply an adversarial loss incurred by a discrim-
inator network attached to the baseline model. We show
that our approach can consistently and significantly reduce
the transcription errors in Onsets and Frames [17], a state-
of-the-art music transcription model.

2. BACKGROUND

2.1 Automatic Transcription of Polyphonic Music

Automatic transcription models for polyphonic music can
be classified into frame- or note-level approaches. Frame-
level transcription is synonymous with multi-pitch estima-
tion (MPE) and operates on tiny temporal slices of au-
dio, or frames, to predict all pitch values present in each
frame. Note-level transcription, or note tracking, operates
at a higher level, predicting a sequence of note events that
contains the pitch, the onset time, and optionally the offset
time of each note. Note tracking is typically implemented
as a post-processing stage on the output of MPE [3], by
connecting and grouping the pitch estimates over time to
produce discrete note events. In this sense, we can say that
MPE is at the core of polyphonic music transcription.

Two categories of approaches for MPE have been most
successful in recent years: matrix factorization and deep
learning. Factorization-based models for music transcrip-
tion [40] use non-negative matrix factorization (NMF) [29]
to factorize a time-frequency representation X ∈ RF×T

as a product of a dictionary matrix D ∈ RF×K and an
activation matrix A ∈ RK×T , where K is the number
of pitch labels to be transcribed, e.g. 88 keys for piano
transcription. This allows for an intuitive interpretation
of each matrix, where each column of D contains a spec-
tral template for a pitch label, and each row of A contains
the activation of the corresponding pitch over time. Var-
ious extensions of factorization-based methods have been
proposed to leverage sparsity [1], adaptive estimation of
harmonic spectra [14, 44], and modeling of attack and de-
cay sounds [2, 12]. In all of these approaches, an iterative
gradient-descent algorithm is used to minimize an element-
wise divergence function between the matrix factorization
DA and the target matrix X [13].

Deep learning [28] methods for music transcription are
increasingly popular [3], as larger labeled datasets and
more powerful hardware become accessible. These ap-
proaches use neural networks (NN) to produce music tran-
scriptions from the input audio. An early work [34] used
deep belief networks [20] to extract audio features which
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Figure 1. The Onset and Frames model. CNN denotes the
convolutional acoustic model taken from [23], FC denotes
a fully connected layer, and σ denotes sigmoid activation.
Dotted lines mean stop-gradient, i.e. no backpropagation.

are subsequently fed to pitch-wise SVM-HMM pairs to
predict the target piano rolls. More recent approaches are
based on convolutional [5, 23] and/or recurrent neural net-
works [6, 17, 39], which are also optimized with gradient
descent to minimize an element-wise loss of predicting the
target time-frequency representations.

Onsets and Frames [17] is a state-of-the-art piano tran-
scription model that we use as our baseline. It uses mul-
tiple columns of convolutional and recurrent layers to pre-
dict onsets, offsets, velocities, and frame labels from the
Mel spectrogram input, as shown in Figure 1. Predicted
onset and frame posteriors are then used for decoding the
note sequences, where a threshold value is used to create
binary onset and frame activations, and frame activations
without the corresponding onsets are disregarded.

As discussed above, most NMF- and NN-based meth-
ods, including Onsets and Frames, use an element-wise
optimization objective which does not consider the inter-
label dependencies. This motivates the adversarial training
scheme that is outlined in the following subsection.

2.2 Generative Adversarial Networks and pix2pix

Generative adversarial networks (GANs) [16] refer to a
family of deep generative models which consist of two
components, namely the generator G and the discrimina-
tor D. Given a data distribution x ∼ p(x) and latent codes
z ∼ p(z), GAN performs the following minimax game:

min
G

max
D

[
Ex logD(x) + Ez log(1−D(G(z)))

]
︸ ︷︷ ︸

LGAN(G,D)

. (4)

G and D are implemented as neural networks trained in an
adversarial manner, where the discriminator learns to dis-
tinguish the generated samples from the real data, while
the generator learns to produce realistic samples to fool
the discriminator. GANs are most renowned for their abil-
ity to produce photorealistic images [22] and have shown
promising results on music generation as well [9, 11, 45].
We refer the readers to [8, 15] for a comprehensive review
of the techniques, variants, and applications of GANs.

The second term in Equation 4 has near-zero gradients
when D(G(z)) ≈ 0, which is usually the case in early
training. To avoid this, a non-saturating variant of GAN is
suggested in [16] where the generator is trained with the
following optimization objective instead:

max
G

Ez logD(G(z)). (5)
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The non-saturating GAN loss is used more often than the
minimax loss in Equation 4 and is implemented by flipping
the labels of fake data while using the same loss function.
Least-squares GAN [31] is an alternative method to ad-
dress the vanishing gradient problem, which replaces the
cross entropy loss in Equations 4-5 with squared errors:

min
D

[
Ex(D(x)− 1)2 + EzD(G(x))2

]
,

min
G

Ez(D(G(z))− 1)2.

(6)

While the default formulation of GAN concerns un-
conditional generation of samples from p(x), conditional
GANs (cGAN) [33] produce samples from a conditional
distribution p(y|x). To do this, the generator and the dis-
criminator are defined in terms of the condition variable x
as well:

min
G

max
D

[
Ex,ylogD(x, y)+Ex,zlog(1−D(x, G(x, z))

]
︸ ︷︷ ︸

LcGAN(G,D)

. (7)

pix2pix [21] is an image translation model that learns a
mapping between two distinct domains of images, such as
aerial photos and maps. A pix2pix model takes paired
images (x,y) as its training data and minimizes the condi-
tional GAN loss along with an additional L1 loss:

Ex,y,z

∥∥ y −G(x, z)
∥∥
1
, (8)

which encourages the conditional generator to learn the
forward mapping from x to y. It can be thought that the
GAN loss in Equation 7 is fine-tuning the mapping learned
by the L1 loss in Equation 8, resulting in a predictive
mapping that better respects the probabilistic dependencies
within the labels y.

In this paper, we adapt this approach to music transcrip-
tion tasks and show that we can indeed improve the per-
formance by introducing an adversarial loss to an existing
music transcription model.

3. METHOD

We describe a general method for improving an NN-based
transcription model G that performs prediction of a two-
dimensional target Y from an input audio representation
X. Say the original model G is trained by minimiz-
ing the loss Ltask(G(X),Y) between the predicted target
Ŷ = G(X) and the ground-truth Y. The main idea of
our method is to adapt pix2pix [21] to this setup, by in-
troducing an adversarial discriminator D during the train-
ing process. The adversarial training objective includes the
conditional GAN loss LcGAN (Equation 7):

min
G

max
D

EX,Y

[
νLtask(G(X),Y) + LcGAN(G,D)

]
, (9)

where ν is a hyperparameter that controls how much the
conditional GAN loss contributes to the gradient steps rel-
ative to the discriminative loss Ltask. Figure 2 illustrates
how the two components are connected in the computation
graph and how the loss terms are calculated.

X Transcription 
Model G(X) = Ŷ

Y

task
cGAN

Discriminator real/fake

L
L

Figure 2. A computation graph showing how a discrimina-
tor is appended to the original model. The appended parts
are shown as dotted components.

Adversarial training with LcGAN allows the model to
learn the inter-label dependencies as desired, even when
Ltask is defined only in terms of element-wise operations
between Ŷ and Y, as in Equation 1. In the next subsection,
we describe a neural network architecture for the cGAN
discriminator that leverages prior knowledge on music.

3.1 Musically Inspired Adversarial Discriminator

Following pix2pix, we use a fully convolutional archi-
tecture [30] for the discriminator. By being fully convolu-
tional, the discriminator has translation invariance not only
along the time axis (as in HMMs and RNNs) but also along
the frequency axis. Since the discriminator determines
how realistic a polyphonic note sequence is, the transla-
tion invariance enforces that the decision does not depend
on the musical key, but only on the relative pitch and time
intervals between the notes. This effectively implements a
music language model (MLM) [7, 39] and biases the tran-
scription toward more realistic note sequences.

Unlike the image-to-image translation problem, the in-
put representations (e.g. Mel spectrograms) and the output
representations (e.g. piano rolls) of a music transcription
model can have different dimensions. This makes com-
bining X and Y in a fully convolutional manner difficult.
For this reason, we make the discriminator a function of Y
only, simplifying the objective in Equation 7 to:

LcGAN(G,D) = EY logD(Y)+EX log(1−D(G(X))). (10)

Note that z is also omitted in Equation 10, as we fol-
low [21] and implement the stochasticity of z only in terms
of dropout layers [41], without explicitly feeding random
noises into the generator. This causes a mode collapse
problem where the learned p(Y|X) is not diverse enough,
but it does not harm our purpose of producing more realis-
tic target representations.

3.2 TTUR and mixup to Stabilize GAN Training

Although an ideal GAN generator can fully reconstruct the
data distribution at the global optimum [16], training of
GANs in practice is notoriously difficult, especially for
high-dimensional data [15]. This led to the inventions
of a plethora of techniques for stabilizing GAN training,
among which we employ the two-timescale update rule
(TTUR) [19] and mixup [47]. TTUR means simply setting
the generator’s learning rate a few times larger than that
of the discriminator, which has been empirically shown to
stabilize GAN training significantly.
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The other technique, mixup, is an extension to empirical
risk minimization where training data samples are drawn
from convex interpolations between pairs of empirical data
samples. For a pair of feature-target tuples (Xi,Yi) and
(Xj ,Yj) sampled randomly from the empirical distribu-
tion, their convex interpolation is given by:

X̃ = λXi + (1− λ)Xj

Ỹ = λYi + (1− λ)Yj
(11)

where λ ∼ Beta(α, α), and α is the mixup hyperparameter
which controls the strength of interpolation. When α = 0,
the Beta distribution becomes Bernoulli(0.5) which recov-
ers the usual GAN training without mixup.

mixup is readily applicable to the binary classification
task of GAN discriminators. In our conditional GAN
setup, we have an additional advantage of having paired
samples of a real label Y and a fake label Ŷ = G(X),
which allow us to replace Equation 10 with:

min
G

max
D

EX,Y,λ

[
− `(D(λY + (1− λ)G(X)), λ)

]
. (12)

where `(p, y) = −y log p − (1 − y) log(1 − p) is the bi-
nary cross entropy (BCE) function. With this mixup setup,
the discriminator now has to operate on the convex inter-
polation between the predicted representation and the cor-
responding ground truth. This makes the discriminator’s
task even more difficult when the prediction gets close to
the ground truth, which is desirable because the discrim-
iantor should be inconclusive (i.e. D = 1

2 everywhere) at
the global optimum [16].

Algorithm 1 details the procedure of training the con-
ditional GAN using mixup, based on Equations 10 and 12.
Note that for training the generator network, we perform
label flipping in LGcGAN similarly as in Equation 5. Also,
to train a least-squares GAN (Equation 6) instead, we can
simply replace ` with a mean squared error (MSE) loss.

Input: Generator Gϑ(X) with initial parameters ϑ, learning
rate η, and loss function Ltask(Ŷ,Y), discriminator
Dϕ(Y) with initial parameters ϕ, learning rate β, and
loss function ` ∈ {BCE,MSE}, batch size m, training
data distribution p(X,Y), pix2pix weight ν, mixup
strength α.

Output: Trained conditional generator Gϑ(X).

while ϕ and ϑ have not converged do
{(Xi,Yi)}i=1,··· ,m ← m samples from p(X,Y)
for i = 1, · · · ,m do

Ŷi ← Gϑ(Xi)
λi ← sample from Beta(α, α)
Ỹi ← λiYi + (1− λi)Ŷi

end
LDcGAN ←

∑M
i=1 `(Dϕ(Ỹi), λi)

ϕ← ϕ− β · ∇ϕLDcGAN

LGcGAN ←
∑M
i=1 `(Dϕ(Ỹi), 1− λi)

ϑ← ϑ− η · ∇ϑ
[∑m

i=1 νLtask(Ŷi, Yi)− LGcGAN

]
end

Algorithm 1: Training of a mixup Conditional GAN.

4. EXPERIMENTAL SETUP

To verify the effectiveness of our approach, we compare
Onsets and Frames [17], a state-of-the-art piano transcrip-
tion model, with variants of the same model that are trained
with the adversarial loss. We also aim to evaluate the
choices of the GAN loss and the mixup strength α.

4.1 Model Architecture

We use the extended Onsets and Frames model [18] which
increased the CNN channels to 48/48/96, the LSTM units
to 256, and the FC units to 768. The extended model has
total 26.5 million parameters. We do not use the frame
loss weights described in [17] in favor of the offset stack
introduced in the extended version (see Figure 1). During
inference, we first calculate the posteriors corresponding to
overlapping chunks of audio, with the same length as the
training sequences, and perform overlap-add using Ham-
ming windows to obtain the full-length posterior. This is
because the effects of adversarial learning do not continue
further than the training sequence length when we let the
recurrent networks continue to predict longer sequences.

The input to the discriminator has two channels for
the onset and frame predictions. The discriminator
has 5 convolutional layers: c32k3s2p1, c64k3s2p1,
c128k3s2p1, c256k3s2p1, c1k5s1p2, where the
numbers indicate the number of output channels, the ker-
nel size, the stride amount, and the padding size. At each
non-final layer, dropout of probability 0.5 and leaky ReLU
activation with negative slope 0.2 are used. The mean of
the final layer output along the time and frequency axes is
taken as the discriminator output.

4.2 Hyperparameters

Table 1 summarizes the hyperparameters used during the
experiments, which are mostly taken directly from [17]
and [21]. Also following [17], we use Adam [26] and ap-
ply learning rate decay of factor 0.98 in every 10,000 itera-
tions, for both the generator and the discriminator. We ex-
amine two types of GAN losses, the non-saturating GAN
(` = BCE) and the least-squares GAN (` = MSE). For
each GAN loss, multiple values of mixup strengths are
compared with α = 0, i.e. no mixup. Training runs for
one million iterations, and the iteration that best performs
on the validation set are used for evaluation on the test set.

Hyperparameter Values
Generator learning rate η 0.0006
Discriminator learning rate β 0.0001
Discriminator loss function ` {BCE, MSE}
Batch size m 8
pix2pix weight ν 100
mixup strength α {0, 0.2, 0.3, 0.4}
Activation threshold τ 0.5
Training sequence length 327,680

Table 1. Hyperparameters used during the experiments.
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4.3 Dataset

We use the MAESTRO dataset [18], which contains
Disklavier recordings of 1,184 classical piano perfor-
mances. The dataset consists of 172.3 hours of audio,
which are provided with 140.1, 15.3, and 16.9 hours of
train/validation/test splits such that recordings of one com-
position only appear in the same split. We resample the
audio to 16 kHz and down-mix into a single channel. Fol-
lowing [17], an STFT window of 2,048 samples is used for
producing 229-bin Mel spectrograms, and a hop length of
32 ms is used. Training sequences sliced at random po-
sitions are used, unlike the official implementation which
slices training sequences at silence or zero crossings.

4.4 Evaluation Metrics

The Onsets and Frames model perform both frame-level
and note-level predictions, and their performance can be
evaluated with the standard precision, recall, and F1 met-
rics. For multi-pitch estimation, we also report the error
rate metrics defined in [36], which include total error, sub-
stitution error, miss error, and false alarm error. We use
the mir_eval [37] library for all metric calculations. For
the note-level metrics, we use the default settings of the li-
brary, which use 50 ms for the onset tolerance, 50 ms or
20% of the note length (whichever is longer) for the offset
tolerance, and 0.1 for the velocity tolerance.

5. RESULTS

5.1 Comparison with the Baseline Metrics

Table 2 and 3 summarize the transcription performance,
clearly showing a consistent improvement in the condi-
tional GAN models over the Onsets and Frames baseline.
Table 2 shows that both non-saturating GAN and least-
squares GAN achieve the highest frame and note F1 scores
when the mixup strength α = 0.3 is used, and they both
outperform the baseline. The binary piano rolls are easy
to distinguish from the non-binary predictions, which may
cause imbalanced adversarial training. mixup allows non-
binary piano rolls to be fed to the discriminator, making its
task more challenging and leading to higher performance.

Table 3 shows an important trend of the cGAN results
compared to the baseline that cGAN trades off a bit of pre-
cision for a significant improvement in recall; this is a side
effect of the cGAN producing more confident predictions,
as will be discussed in the following subsections.

mixup strength α

Baseline GAN type 0 0.2 0.3 0.4

Frame F1 0.899
Non-Saturating 0.664 0.912 0.914 0.907

Least-Squares 0.904 0.903 0.906 0.898

Note F1 0.942
Non-Saturating 0.717 0.953 0.956 0.951

Least-Squares 0.944 0.947 0.950 0.943

Table 2. Frame and note F1 scores are the highest when
the non-saturating GAN loss and α = 0.3 are used.

While the percentage differences are moderate, our
method achieves statistically significant improvements in
F1 metrics on the MAESTRO test dataset (p < 10−14 for
all 4 metrics, two-tailed paired t-test). The distribution of
per-track improvement in each F1 metric is shown in Fig-
ure 4, which indicates that the improvements are evenly
distributed across the majority of the tracks. These im-
provements are especially promising, considering that On-
sets and Frames is already a very strong baseline.

5.2 Visualization of Frame Activations

To better understand the inner workings of the conditional
GAN framework, we visualize the frame posteriorgrams
created by the baseline and the best performing conditional
GAN model in Figure 3. In contrast to the baseline posteri-
orgrams which have many blurry segments, the posterior-
grams generated by our method mostly contain segments
with solid colors, meaning that the model is more con-
fident in its prediction. Figure 5 shows that the propor-
tion of frame activation values in (0.1, 0.9) is noticeably
higher in the baseline, thus making the output less sensi-
tive to the threshold choice. This is because indecisive pre-
dictions are penalized by the discriminator, since they are
easy to distinguish from the ground-truth which contains
only binary labels. The generator is therefore encouraged
to output the most probable note sequences even when it
is unsure, rather than producing blurry posteriorgrams that
might hamper the decoding process. This allows for an
interpretation in which the GAN loss provides a prior for
valid onset and frame activations, and the model learns to
perform MAP estimation based on this prior.

5.3 Training Dynamics and The Generalization Gap

Figure 6 shows the learning curves for the frame F1 and
note F1 scores, where the scores on the training dataset
are plotted in dotted lines. It is noticeable in the figure

mixup
strength
α

Frame Metrics Note Metrics
Note Metrics with

Offsets
Note Metrics with
Offsets & Velocity

F1 P R Etotal Esubs Emiss Efa F1 P R F1 P R F1 P R

Baseline .899 .946 .857 .179 .013 .130 .036 .942 .990 .899 .802 .842 .765 .790 .830 .755

Non-Saturating GAN 0.3 .914 .931 .898 .156 .012 .089 .054 .956 .981 .932 .813 .835 .793 .802 .823 .782

Least-Squares GAN 0.3 .906 .942 .875 .167 .013 .113 .042 .950 .988 .916 .810 .841 .781 .799 .830 .771

Table 3. Summary of transcription performance using mixup strength α = 0.3. The non-saturating GAN loss has the
highest performance across all F1 metrics. The average metrics across the tracks in the MAESTRO test dataset are reported,
and the model checkpoint where the average of frame F1 and note F1 is the highest on the validation dataset is used.
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Figure 3. Comparisons of the frame activation posterior predicted by the baseline and our model (` = BCE, α = 0.3),
on three example segments. The input Mel spectrograms and the target piano rolls are shown together. The GAN version
produces more confident predictions compared to the noisy baselines, leading to more accurate predictions.
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Figure 4. F1 score improvements over the
baseline, tested on the MAESTRO test tracks.
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Figure 6. Learning curves showing the gen-
eralization gaps; training curves are dotted.

that the validation F1 scores for the baseline stagnate after
300k iterations, while the F1 scores of our model steadily
grow until the end of 1 million iterations. Thanks to this,
the generalization gap — the difference between the train-
ing and validation F1 scores — is significantly smaller for
the conditional GAN model. This means that the GAN
loss works as an effective regularizer that encourages the
trained model to generalize better to unseen data, rather
than memorizing the note sequences in the training dataset
as LSTMs are known to be capable of [46].

6. CONCLUSIONS

We have presented an adversarial training method that can
consistently outperform the baseline Onsets and Frames
model, using the standard frame-level and note-level tran-
scription metrics and visualizations that show how the im-
proved model predicts more confident output. To achieve
this, a discriminator network is trained competitively with
the transcription model, i.e. a conditional generator, so that
the discriminator serves as a learned regularizer that pro-

vides a prior for realistic note sequences.

Our results show that modeling the inter-label depen-
dencies in the target distribution is important and brings
measurable performance improvements. Our method is
generic, and any model that involves predicting two-
dimensional representation should be able to benefit from
including an adversarial loss. These approaches are com-
mon not only in transcription models but also in speech
or music synthesis models that predict spectrograms as an
intermediate representation [24, 38].

Our results do not include the effects of using data aug-
mentation [18], which is orthogonal to our approach and
should bring additional performance improvements when
applied. As discussed, the discriminator imposes the prior
on the target domain whereas data augmentation enriches
the input audio distribution. This implies that our method
would be less effective when the majority of errors are due
to the discrepancy in the audio distribution between the
training and test datasets. How to apply adversarial learn-
ing for better generalization on the input distribution is a
potential future research direction.
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ABSTRACT

Converting an acoustic music signal into music notation
using a computer program has been at the forefront of mu-
sic information research for several decades, as a task re-
ferred to as automatic music transcription (AMT). How-
ever, current AMT research is still constrained to system
development followed by quantitative evaluations; it is still
unclear whether the performance of AMT methods is con-
sidered sufficient to be used in the everyday practice of mu-
sic scholars. In this paper, we propose and carry out a user
study on evaluating the usefulness of automatic music tran-
scription in the context of ethnomusicology. As part of the
study, we recruited 16 participants who were asked to tran-
scribe short musical excerpts either from scratch or using
the output of an AMT system as a basis. We collect and an-
alyze quantitative measures such as transcription time and
effort, and a range of qualitative feedback from study par-
ticipants, which includes user needs, criticisms of AMT
technologies, and links between perceptual and quantita-
tive evaluations on AMT outputs. The results show no
quantitative advantage of using AMT, but important indi-
cations regarding appropriate user groups and evaluation
measures are provided.

1. INTRODUCTION

Automatic music transcription (AMT) is the process of
transferring an music audio signal to a symbolic repre-
sentation using computational methods [14, p.30]. Engi-
neering research has been developing AMT methods for a
number of decades now (see e.g. [17] for an early exam-
ple), and it represents a recurrent theme in the discourse in
the field of music information retrieval (MIR). In the field
of comparative musicology – the historical predecessor of
ethnomusicology – the idea of using automatic methods
to obtain a graphical representation (not necessarily sym-
bolic) from a music recording attracted interest from the
early days of audio recording technology [7]. This long
history of interest in AMT technology in two rather remote
fields motivates us to investigate what the current state of

c© Andre Holzapfel, Emmanouil Benetos. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Andre Holzapfel, Emmanouil Benetos. “Automatic mu-
sic transcription and ethnomusicology: a user study”, 20th International
Society for Music Information Retrieval Conference, Delft, The Nether-
lands, 2019.

the art in AMT may have to offer for (ethno)musicologists
transcribing a piece of music.

In the field of MIR, recent AMT research has mostly
focused on automatic transcription of piano recordings in
the context of Western/Eurogenetic music (see [3] for a
recent overview). The vast majority of proposed meth-
ods aim to create systems which can output a MIDI or
MIDI-like representation in terms of detected notes with
their corresponding onsets/offsets in seconds. Such meth-
ods are typically evaluated quantitatively using multi-pitch
detection and note tracking metrics also used in the re-
spective MIREX public evaluation tasks [2]. Methods that
can automatically convert audio into staff notation include
the beat-informed multi-pitch detection system of [8] in
the context of folk music (the dataset of this work is also
used in the present user study) and the multi-pitch detec-
tion and rhythm quantization system of [15], which was
applied to Western piano music. Recently, methods in-
spired by deep learning theory have also attempted to auto-
matically convert audio directly into staff notation [5, 18],
although these methods are mostly constrained to synthe-
sized monophonic excerpts using piano soundfonts.

Within ethnomusicology, transcription may take a large
variety of forms, depending on analytic goals and the an-
alyzed musical context [20]. An early study of the com-
monalities and discrepancies between transcriptions of the
same piece by several experts was conducted by List in
1974 [12]. The study investigated transcriptions of three
pieces by up to eight transcribers, and documented higher
consistency in the notation of pitch than in duration. An
estimated pitch curve was provided as well, and the study
demonstrated that only small corrections were conducted
by the transcribers. The value of user studies has been rec-
ognized in MIR [9, 10, 19, 21], and MIR user studies have
been conducted, for instance, in the context of applying
music to achieve certain emotional states [6] and therapeu-
tic applications [11]. However, to the best of our knowl-
edge, since [12] no user studies have been conducted that
study a larger group of transcribers in their interaction with
the output of an AMT system.

In the context of AMT, the research questions that can
be approached by a user study are manifold. In this study,
we investigate the relations between the output of a state-
of-the-art AMT system and manual transcriptions, the va-
lidity of quantitative evaluation metrics when comparing
manual transcriptions, and the question of whether using
an AMT as a starting point for transcription provides ad-
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vantages of any kind. To this end we conducted a study
with 16 experienced transcribers, and asked them to tran-
scribe eight excerpts of a particular musical style with a
specific analytic goal. Transcriptions were either to be per-
formed completely manually, or using an AMT output as a
starting point. Our results document a range of insights
into the qualities and problems of AMT and evaluation
metrics. Even after decades of development of AMT sys-
tems, our study cannot reveal a clear advantage of using
AMT to inform manual transcription, but our results indi-
cate promising avenues for future development.

The outline of this paper is as follows. Section 2
presents the method, and Section 3 the results of the study.
Sections 4 and 5 provide discussion and conclusions, re-
spectively.

2. PROPOSED STUDY

2.1 Subjects

Participants for the proposed study were recruited from the
Institute of Musicology in Vienna, Austria, from SOAS
University of London, UK, and from City, University of
London, UK. In total, 16 subjects participated in our study,
nine male and seven female. The criteria for the participa-
tion in the study were being an advanced student or recent
graduate in a musicology or ethnomusicology program,
having attended training on music transcription / musical
dictation and being recommended by a member of faculty
as being good transcribers. Apart from these students, two
musicology lecturers also participated as subjects.

The participants had 16 years of music training on av-
erage, with a standard deviation of 9 years. In terms of
their interests, 6 participants closely identified with West-
ern classical music, and 10 participants identified with
world/folk/traditional music. In terms of their professional
practice, 9 participants engaged with Western classical mu-
sic, and 8 with world/folk/traditional music. In terms of
software for music notation and transcription, 7 partici-
pants were familiar with MuseScore, 6 with Transcribe!,
5 with Sibelius, and 2 with Sonic Visualiser.

2.2 Material

For this study, we use audio recordings and corresponding
transcriptions collected as part of the Crinnos project [1],
which were also used as part of the Sousta Corpus for
AMT research in [8]. All recordings used in this study
were recorded in 2004 in Crete, Greece, and all regard a
specific dance called sousta. Recordings selected for this
study were transcribed by ethnomusicologists in Western
staff notation as part of the Crinnos project.

These recordings were chosen for the present study for
several reasons. They provide a dataset that is highly
consistent in terms of musical style, thus appropriate for
an AMT user study consisting of multiple excerpts. The
sousta dance is usually notated in 2/4 meter and has a rel-
atively stable tempo, again providing consistency for hu-
man transcribers. The instrumental timbres are likewise

highly consistent, with one Cretan lyra (a pear-shaped fid-
dle) playing the main melody, and usually two Cretan lutes
playing the accompaniment.

Eight audio excerpts from the Sousta Corpus were se-
lected for the present study. The length of each excerpt
was set to 4 bars, which results in a duration of 7-8 sec-
onds per excerpt. The number of excerpts and their dura-
tion were determined through pilot studies, with the goal to
constrain the duration of the proposed study for each par-
ticipant to 2 hours. The position of the 4 bars within each
piece was chosen as such to provide study participants with
a complete musical phrase, in order to aid transcription.
The corpus of [1] also contains corresponding reference
transcriptions in musicXML format, which were used for
quantitative evaluations. 1

We did not assume that participants are familiar with the
music culture used in this study. Therefore, one complete
recording from the corpus of [8] was also selected in order
to familiarize participants with the music culture prior to
the start of the study.

2.3 AMT methods

For the purposes of this study, an AMT method is needed
that can convert an audio recording into machine-readable
Western staff notation, suitable for audio recordings from
the particular music culture employed for this study. In
terms of academic research, the pool of candidate AMT
methods for audio-to-staff music transcription is limited to
the beat-informed matrix factorization-based system used
for the same corpus in [8], the two-stage piano-specific
polyphonic transcription system from [15], plus prelimi-
nary works for end-to-end piano-only transcription using
synthesized audio [5, 18]. In terms of commercial AMT
software, a partial list is included in [3], out of which only
a small subset (ScoreCloud, Sibelius’ AudioScore plugin)
produces transcriptions in staff notation.

We selected the beat-informed matrix factorization-
based AMT method [8] from the above list of candidate
AMT methods, because of its suitability for the present
corpus. In terms of commercial tools, we selected Score-
Cloud 2 , given its competitive performance in monophonic
transcription of violin recordings, an instrument with tim-
bre characteristics similar to the Cretan lyra. Based on
quantitative AMT evaluations of both systems (shown in
Section 3.1), it was decided to use the ScoreCloud AMT
system for the present user study.

Since the objective of this study is for participants to
transcribe the main melody and not to focus on accompani-
ment and ornamentations, the automatic transcriptions pro-
duced by the systems of [8] and ScoreCloud were modified
as to remove the bass staff (if it exists) along with all tran-
scribed notes in that staff; all ornamentations (e.g. trills,
grace notes) and note groupings were deleted. We also
changed sharp or flat symbols in the automatic transcrip-
tions as to have consistent accidentals for each excerpt.

1 The excerpts and reference transcriptions can be obtained at https:
//bit.ly/2ZKhmnY

2 https://scorecloud.com/
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2.4 Procedure

Experiments took place in quiet rooms; participants were
provided with a laptop (if they did not have their own),
headphones, printed or digital automatic transcriptions (as
desired by participant), manuscript paper, and the study
questionnaire. Participants were video recorded in order
to assist with the subsequent annotation process.

Participants were asked to transcribe the main melody
for each excerpt and to not transcribe the accompaniment
or ornamentations. The purpose of this specification was
to clarify the analytic goal of the transcription. Participants
were free to use the music notation software of their prefer-
ence or to transcribe on manuscript paper. The study con-
sisted of 8 excerpts per participant, with 4 excerpts to be
manually transcribed, and 4 excerpts to be accompanied
with AMT outputs in printed and machine-readable for-
mat, to be used as a starting point for transcriptions. The
order of manual and edited transcriptions was interleaved,
and participants were either asked to start transcribing their
first segment manually or to edit an automatic transcrip-
tion. The order of the 8 excerpts exposed to participants
was randomized. Fig. 1 shows an example automatic tran-
scription produced using ScoreCloud, compared with a ref-
erence and a study participant transcription.

Following the study, a short conversation with partic-
ipants took place, in order to obtain qualitative feedback
as well as information on their experience with automated
tools for the task. All participant transcriptions that were
produced on manuscript paper were re-transcribed by the
authors in machine-readable music notation using Mus-
eScore, in order to carry out quantitative evaluations.

2.5 Evaluation Metrics

2.5.1 Participant Questionnaire

Participants were asked to quantify their effort for every
excerpt towards producing the transcription on a scale 1-
10 (1: no effort, 10: very high effort). In addition, for
every excerpt to be edited from an automatic transcrip-
tion, participants were asked to rate the quality of the AMT
(on a scale 1-10, with 10 being excellent). After complet-
ing the experiment, participants were asked to specify the
most crucial mistakes present in the automatic transcrip-
tions, and to comment on the possible value of AMT as a
starting point towards producing manual transcriptions.

2.5.2 Quantitative metrics

In order to evaluate the performance of the automatic tran-
scription methods, as well as to compare the participants’
transcriptions with the reference transcriptions, we use the
quantitative metrics for complete AMT proposed in [15] 3 .
We chose to compare with these particular reference tran-
scriptions, because their transcribers had extended experi-
ence with both transcription and the musical style.

These quantitative metrics are based on an automatic
alignment of the estimated score to the reference score us-

3 Noting that typical metrics used in multi-pitch detection and note
tracking [2] are not suitable for evaluating transcriptions in staff notation.

ing the method of [16]. Following alignment, we are able
to identify correctly detected notes, notes with pitch er-
rors (also called pitch substitution errors), extra notes, and
missing notes. Based on the above definitions, the follow-
ing error rates are used, as per [15]: pitch error rate Ep, ex-
tra note rate Ee, missing note rate Em, and onset time error
rate Eon. We also define an average error metric Emean as
the arithmetic mean of all 4 aforementioned metrics. As
additional quantitative metric, we also measured the time
taken by each participant to transcribe each excerpt.

3. RESULTS

3.1 AMT system evaluation

Excerpt# Ep Ee Em Eon Emean

1 18.75 18.18 15.62 48.15 25.18
2 10.71 3.85 10.71 36 15.32
3 20.69 28.57 31.03 45 31.32
4 10 29.03 26.67 18.18 20.97
5 2.5 38 22.5 25.81 22.20
6 7.69 7.14 0 23.08 9.48
7 13.64 3.12 29.54 61.29 26.90
8 40.91 41.18 9.09 70 40.29
Average 15.61 21.13 18.15 40.93 23.96

Table 1. AMT quantitative evaluation scores using Score-
Cloud.

Excerpt# Ep Ee Em Eon Emean

1 12.5 66.67 66.67 75 55.21
2 21.05 22.22 26.31 35.71 26.33
3 0 100 100 0 50.00
4 3.70 77.78 77.78 50 52.31
5 17.39 39.13 39.13 21.43 29.27
6 12.5 16.67 16.66 35 20.21
7 33.33 0 25.64 31.03 22.50
8 38.46 53.57 0 53.85 36.47
Average 17.37 47.00 44.02 37.75 36.54

Table 2. AMT quantitative evaluation scores using the
method of [8].

Tables 1 and 2 depict the error rates for all eight ex-
amples used in the experiments, using ScoreCloud and the
AMT system of [8], respectively. The ScoreCloud system
performs significantly better than the system of [8] (based
on a paired-sample t-test, p < 0.05) for the extra- and
missing note rates, and for the mean error rate Emean.

Ranking of the examples looks quite inconsistent be-
tween ScoreCloud and the method of [8]. Segment 6 has
lowest error rates for both, but the highest error rates are for
Segment 8 for ScoreCloud, and Segment 1 for [8]. How-
ever, when calculating the average Emean of both algo-
rithms, one could identify Segment 3 as the most challeng-
ing (2nd highest error rate for both algorithms).
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Figure 1. Transcriptions for bars 85-88 of segment 114 from the corpus of [8]. (a) Reference transcription. (b) Automatic
transcription using ScoreCloud. (c) Manual transcription created by one of the expert participants.

3.2 Participant transcription evaluation

Table 3 depicts the transcription error rates obtained for
each piece, averaged over all participants. The lowest
mean error rate Emean is obtained for Excerpt 6, and the
highest for Excerpt 3, which is consistent with the ranking
obtained from the two automatic transcription algorithms.

In Table 3, error rates with statistically significant dif-
ferences (based on one-sample t-tests) to the error rates ob-
tained from the ScoreCloud AMT (Table 1) are underlined.
In addition, significantly lower error rates are emphasized
using bold numbers. For the overall average (last row
of Table 3), the only significant differences are increases
in error rates (Ee, Em) for the participant transcriptions,
which indicates that participants’ transcriptions include a
larger number of extra and missing notes compared to the
ScoreCloud transcriptions. Regarding significant changes
of error rates for the individual pieces, four out of five
for Ep, three out of five for Eon, and one out of two for
Emean are decreases in error rate. This indicates that at
least some participant transcriptions were more consistent
with the reference regarding meter (Eon) and pitch (Ep),
compared to the ScoreCloud automatic transcriptions.

The inconsistent tendencies observed for the various
metrics depicted in Table 3 motivate to investigate further
which of the metrics most accurately reflect the notion of
the quality of a transcription. Based on the quality rat-
ings that the participants provided for each AMT, a con-
clusion was obtained which of the five error rates depicted
in Tables 1 to 3 most correlated with the rated quality of
a transcription. The highest correlation with the partici-
pants’ stated AMT quality ratings was obtained for Emean

(r = −0.91, p = 0.0019). Correlations for Ep and Eon

were still significant (p < 0.05), but correlations with both
Ee and Em were not. This motivates to focus on Emean

as the main metric for the rating of transcription quality in
this paper, and to rather consider Ee and Em as indicators
for the chosen level of detail in the manual transcription.

Excerpt# Ep Ee Em Eon Emean

1 14.58 42.15 24.42 40.85 30.50
2 4.76 20.07 15.37 21.49 15.42
3 7.97 54.05 48.45 45.83 39.07
4 18.16 38.50 35.61 44.13 34.10
5 19.52 33.75 16.52 37.16 26.74
6 1.75 18.84 11.50 16.90 12.25
7 17.53 15.33 30.68 41.20 26.18
8 20.25 37.81 13.97 47.22 26.81
Average 12.96 32.75 24.47 36.70 26.72

Table 3. Average error rates over all participant tran-
scriptions. Underlined values emphasize statistical signif-
icant difference to the value in Table 1 (one-sample t-test,
p < 0.05); bold values emphasize significant decrease in
error rates over AMT.

3.3 Differences depending on the subject

Group T(s) Eff. Ep Ee Em Eon Emean

Experts 430.33 4.1 9.71 31.58 28.60 28.49 24.60
Other 803.96 5.4 13.99 33.12 23.16 39.29 27.39

Table 4. Comparison of mean transcription times, T(s),
rated efforts (Eff.), and error rates between experts and
other participants. Statistically significant differences be-
tween experts and others are underlined (Welch’s t-test,
p < 0.05), and significant differences to average error rates
in Table 1 are emphasized using bold numbers.

Based on the participant information, participants were
grouped into experts and non-experts. The group of ex-
perts comprises three participants, who were either instruc-
tors of transcription courses, or had several decades’ ex-
perience in transcribing folk music. Table 4 depicts the
mean transcription times, rated transcription efforts, and
error rates obtained from the transcriptions of these two
groups. Whereas the expert group’s transcription times
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and effort ratings were significantly lower, the results re-
garding the quantitative error rate metrics remain incon-
clusive. Only regarding the onset error rate (Eon - which
assesses the metrical correctness of the transcriptions when
compared with the reference), the expert group had signif-
icantly better values that the non-expert group. In compar-
ison with the average error rates obtained using the Score-
Cloud algorithm (Table 1), the other transcribers have sig-
nificantly higher error rates for Ee and Emean, whereas the
experts have significantly lower error rates regarding Ep

and Eon. This implies that the tendency towards decreased
error rates in the latter two metrics observed in Table 3 is
more emphasized among the expert group.

3.4 Differences between editing and manual
transcription

Case T(s) Eff. Ep Ee Em Eon Emean

AMT 733.14 4.98 11.91 29.51 21.58 36.02 24.75
Man. 695.44 5.20 14.02 35.99 27.35 37.37 28.68

Table 5. Comparison of mean transcription times, T(s),
rated efforts (Eff.), and error rates between AMT editing
and manual transcription. None of the differences between
the cases were found statistically significant (Student’s t-
test, all p-values > 0.18).

Table 5 shows the error rates over all participant tran-
scriptions when editing automatic transcriptions as a start-
ing point and when carrying out manual transcriptions, re-
spectively. In order to address the question if any differ-
ence in the quality of the obtained participant transcrip-
tions exists between the manual transcriptions and the edit-
ing of the automatic ones, the distributions of the error
rates from the two cases were compared using two-sample
t-tests. However, no significant differences were observed,
indicating that the transcription times, efforts, and quality
neither improved, nor deteriorated by using automatic tran-
scriptions as a starting point. Significantly decreased vari-
ances were observed for two error rates (Ep, Em) when
using the AMT as a starting point (two-sample F-test,
p < 0.05). This indicates that the usage of AMT as a
starting point – at least in our experiments – led to tran-
scriptions that are more similar, which may be interpreted
as a bias imposed on the transcribers by using the AMT.

Since we observed in Table 4 that experts transcribe
generally faster, we investigated if some gain in using
AMT in terms of transcription time and effort can be ob-
served at least for particular participants. To this end, we
computed the relative changes in transcription time com-
paring manual transcription with editing per participant,
and the absolute differences in the effort ratings per par-
ticipant. For each participant, negative values for tran-
scription time difference indicate that editing AMT was
faster, whereas negative values for rating difference im-
ply less effort when editing AMT. Figure 2 shows a cor-
relation between the differences in effort and transcription
times, which indicates that participants who had a ten-
dency to rate a decreased effort in editing tend also to

be those spending less time when editing. The approxi-
mately equal number of points in the lower-left and the
upper-right quadrant reflects the absence of an overall ef-
fect of using AMT on transcription times and effort. The
fact that all three expert transcribers (emphasized by cir-
cles) spend longer when editing AMT may indicate that
providing AMT is not of practical use for experienced tran-
scribers, a point further discussed in the following Section.

Figure 2. Scatter plot of absolute differences in the effort
ratings and change in transcription time. Expert partici-
pants are emphasized by a circle.

3.5 Qualitative Results

The experiment was designed to be flexible in terms of
providing the participants with exactly those tools for tran-
scription that they would normally use outside of the con-
text of this experiment. Therefore, the choices regarding
these tools provide valuable insights into the transcription
practice in the context of musicology. Out of the 16 par-
ticipants, eight decided to transcribe the segments on pa-
per, using mainly the software Transcribe! as a tool to
loop certain phrases, and to decrease the speed of the play-
back. The other eight transcribers used notation software,
four of them MuseScore, and four of them Sibelius; the
latter exclusively applied by transcribers based in the UK,
which indicates differences between the transcription prac-
tices based on the local musicology education.

Even though many participants transcribed on paper,
all but one participant provided a positive response to the
question if AMT tools are able to provide a valuable start-
ing point for a manual transcription. Four of the partici-
pants expressed their opinion that use of AMT would be
helpful mainly for inexperienced transcribers, and another
four explicitly mentioned the potential to save time when
using AMT.

A thematic analysis [4] was applied to the questionnaire
responses in order to obtain the main reasons for criticism
and appraisal of AMT. Four main themes emerged as de-
picted in Figure 3, three expressing criticism, and one ex-
pressing the value of AMT. Most frequently, participants
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criticized rhythmic aspects of the AMT, referring most
of the time to note durations contained in the AMT. The
participants’ second most frequent criticism concerns the
omission of notes sounding in the recordings, and the ad-
dition of notes not heard by the transcriber, with omissions
and additions being similarly frequent in the comments.
Finally, participants criticized the simultaneous notation of
notes, resulting from the notation either of accompaniment
notes played on the lute or of overtones of the main in-
strument. Despite the fact that our questions focused on
criticism of the AMT, one positive theme emerged as well,
as participants emphasized the value of the AMT to obtain
an understanding of the overall shape of the melody.

Summing up the qualitative observations, the most im-
portant finding is that current AMT technologies in the
context of musicology may have a generally positive value
for inexperienced transcribers in terms of pitch informa-
tion. This value is, however, diminished by the frequent
problems related to rhythm, addition/omission of notes,
and poor separation of main melody and accompaniment.

Figure 3. Most frequent themes in the discussions of qual-
ities (+) and problems (-) of the AMT.

4. DISCUSSION

There are several aspects of the proposed study that need
to be taken into account before making any claims on the
usefulness of AMT in the context of (ethno)musicology.
Firstly, the sample size in terms of participants is relatively
small, which indicates the difficulty in locating subjects
who are trained in transcription and are willing to work
with automated methods. It is also difficult to rate the par-
ticipants’ transcription skills: future work could enlist the
assistance of transcription instructors and to ask them to
rate the participants’ transcriptions. Another aspect to take
into account is the bias introduced by the AMT system
when asking participants to edit transcriptions.

The quantitative evaluation metrics proposed in [15],
which were used as part of this study are not error-free:
they rely on automatic score-to-score alignment that has
been designed to align performance MIDI with reference
scores. In particular, the symbolic alignment step could fail
in the case of “abstract” transcriptions which could only fo-
cus on transcribing notes that are on strong beats, e.g. ig-
noring any passing notes. Therefore, additional work can
be done towards improving the automatic symbolic align-
ment approach of [16] towards supporting the alignment
automatic and manual transcriptions with reference scores.

Additionally, it should be stressed that the present study
is focused on the usefulness of AMT in the context of
(ethno)musicology, thus not taking into account potential

uses of AMT in other application domains. The focus of
this study was also on monophonic transcription (despite
the presence of polyphony in certain segments); therefore,
the usefulness of polyphonic AMT, and also of multiple-
instrument AMT technologies, remains to be explored.

Finally, the question posed in the study on the value of
AMT could be viewed as suggestive and could have biased
participants towards providing a positive answer. There
might also be a bias on participants who agreed to take
part in the study, since their participation could indicate
their general interest into the subject of automatic music
transcription, and more generally on the use of technology
in the transcription process.

5. CONCLUSIONS

This paper presented a user study on AMT in the context
of ethnomusicology. Participants were asked to manually
transcribe four segments of folk dance tunes, and to tran-
scribe four different segments of the same style using the
output of an AMT system as a starting point. Quantitative
analysis shows: a comparative quality between automatic
and manual transcriptions; differences between expert and
non-expert transcribers, in terms of the time required to
carry out transcriptions and also on the metrical quality of
the resulting transcriptions; a correlation between the dif-
ferences in stated effort between manual and edited tran-
scriptions and transcription times; and a correlation be-
tween AMT quality ratings and some of the employed
quantitative metrics. Finally, qualitative results show sup-
port for AMT to obtain an understanding of the overall
melodic shape, although combined with criticism of the
AMT related to harmonic errors, missing/extra notes, and
rhythmic problems. Importantly, however, using an AMT
output as a starting point for a transcription did not result
in any quantifiable differences regarding quality, transcrip-
tion time, or effort.

Future work will investigate similarity/dissimilarity of
participants’ transcriptions, in particular between those by
the expert participants and the reference transcriptions, and
will liaise with transcription instructors towards grading
the resulting transcriptions. We will investigate ways to
improve the quantitative metrics of [15] towards a more
robust symbolic alignment of automatic and manual tran-
scriptions with reference scores, and conduct evaluations
using the newly-proposed metrics of [13]. Exploring
whether the conclusions of this paper hold more broadly
across other AMT systems and musical repertoires will
have important impact on AMT research and on the ap-
plicability of AMT in ethnomusicology. We believe that
this paper provides a viable and effective framework for
user-based evaluation of AMT methods.

6. ACKNOWLEDGMENTS

EB is supported by UK RAEng Research Fellowship
RF/128 and a Turing Fellowship. AH is supported by
NordForsk’s Nordic University Hub “Nordic Sound and
Music Computing Network - NordicSMC” (proj. nr.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

683



86892). The authors would like to thank Sven Ahlbäck,
Stephen Cottrell, Emir Demirel, Michael Hagleitner, Eita
Nakamura, August Schmidhofer, Richard Widdess, and
Adrien Ycart for support and feedback.

7. REFERENCES

[1] Website of the Crinnos project. http://crinnos.
ims.forth.gr. Accessed: 2019-03-26.

[2] M. Bay, A. F. Ehmann, and J. S. Downie. Evaluation of
multiple-F0 estimation and tracking systems. In Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR), pages 315–320, 2009.

[3] E. Benetos, S. Dixon, Z. Duan, and S. Ewert. Auto-
matic music transcription: An overview. IEEE Signal
Processing Magazine, 36(1):20–30, 2019.

[4] V. Braun, V. Clarke, N. Hayfield, and G. Terry. The-
matic analysis. In Pranee Liamputtong, editor, Hand-
book of Research Methods in Health Social Sciences,
chapter 48, pages 843–860. Springer, 2019.

[5] R. G. C. Carvalho and P. Smaragdis. Towards end-to-
end polyphonic music transcription: Transforming mu-
sic audio directly to a score. In IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA), pages 151–155, 2017.

[6] A. Demetriou, M. A. Larson, and C. Liem. Go with
the flow: When listeners use music as technology. In
International Society for Music Information Retrieval
Conference (ISMIR), pages 292–298, 2016.

[7] P. E. Goddard. A graphic method of recording songs.
In Anthropological papers written in honor of Franz
Boas, page 137. New York, 1906.

[8] A. Holzapfel and E. Benetos. The Sousta Corpus: beat-
informed automatic transcription of traditional dance
tunes. In International Society for Music Information
Retrieval Conference (ISMIR), pages 531–537, 2016.

[9] J. H. Lee and S. J. Cunningham. The impact (or non-
impact) of user studies in music information retrieval.
In International Society for Music Information Re-
trieval Conference (ISMIR), pages 391–396, 2012.

[10] J. H. Lee and S. J. Cunningham. Toward an understand-
ing of the history and impact of user studies in music
information retrieval. Journal of Intelligent Informa-
tion Systems, 41(3):499–521, 2013.

[11] Z. Li, Q. Xiang, J. Hockman, J. Yang, Y. Yi, I. Fuji-
naga, and Y. Wang. A music search engine for thera-
peutic gait training. In ACM International Conference
on Multimedia, pages 627–630, 2010.

[12] G. List. The reliability of transcription. Ethnomusicol-
ogy, 18(3):353–377, 1974.

[13] A. McLeod and M. Steedman. Evaluating automatic
polyphonic music transcription. In International So-
ciety for Music Information Retrieval Conference (IS-
MIR), pages 42–49, 2018.

[14] M. Müller. Fundamentals of Music Processing: Audio,
Analysis, Algorithms, Applications. Springer, 2015.

[15] E. Nakamura, E. Benetos, K. Yoshii, and S. Dixon.
Towards complete polyphonic music transcription: In-
tegrating multi-pitch detection and rhythm quantiza-
tion. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 101–
105, 2018.

[16] E. Nakamura, K. Yoshii, and H. Katayose. Perfor-
mance error detection and post-processing for fast and
accurate symbolic music alignment. In International
Society for Music Information Retrieval Conference
(ISMIR), pages 347–353, 2017.

[17] M. Piszczalski and B. A. Galler. Automatic music
transcription. Computer Music Journal, pages 24–31,
1977.

[18] M. A. Román, A. Pertusa, and J. Calvo-Zaragoza. An
end-to-end framework for audio-to-score music tran-
scription on monophonic excerpts. In International So-
ciety for Music Information Retrieval Conference (IS-
MIR), pages 34–41, 2018.

[19] M. Schedl, A. Flexer, and J. Urbano. The neglected
user in music information retrieval research. Journal of
Intelligent Information Systems, 41(3):523–539, 2013.

[20] J. Stanyek. Forum on transcription. Twentieth-Century
Music, 11(1):101–161, 2014.

[21] D. Weigl and C. Guastavino. User studies in the music
information retrieval literature. In International Society
for Music Information Retrieval Conference (ISMIR),
pages 335–340, 2011.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

684



LakhNES: IMPROVING MULTI-INSTRUMENTAL MUSIC GENERATION
WITH CROSS-DOMAIN PRE-TRAINING

Chris Donahue1 Huanru Henry Mao2 Yiting Ethan Li2
Garrison W. Cottrell2 Julian McAuley2

1 Department of Music, UC San Diego 2 Department of Computer Science, UC San Diego

ABSTRACT

We are interested in the task of generating multi-
instrumental music scores. The Transformer architec-
ture has recently shown great promise for the task of
piano score generation—here we adapt it to the multi-
instrumental setting. Transformers are complex, high-
dimensional language models which are capable of captur-
ing long-term structure in sequence data, but require large
amounts of data to fit. Their success on piano score genera-
tion is partially explained by the large volumes of symbolic
data readily available for that domain. We leverage the
recently-introduced NES-MDB dataset of four-instrument
scores from an early video game sound synthesis chip (the
NES), which we find to be well-suited to training with the
Transformer architecture. To further improve the perfor-
mance of our model, we propose a pre-training technique
to leverage the information in a large collection of het-
erogeneous music, namely the Lakh MIDI dataset. De-
spite differences between the two corpora, we find that this
transfer learning procedure improves both quantitative and
qualitative performance for our primary task.

1. INTRODUCTION

In this paper, we extend recent results for symbolic pi-
ano music generation [1] to the multi-instrumental setting.
Both piano and multi-instrumental music are polyphonic,
where multiple notes may be sounding at any given point
in time. However, the generation of multi-instrumental
music presents an additional challenge not present in the
piano domain: handling the intricate interdependencies
between multiple instruments. Another obstacle for the
multi-instrumental setting is that there is less data avail-
able than for piano, making it more difficult to train the
types of powerful generative models used in [1].

Until recently, music generation methods struggled to
capture two rudimentary elements of musical form: long-
term structure and repetition. Huang et al. [1] demon-
strated that powerful neural network language models,

c© Chris Donahue, Huanru Henry Mao, Yiting Ethan Li,
Garrison W. Cottrell, Julian McAuley. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W. Cot-
trell, Julian McAuley. “LakhNES: Improving multi-instrumental music
generation with cross-domain pre-training”, 20th International Society
for Music Information Retrieval Conference, Delft, Netherlands, 2019.

i.e., models which assign likelihoods to sequences of dis-
crete tokens, could be used to generate classical piano mu-
sic containing these elusive elements. In order to adapt this
method to the multi-instrumental setting we incorporate in-
strument specification directly into our language-like mu-
sic representation. However, this strategy alone may be in-
sufficient to generate high-quality multi-instrumental mu-
sic, as the results of [1] also depend on access to large
quantities of piano music.

To begin to address the data availability problem, we
focus on an unusually large dataset of multi-instrumental
music. The Nintendo Entertainment System Music
Database (NES-MDB) [2] contains 46 hours of chiptunes,
music written for the four-instrument ensemble of the NES
(video game system) sound chip. This dataset is appealing
for music generation research not only for its size but also
for its structural homogeneity—all of the music is written
for a fixed ensemble. It is, however, smaller than the 172
hours of piano music in the MAESTRO Dataset [3] used to
train Music Transformer.

The largest available source of symbolic music data is
the Lakh MIDI Dataset [4] which contains over 9000 hours
of music. This dataset is structurally heterogeneous (differ-
ent instruments per piece) making it challenging to model
directly. However, intuition suggests that we might be able
to benefit from the musical knowledge ingrained in this
dataset to improve our performance on chiptune genera-
tion. Accordingly, we propose a procedure to heuristically
map the arbitrary ensembles of music in Lakh MIDI into
the four-voice ensemble of the NES. We then pre-train our
generative model on this dataset, and fine-tune it on NES-
MDB. We find that this strategy improves the quantitative
performance of our generative model by 10%. Such trans-
fer learning approaches are common practice in state-of-
the-art natural language processing [5, 6], and here we de-
velop new methodology to employ these techniques in the
music generation setting (as opposed to analysis [7]).

We refer to the generative model pre-trained on Lakh
MIDI and fine-tuned on NES-MDB as LakhNES. In addi-
tion to strong quantitative performance, we also conduct
multiple user studies indicating that LakhNES produces
strong qualitative results. LakhNES is capable of gener-
ating chiptunes from scratch, continuing human-composed
material, and producing melodic material corresponding to
human-specified rhythms. 1

1 Sound examples: https://chrisdonahue.com/LakhNES
Code/data: https://github.com/chrisdonahue/LakhNES
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2. RELATED WORK

Music generation has been an active area of research for
decades. Most early work involved manually encoding
musical rules into generative systems or rearranging frag-
ments of human-composed music; see [8] for an extensive
overview. Recent research has favored machine learning
systems which automatically extract patterns from corpora
of human-composed music.

Many early machine learning-based systems focused
on modeling simple monophonic melodies, i.e., music
where only one note can be sounding at any given point
in time [9–11]. More recently, research has focused on
polyphonic generation tasks. Here, most work represents
polyphonic music as a piano roll—a sparse binary ma-
trix of time and pitch—and seeks to generate sequences
of individual piano roll timesteps [12, 13] or chunks of
timesteps [14]. Other work favors an event-based repre-
sentation of music, where the music is flattened into a list
of musically-salient events [1,15,16]. None of these meth-
ods allow for the generation of multi-instrumental music.

Other research focuses on the multi-instrumental setting
and seeks to provide systems which can harmonize with
human-composed material [17–20]. Unlike the system we
develop here, these approaches all require complex infer-
ence procedures to generate music without human input.
Recent work [21–23] attempts multi-instrumental music
generation from scratch, but these methods are limited to
generating fixed lengths, unlike our method which can gen-
erate arbitrarily-long sequences. There is also music gen-
eration research that operates on the audio domain [24,25],
though this work is largely unrelated to symbolic domain
methods. The work described in this paper is methodolog-
ically similar to MuseNet [26], which was concurrent with
our work.

3. DATASETS AND TASK

The NES Music Database (NES-MDB) [2] consists of ap-
proximately 46 hours of music composed for the sound
chip on the Nintendo Entertainment System. This dataset
is enticing for research in multi-instrumental music gener-
ation because (1) it is an unusually large corpus of music
that was composed for a fixed ensemble, and (2) it is avail-
able in symbolic format.

3.1 NES ensemble preliminaries

The ensemble on the NES sound chip has four mono-
phonic instrument voices: two pulse waveform generators
(P1/P2), one triangle waveform generator (TR), and one
noise generator (NO). 2 The first three of these instruments
are melodic voices: typically, TR plays the bass line and
P1/P2 are interchangeably the melody and harmony. The
noise instrument is used to provide percussion.

The various instruments have a mixture of sound-
producing capabilities. For example, the range of MIDI
pitches which P1/P2 can generate is 33–108, while the

2 There is an additional fifth voice capable of waveform playback that
the authors of NES-MDB excluded.

[DT_645, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2197, P1_NOTEON_76, DT_2, 
P1_NOTEON_70, DT_1463, P2_NOTEON_87, DT_1, P2_NOTEOFF, DT_148, TR_NOTEOFF, 
DT_2055, P1_NOTEON_57, DT_2, P1_NOTEON_63, DT_18, P2_NOTEON_50, DT_1, 
P2_NOTEON_48, DT_711, P2_NOTEON_88, DT_2, P2_NOTEOFF, DT_2936, P1_NOTEON_60, 
DT_20, P2_NOTEON_50, DT_1, P2_NOTEON_48, DT_3661, P1_NOTEON_67, DT_63, 
NO_NOTEON_13, DT_1, NO_NOTEON_9, DT_176, TR_NOTEON_48, DT_489, NO_NOTEON_13, 
DT_724, P2_NOTEON_87, DT_1, P2_NOTEOFF, DT_11, NO_NOTEOFF, DT_2192, P1_NOTEON_63, 
DT_19, P2_NOTEON_50, DT_1, P2_NOTEON_48, DT_709, P2_NOTEON_88, DT_1, P2_NOTEOFF, 
DT_906, TR_NOTEOFF, DT_2031, P1_NOTEON_84, DT_2, P1_NOTEON_70, DT_42, 
P2_NOTEON_72, DT_23, TR_NOTEON_48, DT_23, NO_NOTEON_9, DT_650, NO_NOTEON_13, 
DT_732, NO_NOTEOFF, DT_2197, P1_NOTEON_57, DT_2, P1_NOTEON_67, DT_1648, 
TR_NOTEOFF, DT_2020, P1_NOTEON_106, DT_1, P1_NOTEON_72, DT_40, TR_NOTEON_48, 
DT_22, NO_NOTEON_13, DT_1, NO_NOTEON_9, DT_677, NO_NOTEON_13, DT_731, 
NO_NOTEOFF, DT_2198, P1_NOTEON_70, DT_1660, TR_NOTEOFF, DT_2048, TR_NOTEON_48, 
DT_23, NO_NOTEON_9, DT_678, NO_NOTEON_13, DT_735, NO_NOTEOFF, DT_2194, 
P1_NOTEON_72, DT_1672, TR_NOTEOFF, DT_1998, P1_NOTEON_58, DT_1, P1_NOTEON_60, 
DT_64, TR_NOTEON_48, DT_24, NO_NOTEON_9, DT_648, NO_NOTEON_13, DT_732, 
NO_NOTEOFF, DT_2197, P1_NOTEON_76, DT_2, P1_NOTEON_70, DT_1684, TR_NOTEOFF, 
DT_1983, P1_NOTEON_57, DT_2, P1_NOTEON_63, DT_3669, P1_NOTEON_60, DT_3669, 
P1_NOTEON_67, DT_39, P2_NOTEON_75, DT_45, NO_NOTEON_9, DT_10, TR_NOTEON_48, 
DT_644, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2199, P1_NOTEON_63, DT_1708, 
TR_NOTEOFF, DT_1959, P1_NOTEON_84, DT_2, P1_NOTEON_70, DT_39, TR_NOTEON_48, 
DT_3628, P1_NOTEON_57, DT_2, P1_NOTEON_67, DT_1720, TR_NOTEOFF, DT_1948, 
P1_NOTEON_106, DT_1, P1_NOTEON_72, DT_39, P2_NOTEON_79, DT_23, TR_NOTEON_48, 
DT_3607, P1_NOTEON_70, DT_1732, TR_NOTEOFF, DT_1976, TR_NOTEON_48, DT_3630, 
P1_NOTEON_72, DT_1744, TR_NOTEOFF, DT_1930, P1_NOTEON_58, DT_1, P1_NOTEON_61, 
DT_44, P2_NOTEON_84, DT_33, TR_NOTEON_48, DT_1, TR_NOTEON_46, DT_24, NO_NOTEON_9, 
DT_630, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2197, P1_NOTEON_78, DT_2, 
P1_NOTEON_70, DT_1756, TR_NOTEOFF, DT_1911, P1_NOTEON_57, DT_2, P1_NOTEON_65, 
DT_3669, P1_NOTEON_61, DT_3669, P1_NOTEON_68, DT_62, NO_NOTEON_9, DT_104, 
TR_NOTEON_46, DT_574, NO_NOTEON_13, DT_735, NO_NOTEOFF, DT_2194, P1_NOTEON_65, 
DT_1780, TR_NOTEOFF, DT_1888, P1_NOTEON_93, DT_1, P1_NOTEON_72, DT_43, 
TR_NOTEON_46, DT_23, NO_NOTEON_9, DT_672, NO_NOTEON_13, DT_732, NO_NOTEOFF, 
DT_2197, P1_NOTEON_58, DT_2, P1_NOTEON_68, DT_1792, TR_NOTEOFF, DT_1920, 
NO_NOTEON_9, DT_695, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2198, P1_NOTEOFF, DT_1, 
P1_NOTEON_72, DT_3667, P1_NOTEON_58, DT_2, P1_NOTEON_65, DT_63, NO_NOTEON_13, 
DT_1, NO_NOTEON_9, DT_138, TR_NOTEON_46, DT_538, NO_NOTEON_13, DT_732, 
NO_NOTEOFF, DT_2197, P1_NOTEON_68, DT_1816, TR_NOTEOFF, DT_1853, P1_NOTEON_61, 
DT_40, P2_NOTEON_82, DT_25, TR_NOTEON_46, DT_25, NO_NOTEON_9, DT_648, 
NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2199, P1_NOTEON_65, DT_1828, TR_NOTEOFF, 
DT_5510, P1_NOTEON_61, DT_3669, P1_NOTEON_68, DT_62, NO_NOTEON_9, DT_176, 
TR_NOTEON_46, DT_502, NO_NOTEON_13, DT_735, NO_NOTEOFF, DT_2194, P1_NOTEON_65, 
DT_1852, TR_NOTEOFF, DT_1816, P1_NOTEON_93, DT_2, P1_NOTEON_72, DT_42, 
TR_NOTEON_46, DT_23, NO_NOTEON_9, DT_663, NO_NOTEON_13, DT_753, NO_NOTEOFF, 
DT_2185, P1_NOTEON_58, DT_2, P1_NOTEON_68, DT_1864, TR_NOTEOFF, DT_1848, 
NO_NOTEON_9, DT_695, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2198, P1_NOTEOFF, DT_2, 
P1_NOTEON_72, DT_3666, P1_NOTEON_58, DT_2, P1_NOTEON_65, DT_45, TR_NOTEON_46, 
DT_19, NO_NOTEON_9, DT_676, NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2197, 
P1_NOTEON_68, DT_1429, TR_NOTEOFF, DT_2240, P1_NOTEON_61, DT_41, P2_NOTEON_85, 
DT_26, TR_NOTEON_39, DT_2, TR_NOTEON_43, DT_23, NO_NOTEON_9, DT_646, 
NO_NOTEON_13

NO_NOTEON_13, DT_732, NO_NOTEOFF, DT_2197, 
P1_NOTEON_76, DT_2, P1_NOTEON_70, DT_1463, 
P2_NOTEON_87, DT_1, P2_NOTEOFF, DT_148,

…
P1_NOTEON_61, DT_41, P2_NOTEON_85, DT_26, 
TR_NOTEON_39, DT_2, TR_NOTEON_43, DT_23, 
NO_NOTEON_9, DT_646, NO_NOTEON_13, DT_733

Figure 1. A visual comparison between the piano roll rep-
resentation of the original NES-MDB paper [2] (top) and
the event representation of this work (bottom). In the pi-
ano roll representation, the majority of information is the
same across timesteps. In our event representation, each
timestep encodes a musically-meaningful change.

range of TR extends an octave lower (21–108). The noise
channel can produce 16 different “types” of noise which
correspond to different center frequencies and bandwidths.
Each instrument also has a variety of dynamics and timbral
attributes. It is shown in [2] that these expressive attributes
can be estimated from the score post-hoc, and hence we
ignore them in this study to focus on the problem of mod-
eling composition rather than expressive performance.

Each chiptune in NES-MDB is stored as a MIDI file,
and the constituent MIDI events are quantized at audio rate
(44100 ticks per second). Paired with code which synthe-
sizes these MIDI files as NES audio, the files contain all
of the information needed to synthesize the original 8-bit
waveforms.

3.2 Event-based task

In our original work on NES-MDB [2], we operated on a
piano roll representation of the data, i.e., the MIDI infor-
mation decomposed into a sparse grid across time, pitch,
and instrument (top of Figure 1). Because no tempo or
beat information exists in the dataset, the authors chose to
discretize the time axis at a rate of 24 timesteps per second.
This high rate is necessary for capturing nuanced timing in-
formation in the scores but results in much of the informa-
tion being redundant across adjacent timesteps. This rep-
resents a challenge as long-term dependencies are a barrier
to success for sequence modeling with machine learning.

To circumvent these issues, we design an event-based
representation (bottom of Figure 1) similar to that used for
single-instument music in [15]. Specifically, we convert
each NES-MDB MIDI file into a time-ordered sequence of
events, so that every entry in the sequence corresponds to
a musically-salient occurrence.

To handle the rhythmic information, we add time shift
(∆T ) events which represent time advancing by some dis-
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Event description Event ID(s)

Start or end of sequence 0
∆T for 1–100 ticks (short) 1–100
∆T for 100–1000 ticks (medium) 101–190
∆T for > 10000 ticks (long) 191–370
P1 Note Off/On 371–447
P2 Note Off/On 448–524
TR Note Off/On 525–613
NO Note Off/On 614–630

Table 1. Schematic for our event-based representation of
NES-MDB, reminiscent of the one used in Performance
RNN [15]. The 631 events in our representation are dis-
tributed among time-shift (∆T ) events (which allow for
nuanced timing), and note off/on events for individual in-
struments (as in typical MIDI).

crete number of ticks (each tick is 1
44100 th of a second). To

keep the number of events in our representation tractable,
we quantize ∆T events in the real data to fixed gratings.
We embed the multi-instrumental aspect of our problem di-
rectly into this representation by using separate note on/off
events for each instrument. Contemporaneous events are
always listed in the following instrument order: P1, P2,
TR, NO. Our final representation consists of 631 events,
of which about half encode time-related events and half
note-related (Table 1). Apart from minor timing quantiza-
tion, this format is a lossless transformation of the original
MIDI score.

4. METHODOLOGY

To model the event sequences outlined in the last section,
we adopt a language modeling factorization. We factorize
the joint probability of a musical sequence consisting of N
events (E1, . . . , EN ) into a product of conditionals:

P (E1) · P (E2 | E1) · . . . · P (EN | E1, . . . , EN−1). (1)

This factorization is convenient because it allows for a
simple left-to-right algorithm for generating music: sam-
pling from the distribution estimated by the model at each
timestep (conditioned on previous outputs). The goal of
our optimization procedure is to find a model configura-
tion which maximizes the likelihood of the real event se-
quences. Motivated by the strong results for piano mu-
sic generation from the recent Music Transformer [1] ap-
proach, we also adopt a Transformer [27] architecture.

4.1 Transformer architecture

The Transformer [27] is an attention-based neural network
architecture. In our context, this means that the model has a
mechanism which explicitly biases its predictions based on
a subset of musical events that have happened in the past.
The model’s design gives it the ability to learn which sub-
set of past musical events to pay attention to when predict-
ing the current event. This mechanism may be especially

useful for learning patterns of repetition in music across
large gaps of time.

The original Transformer architecture [27] was an
encoder-decoder model designed for language translation.
In this paper, we are only concerned with the decoder
portion of the Transformer. Our work uses a recent
extension of Transformer called Transformer-XL [28],
which is designed specifically to handle longer sequences.
Transformer-XL builds upon the Transformer architecture
by augmenting it with a recurrence mechanism. The recur-
rence mechanism enables Transformer-XL to use informa-
tion beyond its training segment by learning how to incor-
porate recurrent state from previous segments. In contrast,
the original Transformer is only able to alter its predictions
based on the current training segment, hence the available
system memory during training is a bottleneck to its ability
to learn long-term dependencies. In order to effectively use
its recurrent state, Transformer-XL adopts a sophisticated
position-aware mechanism so the model can generalize to
different amounts of recurrent memory during generation.

The Music Transformer [1] is a different Transformer
variant that also attempts to tackle long-range dependen-
cies by using a mechanism which reduces the quadratic
memory cost of attention, enabling training on longer se-
quences. Although similar in goal to Transformer-XL,
its method is orthogonal and could, in theory, be com-
bined with the recurrent mechanism of Transformer-XL.
For simplicity, we focus on the Transformer-XL architec-
ture as its recurrence mechanism alone is sufficient to learn
long-term dependencies. Additionally, code to reproduce
the Music Transformer method is unavailable.

4.2 Pre-training

Transformers are extremely high-dimensional models, and
accordingly they can learn effective strategies for ex-
tremely large datasets [6]. One barrier to their application
in the music domain is that most symbolic music datasets
are either too small or too structurally heterogeneous. For
example, the popular Bach chorales dataset [29] is struc-
turally homogeneous (all chorales have four voices), but
small (only 306 chorales). In contrast, the Lakh MIDI
dataset [4] is enormous (175k songs) but heterogeneous
(varying numbers of instruments per piece). The NES-
MDB dataset we use in this work represents a middle
ground (large and structurally-homogenous), but is still
substantially smaller than the MAESTRO dataset [3] used
to train Music Transformer (46 hours vs. 172 hours).

We hypothesize that we can improve the performance of
our model on our NES music generation task by leveraging
the musical information in the larger Lakh MIDI dataset.
To test this, we propose a two-step procedure. First, we
map each structurally-heterogeneous Lakh MIDI file into
one which can be performed by our NES ensemble. Then,
we pre-train a Transformer on this dataset, and fine-tune
this pre-trained model on the NES-MDB dataset. Such
transfer learning procedures are common methodology in
other areas of machine learning [30], but remain hitherto
unexplored in music generation research. One possible
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P1 P2 TR NO

Figure 2. Illustration of our mapping heuristic used to
enable transfer learning from Lakh MIDI to NES-MDB.
We identify monophonic instruments from the arbitrary en-
sembles in Lakh MIDI and randomly assign them to the
fixed four-instrument ensemble of NES-MDB.

reason for the lack of investigation into this strategy is
that mapping music from one domain to another requires
careful consideration of musical invariants, and hence is
less straightforward than analogous methodology for other
tasks (e.g., language). We consider this transfer learning
protocol to be a primary methodological contribution of
this work.

4.2.1 Mapping Lakh MIDI to the NES ensemble

Here we describe our protocol for mapping Lakh MIDI
data into a score suitable for the four monophonic instru-
ments of the NES ensemble. For a given example from
Lakh MIDI, we first identify all of its monophonic melodic
instruments (skipping the example if it has no such instru-
ments). Then, we filter out instruments which fall outside
of the range of MIDI notes that the NES ensemble is capa-
ble of producing (Section 3.1). We randomly assign these
instruments to the three melodic instruments of the NES
(P1/P2/TR) (Figure 2). Because there are a variable num-
ber of instruments in each Lakh MIDI example, there are
potentially many possible assignments. Hence, we output
multiple examples for each input Lakh MIDI example.

In addition to this strategy for melodic instruments, we
also design a strategy for mapping percussive instruments
in Lakh into the percussive noise instrument of the NES
ensemble. We first identify percussive instruments in each
Lakh MIDI example. Then, each individual percussive
voice (e.g., snare drum, hi-hat) is randomly assigned to a
noise “type” (1–16), emulating how the noise instrument is
used by human composers to encode syncopated rhythms.

From the 175k MIDI files in Lakh MIDI, our map-
ping procedure produces 775k examples suitable for per-
formance by the NES ensemble. It is straightforward to
imagine similar mapping procedures for other ensembles
(e.g., string quartet, vocal choir), and thus it is possible that
music generation research in other domains could reuse
this procedure to enable transfer learning.

5. EXPERIMENTS

We first conduct an experiment to train Transformer-
XL [28] on our event representation (Section 3.2) of NES-
MDB. We train the model on excerpts from the training
data of 512 events; each excerpt represents around 9 sec-
onds of music on average. Because of the recurrent atten-
tion mechanism in Transformer-XL, the model effectively

has access to twice this length in its history.
We use the smaller configuration of Transformer-XL

which has 12 attention layers each with 8 heads. The learn-
ing rate 2e−4 used to train this model on text was found to
be too high for our musical application, so we lowered it
to 2e−5. Training was stopped when the performance of
the model on the validation data stopped improving. We
trained the model using four NVIDIA Titan X GPUs with
minibatches of size 30, and it reached its early stopping
criteria in less than a day. 3

5.1 Data augmentation and pre-training

To improve the performance of our model further, we em-
ployed standard music data augmentation methods as well
as ones which we developed specifically for the multi-
instrumental setting:

1. (Standard) Transpose melodic voices by a random
number of semitones between −6 and 5 (inclusive).

2. (Standard) Adjust the speed of the piece by a random
percentage between ±5%.

3. Half of the time, remove a random number of instru-
ments from the ensemble (leaving at least one).

4. Half of the time, shuffle the score-to-instrument
alignment for the melodic instruments only (e.g., TR
performs P2’s part).

Finally, we experimented with pre-training our model
on the Lakh MIDI dataset mapped to the NES ensemble
(Section 4.2.1). To conduct this experiment, we first split
the Lakh data into training and validation subsets. We then
trained the model for a week on the training set (with data
augmentation) and monitored performance on the valida-
tion set. Because of the extreme size of the dataset, the
model only completed four epochs of training. Even after
a week, the model was underfitting the training data (val-
idation performance was still improving). We then fine-
tuned this pre-trained model on the NES-MDB training
data, again performing early stopping based on the vali-
dation performance. Both our pre-training and fine-tuning
experiments use the same hyperparameters outlined in the
previous section.

5.2 Baselines

We also measure the performance of competitive base-
lines on our event-based representation of NES-MDB. Our
simplest baselines consist of n-gram models, i.e., statis-
tics gathered directly from the training data of how often
certain length-n sequences appear. Specifically, we build
unigram (1-gram) and 5-gram models, using backoff for
the latter to provide a likelihood for 5-grams which are
not present in the training data. We also compare to an
LSTM [31] recurrent neural network, which is a popular
model for music generation. Our LSTM is configured so

3 Full hyperparameter description and pre-trained models:
https://github.com/chrisdonahue/LakhNES
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Model Params Epochs Test PPL

Random 0 0 631.00
Unigram 631 1 198.14
5-gram 9M 1 37.25
LSTM [31] 40M 18 14.11
+Data augmentation 35 12.64

Transformer-XL [28] 41M 76 3.50
+Data augmentation 350 2.74
+Pre-train (LakhNES) 250 2.46

Table 2. Quantitative performance of various models
trained on the event-based representation (631 event types)
of NES-MDB. Params indicates the number of parameters
of each model. Epochs is the number of data epochs the
model observed before early stopping based on the valida-
tion data. Test PPL represents the perplexity of the model
on the test data, i.e., the exponentiation of its average neg-
ative log-likelihood on the test data. A lower perplexity
indicates that the model better fits this unseen data.

that it has approximately the same number of parameters
as our Transformer-XL model (1 layer, 3072 units).

6. QUANTITATIVE ANALYSIS

We report the perplexity (PPL) of each model on the test
set in Table 2. Perplexity is calculated by first averaging
the negative log-likelihood of each model across the test
data, then exponentiating the average, i.e., e

1
N

∑N
i=1 − log qi ,

where qi is the likelihood assigned by a given model to the
i-th event. A lower perplexity on the test set indicates that
a model is a good fit for unseen data, and hence increases
our confidence in its ability to generate new music.

We find that Transformer-XL dramatically outperforms
both the n-gram and LSTM baselines on the NES-MDB
event-based task (PPL of 3.5 vs. 37.2 and 14.1 respec-
tively). Data augmentation improves the performance of
both the LSTM and Transformer-XL (by 10% and 22%
respectively), and also increases the number of epochs
before the models overfit. We observe that LakhNES
(Transformer-XL pre-trained on Lakh MIDI and fine-tuned
on NES-MDB with augmentation), achieves 10% better
performance than training with data augmentation alone.

We also conduct an experiment to measure the perfor-
mance effect of using different amounts of Lakh MIDI pre-
training before fine-tuning on NES-MDB. Specifically, we
measure the performance on the NES-MDB fine-tuning
task after 1, 2, and 4 epochs of Lakh MIDI pre-training.
We plot the test PPL of each model after fine-tuning in Fig-
ure 3. The results agree with our expectation that increas-
ing the amount of pre-training improves the fine-tuned
model’s performance, though with diminishing returns.

7. USER STUDY

While perplexity is a useful quantitative metric for model
comparison, it is not necessarily correlated with human

0 1 2 3 4
Number of Lakh pre-training epochs

2.5

2.6

2.7

NE
S-

M
DB

 te
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PL 2.74

2.55

2.47 2.46

Figure 3. Measuring the performance improvement when
doubling the amount of Lakh MIDI pre-training before
fine-tuning Transformer-XL on NES-MDB. Each data-
point represents the result of a fine-tuning run starting from
0, 1, 2, or 4 epochs of Lakh MIDI pre-training. Additional
amounts of pre-training appear to improve performance,
though with diminishing returns.

judgements. Since we ultimately seek models which pro-
duce music that is convincing to humans, we conduct two
user studies on Amazon Mechanical Turk to compare the
performance of various models. In both of our user studies
we compare four models (rows 3, 5, 7, 8 from Table 2):
(1) 5-gram model, (2) LSTM trained with data augmenta-
tion, (3) Transformer-XL trained with data augmentation
(TXL), and (4) Transformer-XL with data augmentation
and Lakh MIDI pre-training (LakhNES).

7.1 Turing test

This study seeks to determine the ability of humans
to distinguish between real (human-composed) and fake
(computer-generated) chiptunes in a “Turing test” setting.
We present human judges with pairs of examples where
one example is real and the other fake, and ask them to
identify the real example between the two.

We first amass collections of 5-second audio clips from
all of our methods and from the real data by selecting ran-
dom slices from the variable-length music. Then, we create
pairs of examples where one example is real and the other
fake (randomly chosen from our four methods). Given
that Mechanical Turk studies are notoriously noisy, we also
create control pairs where the fake data comes from a ran-
dom model (i.e., we generate “music” by selecting events
uniformly at random—row 1 in Table 2).

We ask human judges to annotate 800 batches each con-
sisting of 10 randomly-ordered pairs, where fake data in 2
of the pairs came from the control set and fake data in 8
of the pairs came from our four methods. For their judg-
ments to be included in our results, workers were required
to complete at least 3 batches and achieve 100% accuracy
on the 6 control examples in those batches—a worker an-
swering randomly would only be included 1.6% of the
time. After filtering, each method was evaluated around
180 times. We report accuracy in Figure 4.

In this setting, a lower accuracy indicates that a given
model’s results sound more human-like, because they were
incorrectly identified as human-composed more often. An
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0.5 0.6 0.7 0.8 0.9 1.0

Random
5-gram

LSTM
TXL

LakhNES
Real data

1.00
0.91

0.81
0.78

0.73
0.50

Turing test accuracy

Figure 4. Human accuracy at distinguishing computer-
generated examples from human-composed ones (error
bars are standard error). Users were presented with pairs of
clips (one human, one computer) and tasked with identify-
ing which was composed by a human. Random examples
are used as a control and we filtered annotators with accu-
racy less than 1 on those pairs. A lower accuracy is bet-
ter as it indicates that the annotators confused a particular
model with the real data more often.

ideal generative model would achieve 50% accuracy (al-
though it is possible in theory to generate music which
sounds “more human” than human-composed music). We
find that LakhNES (Transformer-XL with pre-training)
was mistakenly identified as human more often than both
our 5-gram model (p < .0001 by t-test with normal ap-
proximation) and our LSTM (p = .07). It also outper-
formed Transformer-XL without pre-training, but the dif-
ference was not statistically significant (p = .32).

Overall, these results suggest that there is still a sizable
gap between human-composed and computer-generated
chiptunes. Subjectively speaking, we feel that the melodies
and harmonies produced by LakhNES are promisingly hu-
man, but its inability to maintain rhythmic consistency is
often a dead giveaway in a Turing test. We suspect that
our model could be improved by using a beat-based event
representation, however the current model can be boot-
strapped with human-specified rhythmic material to man-
ually address rhythmic consistency issues (Section 8).

7.2 Preference test

In addition to our Turing test, we also conduct a
preference-based user study, given that human-ness is not
necessarily a predictor of general preference. We present
human judges with pairs of examples from two different
methods, and ask them which of the two they “prefer”.

Here we construct pairs of 10-second clips from two
different (randomly-chosen) methods. These clips are
twice as long as those used in Section 7.1 allowing longer-
term structure to influence preference decisions. As in our
Turing test, we construct randomly-ordered batches con-
sisting of 10 pairs. In each batch, 8 of the pairs are created
by sampling two methods without replacement from a set
of five (four computer-generated and the real data), while
2 pairs always compare randomly-generated clips to real
data (control). We ask human judges to assign preference
to these batches, filtering out workers who even once in-
dicated that they preferred random examples to real data.

0.0 0.2 0.4 0.6 0.8

Random
5-gram

LSTM
TXL

LakhNES
Real data

0.00
0.18

0.30
0.55

0.60
0.85

Preference ratio above other methods

Figure 5. Proportion of comparisons where humans pre-
ferred an example from each model over an example from
another random model (error bars are standard error).
Users were presented with pairs of clips from different
methods and asked which they preferred. Pairs of random
data and human-composed clips are used as a control and
we filtered annotators who preferred random. A higher ra-
tio is better as it indicates that the annotators preferred re-
sults from that method more often than another.

After filtering, each of the five methods was involved in
around 400 comparisons in total. We report the ratio of
“wins” for each method in Figure 5, i.e., the proportion of
times a method was preferred over any of the other four.

We find that LakhNES outperforms all other generative
methods, though is preferred significantly less often than
the real data. Human judges preferred chiptunes generated
by LakhNES over the real data in 26% of comparisons (vs.
only 10% of the time for the LSTM). We find this to be a
promising indicator of Transformer’s potential on this task.

8. PAIRING LAKHNES WITH HUMANS

In addition to generating chiptunes from scratch, LakhNES
can be used for a number of tasks to assist human com-
posers. For example, LakhNES can be “primed” on
human-composed material and then asked to continue the
material, providing a method for composers to quickly ex-
pand on their ideas. Composers can also provide fixed
rhythmic material and use LakhNES to generate the rest
of the score. We explore these use cases in our sound ex-
amples: https://chrisdonahue.com/LakhNES .
When generating all of our sound examples (besides those
in our user study), we found that limiting the entropy of the
model by using a sampling temperature of .95 and top-k
sampling [32] with k = 32 improved results qualitatively.

9. CONCLUSION

In this paper we presented LakhNES, a method for learn-
ing to generate multi-instrumental music. We developed
an event-based representation suitable for this task. Train-
ing powerful language models on this representation re-
sults in compelling multi-instrumental music generation.
We show that we can further improve results both quanti-
tatively and qualitatively by pre-training on a cross-domain
dataset. LakhNES can be used to both generate chiptunes
from scratch and collaborate with human composers.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

690



10. ACKNOWLEDGEMENTS

Thanks to Cheng-Zhi Anna Huang, Cheng-i Wang, and
Jennifer Hsu for helpful discussions regarding this work.
This work was supported by UC San Diego’s Chancellors
Research Excellence Scholarship program. GPUs used in
this research were donated by NVIDIA.

11. REFERENCES

[1] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman, Mon-
ica Dinculescu, and Douglas Eck. Music Transformer:
Generating music with long-term structure. In Proc.
ICLR, 2019.

[2] Chris Donahue, Huanru Henry Mao, and Julian
McAuley. The NES Music Database: A multi-
instrumental dataset with expressive performance at-
tributes. In Proc. ISMIR, 2018.

[3] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian
Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse Engel, and Douglas Eck. Enabling
factorized piano music modeling and generation with
the MAESTRO dataset. In Proc. ICLR, 2019.

[4] Colin Raffel. Learning-based methods for comparing
sequences, with applications to audio-to-midi align-
ment and matching. PhD thesis, Columbia University,
2016.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv:1810.04805, 2018.

[6] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. Technical report,
2019.

[7] Keunwoo Choi, György Fazekas, Mark Sandler, and
Kyunghyun Cho. Transfer learning for music classifi-
cation and regression tasks. In Proc. ISMIR, 2017.

[8] Gerhard Nierhaus. Algorithmic composition:
paradigms of automated music generation. Springer
Science & Business Media, 2009.

[9] Peter M Todd. A connectionist approach to algorithmic
composition. Computer Music Journal, 1989.

[10] Michael C Mozer. Neural network music composition
by prediction: Exploring the benefits of psychoacous-
tic constraints and multi-scale processing. Connection
Science, 1994.

[11] Douglas Eck and Jürgen Schmidhuber. Finding tempo-
ral structure in music: Blues improvisation with LSTM
recurrent networks. In Proc. Neural Networks for Sig-
nal Processing, 2002.

[12] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to poly-
phonic music generation and transcription. In Proc.
ICML, 2012.

[13] Daniel D Johnson. Generating polyphonic music using
tied parallel networks. In Proc. International Confer-
ence on Evolutionary and Biologically Inspired Music
and Art, 2017.

[14] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang.
MidiNet: A convolutional generative adversarial net-
work for symbolic-domain music generation. In Proc.
ISMIR, 2017.

[15] Ian Simon and Sageev Oore. Performance RNN:
Generating music with expressive timing and dynam-
ics. https://magenta.tensorflow.org/
performance-rnn, 2017.

[16] Huanru Henry Mao, Taylor Shin, and Garrison Cot-
trell. DeepJ: Style-specific music generation. In Proc.
International Conference on Semantic Computing,
2018.

[17] Moray Allan and Christopher Williams. Harmonis-
ing chorales by probabilistic inference. In Proc. NIPS,
2005.

[18] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam
Roberts, Aaron Courville, and Douglas Eck. Counter-
point by convolution. In Proc. ISMIR, 2017.

[19] Gaëtan Hadjeres and François Pachet. DeepBach: A
steerable model for Bach chorales generation. In Proc.
ICML, 2017.

[20] Yujia Yan, Ethan Lustig, Joseph VanderStel, and
Zhiyao Duan. Part-invariant model for music genera-
tion and harmonization. In Proc. ISMIR, 2018.

[21] Hao-Wen Dong and Yi-Hsuan Yang. Convolutional
generative adversarial networks with binary neurons
for polyphonic music generation. In Proc. ISMIR,
2018.

[22] Adam Roberts, Jesse Engel, Colin Raffel, Curtis
Hawthorne, and Douglas Eck. A hierarchical latent
vector model for learning long-term structure in music.
In Proc. ICML, 2018.

[23] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-
Hsuan Yang. MuseGAN: Multi-track sequential gener-
ative adversarial networks for symbolic music genera-
tion and accompaniment. In Proc. AAAI, 2018.

[24] Chris Donahue, Julian McAuley, and Miller Puckette.
Adversarial audio synthesis. In Proc. ICLR, 2018.

[25] Sander Dieleman, Aäron van den Oord, and Karen Si-
monyan. The challenge of realistic music generation:
modelling raw audio at scale. In Proc. NeurIPS, 2018.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

691



[26] Christine McLeavy Payne. MuseNet. https://
openai.com/blog/musenet/, 2019.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In Proc. NIPS, 2017.

[28] Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Rus-
lan Salakhutdinov. Transformer-XL: Attentive
language models beyond a fixed-length context.
arXiv:1901.02860, 2019.

[29] Hermann Hild, Johannes Feulner, and Wolfram Men-
zel. HARMONET: A neural net for harmonizing
chorales in the style of JS Bach. In Proc. NIPS, 1992.

[30] Sinno Jialin Pan and Qiang Yang. A survey on trans-
fer learning. IEEE Transactions on knowledge and data
engineering, 2010.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 1997.

[32] Angela Fan, Mike Lewis, and Yann Dauphin. Hierar-
chical neural story generation. In Proc. ACL, 2018.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

692



TAKING FORM: A REPRESENTATION STANDARD, CONVERSION
CODE, AND EXAMPLE CORPUS FOR RECORDING, VISUALIZING, AND

STUDYING ANALYSES OF MUSICAL FORM

Mark Gotham
Cornell University

Department of Music

Matthew T. Ireland
University of Cambridge
Sidney Sussex College

ABSTRACT

We report on new specification standards for represent-
ing human analyses of musical form which enable musi-
cians to represent their analytical view of a piece either
on the score (where an encoded version is available) or
on a spreadsheet. Both of these representations are sim-
ple, intuitive, and highly human-readable. Further, we pro-
vide code for converting between these formats, as well
as a nested bracket representation adopted from computa-
tional linguistics which, in turn, can be visualised in fa-
miliar tree diagrams to provide ‘at a glance’ introductions
to works. Finally, we provide an initial corpus of analy-
ses/annotations in these formats, report on the practicali-
ties of amassing them, and offer tools for automatic com-
parison of the works in the corpus based on the content
and structure of the annotations. We intend for this re-
source to be useful to computational musicologists, en-
abling study of form at scale, and also useful pedagogi-
cally to all teachers, students, and appreciators of music
from whom projects of this kind can be rather discon-
nected. The code and corpus can be found at https:
//github.com/MarkGotham/Taking-Form

1. INTRODUCTION

Marking up scores is a fundamental part of life for any
musician working in a score-based medium including –
but not entirely limited to – Western classical music. The
specifics vary widely from analytical observations to in-
strument fingerings, but the wider goals can be understood
in the same terms: commenting on the music to clarify,
visualise, remind, and reinforce a particular understanding
of the music in question or plan for its execution.

Regrettably, these annotations are rarely stored, kept,
and shared effectively. For instance, an ensemble may as-
siduously mark up a set of parts, but at the end of the hire
period, publishers require them to erase those annotations.
(Admittedly this is routinely flouted.) Some conductors

c© Mark Gotham, Matthew T. Ireland. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Mark Gotham, Matthew T. Ireland. “Taking Form: A Rep-
resentation Standard, Conversion Code, and Example Corpus for Record-
ing, Visualizing, and Studying Analyses of Musical Form”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

travel with their own sets of parts for this reason; others
waste rehearsal time conveying markings that could well
have been in the score in the first place.

Those score markings represent one of many forms of
siloed knowledge that we cannot easily share and repur-
pose. The same is true of most musical analysis which is
published in articles and monographs which time-pressed
musicians for the most part simply do not read, and from
which the information is hard to extract automatically.

The digital age presents potential solutions to many of
these problems, and computational musicology is begin-
ning to answer the call with solutions that centre on repre-
senting musico-analytical information in a structured fash-
ion. For instance, formats designed to enable the represen-
tation, study, and re-purposing of Roman-numeral analyses
include the ‘TAVERN’, ‘ABC’, and ‘RomanText’ projects
among others [5, 13, 19]; Automated extraction of perfor-
mance data include [6, 7], and ‘Tuttitempi’; 1 and even
pencil-on-paper performers’ markings have become an ex-
tricable dataset [1].

A key part of the equation here is the opportunity for
musical visualization; prior work in this area sees a close
relationship between efforts to create format standards for
representing musical structure on the one hand, and visual-
ising those structures on the other. This has included han-
dling note-by-note annotations ab initio (such as Dezrann
[8] and Verovio [14]) as well as a range of ad hoc visualiza-
tions for other research projects like the ‘Ribbon’ formal
analysis of the Josquin Research Project [16]. 2

This expands the more established practice of visual-
izing audio analysis in which Fourier or wavelet trans-
forms visualise spectral content (routine in commercial
softwares); beat trackers visualise the micro-timing of per-
formed tempo; 3 and even the recorded waveform itself vi-
sualises the dynamic profile (an easily forgotten, but emi-
nently useful resource). 4

2. FORM

Form is a particularly pertinent candidate for stronger rep-
resentation. The range of use cases includes computational
study and visualizations for education in the widest sense:

1 https://tuttitempi.com/
2 http://josquin.stanford.edu/
3 For instance, see Sonic Visualiser [2]
4 See [4] for a summary of other relatively recent audio visualizations.
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not only of those formally involved in traditional modes
of teaching and learning, but anyone seeking to attain or
maintain a stronger grasp of the work in question.

Discussion of form necessarily involves comparisons
across the full range of the work in question. Keeping all
of this information in mind is a challenge and thus form is
a parameter particularly in need of schematic representa-
tions: while a harmonic or melodic device can often be re-
produced exactly, that is almost never possible with form.
This has led to a range of creative representations of large-
scale structures with clear, at-a-glance summaries.

This paper reports on an attempt to represent formal
analyses such that they can be stored, visualised, and stud-
ied effectively. We accommodate any number of internal
divisions, and envisage this being used to mark up analyt-
ical views of everything not specified in the score: that is
divisions right down to the level of hypermetrical / phrase
groupings. In principle, this could be continued further, to
represent the structure of the measure level and beat group-
ings. 5 That may well be useful for metrically complex
works; we include one example in the ‘Miscellany’ corpus
(see Section 3) but do not explore it further here as those
details are usually clear from the notation in the common
practice repertoire we are primarily targetting. Instead we
focus on representing analytical views of those un-notated,
hypermetrical and formal levels above the single measure.

We propose three similarly expressive standards for rep-
resenting analyses, and we provide code for converting be-
tween those representations. On-score mark-up (Section
2.2) forms the most natural user interface for musicians
accustomed to making such annotations; Abstract syntax
trees (Section 2.1) present a final visualization format; and
the tabular standard (Section 2.3) is a flexible intermedi-
ary encoding useful for overcoming some of the complex-
ities inherent in annotating a score with labels that denote
position in a hierarchical structure. We now begin at the
‘extremes’, as it were, with the (final) visualization format
and (initial) on-score mark-up, before proceeding to ‘join
the dots’, discussing the intermediary standard.

2.1 Abstract Syntax Trees (ASTs)

In dealing with form, we face the specific problem of rep-
resenting hierarchical information, and thus we respond to
an explicit call from [15] for a ‘Standard Format’ for ‘Hi-
erarchical Analyses and Representations’, including form.
Previous work includes Craig Sapp’s automation and vi-
sualization of ‘Hierarchical Key Analysis’ [18], and the
‘Variations Audio Timeliner’ 6 approaches form specifi-
cally (though it not open source). There is also a well es-
tablished precedent for using ‘tree’ structures (borrowed
from computational linguistics) to represent this hierarchi-
cal information in music.

Perhaps the most famous linguistics-music cross-over,
‘A Generative Theory of Tonal Music’ [11], applied a

5 Our computational framework could be extended to calculate and
visualise any arbitrary summary statistic, measuring any lowest level di-
visions.

6 variations.sourceforge.net/vat/

Figure 1. Example tree visualisation: the exposition from
the first movement of Schubert’s Symphony No.8. The ab-
breviations are ‘Subject’ for ‘Subject Group’, and ‘Th.’ for
‘Theme’.

version of ASTs to discuss metrical and grouping well-
formedness and preference at the note level in Schenkerian
terms. [17] has applied the same logic to the different ‘lev-
els’ of harmonic identity, from the chord symbol (such as
‘C’) through Roman-numerals (‘I’) to Riemannian func-
tions (‘T’). 7

Figure 1 provides an example of such an AST represen-
tation of a passage of musical form: the exposition from
the first movement of Schubert’s Symphony No.8. The
figure includes structural groupings from the highest level
down to the level of measure grouping: the numbers of the
lowest level refer to the number of measures in each suc-
cessive phrase grouping.

This paper provides a specification format for produc-
ing such visualisation on the basis of well-structured rep-
resentations of form and phrase in music, as well as code
for converting between this representation format, various
kind of tree visualizations, and, crucially, encoded scores.
With these tools, we can mark observations directly onto
scores (which is pedagogically invaluable) and keep them
in a structured format for representations and analysis.

In the specification format proposed, each mark-up an-
notation (labelled on a score) maps directly to a node in
the AST. The level (distance from the root node) in the
AST must be explicitly encoded within the annotation.

2.2 On-score mark-up

There are many ways to encode this information. This
paper reports on a single standard for doing so which is
highly flexible both in terms of the types and terms of di-
visions used, and also the input method. We begin with
perhaps the most user-friendly method: marking formal di-
visions directly onto encoded scores. All that is required
is a music notation software which will export to the inter-
operable standard musicXML. Most notation software sup-
port this, including both commercial and free/open-source
options like MuseScore.

To enter a marking, simply create a ‘stave text’ as de-
scribed in the following instructions which combine the

7 For more on datasets for and visualisations of GTTM and Schenke-
rian reductions see [10, 12] and the work of Masatoshi Hamanaka, Keiji
Hirata, and Satoshi Tojo, including [9] and Masatoshi Hamanaka’s XML
markups of musical examples from (and using the tree structure represen-
tation of) GTTM [11] http://gttm.jp/gttm/
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Figure 2. Example file markup in the first movement of
Beethoven’s Piano Sonata op.2 no.1.

definition of the minimal well-formedness constraints with
‘how to’ style instructions. Figure 2 illustrates what this
looks like on a score.

• First, click on any note at the right measure and beat
position for the marking you want to enter.

• Enter a new textual marking at that position (most
software provide CMD+T (Mac) / CNTRL+T (Win-
dows) as a shortcut for this).

• Begin each on-score mark-up with an initial char-
acter to specify a ‘level number’ for the marking in
question, followed by a colon. For instance, ‘Expo-
sition’, ‘Development’ and ‘Recapitulation‘ will all
be on the top level of division (number 1) in sonata
form movements, so ‘1: Exposition’. All other lev-
els continue the divisions from here, (e.g. ‘2: First
Subject Group’).

• Where you wish to indicate a division, but have no
name for the span in question, use the correct level
number and a placeholder text like ‘4: X’.

• In practice, many entries like ‘1: Exposition’ and ‘2:
First Subject Group’ will begin at the same time. To
indicate these multiple, simultaneous level entries,
insert one text entry with all the component parts di-
vided by a comma (‘,’). For instance, many sonatas
will begin with the long string: ‘1: Exposition, 2:
First Subject Group, 3: Theme a, 4: Sentence, 5:
Presentation, 6: Basic Idea’.

All entries are relative to each other, so level numbers
are given by finding the directly relevant parallel. These
will fall into a few basic types of comparison:

• A span and its first phrase-division will generally be
used together, with the division at +1 level. For a
phrase, we might have ‘4: Period, 5: Antecedent’.

• The next division of that phrase (‘Consequent’) is
at the same level of the first division (‘Antecedent’),
thus ‘5: Consequent’.

• The next phrase outside of this span returns to the
initial level, so ‘4: Period’.

• When we eventually get to larger structural bound-
ary then we have to find an entry at a comparable

level, which will involve proportionately wider view.
For the ‘Recapitulation’ we’re starting again from
the top level (so ‘1: Recapitulation’), while for the
second subject group it’s level 2 (‘2: Second Subject
Group’).

Note that while the numbers assigned to the top lev-
els will be consistent within and even across pieces (‘Ex-
position’, ‘Development’ and ‘Recapitulation’ will almost
always appear as a set at level 1), those at lower levels
will vary depending on the number of level divisions above
them. For instance, the same phrase grouping structure
may appear at multiple levels across a piece: at lower lev-
els in a long and richly-structured exposition, but at nom-
inally ‘higher’ levels in a short Coda with fewer divisions
(see Figure 1).

This system has been designed to minimise the potential
for confusion. Among the alternatives we considered and
rejected was a system of multiple comparative marks with
‘+’ for breaking up the existing span, ‘-’ backing up one
level, ‘=’ for the same level and ‘*’ for reverting to the
highest level. This may appear to be an improvement until
you try to indicate the start of a development, for instance,
and have to work out the number of successive ‘-’s needed
to reach the right level.

Further work could explore the possibility of encoding
similar annotations within a formal context-free grammar.
In that case, the user would specify the start of the scope
of each annotation, allowing a top-down parser to infer the
AST structure without the user having to explicitly specify
the depth of each annotation. Informal user trials suggested
this recursive mark-up format to be less intuitive and less
flexible than the format proposed above, and so we have
not explored it further in this initial work.

In any case, the process is necessarily somewhat com-
plicated. To keep everything in order, some users may pre-
fer to work directly on spreadsheets (for which instructions
follow in the next section) or at least to keep an informal
spreadsheet on the go at the same time.

2.3 Tabular standard

See https://www.github.com/MarkGotham/
Taking-Form for code to extract these score markings
and set them out in a tabular format that is also (perhaps
even more) human-readable. Equally, some users will
prefer to work directly on spreadsheets. In our experience,
the tabular format provides a faster and more flexible
user interface for adding, deleting, and especially for
modifying annotations.

In the tabular standard:

• Generally, there is one row per measure. Exceptions
include the relatively common case of 1st / 2nd time
bars (for which use measure ‘numbers’ 112a / 112b
etc.) and the extremely rare case where two struc-
tural boundaries fall within the same measure (use
multiple rows).

• Each text entry indicates the start of a span. Again,
we suggest using text like ‘Exposition’ where a
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Sentence Presentation Basic Idea
Basic Idea

Continuation Fragmentation
Cadence

Figure 3. An example of the tabular representation format,
setting out a generic division of a sentence (level N) into
presentation and continuation phases (level N+1) which,
in turn, divide into two ‘Basic Idea’s in the first case, and
‘Fragmentation’ and ‘Cadence’ in the latter (all at level
N+2).

name is appropriate, and ‘X’ for any moment that
begins a new span, but is not so easily labelled.

• That marking entry remains in effect until a change
in the same column (e.g. replacing ‘Exposition’ with
‘Development’ or one ‘Period’ with another ‘Pe-
riod’, for instance).

• The columns go from larger to smaller units and
users may employ as many columns as needed to get
from the large formal architecture (e.g. expositions
of c.50 bars) down to few-bar groupings. We make
no assumptions here. While a ‘4’ grouping will of-
ten divide into 2+2, it might be better expressed as
an undivided 4 (and occasionally as an asymmetric
3+1). Assuming that ‘4’ indicates 2+2 would leave
us without a description for the undivided 4.

• Again, the final levels of grouping will appear in dif-
ferent columns of the document, depending on the
number of intervening levels.

• The ‘beat’ column is available for registering exactly
where a new theme starts, accommodating anacruses
for instance. When inputting directly to tabular, the
user may wish to indicate beats with negative num-
bers to indicate both the basic measure range and
the exact beat position at a glance. If in doubt, we
advise using the downbeat (‘beat 1’), especially if
the accompaniment part begins there (the accompa-
niment is a part of the span too, after all). The code
for converting to bracket representation involves a
simplification that eliminates beat information.

The representation standard (in both the on-score and
tabular entry systems) also accepts ‘equal division’, which
may be useful for sections which need two labels for ex-
actly the same span. For instance, a section might be
listed as ‘A’ but also consist entirely of a ‘Compound Pe-
riod’. Similarly, the ‘First theme’ may very well be a ‘Sen-
tence’. Assign these designations consecutive level num-
bers (columns) even though they represent the same span.

Finally, while the standard accommodates any naming
system, we recommend naming themes successively, and
not restarting the count for the second subject group (con-
tinuing instead with ‘Theme C’, for instance) in order to
enable succinct and unambiguous reference back to these
themes later on.

[Exposition
[Subject~I

[Th.i 4 4]
[Th.ii 4 4 5 4 5 5 2]

]
[Transition 4]
[Subject~II

[Th.iii 2 4 5 4 6]
[Th.iv 4 4 2]
[Th.v 4 4 4 4 4]
[Th.vi 1 5 5]

]
[Codetta 2 4]

]

Figure 4. An example of the tabular representation for-
mat, setting out form, theme, and phrase groupings in the
exposition of Schubert 8/i (corresponding to Figure 1).

2.4 Nested Bracket Notation

The linguistics standard for representing syntax trees is a
system of nested brackets. Figure 4 sets out an example
of this applied to musical form. In this format, the first
entry in a bracket is the parent node, labelling the overall
span, and each subsequent entry is a child node (an inter-
nal division). These child nodes may divide further with
additional brackets recursively.

Our specification requires only:

• Matched brackets: each open ‘[’ must be paired with
a closing ‘]’.

There are no further, formal constraints.
Our converter outputs this as a simple string, which is

all that’s required to meet the syntax criteria for the var-
ious existing code libraries for visualising nested bracket
notation with trees. However, once again, some users may
wish to begin directly at this level, in which case we would
advise one additional constraint for readability:

• Add a new level of indentation to the bracket file to
indicate the structural level in question.

Figure 4 reflects this more visually graspable version.

3. CORPUS

We complement this new standard and code base with a
corpus of examples. The preparation of that corpus war-
rants comment as a potential model for other projects of
this kind.

The analyses began in the classroom, with students each
assigned their own movement(s) to work on. The instruc-
tors then marked those student analyses, providing a ‘cor-
rected’ version based on the student work as well as written
feedback, drawing their attention to important moments
and considerations. This process thus created a corpus of
student-initiated, instructor-corrected analyses which went
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through a final round of finessing and proof-reading to en-
sure grammatical accuracy and also consistency before re-
lease.

Future projects could extend this to a final round ex-
plicitly consolidating one scholar’s analyses for additional
internal consistency and quality control. In any case, the
process benefits from involving a large number of peo-
ple in suitable capacities and in a time-effective manner.
Students get high-quality feedback from highly invested
researcher-teachers, as well as direct integration into re-
search projects. Researcher-teachers, in turn, benefit from
knowing that their marking time is more than doubly valu-
able: they are providing great feedback and building a cor-
pus at the same time.

The corpus combines tabular and nested-bracket repre-
sentations to illustrate the range outlined above. The tabu-
lar representations consist of:

• Beethoven’s ‘first period’ piano sonatas (nos1–15):
15 sonatas, 54 movements. 8

• The first movements of all the Mozart piano sonatas
(15 sonata movements).

The nested-bracket format demonstrates that format alter-
native, as well as other formal representations of the mu-
sic. Specifically, while the tabular representations repre-
sent measures by number, these bracket representations
register the number of measures within the spans in ques-
tion directly (the conversion code accommodates both).

We are keen to stress that the standard supports any
analyses and terminologies consistent with the minimal
formal constraints itemised above. As discussed, we have
elected in this corpus to name the themes alphabetically
here to minimise confusion with the numbered levels, but
again, this format supports any naming system the user
cares to apply or devise. We provide a more miscellaneous
set of repertoire and formal ideas in the corpus’ ‘Miscel-
lany’ folder to this effect. For instance, the analysis of the
first movement from Bach’s Brandenburg Concerto No.6
uses this template to set out the form in terms of changes
to the canon distances.

Yet more importantly, we emphatically do not intend the
analyses themselves to be in any way definitive, but rather
a proof of concept, and a first offering. We welcome multi-
ple analyses of the same work to focus our disciplinary dis-
cussion of what gives rise to formal labels and to the shift-
ing balance of priorities. That said, creating more analyses
of different works is probably a keener priority at the outset
of this field. 9

4. APPLICATIONS

The existence of tree structure representations based on
formal analyse enables a number of applications in the vi-
sualisation of musical form and the comparison of form

8 Of these 15 sonatas, 9 are in 4 movements, 6 are in 3.
9 [3]’s BPS-FH dataset of first movements from Beethoven Piano

Sonatas. BPS-FH focusses on harmony but also includes some formal
designations, and thus a balance between the potential benefits of cross-
referencing and of extending the collective corpus.

between scores. Both the visualization and the automated
comparison help to focus questions of divergence between
two analyses.

In this project, we have primarily focused on off-score
visualizations to enable at-a-glance overviews and the de-
velopment of global intuitions for structure. Equally, these
formal observations could be returned to scores for dif-
ferent kinds of visual clarification. For instance, they en-
able the automated marking-up of phrase-ending barlines
more strongly in scores, which is a popular annotation type
among conductors. Moreover, we can toggle these anno-
tations on and off at will: this is an important, and funda-
mentally digital-age flexibility.

Turning to automated comparisons, a distance metric
between trees can be defined, which in turn enables cluster-
ing of scores with similar form. That process is discussed
in the following section.

4.1 Tree edit distance and clustering

Zhang and Shasha [20] provide an algorithm for calculat-
ing the edit distance between two trees, t1 and t2. This
metric is based on the minimum number of insert, delete
and update operations (each of which have an associated
cost for a given node) required to transform t1 into t2. We
adopt their approach but allow the user to specify a func-
tion to describe the cost of each operation for a particular
node, to enable the distance metric to be tuned for a partic-
ular corpus. In the examples that follow, the cost of insert-
ing, deleting or updating a node is weighted more highly
for nodes closer to the root of the tree. The cost function
should also use the semantics of each node: the default
comparator function in the code provided weights opera-
tions on a placeholder node ‘[X]’ lower than the equivalent
operation on any other node. Thus inserting a placeholder
node ‘[X]’ at level 6 in the tree is less costly than inserting
a ‘Coda’ at level 1 in the tree, for example.

The concept of tree edit distance has been applied to a
range of problems such as automated melody recognition,
plagiarism detection in software, and finding similarities
between sequences of RNA and DNA. We have explored
two applications of tree edit distance, involving compar-
isons between two analyses, and between N analyses. We
set these out in turn.

Between two analyses. A summary of the differences
in tree structure up to some depth (lmax) can be collapsed
into strings in a simple language. We base our notation
on a language proposed by Cunningham for summarising
control structures in programming languages. 10 Figure 5
illustrates how this simplified version of nested-bracket no-
tation (without labels) can be used to visualise differences
in form up to a given depth (lmax) in the tree.

In our simplified language: ‘||’ denotes the divisions be-
tween nodes at level 1 in the tree; ‘.’ represents a struc-
ture at level 5, or lmax if lmax < 5; ‘{’ and ‘}’ denote
the start and end (respectively) of the span of a node at
level 2 (if level 2 < lmax); ‘[’ and ‘]’ denote the start
and end (respectively) of the span of a node at level 3 (if

10 http://c2.com/doc/SignatureSurvey/
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ANALYSIS 1 {..}{....}{...}|| {..}{....}{..}
ANALYSIS 2 {..}{.. .}{...}||’{..}{....}{..}

Figure 5. Two analyses encoded as strings in a simple
language. This enables edit distance-based comparison of
their musical form up to level 3 in the abstract syntax tree.

Figure 6. Heat map of tree edit distance between a se-
lection of works in the corpus provided. The colour scale
ranges from yellow (most similar/lowest tree edit distance)
to red (most different/highest tree edit distance).

level 3 < lmax); ‘(’ and ‘)’ denote the start and end (respec-
tively) of the span of a node at level 4 (if level 4 < lmax); ’
denotes an anacrusis or longer introductory passage.

The process of calculating the tree edit distance allows
correct alignment of the two strings. Our current analysis
code highlights in green those nodes that are present in one
analysis but not the other, and in red those nodes for which
differences exist at a level greater than lmax.

Between N analyses. Expanding this principle further,
tree edit distance can be used to compare the form of all N
scores in a corpus. Pairwise similarities in form can thus
be identified. Figure 6 shows the tree edit distance between
a selection of works in the corpus provided, visualised as a
heat map.

5. SUMMARY AND OUTLOOK

This paper reports on a new specification standard for rep-
resenting musical form, a corpus of example movements,
and a set of code for converting between a range of repre-
sentation and visualisation formats, handling score annota-
tion to tabular or nested bracket representation, and tabular
to nested bracket representation.

Among the possible improvements to this model, we
envisage developments to both the user-interface and the
representation structure. We consider the current oppor-
tunity to work on free and open source notation software
to be a radical improvement to the student experience, en-
abling them to work directly on ‘the music’, listening back
to it at will, and recording their observations in a digital
format. That said, we are still limited to the availability of
encoded scores and this is one musical area in which work-

ing with PDFs would be helpful, and could be practical.
As projects such as PeachNote exemplify, while OMR

cannot yet reliably generate performance-ready scores, it
is generally robust enough to support use cases like score-
to-audio matching. Thus, as long as we still have many
more PDFs than encoded scores available, it would be
worth considering an alternative user-interface which of-
fers a drag-and-drop system, for placing annotation labels
onto the score. Here, we only need OMR robust enough
to extract measure lines accurately and pair them with
the annotation. Using pre-made (rather than free-text) la-
bels would also solve the issue of ambiguous user-entries,
though it would also limit the range of possible answers.

Turning to the representation standard, one priority for
improvement is the inclusion of ambiguity. At present,
we cannot admit multiple variant readings in a single file
(though nothing stops analysts from producing multiple
variant files). Formal judgments can arise through identifi-
cation of melodic and / or harmonic closure, textural and /
or dynamic changes, and much more besides. When forced
into a single reading, we have to make difficult decisions
between these competing priorities.

Furthermore, this ambiguity motivates a second di-
rection for computational research based on this kind of
corpus: while we can clearly pursue questions explor-
ing proportions and the like, taking the analyses at face
value, we can also explore which score elements correlate
most strongly with formal designations, where analyses
(dis)agree, and what gives rise to these shifts in priority.

This paper began with an overview of some recently
implemented representation and visualization formats for
other musical parameters; a key frontier in this field will
be the combination of those standards. Given the lack of a
consensus over a primary successor to XML for score en-
codings (MNX, MEI, . . . ), this much more sparsely popu-
lated field of analytical representations may be doubly slow
in determining its future direction. That said, representa-
tions of harmony and form by reference to their measure
and beat positions are easy to combine, perhaps represent-
ing harmonies as leaf nodes (assuming they change at least
as frequently as formal sections).

Finally, we also motivated this research with its poten-
tial breadth of appeal to musicians outside the scholarly,
computational community. This should be a key consider-
ation for determining future research priorities. Integrating
diverse groups in the production of corpora (also featured
in this text and project) may be one way to road test new
ideas for ease and popularity of use at the outset. We in-
vite other researchers building corpora to experiment with
variants on this process and whatever the exact standards
they use, to focus on building up a large and versatile meta-
corpus for the benefit of all.
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ABSTRACT

Learning features from data has shown to be more suc-
cessful than using hand-crafted features for many ma-
chine learning tasks. In music information retrieval (MIR),
features learned from windowed spectrograms are highly
variant to transformations like transposition or time-shift.
Such variances are undesirable when they are irrelevant
for the respective MIR task. We propose an architecture
called Complex Autoencoder (CAE) which learns features
invariant to orthogonal transformations. Mapping sig-
nals onto complex basis functions learned by the CAE re-
sults in a transformation-invariant “magnitude space” and
a transformation-variant “phase space”. The phase space is
useful to infer transformations between data pairs. When
exploiting the invariance-property of the magnitude space,
we achieve state-of-the-art results in audio-to-score align-
ment and repeated section discovery for audio. A PyTorch
implementation of the CAE, including the repeated section
discovery method, is available online. 1

1. INTRODUCTION

Learning from audio data most commonly involves some
prior processing of the raw sound signals. The most popu-
lar features are derived from a spectrogram, which consists
of the magnitude values of the Fourier transform of a win-
dowed signal of interest. In a Fourier transform, a signal
is projected onto sine and cosine functions of different fre-
quencies. One of the main reasons for the spectrogram to
be more useful than the usage of the Fourier coefficients in
their complex form is the fact that the magnitude spectrum
of a signal is invariant to a translation of the original signal.

This invariance to translation, desirable for most learn-
ing problems in audio, results from the fact that cosine and
sine represent the real and imaginary parts, respectively,

1 https://github.com/SonyCSLParis/cae-invar

c© Stefan Lattner, Monika Dörfler, Andreas Arzt. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Stefan Lattner, Monika Dörfler, Andreas Arzt.
“Learning Complex Basis Functions for Invariant Representations of Au-
dio”, 20th International Society for Music Information Retrieval Confer-
ence, Delft, The Netherlands, 2019.

of the complex eigenvectors of translation. More gener-
ally, the eigenvectors of an orthogonal transformation (e.g.,
translation, rotation, reflection, but most general all permu-
tations - “shuffling pixels”) constitute an orthonormal ba-
sis of complex vectors with corresponding eigenvalues of
magnitude 1. Hence, as we shall see in detail, the absolute
value of a signal’s coefficients with respect to this basis is
invariant to that transformation. We harness this invariance
property for learning representations invariant to different
orthogonal transformations.

In particular, transposition-invariance is an essential
property for several MIR tasks, including alignment tasks,
repeated section discovery, classification tasks, cover
song detection, query by humming, or representations of
acapella recordings with pitch drift. Different methods
have aimed at learning transposition-invariant representa-
tions. For example, in [33] close time steps in chroma-
grams are cross-correlated in order to calculate distances
between pitch classes, and in [20], successive n-grams of
constant-Q transformed (CQT) representations of audio
are compared using a Gated Autoencoder (GAE) archi-
tecture. Most similar to our approach, the transposition-
invariant magnitudes of Fourier transformations applied to
chromagram-like representations of audio are facilitated
in [3] and [23]. However, instead of using 2D Fourier
transforms with fixed basis functions, we learn the rele-
vant basis functions starting from CQT representations of
audio. This learning of basis functions has some advan-
tages over using pre-defined bases. For example, the num-
ber of basis elements necessary to discriminate between
signals can be reduced compared to a common Fourier
transform (e.g., for transposition- and time-shift invariance
we use M = 256 basis functions for input dimensionality
N = 3840, while usually N = M ). Furthermore, our ap-
proach is generic and has the potential to learn other musi-
cally interesting invariances (e.g., towards tempo-change,
diatonic transposition, inversion, or retrograde).

The contribution of this paper is a simple training
method for learning invariant representations from data
pairs and its application to two MIR tasks. First, we show
that when using the features learned by the Complex Au-
toencoder (CAE) from audio in CQT representation, we
can improve the state-of-the-art in a transposition-invariant
repeated section discovery task in audio. Second, the CAE
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features prove useful in an audio-to-score alignment task,
where we show that most of the time, they yield better re-
sults than Chroma features and features calculated with a
GAE. We also compare the CAE with a GAE in classifying
rotated MNIST digits, based on rotation-invariant features
learned by the CAE. The reason we also perform experi-
ments on MNIST is that it allows us to show the efficacy
of the model with respect to rotation-invariance. Further-
more, the class labels available in the MNIST dataset help
to highlight the different clusters in the rotation-invariant
space (see Figure 4).

In particular for translations, the model can be inter-
preted as measuring distances in the data. Training the
CAE for transposition and time-shift invariance on short
windows of audio in CQT representation, therefore, leads
to representations of rhythmic structures and tonal rela-
tionships present in the windows, what we exploit in the
repeated section discovery task. Representing rhythmic
structures is less critical in music alignment tasks; it can
even be disadvantageous when the aligned signals differ
in tempo. We show in the alignment task that it is suf-
ficient to train the CAE only for transposition-invariance
(i.e., time-shift transformation) on rather short n-grams of
audio in CQT representation. This is because compared
to repeated section discovery, where rhythmic patterns can
help to identify similar parts, in the alignment task, a dy-
namic time-warping algorithm keeps track of the respec-
tive positions in the music pieces.

The CAE can be trained in an unsupervised manner on
data pairs obeying the relevant transformations. Thereby,
we obtain a “magnitude space” and a “phase space”, as
it is known from a Fourier transform. The “magnitude
space” of the CAE is invariant to all the learned transfor-
mations. Remarkably, the phase shifts a projected signal
undergoes during a transformation (i.e., the relative vector
in the “phase space” of the CAE) are discriminative with
respect to the type and the distance of a transformation.
This is an interesting property which could be exploited for
determining types of relations between musical fragments
in structure analysis tasks.

The paper is structured as follows. In Section 2 existing
work related to the proposed method is discussed. In Sec-
tion 3 we describe the model and its mathematical back-
ground and Section 4 describes the general training proce-
dure. In Section 5, we show results on three different tasks:
discovery of repeated themes and sections, audio-to-score
alignment, and classification of MNIST digits. We end the
paper with a conclusion and a discussion of possible direc-
tions for future work (Section 6).

2. RELATED WORK

Generally, mid-level representations in neural networks are
highly variant to transformations in the input. The most
common and well-known way to obtain shift-invariance
in convolutional architectures is max-pooling [4]. How-
ever, full shift-invariance can only be achieved step-wise
by applying max-pooling over several layers. A whole line
of research therefore aims to obtain representations invari-

to polarto polar

to cartesian to cartesian

Figure 1: Schematic illustration of reconstruction during
training. Both the input x and its transformed counterpart
ψ(x) are projected onto complex basis pairs {WRe,WIm}
and expressed in polar form. Then, using the swapped
magnitude vectors {rψ(x), rx} and the original phase vec-
tors {φx,φψ(x)}, the data is reconstructed by performing
the inverse operations.

ant to different kinds of transformations using other ap-
proaches. Inspiration for the proposed model was drawn
from [25], where complex basis functions are learned us-
ing a GAE. An approach similar to ours is to facilitate
harmonic functions or wavelets, either in weight initial-
ization [29, 37], for modulating learned filters using Ga-
bor functions [22], or for using fixed wavelets in scatter-
ing transforms [5, 32]. Similarly, harmonic functions can
be pre-defined, e.g., to obtain rotation invariance in con-
volutional architectures [36], or learned, e.g., by assuming
“temporal slowness” of features in videos [21, 28], while
pitch-invariant timbral features are learned in [30] by en-
abling convolution through the frequency domain.

Most of the approaches mentioned so far (including our
approach) aim at invariances to relatively simple, affine
transformations. Invariances to more complex, non-linear
transformations are usually achieved by redundancy (e.g.,
an object is presented from different camera angles or un-
der different lighting conditions), which typically requires
bigger architectures. That way, invariance can be learned
by an explicit transformation of the input [16], by en-
forcing similarity in the latent space [24], or by using a
Siamese architecture and pre-defined transformation sets
[18]. Other methods involve rotating convolution kernels
during training [38] and dealing with input deformations
using learned, dynamic convolution grids [8]. In [9] an
end-to-end CNN which acts on raw audio learns Gabor-
like filters similar to those extracted by the CAE, see Fig-
ure 2.

3. MODEL AND MATHEMATICAL
BACKGROUND

We aim at learning orthogonal transformations encoding
certain invariances of a class of signals which are known or
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Figure 2: Some examples of real (top) and imaginary (bottom) basis vectors learned from audio signals (time in seconds).

assumed to be useful for a particular learning task at hand.
To this end, we leverage the particular properties of orthog-
onal transformations, which we now describe. A transfor-
mation ψ : RN → RN is orthogonal if 〈ψ(x), ψ(y)〉 =
〈x,y〉 for all x,y ∈ RN . By 〈x,y〉 we denote the inner
product on RN or CN , respectively. Orthogonal transfor-
mations are distinguished by the fact that they possess a
diagonalization with eigenvalues which all have absolute
value 1. Hence, in any non-trivial case, the eigenvalues are
complex and so are the corresponding eigenvectors. More
precisely, if ψ is orthogonal, there exists a unitary matrix 2

W and eigenvalues λj , j = 1, . . . , N , with |λj | = 1 for
all j, such that

ψ(x) = W∗DWx (1)

Here D denotes the diagonalN×N matrix with the eigen-
values λj in the diagonal. We hence have the following
statement.

Proposition 1. If an orthogonal transformation ψ :
RN → RN is diagonalised by a unitary matrix W, then
the feature vector given by |Wx| for all x ∈ RN is invari-
ant to ψ. In other words, we have |Wx| = |Wψ(x)| for
all x ∈ RN .

Proof. According to (1) and since WW∗x = x, we have

Wψ(x) = DWx, (2)

which can be written coordinate-wise as

〈wj , ψ(x)〉 = λj〈wj ,x〉, j = 1, . . . , N,

where wj denotes the j−th row of the complex, unitary
matrix W. Hence, since |λj | = 1 for all j, we have
|〈wj , ψ(x)〉| = |〈wj ,x〉| for all x ∈ RN and thus |Wx| =
|Wψ(x)| as claimed.

In CAE-learning, we can only deal with real weights
and are usually interested in learning less thanN basis vec-
tors. Hence, we split an M ×N -dimensional submatrix of
the unitary, complex matrix of eigenvectors W into a real
and an imaginary part WRe ∈ RM×N and WIm ∈ RM×N
which map x onto the real and imaginary part of Wx, re-
spectively. The complex data WRex + iWImx is then ex-
pressed in its polar form by a phase vector φx ∈ [0, 2π)M

and a magnitude vector rx ∈ RM≥0.
According to Proposition 1, assuming that WRe+iWIm

consist of orthonormal eigenvectors of ψ leads to the mag-
nitude of projections of a signal x and a transformed ver-
sion ψ(x) onto these eigenvectors to be equal. This prop-
erty is imposed during training by expressing Wx and

2 A complex matrix W is unitary, if W∗ = W−1.

Wψ(x) in their respective polar forms

φx = atan2(WRex,WImx), (3)

and
rx =

√
(WRex)2 + (WImx)2, (4)

and swapping the magnitude vectors before reconstruction.
Accordingly, we reconstruct x given its own phase rep-

resentation φx and the magnitude representation of the
transformed signal rψ(x) as follows (see Figure 1):

x̂′ = W>
Re(rψ(x) · sinφx) + W>

Im(rψ(x) · cosφx). (5)

Likewise, we reconstruct the transformed signal ψ(x) as

ψ̂(x)
′

= W>
Re(rx ·sinφψ(x))+W>

Im(rx ·cosφψ(x)). (6)

The CAE is then trained by minimizing the symmetric
reconstruction error

1

N

N∑
i

(xi − x̂′i)p +
1

N

N∑
j

(ψ(xj)− ψ̂(xj)
′
)p, (7)

where p ∈ {1, 2} has shown to work well in practice.
Training on sufficiently many transform pairs thus leads
to learning the weights of the unitary matrix W, which
diagonalises ψ. While the magnitudes of the coefficient
vectors Wψ(x) are equal to Wx, the transformation itself
is then represented by the differences in the phase vectors
∆φ = φx − φψ(x) (see Figure 4(b)). As an example of
complex basis vectors learned by the CAE, see Figure 2,
where the CAE was trained on time-shifted audio signals
in the time domain, yielding complex Gabor-like filters.

4. TRAINING

For all the experiments described below, we choose 256
complex basis vectors and train the model for 500 epochs
with a learning rate of 1e-3. We use a batch size of 1000,
and we sample 100k transformations per epoch, gener-
ally picking random instances from the train set to be
transformed. The training data is standardized, and 50%
dropout is used on the input. We set p = 1 (see Equation
7) for the audio experiments, and p = 2 for the MNIST
experiment. In the alignment experiment, we also penalize
the mean of norms of all basis vectors and the deviation
of the individual basis vectors’ norms to the average norm
over all basis vectors. In the MNIST experiment, the norm
of all basis vectors is set to 0.4 after every batch. For in-
formation about the training data see the respective exper-
iment section below.
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Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)

CA (ours) 52.53 63.10 50.29 63.58 64.60 62.68 67.20 68.73 65.82 52.16 62.51 49.78 69
GAE intervals [20] 57.67 67.46 59.52 58.85 61.89 56.54 68.44 72.62 64.86 51.61 59.60 55.13 194
VMO deadpan [34] 56.15 66.80 57.83 67.78 72.93 64.30 70.58 72.81 68.66 50.60 61.36 52.25 96
SIARCT-CFP [7] 23.94 14.90 60.90 56.87 62.90 51.90 - - - - - - -
Nieto [27] 49.80 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454

Table 1: Different precision, recall and f-scores (adopted from [34], details on the metrics are given in [6]) of different
methods in the Discovery of Repeated Themes and Sections MIREX task, for symbolic music and audio. The F3 score
constitutes a summarization of all metrics.

5. EXPERIMENTS

5.1 Discovery of Repeated Themes and Sections

In the MIREX task “Discovery of Repeated Themes and
Sections”, 3 the performance of different algorithms to
identify repeated (and possibly transposed) patterns in
symbolic music and audio is tested. The commonly used
JKUPDD dataset [6] contains 26 motifs, themes, and
repeated sections annotated in 5 pieces by J. S. Bach,
L. v. Beethoven, F. Chopin, O. Gibbons, and W. A. Mozart.
We use the audio versions of the dataset and preprocess
them the same way as the training data described below.

The CAE is trained on 100 random piano pieces of the
MAPS dataset [12] (subset MUS) at a sampling rate of
22.05 kHz. We choose a constant-Q transformed spectro-
gram representation with a hop size of 1984. The range
comprises 120 frequency bins (24 per octave), starting
from a minimal frequency of 65.4 Hz. The spectrogram
is split into n-grams of 32 frames. The set of transforma-
tions applied to the data during training Ψpshift, tshift con-
tains transposition by [−24, 24] frequency bins and time
shifts by [−12, 12].

After training, all n-grams of the JKUPDD dataset
are projected into the transformation-invariant magnitude
space. Using these representations, a self-similarity matrix
is built for each piece using the reciprocal of the cosine
distance. The matrices are then filtered with an identity
matrix of size 10 × 10. Then, their main diagonals are set
to zero. Finally, the matrices are first normalized and then
centered by subtracting their medians.

For finding repeated sections, the method proposed in
[20] is adopted, which finds diagonals in a self-similarity
matrix using a threshold. As we normalized the matrices
to zero median, the threshold chosen in this experiment is
close to zero (i.e., 0.01).

5.1.1 Results and Discussion

Table 1 shows the results of the experiment. Using our
method, we could slightly outperform the Gated Autoen-
coder approach proposed in [20]. By visual inspection of
the self-similarity matrix, we noted very precise diagonals
at repetitions, while almost no similarity is indicated on
other parts (this is different from the self-similarity plots
provided in [20]). This selectivity, which may also re-
sult from the cosine distance, probably contributes to the
slightly higher precision of the proposed method.

3 http://www.music-ir.org/mirex/wiki/2017:
Discovery_of_Repeated_Themes_&_Sections

ID Dataset Files Duration

CE Chopin Etude 22 ∼ 30 min.
CB Chopin Ballade 22 ∼ 48 min.
MS Mozart Sonatas 13 ∼ 85 min.
RP Rachmaninoff Prelude 3 ∼ 12 min.
B3 Beethoven 3 4 ∼ 52 min.
M4 Mahler 4 4 ∼ 58 min.

Table 2: The evaluation data set for the alignment experi-
ments (see text).

5.2 Invariant Audio-to-Score Alignment

The task of synchronising an audio recording of a music
performance and its score has already been studied exten-
sively (see e.g. [10, 11, 14, 15, 17, 26]). Here, we compare
synchronisation results using the proposed method (CAE)
to traditional Chroma features and the GAE features intro-
duced in [20], which were used for music alignment in [2].

For the alignment experiments we follow [2], using the
same setup and the same data (see Table 2 for a sum-
mary). CB and CE consist of 22 recordings of excerpts
of the Ballade Op. 38 No. 1 and the Etude Op. 10 No.
3 by Chopin [13], MS contains performances of the first
movements of the piano sonatas KV279-284, KV330-333,
KV457, KV475 and KV533 by Mozart [35], and RP con-
sists of three performances of the Prelude Op. 23 No.
5 by Rachmaninoff [1]. Finally, B3 and M4 are anno-
tated recordings of Beethoven’s 3rd and Mahler’s 4th sym-
phonies. Note that CB, CE, MS, and RP consist of piano
music, while B3 and M4 consist of orchestral music, but
we will use the same model for the whole data set, which
was trained on piano music only.

The scores are provided in the MIDI format, with the
global tempi set such that the scores roughly match the av-
erage length of the given performances, i.e., both represen-
tations have the same average tempo, but there still exist
substantial differences in local tempi. The scores are then
synthesized with the help of timidity 4 and a publicly avail-
able sound font. The resulting audio files are used as score
representations for the alignment experiments. To com-
pute the alignments, a multi-scale variant of the dynamic
time warping (DTW) algorithm (see [26] for a detailed de-
scription of DTW) is used, namely FastDTW [31] with the
radius parameter set to 50.

The CAE is trained the same way and on the same data
as described in Section 5.1 but here we choose a CQT hop
size of 448. Furthermore, for this experiment, we use an

4 https://sourceforge.net/projects/timidity/
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‘Un-transposed’ Data Transp.

DS Metric Chroma GAE CAE CAE

CB

1st Quartile 15 ms 10 ms 10 ms 10 ms
Median 34 ms 22 ms 21 ms 21 ms
3rd Quartile 80 ms 39 ms 37 ms 38 ms
Err. ≤ 50 ms 64% 83% 84% 84%
Err. ≤ 250 ms 85% 94% 94% 94%

CE

1st Quartile 13 ms 10 ms 10 ms 9 ms
Median 29 ms 21 ms 19 ms 18 ms
3rd Quartile 56 ms 36 ms 32 ms 30 ms
Err. ≤ 50 ms 71% 87% 90% 91%
Err. ≤ 250 ms 94% 96% 96% 97%

MS

1st Quartile 7 ms 6 ms 6 ms 6 ms
Median 16 ms 13 ms 12 ms 12 ms
3rd Quartile 31 ms 25 ms 22 ms 22 ms
Err. ≤ 50 ms 85% 90% 91% 92%
Err. ≤ 250 ms 98% 100% 100% 99%

RP

1st Quartile 17 ms 14 ms 9 ms 9 ms
Median 43 ms 34 ms 20 ms 21 ms
3rd Quartile 113 ms 90 ms 55 ms 69 ms
Err. ≤ 50 ms 55% 63% 74% 70%
Err. ≤ 250 ms 91% 90% 95% 93%

B3

1st Quartile 20 ms 25 ms 17 ms 18 ms
Median 48 ms 54 ms 39 ms 42 ms
3rd Quartile 108 ms 104 ms 83 ms 99 ms
Err. ≤ 50 ms 52% 47% 59% 56%
Err. ≤ 250 ms 88% 90% 91% 88%

M4

1st Quartile 46 ms 50 ms 42 ms 46 ms
Median 110 ms 129 ms 99 ms 110 ms
3rd Quartile 278 ms 477 ms 255 ms 290 ms
Err. ≤ 50 ms 27% 25% 29% 27%
Err. ≤ 250 ms 73% 66% 75% 72%

Table 3: Comparison of the proposed features CAE to
Chroma features and features computed via a gated au-
toencoder GAE. The first three columns show results on
normal, i.e., un-transposed data. The rightmost column
shows the average result of alignments of the original per-
formances to scores in 12 different transpositions.

n-gram size of 8. The set of transformations applied to the
data during training Ψpshift are transpositions by [−24, 24]
frequency bins.

5.2.1 Results and Discussion

In the alignment experiments, we compare the proposed
CAE features to the results presented in [2], where Chroma
features and features computed via a gated autoencoder
(GAE) were compared to each other. Table 3 gives an
overview of the results. The first three columns show that
the proposed CAE features consistently outperform the
other two methods in the normal alignment setting (i.e.,
without any transpositions). Additionally, the rightmost
column shows that for CAE, the results essentially stay the
same, even when the alignment is computed with trans-
posed versions of the score. This demonstrates the invari-
ance to transpositions, which is a serious advantage over
the Chroma features.

As has been shown in [2], the GAE features are highly
sensitive to tempo differences between the score represen-
tation and the performance. To see if the proposed CAE
features suffer from the same problem, we repeated this ex-
periment and performed alignments on artificially slowed-
down and sped-up score representations. The results are
shown in Table 4. For all tested features, the degree to
which the tempi of the score representation and the perfor-

mance match influences the alignment quality. The exper-
iments suggest that CAE is less sensitive to differences in
tempi than GAE, but the Chroma features still have the ad-
vantage over GAE in this matter. We also conducted exper-
iments with more extreme tempi, which further confirmed
this trend. The reason for the higher robustness to tempo
differences of the CAE features over the GAE features may
be found in the way the GAE features are computed. In a
GAE, two inputs {xt−n,...,t,xt+1} are compared to one
another, and the features are sensitive to the position and
order of events in xt−n,...,t. When training a CAE only
for transposition-invariance, the resulting features repre-
sent mainly distances in the frequency-dimension of the
input and tend to be invariant to the position of events in
time.

5.3 Classification of MNIST digits

We test the ability of the CAE to learn rotation-invariance
in 2D images using randomly rotated MNIST digits (the
dataset was first described in [19]). Given the set of ro-
tations Ψrot with rotation angles [0, 2π) about the origin
of the images. For any MNIST instance xk, we cre-
ate a rotated version ψi(xk) and a further rotated ver-
sion ψj(ψi(xk)), where ψi, ψj ∈ Ψrot, resulting in pairs
{ψi(xk), ψj(ψi(xk))}. After the CAE is trained on 50k
such pairs, single randomly rotated instances are projected
into the magnitude space. On these projections, a logis-
tic regression classifier is trained to predict the class la-
bels. We test different train set sizes (sampled from the
main train set with balanced class distribution). 50-fold
cross-validation is used, where evaluation is always per-
formed on 10k test instances, independent of the train set
size. For comparison, we perform k-nn classification on
the randomly rotated images (i.e., the input space), and
unrotated images directly. We choose logistic regression
for the magnitude space and k-nn classification for the in-
put space because they showed the overall best results for
those representations. This choice, as well as the overall
experiment setup, reflects that in [25].

5.3.1 Results and Discussion

Figure 3 shows the results of the rotated MNIST classifi-
cation task. The error rates of magnitudes GAE were ob-
tained by a GAE architecture which was extended to learn
basis functions, as reported in [25]. Classification on the
magnitude space of the CAE (magnitudes CAE) leads to
substantially better results than those of the GAE, even
though only 256 basis elements are used in the CA, com-
pared to 1000 in the GAE. This is probably due to the ex-
plicit training of the CA to learn an invariant magnitude
space, while the magnitude space of the GAE is learned
indirectly during the learning of transformations. Overall,
classification on the rotation-invariant magnitude spaces
performs much better than on the input space of rotated
images in particular for small train set sizes. The differ-
ence in performance between images (original) and mag-
nitudes CA reflects the gap between a theoretically optimal
rotation-invariant representation (as images (original) are
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Chroma GAE CAE

DS Metric 2
3 T. Base T. 4

3 T. 2
3 T. Base T. 4

3 T. 2
3 T. Base T. 4

3 T.

CB Error≤ 50 ms 54% 64% 67% 47% 83% 33% 80% 84% 85%
Error≤ 250 ms 82% 85% 85% 87% 94% 84% 91% 94% 94%

CE Error≤ 50 ms 69% 71% 73% 40% 87% 38% 85% 90% 88%
Error≤ 250 ms 90% 94% 94% 93% 96% 80% 93% 96% 95%

MS Error≤ 50 ms 79% 85% 75% 84% 90% 74% 86% 91% 76%
Error≤ 250 ms 98% 98% 97% 99% 100% 98% 99% 100% 98%

RP Error≤ 50 ms 53% 55% 56% 43% 63% 37% 67% 74% 63%
Error≤ 250 ms 92% 91% 87% 82% 90% 85% 95% 95% 91%

B3 Error≤ 50 ms 44% 52% 36% – 47% – 39% 59% 33%
Error≤ 250 ms 83% 88% 82% – 90% – 82% 91% 82%

M4 Error≤ 50 ms 26% 27% 24% – 25% – 24% 29% 22%
Error≤ 250 ms 75% 73% 71% – 66% – 72% 75% 65%

Table 4: Results on score representations with different tempi (higher is better). Base T. refers to a globally set tempo that
ensures that the duration of the score representation is roughly equal to the duration of a typical performance. 2

3 T. and 4
3 T.

refer to score representation with the tempo set to 2
3 and 4

3 of the base tempo. The two metrics used are the percentage of
events that are aligned with an error lower or equal 50 ms and 250 ms (i.e. higher is better). The missing numbers for GAE
were not provided in [2].
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Figure 3: Classification error rates in the input space (im-
ages) and the magnitude space (magnitudes) on the ro-
tated MNIST dataset with different train set sizes. “Images
(original)” denotes the results of the unrotated MNIST
dataset for comparison.

(a) (b)
Figure 4: PCAs of rotated MNIST digits in the magnitude
space (a) and the phase-difference space (b) (best viewed
in color). The magnitude space represents the data in the
absence of the transformations leading to clusters of the
digit classes (colored and labeled accordingly). The phase-
difference space represents the transformations between
images, independent of their identity (colors and labels de-
note rotation angles quantized into 36 bins).

not rotated), and the representations learned by the CA.
On 100 training cases, logistic regression would outper-
form the k-nn classification on the input spaces, while for
all other train set sizes k-nn is superior over logistic regres-
sion. Thus, we obtain slightly worse classification perfor-
mance of images (original) on 100 training cases compared
to magnitudes CA.

Figure 4 shows PCAs of the randomly rotated MNIST
digits projected into the magnitude space and the phase-
difference space of the CAE. The clusters in the magnitude
space indicate that images with the same content (i.e., class
label) yield similar projections, independent of their rota-
tions. The clusters in the phase-difference space show that
phase differences clearly represent the transformations in
the data.

6. CONCLUSION AND FUTURE WORK

The empirical results in this work show that for music
alignment, structure analysis, and invariant classification
tasks, the features learned by the CAE have advantages
over other features, like Chroma features, and features
learned by a GAE. As opposed to Chroma features, the
CAE features are transposition-invariant, and generally
perform better in the alignment task. Compared to the fea-
tures learned by a GAE, the CAE features are more robust
to differences in tempo between alignment data.

Future work should involve investigating the use of the
“phase-difference” space of the CAE. For example, quali-
fying transformations between sections in music could lead
to a richer musical structure analysis (e.g., determining
mutually transposed parts, or finding sections with similar
rhythm but different tonality).

The learned bases could also be used in scattering trans-
forms (i.e., as convolutional filters). As opposed to con-
ventional scattering transforms, where the bases are fixed
in general, learned bases may help reducing model sizes or
to cover different invariances. Using rotation-invariant fil-
ters in convolutional settings may lead to rotation-invariant
architectures, similar to what is proposed in [36].
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ABSTRACT

In the past years, deep learning has produced state-of-the-
art performance in timbre and instrument classification.
However, only a few models currently deal with the
recognition of advanced Instrument Playing Techniques
(IPT). None of them have a real-time approach of this
problem. Furthermore, most studies rely on a single
sound bank for training and testing. Their methodology
provides no assurance as to the generalization of their
results to other sounds. In this article, we extend state-of-
the-art convolutional neural networks to the classification
of IPTs. We build the first IPT corpus from independent
sound banks, annotate it with the JAMS standard and
make it freely available. Our models yield consistently
high accuracies on a homogeneous subset of this corpus.
However, only a proper taxonomy of IPTs and
specifically defined input transforms offer proper
r e s i l i e n c e w h e n a d d r e s s i n g t h e “minus-1db”
methodology, which assesses the ability of the models to
generalize. In particular, we introduce a novel Folded
Constant Q-Transform adjusted to the requirements of
IPT classification. Finally we discuss the use of our
classifier in real-time. 

1. INTRODUCTION

Throughout modern history, western composers have
diversified and refined Instrument Playing Techniques
(IPTs) in order to foster innovation in the timbre space
[14]. In folklore and oral traditions, IPTs sometimes stand
out as a distinctive feature of the musical style [16, 22].
Therefore, their identification could contribute to the
more general task of style recognition in the process of
browsing in music databases. Moreover, interactive
computer music systems (for instance in the field of
improvisation or score-following) could hugely benefit
from the development of real-time IPT classifiers [24]. 

In the last two decades, the MIR community has
produced a lot of research in the field of timbre
recognition, but there has been little effort in IPT
classification, often considered as its last frontier [17].
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One major cause of this gap in research is the lack of
IPT sound banks. Lostanlen [17] has recently addressed
the question of IPT recognition but limited his
experiment to samples from isolated notes in a unique
sound bank. 

Here, our aim is to build a real-time classifier of IPT
from solo recordings. Our system should be reactive to
possibly rapid changes in the technique. Therefore, the
preprocessing of the audio has to maintain temporal
coherence and induce as little latency as possible. For
instance, any segmentation of the audio (such as proposed
by [21]) in order to subsume our task into a problem of
classification of isolated notes would be irrelevant. Our
study focuses on the cello but the methodological issues
we raise are similar for other instruments and the process
we use to build and train the classifier could be
generalized as long as the IPTs of these instruments are
included in a sufficient number of sound banks. 

We show that trying to categorize cello IPTs in a
unidimensional way produces weak results. The classifier
performs well on homogeneous sets of data but
generalizes poorly. Therefore we introduce a taxonomy
of the playing techniques of the cello along 4 axes
( n a m e d exciter/vibrator, left-hand, waveform, and
interaction position). We aim to build a single network
which classifies audio sequences in a multi-task [4]
manner according to these axes. Then, we implement a
rule-based system on top of this network, in order to
simplify the model and yield a classification along the 18
main IPT categories. 

In order to train our classifier, we produce a large
corpus of labeled synthetic data with 5 IPT sound banks
and their proprietary samplers. This corpus is annotated
using the JAMS standard [11]. We make it available to
the MIR community. 

We adapt state-of-the-art models successfully used for
instrument classification [11,16] to the multi-task and low
latency requirements of IPT recognition. Front-end
classifiers along the 4 IPT dimensions are built as fully-
connected (FC) or recurrent layers on top of deep
convolutional neural networks (CNNs). All tested system
configurations achieve high accuracies on homogeneous
subsets of our annotated corpus. This alone provides no
indication of their ability to generalize to other databases
or actual solo recordings. Therefore, we adapt the minus-
1db methodology presented by Livshin [15] to the needs
of our system. When subject to this methodology, we
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show that RNN front-ends generalize better than FC. Our
adapted Folded Constant-Q Transform (FCQT) also
yields more stable performance than Log-Mel-
Spectrograms. Finally, we assess the reactivity of our
models for each of the 4 IPT dimensions.

2. RELATED WORK

2.1 Deep Learning and MIR

Following their success in the field of computer
vision [10], deep learning techniques have been quickly
adopted by the MIR community. Instead of using sets of
hand-designed audio descriptors [1,7,15], these
techniques rely on basic representations of the audio
signal and let the algorithm learn suitable features for a
given task. Convolutional (CNN), recurrent (RNN) neural
networks and their combinations have been among the
most popular architectures used in MIR. Convolutional
layers seek local correlations within their input by
training sets of convolutional kernels. CNNs are built by
stacking such layers with pooling layers1 at increasingly
bigger scales. Therefore, they can detect large and
complex patterns while being computationally efficient.
RNNs have been developed in order to forecast or
classify temporal sequences. As their hidden units have
connections from one time step to the next, they can carry
information through various temporal states. Long Short-
Term Memory (LSTM) units, where gates enable to
control this flow of information, have been proficiently
used in MIR [6].

2.2 Instrumental Timbre Classification 

Early research in instrument classification relied on
samples of isolated notes played with ordinary
techniques. In most studies, experiments were performed
with a single sound bank. This practice overlooked
variability related to the instrument model, player or
recording environment. A detailed review of
generalization issues by Livshin [15] shows that the
performance of classifiers trained and tested with a single
sound bank gives no hint on their accuracy when
confronted to new sounds. He suggests to use several
independent sound banks, pick one for testing while
training the classifier on the rest joined together. Then,
the experiment has to be repeated with all the possible
test banks. This methodology named minus-1db provides
more reliable indications on the ability of the classifier to
generalize. In the case of instrument classification from
solo recordings, it translates into a leave-1-CD-out policy.

To our knowledge, very few studies follow the
methodological principles of Livshin, and, as such, can be
regarded as being state-of-the-art in this matter. 

Patil and al. [21] proposed a classifier built upon a
support vector machine applied to spectro-temporal
receptive fields. Trained on isolated notes of the RWC
database to classify 6 instruments, this model reached
98.7% accuracy. Its resilience was assessed on a

1 Pooling reduces the size of the output of the convolution (called a
feature map) by downsampling ; generally, the maximum value of a
local neighborhood is taken (max-pooling)

proprietary database of soli, which were first segmented
using a harmonicity-based method. With the leave-1-CD-
out methodology, accuracy still reached 88.1%. 

Lostanlen and Cella [18] used two separate solo
instrument databases to train and test a deep CNN to
classify 8 instruments. Their network relied on the CQT
of the audio signal. Through proper optimization of their
convolution strategy, their system reaches average
accuracies of 74%, against 61.4% for a decision tree
forest applied to a large set of audio descriptors. 

Regarding predominant instrument classification in
polyphonic textures, Han and al. [11] achieved state-of-
the-art F1-scores with a deep CNN applied to log-mel-
spectrograms. This study was performed with two
independent subsets of the IRMAS database for training
and testing. 

2.3 IPT Classification 

IPT classification studies have been carried out on the
clarinet [19], the snare drum [27], and the electric
guitar [5]. The first two studies pose methodological
issues since they perform training and evaluation with a
single database. Chen and al. [5] focus on the detection in
electric guitar solos of five techniques which all have an
impact on the melodic contour. This feature is key to the
design of their classifier. Therefore, their research can
hardly be generalized to other IPTs. 

Lostanlen and al. [17] tackle the issue of IPT
recognition in a transversal manner. They work with
samples from isolated notes belonging to 143 IPTs from
16 instruments. Their query-by-example system relies on
a variant of the k-nearest neighbors algorithm where the
metric used is subject to a training process. Applied to
Mel-Frequency Cepstral Coefficients enriched by second-
order scattering coefficients, it reaches rank-5 accuracy
of 61%. Yet, again, they train and test their system on a
single sound bank. 

3. IPT TAXONOMY

As we will show in Section 5., trying to classify IPTs
without taking into account their multi-dimensional
structure results in a poor ability to generalize. This
motivates our newly introduced taxonomy.

3.1 Theoretical Background

A proper IPT taxonomy requires identifying what
exciter, vibrator and resonator are selected (Schaeffer
[26]), and what modification and excitation movements
are undertaken (Cadoz [3]). Taking the example of the
cello and following Feron [8] : 

– among the possible exciters are the bow hair,
bow wood, as well as various parts of the hand
(finger, nail, knuckle). The natural vibrators are
the four strings, but the body can be involved2;

– modification movements are mainly the
ornaments and other IPTs realized by the left
hand (e.g. vibrato, glissandi, harmonics);

2 The resonator is assumed to remain unchanged (body).
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– excitation movements should be characterized
by their position (e.g. sul tasto or ponticello),
length (e.g. staccato), eventual periodicity (e.g.
jettato, tremolo), and the amount of speed and
pressure involved (e.g. flautando vs. pressured).

3.2 Availability of Data

Proper definitions of all these IPTs should then be
provided in order to annotate a recorded corpus of audio
in a consistent manner. 

However, the cost of such a study would be
prohibitive. Therefore, we decided to rely upon available
sound banks and their IPT definitions. 

We identified 5 IPT sound banks which had different
players and recording setups: EastWest Quantum Leap
(EWQL), Vienna String Library (VSL), IRCAM Solo
Instruments (ISI), Virtual Orchestra (VO) and ConTimbre
(CONT). These banks suffer from two drawbacks. First,
as expected, the absence of standardized definitions
causes gaps in the realization of given IPTs between
them, even for such a basic feature as the vibrato of an
ordinario class. Second, each of the sound banks includes
only a fraction of all the technical possibilities mentioned
above. Several IPT combinations, albeit perfectly
playable, are not available (e.g. harmonic trills). 

3.3 Proposed Taxonomy

We match the list of IPTs in our sound banks with the
theoretical approach in section 3.1. Bearing in mind our
real-time constraint, we want to prevent an inflation of
the number of classifiers and parameters in our model.

Therefore, we retain only 4 dimensions in our
taxonomy (see Table 1). The first axis refers to the
exciter/vibrator couple, which has a strong impact on the
harmonicity and noisiness of the resulting sound. The
second axis refers to how the left hand shapes the pitch
contour. The third axis, called waveform, classifies IPTs
depending on the nature and length of the bow/string
interaction. The last axis refers to the position of the
interaction with the string, which induces different
spectral envelopes in the sound.  

Table 1. IPT taxonomy (axes, classes) proposed in this
study. This taxonomy is partly hierarchical in the sense
that classification along Axes 2-4 is optional and
dependent upon classification on Axis 1. When no
classification is desirable, the NONE class is used in the
training process3. 

3 For instance, a pizzicato will never be classified along the 3rd
(waveform) axis. But it still could be classified along the 2nd axis
(e.g. glissando) or the 4th (e.g. harmonics). 

Some IPTs which would require a separate axis
(should we aim at an exhaustive taxonomy for
musicological purposes) were forced onto an existing
dimension. Pressured bowing was included in axis 1 as it
results in strong inharmonicity and noisiness. Harmonics,
both natural and artificial, were included in axis 4, as they
are most commonly played sul ponticello, but imply
specific spectral envelopes. Finally, string classification4

was excluded from the taxonomy, as well as the use of
mutes.

On each dimension, each class of the taxonomy had to
be represented at least in two sound banks for the minus
1-Db methodology to be implemented. 

4. EXPERIMENTS

4.1 Building the Databases

4.1.1 Sequence Generation Principles 

Bearing in mind our goal to generalize to actual solo
recordings, we have generated series of audio sequences
which simulate such recordings. This simulation tool was
developed as a series of Max/Msp patches5 controlling
the proprietary samplers6 of our 5 sound banks. The
generated sequences include randomly generated notes
and chords of all available IPTs. The chords are bounded
by the playability of the instrument (as presented in [28])
and the specific ranges of the sound banks. 

In the remainder of this article, we will use the term
database X to designate the sequences which were
generated with this process applied to the sound bank X.

4.1.2 Data Augmentation

We augment the data to increase the robustness of the
classifier to variations in the recording environment and
tuning of the instrument. Therefore, we generate
sequences with a randomly detuned reference A4 in a
20Hz range around 440Hz (through transposition of the
original samples). We also use various levels and types of
reverb in the samplers. Finally, we average the stereo
channels provided by the sampler to get the final signal. 

After augmentation, the sequences represent 13.5
hours of music and over 4 Gb of AIF files sampled at
44100Hz and encoded at 16 bits PCM. 

4.1.3 JAMS Standard Annotation

Our simulation tool exports both the annotation files with
the JAMS format [13] and the corresponding audio. IPT
classification along the 4 axes is provided with the
tag_open namespace. Onset times and note/chord pitches
were added when available, using onset (resp.
pitch_contour) namespaces. Both audio and annotation
files are made available to the MIR community7. 

4 All notes above G2 can be played on several strings. String change
is regarded as a component of intra-class variability. 

5 Available upon request
6 e.g. UVI Workstation for ISI, Vienna Instruments for VSL. 
7 https://drive.google.com/open?

id=1HYqHxxd2ZDkU2TL_1EXa6WNv9lY37hU9

Axis 1 Axis 2  Axis 3 Axis 4
Exciter/Vibrator Left-hand Waveform Int. Position

NONE NONE NONE
vibrato sustained ordinario

staccato sul tasto
glissando sul ponticello

pressured bow/string trill harmonics
hand or knuckle hit on body tremolo

bow hair/string (ordinario)
bow wood/string (con legno)

finger/string (pizzicato) non vibrato
finger/string+body (pizz. Bartok) spiccato, battuto

marcato, sfz
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Figure 1. System architecture (incremental configurations A to E). A is directly inspired by [11]. B introduces CQT
along with adapted filtering in the convolutional process. The resolution of CQT is increased in C. Recurrent layers
process the output of the CNN in D. Finally, in configuration E, we experiment with the joint classification of onsets. 

4.2 System Architecture and Configuration

4.2.1 Preprocessing

As shown in Figure 1, we have tested several
possibilities8 for the spectral transform. 

Log-mel-spectrograms (LMS): following [11], we first
downsample the signal to 22,050Hz, then compute LMS
on 128 bins, with FFT windows of 2048 samples and
hopsize of 512 samples (~23ms).

Adapted low-res CQT: following [18], we compute a
12 bin-per-octave CQT from C3(~130Hz)9 t o
B10(~15.8kHz). Hop size is 1024 samples (~23ms). Only
the logarithm of the amplitude of the CQT is retained. In
order to preserve the temporal coherence of the
preprocessed signal, we halve the Q-factor of the bins in
the C3-B3 octave. In our adapted CQT, the size of the
analysis windows are limited to 2850 samples (~64ms). 

Adapted high-res CQT: to better account for IPTs such
as glissandi and vibrato, we also experiment with a
doubled bin-per-octave resolution above C5. The total
number of bins of the CQT increases from 84 to 144.
Since analysis windows are bounded, we cannot extend
this resolution to the lower two octaves without
deteriorating further the corresponding Q-factors. 

In all configurations, we filter out low-energy frames
(with average LMS or CQT < -79dB), normalize the data
and cut it into fixed-length sequences of 60 frames
(~1.4 s). Short sequences are less likely to include the
attack of long notes, which is critical information for the
network. A sequence length of 60 frames is an empirical
compromise between this loss of information and the
computing cost of longer sequences.

8 We use the Librosa [20] implementation for LMS and CQT.
9 It has been assumed that the lower octave of the cello would be

analyzed with enough detail without the fundamental frequency
being reported.

4.2.2 Folded Constant Q-Transform (F-CQT) 

We introduce F-CQT as a generalization of the pitch
spiral method [18] in order to capture efficiently the
spectral envelope of a signal. It is obtained by first
changing the pitch order of the CQT chromatic bins to
match the cycle of fifths. The reshuffled CQT is then
folded in 2 dimensions so as to put successive octaves on
adjacent lines, in the same manner as the pitch spiral.

Figure 2. F-CQT example for a C4 note: (i) each CQT
frame is reshuffled on an octave-per-octave basis, folded
(ii) using 2-octave wide half-overlapping bands, in order
to avoid side effects. A kernel (iii) of size 12 captures 8
out of the first 12 harmonics including the fundamental. 

As shown in Figure 2, bins related to the harmonics
f2i+3j = f1 2i 3j of a given fundamental f1 remain in its close
neighborhood. Therefore, a small convolutional kernel of
3 fifths x 4 octaves10 will capture 8 out of the first 12
harmonics. This is achieved without resorting to a
computationally expensive harmonic-CQT [2].
Convolution with such a kernel can be seen as a 1D
frequency-wise convolution of the usual CQT with a
disjoint filter: the F-CQT filter. To capture the same

10 Tradeoff between the number of harmonics captured and the size of
the kernel. A higher number of octaves results in blurring the
picture with several harmonics on the same bin.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

711



harmonics with a regular 1D-kernel would require a
much bigger kernel size (43 parameters instead of 12).

4.2.3 CNN Back-end

We assume that the nature of our task is somewhat
similar to the recognition of instruments in a challenging
environment such as polyphonic textures. Therefore, we
follow the main characteristics of the CNN architecture
presented in [11], while adapting its capacity to our data. 

The proposed CNN is made of 3 modules which
operate at increasing scales. In each module we stack two
identical convolutional layers, with batch normalization
a n d Rectified Linear Unit (ReLU) activation. A max-
pooling layer and dropout at 0.25 probability are
implemented at the output of the module. Following the
architecture design of [11], we use as baseline square
(3x3) filters11 for all layers. However it has been
suggested in recent research [23] that domain-specific
filtering could improve CNN performance, especially in
the deeper layers. Therefore, we evaluate the use of three
separate filters, namely our F-CQT, the baseline (3x3)
and a (6x2) filter; the latter is designed to capture longer
patterns such as vibrato or trills. The concatenation of 8
feature maps for each filter is used as input of the second
module. Max-pooling layers are in charge of
downsampling the features while the number of feature
maps increases12. The output of the CNN is a 10 step long
sequence of 64 maps with a single feature (one step
equals six frames ~125ms). 

4.2.4 IPT Classifiers (Front-end)

In configurations A to C, IPT classifiers are built with a
fully-connected (FC) layer of 32 neurons with ReLU
activation, followed by another FC layer with softmax
activation. The latter comprises as many neurons as there
are classes in the corresponding axis [10]. 

In configuration D (resp. E), we replace the first FC
layer with a double (resp. single) layer of 32
unidirectional LSTM cells with an input of 64 features
per temporal step. 

In configuration E, following [12], an additional
classifier with the same design is jointly trained to locate
the attack of the last note of the sequence. Its eleven
classes coincide with the 10 steps of the sequence plus
one: this additional class is used to categorize sequences
of long notes where the attack occurs prior to the
beginning of the sequence. The prediction of this onset
classifier is concatenated with the original features and
used as input to the 4 IPT classifiers.

A rule-based system computes an 18-class linear
classification from the network predictions along the 4
IPT axes. The same rules are applied to the ground truth.
An 18-class accuracy is provided as an additional
assessment of the performance of the system. 

11 2D filters are noted: N time frames x M frequency bins. 
12 Detailed architecture available here:https://drive.google.com/open?

id=1GvS6VQ3iJP6e9MBajEPL0VOXva-iuUmS

4.3. Training Configuration

The system is trained by minimizing the sum of the cross-
entropy loss function of the classifiers. Mini-batch
gradient descent is performed with ADAM optimization
[10] and exponential decay of the learning rate13. 

5. RESULTS

5.1 Direct classification (18 classes)

We first attempted to build directly a classifier among 18
cello IPTs, chosen simply because they were the most
represented IPTs in our data. Our network architecture
(called A18) was similar to configuration A, but with a
single 18-class classifier front-end. This effort resulted in
excellent accuracies when the classifier was tested on
homogeneous subsets of our corpus (see Table 2).
However, these results collapsed when the minus-1db
methodology was implemented. Not only average
accuracies dropped below 50% but they were very
irregular from one test base to the other. This indicated a
poor ability to generalize. 

Table 2. 18-class accuracy of configuration A18 with a
single 18-class IPT classifier front-end. Results are given
for 5 different training/testing subsets and averaged on 3
alternative learning schedules. 

5.2 Introduction of our taxonomy

Trained and tested on 5 homogeneous subsets of our data,
our models still yield in average 18-class accuracies over
90% in all the configurations (see Table 3). In the
framework of the minus-1db methodology, they now
exhibit much greater resilience. Their 18-class accuracies,
averaged on all test bases, are above 50% in most
configurations. These accuracies are also less sensitive to
the choice of the test base, as shown by Figure 3 in the
case of configuration D.

Table 3. Parameter count and 18-class accuracy of
configurat ions A-E, averaged on 5 different
homogeneous or heterogeneous training/testing subsets
and 3 alternative learning schedules. 

On all axes but the interaction position, whatever the
resolution, CQT with adapted filtering performs better
than 128 bins log-mel-spectrograms (see Table 4). For

13 Detailed training parameters available at the same URL as 12. 

18-class accuracy

CONT 92,9% 49,9%
EWQL 94,0% 30,3%

ISI 95,2% 51,1%
VSL 97,3% 44,0%
VO 93,4% 32,4%

94,6% 41,5%

Database
excluded from

training
Homogeneous

corpus
Heterogeneous

corpus
(minus-1db)

Average A18

Configuration

18-class accuracy

A (LMS) 184K 93,5% 49,6%
B (Low-res CQT) 180K 90,1% 52,2%
C (High-res CQT) 181K 91,2% 54,3%
D (2 layers LSTM) 150K 91,3% 57,6%

E (Joint onset class.) 142K 91,7% 57,6%

Parameter
count Homogeneous

corpus
Heterogeneous

corpus
(minus-1db)
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instance, configuration C achieves better average and 18-
class accuracy than A with roughly the same parameter
count (Student t-test resp. p=0.046 and 0.004). 

Table 4. Minus-1db framework : per-axis and average
accuracies in each configuration, for all 5 test databases
and 3 alternative learning schedules. 

We hypothesized that increasing the resolution of the
CQT beyond the tempered scale would improve system
accuracy for such IPTs as vibrato or glissando. Our
experiment confirms that configuration C yields better
average accuracies than configuration B on the left-hand
axis (p=0.023). This results in better 18-class accuracy
(p=0.045). 

Configuration D with a 2-layer LSTM front-end
achieves better average and 18-class accuracy than C
with a fully-connected front-end (resp. p=0.039 and
0.02). Configuration E with joint onset classification but
single-layer LSTMs also achieves better 18-class
accuracy than C (p=0.016) with even lower parameter
count. In both configurations E and D, all axes exhibit
average improved performance compared to C but
detailed results show discrepancies from one test base to
the other. 

Figure 3. Accuracy per base and axis (configuration D). 

In all tested configurations, the best accuracies are
observed on the exciter/vibrator axis, while the worst-
performing axis is interaction position. This statement is
valid across most test databases, as seen in Figure 3 for
configuration D. Bow position classification is likely to
be a very difficult task even for a human expert. In the
medium register, the choice of the string has a strong
impact on the timbre, which makes the bow position
harder to guess. In the higher register, sul tasto (with
stronger emphasis or lower rank harmonics) and
ordinario may be hard to distinguish. Finally, this is the
axis where variability due to the instrument model is
likely to be most perceivable. 

5.3 Reactivity study

Our real-time classifier has to be as reactive as possible to
sudden changes in the play of the cellist. To assess that

reactivity, we select sequences in our test database where
a change of IPT just occurred on the last note (or chord)
of the sequence. We compute the average accuracy of the
system as each time frame goes by. As Figure 4 exhibits,
exciter is the axis where the classifier is most reactive,
achieving >70% accuracy within 70ms of the attack.
Unsurprisingly, it takes much longer for the network to
categorize left-hand activity (e.g. vibrato, trills) or
discriminate between waveforms, which often requires
the note to be released (e.g. staccato). Finally, not only
the bow-position axis yields poorer overall accuracy, but
it is also the least reactive. 

When the attack of the note gets out of the 60 frame-
wide analysis window (see Figure 4, right side), the
system has to categorize IPTs without information about
the attack. However, its performance is not harmed as one
could expect. Indeed, the actual length of the note
provides information about the technique used. Longer
notes tend, for instance, to be produced with the bow and
to be vibrated or trilled.  

Figure 4. Average accuracy for sequences with an IPT
change vs. time lapsed between change and prediction
(10 frames~0,23s). Test base: ISI, configuration D.

6. CONCLUSIONS

In this article, we have extended state-of-the-art methods
regarding instrument recognition to the real-time
classification of IPTs from cello solo recordings. First
experiments in the framework of the minus-1db
methodology show a good resilience of models which are
based on a meaningful taxonomy and process an adapted
CQT through the proper combination of deep CNN and
LSTM layers. Our methodology, from the realization of
the databases to the architecture and training of the
networks, can be extended with little effort to other string
instruments. Other orchestral instruments first require an
adaptation of the IPT taxonomy, which could be
grounded on the same principles as ours [3,8,26]. 

To further assess the ability of our models to
generalize, a database of contemporary cello solo
recordings has been built, some of which will be
annotated with the JAMS standard and used for testing.
Finally, several unsupervised adaptation techniques, such
as Maximum Classifier Discrepancy [25] or back-
propagation through Gradient Reversal Layer [9], will
also be tested in this environment. 

Accuracy / Configuration

A (LMS) 72,6% 84,2% 66,6% 77,1% 62,7%
B (Low-res CQT) 73,6% 85,6% 71,1% 78,1% 59,7%
C (High-res CQT) 74,7% 86,0% 72,6% 78,6% 61,7%
D (2 layers LSTM) 76,0% 87,0% 73,4% 79,9% 63,5%

E (Joint onset class.) 75,6% 86,7% 73,8% 79,5% 62,2%

Average
on all
axes

Exciter/
vibrator

Left-
hand

Wave-
form

Int.
Position
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ABSTRACT

Musicology research is a fundamentally humanistic en-
deavor. However, despite the productive work of a small
niche of humanities-trained computational musicologists,
most cutting-edge digital music research is pursued by
scholars whose primary training is scientific or compu-
tational, not humanistic. This unfortunate situation is
prolonged, at least in part, by the daunting barrier that
computer coding presents to humanities scholars with no
technical training. In this paper, we present humdrumR
(“hum-drummer”), a software package designed to afford
computational musicology research for both advanced and
novice computer coders. Humdrum is a powerful and in-
fluential existing computational musicology framework in-
cluding the humdrum syntax—a flexible text data format
with tens of thousands of extant scores available—and the
Bash-based humdrum toolkit. HumdrumR is a modern
replacement for the humdrum toolkit, based in the data-
analysis/statistical programming language R. By combin-
ing the flexibility and transparency of the humdrum syn-
tax with the powerful data analysis tools and concise syn-
tax of R, humdrumR offers an appealing new approach to
would-be computational musicologists. HumdrumR lever-
ages R’s powerful metaprogramming capabilities to create
an extremely expressive and composable syntax, allowing
novices to achieve usable analyses quickly while avoiding
many coding concepts that are commonly challenging for
beginners.

1. INTRODUCTION

Though digital musicology has been a productive area of
research for several decades (e.g., [2, 8, 12, 16, 18–20, 22–
24,26,28,29]), it remains a niche field within the musical-
side of academia. In fact, most cutting-edge, scientific
music research has been pursued by researchers with pri-
mary training in computer science and psychology. Fortu-
nately, recent years have seen a flourishing of “digital hu-
manities” research in general, with increasing numbers of
traditional humanities scholars adopting computational ap-

c© Nathaniel Condit-Schultz, Claire Arthur. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Nathaniel Condit-Schultz, Claire Arthur. “hum-
drumR: A New Take on an Old Approach to Computational Musicology”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

proaches. Humanist music scholars’ deep, nuanced knowl-
edge of musical culture, structure, and practice could be
an invaluable asset to the computational/empirical music
research community. Unfortunately, the training neces-
sary for fruitful computational scholarship is absent from
most music curricula, which cover neither the fundamen-
tal methodological principals of empirical research nor the
necessary coding skills. The need to assist, and convince,
music scholars to learn programming has been an area of
active discussion for some time [7], in particular there is
a need for software tools crafted to support their learning
and research goals [32].

To make computational research truly appealing and
accessible to traditional humanists and seasoned compu-
tational researchers alike, we must juggle three conflict-
ing factors: flexibility, power, and usability. User-friendly
interfaces like the Josquin Research Project’s Analysis
Tools 1 , Theme Finder 2 , or rapscience.net’s Visualizer 3

can be utilized by scholars with no special training. How-
ever, such tools allow only variations of hard-coded anal-
yses applied to limited, fixed databases. On the op-
posite extreme, any skilled programmer can code their
own symbolic music data formats and analysis/parsing
software “from scratch”—as many computational projects
[4, 11] have done—, allowing for the unlimited power
of the programming language of their choice, but requir-
ing substantially more effort and experience. The most
prominent modern computational musicology toolkit—
music21 [10]—, in our estimation, falls too close to the
later extreme, proving quite daunting to novice coders.

This paper describes humdrumR (“hum-drummer”), a
software toolkit for symbolic musicological data analysis
intended to be appealing and accessible to traditional mu-
sicologists while also being useful to more experienced
computational researchers. Learning lessons from the suc-
cesses and failures of existing tools, humdrumR strikes a
powerful new balance between flexibility, power, and us-
ability:

1. Using the humdrum data syntax, humdrumR is ex-
tremely flexible and general in scope, allowing users
to study any type of performance-art data that can
be represented symbolically—musical scores, dance
steps, trumpet fingerings, etc.

1 http://josquin.stanford.edu/search/
2 http://www.themefinder.org/
3 http://rapscience.net/Analysis/gui.html
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2. Based in the R programming language, humdrumR
is extremely powerful, capable of complex data ma-
nipulation and interfacing with R’s statistics, visual-
ization, and machine learning libraries.

3. humdrumR is designed to present a relatively low
barrier of entry for non-technical researchers, offer-
ing a concise, expressive syntax for applying music
analyses while avoiding difficult coding paradigms.

In 2005, musicologist and psychologist Nicholas Cook ob-
served that to truly engage in computational musicology
“proper,” scholars must achieve “sufficient understanding
of the symbolical processing and data representation on
which it’s based” [7]. We believe that the combination of
humdrum and R represents an ideal avenue for computa-
tional novices to develop this “sufficient” understanding:
enough to pursue quality computational research but with-
out having to engage with general coding paradigms that
are irrelevant to their research.

In this paper, we first review the relevant philosophi-
cal and technical features of humdrum and R, noting how
humdrumR incorporates these features (sections 2 and
3). We next contrast humdrum(R) coding philosophy and
style with that of music21 (section 4). Finally, we de-
scribe the principle features of the humdrumR package
and humdrumR syntax (section 5), including numerous
code examples.

2. HUMDRUM

Humdrum 4 is a system for computational musicology re-
search, created by David Huron [17] (circa 1995) and
maintained by Craig Sapp at Stanford’s Center for Com-
puter Assisted Research in the Humanities. Though no one
digital musicology framework has ever truly dominated the
field, humdrum is certainly among the most widely used
and influential systems, being cited as the direct inspiration
for some of its most successful competitors—music21
[10] and MusicXML [13]—and with tens of thousands of
scores available in humdrum format. Humdrum actually
has two distinct components: the humdrum syntax and the
humdrum toolkit.

The humdrum toolkit is a collection of Unix command-
line tools for parsing and analyzing humdrum data, largely
written in Bash and AWK but with more recent “extra”
commands written in C++. 5 The humdrum toolkit is fun-
damentally entwined with the Bash shell, in particular the
grep and sed commands, which rely heavily on regu-
lar expressions to parse and filter tokens. The humdrum
toolkit also includes a number of analysis tools, notably
the sophisticated windowing and n-gram tool context
and the pattern finder patt. Using the toolkit, basic pars-
ing and analysis can be achieved quickly and easily in
Bash command pipes, but true Bash scripting is required
for even mildly complicated tasks. In practice, after initial
parsing, humdrum users must transition into a higher-level

4 http://www.humdrum.org
5 Sapp also maintains a C++ development library for humdrum tools

called humlib (https://humlib.humdrum.org/).

programming environment (Python, R, MATLAB, Julia,
etc.) to achieve more complex data manipulation, statisti-
cal testing, or data visualization. The burden of parsing and
manipulating humdrum data in the higher-level language
falls on the user, substantially increasing the need for cod-
ing skills and prolonging the workflow. To make matters
worse, installation of the humdrum toolkit can be fairly
complicated, especially for Windows users, who must in-
stall a Unix emulator to use the toolkit at all.
HumdrumR is a successor to the humdrum toolkit, re-

placing all the original toolkit’s functionality while adding
significantly more. However, humdrumR uses the origi-
nal humdrum syntax specification, and is thus compatible
with all existing humdrum data. In fact, both the techni-
cal design and methodological philosophy of the humdrum
syntax are fundamental to humdrumR.

2.1 The Humdrum Syntax

The humdrum syntax is an extremely general scheme for
representing musicological data in plain-text. The syntax
is basically tabular (tab-delineated columns) but with a few
additional complexities:

• Columns of data are interpreted as spines, which
can dynamically start, end, split, or merge, creating
spine paths. Spine paths allow the syntax to repre-
sent many complex cases from music notation: For
example, if the upper staff of a piano score splits
temporarily into two voices (one with beams up, the
other with beams down), this can be encoded by
splitting the spine representing that staff into two
columns (with a *^ token) before merging them
again after the split passage (*v tokens).

• Humdrum records are tagged as interpretation
records (representing local metadata) or data
records (notes, chords, etc.). By simply interspers-
ing interpretation and data records, metadata can be
concisely associated with specific data points, pas-
sages, or sections. For example, key information can
be quickly read, edited, or added to scores by simply
inserting lines containing tokens like *f#: (f# mi-
nor). This approach contrasts with the more verbose,
hierarchical attributes and tags used in XMLs.

• Finally, each “cell” (i.e., each line-column coor-
dinate) in a humdrum file can contain multiple
data tokens—a feature commonly used to represent
chords but with myriad other potential use cases.

The humdrum syntax provides a data structure but says
nothing about how information is actually encoded in data
tokens. Rather, specific interpretation schemes must be
defined. A few well-specified interpretations for music
are widely used, most notably the **kern representation.
However, users can freely define new interpretations, with
the appropriate degree of rigour/precision/complexity for
the task at hand. Thus, humdrum is not limited to tradi-
tional Western notation, but rather affords the study of non-
Western, vernacular, or avant-garde musics, as any type of
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musical feature, data, or metadata to be easily encoded in
the same place. This presents a stark contrast with nearly
all other music encoding schemes, including MuseData
[15], abc [30], TinyNotation [9, ch. 16], LilyPond [25], and
MusicXML, all of which are limited to representing music
as, or in terms of, Western music notation—for instance,
representing diatonic note names. Though **kern repre-
sents music in similar terms, the humdrum syntax in gen-
eral has no such limitation. 6 Though the actively devel-
oping MEI [14] encoding standard can be extended to in-
corporate arbitrary music information, the emphasis of the
MEI community is nonetheless representing music nota-
tion(s) for purposes of library science and score preserva-
tion and dissemination, not analysis.

Data encoding schemes inevitably balance read/
writeability with power and flexibility [9, ch. 16]). No-
tation systems such as abc notation and TinyNotation
achieve nearly effortless human read/writeability, but with
severely limited representational possibilities. 7 On the
opposite extreme, MusicXML and MEI can encode ex-
tremely complex, sophisticated score information, but are
difficult to read/write directly. Humdrum achieves a bal-
ance between these extremes: though not quite as extend-
able as MEI, the humdrum syntax nonetheless affords a
huge variety of approaches to encoding data. On the other
hand, though humdrum’s top-down, tab-delineated format
certainly makes editing slightly more cumbersome than
editing abc or TinyNotation, most humdrum interpreta-
tions are comparably readable.

Like other easy notation schemes (abc, tinyNotation,
LilyPond), humdrum interpretations often embed multi-
ple pieces of information in each token. For instance, the
**kern token (4.aL/ encodes information about slurs
((), rhythm (4.), pitch (a), beaming (L), and stem direc-
tion (/). This “dense” approach allows a large window
of musical time (for instance, several measures of multi-
part music) can be seen on a single screen. This contrasts
with, for instance, MEI which spreads specific pieces of in-
formation across nested tags, making it impossible to see
more than a few notes in a single screen. Such complicated
tokens can also be written and edited rapidly, once you are
familiar with the encoding. However, kern’s “dense” ap-
proach is but one option given humdrum’s flexible syntax:
information can be spread across multiple spines/columns
(like MuseData) in whatever manner is most appropriate
for data analysis. For example, the MCFlow corpus of
rap transcriptions [6] encodes eight pieces of information
across eight separate spines.

Human read/writeability is not just important to the pro-
cess of data creation and curation, but is in fact essential to
humdrum’s entire methodological philosophy: humdrum
emphasizes epistemological transparency by forcing users
to engage directly with their symbolic data representations,
even as they are filtered and transformed. Indeed, in tradi-
tional humdrum work flows, we apply repeated transfor-

6 Conversely, humdrum/**kern is not as optimized for representing
the details of music engraving as LilyPond, MEI, or MusicXML.

7 However, music21 includes an API for extending TinyNotation,
useful to those with the requisite coding skills.

mation to humdrum data tokens while maintaining, and vi-
sualizing the simple, readable humdrum syntax with each
transformation. This dramatically improves the process of
debugging and makes the series of steps from input to out-
put clearer for novice users. Humdrum, thus, truly supports
Cook’s [7] call for a direct understanding of symbolic rep-
resentations and processes. Consistent with this philoso-
phy, humdrumR commands also reconstruct and display
readable humdrum data even as the data is manipulated,
maintaining a clarity and transparency which is easily lost
when coding with complex data structures.

Though alternative data encodings have proven highly
useful in contexts of research (MuseData, abc, MEI),
file interchange (MusicXML), composition and engraving
(TinyNotation, LilyPond, MEI), and performance (MIDI),
the humdrum syntax offers an optimal combination of flex-
ibility, read/writeability, and epistemological transparency,
and is thus an ideal target for a new computational musi-
cology toolkit. Fortunately, our focus on a single encod-
ing scheme is not a limiting factor, as software to translate
between **kern and most important representations—
including MIDI, MusicXML, and MEI—is already avail-
able. In fact, fruitful cross-fertilization between musical
data ecosystems is common: for instance, MEI’s extraordi-
nary Verovio score viewer has already been adapted as the
Verovio Humdrum Viewer 8 , making it easier than ever to
visualize and edit humdrum data.

3. R

R [27] is a free, cross-platform, open-source “environment
for statistical computing and graphics”—a domain specific
programming language designed specifically for data anal-
ysis. R has a large ecosystem of data-analysis and statis-
tics packages, most available through the Comprehensive
R Archive Network (CRAN); As of now, the only pro-
gramming environment with a comparable ecosystem for
data analysis is Python. However, being less popular than
Python for general programming, R’s ecosystem is com-
paratively focused and uncluttered, with a higher quality
floor. R’s standard library (“base” R) itself contains anal-
ysis and visualization features which will satisfy the needs
of many musicological research projects. Even when us-
ing external libraries, R users rarely encounter dependency
issues—in fact, the process of installing R, humdrumR,
and its dependencies is trivial on any operating system,
even for beginner programmers, with no need for exter-
nal package managers, virtual environments, “sandboxes,”
etc.

R excels at exploratory, ad hoc data analysis in short
scripts or in the read-eval-print loop (REPL), making it
easy to quickly manipulate, filter, and visualize data “on
the fly.” Indeed, a focus on simple scripting and “con-
strained” projects, without concern for more general soft-
ware development issues, is core to R (and humdrumR)
philosophy, making R an excellent avenue for learning pro-
gramming purely for data analysis. This coding paradigm

8 http://verovio.humdrum.org/
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is well suited to the constrained, stand-alone projects typ-
ical of theory-driven musicological research projects. The
R ecosystem also includes a number of useful, free, soft-
ware tools for enhancing the productivity, reproducibility,
and presentation/sharing of research conducted in R. No-
tably, RStudio is a free, high quality integrated develop-
ment environment for R. R is also one target of the Jupyter
project [21], with RStudio too incorporating a suite of
mark-up, notebook, and presentation tools. Finally, RStu-
dio’s shiny package [5] provides an easy means of creat-
ing interactive R data visualizations in the browser.

Though R is generally best suited to a combination
of procedural and functional styles of programming, it
nonetheless includes Object-Oriented Programming fea-
tures suitable for defining simple classes. R’s S4 ob-
ject system is oriented around multiple dispatch—generic
functions can be defined which call specific methods based
on the types of any or all of the function’s arguments, not
just their first argument. In languages featuring multiple
dispatch (Julia, Common Lisp, Smalltalk, etc.), methods
are not bound within classes. As a result, the object system
operates in the background: novice users benefit from the
features afforded by the object system—for instance, com-
mon functions like summarize can be applied to nearly
any type of R object, getting useful results—without ever
having to consciously engage with the system.

One of the core philosophies of R is “vectorization”:
treating data collections (especially vectors and arrays)
as conceptually singular objects. HumdrumR leans into
this philosophy, allowing users to think and operate on
humdrumR data collections holistically. One concrete re-
alization of this approach is that humdrumR users can
completely avoid explicit iteration (i.e., loops): Iteration
is abstracted by the humdrumR API, allowing users to de-
cide solely what processes to apply to data tokens, not how
to apply them to each token. HumdrumR defines a num-
ber of useful data classes, yet the R approach makes these
classes an implementation detail that novice programmers
need not understand.

3.1 Metaprogramming

The final key to the R ecosystem’s concise data analysis
syntax is its subtle use of metaprogramming [31, ch. 17–
21]. In particular, numerous R packages use a shared do-
main specific language for specifying statistical models us-
ing R “formula” [31] objects. 9 Created using the ~ op-
erator, R formulae capture (“quote”) surrounding R ex-
pressions as well as their local namespace. R’s metapro-
gramming features allow the programmatic manipulation
of these formulae, for instance, using the update routine.
Again, though metaprogramming is essential to R code,
only advanced developers will ever need to explicitly en-
gage with metaprogrammming concepts.

9 For example, Y ~ X*Z + (1|G) describes a linear model pre-
dicting the variable Y using predictors X and Z, and the interaction be-
tween X and Z, with random-effect intercepts specified for each level of
the grouping factor G.

4. music21

Music21 is a Python library for symbolic music gen-
eration and analysis, with an extensive set of tools ex-
tending well beyond the capabilities of the humdrum
toolkit, and which easily integrates with Python’s extensive
ecosystem (statistics and graphics libraries, etc.). Though
music21 and humdrumR overlap significantly in use
case, humdrumR offers a fundamentally different coding
philosophy and style.

Python syntax is famously simple to read/learn, yet
the Pythonic coding style of music21 nonetheless
presents challenges to would-be computational musicol-
ogists. Working with music21 requires one to engage
directly with a hierarchy of complex classes (with numer-
ous attributes and methods) and write many explicit control
and looping structures, including (in typical analyses) mul-
tiple nested for loops. In contrast to humdrum, which re-
lies on plain-text strings to encode information, music21
parses musical scores into numerous complex data ob-
jects. Notably, music21.Note contains a rich set of at-
tributes and methods for describing “notes.” This complex-
ity, though highly useful to experienced coders, is a bar-
rier to entry for novices, for whom the practical reality of
carrying out a computational musicology project is all but
impossible. This is in part due to the style of music21’s
User’s guide, which necessarily gets bogged down explain-
ing detailed functionality of how to represent, extract and
manipulate low-level features (e.g., parts, notes, etc.) at
the expense of explaining larger-scale processes like, for
instance, how to search through a corpus of music to com-
pare n-grams. Finally, Music21’s object hierarchy pri-
marily represents musical score features—representations
for arbitrary extra-musical data (e.g., dance steps, finger-
ings) or musical metadata (e.g., formal labels, manual an-
notations) is not supported.
Music21’s Stream-based object model is (purposely)

extremely flexible [1]. As discussed above, the humdrum
syntax includes some scope for flexible variation (using
spine paths, for instance), yet humdrumR’s data back-
end (section 5.1) nonetheless always has the same struc-
ture; thus, one can always assume the same data struc-
ture and thus that certain commands/routines will always
work. In contrast, music21 users must always first
determine the Stream-hierarchy of their data: are notes
nested within measures, within parts, or within chords, etc?
Similarly, music21’s highly sophisticated data classes
(like music21.Note) are fairly inflexible, whereas hum-
drum’s plain-text tokens are completely flexible. Again,
this later approach is consistent with humdrumR philoso-
phy, forcing users to think about and grapple with the trans-
parent details of how their musical information is encoded
and not about details of data structure.

As dynamically typed, interpreted languages, explicit
loops in either R or Python are notoriously slow. How-
ever, whereas music21 makes much explicit use of for
loops, humdrumR enables users to exclusively use “vec-
torized” R and an optimized split-apply-combine back-
end, to achieve fast execution of most commands. As a re-
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sult, humdrumR is generally much faster than music21.

5. HUMDRUMR

The humdrumR library defines a number of data object
classes and a suite of functions for manipulating these
classes. Most significant is the humdrumR class itself,
which encapsulates a corpus of parsed humdrum files, and
serves as the primary interface through which users inter-
act with humdrum data. HumdrumR includes a complete
humdrum syntax parser, which reads any valid humdrum
data—including all valid spine paths—into a humdrumR
data object. Invalid humdrum files are automatically
flagged and skipped, with line-by-line syntax error reports
generated on request. Consistent with the humdrumR phi-
losophy, the syntax for reading files is concise and power-
ful: users simply specify one or more regular expressions
matching files on their local disc. For instance, the com-
mand
readHumdrum("Bach/Chorales/chor.*krn")->chor

validates, reads, and parses all files matching the
regular expression "chor.*krn" in the directory
"Bach/Chorales" (370 files on our machine), wraps
them in a humdrumR corpus object, and assigns this ob-
ject to the variable chor. A set of summary functions are
included to quickly describe the size, content, and struc-
ture of a loaded humdrumR data objects. In addition, an
extensive suite of functions and classes for representing
and manipulating pitch and rhythm data is also included—
these tools reproduce much of the functionality of the orig-
inal humdrum toolkit—as well as music21’s core class
hierarchy—, with some significant improvements and ad-
ditions.

A great strength of the original humdrum toolkit is its
use of the Bash | (“pipe”) operator to concisely chain a
series of operations—a syntax that is highly accessible to
novice programmers. In recent years, the piping approach
has become popular in R [3], especially magrittr’s
%>% pipe operator. HumdrumR too incorporates a pipe
operator—%hum>%—which appears in all our subsequent
code examples.

5.1 Data Model

R’s primary native data structure is the tabular
data.frame. HumdrumR utilizes a popular exten-
sion of the base R data.frame, the data.table 10 :
an optimized data.frame which achieves database
manipulation performance comparable to Python’s Pandas
module, including an extremely fast split-apply-combine
routine. The HumdrumR class stores humdrum data in
a list of data.tables, with each individual data token
assigned to a single row. Data and metadata for each token
are encoded in named columns of the data.table,
called fields. The original string is encoded in the Token
field, with global and local metadata associated with that
token spread across other fields. Additional fields encode
the “location” (which file, spine, path, record, etc.) of each

10 https://cran.r-project.org/web/packages/data.table/index.html

token, encoding the structure of the original humdrum
data so that it can be reconstructed for visual inspection
after each modification. Users can freely create new fields;
for instance, **kern tokens can be parsed into various
pieces of information, each saved into a separate field: For
example, the commands
chor %hum>% as.recip -> chor$Duration
chor %hum>% as.midi -> chor$MIDI

create two new fields—Duration and MIDI—by apply-
ing the functions as.recip 11 and as.midi to the de-
fault Token field. These new fields can then be referenced
like any other field in subsequent calls.

5.2 API

Much of R’s expressive power arises from a subtle us-
age of metaprogramming to manipulate data.frames:
Several base R functions—including subset, with, and
within—allow users to input arbitrary R expressions
which are then evaluated within the data set using the ta-
ble’s named fields as a local namespace. HumdrumR ex-
tends this paradigm to humdrum data, allowing users to ap-
ply arbitrary expressions to humdrum data stored in the un-
derlying data.table back-end. Users capture expres-
sions as R formulae and humdrumR API applies them to
the data. These expressions can refer to any field in the
data, including fields created by the user. The command

chor %hum>% ~table(MIDI[Duration == "4"])

(using the MIDI and Duration fields defined in the
previous code block) extracts all MIDI values where the
corresponding rhythm is a quarter note—using the stan-
dard R indexing ([]) operator—and then applies the base
R table function, to tabulate these MIDI values. In a
sense, this approach is an abstraction of function defini-
tion: One creates an expression—equivalent to the body of
a function—but specifies no function arguments, as all data
fields from the humdrum data are automatically passed into
the expression if referenced.

The true power of the humdrumR arises through spe-
cial keyword formulae which modify the API’s behavior.
Most notably, the by keyword can be used to split-apply-
combine humdrum data. For instance, the command

chor %hum>% c(~table(MIDI[Duration == "4"]),
by ~ File)

applies the exact same processing as the previous code
block except the expression is applied separately to each
file in the corpus, creating 370 separate tables. Since the
humdrumR data fields include all data and metadata in the
dataset, any field can be used to group data.

Other keyword formulae afford complex windowing,
including n-grams, overlapping fixed-length windows, and
various dynamic windowing possibilities. Finally, another
set of keywords can be used to directly manipulate R’s
built-in visualization settings. Since formulae (including
keyword formulae) are first-class objects in R, all of these
expressions can be easily saved, composed, manipulated,

11 “Recip” is short for “reciprocal”—the humdrum term for standard
Western duration categories (eighth-notes, sixteenth-notes, etc.).
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and combined. For instance, we could save the tabling ex-
pression used above and use it in combination with various
keyword formulae:
tabQuarters <- ~table(MIDI[Duration == "4"])
chor %hum>% c(tabQuarters, by ~ File)
chor %hum>% c(tabQuarters, by ~ Spine)
chor %hum>% c(tabQuarters, by ~ Clef)

The humdrumR API also includes routines for filter-
ing and indexing a humdrum corpus. The standard R in-
dexing operators ([] and [[]]) can be used to select
pieces, records, or spines, either numerically or by match-
ing regular expressions. More sophisticated filtering can
be achieved through the use of humdrumR formulae: For
instance, the command
filterHumdrum(chor,

~Token %~% ’[EeAa]-’,
by ~ File)

selects all the files in the data set which contain the notes
E[ or A[.

To bring it all together, a simple, yet complete
humdrumR analysis script might look like this:
readHumdrum("Bach/Chorale/chor.*krn")->chor
chor %hum>% (~ as.midi(Token))

%hum>% (~ Pipe - 60)
%hum>% c(doplot ~hist(Pipe,

title = Clef,
xlim = c(30, 80)),

by ~ Clef,
mfcol ~ c(2,2))

These commands load the Bach chorale dataset, convert
the original data tokens to MIDI numbers, subtract these
numbers by 60 (to center them on middle C), then create
a separate histogram for each clef in the data (in a 2x2
grid 12 ). Note the use of the base R hist (histogram)
function, including the use of the title and xlim (x-
axis limits) arguments to give each plot a meaningful title
and place all plots on the same scale.

5.3 Developer Tools

HumdrumR is designed to be highly extensible. Even
novice users can quickly begin to create and save their own
routines as R functions, or simpler yet, as combinations of
humdrumR formulae. However, humdrumR also includes
several features to support development by more sophis-
ticated coders. All humdrumR data classes are intended
to serve as extensible bases for further development—
for instance, developers might choose to implement coun-
terpoint analysis algorithms using humdrumR’s basic
tonalInterval class and its wealth of useful meth-
ods (transposition, inversion, etc.). However, the most
significant tool for developers is humdrumR’s Regular-
Expression Method Dispatch System (REMDS). Interact-
ing with humdrum data requires extensive string manipu-
lation, typically using regular expressions, as one works
to extract the information one is interested in from hum-
drum’s “dense” character tokens. Using the REMDS, de-
velopers need only define normal R functions to manipu-
late the information they are concerned with and regular

12 The keyword mfcol is a base R graphics parameter which controls
the layout of plots in a grid.

expressions to match that information. The REMDS can
then be used to create generic functions which read an in-
put string and dispatch the appropriate method based on
matching regular expressions—what’s more, these meth-
ods can (optionally) be applied “in place,” only affect-
ing the substring which matches the desired regular ex-
pression. For example, the humdrumR pitch module de-
fines a number of functions which translate specific pitch
encodings (note names, solfege, intervals, etc.) to/from
humdrumR’s common tonalInterval pitch represen-
tation. The REMDS is then used to generate generic pitch
translation functions which call the desired method when
a specific regular expression is matched. For instance, the
function as.midi can be applied to strings containing a
variety of pitch representations, even when embedded with
other information (i.e., rhythm, beaming):

as.midi("4.cc#J") # "cc#" => **kern => 73
as.midi("4.C#5J") # "C#5" => **pitch => 73
as.midi("4.-M9J") # "M9" => **mint => -14
as.midi("4.soJ") # "so" => **solfa => 7

This approach allows users to use humdrumR functions
without having to explicitly manipulate strings or use reg-
ular expressions, one of the major barriers to learning in
the original humdrum toolkit. Many of humdrumR’s own
functions (like as.midi) are written using the REMDS,
and developers can utilize it to significantly reduce coding
effort when defining new functions.

6. FUTURE

The package source of HumdrumR 0.3.0 is currently
available on github (natsguitar/humdrumR); when devel-
opment solidifies, version 1.0.0 will be made available
on CRAN under the terms of the GNU General Public Li-
cense. However, releasing code is not enough to support
humanist scholars interested in coding—it is imperative to
provide high quality documentation and learning materials
in a style that is digestible for users who may be new to
computer programming. The most important contribution
of the original humdrum project was neither the syntax nor
the toolkit, but Huron’s extensive user guide [17]. 13 The
Humdrum User Guide offers a gentle introduction to em-
pirical/computational research from a humanistic perspec-
tive, walking readers through the practical and philosophi-
cal details and challenges of digital humanities work and
the conceptual transformations necessary to convert hu-
manistic thought into concrete code, using examples from
real musicology projects. HumdrumR too will ultimately
be accompanied by a humdrumR User Guide, including in-
teractive online content. Our goal is to not just teach the
mechanics of operating software in a friendly, hands-on
format, but also the conceptual framework needed to think
about music as data, introducing key scientific principles/
methods (data sampling, statistics, hypotheses, etc.) while
maintaining a holistic, humanistic perspective.

13 http://www.humdrum.org/guide/
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ABSTRACT

Music is well established as a means of social connection.
In the age of streaming platforms, personalized playlists
and recommendations are popular topics in music informa-
tion retrieval. We bring the focus of music enjoyment back
to social connection and examine how technologies can en-
hance interpersonal relationships, specifically through the
context of the collaborative playlist (CP). We conducted an
exploratory study of CP users and non-users (N = 65) and
examined speculative and experienced purposes and out-
comes of CPs, as well as general perspectives on music
and social connectedness. We derived a CP Framework
with three purposes—Practical, Cognitive, and Social—
and two connotations—Utility and Orientation. Both users
and non-users shared similar perspectives on music-related
activities and CP user outcomes. Projected and actual CP
purposes differed between groups, however, as did per-
ception of music’s role in connectedness in recent years.
These results highlight the importance of music-based so-
cial interactions for both groups.

1. INTRODUCTION

Music has traditionally prompted social cohesion through
mutually engaging properties such as cooperation and
group empathy [26]. The importance of music’s social
implications is underscored by research on social interac-
tions in online music sharing [8], in specific social con-
texts [2, 12, 13, 33], and in prototype designs [32, 34]. So-
cial aspects are even highlighted in research with broader
scopes. In exploring music information needs and be-
haviors through a large-scale user survey, researchers find
“there is a strong social component to people’s experience
of and interaction with music” [39]. Such studies underpin
the importance of technology’s mediation in music. Yet,
there is a relative dearth of research in current collabora-
tive technologies for our most intimate and social experi-
ences in music. Moreover, music’s socially engaging traits

c© So Yeon Park, Audrey Laplante, Jin Ha Lee, and Blair
Kaneshiro. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: So Yeon Park, Audrey
Laplante, Jin Ha Lee, and Blair Kaneshiro. “Tunes Together: Perception
and Experience of Collaborative Playlists”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

are increasingly jeopardized by technologies that propa-
gate individualized music consumption [17, 22].

Collaborative playlists (CPs), made possible through
access-based consumption (i.e., streaming), are increas-
ingly gaining traction [3]. For one, Spotify has allowed
users to co-create and co-modify a playlist since 2008 [19].
Despite the importance of music’s social qualities and in-
creasing popularity of music co-consumption platforms,
there is little research looking explicitly at today’s phe-
nomenon of collaborative playlisting. In contrast to related
topics on recommendation systems and personal playlists,
we lack an understanding of how CPs are used and en-
joyed. Therefore, we can neither evaluate nor improve cur-
rent systems in terms of meeting user needs and desires.
Given these social benefits, and the fact that 86% of indi-
viduals in large music markets are purported to consume
music via streaming platforms [24], characterizing the cur-
rent state of how users feel about and interact with collab-
orative music platforms in an effort to bring “social” back
into music is certainly a relevant topic in MIR research.

To address these needs, we explored the perception and
experience of CP engagement by building upon prior work
that identified behaviors and sentiments related to CPs
[36]. We analyzed responses to selected questions from a
larger survey to address the following research questions:

• RQ1: What are the distinct purposes and outcomes
of CPs?

• RQ2: How do purposes and outcomes differ from
those non-users predict CP usage would engender?

• RQ3: How do music perceptions, values, and habits
differ between CP users and non-users?

Ultimately, an understanding of designing HCI through
music co-consumption with better characterization of col-
laborative behaviors and needs from a user-centered per-
spective can help build HCI principles that can influence
the landscape of human collaborations.

2. RELATED WORK

In the past, music listening was almost inevitably a so-
cial activity, through jukeboxes, radio, or the family record
player in the living room. Only when music playback de-
vices became more affordable and portable did music lis-
tening become an activity that could be enjoyed individu-
ally [17, 18, 22]. But these new practices did not displace
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social practices around music. Research shows that music
is still enjoyed socially (i.e., used as a social agent) to rein-
force existing relationships and establish new ones [15,22].
Music preferences, especially during adolescence, play an
important role in identity formation individually but also
as a group of friends [18]; they convey information about a
person’s or group’s values and beliefs. Music social prac-
tices are not limited to listening with others. They also
include talking about music with friends and introducing
them to new music [7]. When music collections were es-
sentially or at least primarily physical, people shared mu-
sic and prepared compilations with or for their friends [7],
and mostly shopped for albums in music stores with others
rather than alone [14]. Now that music has migrated on-
line, have these social practices migrated too? Have mu-
sic streaming services’ collaborative and sharing features
given rise to new social practices?

The advent of peer-to-peer (P2P) file sharing services
(e.g., Napster, Gnutella) marked a turning point in music
distribution and consumption. Researchers examined the
social practices of users in these “online communities”.
Although these services offered ways for users to connect
(e.g., chatrooms), few users “actively [sought] out chat or
information sharing” [16]; interactions between users were
“relatively infrequent”; and ties between them were mostly
weak [37]. Brown and Sellen [7], who compared music
sharing online and offline, concluded that when music was
shared online, the social component of the activity was
“stripped away”. A study on iTunes sharing revealed that
design decisions—such as partial user identification, and
using a subnet ecosystem rather than P2P or in-person—
impacted how social aspects of music sharing were sup-
ported [42].

More recently, music streaming services have enabled
ubiquitous access-based consumption [3], and conse-
quently have fueled research focused on selection, discov-
ery, and listening through personal music collections [11,
20, 27, 39]. Streaming services have also provided many
new affordances for supporting social music practices, one
being the possibility of creating CPs. Even works on gen-
eral music enjoyment and practices highlight “the grow-
ing need for tools to support collaborative music seeking,
listening, and sharing” [29]. As such, works on creat-
ing social music technologies have been particularly nu-
merous. Prototypes that aim to heighten the “extensive
social functions” that music serves have been developed
in the form of physical devices [32, 35] and digital plat-
forms [5, 23, 25, 30, 31, 34]. Other works consider music
recommendation based on group preferences [6, 9, 10] or
integrate the collaborative functionality with other social
components, such as interpersonal conversations [4], con-
flict management [41], and synchronous enjoyment [40].
These studies provide insights into the various aspects
tackled or addressed in designing CP products. However,
to the best of our knowledge, there have been no user stud-
ies on collaborative playlists or literature that considers
long-term usage and outcomes relating to commercially
available CP platforms. Therefore, we know very little
about how CPs are used and perceived.

3. METHODS

3.1 Survey Design

Building upon past work [36], we designed a survey com-
paring CP users and non-users. We defined a CP as “a list
of songs that multiple users have created using a digital
platform”; CPs are distinguished from personal playlists
in that they are also modified by other users. Our survey
comprised open-ended and multiple-choice questions on
perceived or experienced CP motivations, purposes, and
outcomes; changes in behavior resulting from CP engage-
ment; characteristics of users’ favorite CPs; and impacts of
CPs and music on social connectedness. We recruited par-
ticipants through an introductory university music class,
online music communities (e.g., Music group on Reddit),
and social media (e.g., Twitter, Facebook). Anyone 18
years or older and fluent in English was eligible to par-
ticipate. We provided no compensation for participating.
Ethics approval was obtained from the Institutional Review
Board of Stanford University.

3.2 Analyses

We focused on a subset of questions regarding CP purposes
and outcomes, as well as music-related activities and mu-
sic’s role in social connectedness (questions are listed in
Table 1). A three-step approach was used to analyze free-
text responses (Q1). First, we decomposed each response
into individual ideas and used affinity diagrams to group
ideas in a data-driven fashion. We then categorized and
labeled each of the groupings that emerged. Finally, the
original responses were re-coded based on the identified
groupings, and we computed counts and percentages of CP
user and non-user responses that fell into each grouping.
Quoted responses reference participants as “U” for users
and “N” for non-users, followed by anonymized numbers.

Statistical analyses and data visualizations were con-
ducted in R [38]. Differences between CP users’ and non-
users’ word counts (Q1) and ordinal responses (Q2–Q4)
were assessed using two-tailed Wilcoxon rank-sum tests.
For Q2–Q4, each question comprised multiple responses
(Table 1), so these p-values were corrected for multiple
comparisons, on a per-question basis, using False Discov-
ery Rate (FDR). We report significant (p < 0.05) and
marginally significant (0.05 ≤ p < 0.10) results, and
FDR-corrected p-values.

4. RESULTS

We collected complete responses from 65 participants;
58% (N = 38) were CP users. Of users 42% were female
(N = 16), and of non-users 41% were female. Partici-
pants ranged in age from 18–64 years (median 21 years);
89% (N = 58) resided in North America, with remain-
ing participants from Europe (N = 4), Asia (N = 2),
and South America (N = 1); and 86% (N = 56) were
students. All CP users used Spotify to engage in CP activi-
ties, and Spotify was dominant among this group for other
music consumption activities. Non-users were more varied
in their choice of platforms (e.g., Apple Music, Pandora).
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Topic Question Response Respondents

Q1 Purposes What purpose(s) does/might a collaborative playlist
serve for you?

Free-text Users,
interested non-users

Q2 Outcomes Collaborative playlist(s) have/could...
(10 statements, e.g., Diversify music library, Require less
effort to enjoy music, Influence music taste positively).

Ordinal Users, all non-users

Q3 Social connection
through music

Please select the option that best represents your
opinion on the following statements over the past 5
years: (4 statements, e.g., Personally, connecting with
others through music has declined).

Ordinal Users, all non-users

Q4 Importance of music
activities with others

How important are these activities to your social
relationships? (6 statements, e.g., Listening to recorded
music with others, Sharing music with others).

Ordinal Users, all non-users

Table 1. Survey topics, questions, response types, and respondents.

4.1 Purposes (Q1)

In answering RQ1 and RQ2, we unpacked free-text re-
sponses on CP purposes from all users as well as non-users
who expressed interest in joining and/or initiating a CP (to-
tal N = 55). 1 Five main categories emerged from the
affinity diagramming analysis (Figure 1): Three categories
relating to purpose (Practical, Cognitive, and Social) and
two relating to connotation (Utility and Orientation). Ev-
ery response could be classified under at least one category,
and many responses implicated multiple categories (i.e.,
category membership was not mutually exclusive). The
subcategories emerged from our set of responses but are
not exhaustive, and therefore may be expanded further.

Responses categorized as Practical implicated both the
playlist object itself (the artifact) and the experience of
playlist creation (the process). Users cited specific events
(e.g., “party” (U21), “road trip” (U3)) or themes (e.g.,
“workout” (U16), “Christmas music” (U17)) as CP pur-
poses; one non-user response (“serve as an outlet for enter-
tainment” (N8)) suggested CP creation could itself be in-
trinsically enjoyable. Cognitive responses involved learn-
ing and discovery, both about music and about others, and
thus centered around the user receiving information. Here,
music discovery responses ranged from broad statements
(e.g., “discover new music” (various)) to discovery specif-
ically within or outside of established tastes (e.g., “get ex-
posed to new music within my general musical interest”
(N29) versus “finding interesting new music, particularly
in genres I’m less familiar with” (U36)). Learning and
discovery about others tended to focus on either listening
habits or musical preferences of family and friends. Social
responses reflected purposes directed outward from users.
Responses around sharing ranged from very general (e.g.,
“share my music” (various)) to sharing with specific oth-
ers (e.g., “sharing music with friends” (U1), “share music
with a significant other” (U45)), and to sharing based on
others’ preferences (e.g., “allocate all of the songs that we
think each other would like to listen to” (U24)). Other So-
cial responses mentioned bonding (e.g., “I use it to bond

1 Non-user interest was assessed in a previous question. For Q1 we did
not request responses from non-users (N = 10) who expressed no desire
to participate in CPs for personal and/or logistical reasons.

with friends, especially friends who live far away” (U12),
“connect to another person through song” (U40)).

In Utility responses, CPs are described as a means of re-
ducing effort and increasing efficiency (e.g., “I don’t have
to do as much work to create a playlist” (N15), “cre-
ator wants help creating the playlist in a shorter deadline”
(U19)). Orientation refers to delivery of benefits to the
self or others (e.g., “allows me to receive music recom-
mendations” (U31) serves the self, while “a place to allo-
cate all of the songs that we think each other would like to
listen to” (U24) connotes benefits to others).

Counts and percentages of responses from each partici-
pant group in categories are summarized in Table 2. While
a single response could be classified under multiple pur-
poses, the reported percentages still suggest insights into
which categories were emphasized by users versus non-
users. For example, more CP users tended to report Prac-
tical and Social purposes, while a greater percentage of
non-users reported Cognitive purposes, as well as Utility
and Orientation connotations.

While responses from CP users did not contain signifi-
cantly more words than those of non-users (p = 0.25), they
tended to be more diverse. One manifestation of this is in
the variety of responses. For example, non-users’ state-
ments relating to social events all involved parties, while
users also mentioned holidays, road trips, workouts, and
dorm events. Users also highlighted ways in which CPs
serve other eventual goals (i.e., an intermediary purpose),
for example a CP created in preparation for a concert or
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Figure 1. CP Framework: Purposes and Connotations.
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CP user CP non-user Total

Purposes
Practical 25 (66%) 5 (29%) 30 (55%)
Cognitive 12 (32%) 11 (65%) 23 (42%)
Social 25 (66%) 6 (35%) 31 (56%)

Connotations
Utility 6 (16%) 4 (24%) 10 (18%)
Orientation 23 (61%) 14 (82%) 37 (67%)

Table 2. Counts and percentages of user and non-user re-
sponses that reference CP purposes and connotations (Q1).

to centralize candidate repertoire for an a cappella group.
CP users were also more descriptive and provided more
specific use cases (e.g., “we have a playlist called ‘Shar-
ing Sundays’ that we update weekly with a new song that
we’ve been enjoying that week and then send the group a
little message explaining why we chose that song” (U22)).
Finally, the most nuanced responses spanning multiple
purposes and connotations came from users:

• “A way to share songs and music tastes [Social]—
both for the satisfaction of having others enjoy the
same music I listen to [Orientation], and to find cool
new music my friends share with me that I hadn’t
heard before [Cognitive]” (U7).

• “I use it to share music and to create larger playlists
for team workouts or get-togethers with friends
[Practical, Utility]. Oftentimes the playlist is for
an upcoming event and whoever creates the playlist
wants input from attending people in order to make
the music maximally inclusive [Practical, Social].
Sometimes the playlist needs to be a few hours long
and the creator wants help creating the playlist in a
shorter deadline [Utility]” (U19).

• “Allows friends/ family to put songs on a playlist for
everyone to enjoy and listen to [Practical, Orienta-
tion] and allows for others to share their music in
a closed space with selective people [Social]. Also
somewhat acts [as] a bonding experience and allows
for people to bond over a mutual interest of music
[Social]” (U30).

Furthermore, the frequency of updates could be inferred
from the practical function the CP served: CPs for physi-
cal social settings and intermediary functions were usually
created for one-off scenarios, whereas theme-based func-
tion connoted updates throughout the CP usage.

4.2 Outcomes (Q2)

Participant responses on actual (users) or speculative (non-
users) CP outcomes were also considered for RQ1 and
RQ2. Visualized results of medians and quartiles (Fig-
ure 2A) show that responses ranged from slight disagree-
ment to slight agreement for decrease in time and effort to
enjoy and manage music, whereas responses tended more
toward agreement for “Diversify music library”, “Increase
ways of music discovery”, and “Positively influence music
taste”. Median calculations across all participant responses
show “Somewhat agree” as the dominant answer for most

categories except decrease in time and effort to enjoy and
manage music as well as “More open to new experiences”,
for which medians were “Neutral”. As the plots suggest,
responses between groups for “Decrease time and effort
to manage music” (users > non-users), “Increase ways of
music discovery” (non-users > users), and “Make listen-
ing to music more enjoyable” (users > non-users) differed
significantly when calculated independently, but were not
significant after FDR correction.

4.3 Social Connection Through Music (Q3)

For RQ3, we found that users and non-users differed in
their perception of music’s social role (i.e., connecting
with others), personally and in general (Figure 2B). Most
participants disagreed that connections through music have
declined, and agreed that music fosters connection. Users
disagreed more strongly than non-users that personal con-
nections through music have declined (p = 0.03). As
marginally significant findings, users were more likely
than non-users to report that music helps them to person-
ally connect with others (p = 0.05); and non-users were
more likely than users to report that in general, connecting
with others through music has declined (p = 0.08).

4.4 Importance of Music Activities with Others (Q4)

Also related to addressing RQ3, participants rated the im-
portance of musical activities to their social relationships
(Figure 2C). With the exception of “Perform or create mu-
sic”, most responses fell between “Neither” (neutral) and
“Very important”. Inspection of the plot suggests distribu-
tional differences between users and non-users regarding
discussing music, experiencing musical events, listening to
recorded music, and sharing music with others. Quantita-
tively, differences between groups were marginally signifi-
cant for “Listen to recorded music with others” (p = 0.05)
and “Share music with others” (p = 0.09), with users re-
porting higher importance.

5. DISCUSSION

In this study, we analyzed survey responses from CP users
and non-users. Analysis of free-text responses on specula-
tive and actual CP purposes revealed three purposes (Prac-
tical, Cognitive, and Social) and two connotations (Util-
ity and Orientation). Analyses of responses on CP usage
outcomes, perspectives on social connection through mu-
sic, and importance of music activities with others revealed
similarities and differences between groups.

5.1 Similarities Between Users and Non-Users

Taking a holistic view across questions, we see similar-
ities across participant groups. For example, both users
and non-users were represented in each category of pur-
poses and connotations identified from text responses to
Q1 (Table 2); likewise, for Q2–Q4, overall patterns of re-
sponses were comparable across groups (Figure 2). These
similarities could be attributed to non-users’ awareness—
of benefits and probable outcomes from CP usage—which
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enabled them to be relatively accurate in their perceptions.
While there were extreme responses outside the quartiles,
most responses on music’s social benefits were favorable.
As observed in previous studies, we surmise that this was
due in part to self-selection of survey participants [20] and
recruitment through music-related channels [39].

5.2 Diverging Perspectives on Discovery

We also observed high-level differences between groups.
Open-ended responses (Q1) show that a greater percent-
age of non-users’ responses implicated Cognitive purposes
(discovery, information seeking). Moreover, discovery
was marginally more agreed-upon as a speculated purpose
in Q2 by non-users than as an actual purpose by users. We
propose several possible interpretations for these findings.
One is that non-users might naturally translate discov-
ery benefits offered in music personalization to the social
playlist setting, whereas Practical and especially Social
purposes are more specific to social music curation. Or, in
actual CP usage, discovery is not as easy or actualized as
speculated (e.g., if collaboration caters to shared tastes of
a group [6, 9]), resulting in lower-than-expected outcomes
for music discovery. Another possibility is that lower dis-
covery outcomes for users stem from their CP purposes
lying more in Practical and/or Social realms; hence users
do not see a marked difference in their ways of discovery.

Finally, users may perceive CP purposes or outcomes rel-
ative to one another; if Practical or Social purposes turn
out to be most rewarding, they may serve as more domi-
nant reasons for engaging in CPs and were thus reported
more by users. Regardless of users’ lower response to “In-
crease ways of music discovery”, they still report that CPs
have diversified and positively influenced their music taste.
Therefore, while discovery may not be the prominent pur-
pose for CPs, it is still an outcome.

5.3 Distinct Social Purposes

Compared to non-users, a higher percentage of CP users
mentioned Social purposes (Q1). CP users also reported
more personal connection through music (Q3) and higher
quartiles for importance of music-related social activities
(Q4). This might be due to reasons mentioned in §5.2,
whereby non-users focus more on Cognitive purposes and
users find Social outcomes of CPs more rewarding.

While we cannot attribute causality with certainty, we
see that the Social purpose relates to valuing and expe-
riencing connections with others, thereby distinguishing
users from non-users. As anticipated, this is the biggest
factor distinguishing CPs from personal playlists. This as-
pect has been reported in previous studies on social mu-
sic curation, for example on bonding over shared music
tastes [31,34] or in creation and consumption of collabora-
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tively curated playlists [8, 35]. Detailed comparisons with
personal playlists are provided in §5.4.

Last but not least, the median “Somewhat agree” signal
for “Appreciate CP platforms more” corroborates the state-
ment made in prior work that “there is a strong social com-
ponent to people’s experience of and interaction with mu-
sic, and music services that successfully incorporate such
social features are well received” and lead to greater ap-
preciation [29]. Perhaps CP platforms seeking to attract
new users could highlight these attributes that were less
reported by non-users.
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Figure 3. Collaborative Playlist Framework populated
with example responses from participants.

5.4 CP Framework and Applications

Our purposes and connotations culminate in a Collabora-
tive Playlist Framework (shown in Figure 3 with partic-
ipant quotes). The framework co-articulates holistically
one’s reasons for engaging in CPs. The CP Framework
can be applied to all responses in our study, and is also ap-
plicable to participant quotes from existing literature on
social music. For example, “It would be very handy if
you could ask the participants of your party to create the
playlist to the party together” [31] expresses Practical pur-
poses of CPs and Utility connotations of convenience.

We find the CP Framework to also be applicable to
personal playlists, with Practical and Cognitive purposes
and Orientation toward self being dominant. For example,
a user from past literature described adding songs iden-
tified through Shazam to their Spotify playlist automati-
cally [11], pointing to the discovery purpose. These songs
then went into a “maybe playlist” from which the songs,
depending on enjoyment, were moved into the “sometimes
playlist”, “officially [added] to my music collection”, or
deleted. These point to Practical purposes of personal
playlists, also apparent in others’ work [21].

We also observed similarities of Practical purposes be-
tween personal playlists and CPs. As discussed in §4
the similar contexts emerge from investigation on personal
playlists, and in doing so reflect similar levels of detail as
in the CP context [21]. Furthermore, we find that the up-
date frequency implied from the playlist (artifact) type is
consistent between personal and social playlists [1,20,21].

Just as one can have many reasons for engaging in an
activity, CPs can be created with multiple purposes and
connotations. These can evolve within and across the di-
mensions we have articulated, and can also facilitate one

another. For example, suppose a group of friends decides
to share the effort of creating a CP to play at a party [Util-
ity, Practical]. The act of creating the CP provides an op-
portunity for social bonding [Social]. Collective consump-
tion of the playlist at the party enables sharing and dis-
covery [Social, Cognitive], ultimately bringing about fur-
ther bonding [Social]. Facilitation can also occur within-
category. While CPs may be created to fulfill a particu-
lar function for an event [Practical-artifact], the process
itself of selecting music for a CP can be an intrinsically
enjoyable activity [Practical-process], a phenomenon that
has been reported in previous research [28, 34]. At times,
sharing and suggesting music [Social-share/recommend]
can in fact bring about the separate purpose of bonding
[Social-bond]. We also already have hints of “with whom”
participants (expect to) engage in CPs. Some create CPs
with these personal connections in mind, while others
might create CPs based on or in search of shared musi-
cal tastes [31]. Text responses indicate that such ensuing
purposes, however, are not always sought by participants.

We acknowledge some shortcomings in the present
work. A larger sample size could improve interpretabil-
ity of results and also provide further insights into CP us-
age. In addition, by grouping responses based solely on
CP usage, we may be overlooking valuable insights relat-
ing to other demographic factors; a larger sample size will
help here as well. Finally, there are many other facets (e.g.,
ownership, group dynamics) through which this topic can
be approached, and we are continuing our work through
identification of CP usage patterns.

6. CONCLUSION AND FUTURE WORK

Our findings indicate that CPs have distinct purposes and
outcomes (RQ1); non-users’ speculation of CP usage out-
comes do not differ greatly from actual user outcomes
(RQ2); and differences in music perceptions, values, and
habits exist between the groups (RQ3). These discoveries
have direct implications for CPs, which are increasingly
integrated into music consumption platforms. They are
indicative of why users engage with CPs and what they
gain from doing so. Consumption platforms may choose
to heighten or make more conspicuous the features from
which users derive the greatest benefits and be informed of
other music-related activities to be integrated.

We continue to collect data and unpack the larger survey
results to identify platform usage patterns of users and non-
users. For CP users specifically, we analyze their survey
responses and conduct semi-structured interviews to gain
a nuanced understanding of their personal experiences and
interactions with CPs. Our findings were predominantly
based upon users in North America; we envision carrying
out this study in other countries as well to examine cross-
cultural perspectives. We will also be able to verify the
validity of our CP Framework in other contexts and across
time. Finally, informed by our findings, we aim to derive
design implications for the kind of collaborative interfaces
that users desire.
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ABSTRACT

We present a framework based on neural networks to ex-
tract music scores directly from polyphonic audio in an
end-to-end fashion. Most previous Automatic Music Tran-
scription (AMT) methods seek a piano-roll representation
of the pitches, that can be further transformed into a score
by incorporating tempo estimation, beat tracking, key es-
timation or rhythm quantization. Unlike these methods,
our approach generates music notation directly from the
input audio in a single stage. For this, we use a Convo-
lutional Recurrent Neural Network (CRNN) with Connec-
tionist Temporal Classification (CTC) loss function which
does not require annotated alignments of audio frames with
the score rhythmic information. We trained our model us-
ing as input Haydn, Mozart, and Beethoven string quartets
and Bach chorales synthesized with different tempos and
expressive performances. The output is a textual repre-
sentation of four-voice music scores based on **kern for-
mat. Although the proposed approach is evaluated in a
simplified scenario, results show that this model can learn
to transcribe scores directly from audio signals, opening a
promising avenue towards complete AMT.

1. INTRODUCTION

Automatic music transcription (AMT) aims to convert
acoustic music signals into any sort of music notation.
Most of the music we listen today is polyphonic, where
simultaneous sound events produced by different audio
sources (i.e., instruments) are combined in a single acous-
tic waveform. This aggregation process entails loss of in-
formation, making the transcription task very challenging
even for trained musicians. Moreover, the different sound
events are highly correlated in time and frequency due to
the rhythmic and harmonic patterns usually found in mu-
sic, which complicates sound separation even further as we
cannot rely on the statistical independence of the source
signals. Therefore, in order to produce a proper music
score from an audio signal, multiple complex sub-tasks

c© Miguel A. Román, Antonio Pertusa, Jorge Calvo-
Zaragoza. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Miguel A. Román, Antonio
Pertusa, Jorge Calvo-Zaragoza. “A holistic approach to polyphonic music
transcription with neural networks”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

must be involved such as multi-pitch estimation, note on-
set/offset detection, source separation, as well as other mu-
sical context information retrieval tasks like metering and
tonality estimation.

As pointed out by [2], there are many approaches to
tackle AMT, yet most works focus on solving only one in-
termediate goal of the whole problem. Frame-level tran-
scription, also known as multi-pitch estimation, aims to
detect which fundamental frequencies are present at each
time step of the input signal. Note-level transcription goes
a step further by estimating the notes characterized by their
pitch and clock-time duration (onset and offset times), pro-
ducing a piano-roll representation of the music. Stream-
level transcription extends the note-level approach by as-
sociating each note with its originating instrument based
on its timbre. Lastly, the notation-level transcription is the
final goal of AMT, aiming to produce a music score with
enough information to interpret the original recording.

In this work, we denote the notation-level transcription
as Audio-to-Score (A2S) task, where the audio signal is
processed to be converted into a symbolic music score.
Even with a perfect transcription, the output of any A2S
system cannot faithfully represent the music that was orig-
inally played. It must be considered that musical audio
signals are often expressive performances, rather than sim-
ple mechanical translations of notes read from a staff. A
particular score can be performed by a musician in many
different ways, and similarly there are several ways to rep-
resent the same musical excerpt with standard music no-
tation (e.g., a dotted half note is “the same” as a half note
tied to a quarter note). Music scores can only be seen as
guides to aid musicians, highly correlating but never fully
explaining musical experience. This makes A2S a rather
ill-defined problem without unique solutions.

Despite the above, our work aims to demonstrate that
the A2S task can be performed in a single step. To this
end, we make use of a deep neural network that is trained
in an end-to-end fashion to produce a sequence of musi-
cal symbols that describes a feasible polyphonic score out
of the input audio. Our experiments are conducted using
Haydn, Mozart, and Beethoven string quartets and Bach
chorales synthesized with different tempos and expressive
performances. 1 Although the analysis of the current per-
formance requires a deeper reasoning regarding evaluation

1 The source code and data are available at https://github.
com/mangelroman/audio2score.
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metrics, we provide some results that account for the good
performance of the proposed model and allow us to be op-
timistic about this line of research.

1.1 Related Work

There are recent AMT approaches using deep neural net-
works for the multi-pitch detection task [8, 11, 12]. For
this, Short-Term Fourier Transform (STFT), log-frequency
STFT or Mel spectrograms are usually fed to Convolu-
tional Neural Networks (CNN) to extract piano-roll rep-
resentations as output. Other works focus on producing
music scores from unquantized MIDI representation [4].

One of the few methods aiming to extract a complete
score directly from audio is that of [14]. In this work,
a multi-pitch detection method with note tracking is used
to get a piano-roll representation that is further converted
into a quantized MIDI file by using a rhythm quantization
method [15]. Afterwards, a score typesetting software such
as MuseScore can be used to get a MusicXML file from the
MIDI output.

To the best of our knowledge, there are only two ap-
proaches that perform A2S in a single stage, directly con-
verting the input audio into any music notation format.
This has the advantage that a wrong detection in a given
stage (such as the multi-pitch detection) is not propagated
through the next processing stages, avoiding error cascad-
ing. The only works addressing notation-level AMT in an
end-to-end manner are those of [3] and [17]. Both works
follow a supervised learning approach with deep neural
networks to solve the AMT task in one step. Although they
bring promising results, the proposed models include sev-
eral limitations (e.g. monophonic audio in [17] and fixed
input length in [3]) that cannot be disregarded when ad-
dressing the notation-level AMT problem as a whole.

In [3], authors show how a Convolutional-Recurrent
Neural Network architecture (CRNN) [19] can learn all the
basic tasks involved in notation-level AMT, but it is only
a very limited proof of concept that cannot address most
of the possible scores. In the second of these works [17],
the AMT problem was addressed as an Automatic Speech
Recognition (ASR) problem. By using monophonic au-
dio as input and a sequence of symbols (analogously to
the written language characters) as output, several methods
that were originally developed for ASR can be used. In
particular, [17] adopted an architecture inspired in Deep-
Speech2 [1], which learns to map audio frames to a se-
quence of characters without any alignment.

Training with unaligned data, i.e. without needing the
input audio frames to be aligned with the music symbols, is
a clear advantage as much more data can be gathered with-
out going through the tedious task of manually annotating
the location of the output symbols in their corresponding
input audio frames. Nevertheless, monophonic audio tran-
scription does not exhibit the essential challenge coming
from simultaneous sound events. The present work goes
one step beyond by showing that a similar formulation can
also be reliable for polyphonic music.
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Figure 1: Data acquisition pipeline showing the manual
and automated steps required to build the ground truth.

2. DATA

Our notation-level AMT approach, namely A2S, seeks to
estimate which music score, modeled as a structure con-
taining symbols from a fixed alphabet of music notation,
would likely define that audio.

Let X be the domain of audio files and Σ the alphabet
of music score symbols. The aim of our A2S is to com-
pute a function that maps any audio file into a sequence of
symbols, i.e., a function f : X → Σ∗.

2.1 Input Representation

The input representation of our model is the spectral infor-
mation of the raw audio waveform over time, based on the
STFT with log-spaced bins and log-scaled magnitude. In
this type of spectrogram, frequency bins are aligned with
equal-tempered music scales using 440Hz as the reference
for A4 pitch. The sampling rate of the input audio files
was 22,050Hz, and STFT was calculated with a Hamming
window with size 92.88ms (2048 samples) and a hop of
23.22ms (512 samples). Only frequencies between pitches
C2 and C7 were considered, extracting 48 bins per octave.

2.2 Output Representation

The output music notation of our model is a single se-
quence of symbols that can be used to render a multi-part
western music score. These symbols represent both notes
and rests with their corresponding duration, barlines, ties
between notes, and fermatas. It is important to remark that
in the context of the A2S task, notes are not the same as
pitches. For example, pitch 349.23Hz can be represented
as F4, E]4 or G[[4 depending on the key signature.

We are not including clefs in our output representation,
as they are only intended to aid in the score visualization
and do not carry any musical information we can extract
from the audio. For the sake of simplicity, we are also
not including time signatures in the output sequences as-
suming they can be inferred from the predicted barlines
for the type of scores in our training set. By the same ra-
tionale, key signatures are neither included assuming they
can also be inferred from the predicted notes. Moreover,
since most of our samples are made of fragments of much
longer scores, they may not carry enough information to
predict the correct key signature, therefore misleading the
training process. Other music notation symbols such as
slurs, grace notes, ornaments, and articulations marks are
also left out of the scope of this work.
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Figure 2: Example of one score in **kern format (left)
representing the output of our model and the rendered
western music score (right).

2.3 Data Preparation

As previously mentioned, the fact that we do not require
data alignments is a clear advantage to easily build the
ground truth needed to train our model. However, the
majority of scores available in the public domain are usu-
ally in printed form, so we cannot automatically obtain the
symbolic representation we need unless we make use of an
Optical Music Recognition system. A lot of progress has
been made in this area of study but unfortunately it is still
insufficient to meet our precision needs, driving us to look
for existing text based scores instead. After some analy-
sis of the various types of music encoding formats within
reach, we chose the humdrum toolkit [9] due to its versa-
tility to represent polyphonic music.

The humdrum file format is a general-purpose human-
readable 2D representation of music information intended
to assist music researchers. The columns of the text file,
separated by the tab character, represent the sources of in-
formation that produce music-related events. The lines of
the text file represent the evolution of those events over
time. The humdrum syntax defines the skeleton that con-
tains other higher level schemes of music notation, like the
**kern format our ground truth is based on. The **kern
format is designed to encode the semantics of a western
musical score, rather than the visual aspects of its printed

Chorales Quartets
Number of samples 352 34,512
Total duration 5.79h 20.25h
Max duration 120s 30s
Data Augmentation No Yes
Polyphony voices 4 4

Instruments

Pipe organ Cello
Viola
Violin
Flute

Pitch range C2-A5 C2-E7
Shortest note 1/16th 1/64th

Irregular groups None Triplets
Tempo ˇ “ ≈ [60, 70] ˇ “ = [40, 200]
Vocabulary Size 99 143
Train-test split % 80/20 70/30
Batch size 4 16

Table 1: Summary of the datasets’ characteristics.

realization, matching nicely with the purpose of this work.
An example of a music excerpt encoded in **kern no-

tation is shown in Figure 2 along with its associated sheet
music excerpt. In this format, columns are called spines
and they are associated with instruments, just like a penta-
gram in western sheet music. Spines may contain one sin-
gle sound event or the combination of various sound events
with the same canonical duration, namely a chord. Spines
can also be split into two spines when two independent
voices (excluding chords) occur for the same instrument.
The newly created spine can be rejoined back to the orig-
inal spine when the extra voice is no longer needed. This
level of flexibility gives almost no restrictions to the kind
of music it can support, making **kern a good candidate
to endure future work.

We created two datasets out of the **kern files avail-
able in the humdrum-data repository [18]: the chorales
dataset, containing 370 chorales of Bach, and the quartets
dataset, containing most of the string quartets of Haydn,
Mozart and Beethoven. In the chorales dataset we take
each chorale as one training sample, and we use audio
from expressive MIDI files synthesized with a high quality
pipe organ soundfont [7]. As we did not synthesize the au-
dio, we had to manually remove repetitions to ensure that
samples are not unnecessarily long. In the quartets dataset
we randomly split the scores in fragments of 3-6 measures
each, and we synthesized the corresponding MIDI file ob-
tained from the hum2mid tool, which converts **kern to
MIDI using dynamic spines and articulation marks when
available in the original **kern file. We removed grace
notes and ornaments from the score as they cannot be prop-
erly synthesized. We also removed split spines and upper
notes of all chords to ensure no more than 4 simultane-
ous voices were present at any given time. Samples with
double dots, double sharps or double flats are out of the
scope of this work and therefore discarded. On the train-
ing set only, we allow overlapping of fragments as a means
of data augmentation technique. Table 1 summarizes the
main characteristics of both datasets used in this work.

Figure 1 depicts the data acquisition pipeline we imple-
mented to build our ground truth. The major inconvenience
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Largo Assai 40 Allegro Moderato 120
Largo 50 Poco Allegro 124
Poco Largo 60 Allegro 130
Adagio 71 Molto Allegro 134
Poco Adagio 76 Allegro Assai 138
Andante 92 Vivace 150
Andantino 100 Allegro Vivace 160
Menuetto 112 Allegro Vivace Assai 170
Moderato 114 Poco Presto 180
Poco Allegretto 116 Presto 186
Allegretto 118 Presto Assai 200

Table 2: List of metronome markings chosen for classical
music tempo annotations, given in number of quarter notes
per minute.

was dealing with multiple errors present in the **kern files,
such as invalid ties, wrong canonical duration of notes and
rests, and missing metronome markings. While these er-
rors do not prevent musical analysis of the scores, they be-
come noisy labels that hinder our training process. For that
reason, we had to revise all the scores manually to cor-
rect these errors and label the missing metronome mark-
ings, with the help of existing tempo annotations and the
conversion shown in Table 2. Adding metronome mark-
ings ensured the synthesized audio perform at reasonable
speeds according to the composer’s intention. Addition-
ally, a random scaling factor in the±6% range was applied
to each metronome marking to ensure tempo variability in
all training samples.

The resulting **kern scores after the preprocessing
stage were then encoded in a special symbolic notation
intended to reduce the number of characters and ease the
training process. Accordingly, each canonical duration for
notes and rests including their dotted version were encoded
with just one symbol of the vocabulary. Likewise, note
pitches were also encoded with one symbol condensing
name and octave. In our **kern dataset, barlines are al-
ways repeated for all spines, so only one barline is main-
tained in the output representation referring to all spines.
The rest of characters are preserved in the output represen-
tation in the same way, i.e. tabs, new lines, tie symbols,
fermatas and the “dot” character, which indicates that the
previous note/rest still affects the current row.

3. METHOD

Once the input and output representations are defined, we
can formulate the A2S task as retrieving the most likely
sequence of score symbols ŝ given an audio file x ∈ X :

ŝ = arg max
s∈Σ∗

P (s|x) (1)

where Σ represents the set of characters necessary to en-
code the output as explained in the previous section (for in-
stance, including “tab”, “new-line” and “dot”, among oth-
ers). Additionally, Σ includes an “empty” symbol, denoted
by ε, that is necessary to separate two or more instances of
the same symbol that occur in consecutive frames.

Following successful approaches in other pattern recog-
nition duties of similar formulation, we address this A2S
with a holistic approach based on statistical models.
Specifically, for learning the posterior probability provided
in Eq. 1, we resort to Convolutional Recurrent Neural Net-
works (CRNN).

A CRNN is composed of one block of convolutional
layers followed by another block of recurrent layers [19].
The convolutional block is in charge of learning how to ex-
tract relevant features from the input and the recurrent lay-
ers interpret these features in terms of sequences of musi-
cal symbols. The activations in the last convolutional layer
can be seen as a sequence of feature vectors representing
the input audio file, x. Let W be the width (number of
frames) of the input sequence x. The length of the result-
ing features after the convolutional layer will be L = γW ,
where γ ≤ 1 is implicitly defined by the specific config-
uration of the convolutional block (which usually includes
some type of down-sampling to reduce dimensionality).

The output activations of the convolutional block are
then fed to the first layer of the recurrent block, and the ac-
tivations of its last layer can be considered proper estimates
of the posterior probabilities per frame:

P (σ | x, j), 1 ≤ l ≤ L, σ ∈ Σ (2)

3.1 Training

Convolutional neural networks can be trained through gra-
dient descent using the well-known Back Propagation al-
gorithm. RNN networks can be trained similarly by means
of Back Propagation Through Time [21]. Therefore both
the convolutional and recurrent blocks of a CRNN can be
jointly trained by providing audio files annotated at the
frame level.

In this work, however, we follow a holistic or “end-
to-end” approach, which means that for each audio file
we only provide its corresponding target transcript into
score symbols, without any kind of explicit information
about its segmentation into frames. A CRNN can be uni-
formly trained without this information by using the so-
called Connectionist Temporal Classification (CTC) loss
function [6]. The CTC training procedure is a form
of Expectation-Maximization, similar to the backward-
forward algorithm used for HMM training [16], that dis-
tributes the loss among all the frames to maximize Eq. 1
with respect to the ground-truth sequence.

3.2 Decoding

In order to solve Eq. 1, the most likely symbol is computed
for each input feature vector of the recurrent block l, also
referred as greedy decoding:

σ̂l = arg max
σ∈Σ

P (σ | x, l), 1 ≤ l ≤ L (3)

Then, a pseudo-optimal sequence of musical symbols
is obtained as ŝ ≈ D(σ̂), where σ̂ = σ̂1 . . . σ̂L and
D : Σ? → Σ? is a function which first merges all the
consecutive frames with equal symbol, and then deletes all
“empty” symbols [6].
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Figure 3: High-level architecture of the Convolutional-
Recurrent Neural Network used in our experiments.

3.3 Architecture

The main building blocks of the CRNN considered for our
experiments is illustrated in Figure 3.

The first two convolutional layers receive a 2D array
containing the audio spectrogram described in section 2.1
and apply 16 filters of 3 × 3 with a stride of 2 in the fre-
quency axis. We use filter striding to reduce the input di-
mensionality without the need of pooling layers.

For the Quartets dataset, output frames from the con-
volutional block are split in half, effectively doubling the
number of frames feeding the next recurrent block. This
is necessary to comply with the CTC loss function pre-
condition for which the number of input frames must be
greater or equal to the number of output symbols. Con-
sidering the high number of symbols per second in our
sequence-based representation of a polyphonic score of the
Quartets dataset, we apply this frame doubling technique at
a lesser computational cost than increasing the density of
the input spectogram.

The next two recurrent layers are based on Bidirectional
Long Short-Term Memory (LSTM) cells, with 1024 hid-
den units each. The fully connected layer at the end of the
recurrent block converts the output per-frame predictions
to the size of the output representation vocabulary.

With the purpose of reducing overfitting, Batch Nor-
malization layers [10] are added between any other layer
excluding the input and output layers, as well as Dropout
layers [20] added after all the convolutional layers and af-
ter the last recurrent layer, with a drop probability of 0.1
for the Quartets dataset and 0.2 for the Chorales dataset. A
higher drop probability is required for the Chorales dataset
since less data is available for training, which increases the
risk of overfitting.

4. EXPERIMENTS

To the best of our knowledge, there are few specific evalua-
tion metrics to measure the performance of a notation-level
AMT method. In [14] an evaluation metric for note-level
AMT is discussed, but it still cannot be directly applied to
our task (e.g. we do not have note onsets and offsets). [17]

adapts this metric to the A2S task by defining note dura-
tion errors instead of onsets/offsets errors. However, we
believe this metric is still insufficient to properly evaluate
a notation-level AMT method since, for instance, it does
not take into account barlines and their effect in subse-
quent predictions of note durations and ties. The MV2H
metric (Multi-pitch detection, Voice separation, Metrical
alignment, note Value detection, and Harmonic analysis)
was introduced in [13]. This metric is closer to our needs,
although its source code uses timing information in sec-
onds that is not provided by our method. We leave it as an
open point for future work to establish a proper notation-
level AMT metric.

In order to validate our method accuracy during train-
ing, we adopt the evaluation metrics from the ASR task
as in [17], namely Word Error Rate (WER) and Character
Error Rate (CER). They are defined as the number of el-
ementary editing operations (insertion, deletion, or substi-
tution) needed to convert the predicted sequences into the
ground-truth sequences, at the word and character level re-
spectively. Even though WER and CER are not specific
to AMT, they provide a good indication of how close our
score is to the ground-truth score.

In the context of our A2S task, we define words as
any group of characters representing notes (including ties),
rests and barlines in the output score. The “tab” and “new
line” characters act as word separators, and only contribute
to the CER calculation.

4.1 Training process

The models were trained for 100 epochs using mini-batch
Stochastic Gradient Descent (SGD) optimizer, with Nes-
terov momentum of 0.9. Our learning rate scheduling con-
sists of 2 cycles of 50 epochs each, starting at 0.0003 and
annealing by 1.1 at every epoch. After each epoch, the
WER and CER are calculated for the validation set, and
the model with the lowest WER is appointed as the best
model for testing purposes.

The Chorales dataset, whose samples are full-length
chorales, is trained with a batch size of 4. The Quartets
dataset, whose samples are small excerpts extracted from
the full-length quartets, is trained with a batch size of 16.
Figure 4 shows the evolution of the CTC loss, WER and
CER at training time on both datasets. Each figure also
highlights the epoch where the best model was obtained.

4.2 Results

The best model obtained after the training process is then
evaluated against the test set for both the Chorales and
Quartets datasets, giving a WER of 30.96% and CER of
18.10% for Chorales, and WER of 21.02% and CER of
13.53% for Quartets.

After analyzing all test predictions, we observe that the
model occasionally generates sequences that do not com-
ply with the **kern format. Nevertheless, we believe these
formatting errors can be solved by providing more sam-
ples to the training set or imposing syntax constraints. As
shown in Figure 5, most of the errors arise from wrongly
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WER CER Loss Loss

0

1 100 97.6359252929688 2967.50610351562 98.91687011719 31.5159358978271

2 99.6521606445312 96.713493347168 2635.22216796875 87.84073893229 18.7702598571777

3 99.5955352783203 91.8456649780273 2516.45043945312 83.88168131510 8

4 83.3198547363281 73.5445251464844 2133.9501953125 71.1316731771 8

5 77.6573333740234 57.7524185180664 1548.73352050781 51.62445068359 8

6 59.6990776062012 34.7363166809082 1210.91760253906 40.36392008464 8

7 53.9152221679688 32.7939262390137 904.002807617188 30.133426920573 8

8 50.4449119567871 29.2675857543945 795.5244140625 26.5174804688 8

9 70.5549240112305 40.8560218811035 711.053771972656 23.701792399089 8

10 45.5508804321289 26.0390586853027 667.843933105469 22.261464436849 8

11 45.7126693725586 26.3184242248535 615.465148925781 20.515504964193 8

12 44.1595230102539 25.8282165527344 576.100830078125 19.203361002604 8

13 41.2392807006836 24.2785224914551 544.734436035156 18.157814534505 8

14 40.7943687438965 23.9121837615967 501.716003417969 16.723866780599 8

15 48.4792098999023 27.7257995605469 465.470581054688 15.515686035156 8

16 40.5921363830566 23.4694137573242 444.237152099609 14.807905069987 8

17 40.7943687438965 23.4878635406494 413.156799316406 13.771893310547 8

18 37.1460914611816 21.4426898956299 398.122039794922 13.270734659831 8

19 37.1380043029785 21.4743175506592 370.363983154297 12.345466105143 8

20 37.7204322814941 22.0251426696777 347.0439453125 11.5681315104 8

21 38.3190422058105 22.6418571472168 315.206085205078 10.506869506836 8

22 47.8077964782715 28.1949234008789 301.534057617188 10.051135253906 8

23 34.856819152832 20.3673934936523 282.148529052734 9.404950968424 8

24 48.7380676269531 28.498010635376 262.865570068359 8.762185668945 8

25 41.0936737060547 24.0782222747803 245.516189575195 8.183872985840 8

26 35.034782409668 20.6862926483154 238.154861450195 7.938495381673 8

27 47.9857635498047 28.2397289276123 229.539031982422 7.651301066081 8

28 35.326000213623 20.7390041351318 211.737869262695 7.057928975423 8

29 35.6819267272949 20.9340324401855 218.069610595703 7.268987019857 8

30 35.7789993286133 21.1079769134521 200.7060546875 6.6902018229 8

31 34.7678375244141 20.6520309448242 197.127166748047 6.570905558268 8

32 35.2370147705078 20.6810207366943 187.495651245117 6.249855041504 8

33 33.7728538513184 19.7691268920898 176.686553955078 5.889551798503 8

34 33.7324066162109 19.8561000823975 169.722061157227 5.657402038574 8

35 34.4766235351562 20.243522644043 166.419509887695 5.547316996257 8

36 34.5413360595703 20.5334320068359 152.649658203125 5.088321940104 8

37 34.3633728027344 20.2909622192383 155.670959472656 5.189031982422 8

38 33.643424987793 20.01686668396 144.928283691406 4.830942789714 8

39 34.4766235351562 20.1381015777588 142.123825073242 4.737460835775 8

40 34.3067474365234 20.5097122192383 148.776107788086 4.959203592936 8

41 33.9669952392578 20.0959339141846 138.855728149414 4.628524271647 8

42 37.4292182922363 22.4310150146484 127.101058959961 4.236701965332 8

43 34.2824783325195 20.2962341308594 132.520523071289 4.417350769043 8

44 33.6838684082031 19.866641998291 125.234832763672 4.174494425456 8

45 33.8456573486328 20.1038398742676 126.064292907715 4.202143096924 8

46 33.5382614135742 20.0537643432617 129.117919921875 4.303930664063 8

47 33.8456573486328 20.2487945556641 123.967658996582 4.132255299886 8

48 33.2713165283203 19.9272594451904 119.324043273926 3.977468109131 8

49 32.8749389648438 19.4950313568115 122.714630126953 4.090487670898 8

50 32.9396553039551 19.5029392242432 119.924674987793 3.997489166260 8

51 33.7728538513184 19.9878768920898 114.117454528809 3.803915150960 8

52 34.0640678405762 20.3937492370605 118.443016052246 3.948100535075 8

53 34.5008888244629 20.2909622192383 111.887336730957 3.729577891032 8

54 35.1965713500977 20.9814720153809 115.238723754883 3.841290791829 8

55 34.1126022338867 20.2540645599365 112.048606872559 3.734953562419 8

56 33.797119140625 19.9878768920898 109.603500366211 3.653450012207 8

57 32.8587608337402 19.476583480835 113.029335021973 3.767644500732 8

58 32.5837249755859 19.2789192199707 112.732879638672 3.757762654622 8

59 32.559455871582 19.5398368835449 108.16374206543 3.60545806885 8

60 32.8830299377441 19.6057243347168 107.071739196777 3.569057973226 8

61 33.4654579162598 20.2646083831787 108.322105407715 3.610736846924 8

62 32.4704742431641 19.4554996490479 105.270393371582 3.509013112386 8

63 37.9388465881348 23.0319156646729 104.287582397461 3.476252746582 8

64 36.741626739502 21.7932167053223 102.625343322754 3.420844777425 8

65 32.1064567565918 19.115514755249 105.627021789551 3.520900726318 8

66 31.879955291748 18.9705619812012 107.20792388916 3.57359746297 8

67 34.1449584960938 20.2118968963623 111.370109558105 3.712336985270 8

68 32.8506698608398 19.468677520752 107.818298339844 3.593943277995 8

69 31.9770259857178 18.9969158172607 104.384399414062 3.479479980469 8

70 33.0043678283691 19.6584358215332 108.488578796387 3.616285959880 8

71 33.8699226379395 20.1354656219482 108.971832275391 3.632394409180 8

72 33.028636932373 19.4317798614502 108.860610961914 3.628687032064 8

73 32.559455871582 19.3790683746338 101.636825561523 3.387894185384 8

74 33.1985130310059 19.7717628479004 106.510009765625 3.550333658854 8

75 33.2713165283203 19.5424709320068 101.176826477051 3.372560882568 8

76 32.3653144836426 19.5161170959473 99.4644317626953 3.3154810587565 8

77 32.4219398498535 19.3685264587402 98.1066589355469 3.2702219645182 8

78 33.0933494567871 19.6637058258057 101.94962310791 3.39832077026 8

79 32.2197036743164 19.036449432373 106.620094299316 3.554003143311 8

80 31.5159358978271 18.7834377288818 102.262489318848 3.408749643962 8

81 33.1257095336914 19.711145401001 98.9543991088867 3.2984799702962 8

82 33.7162284851074 20.1460075378418 104.590675354004 3.486355845133 8

83 32.4300270080566 19.255199432373 107.737968444824 3.591265614827 8

84 32.4623832702637 19.3632545471191 112.612846374512 3.753761545817 8

85 33.5139961242676 19.9984188079834 104.310585021973 3.477019500732 8

86 32.4623832702637 19.1366004943848 105.305946350098 3.510198211670 8

87 33.8456573486328 20.2092609405518 97.4205932617188 3.2473531087240 8

88 33.4897270202637 19.8112964630127 103.198890686035 3.439963022868 8

89 32.0093841552734 19.0232715606689 99.6584548950195 3.3219484965007 8

90 33.8780136108398 20.1776351928711 102.72289276123 3.42409642537 8

91 34.8487281799316 20.7416381835938 102.499328613281 3.416644287109 8

92 31.8395080566406 18.7702598571777 104.775894165039 3.492529805501 8

93 32.8506698608398 19.5424709320068 105.871055603027 3.529035186768 8

94 32.527099609375 19.334264755249 111.040664672852 3.701355489095 8

95 32.5109214782715 19.4212379455566 110.461448669434 3.682048288981 8

96 32.5837249755859 19.3737983703613 107.922119140625 3.597403971354 8

97 34.4361763000488 20.4438228607178 111.377975463867 3.712599182129 8

98 33.1014404296875 19.5213871002197 112.802536010742 3.760084533691 8

99 32.5675468444824 19.4739475250244 112.669631958008 3.755654398600 8

100 32.4542961120605 19.3369007110596 108.820182800293 3.627339426676 8

Epoch 80 
WER 31.52% 
CER 18.77%

�1

(a) Chorales dataset.
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WER CER LossTable 1

WER CER Loss Loss

0 24.5710601806641

1 68.3917846679688 48.2719612121582 427.888000488281 85.577600097656 16.2555675506592

2 41.3364524841309 28.0670261383057 318.129180908203 63.625836181641

3 37.5796585083008 24.6592102050781 253.364959716797 50.672991943359

4 37.8201713562012 24.8075523376465 229.131057739258 45.826211547852

5 37.5163421630859 24.0731086730957 212.711151123047 42.542230224609

6 36.053352355957 22.8218116760254 206.01301574707 41.20260314941

7 33.1789474487305 21.7797088623047 205.412460327148 41.082492065430

8 36.3326721191406 23.9596328735352 197.619293212891 39.523858642578

9 33.8672943115234 21.4765701293945 193.344635009766 38.668927001953

10 33.4546966552734 21.8095703125 179.789947509766 35.957989501953

11 32.1734962463379 20.98876953125 173.956588745117 34.791317749023

12 34.1777648925781 22.1023788452148 166.852935791016 33.370587158203

13 34.0301895141602 22.2431354522705 162.912185668945 32.582437133789

14 34.9840698242188 22.627628326416 156.024978637695 31.204995727539

15 30.8243808746338 20.1931495666504 155.02897644043 31.00579528809

16 30.1406307220459 19.3733177185059 146.767120361328 29.353424072266

17 32.7397956848145 21.371488571167 141.986389160156 28.397277832031

18 31.4294910430908 20.8853034973145 139.159057617188 27.831811523438

19 30.0446300506592 19.5402221679688 138.523345947266 27.704669189453

20 32.2051544189453 20.9676246643066 129.076156616211 25.815231323242

21 32.2541770935059 20.7965240478516 135.769119262695 27.153823852539

22 29.6427555084229 19.468391418457 129.595550537109 25.919110107422

23 29.6703300476074 19.2880897521973 125.500717163086 25.100143432617

24 31.5479602813721 21.1298484802246 122.806381225586 24.561276245117

25 30.6997833251953 19.9699115753174 128.202896118164 25.640579223633

26 27.5899753570557 17.68603515625 115.651969909668 23.130393981934

27 30.6875286102295 19.8241539001465 108.22486114502 21.64497222900

28 29.6907558441162 19.4404678344727 106.820419311523 21.364083862305

29 28.6490459442139 19.2803421020508 103.720603942871 20.744120788574

30 28.832878112793 18.8044872283936 106.386535644531 21.277307128906

31 29.8041172027588 19.4457931518555 102.617279052734 20.523455810547

32 27.5368690490723 17.8277587890625 97.0926818847656 19.4185363769531

33 28.2292976379395 18.6992454528809 96.497184753418 19.299436950684

34 27.4755916595459 17.902494430542 95.4187927246094 19.0837585449219

35 28.9727935791016 19.123929977417 95.9094924926758 19.1818984985352

36 29.7474365234375 19.4466018676758 95.9183959960938 19.1836791992188

37 27.0665664672852 17.4771633148193 94.5960235595703 18.9192047119141

38 28.9794311523438 18.987211227417 94.1891326904297 18.8378265380859

39 28.2160224914551 18.5355682373047 97.1350936889648 19.4270187377930

40 26.7433319091797 17.4832973480225 92.0231781005859 18.4046356201172

41 28.0669136047363 18.3452587127686 94.533935546875 18.906787109375

42 30.25807762146 19.9326248168945 89.2682723999023 17.8536544799805

43 28.9140701293945 18.9413681030273 90.2453842163086 18.0490768432617

44 26.5625629425049 17.2155075073242 85.7980651855469 17.1596130371094

45 29.5002861022949 19.0332145690918 85.2394943237305 17.0478988647461

46 29.1954326629639 19.1457214355469 87.5514526367188 17.5102905273437

47 26.5702228546143 17.8472900390625 86.6022491455078 17.3204498291016

48 26.9986515045166 17.6195335388184 84.0704040527344 16.8140808105469

49 26.9613742828369 17.6874885559082 81.7805480957031 16.3561096191406

50 27.1789093017578 17.9223499298096 82.8508987426758 16.5701797485352

51 29.2076873779297 19.2269134521484 82.0012588500977 16.4002517700195

52 26.9332904815674 17.6682796478271 84.338996887207 16.867799377441

53 27.4975490570068 17.7496337890625 80.7086715698242 16.1417343139648

54 26.6115856170654 17.4563407897949 76.9851379394531 15.3970275878906

55 28.1164474487305 18.3599472045898 79.4909133911133 15.8981826782227

56 31.2931499481201 20.1318130493164 79.7720565795898 15.9544113159180

57 28.2844486236572 18.5651073455811 85.4374923706055 17.0874984741211

58 26.3884353637695 16.9919471740723 77.4477081298828 15.4895416259766

59 26.7208633422852 17.6820011138916 79.2796249389648 15.8559249877930

60 27.1952495574951 18.051965713501 77.0028839111328 15.4005767822266

61 29.0146656036377 19.4951877593994 86.8432083129883 17.3686416625977

62 27.6573791503906 18.1953029632568 82.0243835449219 16.4048767089844

63 26.7050323486328 17.3188152313232 76.7708053588867 15.3541610717773

64 27.812105178833 18.2180633544922 78.1043090820312 15.6208618164063

65 27.6476783752441 18.4945697784424 78.3525466918945 15.6705093383789

66 25.3181304931641 16.6600761413574 73.1056213378906 14.6211242675781

67 25.6903877258301 16.8828296661377 74.3901443481445 14.8780288696289

68 25.8486862182617 16.8991317749023 72.3695449829102 14.4739089965820

69 26.580436706543 17.4789390563965 96.6170883178711 19.3234176635742

70 26.5314140319824 17.2398815155029 77.5999755859375 15.5199951171875

71 28.9436855316162 18.8064250946045 73.3789215087891 14.6757843017578

72 26.4956703186035 17.6882953643799 73.0866928100586 14.6173385620117

73 27.2544841766357 17.7301025390625 78.4028854370117 15.6805770874023

74 25.7174510955811 16.9722537994385 71.4034118652344 14.2806823730469

75 27.1681842803955 17.9896602630615 72.1970062255859 14.4394012451172

76 26.6013717651367 17.6907176971436 76.4802703857422 15.2960540771484

77 27.3448677062988 18.1809368133545 74.9365768432617 14.9873153686523

78 25.6086845397949 16.6741180419922 69.5209655761719 13.9041931152344

79 27.0604400634766 17.8437404632568 74.8206329345703 14.9641265869141

80 26.9501399993896 17.7520561218262 74.2498626708984 14.8499725341797

81 27.3035049438477 18.0605220794678 74.2140884399414 14.8428176879883

82 27.3729515075684 17.9291286468506 72.6221466064453 14.5244293212891

83 26.558988571167 17.6610164642334 73.8877258300781 14.7775451660156

84 27.2013759613037 18.047607421875 75.7384185791016 15.1476837158203

85 26.1903057098389 17.2818508148193 70.4418640136719 14.0883728027344

86 26.1494541168213 17.2140560150146 69.4274749755859 13.8854949951172 38

87 31.4831085205078 21.3065986633301 75.15625 15.03125 38

88 29.0534744262695 19.4257793426514 84.7649383544922 16.9529876708984 38

89 27.2304840087891 18.2088623046875 75.6567230224609 15.1313446044922 38

90 27.0492057800293 17.6384181976318 71.9380493164062 14.3876098632813 38

91 25.8926010131836 16.9838752746582 70.6771545410156 14.1354309082031 38

92 29.3287105560303 19.4662933349609 75.2828063964844 15.0565612792969 38

93 26.6166915893555 17.6003246307373 71.293571472168 14.258714294434 38

94 27.4934635162354 18.2645511627197 69.2414321899414 13.8482864379883 38

95 26.6075000762939 17.3349552154541 71.8367462158203 14.3673492431641 38

96 27.59303855896 18.2303314208984 69.3031158447266 13.8606231689453 38

97 24.5710601806641 16.2555675506592 66.9479370117188 13.3895874023438 38

98 25.6178760528564 16.7895317077637 65.1159896850586 13.0231979370117 38

99 26.3884353637695 17.5470561981201 65.7607192993164 13.1521438598633 38

100 27.0492057800293 17.7593193054199 68.3073959350586 13.6614791870117 38

Epoch 97 
WER 24.57% 
CER 16.26%

�2

(b) Quartets dataset.

Figure 4: Evolution of loss, validation WER and CER during 100 epochs of training with a) Chorales dataset and b)
Quartets dataset. Chorales WER is 30.96% and CER is 18.10%. Quartets WER is 18.10% and CER is 13.53%.

(a) Chorales dataset example (b) Quartets dataset example

Figure 5: Excerpt of original (top row) and predicted scores (bottom row) from a test sample in a) Chorales dataset, b)
Quartets dataset. The differences between original and prediction are highlight in red.

estimated note durations and barlines. Exchanging notes
between voices is another common mistake our model
makes, specially when voice pitches are too close or even
when two voices cross their melodic lines.

The model struggles at predicting ties and triplets,
which requires further analysis to determine whether it is
related to barline errors, to the output representation for-
mat based on **kern, or to the lack of enough samples in
the training set (i.e., ties and triplets are very infrequent in
our training data compared to other symbols).

5. CONCLUSIONS

In this work, we focus on the A2S task, a hardly explored
formulation consisting of extracting a full score from an
audio file. Note that A2S resembles what a human would
expect to get if it intends to visualize the input audio as a
music score (e.g., MusicXML), unlike what most authors
consider AMT where the output sequence format is in-
tended to be further processed by a computer (e.g., MIDI).

The proposed methodology which performs the A2S
task has the following advantages over other AMT meth-
ods: 1) Frame-level alignment of the ground truth is not
needed; 2) The end-to-end approach avoids propagating

errors from one stage to the other; 3) The output of our
model is based on **kern format and can be straightfor-
wardly translated to a valid music score.

We are aware this simplified scenario used for evalua-
tion does not include real audio and some score symbols,
but we argue the results provide the basis to open a new
path of research towards notation-level AMT.

One of the main limitations of the proposed approach
is the maximum-length of input sequences due to mem-
ory constraints. For example, this prevents an end-to-end
training with complete songs, only allowing fragments of
2 minutes at a maximum on a typical training infrastruc-
ture. For this, we plan in a future work to explore other ar-
chitectures such as the Transformer XL [5], a sequence-to-
sequence model that can deal with much longer sequences.
Other future works include defining an evaluation metric
for A2S and building a dataset from real audio to validate
the approach with actual music performances.
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ABSTRACT

Single-f0 estimation methods, including pitch trackers and
melody estimators, have historically been evaluated using
a set of common metrics which score estimates frame-wise
in terms of pitch and voicing accuracy. “Voicing” refers
to whether or not a pitch is active, and has historically
been regarded as a binary value. However, this has lim-
itations because it is often ambiguous whether a pitch is
present or absent, making a binary choice difficult for hu-
mans and algorithms alike. For example, when a source
fades out or reverberates, the exact point where the pitch
is no longer present is unclear. Many single-f0 estimation
algorithms select a threshold for when a pitch is active or
not, and different choices of threshold drastically affect the
results of standard metrics. In this paper, we present a re-
finement on the existing single-f0 metrics, by allowing the
estimated voicing to be represented as a continuous like-
lihood, and introducing a weighting on frame level pitch
accuracy, which considers the energy of the source pro-
ducing the f0 relative to the energy of the rest of the signal.
We compare these metrics experimentally with the previ-
ous metrics using a number of algorithms and datasets and
discuss the fundamental differences. We show that, com-
pared to the previous metrics, our proposed metrics allow
threshold-independent algorithm comparisons.

1. INTRODUCTION

Single-f0 estimation algorithms, including pitch trackers
and melody or bass extraction algorithms, predict funda-
mental frequency (f0) over time for an audio file. How-
ever, there can be time intervals where there is no (target)
f0 value present, for example during silent regions. To
account for this, single-f0 estimation methods addition-
ally estimate the voicing over time - i.e. when a given
frame contains an active pitch or not. Choosing when
the estimated voicing should be active/voiced (1) or inac-
tive/unvoiced (0) often involves choosing a threshold on
a confidence value. Single-f0 estimation algorithms are
evaluated by comparing the accuracy of the estimated f0
and voicing sequence against a reference f0 and voicing
sequence. The choice of threshold to estimate voicing has

c© Rachel Bittner*, Juan J. Bosch*. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Rachel Bittner*, Juan J. Bosch*. “Generalized Metrics for
Single-F0 Estimation Evaluation”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

a critical effect on the resulting metrics; the threshold is
often treated as a hyperparameter and is chosen on a vali-
dation set. Any confidence information used to determine
voicing is discarded and not considered in the evaluation
metrics.

The perceptual salience of a pitch is affected by a num-
ber of factors, including the volume, the frequency content,
the duration and the presence of interference from other
sources [12, 18, 21, 27]. In some cases, the brain can per-
ceive a pitch even when the f0 is not physically present,
for example when one short time segment in the middle of
a longer pitch sequence is set to be silent [9]. The effect
of these factors can be different for each listener, making
the task of “objectively” determining if a pitch is present or
not a difficult one. Additionally, in polyphonic mixtures,
a pitch can be masked by other sources. In the current
metrics, algorithms are equally penalized for mistakes on
salient and non-salient f0 values.

We propose a generalization of the existing metrics
which (1) allows an algorithm to report voicing as a con-
tinuous value (between 0 and 1), and (2) allows frames to
be weighted by a reward, which more heavily penalizes
mistakes in frames where the energy of the source produc-
ing the f0 is high compared to the rest. These changes
remove the need for making a strict decision on whether or
not a pitch is present, allowing threshold-independent al-
gorithm comparisons, and allow an optional weighting to
be added to reflect frame importance. We also show that
when the provided voicing is binary, the proposed metrics
are equivalent to the existing metrics. The proposed met-
rics are to be seen as complementary to the classic ones,
which remain useful for measuring performance for ap-
plications where a binary threshold is needed in practice.
However, binary thresholds are not needed for a number of
applications, including pitch informed source separation or
melodic similarity.

Additionally, generalized metrics would also help mit-
igate non-uniformity in decisions made when annotating
datasets (e.g. inclusion of delays and reverb as part of the
annotation or not), by rewarding correct pitch estimations
proportionally to the energy of the pitched signal to be de-
tected. Furthermore, they provide information about the
confidence of the estimators, which is useful for many ap-
plications.

For reproducibility, the code used for this in this paper
is available online 1 .

1 github.com/juanjobosch/continuousf0eval
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2. VOICING DETERMINATION

Historically, single-f0 estimation methods need to deter-
mine whether a given frame contains a pitch or not. To per-
form this binary decision, algorithms have commonly used
a (static or dynamic) threshold on e.g. energy, salience or
pitch likelihood [1, 3, 13–15, 23]. For instance, melody ex-
traction algorithms may exploit pitch contour salience dis-
tributions and use heuristics [24], or a threshold on melody
contour probabilities produced by a discriminative model
[4, 7]. Durrieu et al. [14] first perform source separation
on the melodic source, and subsequently estimate the en-
ergy of the separated signal frame by frame; frames with
energy above a threshold are determined to be voiced. The
threshold is empirically selected such that 99.95% of the
leading instrument energy is contained in voiced frames.
Fuentes et al. [15] also use an energy threshold (of -12dB)
on a low-pass filtered separated melody signal. The ideal
threshold typically depends on the difference in intensity
between melody and accompaniment.

Some methods bypass the use of an explicit threshold
and deal with voicing estimation using a classifier, for in-
stance by adding an “unvoiced” class to the set of possible
pitch outputs [2]. Other approaches model singing voice
detection separately from pitch estimation, and even try
to exploit information from neighboring frames (e.g. with
LSTMs) for making a decision on the presence of melody
on a given frame [17, 23]. Finally, some of the state of the
art algorithms provide a measure of confidence on their es-
timations. However, traditional evaluation metrics do not
consider this information.

3. CLASSIC EVALUATION METRICS

Pitch estimation methods have commonly been evaluated
using metrics derived from information retrieval, com-
monly focused on pitch-related accuracy and seldom con-
sider voicing [11, 16]. Melody extraction algorithms are
evaluated using similar metrics to pitch estimation, but
voicing also takes an important role.

Symbol Description
n sample index ∈ {0, . . . , N − 1}
fn reference frequency (Hz) at sample n
vn reference voicing ∈ {0, 1} at sample n
rn pitch estimation reward ∈ [0, 1] at sample n
f̂n estimate frequency (Hz) at sample n
v̂n estimate voicing ∈ [0, 1] at sample n

Table 1. Definition of symbols.

For melody estimation in particular, several metrics are
commonly used in the literature [22, 26]. Raw Pitch Ac-
curacy (RPA) and Raw Chroma Accuracy (RCA) measure
pitch-related estimation quality. Let the reference and es-
timate f0 and voicing sequences be defined as in Table 1.
RPA measures the percentage of melody frames in the ref-
erence for which the estimated pitch is considered correct
(usually within half a semitone of the reference). RCA also
measures pitch accuracy, but both estimated and reference

pitches are mapped into one octave, forgiving octave mis-
takes.

RPA =

N−1∑
n=0

vnTf̂n,fn
N−1∑
n=0

vn

, RCA =

N−1∑
n=0

vnOf̂n,fn

N−1∑
n=0

vn

(1)

where the “correct pitch” indicator function is defined as:

Tf̂n,fn =

{
1 |ds(f̂n, fn)| ≤ 0.5

0 |ds(f̂n, fn)| > 0.5
(2)

and the difference ds between two frequency values in
semitones is defined as:

ds(f̂n, fn) = 12 log2

(
f̂n
fn

)
(3)

Similarly, the “correct chroma” indicator function is de-
fined as:

Of̂n,fn
=

{
1 |do(f̂n, fn)| ≤ 0.5

0 |do(f̂n, fn)| > 0.5
(4)

and the single-octave pitch difference do is defined as:

do(f̂n, fn) = ds(f̂n, fn)− 12

⌊
ds(f̂n, fn)

12
+ 0.5

⌋
(5)

Voicing estimation is evaluated with Voicing Recall rate
(VR) and Voicing False Alarm rate (VFA). VR measures
the percentage of frames labeled as voiced in the reference
which are also estimated as voiced by the algorithm. On
the other hand, VFA measures the percentage of frames
labeled as un-pitched in the reference that are mistakenly
estimated as melody frames by the algorithm.

VR =

N−1∑
n=0

v̂nvn

N−1∑
n=0

vn

, VFA =

N−1∑
n=0

v̂n(1− vn)

N−1∑
n=0

(1− vn)
(6)

Finally, Overall Accuracy (OA) is used as a single ag-
gregate measure to evaluate algorithms, as it accounts for
both pitch and voicing estimation accuracy. In particular,
OA measures the percentage of frames that were correctly
labeled in terms of both pitch and voicing.

OA =
1

N

N−1∑
n=0

vnv̂nTf̂n,fn + (1− vn)(1− v̂n) (7)

In order to allow each of the metrics to give insights
about different aspects of methods, the traditional evalua-
tion methodology allows algorithms to report “negative”
pitch values, which are only considered for the compu-
tation of RPA and RCA. This was an attempt to evaluate
voicing estimation performance separately from pitch esti-
mation performance, and therefore make the result of RPA
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Metric Classic (rn = vn, binary v̂n) Generalized (continuous rn and v̂n)
RPA average pitch accuracy in voiced frames weighted average pitch accuracy in voiced frames
RCA average chroma accuracy in voiced frames weighted average chroma accuracy in voiced frames
VR fraction of voiced frames estimated as voiced average voicing likelihood in voiced frames
VFA fraction of unvoiced frames estimated as voiced average voicing likelihood in unvoiced frames
OA fraction of frames with correct voicing and pitch weighted average correctness of each frame

Table 2. Description of the meaning of the metrics in the classic and generalized cases. Note that two possible cases are
not described: binary v̂n with a continuous reward rn, and continuous v̂n with rn = vn.

and RCA independent of the voicing estimation. However,
many algorithms do not actually report negative pitches,
and furthermore due to the inner functioning of some meth-
ods (e.g. Melodia [24]), increasing the number of reported
pitches (either positive or negative) not only has an effect
on voicing estimation accuracy but also on pitch accuracy.

Other metrics have been proposed to give further in-
sights, such as the continuity of the correctly estimated
pitches (either in pitch or chroma), which is relevant for
tasks such as automatic transcription, source separation or
visualization [8]. Metrics related to user satisfaction have
also been studied in the context of melody extraction: dif-
ferent kind of errors have a different impact in the quality
perceived when users listen to synthesized melodies that
have been extracted automatically [20]. However, most
single-f0 estimation literature does not consider the influ-
ence of the energy of the signal under study (or its relation
to the accompaniment) in the evaluation. Some excep-
tions [6, 25] present an evaluation of pitch salience func-
tions, which are commonly correlated to the energy of the
signals. Bosch et al. [8] also study the influence of the pre-
dominance of the melody over the accompaniment for dif-
ferent algorithms in the context of symphonic music, and
monophonic pitch estimators have been evaluated in the
presence of different noise levels [16, 28]. However, in the
classic single-f0 estimation metrics, all frames contribute
equally to the results, even though in many cases the pres-
ence or absence of a (melody) pitch may be unclear for
both humans and algorithms.

4. GENERALIZED METRICS

This section presents a generalization of the traditional
metrics, in order to deal with the previously introduced
limitations: voicing estimates must be binary, and all
frames receive equal importance. The proposed metrics
(1) allow algorithms to report voicing v̂n as a continuous
rather than a binary quantity, representing the likelihood
that the frame is voiced, and (2) optionally weight the pitch
accuracy in voiced frames using a reward rn ∈ [0, 1], al-
lowing mistakes in less important frames to count less than
mistakes in important frames.

In the following metrics, we require that (1) rn = 0 if
and only if vn = 0, (2) vn = 0 if fn = 0 and (3) v̂n = 0
if f̂n = 0. Note that we may have f̂n 6= 0 and v̂n = 0,
allowing the metrics to score pitch accuracy when voicing
mistakes are made.

Equation 8 presents the proposed generalization of RPA

and RCA, which aggregate the pitch/chroma accuracy pro-
portional to the reward rn. This makes the generalized
metrics more forgiving on unimportant frames, and more
demanding on important frames in comparison to previous
metrics.

RPA =

N−1∑
n=0

rnTf̂n,fn
N−1∑
n=0

rn

, RCA =

N−1∑
n=0

rnOf̂n,fn

N−1∑
n=0

rn

(8)

Generalized versions of VR and VFA remain the same
as in Equation 6, however v̂n need not be binary. In both
cases, VR is simply the average of v̂n in voiced frames
(vn = 1), and similarly VFA is the average of v̂n in un-
voiced frames (vn = 0).

Finally, we propose a generalized version of OA in
Equation 9, which scores voiced frames proportionally to
v̂n, weighted by rn, and scores unvoiced frames propor-

tionally to 1− v̂n. Let V =
N−1∑
n=0

vn, the number of voiced

frames in the reference annotations. The generalized OA
becomes:

OA =

V

N−1∑
n=0

rnv̂nT
f̂n,fn

N−1∑
n=0

rn

+ (N − V )

N−1∑
n=0

(1−vn)(1−v̂n)

N−1∑
n=0

(1−vn)

N
(9)

In this generalized OA, voicing “mistakes” are penal-
ized according to the confidence of the estimator, which
is softer than in the binary case where mistakes are “all
or nothing”. When rn = vn (equal reward in all voiced
frames) and v̂n is binary, each of the generalized metrics
is equivalent to the metrics defined in the binary case. For
RPA, RCA, VR and VFA the equivalence is straightforward.
For OA, substituting rn by vn, plugging in the given equa-
tion for V , and simplifying the resulting quantity shows
equivalence. Table 2 gives summaries of the metrics in the
classic and generalized cases.

4.1 Behavior on Artificial Examples

Figure 1 shows the behavior of the proposed metrics for
a few simple examples. For instance, the different results
obtained in plots (a), (b), (e) and (f) show that if the pitches
are correct, VR and OA get the best results with highly con-
fident estimations. Plot (a) also shows that errors in the
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Figure 1. Artificial examples of different combinations of fn, rn, f̂n, and v̂n, and the behavior of the generalized metrics.

voicing estimation are less penalized if the estimate confi-
dence is low. In this example, VFA is relatively low (0.2),
while if the algorithm had used a very low threshold to de-
termine a binary voicing value v̂n, VFA would be equal
to 1 (the worst possible score), since all unvoiced frames
would have been estimated as voiced. Plot (d) shows the
effect of having perfect voicing estimation but incorrect
pitch estimation – the estimator is penalized in OA and
RPA. Plot (c) shows a completely wrong pitch estimation,
which gets a small score for voicing recall, due to the low
estimated confidence. In the same plot, VFA is very low
due to the correctly identified unvoiced frames, and the er-
rors between 0.4 and 0.5 s are not heavily penalized due to
the low reported confidence.

5. COMPUTING PITCH ESTIMATION REWARDS

In order to create the pitch estimation reward (rn) for
single f0 datasets, we propose the computation of Root-
Mean-Square (RMS) energy in frames over time. The
first step is to compute the RMS of the source pro-
ducing the f0 (RMSf0 ) and the RMS of the mixture
(RMSm) in frames. The second step deals with a frame-
wise normalization, in order to obtain a reward signal:
rn = (RMSf0n

)/(max(RMSf0)+RMSmn), where n cor-
responds to the index of the frame. In frames where there is
no pitch annotation (fn = 0), we set rn = 0, as illustrated
in Figure 2.

A mismatch between the energy of the melodic source
and the voicing derived from pitch annotations (if the f0
is non zero) could happen due to several factors. One of
them is the fact that there may be energy due to a melodic
instrument but actually no pitch, for instance in transient
percussive sounds, or with unpitched vocal sounds (e.g.,
many of the consonants). Another possible factor is that
the procedure followed during the annotation did not con-
sider echos or reverberation, while they might be clearly
present in the signal.

5.1 Isolated Sources

For datasets where isolated sources are available, we can
simply compute the frame-wise RMS of the signals over
time. For instance, in a melody extraction dataset, we
would use the RMS of the source playing the melody in
each frame to derive RMSf0 . Note that this is compatible
with multiple melody definitions, even allowing different

200

400
Reference Frequency (Hz)

7.0 7.5 8.0 8.5 9.0 9.5
Time (sec)

0

1
Reward

Adjusted
Reward

Active
Frequency

Raw
Reward

Figure 2. The reference frequency and the estimated re-
ward values. Frames where no reference frequency is pro-
vided may have non-zero reward estimates (in blue) - in
these cases the reward is set to 0 (in black).

instruments to play the melody sequentially in a given mu-
sic excerpt [5,8]. RMSm is computed from the instruments
which are not playing the melody pitch in each frame, and
the reward computed following the methodology from sec-
tion 5. A simpler case corresponds to monophonic pitch
estimation datasets, where RMSm is zero, so the raw re-
ward in each frame is equal to the RMSf0 , normalized by
its maximum RMS value in the example.

5.2 Sources in Polyphonic Mixtures

When isolated sources are not available, it is more difficult
to compute RMSf0 and RMSm. For these cases, we pro-
pose the use of pitch-informed source separation [8, 14] in
order to obtain an estimate of the energy of the source and
accompaniment. We test the effectiveness of this approach
using the iKala dataset by comparing the difference in the
reference reward when computing it using isolated vocals,
and using the results of pitch informed source separation
on the mixture signal.

Figure 3 shows the results of “Melody-A” (see Sec-
tion 6, for all metrics, with the confidence computed both
using source separation and in the ideal case (having ac-
cess to the isolated sources). As we can observe, VR and
VFA have the same values, and OA, RPA, and RCA present
some small differences but which are statistically signifi-
cant, according to a paired t-test (α = 0.05). However, in
Figure 3 (right) we see that for each metric, the distribu-
tion of differences in comparison to “Melody-B” is very
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Figure 3. (Left) Metrics for “Melody-A” on iKala for
confidence computed using both source separation and in
the ideal case. (Right) The difference in score between
“Melody-A” and “Melody-B” per track for both confidence
measures on iKala.

similar when using confidence computed on both the ideal
case and with source separation. This suggests that using
source separation as a proxy to get the confidence measure
would not have an impact on the ranking of algorithms,
and therefore the methodology proposed would be useful
to compare different algorithms. We leave the improve-
ment of pitch-informed source separation for obtaining a
better reward, i.e. more similar to the values obtained if
the isolated sources were available, as future work.

6. PROPOSED METRICS ON REAL DATA

In order to show the behavior of the metrics with real data
and algorithms, we create variants of four established algo-
rithms: two monophonic pitch estimators “Pitch-A” (based
on CREPE [16]) and “Pitch-B” (based on pYIN [19])
and two melody extraction algorithms “Melody-A” (based
on Deep Salience [3]) and “Melody-B” (based on Melo-
dia [24]). Note that the main objective is not to actu-
ally evaluate/compare these algorithms, but show the be-
haviour and give further insights about the proposed met-
rics. Therefore the arbitrarily taken decisions about the
estimators such as the normalization, or using default pa-
rameters, should not be regarded as important.

In order to test our metrics, we need each algorithm
to produce a continuous voicing estimate v̂n. “Pitch-A”
and “Melody-A” predict confidence values as part of the
algorithm, which we use directly as v̂n. “Pitch-B” and
“Melody-B” do not directly predict confidence values, but
determine which frames are voiced and unvoiced using
thresholds on signals computed internally. We derive a
value of v̂n for these algorithms using normalized versions
of these signals (the maximum probability of the pitch can-
didates for “Pitch-B”, and the contour confidence measure
for “Melody-B”). Note that not all algorithms currently
provide a confidence value as an output, but all of them de-
termine voicing at some level, and the steps used to make
this decision can typically be used to create a measure of
voicing confidence.

We use three melody extraction datasets in our ex-
periments: iKala [10], MedleyDB [5] and Orchset [8].
iKala comprises 252 30-second excerpts sampled from 206
songs. MedleyDB contains 108 melody annotated files,
which are mostly full-length songs between 3 and 5 min-
utes long, and cover a variety of instrumentation and gen-
res. For our experiments, we use the melody 2 definition:
the f0 curve of the predominant melodic line drawn from
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Figure 4. Classic voicing metrics (VR - red, VFA - blue)
as a function of threshold. Dashed horizontal lines show
the value of the generalized metrics computed with con-
tinuous v̂n. (Top) Threshold τA for “Melody-A” (Bottom)
Threshold τB for “Melody-B”.

multiple sources. Finally, Orchset contains 64 short audio
excerpts (between 10 and 30 s.) of symphonic music. For
pitch tracking, we use a dataset derived from MedleyDB,
with 103 tracks of solo, monophonic instruments. In the
two datasets for which we have isolated sources readily
available, MedleyDB-Pitch and iKala, we compute the ref-
erence reward using the method described in Section 5 us-
ing a hop size of 256 and a window size of 4096 for a
sample rate of 44100 Hz.

6.1 Voicing Estimation Metrics

We first examine the difference in the generalized versus
the classic metrics for VR and VFA. In the classic met-
rics, the choice of voicing threshold has a major effect
on VR and VFA. Figure 4 shows the classic metrics as a
function of the voicing threshold as dots for VR (red) and
VFA (blue) for “Melody-A” and “Melody-B” on the three
melody datasets. The dashed horizontal lines show the
value of the generalized metric, which is computed inde-
pendently of the threshold. We see that the value of the
generalized metrics is close to the average value of the met-
rics for all thresholds.
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Pitch-A: MedleyDB-Pitch
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Figure 5. Generalized vs Classic RPA and RCA for four
algorithms. rn is used for the reference datasets. Boxplots
show statistics across tracks for each metric.
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6.2 Pitch Accuracy Metrics

Figure 5 shows the generalized and classic RPA and
RCA on iKala (for “Melody-A” and “Melody-B”) and
MedleyDB-Pitch (for “Pitch-A” and “Pitch-B”). We can
see that the values of the generalized metrics are higher in
all cases, which confirms that algorithms commonly make
more errors when the reference reward is lower (more dif-
ficult cases). The difference between the classic and gener-
alized metrics is larger on “Melody-B” (+0.08 on average
for RPA) than “Melody-A” (+0.05 on average for RPA),
which suggests that “Melody-A” is less prone to pitch esti-
mation errors when the melody is less predominant.

6.3 Overall Accuracy

Finally, we compare the generalized metrics with the clas-
sic metrics for OA. It is most often used as a single mea-
sure to compare the performance of two algorithms, but in
the classic metric, the choice of each algorithm’s voicing
threshold can change the relative ranking of OA. In Fig-
ure 6, the middle and right columns show the classic OA as
a function of threshold for two algorithms, and the left col-
umn shows the relative ranking of the classic OA for each
combination of thresholds; when a cell is red, the algo-
rithm in the middle gets a higher value for this metric, and
vise versa when a cell is blue. We see that for all datasets,
a pair of threshold values can be chosen which rank one
algorithm higher than the other. This makes the compar-
ison of two algorithms in terms of the classic OA highly
dependent on the choice of threshold.

We see that when algorithms are ranked based on the
generalized OA, the algorithm which is ranked higher is al-
ways the algorithm which is also more often ranked higher
for the classic OA (i.e. the dominant color in Figure 6,
left). The ordering of the generalized OA is also consistent
with the highest possible value of the classic OA (the “star”
marker in Figure 6). This suggests that the generalized OA
provides a threshold independent way to fairly rank algo-
rithms. Comparing the generalized metrics with and with-
out rn (Figure 6, horizontal dashed and solid lines), we see
that overall the behavior of OA is similar, but harsher when
rn is not used.

7. CONCLUSIONS

This paper presents a generalization of traditional single-
f0 estimation metrics, which allows estimators to provide
a continuous voicing estimate and introduces a weighting
on pitch accuracy. We perform an experimental compari-
son of the proposed metrics using both monophonic pitch
estimators and melody extraction algorithms and show that
the generalized metrics provide a threshold-independent
way of comparing algorithms. Additionally, we propose
a methodology for the annotation of the reference reward
rn based on the energy of the isolated sources and also
propose a promising variant for the case when only poly-
phonic mixtures are available, based on pitch-informed
source separation. One of the limitations of the proposed
method for estimating the reference reward is that it does
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Figure 6. (Left column) difference in overall accuracy be-
tween two algorithms. Red: algorithm B gets a higher
OA, Blue: algorithm A gets a higher OA, White: They
are the same. (Middle and Right Columns) OA as a func-
tion of threshold for “Melody-B” (middle) and “Melody-
A” (right) for rows 1-3, and for “Pitch-B” (middle) and
“Pitch-A” (right) in row 4. Dashed lines show the gen-
eralized OA computed with rn = vn and continuous v̂n,
solid lines show the generalized OA computed with con-
tinuous rn and continuous v̂n. Solid lines are missing for
two datasets because the isolated melody sources are not
available so we cannot accurately compute continuous rn.

not explicitly consider aspects related to pitch perception,
which we leave for future work. Finally, the proposed
evaluation framework could also be extended to multiple
pitch estimation metrics. The concept of confidence and
reward, in this case, would be related to each of the in-
dividual pitches present, and the methodology would still
hold.

While this paper focuses on the generalization of the
classic metrics, we also foresee the creation of new met-
rics, including the adaptation of metrics from the Infor-
mation Retrieval literature (such as the ROC-AUC score).
The current work only considers voicing confidence for es-
timators and a kind of “pitch confidence” for references,
however pitch confidence for estimators and voicing con-
fidence for references could also be incorporated. Future
work could also experiment with metrics based on differ-
ent types of rewards rn, such as metrics that examine pitch
accuracy in difficult frames.
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ABSTRACT

In this paper, we learn disentangled representations of tim-
bre and pitch for musical instrument sounds. We adapt a
framework based on variational autoencoders with Gaus-
sian mixture latent distributions. Specifically, we use two
separate encoders to learn distinct latent spaces for tim-
bre and pitch, which form Gaussian mixture components
representing instrument identity and pitch, respectively.
For reconstruction, latent variables of timbre and pitch
are sampled from corresponding mixture components, and
are concatenated as the input to a decoder. We show the
model’s efficacy using latent space visualization, and a
quantitative analysis indicates the discriminability of these
spaces, even with a limited number of instrument labels
for training. The model allows for controllable synthesis
of selected instrument sounds by sampling from the la-
tent spaces. To evaluate this, we trained instrument and
pitch classifiers using original labeled data. These classi-
fiers achieve high F-scores when tested on our synthesized
sounds, which verifies the model’s performance of control-
lable realistic timbre/pitch synthesis. Our model also en-
ables timbre transfer between multiple instruments, with
a single encoder-decoder architecture, which is evaluated
by measuring the shift in the posterior of instrument clas-
sification. Our in-depth evaluation confirms the model’s
ability to successfully disentangle timbre and pitch. 1

1. INTRODUCTION

A disentangled feature representation is defined as hav-
ing disjoint subsets of feature dimensions that are only
sensitive to changes in corresponding factors of variation
from observed data [2, 27, 32]. Deep generative mod-
els [13, 19, 25, 33] have been exploited to learn disentan-
gled representations in different domains. In the visual do-

1 Example audio files and code at http://bit.ly/2Dbyt9j
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“Learning Disentangled Representations of Timbre and Pitch for Musical
Instrument Sounds Using Gaussian Mixture Variational Autoencoders”,
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main, studies are focused on learning independent repre-
sentations for data generative factors such as identity and
azimuth [5, 14, 26]. In natural language generation, efforts
have been made to generate texts with controlled senti-
ment [10,18,36]. Also in the speech domain, we have wit-
nessed successful attempts in controllable speech synthesis
by disentangling factors such as speaker identity, speed of
speech, emotion, and noise level [15, 17, 35]. There has
been relatively little research on learning disentangled rep-
resentations for music. In this paper, we disentangle the
pitch and timbre of musical instrument sound recordings.

Pitch and timbre are essential properties of musical
sounds. Given that one pitch can be played with differ-
ent instruments, we assume they can be separated. From
the perspective of music analysis, disentangled represen-
tations of pitch and timbre can be regarded as timbre- and
pitch-invariant features which could be exploited for down-
stream tasks [29,30]. From the synthesis point of view, dis-
entangled representations enable the generation of musical
notes with identical pitches (timbres) and different timbres
(pitches). Recently, Hung et al. presented the first attempt
to learn disentangled representations of pitch and timbre
for synthesized music by using frame-level instrument and
pitch labels based on encoder-decoder networks [21]. Even
though the authors managed to change instrumentation
to some extent without affecting pitch structure, the ap-
proach was restrictive, as it worked with MIDI-synthesized
audio and relied on clean frame-level labels, which are
scarce to find. Disentangled representations allow for sev-
eral applications, including music style transfer. Brun-
ner et al. proposed a model based on variational autoen-
coders (VAEs) [25] to generate music with controllable at-
tributes [4]. While genre was factorized by an auxiliary
classifier, other musical properties were entangled. Be-
sides the aforementioned models based on MIDI, research
on audio has focused on translating between different do-
mains of instrumentation [3,7,20,28]. None of them, how-
ever, has addressed learning disentangled latent variables
of both pitch and timbre.

This research distinguishes itself from others by disen-
tangling instrument sounds into distinct sets of latent vari-
ables (i.e., pitch and timbre), with a framework based on
Gaussian Mixture VAEs (GMVAEs). We model the gener-
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Figure 1. The proposed framework includes separate en-
coders for pitch and timbre, and a shared decoder.

ative process of an isolated musical note by independently
sampling pitch and timbre (instrument) categorical vari-
ables. Note that the two factors are actually dependent in a
sense that range of pitch is instrument-dependent, however,
we verify the model’s capability to disentangle them under
this simplified assumption of independence. Conditioned
on these categorical variables, Gaussian-distributed latent
variables are then sampled that characterize variation in the
sampled pitch and instrument, respectively. Finally, the
data are generated conditioned on the two latent variables.
We favor the proposed framework over vanilla VAEs [8,9]
for its more flexible latent distribution compared to a stan-
dard Gaussian. In addition, it allows for unsupervised or
semi-supervised clustering, which can learn interpretable
mixture components and corresponding Gaussian param-
eters. More importantly, such a framework facilitates the
applications in this research: controllable synthesis of in-
strument sounds, and many-to-many transfer of instru-
ment timbres. Our proposed framework differs from pre-
vious studies on timbre transfer, in that we achieve transfer
between multiple instruments without training a domain-
specific decoder for each instrument (e.g. [28]), and we
infer both the pitch and timbre latent variable without re-
quiring categorical conditions of source pitch and instru-
ment as in [3]. We evaluate our model by visualizing both
the latent space and the synthesized spectrograms, and ex-
plore the classification F-scores of classifiers trained in an
end-to-end fashion. The results confirm the model’s ability
to learn disentangled pitch and timbre representations. The
rest of the paper is organized as follows: in Section 2, we
discuss the proposed framework, and Section 3 describes
the dataset and experimental setup. Experiments and re-
sults are reported in Section 4. We conclude our work and
provide future directions in Section 5.

2. PROPOSED FRAMEWORK

In this section, we briefly describe VAEs and GMVAEs,
and elaborate on the proposed framework and architecture.

2.1 Gaussian Mixture Variational Autoencoders

VAEs [25] are unsupervised generative models that com-
bine latent variable models and deep learning [12]. We
denote the observed data and the latent variables respec-
tively by X and z. A graphical model, corresponding to
z → X, is trained by maximizing the lower bound of the
log marginal likelihood p(X). The intractable posterior

p(z|X) is approximated by introducing a variational distri-
bution q(z|X) parameterized with neural networks. In reg-
ular VAEs, a common choice for the prior distribution p(z)
is an isotropic Gaussian, which encourages each dimension
of the latent variables to capture an independent factor of
variation from the data, and results in a disentangled rep-
resentation [14]. Such a unimodal prior, however, does not
allow for multi-modal representations. GMVAEs [6,22,24]
extend the prior to a mixture of Gaussians, and assume the
observed data are generated by first determining the mode
from which it was generated, which corresponds to learn-
ing a graphical model y → z→ X. This introduces a cat-
egorical variable y, and q(y|X), which infers the classes
of data. This enables semi-supervised learning [24] and
unsupervised clustering [6, 22] in deep generative models.
In the speech domain, Hsu et al. used two mixture distribu-
tions to separately model the supervised speaker and unsu-
pervised utterance attributes, which allowed for extra flexi-
bility in conditional speech generation [17]. We build upon
this idea to learn separate latent distributions to represent
the pitch and timbre of musical instrument sounds. More
importantly, to facilitate downstream creative applications
such as controllable synthesis and instrument timbre trans-
fer in music, we propose to model supervised pitch rep-
resentations and semi-supervised timbre representations,
with labels of pitch and instrument identity. As such, the
mixture components in latent space of pitch and timbre can
be clearly interpreted as the classes, i.e., pitch and instru-
ment identity.

2.2 Model Formulation

The latent variables of pitch and timbre for an isolated mu-
sical note X are denoted as zp (pitch code) and zt (timbre
code), respectively. To represent Gaussian mixture latent
distributions, two categorical variables are introduced: an
M-way categorical variable yp for pitch, where M is the
number of recorded pitches in the dataset, and a K-way
categorical variable yt for timbre, where K is the number
of instrument classes. We consider yp to be observed (fully
supervised), which assumes the availability of pitch labels
during training, and is reasonable as we model isolated in-
strument sounds in this research. For yt, we investigate
both unsupervised and semi-supervised learning, i.e., us-
ing varying numbers of instrument labels for training. It is
shown in Section 4 that our model can efficiently leverage
the limited number of labels. Without loss of generality,
we denote yt as unobserved (unsupervised) as in [17]. The
joint probability of X, yt, zt and zp is written as:

p(X,yt,zt, zp|yp) =

p(X|zp, zt)p(zp|yp)p(zt|yt)p(yt),
(1)

where p(yt) is uniform-distributed, i.e., we do not assume
to know the instrument distribution in the dataset. Both the
conditional distributions p(zp|yp) = N (µyp

, diag(σyp))
and p(zt|yt) = N (µyt

, diag(σyt
)) are assumed to be

diagonal-covariance Gaussians with learnable means and
constant variances. This amounts to both the marginal
prior p(zp) and p(zt) being Gaussian mixture models
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(GMMs) with diagonal covariances. Ideally, each mix-
ture component in the former (pitch space) uniquely repre-
sents the pitch of X, while that in the latter (timbre space)
is interpreted as the instrument identity. As we will see
in Section 4.1, however, moderate supervision is essential
to learn a timbre space that groups instruments perfectly.
For creative applications such as the synthesis and tim-
bre transfer of instrument sounds, the proposed model has
numerous merits: 1) the learnt representations are not re-
stricted to be unimodal, which offers a more discriminative
timbre space than regular VAEs (Section 4.1 and 4.2); 2)
direct and intuitive sampling from pitch and timbre space
allows for consistent and controllable synthesis of instru-
ment sounds, attributed to the fact that Gaussian param-
eters of each interpretable mixture component are read-
ily available after training (Section 4.3); and 3) simple
arithmetic manipulations between means of mixture com-
ponents facilitate many-to-many transfer between instru-
ment timbres (Section 4.4). For the training objective, we
closely follow the derivation in [17] and train the model by
maximizing the evidence lower bound (ELBO) as follows:
L(p, q;X,yp) = Eq(zp|X)q(zt|X)[log p(X|zp, zt)]

−DKL(q(zp|X)||p(zp|yp))

− Eq(yt|X)[DKL(q(zt|X)|p(zt|yt)]

−DKL(q(yt|X)||p(yt)),

(2)

where p(X|zp, zt), q(zp|X), and q(zt|X) are parameter-
ized with neural networks, referred to as the decoder, pitch
encoder 2 , and timbre encoder, respectively. Instead of us-
ing another neural network, we approximate q(yt|X) by
Eq(zt|X)[p(yt|zt)]. Readers interested in detailed deriva-
tion are referred to Appendix A in [17].

2.3 Architecture

Our model is composed of a shared decoder and separate
encoders for pitch and timbre, as illustrated in Figure 1.
Specifically, we reshape the T -by-F spectrogram to have
number of channelsC = F , each of which is a T -by-1 vec-
tor, where T and F refer to time and frequency. Each en-
coder contains two one-dimensional convolutional layers,
each with 512 filters of shape 3× 1, and a fully connected
layer with 512 units. A Gaussian parametric layer fol-
lows and outputs two L−dimensional vectors which rep-
resent mean and log variance. zp and zt are sampled from
the Gaussian layer with the reparameterization trick [25],
which enables stochastic gradient descent, and are then
concatenated for the decoder to reconstruct the input. The
architecture of the decoder is symmetric to the encoder.
Batch normalization followed by the activation function
relu are used for every layer except for the Gaussian and
the output layer. We use the activation function tanh for
the output layer as we normalize the data within [−1, 1].

2 A common alternative is conditioning the model with categorical
pitch labels such that one does not have to train a pitch encoder [3,7]. It,
however, requires the pitch of the inputs to be known a priori to perform-
ing tasks such as timbre transfer [3], and also prohibits the model from
extracting pitch features for downstream tasks. By training this extra en-
coder, we also demonstrate how one can extend the model to possibly
learn multiple interpretable latent variables.

3. EXPERIMENTAL SETUP

In this section, we describe the experimental setup, includ-
ing details of the dataset, input representations, and model
configurations.

3.1 Dataset

Inspired by Esling et al. [8], we use a subset of Studio-
On-Line (SOL) [1], a database of instrument note record-
ings. 3 The dataset contains 12 instruments, i.e, piano
(Pno, 246), violin (Vn, 138), cello (Vc, 147), English
horn (Ehn, 128), French horn (Fhn, 214), tenor trombone
(Trtb, 63), trumpet (Trop, 194), saxophone (Sax, 99),
bassoon (Bn, 251), clarinet (Clr, 180), flute (Fl, 118)
and oboe (Ob, 107). There are 1,885 samples in total. All
recordings are resampled to 22,050Hz, and only the first
500ms segment (T = 43) of each recording is consid-
ered. We extract Mel-spectrograms with 256 filterbanks
(F = 256), derived from the power magnitude spectrum
of the short-time Fourier transform (STFT). To compute
STFT, we use a Hann window with window size of 92ms
and hop size of 11ms. As a result, the input representation
is a 43-by-256 Mel-spectrogram. The dataset is split into
a training (90%) and validation set (10%), each containing
the same distribution of instruments. The magnitude of the
Mel-spectrogram is scaled logarithmically, and the mini-
mum and maximum values in the training set are used for
normalizing the magnitude within [−1, 1] in a corpus-wide
fashion to preserve differences in dynamics.

3.2 Hyperparameters

In order to train both the GMMs in pitch and timbre
space, we initialize the means of mixture components us-
ing Xavier initialization [11]. We set constant standard de-
viations, rather than trainable ones, for pitch and timbre
space. For pitch space, σyp

= e−2 for all mixture com-
ponents, which is relatively small, as each mixture compo-
nent represents a pitch, and we do not expect a large vari-
ance over recordings that play the same pitch. For timbre
space, we let σyt

= e0 for all mixture components, which
captures the timbre variation of each mixture component,
i.e., instrument identity. The dimensionality of the latent
space is L = 16, and the numbers of mixture components
are M = 82 and K = 12, equivalent to the numbers of
classes of pitch and instrument, respectively. For all exper-
iments, a batch size of 128 is used, model parameters are
initialized with Xavier initialization and are trained using
the Adam optimizer [23] with a learning rate of 10−4.

In addition to the proposed model (MGMVAE), we con-
sider a baseline (MVAE) that substitutes the timbre space
with an isotropic Gaussian as in regular VAEs. Train-
ing such a model amounts to optimizing Eqn (2) with the
last two terms replaced with DKL(q(zt|X)||p(zt)), where
p(zt) = N (0, I). The experimental results in Section 4.1
and Section 4.2 show that MGMVAE learns a more discrim-
inative and disentangled timbre space than MVAE.

3 Access to the dataset was requested from [8].
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Ehn Fhn Trtb Trop Pno Vn Vc Sax Bn Clr Fl Ob

Figure 2. Timbre space visualization of MVAEs (top) and MGMVAEs (bottom). From left to right: models trained with 0, 25,
50, 75, or 100% of instrument labels, respectively.

Instrument Classification Pitch Classification

N (%) CNN MVAE MGMVAE CNN MVAE MGMVAE
zt zp zt zp zt zp zt zp

0 - 0.960 0.163 0.937 0.175 - 0.112 0.966 0.146 0.960
25 0.920 0.960 0.192 0.971 0.180 - 0.169 0.966 0.084 0.977
50 0.983 0.971 0.169 0.988 0.186 - 0.158 0.977 0.079 0.977
75 1.000 0.971 0.169 1.000 0.163 - 0.079 0.971 0.045 0.977

100 1.000 0.937 0.158 1.000 0.197 0.983 0.039 0.983 0.028 0.966

Table 1. The F-scores of instrument and pitch prediction by linear classifiers and CNNs. N (%) refers to the percentage of
instrument labels used to train the models. Columns zt and zp, respectively, refer to the F-scores obtained using the learned
timbre and pitch code to train the down-stream linear classifier.

3.3 Semi-Supervised Learning

We exploit a moderate number of instrument labels to learn
a timbre space in which the clusters clearly represent in-
strument identity. Similar to Kingma et al. [24], in the
semi-supervised training for MGMVAE, we guide the infer-
ence of instrument labels q(yt|X) by leveraging limited
amounts of supervision. This is done by adding an addi-
tional loss term which measures the cross entropy between
the inferred and true instrument labels. Because we do not
infer yt in MVAE, we use zt to train an auxiliary classifier
to predict yt. It has two 128-unit fully-connected layers,
and is jointly optimized with MVAE. We consider varying
numbers of instrument labels N = 0 (unsupervised), 25,
50, 75, and 100% (fully supervised) of the total number.
We randomly sample and let the label distribution match
the distribution of instruments.

4. EXPERIMENTS AND RESULTS

The experiments and the results are presented in this sec-
tion. We first visualize the timbre space, and quantitatively
evaluate the disentangled representations. We then demon-
strate the applications of controllable synthesis and many-
to-many timbre transfer. Finally, we identify the particular
latent dimension that is sensitive to the distribution of the
spectral centroid, which allows for finer timbre controls.

4.1 Visualization

Figure 2 visualizes the timbre space using t-distributed
stochastic neighbor embedding (t-SNE) [34], a technique
that projects vectors from high- to low-dimensional space.
We first observe that MGMVAE learns a Gaussian-mixture
distributed timbre space, with means of mixture compo-
nents marked as crosses in the figure. Second, attributed

to the pitch encoder which addresses pitch variations, both
MVAE and MGMVAE are able to form clusters of instrument
identity even without being trained with instrument labels
(the leftmost column). We observe that the wind family
(e.g., saxophone, clarinet and flute) forms an ambiguous
cluster. Such an ambiguity remains in the MVAE even with
increased N , while it is less present in the MGMVAE latent
space, due to the multi-modal prior distribution. As we
will confirm in Section 4.2, MGMVAE outperforms MVAE

in learning a more discriminative and disentangled tim-
bre space. Note that in MGMVAE, p(yt) is assumed to be
uniformly distributed over 12 classes of instruments, i.e.,
mixture components are equally weighted. As a result, in-
struments with larger within-class variances (e.g., bassoon
and trumpet) are assigned to more than one cluster when
N = 0. In future work we aim to improve the performance
of the unsupervised clustering of instruments.

4.2 Pitch and Instrument Disentanglement

A disentangled pitch (timbre) representation should be dis-
criminative for pitch (instrument identity), and at the same
time non-informative of instrument identity (pitch). There-
fore, we evaluate zp and zt by means of classification. We
train linear classifiers to map zp and zt to predict both pitch
and instrument labels with one fully connected layer. For
comparison, we train an end-to-end convolutional neural
network (CNN), whose architecture is the same as the en-
coder and is a strong baseline, to map the original input
Mel-spectrograms to either pitch or instrument labels.

Table 1 shows the results. The CNN achieves high F-
scores on both instrument and pitch classification; note that
N is the supervisory percentage of the total number of in-
strument labels, and we always use all pitch labels to train
the models, which is reasonable as we model isolated notes
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Figure 3. The F-scores for predicting instrument (left) and
pitch (right) labels from the synthesized spectrograms.

in this work. In instrument classification, using zt as the
feature representations outperforms zp by a large margin,
as expected. Specifically, in both models, the zt learned
with unsupervised learning (N = 0) is already discrimina-
tive enough to predict instruments with linear classifiers.
While the F-score of MGMVAE improves with increased
N , that of MVAE does not. Moreover, the linear classifier
trained with zt outperforms the CNN when N < 75. The
timbre space of MGMVAE displays the most discriminative
power among the models. We attribute the F-scores of in-
strument classification attained by zp to the fact that the
piano covers all possible pitches in the dataset, while other
instruments account for a smaller pitch range. As a result,
zp of notes that were only recorded by piano are correctly
classified. Future work can be done to decorrelate par-
ticular pitches and instruments by data augmentation and
adversarial training as in [16]. In pitch classification, zp
outperforms zt as expected, and both models achieve com-
parable results. More importantly, MGMVAE performs bet-
ter than MVAE in terms of disentanglement, as zt results in
lower F-scores when predicting pitch with increased N.

4.3 Controllable Synthesis of Instrument Sounds

As shown in Figure 2, MGMVAE learns a timbre space p(zt),
whose mixture components are clearly interpreted as in-
strument identity when trained with moderate supervision.
Meanwhile, mixture components in p(zp) represent pitch.
As Gaussian parameters are readily available after train-
ing, we can achieve controllable sound synthesis by sam-
pling p(z|y). To synthesize the target pitch ym and instru-
ment yk, we first sample zp ∼ N (µym

, w · diag(σym))
and zt ∼ N (µyk

, w · diag(σyk
)), where the multiplier

w ∈ {0, 0.5, 1.0} serves to examine the effect of sam-
pling latent variables that deviate from the modes. The de-
coder then synthesizes the Mel-spectrogram by consuming
[zt, zp]. For evaluation, the CNNs (trained on the original
dataset) are used to test whether the synthesized spectro-
grams are still recognized as belonging to the desired in-
strument and pitch. High F-scores therefore indicate high
controllability of the model in sound synthesis. We use the
sound samples in the validation set as the targets to synthe-
size, and repeat the sampling 30 times for each target.

The F-scores for pitch and instrument classification are
reported in Figure 3. We first note that increasing w de-
grades classification performance. This is expected, as
a sample which is synthesized using a latent variable far
from its corresponding mean of mixture component devi-
ates more from the intended instrument or pitch distribu-
tion. Moreover, the fact that the CNN was trained on the

Figure 4. Many-to-many timbre transfer. The ith sample
of the Fhn is transferred to the Pno, with vector arithmetic
in the (partially shown) timbre space.

original samples while tested on the synthesized ones also
contributes to the inferior performance. Second, increas-
ing N improves instrument classification performance. Fi-
nally, the high F-scores across all N ’s when w ∈ {0, 0.5}
indicate accurate and consistent synthesis of instrument
sounds with intended pitches and instruments, even with
a timbre space trained using a limited number of instru-
ment labels. This implies that MGMVAE efficiently exploits
the instrument labels, and learns a discriminative mixture
distribution of timbre, which is consistent with the visual-
ization in Figure 2 (bottom row, N ≥ 25). We do not ex-
plore the timbre space resulting from unsupervised learn-
ing (N = 0) in this experiment, as the instrument iden-
tity of each mixture component is not directly available.
We can, however, infer the instrument identity of each
mixture component by sampling and synthesis, and expect
reasonably good performance for controllable synthesis if
the clustering of instruments shown in the bottom left of
Figure 2 is improved. This will be explored in future work.

4.4 Many-to-Many Transfer of Timbre

In this experiment, we demonstrate many-to-many transfer
of instrument timbre. In Mor et al., a domain-specific de-
coder was trained for each target [28]. To achieve timbre
transfer with a single encoder-decoder architecture, Bit-
ton et al. proposed to use a conditional layer [31] which
takes both instrument and pitch labels as inputs [3]. On
the other hand, our model infers zt and zp, and only uses
a single joint decoder. As illustrated in Figure 4, tim-
bre transfer is achieved by decoding [ztransfer, zp], i.e.,
transferring timbre while keeping pitch unchanged, where
ztransfer = zsource+αµsource→target,µsource→target =
µtarget − µsource, and α ∈ [0, 1]. Once again, we rely on
the trained CNNs in Table 1 for evaluation. More specifi-
cally, we examine the posterior shift in instrument predic-
tion of the CNN, before and after transferring from source
to target instruments with α = {0, 0.25, 0.5, 0.75, 1.0}.
For simplicity, the most frequent instruments (i.e., French
horn, piano, cello, and bassoon) of the four families are se-
lected as the representatives, and we perform timbre trans-
fer using the samples in the validation set as the source.
For example, consider Fhn as the source and Pno as tar-
get, as shown in Figure 4. We modify the timbre code as
ziFhn→Pno = ziFhn+αµFhn→Pno, where ziFhn is the tim-
bre code of the ith Fhn sample, and i = {1, 2, . . . ,NFhn}.
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Figure 5. The averaged posterior (color) shift in instru-
ment prediction of the CNN, caused by timbre transfer.

We decode as described earlier and report the averaged
posterior (over NFhn) of instrument prediction of the CNN.

For simplicity, in Figure 5, we report the results of the
source-target pairs Fhn → Pno, Pno → V c, V c → Bn
and Bn → Fhn. Each subfigure refers to a source-
target pair, and represents the averaged posterior shift of
instrument classification of the CNN, with varying α. For
all pairs, the biggest posterior shift (hence the prediction
change) happens when α = 0.5. This also applies to the
rest of the possible instrument pairs not shown in the fig-
ure. Meanwhile, by using pitch classification, we examine
if the pitches are the same before and after timbre trans-
fer, and we use the original pitch labels as ground-truths.
We find that, except in the case where the source is pi-
ano, all source-target pairs attain a perfect F-score in terms
of pitch. This confirms the ability of the model to suc-
cessfully perform many-to-many timbre transfer. A special
case arises when piano is the source. The F-scores before
transfer, after transfer to French horn, to cello, and to bas-
soon, are 0.958, 0.750, 0.791, and 0.791, respectively. As
described earlier in Section 4.2, lower F-scores can be at-
tributed to the fact that the range of piano is much larger
than that of the target instruments, or the classifier fails to
predict the synthesized samples that have unseen combina-
tions of pitch and instrument. The other possible reason is
the model falls short of generalization. Nevertheless, this
only happens in some cases when the source is piano; as
demonstrated in Figure 6, the model is able to transfer Pno
G6 to cello (the first row), which is an example of general-
izing to an out-of-range pitch for the target instrument. In
the first and third row, the high-frequency components ap-
pear with increased α, and the energy distributes over the
segment without decay. The model, however, falls short in
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Figure 6. Examples of timbre transfer Pno → V c. The
top two rows are tones outside of the cello range.
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Figure 7. Spectral centroid values in response to z13t .

generalizing to the higher pitch, i.e., Pno C7 (the second
row), where the energy remains focused at the onset, and
high-frequency components are smeared. In the future, we
could improve the model generalizability by performing
data augmentation and adversarial training as in [16].

4.5 Spectral Centroid Disentanglement

A diagonal-covariance Gaussian prior encourages the
model to learn disentangled latent dimensions [14]. This
applies to all mixture components in our model. In par-
ticular, we identify a latent dimension that correlates with
the spectral centroid. we modify the 13th dimension of zt,
z13t , of each sound sample in the validation set by ±2σyk

,
where σyk

= e0 for all instruments, and then synthesize
the spectrograms, for which we then calculate the spectral
centroid. Figure 7 shows the distributions of the spectral
centroid before and after the modifications. The two-tailed
t-test indicates significant differences (p < 0.05) between
−2σyk

and +2σyk
for all instruments. As demonstrated in

Figure 8, we observe that increased z13t reduces the energy
of high-frequency components and results in lower spec-
tral centroid values. In future research, we will further in-
vestigate disentangling specific acoustic features for finer
control of sound synthesis beyond pitch and instrument.
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Figure 8. Latent dimension traverse of z13t .

5. CONCLUSIONS AND FUTURE WORK

We have proposed a framework based on GMVAEs to
learn disentangled timbre and pitch representations for mu-
sical instrument sounds, which is verified by our exper-
imental setup. We demonstrate its applicability in con-
trollable sound synthesis and many-to-many timbre trans-
fer. In future work, we plan to conduct listening tests for
a more comprehensive evaluation of the applications, and
further disentangle both low- (e.g., acoustic features) and
high-level (e.g., playing techniques) sound attributes, en-
abling finer control of synthesized timbres. By using su-
pervised and unsupervised learning in a deep generative
model, the framework can be easily adapted to learn in-
terpretable mixtures such as singer identity, music style,
emotion, etc., which facilitates music representation learn-
ing and creative applications.
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ABSTRACT

Ever since the first International Symposium on Music Informa-
tion Retrieval in 2000, the proceedings have been made publicly
available to interested researchers. After 20 years of annual
conferences and workshops, this number has grown to an im-
pressive amount of almost 2,000 papers. When restricted to
linear search and retrieval in a document collection of this size,
it becomes inherently hard to identify topics, related work and
trends in scientific research. Therefore, this paper presents and
evaluates a map-based user interface for exploring 20 years of
ISMIR publications. The interface visualizes k-nearest neigh-
bor subsets of semantically similar papers. Users may jump
from one neighborhood to the next by selecting another paper
from the current subset. Through animated transitions between
local k-nn maps, the interface creates the impression of panning
a large global map. Evaluation results of a small user study
suggest that users are able to discover interesting links between
papers. Due to its generic approach, the interface is easily
applicable to other document collections as well. The search
interface and its source code are made publicly available. 1

1. INTRODUCTION

Music Information Retrieval (MIR) has been a steadily
growing field of research as documented by the official
statistics from the International Society of Music Information
Retrieval (ISMIR). 2 For the 20th anniversary of the annual
ISMIR conference, the number of published papers at this
event is expected to exceed 2,000. This work aims to make
this great resource more accessible for researchers who would
like to familiarize themselves with the field of MIR.

The classical search interface based on keyword search
and result lists is well suited for users who know what they are

1 https://doi.org/10.6084/m9.figshare.8342594
2 https://www.ismir.net/stats.html
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Publications”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

looking for. However, in other scenarios, this might not be the
ideal search approach and the amount and diversity of papers
and topics can be overwhelming. Exploratory information
retrieval systems support users with vague or evolving informa-
tion needs by providing special user interfaces and interaction
models. The ISMIR Cloud Browser 3 [4], last updated in
2013, allows browsing through links of related terms. Our
new web-based search interface, the ISMIR Paper Explorer,
takes a different – more visual – approach to exploration using
similarity-based two-dimensional maps. It can be accessed
at https://ismir-explorer.ai.ovgu.de.

Section 2 covers related and prior research that led to or
inspired our approach. Details on the underlying dataset and
preprocessing are provided in Section 3. We then describe
the user interface in Section 4 and present the results from a
usability study of our first prototype in Section 5. Furthermore,
we also provide insights gained from analyzing the cumulative
ISMIR proceedings to detect trends like shifts in topics and
methods, and demonstrate whether and how these findings
show in the visual search interface (Section 6). Finally, Section
7 offers conclusions.

2. RELATED WORK

In contrast to keyword-based search or recommendation, the
goal of exploration is not only to present relevant or related
items, but to allow the user to learn about the information
space and its properties. This is often desirable when dealing
with large document collections and when an overview over
a collection is preferred over a pinpoint search.

A common problem when designing interfaces for
exploratory search is the typically very high-dimensional
feature space used to describe the contents of the respective
documents. Considering the task of exploring text documents
such as scientific papers, the document contents is commonly
expressed as a (weighted) vector of term frequencies (tf-idf).
Depending on the selected vocabulary, these often gather up to
thousands of dimensions, which are hard to be displayed on a
common computer display. Thus, map-based visualizations of
inter-document similarities requires projection of these features
into a two-dimensional display space. The neighborhood
relations in high-dimensional space, however, should be

3 http://dc.ofai.at/browser
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preserved throughout the projection so that similarity can be
easily perceived by the user.

In order to reduce the dimensionality of the feature spaces,
different dimension reduction techniques have been proposed
(a comprehensive survey is given in [2]). Popular approaches
for dimensionality reduction are Self-Organizing Maps
(SOMs) [6], Principle Component Analysis (PCA) [5] and
Multidimensional Scaling (MDS) techniques [8].

Inevitably, any reduction of dimensionality will also reduce
the information conveyed. None of the aforementioned meth-
ods is capable of fully preserving the structure of the collection
(unless the collection already has a 2-D structure). A projection
will cause errors in a sense that documents, whose feature
vectors are very close in high-dimensional space might be pro-
jected at large distances from each other and documents that are
very dissimilar are placed next to each other respectively. Most
dimension reduction techniques try to minimize this error (e.g.
stress optimization in MDS), however, a complete resolution
is impossible due to the nature of the error. In [13] the authors
reviewed and compared different dimensionality reduction
algorithms for the visualization of music collections. Based on
a user study, MDS was favored as best layout algorithm when
the collection undergoes changes due to newly added items.

Although applied in the context of image retrieval, Rubner
et al. [11] were among the first to propose multidimensional
scaling for iterated search in large document collections. The
authors suggest to compute a local MDS on the top ten best
matching images for a given query. Follow-up queries are
emitted by using a representative image of a specific area in
the MDS as the next query. A global MDS is suggested by
the authors to provide a broad overview of the entire collection.
While this global approach gave good results for rather small
sets of images (the authors tested with a 2-D map of 500 im-
ages) it can be easily seen that very large collections (such as
the collection of all ISMIR papers) cannot be reasonably pre-
sented at a time. Moreover, the number of projection errors will
increase with increasing number of documents to be displayed.

A different approach to local MDS is given in [14]. The
authors discuss the problems of dimension reduction and
introduce the measures of trustworthiness (closest neighbors
of a document in display space are also neighbors in original
space) and continuity (all proximities in original space are
visualized in display space). The proposed method to local
multidimensional scaling is different from the one suggested
by [11] in that it allows to parameterize and adjust the
compromise between trustworthiness and continuity using
an adapted cost function. The MDS is computed on varying
neighborhood sizes and trustworthiness as well as continuity
are reported to decrease with increasing neighborhood size.
In a subsequent work the authors present an unsupervised and
a supervised approach to optimize both measures [15].

As discussed, naturally, none of these approaches is capable
of actually solving the problems of dimension reduction.
In this paper, we therefore follow the idea of reducing the
projection error itself rather than trying to attenuate the errors
that occur from dimension reduction. Similar to [11] we
compute a local MDS on a small subset of the entire collection.
Our approach followed in this paper takes these ideas one

step further by computing a significantly larger virtual map
using MDS of which only a small subset is actually displayed.
By selecting one of the displayed documents as follow-up
query document, the user can navigate through the collection.
Thus, we increase the overlap of any two consecutive maps
and thereby increase continuity throughout the navigation
process. Furthermore, as suggested in [13] we use Procrustes
analysis [3] to better align newly generated maps with their
respective predecessors, which leads to a reduced confusion
of users when navigating with aligned maps.

3. DATASET PREPARATION

We collected all accessible papers from the years 2000
to 2018 4 by scraping the respective conference websites,
the DBLP index 5 and the recently established Zenodo
repository. 6 From a total of 1822 URLs, 28 were broken. We
were able to retrieve 16 of these papers through a manual web
search. 12 papers are still missing. Meta-data such as paper
title and authors, publication year and abstract was retrieved
from DBLP. In order to obtain paper citation counts, Google
Scholar 7 was queried.

All papers were pre-processed in order to extract the plain
text from the originating PDFs (where possible). For several
older papers, we had to apply OCR techniques because they
only contained the text as image or used obscure font encodings
– possibly to hamper copying text from the paper. We experi-
mented with several text extraction tools and eventually settled
for pdftotext as provided by the Xpdf PDF viewer and toolkit 8

which consistently provided good extraction results. 3 PDFs
turned out to be corrupted, leaving 1807 paper to be indexed.

As the meta-data is missing abstracts for most of the papers,
we automatically extracted abstracts from the texts using
simple heuristics. Furthermore, a preview image of the first
page of each paper was extracted using pdftopng provided
by Xpdf. For imports of future proceedings, scripts have been
created to automate the process.

4. PROPOSED
USER-INTERFACE FOR VISUAL BERRYPICKING

In classic information retrieval, berrypicking refers to the
process of finding relevant information through a series of
modified search queries [1]. With each query the user inspects
a new set of search results and gains a better understanding
of the underlying document space as well as his or her infor-
mation need. Due to this incremental learning process the user
is able to formulate new search terms and continue searching.

The proposed user interface adapts this pattern from a list-
based presentation of search results to a map-based visualiza-
tion. Instead of sorting results by relevance with respect to
search terms, they are arranged in a similarity preserving two-
dimensional projection. Additionally, the burden of having to
formulate search terms is substituted by a query-by-example

4 We aim to update the explorer until the 2019’th ISMIR conference in
order to provide access to all 20 years of ISMIR publications.

5 https://dblp.uni-trier.de/db/conf/ismir
6 https://zenodo.org/communities/ismir
7 https://scholar.google.com/
8 https://www.xpdfreader.com
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1
2 3

Previous Map
Current Map

Next Map

overlap overlap

Figure 1. Similarity-based projection of nearest neighbors
(squares) using three seed items (colored squares 1,2,3). Com-
mon neighbors (black squares) overlap between consecutive
maps and are used for alignment when navigating from one
item to the next.

search strategy. Such a user interface is hypothesized to be
more in line with the goal of learning about the document space.

4.1 General Approach

Instead of trying to visualize the whole proceedings collection
in a single similarity-based two-dimensional map, we visualize
only the set of k-nearest neighbors for a given seed document in
a small map [9]. This circumvents the challenge of the degrad-
ing projection quality (c.f. Section 2) and the increasing compu-
tational costs for on-the-fly map generation. By selecting a new
seed document amongst the k-nearest neighbors, the user is able
to hop from one neighborhood map to another. Consecutive
maps are aligned as illustrated in Figure 1 to create a consistent
transition that is, ideally, perceived as panning a large (global)
map. Users are able to transfer knowledge about the content
and the relevance of documents accumulated during the explo-
ration process from one visualization to the next. This allows
the user to navigate step-by-step through the whole collection.

4.2 Methods

We apply Multi-dimensional Scaling (MDS) [8] for dimen-
sionality reduction. By limiting the number of documents used
to compute the projection, we reduce the impact of projection
errors and thus visualizations become more reasonable. Transi-
tions between consecutive maps are animated. In order to make
these transitions as consistent as possible, we align consecutive
maps on their common neighbors. We use Procrustes
analysis [3] to reduce the sum of the squared distances between
the two sets of images that remain visible during the transition.

As preparation within the Python-based backend, all
extracted texts are indexed using the Whoosh library. 9 We
also pre-compute pairwise document similarities (stored in
a distance matrix) using the tf-idf vector space model [12]
considering the 1,000 most frequent terms after applying a
Porter Stemmer [10]. This pre-computation allows to quickly
retrieve k-nearest neighbors and the corresponding distance
matrix for the MDS projection.

The front-end is implemented in HTML5 based on the
jQuery 10 javascript library. Cookies are used to store pinned
and highlighted papers as well as the user interface settings

9 https://bitbucket.org/mchaput/whoosh/
10 https://jquery.com

(cf. Section 4.3). They also allow to track individual sessions
for evaluation purposes.

4.3 User Interface

The user interface as shown in Figure 2 consists of three major
components: a search bar on top that provides a keyword
search interface and access to the settings for the visualization,
the map visualization on the left and a details pane that
displays the meta-data and the abstract or a preview image for
the paper that is currently in focus.

A search can be started by clicking on one of the initially
displayed papers or by typing query terms into the search bar.
This will generate a map of the k most relevant ISMIR papers
for the query. The matching query terms used to populate the
initial view are highlighted in the presented information on the
map as well as in the details pane. The parameter k is initially
set to 30 but can be altered by the user. By clicking on any
paper, it will gain focus (indicated by a blue border) and the
map will change to display the k most similar ISMIR papers
using this paper as new query. A paper can also gain temporary
focus (without map update) by hovering the mouse pointer over
it. As alternative to the default map visualization, the papers
can be arranged in a grid layout that preserves similarities and,
in addition, avoids overlaps, see Figure 6 (right).

On the map, each paper is visualized as a rectangle with
the title and the last names of the first and last author inside.
The fill color saturation visualizes the citation count whereas
the border color highlights the current paper in focus (in
strong blue) as well as the recent history of focused papers (in
light blue). On hovering over a paper, functions for pinning
and highlighting become available which are visualized by a
landmark pin and a star respectively as explained in Figure
3. Both become permanently displayed in yellow if selected.
Pinning keeps a paper on the map, even if it no longer belongs
to the k-nearest neighbors of the paper in focus. This can be
especially helpful when identifying related work and using the
map to visualize similarity relations between the found papers.
Highlighted papers are easy to spot because of the star and the
additional yellow border color. This function can, for instance,
be used to help orientation on the map. Furthermore, papers
can be bookmarked using the bookmarking function built into
the web browser. The browser’s back and forward buttons
allow to step through the search history.

The details pane on the right displays the meta-data of the
paper in focus comprising the title, the full list of authors, the
publication year, and the citation count at the top. Below are
two tabs containing the abstract and a preview of the first page
of the PDF respectively. Clicking on the title opens the PDF.
There is further a link to the DBLP BibTeX record. The content
of the details pane can be temporarily changed by hovering over
a paper on the map. This allows to inspect paper details without
having to focus the paper which would imply a map update.

A first user interface prototype with the functions described
above was evaluated in a usability study as described in Section
5. Afterwards, several additional functions were introduced
to support a historical analysis of the cumulative ISMIR
proceedings for the 20th anniversary. To visualize the year of
publication for papers displayed on the map, the fill color hue
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Download

Bibtex

Detecting Emotion in Music

1  Introduction

Figure 2. User interface schematic.

Figure 3. Explanation of the visual elements used in the map
(accessible through a help button in the search bar at the top
of the user interface).

was adapted. To this end, a continuous color map was divided
into 20 steps representing the years. This is compatible with
the original coloring to indicate the citation count as this only
relies on the color saturation. Furthermore, instead of starting
with a random paper in focus and its k-nearest neighbors, we
now start with the k most cited papers which naturally cover
a wide range of topics addressed in MIR. This makes for a
nice starting point to explore the different sub-fields of MIR.

5. EVALUATION

Based on the prototypical implementation of the exploration in-
terface described above, we conducted a small anonymous user
study with the aim to evaluate user satisfaction with the pre-
sented design. Study participants were asked to compare the ex-
plorer interface with available traditional linear paper browsing
interfaces for the ISMIR proceedings. Specifically, we asked
about experiences using DBLP 5 , the Cumulative ISMIR Pro-
ceedings browser 11 as well as the ISMIR Cloud Browser 3 [4].
Furthermore, participants were also free to mention tools apart
from these. We were interested to see whether the prototype
helped to identify related literature and discover additional re-
lated topics, which were the fundamental goals when designing
the interface. We also wanted to know whether the prototype
helped to efficiently find what the user was looking for.

Furthermore, we asked the participants about their overall
satisfaction with regard to the proposed interface. Here, we

11 http://www.ismir.net/proceedings/index.php

were mainly interested to see whether a fundamentally different
approach to paper exploration is still considered as easy to use.
A key aspect of the interface is the exploitation of the 2-D map
to spatially arrange similar papers. We therefore wanted to
know whether the spatial grouping helped to infer relevance for
unknown papers and whether the user were able to effectively
refine the topic focus during navigation. Finally, as mentioned
above, applying the MDS to a restricted neighborhood may
result in some confusion when changing the views. We were
interested to understand whether the arrangement of papers
during navigation was still perceived as plausible.

Finally, the users were able to enter additional comments
and proposals for improvements in free text.

5.1 Evaluation Results

We received a total of 20 valid responses. Figure 4 presents the
aggregated results of all responses. Out of the 20 participants,
13 users were experienced with some of the alternative
search tools for finding relevant ISMIR papers. 2 participants
mentioned Google or Google Scholar as alternative tools for
browsing, which are both linear search and retrieval tools.
For users, who were not experienced in any other alternative
method for ISMIR paper exploration, we rated their answers re-
garding the comparison with the proposed protoype as neutral.

In general, the prototype was rated very positively by the
study participants. We were pleased to see that a majority
of the participants (65%) agreed that the proposed approach
helped them to identify literature related to their topic of
interest. An overwhelming majority of 90% of the participants
furthermore agreed or strongly agreed to the claim that the
interface was easy to use, which surprised us due to the
fundamentally different browsing experience. Furthermore,
according to the results of the study, the suggested spatial
alignment helped 70% of the participants to infer the relevance
of unknown papers based on the grouping of the neighborhood.
As could have been expected, a small number of participants
(20%) were not satisfied with the arrangement of the papers
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... the interface was easy to use. 
... the spatial grouping helped me to infer the relevance for unknown papers. 

... I was able to effectively change (refine or extend) the topic focus through navigation. 
... during navigation, changes in the arrangement of the papers were comprehensible/plausible. 

identify
literatur..discover..

e�
ciently

find..

easy
to

use

help
ed

to
infer

relevance

able
to

change

focus
e↵

ectively

spatial
changes

plausible

�
1
0
0

�
5
0 0

5
0

1
0
0

percent

s.
a
g
ree

a
g
ree

n
eu

tra
l

d
isa

g
ree

s.
d
isa

g
ree

ide
nti

fy
lite

rat
ur.

.

dis
cov

er.
.

e�
cie

ntl
y fin

d..

eas
y to

use

he
lpe

d to
inf

er

rel
eva

nc
e

ab
le

to
ch

an
ge

foc
us

e↵
ect

ive
ly

spa
tia

l ch
an

ges

pla
usi

ble

�100

�50

0

50

100

p
e
rc

e
n
t

s. agree
agree
neutral
disagree
s. disagree

Compared to [...], the system better helped me to ...
... identify literature related to my topic of interest. 

... discover additional related topics. 
... efficiently find what I was looking for. 

Overall, …

identify
literatur..discover..

e�
ciently

find..

easy
to

use

help
ed

to
infer

relevance

able
to

change

focus
e↵

ectively

spatial
changes

plausible

�
1
0
0

�
5
0 0

5
0

1
0
0

percent

s.
a
g
ree

a
g
ree

n
eu

tra
l

d
isa

g
ree

s.
d
isa

g
ree

n=20

strongly agree
rather agree
neutral
rather disagree
strongly disagree

-100% 0% 100%

Figure 4. Evaluation results presented in diverging stacked bar charts showing the percentage of participants rating the proposed
interface according to the respective statements.

during navigation as it was not considered comprehensible.
A number of participants asked us to publicly release the

source code for future development. A few other comments
were made with suggestions to further improvements of the
usability. One participant mentioned that it is currently not pos-
sible to retrieve a list of bookmarked papers, which is a valuable
feature for a future release. A few users mentioned that a per-
sistently visible tutorial or legend would help a novice to better
use the interface. Finally, an issue was raised about the overlap-
ping surrogates in the non-grid view, which make it sometimes
hard to reach them with the mouse. While we encourage the
use of the grid view in these cases, we are aware that the grid
layout also breaks the spatial alignment of the papers.

6. EXPLORATORY SEARCH

To identify interesting trends in the dataset, we first followed a
conventional approach. We binned the publications into 5-year
spans and performed a basic bi-gram analysis on the paper
abstracts. Table 1 shows the most frequent bi-grams for each
bin. Next, we applied a simple heuristic proposed in [7] to
detect the most popular methods by assuming that the name
of the method appears after phrases like “based on” or “using.”

Having identified the most prominent methods, we counted
all papers per year mentioning them. For this, we also con-
sidered variations like acronyms or slightly different ways of
spelling. A plot for the most popular methods is shown in
Figure 5 (top). The rise of deep learning since about 2012
cannot be overlooked here. The middle plot in Figure 5 shows
the development for select MIR topics like query-by-humming
(QBH) which was particularly popular in the early 2000s, opti-
cal music recognition (OMR) which has been of constant inter-
est, the development of graphical user interfaces (GUIs) which
peaked in 2004 and 2008 mainly driven by approaches based
on self-organizing maps (SOMs), and music recommendation
which gained massive popularity around the turn of the decade
and has leveled off slightly since then. Finally, Figure 5 (bot-
tom) shows the popularity of selected music features over time.
Here, the increasing use of chroma features and the slow devel-
opment of MIR research addressing emotions stand out. At the
same time, melody had a very high initial popularity (likely due
to a focus on symbolic music representations and QBH in early
years) that it lost to some extend over time but may gain back
thanks to recently sparked interest in generative models for mu-
sic. This trend could also explain the emergence of “symbolic
music” as a top-5 bi-gram in most recent paper abstracts.

Next, we wanted to see, whether we can make similar
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Figure 5. Examples for development over time. Top: popular
machine learning techniques. Middle: selected MIR topics.
Bottom: selected aspects/features of music.

observations with our exploratory search interface. Here, the
same data is used in the back but only a small part of it is
shown at a time to not overwhelm the user. Figure 6 (left)
visualizes the top-30 papers for the query “query by humming.”
Based on the dominating orange and green hues, most of
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Table 1. Top-5 bi-grams for each 5-year bin. Numbers correspond to the frequency of each bi-gram within paper abstracts.

2000–2004 2005–2009 2010–2014 2015–2018

content based 30 polyphonic music 30 matrix factorization 27 neural network 52
polyphonic music 26 Gaussian mixture 15 music structure 18 recurrent neural 33

similarity measures 13 music recommendation 10 interactively browse 15 convolutional neural 32
pattern matching 10 collaborative filtering 9 emotion recognition 15 time frequency 22
acoustic features 6 rhythmic information 7 automatic transcription 11 symbolic music 16

Figure 6. Map visualizations for selected initial search queries – from left to right: “query by humming”, “OMR”, “million song
dataset”, “SOM”. All except the rightmost sub-figure show the top-30 results. The rightmost sub-figure shows the top-50 results
for “SOM” in grid mode. The color saturation is proportional to the citation counts and the hue corresponds to the year starting
with red in 2000 and continuing in equal steps through the spectrum.

the papers come from the early-to-mid 2000s with the by far
most-cited paper being a survey of MIR systems from 2005.
This matches the respective plot in Figure 5 (middle). The
advantage in the view is that clusters can be identified like the
aspects of singing in the top left, alignment in the lower left
or system performance at the bottom.

For the topic OMR (second map from the left in Figure
6), there are some highly-cited papers around 2010 but there
is also plenty of coverage in recent years which is in line
with Figure 5 (middle). Recognizable clusters comprise, for
instance, alignment (top right), applications in libraries (middle
right) and old data (bottom).

The third map from the left in Figure 6 shows papers men-
tioning the Million Song Dataset. As can be seen easily, these
are all fairly recent papers with the original publication stand-
ing out clearly due to its high citation count. This visualization
nicely illustrates the different ways this dataset has been used in
research since its publication. There are, for instance, clusters
on cover songs (lower left), training deep neural networks
(lower right), and on playlists and recommendation (top).

Finally, the rightmost map in Figure 6 shows the top-50
papers for the query “SOM.” They are displayed in grid
mode to avoid clutter which starts to become an issue at this
setting of k for typical screen resolutions. Nevertheless, the 50
papers can still be displayed comfortably in grid mode. This
visualization covers almost all relevant papers for this topic.
Here, the most-cited papers can be attributed to the period
between 2005 and 2010 which was a time of high popularity
for this technique being used in a large variety of graphical
user interfaces. This also correlates with the two peaks around
this time for GUI in Figure 5 (middle).

These are just a few examples about what can be discovered

by exploring the cumulative ISMIR proceedings using our
proposed user interface.

7. CONCLUSION AND OUTLOOK

In this paper, we presented and evaluated a novel map-based
user interface to explore the past 20 years of ISMIR publica-
tions. The proposed approach uses an MDS dimensionality
reduction on a locally-restricted neighborhood of a query
paper in order to project a high-dimensional feature space into
2-D while at the same time keeping projection distortions at
a minimum. Consecutive maps are aligned in order to create
a consistent impression of panning a global map.

Based on the interface, the user is able to find out a number
of interesting topics in the ISMIR collection that would be
hard to identify using a linear search interface. As an example,
the topic “query by humming” almost disappeared in the early
2010’s after having peaked in the early 2000’s. While this fact
would be hard to extract manually from a linear search interface,
it is revealed at a single glance using the proposed prototype.

Besides updating the data to include recent ISMIR publi-
cation, one possibility for extension is to consider MIR-related
papers not published at ISMIR. Respective candidates could
be discovered by analyzing the reference sections. This would
also allow an additional co-reference analysis which could
enrich the interface further. We will also provide support to
integrate the ISMIR Explorer into the official ISMIR website.
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ABSTRACT

Musical pattern discovery algorithms find instances of
repetition in symbolic music, allowing for some user-
specifiable amount of variation between identified repeti-
tions; however, they can yield an intractably large num-
ber of discovered patterns when allowing for even small
amounts of variation. This is commonly addressed by
defining some heuristic notion of pattern significance, and
returning only the most significant patterns. This paper de-
velops a method of pattern discovery that models human
judgement of what constitutes a significant pattern by in-
corporating annotations of repeated patterns, avoiding the
need to design heuristics.

We take pattern discovery as a clustering task, where
the input is a set of passages of monophonic music, rep-
resented as vectors of extracted features, and the output
clusters correspond to discovered patterns. The human an-
notations are used to train a neural network to learn a low-
dimensional embedding of the feature space that maps pas-
sages of music close together when they are occurrences of
the same ground-truth pattern. The results of this approach
match up with the annotations significantly better than the
results of an approach using clustering without subspace
learning. We provide examples of the types of patterns
that this method tends to discover and discuss its feasibility
and practicality as a tool for extracting useful information
about repetitive structure in music.

1. INTRODUCTION

To discover patterns in a piece of music is, loosely speak-
ing, to find passages that are similar to other passages, and
to cluster these passages into inter-related groups. This is
done with the goal of producing motivic analyses [34], au-
tomated composition systems [6], or as a single step to
provide information for some larger Music Information
Retrieval application [17]. Humans can perceive repeti-
tion between two musical passages even when the passages
vary somewhat, so it is important to incorporate some al-
lowable margin of variation between members of a single

c© Timothy de Reuse, Ichiro Fujinaga. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Timothy de Reuse, Ichiro Fujinaga. “Pattern Clustering in
Monophonic Music by Learning a Non-Linear Embedding From Human
Annotations”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

pattern; unfortunately, this causes a combinatorial explo-
sion, returning many more patterns than are useful for any
application. Inexact repetition simply occurs in music too
often by chance; as [29] put it, “Most repetitions in music
are not interesting.” For this reason, discovery of patterns
cannot be reduced to the problem of finding passages of
music within a single piece that are similar to one another.
Limiting the number of patterns found by a pattern dis-
covery algorithm in a systematic way means explicitly or
implicitly defining some measure by which one pattern can
be judged as “more significant” than another; we refer to
these as pattern significance measures.

Previous work by Collins et al. [10] suggests that an-
alysts judge pattern significance consistently, based on
quantifiable features of the musical surface. By analyz-
ing ground-truth significant patterns, we can simultane-
ously learn a sense of what metric of melodic similarity
the annotators used (by comparing occurrences of a sin-
gle pattern) and a sense of the metric of pattern signifi-
cance used (by comparing significant patterns to insignif-
icant patterns), and use these findings to inform a pattern
discovery method. We use these insights to model pattern
discovery as a cluster analysis problem, where the input
data points are a set containing all possible passages of mu-
sic from the piece under investigation, and the output clus-
ters correspond directly to discovered patterns. There are
parallels between common issues in cluster analysis and
pattern discovery that make this a sensible choice of tech-
nique: it is rarely known in advance how many clusters (or
patterns) are present in a dataset (or piece), and validity
measures for particular clusterings (or sets of discovered
patterns) are the subject of ongoing investigation [15]. The
goal here is that our clustering approach learns some cri-
teria of what makes the particular patterns in the ground
truth significant, and uses that criteria to return a limited
number of patterns. Ideally, the model should be able to re-
discover all the ground truth patterns from the songs that
contain them, and not too many more.

The terms used to refer to sets of repeating musical pas-
sages vary widely throughout the literature. We will define
a pattern as any set of musical excerpts, and refer to these
excerpts as the pattern’s occurrences. Each pattern is la-
belled as either significant or trivial. We ascribe no exter-
nal meaning to a pattern’s significance; if an analyst deems
a pattern “significant,” we assume that to mean nothing
more and nothing less than “this analyst would consider
this pattern to be of particular interest in this piece.”
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2. RELATED WORK

Early musical pattern discovery algorithms were string-
based, dealing primarily with monophonic inputs [3, 12,
16, 22, 33, 34]. Geometric pattern discovery approaches
were developed to deal with polyphonic music, most often
representing music as sets of (onset time, MIDI pitch) or
(onset time, morphetic pitch) pairs [5, 9, 21, 29, 36].

There are many proposed methods of reducing the num-
ber of patterns that are discovered. An early heuristic was
based on the concept that patterns are more significant
when they are unexpected, and so should be given more
weight if their occurrences are statistically unlikely given
the distribution of pitches and duration values elsewhere
in the piece [11]. Other heuristics take inspiration from
information theory, reasoning that a pattern is significant
if it can be said to explain a great deal of the redundancy
of the piece containing it [?, 1, 23, 26–28]. Research by
Lartillot has attempted to emulate the cognitive processes
that cause a listener to associate present material with past
material stored in memory [18–20]. Velarde et al. use the
Haar wavelet transform to analyze symbolic music for pur-
poses of pattern discovery by considering the pitch of a
monophonic melody as a signal; implicit in this approach
is the assumption that this transform allows access to a
higher-level musical property that is more relevant to per-
ception of melodic similarity than raw pitch data [39, 40].
Clustering-based approaches are relatively uncommon, of-
ten using the clustering aspect for some form of visualiza-
tion [2,4,17]. Directly comparing the performance of these
algorithms is not straightforward. Evaluation against a set
of human annotations is standard for the MIREX task in
this area [8], but the ground truth used for evaluation there
is sparse and taken from several different areas, making it
difficult to extrapolate the accuracy of a single method to
the method’s quality as a whole.

The largest study that investigated human annotations
of pattern importance was performed by Collins et al. [10],
who asked 20 musically trained subjects to classify pat-
terns in one of Chopin’s Mazurkas based on how likely
they would be to discuss each pattern if asked to write an
essay analysing the whole piece. Principal findings from
this study were that a small number of features could be
used to explain 70% of the variation between the patterns’
importance ratings. The results from this study do not con-
stitute a pattern discovery method in and of themselves,
but they speak to the possibility that human significance
judgements might be consistent enough to inform a pattern
discovery method.

3. APPROACH

This section describes the setup necessary to define our
proposed approach. Three main steps are necessary: as-
sembly and feature extraction on the data set, defining a
training method that learns an embedding of our feature
space, and clustering on the embedded data set.

3.1 Dataset Assembly

The dataset under investigation is the Meertens Tune Col-
lection Annotated Corpus (MTC-ANN) [38], which com-
prises 93 patterns among 360 monophonic Dutch folk
songs in 26 tune families. Each pattern has, on average,
17.8 occurrences, and the average length of an occurrence
is 4.14 notes. The small size of the occurrences in this
corpus is worth concern; out of the 1657 total occurrences
identified across all patterns, 433 of them are three notes
long, and 323 of them contain only two notes. It is not
obvious that such short snippets of music permit the ex-
traction of useful information about pattern significance.
Additionally, these patterns were found as part of a larger
annotation process which emphasized finding features of
songs that are useful in separating the songs into tune fam-
ilies [37, 41]; our approach uses the assumption that the
same implicit significance measure was used for all anno-
tations, but the annotators may have changed their criteria
depending on the tune family under consideration. Still,
the high number of occurrences per pattern is beneficial for
our clustering method, since it is in general easier to detect
a denser cluster than a sparser one. Since MTC-ANN con-
tains only segment-like occurrences (i.e., occurrences that
contain every note within a single time interval) we will
deal only with this type of occurrence. Section 5 discusses
how more general subsets of notes might be used instead.

We must find some trivial patterns to compare with this
set of significant patterns. We operate under the assump-
tion that any pattern not specified as significant in MTC-
ANN is implicitly judged to be trivial. The SIARCT-C
(Structure Induction Algorithm for R superdiagonals with
Compactness Trawling and Categorization) algorithm, de-
scribed in [9] and distributed in the PattDisc software
toolkit [7], will be used to generate a set of negative ex-
amples. In MTC-ANN, patterns are discovered between
songs that lie in the same tune families; to match this, and
to avoid dealing with the gargantuan number of patterns
that would be found looking in 360 songs at once, we find
our trivial patterns strictly within the bounds of each tune
family. In this process, SIARCT-C will likely find some
of the motifs that were identified in MTC-ANN. We re-
move any pattern from our collection of trivial patterns if
it matches one of the significant patterns too closely, where
a match is registered if at least half of the occurrences are
identical.

We stated previously that pattern discovery could be de-
fined as a clustering problem by considering the input to be
“all possible passages of music” extracted from a given in-
put. The occurrences of these discovered trivial patterns
will serve as a stand-in for this set of all possible passages
to avoid having to work with it directly. This should not
cause any loss of generality, since the huge number of pat-
terns returned by SIARCT-C does not significantly help us
narrow down the search space. This run of SIARCT-C can
be interpreted as a pre-processing step on the set of all pos-
sible musical passages from the dataset, where passages
are removed if they do not repeat often enough to have a
chance at being part of a significant pattern.
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3.2 Feature Extraction

Instead of representing each occurrence of our patterns as
an ordered sequence of notes and durations, we represent
them as feature vectors, to allow the inclusion of infor-
mation about the context of each occurrence; for exam-
ple, we quantify how much its pitch range differs from
that of the song containing it. Most of the features we
extract are defined in the documentation of jSymbolic2, a
software tool for extraction of features from symbolic mu-
sic files [24, 25], but others were devised in previous work
specifically for the purpose of extracting useful informa-
tion from very short passages of music [13]. They fall into
five broad categories, here listed with the number of fea-
tures each contains:

• Pitch-Related: Features relating solely to the or-
dered pitch values of each note (n = 21).

• Rhythm-Related: Features relating solely to the or-
dered duration values and metrical positions of each
note (n = 10).

• Contour-Related: Features using both pitch and
duration values to describe how the sequence
changes over time (n = 6).

• Histograms: Multi-valued features indicating the
raw number of notes with a particular pitch class or
duration (n = 31).

• Context-Related: Features comparing properties of
the occurrence to properties of the song containing
it (n = 38).

All together, this yields a feature set of size 106. A
detailed list of features and their definitions is provided in
the supplementary material to this paper.

3.3 Learning an Embedding

We now have a dataset containing 11,471 short passages of
music, each represented as a 106-dimensional feature vec-
tor. 1,657 of these are categorized into one of 93 significant
patterns, where all members of a single pattern are consid-
ered similar to one another and dissimilar to members of
any other pattern. 9,814 of our data points are from trivial
patterns, and we consider each of these to be dissimilar to
every other data point.

The neural network used to learn the embedding is
a fully-connected feed-forward network with two hidden
layers, each containing 100 nodes, using dropout and batch
normalization, and an output layer of size five. The train-
ing process for this network takes pairs of data points as
input. We use three types of pairs, in equal measure: pairs
where both points are members of the same ground-truth
pattern (labelled as similar), where both points are mem-
bers of different ground-truth patterns (labelled as dissimi-
lar), and where one point is from a ground-truth pattern and
one is from a trivial pattern (labelled as dissimilar). Both
data points are fed separately through the hidden layers,
transforming them both into lower-dimensional vectors of

length 5, and then their difference is taken; the L1 norm of
this difference is the output of the network. Training im-
plements a hinge loss that encourages the output to be near
zero if the two input data points are labelled as similar, and
encourages the output to be above some margin value (here
set to 1) if the points are labelled as dissimilar. Training is
halted when the loss on a validation set does not decrease
for 1,000 epochs.

The effect of this process is to train the network to learn
an embedding of the 106-dimensional feature space into a
5-dimensional space where occurrences of significant pat-
terns are clustered together, and all clusters are placed far
away from one another.

3.4 Clustering

We use the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm to cluster our trans-
formed data points [14]. DBSCAN labels sparser areas of
the dataset as containing unlabelled noise, which is ideal
for this application, as we expect that most data points will
represent musical content not part of significant patterns.

DBSCAN takes two parameters; a minimum cluster
size, which we set to 3 based on the size of the smallest
patterns in our ground truth, and a value ε which, roughly,
characterizes how close together points must be near the
centers of the discovered clusters. Choosing an optimal ε
is not straightforward; too high and the data will be parti-
tioned into a few large clusters, but too low and most points
in the dataset will be taken as noise. The designers of the
algorithm recommend the use of a k-dist graph to estimate
an optimal value. The k-dist graph of a dataset is formed
by finding the k-th nearest neighbor of each data point, cal-
culating the distance between each point and its identified
neighbor, and sorting these distances in descending order.
On a dataset well-suited to clustering, this sequence of dis-
tances should form a curve with a single sharp bend; to
one side of this bend, where the distances are high, most
points are noise points not part of any cluster, and on the
other side of the bend, most points are close to their k-
nearest neighbor and are likely members of well-defined
clusters. The recommended value for ε is the value of the
graph at this point of bending. Since most points in our
dataset might be considered noise, we will evaluate our
method over a range of values for ε that are further down
the curve than this bending point, which will force clusters
to be more tightly packed.

An image of the k-dist graph for one of the experiments
run in Section 4 is included in the supplementary material
to this paper.

4. EVALUATION

We use cross-validation to evaluate the method’s perfor-
mance. The data is split into training / validation / testing
sets based on tune family, to ensure that we train the clus-
tering method on the patterns contained in a particular set
of songs and then test that method by discovering patterns
in a totally separate set of songs. Each set includes all pat-
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Num. Clusters Median Cluster All Points Significant Points
Ratio Size Homogeneity Completeness Homogeneity Completeness

Embedding
ε5 2.14 ± 0.39 6.50 ± 0.40 0.25 0.12 0.37 0.62
ε10 4.76 ± 1.02 5.90 ± 0.21 0.44 0.13 0.63 0.67
ε15 6.68 ± 1.37 6.00 ± 0.28 0.53 0.13 0.69 0.66
ε20 8.66 ± 1.67 5.20 ± 0.18 0.54 0.12 0.69 0.63
ε25 10.15 ± 2.02 5.10 ± 0.08 0.56 0.12 0.61 0.64

PCA
ε5 2.70 ± 0.76 4.50 ± 0.20 0.15 0.13 0.21 0.53
ε10 4.97 ± 1.23 4.60 ± 0.21 0.28 0.13 0.37 0.58
ε15 6.94 ± 1.39 4.40 ± 0.22 0.37 0.14 0.47 0.60
ε20 8.42 ± 1.70 4.40 ± 0.21 0.45 0.14 0.55 0.61
ε25 10.96 ± 2.33 4.40 ± 0.22 0.52 0.12 0.63 0.62

Table 1: Results of the experiments described in Section 4. Plus-minus signs (±) indicate the standard error of a statistic
over the five test sets. Standard errors for the homogeneity and completeness statistics are consistently � 0.05 and are
omitted for readability.

terns, significant and trivial, that lie in its designated tune
families.

The training and validation sets must be assembled into
pairs before the neural network can take them as input. We
generate three sets of pairs corresponding to the categories
defined in section 3.3. We take all possible unique pairs
of the first category that our training set permits—that is,
all possible pairs involving two distinct occurrences of the
same significant pattern—and reduce the next two cate-
gories to the same size as the first through random sam-
pling without replacement. The total number of data point
pairs generated via this process varies depending on which
tune families are selected from MTC-ANN for validation
and training, since every tune family has a different num-
ber of identified patterns, but in practice this number lies
in the range from 20, 000 to 40, 000.

Once the network has been trained on this set of pairs,
we use it to reduce the test set into vectors that lie in the
learned subspace. We run DBSCAN with five different val-
ues of ε, which are estimated by building a k-dist graph on
the test set with k=3. For all test sets, this graph has a very
sharp bend near the 5th percentile. Denoting the value at
the nth percentile of the k-dist graph as εn, we test DB-
SCAN with values of ε5, ε10, ε15, ε20, and ε25. Each of
these clusterings can finally be compared directly with the
patterns in the test set.

We contrast this method with one that uses Principal
Component Analysis (PCA) to reduce the dimensionality
of the dataset instead of a learned embedding. The test sets
are processed with PCA and the five components of highest
magnitude are retained. DBSCAN is used to cluster the
result, with the same procedure for estimating ε as before,
using a k-dist graph built on the PCA-reduced data.

Testing proceeds with 5-fold cross-validation. This
does not evenly divide the number of tune families (26),
but each tune family has a different number of patterns,
and each pattern has a different number of occurrences,

so no truly equitable division is possible anyway. The
neural network is implemented using PyTorch 1.0 [30],
while the implementation of DBSCAN is from scikit-
learn [31]. Code for running these experiments is avail-
able at https://github.com/timothydereuse/
musical-pattern-clustering.

4.1 Results

In Table 1, the Num. Clusters Ratio column compares the
number of clusters obtained in each experiment to the num-
ber of ground-truth patterns in each test set. The Median
Cluster Size represents the median number of occurrences
within each pattern, averaged over all test sets. This some-
what awkward metric is necessary because using a straight
average would skew too high to accurately represent the
data; on every test set, both the PCA and embedding ap-
proaches tend to return one or two large patterns with hun-
dreds of “noisy” occurrences, a phenomenon further dis-
cussed in Section 4.2.

Traditional metrics of classification accuracy such as
precision and recall are not applicable in a clustering task
where the number of classes is itself being predicted.
The metrics used here are homogeneity and completeness,
two complementary measures of clustering validity which
compare a clustering to a ground-truth [35]. The homo-
geneity of a clustering measures the degree to which clus-
ters in the output are comprised of a single class, assign-
ing a score of 1 if every pattern in the output contains
data points from only a single ground-truth pattern, even
if some patterns are split apart. Similarly, the complete-
ness measures the degree to which classes in the input
are mapped to a single cluster of the output, assigning a
score of 1 if every pattern in the input stays unbroken when
mapped to patterns in the output, even if some patterns get
merged together. We evaluate these two metrics against the
ground truth in two different ways: first, considering all
points in the test set, and then considering only the points
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Figure 1: These four two-note occurrences are part of different patterns in MTC-ANN, but the embedding method merges
all of their patterns into one.

(a) Three occurrences from a pattern in MTC-ANN erroneously included in a large, noisy cluster by the embedding method.

(b) Three occurrences from the same pattern in MTC-ANN correctly clustered together by the embedding method.

Figure 2

Figure 3: This pattern found by the embedding method is not present in MTC-ANN; however, there is a short three-note
pattern (marked by boxes) included in MTC-ANN whose occurrences lie within this pattern.
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that correspond to significant patterns in the ground truth.
Note the very low score for completeness across both the
embedding and PCA methods; because the majority of the
points in the dataset are labelled as noise, misclassifying
any of them into clusters effectively “breaks up” the noise
class and lowers the completeness. If we ignore the noise
and focus solely on where significant patterns are clus-
tered, we note that they are mostly preserved. The sup-
plementary material to this paper contains an additional
table showing the effects of excluding individual feature
categories (as defined in Section 3.2) on the clustering.

4.2 Examples

We pick one of the test sets from the row ε15 of Table 1
to investigate further. This particular clustering finds 21
patterns within six tune families that together contain a to-
tal of 77 songs; within these six tune families, MTC-ANN
notes 18 significant patterns. Most of the 21 patterns in this
clustering do not correspond to patterns in MTC-ANN. In
particular, two of the patterns have over 800 occurrences
each, almost entirely containing longer occurrences from
trivial patterns, with some longer occurrences from signif-
icant patterns scattered in as well. In each figure, occur-
rences are marked with black notes, whereas greyed-out
notes show the context in which each occurrence lies.

Only six of the 21 identified patterns have significant
overlap with the patterns in MTC-ANN. One reason for
this low number is that the clustering method has merged
some of the identified patterns together. Figure 1 shows
four occurrences from one of these six clusters; all four
of these occurrences lie in different patterns of the ground
truth, and the full cluster (not shown here, for lack of
space) comprises the union of these four original ground-
truth patterns. Since all of these occurrences contain only
two notes, it is likely that these particular patterns were
designated as significant due to their metrical placement
in their original songs. It is incorrect that these patterns
were merged together, but the fact that only these pat-
terns were merged together is notable. The trivial patterns
found by SIARCT-C have no shortage of descending in-
tervals that the algorithm might have added to this par-
ticular cluster, and yet it contains only descending inter-
vals that were marked as significant by human annotators.
This suggests that our subspace-learning neural network
has learned something from the “context-related” features
mentioned in Section 3.2 that relates to how the human an-
notators decided which two-note intervals in the original
songs merited significance: not enough to separate these
four patterns from each other, but enough to separate them
from the rest of the dataset as a group.

Figure 2b shows another notable error made in this clus-
tering. One of the ground-truth patterns in this test set is
quite large and heterogeneous, comprising 20 occurrences
each containing eight or nine notes. Where the occurrences
have a relatively simple contour, the clustering correctly
groups them together, but it groups the more complicated
occurrences with other unclassifiable, long passages in the
size-800 clusters mentioned above. It is likely that, given

the small size of the dataset, the learned subspace does
not encode a particularly complex conception of melodic
similarity, which means that longer patterns are unlikely
to cluster together unless their similarities are quite pro-
nounced. Compare the three occurrences in Figure 2a to
those in Figure 2b, which were successfully clustered into
a single pattern, likely as a result of their more uniform
contour, and those in Figure 3, where similarity in contour
appears to have caused the embedding method to extend a
pattern existing in MTC-ANN.

5. CONCLUSIONS

We have demonstrated an approach to discovering patterns
in symbolic music that maps passages of music onto a
low-dimensional subspace where significant patterns form
clusters, using an embedding learned from human anno-
tations of repeated patterns. This method outperforms a
traditional dimensionality reduction algorithm on common
metrics used to validate clustering results against ground
truth. There is evidence that the method is capable of learn-
ing some notions of pattern significance from the human
annotations; though the agreement is far from perfect, and
the number of returned patterns is still high, the current
state of the art in pattern recognition struggles to agree with
human annotations at all [32]. To more rigorously validate
this approach in future research, it would be informative to
compare a clustering learned from human annotations with
a clustering that uses a distance measure derived from an
existing melodic similarity metric.

If we continue to restrict ourselves to segment-like oc-
currences, then extending this approach to polyphonic mu-
sic would require only a feature set capable of encoding in-
formation about polyphonic occurrences. However, to be
able to find patterns within polyphonic sources more gen-
erally, we must consider occurrences as subsets of notes
instead, which is combinatorially infeasible; for a piece of
music with n note onsets, there are O(n2) possible seg-
ments, but O(2n) possible subsets. To address this, it
would be necessary to impose limits on the time-extent
and number of notes in each occurrence, or to use an ex-
isting polyphonic pattern discovery algorithm as a p re-
processing step, as we do here with SIARCT-C.

More ground-truth annotations would undoubtedly in-
crease the accuracy of this approach, but annotations of
repeated patterns are expensive to acquire, and informa-
tion from one set of annotations might not generalize well
to other genres. The ability to extract useful information
from small sets of repeated patterns would be a more valu-
able tool for development of practical pattern significance
measures. A hypothetical use case for this research would
be an interactive pattern-discovery interface where, in lieu
of changing the parameters of a manually designed heuris-
tic, users could view a list of patterns and mark some as
significant, whereupon the algorithm would re-train on that
small set and use its findings to reduce the number of pat-
terns returned to the user.
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ABSTRACT

Quantitative analysis of commonalities and differences be-
tween recorded music performances is an increasingly
common task in computational musicology. A typical sce-
nario involves manual annotation of different recordings of
the same piece along the time dimension, for comparative
analysis of, e.g., the musical tempo, or for mapping other
performance-related information between performances.
This can be done by manually annotating one reference
performance, and then automatically synchronizing other
performances, using audio-to-audio alignment algorithms.
In this paper we address several questions related to those
tasks. First, we analyze different annotations of the same
musical piece, quantifying timing deviations between the
respective human annotators. A statistical evaluation of
the marker time stamps will provide (a) an estimate of the
expected timing precision of human annotations and (b) a
ground truth for subsequent automatic alignment experi-
ments. We then carry out a systematic evaluation of differ-
ent audio features for audio-to-audio alignment, quantify-
ing the degree of alignment accuracy that can be achieved,
and relate this to the results from the annotation study.

1. INTRODUCTION

An increasingly common task in computational musicol-
ogy – specifically: music performance analysis – consists
in annotating different performances (recordings) of clas-
sical music pieces with structural information (e.g., beat
positions) that defines a temporal grid, in order then to
carry out some comparative performance analyses, which
require time alignments between the performances. As
manually annotating many recordings is a very time-
consuming and tedious task, an obvious shortcut would
be to manually annotate only one performance, and then
use automatic audio-to-audio matching algorithms to align
additional recordings to it, and thus also be able to auto-
matically transfer structural annotations.

c© Thassilo Gadermaier, Gerhard Widmer. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Thassilo Gadermaier, Gerhard Widmer. “A Study of An-
notation and Alignment Accuracy for Performance Comparison in Com-
plex Orchestral Music”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

The work presented here is part of a larger project on
the analysis of orchestral music performance. In this mu-
sicological context, it is crucial to understand the level of
precision one can expect of the empirical data collected.
The present study attempts to answer two specific ques-
tions: (1) what is the precision / consistency we can expect
from human time annotations in such complex music? and
(2) can automatic alignment be precise enough to be used
for transferring annotations between recordings, instead of
tediously annotating each recording manually? We will
approach this by collecting manual annotations from ex-
pert musicians, on a small set of carefully selected pieces
and recordings (Section 3), analyzing these with statisti-
cal methods (Section 4) – which will also supply us with
a ground truth for the subsequent step –, then performing
systematic experiments with different audio features and
parameters for automatic audio-to-audio alignment (Sec-
tion 5), quantifying the degree of alignment precision that
can be achieved, and relating this to the results from the
previous annotation study (Section 6).

2. RELATED WORK

[13] presented a case study of opera recordings that were
annotated by five annotators, at the bar level. The authors
used the mean values over the annotators as ground-truth
values for the respective marker positions and the variance
to identify sections possibly problematic to annotate, and
offered a qualitative analysis of the musical material and
sources for error and disagreement between annotators.

[6] deals with the alignment of recordings with possi-
bly different structure. Their contribution is relevant for
our endeavor in so far as they evaluated different audio
features and parameters ranges for an audio-to-audio align-
ment task on a data set of, among others, symphonies by
Beethoven, which matches our data set very well. [7] eval-
uated audio features for the audio-to-audio alignment task
using several different data sets.

While many studies of alignment features do not use
real human performances but artificial data, we only use
ground-truth produced from human annotations (by aver-
aging over multiple annotations per recording) of existing
recordings for the evaluation of the alignment task. Fur-
thermore, the results of our analysis of manual annotations
(Step 1) will inform our interpretation of the automatic
alignment experiments in Step 2 (by relating the observed
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alignment errors to the variability within the human an-
notations), leading to some insights useful for quantitative
musicological studies.

3. ANNOTATION AND GROUND-TRUTH

3.1 Annotation vs. Tapping

Our primary goal is to map the musical time grid as defined
by the score, to one or more performances given as au-
dio recordings. Due to expressiveness performance, these
mapped time points may be very different between differ-
ent recordings. Following [4], we will call the occurrence
of one or more (simultaneous) score notes a score event. In
our case, we were interested in annotating regularly spaced
score events, for instance, on the quarter note beats.

Different methods can be employed for marking score
events in a recording. One possibility is to tap along a
recording on a keyboard (or other input device) and have
the computer store the time-stamps. We will refer to a
sequence of time-stamps produced this way as a tapping
in the following. Producing markers this way has been
termed “reverse conducting” by the Mazurka project 1 .

This is to be distinguished from what we will call an
annotation throughout this paper. In that case, markers
are first placed by tapping along, or even by visually in-
specting the audio waveform, and then iteratively corrected
on (repeated) critical listening. In general, we assume
corrected annotations to have smaller deviations from the
“true” time-stamps than uncorrected tappings, especially
around changes of tempo.

3.2 Pieces, Annotators, and Annotation Process

The annotation work for this study was distributed over a
pool of four annotators. Three are graduates of musicol-
ogy and one is a student of the violin. The pieces con-
sidered are: Ludwig van Beethoven’s Symphony No. 9,
1st movement; Anton Bruckner’s Symphony No. 9, 3rd
movement; and Anton Webern’s Symphony Op. 21, 2nd
movement (see Table 1 for details). The first two are sym-
phonic movements, played by full classical/romantic pe-
riod orchestra. The third is an atonal piece where the sec-
ond movement is of a “theme and variations” form, and
requires a much smaller ensemble (clarinets, horns, harp,
string section). While the first two pieces can be consid-
ered to be well known even to average listeners of classical
music, the Webern piece was expected to be less famil-
iar to the annotators. It is rhythmically quite complicated,
with many changes in tempo and many sections ending in
a fermata. We expected it to be a suitable challenge for
the annotators as well as the for the automatic alignment
procedure.

The quarter beat level was chosen as (musically reason-
able) temporal annotation granularity, in all three cases.
The annotators were asked to mark all score events (notes
or pauses) at the quarter beat level, using the Sonic Visu-
aliser software [2], and then to correct markers such that

1 www.mazurka.org.uk/info/revcond/example/

Composer Piece Part Section # Events

Beethoven Sym. 9 1st mov. complete 1093
A. Bruckner Sym. 9 3rd mov. 150 - end 371
A. Webern Sym. Op. 21 2nd mov. complete 198

Table 1. Annotated works/parts, and number of events.
Granularity in all cases: quarter notes.

Composer Conductor Orch. Year Dur. Med. SD

Beethoven Karajan VPO ’47 16:00 32
Karajan BPO ’62 15:28 32
Karajan BPO ’83 15:36 27

A. Bruckner Karajan BPO ’75 09:30 68
Abbado VPO ’96 10:40 52

A. Webern Boulez LSO ’69 03:08 47
Karajan BPO ’74 03:28 63

Table 2. Annotated recordings. VPO = Vienna Phil-
harmonic Orchestra, BPO = Berlin Philharmonic, LSO =
London Symphony Orchestra. Each recording was anno-
tated by three annotators. Med. SD is the median value
of standard deviations of the annotations (in milliseconds,
rounded to nearest integer), for details see Sec. 4.

they coincide with the score events when listening to the
playback with a “click" sound together with the recording
of the piece. They also had to annotate “silent" beats (i.e.
general pauses) or even single or multiple whole silent bars
with the given granularity. It is clear that this may create
large deviations between annotators at such points, as the
way to choose the marker positions is not always obvious
or even meaningfully possible in these situations.

Each recording was annotated by three annotators, giv-
ing us a total of 21 complete manual annotations 2 .

4. EVALUATION OF ANNOTATIONS

For a statistical analysis of this rather small number of
human annotations, we need to make some idealizing as-
sumptions. We assume that there is one clear point in
time that can be attributed to each respective score event,
i.e. there are “true” time-stamps τn, n = 1, 2, . . . for
the score events we sought to annotate. If each score
event is annotated multiple times, the annotated markers
θn will show random variation around their true time-
stamps, with a certain variance σ2

n. It seems reasonable
to assume the respective markers to be realizations of ran-
dom variables Θn, each following a normal distribution,
i.e. Θn ∼ N (τn, σ

2
n).

Thus, for each event to be annotated we would expect
(a large number of) annotations to exhibit a normal distri-
bution around some mean τn. This is schematically illus-
trated in Figure 2.

However, for estimating the parameters of these distri-
butions, rather large numbers of annotations would be re-
quired.

2 Supplemental material to this publication is available online at
10.5281/zenodo.3260499
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Figure 1. Standard deviations of annotations along a performance, Webern Op21-2, Boulez. Blue: computed from three
markers per score event. Magenta: computed from pooled differences (details see text). Orange: median standard deviation
(SD), green: median of SD from pooled differences (see boxplots right). Right: boxplots for SD (summary of blue curve)
and for SD of pooled values (summary of magenta curve), central quartile is median.

t

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

fΘ1
(θ)

Figure 2. Modeling annotations as random variables. Mu-
sical score and waveform of a performance. Hypothetical
true time-stamps τn. Annotation markers θn. Bottom row:
pdfs of random variables Θn, each of mean τn.

[3] has shown that with some additional assumptions,
the distribution can be estimated from as little as two se-
quences of markers.

We follow [3] in the derivations below. If the variance
σ2 of the time stamps is assumed to be constant over time
(across the whole piece or part to be annotated), subtract-
ing two sequences θ1n, θ2n of markers for the same score
events, i.e.

∆n = Θ1
n −Θ2

n, (1)

yields the variable ∆n ∼ N (0, 2σ2
Θ). Note that if the mean

of ∆n is not zero, we can force it to be by suitably off-
setting either Θ1

n or Θ2
n by ∆̄n – since we assume both

sequences to mark the same events with mean zero, a to-
tal mean deviation can be viewed as a systematic offset
by either annotator. One could then use the differences
δn = θ1n − θ2n to estimate the variance σ2

Θ around the true
time-stamps:

σ̂2
Θ =

1

2N

N∑
n=1

(θ1n − θ2n)2. (2)

In [3], two example analyses of tap sequences were pre-
sented that support these assumptions.

Figure 3. Webern Op21-2, Boulez. Quantile-quantile plot
of the differences of a pair of annotation sequences for the
whole piece. Solid red line fitted to first and third data
quartile, dashed lines show ±95% confidence around this
line. Non-normal data deviate strongly from area enclosed
by dashed lines.

We analyzed our annotation data according to these
ideas. First, for each annotated recording, we calculated
the time-stamp differences between each pair of annota-
tions, according to Eq. (1), and tested the resulting distri-
butions for normality, using the Shapiro-Wilk test. How-
ever, for all annotations created, none of the distributions
is normal according to these tests. On visual inspection
of the distributions of differences of annotation sequences
δn using quantile-quantile plots (see Fig. 3), the tails of the
distributions turned out to be typically significantly heavier
than for a normal distribution.

We suspect that this discrepancy to the results given in
[3] is most likely due to the higher complexity of our mu-
sical material, with large orchestras playing highly poly-
phonic and rhythmically complex music in varying tempi.
It seems intuitively clear that for some sections, the devia-
tions among annotated markers will be much smaller than
in complex parts. Additionally, as we asked also silent
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beats to be annotated, even during whole silent bars, we
should expect substantial deviations for at least a few such
events in every recording. We therefore conclude that at
least the assumption of identical variance across a whole
piece should be dropped (for more complex material) when
more detailed information about local uncertainties of the
annotation is desired.

However, it is interesting to note that locally, when the
differences for only a few consecutive (around 20-30) an-
notated time-stamps are pooled, they conform to a normal
distribution quite well. This means that the assumption
of about equal variance for the annotation of score events
tends to hold for short blocks of time, but rather not glob-
ally (for a whole piece), at least for the musical material
considered here.

As estimating the standard deviation (as a measure of
uncertainty) of each time-stamp’s markers is not reliable
given only few annotations, we used an alternative based
on the above observation. For blocks of 24 consecutive
score events (with a hop size of 12), the differences of a
pair of annotation sequences were pooled and used to esti-
mate the standard deviation for each respective block. The
resulting, block-wise constant curve of standard deviations
is shown in Fig. 1 (magenta), along with the simple stan-
dard deviation per score event, calculated from three mark-
ers (blue), for a specific recording and pair of annotations.
The median of these per-block estimated standard devia-
tions is used as a global estimate of the precision of the
annotations for the respective performance, and is given
for the respective performance as the right-most column
in Table 2. As can be seen, the values differ substantially
across the pieces as well as within the pieces, for different
performances. The right-most boxplot in Fig. 1 shows a
summarization of the per-block estimated standard devia-
tions. Interestingly, for the 1st movement of Beethoven’s
Symphony 9 (with its relatively constant tempo), the es-
timated standard deviation is close to the value presented
in [3], but it is considerably larger for the other pieces that
exhibit more strongly varying tempo.

5. AUTOMATIC ALIGNMENT

As mentioned above, annotating a large number of perfor-
mances of the same piece is a time-consuming process. A
more efficient alternative would be to automatically trans-
fer annotations from one recording to a number of unseen
recordings, via audio-to-audio alignment.

5.1 Alignment Procedure and Ground-truth

The method of choice for (off-line) audio-to-audio align-
ment is Dynamic Time-warping (DTW) [10]. Aligning
two recordings via DTW involves extracting sequences
X ∈ RL×D and Y ∈ RM×D of feature vectors, respec-
tively. Using a distance function d(xl, ym), the DTW al-
gorithm finds a path of minimum cost, i.e. a mapping
between elements xl, ym of the sequences X , Y . An
alignment is thus a mapping between pairs of feature vec-
tors (from different recordings), each vector representing a

. . .

. . .

gXn

tXl

tYm

gYn

. . .

. . .

. . .

. . .
e1 e2

X

Y

Figure 4. Matching feature vectors through DTW, and
calculating errors between associated time-stamps tYm and
ground-truth time-stamps gYn , for direction X → Y . This
yields the error sequence eX→Yn .

block of consecutive audio samples. As each audio sam-
ple has an associated time-stamp (an integer multiple of
the inverse of the sample rate), each feature vector, say xl,
can be associated with a time-stamp tXl as well, (here) rep-
resenting the center of the block of audio samples. The
matching of sequence elements is schematically illustrated
in Fig. 4, for the “direction” X → Y (note that direction
here refers to the evaluation, as will be illustrated next).
For each block ofX , the matching block of Y is found, and
its associated time-stamp tYm is subtracted from the ground-
truth time-stamp gYn . This produces the pairwise error se-
quence eX→Yn . As we have ground-truth annotations for
both recordings of a pair available, we can also calculate
an error sequence for the “reverse” direction Y → X .

The sequences of ground-truth time-stamps were pro-
duced from the multiple annotations discussed above (Sec-
tion 3), by taking for each annotated score event the sam-
ple mean across the three annotations per recording. For
computing the alignments, an implementation of FastDTW
[12] in python was used.

5.2 Choice of Audio Features

The actual alignment process is preceded by extracting fea-
tures from the recordings to be aligned. Different features
have been proposed and evaluated for this task in the liter-
ature. We decided to choose only features that have proven
to yield highly accurate alignments and thus small align-
ment errors.

[6] evaluated several different audio features separately
on data sets of different music genres, among them sym-
phonies by Beethoven. They achieved the best results over-
all by using 50 MFCC (in contrast to 13 or even 5 as used
in [7]), for two different block lengths. As the results
on these corpora, which are similar to ours, were dom-
inated by MFCC, we decided to use these with similar
configurations for our experiments. Additionally, we in-
cluded a variant of MFCC (in the following addressed as
“MFCC mod”) following an idea described in [11], where
120 MFCC are extracted, then the first nskip are discarded
and only the remaining ones used. However, in contrast to
their proposal we skip the subsequent extraction of chroma
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information and use the MFCC directly.
The second family of features that has proven success-

ful for alignment tasks are chroma features, which were
tested as an alternative. For extracting the feature values,
the implementations from LibROSA [9] were used. Be-
sides “classical” chroma features, the variants chroma_cqt
(employing a constant-Q transform) and chroma_cens
were used. We decided not to include more specialized
features that include local onset information, like LNSO /
NC [1], or DLNCO (in combination with chroma), as they
would seem to give no advantage on our corpus as sug-
gested from the results in [6] and [5].

5.3 Systematic Experiments Performed

In order to find the best setup for audio-to-audio alignment
for complex orchestral music recordings, we carried out a
large number of alignment experiments, by systematically
varying the following parameters:
• FFT sizes: 1024 to 8192 (chroma), up to 16384

(MFCC)
• Hop sizes MFCC: half of FFT size, for 16384 fixed

to 4096
• Hop sizes Chroma: 512 and 1024, for each FFT size;

additionally 2048 for chroma_cens and chroma_cqt
• Number of MFCC: 13, 20, 30, 40, 50, 80, 100
• MFCC mod: 120 coefficients, first 10, 20, . . ., 80

discarded
• Distance measures: Euclidean (l2), city block (l1)

and cosine distance.
Note that the audio signals were not down-sampled in any
of the cases, but used with their full sample rate of 44.1
kHz.

All in all, a total number of 312 different alignments
were computed and evaluated for each performance pair.
Each alignment of each pair of performances was evalu-
ated in both directions. As it is impossible to display all
results in this paper, we will only report a subset of best
results in Section 6.

6. EVALUATION OF ALIGNMENTS

6.1 Alignment Accuracy

For quantifying the alignment accuracy, we calculated
pairwise errors en between the ground-truth time-stamps
gn for the respective recording and the matching alignment
time-stamps tl (see Fig. 4). Per pair of recordings, two er-
ror sequences are obtained, one for each evaluation direc-
tion, i.e. eX→Yn and eY→Xn . As a general global measure
of the accuracy of a full alignment, the mean absolute error
is used, where the maximum absolute error can be seen as
a measure for lack of robustness.

For reporting of the best results, we first ranked all
alignments whose absolute maximum errors are below 5
seconds by their mean absolute errors. As large maximum
error is taken as lack of robustness, the worst performing
settings were thus discarded. For each pair of recordings,
from the remaining error sequences (from originally 312
alignments per pair, each with 2 directions of evaluation),

the 10 best results, in terms of mean absolute error, were
then kept for further analysis. The error values for both
directions of each specific alignment were then pooled,
i.e. the error values were collected and analyzed jointly.
A one-way ANOVA (null hypothesis: no difference in
the means) was conducted for the 10 best alignments per
pair of recordings, where for all cases the null hypothesis
could not be rejected (recording pair with smallest p-value:
F = 0.6, p = 0.8). Thus, as the different settings of the 10
best alignments do not result in significant differences in
terms of mean error performance, the error sequences for
those 10 best alignments were collected, to estimate a dis-
tribution of the absolute errors. Fig. 5 shows the empirical
cumulative distribution function of the pairwise absolute
errors for all 5 alignment (performance) pairs, where each
curve is obtained from the 2 error sequences (both evalu-
ation directions) of each of the 10 best alignments for the
respective performance pair.

Figure 5. Cumulative distribution of absolute pairwise er-
rors. Each curve represents pooled errors of 10 best align-
ments (mean absolute error) for both evaluation directions,
per pair of recordings. s9-1: Beethoven, S.9, 1st Mov., s9-
3: Bruckner, S.9, 3rd Mov., op21-2: Webern, Op21, 2nd
Mov. (+) and (x) markers for median standard deviation of
annotation, cf. Table 2.

In the following, the settings and results, in terms of
mean absolute error and maximum absolute error, for the
10 best alignments are presented. For the Beethoven piece,
we restricted the reporting to one pair of recordings (BPO
1962 vs. VPO 1947) due to limited space (Table 3). As can
be seen from Fig. 5, the other two pairs do not differ sub-
stantially in terms of error performance, and the settings
for obtaining these results are almost identical to the ones
presented in the table, with an even stronger favor of the
MFCC mod feature. Tables 5 and 4 show the results for
the Webern and Bruckner pair of recordings, respectively.

As can be seen from the tables, best results are achieved
with either MFCC or the modified MFCC. There does not
seem to be a very clear pattern of which parameter setting
gives best results, even within one pair of recordings. A
slight advantage of medium to large FFT sizes is observed,
as is a larger number of MFCC (≥ 80, a number much
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Feature #MFCC #skip fft size dist. mean err. max. err

MFCC mod 120 20 2048 l1 38 220
MFCC mod 120 30 4096 l2 38 411
MFCC mod 120 40 2048 l2 39 239

MFCC 100 - 8192 l1 40 243
MFCC 80 - 2048 l1 40 253

MFCC mod 120 10 4096 l1 41 318
MFCC 100 - 16384 l1 41 318

MFCC mod 120 10 2048 l2 41 370
MFCC mod 120 20 16384 l1 42 285
MFCC mod 120 20 16384 cos 43 709

Table 3. Settings and results for top 10 alignments,
Beethoven S9-1, BPO 1962 vs. VPO 1947. The other
two cases show almost identical results (omitted for lack
of space), with stronger favor of MFCC mod. Errors in
ms, rounded to nearest integer.

Feature #MFCC #skip fft size dist. mean err. max. err

MFCC mod 120 30 2048 cos 116 4133
MFCC mod 120 20 4096 cos 123 3901
MFCC mod 120 50 2048 l1 127 3341
MFCC mod 120 40 8192 cos 137 3597
MFCC mod 120 40 2048 cos 138 4180
MFCC mod 120 60 4096 l2 139 2639
MFCC mod 120 10 16384 cos 144 4319
MFCC mod 120 20 2048 cos 145 4110
MFCC mod 120 20 16384 cos 150 4226
MFCC mod 120 60 16384 cos 150 4040

Table 4. Settings and results for top 10 alignments, Bruck-
ner S9-3. Errors in ms, rounded to nearest integer.

larger than what is suggested in the literature for timbre re-
lated tasks). For the modified MFCC, skipping the first 20
to 40 out of the 120 coefficients seems a good suggestion.
Interestingly, there seems to be no clear relation to the FFT
size.

6.2 Relation to Human Alignment Precision

We would like to relate the accuracy achieved by auto-
matic alignment methods to the precision with which hu-
man annotators mark score events in such recordings. This
will enable us to judge the errors in the alignment meth-
ods in such a way that we cannot only say which is best,
but which are probably sufficiently good for musicological
studies (in relation to how precise human annotations tend

Feature #MFCC #skip fft size dist. mean err. max. err

MFCC 80 - 2048 l1 62 1049
MFCC 40 - 2048 l1 65 1026
MFCC 100 - 4096 l1 67 980
MFCC 100 - 4096 l2 69 980

MFCC mod 120 10 4096 l2 69 980
MFCC mod 120 20 4096 l2 73 980

MFCC 100 - 4096 cos 76 980
MFCC 80 - 2048 cos 77 980
MFCC 100 - 8192 l1 78 1026

MFCC mod 120 20 2048 cos 82 956

Table 5. Settings and results for top 10 alignments, We-
bern Op.21-2. Errors in ms, rounded to nearest integer.

to be).
By comparing the global measures of variation of the

annotations (Table 2) with the mean errors obtained from
the alignment study, the following can be stated. We would
like the errors introduced by the alignments to be in the
range of the variation introduced by human annotators. If,
for example, the above estimated standard deviations are
used for describing an interval (e.g. ± 1 SD) around the
ground-truth annotations, then markers placed by the DTW
alignment within such an interval can be taken to be as ac-
curate as an average human annotation. However, as Ta-
bles 3 to 5 reveal, on average, the absolute errors are at
least slightly (or even much in case of the Bruckner perfor-
mances) larger than the estimated standard deviations, but
still in a reasonable range, even for larger proportions of
the score events (see Figure 5).

7. DISCUSSION AND CONCLUSIONS

Given our results, we expect the presented feature settings
to be quite suitable as a first step for developing further
musicological questions related to comparing multiple per-
formances of one piece. With careful annotation of one
recording, transferring the score event markers to other
recordings of the same piece should yield not much worse
accuracy than what is to be expected from human anno-
tations. Detailed analyses of e.g. tempo may still need a
moderate amount of manual correction, however.

An interesting application we consider is the explo-
ration of a larger corpus of unseen recordings. Being
able to establish, within a reasonable uncertainty, a com-
mon musical grid for a number of performances allows for
search of (a first impression of) commonalities and differ-
ences across performances, for parameters such as tempo,
or features extracted directly from the recording, such as
loudness, mapped to the musical grid. This will e.g. allow
the pre-selection of certain performances for more careful
human annotation and further more detailed analyses. Re-
cently, performance related data have been presented for a
larger corpus in [8].

We hope to have presented some new insights with the
data on annotation precision, and the applied methods for
their quantification. Further work could make use of es-
timates of typical uncertainty of annotations to estimate,
or give bounds for, the uncertainty of data derived from
these. One way would be to use simple error propagation
to quantify uncertainty of tempo representations, and au-
tomatically find (sections of) performances of significantly
different tempo within a large corpus of recordings.
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ABSTRACT 

How do drummers express different timing styles? We 
conducted an experiment in which we asked twenty-two 
professional drummers to perform a simple rhythmic pat-
tern while listening to a metronome. Here, we investigate 
the strategies they employed to express three different 
instructed timing profiles for the same pattern: “On”, 
“Pushed” and Laid-back. Our analysis of the recordings 
follows three stages. First, we compute sixteen boolean 
features that capture the microtiming relations of the kick, 
snare and hi-hat drum onsets, between each other and 
with regards to the metrical grid. Second, we construct a 
microtiming profile (mtP) for every performance by aver-
aging the boolean features across the recording. An mtP 
codifies the frequency with which the various features 
were found in a performance. Third, through a “similarity 
profiles” hierarchical clustering analysis, we identify 
groups of recordings with significant similarities in their 
mtPs. We found distinct strategies to express each intend-
ed timing profile that employ specific combinations of 
relations between the instruments and with regards to the 
meter. Finally, we created a map that summarizes the 
main characteristics of the strategies and their relations 
using a phylogenetic tree visualization. 

1. INTRODUCTION 

In groove performance, it has been assumed that musi-
cians can apply different timing ‘feels’ to a given pattern 
by, amongst other things, subtly altering the temporal lo-
cation of events at the ‘micro-rhythmic’ level by playing 
either slightly early (‘pushed’) or late (‘laid-back’) in re-
lation to other players’ rhythm, a metronomic beat refer-
ence or simply their own internal pulse [1, 3, 6, 7, 9, 10, 
15, 19]. Typical reported values of microtiming devia-
tions in performance range from 0 ms (no displacement) 
to 50 ms or more, depending on instrument, tempo and 
genre [2, 11, 13, 22] An instructed timing experiment by 
Danielsen et al. [9] showed that drummers were able to 
consistently play a snare-drum pattern with laid-back and 
pushed feel significantly behind- and ahead-of an in-
structed on-beat performance, respectively, with similar 
values. In polyphonic drumkit performance, expert 

drummers are able to control the degree of onset timing 
asynchrony between the various constituent drum instru-
ments. These inter-instrument onset asynchronies may 
play a role in the production and perception of groove 
timing feel, since both magnitude and order of onset 
asynchrony between near-simultaneous events have been 
previously shown to affect judgements of timing in per-
ceptual experiments with musical stimuli [12, 14, 25].  

In order to explore potential interactions between in-
structed timing feel and various audio/motion features in 
drum-kit performance, a series of experiments was con-
ducted by Câmara et al. [4] where participants played a 
simple ‘back-beat’ pattern with On-beat, Pushed and 
Laid-back timing feel along to a metronome. In the pre-
sent study, we analyze the data from one of these experi-
ments, limiting our focus towards investigating the extent 
to which professional drummers employed different strat-
egies in order to achieve the instructed timing feel in 
terms of the magnitude and order of onset asynchrony 
between the instruments of the drum-kit themselves, as 
well as in relation to a metrical reference grid. We hy-
pothesize that drummers chose different elements (read: 
instruments) of the rhythmic pattern to produce in sync, 
late and early timing performance for the On, Laid-back 
and Pushed timing condition, respectively. For example, 
in order to achieve the same timing instruction, one group 
of participants may have focused on the relation between 
two drum instruments, where one led and the other fol-
lowed, while another group instead on the relation be-
tween both instruments and the metrical grid, and yet an-
other group may have incorporated a combination of two 
such approaches. In other words, for the same timing in-
struction, drummers may produce different combinations 
of microtiming onset strategies in order to communicate 
the same intended timing feel. This article focuses on the 
novel analysis we developed which aims at mapping and 
identifying these potentially different strategies. 

At the core of our analysis lie the microtiming profiles 
– structures that effectively codify the onset asynchronies 
of the instruments as the probabilities or frequencies with 
which they occur in the performances of the participants. 
A hierarchical classification of the performances based on 
their microtiming profiles reveals specific timing strate-
gies, which are summarized as microtiming archetypes 
that capture the main characteristics of the clusters in a 
symbolic form. Finally, a visualization of the clustering 
result as a phylogenetic tree enables us to better under-
stand and identify these strategies.  
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The rest of the article is divided in four sections. In 
section 2, we describe the experiment. In section 3, we 
describe the analysis method, the microtiming profiles in 
3.1 and their clustering in 3.2. In section 4, we present the 
results of our analysis. In the final section 5, we discuss 
methodological issues.  

2. EXPERIMENT 

22 male drummers, 22-64 years of age [M = 36, SD = 11] 
participated in the experiment. All of them were active 
part-time or full-time musicians and had between 4 and 
40 years of professional performance experience [M = 16, 
SD = 11]. All were familiar with at least one groove-
based performance tradition, typically either jazz, 
funk/soul/R&B, hip-hop, rock, or reggae. Two partici-
pants’ data were excluded from the analysis: one due to 
technical issues during the recording process, and the 
other was deemed to not have successfully understood the 
task based on responses from a follow up interview. 

The participants were instructed to play a standard 
‘back-beat’ pattern (see ) ubiquitous in groove music and 
highly familiar to drummers. They performed along to a 
metronome (woodblock) track at a tempo deemed com-
fortable in a pilot of the experiment (96 b.p.m) in 3 dif-
ferent timing style conditions: 
1. in a laid-back manner, i.e. behind-the-beat (condi-

tion: Laid-back) 
2. in a pushed manner, i.e. ahead-of-the-beat (condi-

tion: Pushed) 
3. in an on-the-beat manner, (condition: On) 

At the beginning of the experiment, a practice round 
was given to in order to allow for participants to accus-
tom themselves to the following timing style conditions 
(‘Laid-back’, ‘On’, and ‘Pushed’), which were subse-
quently randomized. Each timing condition trial lasted for 
approximately 70 seconds where participants began to 
play as soon as they had entrained with the timing refer-
ence track. This resulted in approximately 200 hi-hat and 
50 snare and kick drum strokes captured per trial. 

 For our drum instrumental setup, we used the follow-
ing equipment: a Gretsch acoustic metal snare drum 
(Gretsch Drums, CT), 7 in. deep, 14 in. wide, with a 
Remo Emperor X drumhead (Remo, CA) with a thin 
plastic muffle ring; a Gretsch 21-in. bass drum with 
Remo FA batter drumhead; a Pearl hi-hat stand with 14” 
Yamaha cymbals.  

Pilot tests of the sound recordings revealed that close-
microphone techniques with dynamic microphones led to 

too much leakage between the different drum signals, 
therefore AKG C411 contact microphones (AKG, Aus-
tria) were used instead and placed on the top skins of the 
kick and snare, and on the top cymbal of the hi-hat. 

3. ANALYSIS 

Since the focus of this investigation is the microtiming 
relations of the drum instruments, we create microtiming 
profiles (mtPs) of the performances for all participants 
and instructed timing condition trials, comprised of set of 
features that capture those relations. Based on how simi-
lar the mtPs are, we group them using a hierarchical clus-
tering algorithm and construct archetypes that summarize 
the main characteristics of each group. Finally, we map 
the relations between the groups’ recordings using a phy-
logenetic tree visualization.  

Our analysis and all following computations are based 
on the temporal location of onsets of individual strokes 
from each instructed timing condition recording that were 
calculated using an adaptation of an existing onset detec-
tion algorithm of the MIRtoolbox [17] which will be de-
tailed in a forthcoming publication of our group.  

 We describe the mtPs and the measurements we use to 
obtain them in subsection 3.1, then present the clustering 
results and their visualization in subsection 3.2.  

3.1 Microtiming Profiles 

To obtain the mtP of a recording we first extract a set of 
sixteen boolean features that capture the microtiming re-
lations between the strokes of the snare, kick drum and 
hi-hat cymbals relative to each other, as well as to the lo-
cation of the metrical grid. The boolean features are cal-
culated for each 4/4 measure of a timing condition trial 
while the mtP is calculated as the average of the boolean 
features across all measures of a trial. The mtPs were in-
spired by the motion templates designed by Müller and 
Röder [20] to describe geometric relations of the human 
body for the purpose of the analysis of body movements.  

 
Kick on beat 1 x2 features per instrument 

late/early relative to the  
hi-hat cymbal 

Snare on beat 2 
Kick on beat 3 
Snare on beat 4 
Kick + Hi-hat on beat 1 x2 features per beat 

both instruments 
late/early relative to the 

metrical grid 

Snare + Hi-hat on beat 2 
Kick + Hi-hat on beat 3 
Snare + Hi-hat on beat 4 

Table 1: Summary of the sixteen boolean features ex-
tracted from the recordings for each bar. 

Each feature tests whether an instrument is late or early 
with respect to a certain reference time point. The first 
eight features use the onsets of the hi-hat strokes as a ref-
erence and the other eight features use the metrical grid 
as a reference. For instance, feature 1 tests whether the 
kick drum follows the corresponding hi-hat cymbal, 

 

Figure 1: Standard back beat grove pattern in 4/4 me-
ter. Upper notes in the score denote hi-hat cymbal; the 
middle notes, the snare drum; the bottom notes, the kick 
drum 
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while feature 9 tests whether both the kick and hi-hat oc-
cur after the position of the respective beat. Table 1 
summarizes the sixteen binary features extracted from the 
recordings of each trial.  

The above features depend on “tolerance” thresholds 
with which two instrument’s strokes are considered syn-
chronous with each other (for features 1 to 8) or with 
which the instruments’ strokes are considered to occur 
late or early relative to the beat of the metrical grid (for 
features 9 to 16). For instance, when the inter-onset inter-
val (IOI) between a pair of kick and hi-hat strokes is 
greater than the respective synchronicity threshold, fea-
ture 1 (kick later than hi-hat) is true. In the opposite case 
where IOI is sub-threshold, both features 1 and 5 (kick 
later and earlier than hi-hat) are false, since the pair is 
considered to be synchronous.  

Furthermore, to determine the relation between the 
three drum strokes and the metrical grid with which 
drummers used as a beat reference, we need first to de-
termine the location of this grid. Although one might in-
tuitively assume that the onset of the sounding metro-
nome would correspond to that location, it has been re-
peatedly observed that people tend to tap to a steady 
pulse systematically earlier than the actual pulse—a phe-
nomenon known as negative mean asynchrony (NMA) 
[8]. As such, it may be assumed that the internal pulse 
scheme with which drummers operate with, that is, their 
subjective metrical grid, is slightly anticipated. 

Even though percussionists and drummers tend to dis-
play lower NMA than other musicians in both in-phase 
synchronous tapping [21] and drumming [11] experi-
ments, NMAs still tends to vary significantly between in-
dividuals [8]. Therefore, it is difficult to assume a single 
global NMA value for all the drummers. Similarly, the 
two thresholds values described above cannot easily be set 
universally. In what follows, we will describe how we ob-
tain individual values for these parameters for each 
drummer based on the performance of their On timing 
condition, essentially turning the On recordings into a 
baseline reference. We will discuss the reasoning behind 
this choice as well as some of its implications in section 5. 

For the synchronicity threshold values used in features 
1-8, i.e. the tolerance with which two coinciding drum 
strokes are considered synchronous or not, we use the 
variability of the IOI between the hi-hat and coinciding 
kick or snare strokes on each of the four main quarter-
note beats of the 4/4 metre (kick + hi-hat on beats 1 and 
3, snare + hi-hat on beats 2 and 4). For each drummer, we 
first calculate the standard deviation of the inter-
instrument IOIs of the corresponding beats in each meas-
ure of their respective On condition recording. This yields 
four separate values, two for each hi-hat + kick, and hi-
hat + snare, feature. To be conservative, the synchronicity 
threshold for a drummer is chosen as the maximum of 
these four values, then multiplied by 2. Thus, a kick or 
snare stroke is considered to occur as either asynchro-

nously late or early relative to its coinciding hi-hat stroke 
when their onsets satisfy the following inequalities:  
Late:  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝐻𝐻𝑖𝑖𝐻𝐻𝐻𝐻𝑂𝑂(𝑖𝑖, 𝑗𝑗) > 𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) 
Early:  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝐻𝐻𝑖𝑖𝐻𝐻𝐻𝐻𝑂𝑂(𝑖𝑖, 𝑗𝑗) < −𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) 
 𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆ℎ𝑟𝑟(𝑖𝑖) = 2 × max𝑘𝑘=14  �𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐼𝐼𝑂𝑂𝐼𝐼 𝐻𝐻𝑂𝑂 𝑏𝑏𝑂𝑂𝐻𝐻𝑂𝑂 𝑘𝑘� 
where j is the beat number from a recording of drummer i. 

The synchronicity threshold used in features 9 – 16 on 
the other hand, i.e. the tolerance with which a stroke is 
considered to occur late or early relative to a correspond-
ing subjective metrical beat, is based on the timing varia-
bility of the hi-hat strokes in the On condition. The hi-hat 
is chosen because it can be considered more of a ‘time-
keeper’ instrument than the other drums, thus serving 
more aptly as a proxy for the beats of the drummers’ sub-
jective metrical reference. To account for the commonly 
observed anticipation of the beats of the metronome 
(henceforth abbreviated as AoB), we first calculate the 
mean position of the hi-hat strokes relative to the metro-
nome in the On recordings for each drummer. 18 out of 
20 drummers displayed NMA of hi-hat strokes relative to 
the actual metronome, consequently yielding negative 
AoB values. Two participants displayed either no NMA 
or minutely positive mean asynchrony, and in these cases 
the AoB was set to 0 (no anticipation). Finally, we con-
sider any drum stroke as occurring asynchronously late or 
early in relation to the beats of the metrical grid accord-
ing to the following inequalities: 
Late:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝑏𝑏𝑂𝑂𝐻𝐻𝑂𝑂(𝑗𝑗) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) > 2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝑖𝑖𝐻𝐻𝐻𝐻𝑂𝑂) 
Early:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑗𝑗) − 𝑏𝑏𝑂𝑂𝐻𝐻𝑂𝑂(𝑗𝑗) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) < −2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝑖𝑖𝐻𝐻𝐻𝐻𝑂𝑂) 
where j is a drum stroke of drummer i, 𝑏𝑏𝑂𝑂𝐻𝐻𝑂𝑂(𝑗𝑗) is the cor-
responding position of the metronome, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑖𝑖 (𝐻𝐻𝑖𝑖𝐻𝐻𝐻𝐻𝑂𝑂) 
is the standard deviation of the IOI of the hi-hat from the 
respective metrical beat positions in the On recording of 
the same drummer. For one of the features 9-16 to be 
true, the onsets of both strokes—hi-hat and kick or 
snare—must be either early or late. In all other cases, in-
cluding when one stroke is early and the other late, the 
corresponding features would be false.  

Two main observations must be made about the boolean 
features. First, all boolean features form mutually exclusive 
pairs. For instance, feature 9 (strokes on beat 1 are early) 
and feature 13 (strokes on beat 1 are late) cannot be both 
true for the same bar of a recording. However, they can 
both be false, in which case the combination of the two 
strokes is considered on the beat. Second, features 1-8 
(kick and snare relative to hi-hat) and features 9-16 (onsets 
relative to metrical grid) are independent. For instance, a 
kick onset can be early relative to the respective hi-hat on-
set (feature 5 true) while at the same time they are both late 
relative to the beat position (feature 9 true).  

The final microtiming profiles (mtPs) of the recordings 
are calculated by averaging the boolean features across 
each timing condition recording for all drummers. As the 
boolean features take either true (1) or false (0) values, 
averaging them results in values in the range [0, 1], which 
represent the frequency with which a feature was 
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encountered in a recording. The mtPs of all the record-
ings are visualized in matrix form in Figure 2. 

3.2 Hierarchical clustering 

We sought to identify the extent to which drummers im-
plemented distinct microtiming strategies for different 
timing conditions and whether they formed different 
groups. To this end, we used an agglomerative, hierar-
chical cluster analysis of the mtPs. A hierarchical cluster-
ing was preferred to other clustering methods, like k-
means, since it is flexible in that it does not require an a-
priori number of clusters to be determined, nor does it 
impose restrictions on the distribution of the data. Its only 
requirement is a similarity metric between the data points. 
We treated the mtPs as arrays of variables, where the sim-
ilarity between two mtPs is the Euclidian distance be-
tween them. 

Hierarchical agglomerative algorithms result in den-
drograms by successively joining neighboring data points 
or groups of previously joined points. A linkage criterion 
determines the distance between groups of points as a 
function of the pairwise distances of the points them-
selves. In this study, we used the common Unweighted 
Group Average linkage (UPGMA) [18, p. 352]. 

To create clusters of similar data points, one generally 
“cuts” the dendrogram at different heights. Here, we bor-
rowed methods from the fields of bioinformatics an-
decology to identify clusters of mtPs. We used the

similarity profiles (SIMPROF) method [5]—as imple-
mented in the Fathom Toolbox for Matlab [16]—to test 
the statistical significance of the branches’ internal struc-
ture. SIMPROF takes the form of a series of permutation 
tests. Beginning at the top of a precalculated hierarchy, 
thesetests stop the ever finer partitioning into subgroups. 
When a branch in the hierarchy is deemed to have no in-
ternal structure and is therefore homogenous, it is no 
longer subdivided.  Thus, a cluster is formed that is com-
prised of recordings with “exchangeable” features. 

For the permutation test, we set the number of itera-
tions to 1000 and the significance level alpha to 0.05—
the probability value at which the hypothesis of an inter-
nal structure is rejected. We used the Bonferroni correc-
tion [18, p. 745] to progressively adjust the probability 
values for multiple simultaneous tests (see also parameter 
mc=true of the f_disprof_clust function of the Fath-
om toolbox [16]). 

The results of the clustering analysis are shown in Fig-
ure 2. The dashed horizontal lines cut the mtP matrix into 
clusters of recordings that show statically significant sim-
ilarities. In Figure 3, we present the same result as an un-
rooted phylogenic tree. Recordings of the various Laid-
back, On and Pushed performances are represented as 

 
 
Figure 2: Microtiming profiles (mtPs) for all recordings 
shown as a greyscale image representing the probability 
or frequency with which a feature is encountered in a re-
cording. Features are laid along the horizontal axis. On 
the vertical axis, recordings are sorted and grouped based 
on the proximity of the SIMPROF clusters (see section 
3.2 and Figure 3). Horizontal dashed lines represent the 
cluster boundaries. The corresponding group mt arche-
types are marked on the right with the letters A-H. 

 

Figure 3: Hierarchical clustering presented as a phyloge-
netic tree (unrooted, equal daylight visualization). Each 
triangle corresponds to the microtiming profile of a single 
recording. Letters A-H are used to label the clusters. Next 
to each cluster the corresponding mt-Archetype is shown. 
Label C is assigned to a group of proximal clusters which 
correspond to the same mt archetype.  

 

Figure 4: Explanation of an mt-Archetype symbol.  
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black, grey or white triangles, respectively, while the dis-
tance between the clusters of recordings corresponds to 
the UPGMA linkage criterion [18, p. 352]. 

As our aim is to identify distinct timing strategies in 
the recordings, we summarize the main characteristics of 
each cluster into microtiming archetypes. An archetype is 
computed by first averaging the probabilities of the fea-
tures that belong in beats 1 and 3 (where the kick strokes 
occur) as well as the ones that belong in beats 2 and 4 
(where the snare strokes occur). The two groups of prob-
abilities describe the relation of the kick/hi-hat and 
snare/hi-hat combinations of strokes between them and in 
relation to the meter. Those relationships are reduced into 
archetypes according to whether the average probability 
of each feature is above or below 50%. An example of 
such an archetype is shown in Figure 4. In this example, 
the average probability of both a kick and corresponding 
hi-hat stroke to be late relative to the beat is above 50%. 
At the same time, the average probability of a kick stroke 
being ahead of the corresponding hi-hat stroke is also 
above 50%. In contrast, the snare strokes have a probabil-
ity below 50% to either occur ahead or after the corre-
sponding hi-hat stroke. In other words, most of the snare 
strokes are considered as synchronous with their corre-
sponding hi-hat strokes. 

Clusters with common microtiming archetypes that are 
relatively proximal in the phylogenetic tree are grouped 
together to create an overall map of strategies. In Figure 
2, these groups are labeled with the letters A to H and in 
Figure 3 the same groups are annotated with their corre-
sponding archetype.  

4. RESULTS 

The classification of the mtPs shows that the majority of 
the Laid-back and Pushed performances form separate 
homogenous clusters. The purely Laid-back clusters are 
characterized by generally late timing while the Pushed 
ones by early timing, as expected. However, the analysis 
reveals that drummers implemented distinct strategies to 
express a given timing feel by focusing on different 
rhythmic elements. The microtiming archetypes assigned 
to the various group clusters highlight those elements. 

More specifically, there are 5 purely Laid-back clusters 
which comprise 15 out of the 20 Laid-back performances. 
However, 4 of those recordings (split into 2 clusters in 
group C) are proximal to the two On clusters and are thus 
subsumed by the very same archetype. The other 11 are 
split in three clusters each forming a separate group (D, E 
and F). All three groups are characterized by late strokes. 
On the one hand, in group E, the snare stroke is late in rela-
tion to the hi-hat and in F, both hi-hat and snare are played 
late relative to the metrical beat. On the other hand, in 
group F, the combined kick/hi-hat strokes are late relative 
to the beat, while the kick additionally precedes the hi-hat. 

The Pushed performances are mainly found in purely 
Pushed clusters (18 out of the 20). However, in similar 
fashion to the Laid-back condition, a small portion (3) are 

found proximal to the On clusters in group C. 15 of the 
remaining Pushed performances form 4 distinct groups 
(A, B, G and H). All of them are characterized by the ear-
ly timing of the snare strokes. In group B, the snare pre-
cedes the hi-hat although the snare/hi-hat combination is 
considered as synchronous with the beat. Group B exhib-
its the inverse pattern of the Laid-back group E (snare 
early in relation to hi-hat). Similarly, the Pushed group G 
has its counterpart in the Laid-back group F, with both 
instruments being early in relation to the beat instead of 
late but the kick still precedes the hi-hat.  

In groups A and H the rhythmic pattern appear to be 
simply shifted early in relation to the beat. However, alt-
hough the two groups correspond to the same archetype, 
they are relatively distant on the tree. A closer look at 
their mtPs in Figure 2 reveals that in group A, the strokes 
are anticipating the beat significantly less often than in 
group H. This can also be seen in the proximity of the 
group A to group C which is dominated by the On re-
cordings. The similar proximity of the Laid-back group D 
to the On group C reflects the analogous weak late timing 
features of the mtPs in comparison with the other Laid-
back groups (E, F). 

The On performances are all found in Group C which 
is characterized by synchronous on-the-beat stroke on-
sets. Within the group, the On recordings are split into 
two clusters. Examining their mtPs, we see their differ-
ence stem from the tendency of some musicians to play 
the kick drum ahead of the hi-hat.  

5. DISCUSSION 

In this study, we present findings of an experiment in 
which professional drummers performed the same rhyth-
mic pattern with an On, Laid-back and Pushed timing 
feel. We found that participants used more than one dis-
tinct onset microtiming pattern for each intended timing 
instruction (see section 4). A more in-depth discussion of 
the timing strategies and their musicological implications 
will be undertaken in an upcoming publication. In the 
present discussion, we will focus on methodological is-
sues concerning, first, the various parameters of the anal-
ysis and their implications, and second, the interpretation 
of the clustering results. 

Our analysis begins with the encoding of the onset 
asynchronies found in the performances of the drummers 
into sets of boolean features. Microtiming profiles of the 
performances are calculated then by averaging those fea-
tures over the respective recordings. The mtPs codify the 
probability or frequency with which each feature was en-
countered in a recording. Finally, by clustering the mtPs 
we discover the recordings with similar features and 
group them together.  

The boolean features, however simple in their defini-
tions, depend on parameters and thresholds which are 
crucial to the outcome of the analysis and are closely re-
lated to the research questions. In this study, we chose to 
use individual values for each drummer instead of setting 
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global ones across all participants. This decision partly 
reflects the fact that phenomena such as negative mean 
asynchrony (NMA) typically varies between individuals. 
and, at the same time, naturally follows from our research 
question that seeks to identify individual strategies that 
musicians employ. The three parameters used for calcu-
lating the boolean features reflect mechanisms relevant to 
the perception and production of the subtle asynchronies 
we are studying. Therefore, setting individual values in 
our analysis corresponds to adopting the ‘point of view’ 
of each separate musician independently, whereas global 
values might instead correspond better to the perception 
of a ‘typical’ listener.  

 The way in which individual values are assigned to 
each parameter can significantly impact results depending 
on how the research question is formalized. In our current 
approach, we chose to derive the individual parameters for 
each musician based on their respective On performances, 
essentially rendering the On condition into a baseline from 
which the other timing conditions were compared against. 
For instance, whether a stroke is considered as ‘on-the-
beat' or not depends on whether it was performed late or 
early relative to the average hi-hat stroke in the On condi-
tion. In this case, the research question could perhaps be 
interpreted instead as “how do musicians differentiate their 
Laid-back or Pushed from an On timing feel”. 

Consequently, one might assume that the mtPs of the 
On recordings contain no meaningful information since, 
after all, they cannot be different from themselves! Nev-
ertheless, the On performances should not be excluded 
from the analysis: firstly, their mtPs can still exhibit sig-
nificant enough differences between the performances to 
classify them separately (see group C), though those dif-
ferences can solely be obtained from the onset relations 
between the instruments themselves, and not with respect 
to the metrical grid.  Secondly, the proximity of the Laid-
back and Pushed clusters to the two On clusters in the 
phylogenetic visualization of Figure 3 is informative in-
somuch as it is telling of the strong tendency for drum-
mers to differentiate these asynchronous timing feels 
from the On timing feel. 

The further hierarchical clustering of the derived mtPs 
proved an effective means of identifying several key tim-
ing strategies implemented by the drummers. The method 
groups and sorts the recordings according to their similar-
ity, revealing their relations without the need for a-priori 
hypotheses about the existence of specific strategies. Alt-
hough in principle it is possible to analyze the data using 
more conventional multivariate statistical approaches, it 
would be difficult to formalize the hypotheses to be test-
ed, especially considering the variety of strategies that the 
musicians seem to exhibit. However, in future studies, the 
two approaches could eventually complement each other: 
hierarchical clustering can assist in formalizing concrete 
hypotheses while conventional analyses provide more 
robust statistical results. 

  The similarity profiles method (SIMPROF) permits 
the clustering of statistically similar performances togeth-
er. It should be noted that other techniques such as boot-
strapping [23, 24] may be used as statistical means to de-
fine the boundaries of clusters in the mtPs matrix (Figure 
2). We leave the exploration of these alternative tech-
niques for a forthcoming publication. 

An important parameter in SIMPROF is the signifi-
cance level (alpha) with which the null hypothesis (that 
the differences in the mtPs inside a cluster are the result 
of random combination of the various features) is reject-
ed. The value of alpha, together with the Bonferroni cor-
rection for multiple simultaneous tests, determines the 
level of detail of the final classification, or in other 
words, the size and scope of the clusters. For instance, if 
we do not adjust the p-values for multiple tests (Bonfer-
roni correction parameter set to false in the 
f_disprof_clust function of the Fathom toolbox 
[16]), groups B and F are split into three and two sub-
clusters respectively. Looking at the mtPs in Figure 2, we 
see that for group B this is due to the subtle tendency of 
some performances to play ahead of the beat. In group F, 
it is due to the relation of the kick and hi-hat strokes. In 
the more common approach to hierarchical clustering, in 
which dendrograms are cut horizontally, this level is con-
trolled by the height that a dendrogram is cut. 

The way mtPs are clustered together plays central role 
in the creation of archetypes and therefore in the charac-
terization of the various timing strategies. Archetypes are 
calculated as averages of the mtPs in each cluster which 
are further reduced into eight boolean values. For exam-
ple, if group F was to be split into two sub-clusters, they 
would not correspond to the same archetype but would 
form distinct groups. In contrast, the sub-clusters of group 
B discussed above correspond to the same archetypes.  

Exploring and understanding the results of the cluster-
ing analysis requires a side-by-side examination of the 
mtP matrix (Figure 2) and the phylogenetic tree (Figure 
3). The two visualizations combined offer an overview of 
the performances allowing for a closer examination of the 
finer timing relation details between the different strate-
gies. This simultaneous multilevel view of the recordings 
enables us to draw conclusions about the timing strategies 
which would otherwise be obfuscated or oversimplified. 

In conclusion, the encoding of the drum performances 
into boolean features and the hierarchical classification of 
the derived microtiming profiles effectively cluster the 
performances into meaningful groups. The further phylo-
genetic visualization and the symbolic representation of 
the groups through microtiming archetypes is an efficient 
way of mapping drummers’ main timing strategies, 
providing an easily interpretable overview of the results. 
Our analysis simultaneously brings to the surface higher 
level rhythmic aspects common to the performances as 
well as the finer details that differentiate them without the 
one occluding the other.  
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ABSTRACT

This paper proposes an improved singing aid system for
laryngectomees that converts electrolaryngeal (EL) speech
produced using an electrolarynx to a more naturally sound-
ing singing voice. Although the previously proposed sys-
tem employing a noise suppression process and a rule-
based pitch control approach has achieved preliminary
success in converting EL speech into a singing voice,
there are still two major limitations. First, the converted
singing voice still sounds mechanical and unnatural ow-
ing to the adverse impacts of spectrograms extracted from
EL speeches, also making the effect of pitch control lim-
ited. Second, the capability and flexibility of the rule-
based pitch control in modeling various singing styles are
insufficient, causing the converted singing voices to lack
variety. To address these limitations, this paper proposes
an improved system that uses 1) a statistical voice con-
version approach to convert spectrograms extracted from
EL speeches into those of natural speeches and 2) a deep
generative model-based approach called VAE-SPACE for
pitch modification, which generates pitch patterns in a
data-driven manner instead of following manually de-
signed rules. The experimental results revealed that 1) the
conversion of spectrograms was effective in improving the
naturalness of singing voices, and 2) the statistical pitch
control approach was able to achieve comparable results
with the rule-based approach, which was very carefully de-
signed to be specialized in singing.

1. INTRODUCTION

The voice is an essential tool used by most of people to
communicate with others or express themselves. However,
it is difficult for laryngectomees whose larynxes have been
removed in surgery to speak or sing in a common manner
since they are unable to generate glottal excitation sounds
owing to the loss of their vocal folds. In consequence, this
vocal disorder may significantly degrade the quality of life

c© Li Li1, Tomoki Toda2, Kazuho Morikawa2, Kazuhiro
Kobayashi2, Shoji Makino1. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Li
Li1, Tomoki Toda2, Kazuho Morikawa2, Kazuhiro Kobayashi2, Shoji
Makino1. “Improving Singing Aid System for Laryngectomees With
Statistical Voice Conversion and VAE-SPACE”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

of laryngectomees. One popular approach that enables la-
ryngectomees to speak again is to use an external medi-
cal device called electrolarynx to produce intense mechan-
ical vibrations as an alternative to glottal excitation sounds.
Electrolaryngeal (EL) speech produced using an electrolar-
ynx is noteworthy for its intelligibility, and furthermore, it
is easy for laryngectomees to learn how to use an electro-
larynx, even for people with low physical fitness. However,
the perceived naturalness of EL speech is unsatisfactory
owing to the use of mechanically generated source excita-
tion sounds, the fundamental frequency (F0) contours of
which are usually flat or given as predetermined patterns.
This further limits the capability of the electrolarynx to as-
sist laryngectomees in singing, where F0 contours play an
important role in providing both melodic information and
details related to the naturalness and singing style [1].

To develop singing aid systems for laryngectomees, it is
essential to suitably control the pitch of EL speech, i.e., F0

contours. One existing approach is to set F0 contours cor-
responding to melodies of predetermined songs and embed
them in advance into the electrolarynx as a function to al-
lowing these songs to be sung. However, the flexibility
in singing with this approach is unsatisfactory because the
number of embedded songs is limited and laryngectomees
are solely allowed to sing in predetermined styles.

To achieve a more flexible singing aid, a system based
on pitch control has recently been proposed [2]. With
this system, laryngectomees are allowed to freely control
melodic information such as musical scores and tempo
by playing a musical instrument themselves while singing
with an electrolarynx. Singing voices are then generated
by applying a voice conversion approach that converts EL
speeches into singing voices containing well-sung F0 con-
tours that are modified from the inputted musical scores
according to a set of manually predefined rules [3, 4]. Fur-
thermore, noise suppression [5] is employed to reduce the
source excitation signals emitted from the electrolarynx.
Although this system has achieved preliminary success as
a singing aid, there are still two limitations. First, the ef-
fect of pitch control in improving the naturalness of singing
voices was limited because of the fluctuations originating
from the spectral features extracted from EL speeches [2],
which resulted in the converted singing voices still sound-
ing mechanical and unnatural. Second, both the capability
and flexibility of the rule-based pitch control approach in
modeling various singing styles are insufficient. Once the
rules are determined, the system outputs certain F0 pat-
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terns containing similar characteristics without consider-
ing the personalities and emotions of singers, which is an
undesirable property of singing aid systems.

To develop a system that is capable of aiding laryngec-
tomees to sing naturally and distinctly, this paper proposes
an improved system that uses 1) a statistical voice conver-
sion (VC) approach based on the Gaussian mixture model
(GMM) [6, 7] to convert spectral features extracted from
EL speeches into those of natural speeches to alleviate the
fluctuation problem and 2) a deep generative model-based
approach called VAE-SPACE [8] to generate F0 contours
of singing voices from input musical scores. As a data-
driven approach, it is expected that VAE-SPACE can learn
the rules for generating natural F0 contours from data au-
tomatically, making it possible to model different singing
styles and expressions with a unified model.

2. OVERALL FRAMEWORK OF SINGING AID
SYSTEM FOR LARYNGECTOMEES

Fig. 1 shows an overview of the conventional singing
aid system proposed in [2] that takes a sequence of
musical scores N = [n1, . . . , nt, . . . , nT ] provided by
playing an instrument as melodic information in addi-
tion to an EL speech S = [s1, . . . , st, . . . , sT ]. Here,
st = [st(1), . . . , st(f), . . . , st(F )]T denotes the short-time
Fourier transform (STFT) coefficients of the EL speech
at frame t, and f and (·)T denote the frequency index
and transpose operator, respectively. The system mainly
consists of three modules, namely, for voice quality en-
hancement, pitch control, and synthesis. With this system,
singing voices are generated by a vocoder-based synthesis
approach [9] that takes phonetic information and pitch in-
formation as inputs, where the former is extracted from the
EL speech S enhanced by the voice quality enhancement
module and the latter is obtained by modifying the input
musical scoresN via the pitch control module.

Note that this system can also serve laryngectomees
who do not play instruments by allowing them to sing with
played accompaniments, where a sequence of predeter-
mined musical scores is given in synchronization with the
accompaniments. Different from the method of embedding
preset F0 patterns into an electrolarynx and controlling the
pitch by pushing a button, this system can obtain more nat-
ural singing voices since singing voices obtained with the
former method are usually interrupted when the musical
score changes owing to the limitation of mechanical exci-
tation generation, and those obtained in the latter way are
converted from more fluent EL speeches.

3. CONVENTIONAL SYSTEM WITH
NOISE SUPPRESSION AND RULE-BASED

PITCH CONTROL

3.1 Noise suppression

It is important to enhance the quality of both phonetic in-
formation and pitch information to achieve a better trans-
formation. To obtain correct phonetic information from

Figure 1. Flowchart of singing aid system.

an EL speech, which is usually mixed with a noisy source
signal that radiates from the position of the EL attach-
ment, the aforementioned system employs a spectral sub-
traction (SS) method [5] to enhance the voice quality of
the recorded EL speech. A prototype noise amplitude
spectrum |l(f)| is calculated by averaging the amplitude
spectra of the EL noise recorded with a close-talking mi-
crophone in advance. The enhanced EL speech is ob-
tained with the enhanced amplitude spectrum |ŝt(f)| and
the noisy phase spectrum, where

|ŝt(f)| =

{
|st(f)| − 2|l(f)|, (|st(f)| > 2|l(f)|),
0, (otherwise).

(1)

The phonetic information used for synthesis, i.e., spectral
features and aperiodic components, is obtained by analyz-
ing the enhanced EL speech with fixing F0 at a constant
value and using the on/off information of the electrolarynx
as unvoiced/voiced information.

3.2 Rule-based pitch control

For pitch control, a rule-based F0 modification technique
[3,4] is applied to add overshoot, vibrato, preparation, and
fine fluctuation, which are four characteristics typically ob-
served in F0 contours of natural singing voices, into the
musical scores nt. Specifically, overshoot, vibrato, and
preparation are added by applying the following infinite
impulse response filter to the musical scores:

H(s) =
k

s2 + 2ζωs+ ω2
, (2)

where ω, ζ, and k denote the natural frequency, damping
coefficient, and proportional gain, respectively. Overshoot
and preparation are expressed as the second-order damp-
ing model (0 < |ζ| < 1), while vibrato is expressed as the
second-order oscillation model (|ζ| = 0). The fine fluctua-
tion is generated from white noise that is high-pass-filtered
with the cutoff frequency set at 10 Hz followed by a nor-
malization. The modified F0 contour can be expressed as
ot = nt + et, where ot and et denote the generated F0

and the component including all four characteristics that is
finally added to the musical score at frame t, respectively.

3.3 Limitations

The effectiveness of this system in converting EL speech
into a singing voice was experimentally confirmed in [2].
However, it was also reported that undesirable fluctuations
reside in F0 contours of synthesized singing voices that
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may have originated from the spectral features extracted
from the enhanced EL speeches, which cause the singing
voices to still sound mechanical and unnatural. The upper
figure in Fig. 6 shows an example of the reanalyzed F0

contour of a singing voice obtained with the system. An-
other limitation originates from the rule-based pitch con-
trol. Although the system allows laryngectomees to sing an
arbitrary song with the desired melody, it is difficult for this
framework to further improve the capability to express var-
ious singing styles or to generate expressive singing voices.

4. PROPOSED SYSTEM WITH
STATISTICAL VC AND VAE-SPACE

To remove these indefinite spectral components affecting
F0 contours, one of the promising approaches is to trans-
form the spectral features of EL speeches of songs into
those of natural singing voices not containing these com-
ponents. Statistical VC techniques [6,7] have the potential
to be used for developing such a transformation based on
training data consisting of utterance pairs of the source and
target voices, namely, singing voices sung using an electro-
larynx (EL speeches) and in a natural way. Furthermore, it
is expected that EL noise can be reduced together by train-
ing a model with the source voice being noisy EL speech.

To address the second limitation, motivated by the high
flexibility of a statistical approach in modeling different
voice characteristics and singing styles [10–12], we pro-
pose using a statistical parametric model for pitch con-
trol instead of the rule-based approach. Specifically, we
employ VAE-SPACE [8], which uses a variational autoen-
coder (VAE) as an analysis-synthesis model to discover the
structure of an F0 generating process for the singing voice
in a data-driven manner as well as an inverse process for
estimating the underlying musical scores.

4.1 Statistical VC for converting EL speech into
singing voice

Let xt = [xt(1), . . . , xt(d), . . . , xt(D)]T denotes the D-
dimensional spectral feature extracted from EL speech st
at frame t, where d denotes the index of the feature di-
mension. The aim of VC is to estimate the spectral fea-
tures, F0 contours including unvoiced/voiced (U/V) infor-
mation, and aperiodic components of the corresponding
natural singing voice, which are denoted by the same vari-
able yt = [yt(1), . . . , yt(d), . . . , yt(D)]T for simplicity,
from the noisy spectral sequence xt.

In the training step, a joint probability density function
(p.d.f.) of the joint acoustic feature vectors [XT

t ,Y
T
t ]

T is
modeled with a GMM as follows:

P
(
Xt,Y t

∣∣Θ(X,Y)
)

=
M∑
m=1

αmN
(
[XT

t ,Y
T
t ]

T;µ(X,Y)
m ,Σ(X,Y)

m

)
. (3)

Here Xt denotes spectral segment feature vectors that
are obtained by performing principal component analysis
(PCA) for the joint vectors concatenating the spectral fea-
ture vectors of the current frame, preceding L frames, and

succedding L frames extracted from source voices. Y t =
[yT
t ,∆y

T
t ]

T denotes vectors combining static and dynamic
features extracted from target voices. Θ(X,Y) denotes a pa-
rameter set of the GMM, which consists of the weights αm,
mean vectors µ(X,Y)

m , and convariance matrices Σ(X,Y)
m of

all the mixture components. Moreover, the p.d.f. of the
global variance (GV) [13] of the target static feacture vec-
tors over an utterance v(y) = [v(1), . . . , v(D)]T is also
modeled with a Gaussian distribution, which is expressed
with a set of parameters Θ(v) = {µ(v),Σ(v)} as

P
(
v(y)

∣∣Θ(v)
)

= N
(
v(y);µ(v),Σ(v)

)
. (4)

Here, the GV v(y) of a time sequence of the target static
feature y = [yT

1, . . . ,y
T
T ]T is calculated utterance by utter-

ance as

v(d) =
1

T

T∑
t=1

(
yt(d)− 1

T

T∑
τ=1

yτ (d)
)2
. (5)

In the conversion process, a time sequence vector of
the converted static feature vectors ŷ = [ŷT

1, . . . , ŷ
T
T ]T is

determined by maximizing the product of the conditional
p.d.f. of Y givenX and the p.d.f. of the GV as

ŷ = argmax
y

P
(
Y
∣∣X,Θ(X,Y)

)
P
(
v(y)

∣∣Θ(v)
)
λ, (6)

subject to Y = Wy, (7)

whereX = [XT
1, . . . ,X

T
T ]T and Y = [Y T

1, . . . ,Y
T
T ]T are

time sequence vectors of the source and target feature vec-
tors, respectively. W denotes a 2DT -by-DT matrix that
extends a time sequence vector of the static feature vec-
tors into that of the joint static and dynamic feature vec-
tors [14], and λ is a weight parameter, which is commonly
set to 2T . By adopting an approximation with a subopti-
mum mixture component sequence m = {m1, . . . ,mT },
the converted static feature vector sequence is determined
as follow [7]:

ŷ = argmax
y

P
(
Y
∣∣X, m̂,Θ(X,Y)

)
P
(
v(y)

∣∣Θ(v)
)
λ. (8)

The enhanced EL speech is generated by filtering the
mixed excitation signal, which is designed according to the
F0 values, U/V information, and aperiodic components es-
timated from the spectral segment feature vectors, with the
converted spectral features.

4.2 VAE-SPACE for pitch control

VAE-SPACE [8] has been proposed as a generative model
that can represent and generate F0 contours of both
speeches and singing voices. Let z denotes a sequence
of parameters governing the generating process of F0 con-
tours o = [o1, . . . , oT ]T. VAE-SPACE uses an encoder
to estimate the parameters of a conditional distribution
qφ(z|o) of the latent variable z given an F0 contour o,
and a decoder to estimate the parameters of a conditional
distribution pθ(o|z) of the F0 contour o given the latent
variable z. The encoder and decoder are trained simulta-
neously so that qφ(z|o) becomes consistent with the true
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posterior distribution pθ(z|o) ∝ pθ(o|z)p(z). The param-
eters of the networks φ and θ can be trained by maximizing
the following variational lower bound [15]:

L(θ, φ;o)

= Ez∼qφ(z|o)[log pθ(o|z)]−DKL[qφ(z|o)||p(z)], (9)

where DKL[·||·] denotes Kullback-Leibler (KL) diver-
gence. In VAE-SPACE, the latent variable z is associated
with a set of interpretable parameters so that the decoder
can be seen as a generative model for synthesizing F0 con-
tours and the encoder can be seen as an inverse problem
solver that analyzes the underlying parameters of an ob-
served F0 contour. In the case of speech, z is associated
with a phrase/accent command sequence defined in the Fu-
jisaki model [16], while in the case of a singing voice,
it is associated with a sequence of musical scores. The
name “VAE-SPACE” comes from the former case, where
the VAE-based method is designed to perform statistical
phrase/accent component estimation (SPACE).

A typical way of modeling qφ(z|o) and pθ(o|z) is to
assume a Gaussian distribution

qφ(z|o) = N
(
z|µφ(o),diagσ2

φ(o)
)
, (10)

pθ(o|z) = N
(
o|µθ(z),diagσ2

θ(z)
)
, (11)

where µφ(o), σ2
φ(o) are the encoder outputs and µθ(z),

σ2
θ(z) are the decoder outputs. While the prior distribu-

tion p(z) is typically modeled as a standard Gaussian dis-
tribution with zero mean and unit variance, VAE-SPACE
designs it as a specific form based on the assumption that
z indicates the underlying musical scores of an F0 contour
in the case of a singing voice. Specifically, in a supervised
setting where pairs of F0 contours and musical scores are
availiable, we can train the VAE by maximizing the follow-
ing loss function, whici tends to maximize the likelihood
of z, instead of minimizing the KL divergence since the
prior distribution of z is known:

L(θ, φ;o) =Ez∼qφ(z|o)[log pθ(o|z)]

+ E(o,z)∼pD(o,z)[log qφ(z|o)], (12)

where E(o,z)∼pD(o,z)[·] denotes the sample mean over the
training data. In the generation process, a z sampled from
a Gaussian distribution with the musical scores N as the
mean and a variance matrix with a small constant value
in the diagonal is used as the input of the trained decoder.
The generated F0 contour is then used to replace that ob-
tained by VC to generate the excitation signal with the U/V
information estimated by VC.

For network architectures, a gated convolutional neural
network (CNN) [17] is used to construct the encoder and
decoder to capture long- and short-term dependencies in
F0 contours. The gated CNN uses a data-driven gate called
gated linear unit (GLU) σ(Hl−1∗Wg

l +bg
l ) as a nonlinear

activation function to control the information passed on in
the hierarchy, where Hl−1 denotes the output of the (l−1)-
th layer, bf

l and bg
l are the weight and bias parameters of

the l-th layer and σ is the sigmoid function.

Figure 2. An overview of conditional VAE-SPACE.

Figure 3. Network architectures of encoder and decoder
used for cVAE. VAE used the same architecture excluding
the class label inputs. “w”, “c” and “k” denote the width,
channel number and kernel size, respectively. “Conv”,
“BN” and “GLU” denote 1D convolution, batch normal-
ization and gated linear unit, respectively.

To improve the performance of VAE-SPACE in mod-
eling F0 contours and minimize the cost of preparing
pair data, we investigate two specific implementation-level
problems in this paper: 1) whether a score-level align-
ment is necessary to train a supervised VAE-SPACE and 2)
whether the performance can be improved by fine-tuning
the trained decoder with the real musical score sequences
generated by a sampling process during VAE pretraining.
Furthermore, aiming to model different singing styles in a
controllable manner, we also attempt to adopt a conditional
CNN with GLUs to construct networks, which takes labels
of singing styles c represented as one-hot vectors as addi-
tional inputs. The criterion of training a conditional VAE
(cVAE) can be obtained merely by extending (12) [15].

5. EXPERIMENTAL EVALUATIONS

5.1 Experimental conditions

We prepared two datasets containing different pairs of data.
Dataset1 consists of EL speech samples of 21 Japanese
children’s songs recorded by a laryngeal speaker using an
electrolarynx and the corresponding natural singing voices.
17 songs were manually segmented into 157 short phrases
and used to train GMMs, and the other 4 songs were seg-
mented into 19 phrases, and used as a test set. Each phrase
was about 3∼8s long. Dataset2 includes two versions of
one Japanese song (about 4min 30s long), which were sung
by a female person in normal and expressive singing styles.
We segmented each song into 53 phrases and manually
took alignments at the phrase and score levels, which were
referred to as “unaligned” and “aligned” data, respectively.

We used the amplitude spectra as spectral feature vec-
tors of EL speeches, and STRAIGHT analysis [9] to ex-
tract acoustic features of normal singing voices. The shift
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Table 1. RMSE and standard deviation of VAE with differ-
ent implementation conditions. “ft” denotes fine-tuning.

Models RMSE
VAE-unaligned 26.1031 ± 5.5028
VAE-aligned 22.7670 ± 5.2874

VAE-aligned-ft 21.3409 ± 5.3566
cVAE-aligned-ft 22.2933 ± 6.3934

Figure 4. Histograms of the residual components et.

length was 5 ms. The 0th through 24th mel-cepstral co-
efficients were used as spectral features of normal singing
voices. As excitation features, a log-scaled F0 value and
aperiodic components on five frequency bands (i.e., 0-1,
1-2, 2-4, 4-6, and 6-8 kHz) were used. To obtain segmen-
tal feature vectors at each frame, we concatenated spectral
feature vectors with the adjacent frames by setting L = 4
and performed PCA to reduce the feature dimension to 50.
The numbers of mixture components of the GMMs used
to estimate spectral features, aperiodic components, and
F0 including U/V information were all set at 16. Follow-
ing the original VAE-SPACE paper, the output of the de-
coder was designed to be a sequence of residual compo-
nents e = [e1, . . . , eT ], as shown in Fig. 2. Fig. 3 shows
the architectures of the encoder and decoder. To train VAE,
we used the songs sung in a normal style in Dataset2, and
those sung in an expressive style were used as additional
data for training the cVAE.

5.2 Objective evaluation

We first conducted an objective evaluation to demonstrate
the performances of VAE-SPACE with different imple-
mentation conditions. We divided the songs into 7 folds
and performed cross-validation. Root mean square error
(RMSE) between the estimated and target F0 contours was
used as a metric to evaluate the estimation accuracy of F0

generation. Table 1 shows the results. The objective re-
sults show that applying a score-level alignment and fine-
tuning the decoder were effective in improving the accu-
racy of generating the target F0 contours. However, the
histograms of the residual components et shown in Fig. 4
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Figure 5. MOS in terms of naturalness and goodness.

Table 2. p-values calculated for method c).
naturalness goodness

SS+score 2.25E-11 0.1257
SS+rule-based 5.64E-07 0.7673

VC+VAE-unaligned 0.2223 0.7551
VC+VAE-aligned 0.0460 0.0561

VC+VAE-aligned-ft 0.1677 0.3413
VC+cVAE-aligned-ft 0.0976 0.3413

reveal that both the alignment and fine-tuning decreased
the dynamics of the generated F0 contours.

5.3 Subjective evaluation

To further investigate the performances of VAE-SPACE
with different implementations and demonstrate the ef-
fectiveness of VC, we conducted a subjective evalua-
tion that compared 7 methods, namely, a) SS+musical
scores (SS+score), b) SS+rule-based F0 modification
(SS+rule-based), c) VC+rule-based F0 modification
(VC+rule-based), d) VC+VAE-SPACE using unaligned
data (VC+VAE-unaligned), e) VC+VAE-SPACE using
aligned data (VC+VAE-aligned), f) VC+VAE-SPACE us-
ing aligned data and fine-tuning (VC+VAE-aligned-ft),
g) VC+cVAE-SPACE using aligned data and fine-tuning
(VC+cVAE-aligned-ft). 13 evaluators participating in the
experiments scored the converted singing voices in terms
of the naturalness of the song and the goodness of singing
using a 5-point opinion scale. The mean and 95% confi-
dence interval of the two criteria are shown in Fig. 5 and
the p-values calculated for method c) are shown in Table 2.

The results show that VC significantly improved the
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Figure 6. Examples of reanalyzed F0 contours and spec-
trograms of synthesized singing voices obtained by em-
ploying SS (upper) and VC (bottom).

Figure 7. Generated F0 contours with various z (upper)
and class labels (bottom).

quality of converted singing voices in terms of the natu-
ralness, which confirmed the effectiveness of the VC ap-
proach in removing the undesirable spectral components.
An example of the reanalyzed F0 contour and spectrogram
is shown at the bottom of Fig. 6, which also confirmed
this result. VAE-SPACE implemented with a conditional
CNN achieved comparable results to the rule-based pitch
control with carefully designed rules, and showed a high
potential for contributing to the system. Compared with
the method using unaligned data and the cVAE, the sub-
jective results for the method using aligned data and fine-
tuning were slightly lower, exhibiting the same tendency as
the results shown in Fig. 4. This suggests that alignment
and fine-tuning are not important in our system. We also
investigated the variety of the F0 contours generated with
different sampled z and style class labels, the results of
which are shown in Fig. 7. We observed some reasonable

differences between the F0 contours generated with vari-
ous sampled z. However, there was no notable difference
observed between the F0 contours generated with different
class labels, which may have been due to the high abil-
ity of the networks to model the conditional distributions
while ignoring the class labels [18, 19]. This issue will be
addressed in future work.

6. DISCUSSION AND REUSABLE INSIGHTS

From the above results, it is concluded that spectrogram
modification is useful and must be considered as well as
F0 control to improve the quality of singing voices. On
the other hand, data alignment and fine-tuning are not es-
sential, which means that we can increase the number of
pair data at a relatively low cost to improve the estimation
accuracy and the variety of styles. Furthermore, since the
amount of pair data required for the VC approach is small
and VAE-SPACE allows semi-supervised training with un-
labeled data in addition to labeled data [8,15], it is expected
that the entire system will be allowed to play its potential
data efficiently, which is important for such a data-driven
framework. Although cVAE-based implementation failed
to represent different styles in the experiments, the frame-
work for modeling various styles with a unified model pro-
vides us with a simple and straightforward way to con-
trol singing styles and apply style interpolation/morphing.
Note that although we applied the method to model singing
voices, it can also be used with other audio signals such
as to generate suitable F0 contours of musical instruments
from musical instrument digital interface (MIDI) informa-
tion. In addition to modeling various styles, we can extend
this method to generate the F0 contours of multiple instru-
ments.

7. CONCLUSIONS

This paper proposed an improved singing aid system for la-
ryngectomees based on a previously proposed system that
converts EL speeches into singing voices according to the
additionally inputted melodic information. The proposed
system uses a statistical VC approach to transform the pho-
netic information extracted from EL speeches into those of
natural speeches, and VAE-SPACE to perform pitch con-
trol. We investigated the importance of well-aligned pair
data and the fine-tuning process for improving the perfor-
mance and a conditional version of VAE-SPACE for mod-
eling multiple singing styles with a unified model. The ex-
perimental results demonstrated that 1) the VC approach
was effective in significantly improving the naturalness of
singing voices, 2) the effectiveness of well-aligned pair
data and fine-tuning was limited, and 3) VAE-SPACE was
able to achieve comparable results to a carefully designed
rule-based approach in generating F0 contours.
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1. ABSTRACT

To make music composition more approachable, we de-
signed the first AI-powered Google Doodle, the Bach Doo-
dle [1], where users can create their own melody and have
it harmonized by a machine learning model (Coconet [22])
in the style of Bach. For users to input melodies, we de-
signed a simplified sheet-music based interface. To sup-
port an interactive experience at scale, we re-implemented
Coconet in TensorFlow.js [32] to run in the browser and re-
duced its runtime from 40s to 2s by adopting dilated depth-
wise separable convolutions and fusing operations. We
also reduced the model download size to approximately
400KB through post-training weight quantization. We cal-
ibrated a speed test based on partial model evaluation time
to determine if the harmonization request should be per-
formed locally or sent to remote TPU servers. In three
days, people spent 350 years worth of time playing with the
Bach Doodle, and Coconet received more than 55 million
queries. Users could choose to rate their compositions and
contribute them to a public dataset, which we are releas-
ing with this paper. We hope that the community finds this
dataset useful for applications ranging from ethnomusico-
logical studies, to music education, to improving machine
learning models.

2. INTRODUCTION

Machine learning can extend our creative abilities by offer-
ing generative models that can rapidly fill in missing parts
of our composition, allowing us to see a prototype of how
a piece could sound. To celebrate J.S. Bach’s 334th birth-
day, we designed the Bach Doodle to create an interactive
experience where users can rapidly explore different pos-
sibilities in harmonization by tweaking their melody and
requesting new harmonizations. The harmonizations are
powered by Coconet [22], a versatile generative model of
counterpoint that can fill in arbitrarily incomplete scores.

c© Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam
Roberts, Monica Dinculescu, James Wexler, Leon Hong, Jacob Howcroft.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Cheng-Zhi Anna Huang, Curtis
Hawthorne, Adam Roberts, Monica Dinculescu, James Wexler, Leon
Hong, Jacob Howcroft. “The Bach Doodle: Approachable music com-
position with machine learning at scale”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

Creating this first AI-powered doodle involved over-
coming challenges in user interaction and interface design,
and also technical challenges in both machine learning and
in infrastructure for serving the models at scale. For in-
putting melodies, we designed a simplified sheet music in-
terface that facilitates easy trial and error and found that
users adapted to it quickly even when they were not famil-
iar with western music notation.

As most users do not have dedicated hardware to run
machine learning models, we re-implemented Coconet in
TensorFlow.js [32] so that it could run in the browser.
We reduced the model run-time from 40s to 2s by adopt-
ing dilated depth-wise separable convolutions and fusing
operations, and we reduced the model download size to
∼400KB through post-training weight quantization. To
prepare for large-scale deployment, we calibrated a speed
test to determine if a user’s device is fast enough for run-
ning the model in the browser. If not, the harmonization
requests were sent to remote TPU servers.

Users in 80% of sessions explored multiple harmoniza-
tions, and 53.8% of the harmonizations were rated as pos-
itive. One complaint from advance users was the presence
of parallel fifths (P5s) and octaves (P8s). We analyzed 21.8
million harmonizations and found that P5s and P8s occur
on average 0.365/measure and 0.391/measure respectively.
Furthermore, P5s and P8s were more common when user
input was out of distribution, and fewer P5s and P8s were
correlated with positive user feedback.

3. RELATED WORK

Machine learning has been used in algorithmic music com-
position to support a wide range of musical tasks [5, 13,
19, 28, 29]. Melody harmonization is one of the canonical
tasks [7, 11, 20, 26], encourages human-computer interac-
tion [3, 14, 21, 25, 33], and is particularly approachable for
novices. Different interfaces and tools have been devel-
oped to make the interaction experience more accessible.
For example, in MySong [31], users can sing a melody and
have the system harmonize it. In Hyperscore [12], users
can draw multiple levels of “motifs” on a graphical sketch-
pad and have them harmonized according to the tension
curve they specified. Startups such as JukeDeck and Am-
per Music offer APIs that allow users to describe a piece
through timing and mood tags. Opensource libraries such
as Magenta.js [30] allow machine learning models to be
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used in digital audio work stations. For score-based in-
teraction, FlowComposer [27] offers an augmented lead-
sheet based interface, while DeepBach [17] demonstrates
interactive chorale composition in MuseScore which uses
standard music notation.

4. THE BACH DOODLE

4.1 A walk through of the user experience

The Bach Doodle user experience begins by demonstrat-
ing 4-part harmony using two measures of a Bach chorale,
Ach wie flüchtig, ach wie nichtig, BWV 26. By playing the
soprano line alone, followed by soprano and alto, and then
all four voices, users are shown how the harmony enhances
the melody. Users are then presented with two measures of
blank sheet music, in the treble clef, with a key signature
of C major, in standard time. There are four vertical lines
in each measure to indicate the beats which give the user
visual cues on where to put notes.

The user enters a monophonic melody using quarter and
eighth notes. The note duration is automatic. If a note is
entered on a beat, it is a quarter note by default. However,
if a note is added after the beat, the existing quarter note
becomes an eighth note. This simple interface makes it
easy for users with no musical knowledge to input a com-
position, and can be seen in Figure 1. If the user clicks
on the “star” button on the left-hand side of the sheet mu-
sic, they can enter “advanced mode”. This allows the user
to input sixteenth notes anywhere on the staff. It also en-
ables a control where the key can be changed to any of the
12 key signatures. This mode is hidden because it can be
overwhelming for new users. It is also easier to make less
enjoyable music this way, for example by going off key, or
making the music overly complex.

Clicking the “Harmonize” button sends the generation
request to either TensorFlow.js or the TPU server. When
the response is ready, it is presented to the user one voice
at a time, listing them out: “Soprano”, “Alto”, “Tenor”,
“Bass”. The voices are color-coded to illustrate the harmo-
nization in relation to the soprano input notes (Figure 2).

Figure 1. The user interface of the Bach Doodle, where
users can input a melody and then click on the green “Har-
monize” button on the bottom right to request a harmoniza-
tion.

Figure 2. The harmonization returned by Coconet is no-
tated in color, carrying the alto, tenor, and bass voices.

4.2 Design challenges

Celebrating J.S. Bach’s birthday using machine learn-
ing presented many unique design opportunities as well
as some user experience challenges. One of the main
goals was to empower people with the feeling that they
could augment their own creativity in ways not previously
thought possible, by allowing them to directly collaborate
with a machine learning model. Another important goal
was to convey the message that machine learning is not
“magical” or incomprehensible, but rather a science that
can be understood. Finally, a notable challenge was to en-
sure that these aims would be met for a large diversity of
individuals, from children who have not yet learned to read
to experts of music and technology.

In order to acquire early feedback on the design, user
tests were employed. Over the course of the project,
dozens of people were asked to play the demos and com-
ment on their experience through both pre-defined ques-
tions and open comments. The first user test in the de-
velopment process revealed that many people do not fully
understand the concept of harmony, but fortunately, further
testing showed that short animated musical examples were
enough for people to comprehend these concepts quickly.
Also, user tests indicated that only a small subset of peo-
ple could read standard music notation. Our intuition was
that using standard notation, rather than a grid based inter-
face would be intuitive and frictionless to anybody only if
the user interface (UI) was responsive with animations and
sound and also if the note input interface was kept sim-
ple. Further user testing of the standard notation input UI
proved this to be correct.

In order to accommodate people of all ages and expe-
riences, a common technique employed is to remove any
advanced feature or unexpected delight from the core ex-
perience and instead integrate them as “easter eggs”. This
allows people of all skill levels to experience the full core
experience without feeling frustrated, while also giving the
rarer advanced user more features. While the core expe-
rience primarily allows eighth notes and tempo changes,
clicking on a special button in the background addition-
ally allowed the user to add sixteenth notes and change the
key – two features that are very confusing to those without
musical backgrounds.
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4.3 Reusable insights

For future projects, we have shown that if the technol-
ogy being used is unfamiliar or perceived as “scary” to
those who know little about it, tethering the experience
to a familiar story and visuals can be a successful strat-
egy. Most people have a limited understanding of musi-
cal concepts such as harmony and standard notation, but it
is possible that people of all ages can quickly acquire an
intuitive understanding of musical concepts through care-
fully designed animated audiovisuals and a simple and re-
sponsive UI. Additionally, injecting content into loading
screens could not only make loading times feel shorter but
also be an excellent space for educational content. Finally,
user testing is crucial when trying to create an experience
using new technology that encompasses a large and diverse
audience – it can reveal serious issues and shortcomings
that are not obvious due to the team’s own background and
domain knowledge.

5. TECHNICAL CHALLENGES

In order for users to interact with Coconet via a web inter-
face, we needed to either port it to run client-side on the
user’s device or host the model on a server with sufficient
speed and capacity to support the number of requests we
were expecting. In fact, we did both: we ported the model
to TensorFlow.js (TF.js) so that it could run on user devices
and added support for Tensor Processing Units (TPU) so
that it could be served on Google Cloud. By running a sim-
ple test on users’ devices to determine the speed of core
tensor operations, we were able to determine whether to
use the TF.js implementation locally, or fall back to a TPU
server to handle the computation. In the end, 47.4% of all
harmonizations were done locally, in TF.js.

5.1 Background: Coconet

Coconet [22] 1 is a versatile generative model of musical
counterpoint that can fill in arbitrarily incomplete scores,
as illustrated in Figure 3.

Figure 3. Coconet can be used in a wide range of musi-
cal tasks, such as completing partial scores, harmonizing
melodies and generating from scratch.

Coconet represents counterpoint as a stack of piano
rolls encoded in a binary three-dimensional tensor x ∈
{0, 1}I×T×P , where I , T , and P denotes the number of in-
struments, time steps, and pitches respectively. xi,t,p = 1

1 Blog post: https://magenta.tensorflow.org/coconet
Code: https://github.com/tensorflow/magenta/tree/
master/magenta/models/coconet

if the ith instrument plays pitch p at time t. Each in-
strument is assumed to play exactly one pitch at a time,
therefore

∑
p xi,t,p = 1 for all (i, t) positions. We

also focus on four-part Bach chorales as used in prior
work [2, 4, 8, 16, 18, 24], and assume I = 4 throughout.

Conventional approaches often factorize the joint dis-
tribution p(x) into conditional distributions of the form
p(xk | x<k), where k indexes a sequence in some predeter-
mined ordering such as chronological. In contrast, Coconet
is an instance of orderless NADE [34,35] and offers direct
access to all conditionals of the form p(xi,t | xC), where
C selects a fragment of a musical score x and (i, t) ∈ ¬C
is in its complement (i.e. the missing parts). To train Co-
conet, we sample a training example x, choose uniformly
how many variables to erase, i.e. |¬C| ∼ U(1, D), and
then choose uniformly the particular subset of variables
¬C to erase. The input X ∈ {0, 1}2I×T×P is obtained by
erasing the piano rolls x to obtain incomplete piano rolls
xC and concatenating this with the corresponding masks,
as shown in Figure 4 (top left) where the yellow gaps indi-
cate erased positions with all pitches set to zero.

Figure 4. Coconet’s generation loop using Gibbs sam-
pling, alternating between (top) filling in the missing parts
and (bottom) erasing random parts to improve the score
through rewriting.

The output predictions for each (i, t) position is a soft-
max over the set of pitches P (top right of Figure 4). The
negative loglikelihood loss is given below, which involves
reweighing by the number of variables erased to ensure that
all conditionals are trained equally.

L(x;C) = − 1

|¬C|
∑

(i,t)∈¬C

∑
p

xi,t,p log p(xi,t,p | xC , C)

In contrast to generating from left to right in one pass,
Coconet uses Gibbs sampling to improve sample quality
through rewriting (see [22] for convergence analysis). Fig-
ure 4 shows how the procedure iterates between filling in
missing parts and then erasing other parts so that they could
be rewritten given the updated context.

5.2 Improving and speeding up Coconet

The original Coconet uses dense convolutions, where filter
weights and their mixing weights W are fully connected
(Equation 1). This makes it unable to fully leverage GPU
parallelization in TF.js (see Section 5.3.2).
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Let s, q index the pitch and time dimension in filters,
and i, j the input and output channels. In dense convolu-
tions, each output position (p, t, j) indexed by pitch, time
and output channel is a sum over the resultant input chan-
nels and also over the positions in each filter (given by the
neighbourhood function). For a 3-by-3 filter this summing
is over the 9 positions.

In contrast, depthwise separable convolutions [6],
shown in Equation 2, factorizes the dense tensor W into
a depthwise tensor V and a pointwise U . As a result, the
multiplications between V and X can be parallelized over
the input channels i in the inner sum of Equation 3.

Y dense
p,t,j =

∑
i

∑
s,q∈neighborhood(p, t)

Ws,q,i,jXs,q,i (1)

Y dsep
p,t,j =

∑
i

∑
s,q∈neighborhood(p,t)

Ui,jVs,q,iXs,q,i (2)

=
∑
i

Ui,j

∑
s,q∈neighborhood(p,t)

Vs,q,iXs,q,i (3)

To further speed up Coconet, we adopt dilated convolu-
tions to grow the receptive field exponentially to reduce
the number of layers needed. As in [36], where in each
block the dilation factors double in each layer for both the
pitch and time dimension and then the block repeats.

The original Coconet was trained on eight measures
(T=128). However, the Bach Doodle is designed for two
measures (T=32), so we retrained the model with the orig-
inal architecture and saw that the loss increased from 0.57
to 0.62 (show in Table 1), possibly because there is less
context. Switching from dense to depthwise separable
convolutions reduced the loss, requiring more filters but
fewer layers. Since Tensorflow.js allows for parallelization
across filters, this still resulted in much faster generation
(see Section 5.3.2). Dilated convolutions reduced both the
number of layers and number of filters and also reducing
the loss. The particular scheme we used is 7 blocks of di-
lation rates (1, 2, 4, 8, 16, 16) for the pitch dimension and
(1, 2, 4, 8, 16, 32) for the time dimension.

Table 1. Comparing frame-wise negative loglikelihood
(NLL) on the 16th-note resolution as in [22] and the gen-
eration time (in seconds) when model was ported to Ten-
sorflow.js (see Section 5.3.2 for details). The bottom three
rows are all trained on two-measure (T=32) random crops.

Convolution type NLL run time

Dense (T=128), 64L, 128f 0.57

Dense (T=32), 64L, 128f 0.62 > 40s
Depthwise separable, 48L, 192f 0.59 7s
Dilated, 45L (7 blocks), 128f 0.58 ∼4s

5.3 Porting Coconet to the Browser

JavaScript is the standard language for browser-based
computation, but native JavaScript is too inefficient to han-
dle the the amount of computation required by Coconet in

a reasonable time for the interaction we desired. TF.js is
a javascript library for GPU-accelerated machine learning.
It makes use of WebGL 2 to leverage the parallel process-
ing power of GPUs to speed up machine learning opera-
tions, supporting the development and training of models,
as well as deployment of trained models on web browsers.
By enabling users to run trained models directly in their
web browsers, it alleviates the need for remote servers to
run those models. This can enable faster, more interactive
experiences between a user and a machine learning system.

While some models can easily be ported to TF.js us-
ing a conversion script, Coconet’s Python TensorFlow im-
plementation used some ops that did not yet exist in TF.js
(e.g., cumsum), and we also needed the flexibility to op-
timize the performance of the model for our use case. We
therefore manually re-implemented Coconet in TF.js our-
selves and have made the code opensource 3 . We also con-
tributed missing ops to TF.js with WebGL fragment shader
code for GPU acceleration.

5.3.1 UI Challenges

TF.js makes use of the async/await pattern for access to
outputs of models and individual TensorFlow operations.
During inference, users receive a callback for when GPU
operations have completed and the result is ready to be
consumed. In this way, there is no blocking of the UI while
waiting for model results. In practice, with large mod-
els like Coconet (which includes many repeated sampling
steps of a deep network), it is still important to cede control
back to the UI explicitly during the course of the model op-
erations, which can be done with the tf.nextFrame()
operation. Our op-by-op code port of the network allowed
us to add these occasional UI breaks, which avoided a poor
user experience where the page would freeze for multiple
seconds during model prediction.

5.3.2 Performance Challenges

The initial port of Coconet to TF.js took over 40 seconds
to do one harmonization. For a satisfying user experi-
ence, we needed to lessen this latency to below 5 sec-
onds. While TF.js is able to take advantage of GPU ac-
celeration, WebGL does not directly support the types of
tensor operations used in deep learning. Instead, these op-
erations must be implemented as shader programs, which
were originally intended to compute the color for pixels
during graphics rendering. This mismatch leads to inef-
ficiencies that sometimes vary by operation. It turned out
that the (unavoidably) inefficient shader implementation of
convolutional layers were the main culprit. By switching to
depthwise-separable convolutions, however, we were able
to avoid many of these performance issues, reducing gen-
eration time to 7 seconds.

As we run Coconet through 64 Gibbs sampling steps,
any improvement to operations that are used in this loop

2 https://developer.mozilla.org/en-US/docs/Web/
API/WebGL_API

3 https://tensorflow.github.io/magenta-js/music/
classes/_coconet_model_.coconet.html
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could lead to a significant saving. We wrote a custom op-
eration using WebGL shaders to fuse together the opera-
tions used in our initial TF.js implementation of the an-
nealing schedule. This schedule by [37] is a sequence of
simple element-by-element operations that is run on every
sampling step during harmonization. Because of the sim-
plicity of the operations (a scalar subtraction, multiplica-
tion, division, and a max operation), we were able to easily
fuse them into a single operation that avoided the over-
head of executing multiple shader programs on the GPU,
speeding up inference by about 5%. The combined savings
of adding depthwise-separable convolutions, shrinking the
model by using dilated convolutions, and using the fused
schedule operation resulted in a reduction of the model la-
tency from 40s to 2s.

5.3.3 Download Size

Due to the number of users we intended to reach as well
as the variety of locations, devices, and bandwidth limits
they would have, we needed to ensure the download size
of the model weights was as small possible. To achieve
this goal, we implemented support for post-training weight
quantization and contributed it to TF.js. This quantization
compresses each float32 weight tensor by mapping the
full range of its dimensions down to 256 uniformly-spaced
buckets in order to represent them as int8 values, which
are then stored along with float32 min and scale val-
ues used to recover the range. During model initialization,
the weights are converted back to float32 tensors using
linear interpolation. By using these quantization, we were
able to reduce the size of the downloaded weights by ap-
proximately 4, resulting in a payload of ∼ 400KB without
any noticable sacrifice in quality.

5.4 Balancing Load Between Tensorflow.js and TPU

We ideally wanted to run the harmonization model com-
pletely on end-user devices using TF.js to avoid the need
for serving infrastructure, which adds cost, effort, and ad-
ditional points of failure. But the speed of harmonization
differs by user device, with older and lower-end devices
taking longer to run the TF.js model code. For devices
where harmonization take more than a few seconds, the
harmonization is instead done by the cloud-served model.
The first step in checking if a device can run harmonization
locally is to check if WebGL is supported on the device,
since that is required for using GPU-acceleration through
TF.js. If WebGL is supported then we perform a speed test
on the model, running a sample melody through its first
four layers. If the latency of this model inference is below
a set threshold, then the TF.js version is used. As there is
overhead on the first inference of a model in TF.js, due to
initial loading of the model weight textures onto the GPU,
we actually run the speed test twice and use the second
measurement to make the decision.

6. DATASET RELEASE AND ANALYSIS

6.1 Data structure

Every user who interacted with the Bach Doodle had the
opportunity to add their composition to a dataset. We
make this entire dataset available at https://g.co/
magenta/bach-doodle-dataset under a Creative
Commons license. Of more than 55 million requests, the
user contributed dataset contains over 21.6 million minia-
ture compositions. The compositions are split across 8.5
million sessions. Each session represents an anonymous
user’s interaction with the Bach Doodle over a single
pageload and may contain multiple data points. Each data
point consists of the user’s input melody, the 4-voice har-
monization returned by Coconet, as well as other metadata:
the country of origin, the user’s rating, the composition’s
key signature, how long it took to compose the melody, and
the number of times the composition was listened to.

6.2 Analysis

We present some preliminary analysis of the dataset to
shed some light on how users interacted with the doodle.
Out of the 21.6 million sequences in the dataset, about 14
million (or 65.7%) are unique pitch sequences, that are
not repeated anywhere in the dataset (without consider-
ing timing information). Overall, the median amount of
time spent composing a sequence was 25.5 seconds, and
sequences were listened to for a median of 3 loops, with a
total of 78.2 million loops listened across the entire dataset.

The sequences come from 109 different countries, with
the United States, Brazil, Mexico, Italy, and Spain rank-
ing in the top 5. Countries that had a small number of se-
quences were all grouped together in a separate category, to
minimize the possibility of identifying users. While many
sessions (∼20%) contained only one request for harmo-
nization (shown in Figure 5), most sessions had 2 or more
harmonizations, either of the same melody, or of a differ-
ent one. As shown in Figure 6, more than 5 million of the
input sequences used the maximum number of notes in the
default version of the doodle, which is 16. It is interesting
to note that despite being an Easter egg, 7.6% of user ses-
sions discovered the advanced mode that allowed them to
enter longer sequences.
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Figure 5. Histogram: number of requests per session

The doodle has 3 presets: Twinkle Twinkle Little Star,
Mary had a Little Lamb, and the beginning to Bach’s Toc-
cata and Fugue in D Minor, BWV 565, which are the 3
most repeated sequences. However, there are also shows
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some surprising runner ups, such as Beethoven’s Ode to
Joy, and Megalovania, a popular song from the game Un-
dertale, as well as some regional hits 4 . Overall, users
enjoyed their harmonizations, with 53.8% of all composi-
tions rated as “Good”. Figure 7 gives the breakdown of
user ratings.

4.8%
6.2%

53.8%
35.2%

Rating
Poor
Neutral
Good
No rating

Figure 7. Breakdown of user ratings on harmonized com-
positions.

6.3 Parallel Fifths and Parallel Octaves

The Coconet model that powered the Bach Doodle was
trained to produce harmonizations in the style of Bach
chorales, and one well known characteristic of Bach’s
counterpoint writing is how carefully he followed the rule
of avoiding parallel fifths (P5s) and parallel octaves (P8s).
However, one complaint from advanced users of the app
was the presence of P5s and P8s in the output of the model.
Here, we present some analysis of how frequently and un-
der what circumstances such outputs occurred. To identify
the P5 and P8 occurrences, we used music21 [9].

First, we looked at how frequently P5s and P8s ap-
peared in our training data. We were surprised to find
that in the 382 Bach chorale preludes we used in our
train and validation sets, there were 132 instances of P5s
(0.023/measure) and 51 instances of P8s (0.009/measure).
Given this prevalence, the model may learn to output this
kind of parallel motion. However, many of these instances
can be “excused” because they occur under special circum-
stances such as at phrase boundaries or when using non-
chord tones [10, 15]. Unfortunately, our training data does
not include key signatures, time signatures, or fermatas, so
the model likely learned to treat P5s as more permissible
than was actually the case in Bach’s music.

We then examined the output of the model to see if
P5s/P8s occurred more frequently when user input was
outside the training distribution and if the absence of

4 Visit https://g.co/magenta/bach-doodle-dataset to
interact with visualizations of the top repeated melodies overall and in
each region, as well as regional unique hits.
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Figure 8. Parallel fifths and octaves per measure

P5s/P8s was correlated with positive user feedback. We
first split the output based on whether users gave posi-
tive feedback or not (non-positive feedback includes neu-
tral, negative, and the absence of feedback). Next, we
split based on whether user input was within the same
pitch range as the soprano lines in the training data (MIDI
pitches from 60 through 81) and whether the maximum
delta between consecutive pitches exceeded that of the
training data (1 octave).

In total, we found 15,816,599 P5s (0.365/measure) and
16,949,818 P8s (0.391/measure) in the model output. Re-
sults split into the four categories are shown in Figure 8.
As hypothesized, P5s/P8s were more common when user
input was out of distribution, and their absence correlated
with positive user feedback. A Kruskal-Wallis H test for
both the number of P5s and P8s showed that there is at
least one statistically significant difference between the
four categories with p < 1e−4. Further, Mann-Whitney
rank tests between the categories showed significant dif-
ferences, each with p < 1e−4. The correlation between
fewer P5s/P8s and positive user feedback is particularly in-
teresting. This could either indicate that users prefer music
with fewer P5s/P8s or it could simply mean that when the
model produces poor output, P5s/P8s tend to be a feature
of that output. In any case, the presence of P5s/P8s seems
to be a useful proxy metric for model output quality. In fu-
ture work, it could be a useful signal during training (sim-
ilar to [23]), evaluation, or perhaps even during inference
where it could trigger additional Gibbs sampling steps.

7. CONCLUSION

The Bach Doodle enabled large-scale participation in
baroque-style counterpoint composition through an intu-
itive sheet music interface assisted by machine learning.
We hope this encourages more creative apps that allow
novices and artists to interact with music composition and
machine learning in approachable ways. With this pa-
per, we are releasing a dataset of 21.6 million instances
of human-computer collaborative miniature compositions,
along with meta-data such as user rating and country of ori-
gin. We hope the community will find it useful for ethno-
musicological studies, music education, or improving ma-
chine learning models.
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ABSTRACT

We present the design and implementation of a scalable
search engine for large Digital Score Libraries. It covers
the core features expected from an information retrieval
system. Music representation is pre-processed, simplified
and normalized. Collections are searched for scores that
match a melodic pattern, results are ranked on their simi-
larity with the pattern, and matching fragments are finally
identified on the fly. Moreover, all these features are de-
signed to be integrated in a standard search engine and
thus benefit from the horizontal scalability of such systems.
Our method is fully implemented, and relies on ELASTIC-
SEARCH for collection indexing. We describe its main
components, report and study its performances.

1. INTRODUCTION

We consider the problem of searching large collections of
digital scores encoded in a symbolic format, typically Mu-
sicXML [14], MEI [22, 28], or the forthcoming format of
the W3C Music Notation Group [23]. These encodings are
now mature and stable, and we can expect to witness in the
near future the emergence of very large Digital Score Li-
braries (DSL). A representative example of such endeav-
ors is the OpenScore initiative, which aims at publishing
high-quality encoding of public domain sheet music. This
potentially represents millions of scores, and gives rise to
strong needs in terms of collection management tools tai-
lored to the peculiarities of music representation.

In the present paper, we focus on the content-based re-
trieval problem. We consider the search mechanism where
a user submits a monophonic query pattern in order to re-
trieve, from a very large collection of scores, those that
contain one or more fragments “similar” to this pattern.
We further require the search system to be scalable.

With this objective in mind, we propose two main con-
tributions. First, we expose the design of the core mod-
ules of a search engine, namely pre-processing and data
normalization, pattern-based search, ranking, and on-line

© Philippe Rigaux, Nicolas Travers. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Philippe Rigaux, Nicolas Travers. “Scalable Searching and
Ranking for Melodic Pattern Queries”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

identification of fragments that match the pattern query.
Second, we propose a list of guidelines for integrating
these modules in a standard information retrieval system,
with two main benefits: reduction of implementation ef-
forts, and horizontal scalability.

Our approach is summarized by Figure 1. Pre-proces-
sing, matching, occurrence extraction and ranking are
standard steps in text-based information retrieval systems,
adapted here to the specificities of music representation.
Tokenization, stemming and lemmatization [21] are, in our
case, replaced by a so-called normalization that simplifies
the representation and improves the robustness of the re-
sult. The matching step operates on the normalized repre-
sentation (query pattern and score content). Normalization
and matching are detailed in Section 3.

Obtaining a full score in the result would be of little use
if we were not able to identify all the fragments that actu-
ally match the pattern, called pattern occurrences. This is
necessary, for instance, to highlight them in the user inter-
face. The algorithm is described in Section 4.

Finally, the set of matching scores are sorted according
to the similarity of their occurrences to the pattern. While
pattern matching mostly relies on the melodic profile, the
ranking method focuses on the rhythm (Section 5). Their
combination produces results with highly relevant scores.

The rest of the paper (Section 6) covers our second
contribution, namely the integration of our music retrieval
components in a standard search engine. For the sake
of concreteness, we detail this integration with ELASTIC-
SEARCH (https://elastic.co).

We finally position our work with respect to the state of
the art and lists some useful extensions that could enrich
the search functionalities (Section 7).

2. PRELIMINARIES: SCORES, FRAGMENTS,
AND PATTERNS

Given a melodic pattern P as input, the pattern match-
ing operation retrieves all the scores such that at least one
fragment matches P . Our approach focuses on the pitch
and duration features, generally considered as the most im-
portant parameters for melodic similarity [27]. We model
a score as a synchronization of voices, and each voice as a
sequence of elements< e1, e2, · · · , en >with ei in E×D,
where E is the domain of musical “events” (notes, chords,
rest) and D the musical duration.
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Figure 1. Overview of the main indexing and matching steps
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Figure 2. Voice VI

Let us take the example of a voice VI (Fig. 2). The blue
fragment, denoted by F in the following, is used to illus-
trate the matching operation. VI encodes a melody begin-
ning with a G4 (semi-quarter), followed by a D5 (idem), a
D5 (dotted half), etc. Using some pitches encoding mecha-
nism, for instance the chromatic notation (number of semi-
tones from the lowest possible sound), one obtains the rep-
resentation of this voice as a sequence of pairs:
VI =< (34, 8); (41, 8); (41, 3); (34, 8); (42, 8); (42, 6); (39, 8); · · · >

Given a voice V , we can derive other representations
thanks to transformation functions. We consider two main
categories of transformations: simplifications and muta-
tions. They will be used in the normalization process.

Definition 1 (Simplifications) A voice V can be trans-
formed by the following simplification functions: ε(V ), the
sequence of pitches, π(V ) the sequence of pitch intervals
between events in ε(V ), and ρ(V ) the sequence of duration
(without events) of V .

Intuitively, ε(V ) captures the melodic profile (sequence
of note heights), π(V ) the relative evolution of pitches’
heights, and ρ(V ) the rhythmic profile of a voice. Applied
to VI one obtains:

1. ε(VI) =< 34, 41, 41, 34, 42, 42, 39, 36, . . . >

2. π(VI) =< 7, 0,−7, 8, 0,−3,−3, . . . >

3. ρ(VI) =< 8, 8, 3, 8, 8, 6, 8, 6, . . . >

Definition 2 (Mutations) A mutation MI1→I2 maps an
interval I1 to another interval I2. A mutation family is
a set of mutation functions.

For example,MD = {M1→2,M3→4,M8→9} denotes
a subset of the family of diatonic mutation that transforms
a minor second, third or sixth in, respectively, their major
counterpart, and conversely.

Finally, a fragment is any subsequence of a voice. We
will use the word “pattern” to denote the fragment supplied
by some user as a search criteria.

3. NORMALIZATION AND MATCHING

The matching operation is a Boolean procedure that tells
whether the pattern P and a fragment F are similar to one
another. This similarity concept is subject to a trade-off
between the precision (relevant part of the result) and the
recall (global relevant scores over the result). This is a tra-
ditional information retrieval issue. Let us examine how it
is translated in the realm of symbolic music representation.

Z ZZ��Z
�Z��� Z �Z Z

P1 (Exact match)

ZZZZ�Z� Z ��� Z �Z
P2 (Transposed match)

Z ZZZZ�ZZ� �
��� Z �Z

P3 (Rhythmic variant of P2)

Z ZZZ�Z�Z�� Z �Z
P4 (Melodic variant)

Figure 3. Several matching interpretations

3.1 Discussion

Fig. 3 shows several pattern variants, candidates to match
with the fragment F of VI (blue note heads in Fig. 2).

Exact Match. The strictest matching definition re-
quires both the sequence of pitches (resp. ε(F ) and ε(P ))
and the sequence of durations (resp. ρ(F ) and ρ(P )) to
be identical. If we stick to this definition, F matches only
with pattern P1. The precision is then maximal but we
will miss results that seem intuitive. F will not match for
instance with the transposed pattern P2, all other things be-
ing equal. This is probably too strict for most applications.

Transposed Match. Accepting transposition means
that we ignore the absolute pitch and focus only on inter-
vals, i.e., we compare π() and ρ(), introducing flexibility
in the melodic correspondence. In that case P2 matches F .

Rhythmic Match. Next, consider pattern P3 (Fig. 3),
a rhythmic variant of P2 that does not match F by exact
rhythmic matching. Again, this definition seems too strict,
since short rests, or slight duration adjustments, can typi-
cally be added or removed from a voice to denote a specific
articulation, without severely affecting the music itself. P3

matches F if we compare only π(P3) and π(F ), and ignore
ρ(). Note that rhythmic changes involve not only rests and
durations, but also repeated notes.

Melodic Match. Finally, P4 is a pattern where intervals
have been mutated. The initial minor sixth is replaced by a
major sixth. Since such mutations can be found in imitative
styles (e.g., counterpoint), it can make sense to accept them
as part of the matching definition.

How far are we ready to go in the transformation
process? Fig. 4 shows two extreme examples. Pattern
P5 matches F with respect to the sequence of intervals
(π(P5) = π(F )), whereas pattern P6 is a rhythmic match
(ρ(P5) = ρ(F )). It seems clear that these patterns are
quite far from the considered fragments and that, at the
very least, they should not be given the same importance
in the result set than the previous ones.

Music similarity has been studied for decades now. It
seems obvious that there is no ideal solution that would suit
all situations [12,15] since similarity judgments depend on
many aspects. However, our goal here is not to compute all
the similarities, but to provide a filtering mechanism that
gets rid of the scores that do not match the query pattern.
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Figure 5. Voice normalization.

Algorithm 1 Voice normalization
1: procedure VNORM(V )
2: Input: A voice V
3: Output: A voice V ′, normalization of V
4: V ′ ← V
5: Normalize all note durations in V ′ to a quarter.
6: Merge repeated notes from V ′.
7: Remove rests from V ′

8: return V ′

This mechanism should be simple, efficient, and plugable
in a standard search engine. It does not require to apply a
costly similarity function to the whole collection.

In this perspective, matching-based retrieval is a first
step operated to filter out a large part of the collection. A
simplified similarity function can be used to top rank rele-
vant scores. It is then easy to develop further investigations
(e.g., specialized similarity function) on the result set.

3.2 Normalization

It is generally considered that rhythm plays a prominent
role in the perception of similarity. We therefore rank the
result according to the rhythmic likeness of each retrieved
fragment with the pattern. Filtering is based on the melodic
profile, and its impact depends on how we simplify this
profile in the normalization step. Two extreme choices are
either to keep the exact sequence, increasing the precision,
or to extract the melodic contour, increasing the recall.

In information retrieval systems, normalization is part
of pre-processing steps, usually called analyzers and can
be tuned by the administrator. This flexibility should be
adopted for the symbolic music retrieval as well.

Our current implementation relies on the VNORM() al-
gorithm (Alg. 1), applied to both the pattern and each voice
in the corpus. Fig. 5 shows the voice normalization ap-
plied on patterns F, P1 (top) and P2, P3, P5 (bottom). In
both cases the sequence of intervals obtained by π() on the
normalization is <6,-3,-3,1,2,-2>.

3.3 Matching

Definition 3 A score S matches a pattern P iff, for at least
a voice v in S, and at least a pair [b, e], e > b of offsets (po-
sitions) in v, where the set of voice fragments v[b] · · · v[e]
that match P are called the matching occurrences of S.

π(VNORM(P )) = π(VNORM(v[b] · · · v[e]))

4. FINDING MATCHING OCCURRENCES

Once matching scores have been extracted from the reposi-
tory, it is necessary to identify the corresponding sequences
of pitches that match the given query pattern (on normal-
ized n-grams). For this, we need to look forward to exact

Algorithm 2 Finding matching occurrences
1: procedure FINDINGOCCURRENCES(V , Q)
2: Input: A voice V , a query Q of intervals
3: Output: A set L of fragments
4: for p in LCS(V,Q) do . List of matching patterns
5: L← L ∪ p

match between intervals in the query pattern, and pitches
in score’s voices. Algorithm 2 produces a list of matching
pitches which will be ranked in the next section.

This procedure processes a voice V with a given query
pattern Q. The LCS [1, 20] algorithm (Longest Common
Subsequence) will give in output each matching pattern in
V . It will verify if the pattern Q matches any interval be-
tween two successing pitches from V . The LCS algorithm
iterates on each pitch of V to check each eligible subse-
quence, especially for matching patterns contained into re-
peating subfragments in Q.

5. RANKING

Given a set of fragments that match a pattern P , we now
want to sort them according to a similarity measure, and
put on top the ones that are closest to P . Assume that the
search pattern is our previous F (Fig. 2, blue heads) and
that the result set is {P1, P2, P3, P5}. For all, function π()
composed with the normalization VNORM yields <6,-3,-
3,1,2,-2>. Intuitively P1 and P2 should be ranked first, and
P5 should be ranked last.

It is important to note that this ranking applies to frag-
ments that have an identical melodic pattern. We take ad-
vantage of this specificity to operate at two levels. The first
level measures the similarity of the “melodic rhythm”, i.e.,
the respective duration of pairwise intervals in each frag-
ment. To this end we define the notion of blocks.

Definition 4 Let F be a fragment such that
π(VNORM(F )) = < I1, · · · , In >. By definition of
π and VNORM, each interval Ij , j ∈ [1, n] is represented
in F by a sequence < pi1, e

i
2, · · · , eik−1, pik > such that:

• pi1 and pik are two distinct pitches, and
interval(pi1, p

i
k) = Ii

• each eil, l ∈ [2, k− 1] is either a rest, or a pitch such
that eil = pi1

We call < pi1, e
i
2, · · · , eik−1 > the block Bi of Ii in F .

A block is the largest subsequence of a fragment that
covers a non-null interval. The concept of block is illus-
trated by Fig. 6 for P1, P3 and P5.

The first level of the ranking function evaluates the simi-
larity of two fragments F1 and F2 by comparing the blocks
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Algorithm 3 Ranking procedure
1: procedure RANKING(F1, F2)
2: Input: F1, F2, such that π(VNORM(F1))=π(VNORM(F2))
3: Output: a similarity s ∈ [0, 1]
4: s← 0; d1 ← duration(F1); d2 ← duration(F2)
5: for i := 0 to n do . Loop on the blocks
6: s← s+ |dur(B1

i )/d1 − dur(B2
i )/d2|

7: if s = 0 then s← T ieBreaking(F1, F2)

8: return s/2 . Euclidian normalization [19]

pairwise durations. The rationale is that if these durations
are similar, the only difference lies in either repeated notes
or rests inside each block. Fig. 6 shows for instance that
block durations in P1 and P3 are exactly the same, which
makes them almost identical. The difference is internal to
each block (for instance block 2, in green). On the other
hand, P1 and P5 turn out to be quite dissimilar.

The RANKING function is simple and efficient (Algo-
rithm 3). We first normalize the fragment duration, and
sum up the difference of durations between pairs of blocks.

If it turns out that all block durations are pairwise iden-
tical, a tie-breaking function has to be called. This is the
only situation where we might have to examine internal of
blocks. By definition of blocks, this internal representation
only consists of rhythmic data: rests and repeated notes.
Any standard text comparison method (edit distance, Lev-
henstein distance) can be used.

6. INDEXING

We now describe how our functions can be integrated in a
search engine. For the sake of concreteness, our descrip-
tion relies on ELASTICSEARCH, but the method works for
any similar system (e.g., Solr) that uses inverted index.

6.1 Encoding

An index in ELASTICSEARCH is built on JSON docu-
ments. Each field in such a document can be either in-
dexed, stored or both. Indexing a field means that ELAS-
TICSEARCH supports full-text searches on the field’s con-
tent. Storing a field means that the field’s content is stored
in the index. Our index features an n-gram field for search-
ing, and a sequence field for the ranking.

Given a voice V and the sequence of intervals of its nor-
malization π(VNORM(V )) =< I1,· · · ,Ik >, we compute
the list of n-grams {<Ii, · · · ,Ii+n−1 >, i ∈ [1, k−n+1]},
where n, the n-gram size, is an index configuration param-
eter. If, for instance, the sequence of intervals is <6,-3,-
3,1,2,-2>, the list of 3-grams is {<6,-3,-3>, <-3,-3,1>,
<-3,1,2>, <1,2,-2>}.

Each n-gram is then encoded as a character string which
constitutes a token. These tokens are finally concatenated
in a large character string, separated by a white space. Pos-
itive integers are encoded with a, b, c, etc., and the minus
sign by m, as illustrated in the following:
{"query": {"match_phrase":
{"ngram": "fmcmc mcmca mcab abmb"} } }

6.2 Searching

We can then run keyword queries and, more impor-
tantly, phrase queries where ELASTICSEARCH retrieves
the fields that contain a list of tokens that appear in a spe-
cific order. The previous query shows the"match_phrase"
query which searches the n-gram sequence.

The search engine then does the rest of the job for us. It
finds all the indexed documents such that the n-gram field
contains the phrase. However, by default, ranking is based
on textual features that do not match what we expect. We
therefore need to replace the default ranking method.

6.3 Ranking

Ranking functions can be overridden in ELASTICSEARCH

[32, 35]. To this end, we must provide a Java function that
implements the ranking method exposed in Section 5. This
function is called at query time and produces a similarity
score for each voice. The result is sorted on this value, and
made accessible to the client application via an iterator-like
mechanism [11] called SearchScript.

Our ranking function operates on a voice to identify the
matching occurrences, and to measure the similarity be-
tween the search pattern and each occurrence. We must
store in ELASTICSEARCH an encoding of the voice that
can be accessed during the query evaluation.

6.4 Query expansion

Our method relies on a strict matching of a sequence of
intervals. Since accepting unbounded melodic transforma-
tions would likely return the whole database, we can con-
sider those that can be seen as meaningful from a musical
point of view. For instance, diatonic mutations of inter-
vals (e.g., accepting both minor and major thirds or sixths
in the matching operation) probably makes senses and can
improve significantly the recall of our method.

We have integrated the synonym query expansion
feature of ELASTICSEARCH engine (e.g., the ability
to map “car” to “vehicle”) to implement this feature.
To achieve this, we decided to produce a list of syn-
onyms for major thirds or sixths. These means that
an interval ’c’ can be similar to ’d’ or interval ’h’ to
’i’. The following n-grams are then considered to be:
similarcbh, dbh, dbi, cbi

In order to integrate the list of synonyms to ELAS-
TICSEARCH, it is given to the index as an analyzer
"melodic_transformation" (illustrated in the query Sec-
tion 6.5) and matching n-grams are merged at query time.

To find the matching occurrences, we need to modify
Algorithm 2 in order to integrate the synonyms where in-
tervals (in the LCS algorithm) for major third and sixth
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Figure 7. ScoreSim integration in ELASTICSEARCH

can be authorized, then: 1.5 ∼ 2 and 3 ∼ 3.5. ELASTIC-
SEARCH can be further enhanced by taking into account a
similarity measure between those synonyms (e.g., oriented
graph weighted with similarity values between synonyms).

6.5 Implementation

The integration of our approach in ELASTICSEARCH

needs to preprocess musical scores to normalize them, and
to compute the ranking in the search engine on query-time.

The first step consists in a Python scripts that normal-
izes voices from scores (Alg. 1), extracts n-grams, and pro-
duce JSON documents sent to the ELASTICSEARCH REST
API. Documents also contain corpus and opus ids, sylla-
bles from lyrics voices which can be queried.

Second, to take into account synonyms in ELASTIC-
SEARCH, the list of n-gram synonyms needs to be set of-
fline. We have generated the list of all combinations of
third and sixth transformation for each possible n-gram
available in the repository. This list is imported in ELAS-
TICSEARCH and then processed on-the-fly for each query.

The third step integrates the ScoreSim scoring mod-
ule as a Java program in ELASTICSEARCH. For this, a
SearchScript needs to be inherited in order to produce a
plugin for ELASTICSEARCH. This plugin takes queries’
parameters and instantiates a scoring function which will
process every matching scores. The scoring function
ScoreSim implements Algorithms 2 and 3.

The query below integrates all features that are pro-
posed in our approach: n-gram search (melody.value),
synonyms analyzer (melodic_transformation), and the
ScoreSim function (script_score). In the latter, the pa-
rameter “query” gives the list of pitches used in order to
produce the score value from Algorithm 3. The query
params gives the sequence of the music items (octave,
pitch and duration) that constitutes the pattern in order to
provide distances and rank the result set.
{"query":{ "function_score": {

"query": { "match_phrase": { "melody.value": "mcbb",
"analyzer": "melodic_transformation"}},

"functions": [{"script_score": {
"script": {"source": "scorelib", "lang": "ScoreSim",

"params": {"query":[
{"s":"A", "o":4, "id":"m42", "a":0, "d":8.0},
{"s":"E", "o":3, "id":"m43", "a":0, "d":4.0},
{"s":"G", "o":3, "id":"m44", "a":0, "d":4.0},
{"s":"B", "o":4, "id":"m45", "a":0, "d":6.0}]}}}}]}}}

Figure 7 shows the querying process with the following
steps: 1) transform the melodic pattern into the ELASTIC-
SEARCH DSL (Domain Specific Language), 2) ELASTIC-
SEARCH gets all the matching score corresponding to the

q1 q2 q3 q4
Querying pattern demc mcmcmc bmbb bmbmc
Nb of matching scores 204 719 877 2,225
Nb with query expansion 242 1867 877 2,236

Table 1. Query patterns

given n-gram and eventually to their synonyms, 3) instan-
tiate the ScoreSim plugin and process every score, 4) ex-
tract occurrences on each instance and then its score value,
5) and finally, ELASTICSEARCH sorts the whole result-set
according to the produced scores and sends the result.

6.6 Performance

In order to study the impact of our approach on the com-
putation time, we apply different queries on our corpora.
The corpora size varies by cumulating several corpus, rep-
resenting up to 4,950 polyphonic scores. It is composed of
the whole corpora available here 1 composed of Francœur,
Méthodes, Motet, Psautiers, Sequentia, Timbres, etc.

To study the effect of the matching process, we have
chosen four different queries to apply with various pat-
terns, from infrequent to more frequent ones, based on the
popularity of the stored n-grams. Table 1 gives for each
query pattern the corresponding total number of matches
in the corpora and the number after applying the query ex-
pansion (synonyms). We can see that query q2 is clearly
expanded since mcmcmc has 7 synonyms and produces a
large number of matches (2.5 times more). At the opposite,
query q3 has no synonyms and do not enlarge its result-set.

Figure 8 shows the evolution of the number of matching
scores wrt the corpus size. It gives both matching scores
for normal (plain lines) and expanded queries (dashed
lines). According to the synonyms, we can see that q1
and q4 provide few more matchings, while q2 witnesses
a different behavior where the number of matchings grows
proportionally with the number of synonyms.

The execution time is plotted in Figure 9 for the 4 dif-
ferent queries. It shows both normal pattern queries (plain
lines) and expanded queries (dashed lines). This allows
to investigate both the robustness with respect to various
results sizes, and issues related to false positives.

Each query is sub-linear in the result size. Query q4 is a
frequent pattern which returns 2,225 matching scores (45%
of the corpora). It is executed in 277 ms. The small num-
ber of synonyms has few impacts on the global processing
time. At the opposite, q1 is extremely efficient due to its

1 NEUMA repertory: http://neuma.huma-num.fr/home/
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Figure 9. Execution time with and without synonyms

selectivity. It produces 204 scores in 22 ms. One interest-
ing effect can be seen for query q2 where the number of
matching synonyms leads to more computation time but it
only 2.1 times more (for 2.5 times more matching scores).

Those experiments show that the ranking function takes
less than 0.12 ms to process each score on a single ELAS-
TICSEARCH node (server). The corpus can be spread on
several nodes in order to scale it up horizontally.

7. RELATED WORK

Our approach combines similarity searches based on tex-
tual music encoding, scalable search, and rhythm-based
ranking. The novelty of this approach is their association
in a consistent setting. The rather trivial implementation
makes, in our opinion, our solution quite attractive.

Music similarity has been an active MIR research topic
over the last decades [5]. The general goal is to evalu-
ate the likeness of two musical sequences. A major prob-
lem raised by this definition is that similarity judgments
are highly dependent on both the content being compared
and on the user taste, culture, and experience [12, 15]. A
recent survey [34] summarizes the recent trends observed
in the SMS track of the MIREX competition.

A similarity method is characterized by the choice of
musical parameters. Pitches and durations are generally
considered as expressive enough. Using sequences to rep-
resent both parameters is primarily motivated by our objec-
tive to integrate our methods in a standard search engine,
and to benefit from an index structure. Some important pa-
rameters, e.g., metric accent, structure or harmonic are ig-
nored because they often lead to tree-based encodings that
are hardly indexable. Geometric approaches, such as [33],
are also less suitable in this indexing perspective. Multidi-
mensional structures are complex, and their performances
are known to fall down as the dimension increases [29],
and not yet integrated to off-the-shell search engines.

Textual encoding of symbolic music representation is an
attractive idea in order to use text algorithms. The Hum-
Drum toolkit [17] relies on a specialized text format and
adapts Unix file inspection tools for music analysis. Exact
and approximate string matching algorithms for melody
matching have been used in ThemeFinder [18,30] or Musi-
pedia [26]. Many algorithms for efficient computation of
similarity matching through exhaustive searches have been
proposed [2–4, 7]. Specialized rhythm similarity functions

are proposed and compared in [31].
Text-based approaches are simple solutions, with two

important limitations. First, combining pitches and rhythm
in a single character string for instance is not easy, and
small music variants may result in important syntactic dif-
ferences. Second, these methods do not scale since the
whole database has to be inspected for each query. Sev-
eral indexing methods have been suggested for the edit
distance [8, 24]. The Dynamic Time Warping distance is
another popular method, for which sophisticated indexing
structures have been proposed [13, 16]. None of them is
available beyond research prototypes.

The easiest way to benefit from an inverted index is to
split musical sequences in n-grams. This has been exper-
imented in several earlier proposals [6, 9, 10, 25]. Each n-
gram plays the role of a “token” and search methods apply.

Ranking is an essential part of an information retrieval
system. We believe that our proposal, which combines
1) a pre-processing normalization step, 2) a melodic profile
search and 3) a rhythmic profile ranking, completes ear-
lier attempts to adapt text-based retrieval to music retrieval,
and results in a complete workflow which achieves a sat-
isfying trade-off between the filtering impact, the ranking
relevancy and the overall efficiency.

8. CONCLUSION

We described in this paper a practical approach to the prob-
lem of indexing pattern-based searches in a large score li-
brary. Our solution fulfills three major requirements for
an information retrieval system: (i) it supports search with
a significant part of flexibility, (ii) it proposes a ranking
method consistent with the matching definition, and (iii) it
brings scalability thanks to its compatibility with the fea-
tures of state-of-the-art search engines. We fully imple-
mented our solution, including the internal ranking func-
tion for ELASTICSEARCH, and we will be pleased to sup-
ply our software components to any interested institution
that wishes to propose a content-based search mechanism.
Score analyzers extension. Alg. 1 with the normaliza-
tion of voices can be extended with ad hoc music ana-
lyzers: management of grace notes, the simplification of
melodic profiles, treatment of repeated notes, or cross-
voice melodies, to name a few.
Acknowledgments. This work is funded by the French
ANR project MUNIR
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ABSTRACT

Vibratos, tremolos, trills, and flutter-tongue are techniques
frequently found in vocal and instrumental music. A com-
mon feature of these techniques is the periodic modulation
in the time–frequency domain. We propose a representa-
tion based on time–frequency scattering to model the inter-
class variability for fine discrimination of these periodic
modulations. Time–frequency scattering is an instance of
the scattering transform, an approach for building invari-
ant, stable, and informative signal representations. The
proposed representation is calculated around the wavelet
subband of maximal acoustic energy, rather than over all
the wavelet bands. To demonstrate the feasibility of this
approach, we build a system that computes the represen-
tation as input to a machine learning classifier. Whereas
previously published datasets for playing technique analy-
sis focus primarily on techniques recorded in isolation, for
ecological validity, we create a new dataset to evaluate the
system. The dataset, named CBF-periDB, contains full-
length expert performances on the Chinese bamboo flute
that have been thoroughly annotated by the players them-
selves. We report F-measures of 99% for flutter-tongue,
82% for trill, 69% for vibrato, and 51% for tremolo detec-
tion, and provide explanatory visualisations of scattering
coefficients for each of these techniques.

1. INTRODUCTION

Expressive performances of instrumental music or singing
voice often abound with vibratos, tremolos, trills, and
flutter-tongue. A common feature of these four playing
techniques is that they all result in some periodic mod-
ulation in the time–frequency domain. However, from a
musical standpoint, these techniques convey distinct stylis-
tic effects. Discriminating between these spectrotempo-
ral patterns requires a compact and informative represen-

c© Changhong Wang, Emmanouil Benetos, Vincent
Lostanlen, Elaine Chew. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Changhong
Wang, Emmanouil Benetos, Vincent Lostanlen, Elaine Chew. “Adaptive
Time–frequency Scattering for Periodic Modulation Recognition in
Music Signals”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

tation that remains stable to time shifts, time warps, and
frequency transpositions. Time–frequency scattering [2]
provides such mathematical guarantees. Besides the local
invariance to translation and stability to deformation pro-
vided by the scattering transform [1, 10], time–frequency
scattering goes further by applying frequential scattering
along the log-frequency axis. This operation provides in-
variance to frequency transposition and captures regularity
along log-frequency dimension.

Prior work in the representation of vibrato and tremolo
can be divided into three broad categories: F0-based rep-
resentations [4,14,20], template-based techniques [5], and
modulation spectra [13, 15, 17]. The error-prone stage of
fundamental frequency estimation hinders the performance
of F0-based methods. Template-based methods may work
for vibratos with a large modulation extent (frequency vari-
ation), while for subtly-modulated vibratos, both the def-
inition of templates and the matching between templates
and test segments are problematic. The modulation spec-
tra is another well-known representation for modulated
sounds, which is averaged on the audio clip level [17]. It
may work well for long-term music information retrieval
tasks such as genre classification or instrument recog-
nition, but struggling with providing temporal positions
for short-duration playing technique recognition. To our
knowledge, there is not yet any computational research that
compares and discriminates between these periodic modu-
lations in real-world music pieces.

Besides the question of coming up with an adequate
signal representation, there is a critical need for human-
annotated playing techniques in audio recordings. Up to
now, most of the available research literature has focused
on playing techniques that have been recorded in highly
controlled environments [8, 16, 19]. Yet, recent findings
demonstrate that, in the context of a music piece, play-
ing techniques exhibit considerable variations as compared
to when they are played in isolation [18]. For periodic
modulations, these variations are more evident in folk mu-
sic, which highly depends on the interpretation of the per-
former. Such inter-performer variability in folk music per-
formance necessitates data collection with full pieces.

This paper includes three contributions: representa-
tion, application, and dataset. We propose a representa-
tion based on time–frequency scattering to model the inter-
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class variability for fine discrimination of vibrato, tremolo,
trill, and flutter-tongue. Rather than decomposing all the
wavelet bands as the scattering transform, we calculate a
time–frequency scattering around the wavelet subband of
maximal acoustic energy, i.e. the transform is calculated
adaptively on the predominant frequency. On the applica-
tion side, to our knowledge this is the first attempt at cre-
ating a system for detecting and classifying periodic mod-
ulations in music signals. To evaluate our methodology,
we create a dedicated dataset of the Chinese bamboo flute,
also known as the dizi or zhudi, and thereafter abbreviated
as CBF. This dataset, named CBF-periDB, contains full-
length solo performances recorded by professional CBF
players and has been thoroughly annotated by the players
themselves.

The rest of this paper is organised as follows. The char-
acteristics of each periodic modulation and how this infor-
mation can be represented by an adaptive time–frequency
scattering are described in Section 2. Section 3 shows
details of the feature extraction process and the proposed
recognition system. The dataset, evaluation methodology,
and results are discussed in Section 4. Section 5 presents
our conclusions and directions for future research.

2. SCATTERING REPRESENTATION OF
PERIODIC MODULATIONS

Prior to discriminating between the four periodic modu-
lations, we analyse characteristics of each modulation in
Section 2.1. A short introduction of the scattering trans-
form is provided in Section 2.2. Section 2.3 describes
the proposed representation for modelling periodic mod-
ulations.

2.1 Characteristic Statistics of Periodic Modulations

The characteristic statistics of each modulation in discus-
sion are shown in Table 1. As can be seen, flutter tongu-
ing has a much higher modulation rate as compared to the
other three modulations; thus, the modulation rate can be
used as a main feature to distinguish it from others. For
the other three techniques with similar modulation rate,
the discriminative information lies in the modulation ex-
tent and shape of the modulation unit. The modulation unit
refers to the unit pattern that repeats periodically within the
modulation. It can be one-dimensional, either amplitude
modulation (AM) or frequency modulation (FM), or two-
dimensional as a spectro-temporal modulation. This can
be intuitively observed from the partially enlarged spec-
trograms given in Fig. 1. Trills are note-level modula-
tions, for which the frequency variations are larger than
one semitone. This extent of modulation is much larger
than vibratos and tremolos. The shape of the modulation
unit for trill is more square-like rather than sinusoidal ones
which vibratos and tremolos exhibit. The difference be-
tween vibrato and tremolo is that vibratos are FMs, while
tremolos are AMs. We show later how this discriminative
information is encoded into the proposed representation in
Section 2.3.

Type Rate (Hz) Extent Shape

Flutter-tongue 25-50 < 1 semitone Sawtooth-like

Vibrato 3-10 < 1 semitone Sinusoidal (FM)

Tremolo 3-8 ≈ 0 semitone Sinusoidal (AM)

Trill 3-10 Note level Square-like

Table 1. Characteristic statistics of four periodic modula-
tions in music signals.

Spectrogram of flutter-tongue, vibrato, tremolo, and trill
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Figure 1. Visual comparison of four periodic modulations.
Top: Spectrogram of flutter-tongue, vibrato, tremolo, and
trill; bottom: partially enlarged spectrogram of each mod-
ulation for detailed comparison.

2.2 Scattering Transform

Proposed by [10], the scattering transform is a cascade of
wavelet transforms and nonlinearities. Its structure is sim-
ilar to a deep convolutional network. The difference is that
its weights are not learnt but can be hand-crafted to encode
prior knowledge about the task at hand. Since little energy
is captured by the scattering transform with orders higher
than two [2], we focus in this paper to the second order.

Let ψλ denote the wavelet filter bank obtained from a
mother wavelet ψ, where λ is the centre frequency of each
wavelet in the filter bank. Likewise, ψλm refers to the
wavelet filter bank of the mth-order scattering transform,
for m ≥ 1. The second-order temporal scattering trans-
form of a time-domain signal x is defined as:∣∣∣∣∣x t∗ ψλ1

∣∣ t∗ ψλ2

∣∣∣ t∗ φT , (1)

where
t∗ is the wavelet convolution along time. |x t∗ ψλm

|
is the modulus of the mth-order wavelet transform, which
hereafter we refer to as the mth-order wavelet modulus
transform. The temporal scattering coefficients are ob-
tained by an averaging at a time scale T by means of a
low-pass filter φT .

In addition to the invariance to time-shifts and
time-warps provided by the scattering transform, time–
frequency scattering provides frequency transposition in-
variance by adding a wavelet transform along log-
frequency axis [7]. The specific time–frequency scattering
we apply is a separable scattering proposed in [3]. Here,
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separable refers to separate steps of temporal and frequen-
tial operations of wavelet scattering, arranged in a cas-
cade. The separable scattering representation comprises a
second-order temporal scattering and a first-order frequen-
tial scattering. The latter is calculated by another wavelet
transform along the log-frequency dimension on top of the
second-order temporal scattering:∣∣∣∣∣∣∣∣∣∣x t∗ ψλ1

∣∣ t∗ ψλ2

∣∣∣ t∗ φT
fr∗ ψγ1

∣∣∣∣∣ fr∗ φF . (2)

where
fr∗ is the wavelet convolution along log-frequency.

ψγ1 is the wavelet filter bank applied in the first-order fre-
quential scattering. The frequential scattering coefficients
are obtained by an averaging of the frequential wavelet
modulus transform with transposition invariance of F (in
octave unit) using a low-pass filter φF . All scattering co-
efficients in this paper are normalised and have their log-
arithm calculated, to capture only the temporal structure
and to motivate auditory perception [2]. Hereafter, we
use Morlet wavelets throughout the whole scattering net-
work for wavelet convolutions. This is because Morlet
wavelets have an exactly null average while reaching a
quasi-optimal tradeoff in time–frequency localisation [9].
Our source code is based on the ScatNet toolbox 1 .

2.3 Scattering Representation of Periodic
Modulations

Periodic modulation recognition, as suggested by the anal-
ysis above, is a pitch invariant task. The core discrimina-
tive information is based on the modulation itself, which is
indicated by its modulation rate, extent, and shape. Fig. 2
shows respectively (a) the spectrogram, (b) the second-
order temporal scattering representation, and (c) the first-
order frequential scattering representation of a series of pe-
riodic modulation examples in CBF-periDB. The spectro-
gram used here is only for illustration purposes. The first
four examples are regular cases (modulations based on sta-
ble pitch or with constant parameters): vibrato, tremolo,
trill, and flutter-tongue. The last three are cases with time-
varying parameters (modulations based on time-varying
pitch or with time-varying rate, extent, or shape): rate-
changing trill, rate- and extent-changing trill, and flutter-
tongue with time-varying pitch. We use these examples to
show how the characteristic information of each pattern is
captured and discriminated by a separable scattering trans-
form, which consists of a second-order temporal scattering
and a first-order frequential scattering transform.

2.3.1 Second-order temporal scattering

Different from a standard two-order temporal scatter-
ing transform, we do not decompose all the frequency
bands (exchangeable with wavelet bands) in the first-order
wavelet modulus transform. As can be observed from
Fig. 2 (a), the patterns of these modulations, either in the
regular case or time-varying case are similar for each har-
monic partial. This indicates that the decomposition of

1 https://www.di.ens.fr/data/software/scatnet/

(a) Spectrogram of different periodic modulations
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Figure 2. Separable scattering representation of different
periodic modulations. From left to right, the first four are
regular cases: vibrato, tremolo, trill, flutter-tongue based
on stable pitches; the last three are time-varying cases:
rate-changing trill, rate- and extent-changing trill, flutter-
tongue with time-varying pitch.

one partial is sufficient to capture modulation informa-
tion. Fig. 2 (b) shows the second-order temporal scattering
representation decomposed only from the frequency band
with the highest energy. Flutter-tongue is the most discrim-
inable one with the highest modulation rate. For the other
three patterns with close modulation rate value, other char-
acteristic information is considered. By dominant band de-
composition, the trill can also be discriminated because of
its large modulation extent. This can be interpreted by fil-
ters with bandwidth larger than one semitone, which blurs
other subtle modulations.

To specifically detect vibrato or tremolo, frequency
bands less than one semitone should be obtained. We then
make use of their modulation shape information by intro-
ducing a band-expanding technique. Assume we have fre-
quency bands of 1/16 octave bandwidth in the first-order
wavelet modulus transform. Ideally for tremolo, the mod-
ulation information is contained only in the dominant fre-
quency band since it is an AM. This is verified by the sec-
ond example in Fig. 2 (b), which has almost only the fun-
damental modulation rate with no upper harmonics in the
second-order temporal scattering representation. However,
vibratos are FMs, which means the modulation informa-
tion spreads over neighbouring frequency bands. Decom-
posing neighbouring frequency bands above or below the
dominant band provides additional information to distin-
guish vibrato from tremolo. All this discriminative infor-
mation can be visualised from the fundamental modulation
rate and the richness of the harmonics in the second-order
temporal scattering representation in Fig. 2 (b).

2.3.2 First-order frequential scattering

The temporal scattering transform is sensitive to attacks
and amplitude modulations, which results in the high en-
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ergy part of the boundaries as clearly observed in Fig. 2
(b). To suppress this noisy information while retaining the
frequential structure offered by the second-order tempo-
ral scattering, we use frequential scattering along the log-
frequency axis on top of Fig. 2 (b). Frequential scattering
has a similar framework as temporal scattering while the
former captures regularity along log-frequency. As shown
in Fig. 2 (c), we obtain a clearer representation without
reducing the discriminative information necessary for the
task. Although the last example is flutter-tongue bounded
to time-varying pitch, its modulation rate is relatively sta-
ble. This verifies our method of using just the dominant
frequency band or expanded frequency bands from the
first-order wavelet modulus transform. The rate-changing
and rate-extent changing cases show that the time-varying
modulation rates are also captured.

3. PERIODIC MODULATION RECOGNITION

With the proposed representation prepared, we build a
recognition system consisting of four binary classification
schemes that each predicts one modulation type. Section
3.1 describes the feature extraction process. The calculated
features are then fed to a machine learning classifier illus-
trated in Section 3.2.

3.1 Feature Input

As described in Section 2.3, we adapt the scattering trans-
form by decomposing the dominant and its neighboring
frequency bands in the first-order wavelet modulus trans-
form. The feature extraction process of dominant band de-
composition is shown in Fig. 3. Using a waveform as input,
we first obtain the first-order wavelet modulus transform,
where the frequency band with the highest energy for each
time frame is localised. Decomposing these bands, we ob-
tain a second-order temporal scattering. A first-order fre-
quential scattering is then conducted on top of the second-
order temporal scattering coefficients. Concatenating the
two representations in a frame-wise manner, we obtain the
feature input to the classifiers. For expanded band decom-
position, additional features are calculated similarly by de-
composing the neighbouring frequency bands around the
dominant band.

Figure 3. Feature extraction process.

Table 2 gives the parameters which encode the core
discriminative information for the recognition. T is the

averaging scale for the temporal scattering coefficients.
This parameter is useful for discriminating modulations
with large differences on modulation rate, for example,
on distinguishing flutter-tongue from other low-rate peri-
odic modulations. Averaging scales covering at least four
unit patterns are recommended for reliable estimation of
the modulation rate. Q1 are the filters per octave in the
first-order temporal scattering transform. Since the modu-
lations discussed here are all oscillatory patterns, setting
Q1 should ensure that each of the modulations are not
blurred in the first-order wavelet modulus transform. Here,
we use Q1 > 12 for the first-order temporal scattering to
support subtly-modulated vibratos and tremolos, of which
the modulation extent is less that one semitone. N is the
number of neighbouring frequency bands besides the dom-
inant band decomposed from the first-order wavelet mod-
ulus transform. N = 0 refers to dominant band decom-
position only while N > 0 means expanded band decom-
position. This is a key parameter to encode the unit shape
information of subtle modulations. However, if the task at
hand is only to detect modulations with high modulation
rate or with large extent, this parameter is not necessary.

Parameter Notation Main information encoded

Averaging scale T Modulation rate

Filters per octave Q1 Modulation extent

Expanded bands N
= 0, temporal shape

> 0, spectro-temporal shape

Table 2. Parameters encoding modulation information in
the adaptive time–frequency scattering framework.

Other parameters involved in the feature calculation in-
clude frame-size h, filters per octave Q2 in the second-
order scattering decomposition, frequency bands l ex-
tracted from the second-order temporal scattering. For fre-
quential scattering, we apply a single scale wavelet trans-
form. The frame size is inversely log-proportional to
the oversampling parameter α by h = T/2α (samples),
which is designed to compensate for the low temporal res-
olution resulting from the large averaging scales. Since
these parameters carry little discriminative information, we
set them consistently for all classification schemes, with
α = 4, Q2 = 8, and l = 2Q2 based on experimental
results. A general example with T = 215 corresponds
to frame size of h = T/2α = 2048 samples (46ms, as-
suming the sampling rate is 44.1kHz). The dimensional-
ity of the final representation at each time frame equals to
(N + 1)× 2l = 4(N + 1)Q2.

3.2 Recognition System

Due to the existence of combined playing techniques, such
as the combination of flutter-tongue and vibrato, and the
combination of tremolo with trill, one frame of the input
may have multiple labels. Multi-label classification is con-
sidered beyond the scope of this paper and is regarded as
future work. Here, we conduct binary classifications for
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each modulation, which enables us to explicitly encode the
characteristic information specifically for the correspond-
ing pattern. Four binary classifiers are constructed using
support vector machines (SVMs) with Gaussian kernels.
The model parameters to be optimized in the training pro-
cess are the error penalty parameter and the width of the
Gaussian kernel [6]. The best parameters selected in the
validation stage are used for testing. The input feature
to the classifiers is the proposed adaptive time–frequency
transform of the current time frame.

Taking flutter-tongue as an example, its relatively high
modulation rate (25-50Hz) can be emphasized by setting
T = 8192 (sampling rate is 44.1kHz). The modulation ex-
tent which is less than one semitone is interpreted by set-
ting Q1 = 16. Fig. 4 shows the detection result of flutter-
tongue from a piece in CBF-periDB using dominant band
decomposition (N = 0), which can be clearly observed
from the harmonic structure in Fig. 4 (a). This is then en-
forced by removing the noisy attacks using a frequential
scattering transform as shown in Fig. 4 (b). Concatenat-
ing the two representations, we form frame-wise separa-
ble scattering feature vectors with (N + 1) × 2l = 32 di-
mensions and frame size of h = T/2α = 512 samples
(12ms). Fig. 4 (c) visualises the binary classification re-
sult of flutter-tongue compared with the ground truth for
an example excerpt. Overall it can be seen that the pro-
posed approach is successful at detecting flutter-tongue,
even in short segments, although occasionally the output
is over-fragmented. Similarly, binary classifiers can be im-
plemented for detecting vibratos, tremolos, and trills, with
parameters fine-tuned to the corresponding modulations.

(a) Second-order temporal scattering representation
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(b) First-order frequential scattering representation
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(c) Reference and detection result
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Figure 4. Binary classification result of flutter-tongue in
an example excerpt of the CBF-periDB.

4. EVALUATION

4.1 Dataset

To verify the proposed system, we focus on folk music
recordings which have more inter-performer variations
than Western music. The proposed periodic modulation

analysis dataset, CBF-periDB, comprises monophonic
performances recorded by ten professional CBF players
from the China Conservatory of Music. All data is
recorded in a professional recording studio using a Zoom
H6 recorder at 44.1kHz/24-bits. Each of the ten players
performs both isolated periodic modulations covering
all notes on the CBF and two full-length pieces selected
from Busy Delivering Harvest «扬鞭催马运粮忙», Jolly
Meeting «喜相逢», Morning «早晨», and Flying Partridge
«鹧鸪飞». Players are grouped by flute type (C and G,
the most representative types for Southern and Northern
styles, respectively) and each player uses their own flute.
This dataset is an extension of the CBF-glissDB dataset
in [18], with ten pieces containing periodic modulations
added. The playing techniques are thoroughly annotated
by the players themselves. Details of both isolated tech-
niques and full-piece (performed) recordings are shown
in Table 3. The dataset and annotations can be downloaded
from c4dm.eecs.qmul.ac.uk/CBFdataset.html.

Isolated Performed

Type Length Piece, number Length

Flutter-tongue 4.9 Mo, 3 16.0

Vibrato 7.3 BH, 7 28.0

Tremolo 5.0 JM, 4 12.4

Trill 12.3 FP, 6 51.9

Table 3. Length of both isolated techniques and full-piece
recordings in CBF-periDB (Mo=Morning; JM=Jolly Meet-
ing; BH=Busy Delivering Harvest; FP=Flying Partridge;
all numbers for length are measured in minutes).

In the recognition implementation process, the dataset
is split into a 6:2:2 ratio according to players (players are
randomly initialised) and a 5-fold cross-validation is con-
ducted. This way of data splitting ensures a non-overlap
between players in the train, validation, and test sets. Since
each player uses their own flute during recording, there is
no overlap across flutes. Due to the limited piece types,
non-overlap of pieces is not feasible at the current stage.
We regard this as future work with a dataset expansion plan
to address piece diversity.

4.2 Metrics

Due to the short duration and periodic nature of vibratos,
tremolos, trills, and flutter-tongue, feature dependencies
over sequential frames are slightly required. The precision
P = TP

TP+FP , recall R = TP
TP+FN , and F-measure F =

2PR
P+R are used here for frame-based evaluation, where
TP, FP, FN are true positives, false positives, and false
negatives respectively [12]. Assigned labels by SVMs are
then compared to the ground truth annotations in a frame-
wise manner.

4.3 Baseline

According to our knowledge, there is not yet any previous
work on discriminating between these four periodic mod-
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Type

Dominant band Expanded band

Temporal scattering Separable scattering Temporal scattering Separable scattering

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

Flutter-tongue 96.1 99.8 97.9 96.3 99.8 98.0 96.7 99.6 98.1 97.8 99.5 98.7

Trills 87.1 66.7 75.1 87.4 68.2 76.2 89.5 73.3 80.4 89.8 76.3 82.3

Vibrato 75.2 17.5 26.4 72.2 33.1 45.3 75.9 59.4 66.5 75.1 64.7 69.3

Tremolo 92.5 1.21 2.2 80.9 6.7 10.6 70.8 38.5 49.1 67.6 41.4 50.7

Table 4. Performance comparison of binary classification for flutter-tongue, vibratos, tremolos, and trills in CBF-periDB
using separable scattering and temporal scattering representations based on the dominant frequency band and expanded
frequency band decomposition (P=precision;R=recall; F=F-measure).

ulations; thus we compare the proposed systems against a
state-of-art detection method for vibrato. The filter diag-
onalisation method (FDM), which efficiently extracts high
resolution spectral information for short time signals, was
first applied to vibrato detection in erhu performance [20].
Based on the high similarity of the music style between
erhu and CBF, both being traditional Chinese instruments,
we use FDM as a baseline method for vibrato detection.
Using automatically estimated fundamental frequency by
pYIN [11] as input for FDM, we try different parame-
ter ranges for vibrato rate and extent based on the vibrato
characteristics of the CBF. The best result we obtain based
on a 256ms-frame-wise evaluation isP=36.5%,R=58.7%,
F=45.0%. The rate range and extent range we use are 3-
10 Hz and 5-20 cent, respectively.

4.4 Results

In order to explicitly show information captured in each
classification task, a small set of parameter settings for T ,
Q1, and N is used. Besides the different meta-parameter
settings specifically designed for each modulation classifi-
cation, we run further experiments by using the same pa-
rameters for all four binary classification processes: T =
215, Q1 = 16, and N = 6 frequency bands symmetrically
expanded around the dominant band. This corresponds to
frame size of 46ms and feature dimension of 224. Note
that for specific modulation detection, meta parameters of
the scattering transform can be fine-tuned to have a much
lower feature dimension, as the flutter-tongue detection ex-
ample demonstrated in Section 3.2. The binary classifica-
tion results for each pattern are given in both the domi-
nant band decomposition and expanded band decomposi-
tion, as shown in Table 4. The detection results using the
second-order temporal scattering coefficients only as fea-
ture are also provided. The comparison between temporal
scattering and separable scattering verifies our analysis in
Section 2.3 that for periodic modulation recognition, fre-
quential scattering in the separable scattering representa-
tions provides additional discriminative information by re-
moving noisy information. Better performance for flutter-
tongue and trill detection shows that for modulations with
high modulation rate and large extent, decomposition of
the dominant band is sufficient. For discriminating be-
tween temporal modulation and spectro-temporal modula-

tion, expanded band decomposition works much better.
Generally, detection performance on vibrato and

tremolo is worse than that for flutter-tongue and trill detec-
tion. Identifying the errors in the original audio, we find
that in most cases these are combined techniques, i.e. sub-
tle frequency variations are accompanied with amplitude
modulations or vice versa. In the case of CBF, such com-
binations are common because of the instrumental gestures
of vibrato and tremolo. Vibrato can be generated by finger-
ing or tonguing, while tremolos are commonly produced
by breathing variations. Performers are also expressively
intended to add tremolo effects on top of other playing
techniques.

5. CONCLUSIONS AND FUTURE WORK

Periodic modulation recognition is a pitch invariant task
and should only capture modulation information. This is
realised by calculating a time–frequency scattering around
the wavelet subband of the maximum acoustic energy. We
found that the proposed representation decomposed from
the dominant band is sufficient to detect modulations with
high modulation rate (flutter-tongue) and large modula-
tion extent (trill), while expanded band decomposition cap-
tures subtle frequency modulations (vibrato and tremolo).
We introduce the ecologically valid dataset, CBF-periDB,
to evalate the recognition system. Results show that the
proposed representation captures discriminative informa-
tion between vibratos, tremolos, trills, and flutter-tongue
in real-world pieces.

The current work only considers continuous periodic
modulations; other periodic patterns, such as tonguing,
will be considered as future work due to their noncontinu-
ous nature and more complicated parameter variations. In-
spired by research on polyphonic music transcription, cur-
rent work may be expanded to polyphonic periodic mod-
ulation detection. Additional comparison of the current
result with other equivalent representations such as the
modulation spectra, will be conducted. We conclude that
the scattering transform presents a versatile and compact
representation for analysing periodic modulations in per-
formed music and opens up new avenues for computational
research on playing techniques.
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ABSTRACT

Machine learning allows automatic construction of gener-
ative models for music. However, they are learned from
only the succession of notes itself without explicitly em-
ploying domain knowledge of musical concepts such as
rhythm, contour, and fragmentation & consolidation. We
approximate such musical domain knowledge as a func-
tion, and feed it into our model. Then, two decoupled
spaces are learned: the extraction space that captures the
target concept, and the residual space that captures the
remainder. For monophonic symbolic music, our model
exhibits high decoupling/modeling performance. Control-
lability in generation is improved: (i) our interpolation
enables concept-aware flexible control over blending two
musical fragments, and (ii) our variation generation en-
ables users to make concept-aware adjustable variations.

1. INTRODUCTION

Listeners not only perceive the succession of notes itself,
but also respond to higher-level concepts in music. Two
critical components in melodic perception and memory are
scale and contour [5]. It is said that similarity between mu-
sical fragments is important in listeners’ emotional arousal
responses to music [18]. Listeners sense those similarities
through perceiving patterns of music constructs or trans-
formations such as rhythm, interval, and fragmentation &
consolidation (F&C) [20].

Music data processing, especially music generation and
analysis have attracted much attention. One of the ma-
jor methods exploits models that learn the latent space
[1, 6, 9, 16, 27–29]. These models learn compressed but
informative feature vectors of data samples and distribute
them in the multi-dimensional latent space. The spacial ar-
rangement represents the relation of data samples. Also,
numerous intermediate features—corresponding to sam-
ples hopefully not in the dataset—are yielded to fill in the
“holes” in the latent space. Then generation and analysis
are performed by bidirectional mapping of the latent space
and the data space. The latent space is, however, learned
from raw musical data without supervision. Therefore, the

c© Taketo Akama. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Taketo
Akama. “Controlling Symbolic Music Generation Based on Concept
Learning from Domain Knowledge”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

musical notions or concepts that are important for people
are not sufficiently organized on the latent space. Here-
inafter, we refer to such notions or concepts as musical
concepts, examples of which include rhythm, contour, and
F&C, as mentioned above.

How do we organize those musical concepts on the la-
tent space? People possess domain knowledge about mu-
sical concepts, although even the major concepts are not
necessarily defined clearly. In fact, various musical con-
cepts can be approximated as a function of raw musical
sequences. We input such domain knowledge to our model
in the form of a function, and then our model learns latent
spaces that capture the corresponding musical concepts.

Our model is called ExtRes (Extraction-Residual La-
tent Space Decoupling Model), and it aims at learning de-
coupled latent spaces, each of which is associated with a
musical concept. In other words, each musical concept
is learned as a latent-space concept that occupies a part
of the dimensions in the multi-dimensional latent space.
The concept-wise decoupled latent spaces allow us to mea-
sure similarity between musical fragments in terms of each
concept. The similarity is then used for e.g., pattern dis-
covery in a musical piece [17]. In generation, the control
over concept-wise latent features helps us to create musical
phrases as imagined or to compose patterns/structures in a
musical piece [23].

Our ExtRes has the following characteristics. (I)
Knowledge based: musical concepts can be incorporated
as function approximations on the basis of domain knowl-
edge. For monophonic musical sequences, various impor-
tant musical concepts can be incorporated such as rhythm,
chromatic/diatonic interval or pitch, step-leap/signed con-
tour, and F&C. This is possible because given an input se-
quence, these concepts can be approximated as other se-
quences with rules or algorithms [2, 19] to construct the
functions. (II) Complex concept and active learning:
complex concepts are actively learned without obtaining
attributes first [3, 4, 12, 14], where a set of attributes is
a concept. (III) Extraction-residual: aiming at compre-
hending complex data by repeatedly analyzing “one con-
cept versus the rest.” The rest (residual) may capture the
useful concepts (e.g., scale for contour and “pitch order”
for rhythm). (IV) Coexisting latent spaces: depending on
the input domain knowledge, corresponding concepts are
captured in latent spaces. Users can exploit multiple mod-
els of ours—wherein latent spaces with different concepts
coexist—for handling many concepts.
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We apply our ExtRes to improving controllability in in-
teractive music generation. (i) Concept-axes interpola-
tion: this mechanism helps users to create musical phrases
as imagined. Users first input two musical fragments into
the system. Prior methods allow users to adjust the blend-
ing ratio of the two fragments uniformly regardless of con-
cepts [27, 28], whose blending is more musically mean-
ingful than the naive data space blending. Our concept-
axes interpolation offers more flexibility: enabling users
to blend only the factor of the desired concept in musical
fragments and to also adjust the blending ratio for each tar-
get/residual concept. (ii) Concept-aware variation gen-
eration: given a musical fragment, this mechanism al-
lows users to obtain variations, where the amount of vari-
ation for each concept is adjustable. When generating a
long structured piece of music, this mechanism helps to
faithfully realize either of the instructions of a song tem-
plate [23] or the user intention.

2. METHODOLOGY

2.1 Outline

We propose ExtRes, a generative model that allows learn-
ing reusable representation (as latent features and embed-
ding vectors) for a user-specified concept, given a function
based on domain knowledge on the concept (Sec.2.2). We
then instantiate our proposed ExtRes model for sequence
datasets (Sec.2.4). In Sec.2.5, musical concepts are ap-
proximated as functions on the basis of domain knowledge.
For applications of our ExtRes, we focus on meaning-level
controllability in generation. We consider the following
kinds of control: (i) altering in relation to other samples
(e.g., interpolation), (ii) altering a sample to another sam-
ple with similar but not the same meaning (e.g., varia-
tion), and (iii) altering individual concepts. ExtRes not
only puts (iii) into practice by free explorations in con-
cept spaces, but also allows hybridizing the meaning-level
controls (i-iii) for more intended controllability: Sec.2.3
Concept-Axes Interpolation is for bridging (i) and (iii),
Sec.2.3 Concept-Aware Variation Generation is for bridg-
ing (ii) and (iii).

2.2 Extraction-Residual Latent Space Decoupling
Model (ExtRes)

Let us consider a dataset D = {x(n)}Nn=1, consisting of
N i.i.d. samples of stochastic variable x ∈ X . Given
fext : X → Y that extracts information of a target concept
as y ∈ Y from x, ExtRes is for learning latent spaces Ze
and Zr that correspond to fext. Ze is called an extraction
space, which captures the extracted target concept, and Zr
is called a residual space, which is expected to be decou-
pled fromZe, aiming at capturing a concept corresponding
to all the rest. Figure 1 summarizes our model.
fext can be obtained e.g., by constructing rules or al-

gorithms on the basis of the data domain knowledge (for
musical sequences, see [2, 19]). Specific examples based
on musical domain knowledge are shown in Sec.2.5.

Figure 1: Graphical model of ExtRes.

First, we conduct data derivation: augmenting the
dataset D to obtain Ddrv = {(x(n), y(n))}Nn=1, through
the mapping y = fext(x). Then, our approach is to
learn a generative model involving two latent variables:
ze ∈ Ze for capturing variability in y and zr ∈ Zr for
variability in x given y. We assume the dataset is gen-
erated from the following process: (i) z(n)e ∼ pθ∗e (ze),
z
(n)
r ∼ pθ∗r (zr), (ii) y(n) ∼ pθ∗y (y|z(n)e ), and (iii) x(n) ∼
pθ∗x(x|y(n), z(n)r ). Then we model this generative process
by maximizing marginal log likelihood log pθ(Ddrv) =∑N
n=1 log pθ(x

(n), y(n)) with each term rewritten as:

log pθ(x, y) = log
∫
pθx(x|y, zr)pθr (zr)dzr ,

+ log
∫
pθy (y|ze)pθe(ze)dze. (1)

Since this is computationally intractable in general, we de-
rive an evidence lower bound (ELBO) [16]:

log pθ(x, y) ≥ Lres + Lext, (2)
where Lres = Eqφr (zr|x,y) [log pθx(x|y, zr)]

−DKL (qφr (zr|x, y)||pθr (zr)), (3)
and Lext = Eqφe (ze|y)

[
log pθy (y|ze)

]
−DKL (qφe(ze|y)||pθe(ze)). (4)

Here,DKL denotes the Kullback-Leibler (KL) divergence.
We maximize the data likelihood of right hand side of

Eq.(2) for optimizing parameters {θx, θy, θr, θe, φr, φe}.
We refer to the models corresponding to Eq.(3) and Eq.(4)
as the residual model and extraction model, respectively.

2.3 Controlling Generation

Concept-Axes Interpolation. With our decoupled latent
spaces, interpolation can be done for each latent space Ze
and Zr. In the simplest linear case, interpolation between
two latent vectors [z

(i)
e ; z

(i)
r ] and [z

(j)
e ; z

(j)
r ] produces sam-

ples x(αe, αr) ∼ pθx(x|y(αe), zr(αr)) with y(αe) ∼
pθy (y|ze(αe)), where zr(αr) = z

(i)
r + αr(z

(j)
r − z

(i)
r )

and ze(αe) = z
(i)
e + αe(z

(j)
e − z

(i)
e ) with (αr, αe) ∈

[0, 1]× [0, 1].
Variation Generation Approach. Finding the boundary,
in a latent space, between variations and non-variations
is semi-automatically learned by defining that variations
of a given data sample are the samples that contain
enough information in terms of reconstruction error ε,
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in expectation. For our ExtRes, the error ε can be ad-
justed by introducing trade-off parameters in Eq.(3) and
Eq.(4) (see Sec.4.2). Intuitively, the latent vectors cap-
ture high-level features for the corresponding data sam-
ples, and given a data sample x̂, the learned inference
distributions qφr (zr|x̂, fext(x̂)) and qφe(ze|fext(x̂)) spec-
ify feature-wise similar/dissimilar (i.e. variations/non-
variations) boundaries of the given sample. Therefore, our
approach is to generate variations x(i) of x̂ in accordance
with the boundaries as follows: x(i) ∼ pθx(x|y(i), z(i)r )

with y(i) ∼ pθy (y|z(i)e ) and z
(i)
r ∼ qφr (zr|x̂, fext(x̂)),

where z(i)e ∼ qφe(ze|fext(x̂)).
Concept-Aware Variation Generation. We also propose
how to generate variations x(i) in a concept-wise manner
when the inference models are normal distributions. The
amount of variation is controlled for each concept in either
of the following ways: simply changing the ratio of the co-
variance scales of inference distributions, or ordering the
samples z(i)e or z(i)r on the basis of Mahalanobis distances:

DM (z(i), ẑ) =
√

(z(i) − ẑ)TΣ−1(z(i) − ẑ), (5)
for (z(i), ẑ,Σ) ∈ {(z(i)e , ẑe,Σe), (z

(i)
r , ẑr,Σr)},

where qφe(ze|fext(x̂)) = N (ze|ẑe,Σe),
and qφr (zr|x̂, fext(x̂)) = N (zr|ẑr,Σr).

Here, N denotes normal distribution.

2.4 Instantiation of ExtRes for Sequences

Throughout the rest of this paper, we consider the case
where x consists of a sequence of discrete variables st i.e.
x = (s1, ..., sT ). Here, each st has a distribution over the
elements of a finite alphabet set A. Let fext be a func-
tion that maps a sequence of length T to that of length
T , i.e. fext : AT → BT , where B is another alphabet
set. First, we conduct data derivation using fext(x(n)) =

y(n) = (a
(n)
1 , ..., a

(n)
T ). The given dataset D = {x(n)}Nn=1

can be augmented to become Ddrv = {(x(n), y(n))}Nn=1,
where x(n) = (s

(n)
1 , ..., s

(n)
T ) and y(n) = (a

(n)
1 , ..., a

(n)
T ).

We refer to (a
(n)
1 , ..., a

(n)
T ) as an abstract sequence of

(s
(n)
1 , ..., s

(n)
T ). Now, the inference models are

(hze,t, cze,t) = LSTM(E(at), hze,t−1, cze,t−1), (6)
qφe(ze|a1:T )

= N (ze|MLP(hze,T ),diag(exp(MLP(hze,T )))), (7)
(hzr,t, czr,t)

= LSTM([E(st); E(at)], hzr,t−1, czr,t−1), (8)
qφr (zr|s1:T , a1:T )

= N (zr|MLP(hzr,T ),diag(exp(MLP(hzr,T )))), (9)

where LSTM, E, and MLP denote a long short-term mem-
ory RNN (first, second, and third arguments of LSTM
are input, hidden state, and cell state, respectively) [13],
embedding layer, and multi-layer perceptron, respectively.
The generative model for the abstract sequence is

pθe(ze) = N (ze|0, I), (10)
(ha,1, ca,1) = LSTM([Ea0; ze],MLP(ze), ca,0), (11)
(ha,t, ca,t) = LSTM([E(at−1); ze], ha,t−1, ca,t−1), (12)
pθy (at|a1:t−1, ze) = Cat(at|σ(MLP(ha,t))), (13)
pθy (a1:T |ze) =

∏T
t=1 pθy (at|a1:t−1, ze), (14)

where Cat and σ denote the categorical distribution and
softmax function, respectively. Note that we use notation
pθy (a1|a1:0, ze) = pθy (a1|ze) for brevity. The generative
model for the original sequence is

pθr (zr) = N (zr|0, I), (15)
(h1, c1) = LSTM([Es0; E(a1); zr],MLP(zr), c0), (16)
(ht, ct) = LSTM([E(st−1); E(at); zr], ht−1, ct−1), (17)
pθx(st|s1:t−1, a1:t, zr) = Cat(st|σ(MLP(ht))), (18)
pθx(s1:T |a1:T , zr) =

∏T
t=1 pθx(st|s1:t−1, a1:t, zr), (19)

where we use the following notation for brevity:
pθx(s1|s1:0, a1:1, zr) = pθx(s1|a1, zr).

2.5 Formulating Musical Domain Knowledge

On the basis of musical domain knowledge, we approx-
imate musical concepts as fext(x) for monophonic se-
quences. As mentioned in Sec.1, given an input mu-
sical sequence, many abstract sequences expressing im-
portant musical concepts can be derived [2, 19]. Among
these, we demonstrate formulating two examples: rhythm
and contour. Our finding is that a concept of musical
transformations—fragmentation & consolidation, which is
the main characteristic of similarity in musical sequences
[20]—can also be approximated as a function, and we
demonstrate it. We use the real name of musical notes as
symbols (‘C3’, ‘D#4’, etc.) and use ‘R’ to represent a rest
symbol. We add an extra symbol ‘__’ representing that a
note is held and not replayed [11]. Then the alphabet setA
becomes a set of symbols listed above. Let O be a set of
symbols that has no pitch, i.e., O = {‘__’ , ‘R’}. We use
the notation S1:t−1 = {s(n)1 , ..., s

(n)
t−1}.

Rhythm. Let ‘N’ denote a symbol that represents any note.
Then the rhythm sequence for (s

(n)
1 , ..., s

(n)
T ) is defined as

(a
(n)
1 , ..., a

(n)
T ), where

a
(n)
t =

{
s
(n)
t (s

(n)
t ∈ O)

‘N’ (otherwise)

Thus, B = O ∪ {‘N’}. Now we define fext for rhythm as:
fext(x) = (a1, ..., aT ).
Contour. In this paper, we refer to a chromatic signed
contour with rhythm information as contour. Formally,
the contour sequence for (s

(n)
1 , ..., s

(n)
T ) can be defined as

(a
(n)
1 , ..., a

(n)
T ), where

a
(n)
t =


s
(n)
t (s

(n)
t ∈ O)

‘SP’ (s
(n)
t 6∈ O ∧ S1:t−1 ⊂ O)

sgn(Interval(s
(n)
t )) (otherwise)

Here ‘SP’ stands for Starting Pitch, sgn is a real sign
function, and Interval is a function that calculates the
chromatic pitch difference between the symbol of its ar-
gument and the previous symbol that has pitch. Then
sgn(Interval(s

(n)
t )) outputs whether the pitch of s(n)t is

higher than (‘1’), lower than (‘-1’), or the same as (‘0’)
the last symbol that has pitch. Thus, the alphabet set
B={‘__’ , ‘R’, ‘SP’, ‘1’, ‘-1’, ‘0’}. Now we define fext
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for contour as: fext(x) = (a1, ..., aT ).
Fragmentation and Consolidation (F&C). Fragmenta-
tion involves replacing one long note with several shorter
notes, whereas consolidation conversely involves replac-
ing several shorter notes with a single long note [20]. For-
mally, the F&C-invariant sequence for (s

(n)
1 , ..., s

(n)
T ) can

be defined as (a
(n)
1 , ..., a

(n)
T ), where

a
(n)
t =

{
‘FC’ (s

(n)
t ∈ O ∨ s(n)t = LSP(s

(n)
t ))

s
(n)
t (otherwise)

Here LSP stands for Last Symbol with Pitch, and
LSP(s

(n)
t ) = s

(n)
tl

, where tl = max{u : s
(n)
u ∈ S1:t−1 ∧

s
(n)
u 6∈ O}. Thus, the alphabet set B = {‘FC’} ∪ A \ O.

Now we define fext for F&C as: fext(x) = (a1, ..., aT ).

3. RELATED WORK

Conditional Models. Conditional deep generative models
are widely studied especially in the image domain [15,22].
Although our residual model is similar to this family of
models, their methods are different from ours in that (i)
the problem setting itself is different: data for conditioning
variable y is given in their method, (ii) condition y is not as
structured as ours (usually labels), and (iii) the latent space
of condition Ze is not learned (i.e., their method has no ex-
traction model of ours). In the music domain, conditions
of notes or chords are used for factoring out those informa-
tion from latent variables [7, 28, 29].
Disentangled Latent Spaces. In the image domain, some
approaches successfully disentangle latent space [3, 4, 14].
The popular approach is regularizing each latent dimension
to be independent, hoping to obtain interpretable factors as
attributes. Meanwhile, an approach that permits disentan-
gling a latent space applicable to symbolic music has been
proposed [10], although this method assumes an attribute
has order.
Exploring Latent Space in Music. After learning the la-
tent space, some methods attempt to discover a meaningful
direction in a latent space [8, 27]. These methods are also
useful for exploring within our individual concept spaces.
Variation Generation in Music. The differences between
our concept-aware variation generation and the variation
mechanism proposed by Pachet et al. [23] are (i) their
method is based on a Markov model; (ii) their method
controls variation generation in terms of edit operations,
while our method controls it in terms of musical concepts;
(iii) our ExtRes tries to learn the notion of variation (see
Sec.2.3). Difference (iii) also differentiates our method
from the previous VAE method for generating melody vari-
ation, wherein simply Gaussian noises are added to the la-
tent vector to create perturbed latent vectors [29], although
their method could produce more diverse variations. One
can also use their method within our concept spaces.
Regularizing Latent Space in Music. Human dissimi-
larity ratings on timbre are utilized to regularize the latent
space for bridging audio analysis, perception, and genera-
tion [9].

4. EXPERIMENTS

4.1 Dataset

We conduct experiments using a leadsheet dataset intro-
duced by Pachet et al. [24] with more than 12,000 songs,
by hundreds of famous songwriters, covering several gen-
res of popular music: jazz, blues, pop, and rock. The
dataset has been used in music generation studies [21, 23,
25,26]. We extract all monophonic melody parts with time
signature 4/4, which are transposed in all possible keys if
the transposition remains within the midi pitch range of
[55, 84]. We choose to discretize time with 24 symbols in
a bar, where every beat has six symbols whose note-on tim-
ings in one beat are {0, 1/4, 1/3, 1/2, 2/3, 3/4}. We then
extract all consecutive subsequences of length T = 24 (1
bar) or T = 96 (4 bars). The total dataset is split into pro-
portion of {0.85, 0.1, 0.05} for train, validation, and test
data respectively.

4.2 Implementation Details

The numbers of dimensions for ze or zr are chosen to
be (16, 32) for the T = (24, 96) model. 2-layer stacked
LSTMs are employed. We introduce trade-off parame-
ters β1 for Eq.(3) and β2 for Eq.(4) to weight the sec-
ond terms [9, 27, 28]. Intuitively, the amount of infor-
mation required for each latent variable depends on the
target concepts: rhythm, contour, and F&C. Therefore,
we conduct a hyper-parameter search using the validation
dataset such that β1 and β2 are the maximum subject to
reconstruction accuracies being sufficiently high. Then,
β1 and β2 for rhythm, contour, and F&C are chosen to
be (β1, β2) = (0.7, 0.7), (1.0, 0.7), and (0.9, 0.7), respec-
tively. The number of training epochs is set to 20, KL-
annealing is used [1, 9], and teacher forcing is not used.

4.3 Model Performance

Decoupling Performance. We first sample sequences
{x(i) : i ∈ {1, ..., I}} and {x(i,j) : (i, j) ∈ {1, ..., I} ×
{1, ..., J}}, following the sampling procedure:

x(i) ∼ pθx(x|y(i), z(i)r ), x(i,j) ∼ pθx(x|y(i), z(j)r ),
with z(i)r ∼ pθr (zr), z

(j)
r ∼ pθr (zr), and

y(i) ∼ pθy (y|z(i)e ), where z(i)e ∼ pθe(ze).

For x(i) and x(i,j), we count

Ni,j = |{t ∈ {1, ..., T} : fext(x
(i))t = fext(x

(i,j))t}|,(20)

which is how many elements of the same index are the
identical symbol between abstract sequences of x(i) and
x(i,j). Then, we define the accuracy for a pair (x(i), x(i,j))
as Ni,j/T .

Figure 2 illustrates the results of cumulative decoupling
accuracies for I = 1000 and J = 100. F&C accura-
cies are almost perfect. Even for rhythm and contour,
(T = 24, T = 96) = (99.6, 97.5)% and (85.0, 37.6)%
of the samples have perfect accuracies, respectively. In-
terestingly, for rhythm and contour, the cumulative per-
centage of samples grows sharply if one symbol mistake
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Figure 2: Decoupling accuracy.

NLL Accuracy
T=24 T=96 T=24 T=96

VAE (β=1.0) 0.714 0.577 0.880 0.880
VAE (β=0.8) 0.730 0.586 0.935 0.913
VAE (β=0.7) 0.753 0.606 0.952 0.923
VAE (β=0.5) 0.792 0.660 0.974 0.956
VAE (β=0.3) 0.856 0.748 0.988 0.960

Ours, Rhythm
0.412 0.322 0.967 0.969
0.335 0.274 0.982 0.976

Ours, Contour
0.297 0.212 0.968 0.968
0.468 0.405 0.973 0.938

Ours, F&C
0.141 0.130 0.978 0.975
0.630 0.497 0.963 0.950

Table 1: Negative log-likelihood and reconstruction accu-
racy. For our models, upper and lower rows denote the
residual model and extraction model, respectively.

is allowed. For instance, the percentage for contour grows
from (85.0, 37.6)% to (97.6, 66.3)%.
Modeling Performance. Table 1 shows negative log-
likelihoods (NLLs; per symbol and lower bound) and re-
construction accuracies (accuracies) for the test dataset.
We compare baseline variational auto-encoders (VAEs)
[16] (its model implementation and the training algorithms
are the same as our residual model without the condition y
except that the number of dimensions for the latent variable
is doubled for fair comparisons) with our three proposed
models. Each of our models is divided into two models
(residual/extraction model (see Sec.2.2)), whose individ-
ual NLLs and accuracies are shown in the table. The ad-
ditions of two NLLs for the residual/extraction model are
comparable to the NLLs for the baseline VAE. The mul-
tiplications of two accuracies for the residual/extraction
model are also comparable to the accuracies for the base-
line VAE.

4.4 Concept-Axes Interpolation

As depicted in Fig.4, given two musical fragments (top-
left and bottom-right) in each subfigure with 5 × 5 frag-
ments, the other 23 fragments “in between” are yielded
using concept-axes interpolation, whereas the interpola-

tion in a traditional latent space [27, 28] would produce
only the three diagonal fragments. In these figures, hor-
izontal axes are the extraction space Ze axes, and mov-
ing towards the axes smoothly changes the extracted target
concepts (i.e., rhythm, contour, and F&C-invariant), while
generally not changing the residual concepts. On the other
hand, vertical axes are the residual space Zr axes, show-
ing smooth change in residual concepts and little change
in target concepts. Note that here we only show 5 × 5,
but interpolation of the two fragments could be arbitrarily
finer/coarser (at any positions of the subfigure) upon users’
demand. In Fig.4a, rhythm direction preserves “pitch ap-
pearing order,” showing that the Zr successfully captures
concepts that are important but might be difficult to learn in
Ze. In Fig.4b, in non-contour direction, fragments tend to
transpose to match the “pitch set” of the bottom-right frag-
ment without changing contour, which captures the scale-
like concept. In contour direction, the fragments gradually
adopt the descending-like contour. In other words, only
the descending-like feature is retrieved from the bottom-
right fragment to generate fragments in the first row. For
Fig.4c, in F&C-invariant direction, the gradual altering of
fragmenting or consolidating notes is observed. Similar
analyses can also be done in longer sequences: Figure 3
shows results for T = 96 in piano roll representation with
each subfigure consisting of 3× 3 musical fragments.

4.5 Concept-Aware Variation Generation

In Fig.5, our variation generation approach is applied to
ExtRes/VAE, which are for concept-aware/-unaware vari-
ation generations, respectively. In each column of the fig-
ure, the generated variations are sorted from top to bot-
tom in the ascending order of learned Mahalanobis dis-
tance (see Sec.2.3). Figure 5a depicts the variations for
rhythm. The second column shows the extraction space
Ze variations, where various rhythms are produced with-
out changing the other factors. In contrast, residual space
Zr variations (the third column) all keep the rhythm un-
changed, whereas the other factors such as the “order of
used pitches” change. Variations by VAE (the fourth col-
umn) mix factors of rhythm/non-rhythm, without drastic
change in rhythm. Figure 5b depicts the variations for con-
tour. Ze variations have various contours without chang-
ing other factors. In contrast, Zr variations all keeps the
contour unchanged, whereas the scale-like concept “set of
used pitches” changes. VAE yields relatively conservative
variations with mixed contour/scale-like factors. Lastly,
variations for F&C are in Fig.5c. For the Ze variations,
melodies with different pitches are generated, while fix-
ing the concept of “the consecutive notes with the same
pitch” except the third row from the bottom. As for the
Zr variations, F&C of notes are observed, which is not the
case in the fourth column except the second row from the
bottom, indicating that our ExtRes successfully captures
the notion of F&C. Note that the variations by ExtRes are
generated with simply (0, 1) or (1, 0) variance scales for
two spaces to clearly explain the capabilities of ExtRes,
but one could interactively change the scale ratio to obtain
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(a) Rhythm (b) Contour (c) F&C

Figure 3: Concept-axes interpolation (T=96, 0.5 stride). Vertical axis denotes MIDI note number, and horizontal axis
denotes t ∈ {1, ..., T}.

(a) Rhythm

(b) Contour

(c) F&C

Figure 4: Concept-axes interpolation (T=24, 0.25 stride).

variations with desired mixing proportions of the concepts.

5. CONCLUSION AND FUTURE WORK

We presented a latent space decoupling model for learn-
ing concept spaces using domain knowledge. For mono-
phonic symbolic music, we experimented on three musi-
cal concepts. Controllability in generation was improved
by concept-axes interpolation and concept-aware varia-
tion generation. In future, other musical concepts men-
tioned in Sec.1 should also be tested on ExtRes. We believe
that this paper opens up possibilities for learning models
with concept-aware inference/generative processes to be

(a) Rhythm comparison.

(b) Contour comparison.

(c) F&C comparison.

Figure 5: Our variation generation approach is applied to
ExtRes and VAE. For each subfigure (a,b,c), left (first col-
umn): top is an original fragment and bottom is its recon-
struction; center left (second column): ExtRes extraction
space Ze variations; center right (third column): ExtRes
residual space Zr variations; right (fourth column): VAE
variations.

used for different information retrieval tasks or more con-
trolled and flexible generations.
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UNMIXER: AN INTERFACE FOR EXTRACTING AND REMIXING LOOPS
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ABSTRACT

To create their art, remix artists would like to have seg-
mented stem tracks at their disposal; that is, isolated in-
stances of the loops and sounds that the original composer
used to create a track. We present Unmixer, a web ser-
vice that will analyze and extract loops from any audio
uploaded by a user. The loops are presented in an inter-
face that allows users to immediately remix the loops; if
users upload multiple tracks, they can easily create mash-
ups with the loops, which are automatically matched in
tempo. To analyze the audio, we use a recently-proposed
method of source separation based on the nonnegative
Tucker decomposition of the spectrum. To reduce inter-
ference among the extracted loops, we propose an extra
factorization step with a sparseness constraint and demon-
strate that it improves the source separation result. We also
propose a method for selecting the best instances of the ex-
tracted loops and demonstrate its effectiveness in an eval-
uation. Both of these improvements are incorporated into
the backend of the interface. Finally, we discuss the feed-
back collected in a set of user evaluations.

1. INTRODUCTION

Professional and amateur composers across the world en-
joy creating remixes and mashups. Remixes are pieces of
music that are composed, in whole or in part, using snip-
pets of another audio recording, whereas mashups juxta-
pose snippets of two or more recordings [8]. Creators of
official remixes usually have access to the stem tracks for
a recording, but these resources are not typically available
to amateur remixers. Unofficial remixes, sometimes called
‘bootlegs’, can still be created using clips of the down-
mixed recording of the song [8], but this presents two chal-
lenges: first, it is time-consuming to manually segment
an audio track to select the most prominent or interesting
bars or sounds. Second, because the sources in the origi-
nal audio recording are down-mixed, the artist may have to
use equalization (i.e., filtering out certain frequencies) to
achieve a simple separation of sources.

We present Unmixer 1 , an interface that accomplishes

1 Available at: https://unmixer.ongaaccel.jp

c© Jordan B. L. Smith, Yuta Kawasaki, Masataka Goto. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Jordan B. L. Smith, Yuta Kawasaki, Masa-
taka Goto. “Unmixer: An interface for extracting and remixing loops”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

Figure 1. Screenshot of Unmixer interface with two songs
loaded. In its current state, two loops from each song are
playing.

both of these tasks for the user, using a source separation
technique instead of equalization (see Fig. 1). The inter-
face allows a user to upload any song; it then processes
the audio and returns a set of loops. The user can then
play with the loops on the spot, re-combining the loops
live. If the user uploads more songs, they can also juxta-
pose loops from different songs, which are automatically
tempo-matched, to create live mash-ups. Finally, users can
download the loops to remix offline.

The website was inspired in part by Adventure Ma-
chine 2 , a Webby-nominated site designed to promote an
album by the musician Madeon. That site allowed visi-
tors to remix stem samples from a Madeon track, and it
attracted significant traffic, according to the designers 3 .
The thought that inspired us was: what if visitors could
populate a remixing interface with samples from any track

2 https://www.madeon.fr/adventuremachine
3 https://developers.google.com/web/showcase/

2015/adventuremachine
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they own? With Unmixer, we aim to achieve this vision.
In the next subsection, we discuss alternative methods

of extracting loops. In Section 2, we explain the features
of the interface and some design considerations. In Sec-
tion 3, we explain the algorithm which supports it [22] and
propose an extension and improvement to it. Both contri-
butions are evaluated. In Section 4, we present a usability
study, and we end with a discussion (Section 5).

1.1 Tools for extracting loops and creating remixes

Existing interfaces for creating live remixes from a li-
brary of samples include AdventureMachine and Beat-
Sync-Mash-Coder [7], but these do not allow you to pop-
ulate the interface with automatically extracted loops. The
web application Girl Talk in a Box 4 cuts any song into
chunks for a user and offers novel resequencing options,
but does not separate sources or allow the users to play
multiple chunks at once. Advanced users can always use
a Digital Audio Workstation (DAW), which is the most
powerful and flexible way to compose a remix, but they
will need to do the work of extracting loops on their own.
That said, software exists to support this tedious task, such
as [3] and [18], both of which require users to guide the
algorithm by indicating regions of the spectrum to ignore
or focus on. In sum, we are not aware of another interface
that, given an input song, extracts source-separated loops
and presents them to the user for remixing.

To extract repeating patterns, two broad approaches
are popular: kernel-additive modeling [10], including
harmonic-percussive source separation (HPSS) [4] and
REPET, a method of foreground-background separation
that models a looping background, and its variants [17].
However, these are binary separations: only two sources
are obtained. The family of non-negative matrix fac-
torization (NMF) approaches includes NMF [21], NMF
deconvolution [19], and non-negative tensor factorization
(NTF) [5]. All take advantage of redundancies in the
signal—repeating spectral templates, transpositions, stereo
dependence, etc. By applying NMF iteratively, [20] sepa-
rated layers of electronic music that built up progressively,
but did not model the extracted sources in terms of loops.
This is a drawback shared by all of these algorithms: they
produce full-length separated tracks. To obtain short, iso-
lated loops, some extra step is required. However, a re-
cent NTF system [22] models the periodic dependencies
in the signal and is thus suitable for extracting loops di-
rectly; it forms the basis for our system and is described
in Section 3. An orthogonal approach to extracting loops
is that of [12], which seeks only to extract drum breaks
(short drum solos that are desirable for remixes) by devis-
ing a percussion-only classifier.

2. WEB SERVICE AND INTERFACE

The purpose of the interface is to allow users to remix and
mash-up the songs they love, and to perform automatically

4 http://girltalkinabox.playlistmachinery.com

the work of isolating loops, normally done through editing
and equalization or source separation.

The interface has just a few, simple features, all visi-
ble in the screenshot (see Fig. 1). To begin, a user must
upload a song from their hard drive, using the box at the
bottom of the page. They may adjust the number of loops
to extract using the drop-down list, with possible values be-
tween 3 and 10. The audio is processed on the web server
using the algorithm outlined in Section 3; once the audio
has been analyzed, the interface is populated with a set of
loop ‘tiles’, each tile bearing a waveform sketch. The pos-
sible actions are then:

1. click on loop tiles to activate or deactivate them;
2. change the global tempo (drop-down list at top-right

of the interface);
3. pause playback (button at top-left);
4. download a zip archive containing all the loops for a

given song;
5. choose an additional song (and number of loops to

extract) using the box at the bottom of the page.

Uploading and processing a new file can take a while (cur-
rently between 5 and 10 minutes), but users can still use
the other functions (playing tiles and changing the tempo)
while waiting for the next batch of tiles. Users can add any
number of songs to a single workspace.

All the loops have the same duration (equivalent to two
bars of audio), and the playback of the loops is synchro-
nized so that the downbeats align, no matter when the user
activates them. When a user uploads the first song, the
global tempo is set to the detected tempo. New songs
added to the workspace are tempo-shifted to match the
global tempo.

The interface was built as a web application using Re-
act 5 , making it available on any web-accessible device
through a browser. To handle audio playback, we use the
Web Audio API, making it easy to synchronize playback
of all the tiles and control the playback rate. The audio
analysis is run on our server, using the algorithm described
in the next section. The web server keeps a log of up-
loaded audio files and the analysis computed for each. To
save time, if the system recognizes an uploaded audio file,
it re-uses the old analysis. However, it does not re-use the
old audio; it re-extracts the component loops from the new
audio to return to the user, thereby avoiding any copyright
issues related to redistributing audio.

3. LOOP EXTRACTION

Our approach to extracting loops is based on [22], but
we make two contributions: first, we suggest and evaluate
methods for selecting individual loops; second, we propose
and evaluate an extra “core purification” step.

3.1 Review of NTF for source separation

The pipeline for our system, based on the work of [22],
is shown in Fig. 2. First, the mono spectrogram X is di-

5 https://reactjs.org/
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(a) X = X

(b) X ≈ C⊗ (W ⊗H ⊗D)

Figure 2. Overview of system, using example ‘125_acid’
[11]. (a) Spectrum of 8-bar song reshaped into ten-
sor. (b) Tucker decomposition expresses song as product
of frequency templates W , rhythm templates H , repeti-
tion templates D, and a core tensor C. In this example,
(M,P,Q) = (1025, 661, 8) and (rw, rh, rd) = (32,20,4).

vided into downbeat-sized windows using a beat-tracker.
(Unmixer uses the madmom system [1], but the illustrated
example uses the known downbeats.) The M × P -shaped
spectrogram windows (one for each bar) are stacked into a
new dimension, creating an M ×P ×Q tensor X (Fig. 2a).
Then, using Tensorly [9], we compute the non-negative
Tucker decomposition (NTD) with ranks (rw, rh, rd), ap-
proximating the tensor as the outer product X ≈ C⊗ (W ⊗
H ⊗ D) (Fig. 2b). In plain terms, the NTD models the
spectrum with three meaningful components: a set of spec-
tral templates W (the sounds), a set of within-bar time-
activation templates H (the rhythms), and a set of loop-
activation templates D (the layout, i.e., the arrangement of
loops in the song). In Fig. 2b, a decomposition of an arti-
ficial 8-bar (W = 8) stimulus [11] has been approximated
using rd = 4 loop templates, giving a good estimate of the
layout of the piece (shown in Fig. 6). The templates are
diverse: some sounds are monophonic, others polyphonic;
some rhythms are percussive, others sustained.

The sparse core tensor is C; a non-zero element C[i,j,k]

indicates that sound i is played with rhythm j, and this pat-
tern is repeated according to layout template k. To separate
the contribution of the kth loop, use the kth row of D to
take the outer product C⊗(W⊗H⊗Dk) ≈ Xk, and unfold
the tensor into Xk. The reconstructed real-valued spec-
trum Xk is not sufficient to recreate the signal; we must
apply softmasking (as outlined in [17] and implemented in
librosa [13]) and use the original phase:

yk = ISTFT(phase(X) ·mag(X) ·
Xp

k

Xp
k + Xp

) (1)

where p is the power of the softmask operation. As noted

Figure 3. Example reconstruction of spectrum for a sin-
gle loop (#2) from multiple (freq, rhythm) combinations
(above), and for a single bar (#4, also indicated in Fig. 2)
from multiple loops (below).

by [6], using softmask filters is convenient, although not
necessarily optimal, for non-negative approaches like ours.

The core tensor can be interpreted as a set of “recipes”
for building the loops, the recipe for the kth loop being the
rw×rh slice of the core tensor C[:,:,k]. To see how, note that
Wi ⊗ Hj , the outer product of the ith sound with the jth

rhythm, is an M × P spectrum of a single bar. The outer
product C[:,:,k] ⊗ (W ⊗H) thus represents a sum of such
one-bar spectra, leading to the kth loop template. Fig. 3
shows how the 2nd loop template is the sum (in descending
order of magnitude) of individual Wi ⊗ Hj components.
Each bar in the piece will be a superposition of several
loops: the bottom part of the figure shows how the 4th bar
consists of copies of each loop.

3.2 Loop selection

The output of the algorithm in [22] is a set of full-length
tracks, each corresponding to the contribution of one loop.
For remixing purposes, we only want a bar-length version
of each loop, as cleanly separated as possible. The plain
approach is to extract the full-length track, then excerpt a
single bar, but the question is then: which bar to select?

There are at least two factors to consider: how loud
a given loop instance is, and how strongly that instance
stands out from the other parts. Loudness can be maxi-
mized by choosing the bar that takes the maximum value in
the loop activation matrix: i.e., to select the best bar for the
kth loop, choose argmax(D[k,:]). To minimize cross-talk,
we consider two approaches. First, we may normalize the
columns of D by choosing argmax(D[k,:] − D̄), where D̄
is a vector of the column means of D.

Alternatively, the coefficients from the softmask oper-
ation could estimate how prominently a given loop stands
out from the background. In this approach, we compute
the softmask coefficients for each bar (i.e., the fractional
part of Equation 1), and then select the bar which maxi-
mizes the total value of the mask. That is, if Mk,i gives the
softmask matrix for the ith bar for the kth loop, we select
argmax(

∑
Mk,:). Finally, we may combine any or all of

these decision criteria.
Evaluation To determine the most reliable selection

method, we tested them on a set of stimuli assembled
by [11]. The test set contains 7 compositions, each con-
taining 4 loops arranged in the same 8-bar layout (shown
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Figure 4. Main effect of bar selection strategies.

in the bottom part of Fig. 6). We ran the NTD algorithm
on all the stimuli (with (rw, rh, rd) = (32, 40, 4)), and
then measured the reconstruction quality of each loop in
each bar. We measured reconstruction quality using SDR,
SIR and SAR, the source-to-distortion, -interference, and -
artefact ratios, respectively, calculated using mir_eval [16].
(For each metric, higher is better.) Then, we tested how
frequently the optimal bars were selected by maximizing
each criterion. The four tested criteria were: loudness
only (D[k,:]); normalized loudness (D[k,:]− D̄); mask only
(M[k,:]); and loudness times mask (D[k,:] ·M[k,:]).

The main effect of the choice of criterion is shown in
Fig. 4, which shows how often a given strategy (e.g., “se-
lect the loudest bar”) correctly found the bar that maxi-
mized a given metric. Using loudness alone (1), the opti-
mal bar was selected at least two-thirds of the time. Nor-
malizing the matrix D to diminish cross-talk (2) was too
coarse, with the best bar selected less than 60% of the time.
However, multiplying the loudness by the mask (4) to di-
minish cross-talk led to the best overall result, with the op-
timal bar selected around 80% of the time. The choice of
criterion depends slightly on the quality metric (SDR, SIR
or SAR) being maximized: if the priority is to maximize
SAR, using the mask alone (3) may be advised, but using
the loudness-and-mask criterion worked best overall, and
it is the criterion used in the Unmixer system.

3.3 Loop purification

As reported by [22], a problem with the algorithm is that
the extracted loops can be redundant. For example, sup-
pose a song contains a drum pattern A and a synth pattern
B, which are independent, but where B never occurs with-
out A. Instead of modeling the independent patterns A and
B, the algorithm is likely to learn one pattern for A and
another for A + B. This error is not fixed by changing the
number of loop templates that the model should learn.

The problem would be avoided if the core tensor were
estimated with a sparsity constraint. Note that sparsity is
only desired in the 3rd dimension, to prevent the rw × rh
slices (the loop ‘recipes’) from being too similar. Dense-
ness is still desirable in the other dimensions; indeed, al-
lowing different sources (frequency templates) to share

Figure 5. Illustration of core tensor purification. WC and
HC are estimated using NMF with HC constrained to be
sparse.

rhythms (time activation templates), and vice versa, was
a motivation to use NTD to begin with, since it allows an
accurate and meaningful reconstruction without the model
size becoming infeasibly large.

Algorithms for sparsity-constrained tensor factoriza-
tions exist [14], but we are not aware of any existing tensor
decomposition packages that implement them. 6 There-
fore, we propose to follow regular NTD with a “core-
purification” step, using sparsity-constrained NMF to sim-
plify the core tensor.

The process is illustrated in Fig. 5, supposing a decom-
position of initial rank (10, 5, 6). First, we take C(3), the
third-dimension unfolding of the core tensor C, so that
each horizontal slice of C is reshaped into a row in C(3).
Then, we apply sparse NMF (using the SNMF function in
Nimfa [23]) to model C(3) ≈WC×HC , imposing sparsity
on HC only. (It is also possible to use simple NMF, with-
out the sparsity constraint; this is tested later as a baseline.)
The rows of HC give a new set of maximally independent
vectors; when the matrix HC is refolded, it gives C′, a set
of maximally independent recipes. The matrix WC tells us
in what proportion to add the previous 6 templates to each
other to obtain the new set of 4 templates; hence, we use it
to transform the original layout D into WC ×D = D′.

An example showing the promise of this method is
shown in Fig. 6. First, we computed the NTD of a song
using ranks (10, 5, 4); second, we computed a new NTD
with ranks (10, 5, 6), and purified the core so that the final
shape was (10, 5, 4). The 4 slices of each core are shown in
parts (a) and (b) of the figure, along with the correspond-
ing layouts: first, the loop activation matrix D; second,
the revised matrix D′. Each is an estimate of the ground
truth layout at bottom. Whereas there is a clear redun-
dancy among loops 2 and 3 in the first set (plain NTD),
the redundancy has been reduced in the second (NTD with
purification). The reconstruction error for the second set
is actually a little higher (0.186 compared with 0.185), but
the separated audio will be of higher quality. In the actual
example (where we used ranks (32, 40, 4) and (32, 40, 6)),
the mean SDR and SIR for the 4 estimated loops climbed
from 1.98 and 9.96 to 6.85 and 16.16, respectively, while

6 NB: factorization of ‘sparse’ tensors is often a supported feature, but
not the estimation of sparse outputs.
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Figure 6. Comparison of (a) core estimated with plain
NTD vs. (b) NTD with purification (core purified from
6 to 4), using stimulus ‘125_acid’ [11]. The pixel at (4, 7)
which appears redundantly in loops 2–4 in (a) has been
subdued in (b). Each subfigure’s pixels are linearly scaled
between its min and max.

Figure 7. Main effect of loop purification and runtime
strategies.

SAR only decreased from 17.97 to 17.38. (These metrics
are explained in the next section.)

Evaluation We evaluated the effectiveness of the pro-
posed purification approach on the same dataset used in
Section 3.2. We ran a fully-factorial design, exploring the
following parameters and settings:

1. Plain NTD vs. purification;
2. Purification method: unconstrained NMF vs. the

proposed SNMF approach;
3. Initial rank: 5 or 6 for purification methods only;
4. Tolerance: stopping criterion for computation of ini-

tial tensor (0.001, 0.0005 or 0.0001).

We use the known downbeat locations, and the final rank
was always set to 4, the true number of loops in the exam-
ples. Although these must be estimated in a real-life sce-
nario, we can still evaluate the impact of the purification
method, initial rank, and tolerance. The reported metrics
are SDR, SIR and SAR, as before.

Fig. 7 shows the main effects. We see that the purifi-
cation step increased SDR and SIR, with only a minor de-

crease in SAR. This was the hoped-for result: less inter-
ference among the extracted signals (SIR), even if some
reconstruction quality is sacrificed (more artefacts, SAR).
However, we found that there was little difference between
the proposed SNMF-R approach and a simpler NMF ap-
proach. We also see that purifying an estimate to rank 4
from rank 5 gave slightly better results than from rank 6.
To put these effects in context, we also show the effect of
reducing the tolerance, i.e., allowing the tensor factoriza-
tion to run for longer. The purification step increased SIR
nearly as much as did reducing the tolerance by 90%.

4. USER EVALUATIONS

To assess the usability of the system and solicit feedback
about the audio quality and enjoyability of app, we con-
ducted a user evaluation. We solicited 8 participants (4
men and 4 women), all between 25 and 40 years old. The
study had three components:

1. A background questionnaire covering: their musical
training (using the standard Goldsmiths MSI short
test [15]); their experience with audio editing in-
terfaces and audio production; and their familiarity
with the songs used in the study.

2. A 10-minute test of the interface. Participants were
asked to upload a song, familiarize themselves with
the interface, then upload 2–5 more and explore the
combinations of sounds.

3. A feedback questionnaire with Likert-scale and free-
text questions focused on usability, audio quality, en-
joyment, and potential new features. Usability ques-
tions were adapted from the standard Systems Us-
ability Scale [2]).

We limited participants to a set of 11 audio files that the
system had already seen, which greatly sped up the pro-
cessing time: users did not have to wait the typical 5–10
minutes for the Tucker decomposition to converge; they
only needed to wait for the system to receive the audio,
use the pre-existing decomposition to extract new audio
files, and load said audio files into the interface, all of
which takes roughly 30 seconds per file. Otherwise, the
system they used is the same that is available live, now at
unmixer.ongaaccel.jp. The ranks of the analysis
are (rw, rh, rd) = (50, 40, 30) (with rd purified to 25 using
SNMF-R), and the NTD is solved with tolerance 0.0001.

User background: The 8 user testers included musical
experts and novices: 5 played musical instruments, and 6
had experience editing audio files. Of those 6, 4 also had
some experience either using a DAW or creating a remix
or mashup. According to the MSI test, the musical so-
phistication of 4 users was within a standard deviation of
average [15], with 1 user above this range and 3 below.

Usability: There was unanimous agreement that the
system was “easy to use” and that users thought “most peo-
ple would learn to use this system very quickly.” In fact, in
the free response, ease of use was cited by 7 users as one
of the best things about Unmixer, especially for “musical
novices” or “a beginner [like] myself”. One aspect of the
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interface that users found inconvenient, though, was the
inability to anticipate what a loop would sound like. One
wrote that “you need to guess what’s in each loop based on
the waveform and sometimes it’s not what you expected
or wanted”, and suggested a short text label (e.g., ‘vox’,
‘drum’, ‘synth’) to indicate the content; another suggested
visual hints. One user also noted that they did not know
what the impact on the loop content or quality would be if
they changed the number of loops to extract.

Sound quality: Asked whether “the sound quality of
the loops was poor”, users were divided, with 4 each agree-
ing and disagreeing. However, one disagreer later ex-
plained that while “audio quality of some samples was not
great, ...it was possible to find good quality ones.” The
quality of source separation was appreciated: 6 agreed that
“most loops isolated a single source (e.g., drums, vocals,
synth, bass)”, and 5 agreed that “loops within one song
had a nice variety” (with 2 disagreeing). No one agreed
that the “loops from different songs were too similar”.

Enjoyment: 6 agreed that “the combination of loops
was often interesting”, and 4 agreed that they would “like
to use Unmixer frequently” (with 2 disagreeing). The inter-
face struck users as novel: none agreed that the “interface
was similar to others I’ve used before”. Four agreed that
“a remix artist could build a good song from these loops”
(with 2 disagreeing); however, among users with experi-
ence using DAWs or creating mashups, opinion on this
was split 2-against-2. Users saw different reasons to enjoy
the interface: one “enjoyed the experience of doing some-
thing new”; another wrote that “it was very easy to try out
new ideas very quickly”. Opinon also varied on what users
would use Unmixer for, with responses including: generat-
ing mashups “for interludes or as backing music”; “using it
to prototype [remix] ideas quickly”; “having fun at a house
party—home-DJ style”; creating “nice effects for a video”;
and “taking some of my own music” and generating “new
ideas from it.”

Potential features: To understand what future devel-
opments for the interface would be most desirable, we
polled users’ opinions on a list of 7 suggested features:
controls for (1) loudness, (2) pitch-shifting and (3) equal-
ization (e.g., to boost the bass or mid-range); (4) keyboard
shortcuts for activating loops; (5) allowing more than 10
loops; and colour-coding loops by (6) type (e.g, vocals,
synth) or (7) tonality. Users expressed broad approval for
all of these except for (5), although if loops were colour-
coded, it might become more desirable to have more loops
available. Almost all users indicated that they had already
thought of feature (1). When asked what change in Un-
mixer would make it more usable or useful, two users sug-
gested a timeline functionality so that repeating sequences
of loops could be made; two also wanted to be able to
‘save’ or ‘download’ the combinations they had created.

5. DISCUSSION

Our user feedback confirmed for us the usability of the sys-
tem: without supervision, all participants completed the
steps of the user study. The positive comments assure us

that the app holds promise as a tool for exploring interest-
ing remix possibilities. However, to be most useful and
engaging, we need to improve the sound quality of the ex-
tracted audio. The interface as it is may even be too simple:
we expect that with a few changes, like adding keyboard
shortcuts and having the tiles give some visual hint as to
their content, we can increase user enjoyment and satisfac-
tion. On the other hand, we should not implement all of
the features discussed; to do so would be to program an
in-browser, fully-functional DAW, whereas our focus is to
provide users with loops extracted from songs and allow
them to experiment with combinations.

The user study differs from the live experience in a few
ways: (1) It allowed a choice among 11 pre-selected tracks,
although real users are free to choose any music from their
library; and (2) it featured a streamlined experience with
minimal waiting for the system to analyze the files. We
must collect more feedback from realistic scenarios to un-
derstand the system usability. If we cannot speed up the
algorithm, we may need to adjust the interface to maintain
the feeling of interactivity. For instance, we could provide
the user with a quick-and-dirty set of extracted loops, and
refine them in the background while the user experiments.
Also, the current version kept fixed the ranks of the analy-
sis and the amount of purification. We hope to make these
tuneable, or have the system predict the optimal values.

There remain several ways to improve the source sep-
aration quality. We have reconstructed the signals using
softmask filtering, but we could realize further improve-
ments, and even speed up the algorithm, by using newer
masking methods, such as the divergence-based masks
proposed by [6]. To improve the system’s output, we could
use equalization to refine the separated loops. As noted in
the introduction, creators of unofficial remixes often use
equalization to separate sources in lieu of source separation
algorithms. We could blindly apply equalization or HPSS
to create, say, bass, treble and percussive versions of each
loop, or use a set of instrumentation-detection functions
(similar to [12]) to select the best ones.

To evaluate these proposed improvements, it is impor-
tant to collect more expansive test sets. The small test set
of [11] was sufficient to assess the best bar-picking strategy
and whether the purification step was useful. However, fu-
ture work on this task ought to treat more diverse stimuli—
more genres, loops per song, and loop layouts—to gauge
how the system copes with realistically complex pieces.

6. CONCLUSION

We developed Unmixer, a web-app where users can upload
music, extract loops, remix them, and mash-up loops from
different songs. Expert and novice users found it easy to
use; many also found it a novel way to develop remix ideas,
although higher-quality audio output may be required for
polished remixes. The backend uses the NTD-based source
separation algorithm from [22]; we proposed and tested
techniques to select the best reconstructed loop excerpts,
and techniques to refine the loop layout, measurably im-
proving on the baseline system output.
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and Lauren Stewart. The musicality of non-musicians:
An index for assessing musical sophistication in the
general population. PLOS One, 9(2), 2014.

[16] Colin Raffel, Brian McFee, Eric J. Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, and Daniel PW
Ellis. mir_eval: A transparent implementation of com-
mon MIR metrics. In Proc. of the ISMIR, pages 367—
372, Curitiba, Brazil, 2014. Citeseer.

[17] Zafar Rafii, Antoine Liutkus, and Bryan Pardo. REPET
for background/foreground separation in audio. In
G. R. Naik and W. Wang, editors, Blind Source Sepa-
ration, Signals and Communication Technology, pages
395–411. Springer-Verlag, 2014.

[18] Zafar Rafii, Antoine Liutkus, and Bryan Pardo. A sim-
ple user interface system for recovering patterns re-
peating in time and frequency in mixtures of sounds.
In 2015 IEEE ICASSP, pages 271–275. IEEE, 2015.

[19] Mikkel N. Schmidt and Morten Mørup. Nonnegative
matrix factor 2-d deconvolution for blind single chan-
nel source separation. In International Conference on
Independent Component Analysis and Signal Separa-
tion, pages 700–707. Springer, 2006.

[20] Prem Seetharaman and Bryan Pardo. Simultaneous
separation and segmentation in layered music. In Proc.
of the ISMIR, pages 495–501, New York, NY, USA,
2016.

[21] Paris Smaragdis. Non-negative matrix factor decon-
volution: Extraction of multiple sound sources from
monophonic inputs. In Independent Component Anal-
ysis and Blind Signal Separation, volume 3195 of
Lecture Notes in Computer Science, pages 494–499.
Springer-Verlag, Berlin, Heidelberg, 2004.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

830



[22] Jordan B. L. Smith and Masataka Goto. Nonnegative
tensor factorization for source separation of loops in
audio. In Proc. of the IEEE ICASSP, pages 171–175,
Calgary, AB, Canada, 2018.

[23] Marinka Zitnik and Blaz Zupan. Nimfa: A python li-
brary for nonnegative matrix factorization. Journal of
Machine Learning Research, 13:849–853, 2012.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

831



QUANTIFYING DISRUPTIVE INFLUENCE IN THE ALLMUSIC GUIDE

Flavio Figueiredo
Universidade Federal de Minas Gerais

flaviovdf@dcc.ufmg.br

Nazareno Andrade
Universidade Federal de Campina Grande

nazareno@computacao.ufcg.edu.br

ABSTRACT

Understanding how influences shape musical creation pro-
vides rich insight into cultural trends. As such, there have
been several efforts to create quantitative complex network
methods that support the analysis of influence networks
among artists in a music corpus. We contribute to this
body of work by examining how disruption happens in a
corpus about music influence from the All Music Guide.
A disruptive artist is one that creates a new stream of in-
fluences; this artist builds on prior efforts but influences
subsequent artists that do not build on the same prior ef-
forts. We leverage methods devised to study disruption in
Science and Technology and apply them to the context of
music creation. Our results point that such methods iden-
tify innovative artists and that disruption is mostly uncor-
related with network centrality.

1. INTRODUCTION

What is disruption? To understand the concept, let us con-
sider the careers of two famous Jazz musicians whose ca-
reers started in the 1940’s: Bud Powell and Sun Ra. Ac-
cording to the All Music Guide 1 , both artists have been
highly influential. The AllMusic biography of Bud Pow-
ell states that: “One of the giants of the jazz piano, Bud
Powell changed the way that virtually all post-swing pi-
anists play their instruments.”. Similarly, the guide de-
scribes Sun Ra as a major innovator, both in his music and
in his style: “[Sun Ra] surrounded his adventurous music
with costumes and mythology that both looked backward
toward ancient Egypt and forward into science fiction.”.

Disruption, as explored in this paper, is focused on dif-
ferentiating artists like these even though they share similar
backgrounds. While both artists may seem alike in terms
of influence, the network of future artists citing them as a
past influence sets these two great Jazz musicians apart by
their network structure. Again according to the AllMusic
guide, both artists have Thelonious Monk and Art Tatum
as former influences. However, while future musicians in-
fluenced by Bud Powell also cite these two artists as in-
fluences, those following Sun Ra do not cite Thelonious

1 http://www.allmusic.org. Quotations from June 16th 2019.
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Figure 1: Reference networks of different focal works (di-
amonds), with their preceding references (circles) and pos-
terior work (squares). i nodes (in red) reference the focal
work but none of its predecessors; j nodes (in blue) refer-
ence both the focal node and its predecessors, and k nodes
(in grey) link only to the focal node’s references.

Monk and Art Tatum; they are mostly influenced by Sun
Ra in isolation when compared to Sun Ra’s past influences.
In this sense, Sun Ra is primarily self-sufficient, and as a
consequence, disruptive. In contrast, Bud Powell’s contri-
bution is more related to developing and consolidating an
ongoing field of work. Figure 1 depicts this concept.

The figure shows an influence network and exempli-
fies disruption from the standpoint of the central, diamond-
shaped, focal work. Links represent influence or citations.
In this network, an overall influential innovator will be a
node with a high in-degree, and both Bud Powell and Sun
Ra fit this definition. In contrast, a disruptive node (D = 1)
is singled out and thus self-sufficient compared to it’s past.
In our example, the focal node is cited by other nodes that
tend to refer only to this single node as an influence.

To formalize the metric, let us call the focal, diamond-
shaped node, as a (for artist). There are ni nodes that refer-
ence a’s work and at least one of its predecessors, while nj
nodes reference a but none of its predecessors. There are
also nk nodes do not reference a but reference at least one
of its predecessors. Funk and Owen-Smith’s [5] disruption
index, here called D, is measured as:

D =
ni − nj

ni + nj + nk
(1)

D ranges from -1 to 1. The negative extreme captures
a developing work, one that is mostly cited in conjunction
with its own influences (i.e., ni = 0 and nk = 0). The pos-
itive extreme captures disruption (i.e., nj = 0 and nk = 0).
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Motivated by recent demonstrations of the utility of D in
other fields [5, 18], our work uses this index to examine
disruptiveness of music artists using the AllMusic Guide.
While several authors have tackled the task of understand-
ing innovative artists, songs, and lyrics [2–4, 12, 15, 16], to
the best of our knowledge, no prior effort exists that ex-
plores the disruptiveness of artists.

We opt to explore the AllMusic Guide as such a dataset
has been used as a gold standard to other methods focused
on influence [12, 16]. The guide contains a human-curated
network of artists that influenced one another. This net-
work provides us the contrasting example of Bud Powell
and Sun Ra as a motivator to the importance of consider-
ing disruption. While both artists are influential, analyzing
disruption unveils that one of them consolidates a stream of
influences, while the other destabilizes this stream, shifting
attention towards a different direction.

Our main contributions are (i) providing evidence that
disruption measures provide insight when analyzing mu-
sic corpora based on artist metadata, and (ii) describing
disruption topologies that characterize how disruption hap-
pens in different contexts included in our corpus.

2. BACKGROUND AND RELATED WORK

Before presenting our dataset and results, we discuss previ-
ous work that explored different corpora to understand mu-
sical influence (Section 2.1). Next, we describe the metric
that captures disruption (Section 2.2).

2.1 Influence Analysis in Music Corpora

Understanding musical influence is not a new endeavor [2–
4, 12, 13, 15–17]. Several works have leveraged large
datasets of audio and metadata to investigate historical
trends in music creation quantitatively. Notably, Serrà and
collaborators [15] use the Million Song Dataset to unveil
historical regularities and changes in pitch transition, tim-
bre usage, and loudness in pop music.

Several researchers have used the Billboard charts of
songs most played on radios and streaming as a corpus
representing western pop music. The audio and metadata
about songs and artists in these charts have been used to
characterize trends related to innovation, for example in
lyrics [2], songs [16], and artists [16]. In particular, we
point out the work of Mauch et al. [11] used timbral, tone,
and harmonic information to analyze the sonic dynamics
in the Billboard charts from 1960 to 2010. Their results
point to three historical inflection points in the evolution of
this corpus: 1964, 1983 and 1991.

A complementary approach to the analysis of aggregate
trends is to examine individual artists or songs who have
innovated in their context. Shalit et al. [16] use a dynamic
topic model learned from audio and metadata to evalu-
ate influence and innovation in songs from the Billboard
charts. Their model identifies innovative songs and periods
and suggests that overall, there is no correlation between
how innovative and how influential a song is, with excep-
tions during the early 70s and mid-90s. For this analysis,

Shalit operationalizes innovative songs as songs hard to ac-
count for by a model trained with data from the past. On
the other hand, a song is influential if its language is used
by subsequent work. Authors have also studied influence
for particular settings such as Electronic Dance Music [4].

2.2 Measuring Disruptive Influence/Innovation

Our work is inspired by the network measure proposed by
Funk and Owen-Smith [5] to study technological change.
Funk and Owen-Smith propose a network model and the
D index, which "quantifies the extent to which an inven-
tion consolidates or destabilizes the subsequent use of the
components on which it builds" [5]. The index (detailed
in Eq (1)) is built on the notion that disruption should be
measured by more than the number of references an in-
vention has in subsequent work. Besides that, a measure
of disruption must consider the structure of previous and
subsequent work that form the context of the invention.

In their original work, the authors leverage a compre-
hensive database of patents to validate that their index
quantifies how consolidating or destabilizing inventions
are and that this information is uncorrelated with the sheer
impact of innovations. More recently, Wu et al. [18] val-
idate this same index in datasets of scientific papers and
software products. Moreover, Wu et al. show that in the
context of papers, software, and patents, disruptive inno-
vation is more associated with smaller teams and work that
cites prior efforts further in the past.

3. METHODOLOGY

To describe how we measure disruption in the AllMusic
guide, we first detail how we identified artist pages and
influence edges from the AllMusic website (Section 3.1).

Different from other datasets where disruption has been
measured [5, 18], the AllMusic guide presents a human-
curated graph of influences. While from one perspective
this is an advantage (e.g., provides explicit opinions of mu-
sic editors), it is apparent that the information about influ-
ences is not complete, and it is likely less complete than
in datasets created from of patents and scientific papers.
One other particularity of our network is that it widely suf-
fers from biases towards modern occidental musicians who
achieved considerable success. To tackle the disadvantages
related to sparse counts, we employ a Bayesian approach
to measure disruption (Section 3.2).

3.1 Crawling the AllMusic Guide

AllMusic is a comprehensive catalog of artists, albums and
songs. The AllMusic website contains Artist Profile pages
that detail an artist’s biography, discography, genres, styles
and links to other related artists, among other information.
The list of related artists details those that are similar, have
influenced, followed, or have worked with the owner of
the profile page. Artists said to influence a given artist ac-
cording to the site are those "that have had a direct musical
influence on, or were an inspiration to, the selected artist,
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AllMusic influences dataset. For in degrees, 18,281 nodes
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Figure 3: Proportion of artists with either in or out degree
different from zero tagged with the 10 most popular genres,
and number of artists active per decade.

as determined by our music editors" 2 . Being a human-
curated graph, there are several situations an artist influ-
ences a contemporary musician, band or singer.

We use AllMusic to create a network of influences
among artists. Data were obtained by exhaustively crawl-
ing the website. The crawler started with a list of ap-
proximately 73,000 thousand AllMusic URLs present in
the open MusicBrainz 3 database. We note that not all of
these URLs were valid artist page addresses (e.g., some
were wrong or deleted links). Nevertheless, we crawled
the correct ones and followed their links in a snowball ap-
proach [7]. In particular, we followed links to every related
artist until crawling we found no new artists. Even though
we only use the influence edges in our analysis, to gather
as much artists as possible, we crawled all of the similar,
influenced, followed, member of egdes.

For each visited artist page, the crawler saves the artist’s
name, decades of activity, genre, style, and list of influ-
encers. The resulting set of artists from the crawler has
162,971 members, connected by 119,961 directed edges.

2 https://www.allmusic.com/faq/topic/influencedby
3 https://musicbrainz.org/

Cited a Did not cite a

Cited a’s influences nj nk
Did not cite a’s influences ni everything else

Table 1: 2x2 Contigency Table used for Computing D

After filtering out artists with no influencers cataloged in
AllMusic, our dataset comprises of 32,568 artists con-
nected by 119,961 directed links, where a link from artist a
to b denotes that a has been influenced by b. When we con-
sider the weakly connected components of the graph, 96%
(3,1279) of the nodes are in the giant component. This
indicates that there is an undirected path of influence be-
tween most nodes. This is expected as major hubs, such as
The Beatles, will lead to a mostly connected graph.

To characterize our graph, the in and out-degree dis-
tributions of nodes are shown in Figures 2. Complemen-
tary, in Figure 3 we show the genre distributions and ac-
tive decades of the artists. Both the distribution of in and
out degrees are skewed, with the distribution of in degrees
being considerably more skewed and spanning a more ex-
tensive range. It is likely that influences (outgoing edges)
of an artist are entered manually by editors and are kept
to customary size. Bands or musicians influencing most
artists are The Beatles (indegree 1,492), Bob Dylan (784),
and The Rolling Stones (636), and there are 18,281 artists
with no incoming edges. On the other hand, those with
most extensive lists of influencers (outdegree) are Grate-
ful Dead (36), Sonic Youth (35) and Jimi Hendrix (35).
Concerning genre and epoch, our sample is biased towards
Pop/Rock and artists active from the 80s to the present.

3.2 Measuring Disruption in Sparse Data

One challenge we tackle while computing disruption is
how discuss results regarding D with statistical signifi-
cance. Considering a focal artist a, recall that other artists
may either: (1) cite a only, thus increasing ni; (2) cite a
and a’s past influences, thus increasing nj ; (3) cite a’s past
influences only, increasing nk; or, (4) do cite a nor past
influences. These choices are shown Table 1.

In some of our initial exploratory analysis, we com-
puted disruption in the AllMusic influence graph as is (i.e.,
with no filters nor priors), and found that Eq. (1) would
lead to either very high (D ≈ 1) or very low (D ≈ −1)
scores when ni, nj and nk were very small. One example
is the extreme case where ni = 1, nj = nk = 0. Here, the
metric will unveil a biased D due to the small numbers.

To explain our Bayesian approach, initially note that
Eq. (1) captures the difference between two proportions:

D = pi − pj =
ni

ni + nj + nk
− nj
ni + nj + nk

(2)

Here pi, pj and pk (unused) are proportions. Furthermore,
the counts may be captured by a Multinomial distribution
I, J,K ∼ Multinomial(pi, pk, pk, n), where n = ni +
nk+nj . Here, I, J andK are random variables modelling
the respective counts ni, nj and nk.
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Figure 4: Posterior D̂ for three Jazz Artists. On the left we have a disruptive were 95% of posterior samples are above
zero; in the middle a neutral artist; on the left a developing artist where 95% of posterior samples are below 0.

To model D, one approach would be to use the closed
form for the probability mass function for D = I − J .
One negative aspect of this approach is that it also requires
some assumption on the joint distribution of I and J or
that both are independent. Another approach would be
use statistical tests (see [1] for details). Here, classical
approaches like the Binomial test for proportions have is-
sues with small samples or assume independence in the
choices that lead to the contingency table. Other options
such Fisher’s or McNemar’s test focus on comparing ei-
ther rows/columns or the off-diagonal of the 2x2 table. In
our setting, nj shares a column with ni (see Table 1). Our
Bayesian approach, discussed next, has the advantage that
it that does not require such closed forms or assumptions.

Given that proportions captured by a Multinomial dis-
tribution, for each node of the graph, we can apply a con-
jugate Dirichlet [6] prior on such a Multinomial distribu-
tion. Being a conjugate prior, the posterior will also be a
Dirichlet distribution from which we can sample propor-
tions: p̂i, p̂j , p̂k ∼ Dirichlet(ni + αi, nj + αj , nk + αk).
Here, αi, αk, and αj are prior hyper-parameters. These
can be fine tuned by an analyst to capture prior beliefs. By
sampling from this distribution, we are left with a posterior
estimate of disruption that is defined as: D̂ = p̂i − p̂j .

Suppose we perform 10,000 of such samples. Let, D̂
be the vector os estimates. The average score of this vector
will lead to similar results as the original one (mean(D̂) ≈
D). However, using these samples, we are able to mea-
sure the credibility of our estimates [6]. This credibility
comes from what is called the credible-interval, a Bayesian
analogous of the confidence-interval. While a confidence-
interval measures the probability that some true population
statistic will fall into the range of the interval, the credible-
interval is determined by the posterior samples.

To explain how we capture credibility, consider the case
where ni = 1 and nj = nk = 0. Moreover, consider the
particular choice priors (discussed later), αi = αk = αj =
10. If we measure the fraction of posterior samples greater
than zero P (D̂ > 0), this value is only of 0.58, even if
pi = 1 and pk = 0. Thus, our estimate is 58% credi-
ble. Credibility is thus captured by: (1) P (D̂ > 0) when
D > 0; and, (2) P (D̂ < 0) when D < 0. In other words,
simply the fraction of posterior samples when D that are
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Figure 5: CDF of the disruption D for artists where our
estimation has a minimum confidence of 0.95.

either positive of negative depending on the value of D. If
this fraction is above 0.95, we are over 95% credible for ei-
ther the positive (disruptive) or negative (developing) case.
Figure 4 shows three examples of posterior samples of D̂
for three artists, illustrating the cases when of disruption
and development, and neutrality.

We set our hyper-parameters to the non-informative
case of αi = αj = αk = 10. This choice is based on syn-
thetic samples, where we estimated our credibility scores
for different values of ni − nj and nj − ni. Via simula-
tions using different values of ni, nj and nk, we found that
with these our choices credibility is over 95% only when
|ni − nj | ≈ 10. Moreover, one can notice that these pri-
ors do not bias results towards positive nor negative values
of D̂ (i.e., αi = αj). We argue that this is adequate as it
imposes a minimum difference between ni and nj to have
some credibility in our estimates. Furthermore, we present
disruption values D only in cases where our credibility is
over 95%, using 10,000 samples per node.

Finally, being a human-curated guide, some artists will
suffer from missing given the limited knowledge of the
AllMusic editors. To avoid discussing such cases, we limit
the analysis to nodes with at least three incoming and out-
going edges after disruption is computed.

4. DISRUPTIVE ARTISTS

We now explore the most and least disruptive artists in our
data. Figure 5 shows the distribution of disruptiveness D.
This distribution is concentrated around a median value
close to zero (0.01), with a longer right tail – there are more
highly destabilizing artists than highly consolidating ones.
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Artist D AM Genre ni nj + nk

King Sunny Ade 0.90 International 9 1
Édith Piaf 0.86 Vocal 51 6
Frankie Knuckles 0.70 Electronic 30 13
The Clark Sisters 0.68 Religious 13 6
Mstislav Rostropovich 0.68 Classical 13 6
Los Tigres del Norte 0.57 Latin 14 9
John Cage 0.56 Classical 141 64
Tiësto 0.45 Electronic 10 12
Alfred Brendel 0.45 Classical 13 16
Scott Asheton 0.41 Pop/Rock 16 18
Bernard Herrmann 0.41 Stage & Screen 23 28
Converge 0.40 Pop/Rock 32 45
K.M.D. 0.38 Rap 9 15
Too $hort 0.36 Rap 70 104
Darkthrone 0.35 Pop/Rock 15 28

Table 2: Most disruptive artists in AllMusic with at least
three influences catalogued.

Artist D AM Genre ni nj + nk

Teddy Wilson -0.13 Jazz 7 163
John Coltrane -0.11 Jazz 103 1307
Bud Powell -0.11 Jazz 23 358
Philly Joe Jones -0.10 Jazz 8 121
Geto Boys -0.10 Rap 33 474
Sarah Vaughan -0.09 Jazz 23 495
Pete Seeger -0.09 Folk 22 335
Sonny Rollins -0.08 Jazz 31 641
The Stanley Brothers -0.08 Country 11 308
Augustus Pablo -0.08 Reggae 1 212
Buddy Guy -0.07 Blues 8 611
Roy Acuff -0.07 Country 25 204
Jimmy Reed -0.07 Blues 32 515
Oscar Peterson -0.07 Jazz 15 411
Master P -0.07 Rap 12 530

Table 3: Most consolidating artists in AllMusic with at
least three influences catalogued.

Overall, we also find disruption does not correlate with
the influence of an artist. This measure is captured here
by the number of other artists influenced by a certain artist
(in-degree). This was measured using the linear correlation
coefficient is ρ = −.001. Correlations between disruption
and centrality are further detailed in the next section.

Next, in Table 2 show the 15 most disruptive in our
dataset. None of the most disruptive artists are among the
most influential of AllMusic, and their communities in the
network are very diverse. For example, King Sunny Ade is
a Nigerian musician credited for a significant contribution
in the popularization of juju music worldwide. Accord-
ing to AllMusic, he has been influenced by other juju and
highlife artists such as I. K. Dairo & His Blue Spots and
Rex Lawson, while he has influenced artists from a diverse
stream including Talking Heads and Trey Anastasio, both
from the US. Édith Piaf is a famous French singer with a
similar network structure, bridging influences from earlier
French singers and an assorted group of followers spanning
several decades and countries.

The remaining artists in Table 2 illustrate multiple other
types of destabilizing innovation in various genres. For ex-
ample, Frankie Knuckles and Too $hort are acknowledged
as pioneers of house music and gangsta rap, respectively.
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Figure 6: Network with John Cage as the focal node. Pre-
ceding artists are in yellow, while i, j and k nodes are pink,
green and grey, resp.
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Figure 7: Network with Philly Joe Jones as the focal node.
Preceding artists are in yellow, while i, j and k nodes are
pink, green and grey, resp.

The most influential artist in this list is John Cage, a highly
inventive composer who, according to AllMusic, has in-
fluenced generations of composers, writers, dancers, and
visual artists. Figure 6 shows how the three classical com-
posers cataloged as influences of John Cage are not influ-
ences of many of his followers.

On the opposite side of the spectrum of disruption, Ta-
ble 3 lists the 15 most consolidating artists, according to
D. There is a predominance of jazz artists, who are 6
of the ten most consolidating artists. Jazz instrumental-
ists and singers whose career started after the 1930s are
often characterized by our method as consolidators build-
ing on a stream of shared influences. These artists share
a set of influences with many others. Figure 7 illustrates
one such case for the jazz drummer Philly Joe Jones, who
shares the influences of Art Blakey and Max Roach with a
large number of other jazz drummers, including most sub-
sequent work. Geto Boys and Augustus Pablo have a sim-
ilar neighborhood structure in the Rap and Reggae genres.
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Figure 8: Correlation of Disruption with six node importance measures.

Overall, the examination of artists identified as most
and least destabilizing points to the expressiveness of this
method. This approach highlights artists who have not
necessarily influenced a large number of other artists, so
this information is not readily available based on a direct
quantification of impact. Moreover, our face validity anal-
ysis promptly links high valuations of disruptiveness with
widely known stories of innovation. Most interestingly,
these stories are diverse in their geography, genre, and
epoch, even if mined from a considerably biased dataset.

5. DISRUPTION VS CENTRALITY

We now investigate to what degree the disruption scores
provides information that is not already available through
other metrics of network topology. To do so, we measure
six different node importance scores using our full graph:
the Indegree Centrality (normalized indegree), Outdegree
Centrality (normalized outdegree), Pagerank [14], Katz [8]
Centrality, Hub Scores [10], and Authority Scores [10].

We correlated each score with the disruption index of
artists. Figure 8 presents the relation of each score with D
together with Kendall’s rank correlation (τ ) for each case.
We resort to Kendall’s coefficient, τ , as it addresses ties
(e.g., nodes with the same in degree) and is able to uncover
both linear as well as non-linear relationships [9].

The patterns in the figure and τ scores point that most
metrics do not correlate with disruptiveness. The only
cases were moderate negative correlations were uncovered
were: Out degree centrality (τ = −0.29) and Authority
score (τ = −0.36). A small negative relation also exists
for Hub scores (τ = −0.11). Nevertheless, these scores
are moderate at best. Such a result is relevant, as it shows
that disruptiveness values are not easy to recover using
standard node scores from complex networks.

In summary, our results in this section combined with
our discussion in the previous section, point to the rele-
vance of measuring disruptiveness. The D index unveils
insightful patterns on the AllMusic corpus that are not triv-
ially explained by other network centrality scores.

6. DISCUSSION AND FUTURE WORK

In this paper, we present the first in-depth analysis of dis-
ruption in a music corpus. More importantly, we argue in
favor of a Bayesian disruption index. While our analysis is
limited to a dataset, the approach we here discuss is gen-
eral enough to be used in other settings. In particular, we
note data analysts may tune choices of hyper-parameters to
their prior-beliefs for different datasets.

Our contributions bring two main implications. First,
our examination of the validity of the disruption index sug-
gests it can be applied to music corpora. Second, our anal-
ysis of disruptive artists in the AllMusic guide shows new
information about artists in this guide that may be taken
into account in musicological analyses.

At the same time, both of these directions call for rel-
evant future work. In particular, further validation of the
disruption index with other contexts seems very relevant,
to understand its applicability to other musical traditions
or to networks formed by albums or songs, for example.
In complement to this direction, musicological analyses
that use disruption to provide deeper insight leveraging this
data is necessary to further validate the usefulness of the
approach we here presented.

Reproducibility: We point out that our source code
for data collection, analysis and for the figures and
tables in this paper, as well as the dataset used, is
available at: http://github.com/flaviovdf/
allmusic-disruption.
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ABSTRACT

Prevalent efforts have been put in automatically inferring
genres of musical items. Yet, the propose solutions often
rely on simplifications and fail to address the diversity and
subjectivity of music genres. Accounting for these has,
though, many benefits for aligning knowledge sources, in-
tegrating data and enriching musical items with tags. Here,
we choose a new angle for the genre study by seeking to
predict what would be the genres of musical items in a tar-
get tag system, knowing the genres assigned to them within
source tag systems. We call this a translation task and iden-
tify three cases: 1) no common annotated corpus between
source and target tag systems exists, 2) such a large corpus
exists, 3) only few common annotations exist. We propose
the related solutions: a knowledge-based translation mod-
eled as taxonomy mapping, a statistical translation mod-
eled with maximum likelihood logistic regression; a hybrid
translation modeled with maximum a posteriori logistic re-
gression with priors given by the knowledge-based transla-
tion. During evaluation, the solutions fit well the identified
cases and the hybrid translation is systematically the most
effective w.r.t. multilabel classification metrics. This is a
first attempt to unify genre tag systems by leveraging both
representation and interpretation diversity.

1. INTRODUCTION

Music genres have been long studied as semantic dimen-
sions of artists and tracks [8]. Rooted in musicology, music
experts have mainly undertaken this endeavour. With dig-
itization of music and prevalence of Internet music con-
sumption, online communities have also shown increasing
interest in annotating musical items with genres (e.g. cre-
ating folksonomies such as Lastfm). In addition, crowd-
sourced, web-based encyclopedias that describe and struc-
ture music-related knowledge including genres, have been
created and openly disseminated [4, 37, 41].

Apart from ontologically describing musical items, gen-
res are also among the most common attributes of tracks,
albums and artists to which the users of music streaming

c© Elena V. Epure, Anis Khlif, Romain Hennequin. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Elena V. Epure, Anis Khlif, Romain Hen-
nequin. “Leveraging knowledge bases and parallel annotations for music
genre translation”, 20th International Society for Music Information Re-
trieval Conference, Delft, The Netherlands, 2019.

services relate [21]. Users resort to genres to discover mu-
sic, create playlists, define their profiles, foster interactions
with other users, etc. Hence, being able to correctly infer
music genres as metadata is central to such tasks.

Music genre is a challenging concept to model and
highly subjective. Past studies [11, 18, 33, 36] convey how
difficult it is to agree upon shared definitions and inter-
pretations, even for popular genres. People interpret gen-
res differently, influenced by their culture, personal pref-
erences or acquired musicological knowledge [11, 18, 33].
Genre representations within tag systems vary [31] with
respect to: the level of detail (how specialized genres can
get); the coverage (which genres are considered); the genre
interpretation (pop/rock could be distinctly defined and in-
terpreted across sources); how genres are related (blues
rock is a subgenre of rock, but not of blues in the MuMu
dataset [16, 22]). Divergences also result from the spelling
variability (e.g. alternative rock vs. alt. rock).

The research question we address in this work is: given
annotations with genre tag systems of multiple sources,
how to infer the equivalent annotations within a target tag
system? We refer to this as a translation task, but we do
not necessarily seek to translate tags between languages.

When relying only on the definition of the sources
and target tag systems, this task could be solved using
taxonomy mapping [27, 29]. A taxonomy is a classifi-
cation schema with concepts organized from general to
specialized. The goal of taxonomy mapping is to align
the concepts of the source and target taxonomies. Re-
lated works integrate commercial catalogues [24,29], align
multi-lingual taxonomies [34,35,43] or restructure existing
taxonomies [26,27,38] in supervised or unsupervised man-
ners. Ontology mapping [23] is a similar task, in which
additional relation properties and axioms can be exploited.

A solution focused on taxonomy mapping is nonethe-
less incomplete as it does not consider the application of
the taxonomies in practice, which could reveal divergences
in genre interpretation. Thus, we hypothesize that a ro-
bust translation is built not only on the definitions of genre
tag systems, but also on their use for annotations. In ac-
cordance with the terminology of the Automatic Machine
Translation domain [9], we call a corpus of items jointly
annotated by multiple sources a parallel corpus.

The contribution of the current work is a translation sys-
tem that effectively leverages knowledge-based and statis-
tical methods for genre translation in three cases:
1. A cold-start case, when genre tag systems of the target
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and sources are known, but there is no parallel corpus.
We address this case with a Knowledge-Based (KB)
system based on taxonomy mapping (Section 3).

2. Many parallel annotations are available allowing to
learn mappings between genre interpretations (e.g.
when some sources use alternative rock the target tends
to use alt. rock and indie rock). To deal with this case,
we use a simple linear multilabel classifier, namely a
logistic regression model trained with Maximum Like-
lihood (ML) (Section 4.1).

3. The case in-between when less annotations are avail-
able and some target tags may be missing in the parallel
corpus. We tackle this scenario with an hybrid Bayesian
approach that leverages the KB translation as a prior for
the logistic regression model trained with Maximum A
Posteriori (MAP). This case, presented in Section 4.2,
is the most general. Finding an effective solution for it
has multiple positive implications for practice.

We release the code of these methods for reproducibility 1 .
The Music Information Retrieval (MIR) community

has extensively studied the automatic genre annotation
of musical items by exploiting the content (e.g. audio,
lyrics) [10, 16, 22]. Other genre representations, tackled
in [2,20,31,41], create genre graphs from multiple knowl-
edge sources. Yet, to our knowledge, there is no past work
translating music genres from one tag system to another
(e.g. from Discogs to Wikipedia) by leveraging the diver-
sity of both genre representations and interpretations.

We resort to item annotation to assess the proposed
translation methods. To reflect a real-life context [7], we
consider a musical item annotated with multiple source tag
systems; having multiple labels and not only broad genres
such as rock, but also very detailed subgenres, which re-
sults in predicting among hundreds of possibilities. Lastly,
combining multiple tag predictors in a Bayesian frame-
work was done before [10, 39]. However, these works ag-
gregate information from different predictors in the same
tag system while we consider several tag systems.

2. NOTATIONS AND PROBLEM FORMULATION

In this work, we denote matrices by bold capital letters, M;
vectors by bold lower case letters, v; the n-th row vector of
matrix M by mn; scalars by italic lower case letters, x; the
coefficient at row i and column j of matrix M by mij ; the
i-th element of vector v by vi. Calligraphic font is used for
sets of sets (e.g. S) and capital letters for sets (e.g. S).

Let D be a set of tag systems, S a subset of D, hence-
forth referred to as source tag systems, and T ∈ D, T 6∈ S
henceforth referred to as a target tag system. Further, we
refer to a tag system as a tag set, but we stress that it may
contain broader information such as relations between gen-
res (e.g. taxonomies or ontologies). The research problem
we address is: given S, T and a set of tag annotations (e.g.
associated with a given musical item) taken from S, what
would have been the corresponding tag annotations if the
tags had been taken from T . We note S = ∪E∈SE the

1 https://github.com/deezer/MusicGenreTranslation

union of the source tag systems, and |S| its cardinality.
The approach we adopt consists in defining a translation

scoring function f : P(S) → R|T |, where P denotes par-
titions over S, that predicts translation scores for every tar-
get tag from a set of source tags. Estimating such a scoring
function is a standard setting for multilabel classification.

3. KNOWLEDGE-BASED GENRE TRANSLATION

We propose a translation method based on multiple genre
taxonomies brought together under a genre graph. Sec-
tion 3.1 introduces the graph types of concepts and rela-
tions and presents the genre taxonomies. In Section 3.2,
we show how we create the links between the genre tax-
onomies using advanced normalization and tokenization.
In Section 3.3, we define the translation scoring function f
by exploiting the genre graph structure and its relations.

3.1 Building a knowledge-based genre graph

We automatically derive an undirected genre graph by ag-
gregating multiple genre tag systems (e.g. taxonomies,
ontologies or social tags), created by either experts or
non-experts as in [2, 20, 31, 34]. Its modular design al-
lows to easily integrate new sources through a normaliza-
tion pipeline that addresses much more variability of genre
strings than the existing works [30, 41] (presented in Sec-
tion 3.2). The knowledge sources used to build the cur-
rent version of the genre graph are: DBpedia (English,
12443 genres), and Lastfm (327 genres), Tagtraum (296
genres) and Discogs (296 genres)–the taxonomies released
in the 2018 MediaVal AcousticBrainz Genre Task [7]. The
Discogs genre taxonomy is pre-defined by experts. The
Lastfm and Tagtraum genre taxonomies are automatically
inferred from social tags with the approach proposed by
Schreiber [30], followed by a manual processing [7].

The types of relations between genres vary across
sources. In DBpedia, the retrieved types for each genre are:
subgenres, origins, aliases–various spellings of the same
genre, and derivatives–genres which are influenced by this
genre, but could not be considered subgenres. The other
knowledge sources contain only subgenre relations.

Each genre tag system becomes a graph by adding a
source node that connects all the genre tags as in Figure 1.
Then, to connect these decentralized graphs, a normalized
graph is produced from all available tags. Each original
tag is connected to its normalized form in the normalized
graph. The description of how we normalize genres and
create the normalized graph is continued in Section 3.2.

Figure 1: Genre graph extract. Dashed edges link the orig-
inal genre tags to their normalized versions.
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3.2 Normalizing genre tags

We create a more robust normalization pipeline compared
to the related works [29,30,35,41] that, apart from basic to-
kenization and normalization, also separates words written
together (e.g. poprock in pop and rock). The basic tok-
enization splits tags by non-alphanumeric characters (e.g.
"-", "_"). The basic normalization converts tags to lower
case and brings tags containing "&", "+" and "’n’" to the
same form (e.g. d+b, drum’n’bass and drum and bass).

For the advanced tokenization, we use a modified trie
[12] and a probabilistic tokenization built on Wikipedia
unigrams [3]. A trie is a tree data structure that efficiently
stores and retrieves strings. Each node has a char and a
flag to mark if the path from the root to it forms a word.
We modify the way we populate the trie as follows. At
first, we sort the tokens obtained from the basic tokeniza-
tion and normalization, ascendingly by length. Then, we
add the tokens of DBpedia with less than l letters directly
to the trie 2 . For the others, we attempt to split them using
the trie and only the unknown words are added to the trie.

The tokenization using the trie is a recursive greedy al-
gorithm that aims at matching the longest possible words
in the trie. If a recursion fails, we explore the path with the
next best previous word instead. If we assess the split out-
put as incorrect, meaning that it results in too many short
words, in short suffixes, or fails to split a large tag, then we
use the probabilistic tokenization.

The probabilistic tokenization uses dynamic program-
ming to find the words best maximizing their probability
product. The frequency of each word, assuming that they
are independently distributed, is approximated using the
Zipf’s law [44] to 1

nlog(N) , where n is the word rank [42]
and N is the total number of Wikipedia unigrams. We
again assess the split output. Some extra conditions are
added besides those presented in the previous paragraph:
a Wikipedia split is incorrect if there are single letters as
middle words and if no word is already contained in the
trie 3 . If this tokenzation fails, we add the token as it is.

Finally, we transform the obtained tokens in nodes in
the normalized graph (see Figure 1). There are three types
of nodes: 1) normalized composed genres (e.g. altern rock,
deep house), 2) concepts which are words that do not repre-
sent genres but are part of the name of multiple genres (e.g.
nu in nu jazz and nu metal); 3) concept genres which are
standalone genres but can be also part of composed genres
(e.g. punk in post punk). If a genre is tokenized, its tokens
are sorted and concatenated becoming a composed genre
node as in [30] (e.g. music rock in Figure 1). This node is
then connected to its concept and concept genre nodes.

3.3 Translating Genres through DBpedia Mapping

Using intermediate mapping spaces such as taxonomies or
pivot languages has been explored in past works to match
multi-lingual [35, 43], multi-cultural [27] or e-commerce
[26, 29] taxonomies. Similar to [27], we use DBpedia, an

2 DBpedia seeds the trie as it has the highest coverage and we set l=7.
3 As we already added to the trie short genre and concept tags from

multiple sources, we assume the probability of all words to be new is low.

ontology derived from Wikipedia infoboxes [19] as it has
the highest genre coverage and quite high quality. How-
ever, to map a genre to DBpedia genres, we avoid using
string similarity as it can be very noisy (e.g. pop vs. bop).
Instead, we leverage genre knowledge to create a mapping
strategy as we further present. Most related works rely
on the structure of taxonomies for mapping the source and
target concepts [24,27,29,35,43]. Our solution uses struc-
tural information too, but differently. Specifically, we use
the neighbours of the source and target concepts and the
structure of the directed DBpedia graph.

We map each genre of the source and target tag system,
to the genres of the DBpedia ontology: B ∈ D. We assume
B /∈ S and B 6= T . For each input tag system D, with
D ∈ S or D = T , the output of the mapping is a matrix
ZD ∈ R|D|×|B|, where each row represents the relatedness
of a genre tag from D to the DBpedia genres. We compute
the mapping matrix ZD by applying the following steps for
each tag s ∈ D:

1. Normalize s with the process described in Section 3.2
(e.g. Rock/Pop becomes pop rock).

2. Check if the normalized s equals any normalized genre
of B. If true, all entries in ZD linked to the DBpedia
aliases of the found genres are set to 1 and all others to 0
(e.g. acid house is mapped to Acid_house, with aliases
Acid_(electronic_music), Warehouse_music, etc.).

3. If the normalized s is not inB, then map it using its con-
text genres inD: compound swith each parent tag inD
and check if the normalized compounded tag equals any
normalized genre ofB (inspired from [43]). If true, pro-
ceed as in Step 1. (e.g. stoner has parent rock in Lastfm;
search by rock stoner and map it to Stoner_rock).

4. If Steps 2 and 3 are unsuccessful, consider two cases:

(a) s is a concept genre as defined in Section 3.2. First,
retrieve the DBpedia directed subgraph composed
of the nodes which contain the normalized s as a
substring in their normalized form. Second, map
s to the nodes with the highest in-degree central-
ity [5] in this subgraph. The intuition is that con-
cept genre nodes are more likely fundamental mu-
sic genres; hence they tend to have many subgen-
res or related genres. Third, assign to the selected
DBpedia genres and their aliases a score of 1 di-
vided by the number of selected nodes, and to the
others 0 (e.g. rock does not exist as is in DBpedia.
To map it, we retrieve all tags that contain it such
as Punk_rock, Art_rock, Rock_music, etc. We ob-
serve that Rock_music is the most connected node
in the subgraph with the genres containing rock.
As only one node is selected, we assign to it and
its aliases a score of 1).

(b) s is a composed genre as defined in Section 3.2.
First, select from the normalized genres inB those
that share the greatest number of words with s.
Second, select from this list, the genres with the
highest number of shared concept genres–if it is 0,
then the initial selection is kept unchanged. Third,
assign scores as in Step 4(a).

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

841



5. For each genre in B associated to s in Steps 1–4, prop-
agate half of the value of its score to its neighbors in B.
The intuition is that parent genres or subgenres could
be relevant and sometimes specified by other sources.

For each s not mapped in the previous process, we com-
pute its scores by averaging the rows in ZD of its related
genres in the input taxonomy D (e.g. for aor which is not
found in DBpedia, we compute the scores by assigning it
the scores obtained for rock, its parent genre in Discogs).
Finally, the relatedness of a source genre s ∈ S and a target
t ∈ T is computed using cosine similarity between their
corresponding rows s = zSs and t = zTt in the mapping
matrices, ZS and ZT . We define WKB ∈ R|T |×|S| such
that wKBts = sT t

||s||2||t||2 . The translation scoring function is:

ft({s1, s2, . . . , sK}) =
K∑
k=1

wKBtsk = xTwKBt , (1)

where x is the binary encoded vector of {s1, . . . , sK}.

4. DATA-INFORMED GENRE TRANSLATION

In this section, we consider that a parallel corpus is avail-
able and present two statistical approaches: ML that relies
only on annotations (Section 4.1), and MAP that leverages
the KB results as a prior knowledge (Section 4.2).

4.1 Maximum Likelihood logistic regression

In statistical approaches to the tag translation task, we seek
to train a parametric mapping to model the probability
P (y|x) of having a collection of target tags (encoded as
a binary vector y ∈ {0, 1}|T |) given the source tags (en-
coded as a binary vector x ∈ {0, 1}|S|). We assume the
independence of the target tags, and only seek to model
the conditional probabilities P (yt|x). This comes down to
training |T | binary classifiers, also known as binary rele-
vance. There are more elaborated settings for doing mul-
tilabel classification without the target tag independence
assumption. We notably also tested classifiers chain [28],
but it did not result in significant improvement over the re-
sults presented in Section 5.3, while increasing the system
complexity. We propose to implement binary relevance
with logistic regression [40]. Logistic regression models
the probability of having the t-th target tag yt given the
source tags x and the parameters of the logistic regression
θ = {W,b}, W ∈ R|T |×|S| b ∈ R|T |; as:

P (yt = 1|x, θ) = σ(wTt x + bt) (2)

where σ(x) = 1
1+exp(−x) . W is called the weights

matrix and b the bias. Note that, for the statisti-
cal approaches, the scoring function f introduced in
Section 2 is defined here as f({s1, s2, . . . , sK}) =(
P (y1 = 1|x, θ), . . . , P (y|T | = 1|x, θ)

)
. To train a logis-

tic regression model we maximize the log-likelihood of the

targets, given the source tags, w.r.t. the parameters θ:

L = logP (Y|X; θ) =
N∑
n=1

yTn log(σ(Wxn + b))+

(1− yn)T log(1− σ(Wxn + b))

(3)

where N is the size of the parallel corpus; X =
[x1, ..., xN ]T ∈ {0, 1}N×|S|; and Y = [y1, ..., yN ]T ∈
{0, 1}N×|T |. In practice the regularization term 1

2 ||W||
2
F

is added to L in the objective, where || · ||F denotes the
Frobenius norm on matrices, to limit overfitting.

4.2 A unified translation model

While ML logistic regression can be expected to work well
with large amounts of parallel annotations, they will not
adapt well to settings where no or little parallel data is
available. In a real-life scenario, the size of the parallel cor-
pus can range from zero to tens of thousands of samples,
which precludes systematically favoring one or the other.
Defining a criterion for when to switch from KB to statisti-
cal translation is arduous since this criterion would depend
on the number of source and target tags as well as on their
distribution. Ideally, we would like to have knowledge-
based performances when no parallel data is available, and
a smooth way to transition towards more data-abundant
settings. This leads us to consider the translation table
WKB given by the KB system as a prior in a Bayesian
framework, using the MAP [6] objective. Instead of max-
imizing the likelihood of the target tags, given source tags
and parameters, we maximize the posterior probability of
the parameters given the source and target tags:

P (θ|x, y) ∝ P (y|x; θ)P (θ|x) = P (y|x; θ)P (θ). (4)

By assuming, for each target tag t a normal distribution for
wt centered around wKBt with a precision matrix Λ = λ2I
(λ is independent of t), we can write the logarithm of the
prior distribution as:

log(P (θ)) =
λ2

2
||W−WKB ||2 + cte. (5)

We also consider a centered Gaussian prior on the bias
(corresponding to a l2 regularization). We then define:

Lprior =
λ2

2
||W−WKB ||2 + ν||b||2. (6)

Using (3), (4) and (6), the final MAP objective becomes
LMAP = L + Lprior, where the first term is the loss of Eqn
(3), and the second can be seen as a regularization term on
the weight matrix W that penalizes its straying away from
the priors. L depends on the number of training samples,
while Lprior does not. Therefore, L becomes the predomi-
nant term in the loss as the size of the training data grows,
leading to an objective function very close to the one of
the logistic regression of Section 4.1. Conversely, when
little data is available, we can expect the performances to
be close or better than those of the KB system.
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When a large parallel corpus is available, we can choose
λwith grid search on a validation set. This is computation-
ally expensive, and does not adapt well when the parallel
corpus is small. For the sake of adaptability, we hereby
propose a principled way inspired by [15] to choose λ, that
does not require a lot of data while achieving top results.
The rationale builds on the limited effective range of the
logistic regression parameters. A shift of 5 of wts in the
logit scale can move the probability associated with the
target tag t from 0.5 to 0.99 or from 0.01 to 0.5. Hence,
we would tend to choose λ in such a way that bigger shifts
in the predicted probability of the target tag, which is the
result of the added shifts for each annotated source tag, are
unlikely. If we note N̄S the average number of source tags
per sample (which can be estimated with a few samples),
this would mean restricting the coefficients wts from shift-
ing by more than 5

N̄S
. For a normal variableX ∼ N (µ, 1

λ )

we have P (X ∈ [µ− 2√
λ
, µ+ 2√

λ
]) ≈ 95%, we therefore

propose to choose precision λ such that:

2√
λ
≈ 5

N̄S
(7)

5. EXPERIMENTS

We report the performances of the proposed models on a
recording-based tag translation task. This also serves as an
indirect evaluation of the DBpedia mapping, which, in a
work dedicated to taxonomy mapping, could have been as-
sessed by experts. Due to its novelty, we do not benchmark
our work against other genre-related research from MIR.

5.1 Dataset

The dataset used in the experiments was created from the
dataset used in the 2018 AcousticBrainz Genre Task, part
of the MediaEval benchmarking initiative [7]. The dataset
in its original form was aimed at testing the automatic
genre annotation from content-based features of musical
items in a more challenging setup compared to past works.
For each item, annotations from different sources were
available, each source taxonomy was much more detailed
with hundreds of genres-subgenres, and the overall task
was modeled as a multi-label classification. The sources
were already introduced in Section 3.1. We further de-
scribe how the provided dataset was created. In Discogs,
the release annotation was propagated to tracks. In Lastfm
and Tagtraum, each track was annotated with music gen-
res and subgenres from the derived taxonomies [7]. We
present an overview of the dataset in Table 1.

Dataset Discogs Lastfm Tagtraum
Annotation type Expert User User
Items 1,098,337 686,979 589,584
Number genres 315 327 296

Table 1: Description of the dataset [7].

Although the data was already split between develop-
ment, validation and test [7], we brought several modifi-

cations to accommodate the translation task. We created a
large dataset comprising the original development and val-
idation data. In order to assess a notion of confidence on
the computed metrics, we resorted to K-Fold cross valida-
tion [14]. For each possible target, we splitted the data in
4 folds using stratified sampling. First, we filtered out the
items which were not annotated in the target tag system.
Then, we used an altered version of the iterative stratifica-
tion algorithm in [32] in order to ensure that the proportion
of items for each target label was roughly the same across
folds. Following [13], we added the constraint that items
belonging to the same artist had to be assigned to the same
fold. For that, we used MusicBrainz artist ids retrieved
from the recording ids provided in the MediaEval data.

5.2 Evaluation setup

The presented models output a score for each target tag that
relates to the confidence of this tag being used in the target
annotation. We evaluated these outputs with a ranking met-
ric called Area Under the receiver operating characteristic
Curve (AUC), as commonly done in multilabel classifica-
tion [22]. The (macro) averaging is over target tags and
measures the ability of the system to rank higher a positive
tag than a negative one. Specifically, shifting the values in
a column by the same factor (or changing the values of b
in the logistic regression) does not change the AUC macro
score, being in that sense, unaffected by item popularity.

We evaluated the logistic regression models on each
fold and trained on the three others. We uniformly sub-
sampled the training data to simulate low data availabil-
ity and chose subsampling factors as powers of 2 between
2−13 and 1. Consequently, for the smallest subsampling
factors, some source and target tags may not be present
in the training data. We used scikit-learn [25] implementa-
tion for ML logistic regression, with L-BFGS as the solver.
We wrote a Tensorflow [1] implementation of MAP logis-
tic regression. The Adam optimizer [17] was used, with a
learning rate of 0.5. We trained the model for 500 epochs
with batches of size 100000 or with the full training set if
there were less samples. λ was chosen using Eqn 7.

5.3 Results

Figure 2 illustrates how the ML translation eventually out-
performs the KB model when enough data is available,
while the latter performs much better when little data is
available. The MAP translation successfully builds on the
KB translation to yield the best results across the whole
data availability spectrum. A simple baseline based on tag
Levenshtein distance is also shown. Using only a source
instead of two (e.g. only Lastfm) led to the same kind of
behavior. While we currently proposed one method to ob-
tain the KB translation table, we could also imagine it re-
placed by an expert-created one, if desired.

The fact that the MAP logistic regression performs con-
sistently well on all the translation tasks is favorable evi-
dence towards the choice of λ given in Eqn 7 as a good
default, which we also confirmed using a grid search. Fur-
thermore, we see that the MAP logistic regression lever-
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(a) Translation from Lastfm and Tagtraum to Discogs

(b) Translation from Discogs and Tagtraum to Lastfm

Figure 2: AUC scores for the three models per amount of
training samples (log-scale). The width of the area around
the lines marks the standard deviation computed on folds.
KB yields a constant value as it is data-independent.

ages even low amounts of training data to improve over the
KB model, and even more so when applying regularization
on the bias. We further explain this effect by analyzing how
the AUC scores compare on a per-tag basis.

Figure 2 shows that MAP logistic regression with bias
regularization can achieve better AUC scores than the KB
translation, even on target tags absent during training. We
argue that this is due to the regularization term on the bias
that enables to learn negative correlations between tags.
When no bias regularization is used, the optimal set of
parameters for a tag t missing from the training data is:
(w?t , b?t ) = (wKB

t ,−∞). Indeed, we see in Figure 3 that
the MAP results are very close to those of the KB model.
This is not true anymore with bias regularization. The gra-
dient of the cost function w.r.t. wt can be written as:

∂LMAP

∂wt
= [ŝσ(wts + bt) + λ2(wts − wKB

ts )]1≤s≤|S| (8)

where ŝ is the number of times (possibly 0) the source tag
s appears in the training set. We therefore see that as wts
gets closer to wKBts , the term ŝσ(wts + bt) will start to
outweigh the second. Applying a gradient step will tend to
decrease wts, away from wKBts , and even more so when ŝ
is large (popular tags) and bt is close to 0 (controlled by
the regularization term), hence the negative correlation.

Finally, it is worthwhile to mention that the AUC metric
relies on occurrences and is thus arguably biased towards
statistical methods. We end this section by taking a qual-
itative look at how statistics modified the similarities be-
tween source and target tags, in particular for those with

Figure 3: AUC scores for tags that were not in the training
set, subsampled by a factor of 2−12 with Lastfm as target.

very different KB and ML AUC scores. These differences
fall under four explanations:
• Annotation noise: Statistical models learn a very high

similarity between the Discogs tag italo-disco and the
Lastfm tag classicalbritishheavymetal. Both indeed of-
ten co-occur in the data, but are ontologically unrelated.

• The target tag does not have a suitable equivalent in the
source taxonomies. Some Latin and Caribbean music
genres like cumbia, fado, rocksteady or forró are present
in Discogs but are not in Lastfm or Tagtraum. Thus, the
mapping to DBpedia, described in Section 3.3, fails.

• The considered tag is highly ambiguous. Take the ex-
ample of the tag classical. Besides the identical counter-
parts, knowledge-based translation tables also indicates
relatedness to some subgenres of jazz. However, the spe-
cific translation task on which we evaluate appears to be
more biased towards an understanding of classical that
relates to subgenres of metal and electronic music (sym-
phonicmetal, germanmetal, postmodernelectronicpop).

• The existing genre representations are incomplete or
noisy. For instance, baroque has a counterpart in each
taxonomy, but no direct link with classical in DBpedia.
Statistical models find high correlation in the data be-
tween those two tags and so achieve better AUC scores.

6. CONCLUSION

In this work, we investigated the translation of tags from
various source tag systems to a common target tag sys-
tem. We show that the availability of large amounts of data
advantages statistical methods over the knowledge-based
one in terms of multilabel classification metrics. Moreover,
the proposed hybrid method consistently outperforms both
other methods on the whole range of data availability.

Although we did not address multi-language tag sys-
tems, both the knowledge-based approach that uses a map-
ping through the multilingual DBpedia, and the data-
informed approach that only takes advantages of parallel
annotations and is then insensitive to language, should be
able to handle it. As future work, we aim to gather multi-
lingual music genre datasets in order to confirm this claim.
We also aim to exploit more thoroughly the genre graph we
created by adding more knowledge sources and generating
genre representations as node embeddings. We also con-
sider modelling the tag annotation noise, such as missing
or spurious tags, or tag bombing, in order to filter it out.
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ABSTRACT

Drum pattern generation is a task that focuses on the rhyth-
mic aspect of music and aims at generating percussive se-
quences. With the advancement of machine learning tech-
niques, several models have been proven useful in produc-
ing compelling results. However, one of the main chal-
lenges is to generate structurally cohesive sequences. In
this study, a drum pattern generation model based on Varia-
tional Autoencoders (VAEs) is presented; Specifically, the
proposed model is built to generate symbolic drum pat-
terns given an accompaniment that consists of melodic se-
quences. A self-similarity matrix (SSM) is incorporated
in the process for encapsulating structural information.
Both the objective evaluation and the subjective listening
test highlight the model’s capability of creating musically
meaningful transitions on structural boundaries.

1. INTRODUCTION

Music generation has become an increasingly popular re-
search field as machine learning techniques continue to
thrive [3]. Generating symbolic music sequences us-
ing variants of deep neural networks (DNNs) has shown
promising results with various degrees of success [6, 9, 10,
19, 22]. In the meantime, drum pattern generation, a sub-
task that mainly concerns the creation of drum sequences,
receives relatively less attention. While some models de-
signed for melodic sequences could be applied to drums
directly [6,19], techniques developed specifically for drum
patterns are still in need of further exploration.

In Western music genres such as rock, pop, and jazz,
drums usually provide the rhythmic support to melodic in-
struments and reflect the structure of a song. For instance,
drum patterns within the same section (e.g., verse) are typ-
ically derived from the same rhythmic motif, and new pat-
terns such as drum fills would appear around the structural

c© I-Chieh Wei, Chih-Wei Wu, Li Su. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: I-Chieh Wei, Chih-Wei Wu, Li Su. “Generating Struc-
tured Drum Pattern Using Variational Autoencoder and Self-Similarity
Matrix”, 20th International Society for Music Information Retrieval Con-
ference, Delft, The Netherlands, 2019.

boundaries (e.g., from verse to chorus). In other words,
drum patterns not only enhance the rhythmic progression,
but also facilitate the structural segmentation. Addition-
ally, in order to achieve the rhythmic coherence, drum pat-
terns tend to correlate with other instruments (e.g., rhyth-
mic guitar and bass guitar). These particularities suggest
that the structural and rhythmic information from other
instruments is crucial for designing reasonable drum pat-
terns.

To build a model that accounts for the above consid-
erations, we explore the idea of using a self-similarity
matrix (SSM) as an intermediate structural representation
for drum pattern generation. Particularly, we utilize a
Variational Autoencoder Generative Adversarial Network
(VAE-GAN) to predict the corresponding drum SSM given
the SSM of polyphonic mixture of melodic instruments.
Subsequently, another VAE-based model generates MIDI
drum tracks based on the predicted drum SSM. The contri-
butions of this work include:

(i) a new way of incorporating structural information in
the context of drum pattern generation,

(ii) a novel bar selection mechanism that encourages
self-repetition in similar sections, and

(iii) the insights into the model’s capability of handling
transitions between structural sections.

2. RELATED WORK

Drum pattern generation involves the creation of rhythmic
patterns with all types of drums; it is an important subtask
in conditional music generation problems such as multi-
track and lead sheet generation [6, 14]. According to the
input and output representation, drum pattern generation
models can be roughly divided into (i) symbolic-domain
and (ii) audio-domain models.

Systems operating in symbolic-domain work exclu-
sively on discretized representations such as MIDI, a for-
mat that allows systems to concentrate on essential infor-
mation at the semantic level. The majority of prior studies
falls into this category. Some of the early systems adopt
Genetic Algorithms (GA) to create variants of rhythmic
patterns [2, 8, 11, 15] and explore new patterns through a
simulated evolution process. However, designing an effec-
tive fitness function is non-trivial and relies heavily on the
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Figure 1. Block diagram of the proposed drum pattern generation system.

domain knowledge. In addition to GA, probabilistic mod-
els [16] and deep learning-based models [1,7,14] have also
been proposed; these methods generally avoid predefined
rules and learn from the data directly, but their performance
and generality would vary depending on the data source.

Systems operating in the audio domain directly deal
with continuous signals such as waveform. This type of
systems usually has a higher degree of freedom in terms of
the output. Training such systems requires a set of audio
signals with manual annotations. To automate the annota-
tion process, Automatic Drum Transcription (ADT) [21],
another on-going research topic, would be a necessary in-
termediate step. As a result, prior studies in this category
are relative scarce. Donahue et al. proposed to use gen-
erative adversarial network (GAN) for creating audio such
as electronic drum beats [5], yet still, the current resulting
pieces are short clips without long-term structure.

In this paper, we build our system in both audio and
symbolic domains. By utilizing the audio data synthesized
from the symbolic representation, we take advantage of a
large collection of symbolic data and reserve the possibility
of future extension to audio domain. To narrow down the
scope of this task, we focus on generating drum patterns in
Western music genres with a standard drum kit (e.g., Hihat,
Snare Drum, Kick Drum, Toms, etc.). Inspired by previ-
ous studies on structural analysis [17] and self-similarity
constraint for music generation [13], we use SSM to en-
capsulate the structural information and investigate its po-
tential impacts on the generated sequences. More details
are elaborated in the following sections.

3. METHOD

Figure 1 illustrates the flowchart of the proposed drum pat-
tern generation system. We focus on generating drum pat-
terns given a song as a conditional input. The goal of this
conditional generation is to generate drum patterns that are
both rhythmically and structurally compatible to the given
song. To facilitate the preservation of global structure,
we propose a system consisting of two generative models,

namely, the SSM generator and the drum pattern genera-
tor. In the training phase, the MIDI file is separated into
the drum track and the melodic track, followed by the cal-
culation of their corresponding SSMs. The SSM generator
is trained to predict drum SSM based on the given melodic
SSM, and the drum generator is trained to predict drum
patterns based on drum SSM and a bar selection mech-
anism. In the generation phase, two generators are used
sequentially to predict the drum SSM and drum patterns
given the melodic tracks.

3.1 Data preprocessing

The input of the proposed model is the audio rendered from
all the melodic tracks in the MIDI dataset using a software
synthesizer; 1 these audio signals are mono-channel sam-
pled at 44.1 kHz. The advantage of using synthesized au-
dio rather than symbolic data is to enable future adaptation
to real-world audio. The tempo of each song is normalized
to 120 BPM. Every spectrogram calculated from the audio
is denoted as a tensor Y in shape of (b, f, t), where b is the
number of bars, f is the number of frequency bins, and t
are the number of time frames in a one-bar spectrogram,
respectively. In this study, we set b = 8, f = 84, and
t = 96.

For each synthesized audio clip, we first compute the
constant-Q transform (CQT) spectrogram using LibROSA
library. Subsequently, we divide the spectrogram into bars
according to the beat and downbeat attributes in the MIDI
data, and normalize the time step to 96 frames per bar
through linear interpolation. The resulting size of each
single-bar spectrogram is therefore 84×96.

The drum patterns are represented in a binary-valued
matrix B ∈ {0, 1}i×t, where i and t denote the activated
instruments and the number of time steps respectively.

There are two types of SSM used in this work. The
first one is melodic SSM and the second one is drum
SSM. Both SSMs are 256×256 matrices computed using
pairwise Euclidean distance between two sets of bar-level

1 http://www.fluidsynth.org/, last access 2019/06/28
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Figure 2. SSM examples of Can’t Buy Me Love by Bea-
tles. Left: melodic SSM. Right: drum SSM from origi-
nal MIDI drum track. In the two figures, each pixel rep-
resents a Euclidean distance value between two bar-level
spectrograms/symbolic drums and brighter color indicates
a shorter distance (i.e., higher similarity).

spectorgrams. Since different songs vary in length, we
zero-pad all the songs up to a uniform length of 256 bars.
It should be noted that melodic SSM is computed using
CQT spectrogram converted from synthesized audio do-
main data, whereas drum SSM is computed using symbolic
drum track data directly.

3.2 Drum SSM generator

The motivation of generating a drum SSM from a melodic
SSM is shown in Figure 2. It can be observed from Figure
2 that melodic and drum SSM are structurally correlated,
and drum SSM seems to provide a relatively clearer view
of structural boundaries. This difference could originate
from the distinctive roles of percussive versus melodic in-
struments in Western music. For example, in pop or rock
music, drum patterns tend to be homogeneous within a
musical section. Sudden changes of drum patterns usu-
ally occur before transitioning into a new musical section.
As a result, drum SSM could effectively reflect the global
structure. Based on these observations, we assume that (i)
it is possible to infer drum SSM given melodic SSM be-
cause they are highly correlated, and (ii) drum SSM pro-
vides more information about song structure information
than the melodic SSM does.

To explicitly capture structural information of the en-
tire song prior to drum pattern generation, a model that
infers the drum SSM from a melodic SSM is needed. In
this work, we propose a drum SSM generator based on
the VAE-GAN model in [12]. The VAE-GAN model is
a GAN consisting of a VAE-based Generator and a Dis-
criminator. In the training stage, the VAE-based SSM gen-
erator is trained to infer the drum SSM based on the input
melodic SSM, and the discriminator is trained to distin-
guish the VAE-generated drum SSM from the original one.
The model is optimized by minimizing the total loss func-
tion Lssm consisting of three loss terms, namely the recon-
struction loss, KL-divergence loss, and the adversarial loss
LD:

Lssm = −Ev∼qs(zs|sm)[log ps(sd|zs)]
+ KL(qs(zs|sm)‖p(zs)) + LD, (1)

Figure 3. Bar selection mechanism to pick spectrogram
data from the current and the other 7 relevant bars.

where sd represents the generated drum SSM, sm repre-
sents the input melodic SSM and zs is the latent space rep-
resentation of sm.

In the generation stage, we feed the melodic SSM into
the pre-trained generator and obtain the predicted drum
SSM, which will be used in the following bar selection
process.

3.3 Bar selection

To incorporate the structural information into drum pattern
generation, the drum SSM is used in a bar selection mech-
anism. The proposed bar selection mechanism is based on
an assumption that musical bars with higher similarities
are more likely to provide relevant information for gen-
erating compatible drum patterns. To achieve this goal,
we first find the k-nearest bars for every bar-level spectro-
gram according to the drum SSM. These bars are identi-
fied by finding the k smallest values in every column of
the drum SSM. The process is illustrated in Figure 3. In
our study, we set k = 7. The corresponding spectrograms
of these eight bars are weighted and then stacked into an
eight-channel feature representation, which will be used
as the input to the subsequent drum pattern generator (see
Section 3.4). The weighting coefficient of each channel
is 1− norm(d(k, ki)), where ki is the ith nearest bar, d is
the Euclidean distance, and norm represents normalization
over the column of the similarity matrix.

3.4 Drum pattern generator

Figure 4 illustrates the drum pattern generation model. The
model is modified from the VAE proposed by Larsen et
al. [12] The virtue of VAE is its capability of generating
diverse output through simple manipulation in the latent
space. For instance, drum patterns in-between two distinc-
tive rhythmic styles can be generated by morphing the la-
tent vector c and z.

To train this VAE model, we feed the encoder E with
spectrogram and use symbolic drum track data as ground
truth to minimizing the following loss function Ldrum:

Ldrum = −Ez∼q(z|y)[log p(x|z)]
+ KL(q(z|y)‖p(z)) + r(c; ĉ), (2)

where r(c; ĉ) := |c − ĉ|. x represents the generated drum
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Figure 4. Illustration of the VAE-based drum pattern gen-
erator. The 8-bar spectrogram y is obtained from the bar
selection mechanism. The encoder maps the spectrogram
into two latent spaces, a Gaussian vector ẑ and a note den-
sity value ĉ. The values sampled from these two latent
spaces are fed to the decoder to generate drum patterns.

patterns, y is the input spectrogram, and c and ĉ are the
ground-truth and the estimated note density, respectively.

4. IMPLEMENTATION

4.1 Dataset

In this work, we use the Lakh pianoroll dataset (LPD-
5) [6], a collection from cleaned MIDI data in the Lakh
MIDI Dataset (LMD) [18]. LPD-5 contains 21,425 songs
and each song has five tracks (piano, guitar, string, bass,
and drums) extracted from the original MIDI data. The di-
mensionality of each bar in melodic tracks is 128 ( pitch)×
96 (time step). For drum tracks, we process the data with
following steps: (i) remove MIDI pitches (representing dif-
ferent percussive instruments) that are relatively inactive
(e.g., less than 0.1% of all active drum notes); (ii) reduce
time steps from 96 to 16 (see Section 4.2 for more details);
(iii) apply binarization on each activated drum note, and
(iv) calculate the note count in each single bar as a proxy
for note density (rhythmic complexity). This procedure re-
sults in a down-sampled drum matrix with a dimensionality
of 46×16.

4.2 Data cleaning

Although the LPD-5 dataset has included a series of opera-
tions to clean up the original LPD [6], incomplete or noisy
examples can still be found. To further improve the data
integrity, we proceed with the following steps:

First, we remove songs with inconsistent duration after
synthesis. Some tracks contain only a few notes through-
out the entire file, and the empty bars are automatically
removed during synthesis. By excluding these songs, we
ensure the correctness of information regarding song pro-
gression (e.g., beat and downbeat locations).

Second, we remove songs with empty or noisy drum
tracks. Specifically, we estimate the distribution of note
count from drum tracks and exclude the ones that are out-
side of the two standard deviation range. This outlier re-
moval process reduces the noise and avoids issues that
might be induced by data sparsity.

Finally, we apply 16th beat quantization on drum tracks
and remove the notes that are largely shifted during the
quantization process. In LPD-5 dataset, 95% of activated

generation method cosine similarity
OMD 1.0000
ODS 0.9208
PDS 0.9164
NB 0.9056

Table 1. Similarity measure of drum SSMs from different
generation method, higher similarity value indicates less
deviation from original song structure after generation.

drum notes are ether on the 16th beat grid or within a tol-
erance range of 96th beat. Our experiment shows that less
than 5% of drum notes are affected by this data cleaning
process. Therefore, we believe that 16th beat grid is ap-
plicable to provide a compact data representation while re-
taining a meaningful temporal resolution.

4.3 Experimental setup

After the cleaning process, 9,907 songs remain in the
dataset. We randomly split the dataset into 90% and 10%
for training and testing, respectively. For each song, drum
and melodic parts are extracted accordingly. The melodic
tracks are rendered into wave format and transformed into
per-bar CQT spectrogram. For drum tracks, we segment
the data in bar-level and apply binarization. The training
process is done by minimizing the loss function as defined
in Section 3.3 and Section 3.4; the selected optimizer is
ADAM with a batch size of 64. The models are imple-
mented using Tensorflow.

A similar preprocessing procedure is applied to the data
in testing phase. The major difference between the training
and the testing is the source of drum SSM. During testing,
only the melodic SSM is available, and the drum SSM is
predicted using the pre-trained drum SSM generator.

4.4 Model parameters

Both the input and output dimensions of the drum SSM
generator (as described in Section 3.2) are 256×256. The
encoder is composed of eight convolutional (CONV) lay-
ers followed by three fully-connected (FC) layers with skip
connections. The FC layer is connected to a bottleneck
layer that generates a 32 dimensional latent vector. Simi-
larly, the decoder has the same layers in reverse order. The
discriminator is a network similar to the encoder with a
sigmoid output; this activation function is chosen for its
potential probabilistic interpretation.

For drum pattern generation, the architecture of our
VAE (i.e., no discriminator) is similar to the drum SSM
generator. The input and output dimensions are changed to
84×96×8 and 46×16×1, respectively. The total numbers
of parameters for the SSM generator and the drum pattern
generator are around 17M and 62M, respectively. The to-
tal training time for the two models is 84 hours on a single
2080 Ti GPU. More implementation details can be found
in our Github repository. 2

2 https://github.com/Sma1033/drum_generation_with_ssm
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Figure 5. Head-to-head win rate between different models
in the listening test.

5. EVALUATION

5.1 Compared methods

To evaluate the quality of generated drum patterns of the
proposed model, we conduct both objective and subjective
tests on four different derived methods:

• (OMD) Original MIDI Drums are the drum pat-
terns predefined in the MIDI files. These drum pat-
terns are directly taken from the drum tracks and
serve as the oracle samples among all methods.

• (ODS) Original Drum SSM is the model that gen-
erates the drum patterns with our pre-trained drum
pattern generator. In this case, the drum SSM used
for bar selection is computed from the oracle drum
tracks (i.e., OMD).

• (PDS) Predicted Drum SSM is the model that gen-
erates the drum patterns with our pre-trained drum
pattern generator. In this case, a drum SSM used for
bar selection is predicted from melodic SSM using a
pre-trained SSM generator (see Section 3)

• (NB) Neighboring Bars is the baseline model. In-
stead of applying bar selection mechanism, this
model simply includes the neighboring bars (i.e.,
previous 4 bars, current bar, and subsequent 3 bars)
to create the 8-bar feature representation; no infor-
mation from SSM is used. This model ignores global
structure and incorporates local structure naively.

5.2 Objective test

In our objective test, we compute the similarity between
the oracle drum SSM (i.e., OMD) and the SSMs of the
drum patterns generated by ODS, PDS, and NB. This eval-
uation examines the general quality of drum patterns. Ide-
ally, the SSM with high similarity to oracle implies a better
preservation of the structural information. For simplicity,
we use a standard cosine similarity as our metric. We ran-
domly collect 100 drum tracks generated from the LPD
test set, and calculate the cosine similarity between the

Figure 6. Global win rate of different models in pairwise
listening test.

original and generated SSMs. The average of results are
presented in Table 1. Both drum SSM informed methods
(i.e., ODS and PDS) outperformed NB, which suggested
the competence for drum SSM to preserve structural in-
formation. Interestingly, NB can achieve a relatively high
similarity score without any additional information of the
global structure. This result implies the need for a better
and perceptually relevant evaluation.

5.3 Subjective evaluation - pairwise test

5.3.1 Experiment settings

In order to evaluate the perceptual quality of different mod-
els, we conducted a listening test to compare the above
mentioned four methods. In the test, various samples gen-
erated by different methods were presented to participants.
There are 10 trials per test; each trial consists of two dif-
ferent samples derived from the same melodic track. Af-
ter listening, the participants were asked to select the sam-
ple with higher rhythmic compatibility. 10 different songs
are included in the evaluation; 5 songs are randomly se-
lected from LPD-5 test set, and another 5 songs are ran-
domly collected online in order to test the generality of
the methods. In order to examine the model’s capability
of handling transitions, each sample contains a structural
boundary. Particularly, we select samples that include one
transition from the verse to the chorus, and the duration
is roughly 16 seconds. Listening examples are available
online. 3

5.3.2 Results

The evaluation for 1,350 listening pairs are provided by
135 respondents. 67.5% of the subjects have no music
composition experience, and 92% of the subjects have
never played drums. The listening test results are presented
in Figure 6 and Figure 5. Based on the results, the follow-
ing observations can be made:

First, OMD performs the best among all models. This
result is expected since OMD has the most stable and com-
pelling drum patterns compared to the others. However,
the margin between OMD and ODS is relatively small.
One possible explanation is that OMD tends to be highly

3 https://sma1033.github.io/drum_generation_with_ssm/
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Figure 7. A 8-bar example of drum tracks from four different method in sec 5.1

consistent and predictable, and this can sometimes be re-
garded as conservative and even boring. On the contrary,
the unexpected instrumentation or sequences in other mod-
els may accidental attract the audience’s attention.

Second, it appears that both ODS and PDS outperform
NB. To verify the significance of these comparisons, the t-
tests of ODS/NB and PDS/NB pairs are conducted, which
produce the p-values of 0.0087 and 0.001. The results sug-
gest that incorporating SSM in drum pattern generation
models is a promising approach.

Third, the performance of PDS is comparable to ODS.
The statistics from pairwise listening test suggest that the
quality of drum patterns from PDS and ODS are similar
for general public. This result not only indicates the effec-
tiveness of the pre-trained SSM generator, but also shows
the viability of generating meaningful drum patterns based
on melodic SSM.

5.4 Subjective evaluation for professionals

Apart from the aforementioned pairwise test, we also con-
ducted another listening test on professional musicians.
The objective of this test is to collect descriptive feedback
from subjects with extensive experiences in music compo-
sition and drum performance. Two professional drummers
and one professional composer (with experience ranging
from 3 to 14 years) participated in this test. Each partici-
pants was invited to listen to 5 selected songs; each song
contains 3 different drum tracks (i.e., ODS, PDS, and NB)
presented in random order, resulting in a total number of 15
clips. To further investigate the long-term structure of the
generated drum patterns, the duration of each song is ex-
tended to 64 seconds. The participants were encouraged to
provide detailed comments after each trial. The thematic
analysis approach [4, 20] was applied to extract common
themes from their comments in a bottom-up manner. The
results of thematic analysis are described as follows.

The first theme regards the structural compatibility be-
tween the generated drum patterns and the melodic track.
From this perspective, ODS seems to receive the best feed-
back among three competing models. In many occasions,
the comments for ODS include "good distinction between

sections", whereas PDS and NB are rarely mentioned.
Moreover, for transition part between sections, ODS is re-
ported as having active rhythmic changes (e.g., drum-fills).
Overall, the professional listeners seem to prefer ODS in
terms of its structure.

The second theme regards the stability and variability of
the generation result. The comments from professional lis-
teners indicate NB’s ability of generating unstructured yet
unexpected patterns. ODS and PDS, on the other hand, do
not surprise the professional listeners. Figure 7 provides
a visual example of all methods. According to Figure 7,
ODS and PDS are visually more similar to OMD (e.g., bar
5 and bar 7). However, NB does provide unconventional
patterns at several locations, which could be interpreted as
"thinking outside of the box".

6. CONCLUSION

We have presented a conditional drum pattern generation
model to generate drum patterns based on given melodic
tracks. In particular, the model captures the global struc-
ture of melodic sequences using SSM and is capable
of producing structurally coherent drum sequences. Re-
sults from both the objective and subjective evaluation are
promising, and the comments from professional listeners
also highlight the strength of the model to incorporate
drum patterns with the melodic structure. Possible future
directions include:

1. Design a user-friendly control interface for general
public users. This could potentially encourage more
interactions among users and facilitate the music
creation process.

2. Generate genre-specific drum patterns according to
the input condition. With genre-specific contents,
users may customize the styles of outputs.

3. Develop a model that can ultimately perform drum
pattern generation in audio domain. This would en-
able more potential applications in real-world sce-
narios and increase the expressivity of the model.
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RENDERING MUSIC PERFORMANCE WITH INTERPRETATION
VARIATIONS USING CONDITIONAL VARIATIONAL RNN

Akira Maezawa Kazuhiko Yamamoto Takuya Fujishima
Yamaha Corporation

ABSTRACT

Capturing and generating a wide variety of musical expres-
sion is important in music performance rendering, but cur-
rent methods fail to model such a variation. This paper
presents a music performance rendering method that ex-
plicitly models the variability in interpretations for a given
piece of music. Conditional variational recurrent neural
network is used to jointly train, conditioned on the music
score, an encoder from a music performance to a latent rep-
resentation of interpretation and a decoder from the latent
interpretation back to the music performance. Evaluation
demonstrates the method is capable of predicting and gen-
erating an expressive performance, and that the decoder
learns a latent space of musical interpretation that is con-
sistent with human perception of interpretation.

1. INTRODUCTION

Music performance rendering is the task of generating a
human-like performance data from a piano music score.
That is, for each note in a given music score, it generates
a set of expressive performance parameters such as the on-
set timing, the duration and the velocity. It is an important
task in music production, allowing a composer to gener-
ate human-like piano part of a new composition, or a mu-
sician to listen to a convincing preview of a digital sheet
music. It is not only important to generate a convincing
performance, but also to allow humans to interact in the
generation. For example, it is useful to be able to adjust
expressive parameters, or, like how a musician might ask
to another musician, feed a reference performance snippet,
in expression of which the system should perform.

Capturing and generating a wide variety of musical ex-
pression are important in music performance rendering,
but current methods are limited in such capabilities. For
example, most methods permit control over concrete mu-
sical concepts like the average tempo and the average ve-
locity [2], but cannot manipulate abstract musical concepts
that cannot be labeled, such as liveliness within a perfor-
mance. It is also not possible to feed a short reference per-

c© Akira Maezawa, Kazuhiko Yamamoto, Takuya Fu-
jishima. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Akira Maezawa, Kazuhiko
Yamamoto, Takuya Fujishima. “Rendering Music Performance With In-
terpretation Variations Using Conditional Variational RNN”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.
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Figure 1. The overview of our method.

formance snippet and ask the system to play with that par-
ticular musical musical interpretation.

These limitations are rooted in the attempt to directly
map between the music score and expressive performance
[4]. Such a model entwines musical interpretation and its
execution, but a human performer presumably decouples
musical intent and its execution given the score. For ex-
ample, when playing a piece multiple times, a musician
might play lively the first time but calmly on the second.
Given the intent, however, its execution is consistent based
on musical contexts, such as whether a note is a melody or
if a particular measure is a beginning of a new phrase. For
example, a lively playing might be executed, almost sec-
ond nature, as shorter chords and louder melody, or calm
playing as softer and more broken chords.

To address this problem, we present a music perfor-
mance rendering method that explicitly decouples intent
and its execution based on a music score. We achieve this
by jointly training a performance decoder (performance
renderer) and a performance encoder (performance ana-
lyzer) that are conditioned on (1) a music score, and (2)
an interpretation sequence, a latent low-dimensional se-
quence representation that expresses the underlying musi-
cal intent. It may be either generated automatically or ma-
nipulated coherently. Thus, it is possible to generate differ-
ent interpretations to a score by either modifying the inter-
pretation sequence or encoding a performance snippet as
an initial value for generating the interpretation sequence.

The conceptual overview is shown in Figure 1. Our
method, given a music score and an interpretation se-
quence, generates an expressive performance for the given
music (denoted (1)). Conversely, it can encode an expres-
sive performance into the interpretation sequence (denoted
(2)). To achieve such a capability, the encoder and the de-
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coder are jointly trained by encoding a human performance
and trying to recover it with the decoder (denoted by path
(3)).

Our contributions are as follows: (1) we propose a new
machine learning model, CVRNN, which extends vari-
ational recurrent neural network (VRNN [6]) to accept
position-dependent conditional inputs; (2) we apply con-
volutional recurrent network (CRNN) to extract features
from the music score; (3) we apply these two models and
present a first deep generative model that is simultaneously
capable of analyzing and generating an expressive music
performance for a given music score with adjustable musi-
cal interpretation.

We invite the readers to check out audio demon-
strations at https://sites.google.com/view/
cvrnn-performance-render .

2. RELATED WORK

Music performance rendering is the task of generating an
expressive performance from a music score [4]. The re-
search focuses mostly on generating a sequence of expres-
sive onset timings, durations and velocities for a piano
piece. Unlike the generation of improvisation [20], perfor-
mance rendering needs to understand the musical contexts
of the given music score, and generate a natural perfor-
mance constrained by the score.

Previous studies formulate performance rendering as
a prediction task of expressive parameters based on fea-
tures extracted from the music score, such as melodic fea-
tures [22], perceptual features [3], or neighboring con-
texts [9,18]. Then, expressive performance to a new music
score can be predicted using methods like a hidden Markov
model [12], a decision tree [18], or a dynamic Bayesian
network [8]. More recently, deep learning has been in-
corporated to better extract the features or predict the per-
formance. For example, deep neural networks have been
shown to be effective for dynamics prediction [21], tempo
prediction [15], and piano performance generation [11,17].

The capability to adjust the generated performance is
important, but current methods cannot capture the abstract
variations in playing. For example, the tempo or dynam-
ics [1, 7] can be adjusted, but controlling a more abstract
musical idea remains difficult. It is possible to manipulate
the performance by mixing the parameters of performance
renderers trained on multiple corpora [2], but it fundamen-
tally cannot identify commonalities and differences among
a set of corpora.

3. METHOD

Our method generates an expressive piano performance
data to a given piano music score, and an interpretation se-
quence that is either automatically generated, manually ad-
justed, or initialized by a performance snippet. The score
contains a sequence of notes (pitch, position and duration),
the average tempo, the time signatures, and the key signa-
tures. The interpretation sequence is a sequence of low-
dimensional vectors, each element of which is associated

with each note in the score. It is an abstract representation
of playing style, each vector of which is called the inter-
pretation vector. For each note, based on the interpre-
tation vector and musical context inferred from the music
score, our method estimates (1) the fine note onset timing,
(2) the duration, (3) the note-on velocity, and (4) the tempo
fluctuation of human performance.

To generate the performance, we use a deep generative
model that has been trained to generate an expressive per-
formance data, conditioned on the music score and the in-
terpretation sequence. To acquire a temporally coherent
manifold over the space of interpretation vector, we pro-
pose CVRNN, an extension of VRNN that accepts the mu-
sic score as a conditioning input. Essentially, we jointly
train three models: (1) a music score feature extractor that
extracts, for each note, relevant features (music score fea-
ture) from the music score, (2) an encoder that maps a
human performance to an interpretation sequence, and (3)
a decoder that maps an interpretation sequence to an ex-
pressive performance.

Hereon, n indicates the index of a note encountered in
the music score, lexicographically sorted by the onset beat
position and the pitch. xn indicates the expressive perfor-
mance data, cn indicates the music score feature that has
been extracted from the nth note on the score, and zn indi-
cates the interpretation vector associated with xn.

3.1 Representation of expressive performance

The generated expressive performance xn comprises of the
note velocity, the note duration, the micro-onset timing de-
viation and the tempo.

The note velocity is an integer between 1 and 127
indicating the MIDI velocity value, encoded as a 128-
dimensional one-hot vector.

The note duration is an integer between 1 and 800, in-
dicating the duration as 1/100ths of a beat relative to the
current tempo (e.g. duration of “42” means 0.42 beats). It
is encoded as an 800-dimensional one-hot vector.

The micro-onset timing is an integer between -50 and
49, indicating the number of 1/100ths of a beat elapsed
after an ideal onset time. The ideal onset time is computed
based on the generated tempo curve up to the current point
in the score. It is represented as a 100-dimensional one-hot
vector, ith element of which means that the onset is lagging
by (i− 50)/100 beats.

The tempo is an integer indicating the the difference be-
tween the current tempo and the tempo written in the mu-
sic score, in bpm. It is represented as a 100-dimensional
one-hot vector, ith element of which means that the out-
put should be faster than the written tempo by i− 50 bpm.
It is computed by interpolating the music score position
and the playback position of the performance using Gaus-
sian regression with a squared exponential kernel with a
FWHM of 2 beats.

3.2 Extraction of the music score feature

The music score contains a sequence of notes, average dy-
namics, average tempi, meters, and key signatures. From
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Music score information for the nth note in the score

Pitch
Notated duration
IOI from the previous note
Phase inside the measure
Quantized velocity in the score
Quantized tempo in the score
Meter (denominator / numerator)
Key signature (no. sharps)

One-hot representation

Figure 2. Overview of music score feature extractor for
extracting the music score feature.

the music score, we extract the music score feature cn,
which represents the nth note and its surrounding context.

To extract the feature, we use the following information:
the key signature as a 12 dimensional one-hot vector that
indicates the number of accidentals; the time signature as
a tuple of 12 dimensional one-hot vector, indicating the
numerator and the denominator; the pitch as a 128 dimen-
sional one-hot vector indicating the MIDI note number;
the inter-onset interval from the previous note as a multi-
ple of 96th note, represented as a 512 dimensional one-hot
vector; the duration of the note as a multiple of 96th note,
represented as a 192 dimensional one-hot vector; the writ-
ten tempo quantized to a multiple of 30 bpm, represented
as a 9 dimensional one-hot vector (30-300 bpm); the writ-
ten velocity quantized to a multiple of 10, represented as
a 12 dimensional one-hot vector; the piano-roll centered
about the current position in the score, spanning a radius
of 7 beats at a 32nd note resolution (224x128 dimension).
The velocity and the tempo are quantized at a low reso-
lution because different music notation software map the
dynamics and tempo markings to similar velocity and bpm
values, but the exact mapping differ.

Based on these inputs, we extract the feature using a
CRNN as shown in Figure 2. First, the piano-roll passes
through a CNN. It is comprised of four layers, whose ker-
nel sizes are all (4 × 4), and channel sizes from the lower
to the higher layers are [20, 40, 60, 80]. Each layer is fol-
lowed by max-pooling with a kernel size of (2× 1), batch
normalization and leaky ReLU nonlinearity. The output
the CNN is concatenated with the remaining one-hot vec-
tors mentioned above. Then, the concatenated vector is
passed through a multi-layer perceptron (MLP) with 1024
hidden units and leaky ReLU nonlinearity at the hidden
layer. The MLP output passes through a tanh nonlinearity.

Second, the output of the perceptron is embedded to 64
dimensions using a linear layer. The embedded vector is
then passed to a RNN consisting of 3 stacks of gated re-
current units (GRU) [5] with 64 neurons each.

Finally, the outputs of the MLP and the GRU stack are
concatenated to create the music score feature cn.

Position in the score

Pitch

(gru.a) (gru.b)

(cnn.a) (cnn.b)

Figure 3. Activation of the most active compo-
nents of GRU and CNN activations (dark=negative, yel-
low=positive).

Figure 4. Some feature maps learned from the CNN, over-
layed with the piano-roll (blue=negative, red=positive).

3.2.1 Analysis of the music score feature extractor

Here we illustrate some musically relevant concepts that
are acquired by the music score feature extractor. We have
trained our model using the same dataset used in Section 4,
and extracted the music score feature from measures 5–6
of Chopin’s Nocturne Op. 9-2 and extracted the GRU and
the CNN activations. Some of the highest GRU and CNN
activations are shown in Figure 3, showing, for each note,
the value of the corresponding activation in different color,
positioned at the beat position and the pitch written on the
score, a la piano-roll. We can see that the GRU acquires
concepts like the number of notes stacked below the cur-
rent point in the score (“gru.a”) or top notes (“gru.b”). The
CNN extracts longer contextual information such as the
melody (“cnn.a”), and the bottom notes (“cnn.b”). Nei-
ther the GRU nor the CNN becomes dead: the standard
deviation of the activation of the CNN and the GRU are
comparable (about 0.5 to 1.0), where about 90 GRU ac-
tivations have standard deviation of above 0.1, and about
150 for the CNN.

To analyze how these concepts are acquired, we show
in Figure 4 the feature maps of the final layers of the CNN,
overlayed to the piano-roll. The tendency of the map sug-
gests that the CNN expresses concepts like the register
(Fig. 4a), rising arpeggio (b), top and bottom melodic con-
tour (c), or melodic contour (d).

3.3 CVRNN for joint encoding and decoding of the
interpretation sequence

We assume that an expressive performance depends on
both (1) the musical context, expressed through the mu-
sic score feature, and (2) a corresponding sequence of low-
dimensional music interpretation vectors zn, dimension of
which is set to 5. It is necessary for zn to learn (1) a man-
ifold that zn resides in, that explains interpretation rea-
sonably well, and (2) a model of temporal evolution of
zn, so that the generated performance is temporally coher-
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Figure 5. Dependency of the CVRNN model. Solid ar-
rows indicate conditional dependence of the generative
process, and dotted arrows indicate conditional depen-
dence of the approximate posterior distribution.

ent. We achieve (1) by decoupling the music score and the
generative model of zn, such that zn learns a repertoire-
independent low-dimensional representation of variability
of playing. We achieve (2) by basing the temporal evolu-
tion of zn on the state of a RNN hn.

To meet these requirements, we model the generation
process with a CVRNN. There are three key components
in a CVRNN, as shown in the dependency diagram in Fig-
ure 5: (1) generation of the interpretation sequence zn
given the underlying hn (called the prior distribution),
(2) generation of an expressive performance xn given the
interpretation sequence zn and music score features cn
(called the generation distribution), and (3) generation of
the interpretation vector zn given a true human perfor-
mance xn (called the inference distribution). Finally, the
true or the generated expressive performance xn and the
interpretation vector zn are used to update the underlying
hn, used then to predict the next interpretation vector zn+1.

3.3.1 Generation

We assume the following generative process:

p(x≤N , z≤N |c≤N ) =

N∏
n=1

p(xn|zn, cn)︸ ︷︷ ︸
generation

p(zn|x<n, z<n)︸ ︷︷ ︸
prior

.

(1)
Thus, the data is generated autoregressively by sampling
zn from the prior, generating xn, and feeding it back to the
prior to sample the zn+1 for the next note in the score.

For the prior distribution, the previous RNN state hn−1
passes through a three-layer densely-connected [10] fully-
connected network with 250 units each with a leaky ReLU
nonlinearity. By dense connection, we mean that the input
to the current layer is a concatenation of the outputs of
previous layers. It outputs the mean and log-variance of
a Normal distribution µ(hn−1) and γ(hn−1). Then zn is
sampled as follows:

zn|hn−1 ∼ N (µ(hn−1), exp(γ(hn−1))). (2)

From the interpretation vector zn, we pass it through an-
other feature extractor ψ(zn) to obtain a feature that de-
scribes the current musical interpretation. ψ(·) has the
same three-layer architecture as mentioned above.

For the generation of xn, we use the sampled interpre-
tation vector zn and the current music context cn:

xn|zn, cn ∼ g(cn, ψ(zn)), (3)

Performer 3Performer 1 Performer 2

Take 1

Take 2

Take 3

Take 4

Figure 6. Visualization of the interpretation sequence, for
different takes of three professional pianists. Horizontal
axis indicates the music score position, vertical axis indi-
cates the pitch, and the color indicates 3D projection of the
temporally-smoothed interpretation vector.

where g(c, z) indicates a Cartesian product of categorical
distributions over the one-hot representations of the veloc-
ity, the micro-onset timing, the duration and the tempo, pa-
rameterized by an output of a three-layer fully-connected
network with leaky ReLU nonlinearity for the hidden lay-
ers and softmax for the output layer, applied separately for
the four output variables.

To recurrently update hn, we extract a feature vector
from xn by passing it through a network φ(·) with a same
architecture as ψ to obtain φ(xn). Then, the underlying
state hn is updated as follows:

hn+1 = f(hn, [cn, φ(xn), ψ(zn)]), (4)

where f(h, x) is state update equation of a stacked GRU
of three layers, given h as the current state variable and x
as the input that has been embedded to 64 dimensions by a
fully-connected layer.

Let us elaborate on the modeling assumptions. First,
the prior in Eq. 2 is independent of cn. This forces zn to
express music interpretation abstractly, such that it is de-
coupled from the musical context, which provides strong
hints on how to execute the performance given an interpre-
tation. Second, xn and hn depends only indirectly via the
bottleneck zn. This is unlike the original formulation of
VRNN where xn and hn are directly dependent. We found
that such a bottleneck is vitally critical for learning a mean-
ingful representation of zn; if xn depends on hn, then the
model simply learns to generate an auto-regressive model
of xn using ht, almost completely bypassing zn. Such an
error mode occurs because it is much easier for a model
to learn to simply predict the next note, instead of having
to go through the hassle of trying to explain how it could
have varied with a different interpretation.

3.3.2 Inference

In addition to the generative process, we also define an ap-
proximate posterior distribution, or the inference distribu-
tion, so that variational technique can be used to train the
model [14].

We assume the following dependency for the inference
distribution:

q(z≤N |x≤N ) =
N∏

n=1

q(zn|x≤n, z<n)︸ ︷︷ ︸
inference

. (5)
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Figure 7. The variance of the interpretation vectors over
different performers at each note.

If we assume that zn is normally distributed and condition-
ally independent of z<n and x<n given hn−1, it becomes:

q(zn|x≤n, z<n) = q(zn|xn, hn−1)

= N (zn|η(hn−1, φ(xn)) , exp (ν(hn−1, φ(xn)))) , (6)

where η(·) and ν(·) are the outputs of a neural network
with the same architecture as ψ(·), that take φ(xn) and
hn−1 as the inputs. The inference is independent of the
music score cn, so that it learns a repertoire-agnostic
model for inferring zn given an expressive human playing.

3.3.3 Training

We train the model by minimizing the KL divergence from
the approximate posterior to the true posterior. It amounts
to the minimizing of the following note-level loss ln(Θ)
w.r.t. the set of model parameters Θ, accrued over every
note in the training data:

ln(Θ) = Ezn∼q(z|xn,hn−1) [log p(xn|zn, cn)]

+ KL(q(z|xn, hn−1)||p(z|hn−1)). (7)

The expectation is computed using the reparametrization
trick [14]. We use truncated backpropagation with trun-
cation length of 30 notes (longer truncation length of 50
notes yielded qualitatively similar outputs). We also aug-
ment the data by adding zero-reverting Wiener noise to the
tempo curve and randomly transposing each piece by -7
to 7 semitones at every epoch. To minimize the loss, we
use Adam [13], with gradient clipping for gradient values
above 5.

3.4 Analysis of the learnt manifold of the
interpretation vector

We briefly illustrate the essences of musical expression ac-
quired by the interpretation sequence. Figure 6 shows the
interpretation sequence of first 20 bars of Mozart’s K333
piano sonata, mvt. 1 (from the top to the introduction
of second subject group), played by three professional pi-
anists for multiple takes. The figure shows that the inter-
pretation sequence tends to remain similar within each per-
former, and different among different performers.

We can also show where in the music score has the high-
est variance of interpretation vector among the nine takes.
Figure 7 shows the variance for each note, from which we
can see that the maximum variance occurs at the structural
boundary from the first subject group to the transition, sup-
porting findings that music expression varies significantly
at structural boundaries [19].

4. EVALUATION

We evaluate our method’s capability to (1) create a natural
expressive performance given the music score, and to en-
code an expressive performance into (2) perceptually rel-
evant space that is (3) representative of the corresponding
performance. For training, we used an in-house dataset
comprising of 380 classical pieces, mostly Late romantic
and Baroque. The piano performance comprised of 130 in-
house performances and 250 performances obtained from
the piano e-competition archive 1 . Some performances
were different interpretations of the same piece. Further-
more, corresponding music scores were obtained. To gen-
erate a one-to-one mapping between the performance and
the score, each performance was aligned to the music score
using symbolic music alignment based on [16] with man-
ual alignment correction. Then, the notes in the perfor-
mance and the score were matched using maximum bipar-
tite matching, using the pitch and the onset timing to deter-
mine the edge weights between notes in the score and the
performance.

We have used 370 of 380 pieces for training. Of 370
pieces, all but 500 notes were used for training, and re-
maining notes for the optimization of the hyperparameters
(validation). To test the decoder in experiment 1 and 2,
we have sampled 10 piano music scores from the Mutopia
project 2 , and corrected the key signature, meter and down-
beat positions. It contained a wide variety of pieces from
Baroque to Ragtime. To test the encoder in experiment 3,
we have used 10 pieces of 380 pieces that were not used
for training.

4.1 Listening test

We evaluated the naturalness of the generated performance
using different methods. For each of the ten pieces, we ex-
tracted a random 15-second segment, and generated per-
formance using three methods: (1) method Deadpan di-
rectly played back the SMF data of the music score data
that has been exported from MakeMusic’s Finale Version
25; (2) method Finale used "Human Playback" function
of Finale to create a natural performance, serving as a re-
producible reference music performance method; and (3)
the proposed method. Furthermore, we extracted seven
15-second excerpts from human playback in the training
dataset, which serves as an oracle method. The selected
pieces were different from the first three methods, because
the human playing data to the first three were not always
available. To make a fair comparison, we removed the sus-
tain pedal data from the oracle, because the pedal is con-
tained in none of the other methods.

Next, the MIDI data were synthesized using a high-
quality piano synthesizer and presented in a random order
to 11 participants. The participants were asked to evaluate
the naturalness and expressiveness, on a rating from 1 to
5, 1 being unnatural or unexpressive, 3 being moderately
natural or contains some expression, and 5 being the most

1 www.piano-e-competition.com
2 www.mutopiaproject.org
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Table 1. Mean opinion scores of the performances
Deadpan Finale Proposed Oracle

Naturalness 3.02 3.08 3.29 3.23
Expressiveness 2.75 2.98 3.14 3.62

natural or expressive. The participants were between age
25 and late fifties, working on music technology.

The results are shown in Table 1. Kruskal-Wallis H-test
was used for test of significance (p < 0.01), since Shapiro
test showed non-normality. We found that the effects were
significant for both expressiveness and naturalness, for all
of the method pairs.

This shows that the system is capable of generating a
performance that is as natural as human playing, but the
expression has a room for improvement. One possible rea-
son is that the system does not make use of music score
markings like expression and phrase markings. The audio
on our demo webpage suggests nonetheless that the system
learns to “improvise” a noticeable evolution of musical ex-
pression over a timespan of multiple notes.

4.2 Test on the perception of the interpretation vector

Second, we analyzed the capability of the interpretation
sequence to create a perceptually distinguishable and con-
sistent space of musical interpretation.

First, a pair of non-identical and non-overlapping seg-
ments were sampled from a piece, which we call segments
A and B. Second, a vector ∆ was sampled from a 5-
dimensional, zero-mean and unit-variance Normal distri-
bution. Third, two interpretations are generated for each of
A and B, where rendition A1 and B1 are generated with
interpretation vector µ(hn−1) + ∆ ⊗ exp(γ(hn−1)), and
A2 and B2 with µ(hn−1) − ∆ ⊗ exp(γ(hn−1)). Fourth,
A1, A2, B1 andB2 were successively presented to the par-
ticipants, randomly presenting B2 before B1. They were
asked to identify whether the relationship of music ex-
pression between A1 → A2 is the same as B1 → B2 or
B1←B2. The participants rated the perceived relationship
with a confidence on a two-point scale 2 (0 means cannot
tell, 2 means strongly confident about the response). We
repeated this experiment on 9 other pairs of segments. Af-
ter the experiment, we changed the signs of the responses,
such that negative confidence indicates the wrong guess
(A1 → A2 is B1 ← B2), and positive indicates the right
guess (A1→A2 is B1 → B2).

The average rating was 0.34, meaning that there is an
agreement between the change of interpretation vector and
human perception of interpretation. To test the signifi-
cance, Wilcoxon signed rank test was used under the null
hypothesis that the median rating is zero, since Shapiro
test showed non-normality. The effect was significant with
p < 0.01.

This shows that the encoder does capture a perceptually
coherent space of music interpretation, and its modifica-
tion creates a perceptually consistent difference in the in-
terpretation. Qualitatively, we found that by changing the
interpretation vector, there are simultaneous and smooth

Table 2. Pearson’s correlation coefficient between the gen-
erated performance and the true performance.

Num. notes zn = 0 zn∼ prior

Velocity
10 0.61 0.72
40 0.37 0.68

Onset 10 0.02 0.07
deviation 40 0.19 0.24

Duration
10 0.77 0.77
40 0.82 0.82

BPM
10 0.07 0.21
40 0.00 0.14

changes not only in the dynamics and the tempo but also
nontrivial aspects like breaking of the chords or the articu-
lation of the accompaniment.

4.3 Test on the predictive capability of the encoder

Finally we evaluated the capability to encode a given per-
formance, by priming h and z with an encoded true hu-
man performance, and comparing the true human and the
generated performances. First, we primed the decoder by
feeding to the encoder the first 20 notes to a performance
to infer the initial value of zn. Next, the remaining 10 or 40
notes were decoded using two different decoders: (1) use
zn sampled from the prior that has been primed in the first
step, and (2) fix zn = 0. We repeated this experiment on
100 different starting points, and evaluated the Pearson’s
correlation coefficient between the generated and human
performance.

Table 2 shows the correlation coefficients. The result
shows that the encoder is capable of encoding information
pertinent to music performance. Significant improvements
are seen for the velocity and the tempo, showing that the
interpretation space is captures these aspects. At the same
time, there are still rooms for improving the prediction of
the onset deviation and the tempo.

This shows that we can indeed feed a reference perfor-
mance snippet to the system, and the system would gener-
ate a performance in style of the snippet.

5. CONCLUSION

We have presented music performance rendering method
that explicitly encodes underlying sources of expression
variations. Our method opens door to wider possibilities
for the co-creation of music performance between a ma-
chine and humans, by enabling an interpretable and ad-
justable performance rendering and analysis system. We
also believe the capability to decouple musical intent and
its execution given the intent opens door to a new abstrac-
tion layer for performance analysis.

Future work includes the inference of additional outputs
like the pedals and note-off velocity, better expressiveness
through incorporation of music score markings, disentan-
glement of the latent space and interfaces for interactive
music performance rendering.
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ABSTRACT

In general, harmonic analysis refers to the identification
of harmonies from the musical surface. As a key part
of the foundation of modern Western music theory, har-
monic analysis is inherently complex. It is based on low-
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tive Workflow for Generating Chord Labels for Homorhythmic Music
in Symbolic Formats”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

Figure 1. A passage with important differences between
melody-oriented (blue) and harmony-oriented (red) analy-
ses. The final analysis (black) mixes the two styles. Such
inconsistencies are quite common, even between expert
analyses.

level sensory distinctions (consonance vs dissonance), lo-
cal constructs (counterpoint, voice-leading), and global
musical structures (harmonic function, form, tonality, etc.).
Learning it is thus a time-consuming process, requiring
years of training. Furthermore, many prominent music the-
orists (e.g., Rameau, Riemann, Schenker) have proposed
different approaches to harmonic analysis. This means it is
often possible to analyze the same passage in numerous le-
gitimate ways. For example, some analysts prefer interpre-
tations with fewer chords, while others prefer interpreta-
tions with more frequent harmonic changes. We character-
ize these general strategies as “melodic” and “harmonic”,
respectively (Fig. 1 illustrates these interpretive strategies).
Complicating matters further, analysts often disagree, and
are not always internally consistent [12]. Given the com-
plexity, subjectivity, and inconsistency of harmonic analy-
sis, it is challenging to systemize it.

In spite of these challenges, there have been various at-
tempts to automate harmonic analysis. Data generated by
automated approaches could be used to populate a large-
scale, searchable database, which would serve as an in-
valuable resource for music research. For example, such
a database could be used in corpus studies to answer re-

1. INTRODUCTION AND BASIC METHODOLOGY

Automatic harmonic analysis is challenging: rule-based
models cannot account for every possible edge case, and
manual annotation is expensive and sometimes inconsis-
tent, undermining the training and evaluation of machine
learning models. We present an interactive workflow to ad-
dress these problems, and test it on Bach chorales. First, a
rule-based model was used to generate preliminary, consis-
tent chord labels in order to pre-train three machine learn-
ing models. These four models were grouped into an en-
semble that generated chord labels by voting, achieving
91.4% accuracy on a reserved test set. A domain expert
then corrected only those chords that the ensemble did not
agree on unanimously (20.9% of the generated labels). Fi-
nally, we used these corrected annotations to re-train the
machine learning models, and the resulting ensemble at-
tained an accuracy of 93.5% on the reserved test set, a
24.4% reduction in the number of errors. This versatile
interactive workflow can either work in a fully automatic
way, or can capitalize on relatively minimal human in-
volvement to generate higher-quality chord labels. It com-
bines the consistency of rule-based models with the nuance
of manual analysis to generate relatively inexpensive high-
quality ground truth for training effective machine learning
models.
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search questions about musical style or the development of
modern harmonic practices. Automatic harmonic analysis
can also be used in automatic composition and interactive
accompaniment systems.

Some researchers have developed rule-based (RB) mod-
els for automatic harmonic analysis [4, 8, 10, 21–23]. Al-
though these approaches generate chord labels that are in-
ternally consistent, they often fail to produce correct anal-
yses for even moderately exceptional passages, as it is ex-
tremely complicated to define rules that are comprehensive
enough to account for all possibilities.

Other researchers have made use of manual annota-
tions by experts, who can better respond to exceptions
[2,5,6,9,16,17]. Such ground truth can be used to train ma-
chine learning (ML) models for automatic harmonic anal-
ysis [3, 11, 14, 15, 18, 20, 24]. Although the annotations
created by human analysts are more nuanced, manual har-
monic annotations require an enormous amount of time
and expertise, and can be inconsistent [12], which may
undermine a ML model’s effectiveness, especially when
limited amounts of training data are available.

Due to these difficulties, few large high-quality datasets
and automatic harmonic analysis models exist, a situation
that has significantly limited the computational study of
Western harmony.

In this paper, we combine the strengths of existing ap-
proaches to address the common problems of automatic
harmonic analysis within a single interactive workflow, us-
ing a set of largely homorhythmic 1 Bach chorales. The
proposed workflow is illustrated in Fig. 2 and described
below:

1. To solve the problem of analytical inconsistency, we
use an existing RB model [4] to generate prelimi-
nary, consistent chord labels according to a particu-
lar analytical style.

2. These analyses are used to pre-train three ML mod-
els, 2 which together with the RB model form an
algorithm ensemble, where each model within the
ensemble labels all the chords. The most-preferred
chord labels 3 are then output as Analysis 1.

3. To improve the quality of the analyses, a human
expert examines only those chords for which the
ensemble did not agree unanimously, and corrects
them as needed. We call this process “partial man-
ual modification”. Compared to annotating chorales
from scratch, the amount of required work for the
expert is significantly reduced. The first three steps
of this workflow are shown in Part 1 of Fig. 2.

4. Once the expert’s corrections are obtained (Analysis
2), we re-train the ML models. The most-preferred
chord labels from the new ensemble are chosen as
the final chord labels (Analysis 3), which is shown in

1 Homorhythm is a texture where all parts share a very similar rhythm,
as in Fig. 1. It is commonly used in hymn and chorale settings.

2 See the caption of Fig. 2 for the details of these models.
3 If there is a tie, prefer the label for which the rule-based algorithm

voted.

Part 2 of Fig. 2. This paradigm of manually modify-
ing the generated data and re-training the ML mod-
els is known as “interactive machine learning” [1,7].

This workflow is not limited to Bach chorales. With
an adapted RB model (Model 4 in Fig. 2), it can easily
be applied to other genres of music in a fully automatic
way (ending with Analysis 1) or interactively if an expert
analyst is available (ending with Analysis 3). The source
code, data, and results from this project can be found at:
https://bit.ly/2QUdGwH.

2.1 Input Data Encoding and Processing

The workflow currently accepts music encoded in Hum-
drum’s **kern symbolic representation. Any other formats
that can be faithfully converted to **kern can also be used.

Each chord label consists of the letter-name of the root
and the quality of the chord (e.g., C major). Triads can
be major, minor, or diminished; and seventh chords can
be major, minor, dominant, half-diminished, or fully di-
minished. Functional Roman numerals are not used, and
chordal inversions are not specified.

Chord labels are appended to the original **kern file for
each chorale and aligned with the music as “onset slices”
[11,13], as shown in Fig. 4. An onset slice is formed when-
ever a new note onset occurs in any musical voice, and con-
sists of a list of all pitch classes sounding at that moment.

Additionally, all chorales and corresponding chord la-
bels were transposed to the same key to make the tonal
relationships between pitch classes consistent across the
dataset. 4

2.2 Input Features

Each onset slice is mapped to a feature vector for process-
ing by Model 1, Model 2, and Model 3 of the workflow.
These features, 5 and the codes used to refer to them in
Section 3, are as follows:

1. PC12 : A 12-D binary vector of enharmonic pitch
classes present in the slice.

2. M: A 3-D indication of the metrical context of the
slice (down-beat, on-beat, off-beat).

3. O: A 12-D vector indicating which PC12 pitch
classes are real onsets and which are artificial (see
Fig. 4).

4. Wn: A variable size vector containing the (non-Wn)
features from the n previous and following slices

4 The built-in key transposition function from music21 was used, with
the Aarden-Essen key profile (https://bit.ly/2FSIwQY). Chorales were
transposed to C major or A minor depending on their mode.

5 A multi-label one-hot schema was used to encode the features as
inputs for the ML algorithms.

2. DETAILS OF METHODOLOGY

This section introduces additional details of the interactive
workflow shown in Fig. 2 and described in Section 1.
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Figure 2. Interactive workflow for automatic harmonic analysis. There are four models within the algorithm ensemble,
three of which are trainable. Models 1 and 2 both use a machine learning algorithm (MLA) to identify and remove
non-chord tones (NCTs). After this, Model 1 (MLA-NCT+H-CL) uses a heuristic (H) algorithm and Model 2 (MLA-
NCT+MLB-CL) uses a ML algorithm (MLB) to infer chord labels (CL) from the remaining chord tones. We term this
process “NCT-first harmonic analysis”, as shown on the right side of Fig. 3. Model 3 (MLC-CL) uses a single ML algorithm
(MLC) to infer chord labels (CL) directly from the pitch-class collections, without removing NCTs. We term this process
“direct harmonic analysis”, as shown on the left side of Fig. 3.

(e.g., W1 indicates that features for the directly pre-
ceding and directly following slices are included in
the features of the current slice). These surrounding
slices are called “contextual windows”.

The workflow allows for experimentation with different
feature configurations. For example, a “PC12M” config-
uration indicates a 15-D vector, with O and Wn features
omitted. This notation is adopted in Section 3.

2.3 Rule-Based Algorithms

We use an existing RB model [4] to generate preliminary
chord labels (Model 4 in Fig. 2). This tool is publicly
accessible online. 6 A “harmonic” rather than “melodic”
style of analysis is used (see Fig. 1), which prefers more
chord changes and fewer non-chord tones (NCTs) [19],
and is better-suited to the typical chorale texture. An
overview of the specific heuristics of this style can be
found at: https://bit.ly/2XCmNVo. We also used a heuris-
tic algorithm (H-CL from Fig. 2) in Model 1 to infer chord
labels from remaining chord tones. The details of this al-
gorithm can be found at: https://bit.ly/2MBL0dp.

2.4 Machine Learning Algorithms

As shown in Fig. 2, the workflow includes three ML algo-
rithms (MLA, MLB, and MLC) to pre-train. MLA treats
NCT identification as a multi-label problem; the output of
MLA is a 12-dimensional vector specifying which pitch

6 https://bit.ly/2Gh6IhA

classes are both present and identified as NCTs; MLB and
MLC treat chord labeling as a multi-class problem; they
output similar vectors identifying the predicted chord label
among all candidates.

We tested Support Vector Machines (SVMs) and Deep
Neural Networks (DNNs) as MLA, MLB, and MLC classi-
fiers. For DNN, we used three hidden layers, each with 300
hidden units. Adaptive Moment Estimation was used as an
optimizer, with loss functions of binary cross-entropy for
MLA and categorical cross-entropy for MLB and MLC.
SVM used a linear kernel function.

3.1 Data

The experiments below were performed on a modified 7

8 This modified dataset consists of 369 chorales.
To evaluate the performance of our workflow, 39

chorales were randomly chosen before the experiments be-
gan and partitioned into a set reserved for final testing in
Experiment 2. These reserved chorales had their chords
hand-labelled in their entirety by a human expert.

The remaining 330 non-reserved chorales were used for
training, validation (early-stopping) and internal testing.

7 Available at: https://bit.ly/2VWHB8w. Some corrections were made
to the music and Chorale 150 was added to the dataset. Chorales 130 and
316 were excluded, since the original **kern files and the music21-parsed
results are different.

8 https://bit.ly/2D4ju10

3. EXPERIMENTS

dataset of Bach chorales originally produced by Craig
Sapp.
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Figure 3. Comparison of “direct harmonic analysis” (left,
used by Model 3 in Fig. 2) and “NCT-first harmonic anal-
ysis” (right, used by Model 1 and Model 2 in Fig. 2) ap-
proaches to automatic harmonic analysis. The former iden-
tifies chords directly from the score, while the latter first
identifies and removes non-chord tones from the score,
and then generates chord labels from the remaining chord
tones.

Figure 4. Illustration of note onset slices, aligned with
chord labels. An onset slice is created whenever a new
note onset occurs in any musical voice (middle). Any note
sustained from a previous slice becomes an “artificial on-
set” in the new slice (right, circled).

The initial “ground truth” for these remaining 330 chorales
consisted of the labels predicted by the RB model (Model
4), which was found to be quite effective, if not perfect [4].
This imperfect “ground truth” was used in Experiment 1
(see Section 3.2) to get a preliminary sense of how well the
workflow’s component classifiers performed. Final evalua-
tion was performed in Experiment 2 (see Section 3.3) with
the proper, hand-annotated 39-chorale reserved test set.

3.2 Experiment 1

Experiment 1 tested the effectiveness of several different
workflow configurations by experimenting on varying in-
put features and learning algorithms (see Section 2.4). The
performance of Models 1, 2, and 3 from Fig. 2 were tested.

3.2.1 Experimental Setup

Ten-fold cross-validation was performed on the 330 non-
reserved chorales described in Section 3.1. For the

DNN experiments, we divided the non-reserved portion of
the dataset (330 chorales) into training (80%), validation
(10%) and internal testing (10%) folds. The SVM data was
divided into training (90%, the union of the DNN training
and validation sets) and internal testing (10%, matching the
DNN internal test sets) folds. When the W features were
included (see Section 2.2), n was set to 1 for MLA and
MLC, and to 2 for MLB (represented as W1/2).

3.2.2 Results

The results of Experiment 1 are shown in Table 1. The
highest classification value of 90.1% was achieved by
Model 2 using PC12MOW1/2 input features. Results show
that the addition of a small contextual window (feature
Wn) improved the performances of Model 2 and Model 3
significantly. 9 This reflects the general music theoretical
understanding that, in cases of ambiguous harmony (e.g.,
an incomplete chord), a chord’s immediate context is es-
sential to label it properly.

It is important to note that these Experiment 1 find-
ings are based on imperfect ground truth (see Section 3.1),
and so must be interpreted more as preliminary indica-
tions rather than as confirmed truth. Experiment 2 was
performed in order to obtain more empirically meaningful
results.

3.3 Experiment 2

Experiment 2 compared the performance of the classi-
fier ensemble after fully automated training (Analysis 1
in Fig. 2) with that of the ensemble after human-assisted
re-training (Analysis 3 in Fig. 2). This set of experiments
involved evaluation on a reserved expert-labelled test set
(see Section 3.1).

3.3.1 Experimental Setup

Classification models were pre-trained, had their outputs
manually corrected, re-trained, and tested using the full
workflow described in Section 1. Pre-training was done
using the Model 4 output, just as in Experiment 1.

For the DNN training, we used 90% of the 330 non-
reserved chorales as the training set and 10% as the val-
idation set. A cross-validation-like training scheme was
used: we conducted 10 experiments by training 10 models
with rotated training and validation folds, while the test-
ing fold (39 reserved chorales) remained the same. All
330 non-reserved chorales were used to train each of the
SVM classifiers. Only the PC12MOW1/2 input features
(see Section 2.2) were used in Experiment 2. For the W
features, n was set to 1 for MLA and MLC, and to 2 for
MLB (represented as W1/2).

Once Analysis 1 (see Fig. 2) was obtained, the human
expert manually corrected only those chords that the en-
semble did not agree on unanimously. The corrected labels
(Analysis 2) were then used to re-train Models 1, 2, and 3.
The 39 manually-labelled reserved test chorales were then
used to test the original pre-trained models, and then the

9 p<0.05 in Students’ t-tests comparing all Model 2 and 3 accuracies
for PC12 and PC12M with those of PC12W1/2 and PC12MW1/2.
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Model Metric PC12 PC12M PC12W1/2 PC12MW1/2 PC12MOW1/2

SVM
CA1
CA2
CA3

81.7±1.4%
73.0±1.5%
74.9±1.6%

81.6±1.4%
73.1±1.6%
75.6±1.5%

82.7±1.0%
85.4±1.3%
85.4±1.3%

83.0±1.0%
86.1±1.5%
85.9±1.3%

83.5±0.9%
87.4±1.5%
87.7±1.5%

DNN
CA1
CA2
CA3

81.0±1.5%
74.2±1.8%
74.6±1.8%

81.7±1.5%
75.1±1.6%
75.3±1.4%

85.3±0.9%
88.5±1.3%
87.5±1.7%

85.6±0.9%
89.6±1.3%
88.3±1.7%

85.8±0.9%
90.1±1.5%
89.0±2.0%

Table 1. Experiment 1 cross-validation classification accuracies, averaged across folds. Uncertainty values indicate stan-
dard error across folds. Values indicate the percentage of onset slices “correctly” classified by Model 1 (CA1), Model 2
(CA2), and Model 3 (CA3), based on the Model 4 “ground truth”. Columns indicate features (see Section 2.2) and rows
indicate machine learning algorithms (see Section 2.4). The best performance in each column is highlighted in bold.

Model Metric
PC12MOW1/2

Pre-trained
PC12MOW1/2

Re-trained

SVM

CA1
CA2
CA3

CAVote
PUA

85.9%
88.6%
87.7%
91.4%
79.1%

87.0%
89.8%
89.3%
92.7%
79.0%

DNN

CA1
CA2
CA3

CAVote
PUA

85.4±0.2%
88.9±0.3%
87.9±0.7%
90.9±0.2%
80.4±1.2%

88.1±0.2%
91.3±0.4%
90.5±0.3%
93.5±0.2%
79.7±0.4%

RB CA4 90.7%

Table 2. Experiment 2 classification accuracies on the
reserved test set. DNN values are averaged across mod-
els trained using different training/validation sets, and un-
certainty values indicate standard error across these folds.
Values indicate how many onset slices were correctly clas-
sified by Model 1 (CA1), Model 2 (CA2), Model 3 (CA3),
Model 4 (CA4), the ensemble as a whole (CAVote), and
just those CAVote predictions that were unanimous (PUA).
“PC12MOW1/2” indicates the input features (see Sec-
tion 2.2. “Pre-trained” indicates performance before man-
ual correction (i.e., Analysis 1 in Fig. 2), and “Re-trained”
indicates performance after re-training on the corrected
data (i.e., Analysis 3 in Fig. 2). The best performance in
each column is highlighted in bold.

re-trained models. Performance on this reserved test set is
shown in Table 2.

3.3.2 Results

One can see in Table 2 that the original RB algorithm
(Model 4 in Fig. 2) attains a chord accuracy of 90.7%,
which serves as our baseline. The highest accuracy
obtained by the pre-trained ensemble is 91.4%, using
PC12MOW1/2, SVM classifiers, and voting. This (pre-
trained) performance is achieved without any expert hu-
man intervention. It is of interest that CAVote here is
higher than CA4, even though the classifiers in CAVote
were trained on the RB output; this is perhaps because the
RB model is overfitting the theoretical model underlying

it, and that the pre-trained ensemble trained on it may in
fact be smoothing out some of this overfitting to result in
a slightly more general model. A comparison of Table 1
and Table 2 indicates that the Table 1 performance with ar-
tificial ground truth is quite similar to the performance of
Table 2 pre-trained classifiers on the proper test set; this
encouragingly suggests that there is little or no overfitting.

Table 2 also shows that performance improved after re-
training in most cases. 10 The best-performing 11 config-
uration attains an accuracy of 93.5%, using voting DNNs
trained on PC12MOW1/2 features.

12 of
all slices. Compared to examining and annotating every
slice, the amount of required work is reduced substantially.

Figure 5 provides an illustration of how this approach
can be effective, using an excerpt from one of the test set
chorales. Although some algorithms within the ensemble

10 p<0.05 in Students’ t-tests comparing results before and after re-
training for CA1, CA2, CA3, and CAVote, but not PUA.

11 p<0.05 in Students’ t-tests comparing results of CAVote to CA1,
CA2, CA3, and CA4.

12 This value is inferred from Table 2: 100% - PUA.

The partial manual modification workflow is also found
to be relatively efficient, as the expert analyst is only re-
quired to provide manual analyses for about 20.9%

4. DISCUSSION

According to the results, our interactive workflow per-
formed well on the Bach dataset using a “harmonic” style
of analysis. It was found that quite good performance
could be achieved with our rule-based model (90.7% on
the reserved test data), that performance could be improved
slightly using the RB model to self-train a classifier en-
semble (91.4% on the test data), and that still greater im-
provements resulted from partial manual modification and
re-training (93.5% on the test data). Although these im-
provements may seem small in absolute terms, they are sta-
tistically significant, and they represent meaningful frac-
tional decreases in the error rate (drops of 7.5% compar-
ing pre-trained CAVote to RB, 30.1% comparing re-trained
CAVote to RB, and 24.4% comparing re-trained CAVote
to pre-trained CAVote). Of particular importance, the first
two approaches require no human intervention, and the
third requires much less expert labor than full manual an-
notation.
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Figure 5. An illustration of how classifications evolve as processes proceed as outlined in Fig. 2, based on measures 9
through 12 of BWV 315 “Gib dich zufrieden und sei stille”. Chord labels were generated by a DNN-based algorithm
ensemble using PC12MOW1/2 features (see Section 2.2). The algorithm ensemble is made up of the four models within
the dashed rectangle, which vote to generate Analyses 1 and 3. The labels above the first horizontal line were generated
in a fully automatic way, without any human intervention. The labels between the two horizontal lines (other than the
rule-based model) were generated automatically after re-training on partially corrected data. The chord labels highlighted
in red are errors compared to the ground truth provided by an expert analyst.

Results show that this workflow is quite compelling: it
combines the consistency of rule-based models with the
nuance of manual analysis to generate relatively inexpen-
sive, high-quality ground truth for training effective ma-
chine learning models. The resulting classifier ensemble is
able to automatically generate highly consistent and accu-

rate chord labels, which can serve as invaluable resources
for musicians, composers, and music researchers alike.

There are currently a few limitations to our research.
First, music21’s automatic key-finding might not be ideal
for our dataset (early tonal music), and may have resulted
in reduced performance due to faulty transpositions. In-
stead of transposing all chorales to the same key, a bet-
ter, but more complicated solution would be to augment
our data by transposing all chorales to all 12 possible keys.
Second, the RB model can be improved to include chords
of other qualities (e.g., augmented-sixth chords). Finally,
the ground-truth annotations were prepared by a single ex-
pert annotator, and it would be better to repeat this process
using annotations from multiple experts.

An important next step will be to test this workflow us-
ing other analytical styles (e.g., the “melodic” style), which
can be done simply by specifying different heuristics in the
RB model. We also plan to tackle the larger category of
homophonic music, which includes any music with a pri-
mary melodic line accompanied by harmonic support. A
greater variety of homophonic textures poses a challenge
to our RB model because more individual onset slices are
harmonically ambiguous, requiring larger contextual win-
dows to correctly interpret the harmony. In light of this,
we will modify our workflow to address homophonic mu-
sic accordingly. Finally, we will investigate training and
evaluation protocols that permit multiple valid chord labels
per slice.

make errors, the re-trained ensemble ultimately generates
better answers in Analysis 3. Upon examining the errors,
we find that some of them are reasonable alternative ver-
sions of the ground truth: chords with the same roots, but
with or without an added seventh (slices 1, 11, 17, and
19); or chords that are subsets of the ground truth chords
(slices 20 and 21). As a result, some of the “errors” that
the ensemble makes in this particular excerpt are in fact
theoretically acceptable answers. This is encouraging, as
it suggests that at least some of the “mistakes” made by
the classifiers may not in fact be mistakes at all. We still
count them as mistakes, however, because consistency in
analytical style is one of the goals of this work.

5. CONCLUSION AND FUTURE RESEARCH

We present a versatile interactive workflow for generating
chord labels for homorhythmic music. It can be used in a
fully automatic way or, with a relatively small amount of
effort from an expert human analyst who corrects a small,
automatically selected fraction of the generated analyses,
a re-trained classifier ensemble can be produced that per-
forms even better.
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[16] Néstor Nápoles López. Automatic harmonic analysis of
classical string quartets from symbolic score. Master’s
thesis, Universitat Pompeu Fabra, 2017.

[17] Markus Neuwirth, Daniel Harasim, Fabian Claude
Moss, and Martin Rohrmeier. The annotated
Beethoven corpus (ABC): A dataset of harmonic
analyses of all Beethoven string quartets. Frontiers in
Digital Humanities, 5:16, 2018.

[18] Alexandre Passos, Marcos Sampaio, Pedro Kröger, and
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ABSTRACT

Modelling human perception of musical similarity is crit-
ical for the evaluation of generative music systems, musi-
cological research, and many Music Information Retrieval
tasks. Although human similarity judgments are the gold
standard, computational analysis is often preferable, since
results are often easier to reproduce, and computational
methods are much more scalable. Moreover, computa-
tion based approaches can be calculated quickly and on
demand, which is a prerequisite for use with an online sys-
tem. We propose StyleRank, a method to measure the sim-
ilarity between a MIDI file and an arbitrary musical style
delineated by a collection of MIDI files. MIDI files are
encoded using a novel set of features and an embedding
is learned using Random Forests. Experimental evidence
demonstrates that StyleRank is highly correlated with hu-
man perception of stylistic similarity, and that it is precise
enough to rank generated samples based on their similar-
ity to the style of a corpus. In addition, similarity can be
measured with respect to a single feature, allowing specific
discrepancies between generated samples and a particular
musical style to be identified.

1. INTRODUCTION

Measuring musical similarity is a fundamental challenge,
related to many tasks in Music Information Retrieval
(MIR). In this paper, we focus on measuring the similar-
ity between a MIDI file and an arbitrary musical style. In
a musical context, the term style can refer to historical pe-
riods, composers, performers, sonic texture, emotion, and
genre [8]. Here, we use the term style to denote the musi-
cal characteristics exhibited by a corpus C “ tC1, ..., Cnu,
as expressed by a feature set F . Depending on the con-
tents of C, style may correspond to something as specific
as a subset of a composer’s work, as general as the entirety
of Western Classical Music, or as personal as the musical
preferences of an individual.

c© Jeff Ens, Philippe Pasquier. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jeff Ens, Philippe Pasquier. “Quantifying Musical Style: Ranking
Symbolic Music based on Similarity to a Style”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

We propose StyleRank 1 , a method for ranking MIDI
files based on their similarity to a style delineated by C. It
can be used as a tool for musicological research, to evalu-
ate Style Imitation (SI) systems, and to filter the output of
an SI system. An SI system aims to generate music that
exhibits the stylistic characteristics of C [27]. The primary
contributions are as follows: a collection of novel features
for symbolic music representation; an efficient MIDI fea-
ture extraction tool written in C++ with bindings in Python;
a measure of similarity with respect to an arbitrary style
delineated by C; and two experiments demonstrating that
this measure is robust, and highly correlated with human
perception of stylistic similarity.

2. MOTIVATIONS

There are several motivating factors for this research. In
general, modelling human perception of musical similar-
ity is of particular interest within the areas of Musicology,
Music Cognition, and Music Theory [42]. Moreover, ro-
bust measures of musical similarity are critical for many
MIR tasks, including database querying, music recommen-
dation, and genre recognition. Although human perception
is the gold standard for measuring musical similarity, natu-
ral human limitations place restrictions on the quantity and
speed at which judgments can be collected, directly moti-
vating automated measures of musical similarity.

More specifically, there are inherent challenges in de-
signing a robust and reproducible listening experiment to
evaluate SI systems. There are many variables which di-
rectly effect the quality of an experimental result, such as
the number of participants, the listening environment, the
sound equipment, and the number of samples selected for
comparison. Even controlling for those variables, there
is significant variability in how music is perceived, based
on one’s level of training [5] and musical background
[13, 16, 32], which can result in a limited inter-rater agree-
ment [34]. This is a particular issue, as it may hamper
reproducibility and comparison with previously published
results.

In most cases, sampling from an SI system is a stochas-
tic process, and as a result, generated samples vary in qual-
ity. Developing a filtering process for generated material is
a high priority concern, as low quality samples are undesir-
able when using a generative model in a production setting.
Although measuring the log-likelihood of a sample can be

1 The code is available at https://github.com/jeffreyjohnens/style_rank
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useful as a proxy for quality, there are cases where log-
likelihood significantly diverges from human perception.
Theis et al. provide examples of generated images with
high log-likelihood and extremely low quality [37]. To the
best of our knowledge, there are no pre-existing methods
for ranking generated samples with respect to an arbitrary
style.

3. RELATED WORK

A wide variety of similarity measures have been developed
to measure melodic [41], harmonic [9,25,31] and rhythmic
similarity [38]. Many of these algorithms measure similar-
ity by comparing two symbolic sequences [43]. Stylistic
similarity, however, is rarely exhibited through sequence
similarity, but rather through the repeated use of particular
musical devices (i.e. melodic phrases, voice leading, and
chord voicing) interspersed throughout the material [43].
In order to address this concern, approaches based on com-
pression or pattern extraction have been proposed to mea-
sure similarity [2, 6, 21]. Since we aim to measure similar-
ity with respect to C, a more suitable approach will lever-
age information about the discriminative aspects of the en-
tire corpus C, rather than only taking two MIDI files into
consideration.

In the context of SI system evaluation, the Turing Test
[40] and the Consensual Assessment Technique [3] have
been used to measure the stylistic similarity between gen-
erated artifacts G “ tG1, ...,Gmu and a particular style
C [20,28]. Objective measures have also been used to eval-
uate SI systems. Dong et al. measure the ratio of empty
bars, pitch class diversity, note duration, rhythmic consis-
tency, and tonal distance [10]. Trieu and Keller propose
a variety of metrics ranging from rhythmic variety to har-
monic consistency [39]. Since these metrics produce a sin-
gle scalar value, it is easy to compare C and G. However,
these high-level metrics are likely only capable of measur-
ing stylistic similarity in a very general sense. Sturm and
Ben-Tal. plot distributions of meter, mode, number of to-
kens, pitch and pitch class for C and G, but do not provide
an automated method for analyzing discrepancies [36].

More comprehensive methodologies have been pro-
posed, which involve computing all pairwise inter-set dis-
tances between samples in C and G pDCG “ rdistpc, gq :
pc P Cq ^ pg P Gqsq, as well as all pairwise intra-set dis-
tances for samples within a set pDGG “ rdistpgi, gjq :
pgi P Gq ^ pgj P Gq ^ pgi ‰ gjqsq. 2 CAEMSI [14], a
domain independent framework for the analysis of SI sys-
tems, provides a statistical method to test the null hypothe-
sis H0 : pDGG ‰ DCGq _ pDCC ‰ DCGq _ pDCC ‰ DGGq

against the alternative hypothesis H1 : DGG “ DCC “

DCG . Yang and Lerch extract multi-dimensional features
from each MIDI file [44]. For each feature, DCG and DCC
are constructed using Euclidean distance and smoothed us-
ing kernel density estimation [26, 33]. The distance be-
tweenDCC andDCG is measured using (1) the area of over-

2 Note that we adapt the set-builder notation to construct a list (e.g.,
ri{2 : 0 ď i ă 4s “ r0, 0, 1, 1s), which unlike a set, may contain
duplicate values.

lap and (2) the Kullback–Leibler Divergence [18]. In con-
trast to both of these approaches, which involve evaluating
the similarity between G and C, StyleRank is optimized to
evaluate the similarity of a single sample g P G to C.

4. FEATURES

Although the features extracted by jSymbolic2 [23] are
quite comprehensive, many features are high-level, and
thus, ill-suited for the fine-grained distinctions that are nec-
essary to rank stylistically similar MIDI files. For example,
the Chord Type Histogram feature contains only 11
categories. In order to capture the complexity of the mu-
sical material being analyzed, we extract a variety of high-
dimensional categorical distributions from a single MIDI
file. A categorical distribution is a discrete probability dis-
tribution describing a random variable that has k possible
distinct states. In what follows we adopt the following no-
tation. Given a set x, ||x|| denotes the number of elements
in the set x, minpxq and maxpxq denote the minimum and
maximum element in x respectively, and xi denotes the ith

element in x. xzy is the set difference between x and y,
and x

Ś

y is the Cartesian product of x and y. ! indi-
cates a left bitwise shift and " indicates a right bitwise
shift. & , _ , and | refer to the bitwise AND, XOR, and OR
operations, respectively.

4.1 Pitch Class Set Representations

In order to reduce the number of chords, we discard oc-
tave information and represent chords as pitch class sets,
using a 12-bit integer to denote the presence or absence
of a particular pitch class pC “ 0,C# “ 1, ...,B “ 11q.
For example, the C-major chord t60, 64, 67u corresponds
to the pitch class set x “ t0, 4, 7u, which corresponds to
the integer

ř||x||
i“1p1 ! xiq “ 20 ` 24 ` 27 “ 145. Since

there are 12 pitch classes, there are 212 “ 4096 pitch class
sets, which greatly reduces the possible number of chords.
However, it is possible to further reduce this space if we
create an equivalence class for all transpositionally equiv-
alent pitch class sets. For example, the pitch class sets
t0, 4, 7u and t2, 5, 10u are transpositionally equivalent, as
both are major chords, the only difference being their root.
This results in 352 distinct pitch class sets (PCD). Using
Eq. (1c) a PCD can be calculated, where x is an 12-bit
integer. Notably, pitch class sets are considered equiva-
lent under the reversal operation when calculating the Forte
number of a pitch class set [15]. Consequently, the pitch
class sets t0, 4, 7u and t0, 3, 7u have the same Forte num-
ber, but correspond to different PCD’s.

rotpx, n, iq “ px ! iq | px" pn´iqq & p2n´1q (1a)

reducepx, nq “ minptrotpx, n, iq : 0 ď i ă nuq (1b)

pcdpxq “ reducepx, 12q (1c)

Alternatively, a pitch class set x can be represented
as the set of scales which are supersets of x. Given a
scale S, let Si “ tps ` iq mod 12 : s P Su. The
scale representation can be calculated with Eq. (2), where
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SM “ t0, 2, 4, 5, 7, 9, 11u and SH “ t0, 2, 3, 5, 7, 8, 11u
denote the major and harmonic minor scales respectively.
φp¨q returns 1 if the predicate ¨ is true and 0 otherwise.

scpxq“
`

12
ÿ

i“1

φpxĎSMi q!i
˘

`
`

12
ÿ

i“1

φpxĎSHi q!p12`iq
˘

(2)

4.2 Feature Definitions

Given a MIDI file M , for each note n P M , onspnq re-
turns the onset time of n in ticks, durpnq returns the du-
ration of n in ticks, and pitchpnq returns the pitch. An
ordered set containing the unique onsets O “ tonspnq :
n PMu is constructed, and the ith chord is the set of notes
Ci “ tn : ponspnq ď Oiq ^ ponspnq ` durpnq ą Oiqu.
isOnspC, nq and isTiepC, nq are functions that return
1 if n is an onset or a tie respectively, and 0 otherwise. The
function pcipC, nq returns 1 if n corresponds to the pitch
class i and 0 otherwise. In order to simplify the feature def-
initions, we use Eq. (3d), which accepts a chord C and a
set of functions F , and only returns 1 if there is an element
in X for which each f P F evaluates to 1. As a result,
I
`

C, tisOns,pciu
˘

is 1 if there is a note n P C that is an
onset and is equivalent to the pitch class i.

pcipC,nq“

#

0, if pitchpnq mod 12 ” i

1, otherwise
(3a)

isOnspC,nq“

#

0, if maxptonspnq:nPCuqąonspnq
1, otherwise

(3b)

isTiepC,nq“ 1 ´ isOnspC,nq (3c)

IpC,F q“

#

0, if max
`

t
ś||F ||

i“1 FipC,nq:nPCu
˘

ă1

1, otherwise
(3d)

Table 1 provides formal definitions of all the features,
where Ct denotes the tth chord, Mt denotes the tth

melody pitch, Pt “ tpitchpnq : n P Ctu, Ot “

tonspnq : n P Ctu, and Kt “ tpitchpnq : pn P

Ctq ^ isOnspnqu. popcountp¨q is a function that
counts the number of set bits in an integer, pcpxq “ x
mod 12 and pccpxq “ |px mod 12q ´ 6|. Dissonance
is calculated using Stolzenburg’s periodicity function [35],
which we refer to as stolp¨q. Let disspP,Tq “

1
||T||

ř

xPT stolpP̄xq, where P and T are pitch sets, and
P̄x “ tPi ´ x : Pi P Pu. voiceMotionp¨q is a func-
tion that accepts two successive pitch sets pPt,Pt`1q and
returns an integer corresponding to the type of voice mo-
tion. tonnetzLengthp¨q is a function that accepts a
pitch class set and returns the length of the shortest path
through Tonnetz [24] vertices containing each pitch class.

Each function is calculated for all valid values of t, re-
sulting in a categorical distribution with unsigned 64-bit
integers as the categories. For example, given a standard
4-voice Bach chorale containing m chords, the function
ChordSize is calculated for 0 ď t ă m ´ 2, producing

a categorical distribution with the categories t0, 1, 2, 3, 4u.
In some cases, we weight values by chord duration, de-
noted by a ‹ in the table. In the case that a function re-
turns a set of values (IntervalDist), we combine the
returned sets to form the categorical distribution. Since
the number of categories k grows exponentially large for
some features (e.g., ChordShape), we restrict k ď 1000
by ranking categories according to the number of sam-
ples they appear in, removing infrequently occurring cate-
gories.

4.3 Implementation

We implement the feature extraction tool in C++, using
pybind11 [17] to create Python bindings. The Midifile li-
brary 3 is used to parse MIDI files.

5. SIMILARITY COMPUTATION

In the most general sense, we are interested in measur-
ing the similarity between a single MIDI file X and a
corpus C “ tC1, ..., Cnu. We represent each MIDI file
by applying a non-empty set of feature transformations
F “ tf1, ..., fku, producing a set of categorical dis-
tributions for each MIDI file. For each fi P F , we
aim to measure the similarity between a single categor-
ical distribution fipX q and a set of categorical distribu-
tions fipCq “ tfipC1q, ..., fipCnqu. Using a distance metric
D , the average similarity could be calculated 1

n

řn
i“1 1 ´

DpfipCiq, fipX qq. However, this approach does not lever-
age information about the discriminative aspects of the en-
tire corpus. The results in Experiment 1 demonstrate the
deficiencies of this approach. Instead, we use Random
Forests [7] to construct an embedding space before mea-
suring the average similarity. Although neural networks
are often ideal for learning embeddings, the time required
to train k neural networks is prohibitive for an online sys-
tem.

Decision trees are commonly used to model complex
data. When used to classify data, each terminal node
represents a discrete class label, and an arbitrary input
is classified based on the terminal node it reaches. Us-
ing a trained Random Forest, an input can be represented
based on the terminal node it reaches in each decision
tree. Given a Random Forest containing N decision trees
each with L terminal nodes, an input can be represented
as a vector v P t0, 1uNˆL. To learn an embedding
for a single feature transformation fi P F , we train a
Random Forest to discriminate between a collection of
items fipGq “ tfipG1q, .., fipGmqu and a corpus fipCq “
tfipC1q, ..., fipCnqu. Concretely, each fipGiq P fipGq is
given the label 0, and each fipCiq P fipCq is given the la-
bel 1. We refer to the vector produced for a sample X as
RG,C,fi

X . Breiman measures the similarity of two vectors
using the dot product [7]. In order to weight each feature
transformation pfi P Fq equally, we use cosine similarity
(Eq. (4a)), which is simply the normalized dot product.
The similarity between X and C with respect to a set of

3 https://midifile.sapp.org/
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Feature Name Function Description
C

ho
rd

ChordDissonance ‹ tdisspKt,Ktqu the dissonance of onsets based on periodicity [35]
ChordDistinctDurationRatio

`

1 ! ||tdurpnq : n P Ctu||
˘

| 2||C
t
|| the ratio of distinct note durations to chord size

ChordDuration maxpOt`1q ´maxpOtq the duration of a chord
ChordLowestInterval min

`

PtztminpPtqu
˘

´minpPtq the difference between the lowest two notes

ChordOnset
`
ř||Ct

||

i“1 pisOnspCt
iq ! pi´ 1qq

˘

| 2||C
t
|| an integer representing which notes are onsets

ChordOnsetPCD ‹ pcd
`
ř11

i“0pIpCt, tisOns,pciuq ! iq
˘

distinct pitch class set excluding ties
ChordOnsetRatio

`

1 !
ř

nPCt isOnspnq
˘

| 2||C
t
|| the ratio of onsets to chord size

ChordOnsetShape ‹
ř||Ct

||

i“1 pisOnspCt,Ct
iq ! pPt

i ´minpPtqqq piano roll type representation of onset pitches
ChordOnsetTiePCD ‹ pcd

`
ř11

i“0pIpCt, tisOns,pciuq ! iq
˘

` concatenated distinct pitch class set of onsets
pcd

`
ř11

i“0pIpCt, tisTie,pciuq ! iq
˘

! 12 and distinct pitch class set of ties
ChordOnsetTieReduced ‹ reduce

``
ř11

i“0pIpCt, tisOns,pciuq ! iq
˘

` concatenated pitch class set of onsets and pitch
`
ř11

i“0pIpCt, tisTie,pciu
˘

! p12` iqq
˘˘

class set of ties reduced using Eq. (1b)
ChordPCD ‹ pcd

`
ř11

i“0pIpCt, tpciuq ! iq
˘

distinct pitch class set
ChordPCDWBass ‹ pcd

`
ř11

i“0pIpCt, tpciuq ! iq
˘

` 212`pcpminpPt
qq distinct pitch class set with bass pitch class

ChordPCSizeRatio
`

1 ! ||tpcppq : p P Ptu||
˘

| 2||P
t
|| the ratio of distinct pitch classes to chord size

ChordRange pφ1q maxpPtq ´minpPtq the range of pitches in a chord
ChordShape ‹

ř

pPPtp1 ! pp´minpPtqqq piano roll type representation of chord pitches
ChordSize ||Ct|| the number of notes in a chord
ChordTonnetz ‹ tonnetzLengthptpcpxq : x P Ptuq length of shortest path through Tonnetz [24] vertices

C
ho

rd
Tr

an
si

tio
n

ChordSizeNgram ||Ct|| ` p||Ct`1|| ! 8q ` p||Ct`2|| ! 16q an n-gram of chord sizes pn “ 3q

ChordTranBassInterval pcpminpPt`1q ´minpPtqq pitch class interval between two lowest notes
ChordTranDissonance tdisspPt,Pt`1qu the dissonance of intervals based on periodicity [35]
ChordTranDistance |minpPt`1q´minpPtq| ` |maxpPt`1q´maxpPtq| approximated voice leading distance
ChordTranOuter pcpφ1pPtqq ` ppcpφ1pPt`1qq ! 8q` pitch class transition using only the outer notes

ppcpminpPtq ´minpPt`1qq ! 16q

ChordTranPCD reduce
``

ř11
i“0pIpCt, tpciuq ! iq

˘

` transition between distinct pitch class sets
`
ř11

i“0pIpCt`1, tpciuq ! p12` iqq
˘

, 24
˘

ChordTranRepeat p
ś

nPCt isOnspnqqpPt “ Pt`1q chord repetition with onsets
ChordTranScaleDistance popcount

`

scpPtq _ scpPt`1q
˘

hamming distance between scale representations
ChordTranScaleUnion popcount

`

scpPtq |scpPt`1q
˘

the union between scale representations
ChordTranVoiceMotion voiceMotionpPt,Pt`1q type of voice motion (contrary, oblique, etc.)

M
el

. MelodyNgram
ř3

i“0pMt`i`1 ´Mt`i mod 12q ! 8i n-gram of melodic intervals pn “ 3q

MelodyPCD pcd
`
ř11

i“0 I
`

tMt`i : 0 ď i ă 5u, tpciu
˘

! i
˘

distinct pitch class of successive melody notes

In
te

r. IntervalClassDist tpccppi ´ pjq : ppj ă piq ^ ppi, pj P Pt
Ś

Ptqu interval class for each combination of chord pitches
IntervalDist tpcppi ´ pjq : ppj ă piq ^ ppi, pj P Pt

Ś

Ptqu interval for each combination of chord pitches

Table 1. Definitions for Chord features, Chord Transition features, Melody features (Mel.), and Interval features (Inter.).
The ‹ symbol indicates that a categorical distribution is weighted by chord duration.

features F is computed using Eq. (4b), which produces a
scalar value on the range r0, 1s.

cospX,Y q “
X ¨ Y

b

řN
i“1X

2
i

b

řN
i“1 Y

2
i

(4a)

SG,C,F
X “

1

||C||||F ||
ÿ

cPC

ÿ

fPF
cospRG,C,f

X ,RG,C,f
c q

(4b)

6. EXPERIMENTS

In the following experiments, we train a Random Forest
[7] using the scikit-learn python module [30]. We set the
maximum tree depth at 5, the number of trees to 500, and
measure the quality of the split using entropy. The class
weight is balanced to be robust against size discrepancies
between C and G.

6.1 Experiment 1 : Analytic Testing

We test StyleRank with styles delineated by a single com-
poser, and by an entire genre, using the Classical Archives
MIDI dataset 4 . In total there are 75 composers, and 6 mu-
sical genres. More details on the composition of the dataset
can be found in the Appendix 5 . We keep only one MIDI
file per composition. Each MIDI file is represented as a
list of pitches, sorted lexicographically according to onset
and pitch. To compare two pieces, the Levenshtein dis-
tance [19] is measured twice, once for the first 100 pitches
in each piece, and once for the last 100 pitches. We elim-
inate pieces which have a Levenshtein distance less than
0.75, after normalizing the distance on the range r0, 1s. We
choose this conservative value to ensure all duplicates are
removed.

Given two styles A “ ta1, ..., amu and B “

tb1, ..., bnu, where m “ 2n, let C “ tai : 1 ď i ď nu,

4 https://www.classicalarchives.com/midi.html
5 https://github.com/jeffreyjohnens/style_rank/tree/master/appendix
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GA “ tai : n ă i ď 2nu, GB “ B, and G “ GA Y GB .
By construction G X C “ ∅. We train a Random Forest
and compare two distributions x “ rSG,C,F

g : g P GAs and
y “ rSG,C,F

g : g P GBs, where F denotes the set of fea-
tures described in Table 1. Ideally, each value in x should
be larger than all values in y, since elements in GA and
C belong to the same style pAq. However, depending on
the specificity of the style, there may be some degree of
overlap between A and B. In order to determine if there
is a measurable difference between x and y we directly
compare the means px̄ ą ȳq, and we calculate the p-value
ppx̄ąȳq for a One-Sided Mann-Whitney test [22] with the
alternative hypothesis that x̄ ą ȳ.

In cases where multiple statistical comparisons are per-
formed, it is common practice to apply a correction to the
raw p-values. The Bonferroni correction [11] is calculated
by dividing the desired level of significance pα “ 0.05q
by the number of comparisons. The Benjamini–Yekutieli
procedure [4] controls the false discovery rate under ar-
bitrary dependence assumptions, and is less conservative
than the Bonferroni correction. Given m null hypotheses
and their corresponding p-values P1, ..., Pm, the p-values
are sorted in ascending order. For a given level of signifi-
cance, in our case α “ 0.05, reject the null hypothesis for
the first k values that satisfy Pk ď kα{pm ˚ cpmqq where
cpmq “

řm
i“1 1{i.

Table 2 shows the results of 1000 trials, reporting the
percentage of trials where x̄ ą ȳ, and the percentage of tri-
als where px̄ąȳ is significant, applying no correction pα “
0.05q, the Benjamini–Yekutieli procedure (FDR), and the
Bonferroni correction (Bon). We compare StyleRank
against three distance measures, Cosine, Manhattan and
Euclidean, replacing SG,C,F

g with 1
||C||||F ||

ř

cPC
ř

fPF 1´

Dpfpcq, fpgqq.

6.2 Experiment 2: Congruity with Human Perception

In order to evaluate how well StyleRank correlates with
human perception, we use data from the BachBot [20] ex-
periment. In total, there were 5,967 participants, including
1329 novices, 2786 intermediate, 1341 advanced and 511
experts. Liang et al. generated 36 samples pGq from a neu-
ral network trained on a collection of Bach Chorales pCq.
Participants were asked to discriminate between a gener-
ated musical excerpt and an actual Bach chorale. They
were each asked to complete 5 comparisons.

For each g P G, we count the number of times it
was mistakenly classified as a Bach chorale Nmiss

g , and
the number of times it was correctly identified as com-
puter generated N corr

g . The raw count data can be found
in the Appendix. We take the relative frequency of miss-
classifications Tg “ Nmiss

g {pNmiss
g `N corr

g q as an indication
of how similar g is to the style of Bach’s Chorales pCq. This
results in

`

36
2

˘

“ 630 pairwise comparisons for which we
have a ground truth ranking. Using a chi-square contin-
gency test [29] we can measure the degree to which we are
certain that there is a difference between two samples. We
measure accuracy using Eq. (5b), where pij is the p-value
for the chi-square contingency test comparing the counts

for the ith and jth examples, φp¨q is a function returning 1
if the predicate ¨ is true and 0 otherwise, and α denotes the
threshold for significance.

fpx, yq “

#

1, if φ
`

SG,C,F
x ă SG,C,F

y

˘

“ φ
`

Tx ă Ty
˘

0, otherwise

(5a)

accpG, C, αq “
ř||G||

i“1

ř||G||
j“i`1 fpGi,Gjqφppij ă αq

ř||G||
i“1

ř||G||
j“i`1 φppij ă αq

(5b)

The results for Experiment 2 are presented in Table 3.
We report the accuracy, calculated using Eq. (5b), for
a random ranking (Random), StyleRank with the jSym-
bolic [23] features (jSymbolic), Log-likelihood (Loglik),
and StyleRank. All the default features are extracted using
jSymbolic, and features with zero standard deviation are
removed. This results in a single feature vector with di-
mension of 453, for which we train a single Random For-
est. Using the Performance RNN [12], which was trained
with the same representation and data as the original Bach-
Bot, we evaluate the negative log-likelihood Lg of each
of the generated examples (loglik). To calculate the accu-
racy we simply replace the term SG,C,F

X ă SG,C,F
Y with

LX ă LY in Eq. (5a).

7. DISCUSSION

Collectively, the results of both experiments demonstrate
that StyleRank is robust to corpora of varying sizes, and
highly correlated with human perception of stylistic sim-
ilarity. In the Appendix, we expand Experiment 1 to
demonstrate that StyleRank’s performance is robust, even
when the number of distinct styles in G is increased. In
Experiment 1, there is a large difference between raw dis-
tance measures and StyleRank. This highlights the limita-
tions of the approach described by Yang and Lerch, which
uses euclidean distance to measure the distance between
feature vectors [44]. Although euclidean distance works
well in low-dimensional settings, it does not scale well to
high dimensions. In fact, it has been shown that Manhattan
distance performs better than Euclidean distance in high
dimensional settings [1], which we also see in our own ex-
perimental results. Understandably, there is a decrease in
performance when analyzing styles delineated by genre,
as these styles have more variance, and are less consis-
tent than the work of a single composer. Overall, these
results demonstrate that StyleRank can proficiently rank
MIDI files with different styles.

The results for Experiment 2 demonstrate that StyleR-
ank is capable of making fine-grained distinctions be-
tween MIDI files that correspond with human perception
of stylistic similarity. It is worth noting that participants
found it difficult to discriminate between generated and
human-composed samples in the BachBot experiment, ev-
idenced by the average classification accuracy of novice
(0.57), intermediate (0.64), advanced (0.68), and expert
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StyleRank Cosine Manhattan Euclidean
size µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon

C
om

po
se

r 10 0.963 0.86 0.725 0.0 0.837 0.624 0.381 0.0 0.879 0.662 0.413 0.0 0.827 0.565 0.28 0.0
25 0.951 0.888 0.807 0.609 0.808 0.583 0.422 0.24 0.793 0.578 0.415 0.244 0.729 0.532 0.363 0.226
50 0.926 0.905 0.873 0.78 0.705 0.559 0.454 0.333 0.751 0.599 0.468 0.34 0.717 0.565 0.428 0.3

100 1.0 0.986 0.973 0.951 0.713 0.636 0.59 0.515 0.723 0.633 0.568 0.486 0.715 0.626 0.571 0.504

G
en

re

10 0.81 0.379 0.0 0.0 0.68 0.193 0.0 0.0 0.686 0.2 0.0 0.0 0.645 0.176 0.0 0.0
25 0.867 0.578 0.376 0.198 0.729 0.348 0.084 0.038 0.74 0.374 0.053 0.021 0.691 0.298 0.06 0.022
50 0.88 0.715 0.59 0.432 0.776 0.484 0.266 0.126 0.747 0.489 0.253 0.088 0.714 0.344 0.158 0.082

100 0.927 0.847 0.774 0.671 0.766 0.555 0.406 0.265 0.755 0.566 0.44 0.284 0.785 0.462 0.269 0.178

Table 2. The normalized frequency over 1000 trials where x̄ ą ȳ pµq, px̄ąȳ ă 0.05 (Sig), px̄ąȳ is significant after applying
the FDR correction (FDR), and px̄ąȳ is significant after applying the Bonferonni correction (Bon). Size denotes the size of
the corpus ||C|| “ ||GA|| “ ||GB ||.

Novice Intermediate
α “ 5.0 α “ 0.5 α “ 0.05 α “ 0.005 α “ 5.0 α “ 0.5 α “ 0.05 α “ 0.005

Random .482 ˘ .025 .479 ˘ .031 .466 ˘ .044 .440 ˘ .062 .500 ˘ .023 .500 ˘ .026 .502 ˘ .033 .499 ˘ .037
jSymbolic .471 ˘ .006 .463 ˘ .008 .472 ˘ .012 .491 ˘ .015 .478 ˘ .011 .474 ˘ .013 .467 ˘ .014 .456 ˘ .017

Loglik .629 ˘ .000 .669 ˘ .000 .764 ˘ .000 .817 ˘ .000 .654 ˘ .000 .668 ˘ .000 .690 ˘ .000 .732 ˘ .000
StyleRank .716 ˘ .001 .774 ˘ .002 .855 ˘ .004 .899 ˘ .005 .702 ˘ .002 .715 ˘ .002 .758 ˘ .002 .808 ˘ .002

Advanced Expert
Random .511 ˘ .010 .514 ˘ .013 .512 ˘ .017 .515 ˘ .019 .493 ˘ .019 .492 ˘ .025 .492 ˘ .032 .485 ˘ .038

jSymbolic .481 ˘ .011 .480 ˘ .011 .470 ˘ .014 .474 ˘ .013 .452 ˘ .008 .449 ˘ .009 .482 ˘ .012 .464 ˘ .013
Loglik .673 ˘ .000 .694 ˘ .000 .730 ˘ .000 .724 ˘ .000 .657 ˘ .000 .692 ˘ .000 .741 ˘ .000 .800 ˘ .000

StyleRank .718 ˘ .001 .756 ˘ .001 .806 ˘ .002 .808 ˘ .002 .692 ˘ .002 .745 ˘ .003 .821 ˘ .004 .881 ˘ .005

Table 3. The accuracy of each model, calculated using Eq. (5b), with standard error calculated over 10 trials.

(0.71) participants [20]. Based on our experimental re-
sults, the jSymbolic [23] feature set is no better at pre-
dicting rankings than a random model. This is likely due
to the fact that high level features are not sufficiently dis-
criminative for this task. In contrast to the jSymbolic fea-
ture set, our method involves full categorical distributions,
which we believe are critical in measuring fine-grained dif-
ferences. Importantly, there is a substantial difference be-
tween the accuracy of rankings based on log-likelihood and
StyleRank. Interestingly, both log-likelihood and StyleR-
ank best model high certainty pα “ 0.005q comparisons
made by self identified novices. This may be an artifact of
increased variance as the number of ground truth compar-
isons decreases as α increases.

It should be noted that participants in the BachBot ex-
periment were not directly asked to rank samples accord-
ing to their similarity to the style of Bach’s chorales. We
extrapolated a ranking from the number of times a sample
was miss-classified, which is an indirect way of measur-
ing stylistic similarity. However, since these rankings were
based on a large sample size, we are confident that they are
reflective of human perception.

8. APPLICATION

StyleRank can be used in a variety of settings. Importantly,
we must note that there are no limitations on the composi-
tion of G. For example, one could compare k different sets
with G “ tG1

i , ...,G1
n1
,G2

1 , ...,G2
n2
, ...,Gk

1 , ...,Gk
nk
u. First

of all, the method can be use to rank samples generated
by an SI system, based on their similarity to C. StyleR-

ank can be used to filter highly dissimilar samples au-
tomatically. Filtering is as simple as taking the samples
g P G with a similarity SG,C,F

g above some threshold, and
discarding the rest. Secondly, StyleRank can be used to
rank models. Given k models, let G “ tG1, ...,Gku “

tG1
i , ...,G1

n1
, ...,Gk

1 , ...,Gk
nk
u, where Gi denotes the set of

samples generated by the ith model. Then the distribu-
tions xi “ rSG,C,F

g : g P Gis can be compared using
an appropriate statistical test. Third, the method can be
used to isolate the specific features f that deviate from
the style delineated by C by comparing the distributions
xf “ rS

G,C,f
g : g P Gs for each f in a set of features F . In

addition, StyleRank can be used as a tool for musicologists
to explore variations in style.

9. CONCLUSION

Quantifying musical stylistic similarity is a difficult task.
We propose StyleRank, a method to rank individual MIDI
files based on their similarity to an arbitrary style. Experi-
mental evidence supports our approach, demonstrating that
our method is robust, and is highly correlated with human
perception of stylistic similarity. Future work involves ap-
plying this approach to other domains where SI systems
are being developed. Additional features can be added to
the current collection, in particular rhythm-based features,
as the current collection is pitch-centric. Although we be-
lieve our experiments to be fairly comprehensive, contin-
ued validation of the proposed method on additional data
is always beneficial.
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ABSTRACT

In recent years, music source separation has been one of
the most intensively studied research areas in music in-
formation retrieval. Improvements in deep learning lead
to a big progress in music source separation performance.
However, most of the previous studies are restricted to sep-
arating a few limited number of sources, such as vocals,
drums, bass, and other. In this study, we propose a net-
work for audio query-based music source separation that
can explicitly encode the source information from a query
signal regardless of the number and/or kind of target sig-
nals. The proposed method consists of a Query-net and a
Separator: given a query and a mixture, the Query-net en-
codes the query into the latent space, and the Separator
estimates masks conditioned by the latent vector, which is
then applied to the mixture for separation. The Separator
can also generate masks using the latent vector from the
training samples, allowing separation in the absence of a
query. We evaluate our method on the MUSDB18 dataset,
and experimental results show that the proposed method
can separate multiple sources with a single network. In ad-
dition, through further investigation of the latent space we
demonstrate that our method can generate continuous out-
puts via latent vector interpolation.

1. INTRODUCTION

Music source separation, isolating the signals of certain
instruments from a mixture, has been intensively studied
in recent years. Due to the improvements in deep learn-
ing techniques, various approaches using deep learning for
music source separation have been introduced. However,
most of the previous studies are mainly focused on improv-
ing music source separation performances, not the range
of separable sources. To tackle this problem, a few stud-
ies have tried to separate the fixed number of sources of
interest by conditioning one-hot label in the deep learning
network [14, 15].

*these authors contributed equally

c© Jie Hwan Lee, Hyeong-Seok Choi, Kyogu Lee. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Jie Hwan Lee, Hyeong-Seok Choi, Kyogu Lee. “Au-
dio query-based music source separation”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

While being the most straight-forward approach, we ar-
gue that such an approach is not a proper way to deal with
the outliers when the generic and broadly defined class
labels are the only available data at hand [7, 11]. To un-
derstand this situation more concretely, let us consider the
mismatched situations where the target source is classi-
fied into a certain generic class but still somewhat far from
the general characteristics of that broadly defined generic
class. For example, consider the situation where we de-
sire to separate ‘distorted singing voice’ or ‘acoustic gui-
tar’ sources. In these cases, we can imagine that the perfor-
mance can be boosted if we were to have more fine-grained
labels such as ‘distorted singing voice’ or ‘acoustic guitar’
rather than generic classes such as ‘vocals’ or ‘guitar’. One
of the simplest ad-hoc solutions, therefore, can be manu-
ally annotating such outliers based on the music instrument
ontology and conditioning those new classes into the deep
learning network. Unfortunately, manually annotating an
audio signal has limitation in many aspects. First, labeling
an audio itself is costly. Second, given the same audio sam-
ples, the number of samples per class is reduced, hence it
is likely that the separation performance degrades. Third,
such a method is not scalable to new outlier samples, and
is thus limited.

Figure 1. t-SNE visualization [8] of encoded latent vectors
of the test dataset in MUSDB18. Without any classification
loss, the Query-net is trained to output latent vectors that
provide useful information about various instruments. It is
observable that the latent vectors from the same class are
clustered in the latent space while not being identical.

To deal with these problems, in this paper, a novel au-
dio query-based music source separation framework is pro-
posed. The main idea is to directly compress the diverse au-
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dio samples into latent vectors – using the so-called Query-
net – so that the audio samples can be mapped into non-
identical points even when the samples are from the same
class as illustrated in Fig. 1. The encoded latent vector
is then fed into a separation network to output a source
whose characteristics is similar to the audio sample taken
into the Query-net. The proposed framework is scalable as
the Query-net is able to encode an unseen singing voice
or instrument sound into the continuous latent space. This
property allows many useful utilities as follows. First, it
is capable of separating various number of sources with a
single network. Second, we can expect an increase in sep-
aration performance especially when the characteristics of
the target source in the mixture is considered far from the
given generic class since the user can manually select and
encode the held-out sound sample that is deemed similar to
the target signal. Third, it allows the natural control of the
output of the separation network by interpolating the latent
vectors in the continuous latent space.

To demonstrate the usefulness of the proposed method,
we show various experiments using the MUSDB18 dataset
[11]. The experiments show that the output of the separa-
tion network is highly dependent on the latent vector which
allows smooth transition in signal level by controlling and
interpolating the latent vectors. Also, we show that the pro-
posed method becomes especially useful when the target
source of interest is far from the general characteristic of
coarsely defined sound class. Finally, we show that the pro-
posed method can be even automated by iteratively encod-
ing the separation output.

2. RELATED WORK

In this section, we first introduce previous music source
separation studies that tried to separate mixture into multi-
ple sound classes. One of the most basic ways is to estimate
several separation masks with a single model. In [10], they
tried to separate four sources with one stacked hourglass
model [9]. While they showed a competitive results the
method is not flexible as the model requires a fixed num-
ber of output. Next, [15] introduced a one-hot label condi-
tioning approach and showed that their proposed method
is capable of separating multiple sources. This method is
more flexible than the aforementioned model but the model
does not assume latent space, therefore, is not capable of
manipulating output other than conditioning the one-hot
label. Finally, [14] showed that they can embed each time-
frequency bin of the mixture into a high-dimensional space
using deep clustering [1] approach. However, this approach
still has a limitation in that the model is not capable of en-
coding the audio signal directly into the latent space. Apart
from the music source separation studies, [21] suggested a
speaker-dependent speech separation method by incorpo-
rating a lstm-based anchor vector encoder which enables
direct encoding of audio signal into a latent space. Using
this technique, they showed that the proposed method can
cluster the time-frequency bin embeddings that are close to
the anchor vector in the latent space.

Figure 2. Illustration of the (a) Query-net and (b) Separa-
tor. The Query-net encodes the query into the latent vec-
tor and it is passed into the Separator by two methods. 1.
Concatenation: The latent vector is concatenated with mix-
ture spectrogram by tiling the latent vector along the spa-
tial dimension. 2. AdaIN: Adaptive instance normalization
is used in every layer of decoder part.

3. PROPOSED METHOD

3.1 Query-based Source Separation

The proposed framework is composed of two deep learning
networks, Query-net Q(·) and Separator S(·). While most
of the previous studies typically use S to extract a single
class source from a mixture, we aim to separate the mixture
by manipulating the additional input signal, a query. By
doing so, we can expect to have a control over the mixture
just by choosing a different query input which can be done
either manually by the user or automatically by the system.
Hence, the query signal is expected to be sampled from a
similar sound class to the target signal within the mixture,
but does not have to be identical. To achieve this, Q directly
encodes the query audio signal into a latent vector so that
we can control the output of S by manipulating the latent
space.

Q is composed of 6 strided-convolutional layers fol-
lowed by gated recurrent unit (GRU) layer. The stack of
strided-convolutional layers are used to extract local fea-
tures from the given query signal. Then, the extracted fea-
tures are reshaped by stacking each feature map along the
frequency axis. Finally, the reshaped tensor is passed into
GRU and the last state of the GRU is used as a summary
of the query signal. As we would like the encoded latent
vector to have a meaningful high-level information, we de-
signed Q to map the query into a small enough dimension
compared to the dimension of the query signal. After the
audio query has been encoded, the summarized informa-
tion is passed into S.

S is a U-Net [13] based network which has proven its
effectiveness in many source separation studies [3, 10, 16,
18,19]. It is a convolutional encoder and decoder with skip-
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connections between the layers. S takes the mixture signal
and estimate a sigmoid mask to separate the mixture into a
source given the summarized information of query from Q.
To effectively pass the summary of the query signal to S,
we applied two methods. First, we simply concatenated the
latent vector along the channel dimension of the input mix-
ture spectrogram expecting the summarized information to
be delivered from the start. Second, we used the adaptive
instance normalization (AdaIN) technique in the decoding
stage of S, which is proven to be effective in many stud-
ies for conditioning latent vectors [2, 4]. AdaIN is simply
done by applying two steps on each output x of the con-
volutional layer (before activation) of the decoder part of
S. First, each i-th feature map xi is normalized using in-
stance normalization technique [2]. Second, affine trans-
formation is applied to the normalized feature map using
learned scale and bias parameters which transforms en-
coded query vector z into ys and yi respectively as fol-
lows, ys = WT

s z, yb = WT
b z, where Ws and Wb denote

the trainable parameters,

AdaIN(xi,y) = ys,i · (
xi − µ(xi)

σ(xi)
) + yb,i. (1)

The overall framework of the proposed method is illus-
trated in Fig. 2.

3.2 Training

3.2.1 Data Sampling

We first describe how the mixture and target source are
selected throughout the training phase.

Let, vi be the single source sampled from i-th source
class, where i ∈ {1, 2, 3...,K} and K denote the total
number of source classes. We split the classes into two
groups by randomly assigning each source class into group
T (Target) and R (Rest) without replacement until every
class is assigned to one of the two groups. Next, we multi-
ply binary value αi to the vi, where αi being sampled from
the Bernoulli distribution, αi ∼ Bernoulli(0.5). This was
done to make sure that there are not too many sources in-
cluded in the mixture. After then, as a data augmentation
strategy [20], we scale each source by multiplying a value
βi to source vi, where βi is sampled from the Uniform dis-
tribution, βi ∼ U[0.25, 1.25]. Finally, the sources in each
group is added to form two waveforms sT and sR and the
mixture m is constructed as the linear sum of sT and sR as
follows,

m = sT + sR =
∑
i∈T

(βi · αi · vi) +
∑
j∈R

(βj · αj · vj).

(2)

As we used magnitude spectrogram as input of the mod-
ules, m, sT , and sR are transformed into short-time-
Fourier-transform (STFT) domain, which we denote in
capital letterM , ST and SR, respectively. Note that, we do
not assume any musicality of mixture signal, hence each
class is sampled from arbitrary mixture tracks.

3.2.2 cVAE with Latent Regressor

To design the proposed framework, we borrow the for-
mulation of conditional variational autoencoder (cVAE).
While the latent vector z can be deterministically encoded
into the latent space, in cVAE framework, z is instead sam-
pled from the Gaussian distribution, where the parame-
ters of the distribution (mean and variance) are estimated
from Q. Then, S is used to reconstruct ST given M and
z ∼ Q(ST ). This is ensured by one of the two objectives
of cVAE, namely, reconstruction loss LR. The purpose of
LR is to guarantee that the output of S is dependent on the
encoded latent vector as follows,

LR = EST∼p(ST ),M∼p(M), z∼Q(ST )[‖ST − S(M, z)‖]1.
(3)

Note that, in training phase, the latent vector z is sampled
using re-parameterization trick to allow backpropagation
in training phase [5].

Next, KL-divergence loss is used to make the distribu-
tion of z be close to the Gaussian distribution N (0, I) to
guarantee a sampling at test time.

LKL = EST∼p(ST ) [DKL(Q(ST )‖N (0, I))] (4)

Apart from cVAE framework, we also adopted latent
regressor used in [24] to enforce the output of S to be
more dependent on the latent vector. First, a random vec-
tor z is drawn from the prior Gaussian distributionN (0, I)
and passed to S. Then, S produces a reasonable output re-
flecting the information in the random vector. Finally, Q is
reused to restore the random vector from the output from
S. Note that, unlike Eq. 3 and 4, only the mean values (µ)
are taken from Q as a point estimate of z.

Llatent = EM∼p(M), z∼p(z)‖z−Q(S(M, z))‖1 (5)

Finally, the total loss can be written as follows,

LTotal = λRLR + λKLLKL + λlatentLlatent. (6)

3.3 Test

During the training phase, S was trained to separate the tar-
get source by using the target source as a query as in Eq. 3.
In the test phase, however, the target source to be separated
from the mixture is unknown. Hence, the target source and
query can no longer be the same. Nevertheless, since we
designed the output dimension of Q to be small enough, the
latent vector z is trained to have a high-level information
such as instrument class. In the test phase, therefore, we
can utilize this property in many ways. For example, when
the user wants to separate a specific source in the mixture,
it is possible to collect a small amount of audio samples
that have similar characteristics but not exactly the same to
the source of interest. Then, the user can extract that spe-
cific source by feeding the collected audio samples into the
Query-net and passing the summarized information to the
Separator.

Apart from the query dependent approach, we can also
take the average of latent vectors of each source class in
the training set and use it as a representative latent vector
that reflects the general characteristics of a single class.
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4. EXPERIMENT

4.1 Dataset

We trained our network with the MUSDB18 dataset. The
dataset consists of 100 tracks for training set and 50 tracks
for test set and each track is recorded in 44.1kHz, stereo
format. The dataset provides the mixture and coarsely de-
fined labels for sources, namely, ‘vocals’, ‘drums’, ‘bass’
and ‘other’. The class ‘other’ includes every instrument
other than ‘vocals’, ‘drums’ and ‘bass’, providing the most
coarsely defined class. We resampled the audio to 22050Hz
and divided each track into 3-second segments. Magni-
tude spectrogram was obtained by applying STFT with a
window size 1024 and 75% overlap. To restore the audio
from the output, Inverse STFT is applied using the phase
of the mixture. We evaluated our method on the test set
of MUSDB18 using the official museval package 1 which
computes signal-to-distortion ratio (SDR) as a quantitative
measurement.

4.2 Experiment Details

The followings are the experimental details of our method.
Q consists of 6 strided-convolutional layers with 4 × 4 fil-
ter size and the number of output channels for each layer
is 32, 32, 64, 64, 128 and 128, respectively. Every strided-
convolutional layer has the stride size of 2 along the fre-
quency axis and only second, fourth and sixth layers have
a stride size of 2 along the time axis. After every convolu-
tional operation, we used instance normalization and relu.
We used GRU with 128 units. The length of the query seg-
ment was fixed to 3-second in every experiment. For S,
the encoder part consists of 9 strided-convolutional lay-
ers and the decoder part consists of the same number of
strided-deconvolutional layers, with a filter size of 4 × 4.
The number of output channels for first, second, and third
layer is 64, 128, 256, respectively, and 512 for the rest of
the layers. Every layer has stride size of 2 along the fre-
quency axis. And stride size along the time axis is set to 2
for every layer except the first layer of the encoder and the
last layer of the decoder.

The dimension of the latent vector was set to 32 and the
batch size was set to 5. The coefficients in Eq.6 were set to
λR = 10, λKL = 0.01, λlatent = 0.5. The initial learning
rate was set to 0.0002 and after 200000 iterations the rate
was decreased to 5 × 10−6 for every 10000-iteration. We
used Adam optimizer with β1 = 0.5, β2 = 0.999.

4.3 Manually Targeting a Specific Sound Source

To validate that our method captures the characteristics of
the audio given in the query and separates them accord-
ingly, we conducted an experiment of separating specific
instruments. As shown in Fig. 3, an audio query of hi-hat
and piano were given to the mixtures of (hi-hat + kick
drum + bass) and (piano + electric guitar). Queries and
mixtures were not from the train set, and both queries were
not sampled from the mixture. We can observe in the hi-hat

1 https://sigsep.github.io/sigsep-mus-eval

Figure 3. Results of manually targeting specific sound
sources. The first row show the separation results of hi-hat
from the mixture of hi-hat, kick drum and bass. The second
row shows the separation results of piano from the mixture
of electric guitar and piano. It is worth noting that the net-
work was never trained to only separate a hi-hat component
from ‘drum’ class nor piano from ‘other’ class.

separation result that the kick drums and the bass which
lie in the low-frequency band were mostly removed while
broadband components of hi-hat remained. The result of
piano separation is not as clear as in the case of hi-hat, but
we can see the guitar was removed considerably.

The noticeable fact is that we trained our method only
with the MUSDB18 dataset, which has no hierarchical
class label information besides the coarsely defined labels
of sources such as ‘vocals’, ‘drums’, ‘bass’ and ‘other’.
Under the definition of class in the dataset, hi-hat and kick
drum are grouped into ‘drums’, and piano and electric gui-
tar into ‘other’. Although our method was never trained
to separate the subclass from the mixture, it was able to
separate hi-hat and piano from the mixture, which can be
referred to as a zero-shot separation. These results indicate
the proposed method can be well applied for audio query-
based separation.

4.4 Latent Interpolation

Furthermore, we conducted a latent interpolation exper-
iment using the mean vector of each source. The mean
vector of each source was computed by averaging the
latent vectors of each source in the training set, zc =
1
Nc

∑
i Q(Sc,i), where Sc,i denotes i-th 3-second magni-

tude spectrogram in the sound class c and Nc denotes the
number of segments in class c.

For the interpolation method, we used the spherical lin-
ear interpolation (Slerp) introduced in [23],

Slerp(z1, z2;α) =
sin(1− α)θ

sin θ
z1 +

sinαθ

sin θ
z2, (7)
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Figure 4. Results of the mean vector interpolation. The
first row shows the interpolation results between vocals
and drums. The second row shows the interpolation results
between drums and bass.

where α denotes the weight of interpolation and θ denotes
the angle between z1 and z2. As shown in Fig. 4, we inter-
polated between the mean vector of sound sources, drums
(zdrums) → bass (zbass) and vocals (zvocals) → drums
(zdrums). We can see the ratio of separated instruments
changes as the weight α changes. These experimental re-
sults show that our method can generate continuous out-
puts just by manipulating a latent space.

4.5 Effects of Latent Vector on Performance

Figure 5. Illustration of two ∆CD cases. (a) shows the
positive ∆CD case where we assume that the performance
should be improved. (b) shows the negative ∆CD case
where we assume that the performance should be wors-
ened.

This subsection investigates the performance improve-
ment varying the latent vector and see in which situation
we can achieve a performance improvement. For the exper-
iment, we first obtained the mean vector of each vocal track
from the entire dataset as follows, zi = 1

Ni

∑
j Q(Si,j),

where i denotes a i-th vocal track, j denotes a j-th seg-
ment in i-th vocal track, and Ni denotes the number of
segments in i-th vocal track. Then, we obtained the mean
vector, zmean = 1

100

∑
i∈training zi, of vocal tracks from

training set. Finally, we retrieved the latent vector of cer-
tain vocal track zretk from the training set which has the

Figure 6. The relationship between SDR improvement
(∆SDR) and cosine distance difference (∆CD) in vocal
tracks.

closest cosine distance (CD) from k-th test vocal track
ztestk = zk, k ∈ test as follows,

k̃ = arg min
i∈training

CD(zi, ztestk), zretk = zk̃. (8)

We compare the performance of two cases where the
goal is to separate a k-th vocal track from test set. The first
case is to use zmean to separate a target source, Ŝmean =
S(M, zmean). The second case is to use zretk to separate
a target source, Ŝretk = S(M, zretk). We defined perfor-
mance improvement in terms of SDR as follows,

∆SDR = SDR(SGTk
, Ŝretk)− SDR(SGTk

, Ŝmean), (9)

where SGTk
denotes k-th ground truth vocal track from

test set. To measure the distance between latent vectors we
used cosine distance (CD(z1, z2) = 1 − (z1/ ‖z1‖2) ·
(z2/ ‖z2‖2)) and defined cosine distance difference be-
tween (ztestk , zretk ) and (ztestk , zmean) as follows,

∆CD = CD(ztestk , zmean)− CD(ztestk , zretk). (10)

Fig. 5 illustrates two possible cases of using zretk . (a)
shows the positive ∆CD case where we assume to induce
positive effect on performance improvement (∆SDR > 0).
In this case, we expect the performance to be improved
since zretk is expected to contain information close to
ztestk compared to zmean. (b) shows the negative ∆CD
case where we assume to induce negative effect on per-
formance improvement (∆SDR < 0). In this case, we ex-
pect the performance to be worsened as the system could
not retrieve a zretk that is close enough to ztestk . To em-
pirically prove our assumption, we show the relationship
between ∆SDR and ∆CD in Fig. 6. We can observe that
the closer the vector gets to the targeted ground-truth vec-
tor, the larger the performance gain becomes, therefore re-
inforcing our assumption that better performances can be
achieved if we can obtain closer latent vectors to the target
latent vector.

4.6 Iterative Method

In this subsection, we seek a performance improvement
by automating the query-based framework in an iterative
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way, which we refer to as an iterative method. The itera-
tive method is done as follows. First, we separate the tar-
get source using the mean vector of certain sound class
zmean. Then, we re-encode the separated source into a
latent space expecting the re-encoded latent vector to be
closer to the target latent vector. Finally, we separate the
target source using the re-encoded latent vector. We verify
the effect of the proposed iterative method and show that
it can be helpful under the harsh condition where the tar-
get sources are far from generic class. The results (Single
step → Iterative) are as follows, ‘vocals’: 4.84 → 4.90,
‘drums’: 4.31 → 4.34, ‘bass’: 3.11 → 3.09, and ‘other’:
2.97 → 3.16. We can see the iterative method noticeably
improves the performance in ‘vocals’ and ‘other’. On the
other hand, the differences are not significant in drums and
bass.

We looked into the tracks which gained significant im-
provement in terms of SDR in vocals. ‘Timboz - Pony’ and
‘Hollow Ground - Ill Fate’ gained more than 0.5dB in SDR
through the iterative method. We found the results intuitive
as the vocals in the two songs feature a growling technique
from heavy metal genres, which can be considered distant
from the general characteristics of vocals.

Figure 7. t-SNE visualization of encoded latent vectors
from each source in the test dataset. Red points denote
the vectors of the tracks which gained more than 0.4dB
in terms of SDR by the iterative method.

To verify our assumptions, we divided each source of
the test set into segments and converted them into latent
vectors. We divided the encoded vectors into two groups,
the ones which gained more than 0.4dB in terms of SDR
by the iterative method and the ones did not. Then, we vi-
sualized the encoded vectors using t-SNE (results shown
in Fig. 7). The red dots in Fig. 7 represent the latent vector
from the group that showed significant SDR improvement
more than 0.4dB. Although some vectors lie around the
center, most of them are located far from the center. These
vectors can be inferred as outliers and the results show that
our iterative method is effective when it comes to separat-

Vocals Drums Bass Other
STL2 [16] 3.25 4.22 3.21 2.25
WK [22] 3.76 4.00 2.94 2.43

RGT1 [12] 3.85 3.44 2.70 2.63
JY3 [6] 5.74 4.66 3.67 3.40

UHL2 [20] 5.93 5.92 5.03 4.19
TAK1 [18] 6.60 6.43 5.16 4.15

Ours (mean) 4.90 4.34 3.09 3.16
Ours (GT) 5.48 4.59 3.45 3.26

Table 1. Median scores of SDR for the MUSDB18 dataset.

ing the sources of distinctive characteristics.

4.7 Algorithm Comparison

In this subsection, we compare our method to other meth-
ods with the evaluation result of the MUSDB18 dataset. As
stated above, our method’s output is dependent on the en-
coded latent vector from a query. For the comparison with
other methods that do not require a query, therefore, we
used the mean vector in the latent space encoded from the
training samples for each source – i.e., we ended up us-
ing four mean latent vectors for ‘vocals’, ‘drums’, ‘bass’,
and ‘other’, respectively. Additionally, to show the upper
bound of our proposed method, we used the encoded la-
tent vector of the ground truth (GT) signal from test set.
Note also that the separation is done with a single network.

Table 1 shows the median scores of SDR of methods re-
ported in SiSEC2018 [17], including our method denoted
as Ours. Although the proposed algorithm did not achieve
the best performance, the results show that it is compara-
ble to the other deep learning-based models that are ded-
icated to separating just four sources in the dataset. This
means that our method is not limited to query-based sepa-
ration, but also can be used for general music source sep-
aration just like as other conventional methods. Addition-
ally, there is room for improvement: applying the multi-
channel Wiener filter and/or using other architecture for
the separator besides U-net could be such an option.

5. CONCLUSION

In this study, we presented a novel framework, consist-
ing of Query-net and Separator, for audio query-based mu-
sic source separation. Experiment results showed that our
method is scalable as the Query-net directly encodes audio
query into a latent space. The latent space is interpretable
as was shown by the t-SNE visualization and latent in-
terpolation experiments. Furthermore, we have introduced
various utilities of the proposed framework including man-
ual and automated approach showing the promise of audio-
query based source separation. As a future work, we plan to
investigate more adequate conditioning method for audio
and better neural architecture for performance improve-
ment.
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ABSTRACT

We introduce a novel mosaic synthesis algorithm for mu-
sical style transfer using the autocorrelogram as a feature
map. We decompose the autocorrelogram feature map
sparsely in a decaying sinusoid basis, using that decom-
position as an interpolation scheme in feature space. This
efficiently provides gradient information in the mosaic-
ing optimization, including gradients of the challenging
time-scale parameters, which are usually computationally
intractable for discretely sampled signals. The required
calculations are straightforward to parallelize on vector-
processing hardware. Our implementation of the method
provides good quality output and novel musical effects in
example tasks by itself and can also be integrated into al-
ternative mosaicing methods.

1. INTRODUCTION

Mosaicing synthesis is a particular approach to the style
transfer problem. As with all style transfer methods, the
goal is combining two signals, a source, and a target,
to produce a hybrid output signal with qualities of each,
which we call a mosaic. A musical application of these
methods would typically use the ‘style’ of one signal, the
timbre, to express the ‘content’ of another, a melody. Con-
cretely, if the target were a trumpet playing a melody, and
the source a recording of a singing vocalist, the mosaic
might aim to emulate the vocalist singing that melody.

There exist a variety of problem definitions of, and as-
sociated algorithms for, mosaicing synthesis; e.g. [8, 12,
13, 22, 23, 35, 41, 45], partially summarized in [32]. In
mosaicing specifically, we accomplish style transfer us-
ing a dictionary-based granular synthesis method, which
constructs its output by superposition of transformed short
recordings, grains, from an audio dictionary, in the time or,
more recently, spectral domains [1, 7, 16].

The granular synthesis methods in themselves are well
understood and widely deployed in industrial applications.
They comprise a significant proportion of the music indus-
try market for software synthesizers, are integrated into ev-
ery major Digital Audio Workstation package, and have

c© Dan MacKinlay and Zdravko Botev . Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Dan MacKinlay and Zdravko Botev . “Mosaic style trans-
fer using sparse autocorrelograms”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

been extensively researched – see e.g. [31] and references
therein.

The extension of granular synthesis into a style-transfer
problem as mosaicing is less well-understood. In this set-
ting we choose the parameters of a granular synthesis so as
to optimally approximate a desired target audio signal in
the sense of optimising some measure of acoustic similar-
ity. Typically, this implies approximating, in the sense of
minimising some approximation loss, the power spectral
density (PSD) of the target signal. Applications for this in-
clude musical accompaniment, creative musical effects, or
user customization of speech synthesis [10].

Our sparse autocorrelogram method advances the capa-
bilities of musical mosaicing applications, by leveraging a
feature map that is related to, but more convenient than,
classical PSD methods. This method is enabled by two
major innovations.

Firstly, we define signal similarity through the autocor-
relogram, a representation of the signal as covariance with
delayed versions of itself. The autocorrelogram and its re-
lationship to PSD is well-known (e.g. [44]) but our use in
mosaicing synthesis appears novel. Although we use the
autocorrelogram in a standalone procedure, it may be in-
cluded in the feature vectors of loss functions of other mo-
saic techniques and is thus of independent interest.

Secondly, we decompose the high-dimensional empir-
ical autocorrelogram into a sparse dictionary of decaying
sinusoids. By interpolating discrete signals, this procedure
calculates both error and gradients efficiently, enabling
gradient-based optimization. The resulting technique is
flexible and straightforward to parallelize on modern Sin-
gle Instruction Multiple Data (SIMD) architectures such as
Graphics Processing Units (GPUs).

We make our Python code 1 openly available for public
use. We thereby aim to facilitate both the investigations of
future researchers and the immediate application of these
methods by musicians. Comparisons are made with bench-
mark mosaicing implementation, NiMFKS [7].

2. PRIOR WORK

Style transfer techniques, construed broadly, have a long
history in signal processing research. Early work in this
area begins with the channel vocoder [17], via various in-
novations to the modern repertoire of methods which in-
cludes innovations such as neural style transfer methods

1 https://github.com/danmackinlay/mosaicing_
omp_ismir_2019/
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[19, 21, 43]. In the style transfer field, the mosaicing tech-
niques form a sub field which fix a choice of synthesis to
dictionary-based granular synthesis techniques.

We are concerned with the musical applications of style
transfer. The archetypal task in this context is using the
timbre of the ‘style’ signal to express the melodic ‘content’
of another. Concretely, if the target were a trumpet playing
a melody, and the source a recording of a singing vocalist,
the output should emulate the vocalist singing that melody.

In mosaicing synthesis, the task of choosing synthesis
parameters to produce the desired output is non-trivial and
subject of ongoing interest. Notable recent progress in-
cludes matrix factorization methods to decompose audio
[1, 7, 16], various improvements in spectral matrix factor-
ization [1, 7, 16] and optimization over features [8, 11, 36].
However, few methods can conveniently handle time-
scaling of audio, so that time-scale parameters must be
ignored, or selected by exhaustive search. One recent ex-
ception is Sound Retiler [1], which claims to handle time
shifting via tensor decomposition. It is in this area that we
make our main contribution, by the application of autocor-
relogram features in this task.

While the autocorrelogram itself is not new in audio
synthesis (e.g. [38]), our application to the mosaicing prob-
lem seems novel. The autocorrelogram-based analysis in
combination with sparse coding induces a novel and ana-
lytically differentiable expression for the time scale param-
eter, and it is this we use to solve the mosaic problems.

3. PROBLEM DESCRIPTION

3.1 Audio signals and notation

We work with audio signals, a Hilbert space H of real
L2 functions f : R → R mapping time to instanta-
neous signal pressure level. Where the argument of the
signal is clear, we abbreviate notation, writing for exam-
ple, t 7→ f(at) as f(at). We will handle transforms on
signals f(.) such as the autocorrelogram A, and Fourier
transform F . Where not clear from context which argu-
ment of the signal with respect to which the transform is
taken, we indicate it with a subscript to the transform. Thus
Ft{f(s, t)}(ξ) :=

∫
e−2πitξf(s, t)dt.Where we specify a

weight v for the inner product or norm, we write it as a
subscript, i.e. 〈f, g〉v :=

∫
R v(t)f(t)g(t)dt.

In practice we do not observe continuous audio signals,
but discretely sampled observations of signals. Sampling
fidelity will be assumed, requiring signals are band-limited
to some suitably low cutoff period Ω.We scale time so that
the sample period T = 1 and Ω > 1/2. The sampling
process is a train of Dirac impulses, and inner products
with a discrete signals are defined

〈g, f〉v :=
∑
t∈Z

v(t)g(t)f(t). (1)

We denote length-M vectors in bold, x =
[x1, x2, . . . , xM ]ᵀ.

3.2 Mosaicing

Given a target signal f0, we seek an approximant, the mo-
saic f̂0, as a sparse linear combination of scaled signals,
called codes, from a source dictionary G := {g1, . . . , gD}
subject to a maximum budget of J codes. In our earlier
style transfer example, say, f0 would be the recorded trum-
pet melody and G, recordings of the singing vocalist. For a
fixed dictionary the mosaic is specified completely by the
length-J parameter vectors α,γ,ρ and written

f̂0(t;α,γ,ρ) =
J∑
j=1

αjgγj (ρjt). (2)

The problem requires selecting approximately optimal val-
ues for parameter vectors

{α,γ,ρ} ' argmin
{α,γ,ρ}

d
(
f̂0(t;α,γ,ρ), f0(t)

)
, (3)

where ρj ∈ R+, αj ∈ R, γj ∈ {1, . . . , D} and d :
H×H 7→ R+ is a distance function quantifying the poor-
ness of the approximation. In contrast to sparse coding
for signal compression, f̂0 is an intentionally imperfect ap-
proximation of f0, possessing qualities of both the source
and target signals, hence the designation style transfer.

4. AUTOCORRELATION MOSAICING METHOD

The autocorrelogram mosaicing method has two stages.

1. In the pre-training stage, autocorrelogram features
are computed from the source signals, and decom-
posed in a dictionary of decaying sinusoids.

2. In the inference stage, we search our dictionary of
autocorrelogram decompositions for matches to the
autocorrelogram of the target signal, and solve an in-
verse problem, synthesizing a corresponding mosaic
from our result.

Both stages leverage convenient properties of autocor-
relograms, and sparse dictionary decompositions, which
we now introduce.

4.1 Properties of autocorrelograms

We now motivate the use of the autocorrelogram in our
feature map. As with other style transfer methods we face
the challenge that sample values of a time domain audio
signal f are only indirectly indicative of how human lis-
teners will perceive it. For audio analysis, one typically
operates on a feature map P{f} which is in some sense
closer to human perception of these signals. Specifically,
we aim to find a feature map such that two signals are
similar if some distance between their feature vectors is
small, i.e. the similarity of f and f̂ is high iff the distance
dP(f, f̂) := ‖P{f0} − P{f̂}‖ is low, with some choice
of norm ‖ · ‖. We would like dP to approximate specifi-
cally psychoacoustic similarity, which is to say dP(f, f̂) is
small iff a typical human listener would perceive f and f̂
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as similar. Ideally the image of the feature map should also
be of lower dimension than f , and dF should be computa-
tionally efficient to manipulate.

True psychoacoustic similarity is not well-defined, so
practical algorithms settle for feature maps compromis-
ing between convenience and psychoacoustic plausibility.
Usually, feature maps are empirical PSDs [8, 23], or are
derived from the PSD, as with the Mel-Frequency Cep-
stral Coefficient (MFCC) [27] or the Constant-Q transform
[6]. These maps induce expensive mosaicing optimization
problems [11, 12]. MFCCs for example, are suitable for
low-dimensional indexing and search but are hard to invert.
A raw empirical PSD is easier to invert, via, e.g. Griffin-
Lim iteration, but of the same order of dimensionality as
the original signal and thus difficult to search. One could
ameliorate this difficulty if a computationally convenient
feature map could be found which was well-behaved un-
der operations of scaling and superposition, as in Eq. 2, so
that one could conduct as much calculation as possible in
the feature space.

These desiderata suggest the autocorrelogram map

A{f} :ξ 7→ (ξ 7→ 〈f(t), f(t− ξ)〉) . (4)

This is the deterministic covariance between f(t) and
f(t − ξ). The autocorrelogram is an even function in
ξ, so we work with one-sided autocorrelograms R+ →
R. Autocorrelogram-like transforms are implicated in the
neurological processing of harmonic audio by human lis-
teners [3, 9, 25, 26]. For our purposes, the supposed neu-
rological basis is a secondary consideration to the demon-
strated empirical usefulness in psychoacoustic tasks, most
notably in pitch-detection [30, 37, 40]. In this regard it re-
sembles the cepstral analysis method [5], which also ef-
fectively identifies small numbers of periodic components
by analysing a pointwise non-linear transformation of the
power spectrogram , but unlike the cepstrum it is well-
behaved under superposition.

Specifically, brief calculation shows the following use-
ful properties: a) Multiplication by a constant c ∈ R:

A{cf}(ξ) = c2A{f}(ξ). (5)

b) Time scaling:

A{f(rt)}(ξ) =
1

r
A{f}

(
ξ

r

)
(6)

c) Randomized addition:

E [A{S1f + S2f
′}(ξ)] = A{f}(ξ) +A{f ′}(ξ), (7)

where {Si} are i.i.d. Rademacher variables, taking values
in {+1,−1} with equal probability.

We note two obstacles to the application of these for-
mulae in the mosaicing problem. Firstly, Eq. 6 is not well-
defined for the discrete signals that comprise the usual
subject matter of digital signal processing. We will han-
dle discrete signals by continuous interpolants, which turn
out to be practically sufficient approximations. Secondly,

the additive rule c) is valid only in expectation, via the
contrivance of introducing Rademacher random variables.
Solving for the deterministic case by accounting for phase
cancellation is indeed possible, but considerably more in-
volved, and constitutes an active area of research in its
own right in, e.g. the Overlap-Add [15, 42], and phase re-
trieval [24,34] literatures. As the randomised solution also
turns out in practice to be already sufficient for many tasks,
we defer such extensions to future work.

In order to construct these interpolants efficiently, we
decompose discrete autocorrelograms using a matching
pursuit, which we now introduce.

4.2 Orthogonal matching pursuit

In orthogonal matching pursuit (OMP) [14, 28], given a
target signal f0 and a dictionary of code signals D =
{gθ}θ∈Θ, one finds a decomposition f̂0 = OMPD,K(f0)
of form

f0 ' OMP
D,K

(f0) :=

K∑
i=1

µigθi . (8)

A solution is a parameter vector [θ1, . . . , θK ] ∈ Θk and
code weights [µ1, . . . , µK ] ∈ RK which nearly mini-
mize ‖f0 − f̂0‖. We require that f0 and all codes gθ are
L2 integrable and not null, i.e. possessing positive norm,
‖gθ‖ > 0.

The OMP algorithm is as follows.

1. Initialization. Let the first residual be r0 := f. Set
step counter k ← 1.

2. Find θk such that (possibly approximately)

θk = argmax
θ

A(rk, gθ) (9)

where A is the normalized code product

A(rk, gθ) :=
〈rk−1, gθ〉
‖gθ‖

. (10)

3. Solve the least sum of squares problem

[µk1 , . . . µ
k
k] = argmin

[µ1,...,µk]

∥∥ ∑
1≤`≤k

µ`gθ` − f0

∥∥ (11)

giving kth decomposition f̂k =
∑

1≤`≤k µ`gθ` .

4. Update the residual rk+1 = f0 − f̂k.

5. If k = K, stop, otherwise set k ← k + 1 and repeat
from step (2).

We allow the components of θ to be either a) a discrete
and finite, or b) a continuous parameter. For finitely enu-
merable components θfinite ⊆ θ we maximize normalized
code product in Eq. 9 by enumeration. For continuous
components θcts ⊆ θ we assume that we can choose θcts
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approximately by iterative optimization using the gradi-
ent∇θctsA(rk, gθ). As the objective may not attain a global
maximum, we choose I ≥ 1 different initial guesses, and
select the best local optimum attained. A first order gradi-
ent ascent with fixed number of steps performs well in our
examples and moreover requires no branching instructions,
as suits our goal of a SIMD-compatible algorithm.

4.3 Sparse approximate autocorrelograms

In the pre-training stage, we find autocorrelograms for
each of the empirical source autocorrelogram codes in
G, decomposing them into a dictionary of sparse OMP
matches, M. It is this dictionary which we search for mo-
saic matches, using matches here to identify approximately
matching codes in the original space G.

In this section we use ξ as the free argument for signals,
and restrict ξ > 0. For the interpolant dictionary we use
decaying sinusoids

S := {h(ξ;ω, τ, φ) := cos(ωξ + φ)e−τξ : φ, τ, ω ∈ R}.
(12)

The dictionary choice must ultimately be justified by
empirical performance, which we demonstrate in the final
section of the paper. It is notable that there are also a priori
reasons for favouring this one for musical audio. Firstly,
this basis will decompose an autocorrelogram into a global
approximant, rather than a piecewise interpolant, as with
for example polynomial splines. Evaluations of such an
interpolant are tractable to parallelise without branching
instructions, and therefore better suited to modern SIMD
architectures.

Secondly, decaying sinusoid models are effective in
compactly decomposing time-domain audio [20], and the
nature of the autocorrelogram suggests that they could be
similarly useful and even more compact in decomposing
autocorrelograms. The space of superpositions of decay-
ing sinusoids is, by inspection, closed under the autocor-
relogram transform, so it is at just as plausible to represent
autocorrelograms in a such a decaying sinusoid dictionary.
The question remains how compact such a representation
is. Analytic expansion of the superposition of many de-
caying sinusoids is a lengthy exercise in elementary calcu-
lus. However, we have reason to suspect that the amplitude
coefficient of most terms in such expansions will negligi-
ble. Recall the Wiener-Khintchine theorem, which says
that, for signals of finite energy, assuming all these terms
are well-defined,

Fξ{A{f}(ξ)}(s) = |Ft{f(t)}(s)|2

where Fξ{f(ξ)} is the Fourier transform of signal ξ 7→
f(ξ). This tells us that the magnitude of sinusoidal com-
ponents of the autocorrelogram are squared with respect to
the magnitude of sinusoidal components of the PSD, and
thus relatively sparser. This indicates that for autocorrelo-
grams of musical signals, which are well approximated by
a superposition of sinusoidal signals, the autocorrelogram
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Figure 1. The relatively simple form of (a) the PSD of
the autocorrelogram versus (b) the PSD of the signal it-
self. Signal is a length 2048 recording of a trumpet note
onset. The scale of the vertical axis is arbitrary, and sig-
nals have been normalized for comparison. Sample period
is 1/44100s.

could often be approximated with comparable relative er-
ror by a yet smaller number of sinusoidal signals, as can
be seen in Fig. 1. Moreover, we know that the envelope
of musical audio spectral content decays eventually super-
exponentially with frequency [18] and thus high frequency
content of an autocorrelogram will in general be propor-
tionally even lower. This latter fact additionally implies
that the autocorrelogram calculations might even be down-
sampled with little loss in information content, and some
computational saving.

Implementing the decomposition is straightforward.
For each code g ∈ G we perform the following calcula-
tion: First, we find the empirical autocorrelogram A{g} at
L points ξ = 0, 1, . . . , (L− 1) with Eq. 4.

Next, we decompose each Ĝ = OMPS,C(A{g}) over
the decaying sinusoid dictionary, as defined in Eq. 12.
There are many methods of fitting decaying sinusoids to
time series [2, 29, 33], but OMP is convenient in the cur-
rent application [20] as we may re-use the same algorithm
in the reconstruction stage of this algorithm. Autocorrel-
ograms of musical audio in our experiments are highly
sparse with respect to this decaying sinusoid dictionary,
typically achieving negligible residual error with number
of components C ≤ 4.

We will apply the OMP with product 〈·, ·〉v weighted by
v(ξ) := I{[0, L)}(ξ)/L, returning parameters {τi, ωi, φi}
and code weights µi. We first find the normalized code
product (Eq. 10) in closed form. Substituting in Eq. 12
gives
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A(r(ξ), h(ξ;ω, τ, φ)}) =
〈ri(ξ), cos(ωξ + φ)eτξ〉v
‖ cos(ωξ + φ)eτξ‖v

.

(13)
The numerator is simply Eq. 1. Applying Euler identities
gives the denominator

‖ cos(ωξ + φ)e−τξ‖2v

=
1

2

∫ L

0

(1 + cos(2ωξ + 2φ))e−2τξdξ

= e−2ξτ

2
(ω sin(2ξω+2φ)−τ cos(2ξω+2φ))

4τ2+4ω2

∣∣∣ξ=L
ξ=0

+ 1−e−2Lτ

4τ

(14)
Combining Eq. 1 and Eq. 14 gives a closed form nor-

malized code product (Eq. 13), from which we can explic-
itly calculate gradients in τ, ω, φ as desired. Note that al-
though the original signal is discrete, our decomposition is
a continuous near-interpolant for it.

From these decompositions we construct the dictionary

M := {Ĝγ(ρξ) : γ ∈ (1, . . . , D), ρ ∈ R+}. (15)

4.4 Synthesizing the mosaic

In the second, inference, stage we construct a mosaic f̂0

given a target f0. Here we match the discrete autocor-
relogram F0 := A{f0} by a second OMP decomposition
F̂0 := OMPM,J(F0), into

F̂0(ξ) :=

J∑
j=1

κjĜγj (ρjξ) (16)

for index parameters {γi, ρi} and weights κi. The OMP
has already been introduced, but we pause to verify that
it may be applied to this new context. Since each Ĝγj is
a linear combination of decaying sinusoids (Eq. 12), the
normalizing denominator of the code product (Eq. 10) is
again a linear combination of decaying sinusoids, so its
integral has a (lengthy) closed form as a linear combination
of integrals (Eq. 14), and we can find an explicit gradient
∇ρA(rk, ρ). Thus we may find F̂0 as required.

Now we wish to construct f̂0 (Eq. 2) such that

E[A{f̂0}] = F̂0. (17)

Choosing f̂0 :=
∑
j Sjαjgγj (ρjt) by matching pursuit,

simulating Sj independent Rademacher variates, and ap-
plying Eqns. 5, 6, 7 to Eq. 2, we find

E[A{f̂0}] = E

A
∑

j

Sjαjgγj (ρjt)

 (ξ)


=
∑
j

α2
j

ρj
A
{
gγj (t)

}
(ρjξ)

'
∑
j

α2
j

ρj
Ĝγj (ρjξ).

(18)

By inspection,

αj = Sj

√
|ρj ||κj | (19)

satisfies Eq. 17. We resample the original discrete dictio-
nary codes to target time scale ρi by band-limited sinc in-
terpolation [39]. Finally, we substitute the resulting αj into
Eq. 2 and superpose grains to realize the desired mosaic.

4.5 Localized matching

So far we have discussed entire signals, implicitly assum-
ing them to be brief. The autocorrelogram, taken glob-
ally over a long signal such as an entire musical piece,
no longer estimates the local, stylistic characteristics. Just
as one adapts the discrete Fourier transform for long sig-
nals into the Short-Time Fourier Transform (STFT) [4],
so do we adapt the autocorrelogram mosaic method, ap-
plying it locally. A simple localization is to slice signals
into short frames of fixed duration M, which are called
grains by convention. As in the STFT, we multiply each
frame point-wise with real window function w, supported
on [0,M ] with ‖w‖ = 1. Hereafter, we assume a sine win-
dow, w(t) := 2 sin(πt/M)I[0,M ]/M. We fix hop length
H < M . Next, we localize G into a new dictionary whose
codes are precisely these time-shifted grains (disallowing
zero-energy grains).

Gw,H := {w(t)g(t− φ) : g ∈ G, φ/H ∈ Z, ‖g′‖ > 0}.
(20)

In musical material a localized dictionary tends to high re-
dundancy and marginal return on search effort decreases.
Rather than proceeding exhaustively, we keep the search
tractable by searching a pseudorandom subset of fixed size,
where the size of this pseudorandom subset is a user se-
lectable parameter.

In the synthesis stage, we localize the target signal,
fw0 (t;φ) := w(t)f0(t − φ), constructing a local mosaic
f̂w0 (t;φ) from Gw,H for φ = 0, H, 2H, . . . Finally, we su-
perpose the local mosaics into a global one,

f̂0(t) =
∑
`∈Z

f̂w0 (t+H`;H`). (21)

5. EXPERIMENTS

As an initial example we transfer style with target f0 trum-
pet solo 2 and source audio a vocal recording. 3 Audio is
sampled with a period of 1/44100s. We fix M = 8192,
H = M/2, L = 1024, C = 4, J = 1, I = 12 and rea-
sonable default parameters for the optimization routines.
Examining the spectrogram Fig. 2 illustrates phenomena
compatible with our claims: In the mosaic we observe lo-
cal features of the source with the larger structure of the
target, to wit, the pitch contours of the trumpet solo with a
spectral distribution somewhat like the human voice.

2 credit Mihai Sorohan
3 credit Emm Collins
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a) Source g1

b) Target f0
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t

c) Mosaic f̂w0
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Figure 2. Power spectral density of signals a) source vocal
recording b) target trumpet recording and c) resulting mo-
saic. Frequency increases up vertical axis, intensity in dB
with arbitrary normalization.

We next apply the algorithm across a small corpus and
compare our results against the mosaicing algorithm NiM-
FKS [7]. 4 NiMFKS is a useful benchmark for mosaic-
ing synthesis, incorporating many different user-selectable
loss functions and decompositions methods from else-
where in the literature, and possessing openly available
code. 5 Their method generalises classical mosaicing by
using a non negative PSD factorization to further decom-
pose grains into a sparse product of activations and re-
sponses. Unlike our method it does not infer optimal time
scaling of audio.

Performance evaluation of mosaicing methods is sub-
jective. In the following, we will nevertheless attempt to
describe the behaviors of the two algorithms as objectively
as we are able. In order to challenge the NiMFKS model,
our corpus samples are tuned to a variety of different root
notes, scales and audio ranges, including Indonesian, west-
ern and centerless tunings. Style transfer is applied to ev-
ery pairing of samples. Parameters are left at default val-
ues in each algorithm. These may be heard in the sup-
plemental material. Subjectively, neither method seems
to produce naturalistic outputs for all pairs of source and
target audio. NiMFKS seems ascendant where the source
audio is polyphonic and the factorization succeeds at de-

4 It would be instructive to compare against mosaicing method Music
Retiler [1], which claims to handle time scaling of audio via a different
method, should the source code become available.

5 https://code.soundsoftware.ac.uk/projects/
nimfks

composing different notes where our method cannot. On
the other hand, where the target tuning is not spanned by
the source, the sparse autocorrelogram method is able to
produce smoother and better related mosaics by transpos-
ing source grains to match the target. Occasionally the
sparse autocorrelogram mosaics sound rough during rapid
articulations; the method could possibly be improved in
these cases by adaptive selection of grain size, or tuning of
the free hyperparameters in the model, or extension with
non-randomised reconstruction methods. Even in these
cases, however, simultaneous playback of the target and
the mosaic reveals that we maintain harmonic relationships
with the target audio. As such, even this imperfect recon-
struction can be regarded as an exotic musical effect. In
summary, even at this early stage, our method succeeds in
extending mosaic methods to previously intractable tasks,
and produces musically interesting output.

6. CONCLUSION

By combining autocorrelogram feature maps and interpo-
lating matching pursuit, we have extended the library of
methods of audio mosaicing style transfer. Our method in
isolation produces interesting results on the sample data
with little tuning. Work remains to be done in analysing
the robustness and generality of the method, and selecting
optimal tradeoff of cost and quality of different style trans-
fer tasks under different choices of user parameters. More
work also remains to be done in integrating this method
with existing ones. The flexible loss function of, for exam-
ple, NiMFKS could be augmented to include autocorrel-
ogram features, and the autocorrelogram approach can be
applied to spectrally decomposed signals, which are still
audio signals. However, the ease with which we produce
good results suggests that further extensions and refine-
ments are worthy of pursuit.
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ABSTRACT

Automatic choreography generation is a challenging task
because it often requires an understanding of two abstract
concepts - music and dance - which are realized in the
two different modalities, namely audio and video, respec-
tively. In this paper, we propose a music-driven choreogra-
phy generation system using an auto-regressive encoder-
decoder network. To this end, we first collected a set
of multimedia clips that include both music and corre-
sponding dance motion. We then extract the joint coor-
dinates of the dancer from video and the mel-spectrogram
of music from audio and train our network using music-
choreography pairs as input. Finally, a novel dance mo-
tion is generated at the inference time when only music is
given as an input. We performed a user study for a qual-
itative evaluation of the proposed method, and the results
show that the proposed model is able to generate musi-
cally meaningful and natural dance movements given an
unheard song. We also revealed through quantitative eval-
uation that the network has created a movement that corre-
lates with the beat of music.

1. INTRODUCTION

Choreography is a kind of art that designs a series of move-
ments. In particular, in performing art, choreography ex-
tends to the use of human bodies to express movements,
and these are often performed with music. The choreog-
raphy suitable for music has significance in that it is not
only an artwork itself, but also maximizes the expression
of music [4, 7]. For this reason, choreography has become
an essential element in many pop music works in recent
years. Therefore, the process of creating choreography for
music is also considered to be important, and research on a
system capable of automatically generating choreography
is actively conducted. However, automatic choreography
generation is a challenging task because both music and
dance are abstract art concepts, and the clear relationship
between the two concepts is also not defined by established
rules.

c© Juheon Lee, Seohyun Kim, Kyogu Lee. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Juheon Lee, Seohyun Kim, Kyogu Lee. “Automatic chore-
ography generation with convolutional encoder-decoder network”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

In this paper, we proposed a music-driven choreogra-
phy generation system. In order to model the relationship
between music and movement, two concepts in different
domains, we firstly designed an autoregressive sequence
to sequence model based on neural network that has been
actively studied recently. Sequence used as input is time
series data with strong correlation between adjacent time-
step. Therefore, we designed a network of causal-dilation
convolutional layers to fully reflect the information in the
adjacent frame. We also applied local conditioning meth-
ods to the network to ensure that information related to
music is effectively conditioned in the process of creating
choreography movements. To evaluate whether a trained
network actually produces a dance motion that matches
music, we conducted a user study that evaluated natural-
ness by comparing video that matched random choreog-
raphy with music and video generated by the proposed
network. We also proposed a comparison of the two se-
quences’ auto-correlations to analyze whether the chore-
ography actually reflects music. As a result, we confirmed
that the proposed network produced choreography that bet-
ter reflected music than randomly matched videos, and that
the joint movements of the generated choreography had a
periodicity similar to the tempo of the music.

The contribution of this paper is as follows: First, we
designed a music driven choreography generation network
trained by an end-to-end method. Second, to generate
choreography reflecting music, we successfully applied a
local conditioning method used in speech synthesis field.
Third, for the task of creating a choreography that is rel-
atively difficult to assess quantitatively, we proposed the
evaluation method using auto-correlation and user evalua-
tion.

The rest of the paper is organized as follows. Studies
related to this paper are introduced in Section 2. In Section
3, we explain in detail our proposed method for choreogra-
phy generation based on the encoder-decoder network. We
describe the dataset for experiments and the training pro-
cess in Section 4. The evaluation scheme and the results
are presented in Section 5, followed by conclusions and
directions for future work in Section 6.

2. RELATED WORK

Recent advances in machine learning and deep learning
techniques have led to a variety of attempts to study the
relationship between dance and music. Lee et al. proposed
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Figure 1. A schematic diagram of the proposed music-driven choreography generation system.

a choreography generation algorithm that retrieves the mo-
tions corresponding to the most similar pieces of music in
the predefined motion-music-paired database for a given
new music segment. [8]. This method selects dance mo-
tion from a predefined database, so choreography retrieved
with high correlation with music is guaranteed. However,
it has limitations in that it can not create novel dance move-
ments that are not included in the database. Ofil et al. pro-
posed a HMM-based model that categorizes the genre of
music based on the Mel-Frequency Cepstrum Coefficients
(MFCC) [10] feature and generates matching choreogra-
phy based on the results [11]. But since the choreography
is determined by the categorical value obtained through the
genre classifier, there is a limit to generate a novel choreog-
raphy. Omid et al. proposed a music-driven choreography
model named Groovenet [1]. They used pairs of music and
three-dimensional motion data to train the Factored Con-
ditional Restricted Boltzmann Machines (FCRBM) [14].
They attempted to directly train the relationship between
music and dance by using the mel-spectrogram in the train-
ing process. However, they reported that their model cre-
ated awkward dance moves for unheard song, so they con-
clude that the model was overfitted and the dance moves
according to music were not generalized enough.

Lee et al.’s and Ofil et al.’s studies have a limita-
tion in that they can not create novel choreography be-
cause the former synthesizes motion by reusing the chore-
ographic samples in a predefined database, and the latter
creates choreography only for music input categorized by
its genre. Omid et al. did succeed to create novel dance
motions, but failed to yield good results mainly due to in-
sufficient training data of merely 23 minutes.

In this study, we proposed a music-driven choreogra-
phy generation system that can produce novel and natural

choreography. 1 In order to secure the novelty of chore-
ography, we used the method of creating choreography
with frame by frame generation, not the method of re-
trieve in the pre-defined dataset. Also, to train the net-
work with sufficient data, we also proposed a way to use
the choreography-music data pairs that can be easily ob-
tained from online video sharing community as training
data. Finally, in order to conduct effective conditioning of
music information, we have applied the methods used in
other conditional sequence generation tasks effectively to
our task.

3. PROPOSED APPROACH

In this chapter we explain the detailed structure of the pro-
posed network. An overview of the proposed system is
illustrated in Figure 1.

In order to learn the relationship between the time-series
data of two different modalities, i.e., music and dance,
we need a model that performs multi-modal sequence-to-
sequence transformations. Also, since the choreographic
movement at a certain time-step has a strong correlation
with the information at the previous time-step, we should
consider a system that provides sufficient reference to the
information at the adjacent time-step. From this point of
view, we have noted a text-to-speech system that shows re-
liable performance in a similar environment to these con-
ditions, and then designed our system, inspired by the
DCTTS [13] model, which is known to be capable of effi-
cient text-to-speech training.

Our proposed model takes skeleton input S and mel in-
put M as input, to predict skeleton Ŝ in the next time step:

1 The generated result can be found at: listentodance.strikingly.com.
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Ŝ1:T = CG(S0:T−1,M1:T ) (1)

where CG denotes our proposed model, choreography
generator. For this purpose, each input is encoded via
two encoder first. Then the encoded skeleton Es passes
through the decoder and predicts the next time step’s skele-
ton Ŝ, which utilizes the encodedEM as conditioned infor-
mation.

3.1 Causal Dilated Highway Conv. Block

In this section we explain the Causal Dilated Highway
Convolution Block, one of the core structures of the pro-
posed network. The choreography, which is basically the
object that we should create, has a strong correlation with
the information of the adjacent time-step. Therefore, in or-
der to predict movement in the next time-step, information
from previous time-steps should be fully consulted. Also,
for choreography, a wide range of historical information
should be referred to because it has relatively long-term
dependency. To this end, we use the Causal Dilated Con-
volution. Causal means that only the input data from time
0 to t− 1 can be referred to when calculating the output at
time t. We used a causal convolution layer because our net-
work must be an auto-regressive model to generate the next
frame that is not yet known from the preceding frames.
In addition, we used the dilated convolution proposed in
the Wavenet [16] to ensure that the model has a wider re-
ceptive field. Finally, to enable efficient training even in
deep model structures, we used a highway network archi-
tecture [12] where gated function could be trained. That is,
the output of the CDHC block is calculated as:

output = tanh(H1) · relu(H2) + (1− tanh(H1)) · input
(2)

where [H1, H2] is the tensor calculated through the
causal dilated convolution layer of the input tensor. The
output channel of this convolution layer is twice the input
channel, and the kernel size is 3.

3.2 Encoder & Decoder structure

To predict the next time-step skeleton information from the
given input information, we used a method of effectively
encoding input information and then combining them to
decode. To this end, we designed two encoder and one de-
coder with CDHC block. Both the skeleton encoders and
the audio encoders all consist of three convolution layers
and 10 CDHC blocks. The first convolution layer of each
encoder increases the input channel to 256 dimensions, and
the other two layers perform 1x1 convolution. Thereafter,
the output values from last convolutional layer are con-
nected in sequence to 10 CDHC blocks with a dilation fac-
tor of (1,3,9,27,1,3,9,27,3,3), and the corresponding opera-
tions result in audio and skeleton data are encoded to have
a sufficiently wide receptive field to reflect sufficient past
information.

A decoder is a network that generates skeleton data for
the next frame from an encoded skeleton and an encoded

audio. To do this, the encoded skeleton input to the decoder
is combined with the encoded audio in the following:

Dec1 = conv1d(ES) + EM [: 128] (3)

Dec2 = conv1d(ES) + EM [128 :] (4)

Dec = σ(Dec1)× tanh(Dec2) (5)

Where ES and EM refer to the encoded skeleton and
encoded audio, respectively, and conv1d means the con-
volution layer with an output channel of 128 and a kernel
size of 1. The combined Dec tensor then goes through six
CDHC blocks with a dilation factor of (1,3,9,27,3,3) and
then through three 128-channel convolutional layers with
a tanh activation function. Finally, after passing through a
convolution layer with the same output channel as the di-
mension of the target, the final decoder output is obtained
via sigmoid activation.

3.3 Proposed network

This network receives skeleton and music data from time
0 to t − 1 as input. Both data are encoded via encoders
and combined at the beginning of the decoder. The final
output of the decoder is compared with the ground truth
motion data at time 1 to t and we used it as a L1 loss.
Since all convolution operations included in the network
are with kernel size 1 or causal operations, the k-th value
of output refers to only the 0 to k − 1 time step of the
input during the operation. Therefore, the model satisfies
the causal condition.

4. EXPERIMENT

4.1 Data

We have collected 100 YouTube choreography videos and
corresponding audios. The genre was selected mainly for
K-pop dance, and the total length of collected data was
6.26 hours. We divided 85 songs into train sets, 5 songs
into valid sets, and 10 other songs into test sets, to train
and evaluate the proposed network.

4.1.1 Skeleton data

We extracted the x, y coordinates of 15 human body joints
from each frame using the Openpose algorithm [3] from
the collected video as shown in Fig. 2. Next, we min-max
normalize the extracted coordinate values for each video,
and use the linear-interpolation for the unrecognized coor-
dinate values.

Since we can not measure the exact 3d angle between
the human body limbs using the 2d joint coordinate, we
used the absolute coordinates values of each point as the
training target. However, in this case, the length of each
limb in the projected skeleton can vary, and awkward mo-
tion can be generated if the model learns it incorrectly. So
we additionally calculated the lengths of the 14 main limbs
together and added a loss to compare with the limb length
of the skeleton that the model generated. Therefore, the x,
y coordinates of the total 15 joints, and the total of 14 main
limb length are used as skeleton data.
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Figure 2. The process of extracting skeleton data from
video frames.

4.1.2 Music data

We separated the audio contained in the collected video
and used it as music data. The mel-spectrogram was ex-
tracted from the audio waveform with the window size of
1024 samples, and 80 mel-frequency bins. Because we
need time-aligned audio-video pairs for training, we ad-
justed the hop size when extracting the mel-spectrogram
so that audio and video data end up with the same frame
rate.

4.2 Training

We have trained the proposed network that creates the next
skeleton coordinate for a given previous skeleton sequence
and music sequence. To do this, we first input skeleton
data and music data from 0 to t-1 frames. Then, the output
of the network is compared with the ground truth choreo-
graphic data corresponding to 1 to t frame by use L1 loss
as a cost function. In addition, we calculated the length of
each limb from the skeleton data of the generated frame,
and compared with the actual ground truth length through
the L1 loss.

We used the adam optimizer [6], with β1 = 0.5, β2 =
0.9, for training and set the learning rate to 0.0002. At ev-
ery iteration, we used a video-audio pair that was cut in
500 frames for training, and it contains about 20 seconds
of choreography and music information. The length of the
input sample was set to 500 frame because we decided that
the sequence of lengths, which fully reflected meaningful
levels of behavior in the choreography, should be used for
training. We set the batch size to 16, and then we finished
the training after proceeding with a total of 30,000 itera-
tions. We trained our network with one GEFORCE GTX
1080 ti GPU for three days.

4.3 Inference

The choreography inference process is performed in an
auto-regressive manner different from training. That is,
the initial position of each joint is given as an input skele-
ton frame, and at the same time, the first frame of mel-
spectrogram is input to the trained model. When inference
is performed once, estimated skeleton at t = 1 is output.
Then we concatenate skeleton at t = 0 and t = 1, then
input them back into the model with mel-spectrogram at
t = 0 and t = 1 . After than, we get estimated skeleton
at t = 1 and t = 2. Therefore, we can generate the chore-
ography by repeating the above process for the length of

Figure 3. Average Likert-scale user scores on two ques-
tions (Q1: Is choreography natural? / Q2: Does choreogra-
phy fit well with music?). The table below the graph indi-
cates the mean and variance of responses by model for each
question. The p-values for pairwise comparisons between
the groups are also shown at the top. ***: p < 0.001; **:
p < 0.01.

music input, and used it to evaluate the generated choreog-
raphy.

5. EVALUATION & RESULTS

5.1 User study

We conducted a user study to evaluate whether the gen-
erated choreography was natural and whether it was pro-
duced in accordance with the music. First, we generated
20 videos for each of the three groups: Real, Generated,
and Mismatch. Group Real consists of musicAi and actual
choreography for music Ai. Group Generated consists of
music Bi and novel choreography generated by our model
given music Bi. Finally, the group Mismatch consists of
music Ci and novel choreography generated by our model
but with randomly selected music rather than Ci. Music
Ai, Bi, and Ci were randomly selected among the songs
included in the validation dataset that was not used in train-
ing, and the length of each audio/video was 16 seconds.

After mixing the three groups of videos in a random or-
der, we asked the participants whether each video’s chore-
ography is natural (Question 1) and whether it fits well
with music (Question 2), and to give a score in a Likert
scale [2]. After collecting the responses, we performed
isoquantity and normality tests using data averaging 20 re-
sponses from each group, to see if there was a difference in
the mean of the responses of the groups. After evaluating
significance through repeated-measure ANOVA test , fur-
ther post-hoc paired t-test analysis was performed to cal-
culate the p-value, and the difference between the groups
was examined [5].

A total of 33 participants answered the questionnaire
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Figure 4. Autocorrelation of the x,y coordinates of each
joint from real and generated choreography for two songs.
The x-axis of each graph represents the time lag, y-axis
of each graph represents the autocorrelation, and the blue
vertical lines represent the beat positions of each song.

and the results are shown in the Figure 3. The results of
the statistical tests confirmed that the mean scores between
the three groups were significantly different for both ques-
tions. Average user score for both questions were highest
in Real group and lowest in Mismatch group. It is clear that
the Real group score is the highest, because it is made up of
the choreography created by the human. The average score
of the Generated group surpassed the Mismatch group in
both questions. If the proposed model generates chore-
ography that is not associated with music, participants will
have a similar response, regardless of what music is played
with the generated choreography. However, from the fact
that the video received a significantly higher score when
played with the music used in choreography generation,
we judged that the proposed model produced choreogra-
phy that listen and reflects the music.

5.2 Autocorrelation Analysis

We also performed an autocorrelation analysis to further
investigate the differences between the generated choreog-
raphy and the actual choreography. Autocorrelation is a
correlation between a given sequence with itself, reflecting
the periodic properties of the sequence. We can identify

the periodic component of a given sequence through the
location of the peaks observed in the autocorrelation re-
sults. Using this, we analyzed the motion by calculating
the autocorrelation on the x, y coordinates of the choreog-
raphy movement and compared it with the tempo of corre-
sponding music. Our hypothesis was that if the model can
produce dance by listening to the music, the autocorrela-
tion peak position of the motion will appear at the same
point as the beat of the music.

Fig. 4 shows the autocorrelation results of two chore-
ography samples along with the tempo of corresponding
music. In actual choreography, a clear peak is observed
in y-direction movement, but not in x-direction movement.
This tendency is also observed in the generated choreog-
raphy. From this we can determine that the proposed net-
work has learned the periodic tendency of the real chore-
ography used in training. Also, In actual choreography, the
first or second peak of the y-direction auto-correlation ap-
pears at the same position as the music beat. This means
that music and choreography have similar periodic proper-
ties. This tendency can be confirmed also in the case of the
generated sample. From this, it is judged that the proposed
model has generated the choreography that listen the music
and reflects its periodic nature.

6. CONCLUSION

In this study, we proposed an auto-regressive encoder-
decoder network that generates matching choreography for
a given music input. We used audio-video pairs data ob-
tained from YouTube for training. As a result, it was
found that motions matching with the music were gen-
erated through comparison of user study and autocorre-
lation analysis. This study has a significance in that it
shows a significant performance in the area of learning-
based choreography generation, in which sufficient perfor-
mance has not been secured yet. Also, it is meaningful not
only to learn the movement of dance but also to use the
relationship with music together for generation.

Although we found in this study that the choreography
generated compared to the mismatch group has a higher
correlation with music at a significant level, we still have
the limitation of having a large difference score from the
real group. To overcome this, we will further model the
correlation between movement and music more elaborately
and carry out follow-up studies that reflect it in the network
architecture. Also, this research has limitations that gener-
ated choreography reflects only the periodicity among var-
ious properties of music. Ultimately, it is necessary to cre-
ate appropriate choreography according to various genres,
moods, and contexts of music as well as periodicity. In
order to do this, we plan to establish data sets that satisfy
various conditions and carry out further research. In ad-
dition, we use 2-d skeleton position for training, and it is
difficult to use this type of data in case of needing actual
implementation such as a robot. Therefore, the extension
of the model to 3-d choreography generation using the im-
proved 3-d pose estimation algorithm [9, 15, 17] is also a
future research topic.
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ABSTRACT

Identifying the onset and offset time of a note is a chal-
lenging step in singing voice transcription, as the soft on-
set/offset, portamento, and vibrato phenomena are rich in
singing voice signals. In this work, we utilize various types
of signal representations with deep learning for onset and
offset detection of monophonic singing voice. We con-
sider onset and offset detection as a hierarchical classi-
fication problem, where every input segment is classified
into one of all the possible states in monophonic singing,
namely the silence, activation, and transition states,where
the transition state is further classified into the onset and
offset states. An objective function based on this hierarchi-
cal taxonomy nicely guides the model to capture compli-
cated temporal dynamics of note sequences. Multiple input
signal representations containing spectral differences and
pitch saliency are employed to jointly enhance such tem-
poral patterns. The proposed method implemented with
residual networks provides improved performance over
prior art in onset and offset detection. Moreover, by in-
tegrating with a pitch detection framework, the proposed
method also outperforms previous singing voice transcrip-
tion methods. This result emphasizes the importance of
note segmentation in singing voice transcription.

1. INTRODUCTION

Note-level automatic music transcription (AMT) refers to
converting a recorded music piece into its symbolic form
containing the onset, offset, and pitch of every note [4,22].
Note-level AMT is still a challenging problem, particularly
in the case of singing voice transcription. The soft on-
set/offset and portamento patterns of singing voice hinder
the positioning of onset and offset time in both the detec-
tion [8, 29] and the annotation process [10, 15, 19]. How-
ever, solving the onset and offset detection problem, or
equivalently the note segmentation problem, 1 is manda-
tory in a note-level AMT system. How to improve a note

1 We refer to note segmentation as temporal segmentation of note ob-
jects, which is therefore equivalent to onset and offset detection [7].

c© Zih-Sing Fu, Li Su. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Zih-Sing Fu, Li Su. “Hierarchical Classification Networks for Singing
Voice Segmentation and Transcription”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

segmentation model efficiently with limited scope of data,
and how to incorporate the outcomes of detection into
note-level AMT, are both important issues in developing
a complete AMT system.

Previous note segmentation works on singing voice
usually employ state-space machines such as the hidden
Markov models (HMM), which consistently detect on-
set and offset by characterizing the temporal dynamics
among the states (attack, sustain, and silence, etc.) of note
events [16,20,24,29]. Recently, deep neural networks with
objective functions optimized for onset and offset detec-
tion have demonstrated excellent performance in note-level
AMT [1,12]. Some architectures such as the convolutional
neural network (CNN) do achieve a great advance in mod-
eling note transition by their compelling performance in
pattern recognition on a local scale. One example is the
CNN-based onset detection method in [25], where the lo-
cal feature segments with CNN outperforms the temporal
models based on the recurrent neural network (RNN) [9].

In this paper, we propose novel signal representations
and objective functions in neural network-based singing
voice segmentation. we regard onset and offset detection
as a hierarchical classification problem that maps input
segments/sequences onto our proposed state space, where
a generalized hierarchical taxonomy of the states in a note
sequence is specified to guide the learning process. Mul-
tiple data representations are also used to enhance signal-
level expressivity of note transition events. Experiments
using either the residual network (ResNet) [13] or the RNN
with attention [2] demonstrate the effectiveness of hier-
archical classification in note segmentation. Finally, a
straightforward integration of the proposed note segmen-
tation method and pitch detection provides improved note
transcription performance over prior art.

2. RELATED WORK

The most challenging case of onset detection is arguably
singing voice. According to the results from MIREX 2018
audio onset detection task, the best F1-score of singing
voice onset detection among all submissions is 61.94%,
lower than the best results of other instrument classes by
at least 10%. 2 The state-of-the-art onset detection al-
gorithms are based on either RNN [5, 11] or CNN [25].
In [25], the onset detection task is to classify whether the

2 More details can be found in: https://nema.lis.illinois.edu/nema_out/
mirex2018/results/aod/resultsperclass.html
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Figure 1: System overview of the proposed note segmen-
tation and transcription framework.

middle of the input is at the onset time, where the inputs are
short segments of spectrogram with various resolutions,
each as one channel of the CNN. Besides spectrogram,
other feature representations such as spectral difference,
spectral flux and group-delay function are also widely-used
in general-purpose onset detection [14].

Unlike onset detection, offset detection is seldom
treated independently and is more often discussed in the
context of note-level AMT [1,3,12]. The study carried out
in [15] focuses on different playing styles of string instru-
ments and summarizes several relevant features, including
spectral difference, signal RMS energy, pitch confidence
values, and pitch change, etc.

Previous methods in singing voice transcription widely
adopt state-space machines to accomplish onset detection,
pitch tracking, and offset detection in a single workflow.
For example, the Tony software [16] uses an HMM con-
taining three states, namely attack, stable, and silent, to
characterize the temporal dynamics of a note sequence.
The only allowed transition rules between these states are:
1) from attack to stable, 2) from stable to silent, and 3)
from silent to attack of another note. However, these rules
are oversimplified from real cases; for instance, an off-
set event is not always equivalent to a transition into the
silent state. Rather, some offset events are followed im-
mediately by the attack state of another consecutive note,
which sometimes has the same pitch as the previous one.
As a result, consecutive notes are merged and needs to be
resolved by post-processing.

Recently developed note-level AMT methods utilizing
deep learning has gained tremendous improvement, espe-
cially in offset detection. It is notable that in these meth-
ods, offset or onset detection sub-modules are optimized
with more than one objective functions. Elowsson used
two separate networks to learn 1) the offset curve, which
outputs one at the instance of note offset, 2) the offset de-
tection activation, which turns from zero to one when a
note offset event turns into silence, and combined the re-
sults to describe offset events [1]. Hawthorne et al. used
time-dependent object functions to infer the attack and de-
cay of a musical note. These methods shed light on the
note tracking of singing voice [12].

The above discussion inspires us two ways for improv-
ing singing voice segmentation. First, the objective func-
tions can be designed to rely not merely on the onset and
offset labels, but on an state space that describes all possi-
ble state transitions in a note sequence. Second, given the
flexibility of neural network models, one may augment all

O O X X

(a)

S A T

(b)

S A T

O X

(c)

Figure 2: The taxonomy of the proposed models. Every
tree represents an objective function, every siblings form
a regularization term of the objective function, and every
leaf of the tree represents a state label; S, A, O, O, X , X ,
and T represent silence, activation, onset, non-onset, off-
set, non-offset, and transition, respectively. Different trees
therefore represent different optimization approaches: (a)
On-Off model. (b) Tri-state model. (c) Hierarchical classi-
fication model. See Section 3.1 for more details.

the data representations related to onset/offset into the net-
work to enhance the optimization process. The two ideas
will be discussed in Section 3.1 and 3.2 respectively.

3. METHOD

Following previous discussion, we discuss the frame-wise
onset and offset detection framework shown in Figure 1:
for every time instance t, the hierarchical classifier predicts
a set of labels yt containing onset and offset information
from a local feature representation Rt. Note transcription
is done by integrating pitch contour information.

3.1 Hierarchical classification for note segmentation

We consider the following states in a note sequence: si-
lence (S), activation (A), and transition (T ), where transi-
tion is further divided into two states, onset (O) and offset
(X). When a transition (i.e. onset or offset) occurs, there
are three possible transition behaviors of state evolution:
S→T→A where T represents an onset (O), A→T→S
where T represents an offset (X), and A→T→A where
T in this case contains an offset followed immediately by
the onset of another note (XO). In other words, there is
an important case that an onset and an offset are presum-
ably overlapped. This fact motivates us to define such a
state space that can encompass more general cases. As a
result, there is a hierarchical taxonomy of these states, as
shown in Figure 2 (c). See the caption of Figure 2 for more
detailed information.

To investigate the behavior of this state space, we intro-
duce several baselines and the proposed hierarchical classi-
fication model altogether to highlight the advantage of the
proposed model in onset and offset classification.

1) First, we consider the note segmentation model con-
sisting of two independent classifiers, one for onset detec-
tion and the other for offset detection. The 2-D onset label
yon := [O,O] is one-hot, where O represents the onset
state while O represents the non-onset state. That means,
yon = [1, 0] for onset and yon = [0, 1] for non-onset. Sim-
ilarly, we have the offset label yoff := [X,X]. Let the
prediction of the two networks be ŷon and ŷoff, the model
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is optimized by the following two objective functions:

Lon(yon, ŷon) = BCE(yon, ŷon) , (1)

Loff(yoff, ŷoff) = BCE(yoff, ŷoff) . (2)

where BCE is the binary crossentropy. This model is de-
noted as the on-off network (OON) model, and its taxon-
omy is illustrated in Figure 2 (a). Note that one tree rep-
resents one objective function, and every siblings form a
regularization term in an objective function.

2) The onset and offset detection tasks share the same
network, but with two task-specific layers, one for onset
and the other for offset. The output label y := [yon, yoff]
therefore has four dimensions. The total loss function is

LM-OON(y, ŷ) := BCE(yon, ŷon) + BCE(yoff, ŷoff) (3)

This model is denoted as the merged on-off network
(M-OON) model hereafter.

3) The onset and offset are described implicitly by the
three output states S, A, and T from a shared network.
That means, the network outputs a multi-hot 3-D vector
ytri := [S,A, T ], where S, A and T are values between 0
and 1. The total loss function is

LTSN(y, ŷ) := BCE(ytri, ŷtri) (4)

After obtaining the likelihood of S, T , A at every time
instance t, we may follow the transition behaviors men-
tioned above to determine a T state to be an onset or an
offset; the details can be found in Section 3.4. This model
will be denoted as the tri-state notwork (TSN) model, and
its taxonomy tree is constructed following Figure 2 (b).

Note that it is also possible to use categorical crossen-
tropy rather than BCE in (4). However, using BCE allows
possible overlapping of different states and therefore more
flexibility for the model. Our pilot study also shows that
using BCE achieves better performance.

4) We further consider the hierarchical structure that
T can be onset, offset or an overlap of onset and off-
set. The output label is then a six-dimension space y :=
[S,A,O,O,X,X], and the total objective function is:

LHCN1(y, ŷ) := BCE(ytri, ŷtri)

+ BCE(yon, ŷon) + BCE(yoff, ŷoff) (5)

where we define the likelihood of the transition state as
T := max(O,X). That means, if one of O or X is higher
than a threshold (0.5 in the logistic regression case), then
the state will be also predicted as T . The taxonomy tree of
this case is illustrated in Figure 2 (c).

Finally, since T is in minority, optimizing the term
BCE(ytri, ŷtri) would suffer from data imbalance. To mit-
igate this issue, we enhance the activity classification be-
tween S andA by adding a new set of labels yact := [S,A],
to enforce the output that only one of S and A would have
high likelihood. The total objective function is then

LHCN2(y, ŷ) := BCE(ytri, ŷtri) + BCE(yact, ŷact)

+ BCE(yon, ŷon) + BCE(yoff, ŷoff) (6)

For clarity, (5) is denoted as the hierarchical classifica-
tion network 1 (HCN1) model and (6) is denoted as the the
hierarchical classification network 2 (HCN2) model.

3.2 Data representations

Based on the discussion in [15], we consider the spectral
differences and the pitch salience representation in as the
input of the proposed model. Given the input audio signal
x := x[n], where n is the time index. Let the amplitude
part of the short-time Fourier transform (STFT) of x be
X. The forward spectral difference S+ and the backward
spectral difference S− are the time-forward and the time-
backward differences of two neighbouring spectra in X, as
shown in the followings:

S+ = ReLU (X[k, n+ 1]−X[k, n− 1]) , (7)

S− = ReLU (X[k, n− 1]−X[k, n+ 1]) , (8)

where ReLU(·) represents the element-wise rectified lin-
ear unit: ReLU(x) = x if x > 0, and 0 otherwise. That
means, we split the first-order temporal difference of the
spectrogram X into two channels, one is the part with pos-
itive temporal difference, and the other one is with negative
temporal difference.

For the pitch saliency feature of x, we adopt the one
proposed in the combined frequency and periodicity (CFP)
approach, which combines a frequency-domain feature in-
dicating its fundamental frequency (f0) and harmonics
(nf0), in a time-domain feature revealing its f0 and sub-
harmonics (f0/n) to form a succinct, localized pitch fea-
ture with suppressed harmonic and sub-harmonic peaks
[21, 28]. The feature is computed with the following pro-
cess. Given a DFT matrix F, high-pass filters Wf and
Wt, and activation functions σi, we consider three fea-
tures, namely, spectrogram Z0, generalized cepstrum (GC)
Z1, and generalized cepstrum of spectrum (GCoS) Z2:

Z0[k, n] := σ0 (WfX) , (9)

Z1[q, n] := σ1
(
WtF

−1Z0

)
, (10)

Z2[k, n] := σ2 (WfFZ1) . (11)

The index k in Z0 and Z2 is frequency, while the index
q in Z1 is called quefrency, which has the same unit as
time. The nonlinear activation function is defined as a
rectified and root-power function σi(Z) = |ReLU(Z)|γi ,
where i = 0, 1, 2 · · · , 0 < γi ≤ 1, and | · |γ0 is an
element-wise root function. Wf and Wt are two high-
pass filters designed as diagonal matrices used to remove
slow-varying portions, where Wf applies cutoff frequency
kc and Wt applies cutoff quefrency qc. In this paper we
set kc = 80 Hz and qc = 1/800 sec. Based on the CFP
approach, unwanted harmonics and sub-harmonics can be
suppressed by merging Z1 and Z2 together. Note that Z1

should be mapped into the frequency domain because it
is in the quefrency domain. Hence, we apply two sets of
filter banks, both of which contain 174 triangular filters
ranging from 80 Hz to 1000 Hz and with 48 bands per oc-
tave, respectively in the time and frequency domains. More
specifically, the mth filter in frequency (or time) takes the
weighted sum of the components whose frequency (or pe-
riod) is between 0.25 semitones above and below the fre-
quency at fm = 80× 2(m−1)/48 Hz (or the period at 1/fm
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seconds). The filtered representations Z̃1 and Z̃2 are then
both in the time-pitch scale. The CFP representation Z is

Z[p, n] = Z̃1[p, n]Z̃2[p, n] , (12)

where p is the pitch index. Details and source codes of
computing the CFP representations can be found in [27].

In this work, the audio recordings are resampled to 16
kHz and are merged into mono-channel. Following [5], the
input features are of multiple resolution.We compute S+,
S−, and Z using the Hann window with 3 different sizes
of 186, 372, and 743 samples (i.e. 11.61, 23.22, and 46.44
ms), resulting in nine data representation. The hop size is
320 samples (i.e. 20 ms). In CNN, S+, S−, and Z form
the three input channels, and in each channel the data rep-
resentations with three different window sizes are concate-
nated together. In RNN, all the nine data representations
are concatenated as the input.

3.3 Model

We investigate two networks that stand for two strategies in
modeling note sequences: ResNet for image classification
[13] and RNN with attention for sequence classification
[2]. Denote the frame-level feature at the time instance t as
rt. For every t, we take the sequence Rt := [rt−k, rt−k+1,
· · · , rt · · · , rt+k] as the input of the model to predict the
presence of onset and offset at t. We set k = 9 according
to the optimal loss on the validation set. That means, the
dimension of every input Rt is (c, 174, 19) (for ResNet) or
(c ∗ 174, 19) (for RNN with attention mechanism), where
c represents the number of channels: if S+, S−, and Z are
stacked as the input, then c = 3.

Our implementation of the ResNet model basically fol-
lows the ResNet-18 architecture in [13]. The network is
composed of eight sub-networks, each of which has two
convolutional layers. The convolutional layers mostly have
kernel of size (3, 3). Batch normalization is used after each
convolutional layer. The spatial pooling process is done
by using convolutional layers with stride of two. Shortcut
paths link the feature maps by skipping every two convo-
lutional layers. After the convolution stages, the feature
maps are pooled by averaging, and then are mapped to the
output space through fully connected layers. See [13] for
the implementation details. The output format and the ob-
jective functions follow the discussion in Section 3.1.

The RNN with attention is composed of a three bidi-
rectional long-short-term memory (BLSTM) [26] layers,
an attention layer, and two fully connected layers. For the
three-layer BLSTM, the dimension of every hidden unit is
150. The outputs of the BLSTM are weighted and summed
by the 2k + 1 attention weights derived from the hidden
units of the last BLSTM layer [2]. Layer normalization
is used to stabilize training and inference processes. The
results are then fed into the two-layer fully-connected net-
work, each with a dimension of 150 and 6. The output for-
mat and the objective functions of the model also follows
the discussion in Section 3.1.

Each data representation is normalized to zero mean be-
fore fed into the model. The manual labels in the dataset

are not always exact since the exact time of an onset/offset
event is hard to determine [5]. To solve this issue, we
extend the labels to a tolerance window δ that can allow
uncertainty in the onset/offset time labels: if a frame is
within δ = ±50ms to the true label, the label is also
set to 1. This δ value is chosen according to the evalu-
ation convention of onset detection in MIREX. This can
mitigate the issue of data imbalance. In this work, all
the models are obtained after 80 epochs of training on
an Nvidia TITAN Xp GPU, using the Adam optimizer
with the learning rate of 0.001. The source code, sup-
plementary materials, and listening examples are avail-
able at: https://github.com/Itachi6912110/
Hierarchical-Note-Segmentation.

3.4 Post-processing and note segmentation

We employ a linear filter with impulse response h(n) =
[0.25, 0.5, 1, 0.5, 0.25] to smooth the predicted onset and
offset sequences. Then we apply a threshold at 0.5 and a
peak picking process on the sequences to determine pos-
sible onset and offset positions. At this stage, minor mis-
matches between the predicted onset and offset positions
still remain. To ensure that every onset is followed by ex-
actly one offset, additional procedures are used.

For the OON and the M-OON models, the procedure in-
cludes: 1) if there are two onsets having no offset between
them, we insert an offset at the time when the second on-
set occurs; 2) if there are two offsets without any onset
between them, we directly discard the second one.

For the TSN model, consistent segmentation results can
be derived directly from the relationship among S, A and
T , so there is no issue on onset/offset mismatching. Onsets
and offsets are determined by the following steps: 1) ob-
tain the peak positions of the predicted sequence of T ; 2)
sum over the likelihood values of S andA in every interval
separated by those peaks obtained in 1). If the sum of S is
higher than the sum ofA, then the interval is determined to
be S. Otherwise, the interval is determined to be A; 3) for
every selected T in 1), if its left-side interval is S and its
right-side interval isA, a S→T→A pattern is detected and
the transition is determined as an onset. Conversely, if we
detect a A→T→S pattern, the transition is determined as
an offset; 4) if we detect an A→T→A pattern, the transi-
tion is determined as an offset and an onset; 5) if we detect
a S→T→S pattern, the transition is directly discarded.

For HCN1 and HCN2, the procedure is a combination
of the two strategies above: 1) if there are two onsets hav-
ing no offset between them, we insert an offset specified
to the time when S firstly surpasses A at that interval; 2)
similarly, if there are two offsets having no onset between
them, the inserted onset is specified to the time when A
firstly surpasses S at that interval; 3) any detection violat-
ing the rules of 1) and 2) is deleted.

3.5 Note-level transcription

We combine the note segmentation method with a simple
pitch estimation process for note-level singing voice tran-
scription. This is implemented by: 1) obtain the onset and
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offset times of each note with the note segmentation model,
and 2) use the vocal melody extraction method in [27] to
obtain the pitch contour of every note, and 3) the final pitch
value is simply determined by the median of the pitch con-
tour of that note.

4. EXPERIMENTS

4.1 Data and evaluation metrics

To test the robustness of our model, we set a cross-dataset
scenario for the experiments on note segmentation. We
use TONAS [10, 19], a dataset of 71 flamenco a cap-
pella sung melody, as our training dataset. In addition,
we evaluate our proposed method on the ISMIR2014 sung
melody dataset [17]. It contains singing data from 11 fe-
male adults, 13 male adults and 14 children.

Section 4.2 first compares the results using different in-
put features. Section 4.3 further compares the results of
training with five different objective functions mentioned
in Section 3.1. Section 4.4 then compares the ResNet-18
model, the RNN model with attention and the onset detec-
tor in the MADMOM library [6]. The latter is known as the
state of the art for general-purpose onset detection.

For the evaluation metrics, we report the F1-scores of
onset detection, offset detection and note transcription and
the average overlap ratio (AOR) by using the utilities in the
mir_eval library with default parameters [23]. To quan-
tify the mismatch between the detected onsets and offsets
in note segmentation results, we further compare their con-
flict ratio (CFR), which is defined as the ratio between the
number of unpaired detection and the number of all pre-
dicted transitions (i.e. onsets plus offsets):

CFR :=
# of unpaired transitions
# of predicted transitions

(13)

The unpaired transition is defined as the onset/offset
that cannot be derived from, or that violates the relation-
ship of the states used in the model. For example, in the
OON model, if there are two consecutive onsets having no
offset in between, the second offset violates the relation-
ship between onset and offset and is accounted as an un-
paired detection. On the other hand, the TSN model pro-
duces zero unpaired transition and therefore has zero CFR,
as discussed in Section 3.4. CFR can be seen as a criterion
of systematic consistency for a note segmentation model.

4.2 Comparison of input features

The first five rows of Table 1 lists the results of both onset
and offset detection with various inputs: X, S+, [S+,S−],
[S+,Z], and [S+,S−,Z]. In comparison to others, us-
ing only the spectrogram (X) with less feature engineer-
ing gives competitive result, which indicates the power of
ResNet in pattern recognition. However, it should be em-
phasized that using a detailed set of features relevant to
onset and offset such as [S+,S−,Z] achieves the best note
transcription F1-score at 59.5%, which is better than the
case using only X by 3.9%. Such improvement can be seen
from other interesting comparisons. For example, adding

either S− or Z to S+ greatly improves the F1-scores of
both the onset and offset. Adding S− to S+ also results in
14.5% improvement on onset F1-score, meaning that the
backward spectral difference may also be relevant to an
onset event. These observations can all be explained by
the fact that an onset event can be highly overlapped by an
offset event of another notes, and the feature set revealing
different aspects of the signal characteristics helps resolve
such ambiguity. For simplicity, we adopt [S+,S−,Z] in
the following experiments.

4.3 Comparison of objective functions

The lower part of Table 1 compares the results of mod-
els trained by four baseline objective functions, includ-
ing OON, M-OON, TSN, and HCN1. Comparing the F1-
scores of OON and M-OON, we observe that M-OON
slightly degrades onset detection but greatly improves off-
set detection by 29.2%. This indicates the importance of
joint training: incorporating onset information in a shared
network can help offset detection.

Although the F1-score of TSN is worse than the one
of M-OON, TSN achieves zero CFR as all onsets/offsets
can be completely inferred from the rule mentioned in sec-
tion 3.1 and 3.4. This shows that training on S, A, T and
the temporal constraints make highly consistent prediction.
However, the poor performance on onset and offset detec-
tion implies that using a single T state is not sufficient to
describe the behavior of both onset and offset.

HCN1 and HCN2 therefore combine the advantage of
both the M-OON model and TSN model. Result shows that
the HCN1 model enhances the segmentation quality (re-
ducing CFR to half) compared to the M-OON model and
improves the onset and offset detection F1-score compared
to the TSN model, then achieves the F1-score of 56.7% on
note transcription. In addition, HCN2 model outperforms
the HCN1 model in almost all evaluation metrics, where
a 2.7% improvement on note transcription F1-score is ob-
tained. Such advancement indicates the importance of reg-
ularizing activation/silence detection in note segmentation
and transcription tasks.

4.4 Comparison of models

Table 1 also compares two implementations of HCN2
using different modules for the hierarchical classifier:
ResNet-18, and the RNN with attention (denoted as RNN-
attn) as a sequence classification network for comparison.

Results show that ResNet-18 outperforms RNN-attn
in every performance metrics, probably because that an
image-based classification network can extract more de-
tailed features considering local information where se-
quential dependency is not that significant. These findings
are partly in line with that in [25], where a CNN outper-
forms sequence models such as RNN.

4.5 Singing Voice Note Transcription

Table 2 shows the results of singing voice transcription
compared with five previous methods: Ryynänen et al.
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Objective Classifier Feature F1 (onset) F1 (offset) CFR AOR P (note) R (note) F1 (note)

HCN2
ResNet-18

S+ 0.599 0.409 0.078 0.862 0.430 0.394 0.409
X 0.757 0.740 0.050 0.873 0.576 0.538 0.555
[S+,S−] 0.744 0.715 0.057 0.870 0.532 0.506 0.517
[S+,Z] 0.745 0.713 0.050 0.870 0.553 0.506 0.527
[S+,S−,Z] 0.786 0.759 0.043 0.869 0.625 0.569 0.594

RNN-attn [S+,S−,Z] 0.699 0.722 0.050 0.840 0.520 0.502 0.510
HCN1

ResNet-18 [S+,S−,Z]

0.751 0.739 0.051 0.872 0.608 0.535 0.567
TSN 0.691 0.705 0.000 0.864 0.472 0.480 0.474
M-OON 0.778 0.707 0.129 0.874 0.574 0.526 0.547
OON 0.790 0.415 0.210 0.846 0.313 0.305 0.308

Table 1: Evaluation results for various input features objective functions, and classifier models.

Figure 3: Transcription results from the 15th to the 18th
second of ‘child10.wav’ in the ISMIR 2014 dataset. From
top to bottom: predicted likelihood for S, A, O, X , and
transcription results. Background of the bottom subfigure:
the pitch saliency function Z. Blue dashed lines: estimated
pitch contour. Bullet: onset time. X mark: offset time.

[24] , Gómez & Bonada [10], SiPTH [18], Yang et al. [29],
and Tony [16]. The results for these five methods are re-
ported in [29]. Our proposed method outperforms all the
previous methods by more than 7.4% in terms of the F1-
measure. It is important to note that although our model
is trained on a dataset with the singing style (flamenco
singing) quite different from the testing data, the model
still outperforms the Tony software, which performance is
actually based on a parametric grid search on the testing
dataset [16]. This fact indicates that our method is po-
tentially generalizable over various data modalities. Be-

Method Precision Recall F
Ryynänen [24] 0.304 0.315 0.308
Gómez & Bonada [10] 0.430 0.373 0.398
SiPTH [18] 0.397 0.440 0.415
Yang [29] 0.409 0.436 0.421
Tony [16] 0.510 0.534 0.520
Proposed 0.625 0.569 0.594

Table 2: Comparison of singing transcription results.

sides, since we do not directly deal with issues such as
vibrato, unstable pitches and tuning shift [29], our model
actually benefits more from a stable note segmentation
method. This highlights the importance of note segmen-
tation in note transcription.

Fig. 3 illustrates an example of the predicted silence,
activation, onset, offset likelihood curves and note tran-
scription results of a clip in the testing dataset. The tran-
scription result from the Tony software is also provided for
comparison. It can be shown that Tony tends to miss on-
sets for consecutive notes, while the proposed model suc-
cessfully captures almost all the note transitions except the
onset at 16.71 sec, which is a challenging case due to the
bent pitch contour around the onset event and a relatively
short note duration.

5. CONCLUSION

We have presented the effectiveness of the proposed hier-
archical classification networks in note segmentation and
transcription in singing voice. By unfolding the structure
of the state evolution patterns in note sequences and by ap-
plying multi-channel data representations to modeling note
transitions, the general, robust, and consistent note seg-
mentation procedure plays a vital role in achieving state-
of-the-art performance. One important aspect omitted in
our discussion is using temporal modeling (e.g., HMM)
over the hierarchical state space rather than using post-
processing rules to complete the note transcription process.
Based on the positive result of this study, this direction is
with high potential and will be left as future work.
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ABSTRACT

In this paper, we present our application of deep neural
network to modeling piano performance, which imitates
the expressive control of tempo, dynamics, articulations
and pedaling from pianists. Our model consists of recur-
rent neural networks with hierarchical attention and condi-
tional variational autoencoder. The model takes a sequence
of note-level score features extracted from MusicXML as
input and predicts piano performance features of the corre-
sponding notes. To render musical expressions consistently
over long-term sections, we first predict tempo and dynam-
ics in measure-level and, based on the result, refine them
in note-level. The evaluation through listening test shows
that our model achieves a more human-like expressiveness
compared to previous models. We also share the dataset we
used for the experiment.

1. INTRODUCTION

Music performance is one of the most essential activities
in music. Good performance requires not only translating
notes in the score into physical actions with precise timing
and right pitch on an instrument but also delivering emo-
tions and messages through subtle controls of tempo, dy-
namics, articulations and other expressive elements.

There have been research interests in modeling expres-
sive performance using a computational method. A re-
cent review paper comprehensively summarized the his-
tory [4]. While some of previous work exploited com-
putational modeling as a tool for understanding how hu-
mans perform [3], or listen to music [10], others focused
on automatically generating expressive performances. The
previous methods include rule-based approaches [2, 8], or
probabilistic models [17, 29], and an artificial neural net-
work [5,11]. The instrument is mainly limited to piano be-
cause it is relatively easy to quantify the performances.

c© Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee,
Juhan Nam. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Dasaem Jeong, Taegyun
Kwon, Yoojin Kim, Kyogu Lee, Juhan Nam. “VirtuosoNet: A Hierarchi-
cal RNN-based system for modeling expressive piano performance”, 20th
International Society for Music Information Retrieval Conference, Delft,
The Netherlands, 2019.

Recent approaches have attempted to apply deep learn-
ing to modeling expressive piano performance, such as
rendering note velocity and deviation of note onset with
vanilla recurrent neural network (RNN) [20], or predict-
ing note velocity with a long short-term memory (LSTM)
RNN [22]. Others introduced DNN models for generat-
ing polyphonic music with expressive timing and dynam-
ics [13,24]. While these models can generate performance
MIDI notes, they are more like music composition models
rather than expressive performance models that take mu-
sic scores as input. Besides piano performance, a recent
work presented DNN-based system for modeling expres-
sive drum performance [9].

One of the bottlenecks in the DNN-based approach is
the lack of dataset [4]. Since the task is rendering expres-
sive performances from score inputs, the dataset should
consist of music scores and their corresponding perfor-
mances by human musicians. Furthermore, the pair of
score and performance should be aligned in note-level to
effectively train the model. Also, ideally, the list of mu-
sic score and performance should cover various composers
and performance styles.

In this paper, we present a hierarchical RNN-based
model for expressive piano performance along with a
dataset that we organized. The model takes MusicXML
as input and generates performance MIDI with expressive
tempo, dynamics, articulation and pedaling. The model
consists of RNN with hierarchical attention network and
conditional variational autoencoder (CVAE). In particular,
the model predicts the performance features using a multi-
scale approach; it first predicts tempo and dynamics in
measure-level and, based on the result, fine-tunes them in
note-level. A listening test with professional pianists shows
that our model achieves a more human-like expressiveness
compared to previous models.

2. DATASET

2.1 Performance and Score Data

As aforementioned, we need a dataset of human perfor-
mances with their corresponding music scores to train a
neural network model. A list of expressive performance
datasets are summarized in [4]. Among others, Yamaha
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Signature MIDI collection 1 , which are recorded during
Yamaha e-Competitions with computer-controlled pianos,
is the largest public dataset that provides a substantial
amount of expressive performance MIDI of professional
pianists. Some of the pianists performed the same piece
more than once in different rounds of the competition in
different years. The Yamaha collection has been employed
in automatic performance generation [24] and automatic
music transcription and audio synthesis [12] as well.

While the Yamaha collection provides high-quality pi-
ano performance data in MIDI, it does not contain the cor-
responding music scores of the pieces. Thus, we collected
the score files from another source. Specifically, we down-
loaded them from MuseScore, a community-based web
platform of music score 2 . The scores were transcribed vol-
untarily by the community users and can be exported in
MusicXML format. We also included our own transcrip-
tions of scores to the dataset. While MIDI is suitable for
representing performance, MusicXML aims to represent
the Western music notation in its entirety. Therefore, Mu-
sicXML can contain various types of musical symbols such
as rest, slur, beam, barline, key and time signature, articu-
lation, ornament markings and so on, which are excluded
in MIDI format.

2.2 Data Matching and Refinement

Since we collected the performance and score data from
different sources, we had to match and refine them. In
particular, transcription styles in the crowdsourced Mu-
sicXML files are not consistent. For example, some of
the transcribers add extra expressions such as dynam-
ics markings or tempo change to make the score sounds
more expressive. They usually set them to “invisible ob-
jects” to make the transcribed score appear as the refer-
ence score. We deleted such extra markings added by tran-
scribers. Also, we manually checked whether the perfor-
mances followed the repetitions in the scores. If a per-
formance skipped the repetition, we omitted the repetition
from the score so that the performance and the score can
be aligned.

To train a model with note-level score features and
performance features, each note in the score should be
matched to that in the performance. We employed a score-
to-performance alignment algorithm proposed by Naka-
mura et al. [23]. The algorithm automatically handles asyn-
chronously performed notes as well as missing and extra
notes in the performance, and returns a list of note-to-note
matches. Although the algorithm showed high accuracy in
our test, a small amount of alignment errors can be critical
in extracting performance features such as tempo or onset
deviation. Since the dataset is too large to make manual
corrections, we filtered out some erroneous matches based
on simple rules and excluded them in training the perfor-
mance model. For example, if a matched performance note
is too close or even earlier than the previous note in the
score, we regarded it as an alignment error. Also, if multi-

1 http://www.yamahaden.com/midi-files
2 https://musescore.com

ple notes have the same onset time in the score (e.g., chord
notes) but one is too far from other notes in performance,
we regarded it as an alignment error as well.

We found that this additional refinement made severe
improvement on the training result, especially on onset de-
viation, or micro-timing, of individual notes. The standard
deviation of onset deviation decreases from 7.369 to 0.053
after the refinement, where the unit is quarter-notes. With-
out the refinement, the prediction of onset deviation be-
came too noisy that one could not perceive correct rhythm.

As a result, we collected music scores of 226 pieces
by 16 composers in MusicXML and 1,052 piano perfor-
mances in MIDI. After the matching and refinement, the
score and performance data contain a total of 666,918
notes and 3,547,683 notes, respectively. Among the per-
formance notes, 131,095 notes were failed to be aligned
with score notes, and additional 114,914 notes were ex-
cluded by our refinement algorithm. The number of valid
performance notes is ten times larger than the Magaloff
corpus [7], which is the largest existing dataset for classi-
cal piano music [4].

3. SYSTEM ARCHITECTURE

3.1 Background

3.1.1 Input and Output Features

Designing input and output features is an important issue in
performance modeling because it defines the characteris-
tics of the computational task [4]. We followed the scheme
we previously proposed in [15], which covers a wide range
of score and performance features. The score features in-
clude pitch, duration, articulation marking, slur and beam
status, tempo marking, dynamic markings, and so on. The
performance features include absolute tempo, velocity, on-
set deviation, articulation and pedal usages. All the features
are encoded in the note-level so that each note had the same
dimension of score features and performance features.

3.1.2 Hierarchical Attention Network

Recent research has shown that a hierarchical approach can
improve the performance of RNN model in modeling se-
quential data [6, 30]. It was also demonstrated that the hi-
erarchical approach has advantages in generating symbolic
music data [25]. In this paper, we employ a hierarchical
attention network (HAN) to predict a sequence of perfor-
mance features from a sequence of score features.

The HAN composes higher-level representations by
summarizing lower-level representations in pre-defined hi-
erarchical boundaries using a weighted sum. In our case,
we set beat and measure as the hierarchical boundaries so
that beat-level attention and measure-level attention sum-
marize note-level and beat-level representations, respec-
tively. Instead of directly implementing the HAN in [30],
we combined it with the idea of multi-head attention [28]
which splits the dimension into several heads and applies
different weights of attention for each split.

Composing nodes through the attention layers can be
described as follows. For each hierarchical boundary,
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Figure 1. The overview of the proposed system.

which can be a beat or a measure in music score, the notes
in the boundary can be indexed with t ∈ [Bf , Bl], where
Bf and Bl represent the index of the first and last notes in
the selected boundary B. The lower-level hidden states ht

for t in the boundary B are summarized by context atten-
tion to compose a higher-level node m. There are a total I
number of attention heads indexed with i.

ut = tanh(Waht + ba)

ui
t = ut,i:(i+1)d

hi
t = ht,i:(i+1)d

αααi
v =

exp(ui
t
ᵀui

c)∑
t exp(ui

t
ᵀui

c)

mi =
∑
t

αααi
t ∗ hi

t

m = Concat(m0, ...,mI)

(1)

where Wa and ba denote weight and bias parameters of at-
tention, and uc denotes a context vector representing query
for importance, which are trainable parameters. The se-
quence of summarized nodes are fed into a new layer of
LSTM.

3.1.3 Conditional VAE

A music score can be interpreted and performed in various
styles, i.e. with a different tempo or phrasing. Therefore it
is important to enable the performance modeling system to
generate different types of performance. On the other hand,
the variation of performance can be an obstacle for train-
ing the model, because it has to generate different outputs
from the same input. To solve this problem we employed
a conditional variational autoencoder (CVAE), which we
proposed in our previous work [14].

VAE is a widely used generative models based on deep
neural networks [19]. It is a type of autoencoder, which
compresses input information into a lower dimensional la-
tent vector and decodes the original information from the
compressed latent vector. The main difference is that VAE
constrains its latent vector to be sampled from a probabil-
ity distribution. VAE consists of an encoder that models
q(z|x) and decoder to model p(x|z). VAE also models the
probability of latent vector p(z), which usually has a nor-
mal distribution. The training loss of VAE can be define as
follows:

LVAE = Lrec + βDKL[(q(z|x)||p(z)] (2)

where Lrec is the reconstruction error from AE, DKL is
Kullback-Leibler divergence (KLD), and β is a weight for
the KLD.

Figure 2. Diagram for Score Encoder with HAN and RNN

A conditional VAE (CVAE) provides an additional con-
dition so that the output satisfies the given condition [27].
In our system, the condition is the learned score represen-
tation, and the target output are the performance features.
The idea of employing CVAE for expressive performance
modeling was first proposed in [21]. While the previous
work encoded the latent vector in note-level, our idea is to
encode the performance style in a longer-level, such as an
entire piece.

3.2 Proposed System

Our proposed system consists of three parts: score en-
coder, performance encoder, and performance decoder as
depicted in Figure 1.

The role of score encoder is to learn score representa-
tionsC from an input sequence of notes. It consists of three
hierarchical-levels: note, beat, and measure. Each level has
a corresponding bidirectional LSTM unit with a different
hidden size and number of layers. The note-level layer con-
sists of two different LSTM units, one taking the input as
a single sequence, and the other taking the input as voice-
separated sequences. The “voice” means the voice index in
MusicXML that represents an independent stream of mu-
sic as depicted with different colors of notes in Figure 2.
The hidden representations of the lower-level are summa-
rized through the HAN to compose higher-level nodes. The
output of the note-level LSTM is summarized to beat-level
nodes and then they are fed into the beat-level LSTM. Sim-
ilarly, we compose the measure-level LSTM. We concate-
nate the outputs of all the three layers in a note-level as
depicted in Figure 2. The output of score encoder is a se-
quence with the same length as the input. Since we use
multi-head attention instead of single-head attention, each
attention head focuses on the different type of notes as il-
lustrated in Figure 3.

We implemented the performance encoder using CVAE
that models q(z|C, y) to summarize the given performance
y in score condition C to a probability distribution of the
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Figure 3. Visualization of attention weights from different
attention heads. a) focuses more on the melody notes while
b) focuses more on the bass or harmonic notes.

Figure 4. The figure shows how the beat-level decoder
and the note-level decoder feed its results to the other. The
dashed lines in red indicate the edge of beats.

latent vector z, which can be regarded as a performance
style vector. C and y are concatenated and fed into a single
dense layer that contracts the feature dimension. We use
uni-directional note-level LSTM and measure-level HAN-
LSTM to process the contracted input. The last output of
the sequence from the measure-level LSTM is used to infer
µ and σ of q(z|C, y) by a dense layer.

During the actual performance generation from a given
score, the performance encoding is bypassed, and the sys-
tem randomly samples the style vector z from a normal
distribution or exploits a pre-encoded z from other perfor-
mances.

The performance decoder uses LSTMs to generate a se-
quence of performance features ŷ for the given conditionC
and the style vector z. Since the tempo is always estimated
in beat level, we have two different LSTM units, one in
the beat-level and the other in the note-level. Both LSTMs
are in auto-regressive, i.e., take their own output from the
previous step as an input, and the outputs of the note-level
decoder is fed into the beat-level decoder, and vice versa,
as presented in Figure 4.

3.3 Measure-level Module

One of the main difficulties in expressive performance
modeling is achieving long-term expression such as grad-
ual change of tempo or contrast between loud and quiet
sections. To solve this problem, we propose an optional
measure-level module that predicts measure-level tempo
and dynamics as presented in Figure 5. The main idea is
to make our system predict overall progress of the perfor-

Figure 5. Diagram for Measure-level modules

mance in measure-level and then refine it in note-level. A
similar idea achieved a successive result in image genera-
tion using GAN, which started training in a low resolution
and progressively in higher resolutions [16].

To train the measure-level module, we have to de-
fine measure-level performance features. The measure-
level tempo is defined by elapsed time to play the mea-
sure divided by the length of the measure in quarter-notes.
We used average velocities of notes in the measure for a
measure-level dynamics. The measure-level module has al-
most the same architecture with the note-level modules ex-
cept that the output of the score encoder is the measure-
level states instead of concatenated result of note, beat and
measure hidden states. The performance encoder and de-
coder are also in measure level.

In this hierarchical approach, the note-level module
takes not only the score data but also the output of the
measure-level module as a concatenated input. It is pos-
sible to combine two modules as a single model or in a
single training process, but we made two modules indepen-
dent and trained them separately. Therefore, the note-level
module is trained with ground-truth measure-level outputs.

4. EXPERIMENTS

4.1 Training

We split the dataset into training, validation, and test sets
so that each set has a size of approximately 8:1:1 in the
number of piece, performance, and notes, while consider-
ing the distribution of composers in each set. A single piece
was included only in either of one of the splits. For the
training set, we sliced the input sequences at the measure
boundaries with the least size of 500 notes. When training
the measure-level module, the sequence has at least 2000
notes or entire notes if the piece is short. The note is or-
dered by its appearance order and pitch. The features with
continuous value was normalized to have zero mean and
unit standard deviation.

We calculated the loss in mean square error (MSE) be-
tween each feature. The loss was calculated for each note
and each output features, except the tempo, whose loss was
calculated in beat level. During the training, the input se-
quences included all the notes that have non-matching per-
formance notes, because missing notes in the input data
can change the context of the other notes in the score. How-
ever, these notes were excluded in the loss calculation be-
cause we could not extract performance features for the
notes. Since the articulation is largely affected by the sus-
tain pedal, we reduced the weight for the articulation loss
to 0.1 for notes with the sustain pedal pressed at the offset.
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Model Tempo Vel Dev Artc Pedal
Baseline 0.400 0.673 0.773 0.721 0.843
HAN-S 0.269 0.607 0.753 0.688 0.820
HAN-M 0.220 0.532 0.747 0.754 0.810

Table 1. Reconstruction loss of each model on the test set
in MSE. Vel, Dev and Artc denote velocity, onset deviation
and articulation, respectively.

We used the ADAM optimizer [18] with an initial learn-
ing rate of 0.0003 and dropout ratio of 0.1. To avoid that
the system bypasses z during the decoding, we use the
KLD weight annealing as proposed in [1], so that the KLD
weight started from zero at the beginning of training, and
increased to 0.02 gradually.

4.2 Model Configuration

The score encoder of our proposed system has three-layer
dense network of size 128 with ReLU activation as an em-
bedding layer, two-layer bidirectional(Bi)-LSTMs of size
128 for note-level and voice-level, two-layer Bi-LSTM of
size 64 for beat-level, and one-layer Bi-LSTM of size 64
for measure-level. The performance encoder has two-layer
unidirectional(Uni)-LSTM of size 16 for note-level and
one-layer Uni-LSTM of size 16 for measure-level. The size
of latent vector z in CVAE is 16. The performance decoder
consists of one-layer Uni-LSTMs for beat-level and note-
level both of size 64. The measure-level module has almost
the same setting except that every hidden size of the net-
work in the performance encoder is 8 including the latent
vector z.

To compare our approach with HAN architecture and
measure-level modules (HAN-M), we also trained two
other models. The first model is a baseline model that uses
only three-layers LSTM in note-level with hidden size of
256. The other model, which will be denoted as HAN-S, is
a model that excludes the measure-level module. In HAN-
S, the hidden size of beat-level layer in the score encoder
and performance decoder was 128.

5. RESULTS

5.1 Reconstruction Error

Quantitative evaluation of modeling expressive perfor-
mance is a not trivial issue. One of the frequently used
quantitative evaluation method is calculating MSE of out-
put features [4]. Comparing the predicted outputs with
“target” performance can be arbitrary, because there can be
various ways to perform the score. In our system, however,
there is a performance encoder and a latent style vector z
that, ideally, makes the output in a style of the target per-
formance. Therefore, comparing output features with the
target performances is more reasonable. Also, as a learn-
ing model, it is fair to check the test loss with the same
criteria used for training.

Table 1 shows the reconstruction loss of each model
on the test set which includes 21 pieces and 109 perfor-
mances. The two HAN models achieved much less recon-
struction error than the baseline model. This indicates that

Figure 6. Average score of the listening test for Schubert
Sonata in 7-point Likert scale. The t-test results between
our models (HAN-S,M) and Human are marked with ns
only if it is not significant. The results between our models
and the others models are marked only if it is significant.
“*” and “**” denote “p≤0.05” and “p≤0.01”, respectively.

the hierarchical approach helps the model to generalize to
unseen data. Between the two HAN models, HAN-M is
slightly better than HAN-S. We have tested different pa-
rameter sizes for HAN-S so that HAN-S has a similar num-
ber of parameters with the sum of two modules in HAN-M,
but the result was not much different.

5.2 Listening Test

We also conducted a listening test to evaluate our model
qualitatively. We asked five students, who are majoring pi-
ano at a college of music, to listen to the rendered perfor-
mances and evaluate them with criteria presented in Figure
6 in 7-point Likert scale (1 - very bad, 7 - very good) with
additional comments on the performance. We chose three
pieces of different styles from our test set: the first move-
ment from Beethoven’s Piano Sonata No. 5 (cut before re-
capitulation), Chopin’s Etude op. 10 No. 2 (entire piece),
and the first movement from Schubert Piano Sonata D.664
(cut before development).

We prepared five different performances MIDI per
piece: a human performance from Yamaha e-competition,
a direct export from MusicXML score to MIDI by a nota-
tion program (MuseScore), each of rendered performances
from HAN-S and HAN-M, and Basis Mixer (BM). The
result exported from MuseScore had no tempo change but
the velocities of notes were changed by a simple rule-based
conversion of dynamic markings in the score. BM is the
only publicly available model that does not require ad-
ditional notation among previous expressive performance
models [5]. It also achieved a highest score among other
computational methods in previous research [26]. We in-
cluded the BM model in the listening test and generated
performances with the same MusicXML file we used for
our model 3 . Since the recording and playback in audio
systems can affect the quality of performance, we invited
the participants to our studio and played the prepared MIDI
files with a Yamaha Disklavier piano. Each performance
was played once in a random order.

The result of evaluation on Schubert is presented in Fig-
ure 6 As expected, all participants gave highest scores in

3 https://basismixer.cp.jku.at/static/app.html
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every criteria for the human performance. Our proposed
model, HAN-S and HAN-M, achieved higher scores in all
seven criteria compared to other models. Two among five
participants gave more than five out of seven points as the
human confidence for the performance by HAN-S, and one
gave five points to HAN-M. The t-test result showed that
HAN-S and HAN-M showed statistically significant differ-
ences (p ≤0.05) compared to the score and the BM model
in overall ratings of the performance of Schubert.

The positive comments on our models were: “the inter-
pretation was interesting” (Beethoven, HAN-M), “felt that
the flow of performance was humane" (Beethoven, HAN-
S), “voicing was too good so that it felt like performed
by multiple performers” (Chopin, HAN-S), “sounded
like a performance by human with strong characteris-
tics” (Chopin, HAN-S), “voicing was fine except some
faults” (Schubert, HAN-M), and “sounded like machine-
generated performance with fine pedaling” (Schubert,
HAN-S) .

There were also negative comments criticizing our
models, such as “used too much pedal”, “pedal points
were unnatural”, “lack of color”, “too short articulation”,
“some tempo or dynamic changes were unnatural”, “touch
was too light”, and “it did not seem that the performer
was listening to the performance”. Although our models
had predicted the pedal usage, the pedaling was often too
deep and “dirty” or too shallow. The result showed that the
note-level pedal embedding needs improvement.

The responses of our participants for performances by
BM, which is a data-driven model based on RNN, were
negative regardless of the piece. The comments from the
participants said that “although there was a clear inten-
tion to express phrasing, it was unnatural and sounded like
a mechanical interpretation” (Schubert), “inaccurate and
limping rhythm” (Beethoven and Schubert),and “the tem-
poral gaps at measure boundary were unnatural” (Chopin
and Schubert). Unlike the Score MIDI, the performance by
BM included clear change in tempo for phrasing. However,
most of the participants gave almost the same level of neg-
ative response to its phrasing quality compared to the Score
MIDI. This shows how difficult it is to model phrasing of
the music.

The results were also largely differed by the character-
istics of the piece. For example, Schubert’s Sonata has a
song-like melody with arpeggio accompaniments. Hence,
it was important to model the natural phrasing, e.g., subtle
change of tempo and velocity according to the melody. On
the other hand, the fast chromatic scale in Chopin’s Etude
demands a stable tempo. Therefore, Score MIDI received
six out of seven points for overall quality from three partic-
ipants because the performance was in perfectly constant
tempo with strict following of dynamic markings. The flex-
ibility of tempo generated by our model was not favored by
the participants in case of Chopin’s Etude.

In summary, the results of listening test shows that our
models have achieved more natural expressions compared
to the other models, especially in a piece with song-like
melodies. Modeling the pedal usage and a human-like sta-

Figure 7. a) Local tempo changes and b) Dynamics change
in different performances of Schubert’s Piano Sonata

ble tempo are issues to further investigate.

5.3 Case Study: Comparison in Tempo and Dynamics

The quality of phrasing can be also observed from exam-
ples. Figure 7-a) compares local tempo changes in differ-
ence performances of Schubert’s Sonata. The local tempo
is represented with inter-onset-interval (IOI) which is com-
puted by dividing seconds into quarter-note. BM has an ev-
ident peak at around the 10th note, which was exaggerated
than any other human pianists. In terms of Pearson corre-
lation, HAN-S and HAN-M have a strong positive correla-
tion with the pianists (0.7<r<1.0) while the BM model has
a less positive correlation (0.3<r<0.5).

Figure 7-b) compares dynamics changes of melody
notes in different performances of the same piece. The dy-
namics is represented with MIDI note velocity. Increasing
and decreasing timings of HAN-M and HAN-S are gener-
ally similar to pianists. For example, decrescendo starts at
note sequence 40 which follows crescendo, then pp starts
at 45 and comes back to mf at 48. Both HAN-M and HAN-
S show similar downward and upward curves with pianists
while the BM model shows just slight upward curve. These
trend can be proved by correlation coefficients among pi-
anists and generated models. HAN-S and HAN-M have
significant positive correlation with pianists (0.3<r<0.7)
while BM has almost no correlation (r<0.1).

6. CONCLUSIONS

We introduced a hierarchical RNN-based system for mod-
eling expressive piano performance and a dataset for
training the model. Our listening test demonstrated that
our model achieved more human-like musical expression
compared to the previous model [5]. The source code
and dataset are available in https://github.com/
jdasam/virtuosoNet.
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ABSTRACT

This paper investigates a cross-modal retrieval problem in
which a user would like to retrieve a passage of music from
a MIDI file by taking a cell phone picture of a physical
page of sheet music. While audio–sheet music retrieval
has been explored by a number of works, this scenario is
novel in that the query is a cell phone picture rather than
a digital scan. To solve this problem, we introduce a mid-
level feature representation called a bootleg score which
explicitly encodes the rules of Western musical notation.
We convert both the MIDI and the sheet music into boot-
leg scores using deterministic rules of music and classical
computer vision techniques for detecting simple geometric
shapes. Once the MIDI and cell phone image have been
converted into bootleg scores, we estimate the alignment
using dynamic programming. The most notable character-
istic of our system is that it does test-time adaptation and
has no trainable weights at all—only a set of about 30 hy-
perparameters. On a dataset containing 1000 cell phone
pictures taken of 100 scores of classical piano music, our
system achieves an F measure score of .869 and outper-
forms baseline systems based on commercial optical music
recognition software.

1. INTRODUCTION

Consider this scenario: A person is practicing at the piano,
and would like to know what a particular passage of music
sounds like. She takes a cell phone picture of a portion of
the physical sheet music in front of her, and is immediately
able to hear what those lines of music sound like.

In this paper, we explore the feasibility of such an ap-
plication where we assume that the piece is known and a
MIDI file of the piece is available. Our goal is to retrieve
a passage of music from a MIDI file using a cell phone
image as a query. This is a cross-modal retrieval scenario.

Several works have investigated the correspondence be-
tween audio and sheet music images. There are two gen-

∗The first two authors had equal contribution.

c© Daniel Yang, Thitaree Tanprasert, Teerapat Jenrungrot,
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tion 4.0 International License (CC BY 4.0). Attribution: Daniel Yang,
Thitaree Tanprasert, Teerapat Jenrungrot, Mengyi Shan, TJ Tsai. “MIDI
Passage Retrieval Using Cell Phone Pictures of Sheet Music”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

eral approaches to the problem. The first approach is to
use an existing optical music recognition (OMR) system
to convert the sheet music into a symbolic (MIDI-like)
representation, to compute chroma-like features, and then
to compare the resulting sequences to chroma features ex-
tracted from the audio. This approach has been applied to
synchronizing audio and sheet music [4,5,15,16,21], iden-
tifying audio recordings that correspond to a given sheet
music representation [14], and finding the audio segment
corresponding to a fragment of sheet music [13]. A differ-
ent approach has been explored in recent years: convolu-
tional neural networks (CNNs). This approach attempts to
learn a multimodal CNN that can embed a short segment
of sheet music and a short segment of audio into the same
feature space, where similarity can be computed directly.
This approach has been explored in the context of online
sheet music score following [7], sheet music retrieval given
an audio query [8,9,11,12], and offline alignment of sheet
music and audio [9]. Dorfer et al. [10] have also recently
shown promising results formulating the score following
problem as a reinforcement learning game. See [18] for a
recent overview of work in this area.

The key novelty in our scenario is the fact that the
queries are cell phone images. All of the works described
above assume that the sheet music is either a synthetically
rendered image or a digital scan of printed sheet music.
In recent years, a few works have begun to explore op-
tical music recognition (OMR) on camera-based musical
scores [1–3,22,23]. Here, we explore the use of cell phone
images of sheet music for retrieval. Cell phone images
provide a natural and convenient way to retrieve music-
related information, and this motivates our current study.

The main conceptual contribution of this paper is to in-
troduce a mid-level feature representation called a bootleg
score which explicitly encodes the conventions of Western
musical notation. As we will show, it is possible to con-
vert MIDI into a bootleg score using the rules of musical
notation, and to convert the cell phone image into a boot-
leg score using classical computer vision techniques for
detecting simple geometrical shapes. Once we have con-
verted the MIDI and cell phone image into bootleg feature
space, we can estimate the alignment using subsequence
DTW. The most notable characteristic of our system is
that it does test-time adaptation and contains no trainable
weights at all—only a set of approximately 30 hyperpa-
rameters. In the remainder of this paper, we will describe
the system and present our experimental results.
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Figure 1. Block diagram of the proposed system.

2. SYSTEM DESCRIPTION

Our system takes two inputs: a cell phone picture of a page
of sheet music and a MIDI file of the corresponding piece.
The output of the system is a prediction of the time seg-
ment in the MIDI file that matches the lines of sheet music
shown in the cell phone picture. Note that in this problem
formulation, we assume that the piece is known, and that
we are trying to identify the matching passage of music in
the piece. In our study, we focus on piano music.

Our approach has three main components, which are
shown in Figure 1. The first two components convert the
MIDI and cell phone image into a representation which
we call a bootleg score. A bootleg score is a very low-
dimensional representation of music which is a hybrid be-
tween sheet music and MIDI. It is a manually designed
feature space that explicitly encodes the rules of West-
ern musical notation. The third component is to tempo-
rally align the two bootleg scores using subsequence DTW.
These three components will be discussed in the next three
subsections. 1

2.1 Generating MIDI Bootleg Score

Generating the MIDI bootleg score consists of the three
steps shown in Figure 2. The first step is to extract a list
of all individual note onsets. The second step is to cluster
the note onsets into groups of simultaneous note events.
After this second step, we have a list of note events, where
each note event consists of one or more simultaneous note
onsets. The third step is to project this list of note events
into the bootleg feature space.

The bootleg feature representation can be thought of as
a very crude version of sheet music (thus the name “boot-
leg score"). It asks the question, “If I were to look at the
sheet music corresponding to this MIDI file, where would
the notehead for each note onset appear among the staff
lines?" Note that there is ambiguity when mapping from a
MIDI note value to a position in a staff line system. For
example, a note onset with note value 60 (C4) could ap-
pear in the sheet music as a C natural or a B sharp, 2 and
it could also appear in the right hand staff (i.e. one ledger
line below a staff with treble clef) or the left hand staff (i.e.
one ledger line above a staff with bass clef). The bootleg
feature representation handles ambiguity by simply plac-

1 Our code is available at https://github.com/tjtsai/
SheetMidiRetrieval

2 It could also appear as a D double flat, but we do not consider double
sharps or double flats since they occur relatively infrequently.

Figure 2. Overview of generating the MIDI bootleg score
(Section 2.1). Below the block diagram, a short MIDI pas-
sage (left) and its corresponding bootleg score are shown.

ing a notehead at all possible locations. The bootleg score
is a binary image containing only these floating noteheads.

The bootleg score is a very low dimensional representa-
tion. Along the vertical dimension, it represents each staff
line location as a single bootleg pixel (which we will refer
to as a “bixel” to differentiate between high-dimensional
raw image pixels and low-dimensional bootleg score pix-
els). For example, two adjacent staff lines would span three
bixels: two bixels for the staff lines and one bixel for the
position in between. The bootleg score contains both right
hand and left hand staves, similar to printed piano sheet
music. In total, the bootleg score is 62 bixels tall. Along
the horizontal dimension, we represent each simultaneous
note event as a single bixel column. We found through
experimentation that a simple modification improves per-
formance in the alignment stage (Section 2.3): we sim-
ply repeat each bixel column twice and insert an empty
bixel column between each simultaneous note event. This
gives the system more flexibility to deal with noisy bixel
columns in the alignment stage.

The resulting MIDI bootleg score is a 62 × 3N binary
matrix, where N is the number of simultaneous note events
in the MIDI file. 3 Figure 2 shows an example bootleg
score. The staff lines are included as a visualization aid,
but are not present in the bootleg feature representation.

2.2 Generating Query Bootleg Score

The second main component of our system (Figure 1) is to
convert the cell phone image into a bootleg score represen-
tation. Unlike the MIDI representation, the image does not
explicitly encode any information about the notes, so we
will have to estimate this information from the raw image.

Our general approach rests on two key insights. The
first key insight is that we can identify where we are in the
piece if we can detect just three things: filled noteheads,
staff lines, and bar lines. Because these objects are sim-
ple geometrical shapes, classical computer vision tools are
sufficient to detect them (Section 2.2.2–2.2.4). The second
key insight is that we know a priori that these three objects
will occur many times in the image. This opens up the pos-
sibility of test-time adaptation, where we can use a very
simple notehead detector to identify some of the noteheads
in the image, and then use those detected instances to learn
a more accurate notehead template at test time. This is

3 The factor of 3 comes from the filler and repetitions.
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Figure 3. Overview of generating the query bootleg score
(Sections 2.2.1–2.2.5). The cell phone image shown will
serve as a running example throughout the paper.

generally not possible with large object detection and clas-
sification scenarios like the ImageNet competition [6, 20].

Our method for generating the cell phone image bootleg
score has five parts, which are shown in Figure 3. These
will be described in the next five subsections.

2.2.1 Image Pre-processing

The preprocessing consists of three operations: (1) con-
verting the image to grayscale, (2) resizing the image to
a maximum dimension of 1000 pixels while retaining the
same aspect ratio, and (3) removing background lighting
by blurring the image and then subtracting the blurred im-
age from the non-blurred image.

2.2.2 Notehead Detection

The goal of the notehead detection stage in Figure 3 is
to predict a bounding box around every filled notehead in
the cell phone image. Note that we do not attempt to de-
tect non-filled noteheads (i.e. half-notes, dotted half notes,
whole notes). The basic premise of our approach is that
filled noteheads are much easier to detect, and they also
generally occur much more frequently than half or whole
notes. The notehead detection consists of the steps shown
in Figure 4. We will explain these steps in the next four
paragraphs.

The first step is to perform erosion and dilation of the
pre-processed image with a circular morphological filter.
The erosion replaces each pixel with the whitest pixel in
a circular region centered around the pixel. This oper-
ation removes any objects that consist of thin lines, and
it only passes through contiguous dense regions of black
pixels. The dilation takes the resulting image and replaces
each pixel with the blackest pixel in a circular region cen-
ter around the pixel. This operation restores any objects
that survived the erosion back to their original size. Figure
4 shows an example of an image after erosion and dilation
(center image).

Next, we describe the processing in the upper path of
Figure 4. We take the eroded and dilated image and ap-
ply simple blob detection. We use the simple blob detector
in OpenCV with default parameter settings, except that we
specify a minimum and maximum area in order to spec-
ify the rough size of object we expect. We then take crops
of the (eroded and dilated) image around the detected key-
points, and we compute the average of the cropped regions.

Figure 4. Overview of notehead detection (Section 2.2.2).
The images at bottom show the pre-processed image before
(left) and after (center) erosion & dilation, and the detected
noteheads (right).

This average gives us an estimate of what a filled notehead
looks like in this image. Figure 4 shows an example of an
estimated template (upper right).

Now we describe the processing in the lower path of
Figure 4. We take the eroded and dilated image and bina-
rize it using Otsu binarization [19]. We then extract a list
of connected component regions from the binary image,
which gives us a list of candidate regions, some of which
are noteheads.

The last step in notehead detection is to filter the
list of candidates using our estimated notehead template.
We filter the list of candidates to only contain those re-
gions whose height, width, height-width ratio, and area all
roughly match the notehead template (within some toler-
ance). We also filter the list of candidates to identify chord
blocks, which often appear as a single connected compo-
nent region. When a chord block is identified, we estimate
the number of notes in the chord based on its area relative
to the notehead template and then perform k-means clus-
tering to estimate individual notehead locations.

At the end of these steps, we have a list of bounding
boxes around the detected notes in the cell phone image.
Figure 4 (bottom right) shows an example of the predicted
notehead locations in an image.

2.2.3 Staff Line Detection Features

The goal of the staff line detection features stage in Fig-
ure 3 is to compute a tensor of features that can be used to
predict staff line locations in the bootleg projection stage
(Section 2.2.5). In a cell phone picture, staff lines may not
be straight lines or have equal spacing throughout the im-
age due to the camera angle or camera lens distortions. For
these reasons, we estimate staff line locations locally rather
than globally. In other words, for every detected notehead,
we make a local estimate of the staff line location and spac-
ing in its vicinity.

The staff line detection features are computed in three
steps as shown in Figure 5. The first step is to perform
erosion and dilation on the image with a short (1 pixel
tall), fat morphological filter. This removes everything ex-
cept for horizontal lines. In practice, we find that there
are two types of objects that survive this operation: staff
lines and horizontal note beams (e.g. the beam connect-
ing a sequence of sixteenth notes). The second step is
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Figure 5. Overview of staff line features computation
(Section 2.2.3). The images at bottom show the pre-
processed image before (left) and after (middle) erosion &
dilation, and the result after removing note beams (right).
The actual feature tensor is not shown.

to remove the note beams, as they can throw off the staff
line location estimates. Because the note beams are much
thicker than staff lines, we can isolate the note beams based
on their thickness and subtract them away from the im-
age. The third step is to convolve the resulting image with
a set of comb filters. We construct a set of tall, skinny
(1 pixel wide) comb filters, where each comb filter corre-
sponds to a particular staff line spacing. The set of comb
filters is selected to span a range of possible staff line
sizes. We then convolve the image (after beam removal)
with each of the comb filters and stack the filtered images
into a tensor. This feature tensor T global has dimension
Himage × Wimage × Ncomb, where Himage and Wimage

specify the dimensions of the image and Ncomb is the num-
ber of comb filters. Note that the third dimension corre-
sponds to different staff line spacings.

2.2.4 Bar Line Detection

The goal of the bar line detection stage (Figure 3) is to pre-
dict a bounding box around the barlines in the cell phone
image. The bar lines are needed to correctly cluster staff
lines into grand staff systems, where each grand staff con-
sists of a right hand staff and a left hand staff.

The bar line detection consists of the five steps shown
in Figure 6. The first step is to perform erosion and dila-
tion of the image with a tall, skinny morphological filter.
This filters out everything except vertical lines. In prac-
tice, we find that there are three types of objects that sur-
vive this operation: bar lines, note stems, and background
pixels (e.g. music stand at edges of image). The second
step is to binarize the eroded and dilated image using Otsu
binarization. The third step is to extract a list of connected
component regions from the binary image. The fourth step
is to filter this list of candidates to identify bar lines. This
can be done by first filtering out regions that are too wide
(e.g. background pixel regions), and then distinguishing
between note stems and bar lines by finding the thresh-
old on height that minimizes intra-class variance (which is
equivalent to Otsu binarization but applied to the heights).
The fifth step is to cluster the detected bar lines into lines
of music. We do this by simply clustering any bar lines
that have any vertical overlap. Figure 6 shows this process
for an example image.

Figure 6. Overview of bar line detection (Section 2.2.4).
The images at bottom show the pre-processed image before
(left) and after (center) erosion & dilation, and the detected
bar lines (right).

At the end of the bar line detection stage, we have a
prediction of the number of lines of music in the cell phone
image, along with the vertical pixel range associated with
each line. Figure 6 shows an example of an image at the
various stages of processing in the bar line detection.

2.2.5 Query Bootleg Projection

The last step in Figure 3 is to combine the notehead, staff
line, and bar line information in order to synthesize a boot-
leg score for the cell phone image. This bootleg score syn-
thesis consists of the three steps shown in Figure 7.

The first step is to locally estimate the staff line loca-
tion and spacing for each notehead. We do this by select-
ing a subset T local of the staff line feature tensor T global

which only contains a rectangular context region around
the notehead’s (x, y) location in the image. This gives
us a three-dimensional feature tensor T local with dimen-
sion Hcontext × Wcontext × Ncomb, where Hcontext and
Wcontext specify the size of the context region and Ncomb

specifies the number of comb filters. We calculate the sum
of features across the rows of T local, and then identify the
maximum element in the resulting Hcontext ×Ncomb ma-
trix. The location of the maximum element specifies the
vertical offset of the staff lines, along with the staff line
size. Figure 8 shows a visualization of the estimated local
staff line predictions for a line of music. Yellow dots cor-
respond to estimated notehead locations, and the red and
blue dots are predictions of the top and bottom staff lines.

The second step is to label and cluster detected note-
heads. We estimate each notehead’s discrete staff line lo-
cation by applying simple linear regression on its local
staff line coordinate system followed by quantization. This
is necessary to determine where the notehead should be
placed in the bootleg score. We also need to associate each
notehead with an upper or lower staff in a specific line of
music. To do this, we first check to see if the predicted
staff line system is within the vertical range of a valid line
of music (see Section 2.2.4) and, if so, if it falls in the up-
per or lower half of the region. If the predicted staff line
system does not fall within a valid line of music, the note-
head is ignored and will not appear in the bootleg score.
The latter tends to happen with noteheads at the very top
or bottom of the image, where a portion of a staff shows up
but is cut off by the image boundaries.

The third step is to actually place the noteheads into
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Figure 7. Overview of query bootleg projection (Section
2.2.5). The image at bottom shows part of the generated
bootleg score for the cell phone image in Figure 3.

the bootleg score. We collapse the noteheads within each
valid bar line region into a sequence of simultaneous note
events, and then construct the bootleg score as a sequence
of simultaneous note events. Similar to the MIDI boot-
leg score, we repeat each simultaneous note event twice
and insert a filler column between each simultaneous note
event. Figure 7 shows part of the bootleg score generated
from the cell phone image in Figure 3.

2.3 Subsequence DTW

The third main component of our system (Figure 1) is to
align the two bootleg scores using subsequence dynamic
time warping (DTW). DTW is a well-established dynamic
programming technique for determining the alignment be-
tween two feature sequences. Subsequence DTW is a vari-
ant of DTW that finds the optimal match between a shorter
query segment and a subsequence of a (longer) reference
segment. For details on DTW and its variants, the reader
is referred to [17]. Our cost metric computes the negative
inner product between two bixel columns and then normal-
izes the result by the maximum of (a) the number of simul-
taneous noteheads in the sheet music and (b) the number
of simultaneous note onsets in the MIDI. The inner prod-
uct counts how many overlapping black bixels there are
between the two columns, and the normalization factor en-
sures that the actual cost is not biased by the number of
simultaneous notes. At the end of this stage, we have a pre-
diction of the segment in the MIDI file that best matches
the lines of sheet music shown in the cell phone image.
This is the final output of our proposed system.

3. EXPERIMENTAL SETUP

The experimental setup will be described in three parts: the
data, the annotations, and the evaluation metric.

The data was collected in the following manner. We first
download 100 piano scores in PDF format from IMSLP. 4

These piano scores come from 25 well-known composers
and span a range of eras and genres within the classical pi-
ano literature. To simplify the evaluation, we select scores
that do not have any repeats or structural jumps. For each
score, we then find a corresponding MIDI file from various
online websites. This gives us a total of 100 MIDI-PDF
matching pairs. Next, we printed out the PDF scores onto
physical paper, placed the sheet music pages in various

4 https://imslp.org

Figure 8. A visualization of local staff line estimation.
Each yellow dot corresponds to a detected notehead, and
the red and blue dots correspond to the predicted top and
bottom staff lines.

locations, and took 10 cell phone pictures of each score,
spaced throughout the length of the piece. The pictures
were taken in various ambient lighting conditions (some
of which triggered the flash and some of which didn’t),
various perspectives, and varying levels of zoom. The pic-
tures capture between 1 and 4 lines of music on a page. We
collected the data with two cell phones (iPhone 8, Galaxy
S10), and all pictures were taken in landscape orientation.
As much as possible, we tried to emulate typical conditions
of the application scenario. In total, the data contains 100
MIDI files, 100 scores, and 1000 cell phone images.

The data was manually annotated at the measure level.
For the MIDI files, we used pretty_midi to progra-
matically estimate the timestamps of the downbeats in each
measure, which were then manually verified and corrected.
For the cell phone images, we annotated which measures
in the score were captured. Since the images would often
capture a fragment of a line of music (at the top or bottom),
we adopted the convention of only annotating measures on
lines of music that are fully captured in the image. For
each image, we can use these annotations to determine the
matching time segment in the MIDI file.

The metric we use to evaluate our system performance
is precision, recall, and F measure. Precision is the tempo-
ral duration of overlap between the hypotheses and ground
truth segments divided by the total duration of hypothesis
segments. Recall is the amount of overlap divided by the
total duration of ground truth segments. F measure is then
computed as the harmonic mean of precision and recall. In
a few situations, the query perfectly matches two different
sections in the score. In these situations, we consider any
perfectly matching sections of the score to be correct.

4. RESULTS

We evaluate our system in the following manner. We first
randomly select 10 out of the 100 scores and set apart their
corresponding 10 × 10 = 100 cell phone images as the
training set. The remaining 900 cell phone images are set
apart for testing. Note that this train-test split has an un-
usually large emphasis on the test data. The reason that we
do this is because our system has no trainable weights—
only hyperparameters—so the training data is really only
used to determine the hyperparameter settings. After do-
ing iterative design on the training data and determining
reasonable hyperparameter settings, we froze the system
and evaluated it on the 900 test images coming from the 90
unseen music scores.
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System Data P R F
Random Test .152 .189 .169
SharpEye Test .413 .091 .150
Photoscore Test .692 .681 .687
Bootleg Test .900 .840 .869

Bootleg Train .872 .869 .871

Table 1. Experimental results. The three rightmost
columns show precision (P), recall (R), and F measure (F).

We compare our system to three baselines. The first two
baseline systems are Photoscore and SharpEye, which are
both commercially available OMR software. We use the
software to convert the cell phone image to a (predicted)
MIDI representation and then perform subsequence DTW
with chroma features. Note that Photoscore and Sharp-
Eye were not designed to handle cell phone images, so
they would sometimes fail to process the image (i.e. would
throw an error). In these situations, we simply mapped er-
rors to a predicted time interval with 0 duration. The third
baseline is random (informed) guessing. We calculate the
average number (N ) of sheet music measures showing in
the training images. At test time we randomly select a time
interval in the reference MIDI file spanning N measures.

Table 1 shows the performance of our system and the
three baseline systems. There are three things to notice
about these results. First, the baseline systems all perform
poorly. This is not a surprise, since Photoscore and Sharp-
Eye were designed to handle sheet music scans, not cell
phone images. We would expect that other OMR-based
approaches that are trained on scanned sheet music would
likewise perform poorly on cell phone images. Second,
the bootleg approach far outperforms the baselines. The
proposed system achieves an F measure score of .869 on
the test set, which is far better than the highest F mea-
sure score (.687) among the baseline systems. Third, the
proposed system generalizes very well from the training
data to the testing data. After iterating and optimizing the
system on the training data, the F measure score only fell
from .871 (on the training data) to .869 (on the test data).
The reason that our system generalizes so well with such
a small training data set is that our system has no trainable
weights and only about 30 hyperparameters. Even then,
many of these hyper parameters are dictated by conven-
tions of Western musical notation for piano music. With
such a small number of parameters, we don’t expect the
system to suffer severely from overfitting, and indeed this
is what we observe in our experiments.

5. ANALYSIS

In this section we gain deeper insight into our system
through two different analyses.

The first analysis is to manually investigate all of the
test queries that were failures. Here, we define a failure as
having no overlap at all between the predicted time inter-
val and the ground truth time interval. These are instances
where the system simply failed to find a reasonable match.

There were two common causes of failure. The biggest
cause of failure came from notehead detection mistakes.
The notehead detector will obviously fail on half notes and
whole notes, since we only try to detect filled noteheads.
When the sheet music contains a high fraction of these
notes, the system will perform poorly. Also, the system
often failed to detect chord blocks where multiple note-
heads were located in close proximity to one another. This
problem is primarily due to poor hyperparameter settings,
and could be mitigated by optimizing the hyperparameters
over a larger, more diverse training data set. The second
cause of failure were symbols that cause the noteheads to
appear in a different place than expected. These include
clef changes, octave markings, and trills. Clef changes
and octave markings could be incorporated into the MIDI
bootleg score by considering all possible clef and octave
changes in both right and left hand staves, but there is no
immediately obvious way to address the problem of trills.

The second analysis is to characterize run time. Be-
cause our application is an online search, the run time is an
important consideration. Accordingly, we profiled our sys-
tem to determine how long it takes to process each query,
and to identify the parts of the system that are bottlenecks
to improve runtime. Note that our entire system is im-
plemented in python with OpenCV and a custom cython-
accelerated subsequence DTW function. When each query
is processed by a single 2.1 GHz Intel Xeon processor,
the average runtime is 7.6 seconds. When we analyze the
breakdown of runtime across the major components of the
system, we find that the major bottleneck is the staff line
detection features stage (92% of total runtime), which pri-
marily consists of 2-D convolutions with the set of comb
filters. This suggests one way to improve runtime: rather
than using a large set of comb filters to handle a wide range
of possible staff line spacings, we could explicitly estimate
the staff line size and consider a much smaller set of comb
filters. If we could reduce the set of comb filters by a factor
of 10, the average time per query would be 1.3 seconds.

6. CONCLUSION

We explore an application in which a user would like to re-
trieve a passage of music from a MIDI file by taking a cell
phone picture of a physical page of printed sheet music.
We develop a proof-of-concept prototype and evaluate its
performance on a dataset containing 1000 cell phone pic-
tures of 100 different scores of classical piano music. Our
system projects both the MIDI file and the cell phone im-
ages into a low-dimensional feature representation called a
bootleg score, which explicitly encodes the rules of West-
ern musical notation. We then align the two bootleg scores
using subsequence DTW. The most notable characteristic
of our system is that it has no trainable weights at all—only
a small set of hyperparameters that can be easily tuned on a
small training set. Our system generalizes very well from
training to testing, and it achieves a test F measure score
of .869. We hope that this work serves as an entry point
to exploring new ways to retrieve various forms of music
using cell phone images as a query.
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ABSTRACT

In many musical traditions, the melody line is of primary
significance in a piece. Human listeners can readily dis-
tinguish melodies from accompaniment; however, making
this distinction given only the written score – i.e. with-
out listening to the music performed – can be a difficult
task. Solving this task is of great importance for both Mu-
sic Information Retrieval and musicological applications.
In this paper, we propose an automated approach to identi-
fying the most salient melody line in a symbolic score. The
backbone of the method consists of a convolutional neural
network (CNN) estimating the probability that each note in
the score (more precisely: each pixel in a piano roll encod-
ing of the score) belongs to the melody line. We train and
evaluate the method on various datasets, using manual an-
notations where available and solo instrument parts where
not. We also propose a method to inspect the CNN and
to analyze the influence exerted by notes on the prediction
of other notes; this method can be applied whenever the
output of a neural network has the same size as the input.

1. INTRODUCTION

Many musical traditions make use of melody-
accompaniment structures. Generally, the melody
line carries the most significant meaning, while the
accompaniment provides harmonic and rhythmic support.

In Western art music – which, unlike music in some
other traditions, is typically notated – special attention is
paid to the construction of melodies during composition.
Ideally, melodies in Western art music styles should in-
volve an intervallic structure that is dependent on the spe-
cific tonal hierarchy defined by the piece [24, 26]. Mu-
sicians typically accentuate melody lines during perfor-
mance as a way of clarifying the piece structure for lis-

c© Federico Simonetta, Carlos Cancino-Chacón, Stavros
Ntalampiras, Gerhard Widmer. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Federico
Simonetta, Carlos Cancino-Chacón, Stavros Ntalampiras, Gerhard Wid-
mer. “A Convolutional Approach to Melody Line Identification in Sym-
bolic Scores”, 20th International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

teners: for example, melody lines may be played louder
and with more flexible timing than accompaniment [9,10].

Most listeners readily distinguish melody lines from
accompaniment. In contrast, identifying the melody line
through visual inspection of a musical score – without
hearing the piece – can be a difficult task, even for trained
musicians [3]. In this paper, we propose a convolutional
approach for identifying the melody line of a piece us-
ing a piano roll representation of the score. A solution
for this task has potential implications for music infor-
mation retrieval and musicology [27]. An effective algo-
rithm could be applied to music retrieval tasks such as
query-by-humming, searching a database of MIDI files
for melodies, developing performance models that account
for melody in predicting musical expression, etc. Our
focus is on music of the common practice period that
uses melody-dominated homophonic textures (i.e., a sin-
gle melody line plus accompaniment lines), rather than
equal-voice polyphony (i.e., multiple independent melody
lines) or monophony (i.e., unison melody shared by all
voices). However, we provide extensive tests of the pro-
posed method in styles other than common practice era,
such as pop, baroque and contemporary art music.

The rest of this paper is structured as follows: In Sec-
tion 2, we discuss related work on voice separation and
streaming. Section 3 briefly describes the baseline meth-
ods that we used for comparison against our model. Sec-
tion 4 presents a description of the proposed method. Sec-
tion 5 describes the three datasets used in this work. Sec-
tion 6 describes the experimental evaluation of the pro-
posed method. Section 7 discusses the results of the exper-
imental evaluation. Finally, Section 8 concludes this paper
and proposes some future research directions. A compan-
ion website was also created to show additional material
for the sake of reproducibility. 1

2. RELATED WORK

2.1 Voices and Streams

Music perception research has investigated listeners’ abil-
ities to distinguish between voices in homo- and poly-

1 https://limunimi.github.io/
Symbolic-Melody-Identification/
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Figure 1. Top: Excerpt of Mozart’s Sonata K. 545
(melody highlighted in red). Middle: Piano roll represen-
tation of the score (melody is highlighted in red). Bottom:
Prediction of the CNN for this excerpt. In this piano roll,
the intensity of the color of each pixel represents its prob-
ability of belonging to the melody.

phonic music, and has shown that the theoretical rules of
voice leading are motivated by listeners’ abilities to follow
voices [15]. Cambouropoulos [4] proposed three ways of
defining musical “voices”: (1) for multi-instrument music,
each instrument can be said to constitute a separate voice;
this would allow for the possibility of non-monophonic
voices in instruments that produce chords; (2) voices can
be assigned to melodic streams as they are perceived and
segmented by listeners, following cognitive grouping prin-
ciples; and (3) in monophonic music, the harmonic con-
tent of the piece may imply a horizontal organization
of polyphonic voices that unfold over time (i.e., implied
polyphony), e.g., multiple temporally-overlapping voices
could be assigned to passages of Bach’s Cello Suites. In
this work, we use the second definition, and we define the
melody line as the most salient voice.

In the music information retrieval literature, three cor-
responding tasks have been addressed: 1) voice separation
from symbolic scores [6,11,13,21]; 2) main track identifi-
cation (from MIDI files with multiple tracks) [8,14,19,20];
and 3) main melody identification from audio [1, 2, 25].
The latter is a different problem than that addressed here:
it deals with the complex task of identifying notes from an
audio file, but can use performance cues (e.g., contrasts in
timbre and dynamics, which are not present in MIDI data)
to facilitate melody identification.

Most relevant to the current study is the task of voice
separation from symbolic scores. Some of the proposed
methods are computational implementations that attempt
to capture perceptual rules of segmentation [4, 6, 11–13]
– in particular those rules codified by Huron [15]. For a

more in-depth discussion on voice separation algorithms
from symbolic scores, we refer the reader to [7,12,17,29].

3. BASELINE METHODS

3.1 Skyline Algorithm

The skyline algorithm is a heuristic that takes the highest
note at each point in time [5,28]. In Western art music, pop
and many folk traditions from around the world, melodies
are often carried by the highest voice. After the submission
of this paper, we discovered that a new method was being
submitted for this same task [18], confirming the relevance
of this topic.

3.2 VoSA

Proposed by Chew and Wu [6], VoSA is a successful voice
separation method. In this approach, a piece is split into
segments based on voice entry and exit points, so that the
number of sounding notes is constant within each segment.
The segment with the highest number of sounding notes
defines the number of voices in the piece. Notes are then
connected into voices using connection weights, equal to
the absolute size of the interval between one note and the
next. Like most voice separation methods, VoSA was de-
signed to work with polyphonic rather than homophonic
music. In spite of its apparent simplicity, VoSA has been
favorably compared against more sophisticated computa-
tional models of voice separation [12, 13, 21].

4. METHOD

4.1 Music Score Modeling Using CNNs

A schematic representation of our method is given in Fig-
ure 2. The backbone of the method consists of a fully con-
volutional neural network (shown in Figure 3), which takes
as input segments of a music score, represented as a pi-
ano roll, and estimates the probability that each note in the
score (more precisely: each pixel in the piano roll encod-
ing) belongs to the melody line.

A piano roll can be described as a 2D representation
of a musical score; the x-axis indicates score time and the
y-axis indicates pitch. The piano rolls used in this study
are constructed with a temporal resolution of 8 pixels/beat
(i.e., a pixel represents a 32nd note in 4

4). The piano roll
of each piece is divided into overlapping fixed-length win-
dows of 64 pixels (i.e., 8 beats). The length of the window
was determined using hyper-parameter optimization, (see
Section 6.2). The overlap between windows is 50% (i.e.,
2 beats), and windows shorter than this size are padded
with zeros. An output piano roll for each full piece is con-
structed by averaging probabilities for the pixels located in
overlapping windows. Afterwards, we apply a mask on the
output piano roll by multiplying it by the (binary) input pi-
ano roll, so that areas with no notes take values of zero, and
non-zero probabilities only remain where there are notes.
The probability of each note belonging to the melody is
then calculated as the median across the output values of
its pixels. In the following discussion, we will use note
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Figure 2. The pipeline of the proposed method (see Section 4).

Figure 3. The architecture of the fully convolutional neu-
ral network used in the proposed method. The architecture
of the network was determined using hyper-parameter op-
timization (see Section 6.2 for explanation).

probability as a shorthand to refer to the probability of a
note to belong to the melody.

In Figure 1 we show an excerpt of Mozart’s Piano
Sonata K. 545 and three vertically aligned piano rolls cor-
responding to the excerpt. The second row of this figure is
the input piano roll, while the third row gives the ground
truth melody line that we aim to identify in the input. The
bottom gives the piano roll that we obtain as output. The
output is color-coded with the notes that were identified as
melody highlighted in red.

A threshold is needed to determine which note probabil-
ities should indicate melody notes. Distributions of prob-
abilities differ between pieces, so a hard threshold (e.g.
0.5) would be inappropriate. Instead, we find a threshold
for each piece using a statistical analysis of the values of
the note probabilities. In the implementation of the pro-
posed method we use hierarchical single-linkage cluster-
ing [23]: two clusters across the values of note probabil-
ities are identified, and a piece-wise threshold is selected
as the largest value of the lowest cluster. We then compare
each note probability to this threshold and either retain the
note as melody or filter it out as accompaniment. This pro-
duces largely (but not entirely) monophonic melody out-
put – in some cases, multiple simultaneous notes pass the
threshold. A graph-based method, explained next, was thus
implemented to select a strictly monophonic melody line
from this output.

Figure 4. Example of graph built with Algorithm 1. Red
notes are notes over threshold, yellow notes are under
threshold, while blue notes are over threshold but are not
reached by any path. The green circles are the starting and
ending nodes. Numbers indicate note probabilities, which
are computed as the median of their pixels.

4.2 Graph Search

Having identified notes that pass the threshold as defined
above, we have to select a sequence of these notes that
maximizes the probability of the sequence being mono-
phonic. This is achieved using a graph-based approach.
Algorithm 1 is used to build a directed acyclic graph (or
digraph, see Figure 4). Such a graph consists of a set of
nodes and a set of directed edges. Each of these edges
specifies a connection from a node to another. In the graph
defined by Algorithm 1, each note that passes the threshold
is represented by a node, and the pitch, onset and duration
information of this note are used to determine to which
nodes is the note connected (in order to guarantee a strictly
monophonic sequence). Note probabilities are used to de-
termine the strength of the connection between nodes (sim-
ilar to a “distance”; notes with high probabilities are con-
sidered “closer”). Additionally, we set a start and end node
at the beginning and end of the piece, respectively. We
can then use a single-source shortest path algorithm to find
the main melody line as the shortest path from the start to
the end nodes. In our current implementation, we use the
negative note probabilities as connection weights and the
Bellman-Ford algorithm 2 to find the shortest path through
the graph. 3

2 https://docs.scipy.org/doc/scipy-1.2.1/
reference/generated/scipy.sparse.csgraph.
bellman_ford.html

3 Depending on the choice of the connection weights, other shortest
path algorithms (e.g., topological sorting, Dijkstra’s, etc.) are possible.
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Algorithm 1 Melo-digraph building
L← list of notes
α← starting node (end time = 0)
ω ← ending node (onset =∞, probability = −0.5)
Push α to the beginning of L
Push ω to the end of L
for note in L do

L′ ← notes with onset ≥ end time of note
L′ ← notes with onset = minimum onset in L′

for note′ in L′ do
if probability of note′ ≥ threshold then

p = probability of note′

add an edge (note, note′) with weight −p
end if

end for
end for

4.3 Training

The CNN is trained in a supervised fashion to filter out
accompaniment parts. Inputs are provided in the form of
piano roll segments and the targets are the corresponding
piano rolls with only the melody notes. We also augmented
the training dataset by 50% by creating copies of the orig-
inal examples in the dataset with the melody transposed
down for 2 octaves or up for 1 octave. Though the stan-
dard loss function for binary classification problems like
this one is the binary cross entropy, during development
of the model, we achieved more accurate models by min-
imizing mean squared error for the match between output
and target piano rolls. The networks were trained using
AdaDelta [30] with initial learning rate set to 1. In or-
der to avoid overfitting, we use dropout with probability
pdropout = 0.3 and L1-norm weight regularization. Addi-
tionally we use batch-normalization [16]. The training is
stopped after 20 epochs without improvement in validation
loss [22] .

5. DATASETS

We used three different datasets to evaluate the perfor-
mances of our method. The first dataset (“Mozart”) con-
sists of 38 movements from (13) Mozart Piano Sonatas, for
which the main melody line was annotated manually by a
professional pianist. The second dataset (“Pop”) consists
of 83 popular songs (including pop and jazz). We used the
vocal part of these songs as the melody line, and treated
them as though they were compressed onto a single track
(identifying the main track in multi-track music is a sepa-
rate question, see [8, 14, 19, 20]).

These datasets were used for training and testing. A
third dataset (“Web”), used only for testing, comprises
MIDI files crawled from the web. This dataset includes
169 Western art music compositions from the late 16th to
the early 20th centuries. All of these pieces included a solo
instrument (typically voice, flute, violin or clarinet) and ac-
companiment (typically strings or piano).

The first and third of these datasets are publicly avail-

able for research purposes in the companion site – see foot-
note 1. We do not have distribution rights for the second
dataset, which was professionally curated and annotated,
but we provide the full list of pieces.

6. EXPERIMENTS

6.1 Evaluation Metrics and Baseline Methods

In all experiments, we evaluated the quality of the predic-
tions using the F-measure. We experimented on the largely
monophonic (which we denote cnn in the following discus-
sion) and strictly monophonic (denoted as cnn mono) vari-
ants of the proposed model described in Sections 4.1 and
4.2, respectively. As a baseline comparison, we used the
skyline algorithm and VoSA (both described in Section 3).
Since VoSA does not directly output the melody line, we
first separate the piece into individual voices (as identified
by VoSA), then select the voice with the highest F-measure
as the melody. These modifications allowed us to consider
the best case scenario of VoSA.

6.2 Network Architecture

To determine the architecture of the network, we used
hyper-parameter optimization. 4 The number of convolu-
tional layers, kernel size and number, and window lengths
were optimized. This hyper-parameter optimization was
done on 100 pieces randomly selected from across the
three datasets plus 65 MIDI files collected online using the
same criteria as the Web dataset. To compare models, we
constructed training, validation, and test sets from the 100
pieces. A model configuration was selected that performed
most successfully on the test set. The selected network ar-
chitecture is shown in Figure 3: 2 convolutional layers,
each with 21 kernels of size 32 × 16 (i.e., over two and a
half octaves in the pitch dimension and 2 beats in the time
dimension).

6.3 Evaluation of the Proposed Method

To evaluate the quality of the predictions of the proposed
method, we conducted two experiments. In the first ex-
periment, we were interested in evaluating the predictive
accuracy of the models trained on different datasets. In the
second experiment we tested how well models generalize
to different music styles. For the first experiment, we per-
formed a 10-fold cross-validation on each of the Mozart
and Pop datasets. In each of these cross-validations, the
dataset was split into 10 folds. The model was trained on 9
of these folds and tested on the remaining one. We did this
for all possible combinations so that each piece in each
dataset appeared in the test set once. For the second ex-
periment, we tested models trained on Mozart and models
trained on Pop on the Web dataset.

4 Using the “hyperopt” library in Python (http://hyperopt.
github.io/hyperopt/).
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Precision Recall F-measure

Mozart Crossvalidation

Figure 5. Cross-validation on Mozart and Pop datasets. With the Wilcoxon test applied to F-measure, we found a significant
difference between CNN Mono and VoSA and between CNN Mono and CNN, but no significant difference was found
between CNN Mono and Skyline in the Pop dataset (only in the Mozart dataset). The mean is marked with a white dash.

Figure 6. Validation on the Web music dataset. With the
Wilcoxon test, we found a significant difference between
Mono models and Skyline/VoSA, but there was not always
a significant difference when comparing non-Mono models
and Skyline/VoSA. The mean is marked with a white dash.

7. RESULTS AND DISCUSSION

7.1 Model Performance

The violin plots summarizing the results of these experi-
ments are shown in Figures 5 and 6, while detailed plots
are available in the companion website (see footnote 1).

Our first experiment tested how well models predicted
melody lines given training and testing on the same genre
of music. Wilcoxon signed-rank tests were run on F-
measures to assess potential differences between models.
Test results are described in the caption of Figure 5. Over-
all, our proposed method that identified strictly mono-
phonic melody lines (cnn mono) performed better than the
other models, but this difference was only significant for
the Mozart dataset. The Mozart pieces are highly struc-
tured and their melody lines tend to occur in the upper-
most voice. The Pop dataset, in contrast, contains pieces
with variable structure, with longer breaks in the melody
(e.g., there is sometimes an interlude in the accompani-
ment part). Furthermore, the accompaniment part often
overlaps in register with the melody line. It seems that

without additional timbral information, our model could
not sufficiently distinguish between melody and accompa-
niment lines when they shared a similar texture.

Our second experiment tested how well trained models
generalize to new types of data (i.e., Web dataset). We
hypothesized that models trained on the Mozart dataset
would outperform models trained on the Pop dataset, as the
Mozart and Web datasets are more similar in style (though
the Web dataset is more heterogeneous). However, no sig-
nificant difference between models was found – both mod-
els performed well on the Web dataset.

Regarding the less-successful performance of the two
baseline methods, the skyline method fails when the
melody is not the highest voice; furthermore, this method
cannot identify when pauses occur in the solo part. The
VoSA method, which was developed for use with poly-
phonic music, tends to create too many voices and shows a
bias towards connecting notes separated by small intervals
– this is not surprising, as polyphonic music tends to assign
voices to small pitch ranges. As a result, accompaniment
notes are often wrongly included in the melody line that
VoSA identifies.

7.2 Saliency Maps

To investigate what the CNNs are learning, we propose
a method (similar to a sensitivity analysis) that evaluates
the contribution of individual locations of the piano roll to
predictions at other locations using saliency maps. 5 The
method involves testing how the probability that a given
note belongs to the melody changes (i.e., increases or de-
creases) when certain other notes are removed (i.e., by con-
verting the pixels belonging to those notes to 0).

For example, take a rectangular input window I and its
prediction P . A new input window I ′ with prediction P ′

is created by converting the pixels inside a given rectangle
R to 0. The difference between the original and new pre-
dictions is denoted as d(P, P ′) and can be interpreted as
the contribution given by the notes inside R to the original

5 Kernels, saliency maps and additional material are available on the
companion website – see footnote 1.
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Figure 7. Liszt’s Ihr Glocken von Marling (left) and an excerpt from Schubert’s Ave Maria (right). Input piano roll (above),
prediction of the CNN (middle). In Liszt, the model fails to identify the main part because the texture is rather different
from the most common case and the melody is in the middle voices. In Schubert, instead, the texture changes but the model
is not able to identify when the main part starts and stops because the accompaniment plays similar notes.

prediction. By testing different input windows across the
piano roll, we can see how different elements of the music
contribute to the predictions that are obtained for individ-
ual notes.

If we are interested in a particular note n, we can com-
pute d(P, P ′) specifically for the pixels belonging to n.
For our analysis, for certain notes of interest, we define 5
randomly-positioned rectangles R and calculate d(P, P ′).
This difference is summed to the pixels of the notes in-
side each rectangle R. This procedure is repeated N
times (whereN is a trade-off between computational com-
plexity and resolution of the saliency map; in our case
N = 30000), and we select only the iterations in which
the pixels of note n are not converted to 0. Each pixel is
then normalized by the number of times it was converted
to 0. As difference we use

d(P, P ′) =

∑i=nend

i=nstart
P [i]− P ′[i]

Area(nstart, nend)
(1)

where nstart and nend identify the region occupied by the
note n. In general, nstart and nend indicate two opposite
corners of any rectangle.

With this difference function, given a rectangle R, if
d(P, P ′) > 0, then P > P ′ in average across n and, thus,
removing the notes inside R decreases the prediction val-
ues of n; conversely, if d(P, P ′) < 0, then P < P ′ and
removing the notes inside R increases the prediction.

For example, in the bottom piano roll in Figure 8, the
blue high-pitched notes occurring around beats 20 and 35
have non-positive saliency values. Because they are higher
pitched, these notes contribute negatively to the melody
note highlighted with a green box, making it unlikely for
this note to be identified as melody. In the companion web-
site, we show the saliency of other regions highlighting that
the prediction of some notes is influenced positively by
some regions and negatively by others and that the CNN
exploits the regular patterns in the accompaniment to iden-
tify the melody notes.

Overall, our model incorporates features of both the
skyline algorithm and VoSA. Like the skyline algorithm
it focuses on the highest notes of the piece; on the other

hand, by allowing for different probabilities like VoSA, it
is more successful at drawing coherent melody lines. Un-
like VoSA, however, our model does not incorporate ex-
plicit perceptual constraints.

8. CONCLUSIONS

We implemented and analyzed a novel method to identify
the melody line in a symbolic music score. Some of the
functions of our model were found to be similar to func-
tions of the skyline algorithm and VoSA (in particular, fo-
cusing on the upper-most pitch, and defining a melody line
as finding the sequence of notes that minimizes the connec-
tion cost). However, our method does not take into account
the long-term sequential nature of music; it can compute
windows in any order. While such a property might have
some practical benefits, it also makes the network unable to
generalize to diverse textures, leading to poor results when
musical texture is varied (e.g., Figure 7).

The next step for this line of research would be to de-
velop a model that can take into account a larger temporal
context. A promising approach would be to incorporate
attention mechanisms into the network.

Figure 8. Input piano roll with ground truth in white (top),
prediction of the CNN (middle) and proposed saliency
computed with respect to the green rectangle (bottom).
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