
 
 

Delft University of Technology

Self-attention Enhanced Dynamics Learning and Adaptive Fractional-order Control for
Continuum Soft Robots with System Uncertainties

Shao, Xiangyu; Xu, Linke; Sun, Guanghui; Yao, Weiran; Wu, Ligang; Santina, Cosimo Della

DOI
10.1109/TASE.2025.3590174
Publication date
2025
Document Version
Final published version
Published in
IEEE Transactions on Automation Science and Engineering

Citation (APA)
Shao, X., Xu, L., Sun, G., Yao, W., Wu, L., & Santina, C. D. (2025). Self-attention Enhanced Dynamics
Learning and Adaptive Fractional-order Control for Continuum Soft Robots with System Uncertainties. IEEE
Transactions on Automation Science and Engineering, 22, 18694-18708.
https://doi.org/10.1109/TASE.2025.3590174
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TASE.2025.3590174
https://doi.org/10.1109/TASE.2025.3590174


 

 

 

 

 

 

 

 

 

Green Open Access added to TU Delft Institutional Repository 
as part of the Taverne amendment. 

 

 

 
 

More information about this copyright law amendment 
can be found at https://www.openaccess.nl. 

 
 

Otherwise as indicated in the copyright section: 
the publisher is the copyright holder of this work and the 

author uses the Dutch legislation to make this work public. 

https://repository.tudelft.nl/
https://www.openaccess.nl/en


18694 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Self-Attention Enhanced Dynamics Learning and
Adaptive Fractional-Order Control for Continuum

Soft Robots With System Uncertainties
Xiangyu Shao , Member, IEEE, Linke Xu, Graduate Student Member, IEEE,

Guanghui Sun , Senior Member, IEEE, Weiran Yao , Member, IEEE, Ligang Wu , Fellow, IEEE,
and Cosimo Della Santina , Senior Member, IEEE

Abstract—Dynamics-based control offers a promising approach
to exploring the motion potential of soft robots. However,
inherently infinite degrees of freedom of these systems pose
significant challenges for dynamics modeling, closely followed by
the pressing robustness concerns arising from finite-dimensional
approximations. This paper addresses these issues by proposing
a physics-informed dynamics learning neural network and an
adaptive fractional-order control for continuum soft robots.
Specifically, a deep Lagrangian neural network is first devel-
oped with an embedded self-attention mechanism to enhance
learning efficiency, accuracy, and data sensitivity. Subsequently,
an adaptive fractional-order sliding mode controller is designed,
leveraging the inherent historical memory properties of fractional
calculus. This controller not only ensures robust shape control
but also improves response speed and tracking accuracy. To
further handle model discrepancies in the learned dynamics
and external disturbances, a nonlinear disturbance observer is
introduced to effectively estimate and compensate for lumped
uncertainties, thereby ensuring reliable performance. Theoretical
analysis confirms the closed-loop stability, while both simulation
and experiment results validate the high dynamics fitting accu-
racy of the proposed network, as well as the robust and precise
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tracking capability of the fractional-order controller.

Note to Practitioners—Soft robots offer great potential in
unstructured or constrained environments owing to their com-
pliance and adaptability. However, their high degrees of
freedom and nonlinear behaviors make analytical modeling and
robust control particularly challenging. Meanwhile, traditional
closed-box learning methods often suffer from limited phys-
ical interpretability, reliability and extrapolability. This work
presents a physics-informed dynamics learning framework com-
bined with a fractional-order controller for soft robots. The
dynamics learning network embeds physical priors to enhance
model interpretability and extrapolability, while a self-attention
mechanism improves data efficiency and modeling accuracy.
Additionally, a disturbance observer is designed to estimate and
compensate for model discrepancies and external disturbances,
thereby contributing to the system’s robustness. Incorporating
the observer’s outputs, the adaptive fractional-order controller
further enhances closed-loop behavior by leveraging the memory
properties of fractional calculus.

Index Terms—Continuum soft robot, physics-informed neural
network, fractional-order sliding mode, self-attention.

I. INTRODUCTION

CONTINUUM soft robots are composed almost entirely of
soft elastic materials, exhibiting great potential in tasks

involving human interaction or navigation through confined,
obstacle-laden environments, owing to their inherent flexibility
and high degrees of freedom [1]. However, the intrinsic
deformability and nonlinearity of soft materials that makes
these tasks possible also impose significant challenges for
dynamics modeling and controller design [2]. As a result,
developing practical modeling and control framework is essen-
tial to advancing the motor intelligence of soft robots.

Over the past decades, numerous researchers have devoted
significant efforts to addressing these challenges. Regarding
the kinematics modeling, Webster and Jones [3] proposed
a piecewise constant curvature (PCC) approach, where the
soft robot is segmented into multiple smoothly connected
arcs, each characterized by identical parameters. Mahl et al.
[4] refined the PCC assumption by introducing a variable
curvature hypothesis, providing a more accurate representa-
tion of the robot’s motion. Renda et al. [5] investigated the
piecewise constant strain hypothesis based on Cosserat rod
theory, modeling the soft robot as a sequence of elastic rod
deformations.
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For dynamics modeling of soft robots, incorporating kine-
matic assumptions into Lagrangian or Hamiltonian equations
is a common practice due to their physical interpretability and
relative simplicity. However, such approaches require accurate
knowledge of the robot’s shape and material properties, result-
ing in limited modeling accuracy and generalizability. Deep
learning methods utilize experimental data to capture unmod-
eled dynamics, avoiding complex analytical derivations and
showing promise in soft robot modeling [6]. Navez et al. [7]
proposed a condensed finite element model training framework
to learn a unified representation across different soft robot
designs, serving as a general basis for modeling, control, and
design of soft manipulators. Sharma and Kramer [8] developed
a physics-preserving and nonintrusive method that enables
stable and accurate learning of reduced-order Lagrangian mod-
els solely from high-dimensional trajectory data. Lawal et al.
[9] established principles of physics-informed neural networks
(PINNs), which were further developed into deep Lagrangian
neural networks (DeLaN) [10] and Hamiltonian neural net-
works [11]. By incorporating physical information into the
network architecture, these methods achieve enhanced learning
efficiency, model generalization, and physical consistency.

Among the methods discussed above, PINN-based dynam-
ics learning is particularly noteworthy for its minimal reliance
on prior system knowledge and robust extrapolation capabili-
ties. These attributes make it particularly suitable for modeling
complex continuum soft robots. Despite its promising poten-
tial, current PINN algorithms face challenges in balancing
modeling accuracy and computational cost. Fitting dynamic
parameters accurately poses a challenge, even when con-
strained to a limited number of training epochs. However,
increasing the number of epochs could lead to overfitting,
which in turn may diminish the model’s ability to generalize
effectively. Inspired by Huang et al. [12], incorporating the
self-attention mechanism into PINNs offers a solution to these
issues. It achieves this by decreasing the model’s parameter
count and reducing computational demands through efficient
parameter sharing. Additionally, it improves the network’s fea-
ture extraction capabilities, overall flexibility and scalability.
As a result, this approach can significantly boost both the
efficiency and effectiveness of PINNs in dynamics modeling.

Control strategies of continuum soft robots can be
broadly classified as model-based or data-driven. Model-based
approaches include modified PID control [13], sliding mode
control (SMC) [14], [15] and fuzzy logic control [16], [17],
whereas data-driven methods encompass iterative learning
control [18] and neural network-based control [19], [20].
Among these, SMCs stand out for their simple, intuitive design
and robustness against disturbance. However, conventional
integer-order SMCs often fall short when tasked with govern-
ing the deformable, viscoelastic dynamics. As a generalization
of integer-order derivatives endowed with intrinsic memory
effects, fractional-order calculus offers a powerful framework
for characterizing physical processes with historical depen-
dence, such as flexible structures and biomedical systems [21].
Beyond its memory capacity, fractional calculus excels at
modeling nonlinear, non-stationary, and non-Markovian
dynamics. Embedding fractional derivatives into the SMC

paradigm can therefore substantially improve the controller’s
adaptability and performance in handling the flexibility and
deformability of soft robots. Recent works on fractional-order
SMCs for soft robots [22], [23] have empirically validated
these benefits.

Inspired by the robust extrapolation and physical inter-
pretability of PINNs, this paper introduces a self-attention-
enhanced dynamics learning neural network, an adaptive
fractional-order sliding mode controller built upon the learned
model, and an integrated nonlinear disturbance observer
(NDOB) to compensate for lumped uncertainties. The prin-
cipal contributions and connection to existing research are
summarized as follows:

1) Whereas prior DeLaN variants [24], [25] treat every
input equally, the proposed method embeds a self-
attention mechanism into DeLaN. By dynamically
weighting informative and representative samples while
downplaying less relevant ones, it boosts learning effi-
ciency, strengthens extrapolation, and enhances the
physical interpretability of the inferred dynamics.

2) Compared to the prevailing—and predominantly used-
integer-order controllers, this paper proposes an adaptive
fractional-order SMC for soft robots. By harnessing
the memory properties of fractional-order calculus, the
controller effectively suppresses high-frequency distur-
bances and reduces chattering.

3) This paper embeds data-driven insights into the model-
based controller design, with trajectory tracking exper-
iments on a pneumatically actuated soft robots being
conducted to verify superior performance of the pro-
posed scheme.

The rest of this paper is organized as follows:
Section II presents the design of self-attention enhanced
physics informed Lagrange neural network. The adaptive
fractional-order shape controller and nonlinear disturbance
observer are proposed in Section III. Simulation and
experiment results are given in Section IV and Section V,
and Section VI concludes this paper.

II. DYNAMICS LEARNING VIA SELF-ATTENTION
ENHANCED DEEP LAGRANGE NEURAL NETWORK

DeLaN, a specialized variant of PINNs, integrates the
Lagrangian equation into a deep learning architecture [10].
Compared to conventional system dynamics derived from
kinematic assumptions and fundamental dynamic equations,
DeLaN offers a more concise and efficient modeling process,
requiring less detailed system information. To improve mod-
eling accuracy and data sensitivity, this section presents an
enhanced version of DeLaN augmented with a self-attention
mechanism.

A. Attention Mechanism

The attention mechanism’s basic principle is to identify the
importance of each part of the input information by calculating
a weight attention vector, then perform weighted summation
of the input information according to these weights to obtain
a weighted value. Such a weighted value helps emphasize
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Fig. 1. Basic principle of attention mechanism.

critical information while filtering out irrelevant inputs,
thereby enabling the neural network to perform tasks more
efficiently. The basic principle of the attention mechanism is
shown in Fig. 1.

The neural network encodes received data by converting
input (text, images) into numerical vectors/tensors via input
embedding and encoding layers (fully connected, convolu-
tional, or recurrent). The resulting vector, termed the key (k),
represents the input of the Weight Distribution module. Simi-
larly, the expected output is estimated from the collected data,
and then obtain the query vector (q) through a decoding layer,
which reflects task information and guides the attention focus.
q can be generated via model parameters, dynamically derived
from input context (e.g., machine translation), extracted from
input features through transformations, or predefined for spe-
cific tasks.

After obtaining k and q, the neural network calculates their
“similarity” as the association score f (q, k), reflecting the
importance of q to k. This score is normalized to attention
weight α by g(·). To get the attention output, the value vector
v (providing specific input sequence info) is introduced, which
is calculated by processing input through layers. v and k
correspond one-to-one. The attention output y is then derived
using y = β(v, α), where β(·) is often defined as vTα.

Considering the characteristics of the parameters to be fitted
and the complexity of the neural network, the correlation
function f (q, k) = qTk is used. The normalization function
g(·) takes the Softmax function, such that, for the vector x,
the i-th component of g(x) is defined as gi(x) = exiPn

j=1 ex j .

B. Self-Attention Enhanced Deep Lagrange Neural Network

Due to the inherent complexity and uncertainty of practical
soft robots, acquiring prior motion knowledge is often chal-
lenging. As a result, selecting an appropriate query vector in
the standard attention mechanism becomes difficult. To address
this issue, this subsection integrates a self-attention mechanism
into DeLaN to enhance dynamics learning.

The self-attention mechanism (see the left side of Fig. 2)
originates from the basic attention mechanism but introduces
essential differences. Instead of using inputs and expected
outputs as the source of key and query, all the keys, queries
and values in self-attention mechanism are from the same
network input, processed through separate fully-connected lay-
ers. These keys and queries go through a Weight Distribution
module and then dot product with values to generate the
unknown dynamics functions. The input data includes pre-
collected temporally continuous state-control pairs, and the

Fig. 2. DeLaN with self-attention mechanism.

weight distribution module is the same as that in Fig. 1. In
the right side of Fig. 2, the output vectors of the self-attention
mechanism are fed into the DeLaN prediction module. These
vectors are reshaped into the estimated dynamics matrices,
which are then used to compute the next-step states pre-
dictions via forward dynamics and discrete integration. The
loss is evaluated as the discrepancy between predicted and
real states, and the network is iteratively optimized using the
Adamw optimizer with Autograd-based backpropagation. The
detailed working principle of the DeLaN prediction module is
presented in the remainder of this subsection.

According to [26], the dynamics of a continuum soft robot
can be expressed as follows

B(q)q̈ + C(q, q̇)q̇ + K(q)q + D(q)q̇ + G(q) = A(q)u (1)

where q ∈ Rn denotes configuration states; B(q) ∈ Rn×n and
C(q, q̇) ∈ Rn×n represent the inertial and Coriolis matrices,
respectively; K(q) ∈ Rn×n is the stiffness matrix, D(q) ∈ Rn×n

is the dissipation matrix, G(q) ∈ Rn denotes the gravity vector;
and A(q) ∈ Rn is the input transform matrix. Given that Ḃ−2C
is skew-symmetric, the following equation holds

C(q, q̇) = B(q)q̇ −
1
2

�
∂

∂q
(q̇TB(q)q̇)

�T

(2)

The derivatives of potential energy U with respect to q can
be expressed as

∂U
∂q

= K(q)q + G(q) (3)

Integrating the Lagrange function, L = 1
2 q̇TB(q)q̇ − U(q),

with (1), (2) and (3) yields

q̈ =

�
∂2L
∂q̇2

�−1 �
A(q)u −

∂2L
∂q∂q̇

q̇ +
∂L
∂q
− Dq̇

�
(4)

Design the second-order time derivative of the predicted
configuration variable as follows:

q̈pred(q, q̇, t) =

�
∂2L̂
∂q̇2

�−1 �
Â(q)u −

∂2L̂
∂q∂q̇

q̇ +
∂L̂
∂q
− D̂q̇

�
(5)

where L̂ = 1
2 q̇TB̂(q)q̇ − Û(q), Â and D̂ denote the estimated

value of corresponding dynamics functions. Since D(q), B(q) >
0 are symmetric, according to the Cholesky decomposition
theorem, they can be expressed as the product of the lower
triangular matrix and its transpose

B(q) = LB(q)LT
B(q), D(q) = LD(q)LT

D(q) (6)
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Accordingly, the estimated B(q) and D(q) are designed as

B̂(q) = L̂B(q)L̂T
B(q) + εIn

D̂(q) = L̂D(q)L̂T
D(q) + εaIn (7)

in which L̂B, L̂D are the estimated lower triangular matrices,
εa > 0 is a small regularization constant, referred to as the
diagonal matrix bias, introduced to prevent singularities in
B̂(q), D̂(q).

The output of self-attention module includes four parts: ξ̂B ∈

Rp, ξ̂D ∈ R
p, Û ∈ R and ζ̂ ∈ Rn2

, where p = n(n+1)
2 is the

number of learnable elements in L̂B, L̂D. Each of the four
parts is learned by an independent self-attention module. L̂B

and L̂D is calculated as follows:

L̂B = SLT(ξ̂B2) + diag(σ(ξ̂B1 + εb1n))

L̂D = SLT(ξ̂D2) + diag(σ(ξ̂D1 + εb1n)) (8)

in which ξ̂B1, ξ̂D1 ∈ R
n are vectors of first n elements of ξ̂B

and ξ̂D. ξ̂B2, ξ̂D2 ∈ R
p−n are vectors of the remaining elements

of ξ̂B, ξ̂D, respectively. SLT(·) is a reshaping function from
a vector to strictly lower triangular matrix. σ(·) denotes the
Softplus operator. εb > 0 is another regularization parameter,
referred to as the diagonal matrix shift. The estimated potential
energy Û is directly output, while ζ̂ has to be reshaped into
the estimated input transform matrix Â ∈ Rn×n row by row.

The loss is defined as the Euclidean distance between the
predicted and actual states at the next time step, s.t.

Loss = ||xnext − xpred ||
2 (9)

where xnext = [qnext; q̇next] and xpred = [qpred; q̇pred] are the
true and predicted vectors composed of the robot configuration
variables and their time derivatives. The proposed dynamics
learning neural network aims at adjusting all learnable param-
eters ϕ to minimize the fitting error

ϕ = argmin
ϕ

Loss (10)

The optimization problem is solved through built-in Auto-
grad and backpropagation optimizers. The whole self-attention
enhanced DeLaN is mainly written in JAX module of Python.

III. ADAPTIVE FRACTIONAL-ORDER SHAPE CONTROL
FOR SOFT ROBOTS

This section presents the controller design (shown in Fig. 3).
First, a NDOB is proposed to estimate and compensate for
external disturbances and uncertainties of the learned model.
Subsequently, an adaptive fractional-order sliding mode con-
troller is proposed, following which the closed-loop stability
is proved.

A. Preliminaries

Before outlining the formal design process, relevant def-
initions, properties and lemmas are first introduced in this
subsection.

Definition 1 [27]: The α-order Caputo differential is defined
as follows

C Dα
t f (t)=

(
dm f (t)

dtm , α = m
1

Γ(m−α)

R t
0

Dm f (τ)
(t−τ)α−m+1 dτ, m−1<α<m

(11)

Fig. 3. The diagram of the proposed controller.

where α ∈ R+, m ∈ N+, Γ(z) =
R +∞

0 tz−1e−tdt is the
Gamma function. Hereafter, the fractional operator C Dα

t will
be abbreviated as Dα

t . When there is no ambiguity, Dα is used
instead of Dα

t . In addition, for positive numbers α and ε that
are not integers, the definition of α-order ε-Caputo calculus is
as follows:

εDα
t f (t) =

1
Γ(m − α)

Z t

max(t−ε,0)

Dm f (τ)
(t − τ)α−m+1 dτ (12)

in which m is an integer that satisfies m − 1 < α < m.
Definition 2 [28]: The α-order integral and ε-integral are

defined as follows

D−αt f (t) =
1

Γ(α)

Z t

0

f (τ)
(t − τ)1−α dτ

εD−αt f (t) =
1

Γ(α)

Z t

max(t−ε,0)

f (τ)
(t − τ)1−α dτ (13)

where 0 < α < 1 and ε > 0.

Property 1: Caputo fractional calculus has a semi-group
property, i.e., for positive real numbers α, β satisfying α+β ≤ 1
and any f (t) that makes the following equation meaningful,
equation Dβ(Dα f (t)) = Dα+β f (t) holds. If α or β is negative,
appropriate initial conditions of f (t) are required.

Lemma 1 [29]: For a continuous-time autonomous system
ẋ(t) = f (x(t)) with equilibrium point x = 0 and a positive
definite and continuously differentiable Lyapunov function
candidate V(x), if V̇(x)+aV(x)+bVσ(x) ≤ 0, then the system
is finite-time stable and converges within time

T ≤
1

a(1 − σ)
ln
�

aV1−σ(x0) + b
b

�
(14)

where a, b > 0, 0 < σ < 1. Specifically, if a = 0, then the
system is also finite-time stable with convergence time T ≤
V1−σ(x0)
b(1−σ) .

Lemma 2 [27]: Let R(c) denote the real part of c. If R(α) >
0, D−αa+ and D−αb− are bounded in Lp(a, b), then for any 1 ≤ p ≤
+∞ and f (x), we have

||D−αa+ f (x)||p ≤ K|| f (x)||p, ||D−αb− f (x)||p ≤ K|| f (x)||p (15)

in which K = (b−a)R(α)

R(α)|Γ(α)| , Γ(·) is the Gamma function.
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Lemma 3 [30]: Considering the saturation function

satε(x) =

8̂<̂
:

1, x > ε
1
ε
, −ε ≤ x ≤ ε
−1, x < −ε

(16)

in which ε > 0. For any continuously differentiable x(t), when
|x| ≥ ε, xDγ

t satε(x) ≥ 0 holds for any 0 < γ < 1.
Lemma 4: For matrices A ∈ Rn×n, b ∈ Rn×1, c ∈ Rn×1, we

have

λmin(A)||b||2 ≤ ||bTAb|| ≤ λmax(A)||b||2

||cTAb|| ≤ λmax(A)||b||||c|| (17)

where A > 0, λmin(·), λmax(·) denote the minimum and
maximum eigenvalue, || · || means the L2-norm of vector.

B. Design of NDOB

Model complexity and imperfect generalization of the neu-
ral networks are prone to introducing uncertainties, further
consider the external disturbance d, the practical system
dynamics is written as

(B̄ + δB)q̈ + (C̄ + δC)q̇ + (K̄ + δK)q + (D̄ + δD)q̇
+ (Ḡ + δG) = (Ā + δA)(u + d) (18)

where ·̄ represents the known nominal system matrices provide
by the self-attention enhanced DeLaN, δ· stands for the model
uncertainties distributed in system matrices. Let H̄ collect the
nominal parts and δH the uncertain terms in the left side of
(18), one has H̄+ δH − (Ā + δA)d = (Ā + δA)u. Mapping the
lump uncertainties to the input yields

δF =
H̄
Ā

+ d −
H̄+ δH
Ā + δA

=
H̄δA − ĀδH
(Ā + δA)Ā

+ d (19)

The goal is to estimate δF , denoted δF̂ , and compensate
it at the input end, i.e., u = u∗ − δF̂ . From (1), the system
dynamics with equivalent input disturbance is expressed as

ẋ = f̄ (x) + ḡ(x)(u + δF) (20)

where x = [q; q̇], f̄ (x) = [q̇;−B̄−1(−C̄q̇ − K̄q − D̄q̇ − Ḡ)],
ḡ(x) = [0; B̄−1Ā]. The NDOB is designed as

δF̂ = z + p(x)
ż = l(x)(− f̄ (x) − ḡ(x)u − ḡ(x)p(x)) − l(x)ḡ(x)z (21)

where p(x) and l(x) satisfy ∂p(x)
∂x = l(x) and l(x) = [0,ΛĀ−1B̄],

Λ > 0 is a positive definite constant matrix, determining the
convergence speed of NDOB.

Assumption 1: Given that the constituent materials of soft
robots are flexible, the shape of soft robots should change in
a continuous manner. Additionally, as weights chosen in self-
attention enhanced DeLaN are finite because of the weight
decay term added in the loss function, it is reasonable to
assume that both the model uncertainties and their time deriva-
tives are bounded. Moreover, since the external energy applied
to soft robots is finite, according to assumptions mentioned in
[31], the external disturbance and its disturbance applied on
soft robots are also finite. Consequently, we assume that δF ,
δḞ are bounded by ||δF || < Fmax and ||δḞ || < Ḟmax.

Theorem 1: Considering the state-space system dynamics
(20) with the proposed disturbance observer (21), the estima-
tion error δF̃ = δF − δF̂ is finite time stable.

Proof: Consider the following Lyapunov candidate

V f =
1
2
δF̃TΛ−1δF̃ (22)

its time derivative can be calculated by

V̇ f = δF̃TΛ−1δ ˙̃F = δF̃TΛ−1(δḞ − δ ˙̂F)

= δF̃TΛ−1(δḞ − l(x)(− f̄ (x) − ḡ(x)u − ḡ(x)p(x))
+ l(x)ḡ(x)z − l(x)ẋ)

= δF̃TΛ−1(δḞ − l(x)(− f̄ (x) − ḡ(x)u − ḡ(x)δF̂ + ẋ))

= δF̃TΛ−1δḞ − δF̃TδF̃ (23)

According to Lemma 4, Λ−1δḞ ≤ λ−1
min(Λ)Ḟmax, where

λmin(Λ) denotes the minimum eigenvalue of Λ. When
||δF̃ || ≥ 2λ−1

min(Λ)Ḟmax, V̇ f ≤ −Ḟmaxλ
−1
min(Λ)||δF̃ || ≤

−
√

2Ḟmaxλ
− 1

2
min(Λ)V

1
2
f . From Lemma 1, estimated errors con-

verge to ||δF̃ || ≤ 2Ḟmaxλ
−1
min(Λ) in finite time. Choosing a larger

λmin(Λ) can accelerate the convergence rate and reduce the
ultimate convergence neighborhood.

This completes the proof of Theorem 1.�
Remark 1: To tackle fast-varying situations, adding an

additional compensation term to (21) yields

ż = l(x)(− f̂ (x) − ĝ(x)u − ĝ(x)p(x))

− l(x)ĝ(x)z + αδ
˙̂F ∗ (24)

where * denotes a linear combination of previous states

x∗ =

rX
i=1

aix[−i] (25)

in which r is the number of prediction steps, x[−k] represents
the state quantity before k steps, ai represents the weight
of each history state and 0 < α < 1 is the attenuation
coefficient. Increasing α leads to better tracking ability for fast-
varying uncertainties. However, setting α too large is prone to
oscillation or even divergence.

C. Adaptive Fractional-Order Controller Design

A novel fractional-order sliding surface is designed as

s = ė + k1e + k2εD
−β
t (sig1−ν(e) + sig1+ν(e)) (26)

in which e = qre f − q represents the tracking error k1, k2 >
0, 0 < β, ν < 1 are the surface parameters, sigν(x) = |x|νsgn(x)
with sgn(x) the sign function. The control input is designed
as follows

u = (A(q))−1
�
∂2L
∂q̇2 q̈ +

∂2L
∂q∂q̇

q̇ + D(q)q̇ −
∂L
∂q

�
− δF̂

= (A(q))−1(
∂2L
∂q̇2 (q̈re f + k1ė + k2εD

1−β
t (sig1−ν(e)

+ sig1+ν(e)) − ( f1(s) + D−α( f2(s)))) +
∂2L
∂q∂q̇

q̇

+ D(q)q̇ −
∂L
∂q

) − δF̂ (27)
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where

f1(s) = −k3satε(s) − k4s − k5|s|ρDγ
t satε(s)

− k6s log(s +
p

s2 + 1)Dγ
t satε(s)

f2(s) = −k7s − k8satε(s) (28)

represent the two parts of the sliding surface’s reaching law,
0 < α, γ, ρ < 1, ε > 0, satε(s) is defined in Lemma 3. L,
D(q), and A(q) are learned by the attention enhanced DeLaN.
ki > 0, i = 3, 4, · · · , 8, k3 and k6 are adaptive satisfying8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

k̇3 =

8̂<̂
:

0, ||s|| ≤ ε1 ∩ k3 = k3min

0, ||s|| ≥ ε1 ∩ k3 = k3max

w1||s||sgn(||s|| − ε1), Otherwise

k̇6 =

8̂<̂
:

0, ||s|| ≤ ε2 ∩ k6 = k6min

0, ||s|| ≥ ε2 ∩ k6 = k6max

w2e−||s||sgn(||s|| − ε2), Otherwise
(29)

in which w1,w2, ε1, ε2, k3min, k3max, k6min, k6max > 0. From
(29), k3 and k6 are within [k3min, k3max] and [k6min, k6max],
respectively.

Remark 2: The proposed controller strikes a balance
between rapid convergence and robust performance by
introducing a novel sliding surface, reaching law, and
parameter-adaptation law. The sliding surface, incorporating
two distinct nonlinear terms, can flexibly address errors
of varying magnitudes. The reaching law fuses fractional-
order and integer-order dynamics, fractional calculus offers
a wider frequency-band response and adaptive dynamic tun-
ing, while integer-order control ensures stable asymptotic
behavior. Together, they greatly suppress oscillations without
compromising overall stability. In addition, the parameters
adaptation is stage dependent. When errors are large, the
controller emphasizes speed, accelerating convergence. As the
system approaches its target, it shifts focus to robustness and
disturbance rejection, maintaining stability in the steady state.

Theorem 2: Considering system (20) subject to lumped
uncertainties δF , under controller (27) and disturbance
observer (21), the sliding surface (26) is finite time
convergence.

Proof: Substituting (27) and (26) into (20) yields

ṡ = f1(s) + D−α f2(s) − ḡ(x)δF̃ (30)

Step 1: Considering the Lyapunov candidate V1 = 1
2 sTs +

1
2w1

k+2
3 + 1

2w2
k+2

6 , where k+3 = k3 − k3max ≤ 0, k+6 = k6 −

k6max ≤ 0. Since ḡ(x) = B̄−1Ā includes only the nominal input
transform matrix and inertial matrix, we assume that ḡ(x) is
bounded with its maximum eigenvalue max(abs(λĝ(x))) < Ng.
According to (30), we have

V̇1 = sT ṡ +
1

w1
k+3 k̇3 +

1
w1

k+6 k̇6

= sT f1(s) + sTD−α f2(s) − δF̃Tḡ(x)s + k+3 k̇3 + k+6 k̇6 (31)

From Lemma 2, there exists K1 > 0s.t.||D−α f2(s)|| ≤
K1|| f2(s)||. From Theorem 1, there exists F0 > 0s.t.||δF̃ || < F0.

Using Lemma 4, δF̃Tḡ(x)s ≤ Ng||δF̃ ||||s|| ≤ NgF0||s||. Since
k+3 , k

+
6 ≤ 0, k̇3, k̇6 ≥ 0, when ||s|| ≥ max(ε1, ε2)

V̇1 ≤ sT f1(s) + K1||s|||| f2(s)||+ NgF0||s|| (32)

holds. According to [30], siD
γ
t satε(si) ≥ 0, and log(si +q

s2
i + 1) shares the same sign as si, it follows that

sT(|s|ρDγ
t satε(s)) > 0 and sT(s log(s+

√
s2 + 1)Dγ

t satε(s)) > 0.
Therefore, we have

V̇1 ≤ −sT(k3satε(s) + k4s)

+ K1sT(k7satε(s) + k8s) + NgF0||s||

= −(k3 − K1k7)sTsatε(s) − (k4 − K1k8)||s||2

+ NgF0||s|| (33)

When ||s|| > ε, sTsatε(s) =
Pn

i=1 |si| ≥ ||s||. As k+2
3 ≤ (k3max−

k3min)2, k+2
6 ≤ (k6max − k6min)2 are both bounded, let K2 =

(k3max−k3min)2+(k6max−k6min)2, we have sTs ≤ V1 ≤ sTs+K2.
Then

V̇1 ≤ −(k3 − K1k7 − NgF0)||s|| − (k4 − K1k8)||s||2

≤ −L1(V1 − K2)
1
2 − L2(V1 − K2) (34)

where L1 =
√

2(k3 − K1k7 − NgF0), L2 = k4 − K1k8. Choosing
k3 > K1k7 + NgF0 and k4 > K1k8, then L1, L2 > 0. In this
condition, if V1 ≥ 2K2, then

V̇1 ≤ −
L1

2
V

1
2

1 −
L2

2
V1 (35)

From Lemma 1, the proposed controller guarantees the
sliding surface converges to ||s|| < 2

√
K2 in finite-time.

Step 2: For the closed-loop system, consider V2 = V f +V1,
where V f is defined in (22). Taking (30) yields

V̇2 ≤ V̇ f + sT( f1(s) + D−α f2(s)) − δF̃Tḡ(x)s

= δF̃TΛ−1δḞ − δF̃TδF̃ − δF̃Tḡ(x)s

+ sT( f1(s) + D−α f2(s))

≤ ||δF̃ ||Ḟmaxλ
−1
min(Λ) − ||δF̃ ||2 + Ng||δF̃ ||||s||

− sT(k3satε(s) + k4s) + K1sT(k7satε(s) + k8s) (36)

Let k3 − K1k7 > 0 and k4 − K1k8 > 0, one has

V̇2 ≤ −

�
||δF̃ ||

2
− Ng||s||

�2

+ Ḟmaxλ
−1
min(Λ)||δF̃ || − 3

4
||δF̃ ||2

− (k3 − K1k7)sTsatε(s) − (k4 − K1k8)||s||2

≤ Ḟmaxλ
−1
min(Λ)||δF̃ || − 3

4
||δF̃ ||2 − (k4 − K1k8)||s||2

≤
Ḟmax

λmin(Λ)

p
λmax(Λ)V f −

3
4
λmin(Λ)V f − (k4 − K1k8)sTs

≤ K3V
1
2

2 − K4V2 (37)

As
p

V f ≤ V
1
2

2 , V f + sTs ≥ V2 − K2, it yields

V̇2 ≤ K3V
1
2

2 − K4V2 + K3K2 (38)

where K3 = Ḟmax
λmin(Λ)

√
λmax(Λ), K4 =

min
� 3

4λmin(Λ), 2(k4 − K1k8)
�
. When V2 ≥

�
K3+
√

K2
3+2K2

4 K2

K4

�2

,
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V̇2 ≤ −
K3+
√

K2
3+2K2

4 K2

2 V
1
2

2 . From Lemma 1, the system will

converge to ||s|| < max
�
√

2 K3+
√

K2
3+2K2

4 K2

K4
, ε1, ε2

�
in finite

time.
This completes the proof of Theorem 2.�
Remark 3: Proper parameters selection can effectively

reduce the convergence region. An optimal choice is Λ =

αΛIn > 0, which yields λmax(Λ) = λmin(Λ) = αΛ > 0.
Moreover, increasing k3 and k4 can accelerate convergence
and improve tracking accuracy, this may also induce greater
oscillations. As αΛ, k4 → +∞, it follows that K3 → 0,
K3 → +∞, and consequently K4

2 → +∞. In this case, the

radius of convergence region
√

2 K3+
√

K2
3+2K2

4 K2

K4
→ 2
√

K2.
Theorem 3: When the sliding surface s is in the neighbor-

hood of the origin, i.e. |si| < ει, then the tracking error ei and
its derivative ėi will be stable in finite time.

Proof: For each element si, ei, let the Lyapunov candidate
V3i = 1

2 e2
i ≥ 0. After the convergence of si, we have

V̇3i = −k1e2
i − k2eiεD

−β
t (sig1−ν(ei) + sig1+ν(ei)) + eiι (39)

where |ι| < ει. First, assuming that εD
−β
t (sig1−ν(ei) +

sig1+ν(ei)) , 0. If there exists an instant t = tz such that
εD
−β
t (sig1−ν(ei)+ sig1+ν(ei)) = 0, then we can find a punctured

neighborhood of tz where εD−βt (sig1−ν(ei) + sig1+ν(ei)) , 0
holds. Otherwise, there exists a time interval containing tz
in which εD

−β
t (sig1−ν(ei) + sig1+ν(ei)) = 0, it follows that

ei = ėi = 0, leading to stability of the system. According
to the definition of α-order ε-Caputo calculus, we have

|εD
−β
t (sig1−ν(ei) + sig1+ν(ei))|

=
1

Γ(β)
|

Z t

max(t−ε,0)

sig1−ν(ei(τ)) + sig1+ν(ei(τ))
(ε − τ)1−β dτ|

≤
1

Γ(β)
|

�Z t

max(t−ε,0)

1
(ε − τ)1−β dτ

�
(e1−ν

i,m + e1+ν
i,m )|

=
εβ

βΓ(β)
(e1−ν

i,m + e1+ν
i,m ) (40)

where ei,m > 0 denotes the supremum of |ei| in the time period
of (t−ε, t]. Then for a pre-defined boundary value δ, the proof
is divided into two cases.

Case 1: | ει

εD
−β
t (sig1−ν(ei)+sig1+ν(ei))

| < δ. Let k2 > δ and κi =

k2 −
ι

εD
−β
t (sig1−ν(ei)+sig1+ν(ei))

> 0, then (39) can be transformed
into

V̇3i = −k1e2
i − κieiεD

−β
t (sig1−ν(ei) + sig1+ν(ei))

≤ −k1e2
i − κζ |ei| = −2k1V3i −

√
2κζV0.5

3i (41)

where constant ζ satisfies 0 < ζ < |εD
−β
t (sig1−ν(ei) +

sig1+ν(ei))|. If ei , 0, according to Definition 1,
eiεD

−β
t (sig1−ν(ei)+sig1+ν(ei)) > 0 as long as ε is small enough.

Then such ζ exists. For an instant when ei = 0, we can find
the neighborhood around this time where ei , 0. Otherwise,
ei = 0, ėi = 0 implies system’s stability. From Lemma 1, ei

converges in finite time.
Case 2: | ει

εD
−β
t (sig1−ν(ei)+sig1+ν(ei))

| ≥ δ. We have

|εD
−β
t (sig1−ν(ei) + sig1+ν(ei))| ≤ |

ι

δ
| <

ει
δ

(42)

TABLE I
SYSTEM PARAMETERS

From (39), it is clear that

V̇3i ≤ −k1e2
i + ei

�
k2ει
δ

+ ει

�
(43)

If ei ≥ 2 k2ει+ειδ
k1δ

, then V̇3i ≤ −
k2ει+ειδ

δ
ei, indicating finite-time

stability of the system. The tracking error ei can converge to
the region (−Υi,Υi) in finite time, where

Υi = 2
k2ει + ειδ

k1δ
(44)

From (40), ėi satisfies

|ėi| = | − k1ei − k2εD
−β
t (sig1−ν(ei) + sig1+ν(ei)) + ι|

≤ k1Υi + k2
εβ

βΓ(β)
(Υ1−ν

i + Υ1+ν
i ) + ει (45)

indicating that ei and ėi is also finite time stable.
This completes the proof of Theorem 3.�
Remark 4: Since the right hand side of (44) approaches zero

as k1 → ∞, increasing k1 helps reduce tracking error. However,
an excessively large k1 amplifies ė1, leading to oscillations near
the equilibrium. Both ei and ėi are both positively correlated
with k2, though a larger k2 shortens convergence time in Case
1. Thus, k1 and δ should be chosen moderately, with k2 slightly
exceeding the preset δ. Moreover, Theorem 2 confirms that ει
can become arbitrarily small with appropriate controller and
observer parameters.

Remark 5: The fractional order 0 < β < 1 in the control
scheme significantly influences control robustness and accu-
racy. If β is chosen too close to 1, the controller behaves
similarly to an integer-order one, becoming more sensitive to
high-frequency noise and disturbances. Conversely, setting β
too close 0 may introduce excessive damping, leading to a
slower dynamic response to reference variation, as the strong
emphasis on historical states acts like a low-pass filter. In
practice, choosing β within 0.4 ≤ β ≤ 0.7 is generally suitable
for balancing responsiveness and robustness.

IV. SIMULATION RESULTS

In this section, comparative simulations on a two-segments
(with 6 DoFs) fully-actuated extensible continuum soft arm are
conducted, in which the start point is fixed and end-effector
points downwards. System parameters of the soft robots are
listed in Table I. To avoid singularity, the ∆-parametrization
approach [32] is adopted. The Oustaloup integer-order approx-
imation [33] is utilized when calculate the fractional order
calculus, where N = 6, µ = 10, η = 1, ωd = 1.
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TABLE II
HYPERPARAMETERS LIST OF DELAN

Fig. 4. Scattered thermogram visualization of 60,000 data points on the ∆x-
∆y plane. ∆x1, ∆y1, ∆L1, ∆x2, ∆y2, ∆L2 are the configuration states according
to the ∆-parametrization in [32].

Fig. 5. Loss variation curves. A learning rate change happens at the 43th
epoch, which reduces to 1.56 × 10−4 from initial value listed in Table II.
The light red and light blue background represents epochs before and after
learning rate change, respectively.

A. Performance of the Self-Attention Enhanced DeLaN in
Dynamics Learning for Soft Robots

The hyperparameters of DeLaN are listed in Table II,
whereas the learning rate of DeLaN is adaptive, gradually
reduces during the learning process.

The designed self-attention enhanced DeLaN designed uses
60,000 sets of temporally continuous data as samples, where
each set of data includes input u and six-dimensional config-
uration variables with their time derivatives q, q̇, q̈. In this
neural network, 70% of the random data is used as training
data, and the remaining 30% are used as test data. In Fig. 4,
the collected data of configuration states is visualized. The
sampling period is set as ∆t = 10−3 s.

First, set the number of training epochs as 700. Fig. 5(a)
and Fig. 5(b) show the loss function curves over epochs
for DeLaN with and without attention. Obviously, compared
to the traditional DeLaN, the loss function converges faster
and shows less fluctuation under the self-attention enhanced

Fig. 6. The prediction performance of the proposed self-attention enhanced
DeLaN.

DeLaN, especially in the training set, demonstrating the effec-
tiveness and extrapolibility of the proposed mechanism.

To quantitatively evaluate performance of the proposed
method, the system states predicted by the learned dynamics
qpred(t) are compared to the data set qreal(t). The discrete
prediction error, which is treated as a benchmark for learning
accuracy, is designed as

E =

PT/∆t
k=0

P
i(qreal,i(k) − qpred,i(k))2dt

T/∆t
(46)

where Σ sums all components, T is the simulation
time. In this benchmark, to further validate effective-
ness of the proposed method, the number of training
epochs increased to 1000 for DeLaN without attention
mechanism and decreased to 500 for attention-enhanced
DeLaN. Assuming that the initial configuration is q0 =

[0.53, 0.45, 0.05, 0.98, 0.005, 0.25]T with its first-order time
derivative q̇0 = [0.01, 0.1, 0.01, 0.1, 0.1, 0.02]T, the control
input u(t) = [0.99, 0.533, 0.861, 0.814, 0.332, 0.565]T Nm is
constant, and the simulation time T is set to 10 seconds.

Fig. 6 depicts the actual and predicted curves of the con-
figuration variables of the open-loop prediction benchmark,
where the advantage of the attention mechanism is clearly
demonstrated. It can be observed that the configuration vari-
ables without the attention mechanism exhibit a significant
divergent trend, particularly for ∆x2 and ∆y2, with prediction
error E1 = 0.2077. The configuration variables predicted by
the attention-enhanced DeLaN are significantly more accurate
than those by the model without attention mechanism, and the
prediction error is E2 = 0.0913, which is approximately 44%
of E1.

For a guaranteed optimal performance when applying the
proposed self-attention enhanced DeLaN, hyperparameters
should be chosen properly. Increasing the depth of each
network, dl, dd, di, helps capture complex patterns and features
in data, especially for complex and highly nonlinear systems.
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Fig. 7. Performance of the NDOB. The black solid line represents lumped
uncertainties including step, linear and sine signals, while the red dashed line
denotes the estimation.

However, an excessively deep network can result in gradient
vanishing or exploding problems, making convergence diffi-
cult. Increasing the width of networks, wl, wd, wi, can enhance
network’s ability to handle complex input data, while too
many neurons in a layer can bring about overfitting and low
computational efficiency. Learning rate is also an important
hyperparameter. Choosing the learning rate η overly high can
make the network diverge, and adjusting it too low may result
in a low convergence rate and a lengthy learning time.

B. Tracking Performance of the Proposed Controller

The proposed controller (27) (Experimental Group, EG)
is compared with the controller based on traditional DeLaN
(Control Group 1, CG1), controller with fixed parameters
(CG2) and an integer-order sliding mode controller (CG3).
Additionally, two state-of-the-art control methods, MPC con-
troller with data-driven deep stochastic Koopman uncertainty
compensator [34] (State-of-the-art Method 1, SM1) and hybrid
ALCF-MLNN model-based feedback controller [35] (SM2)
are also used for comparison. The control input of CG1 and
CG2 are expressed by (27), but the dynamics (i.e. L, D(q)
and A(q)) are learned by traditional DeLaN, k3 and k6 become
constant for CG2. For CG3, the controller is as follows

u = (A(q))−1(
∂2L
∂q̇2 (q̈re f +

rX
i=1

(C i
rλ

iD2−ie) + c1sgn(s)

+ c2s + c3sigρ(s)) +
∂2L
∂q∂q̇

q̇ + D(q)q̇ −
∂L
∂q

) − δF̂ (47)

in which C i
r = i!(r−i)!

r! , s = (D+λ)r

Dr−1 e. D is the differential operator.
λ is a positive real number, r ∈ N+.

System parameters, the control target and controller param-
eters are listed in Table I and Table III, respectively. In the
simulations, each generalized torque is constrained within
[−10, 10] Nm, the time step is set as 5×10−4s. The simulation
results are depicted in Figs. 7–10.

Figure 7 presents the NDOB performance in estimating
lump uncertainties. From Fig. 7, the proposed NDOB can
quickly estimate the system uncertainty (within 0.03 s) with a
tiny overshoot (around 1.2%). Fig. 8 compares the tracking
error of configuration variables under four controllers. EG

Fig. 8. Tracking error curves of different control approaches.

Fig. 9. L2-norm of tracking error for different controllers. The legend |e1 | to
|e6 | represents tracking error of controllers in the order shown in Fig. 8(a) to
Fig. 8(f).

and CG2 exhibit low error than CG1 and CG3, with EG
converging faster (0.04 s vs. 0.08 s for CG2). In contrast,
SM1 and SM2 show much higher tracking errors and slower
convergence, with SM2 displaying notable oscillations. These
results demonstrate that the self-attention mechanism enhances
dynamics learning and the fractional-order controller improves
tracking accuracy and robustness. The L2-norm curves of the
tracking errors of the controllers are shown in Fig. 9. Obvi-
ously, SM2 exhibits the largest overall error and oscillation,
followed by CG1 and CG3. While EG and CG2 have similar
L2-norm error curves, EG shows less oscillation and strong
disturbance rejection. The average L2-norm values during
convergence (t ∈ [0, 2]s), steady-state stage (t ∈ [5, 15]s), and
the whole 15s tracking process is listed in Table IV.

Figure 10 plots the control inputs for all four controllers.
SM2 and CG3 exhibit due to the frequent switching in
integer-order SMC and sensitivity to high-frequency noise
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Fig. 10. Control torque inputs under different controllers. τi j denotes the
applied torque of j-th chamber of Segment i.

TABLE III
CONTROL TARGET AND CONTROLLER PARAMETERS

in PID-like controllers, while CG2 experiences occasional
oscillations. In contrast, EG, CG1, and SM1 show minimal

TABLE IV

L2-NORM OF TRACKING ERROR UNDER DIFFERENT CONTROLLERS

TABLE V

TIME EFFICIENCY OF DYNAMICS LEARNING NETWORKS
AND CONTROLLERS

oscillation, benefiting from the filtering effect and strong
high-frequency uncertainty suppression of the fractional-order
controller. Additionally, the MPC method in SM1 helps reduce
oscillations. EG demonstrates the highest stability in control
torque. In practical applications, the chamber pressure rate of
change is limited, making sudden changes impractical, further
highlighting advantages of the proposed controller.

C. Computation Efficiency

The computation efficiency is critical for implementing
model learning algorithms and control methods in real-world
applications and real-time control. This subsection discusses
the computational cost of the self-attention-enhanced DeLaN
and the proposed controller. As shown in Table V, we
recorded the time consumption for dynamics learning and
trajectory tracking simulations of different control methods.
The total time (in seconds) is listed on the left of the “Time
consumption” column, while the average time per epoch/time
step is shown on the right. All simulations were performed on
a laptop with an Intel Core i9-13900 CPU. Note that DeSKO-
MPC [34] is a online control method for estimating model
uncertainties and predicting future system states, and we focus
only on its control efficiency.

From Table V, the proposed self-attention DeLaN has the
lowest overall learning time as the self-attention mechanism
accelerates convergence, though it incurs a slightly higher time
cost per epoch. SM1 has the highest time consumption due to
the online neural network and long-term MPC controller, while
CG3 requires the least time due to its simpler design. Although
the proposed controller is somewhat more computationally
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Fig. 11. The soft robotic experimental platform. The left image shows the overview, highlighting the main components, as well as the chamber distribution.
The upper-middle diagram depicts the structure of the main control board, which carries the control algorithm and calculates the real-time input pressure. The
pneumatically actuated soft arm is demonstrated in the lower-middle figure, operates through adjustable pressure outputs controlled by the gas valve cabinet.
The right diagram shows the communication and connection relationship of the entire platform and the internal structure of each segment of the soft arm.

TABLE VI

CONTROLLER PARAMETERS IN EXPERIMENTS

expensive than others (due to the integer-order approximation
for fractional-order calculus [33]), it significantly outperforms
in tracking performance. To further optimize computational
costs, simplification methods can be applied, such as using an
adaptive connection policy to disconnect “unimportant” nodes
with low attention scores, reducing the backpropagation cost.

V. EXPERIMENTS

Experiments are conducted on a two-segments continuous
pneumatic soft manipulator (shown in Fig. 11). Each segment
is actuated by 12 chambers grouped in three (every 4 chambers
form a group), with independent pressure input for each
group. The soft part of each segment measures 208 mm
in length and 75 mm in diameter, with chamber diameter
of 15 mm and segment weight of 00.6 kg. Multiple linked
angle and displacement sensors are embedded inside the robot

TABLE VII

MEAN EUCLIDEAN TRACKING ERROR (MM) UNDER DIFFERENT CON-
TROLLERS AND TRAJECTORIES

to measure the configuration states. The end-effector pose
is computed via multi-joint kinematics as in [36], which is
integrated in the data acquisition board. The Young’s modulus
is set to 2 × 104 Pa through its variable stiffness module.
The nominal dynamics is modeled using the self-attention
enhanced DeLaN. Configuration to task space transformation
follows [32], and the chamber pressure to torque mapping uses
the method in [37].

In the experiments, only the second segment is actuated.
The deformation of this segment induces coupled motion in
the first, which acts as an external disturbance, increasing
system uncertainty. Each trial lasts 224.4 s, with control
and data acquisition executed at 20 Hz. To prevent over-
pressure, each chamber group’s pressure pi is limited to
pi ∈ [0, 1.5] Bar. Since the fractional-order calculus in
Definitions 1- 2 is complex and difficult to implement, a
reduced-length Grünwald–Letnikov form ([39], Def. 1) is
applied, with α = 0.5, L = 6 and h = 0.05. The reference
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Fig. 12. Tracking error and chamber pressure for trajectory A under
NDOB-AFOSMC (Figs. (a)-(b)), NDOB-IOSMC (Figs. (c)-(d)), PID-NFTSM
(Figs. (e)-(f)) and DeSKO-MPC (Figs. (g)-(h)).

trajectories are defined as: A) a butterfly-shaped (figure- 8)
path composed of two semi-circles (radius 20 mm) and two
straight segments, B) an equilateral triangle, and C) a circle.
All three trajectories lie on the plane z = 230 mm and share
a circumradius of 40 mm. The soft robot is commanded to
follow a two-stage task-space reference signal qre f : a static
convergence phase to qre f = [−40, 0, 230]Tmm in the first 16
seconds (Stage 1), followed by dynamic trajectory tracking
for the next 208.4 seconds (Stage 2). The motion period is
set to 60s for trajectory A and 48 s for trajectories B and
C. During experiments, the task-space trajectories are mapped
into the configuration space. The proposed control scheme
(NDOB-AFOSMC) is compared to NDOB based integer-order
sliding mode control (NDOB-IOSMC), PID-NFTSM [38] and
DeSKO-MPC [34]. Table VI lists the parameters of the four
controllers. Note that the disturbance observer parameters
used in NDOB-IOSMC are identical to those in NDOB-
AFOSMC. In PID-NFTSM, parameter M is replaced by the
inverse of input transform matrix, Ā−1. To compensate for the

Fig. 13. Tracking error for trajectory B under NDOB-AFOSMC (Fig. (a)),
NDOB-IOSMC (Fig. (b)), PID-NFTSM (Fig. (c)) and DeSKO-MPC (Fig. (d)).

Fig. 14. Tracking error for trajectory C under NDOB-AFOSMC (Fig. (a)),
NDOB-IOSMC (Fig. (b)), PID-NFTSM (Fig. (c)) and DeSKO-MPC (Fig. (d)).

hysteresis effect of the soft arm, a pressure-tuning strategy
is adopted:let pi be the current pressure computed by the
controller for Chamber i, and pki the previous input pressure.
The actual input pressure pi is then adjusted according to (48).
Experimental results are presented in Figs. 12–16.

pi =

(
pi pki pi ≥ 0
pi + 20sgn(pi − pki) pki pi < 0

(48)

As shown in Figs. 12–14, all four controllers are able to
regulate the robot to follow the desired trajectories. How-
ever, their performance varies significantly. NDOB-AFOSMC
achieves lower tracking error and faster convergence compared
to the others. It also exhibits reduced input pressure overshoot
in Stage 1 and smoother pressure fluctuations (Fig. 12),
indicating lower working loss and power consumption in the
gas valve cabinet. Table VII compares the mean Euclidean
tracking error under the four different controllers and three
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Fig. 15. End-effector trajectory under different controllers. The controllers from left to right are NDOB-AFOSMC, NDOB-IOSMC, PID-NFTSM and DeSKO-
MPC. Figs. (a)-(d), (e)-(h) and (i)-(l) show the tracking performance under trajectories A, B and C, respectively.

Fig. 16. System motion under the NDOB-AFOSMC for the three trajectories.
(a)-(c) Motion sequences, configuration errors and observed disturbance for
trajectory A. (d)-(f) for trajectory B. (g)-(i) for trajectory C.

trajectories. Fig. 15 further highlights the superior end-effector
tracking of NDOB-AFOSMC across all trajectories, with

minimal deviation and oscillation. In Fig. 16(a), we show
the motion sequence of the soft arm under Trajectory A,
while the corresponding configuration-space tracking error
and estimated disturbance are presented in Figs. 16(b)–(c).
Similar results for Trajectories B and C are illustrated in
Figs. 16(d)-(i).

VI. CONCLUSION

This paper presents a self-attention enhanced DeLaN for
learning the dynamics of soft robots and an adaptive fractional-
order sliding mode controller (AFOSMC) with lumped
disturbance compensation based on a nonlinear disturbance
observer (NDOB). The proposed controller demonstrates
strong robustness and achieves accurate trajectory tracking
despite model uncertainties, which are effectively compen-
sated by the NDOB. The effectiveness of the modeling and
control schemes is validated through both simulations and
experiments on a soft robotic platform. Future work will focus
on enhancing the attention mechanism architecture, addressing
input saturation, and enabling online estimation of unknown
dynamic parameters.
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