<]
TUDelft

Delft University of Technology

Side-Channel Analysis with Deep Learning

An Evergrowing Ally in Hardware Security Evaluation
Weissbart, L.J.A.

DOI

10.4233/uuid:2129b2da-7268-4b71-ad46-68defc4d34e0

Publication date
2025

Document Version
Final published version

Citation (APA)

Weissbart, L. J. A. (2025). Side-Channel Analysis with Deep Learning: An Evergrowing Ally in Hardware
Security Evaluation. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:2129b2da-7268-4b71-ad46-68defc4d34e0

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:2129b2da-7268-4b71-ad46-68defc4d34e0
https://doi.org/10.4233/uuid:2129b2da-7268-4b71-ad46-68defc4d34e0

SIDE-CHANNEL ANALYSIS
WITH DEEP LEARNING

AN EVERGROWING ALLY IN HARDWARE SECURITY EVALUATION

WWTTT!'!TW

Propositions
accompanying the dissertation

SIDE-CHANNEL ANALYSIS WITH DEEP LEARNING
AN EVERGROWING ALLY IN HARDWARE SECURITY EVALUATION

by
Léo WEISSBART

1. Cryptographic algorithms will never be invulnerable to side-channel at-
tacks (Chapter 4).

2. Every side-channel analysis method can be outperformed with deep learn-
ing features.

3. TEMPEST attacks are going to become the next big thing for hackers.
4. Modern cryptography does not bring online security.

5. Open-source hardware security market expansion calls on a collaboration
between academia and industry actors to be successful.

6. Social network is the worst place to promote science.

7. The diversity of open-source frameworks is the single guaranty of repro-
ducible research.

8. An internship is imperative achievement to complete a PhD education.
9. Engineers grow incompetent in a remote working environment.

10. Dutch lunch contains too few nutrients for healthy development of young
researchers.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor Prof.dr.ir. R.L. Lagendijk, promotor
Prof.dr. L. Batina, and copromotor Dr. S. Picek.

SIDE-CHANNEL ANALYSIS WITH DEEP LEARNING

AN EVERGROWING ALLY IN HARDWARE SECURITY
EVALUATION

SIDE-CHANNEL ANALYSIS WITH DEEP LEARNING

AN EVERGROWING ALLY IN HARDWARE SECURITY
EVALUATION

PROEFSCHRIFT

ter verkrijging van der graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op
donderdag 23 oktober 2025 om 15:00 uur.

door
LEO JOSEPH ALOYSE WEISSBART

Elektrotechnisch ingenieur,
Technische Universiteit Delft, Nederland
geboren te Colmar, Frankrijk.

RECTOR MAGNIFICUS VOORZITTER

Prof.dr.ir. R.L. Lagendijk Technische Universiteit Delft, promotor
Prof.dr. L. Batina Radboud Universiteit, promotor
Dr. S. Picek Radboud Universiteit, copromotor

ONAFHANKELIJKE LEDEN

Prof.dr. G. Smaragdakis Technische Universiteit Delft

Prof.dr. J. van Gemert Technische Universiteit Delft

Prof.dr.ir. N. Mentens Universiteit Leiden, Belgium

Prof.dr. E. Dubrova KTH Royal Institute of Technology, Sweden
Prof.dr. C.M. Jonkers Technische Universiteit Delft, reservelid

W
/ciTe™

-i-; U D elft Dl iy of Radboud University %

Technology MmN

<,

keywords: Side-channel Analysis, Deep Learning, Public-key Cryptography,
Symmetric-key Cryptography, Machine Learning, Neural Net-
work Reverse Engineering

Copyright ©2024 by Léo Weissbart. All rights reserved.

ACKNOWLEDGEMENTS

I would like to thank all the people who have accompanied and helped me during
this PhD journey.

First, I am deeply grateful to my supervisors, Lejla Batina and Stjepan Picek.
They believed in me and were always present to support me in the most important
moments. [am very grateful for your guidance and I feel very lucky to had you as
my supervisors. [want to thank Inald Lagendijk for his support as my promotor
and his valuable feedback on my work.

I thank the reading committee, Jan van Gemert, Georgios Smaragdakis, Nele
Mentens, Elena Dubrova and Catholijn Jonker for taking the time to read my the-
sis, and being part of the defense ceremony.

I am very grateful to the co-authors of the papers presented in this thesis for
sharing their knowledge and for the great collaborations. I would like to thank:
Lukasz Chmielewski, Zhuoran Liu, Niels Samwel, Zhengyu Zhao, Dirk Lauret,
and Martha Larson.

I would like to thank all my colleagues at the Digital Security group at Radboud
University for the great time we had together. I am very grateful for the support
and the good moments we shared. Especially, I would like to express my grati-
tude to all who have once shared an office with me: Joost Renes, Ko Stoffelen,
Pedro Maat C. Massolino, Niels Samwel, Omid Bazangani, Parisa Amiri Eliasi,
Konstantina Miteloudi, Durba Chatterjee, and Silvia Mella.

I want to thank all my friends and colleagues that I met during my time in
the Netherlands. I would like to thank: Matthias J. Kannwischer, Thom Wig-
gers, Joost Rijneveld, Benoit Viguier, Paulus Meessen, Pol Van Aubel, Gabriel
Bucur, Louiza Papachristodoulou, Kostas Papagiannopoulis, Ileana Buhan, Unai
Rioja, Servio Paguada, Gorka Abad, Lichao Wu, Marina Kreck, Huimin Li, Jing
Xu, Luca Mariot, Stefanos Koffas, Hulya Evkan, Xiaoyun Xu, Guilherme Perin,
Oguzan Ersoy, Azade Rezaeezade, Behrad Tajalli, Vahid Jahandideh, Asmita
Adhikary, Abraham Basurto, Péter Horvath, Estuardo Alpirez Bock, Christoph
Dobraunig, Veelasha Moonsamy, Peter Schwabe, Amber Sprenkels, Yanis Belkhe-
yar, Mario Marhuenda Beltran, Alexandre Bouez, Aldo Gunsing, Jan Schoone,
Shahram Rasoolzadeh, Charlotte Lefevre, Solane El Hirch, Jonathan Fuchs,
Alireza Mehrdad, Suprita Talnikar, Koustabh Ghosh, Joan Daemen, Bart Men-
nink, Cristian Daniele, Seyed Behnam Andarzian, Erik Poll, Krijn Reijnders, Lars
Ran, Monika Trimoska, Simona Samardjiska, Thijs Heijligenberg, Guido Knips,

Robert Primas, Jan Janédr, Tomas Balihar, Morten @ygarden, Trevor Yap Hong
Eng, Parisa Naseri, Mohanna Hoveyda, Saeid Akbari Bibihayat, Heydar Soudani,
Shiva Azizzadeh, Hamid Bostani, Zahra Moti Jeshveghani, Irma Haerkens, Shan-
ley Fijn, Janet Versluys, Tom Janssen-Groesbeek. I am really grateful for all the
great moments we shared.

I want to specially thank Ronny and Désirée for being my landlords during
all my time in Nijmegen. I am very grateful for your kindness and for the warm
environment that you shared in your home.

I am deeply grateful to my friends who supported me in France: Gilles, Célia,
Robin, Corentin, Manon, Fiona, Mathieu, Robin, Baptiste, Valentin, Caroline,
Camille, Delphine, Jonathan, Julie, Arthur, Laura, Nathan, Régis, Yohan, Thomas,
Anirouddh, Cyrille, Germain, Guillaume, Laurie, Hoang, Maxime, Mehdi, Théo-
time, and Valentin.

Finally, I would like to thank my family for their unconditional support and
love. I want to thank my mother and father for always being there for me. Your
encouragement and support mean the world to me.

vi

Contents

I

INTRODUCTION & PRELIMINARIES

INTRODUCTION

1.1 Historical Background

1.2 Cryptography and Cryptanalysis Duality

1.3 Bringing Artificial Intelligence to Side-Channel Analysis

1.4 Research Questions

1.5 Organization of the Thesis and Contribution of the Author

BACKGROUND

2.1 Side-channel Analysis.
2.1.1 Physical Leakage Properties
2.1.2 Evaluation Metrics
2.1.3 Non-profiled Attacks
2.1.4 Profiling Attack Lo
2.1.5 Countermeasures against Side-channel Analysis

2.2 Machine Learning and Deep Learning
2.2.1 Machine Learning
2.2.2 DeepLlearning

DEEP LEARNING SIDE-CHANNEL ANALYSIS OF SYMMET-
RIC CRYPTOGRAPHY
PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON
3.1 Introduction
3.1.1 Datasets
3.2 RelatedWork
3.3 Experimental Setup
3.4 Experimental Results
3.4.1 ASCADResults
342 AES_RDResults
3.5 DiscuSsion e e e e
3.6 Conclusions and Future Work
SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

33

vii

viii

111

CONTENTS

4.1
4.2
4.3
4.4

4.5

4.6
4.7

Introduction 51
ASCON . . . o L 53
Related Work oL 54
LeakageModels 55
4.4.1 Leakage Models for Differential Attacks 55
4.4.2 Leakage Models that Apply Better for Profiled Attacks . . 57
Experimental Result 58
4.5.1 Implementation 58
4.5.2 Signal-to-Noise (SNR) for Leakage Models 58
4.5.3 Correlation Power Analysis 60
4.5.4 Deep Learning-based Attack 62
Multi-task Results oo o 66
Conclusions and Future Work 68

DEEP LEARNING SIDE-CHANNEL ANALYSIS OF PUBLIC

KEY CRYPTOGRAPHY 71
ONE TRACE IS ALL IT TAKES 73
5.1 Introduction 73

5.1.1 RelatedWork 74
5.1.2 Contributions, 75
5.2 Preliminaries e 75
5.2.1 EdDSA 75
5.2.2 Elliptic Curve Scalar Multiplication 77
5.3 AttackerModel, 78
5.4 Dataset Generation 78
5.4.1 MeasurementSetup 78
542 Dataset e e 79
5.5 Experimental SettingandResults 82
5.5.1 Hyperparameters Choice 82
5.5.2 Dimensionality Reduction 85
553 Results 85
5.6 Conclusions and Future Work 89
SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519 91
6.1 Introduction 91
6.2 Preliminaries 93
6.2.1 Elliptic Curve Digital Signature Algorithm 93
6.2.2 Elliptic Curve Scalar Multiplication 94
6.2.3 Profiling Attackso 95
6.3 Experimental Setup L. 98

CONTENTS

6.3.1 AttackerModel L. 98
6.3.2 SCADatasets 98
6.3.3 Evaluation Metrics 101
6.3.4 Dimensionality Reduction 101
6.3.5 Hpyperparameter Tuning 101
6.4 Results. e 103
6.4.1 Baseline implementation 103
6.4.2 Protected Implementation 108
6.4.3 Visualization of the Integrated Gradient 110
6.4.4 GeneralRemarks 112
6.5 RelatedWork 112
6.6 Conclusions L 114

SIDE-CHANNELS ENHANCED BY NEURAL NETWORKS AND

THE OPPOSITE 115
SCREEN GLEANING 117
7.1 Introduction 117
7.2 RelatedWork oL 119

7.2.1 Side-Channel Attacks 119
7.2.2 Deep Learning and Side-channel Analysis 122
7.3 AttackerModel 123
7.4 AttackSetup 127
7.4.1 MeasurementSetup 127
7.4.2 Machine Learning Setup 130
7.5 Experiments 133
7.5.1 Security Code Attack 134
7.5.2 Data Analysison Grid Data 136
7.5.3 Experiments on Other Phones 137
7.5.4 Discussion 139
7.6 Testbed 140
7.6.1 TestbedImages 141
7.6.2 Parameterization of the Attacker Model 143
7.6.3 Validating the Eye Chart Testbed 143
7.7 Countermeasures v v vt e e e 146
7.7.1 Hardware-Based Approaches 146
7.7.2 Communication-Based Approaches 147
7.7.3 Graphics-Based Approaches 147
7.8 FromTexttoImage 148

7.9 Conclusion and Outlook 149

CONTENTS

8 ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU
8.1 Introduction,
8.1.1 RelatedWorks
8.1.2 Contributions
8.1.3 Organizationof thepaper
8.2 GPU Architecture
8.3 Threat Model, .
8.4 The Target and Network Implementation
8.5 Reverse Engineering,
8.5.1 Characterization
8.5.2 Reverse Engineering the Number of Layers
8.5.3 Reverse Engineering the Number of Neurons
8.5.4 Reverse Engineering the Type of Activation Function . . .
8.6 Conclusions and Futurework

V DISCUSSION
9 DISCUSSION AND FUTURE WORK

9.1 Summary of Contributions
9.2 FutureWork
9.3 Limitations o

BIBLIOGRAPHY
ACRONYMS

SUMMARY
SAMMENVATING
RESUME

LIST OF PUBLICATIONS
ABOUT THE AUTHOR

165
167
167
171
173

175
201
203
205
207
209
213

Part 1

INTRODUCTION & PRELIMINARIES

INTRODUCTION

This chapter gives a general introduction and motivation of the thesis.

CONTENT OF THIS CHAPTER

1.1 Historical Background 3
1.2 Cryptography and Cryptanalysis Duality 4
1.3 Bringing Artificial Intelligence to Side-Channel Analysis 6
1.4 Research Questions 8
1.5 Organization of the Thesis and Contribution of the Author 10

1.1 HISTORICAL BACKGROUND

Concealing information to an adversarial party is a very old practice. The act of
transforming written messages into a form that is not understandable to an adver-
sary has been known since antiquity [Kah67]. Among the first known methods,
people camouflage information in a text by modifying the order of the letters or
symbols used (e.g., atbash, Caesar cipher, or Vigenere cipher). Another means of
concealing information is by transforming the support of the message, as in the
case of the invisible ink, or by wrapping a paper strip around a rod to read the
message (i.e., scytale).

All these methods have in common that they are based on the principle of
obscurity. The adversary would need to find the concealing method to recover
the original message with limited additional effort. While these methods are still
used today for games or mere amusement, they cannot be used to secure modern
communications because they can easily be defeated by a knowledgeable adver-
sary [GP13]. More advanced methods have been developed to secure communi-
cations, and it is still an active field of research to ensure that the security of
communication can be guaranteed against any adversary. Cryptographic primi-
tives are algorithms that ensure basic cryptographic properties. These primitives

INTRODUCTION

are often used as building blocks of more complex algorithms, referred to as cryp-
tosystems [MOV96].

The security properties that cryptographic primitives aim to provide are confi-
dentiality, integrity, authenticity, and non-repudiation [MOV96]. Those properties
are essential to protecting communications and personal and private data in dig-
ital systems and echo individuals’ fundamental rights. The confidentiality of the
data guarantees that unauthorized parties cannot read the message’s content. In-
tegrity of the message guarantees to the receiver that the message was not altered
by a third party. The authenticity of the message guarantees to the receiver that
the expected sender sent the message. Finally, non-repudiation guarantees that the
sender cannot deny having sent the message.

Liberty, safety, property, and resistance to oppression are the founding bases of
Human Rights, the foundation of modern society, and the basis of modern democ-
racies. The right to privacy enables freedom of speech, freedom of thought, and
freedom of association and is protected in digital communications using cryptog-
raphy. Threats to this right are an open door to mass surveillance, data collection,
and consumer tracking.

While laws exist to govern cybersecurity and data privacy for individuals in
front of the justice, cryptography is the tool to protect users’ digital data. Encryp-
tion has been acknowledged as essential for preserving privacy and security online
and safeguarding Human rights [HRAu].

Cryptography goes beyond secure digital communications and expands to pro-
tect digital data at rest and digital identities. Among those methods, digital sig-
nature can bring authenticity to a message sent with a signature obtained from
a private key that anyone can verify with its corresponding public key. Message
authentication and integrity checking ensure that a message has not been altered
during its transmission. Secure computation can achieve the computation of a
function on encrypted data, keeping the data private during the processing of the
function [Yao82; SRA81]. Protecting communication on all devices over the in-
ternet is a great challenge, as in 2023, the number of digital devices was nearing
16.7 billion and is expected to reach 25 billion by 2026 [Sin23].

1.2 CRYPTOGRAPHY AND CRYPTANALYSIS DUALITY

The study of secure communication methods between a sender and an intended
recipient in an adversarial channel is known as cryptography, while the study of
the means to circumvent the security of a cryptosystem is known as cryptanaly-
sis [MOPO6]. It is a natural duality to design cryptographic algorithms to bring
more security to the used cryptosystems and to prove their security. The analysis

1.2 CRYPTOGRAPHY AND CRYPTANALYSIS DUALITY

of cryptosystems running on an actual device is known as side-channel analysis
and aims to break the security of the algorithms by exploiting all the unintended
information that can be observed by the physical properties of the device during
the execution of the cryptographic functions. Analyzing a cryptosystem’s mathe-
matical and physical security is an important step in cryptography, as it ensures
the security of existing implementations and helps design future implementations.

Cryptographic schemes commonly have two main categories: symmetric (or
secret-key) cryptography and asymmetric (or public-key) cryptography. Secret-
key cryptography is commonly used to achieve confidentiality and requires both
communicating parties to share a common cryptographic secret (e.g., a generated
long and random passkey). One application of secret-key cryptography is the en-
cryption of a message that works with a common shared secret key between the
sender and the recipient and ensures that communication is confidential. Algo-
rithms used for this purpose can be block ciphers, stream ciphers, or authenticated
encryption schemes, with the most notable examples being the Advanced Encryp-
tion Standard (AES) [DR99] and the Data Encryption Standard (DES) [NIS99].
Message authentication codes (MAC) are also typical applications of secret-key
cryptography and consist of an added short information to the ciphertext that can
be used to verify the integrity of the message by the recipient [Aum17].

On the other side, public-key cryptography is more commonly used to achieve
integrity and authenticity, requiring that one party generates a key pair consisting
of a private key and a public key. The private key is kept secret, while the public
key is shared with the world and can be accessed by any other party. In the context
of digital signature, a message is signed by the sender using its private key, and
the signature can be verified by any party using the sender’s public key. In the
context of key establishment, a shared secret key is derived by the two parties by
using their respective private key and the public key of the other party.

However, the use of cryptography in a device does not guarantee the security of
secured information or personal privacy. The Kerckhoffs’s principle states that: “A
cryptosystem should be secure even if everything about the system, except the key,
is public knowledge” [Ker83]. This principle is the basis of modern cryptography,
and the reason why the security of a cryptosystem used nowadays relies on the
secrecy of the key (and not of the used algorithms). However, the mathematical
security of a cryptographic algorithm can have flaws once used in real-world appli-
cations. These flaws can be categorized into two types of cryptanalysis: classical
cryptanalysis and implementation attacks [Pop(09]. Classical cryptanalysis aims
to break the mathematical security of a cryptosystem, by exploiting the internal
structure of the underlying cryptographic algorithms.

INTRODUCTION

Implementation attacks aim to break the security of a cryptosystem by exploit-
ing its physical implementation. An implementation attack can exploit different
physical properties of an implementation and be of a different nature. These at-
tacks are commonly divided into active and passive attacks. Active attacks, such
as Fault Injection (FI) attacks, rely on an introduced physical perturbation to the
nominal behavior of the implementation to produce a faulty output that can be
exploited to recover the secret analytically. In contrast, passive attacks, such as
Side-channel Analysis (SCA), rely on the observation of the physical properties
of a physical device to recover the secret during a legitimate execution of the im-
plementation. While active attacks require physical access to the device and can
sometimes be invasive, passive attacks only require observing the physical prop-
erties of the device and can even be performed remotely under some conditions.

1.3 BRINGING ARTIFICIAL INTELLIGENCE TO SIDE-CHANNEL
ANALYSIS

Side-channel analysis is based on the measurement of passive physical leakages,
like Electromagnetic (EM) emanations or power consumption, during the execu-
tion of cryptographic functions. Because a cryptographic implementation runs on
an actual hardware device made of electronic components handling bit-logic, it
follows the laws of physics of electricity, electromagnetic, and thermodynamics.
Thus, it is possible to infer the device’s internal state by observing the physical
phenomena that result from the computation on the hardware. Exploiting this in-
formation for cryptographic implementations falls into SCA.

In the context of SCA, the security analysis of the physical implementation
of a cryptosystem is assessed by a human expert who can identify the relevant
information in the physical traces using engineering knowledge to test a given
implementation for a specific product. The security evaluator’s task can be very
time-consuming and requires expertise in a specific cryptosystem and target plat-
form. While the specific task of evaluating the security of a given cryptosystem
might require different know-hows, the vector of attack in side-channel analysis is
conceptually simple. It consists in analyzing a dataset (i.e., traces and correspond-
ing public information) to find a relation to the internal state of the device that
relies on the value of a secret.

Exploiting side-channel traces with deep learning methods is a promising ap-
proach to automating the analysis of the physical implementation. The reason is
that deep learning methods are able to generalize the knowledge from a set of
traces and abstract the mathematical relation between the trace features and the
sensitive information processed. Such a method provides a possible tool that a

1.3 BRINGING ARTIFICIAL INTELLIGENCE TO SIDE-CHANNEL ANALYSIS

non-expert can use to assert the security of a given implementation. It could also
be used during the development of a new product to give guarantees on the secu-
rity of an implementation before the official standard evaluation by an expert.

The ambition of creating a machine that can think and learn like a human being
has stemmed before the invention of the first computers. Augusta Ada Lovelace,
the pioneer of computer science and programming, realized that the very first com-
puting machines could be used to do more than just calculations. She reflected
on Charles Babbage’s work, that the Analytical Engine could be programmed to
solve problems of any complexity [FF15]. Ada’s vision of computer programming
did foresee the potential of advanced computing machines to bring about artificial
intelligence and machine learning and imagined the possibilities of countless ap-
plications advanced computing machines could bring.

Artificial Intelligence (Al) is an ever-growing field of research and innovations.
First, the intention of Al was to solve problems or tasks that are intellectually
difficult for humans but conceptually straightforward given a set of rules. Now,
the true challenge of Al is to solve problems that are easily solvable by a human
but difficult to describe formally. So, instead of describing a formal method to
solve such problems, one solution is to allow the machine to learn to solve the
problem by itself and provide experiences to let it ‘understand’ the hierarchy of
concepts, leading to a resolution in a divide-and-conquer way. With this method,
drawing a graph of the small concepts built on each other that solve a problem
would lead to a deep graph with many layers, and for this reason, this method is
called Deep Learning (DL).

Deep learning side-channel evaluation is starting to become a required evalua-
tion method for international standardization requirements, such as the Common
Criteria (CC) standards [Iso]. For example, the ISO/IEC 17825 requires the eval-
uators to use any "state-of-the-art" methods appropriate for the product or system
being evaluated and includes deep learning side-channel analysis [Iso]. The Ger-
man Federal Office for Information Security (BSI) has also set guidelines for the
evaluation and certification of implementations regarding their side-channel re-
sistance, which includes the evaluation of machine-learning based side-channel
attacks [Inf24]. This guide is introduced as a reference guide to be followed in
accordance to the common criteria by developers and evaluators of cryptographic
implementations for smartcards and similar devices.

INTRODUCTION

1.4 RESEARCH QUESTIONS

This thesis investigates the different aspects of side-channel analysis of crypto-
graphic implementations with deep learning methods and the security aspects of
neural networks. The thesis is not about creating new cryptographic schemes or
secure implementations. Instead, it concentrates on particular learning algorithms
and particular attacks and tries to find the optimal settings for attacking cryptosys-
tems and verifying their security claims. Other algorithms that handle sensitive
information and are often protected as valuable Intellectual Property are neural
networks and personal display devices of smartphones. This thesis extends the
evaluation to enhance attacks in these other privacy-focused applications and uses
side-channel analysis to assess their security.

This thesis represents the result of the work conducted to answer the following
research questions:

Can model optimization be applied to different AES implementations to
efficiently find the best deep-learning attacks?

With the advent of machine learning and deep learning techniques, there is a
constant need to evaluate the security of existing cryptographic implementations
against these new analysis methods to ensure security against physical attacks.
Multilayer perceptrons and convolutional neural networks are the two most com-
mon deep learning methods used to achieve good attack results. While their per-
formance is acknowledged, we still lack an understanding of their potential uti-
lization in optimized settings. A systematic evaluation of a given deep learning
model, considering all the possible hyperparameters and training considerations,
is needed to gain a deeper understanding of the performance of a given algorithm
or primitive under attack. Tuning a deep learning model to generalize well on
a given dataset is a perpetual challenge. Understanding the process of obtaining
such a model can significantly contribute to the design of better models for future
attacks. Because exploring every possible configuration and hyperparameter set-
ting is impossible, the exploration should be guided by an algorithm. The most
commonly used is grid search, which explores the possible hyperparameters in a
pre-configured range by training each model to evaluate its performance. Such a
method can provide a good overview of the performance of a given deep learning
method but requires a fine-tuned grid to be efficient and find the ‘best’ model.

Regarding the exploration of the performance of deep learning methods, this
thesis clarifies the way for grid search analysis for multilayer perceptron on
masked AES implementation to find an efficient yet low parameter count model
in Chapter 3.

1.4 RESEARCH QUESTIONS

Can deep learning be used to enhance the performance of SCA on lightweight
cryptographic implementations of Ascon?

Significant amount of research has been conducted on the side-channel analysis
of implementations of symmetric cryptography. While the use of symmetric ci-
phers is still prevalent in the industry, concerns about their efficiency in terms of
resources and features have led to the development of new algorithms that are
fast and lightweight in terms of design and resource used. Ascon is the candidate
of the NIST lightweight cryptography competition that have been selected to be
standardized for Authenticated Encryption with Associated Data (AEAD). While
previous works have shown successful attack on Ascon [SD17], there is a need to
evaluate the security of Ascon implementations against DLSCA.

This thesis, in Chapter 4, explores the performance of convolutional neural net-
work in the attack of Ascon AEAD implementation on a 32-bit microcontroller.
The results show a successful attack on a reference implementation and a pro-
tected implementation.

How far can deep learning-based side-channel analysis improve the
performance of side-channel attacks?

While deep learning-based side-channel analysis has shown promising results
in previous works, the preciseness of deep learning analysis against different
countermeasures and implementations of symmetric and public-key cryptogra-
phy is still an open question. Moreover, DLSCA enables attacks that could cir-
cumvent countermeasures protecting cryptosystems against the state-of-the-art
side-channel analysis methods. Protecting a cryptographic implementation against
side-channel analysis is a challenging task. Implementers must consider an im-
plementation’s weaknesses and applicable attacks to design efficient countermea-
sures. A common approach is to separate the computation of sensitive information
from direct interaction with user inputs. Masking, for example, consists in sepa-
rating the secret into multiple shares to perform the computation on the shares
instead of the secret itself. While this approach is efficient against first-order side-
channel attacks, higher-order attacks, while more expensive, can still be effec-
tive on weaker implementations. DLSCA also have the advantage to be used for
higher-order attacks without exclusive attack considerations.

In the direction of exploring the possibilities of deep learning-based side-
channel analysis, we investigate the application of deep learning methods in the
attack of different protected implementations. Specifically, we explore the perfor-
mance of deep learning methods in the attack of the ephemeral key of Ed25519
in Chapter 5 and Chapter 6 and masked implementations of AES in Chapter 3 and
Ascon Chapter 4.

10

INTRODUCTION

How to evaluate the security of devices against TEMPEST attacks in regard to
deep-learning methods?

TEMPEST attacks are side-channel attacks exploiting the electromagnetic emana-
tions of a device to recover sensitive information. Declassified documents from
the NSA have shown first use of TEMPEST attacks in the 1960s to recover infor-
mation from a teletype machine [McN]. This type of attack has been later used to
recover information displayed on a computer screen from a distance. A limitation
of this attack can be the amount of noise in the captured signal that can make the
recovery of the information impossible to read. To overcome this limitation, deep
learning methods can be used to enhance the recognition of the information in the
signal. However, even with of successful recognition by a deep learning model,
there is a need for a systematic evaluation of the performance of the attack on
different devices and different use cases.

In this thesis, we offer an evaluation testbed to assess the performance of TEM-
PEST attacks on mobile device displays in Chapter 7. We provide an overview of
a deep learning method to enhance the recognition of the information in the signal
and evaluate the performance of the attack on different devices and use cases.

Are deep learning implementations secured against side-channel analysis?

An increasing number of applications are using deep learning models as part of
their Intellectual Property, and the model architecture and parameters are consid-
ered a secret because of the resources needed to obtain the best models for their
customers. However, it is unclear if side-channel analysis can threaten the dense
and complex implementations of neural networks on hardware.

We propose an analysis of the side-channel leakage of a neural network imple-
mentation on a GPU platform in Chapter 8. We evaluate the possibility of recover-
ing the architecture and parameters. The results show that a reference implemen-
tation used by standard deep learning libraries can disclose sensitive information
about the neural network that an attacker with little knowledge about the model
can recover with low effort, including the number of layers and neurons and the
type of activation function used. We point out that this information can be used to
reverse-engineer the entire model in an advanced black-box attack.

1.5 ORGANIZATION OF THE THESIS AND CONTRIBUTION OF THE
AUTHOR

In this thesis, we contribute in deep learning in side-channel analysis. The applica-
tions of side-channel analysis can vary between security and privacy concerns. We

1.5 ORGANIZATION OF THE THESIS AND CONTRIBUTION OF THE AUTHOR

explore various problems where deep-learning analysis can be used to enhance the
performance of classical analysis methods. In particular, we focus on three main
areas of research, which each constitutes a part of the thesis: symmetric cryptogra-
phy, public-key cryptography, and non-cryptographic applications that deals with
privacy.

The content of this thesis is organized in the following parts and chapters:

Chapter 2 provides the necessary background for the rest of the thesis. First,
it introduces the concept of side-channel analysis and the different types of side-
channel attacks. Second, it provides an overview of machine learning and deep
learning methods, and how they can be used in side-channel analysis.

In Part II, we explore the use of deep learning in side-channel analysis of im-
plementations of symmetric cryptography.

Chapter 3 investigates the performance of Multilayer Perceptron (MLP) in pro-
filing attack against a masked AES implementation. We use the ASCAD dataset
from [Pro+18], a public dataset of side-channel traces that was introduced together
with a successful attack using MLP and CNN. In this work, we perform an exhaus-
tive grid search to visualize the performance of the MLP method with different hy-
perparameters and compare it to the performance of the best MLP model found in
the previous study. The results show that preprocessing of the input features can
have a significant impact on the size of a successful model. Furthermore, while
behind in performance, MLP represents a simpler and faster-to-train alternative to
CNN, with less hyperparameter tuning to find a suitable model.

The author contributed to the design of the attack and the practical execu-
tion of the experiments. This research work has resulted in a paper “Perfor-
mance Analysis of Multilayer Perceptron in Profiling Side-channel Analy-
sis” [Wei] that has been presented at the Artificial Intelligence in Hardware
Security (AIHWS) workshop at the 2020 International Conference on Ap-
plied Cryptography and Network Security (ACNS).

J

Chapter 4 investigate the side-channel resistance of Ascon authenticated ci-
pher implementation on a 32-bit microcontroller using Correlation Power Anal-
ysis (CPA) and deep learning-based side-channel analysis. This work investigates
two possible leakage types susceptible to represent a vulnerability of the S-box
operation and considers a masked implementation that stands resistance against
both attacks. We demonstrated that in the best results obtained from an attack on
a reference and a protected implementation, a partial key can be recovered with
only 20 attack traces using a CNN-based attack. Furthermore, we demonstrate the
use of a multi-target model for a full-key recovery with 1000 attack traces on a

11

12

INTRODUCTION

reference implementation but remain unsuccessful on the protected implementa-
tion.

The author contributed to the adaptation of the cryptographic implementa-
tion to the target board, designed the experiments, and collected the traces.
The author also contributed to analyzing the traces and training of the deep
learning models. This research has resulted in a paper “Lightweight but
Not Easy: Side-channel Analysis of the Ascon Authenticated Cipher on a
32-bit Microcontroller” [WP23].

In Part III, we explore the use of deep learning in side-channel analysis of im-
plementations of public-key cryptography.

Chapter 5 proposes a one-trace attack on the ephemeral key on the digital sig-
nature algorithm Ed25519 implemented in WolfSSL on an STM32F4 microcon-
troller. The attack is based on a convolutional neural network, and its result on the
collected dataset is compared to the results from other machine learning-based
methods, namely Template Attack (TA), Random Forest (RF), and Support Vec-
tor Machine (SVM).

The author contributed both to the design and the practical execution of
the attack. This research work has resulted in a paper “One Trace is All it
Takes: Machine Learning-Based Side-Channel Attack on EADSA” [WPB]
that was presented in 2019 at the International Conference on Security,
Privacy and Applied Cryptography Engineering (SPACE).

Chapter 6 extends the previous work and systematizes the use of deep learning
for the side-channel analysis of EADSA. The attack is applied on a different target
that implements countermeasures against side-channel analysis. The results are
compared to those of the previous work, and the impact of the countermeasure is
evaluated. The results show that our deep learning attack is the only method sur-
veyed to recover the secret key with a single trace attack. We also establish that
preprocessing the input features, using Principal Component Analysis (PCA), neg-
atively impacts the attack and provide an integrated gradient visualization method
that can be used to view the influence of the input features on the predictions of a
successful model.

1.5 ORGANIZATION OF THE THESIS AND CONTRIBUTION OF THE AUTHOR

The author contributed to analyzing the publicly available dataset [Chm20]
and designing and training the machine learning models. This research
work has resulted in the paper: “Systematic Side-Channel Analysis of
Curve25519 with Machine Learning” [Wei+20b] published in the Journal
of Hardware and Systems Security in 2020.

In Part IV, we deal with the use of side-channel analysis and neural networks
outside of cryptography, but in the context of security and privacy.

Chapter 7 investigates using deep learning to enhance the TEMPEST attack
on mobile device displays. This work establishes a testbed to evaluate the perfor-
mance of such attacks and provides a broad overview of the use of deep learning
to enhance the results from the electromagnetic leakage reconstructed image ob-
tained with the TEMPEST attack. This overview compiles experiments on differ-
ent devices with two main use cases: reading an eye doctor’s letter and recovering
a PIN code embedded in a text message. The experiments prove the efficiency of
the deep learning methods in recognizing human unreadable digits from the re-
constructed images, even when the close-range probe was at a distance from the
device.

The author contributed to the elaboration of the testbed, the construction
of the experimental setups, and the execution of the experiments. This
research work resulted in a paper “Screen Gleaning: A Screen Reading
TEMPEST Attack on Mobile Devices Exploiting an Electromagnetic Side
Channel” [Liu+] presented at the 2021 Network and Distributed System
Security (NDSS) symposium.

Chapter 8 presents an evaluation of the leakage resilience of neural networks
implemented on a GPU platform against side-channel analysis. The electromag-
netic leakage that could be obtained by observing during the execution of the
neural network is analyzed to find any unintended information about the neural
network’s characteristics and parameters. The results show that it is possible to
accurately recover the number of neurons and layers of a multilayer perceptron
and the type of activation function used.

13

14

INTRODUCTION

The author contributed to the execution of the experiments and the analysis
of the results. This research work has resulted in a paper “On Reverse Engi-
neering Neural Network Implementation on GPU” [CW] that has been pre-
sented at the Artificial Intelligence in Hardware Security (AIHWS) work-

shop at the 2021 International Conference on Applied Cryptography and
Network Security (ACNS).

Chapter 9 concludes this thesis by summarizing the main contributions and

results and proposing research direction for future works in regard to the output
of this thesis.

BACKGROUND

This chapter provides general information necessary to understand the
context of the thesis. It gives an overview of side-channel analysis with
profiled and non-profiled attacks. Next, a general introduction to machine
learning with some examples is given, focusing on neural networks and
deep learning.

CONTENT OF THIS CHAPTER

2.1 Side-channel Analysis. 15
2.2 Machine Learning and Deep Learning 21

2.1 SIDE-CHANNEL ANALYSIS
2.1.1 Physical Leakage Properties

Digital circuits consume power by drawing current from a power supply to per-
form computations. This power consumption is directly related to the number and
type of components active in the circuit at a given time. This instantaneous power
consumption enables attack vectors in cryptographic devices. Complementary
metal-oxide-semiconductor (CMOS) is the most used technology in digital cir-
cuits. Any logic can be built with CMOS technology logic cells. The power
consumption of a digital circuit with CMOS logic cells is the sum of the power
consumption of its logic cells [MOP06; HW10]. Each cell has a static and dy-
namic power consumption. The static part is due to the leakage current of the
transistors, and the dynamic part is due to the switching of the transistors. During
switching signals in a circuit, many effects come into play and contribute to power
consumption. During a state transition, a transistor charges a load capacitance,
and small short-circuits happen because of the imperfect nature of the insulation
between the drain and source, and glitches caused by the heterogeneity of signal
propagation in the circuit can have a substantial impact on dynamic consumption.

15

16

BACKGROUND

The dynamic consumption contributes the most to the total power consumption,
especially for larger chip size technologies.

In a simple model, the instantaneous power consumption of a digital circuit
is expressed by the number of transitions of its transistors and is defined as the
Hamming Distance (HD) model. The HD model only takes into account the num-
ber of transistor transitions. It does consider the transitions from 0 to 1 and from
1 to 0 as equal consumption, disregarding the effect of the signal propagation in
the circuit and static consumption. HD model is well known to be well suited to
describe the power consumption of data buses in a microcontroller based on Har-
vard or Von Neumann architectures [RCNO02]. Because the data buses are shared
between many elements in a microcontroller, they tend to be long and hence have
a high capacitive load, producing a high effect of the value of the transferred
data on power consumption. However, HD model requires a minimum knowledge
of the circuit, or the previous bus state, that sometimes is not known. Hamming
Weight (HW) model is simpler by only considering the number of active transis-
tors and only requires one data value to be approximated [Stal0; PSQ07]. Another
power consumption model is the Identity (ID) model. This model considers the
correspondence of the value of the data being processed with the instantaneous
power consumption. Unlike the two previous models, the ID model does not con-
sider the bit representation of the value but the value itself [Bat+11].

2.1.2 Evaluation Metrics

First, we will introduce the notations used in the following sections. We denote
vectors with bold letters, a. K is the space of the variable k, and |K]| is the size of
the space.

Different metrics have been introduced to measure the performances of a side-
channel attack. The most common metrics are the Success Rate (SR) and the
Guessing Entropy (GE) [SMYO09]. The target of a side-channel attack is to re-
trieve a secret key k* (or sometimes part of it) from all possible keys k € K. A
side-channel analysis consists in the interpretation of the results obtained from a
collection of challenges to a device under attack. This analysis holds on the sets
of input/output data (pt) of the challenges and the corresponding side-channel
traces T. All analysis methods boil down to comparing different key candidates
k to match a statistical model M using the side-channel samples (T, pt). This
comparison creates a probabilistic distribution of the key candidates that can be
represented with a guessing vector g = (91,82, - - -, gHKI] ordered by decreasing
probabilities, and the most probable key candidate is the one whose guess value
maximizes the probability of the model.

2.1 SIDE-CHANNEL ANALYSIS

In practice, the guessing vector is obtained from a set of traces T and corre-
sponding metadata pt. Estimating the minimum number of traces to collect to
have a working attack is a crucial question in side-channel analysis. It is usually a
challenge to find the point where the attack is guaranteed to succeed with a high
probability to obtain the best evaluation [Bat+11; SMY09; Riv08]. In other words,
we want to evaluate the number of traces required for the attack to succeed given
any other experiment in similar experimental conditions.

In a white-box scenario, the attacker has complete knowledge of the system
under attack and can access the code, data, and internal state of the device during
the execution of the cryptographic algorithm. In a black-box scenario, the attacker
knows nothing about the implementation of the cryptographic algorithm and can
only observe the device’s physical leakage together with the input/output data of
the challenges.

SUCCESS RATE A successful attack is assessed when the recovered key k*
that has the maximum probability from the guessing vector gy is the correct key:
k* = argmaxck (g). The probability of a successful key retrieval is defined as
the Success Rate (SR) and can be expressed as:

SR = P, [k* = argmaxyck (g)])]

GUESSING ENTROPY The Guessing Entropy (GE) is the average number
of guesses needed to find the correct key and can be expressed as:

GE = E (ranki-(g)) (2

with ranky. (g) being the position of the correct key k* in the key guessing vector
g, and E is the average of multiple realizations of the key rank, commonly per-
formed by multiple successive attacks using randomly selected traces. The partial
guessing entropy is the average position of the correct key in the key guessing
vector restricted to a subset of the key (e.g., one key byte).

2.1.3 Non-profiled Attacks

In non-profiled attacks, the attacker is assumed to have access to the device under
attack and can query the device with chosen plaintexts. The attacker can then col-
lect and analyze the side-channel traces to recover the secret key. Some examples
of non-profiled attacks are described in the following paragraphs.

17

18

BACKGROUND

o1 01 0000001 01 01 o001 01 1 1 01 001 1 1

Figure 1: Power consumption traces of the square and multiply operations of RSA, where
a key bit of zero is represented by a short pattern and a key bit of one is repre-
sented by a long pattern (in red).

SIMPLE POWER ANALYSIS The first attack proposed by Kocher in
1996 [Koc96] is the Simple Power Analysis (SPA). The SPA is a non-profiled
attack that exploits the power consumption of a cryptographic device to recover
the secret key. This analysis relies on variances in timing or instantaneous power
consumption patterns that are visible for a trace of the power consumption and
reveals the sequence of instructions executed, and can be used to break crypto-
graphic implementations in which the execution path depends on the data being
processed. The SPA is a non-profiled attack because it does not require any
knowledge of the target device and can be performed on a single trace. SPA can
also be performed on multiple traces of the same operation averaged together to
make the leakage visible by increasing the signal-to-noise ratio. The principle of
this attack, as proposed by Kocher, is to exploit the timing difference between
the square (SQR) and multiply (MUL) operations from RSA during the modular
multiplication function. As the sequence of operations between SQR and MUL
depends directly on the bit value of the key (i. e.when the key bit is zero, only
SQR is performed, and when the key bit is one, SQR is followed by MUL), it
is possible to recover each bit by simply looking at the sequence of short and
long patterns of the power consumption. The same principle is applied to Elliptic
Curve Cryptography (ECC) and its double and addition operations, which follow
the same sequence logic.

Simple power analysis can also be used to exploit other non-constant-time im-
plementations of cryptography. Another example of such an attack is the exploita-
tion of memory loads and stores in a software implementation of AES. The sub-
stitution operation of AES can be implemented as a lookup table, and the memory
access pattern of the lookup table depends on the key value. Observing the mem-
ory access pattern makes it possible to recover the key.

DIFFERENTIAL POWER ANALYSIS Differential Power Analysis (DPA)
is a type of statistical analysis attack first introduced by Kocher in 1999 [KJJ99].
The DPA relies on the analysis of data-dependent correlations of sets of trace

2.1 SIDE-CHANNEL ANALYSIS

measurements. The method consists in partitioning a set of traces into subsets, and
compute the difference of means between those sets. If the difference of means
is significant with increasing number of traces, the choice of which the traces are
grouped is correlated to trace measurements.

This method was later improved with the evaluation of different distinguishers
for partition-based attacks, such as mutual information analysis [Gie+08], and
comparison-based attacks, such as Pearson’s correlation coefficient or Bayesian
analysis [SGVO0S].

CORRELATION POWER ANALYSIS Correlation Power Analysis (CPA) is
a variation of the DPA introduced by Brier et al. in 2004 [BCOO04]. This analysis
relies on the comparison of individual traces in the set to a model of the device
leakage through a distinguisher. This model can be Hamming Weight, Hamming
Distance, or Identity model. The distinguisher of CPA is the Pearson correlation
coefficient which measures the linear relationship between the trace samples and
the model for a given key value. A greater correlation coefficient between the
trace samples and the model determines the most probable key candidate. CPA is
considered more reliable attack than DPA, because it is resistant to changes in the
mean of traces over the whole traceset, for example due to environmental changes
in time during the traceset collection [HGR13].

2.1.4 Profiling Attack

In profiling attacks, the attacker is assumed to have access to an identical clone of
the device under attack and has complete control over that device. The attacker can
then collect and analyze as many side-channel traces as needed to build a model
of the leakage of the clone device. In a second phase, the attacker has access to
the device under attack and can query the device and collect side-channel traces
to recover the secret key using the knowledge built during the profiling phase.
Some examples of profiling attacks are described in the following paragraphs.

TEMPLATE ATTACKS Template Attack (TA) are a type of profiling attack
introduced by Chari et al. in 2002 [CRR02], introduced as the strongest statistical
attack in side-channel analysis in the information theoretic sense. The principle
of template attacks is to build models of an operation on the leakage of a target
device, and use these models to categorize traces of a device under attack based
on statistical distance to the models, using Bayes’ theorem. The templates are
built by collecting many traces x of the target device, which can be considered as
the realisation of a random variable X. Each trace consisting of F features. The

19

20

BACKGROUND

value of the secret key is known for each trace as a label y, realisation of the
random variable Y. For each label’s value, a template is built using the average
and variance of traces with the same label. The posterior probability for each
label value y is given by:

P(X=x[Y =y)P(Y =y)

P(Y =ylx =) = ==

3

Since X is continuous while Y is discrete, the discrete probability P(Y = y) can
be replaced by the sample frequency, where P(X = x|Y = y) represents a density
function, and can be assumed to rely on a multivariate Gaussian distribution with
mean X, and covariance matrix X.,. The previous relation can be written as:

1 1
PX=x|Y=y)=—— exp| —=(x—x,) 2 Y (x—x 4
(x=xly =y) @nfmﬂep(2< D= 5)) @

Pooled templates have been introduced by Choudary and Kuhn in [CK13] be-
cause the estimation of the covariance matrices for each class can lead to overfit-
ting when the amount of traces in each class is too low. To overcome this problem,
the authors proposed using a pooled covariance matrix for all classes %, i.e., using
a single covariance matrix formed as a combination of the covariance matrices of
each class. The previous equation can be rewritten as:

1 1
PX=x|]Y=y)= ————exp | —s(x—x,) 2 1 (x—x > Q)
(X =2y =) = oo (50— 8)"E - 5
The templates are then used to categorize traces of the device under attack by
calculating the distance between the trace and each template. The highest posterior
probability determines the matching label and the most probable key candidate for
each trace.

2.1.5 Countermeasures against Side-channel Analysis

Countermeasures are the techniques applied to a cryptographic implementation
used to reduce the attack surface of known side-channel attacks. The countermea-
sures can be designed from the algorithmic level down to the physical realizations
of the signal emission. For example, shielding can lessen the EM signal accessi-
ble by an attacker and consists in adding a metal layer around the source that acts
as a Faraday cage to reduce the signal propagation [PSS22]. When shielding is
not possible, using jamming noise superposed to the signal can hide that signal,

2.2 MACHINE LEARNING AND DEEP LEARNING

making it harder to exploit it. Another countermeasure that can be grouped in the
same category is the application of random delays to remove correlation of the
leaked signal with the timing of the processed algorithm [CK09].

At the algorithmic level, the developed countermeasures mainly aim to remove
the dependency of the secret data from the execution path of the algorithm.
Against timing attacks, constant-time implementation is the best strategy to pre-
vent an attacker from exploiting the timing difference in the execution of the
cryptographic algorithm based on a secret value. For example, the implementa-
tion of RSA is commonly prone to timing attacks when the square and multiply
algorithm executes a different number of operations based on the value of the
key [KJJ99]. A well-known countermeasure is the Montgomery ladder algorithm,
which ensures the same number of operations are executed regardless of the value
of the handled key [BSS99].

While constant-time implementation is a good coding practice, some operations
remain data dependent, such as read operations on fixed pre-computed look-up
table on devices with memory cache [Nas+17]. In fact, timing differences can be
found by accessing values from the table and revealing which part of the table
is accessed. Predictable memory access designs should be preferred to avoid this
kind of attack.

Against differential side-channel analysis, some common countermeasures are
the use of Boolean masking or threshold implementation.

BOOLEAN MASKING The principle of Boolean masking is to split sensitive
values y into a set of shares 1, ...,14, such thaty = y; @ ... @ y,, with @ the
XOR operation. The shares are then processed independently, and the final cryp-
tographic output is obtained by combining the results of the shares. The number
of shares 7 is also called the masking order. This parameter defines the security
level of the countermeasure and specifies that no information can be recovered
from less than d < n shares. This property is called the d-order probing secu-
rity [ISWO03].

2.2 MACHINE LEARNING AND DEEP LEARNING
2.2.1 Machine Learning

Profiling attacks can be seen as a classification problem, and machine learning
methods are well suited to solve such problems. Among the different machine
learning methods, random forest, support vector machines, and neural networks
are particularly promising for side-channel analysis.

21

22

BACKGROUND

Machine learning is a set of statistical methods that can model patterns from
data and generalize the analyzed patterns to make predictions on unseen new
data [Murl2]. Machine learning algorithms are able to learn a task from given
experience data and performance measures [Mit97].

In SCA, data samples are usually a set of vectors of physical measures of a tar-
get device during the handling of secret data, e.g., the power consumption during
the execution of a cryptographic operation.

To ensure a satisfying result, the data set should be large enough and statistically
representative of the task to learn. To monitor the performance of the model during
the training phase, a data set is split into three sets: training, validation, and test
sets. The training set contains the data on which the model will learn the patterns
and train its parameters. The validation set is used to evaluate the model’s ability
to generalize to unseen data during the training phase. The fest set is used on the
final model to evaluate whether the model is unbiased. All sets must be disjoint
but ideally have the same statistical distribution. These sets are often created by
randomly splitting a common data set with a typical train/test-split ratio of 80%
to 20%, and the validation set is a subset of the training set.

A commonly used method is the k-fold cross-validation, where the training set
is randomly split into disjoint k subsets (i.e., folds) that are used iteratively to train
the model on k — 1 folds and test it on the remaining fold [AH98]. The average er-
ror of the model across all trails is the cross-validation error. This method provides
more certainty on the model generalization when the test set is small.

Figure 2: Examples of different learning distributions, with under fitting (left), proper fit-
ting (middle), and over fitting (right). The black points are the training data
samples, and the red lines represents the approximated distribution of the ML
model.

Two behaviors should be avoided during model training: underfitting happens
when the model cannot capture the patterns in the training data, and the model can-
not obtain sufficiently low error on the training and test sets. Overfitting happens
when the model captures more than the patterns in the training data, performing
well on the training set but poorly on the test set. These two behaviors are illus-
trated in Figure 2.

2.2 MACHINE LEARNING AND DEEP LEARNING

The following paragraphs give a brief overview of the most important machine
learning methods used in SCA.

RANDOM FOREST Random Forest (RF) is a construction of multiple deci-
sion trees, where each tree is built using a random subset of the training data and
a random subset of the features [BreO1]. A tree is a combination of Boolean de-
cisions on the features, and the output of the tree is a label. In the training phase,
the decision rules in each node are tuned to minimize the error rate of the random
forest for the training set.

SUPPORT VECTOR MACHINES Support Vector Machine (SVM) repre-
sents a family of kernel-based machine learning methods that can be used to clas-
sify both linearly separable and linearly inseparable data [CV95]. SVM classifiers
are also known as maximum-margin classifiers, as this method transforms each
data point (i.e., traces in a traceset) into a higher dimensional space and creates
optimal hyperplanes between data points belonging to different classes, as shown
in the binary example in Figure 3.

(a) Linear kernel (b) RBF kernel
Figure 3: Binary classification using a SVM
For linearly separable problems, the linear kernel is given by
T
W X+Db, (6)

where w is denoted as the weight vector and b as the bias.
The Radial Basis Function (RBF) is a kernel trick applied as a separation func-
tion for SVM [ABR64; BGV92]. This function measures the distance between

23

24

BACKGROUND

data points in infinite dimensions and then estimates a classification by a majority
vote. The kernel function is given by:

exp(—7y|lw —w'|]?),)

where v > 0 is the kernel coefficient.

The training function used for SVM is the Sequential Minimal Optimization
(SMO) algorithm [Pla98; Kee+01], which iterates the margin optimization be-
tween classes using the hinge loss [CSO1].

For better results, regularization is applied on the input, and its parameter C,
which is inversely proportional to the hyperplane’s margin, reduces the model’s
variance and influences the misclassification tolerance.

GRADIENT BOOSTING Gradient boosting for classification is an algorithm
that trains several weak learners (i.e., decision trees that perform poorly con-
sidering the classification problem) and combines their predictions to make one
stronger learner. Gradient boosting differs from the random forest in building the
decision trees. While in a random forest classifier, each tree is trained indepen-
dently using random data samples, decision trees in gradient boosting depend on
the previously trained tree’s prediction to correct its errors. Gradient tree boost-
ing is composed of a concatenation of several smaller decision trees. We used
the eXtreme Gradient Boosting (XGBoost) (or XGB) implementation of gradient
boosting, designed by Chen and Guestrin [CG16], which uses a sparsity aware
algorithm for handling sparse data and a theoretically justified weighted quantile
sketch for approximate learning.

NAIVE BAYES Gaussian Naive Bayes (NB) classifier is one of the classifica-
tion algorithms that applies Bayes’s theorem with the “naive” assumption. The
naive assumption describes the conditional independence between every pair of
features in a given class sample. The Gaussian assumption is assumed to be the
feature probability distribution. The Naive Bayes method is highly scalable with
the number of features and requires only a few representative features per class to
achieve a satisfying performance.

2.2.2 Deep Learning

Among machine learning methods, methods based on neural networks are cate-
gorized in deep learning. Artificial Neural Network (ANN) are a distinct class of
algorithms that rely on mathematical models of small units processing a set of

2.2 MACHINE LEARNING AND DEEP LEARNING

b
X1 o— W1 I

7

X3 o— W3

Xno—bwn

Figure 4: Anatomy of a neuron.

inputs in coordination with each other in a network manner to produce an out-
put. Because of the resemblance of many operators receiving vector inputs from
other similar operators and producing a scalar output with its own activation rule
to the biological science about neurons, these units are called neurons. The later
research on neural networks is, however, driven by mathematical and engineering
disciplines and has no ambition to reproduce the workings of the human brain.

PERCEPTRON One type of ANN is the perceptron, often described as the
smallest unit of ANN. The perceptron (a.k.a. neuron or node) is a mathematical
function that maps a set of inputs to a single real-valued output through a weighted
sum and an activation function. The function is represented in Figure 4 and is
defined as:

y=f()_wxi+D), (8)

i=1

with x; the input vector, w; the weights, b the bias, and f the activation function.

ACTIVATION FUNCTIONS Activation functions are used to introduce non-
linearity in the output of a neural network layer. The non-linearity is an important
property that enables the network to learn complex patterns by ignoring the contri-
bution of some neurons in the network. The application of the activation function
can also range the output of a layer for normalization purposes to prevent the out-
put from exploding or vanishing. The most common activation functions are the
sigmoid function, the hyperbolic tangent function (TanH), and the rectified linear
unit function (ReLU). These functions are illustrated in Figure 5.

25

BACKGROUND

15 2
_— f()@:ﬁ —— f(x) =tanh(x) 4 — f(x) = max(0, x)

1.0 1

o.S/ Of 2

0.0 -1

o
03 0 2) REA7E— 0 2 4 -4 2 0 2 4
(a) Sigmoid (b) TanH (c) ReLU

Figure 5: Activation functions for neural networks

Input Hidden Output
layer layers layer

Figure 6: Schematic of a Multilayer perceptron

MULTILAYER PERCEPTRON Ordinary ANN is the Multilayer Perceptron
(MLP). It consists of several layers of neurons that form a graph where each layer
is fully connected to the next layer, as shown in Figure 6.

The first layer is the input layer, the last layer is the output layer, and the layers
between are called hidden layers. This model is also called a feedforward neural
network, because information flows from the input layer to the output layer with-
out any feedback loop, in contrast to recurrent neural networks. Deep learning
is a terminology taken from the depth of the overall succession of layers in the
network. Commonly, a network with more than one hidden layers is considered a
deep network.

Each unit in a layer acts in parallel to other units, each representing a vector-
to-scalar function, and the output of the layer is a vector of the outputs of each
unit. In each unit, when the output is different from zero, we say that the neuron
activation feeds the next layer as its input. The number of layers and the number

2.2 MACHINE LEARNING AND DEEP LEARNING

of units in each layer are adjusted to the complexity of the task to fit the training
data. Too many layers or units can lead to overfitting, and too few can lead to
underfitting.

CONVOLUTIONAL NEURAL NETWORKS Layers with a convolution
function as the network input function are called convolutional layers and are the
core building blocks in Convolutional Neural Network (CNN). CNN have been
introduced by LeCun et al. in [LeC+90]. Their use is particularly suited for image
recognition but also for speech and time series data. CNNs are a great tool to
handle large input data by dividing into smaller task-specific mechanisms into
their architecture to reduce the overall number of parameters of the model while
keeping the ability to learn complex patterns.

CNNs are commonly composed of three main types of layers: convolutional
layers, pooling layers, and fully-connected layers.

CONVOLUTION LAYER computes the output of neurons from locally
sparse combinations of initial raw input features to reduce the space volume of
information into smaller regions of interest. This layer extracts information from
small spatial regions of the input data with kernels (also called filters). The result
of the convolution is a feature map that is passed to the next layer. It can be
mathematically expressed as the dot product of the input data and the kernel, as
shown in Equation 9, and illustrated for a 2D convolution example in Figure 7.

1’,‘71

yk’,f = Xk’ * Wf = Z XK/ +x X wk,f (9)

kikn

with k’ the coordinates of the output scalar, xy the input, w £ akernel of dimension
N and sizes (rj);en and filter index f.

When the convolution is applied only without padding (as in the example), we
call it a valid convolution. When the convolution is applied with zero-padding

to keep the output size the same as the input size, we call it a same convolution.

Moreover, the sliding of the kernel over the input data is called the stride of the
convolution and represents the number of indices to slide for the next computation
(in the example, the stride is 1).

POOLING LAYERS are used after a convolution layer to sample down local
regions and create spatial regions of interest. The method is called max-pooling,
when the maximum value of the region is taken, and average pooling when the

27

28

BACKGROUND
CONV input
Size = 8x8
0
2 0
1217 01 2 0
1 2 0
00252233
1 0
2 0 1 1 .
2 13 g‘ 1133 58 4 | Max-pooling
2 10’»’1,,,333 1 3 4 g 9 6 Length = 2
2 Y. 0 7 5
g ”””””””””” 0 g é 9 6 g 3 Strides = 2
613 7 .311
¥iels 9927
Kernel
Length=3 Feature map F
Height = 2 Size = 7x6
Strides =1

Figure 7: Schematic of a 2D convolutional layer followed by a max-pooling layer.

average value is taken. Pooling layers are important for compressing the output of
convolution layers and enabling the network to be invariant to small translations
of the input data (e.g., misalignment or temporal deformations). An example of
the max-pooling operation is shown in Figure 7.

A fully connected layer at the end of a CNN behaves as a classifier for the
extracted feature map.

MODEL TRAINING Training an ANN is an iterative and multi-step process
that requires the optimization of the model parameters (i.e., weights and biases) to
minimize the error of a dedicated loss function (e.g., the categorical cross-entropy
loss in a classification problem) between the labeled output and model prediction.

Gradient descent search is an optimization method used to find a local minimum
of a differentiable multivariate function. This iterative method starts with an arbi-
trary initial weight vector and then modifies it in small steps in the direction that
produces the steepest descent along the error surface [Mit97]. Its stochastic appli-
cation to the neural network is known as Stochastic Gradient Descent (SGD), and
is derived in different variations of this optimizer, such as Root Mean Square Prop-
agation (RMSProp) [MSS12], Adaptive Gradient Algorithm (AdaGrad) [DHS11]
and Adaptive Moment Estimation (Adam) [KB15].

2.2 MACHINE LEARNING AND DEEP LEARNING

The hyperparameters are the parameters that define the architecture of a neu-
ral network. Examples are the number of hidden layers, the number of neurons
per layer, or the type of activation function used in the neurons. According to
the no free lunch theorem proposed in [Wol96], no machine learning algorithm
is universally any better than any other. Thus, to obtain the best results from a
network, it should be optimized for the given task to solve. Several methods ex-
ist to find the optimal hyperparameters, such as random search [BB12], Bayesian
optimization [Tur+21; SLA12; HHL11; JSW98], evolutionary algorithms [BS02],
reinforcement learning [LM17], or gradient-based methods [EMH18].

29

Part 11

DEEP LEARNING SIDE-CHANNEL ANALYSIS OF
SYMMETRIC CRYPTOGRAPHY

PERFORMANCE ANALYSIS OF MULTILAYER
PERCEPTRON IN PROFILING SIDE-CHANNEL ANALYSIS

This chapter is based on [Wei], a single author paper, that has been presented
during the Artificial Intelligence in Hardware Security (AIHWS) in 2020.

CONTENT OF THIS CHAPTER

3.1 Introduction 33
32 RelatedWork 35
3.3 Experimental Setup, 36
3.4 Experimental Results 37
3.5 Discussion e e e 46
3.6 Conclusions and Future Work 48

3.1 INTRODUCTION

Side-channel analysis (SCA) exploits weaknesses in cryptographic algorithms’
physical implementations rather than the algorithms’ mathematical proper-
ties [MOPO6]. There, SCA correlates secret information with unintentional
leakages like timing [Koc96], power dissipation [KJJ99], and electromagnetic
(EM) radiation [QSOla]. One standard division of SCA is into non-profiling
(direct) attacks and profiling (two-stage) attacks. Profiling SCA is the worst-case
security analysis as it considers the most powerful side-channel attacker with
access to a clone device (where keys can be chosen and known by the attacker).
During the past few years, numerous works showed the potential and strength of
machine learning in profiling side-channel analysis. Across various targets and
scenarios, researchers were able to show that machine learning can outperform
other techniques considered state-of-the-art in the SCA community [CDP17;
MPP16]. More interestingly, some machine learning techniques are successful,
even on implementations protected with countermeasures [CDP17; Kim+19b].
There, in the spotlight are techniques from the neural network family, most no-
tably, multilayer perceptron (MLP) and convolutional neural networks (CNNs).

33

34

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

When considering the attack success, we commonly take into account only the
performance as measured by the number of traces needed to obtain the key. While
this is an important criterion, it should not be the only one. For instance, attack
complexity (complexity of tuning and training a model) and interpretability of the
attack are also essential but much less researched. For instance, CNNs are often
showed to perform better than MLPs in SCA’s context [CDP17; MPP16; Pic+19],
as they make the training of a model more versatile and alleviate the feature en-
gineering process. On the other hand, MLP has a more straightforward structure
and is probably easier to understand than CNNss, but still, the performance of MLP
for SCA raises less attention. Consequently, this raises an interesting dilemma: do
we consider profiling SCA as a single-objective problem where the attack per-
formance is the only criterion, or should it be a multi-objective problem where
one considers several aspects of “success”? We believe the proper approach is the
second one as, without a better understanding of attacks, we cannot make better
countermeasures, which is an integral part of the profiling SCA research.

In this paper, we experimentally investigate the performance of MLP when ap-
plied to real-world implementations protected with countermeasures and explore
the sensitivity of the hyperparameter tuning of a successful MLP architecture. We
emphasize that this work does not aim to compare the performance of differ-
ent techniques, but rather to explore the multilayer perceptron’s capabilities. To
achieve this, we use two datasets containing different AES implementations pro-
tected with random delay countermeasure and masking countermeasure. Our re-
sults show that we require larger architectures only if we have enough high-quality
data. Hence, one can (to a certain degree) overcome the limitation in the number
of hidden layers by providing more perceptrons per layer or vice versa. Finally,
while our experiments clearly show the difference in the performance concerning
the choice of hyperparameters, we do not notice that MLP is overly sensitive to
that choice. This MLP “stability” means it is possible to conduct a relatively short
tuning phase and still expect not to miss a hyperparameter combination yielding
high performance.

3.1.1 Datasets

We consider two datasets presented in previous researches and that we denote as
ASCAD and AES_RD. Both datasets are protected with countermeasures: the first
one with masking and the second one with the random delay interrupts.

The ASCAD dataset, introduced in the work of Prouff et al. [Pro+18], consists
of electromagnetic emanations (EM) measurements from a software implementa-
tion of AES-128 protected with first-order Boolean masking running on an 8-bit

3.2 RELATED WORK

AVR microcontroller (ATMega8515). This dataset counts 60000 traces of 700
samples each and targets the third byte of the key. The SNR for this dataset is
around 0.8 if the mask is known and O if it is unknown. The trace set is publicly
available at https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1/ATM_AES_vl_fixed_key.

The AES_RD dataset, introduced in the work of Coron and Kizhvatov [CK09],
consists of power traces from a software implementation of AES-128 protected
with random delayed interruptions running on an 8-bit AVR microcontroller (AT-
megal6). This dataset has 50 000 traces with 3 500 samples each, and targets the
first byte of the key. The SNR has a maximum value of 0.0556. The trace set is
publicly available at https://github.com/ikizhvatov/randomdela
ys—traces.

3.2 RELATED WORK

The corpus of works on machine learning and SCA so far is substantial, so we con-
centrate only on works considering multilayer perceptron. Yang et al. considered
neural networks and backpropagation as a setting for profiling SCA [Yan+12].
They indicated that “...neural network based power leakage characterization at-
tack can largely improve the effectiveness of the attacks, regardless of the im-
pact of noise and the limited number of power traces.”. Zeman and Martinasek
investigated MLP for profiling SCA where they mentioned the machine learning
algorithm simply as “neural network™ [MZ13]. They considered an architecture
with only a single hidden layer and experimented with several possible numbers
of neurons in that layer. Finally, they only considered a sigmoid for the activa-
tion function. After those, there have been several papers using MLP with good
results, but usually comparable with other machine learning techniques [GHO15;
Heu+16; MHM14]. Still, the hyperparameter tuning was often not sufficiently ex-
plored. Despite our attempts, we could not confirm the first paper using MLP in
a deep learning paradigm, i.e., with more than a single hidden layer. Interestingly,
first papers with MLP were often not clear on the number of layers, as the tuning
phase played an even smaller role than today.

In 2016, Maghrebi et al. conducted the first experiments with convolutional
neural networks for SCA, and they compared their performance with several other
techniques (including MLP) [MPP16]. Their results indicated that, while MLP is
powerful, CNNs can perform significantly better. From that moment on, we ob-
serve a number of papers where various deep learning techniques have been con-
sidered in comparison with MLP, see, e.g., [HGG18; Pic+18a; Pic+19; Pic+18b].

35

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/ikizhvatov/randomdelays-traces

36

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

Pfeifer and Haddad considered how to make additional types of layers for MLP
to improve the performance of profiling SCA [PHI18]. B. Timon investigated the
“non-profiled” deep learning paradigm, where he first obtained the measurements
in a non-profiled way, which are then fed into MLP or CNN [Tim19]. Interest-
ingly, the author reported better results with MLP than CNNs. Finally, Picek et al.
connected the Universal Approximation Theorem and performance of the side-
channel attack, where they stated that if the attacker has unlimited power (as
it is usually considered), most of the MLP-based attacks could (in theory) suc-
ceed in breaking implementation with only a single measurement in the attack
phase [PHG19].

3.3 EXPERIMENTAL SETUP

In this section, we present our strategy to evaluate and compare the performance of
the different MLP attacks on different datasets. We want to observe the influence
of the choice of leakage model, information reduction, and major hyperparameters
defining an MLP (i.e., number of layers, number of perceptrons per layers, and
activation function).

We provide results with power leakage models of both the S-box output (inter-
mediate value model) and the Hamming Weight (HW) representation of the S-box
output.

Besides considering the raw traces (i.e., no pre-processing and feature engineer-
ing), we apply the Difference-of-Means (DoM) feature selection method [MOPO6].
DoM method selects the samples of a dataset that have the highest variance for a
given leakage model. Even though selecting features with high variance is likely
to preserve the information about the leakage, it is better to select a number of
features with different variance since the features containing the leakage are not
always the features with the highest or the lowest variance.

To compare the hyperparameters’ influence, we conduct a grid search for hy-
perparameter optimization and consider each resulting model as a profiling model
for an attack. Considering the MLP hyperparameters, we fix some parameters (i.e.,
number of training epochs and learning rate) and explore the influence of the three
following hyperparameters:

* The number of perceptrons, with a fixed number of layers.
* The number of layers, with a fixed number of perceptrons.
* The activation function used for the perceptrons in the hidden layers.

In Table 1, we list all the explored hyperparameters. The total number of mod-
els trained per experiment is of 1, * 1) % 1, = 2% 6 % 10 = 120, where 14,
ny, ny, represent the number of activation functions, layers and perceptrons per

3.4 EXPERIMENTAL RESULTS

layers explored respectively. We run our experiments with Keras [Cho+15], and
we use 200 epochs for the training phase, with a learning rate of 0.001. To assess
the performance of a profiling model for an attack, we use the guessing entropy
(GE) metric [SMY09]. GE defines the average rank position of the correct key can-
didate in the guessing vector. In other words, when considering N attack traces,
each of which results in a guessing vector g = [g0,41,-- -, 3| K,l‘] containing
the probabilities of each key candidates in the keyspace K, ordered by decreas-
ing probability. For all experiments, when computing GE, we use the generalized
guessing entropy introduced in [Wu+20]. GE equal to O means that the first key
guess is correct, while GE of 128 indicates a random behavior. GE can also show
stability or consistent increase above 200 for the correct key candidate when the
computation method for GE don’t consider averaging several attacks on differ-
ent traces. Such behavior indicates that the trained model failed to learn how to
classify data.

The metric used during a neural network training phase is training accuracy.
Note, this metric can be deceiving for assessing the quality of a side-channel at-
tack because it evaluates the attack one trace at a time, while SCA metrics take
several traces into account, giving a more accurate estimation for a real attack
scenario [Pic+19].

3.4 EXPERIMENTAL RESULTS

Table 1: List of evaluated hyperparameters.

Hyperparameter Range
Activation function ReLU, Tanh
Number of layers 1,2,3,4,5,6

Number of perceptrons per layer | 10,20, 30,40, 50, 100, 150, 200, 250, 300

The results for all experiments on both datasets (ASCAD, AES_RD) and leak-
age models are given in four figures: the final key ranking from the guessing en-
tropy of each model is represented for the activation functions explored in the first
two figures. Next, we depict guessing entropy of the attack for all trained MLP
architectures. The last figure presents the integrated gradient of the best-obtained
model and the median model with the corresponding color value of its final guess-
ing entropy. By doing so, we depict the differences in important features when
comparing the best attack model and average model. The integrated gradient is a
method introduced in [STY17], which attributes the prediction of a deep neural

37

38

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

network to its inputs. The integrated gradient can be used in the side-channel anal-
ysis to visualize the part of the traces that influence the most a network prediction
and understand what trace samples the network evaluates as the leakage.

3.4.1 ASCAD Results

INTERMEDIATE LEAKAGE MODEL: InFigure 8, we depict the influence
of all combinations of hyperparameter choices for the ReLU and Tanh activa-
tion functions when considering the intermediate value leakage model. For both
choices of activation functions, some models reach guessing entropy of O within
1000 attack traces. More models achieve a low guessing entropy with the ReLU
activation function than with Tanh. On the other hand, Tanh seems to behave
more stable as the resulting GE is more uniform across many explored hyperpa-
rameters settings. Several models with ReLU activation function and a low num-
ber of perceptrons (down to 50) can reach GE near zero.

The authors of the ASCAD dataset report the best performance using an MLP
with six layers containing 200 units and ReLU activation function trained over
200 epochs. The same hyperparameters are also evaluated and show similarly
good results. However, This hyperparameters choice is not unique, and other mod-
els show equivalent performances with fewer layers and perceptrons per layers.
As represented in Figure 8a, for settings with 200 perceptrons per layer, all MLPs
with more than two hidden layers converge approximately equally fast to GE of
0. In Figure 8c, we see that many settings reach GE of 0 and that some have poor
performance even after 2 500 attack traces with GE around 200. We interpret this
as expected sensitivity to the hyperparameter tuning. Models with too few layers
and perceptron per layers failed to properly fit the data because of their poor learn-
ability. Finally, Figure 8d shows that the model that reaches the smaller GE in the
attack (in blue) is more sensitive to the various samples of the input than other
models that fail to learn the leakage. The leakage seems entirely spread over all
samples, which indicates reducing the number of features will reduce the attack
performance. The model that reaches a median GE considering all experiments
(in orange) has smaller integrated gradients on every data sample, which explains
why this model shows poor performance for the attack.

REDUCED NUMBER OF FEATURES: We now reduce the number of fea-
tures to 50 with the Difference-of-Mean method. We train different MLPs with
the traces that have a reduced number of features. We apply the same reduction
for the attack dataset and compute guessing entropy, and we show the results in
Figure 9.

3.4 EXPERIMENTAL RESULTS

250 250

200 [Mw 200
s

e 2 200 -

0] m

@ 150 & 150 150

g g

«Q «Q

m m 10

2 2

g 100 3 50 100

o T

< <

50 050 V// B0
95

Def XS
Cep, 02 5 3¢
tr Ons 5%00 6 \ N

(a) ReLU (b) Tanh

250

601 — activation:relu, n_layer:4, n_perceptrons:200
activation:relu, n_layer:2, n_perceptrons:10
50 200

—
o
=)

Gradient
w
S
5
o
IS
Guessing Entropy

Guessing entropy

-
o

a

o

o 500 1000 TR TR 0 100 200 300 400 500 600 700

0
Number of traces Number of Sample
(c) Guessing entropy of all MLP architec- (d) Integrated Gradient.
tures versus the increasing number of at-
tack traces.

Figure 8: ASCAD guessing entropy for the intermediate leakage model.

The area where GE converges toward zero is now smaller. For the ReLU acti-
vation function, this area is located around three and four layers with 250 and 300
perceptrons per layer. For the Tanh activation function, it is located above five lay-
ers and 250 perceptrons per layer. Interestingly, the highest score in Figure 9a is
not obtained for the highest number of layers. For both activation functions, the hy-
perparameters leading to a good attack performance are shifted toward larger hy-
perparameter values. This indicates that when considering features selected with
the DoM method (i.e., using less information), we require deeper MLP to reach
the same performance level, as the information is still present but more difficult
to fit for the model. Figure 9c shows sensitivity to hyperparameter tuning similar
to the case with no feature selection. From Figure 9d, the best fitting model has
higher gradient values than the median model. Consequently, for the best model,
we use most of the available features, while the average models do not manage to

combine available features in any way that would indicate influence in the classi-
fication process.

39

40

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

250 250
l g 200 ‘ 17"«”" M 200
2 175) o 17% N X
o o %
g 150 8 130 150
5 12 S 125
“rcn 100! ‘r°n 10!
3 I5 3 75
S 50 100 3 50 100
= 3L = %l
10 \ / . 16’5\0\ /2/1 ©
10\\»\ 3
n
DerCe\%\s’\ 5 \‘eﬁ \DefC:lS%OQZS /5/ 4 e
%0 6 o 0 Ptron25%00 6 o 0
(a) ReLU (b) Tanh.
. 250
250 —— activation:tanh, n_layer:6, n_perceptrons:300
80 activation:tanh, n_layer:2, n_perceptrons:30

200

Gradient
s
I
)

=
o
=]

Guessing entropy
Guessing Entropy

a
o

o

500 1000 1500 2000 2500 0 10 20 30 40 50

Number of traces Number of Sample
(c) Guessing entropy of all MLP architec- (d) Integrated Gradient.

tures versus the increasing number of at-
tack traces.

Figure 9: ASCAD guessing entropy with a reduced number of features and the intermedi-
ate leakage model.

HW LEAKAGE MODEL: Next, we consider the Hamming Weight (HW)
leakage model. From Figure 10, we see similar results when compared to the
intermediate value leakage model. Still, in Figure 10b, the number of perceptrons
per layer has a more substantial influence on the guessing entropy than the number
of layers. We can notice a better behavior for MLP with a small number of layers
compared to the intermediate value leakage model scenario. We believe this hap-
pens as more perceptrons per layer give more options on how to combine features,
while deeper networks would contribute to more complex mappings between input
and output, which is not needed for the HW leakage model as the classification
task is simpler than when using the intermediate value leakage model. We can
also see a stable area for several models with a number of perceptrons above 150
and a number of layers above three. In this area, the hyperparameters choice does
not influence the performance of the MLP anymore. Like the intermediate value
leakage model, the sensitivity to the hyperparameter tuning (Figure 10c) is as ex-
pected, with many settings reaching top performance, but also many performing

3.4 EXPERIMENTAL RESULTS 41

poorly. Interestingly, again we observe a more stable behavior from Tanh than the
ReLU activation function. From Figure 10d, the best fitting model and the median
model have similar integrated gradient values. However, the highest peaks are dif-

ferent, showing that the leakage learned by the two models is different, which also
accounts for the differences in GE results.

250

> 200 M
17% i =

o o 1750 |
3 150 | . 3 150 |
o 121 150 2 12 150
3 100 | 3@ 100
o 75 o 75
g 50] -\ 100 5 50 : 100
2 25 2 25 \
o o
‘1 l / 50 50,5 > ! 50
5 3
Log, W s \De 02
rCeDt,o l)250300 6 5 oo "Cep,

0 4 (S
tron, 0250300 6 O o

(a) ReLU. (b) Tanh.

—— activation:relu, n_layer:6, n_perceptrons:100
activation:tanh, n_layer:1, n_perceptrons:100

i

e ,\m,“ il \ I 1’ |

100 200 300 400 500 600 700
Number of Sample

(d) Integrated Gradient.

N
o
=]

b | Lok s
N’m\x*"gw i M AT
M

. ¥
N WA

Guessing entropy
Gradient

= -

1) G

o o
A
17
o

Guessing Entropy

i
=)
=]

o
S

o

<)

0 500 1000 1500 2000 2500 0
Number of traces

=)

(c) Guessing entropy of all MLP architec-

tures versus increasing number of attack
traces.

Figure 10: ASCAD guessing entropy in the Hamming weight leakage model.

HW LEAKAGE MODEL AND REDUCED NUMBER OF FEATURES:
We use the reduced number of feature representation of the dataset and apply the
Hamming weight leakage model. We can see in Figure 11c that many MLP archi-
tectures differ significantly with a GE spread between 0 and 175. In Figure 11b,
no MLP with the Tanh activation function succeeds in the attack. Finally, in
Figure 11a, MLP with ReLU reaching GE of 0 has only one hidden layer, and
when the number of layers increases, the performance decreases. Based on the
ruggedness of the landscape for ReLU, it is clear that the choice of the number of
layers/perceptrons plays a significant role. In Figure 11c, slightly differing from
previous cases (cf. Figure 10c), we see more groupings in the GE performance.

42

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

This indicates that a reduced number of features in the HW leakage model is less
expressive, so more architectures reach the same performance. From Figure 11d,
the median model presents a higher integrated gradient than the best fitting model.
This behavior differs from the previous experiments and shows that a wrong
fitting model has high sensitivity on samples that do not correlate with the correct
leakage. This also explains the spread of GE results, as there are many subsets of
features combinations that result in high GE.

250 250
200 200
oy 9 175
& g 150
3 150 & 125 150
@ @ 100
g g 75
3 100 5 50 100
2 2 25
0
50 1050

10q
2 pg,. 15 4
@rcepr%:soz 505,76 > o\ B

(a) ReLU. (b) Tanh.

80 activation:relu, n_layer:4, n_perceptrons:30 20
—— activation:tanh, n_layer:5, n_perceptrons:150
I 200
60+ I 2
3 I £
g 2 1502
b o i
> 40 2
£ o 100 §
8 g
3 20 2
50
= 07 0
2500 0 10 20 30 40 50
Number of traces Number of Sample
(c) Guessing entropy of all MLP architec- (d) Integrated Gradient.
tures versus increasing number of attack
traces.

Figure 11: ASCAD guessing entropy with a reduced number of features and the Hamming
weight leakage model.

3.4.2 AES_RD Results

INTERMEDIATE LEAKAGE MODEL: Given the intermediate value leak-
age model (Figure 12), all MLP architectures, including the smallest ones (one
hidden layer with ten perceptrons), are capable of reaching GE below 30 within
2500 attack traces. Increasing the number of layers does not have an impact on
the ReLu activation function. For the Tanh activation function, it even seems to

3.4 EXPERIMENTAL RESULTS

increase GE (thus, decreasing the attack performance). For both activation func-
tions, increasing the number of perceptrons per layer decreases GE. Still, from Fig-
ure 12c, regardless of the architecture chosen, all MLP settings converge within
the same amount of attack traces. This indicates that there is not enough use-
ful information that larger networks can use, and as such, using them brings no
performance gain (consequently, there is not much benefit from detailed hyper-
parameter tuning). The best-fitting model and the median model are both models
that fit the dataset correctly. However, from Figure 12d, the integrated gradient
method reveals that the two models have very different sensitivity on the input.
Such a result could have been expected as the AES_RD dataset deals with ran-

domly delayed traces, meaning that the leakage is not located in a precise area of
the input.

Adoxnu3 buissand
-
G
Adonu3 Buissend

100
5
0
10 1
,,50109[502 2 50 50
\”@rc 0 4 o>
epfro,,fzsosoo 6 ° o 0 0
(a) ReLLU. (b) Tanh.
12 — 250
—— activation:tanh, n_layer:3, n_perceptrons:10
101 — activation:relu, n_layer:3, n_perceptrons:150
200
>
z ¢ g
2 nE) 1505
5 5 6 2
= o =
2 7]
@ L 100§
E [}
[}
2 50
S 0. Lakbotmdubiuctodiidipnddyinaodndd .
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000 3500
Number of traces Number of Sample
(c) Guessing entropy. (d) Integrated Gradient.

Figure 12: AES_RD guessing entropy for the intermediate leakage model.

REDUCED NUMBER OF FEATURES: In Figure 13, we observe a simi-
lar performance when training MLPs with a reduced number of features for the
AES_RD dataset and the intermediate leakage model (containing only 50 selected
features). Again, this implies there is no useful information in additional features,
and that is why MLP cannot perform better even if we use larger/deeper architec-

43

44

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

tures. This is following the expected behavior for the random delay countermea-
sure as the features are not aligned. Finally, the landscape is smoother for Tanh
than for ReLU (similar to ASCAD but also different from AES_RD with all fea-
tures). The outcome from Figure 13d is quite similar to the integrated gradient
obtained on the raw traces. While the gradient values for the two models have
the same levels, no maximum or minimum values are the same, meaning that no
samples contribute significantly to network prediction.

250

i 200
2 10 £ 12
2 g 2 10
8. 150 & 150
2 6 2 8
B4 100 2 i 100
s 2 s 2
= o = o

105, > 50 105, > 50

QpelrS;?lS%on < 4 3 oo ,7\,061,2:1502002 5 4 e

Ptrons?>%B00 6 o 0 Ptrons?>%B00 6 o 0
(a) ReLU. (b) Tanh.

250

—— activation:tanh, n_layer:6, n_perceptrons:40
—— activation:tanh, n_layer:5, n_perceptrons:100
30 200

Guessing entropy
Gradiel
-
G
= —
) I
IS)

Guessing Entropy

a
o

o

0 500 1000 1500 2000 2500 0 10 20 30
Number of traces Number of Sample

(c) Guessing entropy. (d) Integrated Gradient.

40 50

Figure 13: AES_RD guessing entropy with a reduced number of features and the interme-
diate leakage model.

HAMMING WEIGHT LEAKAGE MODEL: When considering the HW
leakage model for the AES_RD dataset, even after 2 500 traces, the attack is still
unsuccessful. More precisely, in Figure 14, no hyperparameter setting results in a
model that can reach a GE below 60, which is not even close to a successful attack.
Note we do not depict results for the reduced number of features as the attack was
not successful even with the full number of features. With the intermediate value
leakage model, we required around 1500 traces to succeed in the attack. Now,
we use a leakage model with a simpler classification problem and fail with more
measurements. This result shows that the HW leakage is either not present or that

3.4 EXPERIMENTAL RESULTS

the trained models are too simple to fit the leakage. Interestingly, all architectures
behave relatively similarly, as visible in Figure 14c. The integrated gradient on
Figure 14d shows similar results as obtained for the intermediate value leakage
model, but in this case, both models do not fit the dataset correctly, which means

it is difficult to talk about features that contribute more to the classification result.

No trace samples show a higher sensitivity for the network prediction because of
the random delay nature of the dataset.

As no MLP architecture can succeed in the HW leakage model’s attack on the
AES_RD dataset, we cannot conclude whether more layers or perceptrons would
improve the attack performance. The phenomenon preventing MLPs from obtain-
ing good attack performance might be linked to the class imbalance, pointed out
by Picek et al. [Pic+19], where they obtain similar results for different architec-
tures of MLP using the HW leakage model. Additionally, they observe increasing
performance when balancing the training data among the classes.

250

o) x o) |
c c
2 80 o BOJ\
2. 150 @ 150
a GOJ! 2 60|
oy 40}] 401
g 100 3 100
é 20]\ .E 20 X
0 0
105, //(1 50 13;()\ 1 50
1001 3 2 — 2
" ey, %0 4 ') \Per %0 4 S
Cey 5 e [« 5 e
Ptr, Qz50300 6 N 0 Ptr, 0250300 6 o 0
(a) ReLU. (b) Tanh.
= 250
250 700 activation:tanh, n_layer:2, n_perceptrons:10
activation:relu, n_layer:1, n_perceptrons:40
600 200
200 >
z 500 g
£ 2 1502
2150 § 400 &
5 o
g & 300 100
8100]
3 200 3
50 100 50
0 0
% 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000 3500
Number of traces Number of Sample
(c) Guessing entropy. (d) Integrated Gradient.

Figure 14: AES_RD guessing entropy for the Hamming weight leakage model.

45

46

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

3.5 DISCUSSION

MLP can break the masking countermeasure of the ASCAD dataset and the ran-
dom delay countermeasure of the AES_RD implementation even when training
a rather small model. For AES_RD, the smallest models (one layer, 200 percep-
trons, and six layers, ten perceptrons) share the best outcome of all the models in
the comparison. The same results are observed when using only the most impor-
tant features. An important leakage of the secret could explain these results if the
countermeasure were turned off. Although the random delays shift the first round
S-box operation from the start of the encryption execution, a strong leakage of
the operation handling the secret information is still present. Consequently, using
an MLP is enough to overcome this countermeasure. This result indicates that the
current consensus in the SCA community on MLP performance should change. In-
deed, CNNs are considered especially good for random delay countermeasure and
MLP for masking countermeasure [MPP16; Pic+19]. Our results indicate there is
no reason not to consider MLP successful against the random delay countermea-
sure given the satisfying results obtained on AES_RD with intermediate value.
When selecting 50 POIs with a Difference-of-Mean method, the selected points
represent only 50/3 500 ~ 1% of the original traces in the dataset, and the infor-
mation about the leakage is reduced. Still, the attack succeeds in the same way,
which can be explained because the leakage only comes from the selected POlIs.
Finally, the integrated gradient is more difficult to interpret as the dataset has ran-
domness in the time domain, which means it becomes difficult to pinpoint a few
features with a significant contribution toward the classification result.

For the ASCAD dataset, we observe that the best score obtained for MLP has
the following hyperparameters: six layers and 200 perceptrons. Still, we see in Fig-
ures 8a and 8b that MLP with similar hyperparameters can perform equally good
(where the red point represents the result obtain with the architecture of the best
MLP MLPy,; from the ASCAD paper). When selecting POIs with the Difference-
of-Mean method, we can observe that the performance decreases, meaning that the
useful information is decreased. This, in turn, results in attacks not able to recover
the full secret key. Still, some MLPs can obtain the secret key in the given num-
ber of traces, and we observe that both the number of layers and the number of
perceptrons influence their performance. Finally, the performance of MLPs with
the Hamming weight leakage model gives better performance than for the inter-
mediate value. The range of hyperparameters that can achieve the best results is
smaller than for the intermediate value leakage model. From the integrated gradi-
ent perspective, we see that many features contribute to a successful attack, but
MLP makes slightly different feature selection than DoM, as obviously not all

s

3.5 DISCUSSION

50 selected features contribute significantly. For the HW leakage model, the inte-
grated gradient is somewhat more aligned, which means that more features in this
leakage model contribute similarly. Such behavior is again expected as the HW
leakage model forms larger clusters with S-box output values, where the impor-
tance of features is more spread within clusters.

To answer the question of how challenging is the tuning of MLP hyperparame-
ters, we observe that there is nearly no influence using a (relatively) big or small
MLP for the AES_RD dataset. When considering the ASCAD dataset with the
masking countermeasure, depending on the leakage model considered, the size of
the MLP can play a significant role. There, either by increasing the number of
perceptrons per layer or the number of layers with a fixed number of perceptrons,
we can decrease the guessing entropy.

From the activation function perspective, ReLU behaves somewhat better for
the intermediate leakage model when compared to Tanh, i.e., it can reach the
top performance with a smaller number of layers/perceptrons. For the Hamming
weight leakage model, Tanh seems to work better on average, but ReLU reaches
top performance with smaller architectures than Tanh. Finally, Tanh gives more
stable behavior when averaged over all settings, i.e., with the Tanh activation func-
tion, the hyperparameter tuning seems to be less sensitive. To conclude, ReLU
appears to be the preferred option if going for top performance or using smaller
architectures. In contrast, Tanh should be preferred if stability over more scenar-
ios is required.

MLP is (or, at least, can be) a deep learning algorithm that has a simple archi-
tecture and a few hyperparameters but can show good performance in the side-
channel analysis. What is more, our results show it can break implementations
protected with both masking or hiding countermeasures. If there is no sufficient
useful input information (as one would expect when dealing with the random
delay countermeasure), a reasonable choice is to go with a relatively small archi-
tecture. For masked datasets, the number of perceptrons or the number of layers
must be large, but the activation function’s choice also plays an important role.
Finally, we observe that in all considered scenarios, the MLP architectures are not
overly sensitive to the hyperparameter choice, i.e., there does not seem to be a
strong motivation to run very fine-grained hyperparameter tuning.

Based on those observations, we list general recommendations for MLP in the
profiled SCA context ':

The recommendations are based on the tested configurations. There is no guarantee that different
results could not be achieved with significantly different settings, e.g., having a different number
of perceptrons per layer. Still, following our recommendations should provide good performance in
most of the scenarios commonly encountered in profiling SCA.

47

48

PERFORMANCE ANALYSIS OF MULTILAYER PERCEPTRON

1. Many hyperparameter settings can lead to good performance, which makes
the benefit of an exhaustive search very limited.

2. ReLU is better for top performance, while Tanh is more stable over differ-
ent hyperparameter combinations.

3. Smaller depth of an MLP can be compensated with wider layers.

4. Integrated gradient is an efficient method for evaluating the influence of
features if MLP manages to reach good performance.

5. Simpler leakage models require fewer layers.

3.6 CONCLUSIONS AND FUTURE WORK

In this paper, we considered the behavior of a multilayer perceptron for profiling
side-channel analysis. We investigated two datasets protected with countermea-
sures and a number of different MLP architectures concerning three hyperparame-
ters. Our results clearly show that the input information to the MLP plays a crucial
role, and if such information is limited, larger/deeper architectures are not needed.
On the other hand, if we can provide high-quality input information to the MLP,
we should also use larger architectures. At the same time, our experiments re-
vealed no need for very fine-grained hyperparameter tuning. While the results for
MLP maybe cannot compare with state-of-the-art results for CNNs, we note that
they are not far apart in many cases. If we additionally factor in that MLP is sim-
pler and faster to train, the choice between those two techniques becomes even
more difficult to make and should depend on additional goals and constraints. For
example, reaching the top performance is the argument for the usage of CNNs,
but if one requires small yet powerful architecture, a more natural choice seems
to be MLP.

In this work, we concentrated on scenarios where each hidden layer has the
same number of perceptrons. It would be interesting to investigate the perfor-
mance of MLP when each layer could have a different number of perceptrons.
Naturally, this opens a question of what combinations of neurons/layers to con-
sider as one could quickly come to thousands of possible settings to explore. Sim-
ilarly, for activation functions, we consider only the two most popular ones where
all hidden layers use the same function. It would be interesting to allow differ-
ent layers to have different activation functions. Recent experiments showed that
MLP could outperform CNNs when considering different devices for training and
testing (i.e., the portability case) [Bha+19]. We plan to explore the influence of the
hyperparameter choice in those scenarios. Finally, as we already mentioned, MLP
architectures are usually simpler than CNNs, which should mean they are easier to

3.6 CONCLUSIONS AND FUTURE WORK 49

understand. We aim to explore whether we can design stronger countermeasures
against machine learning based-attacks based on MLP inner working.

LIGHTWEIGHT BUT NOT EASY: SIDE-CHANNEL
ANALYSIS OF THE ASCON AUTHENTICATED CIPHER ON
A 32-BIT MICROCONTROLLER

This chapter is based on [WP23], a joint work with Stjepan Picek, that was pub-
lished on the IACR Cryptology ePrint Archive in 2023.

CONTENT OF THIS CHAPTER

4.1 Introduction e 51
4.2 ASCON e e 53
4.3 Related Work 54
4.4 LeakageModels.o 55
4.5 Experimental Result. 58
4.6 Multi-taskResults 66
4.7 Conclusions and Future Work 68

4.1 INTRODUCTION

In the field of symmetric cryptography, the need for lightweight primitives is cru-
cial in the development of secure, fast, and low-consumption designs that can be
used for embedded devices in resource-constrained environments but also for high-
bandwidth applications. In this effort, the National Institute of Standards and Tech-
nology (NIST) initiated a lightweight cryptography standardization process in
2018. The goal was set to decide on a new standard for lightweight cryptography
by comparing submitted designs of block ciphers, hash functions, message authen-
tication codes (MACs), authenticated encryption with associated data (AEAD),
and pseudorandom functions (PRFs). The process ended on 7 February 2023,
with the selection of the Ascon family for standardization. Ascon has been de-
signed to be fast and easy to implement [Dob+21a]. The use of the permutation
function in its S-box eases the implementation of countermeasures against side-
channel analysis and prevents common pitfalls known from implementations of
the AES S-box. During the standardization process, side-channel evaluation has

51

52

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

been performed on every finalist [Moh+23], and protected implementation of As-
con in hardware using domain-oriented masking implementation that has been
shown resistant against side-channel analysis. However, protected the protected
software implementations of Ascon uses a specific masking countermeasure that
is formally verified and have not had an extensive evaluation against side-channel
analysis, especially against profiled attacks and DLSCA.

The Ascon team provided implementations for numerous platforms, including
a masking implementation using Domain-Oriented Masking (DOM) for hardware
and a specific masking countermeasure for software implementations. This imple-
mentation allows a configurable number of shares and rotations that can be applied
to hardware and software platforms with great flexibility and low overhead, yet is
robust against higher-order attacks by randomizing shares with reduced need for
fresh randomness compared to a threshold implementation masking scheme. This
masking is also the only countermeasure publicly provided for software imple-
mentations of Ascon.

The side-channel analysis report obtained from the common effort of several
evaluation laboratories and researchers during the last round of the standardiza-
tion process has evaluated Ascon with classical side-channel analysis methods,
namely Test vectors leakage assessment (TVLA), x2-test, and correlation power
analysis. Those evaluations have been performed on hardware and software imple-
mentations and confirmed side-channel resistance even with second-order CPA,
considering several millions of traces [Moh+23].

This paper focuses on showing that deep learning side-channel analysis
(DLSCA) can be applied to Ascon. Moreover, we aim to enlarge the possible
attack surface of Ascon in the context of profiling side-channel analysis. For this
purpose, we consider different leakage models that can expose information about
the key during the initialization phase of Ascon. We explore different leakage
models to learn if DLSCA can be applied to an unprotected implementation
of Ascon and if the same leakage model can also be applied to a protected
implementation.

The core challenge we try to address in this paper is to conduct a profiling side-
channel analysis on Ascon with deep learning and compare the results with the
known CPA attack. The contributions of this paper are as follows:

* We provide a dataset for profiling side-channel analysis on Ascon from a
reference software implementation and a first-order protected implementa-
Lol
tion .

1 https://zenodo.org/records/10229484

https://zenodo.org/records/10229484

4.2 ASCON

* We show that DLSCA can successfully recover the key using fewer traces
than CPA for both unprotected and protected Ascon implementations. The
CPA attack on the unprotected dataset can recover the key in 8 000 traces
against 1 000 traces for DLSCA. On the protected dataset, a second-order
CPA fails to recover any part of the secret key, while DLSCA can recover
certain partial keys in 800 traces.

* We show different leakage models that could be used to evaluate the leakage
of the Ascon S-box function to recover the key. Namely, the S-box output
value and the output state’s register value. While the first can be simplified
to obtain better results for CPA, the second can result in better results using
DLSCA in the presence of side-channel countermeasures.

* With a single task model, we can obtain the partial key under DLSCA with
less than 20 traces, but the effort of the attacker to recover the full key can
be underestimated with this method. For this reason, we build a multi-task
model that can analyze the traces and simultaneously make decisions for
every partial key separately.

The rest of the paper is organized as follows. Section 4.2 presents the back-
ground on Ascon. Section 4.3 provides the related work applying side-channel
analysis as well as known attacks on Ascon. Section 4.4 discusses the leakage
models we considered. Section 4.5 presents the experimental results for DLSCA
and a comparison with CPA. In Section 4.6, we apply the multi-task learning
methodology for a deep learning attack to recover every partial key. Finally, Sec-
tion 4.7 gives concluding remarks and elaborates on possible future work.

4.2 ASCON

Ascon is a family of authenticated encryption and hashing algorithms standardized
by NIST [Dob+21b]. It is a permutation-based block cipher with a 320-bit state
divided into five words of 64-bits (x, X1, X2, X3, X4). The permutation is applied
iteratively on the state in an SPN-like fashion. The two parameters (a, b) of Ascon
are the number of rounds and the number of bits to be rotated in the permutation.
The Ascon round transformation consists of a 1-byte addition of a round constant,
a 5-bit S-box applied bit-sliced, and a linear diffusion layer. The Ascon’s S-box is
designed in a bit-sliced fashion that operates on the 5-bit columns of the state, 64
times in parallel.

The linear diffusion layer is applied on each register of the state by XORing two
copies of the same registers with different cyclic shifts together with the register.

53

54

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

Protected software implementation of Ascon is specifically designed thanks to
the design of the Chi () function of its S-box [Gig+24]. The idea is to introduce
masked Toffoli gates for the Chi function inside the S-box with the addition of
re-used randomness that is cyclically refreshed at each call. This countermeasure
aims to prevent the combination of shares at the instruction level and randomize
the operations that, if combined can leak information on the shares. An additional
SCA countermeasure is set to rotate the offsets between the shares. This masking
countermeasure has been heuristically verified with formal verification [Zai+19].

4.3 RELATED WORK

Side-channel analysis is commonly considered when evaluating the security of
symmetric cryptographic primitives. Differential power analysis was first intro-
duced by Kocher et al. and was originally applied to DES [KJJ99]. The authors
showed that the leakage of the Hamming weight of the intermediate values of the
S-box function can be used to recover the key successfully, using the difference-
of-means as a statistical analysis method to compare the hypothetical power con-
sumption values with the recorded traces. Another way to determine the relation-
ship between data is to use the Pearson correlation coefficient. This method repre-
sents the pillar of the non-profiled SCA and is commonly referred to as Correlation
Power Analysis (CPA) [BCO04; CCDO00].

Deep learning side-channel analysis has been a promising technique for pro-
filing side-channel analysis since the work of Maghrebi et al. [MPP16]. Later,
Benadjila et al. [Pro+18] introduced a dataset for profiling side-channel analysis
on AES protected with Boolean masking and showed that a convolutional neural
network (CNN) is an efficient approach to recovering the AES key. Many other
research works have also shown that deep learning can be a powerful profiling
attack against AES [MPP16; Pic+18b; Kur+21; RK21]. More recently, a number
of works consider the multi-task paradigm in DLSCA, showcasing it can be more
powerful than the single-task approach [Mag20; MO23b; MO23a; MS23].

Since Ascon was introduced in 2016 for the CAESAR competition, several
works have been published on Ascon’s security. The authors of [SD17] demon-
strated a CPA attack on a hardware implementation of Ascon. The authors showed
that bits of the output state of the round function can lead to a key recovery.
In [RAD20], the authors attacked the Ascon S-box operation of a hardware im-
plementation that executes operations in a sequential mode. They could separate
the different bitwise S-box operations to apply a horizontal attack, and they used
reinforcement learning to recover the key from the leakage of the S-box. The au-
thors also employed an autoencoder to perform dimensionality reduction given the

44 LEAKAGE MODELS

sub-traces of every S-box operation. In [SS23], the authors used transfer learning
from a well-fitting model for AES on the ASCAD dataset to improve DLSCA on
an unprotected Ascon implementation for RISCV microcontroller. In [You+23],
the authors demonstrate the first working template attack with belief-propagation
and key enumeration techniques on a software protected implementation of As-
con, where they could obtain a success rate above 90% using 20 traces. In gen-
eral, the literature on machine learning-based SCAs on ciphers different from
AES is relatively sparse, especially considering lightweight symmetric ciphers,
see, e.g., [Heu+17; Heu+16; MWM21]. This indicates more work is needed to
understand how to mount powerful attacks and how much of the knowledge is
transferable from one target to another.

4.4 LEAKAGE MODELS

The target of side-channel attacks against Ascon is the value of the key used in
the initialization phase. The attack at this point is possible because we know the
content of the state at initialization, except for the key. During the first permutation
round, the state is composed of a 64-bit initialization value, the 128-bit key, and a
user-defined 128-bit nonce.

The non-linear properties of the Ascon S-box with the controllable nonce en-
able possible leakage that can be exploited with SCA. One intuitive leakage model
that can be applied is the S-box output. The Ascon S-box is a 5-bit S-box that is ap-
plied to the columns of the state. It is possible to consider this leakage differently
depending on the cipher implementation.

The output state registers xg, .., X5 can be rewritten in the algebraic normal form
(ANF) as follows:

vo=x1(xa+x0+x+1)+x3+x+x0 (10)
y1 = (x3+1)(x2 4+ x1) + x2x1 + x4 + X0 (1)
yo=2xs(x3+1)+x2+x1+1 (12)
y3 = (x0+ 1) (x4 + x3) + x2 + x1 + X0 (13)
Yo =x1(xa +x0+ 1) + x3 + x4 (14)

4.4.1 Leakage Models for Differential Attacks

DPA attacks use datasets of many power traces from a cryptographic device oper-
ating with the same key to exploit the data dependency of the power consumption.
As a consequence, the activity of the computation that has a constant contribution

55

56

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

to the power consumption will be equal for each trace collected and will cancel out
in the analysis. Thus, all the variables contributing with a constant amount to the
activity can be removed from the previous notation, i.e., the terms with xg, x1, X2,
or combinations of those.

Yo = XgX1 + X3 (15)
y1=x3(x2+x1+1) + x4 (16)
y2=2x4(x3+1)+1 (17)
y3 = (xa+x3)(x0+ 1) (18)
ys = x4(x1 +1) + x3 (19)

In Eqgs. (17) and (18), y2 and y3 do not involve computation on the bits of the
key, and thus cannot be used as leakage functions. However, in Egs. (15) and (19),
it can be noticed that both vy and y4 have a relation with a bit of state x1, and
can be used interchangeably to recover the first half of the key. By attacking the
register 1 in Eq. (16), the leakage from the value of x1 + x2 can be learned. This
term can be used in conjunction with the information recovered from the previous
leakage on xq to get the second half of the key related to x», as also pointed out
in [SD17].

The content of register x1 or x1 + X is the secret denoted k, and x3 and x4 are
denoted m and m’, respectively.

yo =km' +m
y1=m(k+1)+m'
yg=m'(k+1)+m.

The application of the linear diffusion layer on the output of the S-box function
permits to obtain the following expressions:

SO,‘(M, K*) = kgmf + m; + kfm§+45 + mjra5 + k§m§+36 + Mit36 (20)

S1i(M, K*) = my(k§ + 1) 4 m} 4+ mi 3 (ki + 1) + mj, 5+ m} + miyo5(ks +1) +mi, s
(21

S4;(M, K*) = mj(k§ + 1) + m; + mj 5, (k7 + 1) +mjys7 +mj o5 (k5 +1) +mjj03.
(22)

Egs. (20), (21), and (22) show the leakage functions that can be used to recover
the key when targeting the output of the round function. This leakage function
directly aims to correlate the power consumption with the S-box output value.
Since the S-box operation works on a column of the state, the storage of the out-

44 LEAKAGE MODELS

e Xo 18- A yO
S 0 | P = v e I SO Vil
X ot I, Y2
e e T el L [Y
................. X4 Ya

Figure 15: Computation of the leakage value of a given output register.

put should be uncorrelated with the operation and is understandable from the bit-
sliced nature of the operation. The leakage is based on the value of only one bit of
the output state. Thus, using the Identity or Hamming weight power model makes
no difference for a software implementation. The Hamming distance power model
can be used when targeting a hardware implementation.

4.4.2 Leakage Models that Apply Better for Profiled Attacks

For profiled attacks, the profiling traceset is composed of traces collected from
encryption with random keys, and the attack traceset is collected with a fixed key
for the attack phase. From Eq. (14), it is possible to exploit the leakage that only
depends on the input register x1, which contains the first half of the key. It is then
possible to obtain the second half of the key from the leakage of any other register
because 1o, y1, Y2 and y3 depend on x,. This paper focuses on the leakage of 1
(see Eq. (12)).

While the Ascon S-box is bit-sliced, the output leakage can be stronger for
bytes of the output state when considering a software implementation because of
the architecture of the microprocessor and leakage during the storing operation.
Alternatively, slices of the state can be considered to observe the concatenated
leakage for a single byte slice, as shown in Figure 15.

When considering this leakage function, the goal is to observe a correlation
between the power consumption and the storage of the output state. Because the
architecture of the studied microcontroller is 32-bit, the stored output is large,
and it can be difficult to get a correlation based on the full-length variable. With
this leakage function, we aim to obtain partial information of the value stored,
and the size of the variable can be determined smaller than 32-bit. The partial
correlation on a large word can be used to obtain information about the value
stored in a register, as shown in [Tun+07]. Repeating this attack on successive

57

58

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

parts of the register makes it possible to recover the secret value using fewer traces
and computing power than when using the full register correlation.

4.5 EXPERIMENTAL RESULT
4.5.1 Implementation

In this paper, we consider a software implementation of Ascon. The C imple-
mentation from the Ascon team can be found on their GitHub repository [Tea].
They provide implementations for every Ascon mode and several platforms. This
work considers only the AEAD implementation of Ascon-128 v1.2 optimized for
ARMv7m microcontrollers. The Ascon-128 v1.2 is the recommended implemen-
tation when using Ascon for AEAD for a key of 128-bit. Instead of using the
C-reference implementation, we use the 32-bit optimized implementation they
provide with our target device architecture to ensure the closest results to a real
scenario.

Traces are collected with a ChipWhisperer Lite board, an 8-bit precision oscil-
loscope, coupled with the STM32F4 target.? The target microcontroller is a 32-bit
platform running at a default clock frequency of 7.37MHz. Traces are collected in
a manner that only contains power samples during the first round of the initializa-
tion permutation for both reference and protected implementations.

The unprotected implementation dataset contains 60 000 traces with 772 sam-
ples each. In this dataset, 50 000 traces are collected with random keys, and 10 000
traces with a fixed key. The protected implementation dataset contains 560 000
traces with 1408 samples each. The implementation uses bit-interleaved domain-
oriented masking with two shares. In this dataset, 500 000 traces are collected with
random keys, and 60 000 traces with a fixed key.

4.5.2 Signal-to-Noise (SNR) for Leakage Models

Figure 16 depicts the SNR of the round function leakage model with fixed key
and random key datasets. We can observe that for both registers’ leakage, only the
dataset with a fixed key shows an important leakage. This observation supports the
leakage established in Section 4.4 for non-profiled leakage models. We can also
observe that leakage from register vy is stronger than the leakage from register y;
by a factor of almost 4. This difference of leakage between 11 and y4 can result
from the difference of the registers used inside the ARM microcontroller. It is also

2 https://www.newae.com/products/NAE-CWLITE-ARM

https://www.newae.com/products/NAE-CWLITE-ARM

4.5 EXPERIMENTAL RESULT

0.03{ —— Random key —— Random key
Fixed key 0.008 Fixed key
2002 2$0.006
© ©
> >
< < 0.004
»n 0.01 w0
0.002
0.00] it mmbenna e LU Sy 0.000] —tePtmnmstsmmsdboio o Rommiliinisne «
0 200 400 600 800 0 200 400 600 800
Samples Samples
(a) Round function output register /4. (b) Round function output register y1.

Figure 16: SNR for unprotected implementation round function leakage model.

0.8
—— Random key —— Random key
0.15 Fixed key 0.6 Fixed key
[o
2 2
So0.10 : S04
o | x
= | =
@ ‘ [l 0.2
0.05 N K i ”L) - \ Klt .
il sl \vu\,/\;vx APt M i T Wy Lt 0.0
0 200 400 600 800) 200 400 600 800
Samples Samples
(a) 8-bit S-box output register v4. (b) 8-bit S-box output register .

Figure 17: SNR for unprotected implementation S-box leakage models.

interesting to notice the leakage position for the two registers. While the leakage of
the register y4 is around sample 700, the register 11 leaks mostly around sample
500, confirming that the two registers are treated in separate instructions in the
considered implementation.

Figure 17 shows the SNRs for the register S-box output leakage models given
for 8-bit S-box output as described in Section 4.4. We can see that the traceset with
fixed key shows higher leakage than for random keys. While the SNRs suggest a
correlation between these intermediate values and power consumption, it is not
possible to argue whether the leakage can be exploited by a profiling attack.

Finally, the SNR obtained from the S-box output column shows higher overall
leakage across all samples, as shown in Figure 18. It can be noticed that leakages
from a fixed key dataset and random keys dataset overlap the most among all
previously displayed SNRs. This result could indicate that this leakage model can
be the most present one from those considered and can be used for the profiling
attack because the samples involved in this leakage are the same for the random
and fixed key traces.

59

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

—— Random key
fffff Fixed key

v 0.04

=]

©

>

g

Z0.02

0.001 ; WA AT NAT T
0 200 400 600 800
Samples

Figure 18: SNR for unprotected implementation S-box leakage on output state column.

i

° o o
-3 [=3 [=1
3 8 8

Correlation
Correlation

—0.101

—0.15 1

0 100 200 300 400 500 600 700 800] 2000 4000 6000 8000 10000 12000 14000 16000

ﬁmeés(ample Time iamp\e
= =
& g
006 @64
0.6 g6 2
g -] § 005 el
5 2+ k 0.04 E 41
2% g e S
E - £ =
S) 3 2 8 0.03 g 2.4
g 0.02 g
£o 50
6 10‘()0 20‘00 3()‘(]0 8 6 1060 20‘00 30‘00] 20000 40000 60000 © 0 20000 40000 60000
Number of traces Number of traces Number of traces Number of traces
(a) Reference implementation (b) Protected implementation

Figure 19: Correlation power analysis targeting the first bit of the state output.

4.5.3 Correlation Power Analysis

For CPA, we use the output of the round function as the leakage function. This
leakage was used in previous works [SD17; RAD20; SS23], and is a baseline for
non-profiled attacks.

In Figure 19a, we see that CPA can successfully recover one partial key (i.e.,
3 bits) with less than 1000 traces. In the top figure, we display the correlation
of all trace samples for every key candidate, with the correct key in red. We can
see that the correct key candidate has a significantly higher correlation around
sample 690. In the bottom left figure, we display the highest correlation value for
all samples against the number of evaluated traces for the CPA. We can observe
that the correlation for the correct key candidate becomes higher than that of other
key candidates after 400 traces and stays higher the more traces are evaluated.

4.5 EXPERIMENTAL RESULT

vy« 0 1 2 7 8 9 14 15 16 20 21 22 28 29 30
35 36 37 42 43 44 45 49 50 51 52 56 57 58 63

v1 0 2 3 4 5 6 7 8 9 10 12 13 15 16 17
18 20 21 22 24 26 34 37 42 46 50 51 52 53 54
55 56 58

Table 2: Best set of column indices to recover the key from output state CPA in registers
Ya and Y1.

The bottom right figure shows the rank of the correct key against the number of
evaluated traces, and it shows more clearly the convergence of the correct key
candidate to zero within 400 traces. To confirm that this attack can be applied
to recover every partial key, we describe how to repeat the previous partial key
recovery efficiently.

The attack described above targets a sequence of three bits to get halves of
the key given the two registers ¥4 and y;. When considering the register v4, the
sequence of bits of the key [i,i + 57,7 + 23] is related to the index of column i
of the output state. With one CPA, the attacker can obtain one sequence of three
bits of the first half of the key. One can do as many CPAs as there are bits to guess
and only consider the first guessed bit, disregarding the rest of the found value.
However, the least number of CPAs to perform to guess each bit of the first half of
the key is defined by the minimal set of sequences with the least overlapping bits.

Given the distribution of all partial keys in register 14, the best search can be
obtained by walking through the indices in Table 2. This set of indices requires
performing 30 CPA attacks to recover the first half of the key. We can do a similar
walk with the indices for register 1 with a total of 33 CPA attacks to recover the
second half of the key.

The indices are obtained with the following methodology. First, we build a list
of the bit sequences (i.e., the partial keys) and their index in the binary repre-
sentation of the key for all columns in the state. Then, we remove every second
sequence that has an overlapping bit index. From this reduced list, we iteratively
append the partial keys for which the sequence contains one bit of the key that
is missing from all the sequences in the reduced list. The final list contains the
minimum number of key indices for which an attacker should repeat CPA attacks
to recover the 128 bits of the key. To recover the complete 128-bit key, we must
repeat the same attack 63 times on several bits of the output state.

The result of the full key recovery is described with the success rate metric.
With this metric, it is possible to evaluate the minimum number of traces needed
to recover every partial key, and a success rate of one translates to a successful

61

62

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

1.0

_

o
[

/

o
o

Success rate

o
>

/
/

0 2000 4000 6000 8000 10000
Number of traces

o
IN]

o
<)

Figure 20: Success rate of the CPA.

attack. The success rate of the full key recovery is shown in Figure 20. With the
fixed key dataset, it is possible to correctly guess all the bits of the 128-bit key
using around 8 000 traces.

For the protected implementation, the output of the CPA targeting the first bit
of the S-box output is shown in Figure 19b. We can see that even after 60 000
traces, the correlation of the first bit of the S-box output is not significant enough
to recover the key, as the correlation value of the correct key candidate stays indis-
tinguishable from the other key candidates.

4.5.4 Deep Learning-based Attack

For a deep learning attack to be successful, a well-fitting model should be trained.
Finding such a model can be challenging, depending on the leakage model and
dataset considered. To find such a model, the state-of-the-art Bayesian optimiza-
tion (BO) methods for hyperparameter tuning [Moc77; RW06; Ngul9; WNS21]
are commonly considered to be the best approach for sequential model-based
global optimization. Note that such hyperparameter tuning approaches are already
used in DLSCA and give good results; see, e.g., [WPP20; Rij+21]. This paper
adopted the Tree-structured Parzen Estimator (TPE) approach from [Ber+11].
This approach is based on the Gaussian process for tree-structured configuration
hyperparameter spaces and is well suited for a high dimensional model like CNNs
with the number of layers as a hyperparameter, where the evaluation of the surro-
gate function is cheap. The principle of BO is to minimize an objective function
using a surrogate function, a probabilistic model of the score obtained with the

4.5 EXPERIMENTAL RESULT

objective function given a set of hyperparameters. This method helps to efficiently
search the hyperparameter search space by deciding the next most promising step
toward the best set of hyperparameters based on the results of previously eval-
uated sets. This method is also known to obtain better results compared to the
grid search and random search methods in fewer evaluations [Tur+21]. The BO
search is faster to converge toward a well-fitting model and can be used to make
a better decision on when to stop the search for a better-performing model. The
TPE approach adds several parameters in the algorithm to scale the exploration
of the search space, taking into account the tree-structure base of a deep neural
network with a high number of hyperparameters. This algorithm can also estimate
the expected improvement direction to explore in the search space.

To define the search space, we first design a hyper architecture (i.e., hyper-
model), which represents a guideline to define the directions for our models to
grow. The Bayesian optimization method is applied for network architecture
search with guessing entropy in the validation set as a surrogate function. The
expected behavior of this search method is to explore the hyperparameter search
space to maximize the architecture that could lead to a model with the fastest
convergence to an attack with a guessing entropy of zero.

We set a few rules to shape the network architecture of a CNN to reduce the
hyperparameter search space and match known well-performing designs for the
analysis of 1-dimensional signals. The main principle is to use stacked convolu-
tional layers followed by several fully-connected layers. The number of channels
of the convolution layers starts from a small number and increases by a factor of
8 for every new convolution block. The architecture of the CNN hypermodel is
described in Figure 21. First, the input data goes through a batch normalization
layer, followed by #n_conv_blocks convolutional blocks constituted by one convo-
lution layer, an activation function layer, a batch normalization layer present every
two convolutional blocks, and an average pooling layer. After the convolutional
blocks, there is a flatten layer to reshape the data and, finally, n_fc_layers of lin-
ear and activation layers. The last linear layer outputs the decision of the neural
network.

The training process follows the same procedure for all models. The training is
done with a batch size of 128 and the ‘Adam’ optimizer [KB15]. The loss function
is the cross-entropy loss, and the number of epochs is set to 200. These hyperpa-
rameters are selected manually to reduce the workload of the BO, and we note
we achieve good performance with such a model. During every evaluation step
of the model, the validation set is used to compute guessing entropy, together
with accuracy and loss. These three metrics are tracked during training to assess
the model’s performance. In a particular case when the number of convolutional

63

64

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

= g 2
- — 20 =]
S =)
. 3 Z & pnnnnng 8
a=| Z < Q =
< = o] —
= 9 = A~ e
/@ < R
xn_conv_layers xn_ fc_layers

Figure 21: Hypermodel of a Convolutional Neural Network.

blocks is zero, the network consists only of fully connected layers, and we call it

a multilayer perceptron (MLP).
The hyperparameter search space is described according to the network archi-

tecture rules in Table 3.

Hyperparameter = Range Step
learning_rate [le—5,...,1e — 3] Log
activation_function [relu, selu, tanh] None
n_conv_layers [0,...,3] 1
kernel_size [3,...,80] (for each conv layer) 1
n_fc_layers [1,...,5] 1
size_fc_layers [10,...,500] (for each fc layer) 10

Table 3: Hyperparameter space explored in the optimization process

We train models on our unprotected Ascon dataset for the S-box output leak-
age model, as discussed in Section 4.4, for which the leakage function should be
more adapted to the use of a random key traceset during the training phase. From
the model search, the best-found model has two convolution blocks with kernel
sizes of 16 and 11, respectively, and two fully connected layers of 100 and 50
neurons, respectively. The number of epochs to reach the fastest guessing entropy
of zero is 50 epochs with a learning rate of 1e — 5, and the attack using this model
reaches a guessing entropy of zero after 20 attack traces. In the results shown in
Figure 22a, we can see the guessing entropy with an increasing number of traces
on top and the accuracy and loss of the model during training for the training and
validation sets at the bottom. While the accuracy and loss are sometimes mislead-
ing to understand the performance of a model for side-channel analysis [Pic+23],
we can observe that the training loss does decrease together with the validation
loss, indicating a generalization of the model on validation data.

4.5 EXPERIMENTAL RESULT

0.3

0.2 1

rank

02 014

0.0 4 0.0 1
0 20 40 60 80 100 120 140 6 1‘0 Zb 3‘0 4‘0 SID Eb T‘D
traces. traces

30
—— Train 0.0635 | — Train
2.8 \ Validation | L o203 2450 —— validation
0.0630 -‘ | | 8 254584
9 2.6 \ | l reisg o AT
] \ I g <
(K] \ 0.0625 | L | ‘i Lo1o® & 2.456 |
] fIW \ ‘ - NN | 2 Ay JML/‘,
. 0.0620 \, Foos= pasad Y WINMY
0.05 2.2 ¥

0 20 40 0 20 40 0 20 40 0 20 40
epachs epochs epochs epochs

©

@

valid loss

train accuracy

»

(a) Reference implementation. (b) Protected implementation.

Figure 22: Results of the best-found CNN model with S-box output leakage.

The same training is applied to the first-order masking Ascon dataset using the
same S-box output leakage model. The best model found has two convolution
blocks with kernel sizes 27 and 18 and five fully connected layers of sizes 110,
230, 20, 140, and 500. The number of epochs to reach the fastest guessing entropy
of zero is 20 with a learning rate of 1e — 5, and it reaches a guessing entropy of
zero after 15 traces. The results of the model are shown in Figure 22b.

When using the 8-bit register S-box output leakage model, we can find a good
model for the unprotected dataset. With this leakage model, the partial key that
is targeted is 8-bit long; thus, the guessing entropy we obtain ranges in 28. The
convergence to GE zero is reached after 200 traces. In Figure 23a, we show the
results of the best-found model. The model is composed of two convolution blocks
with kernel sizes 30 and 5, and four fully connected layers of sizes 500, 470, 10,
and 480. The number of epochs to reach the fastest guessing entropy of zero is
160, with a learning rate of 1le — 5. The accuracy and loss of the model indicate
that the model learns the leakage and stabilizes at the latest stage.

However, the same leakage model cannot lead to a satisfying model when train-
ing with the protected dataset. Indeed, in Figure 23b, it can be seen that the attack
does not lead to a model capable of reducing the guessing entropy of the key. The
rank value for the correct key-byte guess stays around the value 128, attesting to
a random output prediction from the model. The accuracy and loss of the model
show that the model does not learn from leakage at all, as the values remain sta-
ble from the first epochs until the last trained epoch. It can be concluded that the
masking scheme is effective in protecting this specific leakage, even for DLSCA.

Still, the best-found model for the S-box output leakage model on the unpro-
tected dataset is better than the CPA. The CPA can recover the key after 800

65

66

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

MGO’ & 1504
& & W
© 40 4 E 5654

0 100 200 300 400 500] 250 500 750 1000 1250 1500 1750 2000
traces traces

5.540 557

—— Train 0.0041 1 —— Train

7 S - 56 L 5.538 4 . i 556

| Validation o | ' f 0.005 Validation

\ [' 5.536 4 Lsss 8
4\l . 0.0039 - 1 Lo, 2
U F | [] =
L Ls. 0.0038 l J 1

0.0150 4
001251 |l

train loss
o]
@
o
¥

001004 &

train accuracy
alid accura
train loss
w
o
valid loss
train accurac
valid accuracy

5.532 {|L LU AR

o o
s ©°
s o
& ¥

"
0.0075 4 J

°
°
S
@
=
%
o
kS

0.0050 4 —

0 100 200 0 100 200 LDG (! 0 100 200
epochs epachs epochs epochs

(a) Reference implementation. (b) Protected implementation.

Figure 23: Results of the best-found CNN model with 8-bit S-box register output leakage
model.

traces, while the best-found model can recover the key after 20 traces when ex-
ploiting leakage of the S-box output state. On the protected implementation, the
best-found model for the S-box output leakage model can do partial key recovery
with 20 traces, while CPA cannot recover the key, even after 60 000 traces. Our
proposed DLSCA is better than CPA for the unprotected dataset, as it can recover
the partial keys with 40 times fewer traces and can also do partial key recovery
on the protected dataset with the same effort, while CPA is unsuccessful. Still, the
question remains whether this result can be improved.

4.6 MULTI-TASK RESULTS

The previous models all considered only a partial key. It is possible to build a
model with multiple outputs, where each would estimate a different partial key
and thus obtain the full key of the attacked dataset with a single model evaluation.
This problem is called multi-task learning. The idea resides in the fact that a CNN
can extract features from the learning set and use the different feature maps inde-
pendently to output probabilities for different tasks with separated MLPs. Some
works have successfully applied multi-task models to the well-known masked
AES dataset like ASCAD [MO23b; MO23a; MS23] as discussed in Section 4.3.
To construct a multi-task model, we follow the same architecture as in Fig-
ure 21, but the output of the flatten layer is connected to multiple independent
fully connected models in parallel. Each fully connected model will output the
probability for a partial key (as in the previous section) and form an oracle for the
full key guess. The training process of a multi-task model is similar to a single-

4.6 MULTI-TASK RESULTS

rank
success rate
=3 =3 g
© © o
o co o

o
[
i

o
©
N

g,

0 o -
0 250 500 750 1000 1250 1500 1750 2000 090 0 500 1000 1500 2000
traces traces
(a) Guessing entropy of the multi-task CNN (b) Success rate of the full key recovery us-
model for every partial key. ing the multi-task model.

Figure 24: Multi-task results on unprotected dataset.

task model. For each output of the fully connected models, we construct labels
corresponding to traces in the dataset for the given partial key, and the loss func-
tion is computed as the sum of the categorical cross-entropy of every branch. The
backward loop during the training phase will update the weights of each fully
connected model and the convolution layers to fit the leakage function for every
output simultaneously.

In Figure 24a, we can see the guessing entropy of individual partial keys from
the multi-task model trained on the unprotected dataset. Each line in the figure
represents the guessing entropy of a partial key. We can observe that all partial
keys converge to a guessing entropy of zero but at different speeds. Note that all
partial keys should reach a guessing entropy of zero to obtain a successful multi-
task attack.

In Figure 24b, we present the attack’s success rate. A success rate of one is
reached when the model correctly evaluates every partial key correctly for a given
test traceset. The success rate reaches one after an average of 1000 traces. Com-
pared to the results obtained from the CPA attack on the same dataset, the multi-
task model can obtain the key with 8 x fewer traces.

For the protected dataset, we use a multi-task model with the same hyperparam-
eters obtained for the best single-task model. In Figure 25, we see the guessing
entropy of every partial key of the multi-task model. While some partial keys
converge to a guessing entropy of zero, others converge to a fixed position with
consistent errors. The errors stem from the prediction of the model that does not
output random ranking for every trace (as a poorly trained model would) but ranks
the correct key candidate at a fixed position for every trace. This position seems
to be different for all tasks and ranges between all values of the ranking vector.

67

68

SIDE-CHANNEL ANALYSIS OF THE ASCON AEAD

0 250 500 750 1000 1250 1500 1750 2000
traces

Figure 25: Guessing entropy of the multi-task CNN model for every partial key on the
masked implementation at the end of model training.

The value of the error for different partial keys is evenly distributed and leads
to a random success rate when aggregating all partial key results. The multi-task
model trained on the protected dataset can recover some partial keys but cannot
generalize the knowledge for all partial keys.

Compared to DLSCA on AES, the number of output classes is reduced due
to the fact that our S-box output leakage function is a value between 0 and 23,
instead of 28 as for the AES S-box. The ranking of partial keys in the guessing
vector makes a bigger difference when the difference between the probabilities
is smaller (i.e., when the prediction is difficult). When the correct key ranks in
the middle of the guessing vector, the attack is not distinguishable from a random
guessing attack. This behavior explains why only fewer very good fitting models
can lead to a successful attack can be used and where medium fitting models
can lead to a random success rate. For AES, a model that systematically ranks
the correct key candidate in the first five or ten positions of the guessing vector
can lead to a successful attack when considering enough attack traces, while for
Ascon, a model that ranks the correct key candidate at the third position will not
lead to a better attack than a random guess.

4.7 CONCLUSIONS AND FUTURE WORK

In this paper, we have evaluated the side-channel resistance of Ascon implementa-
tions against CPA and DLSCA. We have shown two different leakages that can be

47 CONCLUSIONS AND FUTURE WORK

exploited: the S-box output and the register of the state after the S-box operation.
Our results show it is possible to obtain successful deep learning attacks for both
leakage models on the unprotected Ascon dataset. The best-found model for the S-
box output leakage model can recover the key after 20 traces, and the best-found
model for the register leakage model can recover the key after 200 traces. Both
leakage models are better than the results obtained from the CPA attack. On the
protected implementation of Ascon, our results show that the masking scheme is
protects against the leakage of the register output, as we cannot obtain a fitting
model for the attack on this leakage. However, the masking does not prevent the
S-box output leakage model. The best-found model for the S-box output leakage
model can recover a partial key after only 20 traces.

This work gives the first example of a DLSCA on a protected software imple-
mentation of Ascon. The exploited leakages we present are not specific to soft-
ware and could be, depending on the implementation, applied to hardware. In fu-
ture work, we plan to explore protected hardware implementation of Ascon with
the presented leakage models and model optimization methods. It could also be
interesting to apply non-profiled DLSCA to Ascon.

69

Part I1I

DEEP LEARNING SIDE-CHANNEL ANALYSIS OF
PUBLIC KEY CRYPTOGRAPHY

ONE TRACE IS ALLIT TAKES: MACHINE
LEARNING-BASED SIDE-CHANNEL ATTACK ON EDDSA

This chapter is based on [WPB], a joint work with Stjepan Picek and Lejla Batina,
that has been presented in 2019 at the International Conference on Security, Pri-
vacy and Applied Cryptography Engineering (SPACE).

CONTENT OF THIS CHAPTER

5.1 Introduction 73
5.2 Preliminaries 75
5.3 AttackerModel 78
5.4 Dataset Generationt 78
5.5 Experimental Settingand Results 82
5.6 Conclusions and Future Work 89

5.1 INTRODUCTION

Cryptographic algorithms ensure the security of a system (e.g., communication
on a network or payment with a smartcard), by providing security features (e.g.,
authenticity and non-repudiation). However, implementations of those algorithms
can fail during the engineering process and present flaws, leaking secret informa-
tion over side-channels, even for the strongest protocols. Side-channel analysis
(SCA) designates a set of signal processing techniques targeting the execution of
cryptographic implementations, evaluating a system’s security.

Since Differential Power Analysis by Kocher et al. [KJJ99], many other pow-
erful SCAs have been successfully used to break all cryptographic algorithms,
including recent machine learning approaches, on both symmetric key cryptogra-
phy [CRRO2; Heu+17; Kim+19b; LBM14; MPP16; Pic+19; Pic+17; Pro+18] and
public-key cryptography [MOO0S8; PZS17]. Among all SCAs, profiling attacks are
the most powerful provided that the attacker has access to a clone device with full
control that can be profiled offline, to later use this knowledge on another device

73

74

ONE TRACE IS ALL IT TAKES

during the attack phase. Template attack [CRR02] has been the most popular in-
stance of profiling attacks, but in recent years, new techniques based on machine
learning were able to outperform template attack and break implementations pro-
tected with countermeasures. However, most of those results are obtained on block
ciphers implementations (and more precisely on AES) and there are almost no re-
sults considering machine learning (deep learning) on public-key cryptography.

In this paper, we attack the digital signature algorithm Ed25519 as implemented
in WolfSSL on an STM32F4 microcontroller, and we also compare the results ob-
tained from different profiling attacks. To that end, we consider several machine
learning techniques (i.e., Random Forest, Support Vector Machines, and Convolu-
tional Neural Network) that have been proved strong in related work (albeit mostly
on block ciphers) and template attack, which we consider the standard technique
and a baseline setting.

5.1.1 Related Work

Template attacks (TAs) have been introduced by Chari et al. in 2003 [CRRO02] as
the most powerful SCA in the information-theoretic point of view and became a
standard tool for profiling SCA. As straightforward implementations of TA can
lead to computationally intensive computation, one option for more efficient com-
putation is to use only a single covariance matrix, and is referred as the so-called
pooled template attack presented by Choudary and Kuhn [CK13] where they were
able to template a LOAD instruction and recover all 8 bits treated with a guessing
entropy of 0. Several works applied machine learning methods to SCA of block
ciphers because of their resemblance to general profiling techniques. Two meth-
ods stand out particularly in profiling SCA, namely Support Vector Machines (see,
e.g., [Pic+17; MPP16; SH12; LBM14]) and Random Forest (see, e.g., [Heu+17;
Pic+19; SH12]). With the general evolution in the field of deep learning, more
and more works deal with neural networks for SCA and often show top perfor-
mance. There, most of the research concentrated on either multilayer perceptron
or convolutional neural networks [MPP16; Pic+18b; CDP17; CJ19].

There is a large portion of works considering profiling techniques for block
ciphers, but there is much less for public-key cryptography. Lerman et al. con-
sidered template attack and several machine learning techniques to attack RSA.
However, the targeted implementation was not secure, which makes the compar-
ison with non-machine learning techniques less favorable [LBM14]. Nascimento
et al. applied a horizontal attack on ECC implementation for AVR ATmega micro-
controller targeting the side-channel leakage of cmov operation. Their approach
to side-channel is similar to ours, but they don’t use deep learning in the analy-

5.2 PRELIMINARIES

sis [Nas+17]. Poussier et al. used horizontal attacks and linear regression to con-
duct an attack on ECC implementations, but their approach cannot be classified
as deep learning [PZS17]. Carbone et al. used deep learning to attack a secure
implementation of RSA [Car+19]. Previous work has shown TA to be efficient
for attacking SPA-resistant ECDSA with P192 NIST curve on 32-bit microcon-
troller [MOOS].

5.1.2 Contributions

There are two main contributions of this paper:

1. We present a comprehensive analysis of several profiling attacks by explor-
ing different sets of hyper-parameters that permit to obtain the best results
for each method. This evaluation can be helpful when deciding on an opti-
mal strategy for machine learning and in particular, deep learning attacks
on implementations of public-key cryptography.

2. We consider elliptic curve cryptography (actually EdDSA using curve
Curve25519) and profiling attacks where we show that such techniques,
and especially the convolutional neural networks can be extremely powerful
attacks.

Besides those contributions, we also present a publicly available dataset we de-
veloped for this work. We aim to make our results more reproducible but also mo-
tivate other researchers to publish their datasets for public-key cryptography. In-
deed, while the SCA community realizes the lack of publicly available datasets for
block ciphers (and tries to improve it), the situation for public-key cryptography
seems to attract less attention despite even worse availability of codes, testbeds,
and datasets.

5.2 PRELIMINARIES

In this section, we start by introducing the elliptic curve scalar multiplication op-
eration and EADSA algorithm.

5.2.1 EdDSA

In the context of public-key cryptography, one important feature is the authen-
tication of a message between two parties. This feature ensures to party B that

75

76

ONE TRACE IS ALL IT TAKES

Table 4: Notation for EADSA
Name Symbol

Private key k

Private scalar a (first part of H(k)).
Auxiliary key b (last part of H(k)).
Ephemeral key r

Message M

party A has indeed sent a message M and that this message is original and unal-
tered. Message authentication can be performed by Digital Signature Algorithms
(DSA). DSA creates a signature pair (R, S) for proving that a message M was
emitted by the known party A, unaltered and that A cannot repudiate. For secu-
rity reasons and computational speed, public-key cryptography has turned toward
Elliptic Curves based cryptography (ECC) as it tends to become the successor
of RSA for public-key cryptography because it can meet higher security levels
with smaller key lengths. ECC is based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP), which states that it is easy and hence efficient to compute
Q = k- P, but it is difficult to find k knowing Q and P.

EdDSA [Ber+12] is a variant of the Schnorr digital signature scheme [Sch91]
using Twisted Edward Curves, a subgroup of elliptic curves that uses unified
formulas, enabling speed-ups for specific curve parameters. This algorithm pro-
poses a deterministic generation of the ephemeral key, different for every differ-
ent message, to prevent flaws from a predictable random number generator. The
ephemeral key 7 is made of the hash value of the message M and the auxiliary key
b, generating a unique ephemeral public key R for every message.

EdDSA, when using parameters of Curve25519 is referred to as Ed25519 [Ber16].
EdDSA scheme for signature generation and verification is described in Algo-
rithm 1, where the notation (x, . ..,Y) denotes the concatenation of the elements.
The notation used in Algorithm 1 is given in Table 4.

After the signature generation, party A sends (M, R, S), i.e., the message along
with the signature pair (R, S) to B. The verification of the signature is done by
B with Steps 10 to 11. If the last equation is verified, it represents a point on the
elliptic curve and the signature is correct, ensuring that the message can be trusted
as an authentic message from A.

5.2 PRELIMINARIES

Algorithm 1 EdDSA Signature generating and verification

Keypair Generation (k, P): (Used once, first time private key is used.)
Hash k such that H(k) = (ho, hy, ..., hay—1) = (a,b)

a = (ho,...,h,_1), interpret as integer in little-endian notation

b= (hu/ ceey hZufl)

Compute public key: P = aB.

Ll N

Signature Generation:

Compute ephemeral private key ¥ = H(b, M).
Compute ephemeral public key R = rB.
Compute h = H(R, P, M) mod I.
Compute: S = (r+ ha) mod .

Signature pair (R, S)

L X D

Signature Verification:
10: Compute i = H(R, P, M)
11: Verify if 8SB = 8R + 8hP holds in E

5.2.2 Elliptic Curve Scalar Multiplication

The security of ECC algorithms depends on the ability to compute a point mul-
tiplication and the presumed inability to reverse the computation to retrieve the
multiplicand given the original and product points. This security is strengthened
with a greater prime order of the underlying finite field. In our attack, we aim to
extract the ephemeral key 7 from its scalar multiplication with the Elliptic Curve
base point B (see step 5 in Algorithm 1). To understand how this attack works, we
decompose this computation as implemented in the case of WolfSSL Ed25519.
The implementation of Ed25519 in WolfSSL is based on the work of Bern-
stein et al. [Ber+12]. The implementation of elliptic curve scalar multiplication is
a window-based method with radix-16, making use of a precomputed table con-
taining results of the scalar multiplication of 16'|r;| - B, where r; € [~8,7] N Z
and B is the base point of Curve25519 (see Algorithm 2). This method is popu-
lar because of its trade-off between memory usage and computation speed, but
also because the implementation is time-constant and does not feature any branch
condition nor array indices and hence is presumably secure against timing attack.
Leaking information from the corresponding value loaded from the memory with
a function ge_select is used here to recover e and hence can be used to easily
connect to the ephemeral key r. More details are given in the remainder of this

paper.

77

78

ONE TRACE IS ALL IT TAKES

5.3 ATTACKER MODEL

The general warning for implementations of ECDSA is to select different
ephemeral private keys r for different signature. The flaw of using the same r for
different messages happens since the two corresponding signatures would result
in two signature pairs (R, S) and (R,S’) for messages M and M, respectively.
Then, an attacker can use this information to recover r as r = (z —z’)(S — §') !
(with z and z’, few bits of H(M) and H(M’) interpreted as integers). Finally, to
recover the private scalar a required to forge signatures, the attacker can trivially
compute 2 = R~1(Sr — z).

Here, the aim of the attacker is the same as for every ECDSA attack: recover the
secret scalar a. The difference is that the attacker cannot acquire two signatures
with the same random r, but can still recover the secret scalar in two different ways.
One method would consist of attacking the implementation of the hash function
to recover b from the computation of ephemeral private key [Sam+18]. Another
method (developed in this paper) attacks the implementation of the scalar multi-
plication during the computation of the ephemeral public key. With this method,
the attacker collects side-channel traces of each computation since 7 is different in
every message. This paper shows that even with a single attack trace, the attacker
can recover private scalar with high confidence where we provide a comparison
with different state-of-the-art profiling SCA.

5.4 DATASET GENERATION

In this section, we first present the measurement setup and explain the method-
ology for creating a dataset from the power traces obtained with our setup (see
Figure 26).

5.4.1 Measurement Setup

The device under attack is a Pifiata development board developed by Riscure to
perform SCA evaluations '. The board is based on a 32-bit STM32F4 micro-
controller with an ARM-based architecture, running at the clock frequency of
168 MHz. The board is modified to perform SCA through power consumption.
The target is Ed25519 implementation of WolfSSL 3.10.2. As WolfSSL is an
open-source library written in C, we have a fully transparent and controllable
implementation for the profiling phase.

1 Pinata Board: https://www.riscure.com/product/pinata-training-target/

https://www.riscure.com/product/pinata-training-target/

5.4 DATASET GENERATION

Figure 26: The measurement setup

Power consumption is measured with a current probe 2 placed between the
power source and the board’s power supply source. Power measurements are ob-
tained with a Lecroy Waverunner z610i oscilloscope. The measures are performed
with a sampling frequency of 1.025 GHz and the trigger is implemented with an
I/O pin of the board around the ge_select function (see Algorithm 2) to retrieve a
part of the key e.

5.4.2 Dataset

To evaluate the attack proposed in this paper and to facilitate reproducible ex-
periments, we present the dataset we built for this purpose [Dat]. We follow the
same format for the dataset as in recently presented ASCAD database [Pro+18].
For this attack, we profile the EC scalar multiplication with the ephemeral key
with the base point of curve Ed25519. Regarding the implementation of this op-
eration for our target, we focus on the profiling of one function of the operation
as it is more challenging by exploiting less information. We focus on the Lookup
Table (LUT) operation used to fetch the precomputed chunks of the result in a
table stored in memory. For speed reasons, the 256 bits scalar/ephemeral secret
key 7 is interpreted in slices of 4-bits (nibbles) ¢[i],i € [0,63], and to compute
R = rB, the field multiplication with the base point B, we would have to com-

2 Current Probe: https://www.riscure.com/product/current—-probe/

79

https://www.riscure.com/product/current-probe/

80

ONE TRACE IS ALL IT TAKES

Algorithm 2 Elliptic curve scalar multiplication with base point [BSS99]

Require: R,a with a = a[0] + 256 x a[1] + ... + 25631a[31]
Ensure: H(a,s, m)

—

fori =0;i < 32,4+ +ido

e[2i + 0] = (ai] >> 0&15);
e[2i + 1] = (ali] >> 4)&15;
end for
carry = 0;
fori =0;i < 63,4+ +ido
eli|+ = carry;
carry = (e[i] +8);
carry >>=4;
eli]— = carry << 4;
: end for
. e[63]+ = carry; > Vi< 64, —8<eli] <8
: ge_p3_0(h);
cfori=1;i < 64;i+ =2do
ge_select(&t,i/2,eli]); > load from precomputed table (e[i] - 16?) - B in
E.
ge_madd(&r, R, &t); ge_plpl_to_p3(R, &r);
: end for
. ge_p3_dbl(&r, R); ge_plpl_to_p2(&s, &r);
. ge_p2_dbl(&r, &s); ge_plpl_to_p2(&s, &r);
. ge_p2_dbl(&r, &s); ge_plpl_to_p2(&s, &r);
. ge_p2_dbl(&r, &s); ge_plpl_to_p3(R, &r);
cfori=0;i <64;i+ =2do
ge_select(&t,i/2,eli]); > load from precomputed table (e[i] - 16?) - B in
E.
ge_madd(&r, R, &t); ge_plpl_to_p3(R, &r);

: end for

5.4 DATASET GENERATION

Table 5: Organization of the database.

DATABASE
ATTACK_TRACES PROFILING_TRACES
TRACES | trace_1[1000] TRACES | trace_1[1000]
trace_n,[1 000] trace_n,[1000]
LABELS | label_1[1] LABELS | label_1[1]
label_n,[1] label_n,[1]

pute Y22, e[i]16'B. As multiplication is resource consuming, the implementation
stores the results for every nibble number i and nibble value e[i] in a precomputed
LUT and loads corresponding chunks when needed.

Each trace in the database is represented by a tuple composed of one power
trace and its corresponding label (class). The database is composed of two groups:
the first group is PROFILING_TRACES, which contains 7, tuples. The second
group is ATTACK_TRACES, which contains 1, tuples (see Table 5). In total, there
are 6400 labeled traces. We divide the traces in 80/20 ratio for profiling/attacking
groups, and consequently, have 1, = 5120 and n, = 1280. The profiling group
is additionally divided in 80/20 ratio for training and validation sets.

A group contains two datasets: TRACES and LABELS. The dataset TRACES con-
tains the raw traces recorded from different nibbles during the encryption. Each
trace contains 1 000 samples and represents the relevant information of one nib-
ble encryption. The dataset LABELS contains the correct subkey candidate for the
corresponding trace. In total, there are 16 classes since we consider all possible
nibble values.

To the best of our knowledge, besides the dataset we presented here, there is
only one publicly available dataset for SCA on public-key cryptography on ellip-
tic curves. Tuveri et al. conducted a side-channel analysis of SM2 (a digital sig-
nature algorithm) public-key cryptography suite where they consider various side
channels [Tuv+18]. Additionally, the authors published EM side-channel measure-
ments of elliptic curve point multiplication'. We note that due to the choice of the
suite (SM2 is not an international standard), this dataset is difficult to compare
with ours.

1 available at https://zenodo.org/record/14368284#.XRhmfY-xWrw

81

https://zenodo.org/record/1436828#.XRhmfY-xWrw

82

ONE TRACE IS ALL IT TAKES

5.5 EXPERIMENTAL SETTING AND RESULTS

To examine the feasibility and performance of our attack, we present different
settings for power analysis and use two different metrics. We first compare the
performance by using the accuracy metric since it is a standard metric in machine
learning. The second metric we use is the success rate as it is an SCA metric that
gives a more concrete idea on the power of the attacker [SMY(09]. Note that we
assume the attacker who can collect as many power traces as she wants and that
the profiling phase is nearly-perfect as also suggested by Lerman et al. [Ler+15].

5.5.1 Hpyperparameters Choice

Here we discuss the choice of hyperparameters for each method we consider in
this paper.

TA: Classical Template Attack is applied with pooled covariance [CK13]. Pro-
filing phase is repeated for a different choice of points of interest (POI).

RF: Hyper-parameter optimization is applied to tune the number of decision
trees used in Random Forest. We consider the following number of trees: 50, 100,
500. The best number of decision trees is 100 with no PCA and 500 when PCA is
applied for 10 and 656 POLI.

SvM: For the linear kernel, the hyperparameter to optimize is the penalty pa-
rameter C. We search for the best C among a range of [1,10] in logarithmic space.
In the case of the radial basis function (RBF) kernel, we have two hyperparameters
to tune: the penalty C and the kernel coefficient -y. The search for best hyperpa-
rameters is done within C = [1,10°] and 7y = [—5,2] in logarithmic spaces. We
consider only those hyperparameters that give the best scores for each choice of
POI (see Table 6).

CNN: The chosen hyperparameters for VGG-16 follows several rules that have
been adapted for SCA in [Kim+19b] or [Pro+18] and that we describe here:

1. The model is composed of several convolution blocks and ends with a
dropout layer followed by a fully connected layer and an output layer with
the Softmax activation function.

2. Convolutional and fully-connected layers use the ReLU activation function.

5.5 EXPERIMENTAL SETTING AND RESULTS

Table 6: Chosen hyperparameters for SVM
Kernel ‘ C ‘ 0%

Number of features

1000 linear | 1000 | —
rbf 1000 | 1

656 linear | 1000 | —
rbf 1000 | 1

10 linear | 1333 | —
rbf 1000 | 1.23

Table 7: Architecture of the CNN

Hyper-parameter Value
Input shape (1000, 1)
Convolution layers (8,16,32,64,128,256,512,512,512)
Pooling type Max
Fully-connected layers 512

Dropout rate 0.5

ONE TRACE IS ALL IT TAKES

3. A convolution block is composed of one convolution layer followed by a
pooling layer.

4. An additional batch normalization layer is applied for every odd-numbered
convolution block and is preceding the pooling layer.

5. The chosen filter size for convolution layers is fixed on size 3.

6. The number of filters 715 ; in a convolution block i keeps increasing ac-
cording to the following rule: ngpes; = max(Zi . nﬁlters,1/512) for every
layer i > 0 and we choose 7igers1 = 8

7. The stride of the pooling layers is of size 2 and halves the input data for
each block.

8. Convolution blocks follow each other until the size of the input data is re-
duced to 1.

Figure 27: CNN architecture as implemented in Keras. This architecture consists of 9
convolutional layers followed by max pooling layers. For each odd convolu-
tional layer, there is a batch normalization layer before the pooling layer. At
the end of the network, there is one fully connected layer.

IS IS IS IS IS, IS,
g 5 & g 3 8 g % &
- - - - - - - - -

5 5 5 5 5 5
= p= = = p= p=

S 5 S = =

)) e 2 = o 2

A A ata%a%a%%%

5 5 < 5 = A 5

= = =

5.5 EXPERIMENTAL SETTING AND RESULTS

5.5.2 Dimensionality Reduction

For computational reasons, one may want to select points of interest (POI) and
consequently, we explore several different setting where we either use all the fea-
tures in a trace or we conduct dimensionality reduction. Here, for dimensionality
reduction, we use Principal Component Analysis (PCA) [Boh+03]. Principal com-
ponent analysis (PCA) is a well-known linear dimensionality reduction method
that may use Singular Value Decomposition (SVD) of the data matrix to project it
to a lower dimensional space. PCA creates a new set of features (called principal
components) that are linearly uncorrelated, orthogonal, and form a new coordi-
nate system. The number of components equals the number of original features.
The components are arranged in a way that the first component covers the largest
variance by a projection of the original data and the subsequent components cover
less and less of the remaining data variance. The projection contains (weighted)
contributions from all the original features. Not all principal components need to
be kept in the transformed dataset. Since the components are sorted by the vari-
ance covered, the number of kept components, designated with L, maximizes the
variance in the original data and minimizes the reconstruction error of the data
transformation.

Note, while PCA is meant to select the principal information from a data, there
is no guarantee that the reduced data form will give better results for profiling
attacks than its complete form. We apply PCA to have the least possible number
of points of interest that maximize the score from TA (10 points of interest) and the
number of POI using a Bayesian model selection that estimates the dimensionality
of the data based on heuristics (see [Min0O1]). After an automatic selection of the
number of components to use, we have 656 points of interest.

5.5.3 Results

In Table 8, we give results for different profiling methods when considering recov-
ery of a single nibble of the key. We can see that all profiling techniques reach very
good performance with all accuracy scores above 95%. Still, some differences can
be noted. When considering all available features (1 000), CNN performs the best
and has the accuracy of 100%. Both linear and rbf SVM and RF have the same
accuracy. The performance of SVM is interesting since the same value for linear
and rbf kernel indicates that there is no advantage of going into higher dimensional
space, which means that the classes are linearly separable. Finally, TA performs
the worst of all considered techniques.

85

86

ONE TRACE IS ALL IT TAKES

Algorithm 1000 features | 656 PCA components | 10 PCA components

TA 0.9977 0.9984 0.9830
RF 0.9992 0.9914 0.9937
SVM (linear) | 0.9992 0.9992 0.995
SVM (rbf) 0.9992 0.9992 0.995
CNN 1.00 0.95 0.96

Table 8: Accuracy for the different methods obtained on the attacking dataset.

Applying PCA to the dataset results in lower accuracy scores. More precisely,
when considering the results with PCA that uses an optimal number of compo-
nents (656), we see that the results for TA slightly improve while the results for
RF and CNN decrease. While the drop in the performance for RF is small, CNN
has a significant performance drop and becomes the worst performing technique.
SVM with both kernels retains the same accuracy level as for the full number of
features. Finally, when considering the scenario where we take only 10 most im-
portant components from PCA, all the results deteriorate when compared with the
results with 1 000 features. Interestingly, CNN performs better with only 10 most
important components than with 656 components but is still the worst performing
technique from all the considered ones.

To conclude, all techniques exhibit very good performance, but CNN is the
best if no dimensionality reduction is done. There, the maximum accuracy is ob-
tained after only a few epochs (see Figures 29 and 30). If there is dimensionality
reduction, CNN shows a quick performance deterioration. This behavior should
not come as a surprise since CNNs are usually used with the raw features (i.e., no
pre-processing). In fact, applying such techniques could reduce the performance
due to a loss of information and changes in the spatial representation of features.
Interestingly, TA is never the best technique while SVM and RF show good and
stable behavior for all feature set sizes.

In Figure 28, we give the success rate with orders up to 10 for all profiling
methods on the dataset without applying PCA. Note, a success rate of order o is
the probability that the correct subkey is ranked among the firsts o candidates of
the guessing vector. While CNN has a hundred percent success rate of order 1,
other methods achieve the perfect score only for orders greater than 6.

The results for all methods are similar in the recovery of a single nibble from
the key. If we want to have an idea of how good these methods are for the recovery
of a full 256-bit key, we must apply the classification on the successive 64 nibbles.
We can have an intuitive glimpse of the resulting accuracy P, with the cumulative

5.5 EXPERIMENTAL SETTING AND RESULTS

Figure 28: Success rate results.

Success Rate for different methods
1.000 -

0.999 -

0.998 -

0.997 -

Success rate

0.996 -

—— SVM(rbf)
0.995 - —— SVM(linear)
TA
— RF

0.994 - CNN

1 2 3 4 5 6 7 8 9 10

probability of the probability of one nibble P; : P, = ITg4Ps (see Table 9). The
cumulative accuracy obtained in such a way can be interpreted as the predictive
first-order success rate of a full key for the different methods in terms of a security
metric.

From these results, we can observe that the best result is obtained with CNN
when there is no dimensionality reduction. Other machine learning methods and
TA are nonetheless powerful profiling attacks with up to 95 and 90% performance
to recover the full key on the first guess with the best choice of hyperparameters
and dimensionality reduction. Note the low accuracy value for CNN when using
656 PCA components: this result is obtained as the accuracy of CNN for a sin-
gle nibble raised to the power of 64 (since now we consider 64 nibbles). When
considering the results after dimensionality reduction, we see that SVM is the
best performing technique, which is especially apparent when using only 10 PCA
components. Finally, we observe again that TA is never the best performing tech-
nique.

As it can be observed from Figures 29 and 30, both scenarios without dimen-
sionality reduction and dimensionality reduction to 656 components, reach the
maximal performance very fast. On the other hand, the scenario with 10 PCA
components does not seem to reach the maximal performance within 100 epochs
since we see that the validation accuracy does not start to decrease. Still, even
longer experiments do not show further improvement in the performance, which

87

88

ONE TRACE IS ALL IT TAKES

Algorithm 1000 features | 656 PCA components | 10 PCA components
TA 0.86 0.90 0.33
RF 0.95 0.57 0.66
SVM (linear) | 0.95 0.95 0.72
SVM (rbf) 0.95 0.95 0.72
CNN 1.00 0.03 0.07

Table 9: Cumulative probabilities of the profiling methods.

Validation Accuracy

ZEmZanuny

Training Accuracy
1.0- .
0.9-
ﬁ 0.95- V
0.8 - W

05- —— NoPCA 080+ —— No PCA
—— 656 POI —— 656 POI
0.4+ 10 POI i 10 POI

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

(a) Training Accuracy

0 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

(b) Validation Accuracy

Figure 29: Accuracy of the CNN method over 100 epochs

indicates that the network simply learned all that is possible and that there is no
more information that can be used to further increase the performance.

5.5.3.1 Choosing the Minimum Number of Traces for Training on CNN.

As it is possible to obtain a perfect profiling phase on our dataset using CNN, we
focus here on finding the smallest training set that gives a success rate of 1. More
precisely, we evaluate the attacker in a more restricted setting [PHG19]. To do so,
we first reduce the size of the training set to k number of traces per class (to always
have a balanced distribution of the traces) and then we gradually increase it to find
out when the success rate reaches 1. In Table 10, we give the results obtained after
one hundred epochs.

Interestingly, it turns out that 30 traces per class for training the CNN is enough
to reach the perfect profiling of this dataset. At the same time, the additional ex-
periments did not show good enough behavior with a lower number of traces per
class. Note the scenario with only 10 traces per class where the validation accu-
racy is lower than the testing accuracy. This happens since we use only 20% of

5.6 CONCLUSIONS AND FUTURE WORK

Training Loss Validation Loss

2,00 —— No PCA —— No PCA

175 - —— 656 POI 2.0- —— 656 POI
10 POI 10 POI

1.50 -
1.25-
1.00 -|

0.75 -

0.50 - 05
0.25- |
0.00 - 0.0 -

0 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

(a) Training Loss (b) Validation Loss

Figure 30: Loss of the CNN method over 100 epochs.

Table 10: Validation and test accuracy of CNN with an increasing number of training

traces.
Number of traces per class k ‘ 10 ‘ 20 ‘ 30 ‘ 50 ‘ 100 ‘ 300
Validation accuracy 10937 [10 |10] 10|10 |10
Testing accuracy 10992 (0992 | 10| 1.0 | 1.0 | 1.0

the training set for the validation, which results in an extremely small validation
set and consequently, less reliable results.

5.6 CONCLUSIONS AND FUTURE WORK

In this paper, we consider a number of profiling techniques to attack the Ed25519
implementation in WolfSSL. The results show that although several techniques
perform well, convolutional neural networks are the best if no dimensionality re-
duction is done. In fact, in such a scenario, we can obtain the accuracy of 100%,
which means that the attack is perfect in the sense that we obtain the full infor-
mation with only a single trace in the attack phase. What is especially interesting
is the fact that CNN used here is taken from related work (more precisely, CNN
used for profiling SCA on AES) and is not further adapted to the scenario here.
This indicates that CNNs can perform well over various scenarios in SCA. Finally,
to obtain such results, we require only 30 measurements per class, which results
in less than 500 measurements to reach a success rate of 1 with CNN.

The implementation of Ed25519 we attack in this work does not feature any
countermeasure for SCA (that is, beyond constant-time implementation). In future

89

90

ONE TRACE IS ALL IT TAKES

work, we plan to evaluate CNN for SCA on Ed25519 with different countermea-
sures to test the limits of CNN in the side-channel analysis.

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF
CURVE25519 WITH MACHINE LEARNING

This chapter is based on [Wei+20b], a joint work with Lukasz Chmielewski,
Stjepan Picek and Lejla Batina, and was published in the journal of hardware and
system security in 2020.

CONTENT OF THIS CHAPTER

6.1 Introduction 91
6.2 Preliminaries e 93
6.3 Experimental Setup 98
6.4 Results. 103
6.5 RelatedWork 112
6.6 Conclusions 114

6.1 INTRODUCTION

Various cyber-physical devices have become integral parts of our lives. They pro-
vide basic services, and as such, also need to fulfill appropriate security require-
ments. Designing such secure devices is not easy due to limited resources avail-
able for implementations, and the need to provide resilience against various at-
tacks. In the last decades, implementation attacks emerged as real threats and the
most potent attacks. In implementation attacks, the attacker does not aim at the
weaknesses of an algorithm, but the weaknesses in implementations [MOPO6].
One powerful category of implementations attacks is the profiled side-channel
analysis (SCA) where the attacker has access to a profiling device she uses to
learn about the leakage from the device under attack. Profiled SCA uses a broad
set of methods to conduct the attack.

In the last few years, attacks based on the machine learning classification
task have proved to be very successful when attacking symmetric-key cryptogra-
phy [Kim+19b; LBM14; MPP16; Pic+19; Pro+18]. On the other hand, profiled

91

92

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

SCAs on public-key cryptography implementations are much more scarce [MOO08;
PZS17; Car+19].

While the current state-of-the-art results on profiled SCA and public-key cryp-
tography suggest breaking targets with a relatively small effort, many questions re-
main unanswered. For instance, it is not yet clear what are the benefits of counter-
measures against machine learning-based attacks. What is more, public-key cryp-
tography has different use cases and parameters that also result in classification
problems with significantly different number of classes one commonly encoun-
ters when attacking, e.g., block ciphers. Finally, in profiled SCA on symmetric
ciphers, we are slowly moving away from scenarios where the only interesting as-
pect is the attack performance. Indeed, the SCA community is now becoming in-
terested in questions like interpretability [MDP19; PEC19; VP19] and explainabil-
ity [VPB19] of deep learning attacks, but also building methodologies [Zai+19]
and frameworks [Pic+18a; PHG19] for objective analysis.

This paper considers profiled side-channel attacks on two implementations of
scalar multiplication on one of the most popular elliptic curves for applications,
i.e., Curve25519. The first implementation is the baseline implementation with
the complete formulae as used for EADSA in WolfSSIl. The second implemen-
tation also includes several countermeasures. To evaluate the security of those
implementations, we consider seven different profiled methods. Additionally, we
investigate the influence of the dimensionality reduction technique. By doing this,
we aim at filling the knowledge gap and give insights into the performance of
different profiled methods. Finally, we compare the differences in the attack per-
formance when considering protected and non-protected implementations.

This paper is based on the work “One Trace Is All It Takes: Machine Learning-
Based Side-Channel Attack on EADSA” [WPB19]. The main differences are:

1. We provide results for an additional target, protected with countermeasures.

2. We provide results for several more profiled methods and different dimen-

sionality reduction steps.
3. We investigate the applicability of one visualization technique for deep
learning when attacking public-key implementations.

The rest of this paper is organized as follows. In Section 6.2, we give details
about EADSA and scalar multiplication procedure. Afterwards, we discuss the pro-
filed methods we use in our experiments. Section 6.3 provides details about the
attacker model, the datasets we use, hyperparameter tuning, and dimensionality
reduction. In Section 6.4, we provide experimental results for both targets. In Sec-
tion 6.5, we discuss related works. Finally, in Section 6.6, we conclude the paper
and offer some potential future research directions.

6.2 PRELIMINARIES

6.2 PRELIMINARIES

In this section, we start by introducing the elliptic curve scalar multiplication op-
eration and the EADSA algorithm. After that, we discuss profiling attacks that we
use in our experiments.

6.2.1 Elliptic Curve Digital Signature Algorithm

In the context of public-key cryptography, one important feature is the (entity)
authentication between two parties. This feature ensures to party B that party A
has sent a message M and that this message is original and unaltered. Authenti-
cation can be performed by the Digital Signature Algorithm (DSA). Nowadays,
public-key cryptography for constrained devices typically implies Elliptic Curves
cryptography (ECC) as the successor of RSA because it achieves a higher secu-
rity level with smaller key lengths saving the resources such as memory, power,
and energy. The security of ECC algorithms is based on the difficulty of Elliptic
Curve Discrete Logarithm Problem (ECDLP), which states that while it is easy
and efficient to compute Q = k - P, it is “difficult” to find k with knowledge of Q
and P.

EdDSA [Ber+12] is a variant of the Schnorr digital signature scheme [Sch91]
using Twisted Edward Curves, a subgroup of elliptic curves that uses unified for-
mulas, enabling speed-ups for specific curve parameters. This algorithm proposes
a deterministic generation of the ephemeral key, different for every message, to
prevent flaws from a biased random number generator. The ephemeral key r is
made of the hash value of the message M and the auxiliary key b, generating a
unique ephemeral public key R for every message.

EdDSA, with the parameters of Curve25519, is referred to as Ed25519 [Ber16].
EdDSA scheme for signature generation and verification is described in Algo-
rithm 3, where the notation (x, . ..,y) denotes the concatenation of the elements.
The hash function H is SHA-512 [NIS15]. The key length is of size u = 256.
We denote the private key with k, the private scalar a is the first part of the pri-
vate key’s hashed value, and the auxiliary key b is the second part. We denote the
ephemeral key with and M is the message.

After the signature generation, party A sends (M, R, S), i.e., the message along
with the signature pair (R, S) to B. The verification of the signature is done by
B with Steps 10 to 11. If the last equation is verified, it represents a point on the
elliptic curve, and the signature is correct, ensuring that the message can be trusted
as an authentic message from A.

93

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Algorithm 3 EdDSA Signature generating and verification

Keypair Generation: (Used once, first time private key is used.)
Input: k, Output: a, b, P

Hash k such that H(k) = (ho, hy, ..., hay—1) = (a,b)

a = (ho,...,h,_1), interpret as integer in little-endian notation
b= (hy,... hy-1)

Compute public key: P = aG.

Ll N

Signature Generation:

Input: M, a, b, P Output: R, S

Compute ephemeral private key ¥ = H(b, M).
Compute ephemeral public key R = rG.
Compute h = H(R, P, M) mod I.
Compute: S = (r + ha) mod I.

Signature pair (R, S)

R R A

Signature Verification:

Input: M, P, R, S, Output: {True, False}
10: Compute h = H(R, P, M)
11: Verify if 8SG = 8R + 8hP holds in E

6.2.2 Elliptic Curve Scalar Multiplication

We focus on two types of implementations of EC scalar multiplication. The first
implementation is of EADSA using Ed25519 as in WolfSSL. This implementation
1s based on the work of Bernstein et al. [Ber+12] and is a window-based method
with radix-16, making use of a precomputed table containing results of the scalar
multiplication of 16'|r;| - G, where r; € [—8,7] N Z and G is the base point of
Curve25519. This method is popular because of its trade-off between memory us-
age and computation speed, but also because the implementation is time-constant
and does not feature any branch condition nor array indices and hence is presum-
ably secure against timing attacks.

Leaking information from the corresponding value loaded from memory with
a function ge_select is here used to recover e and hence can be used to connect to
the ephemeral key r easily. More details are given in the remainder of this paper.
We can attack this implementation and extract the ephemeral key » from Step 5 in
Algorithm 3.

The second implementation we focus on is the Montgomery Ladder scalar mul-
tiplication as used in uNaCl [D+15]. The implementation employs arithmetic-

6.2 PRELIMINARIES

based conditional swap and is additionally protected with projective coordinate
re-randomization and scalar randomization. The traces used to analyze this im-
plementation are obtained from a publicly available dataset [Chm20]. All details
on this implementation, including the additional countermeasures, are described
in [NC17].

6.2.3 Profiling Attacks

6.2.3.1 Random Forest - RF

Random Forest is an ensemble learning method that consists of a number of de-
cision trees [BreO1]. Decision trees consist of combinations of Boolean decisions
on a different random subset of attributes of input data (called bootstrap sampling).
For each node of each tree, the best split is taken among these randomly chosen
attributes. Random forest is a stochastic algorithm since it has two sources of ran-
domness: bootstrap sampling and attribute selection at node splitting. While the
random forest has several hyperparameters to tune, we investigate the influence of
the number of trees in the forest, where we do not pose any limits on the tree size.

6.2.3.2 Support Vector Machines - SVM

Support Vector Machines is a kernel-based machine learning family of methods
used to classify linearly separable and linearly inseparable data [Vap95]. The idea
for linearly inseparable data is to transform them into a higher dimensional space
using a kernel function, wherein the data can usually be classified with higher
accuracy. The scikit-learn implementation we use considers libsvm’s C-SVC clas-
sifier [Ped+11] that implements SMO-type algorithm [FCLOS5]. This implementa-
tion of SVM learning is widely used because it is simpler and faster compared
to older methods. The multi-class support is handled according to a one-vs-one
scheme. We investigate two variations of SVM: with a linear kernel and with a
radial kernel. Linear kernel-based SVM has the penalty hyperparameter C of the
error term. Radial kernel-based SVM has two significant hyperparameters to tune:
the cost of the margin C and the kernel .

6.2.3.3 Convolutional Neural Networks - CNNs

CNN:ss, like other types of neural networks, have several layers where each layer
is made up of neurons, as depicted in Figure 31. Every neuron in a layer com-
putes a weighted combination of an input set by a net input function (e.g., the sum
function in neurons of a fully-connected layer) from which a nonlinear activation

95

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Figure 31: Anatomy of a neuron.

Input values

Weight
llllll. ﬁi . t . .
- : CO?__?_R_%? S Activation
— . function
: w1 \
T2 w2 / Y i i/ % Output

Net Input
function

g
3

N

8
3

function produces an output. When the output is different from zero, we say that
the neuron activation feeds the next layer as its input. Layers with a convolution
function as the net input function are referred to as convolutional layers and are
the core building blocks in a CNN. Pooling layers are commonly used after a con-
volution layer to sample down local regions and create spatial regions of interest.
The last fully-connected layers of a CNN behave as a classifier for the extracted
features from the inputs.

In this work, we start from the VGG-16 architecture introduced in [SZ14]
for image recognition. This architecture was also recently applied for SCA on
AES [Kim+19b] and EdDSA [WPB19]. This CNN architecture also uses the fol-
lowing elements:

1. Batch normalization to normalize the input layer by applying standard scal-
ing on the activations of the previous layer.

2. Flatten layer to transform input data of rank greater than two into a one-
dimensional feature vector used in the fully-connected layer.

3. Dropout (randomly dropping out units (both hidden and visible) in a neural
network with a certain probability at each batch) as a regularization tech-
nique for reducing overfitting by preventing complex co-adaptations on the
training data.

6.2 PRELIMINARIES

The architecture of a CNN depends on a large number of hyperparameters, so
choosing hyperparameters for each different application is an engineering chal-
lenge. The choices made in this paper are discussed in Section 6.4.

6.2.3.4 Gradient Boosting - XGB

Gradient boosting for classification is an algorithm that trains several weak learn-
ers (i.e., decision trees that perform poorly considering the classification problem)
and combines their predictions to make one stronger learner. Gradient boosting
differs from the random forest in the way the decision trees are built. While in
random forest classifier, each tree is trained independently using random sam-
ples of the data, decisions trees in gradient boosting depend on the previously
trained tree’s prediction to correct its errors. Gradient tree boosting is composed
of a concatenation of several smaller decision trees. We used the eXtreme Gradi-
ent Boosting (XGB) implementation of gradient boosting, designed by Chen and
Guestrin [CG16], which use a sparsity aware algorithm for handling sparse data
and a theoretically justified weighted quantile sketch for approximate learning.

6.2.3.5 Naive Bayes - NB

Gaussian Naive Bayes classifier is one of the classification algorithms that applies
Bayes’s theorem with the “naive” assumption. The naive assumption describes the
conditional independence between every pair of features in a given class sample.
The Gaussian assumption is assumed as the features’ probability distribution. The
Naive Bayes method is highly scalable with the number of features and requires
only a few representative features per class to achieve a satisfying performance.

6.2.3.6 Template Attack - TA

The template attack relies on the Bayes theorem and considers the features to be
dependent. Commonly, template attack relies on a normal distribution [CRR02],
and it assumes that each P(X = ¥|Y = y) follows a (multivariate) Gaussian
distribution parameterized by its mean and covariance matrix for each class Y.
Choudary and Kuhn proposed using one pooled covariance matrix averaged over
all classes Y to cope with statistical difficulties and thus lower efficiency [CK13].
In our experiments, we use this version of the attack.

97

98

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

6.3 EXPERIMENTAL SETUP
6.3.1 Attacker Model

The general recommendation for EADSA, as well as other ECDSA implementa-
tions, is to select different ephemeral private keys r for each different signature.
When this is not applied and the same r is used for different messages, the two
resulting signature pairs (R, S) and (R, S) for messages M and M’, respectively
can be used to recover 7 as r = (z — z')(S — S’) ™!, where z and z’ represent a
majority of leftmost bits of H(M) and H(M') interpreted as integers !. Finally,
the private scalar a is exposed as @ = R™1(Sr — z) and can be misused by the
attacker to forge new signatures .

The attacker’s aim is the same as for every ECDSA attack: recover the secret
scalar a. The difference is that the attacker cannot acquire two signatures with the
same random 7, but can still recover the secret scalar in two different ways. The
first method consists of attacking the hash function’s implementation to recover
b from the computation of ephemeral private key [Sam+18]. The second one at-
tacks the implementation of the scalar multiplication during the ephemeral public
key’s computation to infer it in a single trace [WPB19]. In this paper, we consider
only the profiled attacks, i.e., those based on the supervised machine learning
paradigm, where the task is the classification (learning how to assign a class label
to examples). As side-channels, we consider the power and electromagnetic (EM)
leakage.

6.3.2 SCA Datasets

We analyze two publicly available datasets targeting elliptic curve scalar multi-
plication on Curve25519 for microcontrollers. The first dataset consists of power
traces of a baseline implementation, and the second dataset consists of electro-
magnetic traces of a more protected implementation.

6.3.2.1 Baseline Implementation Dataset

We consider a dataset of scalar multiplication on Curve25519. The implementa-
tion follows the baseline implementation of the scalar multiplication algorithm
as in [WPB19]. The traces contain power measurements collected from a Pifiata

To be precise: z and z’ correspond to ! leftmost bits of H(M) and H(M') respectively, where !
denotes the bit length of the group order.

For details we refer the reader to the presentation about a real-world application of this attack:
https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%20timeline.pdf

https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%20timeline.pdf

6.3 EXPERIMENTAL SETUP

SNR

0 200 400 600 800 1000
Features

Figure 32: Signal-to-noise ratio for the baseline implementation dataset.

development board! based on a 32-bit STM32F4 microcontroller with an ARM-
based architecture, running at the clock frequency of 168 MHz. The device is
running the Ed25519 implementation of WolfSSL 3.10.2. The target is the EC
scalar multiplication of the ephemeral key and the base point of curve Ed25519
(as explained in Section 6.3.1). Because of the chosen implementation, it is possi-
ble to profile the full scalar by nibble in a horizontal fashion. The dataset is thus
composed of multiple separate nibble computations.

The dataset has 6 400 labeled traces of 1 000 features each, with associated nib-
ble value. In Figure 32, we give the signal-to-noise ratio of this dataset. The SNR
is high and reaches a maximum value of 12.9. Such a high SNR is the consequence
of dealing with power leakages that are less noisy than usual EM leakages. The
leakage is essentially located between points 50 and 700, where several features
seem to leak information about the handled nibble.

6.3.2.2 Protected Implementation Dataset

The traces in the protected dataset are taken from a publicly available dataset [Chm20].

This set contains electromagnetic traces coming from 5997 executions of

1 Pinata Board: https://www.riscure.com/product/pinata-training-target/

99

https://www.riscure.com/product/pinata-training-target/

100

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

1.35 1

1.30 A

1.25

1.20 A

SNR

1.15

1.10 A

1.05 A

1.00 A

0 1000 2000 3000 4000 5000
Features

Figure 33: Signal-to-noise ratio for the protected implementation dataset.

Curve25519 uNaCl Montgomery Ladder scalar multiplication * running on
the Pifiata target, the same as in Section 6.3.2.1. The implementation employs
an arithmetic-based conditional swap and is additionally protected with the
projective coordinate re-randomization and scalar randomization. Each trace
from the dataset represents a single iteration of the Montgomery Ladder scalar
multiplication that is cut from the whole execution trace; such trace is labeled
with the corresponding cswap condition bit 4. Furthermore, all these cut traces
(5997 x 255 = 1529 235) are aligned to exploit the leakage efficiently. Details
about the implementation and how the traces are aligned are in [NC17].

Figure 33 represents the SNR of the dataset for the bit model. This SNR is
relatively flat except for two peaks where the leakage of the data is stronger. One
is located before feature 3 000 and the second after feature 5 000. The noise level
is high for an EM dataset but is smaller than the other dataset based on power
traces.

http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
Observe that a full scalar can be trivially recovered from the cswap condition bits used in the 255
Montgomery Ladder iterations.

http://munacl.cryptojedi.org/curve25519-cortexm0.shtml

6.3 EXPERIMENTAL SETUP

6.3.3 Evaluation Metrics

To examine the feasibility and performance of our attack, we use two different
metrics. We first compare the performance using the accuracy metric since it is a
standard metric in machine learning. The accuracy metric represents the fraction
of the measurements that are classified correctly. The second metric we use is the
success rate as it is an SCA metric that gives a more concrete idea on the power of
the attacker [SMY09]. Let us consider the settings where we have A attack traces.
As the result of an attack, we output a key guessing vector v = [v1,02, ..., v IC\]
in decreasing order of probability with |KC| being the size of the keyspace. Then,
the success rate is the average empirical probability that v, is equal to the correct
key.

6.3.4 Dimensionality Reduction

For computational reasons, one may want to analyze only the most informative
features from the dataset’s traces. Consequently, we explore several different set-
tings where we use all the features in a trace or conduct dimensionality reduc-
tion. For dimensionality reduction, we use a method called principal component
analysis. Principal component analysis (PCA) is a linear dimensionality reduc-
tion method that uses Singular Value Decomposition (SVD) of the data matrix
to project it to a lower-dimensional space [Boh+03]. PCA creates a new set of
features (called principal components) that form a new orthogonal coordinate sys-
tem that is linearly uncorrelated. The number of components is the same as the
number of original features. The components are arranged so that the first com-
ponent covers the largest variance by a projection of the original data, and the
following components cover less and less of the remaining data variance. The
projection contains (weighted) contributions from all the original features. Not all
principal components need to be kept in the transformed dataset. Since the compo-
nents are sorted by decreasing covered variance, the number of kept components,
designated by L, maximizes the original data variance and minimizes the data
transformation’s reconstruction error. While PCA is meant to select the principal
information from data, there is no guarantee that the reduced data form will give
better results for profiling attacks than its complete form.

6.3.5 Hpyperparameter Tuning

Most machine learning methods are parametric and require some hyperparameters
to be tuned before the training phase. Depending on this pre-tuning, the trained

101

102

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

classifier will potentially have a different outcome. The different classification
methods we used are trained with a wide set of hyperparameters as detailed in this
section. The exact used hyperparameters are listed in Tables 11 and 14.

TA. We use the Template Attack with a pooled covariance matrix [CK13]. This
method has no hyperparameters to tune.

NB. We do not conduct hyperparameter tuning as the method is non-parametric
(i.e., there are no hyperparameters to tune).

RF. We tune the number of decision trees. We consider the following number
of trees: 50, 100, 500.

SVM. For the linear kernel, the hyperparameter to optimize is the penalty pa-
rameter C. We search for the best C in the range [1,10°] in logarithmic space.
For the radial basis function (RBF) kernel, we have two hyperparameters to tune:
the penalty C and the kernel coefficient «y. The search for best hyperparameters is
done within C = [1,10°] and v = [—5,2] in logarithmic spaces.

XGB. In the same fashion as the random forest classifier, we set the hyperpa-
rameters exploration for the number of trees to 50, 100, and 300. We impose a
maximum depth for each tree from 1 to 3 nodes, to force each tree to be a weak
learner.

CNN. The chosen hyperparameters for VGG-16 follows several rules that have
been adapted for SCA in [Kim+19b] or [Pro+18] and that we describe here:

1. The model is composed of several convolution blocks and ends with a
dropout layer followed by a fully-connected layer and an output layer with
the Softmax activation function.

2. Convolutional and fully-connected layers use the ReLLU activation function
(max(0, x)).

3. A convolution block is composed of one convolution layer followed by a
pooling layer.

4. An additional batch normalization layer is applied for every odd-numbered
convolution block and is preceding the pooling layer.

5. The chosen filter size for convolution layers is set to the size 3.

6. The number of filters 715, in a convolution block i increases according to
the following rule: nggeys; = max (2" - ngypeps1,512) for every layer i > 0
and we choose e 1 = 8.

6.4 RESULTS

Table 11: Best hyperparameters found for the baseline implementation dataset.

Algorithm | Number of features | Best hyperparameters

SVM linear | 1000 C=1000
500 C=23.1
100 C=284.8
10 C=1333
SVM rbf 1000 C=1000, y=1
500 C=12.3, v=0.65
100 C=81.1, y=0.65
10 C=1000, y=1.23
RF 1000, 500, 100, 10 | n_tree=500
XGB 1000, 500, 100, 10 | n_tree=300, max_depth=3

7. The stride of the pooling layers equals two and halves the input data for
each block.

8. Convolution blocks follow each other until the size of the input data is re-
duced to 1.

6.4 RESULTS

In this section, we first present results for the baseline implementation and the
protected implementation afterwards. We finish the section with results on visual-
ization and discussion. The best results in Tables 12 and 15 are given in bold.

6.4.1 Baseline implementation

After the conducted training phase of all the different classifiers with their hyper-
parameters, we list in Table 11 the best hyperparameters combinations for each
machine learning model.

The resulting CNN architecture for a 1 000 features input is depicted in Fig-
ure 34. Other architectures will have a different number of convolutional blocks
and a number of weights depending on the number of features of the input.

In Table 12, we give the accuracy score for different profiling methods when
considering the recovery of a single nibble of the key. We can see that all pro-
filing techniques reach excellent performance with accuracy above 95%. When

103

104 SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Figure 34: CNN architecture, as implemented in Keras. This architecture takes a 1 000
features input and consists of nine convolutional layers followed by max pool-
ing layers. For each odd convolutional layer, there is a batch normalization
layer before the pooling layer. At the end of the network, there is one fully-

connected layer.

frace, size: 1,000

oufput l
size: 1000 [3 oi"v' L
[baich norm
T
pooling, /2
S (1x3 + 16
’ cony,
size: 500 T
pooling, /2
output -3
size: 250 [1x3 cony, 32
4
(batch norm
T
pooling, /2
output (+
size: 125 1x3 oolnv, 64
pooling, /2
oufput - 4
size: 62 [L, mlw’ 128

(batch norm

|
pooling, /2

4
output
size: 31 [Ix3 oo?v' 256]
pooligg. /2
output
size: 15 [LLn °°1“" 52]
[batch norm]
poolihg, 12
g [3 oo:v 512 |
size: 7 T z
pooling, /2
oufput -2
size: 3 [LS oollv, S12]
[baich norm]
T
poong, /2
(droioui |
output
size: 512 [oz]
I
(droioui J
oufput
size: 16 [= L]

+

oufput

6.4 RESULTS

considering all available features (1 000), CNN performs the best and achieves an
accuracy of 100%. Both SVM (linear and RBF) and RF have the same accuracy.
SVM’s performance is interesting since the same value for linear and RBF kernel
indicates there is no advantage of using higher-dimensional space, which means
that the classes are linearly separable. Finally, NB, XGB, and TA still perform
well, but we conclude they reach the worst results compared to other methods.

PCA results in lower accuracy scores for most of the considered techniques.
When considering 500 or 100 PCA components, the TA’s results slightly improve,
while RF and CNN results slightly decrease. SVM with both kernels can reach
minimally higher accuracy when considering 500 PCA components. When con-
sidering the scenario with only the ten most important PCA components, all the
results deteriorate compared with the results with 1 000 features, and SVM per-
forms the best.

To conclude, all techniques exhibit strong performance, but CNN is the best if
no dimensionality reduction is applied. There, the maximum accuracy is obtained
after only a few epochs (see Figures 36 and 37). If dimensionality reduction is ap-
plied, CNN shows a progressive performance deterioration. This behavior should
not come as a surprise since CNNs are usually used with the raw features (i.e.,
no pre-processing). Applying such techniques could reduce the performance due
to a loss of information and changes in the spatial representation of features. In-
terestingly, TA and SVM are very stable methods, regardless of the number of
used features (components), and those methods show the best performance for a
reduced number of features settings.

In Figure 35, we present a success rate with orders up to 10 for all profiling
methods on the dataset without applying PCA. Recall, a success rate of order o is
the probability that the correct subkey is ranked among the first o candidates of the
guessing vector. While CNN has a 100% success rate of order 1, other methods
achieve the perfect score only for orders greater than 6.

The results for all methods are similar in the recovery of a single nibble from
the key. To have an idea of how good these methods perform for the recovery of
a full 256-bit key, we apply classification on the successive 64 nibbles. We obtain
an intuition of the resulting accuracy by considering the cumulative probability P,
of the probabilities of recovery of one nibble P; : P, = 114 Ps (see Table 13). The
cumulative accuracy obtained in such a way can be interpreted as the predictive
first-order success rate of a full key for the different methods in terms of a security
metric.

From these results, the best result is obtained with CNN when no dimensional-
ity reduction is applied. Other methods are nonetheless powerful profiling attacks
with up to 95% performance to recover the full key on the first guess with the

105

106 SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Table 12: Accuracy results for the baseline implementation dataset.
Algorithm 1000 features | 500 PCA | 100 PCA | 10 PCA

TA 0.9977 0.9992 0.9992 0.9830
RF 0.9992 0.9909 0.9921 0.9937
SVM (linear) | 0.9992 0.9995 0.9990 0.995
SVM (rbf) 0.9992 0.9996 0.9989 0.995
CNN 1.00 0.9796 0.9968 0.96
XGB 0.9965 0.9794 0.9807 0.9901
NB 0.9837 0.9475 0.9731 0.9823

Figure 35: Success rate results for the baseline implementation dataset.

1] /// e
0.998
0_995% Methods
%] —CNN
EE 0.994 1 —NB
@]
Q] —RF
S 0.9921
%)] —SVM (lin)
0.99] —SVM (rbf)
] —TA
0.9881 e

i 2 3 4 5 & 7 & 9 10

6.4 RESULTS

Table 13: Cumulative probabilities for the profiling methods.
Algorithm 1000 features | 500 PCA | 100 PCA | 10 PCA

TA 0.86 0.95 0.95 0.33
RF 0.95 0.56 0.61 0.67
SVM (linear) | 0.95 0.97 0.94 0.73
SVM (rbf) 0.95 0.98 0.93 0.73
CNN 1.00 0.27 0.82 0.04
XGB 0.80 0.27 0.29 0.53
NB 0.35 0.03 0.18 0.32
11 e
/ | v
] 0.8}
§0.7; EO'S'
§ Number of features § Number of features
061 —10 0-43 —10
] —100] —100
0'5; —500 02} —500
0.4 —1000 —1000
) 20 40 60 80 100) 20 40 60 80 100
Number of traces Number of traces
(a) Training Accuracy (b) Validation Accuracy

Figure 36: Accuracy of the CNN method over 100 epochs for the baseline implementa-
tion dataset.

best choice of hyperparameters and dimensionality reduction. When considering
the results after dimensionality reduction, SVM is the best performing technique
when using 500 PCA components.

As it can be observed from Figures 36 and 37, both the scenarios without di-
mensionality reduction and dimensionality reduction to 100 and 500 components
reach the maximal performance very fast. On the other hand, the scenario with
10 PCA components does not reach the maximal performance within 100 epochs
since the validation accuracy does not start to decrease. Still, even longer experi-
ments do not show further improvement in the performance, which indicates that
the network simply learned all that is possible and that there is no more infor-
mation that can be used to increase the performance further. Finally, the fast in-
crease in training and validation accuracy, and the stable behavior of profiling
methods clearly indicate that attacking the implementation without countermea-
sures is easy.

107

108 SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Number of features Number of features
1 —10 4 —10
1.5¢ —100 ~—=100
—500 3 —500

—1000

—1000

020 T 40 T Te0 T 80100 o020 T 4o T T e0 T T80 100
Number of traces Number of traces

(a) Training Loss (b) Validation Loss

Figure 37: Loss of the CNN method over 100 epochs for the baseline implementation
dataset.

Table 14: Best hyperparameters found for the protected implementation dataset.

Algorithm | Number of features | Best hyperparameters

RF 5500, 1000, 10 n_tree=500
XGB 5500, 1000 n_tree=300, max_depth=3
10 n_tree=300, max_depth=2

6.4.2 Protected Implementation

We list the selected hyperparameters for the protected implementation in Table 14.
The protected implementation dataset contains more features per trace than the
other dataset. Therefore, the number of trainable parameters for machine learning
methods greatly increases, increasing the models’ training load. We experimented
with RF, NB, and XGB and left out SVM (both with linear and RBF kernel) as
this method’s training becomes too expensive.

Algorithm | 5500 features | 1000 PCA | 10 PCA

RF 0.9903 0.5022 0.5023
NB 0.6058 0.4971 0.5018
XGB 0.6058 0.4945 0.5019
TA 0.9908 0.8954 0.5238
CNN 0.9999 0.5014 0.5572

Table 15: Accuracy results for the protected implementation dataset.

6.4 RESULTS

Number of features
—20

—100

—1000

—5500

A s
Number of features
—20

—100

— 1000

—5500

Accuracy
Accuracy

) 20 40 60 80 100 70T 20 T 4o 60 80 100
Number of traces Number of traces

(a) Training Accuracy (b) Validation Accuracy

Figure 38: Accuracy of the CNN method over 100 epochs on the protected implementa-
tion dataset.

We show the accuracy results for all tested methods on the protected imple-
mentation dataset in Table 15. Notice that, contrary to the previously considered
dataset, not all profiling techniques have good performance, and most of them are
even close to random guessing. Still, some profiling methods can reach above 99%
accuracy, where the best results are obtained with CNN. When PCA is applied,
random forest performs poorly with 50.2% accuracy for ten and 1000 compo-
nents, which is not better than one could expect from random guessing. However,
this method turns out to be quite efficient on the raw features and reaches an accu-
racy of 93% for one bit recovery.

Naive Bayes and XGB perform poorly regardless of the hyperparameters ex-
plored and if dimensionality reduction is applied. The accuracy stays around ran-
dom guessing when PCA is applied with ten and 1 000 components, and does not
go above 60% in the best case. Naive Bayes and XGB are simple classifiers and,
considering their accuracy score on this dataset, are not powerful enough to defeat
a protected EC scalar multiplication implementation.

The template attack is performing well, where the more features are taken, the
better the results. The best accuracy score for template attack is obtained when
all features are kept, and it reaches 99% accuracy. When PCA is applied and
1 000 components are selected, the accuracy falls to 89% (which is, in fact, the
best results for all considered techniques). Finally, when the number of selected
components is reduced to 10, the accuracy falls to 52%.

CNN is a highly efficient method only when considering the dataset without
applying the PCA method, where it reaches an accuracy above 99%. As we can see
in Figures 38 and 39, when PCA is applied, while the training loss and accuracy
seems to fit the training set, the model fails to generalize and converge on the
validation set given the chosen number of traces and epochs.

109

110 SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

Number of features
4 —20

~—=100

3 —1000

—5500

Number of features
—20
o
—100 2
b
—1000
—5500

020 T 40 T Te0 T 80100 o020 T 4o T T e0 T T80 100
Number of traces Number of traces

(a) Training Loss (b) Validation Loss

Figure 39: Loss of the CNN method over 100 epochs on the protected implementation
dataset.

We can evaluate the accuracy of the different methods to predict a 256 bits
scalar by computing the cumulative probability of success of a single bit over 256
attempts. The cumulative probability p. for a 256 bits key considering a single
bit probability recovery P; is: P, = [[,54 Ps. Here, only the methods with a single
accuracy above 99% are worth considering as the other methods have a cumulative
probability close to zero. For example, the cumulative accuracy for the random
forest with 5 500 features is 8%, and CNN with 5 500 features is 98%.

6.4.3 Visualization of the Integrated Gradient

For CNNs, various visualization techniques have been developed to help re-
searchers understand what input features influence the neural network predictions.
These tools are interesting in side-channel analysis to evaluate if a network bases
its prediction on the part of the trace where the leakage is the strongest. We
note that visualization techniques proved to be a helpful tool when considering
profiled SCA and block ciphers [HGG20; MDP19]. We use here the Integrated
gradient method [OPB16]. In this method, the higher is the gradient value, the
more important the feature is for the model’s prediction.

From Figures 40 and 41, we can notice that when we apply principal compo-
nent analysis, the network tends to rely more on the first features. After applying
PCA, the features are reorganized and ranked from the most important to the least
important feature. When considering the dataset without applying PCA, the fea-
tures’ order is the same as those sampled with the oscilloscope. We can notice
interesting similarities between the SNR of the unprotected implementation (Fig-
ure 32) and the integrated gradient of the CNN. The interpretation of the integrated
gradient obtained for the CNN trained on the protected implementation dataset is

6.4 RESULTS 111

2504
400
2004
e , 150+
H 5
3 3
5 200 S 100
100 4 504
04 04
6 160 260 360 460 560 b 260 460 660 860 1600
Time (samples) Time (samples)
(a) 500 POI (b) 1000 features

Figure 40: Integrated gradient method applied to CNN trained on the baseline implemen-
tation dataset.

16000 4
14000 10000
12000 4 8000
10000 4
8 8 6000
T 80004 k=1
L o
(0] o
6000 1 4000 1
4000 A
2000 A
20004
04 04
6 260 460 660 860 ldOO 6 ldOO ZObO 3600 4600 SObO
Time (samples) Time (samples)
(a) 1000 features (b) 5500 features

Figure 41: Integrated gradient method applied to CNN trained on the protected implemen-
tation dataset.

112

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

less evident as the high peaks do not correspond to the leaking features indicated
by the SNR (see Figure 33). When comparing the visualization results for both
datasets, the similarity between the baseline results for the full number of features
and after dimensionality reduction indicates that the performance should be simi-
lar, which is confirmed by the accuracy results. On the other hand, we see striking
differences between two visualizations for the protected implementation, where
the one with 1000 features cannot concentrate on the most important elements,
which is again evident from the accuracy results.

6.4.4 General Remarks

The obtained results allow us to infer some more general recommendations one
could follow one attacking ECC with profiled SCAs:

1. When attacking unprotected implementations, most of the considered meth-
ods work well. While CNN performs the best, computationally simpler
methods represent an interesting alternative.

2. For protected implementation, deep learning performs significantly better
than other considered methods.

3. For the protected implementation, all the methods perform worse when Prin-
cipal component analysis is applied to reduce the number of features.

4. Template attack should be an interesting option in cases when one cannot
use all the features.

5. There is not much difference in the attack performance concerning hyper-
parameter tuning, which indicates that coarse-grained tuning should be
enough.

6. Visualization techniques offer good indication in the performance of CNNs,
as they show on what features CNN concentrates. If CNN cannot concen-
trate on a smaller number of features, this results in a poor attack perfor-
mance.

6.5 RELATED WORK

In 2003 Chari et al. [CRR02] introduced a template attack (TA) as a powerful
SCA method in the information-theoretic point of view, which became a standard
tool for profiling SCA. As TA’s straightforward implementations can lead to com-
putationally intensive computation, one option for more efficient computation is
to use only a single covariance matrix, which is referred to as the so-called pooled
template attack presented by Choudary and Kuhn [CK13]. There, the authors were

6.5 RELATED WORK 113

able to template a LOAD instruction and recover all 8 bits treated with a guessing
entropy equal to zero.

Several works applied machine learning methods to SCA of block ciphers be-
cause they resemble general profiling techniques. Two methods stand out par-
ticularly in profiling SCA, namely Support Vector Machines ([Pic+17; MPP16;
SH12; LBM14]) and Random Forest ([Heu+17; Pic+19; SH12]). Few other works
also experienced SCA with naive Bayes [Pic+17] and Gradient boosting meth-
ods [Pic+18b; XWZ18]. With the general evolution in the field of deep learning,
more and more works deal with neural networks for SCA and often show top per-
formance. Most of the research concentrated on either multilayer perceptron or
convolutional neural networks [MPP16; Pic+18b; CDP17; CJ19].

There is a large portion of works considering profiling techniques for symmetric-
key ciphers, but there is less for public-key cryptography °, especially ECC.
Template attacks on ECC trace back to an attack on ECDSA, as demonstrated
by Medwed and Oswald 2009 [MOO0S8]. That work showed TA to be efficient
for attacking SPA-resistant ECDSA with the P192 NIST curve on a 32-bit
microcontroller [MOO08]. Heyszl presented another template attack on ECC
in [Hey+12]. That attack exploited register location-based leakage using a high-
resolution inductive EM probe. Another approach to attack ECC is the so-called
online template attacks [Bat+14; Dug+16; Bat+17; OPB16]. The first three ap-
proaches [Bat+14; Dug+16; Bat+17] use correlation to match the template traces
to the whole attacked traces while the fourth attack [OPB16] employs instead
several machine learning distinguishers.

Lerman et al. considered a template attack and several machine learning
techniques to attack RSA. However, the targeted implementation was not se-
cure, making the comparison with non-machine learning techniques less favor-
able [LBM14]. Nascimento et al. applied a horizontal attack on ECC implemen-
tation for AVR ATmega microcontroller targeting the side-channel leakage of
cmov operation. Their approach to side-channel is similar to ours, but they do
not use deep learning in the analysis [Nas+17]. Note, that approach was extended
to unsupervised settings using clustering [NC17]. Poussier et al. used horizontal
attacks and linear regression to conduct an attack on ECC implementations, but
their approach cannot be classified as deep learning [PZS17]. Carbone et al. used
deep learning to attack a secure implementation of RSA [Car+19]. The results
from that paper show that deep learning can reach strong performance against
secure implementations of RSA.

5 We do not consider here the post-quantum schemes, because although they belong to public-key
cryptography, they differ significantly from ECC or RSA.

114

SYSTEMATIC SIDE-CHANNEL ANALYSIS OF CURVE25519

6.6 CONCLUSIONS

In this paper, we consider several profiling methods to attack Curve25519 in both
unprotected and protected settings. The results show that unprotected implementa-
tion is easy to attack with many techniques, where good results are achieved even
after dimensionality reduction. We observe a significantly different behavior for
the protected dataset, where only CNN can easily break the target implementation.
What is more, most of the other methods perform on the level of random guess-
ing. For this dataset, we also see a strong negative influence of dimensionality
reduction. Finally, our results with the integrated gradient visualization indicate
such methods useful in evaluating CNN’s behavior. Indeed, when there are clear
peaks for the integrated gradient, this maps to a simple classification task, and
consequently, powerful attack performance.

We plan to investigate whether standard machine learning metrics like accu-
racy have fewer issues for public-key cryptography implementations than are
reported for symmetric-key ciphers. As this gap between machine learning and
side-channel metrics represents one of the most significant challenges in the SCA
community today, insights about public-key particularities are needed.

Part IV

SIDE-CHANNELS ENHANCED BY NEURAL
NETWORKS AND THE OPPOSITE

SCREEN GLEANING: RECOVERING INFORMATION
FROM MOBILE PHONE SCREENS VIA
ELECTROMAGNETIC SIDE-CHANNEL ANALYSIS

This chapter is based on [Liu+], a joint work with Zhuoran Liu, Niels Samwel,
Zhengyu Zhao, Dirk Lauret, Lejla Batina and Martha A. Larson, that was pre-
sented in 2022 during the 29th Annual Network and Distributed System Security
Symposium (NDSS).

CONTENT OF THIS CHAPTER

7.1 Introduction 117
7.2 RelatedWork 119
7.3 AttackerModel 123
7.4 AttackSetup. 127
7.5 Experiments 133
7.6 Testbed 140
7.7 CountermeasuresS v v v v e v e e e e e e 146
7.8 FromTexttoImage 148
7.9 Conclusionand Outlook 149

7.1 INTRODUCTION

Most of our daily business relies on the devices we carry on us. A great deal of
sensitive information is exchanged through these devices, and the security and pri-
vacy of our data is constantly at stake. Even the task of authenticating ourselves (or
our data) has been shifted to our phones, where two-factor authentication, a com-
mon approach, requires successfully presenting two or more pieces of evidence to
confirm our identity.

To protect our data, mobile devices typically use secret (cryptographic) keys
that are not accessible from the outside. Getting a hold of the key allows a hacker
to steal our data. The majority of real-world attacks on security implementations
on small devices today use side-channel analysis (SCA), i.e., they measure and

117

118

SCREEN GLEANING

process physical quantities, like the power consumption or electromagnetic ema-
nations of a chip, or reaction time of a process. Moreover, thanks to computing
power becoming ever cheaper nowadays, modern adversaries have started using
state-of-the-art machine and deep learning algorithms for SCA. Securing (embed-
ded) systems against SCA remains a great challenge.

In certain cases, the security implementation is not the target of an attack. In-
stead, the target is the sensitive information displayed on the screen. For example,
here, we can think of secret security codes sent from banks or credit card compa-
nies, giving secure access to a user who is the only one able to read the code. SCA
can take advantage of the fact that information is exposed in this way in order to
mount an attack. Since we can expect adversaries will always target the weakest
link, such attacks are more feasible than cryptographic attacks i.e. cryptanalysis.

In this paper, we investigate the problem of sensitive information on mobile
phone screens. Until now, the study of side-channel analysis attacks that aim to
recover the screen content of a mobile phone has focused on visible-spectrum
signals. This focus is consistent with people’s general belief that protecting infor-
mation on their mobile phone screen means hiding it from the line of sight of a
person or a camera. However, SCA can go beyond visible-spectrum information
displayed on the screen. In this paper, we present a low-cost SCA attack that can
recover information displayed on a mobile device’s screen by capturing the elec-
tromagnetic signal sent to the phone screen. Our work introduces an attack, which
we call screen gleaning, that uses an antenna and a basic software-defined radio
(SDR). Our attack demonstrates the security threat posed by emanations leaking
from mobile devices. We release an implementation of our attacks that allows for
further testing and extension.

The side-channel analysis that we consider in this work is a type of TEM-
PEST technique. TEMPEST techniques exploit vulnerabilities of communication
and other types of emanations from electrical equipment that contain sensitive
data [McN]. From our experiments with a simple TEMPEST setup using an SDR
receiver, we were able to successfully capture the phone screen content without a
visible-spectrum line of sight. The signal recovered from the screen can be visual-
ized as a gray-scale image, which we refer to as an emage. A challenge faced by
our attack is that the emage is often not interpretable, meaning that it cannot be
read by way of human eyesight. We propose a machine learning-based approach
capable of processing an emage that is not interpretable to the human eye in order
to recover secret information, such as a security code in two-factor authentication.

This simple attack story illustrates the potential danger of our attack:

1 Code available at: https://github.com/cescalab/screen_gleaning

https://github.com/cescalab/screen_gleaning

7.2 RELATED WORK

Alice keeps her mobile phone on a stack of magazines on top of her desk. She
lays the phone face down because she receives security codes and she believes that
blocking the visual line of sight to the phone screen will keep the codes secure. Eve
has access to Alice’s desk and has hidden an antenna under the top magazine. The
antenna can read the security code via electromagnetic emanations of the phone.

In sum, this paper makes five contributions:

* We present a novel side-channel technique called screen gleaning, an attack
that can be used to recover information such as a security code communi-
cated by text message. The attack does not require a visual line of sight nor
the readability of the signal by a human. In fact, the signal we observe is,
in most cases, not interpretable to the human eye, so the information in the
leakage is not obvious.

* We show that this kind of challenge can be tackled using machine learning,
and specifically, using a deep learning classifier we are able to attain very
high accuracy (of close to 90%) when guessing the digits of a security code.

* We quantitatively demonstrate that our attack is effective for three represen-
tative phone models under various environmental conditions. In particular,
our attack is applicable in the context of cross-device, through-magazine,
and noisy environments.

* We define and validate a new testbed applicable for further research on
screen gleaning. The testbed includes a parameterized attacker model,
which will guide future research to systematically explore and exploit the
threat of screen gleaning.

* Finally, we propose and discuss possible countermeasures against screen
gleaning attacks on mobile devices.

The remainder of this paper is organized as follows: In Section 7.2, we discuss
related work. Section 7.3 describes the attacker model. In Section 7.4, we describe
our measurement and machine learning setup. In Section 7.5, we explain the ex-
periments we conducted together with the results. Section 7.6 introduces a testbed.
Section 7.7 discusses the results of the paper and describes different countermea-
sures. Section 7.8 discusses different formulations of the screen gleaning problem.
Finally, Section 7.9 concludes the paper.

7.2 RELATED WORK

7.2.1 Side-Channel Attacks

A security attack exploiting unintentional physical leakage is called a side-
channel attack. For example, an adversary might be able to monitor the power

119

120

SCREEN GLEANING

consumed by a device while it performs secret key operations [KJJ99; Koc+11].
Other sources of side-channel information, such as electromagnetic emana-
tions from a chip [GMOO1; QS01b; Agr+02] and timings for different opera-
tions performed [Koc96], were also shown to be exploitable (for an overview
see [MOPO06]).

Side-channel attacks pose a real threat to the security of mobile and embed-
ded devices and since their invention many countermeasures have been proposed.
The goal of countermeasures is to remove the dependence between the (secret)
data and the side channel such as power consumed during the computation. An
extensive study of the power side channel from mobile devices was presented
in [Yan+15]. One approach for countermeasures aims to break the link between
the actual data processed by the device and the data on which the computation is
performed. Such a countermeasure is usually called masking and is exploiting the
principle of secret sharing [Cha+99]. A second approach aims at breaking the link
between the data computed by the device and the power consumed by the compu-
tations. This approach is called hiding, and one way to achieve it is by flattening
the power consumption of a device by, for example, using special logic styles that
are more robust against SCA attacks such as WDDL [Tir+05].

SCA attacks belong to the most serious threats to embedded crypto devices and
often target the secret (cryptographic) key in a device that keeps personal data
and communications secure [Bel+16; Gen+16] or even white-box implementa-
tions [Bos+16]. There are many examples of SCA attacks in the real-world such
as [OP11; Bal+12; Eis+08] and more recent ones [Mog+20; Coh+20; JSS].

TEMPEST is another side-channel technique that has been known for decades.
TEMPEST refers to spying on computer systems through leaking emanations, in-
cluding unintentional radio or electrical signals, sounds, and vibrations [KA98].
For example, through TEMPEST, one could easily detect a user’s keystrokes us-
ing the motion sensor inside smartphones or recover the content from a computer
or other screens remotely. In 1985 van Eck published the first unclassified analysis
of the feasibility and security risks of emanations from computer monitors. Previ-
ously, such monitoring was believed to be a highly sophisticated attack available
only to governments. However, van Eck successfully eavesdropped on a real sys-
tem, at a range of hundreds of meters, by measuring electromagnetic emanations
using just $15 worth of equipment plus a CRT television set [Eck85]. Later, Kuhn
performed a comprehensive study on a range of flat-screen monitors and eaves-
dropping devices [Kuh02a; Kuh02b; KA98]. Other side channels can also con-
vey the screen’s content in the frequency range of the visible spectrum [Kuh02b;
BDUOS8; Bac+09; Xu+13] or through acoustic channel [Gen+19] but can some-
times even require an expensive telescope.

7.2 RELATED WORK

More recently, Backes et al. [BDUOS8; Bac+09] improved TEMPEST further
and argue that the requirement on a direct line of sight is not necessary as they ex-
ploit reflections between the target screen and the observer. Xu et al. [Xu+13]
broadened the scope of the attacks by relaxing the previous requirements and
showing that breaches of privacy are possible even when the adversary is “around
a corner”. A new technique is presented for reconstructing the text typed on a mo-
bile device, including password recovery via analysis of finger motions over the
keyboard and language model. The main distinction from the works by Backes et
al. is that they use “repeated” reflections, i.e., reflections of reflections in nearby
objects, but always originating from the surface of a person’s eyeball. Neverthe-
less, all those papers use direct or indirect reflections from the screen, which
makes their research line very different from ours. More specifically, those papers
focus on recovering text and images from the screen while being typed and being
captured by a camera from an eyeball, which implies rather special assumptions
on the setup and attacker model.

Hayashi et al. performed a comprehensive evaluation of electromagnetic em-
anations from a chip including countermeasures [Hay+12b; Hay+12a; Hay+14;
Hay+16]. However, their focus is on recovering secret information from “inside”
such as cryptographic keys and not the screen content.

As a follow-up, the work of Kinugawa et al. [KFH19] demonstrates that it is
possible to amplify the electromagnetic leakage with cheap hardware modifica-
tion added on potentially any device and spread the attack to a broader distance.
They demonstrate that this additional circuitry, a so-called interceptor, enlarges the
amount of leakage and even forces leakage in devices that do not suffer potential
electromagnetic leakage.

Goller and Sigl proposed to use standard radio equipment when performing
side-channel attacks on smartphones [GS15]. They also aimed their attack at cryp-
tographic operations inside the chip as they demonstrate the ability to distinguish
between squaring and multiplications. This observation could lead to the full RSA
key recovery, assuming that the modular exponentiation is implemented with a ba-
sic square-and-multiply algorithm. Their setup used an Android phone to collect
electromagnetic leakages from (albeit they modified the hardware, which makes
their attacker’s model different).

There exist many papers considering finger movements on the screen or other
traces from typing on a smartphone. For example, Cai et al. developed an Android
application called TouchLogger, which extracts features from device orientation
data to infer keystrokes [CC11]. Aviv et al. used the embedded accelerometer
sensor to learn user tapping and gesturing to unlock smartphones [Avi+12]. In
another work, they introduce smudge attacks as a method that relies on detecting

121

122

SCREEN GLEANING

the oily smudges left behind by the user’s fingers when operating the device using
simple cameras and image processing software [Avi+10].

As another two examples of recent work, we also mention the papers of Genkin
et al. [GPT15; Gen+19]. In [GPT15], the authors use various side channels like
power and electromagnetic radiation to extract cryptographic keys, i.e., RSA and
ElGamal keys from laptops, but do not discuss the possibility to perform the at-
tacks on a phone. On the other hand, in [Gen+19] the authors show how to extract
the screen content by using the acoustic side channel. They demonstrate how the
sound can be picked up by microphones from webcams or screens and transmitted
during a video conference call or archived recordings. It can also be recorded by
a smartphone or other device with a microphone placed in the screen proximity.
These two examples are different from our work because they use either another
kind of emanation or have different attack goals (or both).

Other work using acoustic side channels is from Berger et al. [BWY06], which
demonstrated a dictionary attack using keyboard acoustic emanations. Backes
et al. [Bac+10] investigated acoustic side channel on printers, and Asonov and
Agrawal [AA04] used the sound emanated by different keys to recover informa-
tion typed on a keyboard.

In sum, the uniqueness of our contribution is a side-channel analysis attack
that exploits the electromagnetic emanations of the display cable from a mobile
phone. These emanations are less accessible and may be substantially weaker
than the signals analyzed in more traditional TEMPEST technique attacks. To
the best of our knowledge, the most recent work, which bears superficially sim-
ilarity to ours, is [Lem+20]. This work applied deep learning to recognition on
TEMPEST signals, but does so with the goal of automation and enhancement. In
other words, [Lem+20] targeted a captured signal in which the content is clearly
interpretable to the human eye (cf. Figure 2 in [Lem+20]). In our work, machine
learning is used for the purpose of identification. We face the challenge of an
uninterpretable emage derived from a mobile phone.

7.2.2 Deep Learning and Side-channel Analysis

Several side-channel analysis techniques are based on profiling a physical device
and are commonly known as femplate attacks and refer to the first such attack
presented by Chari et al. [CRRO2]. Profiling attacks estimate a power profile of
a cryptographic device for each possible secret key from their resulting power
traces (also known as the training phase) and predicting the corresponding key of
an unknown trace. From this very similar approach to machine learning, several
methods have been inspired by machine learning and neural networks [Car+19;

7.3 ATTACKER MODEL

Kim+19a; CDP17; MPP16]. These methods have raised much attention as they
provide more powerful attacks than the state-of-the-art. In our work, we will dis-
cuss the usability of deep learning, specifically Convolutional Neural Networks
(CNNs) [LeC+98; KSH12], for classifying the emages that are reconstructed from
the screen content.

Image classification is the task of predicting a class for a given image according
to its content. In the context of machine learning, it can be automated by modeling
a transformation from an image to its corresponding class. Early research [SGS09;
GPKO02; Low04] tackled this problem via a two-step process: manually extracting
features from the images and then training a discriminative model for classifica-
tion.

Deep learning algorithms, such as CNNs [LeC+98; KSH12], automatically
learn image features simultaneously with learning the classification by making
use of a large number of filters in an end-to-end manner. Deep learning has lead to
breakthrough success in general image classification. Large-scale training and di-
verse data augmentation techniques make an important contribution. In particular,
it has been demonstrated that deep learning can achieve superhuman performance
in specific domains where the discriminative visual patterns are hard to distin-
guish by the human eye, e.g., image forensics and steganalysis [YNY17; BS18;
Zho+18]. In our work, since the emage content is hardly recognizable to the hu-
man eye, we use CNNs to capture the subtle differences between various classes,
rather than relying on human-interpretable features.

7.3 ATTACKER MODEL

The attacker’s goal is to recover the information (e.g., security code, password, or
message) displayed on the target display. We start from the general attack story
presented in the introduction: an antenna is planted that can read a security code
from a mobile phone screen without a visible-spectrum line of sight. This story is
the basis for the attacker model, which is illustrated in Figure 42 and characterized
in detail in Table 16. In this section, we provide an explanation of the attacker
model and its motivation.
Our attacker model makes the following assumptions:

* The set of symbols displayed on the phone is finite and known (i.e., digits
0-9). This assumption holds true of any information expressed as alphanu-
meric characters.

» The attacker has access to a profiling device sufficiently similar to the tar-
get device, which is used to collect training data for the machine learning
classifier.

123

124 SCREEN GLEANING

AR
—l—

Apple
Your Appio 1D Vortication Codo is: 120801

z 1 [

E 1 R

£ jl9| Code:
I — T § 129891
E ~p

. 0123456780 l

Figure 42: Screen gleaning attack. The target emits electromagnetic side-band intercepted
by an antenna connected to a software-defined radio (SDR). The leaked infor-
mation is collected and reconstructed as a gray-scale image (emage). From
emage, the 6-digit security code is cropped and fed into a CNN classifier for
recognition.

* The context for the attack is a side-channel analysis setup for a passive
adversary, featuring an antenna that has been positioned to collect electro-
magnetic emanations and an SDR device for signal processing. The antenna
picks up the signal from close range.

* During the attack, the attacker can collect electromagnetic traces from the
target device representing the image displayed on the screen. The traces are
analyzed for the appearance and identification of the pincode.

We now explain the attack in more detail. The device under attack (Figure 42
upper left) is assumed to be a standard device (e.g. a phone) and comply with
the standards imposed by EMC regulations laws. The attacker can only rely on
unintentional electromagnetic leakage of the device under attack to reconstruct
the image displayed on the victim’s screen. The leaked electromagnetic signal is

7.3 ATTACKER MODEL

characterized by several physical properties of the screen (e.g., resolution, refresh
rate) and by the technology used for the image rendering (e.g., CRT, TFT-LCD).
The work of Marinov [Mar14] led to the development of a software toolkit (Fig-
ure 42 upper middle) capable of reconstructing the image from emanations of a
video monitor. This tool, TempestSDR, is publicly available [Mar] and used as a
starting block of our work.

It is important to understand that the challenges involved with the capture and
interpretation of electromagnetic emanations from the display cable of a mobile
phone are different from those with other devices considered in conventional
TEMPEST studies. Given the advance in video display technology, modern
screens now use less energy and their circuitry is getting smaller. The resulting
electromagnetic coupling is lowered and the carrying frequency of the electromag-
netic emanation is increased. Additionally, basic design compliance to guarantee
the electromagnetic compatibility of the products helps to reduce unintentional
leakages. These factors make the exploitation of this signal more complex and
degrade the intercepted signal of electromagnetic emanation of cables.

For completeness, we discuss the future implications of the choices made in
our setup. Here, we choose to work in close range and use a near-field magnetic
probe. We note that in the future, additional effort can be invested in order to
design the antenna that takes into account the electromagnetic properties of the
leaking device. A broad description of these characteristics and how to select a
matching antenna to the electromagnetic leakage is discussed in [KuhO2a]. We
assume that better antennas will relax the constraints of our attacker model in the
future. Some relevant work about designing antennas for a better electromagnetic
setup was done in [SS13].

We next turn to discuss the “profiling stage” of the attack in more detail. As
previously mentioned, if an emage has a low signal-to-noise ratio (SNR), it is im-
possible for the attacker to read the emage with the naked eye. In this case, in
order to interpret the image and recover the screen content, the attacker must use
machine learning to analyze and interpret the emage. To realize the machine learn-
ing classifier, it is necessary to train it on examples of the signal of the antenna,
which is the “profiling” part of our attack. The attacker uses the profiling device
to display specific images with known content and captures the emages that corre-
spond to these emages. The collected emages are labeled with the image content
and constitutes the training data set.

Once the model is trained, the attacker will be able to record emages from the
device under attack to derive the secret information displayed. The process is il-
lustrated in Figure 42. The success of the attack is measured as the classification

125

126

SCREEN GLEANING

Dimension Description

A six digit security code; each content digit can be 0-9 with

Message equal probability.

The standard size, position, and font with which a security
Message code appears as a push message during a conventional
authentication procedure. Plain background and standard

appearance .

PP brightness are used.
Attack Close field antenna and standard SDR; we assume immediate
hardware proximity of the antenna.

We assume full access to the profiling device for the purpose
Device of collecting training data; We can display an image on the
device. We have sufficient time to collect data from several

fili
profiing sessions. (2-3 hours.)
) About 24 hours on a standard laptop, or 1 hour on a laptop
Computational with a GPU for training. For recovery, once the emage has
resources been captured, a matter of seconds.

Table 16: Five-dimensional attacker model: Specifications of the attacker model used in
our security code attack

accuracy, which quantifies the ability of the classifier to recover the six-digit secu-
rity code.

In our experiments, we first set up our attack using the same device at the pro-
filing device and the target device. Considering the same target for profiling and
attack phases allows us to understand the danger of the attack under best-case
conditions for training data collection. Later, we extend the attack to using two
different devices. We consider a device of the same make and model to collect
data, and also the situation in which the profiling device is another phone alto-
gether.

We close this section by explicitly summarizing the difference between our at-
tack model and those previously studied in the literature. Because of the specific
challenges of mobile phones discussed above, the types of attacks that are suc-
cessful are not the same as the attacks previously discussed in the literature for
other devices. While the TEMPEST technique has been known for decades, there
have been no demonstrations of it on mobile devices. The attack model for mobile
phones until now has assumed the exploitation of reflections of a visible-spectrum
signal, which means that the information is supposed to be visually accessible to

7.4 ATTACK SETUP

Figure 43: Measurement setup. (A) near-field probe, (B) targeted phone displaying a se-
curity code, (C) power amplifier, and (D) the software-defined radio.

humans [BDUOS; Bac+09]. Other attack setups exploiting electromagnetic side-
band have the goal to do key recovery from cryptographic implementations run-
ning on the phone [GS15]. Our work is different as it shows for the first time the
threat of TEMPEST on a range of mobile phones for a (machine learning-assisted)
adversary that can extract the screen content that could appear incomprehensible
to humans.

In Section 7.6, we will provide additional discussion of the attacker model,
describing how future work can build on and extend it. We emphasize that the
attack that we present in this section is important because it reveals the danger in
anticipation of the development of more sophisticated attackers.

7.4 ATTACK SETUP
7.4.1 Measurement Setup

7.4.1.1 Target

A TEMPEST attack can potentially be performed on any communication device,
whether mechanical or electrical, as long as the signal involved for the communi-
cation can be intercepted by a third party using unconventional means. It is non-
trivial to define such a means, and also the cause of the communication leakage,
because this leak has not been designed. Leaks have been shown in the literature
to be of several forms linked to the physically inherent properties of the commu-
nication signal.

127

128

SCREEN GLEANING

Phone Leakage Center SNR Screen Technology 0S
Frequency

iPhone 6s 295 MHz 33.4dB IPS LCD I10S 10.2.1
iPhone 6-A 105 MHz 25.0dB IPS LCD 10S 12.4.8
iPhone 6-B 105 MHz 26.8dB IPS LCD 10S 12.4.8
iPhone 6-C 105 MHz 24.9dB IPS LCD I0S 12.4.8
Honor 6X 465 MHz 36.6dB IPS LCD Android 7.0
Samsung Galaxy A3 295 MHz 25.9dB AMOLED Android 5.0

Table 17: Screen specification of the targets

Our work focuses on electronic personal mobile devices leaking an analogue
video signal as electromagnetic emanation. The signal leaks from the ribbon ca-
ble that connects the graphical computing unit to the screen. Note that the attack
we studied here would be blocked in the case that video encoding is applied to
the video signal. The vulnerability of encoded signals needs to be investigated in
future work.

The cable, which conveys the electric information, acts as an undesired antenna
and transmits the video signal in the electromagnetic spectrum in the surrounding
area. An impedance mismatch between the cable and socket on both the mother-
board and the display can enhance the ribbon cable’s leakage. The difference of
impedance is possibly caused by a dimension mismatch between the socket and
the ribbon cable. The connecting cable is often designed to be smaller than the
socket to avoid possible interference between neighboring connectors. Since each
manufacturer is free to use a different offset for these cables, different phones radi-
ate with varying signal strengths. Future research should prove the hypothesis that
different phones have different signal strengths radiated, by means of quantifying
the radiated signal. According to [Mar14], the frequency of the leaked signal is de-
pendent on several screen properties and can be estimated at a specific frequency
(and its harmonics) with the following relation: f, = x; X y; X fr, where x; and
y+ are respectively height and with of the screen in pixels and f, is the screen
refresh rate in Hertz (Hz).

The principal target in the experiment section is an Apple iPhone 6s with an
IPS LCD screen of size 1334 x 750 pixels. We also present results using different
targets to prove the portability of the attack. The different targets used are listed
in Table 17 with the center frequency of the strongest video signal leakage, the
SNR of the leakage as well as relevant information about the targets (screen size,

7.4 ATTACK SETUP

technology and Operating System version). The SNR is computed at the center
frequency of the signal with a bandwidth of 50 MHz and a resolution of 25 kHz.

7.4.1.2 Equipment

Figure 43 shows an overview of the setup with the elements labeled as follows.
The antenna we use is a passive Langer RF-R 400 magnetic probe (A). The target
is an iPhone 6s (B). The signal from the probe is amplified with a Minicircuits
ZKL-2 amplifier (C) and digitized with a Software-Defined Radio (SDR), an Et-
tus X310 (D) with a UBX-160 daughter-board. The signal acquired by the SDR is
then interpreted with TempestSDR [Mar], an open-source tool capable of recon-
structing an image from the display by the obtained sequence of electromagnetic
leakages [Mar14].

7.4.1.3 Positioning and Parameters

We use SCA equipment to show a proof of concept of this attack because the
parameters and positioning settings are close in the two contexts. Nonetheless, us-
ing more specialized equipment for TEMPEST attacks may achieve better results.
The magnetic probe is placed on top of the target, at a close distance (< lcm).
The best position and distance of the probe from the target is manually optimized
to observe the best possible signal to noise ratio (SNR).

TempestSDR has a number of parameters to configure the SDR and to recover
the image from the signal. The SDR has the following parameters: center fre-
quency, bandwidth, and sampling rate. The bandwidth and sampling rate are fixed
to 12.5 MHz and 25 M samples per second respectively. The SDR captures a band-
width of 12.5 MHz around the adjustable center frequency. We adjust the center
frequency to determine the best SNR. The parameters to recover an image from a
signal are: height and width in pixels and refresh rate in frames per second. There
are also sliders to adjust the gain and low pass filter of the SDR. The values for
the width and the height do not necessarily correspond to the dimensions of the
screen as more pixels may be transmitted than those that are displayed. The se-
lected refresh rate should be the closest possible to the actual refresh rate and can
be configured with high precision in the software. The parameters require high
precision and differ among devices, they should be determined following the de-
scription in [Mar14, Section 4.2].

129

130

SCREEN GLEANING

D .

Smartphone EM Pro }——)ﬁempeStSDR Emage
Screen
A

T Synchronize
emage
acquisition

Sync.
Application

A

Figure 44: Automation workflow

7.4.1.4 Automation

The TempestSDR software contains a built-in function to store a processed frame.
The image captured from the reconstruction of the frame is called the emage. For
timing efficiency and reliability of the capturing process, we use an automated ap-
proach to emage acquisition. Specifically, we set up an application that synchro-
nizes the selection of an image in the image bank, displays it on the screen and
saves the emage (see Figure 44). This application consists of a Javascript server
and a simple website. Additionally, a small modification to the TempestSDR soft-
ware was made to automatically save images and communicate with the server.
The TempestSDR sends a signal to the server to display an image from the image
bank. The server communicates this to the webpage loaded on the phone and the
webpage reports back when the image is changed. The TempestSDR captures a
parametrizable number of emages and asks for a new image.

7.4.2 Machine Learning Setup

Here, we describe the collecting process of emage data sets used to train our se-
curity code classifier. Given an emage from the device under attack, the classifier
can produce a prediction of the message, which contains a six-digit security code,
displayed on the smartphone screen.

It is important to note that the attacks we investigate here can be formulated
within a discrimination scenario. This means that the goal of the attack is to dis-
criminate between a set of messages about which the attacker has full information.
For example, in the security code scenario, the attacker knows that the security

7.4 ATTACK SETUP

it
'14430508575226167]
13193567 1099904124131965795)
08493531747469367067616515|
8652217405601915978)
47411 b nnux 0420 0173
63750282818123275706568
264221 941 869441888318581 1792164099640477]
71 149399372585941 04932039123396683893444]
21283625959976319726710401 51 305239
6736107024336408805838066811634
3479039185150132833003573923965054491980

Y
P3N
N

Grision 3579467984530232A95m504474 7601
00128606)160245974894621182446
48583794262 184024048 1580050037605410
154587 16057129444249186189495)

37 5070407201070 0863754801687 41171079
8134570677740826183699248161923254233547]
2201326513217930631232734143385209119348
6169193331821930401487720350260724386111
3124047904420835015104901 6038 7642452077
3513771277585836474534701313950474389390)
18067432763451035 uul 968577833160174f
6! 39(112341517476 09092
352000, 5744010432035 A1508550 7080600}
006153316 0 10443]
59400804 722050062 16854 14761453 30248758
25447527983321701 7841002031280
364170815087641 408001 9966208004053365064
155347020490397 1308976 758080657829029150)
0004277 5081530045448754 604492974001 762

55

S aras0 155500 14106360559
Wo:15714881316124146009710306738181572478

Apple
Your Apple ID Verification Code is: 129891

1 0! 1843295390 1
0523056116491079317646621025379676880080)
x 0369631

993685506 1 544785781 79726649399 16302065039

Figure 45: Screen display used to collect digits from a multi-crop grid for training our
classifier (left) and from an automated text message containing a security code
for testing (right).

code consists of six places and the symbol in each of those places is a digit from
0-9. It is important to contrast the discrimination scenario with a reconstruction
scenario. The scenarios differ in the amount of information about the content of
the screen available to the attacker. It is also possible to formulate screen gleaning
attacks within a reconstruction scenario. Here, the goal is to recover the content of
the screen exactly as displayed on the screen without using any prior knowledge
of what content might be displayed. The reconstruction problem will be discussed
further as an outlook onto future work in Section 7.8.

7.4.2.1 Data Collection

To train a classifier, the attacker needs to collect training data from the same dis-
tribution as the practical data shown on the target device or from similar types of
data from other devices. Practically, collecting security code data directly from
text messages needs a large amount of annotation effort, since people have to
inspect each message and crop the code one by one. Considering such inconve-
nience, we propose to generate images depicting different numbers (0-9) over the
whole image, and collect data using a multi-crop approach. Specifically, each sin-
gle image is split into 40 x 40 = 1600 cells of digits, as shown in Figure 45 (left).

131

132

SCREEN GLEANING

Data Displayed | b1 jne 65 iPhone 6-A iPhone 6-B Honor 6X
Content
TrainValTest ii-Crop |y 5 N/A 5
Grid
. . Security
Single-device Test Code 2 2 N/A 2
Cross-device Test Security N/A N/A 1 N/A
Code
. Security
Magazine Test Code 1 1 N/A 1
Noise Test Security 1 I N/A 1
Code

Table 18: The list of collected data sessions for different phones in the security code attack.
Multi-crop grid data represents the data collected in the case of multi-crop, and
security code data represents the simulated text message with the security code.

Digits ‘ 0 1 2 3 4 5 6 7 8 9 All

Acc.(%)‘87.2 86.8 974 758 99.1 974 951 93.1 825 86.1 89.8

Table 19: Accuracy with respect to different digits (0-9) and overall accuracy in our secu-
rity code attack.

Accordingly, after each trial of emage generation, we can get 1600 emages of dif-
ferent digits. We crop the instances with a certain human inspection to guarantee
the data quality. We conduct multiple sessions of emage generation to alleviate
the influence of distribution shift, which is validated effective as in Section 7.5.2.

7.4.2.2 CNN Architecture and Model Training

For the model architecture, we adopt the simple LeNet [LeC+98], which was ini-
tially proposed for handwritten digit recognition. We slightly adapt the LeNet to
fit our input emage size of 31 x 21 (for Honor 6X the input size is 45 x 21, and for
iPhone 6 is 31 x 20). The details of the architecture is shown in Figure 47. The Py-
Torch is used for our implementation and the experiments are run on a workstation
with a 16-core CPU and a GTX1080Ti GPU. In all cases, 80% of multi-crop grid
data are used for training, 10% for validation and 10% for testing. Each round of
training can be finished within one hour when using the Adam optimizer [KB15]
with a learning rate of 0.001. We conduct the training over 100 epochs with a
batch size of 256, and select the optimal model based on the validation accuracy.

7.5 EXPERIMENTS 133

| ==
Teeg
Lo

(81) Training 1 S8, S9
(82, S3) Training 2 TEST
(S4, SH)

(S6, S7)

Figure 46: Train/test splits specified in the case of multi-crop grid, where the training set
is gradually enlarged by including more sessions, and the test set is fixed with
two sessions.

| 6digits > 5digits > 4 digits

Acc. (%) | 505 89.5 99.0

Table 20: Accuracy of predicting partial security code correctly with the CNN classifier
in our security code attack.

7.5 EXPERIMENTS

In this section, we first conduct experiments on iPhone 6s to analyze the properties
of our attack on the basic single-device scenario. Specifically, we look into the
dimensions that can potentially impact the classification performance, such as size
and heterogeneity of the training data (Section 7.5.2), for further analyzing the
attacker’s capability in various attack settings.

Then, we test our attack using more phones (iPhone 6-A, iPhone 6-B, and
Honor 6X) to validate the effectiveness of our attack in more challenging sce-
narios, such as cross-device attack, magazine occlusion, and interference from
environmental signal noise. The specifications of different phones can be found in
Table 17, and the detailed data collection settings are shown in Table 18.

134

SCREEN GLEANING

|n§)Ut§?i92it16) C1: feature maps C3: feature maps 54 foat
@31x 6@27X17 5. feature maps . o) : 1e;l@;zexrznaps
@15 C5: layer F6: layer
84 OUTPUT
- \\ 0
Convolution™ Max-pooling Convolution Max-pooling Flatten Fully
5x5 kernel 2x2 kernel 5x5 kernel 2x2 kernel connected

Figure 47: CNN architecture used in our security code attack.

] 8

Figure 48: Examples of cropped 6-digit security code. Ground truth labels are shown
above each strip, with the underline highlighting the wrong prediction of digits
by our classifier.

7.5.1 Security Code Attack

In our practical security code attack, we use an Apple iPhone 6s as the target
device. We collect 10 sessions of grid data, each of which contains 32000 emage
examples. Through human inspection, we drop one session due to an obvious data
quality issue. For inter-session evaluation on the grid data, 2 of the remaining 9
valid sessions are fixed as the test set for all the experiments, where session 8 rep-
resents a well-positioned antenna scenario and session 9 is for badly-positioned
antenna scenario. The training set is gradually enlarged by adding more of the re-
maining sessions. Specifically, we try four sizes of training set, which respectively
consist of 1, 3, 5 and 7 sessions, denoted as Training 1, Training 2, Training 3 and
Training 4, as illustrated in Figure 46. Each resulting digit emage will be fed as
input to train our CNN classifier, following the principles in Section 7.5.2.

We simulate 200 text messages, each of which contains a 6-digit security code,
making sure they look very close to the real case, as shown in Figure 45 (right). In

7.5 EXPERIMENTS

100

90.9

Accuracy (%)

Training 1 Training 2 Training 3 Training 4
Training set

Figure 49: Inter-session accuracy (grid data) of our security code attack for different train-
ing sets with gradually increased size. The two bars for each training set repre-
sent two different test sessions (session 8 and 9).

this case, each emage of the security code, with a size of 126 x 31, (see Figure 48
for some examples) is evenly divided into six.

The best overall accuracy (89.8% in Table 19) with respect to all 200 x 6 =
1200 individual digits is achieved when using all of the 7 training sessions (more
details about the impact of training data amount will be discussed in Section 7.5.2).
As can be seen in Table 19, the accuracy differs for different digits, with the high-
est (99.1%) achieved for digit 4, and lowest (75.8%) for digit 3. Figure 48 shows
some examples for the security code along with the ground truth and prediction
results. It demonstrates that our approach can correctly predict the digits with high
accuracy, although the digits are hardly recognizable to the human eye.

In practice, attackers may have various query budgets for fully uncovering the
security code (with all the 6 digits being correct). So, in Table 20, we present the
accuracy results when four security code digits or more can be correctly predicted
by our classifier. It can be observed that, with one attempt, the attacker can fully
recognize the security code at 50% of the cases. The probability of recognizing
four or more digits can reach 99%, showing that our approach can present a seri-
ous threat in practice.

135

136

SCREEN GLEANING

Digit
o 1 2 4 °s 7 8 9
0
1 - 80
2
3 60
)
N
03 40
6
/ -20
8
9
-0

Figure 50: Confusion matrix of the inter-session accuracy (grid data) in our security code
task. Results are from the classifier trained on Training 4 and tested on session
8.

7.5.2 Data Analysis on Grid Data

We first consider the scenario where the attacker can train the classifier on data
sampled from the same distribution as the attacked security code. This can be
regarded as the best-case scenario, although almost impossible in most practical
cases. Specifically, we achieve an accuracy of 86.5% within the session used in
Training 1.

Inter-session evaluation represents a more realistic attack scenario, where the
training data from the same session of the target is not accessible, but the at-
tacker can simulate similar data using the same settings. Figure 49 shows the inter-
session accuracy of the four classifiers trained on different training sets: training 1,
2, 3 and 4. It can be observed that the accuracy improves as we increase the num-
ber of training sessions. We can also observe that inter-session accuracy with only
one training session is lower than the multi-crop grid case. However, using more
training data with multiple sessions could alleviate this issue, leading to a high
accuracy of 90.9% for Training 4 (with seven training sessions). This validates
our assumption that incorporating heterogeneous sessions could help alleviate the
impact of the random noise introduced to the emage generation. One detailed clas-
sification result with respect to different classes are shown in the confusion matrix
in Figure 50. We also notice that there is a difference between the prediction per-
formance between two test sessions, which might be explained by their different
data quality.

7.5 EXPERIMENTS

Figure 51: Pictures of the Magazine setting (left), with the phone in between the magazine
pages and the probe on top, and the With Noise setting (right).

Acc. (%) iPhone 6-A Honor 6X
Test

(Grid) 73.42 94.38
Single-device-1

(Security code) 41.42 74.00
Single-device-2

(Security code) 47.08 74.00
Magazine 70 pages | 14.38]
(Security code) 200 pages i 65.79
With Noise

(Security code) 63.29 64.25
iPhone 6-B

(Security code) 61.54 -

Table 21: Inter-session classification of our security code attack for different phones and
different test settings. Grid means the multi-crop grid test data is used, and
Security Code means the simulated text message test data is used. The training
set stays the same in all test settings for each device. Single-device-1 and Single-
device-2 refer to two different test sessions.

7.5.3 Experiments on Other Phones

In this section, we conduct experiments on different phones to further validate the
general effectiveness of our security code recognition on different devices. We

137

138

SCREEN GLEANING

show the potential of the recognition in more challenging and realistic scenarios,
including cross-device attack, antenna occlusion by a magazine, and interference
from the signal noise generated by surrounding phones (cf. Figure 51). The cross-
device attack consists of training the recognition algorithm on the data from one
device and testing the model on data from another unit of the same model. Specif-
ically, we use two iPhone 6, namely, iPhone 6-A and iPhone 6-B, and make sure
that they have the same version of the iOS system, and not refurbished. Five ses-
sions of data are collected for training the recognition model on iPhone 6-A, and
two test sessions of security code data are collected for testing. Additionally, we
collect a session of testing data with the antenna occluded by a magazine, another
test session from iPhone 6-B and a test session with background noise. The mea-
surement setups for occluding the antenna and simulating the background noise
are shown respectively in Figure 51. Each of the above four testing sessions con-
tains 200 different security codes and for each code, we repeat the frame twice
for a more stable recognition. Our attack can also work on a refurbished iPhone
(iPhone 6-C, see Table 17), but no quantitative results are reported in order to
maintain fair comparison.

Table 21 summarizes our experimental results under different test settings cor-
responding to the data descriptions in Table 18, i.e., Multi-crop, Single-device,
Magazine, Noise, and Cross-device. As can be seen, our model achieves high
accuracy for the original multi-crop data. For other settings, as expected, the per-
formance drops due to the generalization gap but still being effective enough in
most cases. Specifically, the high cross-device accuracy suggests the effectiveness
of our attack in a more realistic scenario, where the device used for collecting the
training data is not necessarily the target device. The results on an Android phone,
Honor 6X, with four sessions of training data, verify that the effectiveness of our
attack is not limited to the specific phone type, iPhone. We can also observe that
the single-device and cross-device sessions of the security code yield different
prediction performance, which might be explained by their different data quality,
as also reported for iPhone 6s (cf. Section 7.5.1).

For the magazine setting, the accuracy drop can be explained by the signal
strength of the antenna. The magnetic probe can be considered as a magnetic
dipole, for which it holds that the power density is dependent on a factor r >,
for which r is the distance between the probe and the origin of radiation [Ida00].
Therefore, placing the magnetic probe a little bit further away from the origin of
radiation, already has some significant consequences on the quality of the received
signal. Specifically, we find the performance of iPhone 6-A drops dramatically
with 70 pages, but for Honor 6X, the performance is better maintained even with
a thicker magazine of 200 pages because of its higher leakage of signals. The high

7.5 EXPERIMENTS

Figure 52: Top: An emage and its predicted activation map by the pre-trained model on
iPhone 6s. Warmer color represents higher prediction confidence. Bottom: Ac-
tivation responses in the row of the text message

single-device accuracy (74% for both) also confirms this higher signal leakage of
this Honor 6X phone than iPhone 6.

We also find that our attack can work on the OLED screen by conducting a
preliminary exploration of Samsung Galaxy A3 (2015). However, since this phone
is disassembled, we do not go further for quantitative details.

7.5.4 Discussion

In practice, the localization of security code patterns in either time or space di-
mensions is crucial. Here we discuss how a simple sliding window technique can
tackle both. When monitoring the target phone in real-time, we can also integrate
our recognition model with a simple sliding window operation to identify the key
frame(s) that are most likely to contain a text message of the security code. Specif-
ically, we set the height of the sliding window as the height of each digit, and the
width as the total width of 6 digits. The horizontal and vertical strides are equal to
the height and width of each digit.

As shown in Figure 52, the message area is activated much more than the plain
area, indicating that our recognition model can be used to identify the most likely

139

140 SCREEN GLEANING

c c c C C C C C

@lx (b)12x @©15x 2x (e)25x ®3x (94x (M)5x (@()7x () 10x (k) 20x

Figure 53: Images (top row) and their corresponding emages (bottom row) of letter C
displayed at 11 different scales. It can be seen that the scales span from unin-
terpretable to the human eye to easily interpretable.

frame(s). Furthermore, within the specific row of the text message, the highest
activation responses are concentrated on the security code region. This suggests
that the textual background will not interfere in our security code recognition.
It is also worth noting that, in practice, the attacker could also leverage off-the-
shelf language models or visual detection models. Such models would provide a
straightforward way to boost the localization performance. We also mention that
in our experiments, we use a maximum contrast between the background and the
text. Reducing the contrast leads to a less easily readable screen for the human
eye, but does not necessarily result in an emage that is more difficult to interpret.
Exploratory experiments confirmed that our choice of background represents a
challenging setting, and that, if the attacker is lucky, the contrast between the
background and the message on the display of the phone might actually make the
attack easier.

7.6 TESTBED

So far, we have introduced the screen gleaning attack and shown its effective-
ness in recovering a security code displayed as a push message on the screen of
a mobile phone. The attack was carried out with technology representative of the
current state of the art. However, with time, we expect the quality of the antenna
and SDR to improve. Also, additional training data and algorithmic advances will
increase the accuracy of the deep learning classifier. These advances mean that
screen gleaning attacks can be expected to become increasingly dangerous, and
future work will be necessary to understand them and develop countermeasures.
To support this future work, we have developed a testbed that enables the system-
atic test of screen gleaning attacks under incrementally more challenging attacker
models. In this section, we describe the testbed, which has also been released,

7.6 TESTBED

so that can be directly used by the scientific community. The testbed consists of
two parts, first, a definition of a set of images and a set of scales, and, second,
a specification of the attacker model, in terms of the model dimensions and the
parameterization of the dimensions. We also report the results of experiments val-
idating the testbed.

7.6.1 Testbed Images

We base our testbed on the eye chart used by eye doctors to test vision acuity [Bos],
and for this reason, we call it the eye chart testbed. Most people are familiar with
the experience of a vision test. The eye chart measures someone’s vision by de-
termining the minimum level of detail that the person’s eyes can distinguish at
a given distance. Likewise, our testbed uses eye chart letters to determine the
minimum level of visual detail that a screen gleaning attack can recover given a
particular attack setup.

The testbed is deployed by first specifying an attacker model and creating an at-
tack setup based on that model. Then, different scales are tested until it is possible
to determine at which scale the identity of the letter can no longer be recovered by
the attack.

The testbed defines 11 different scales. For the largest scale (20x), the size of
the letter is the maximum size that can be fit on the screen, with still leaving 10%
of the letter width as margins on the side. For the smallest scale, the letter appears
with a width of 1/20 of the largest scale. The relative sizes of the testbed scales
are illustrated on the top line of Figure 53, using the letter C as an example. The
font is the Sloan font used for eye charts. We used the Creative Commons licensed
version, which is available on GitHub.? The full letter set in the testbed release is
C,D,E, F L N,O,P,T,Z. The full set of letters is tested as each scale.

The letters in an eye chart are chosen so that all the letters in the set are equally
easy to read. This ensures that for each scale, the ability of the person to read the
letters is related to the scale, and not to the specific letters. By choosing to use
eye chart letters, we extend this property to our test set. Different eye charts use
different fonts and different letter sets. We choose our testbed based on the fact
that this set is currently in widespread use.

It is natural to wonder why we use the limited set of characters used in an eye
chart instead of using a larger set of alphanumeric characters. The answer is that
the testbed is designed to detect the ability of an attack to discriminate and recover
visual detail. Using eye-chart characters means that the results of the testbed re-

https://github.com/denispelli/Eye-Chart-Fonts/blob/master/README.
md

141

https://github.com/denispelli/Eye-Chart-Fonts/blob/master/README.md
https://github.com/denispelli/Eye-Chart-Fonts/blob/master/README.md

142

SCREEN GLEANING

Dimension Description

The symbol set (e.g., 0-9, a-z) must be defined. If the symbols
Message are not all equiprobable, the prior probability of each symbol
must be defined.

Any constraints that will be imposed on the scale of the
Message message or on font types must be defined. Assumptions about
the pattern of the background and the brightness of the screen

appearance must be defined.

The antenna and the SDR must be specified. Any assumptions
Attack on the position of the antenna must be defined (positions range
from touching the phone, to under the table, to across the

hardware
room).

The conditions on device access must be defined (attacker has
access to the device to be attacked, to devices of an identical
model, to devices of the same make). The ability of the
) attacker to cause a certain image to appear on the accessible

Device devices must be defined, along with the amount of time that

profiling the attacker can count on having access. After the number and
nature of devices at the attackers’ disposal is defined, the
number and length of the sessions that the attacker can record
on each device must also be specified.

. Define the amount of time and computational resources
Computational available for training, and also for the attack itself (i.e., after
resources the model is trained recovering the message from the emage).

Table 22: Five-dimensional attacker model: Parameter settings to specify when designing
an attacker model for testing with the testbed.

flect the discernability and interpretability of other forms of visual information as
well, for example, symbols or images displayed on the phone screen, and not just
text.

Figure 53 depicts emages that were captured with the setup described in Sec-
tion 7.4. It can be seen that they move from being uninterpretable to the human eye
on the left to interpretable on the right. This property of the testbed has the goal of
ensuring that the testbed can measure interpretability with other attack setups. We
are especially interested in supporting the investigation of attack setups where the
signal might be very weak, for example, as the antenna is moved further from the
phone. For a very weak signal, the larger letters will become uninterpretable to the
human eye. This will allow researchers to quantify the effectiveness of a machine-

7.6 TESTBED

learning attack under the conditions of a weak signal. If researchers adopt the
same standard testbed, the measurements made can be more easily compared in a
fair manner.

Again, it is important to note that although our testbed consists of letters, it does
not specifically assess the ability of an attack to recover written text consisting of
letters. Instead, it assesses the ability of the attack to recover a message that has
a certain level of visual detail. Just like the eye chart tests general visual acuity,
and not just reading, our testbed tests the acuity of a particular attack to recover
information in the visual form displayed on the phone screen, and not just letters.

7.6.2 Parameterization of the Attacker Model

Here, we describe the parameterized attacker model. It contains five dimensions,
message, message appearance, attack hardware, device profiling, and computa-
tional resources. Each of these dimensions has several parameters. In order to
have a fully specified attack mode, specifications must be made for each of the pa-
rameters. The parameters can be considered to correspond to the values of design
decisions. The five dimensional model along with the parameters for each dimen-
sion are described in Table 22. Note that in the security code attack we present in
Section 7.3, we use the same five dimensions in the attacker model (Table 16).

This parameterized attacker model forms the basis for the attack setup. It has
two purposes. First, it ensures that when the testbed is being applied, the attacker
model that is being assumed is fully described, i.e., no detail is left out. Second, it
allows researchers to systematically make the attack stronger. The attack strength
can be increased by increasing the values of any or all the parameters. In this way,
the attacker model guides researchers in discovering increasingly strong attacks.
The dimensions of the attacker model can be also used to guide the development
of countermeasures.

7.6.3 Validating the Eye Chart Testbed

In this section, we validate the eye chart testbed with the demonstration of an
attack. The attack uses the same Attack hardware and Computational resources
as the Security Code attack demonstrated in Section 7.3. The Message and the
Message appearance are derived from the eye chart testbed. The Device Profiling
is also the same, and the specifics of data collection are explained in the next
section.

143

144

SCREEN GLEANING

Seanl | [re=nel

co D cb P
(S1, S2) Training 1 (S11, S12)
(S8, S4

)

) TEST
(S5, S6)

)

(S7, S8
| (89, S10)

Training 2

Figure 54: Train/test splits specified in the inter-session case of our eye chart letter clas-
sification task, where the training set is gradually enlarged by including more
sessions, and the test set is fixed with two sessions.

7.6.3.1 Data Collection

We collect a total of 12 sessions, among which two sessions (sessions 1 and 2)
have 50 samples for each of 11 classes of letters at each of 10 scales, and the
rest 10 sessions have 15 per class per scale. For inter-session evaluation, we use
sessions 11 and 12 as testing sets for all the experiments. Session 1 plus 2 are
used as the initial training set, and are gradually enlarged by including two more
sessions each time, resulting in five different training sets with increased size,
denoted as Training 1, 2, 3, 4 and 5, as illustrated in Figure 54. Training 5 has the
most data with 24200 samples.

7.6.3.2 Experiments

Similar to the security code attack, we use the following partitions: 80% training,
10% validation and 10% testing. We use the ResNet-18 model [He+16] as our
classification model, and we train on five training sets individually until conver-
gence. Figure 55 shows that including more training sessions generally lead to
performance improvement in the inter-session case. For the second session, we

7.6 TESTBED

100

79.4

80 1

60 -

401

Accuracy (%)

201
10.0 10.5

Training 1l Training 2 Training 3 Training 4 Training 5
Training set

Figure 55: Inter-session accuracy in our eye chart letter classification task. The two bars
for each training set represent two different test sessions.

Scale ‘ 1 12 15 2 25 3 4 5 7 10 20

Acc. (%) ‘ 66.7 487 82.0 873 86.7 82.0 887 893 973 987 46.0

Table 23: Accuracy with respect to 11 different scales in our eye chart letter classification
task.

notice an accuracy drop when including more data from Training 2 to Training 3,
which can also be explained by the fact that the data quality of different sessions
of data could impact the performance.

Figure 56 shows the confusion matrix of the classification accuracy with re-
spect to different classes. We can observe that accuracy differs for different letters.
Table 23 shows the results at 11 different scales. We could observe that the accu-
racy of the letters at moderate scales (e.g, 7, 8 and 9) is comparatively higher than
the others. Without surprise, the smallest scale has the lowest accuracy. However,
what we found also interesting is that accuracy with respect to scale 1 is also low.
We suspect that it is because of the receptive field of the model we chose. More
detailed results per class per scale can be found in Figure 57.

145

146

SCREEN GLEANING

Letter
C D E F L N (0] P T V4

C 1.8 12.7 0.6 0.0 0.0 0.0 0.0 10.9
0.0 2.4 0.6 18.2 6.1 0.0 0.0
D 80
E 0.0 1.8 0.0 0.0 0.0 0.0 0.0
F 0.0 0.6 0.0 0.0 0.0 9.7 0.0 0.6
N 60
(O] |_ 0.0 0.0 0.0 0.0 0.0
et
DN 00 12 06 00
— _40
O 00 24 00 00
P 0.0 0.0 2.4 23.6
-20
T 0.0 0.0 0.0 0.0
Z 0.0 0.0 0.0 1.2
-0

Figure 56: Confusion matrix of the classification in our eye chart letter task.

Scale
1.0 1.2 15 2.0 25 3.0 40 5.0 7.0 10.0 20.0
' - 100
C 6.7 26.7 60.0 | 100.0 100.0 100.0 100.0 100.0 [EeN}
Dm 0.0 5 a VERCH 20.0 26.7 [ESHANECERc I (0[0No]
80
E . . . 86.7 93.3 100.0 100.0 100.0 100.0
F . b 80.0 PIGIWAN 100.0 | 66.7
- 60
o L 333 100.0
s
U N 93.3 93.3 100.0
- -40
([0 100.0 93.3 100.0 100.0 93.3
=l 80.0 BGWAN 86.7 100.0 80.0
-20
A 66.7 100.0 100.0 100.0 100.0 100.0 100.0
y4l °3.3 93.3 100.0 100.0 93.3 100.0 86.7 @ 66.7
-0

Figure 57: Classification results of our eye chart letter task with respect to different classes
and scales.

7.7 COUNTERMEASURES

In our setup, the target device has no extra protection beyond the common design
features of commercial devices. As a step towards improving the protection of
the device, we discuss possible countermeasures that could possibly mitigate the
danger of a potential screen gleaning attack.

7.7.1 Hardware-Based Approaches

Screen gleaning attacks would be made difficult by using a shielding technique.
Shielding a cable consists of wrapping the center core of the cable that transmits

7.7 COUNTERMEASURES

an electric signal by a common conductive layer. The shield acts as a Faraday cage
inside the cable, blocking electromagnetic waves. The resulting electromagnetic
leakage is lowered, decreasing the SNR of the signal. Several standard cables
(e.g., coaxial cable, twisted pair cable) are shielded to reduce its electromagnetic
perturbations and emanations. However, this technique comes at an extra cost and
increases the cable dimension. For this reason, flexible flat cables inside small
electronics with a display often lack a protective shield, and it is not trivial to add
one.

A metallic protective case would also act as a shield for electromagnetic ra-
diation, preventing attacks that measure the signal emitted from the back of the
phone, but every telecommunication signal would also be perturbed.

7.7.2 Communication-Based Approaches

Another countermeasure against screen gleaning, similar to the method used for
pay-TV, could be to encrypt the signal between the graphical unit and the screen.
The core idea is to share a cryptographic key between the two entities and en-
code the video stream using a cipher. As a result, the leaked information by the
transmitted signal will become more difficult to interpret by the attacker, who
does not have the key. This solution comes at a cost. Although some stream ci-
phers could meet requirements for throughput and latency, both the screen and the
graphical unit would need extra logic for encryption and decryption of the cipher
and implement a key establishment protocol to create a shared key when paired
together. Moreover, this countermeasure would be ineffective against an attack
targeting the screen itself during the rendering (although this is a different attack,
see [Gen+19]).

7.7.3 Graphics-Based Approaches

M. G. Kuhn in [KA98] introduces a cheap and efficient countermeasure against
electromagnetic TEMPEST that consists of a special font where the transmitted
signal has been filtered to reduce the strength of the top peaks of its Fourier trans-
form. The resulting font appears visually quite blurry for a high-resolution repre-
sentation rendered on the screen but makes the side-channel silent.

Another method that can be used as a countermeasure is obfuscation. This ob-
fuscation can either be introduced into the background of the image using confus-
ing patterns and colors behind the text or by using a font with visually difficult to
differentiate letters. However, obfuscation is often ineffective against distinguish-

147

148

SCREEN GLEANING

ing methods based on machine learning and may introduce difficulties for humans
to read the original image from the screen.

7.8 FROM TEXT TO IMAGE

Here we return to the discussion of different formulations of the screen gleaning
problem. As we stated earlier, in the discrimination scenario, the attacker knows
a finite set of messages that are possible and attempts to determine which one
actually occurred on the phone screen. The security code recovery attack belongs
to the discrimination scenario.

As the work on screen gleaning moves forward, it is interesting to look at prob-
lems beyond recovering messages built from symbol sets, such as security codes
and written words, but also at images. Screen gleaning of images can be addressed
within the reconstruction scenario, mentioned above. In this scenario, the attacker
has no prior knowledge of the screen contents and attempts to reconstruct the
screen exactly as it appears to the human eye. The following is an example of the
reconstruction scenario: If the screen was displaying a photo of a person, the goal
of the attack would be to recover that photo completely. Complete recovery re-
quires that the features of the person in the photo are clear, as needed for a human
viewer to identify the person, but also that the recovered photo looks exactly like
the original one including details of the background and the lighting and coloring
of the photo.

Screen gleaning of images can also be addressed within a more general classi-
fication scenario than the discrimination scenario. The discrimination scenario is
a type of classification scenario in which the attacker has access to information
about the complete set of possible messages. There exists another classification
scenario, which we call the generalization scenario, in which the attacker only
has some information about the possible content of the screen. Pornography de-
tection is an example of a problem that needs to be addressed in the generalization
scenario. We discuss it in more detail here because of its societal relevance, cf. the
issue of people looking at porn on their devices on an airplane [Conl1; Cur20].

For pornography detection, the attack goal is to determine whether or not a
phone display pornography without a direct line of sight to the phone. Here, we
assume, it is not possible for the attacker to have complete information in advance
about all possible images displayed on the phone. Even if it is possible to access
a complete database of all pornographic images, it is not possible to know which
non-pornographic images will be displayed. To mount a screen gleaning attack
in this case, we must collect representative training data of the different types of
phones we expect, similarly to the discrimination case, and different levels of fa-

7.9 CONCLUSION AND OUTLOOK

vorability for antenna positioning. We also, however, must collect representative
data of all the different types of pornographic and non-pornographic images that
could be relevant to the problem. The data collection task is clearly not trivial.
However, this type of scenario is clearly important, so we recommend that future
work on screen gleaning focuses not only on discrimination scenarios (as with the
security codes) but also on more general classification scenarios (as with pornog-
raphy detection).

We have based our proposed testbed on a test used for visual acuity, and not
specifically for reading. We have made sure that our testbed is not limited to let-
ters and numbers, since we hope that, moving forward, the testbed will be useful
for testing screen gleaning in classification scenarios involving generalization and
reconstruction. However, assessing the true capacity of our testbed will require
validation tests in addition to those carried out here.

7.9 CONCLUSION AND OUTLOOK

In this paper, we have introduced screen gleaning, a new TEMPEST attack that
uses an antenna and software-defined radio (SDR) to capture an electromagnetic
side channel, i.e., emanations leaking from a mobile phone. We demonstrate the
effectiveness of the new attack on three different phones with an example of the
recovery of a security code sent in a text message by using machine learning
techniques, as the message is not comprehensible to the human eye.

In addition, we propose a testbed that provides a standard setup in which screen
gleaning can be tested further with different attacker models. Finally, we provide
ideas for possible countermeasures for the screen gleaning threat and discuss their
potential.

Future work will involve testing increasingly sophisticated attacker models that
can be built by extending the five dimensions of the parameterized model that
we propose as part of our testbed framework. As already mentioned, such an ex-
tension will involve moving to more sophisticated attack hardware, as hardware
continues to develop. We have already identified special electromagnetic near-
field scanners [Ems], which are basically arrays of loop antennas that allow the
attacker to identify the ‘hot spot’ of the device. The attacker is then able to aim
the antenna at this particular spot. These near-field scanners also identify all res-
onating frequencies within a band of 15 kHz to 80 GHz. These frequencies could
then be used for the design of antennas that extend the setup such that attacks on
greater distance can be performed.

Further, we will consider a wider range of other devices, including other screens
from devices like tablets, laptops and smart displays (such as Google Nest Hub).

149

150

SCREEN GLEANING

For example, the work of Enev et al. [Ene+11] suggests that our conclusion should
remain valid for most of the screens, including TV screens.

Finally, we are interested in moving from discrimination scenarios to general-
ization scenarios, and finally to reconstruction scenarios. In other words, content
that the attack recovers from the phone will become increasingly unpredictable,
and increasingly challenging. The testbed we presented here has the potential to
be further developed to also cover the full range of possible scenarios.

ACKNOWLEDGMENTS

Part of this work was carried out on the Dutch national e-infrastructure with
the support of SURF Cooperative. We thank Peter Dolron and Daniel Szalas-
Motesiczky of the TechnoCentrum at Radboud University for their support with
the measurement setup. A special word of appreciation to Frits, Henan, Jan,
Maikel, and Mia, who contributed time with their phones, so that we could carry
out screen gleaning attacks.

ON REVERSE ENGINEERING NEURAL NETWORK
IMPLEMENTATION ON GPU

This chapter is based on [CW], a joint work with Lukasz Chmielewski, that has
been presented during the Artificial Intelligence in Hardware Security (AIHWS)
in 2021.

CONTENT OF THIS CHAPTER

8.1 Introduction 151
8.2 GPU Architecture 155
8.3 Threat Model 155
8.4 The Target and Network Implementation 156
8.5 Reverse Engineering 158
8.6 Conclusions and Futurework 163

8.1 INTRODUCTION

Deep learning is more and more deployed in many research and industry areas
ranging from image processing and recognition [KSH12], image recognition for
autonomous vehicles [FHY 19], robotics [KBP13], and natural language process-
ing [TPL10], medical applications [LL19], IoT speech recognition [TSL19] to
security [Kul7; Wei+18]. This rapid deployment is caused by the increased com-
putational capabilities of computers and huge amounts of data available for ma-
chine learning. Additionally, it leads to more and more complex machine learning
architectures.

In this paper, we focus on the analysis of Multilayer Perceptron (MLP) and
Convolutional Neural Network (CNN) implemented using GPU accelerators, as
they are the most commonly used feed-forward neural networks architectures.

Designing and finding parameters for neural networks has become an increas-
ingly hard task since the NN architectures become more complex. From the in-
dustrial point of view, we can observe an increase in the number of intellectual
property (IP) of NNs. Such IPs of commercial interest need to be kept secret.

151

152

—_

ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

Moreover, in the medical context, the privacy aspects of NNs can also become a
threat if revealed.

Additionally, EMVCo, an entity formed by MasterCard and Visa to manage
specifications for payment systems, requires deep learning techniques for secu-
rity evaluations [Ris18]. Due to the above reasons, hackers might want to reverse
neural networks to learn secret information.

There exist potentially easier ways to recover a network than using complex
side-channels like EM or power consumption. For example, physical access to
the device might be sufficient for an attacker to access the NN firmware and to
reverse engineer it using binary analysis. As a countermeasure, those devices are
equipped with standard protections like blocking binary access, blocking JTAG
access, or code obfuscation. Furthermore, the IP vendors usually forbid users to
access architectural side-channel information, such as memory and cache due to
security and privacy concerns. Additionally, they implement countermeasures in
software and hardware against logical attacks that would allow hackers to obtain
run-time control on the device.

Therefore, for such protected implementations, side-channel attacks become vi-
able for reverse engineering NNs. Side-channel analysis (SCA) has been widely
studied for the last 20 years due to its capability to break otherwise secure algo-
rithms and recover secret information. In 2019, Batina et al. [Bat+19] presented
the first SCA attack to extract architecture and weights from a multilayer percep-
tron implemented on a microcontroller; this attack employed both timing and EM
side-channels. This attack has shown that SCA is a serious threat to NNs.

However, there has been little work done on SCA against GPU-based neural
networks'. To the best of our knowledge, there has been no power or EM side-
channel attack presented that targets GPU-based neural networks, while GPU is
the platform of choice to train and deploy neural networks.

In this work, we aim at evaluating the security of a setup that is as close to a
real-world application as possible, and therefore, we target NNs running on GPU.
Therefore, we target the Nvidia Jetson Nano, a module computer embedding a
Tegra X1 SoC combining an ARM Cortex-AS57 CPU and a 128-core GPU with
Maxwell architecture. This hardware accelerator is relatively complex in compar-
ison to a simple microcontroller. In particular, our setup employs the PyTorch
python framework running on the full Linux operating system (on the ARM CPU)
to instruct the GPU accelerator to execute NN computations. This complexity
poses several technical difficulties for our analysis due to a large amount of noise

The only SCA against GPU-based NN that we have found is presented in [Wei+20a]. However, it
works in a different context to ours and is based on software context-switching timing side-channel;
see Subsection 8.1.1 for details.

8.1 INTRODUCTION

and misalignment. Because of these challenges, we limit our analysis to so-called
simple EM analysis?, and we recover numbers of layers and neurons as well as
the types of activation function being executed. Our experiments show that all this
secret information can be recovered using a dozen of EM traces independent of
inputs even when significant noise and misalignment are present when sufficient
signal processing techniques are used.

Note that we need to analyze a GPU implementation as black-box since the
low-level details of the implementation could not be public. Moreover, due to
the parallel nature of GPUs, we cannot simply replicate existing attacks for other
architectures, but adjust them adequately.

We leave recovering neuron weights and CNN hyperparameters using more
complex side-channel attacks to be future work.

8.1.1 Related Works

Any computation running on a platform might result in physical leakages. Those
leakages form a physical signature from the reaction time, power consumption,
and EM emanations released while the device is manipulating data. Side-channel
analysis (SCA) exploits those physical signatures to reveal secret information
about the running program or processed data In its basic form, SCA was pro-
posed to perform key recovery attacks on cryptographic implementations [Koc96;
KJJ99].

The application of SCA is not limited to the type of processing unit and can be
applied to microcontrollers as well as other platforms. In [Luo+15; JFK16; JFK17;
GZC18], EM and power side-channel attacks are performed on GPU-based AES
implementations.

In [Nag+19] SCA is used to break isolation between different applications con-
currently using a GPU. Essentially this work identify different ways to measure
leakage using software means from any shared component.

Side-channel attacks can be applied to extract the information of a neural net-
work. Batina et al. [Bat+19] presented the first EM side-channel attack to extract
the complete architecture and weights from an MLP network implemented on a
CPU. Subsequently, Honggang Yu et al. [Yu+20] combined simple EM analysis
with adversarial active learning to recover a large-scale Binarized Neural Network,
which can be seen as a subset of CNNs, implemented on a field-programmable
gate array (FPGA). In this attack, the recovery of the weights is not done through
EM analysis, but using a margin-based adversarial learning method. This method

2 Simple EM analysis involves visually interpreting EM traces over time in order to recover the secret.

153

154

ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

can be seen as a cryptanalysis against NNs where weights are treated as an at-
tacked secret key. Takatoi et al. [Tak+20] show how to use simple EM analysis
to retrieve an activation function from a NN implemented on an Arduino Uno
microcontroller. In [Yos+20], correlation power analysis is used to reveal neu-
ron weights from the matrix multiplication implemented with systolic array units
on an FPGA. Another relevant attack [Xia+20] uses power SCA together with
machine learning classifier to reveal internal network architecture, including its
detailed parameters, on an ARM Cortex embedded device. Maji et al. [MBC21]
demonstrated a timing attack combined with a simple power analysis of microcon-
troller-based NN to recover hyperparameters and the inputs of the network.

The only previous attack that targets GPU-based NN [Wei+20a], to the best
of our knowledge works in a different setting to ours; a model developer and an
adversary share the same GPU when training a network and the adversary aims to
break the isolation to learn the trained model. This attack is not applicable to an
edge accelerator platform as the training phase is always performed in a controlled
environment with more capable resources. This attack also relies on the presence
of an adversary sharing GPU resources while our attack does not make such a
requirement.

A recent survey of existing SCA methods for architecture extraction of neural
networks implementations is presented in [Cha+21] and an overview of hardware
attacks against NN is given in [XAQ21].

8.1.2 Contributions

In this paper, for the first time, to the best of our knowledge, we investigate using
simple EM analysis to break side-channel security of NN (namely Multilayer Per-
ceptron and Convolutional Neural Networks) running on a GPU. We present how
to successfully recover the number of layers and neurons as well as the types of
activation functions. Most importantly, our results show the importance of side-
channel protections for NN accelerators in real-world applications.

We leave recovering neuron weights and CNN hyperparameters using more
complex side-channel attacks, like DPA or template attack to be future work.

Our experimental results are obtained on the setup that is as close as possible to
a real-world device setup in order to properly assess the applicability and extend-
ability of our methods.

8.2 GPU ARCHITECTURE

8.1.3 Organization of the paper

Section 8.2 presents the employed GPU architecture. Subsequently, our threat
model is described in Section 8.3 and the target and NN implementation in Sec-
tion 8.4. We present our reverse engineering methods and experimental results in
Section 8.5. Finally, conclusions and future work are presented in Section 8.6.

8.2 GPU ARCHITECTURE

GPU is a specialized computer hardware designed to accelerate parallel comput-
ing for image processing. Deep learning algorithms can benefit from GPU high
parallelization to boost their performances, especially when dealing with visual
data. A GPU groups several GPU cores into a Streaming Multiprocessor (SM).
The specific SM of Maxwell GPU architecture is shown in Figure 58. All GPU
cores within a SM can handle floating-point operations in a Single Instruction Mul-
tiple Data (SIMD) paradigm. This way, the exact same processing can be applied
to a large volume of data to reach a higher throughput than for a CPU.

CUDA is the Software Development Kit (SDK) introduced by NVIDIA that
gives direct access to the GPU’s instruction set and facilitates general-purpose
programming. From the programming perspective, a program that runs on a GPU
is divided into parallel threads groups into wraps of 32 threads partitioned into
blocks within grids executed on the SM [Nic+08]. When the number of blocks in
a SM is less than the number of blocks assigned for the operation, the blocks are
queued and scheduled to be executed at a later time. This method allows programs
to be scalable for the hardware it is executed on and offers speed up for devices
with more blocks per SM. Higher-level programming languages such as python
frameworks relies on CUDA to call computation every low level function on GPU.
We will see that it is possible to exploit this feature to perform side-channel anal-
ysis of the size of data processed by the GPU.

8.3 THREAT MODEL

The main goal of this attack is to reverse engineer the neural network architec-
ture using only side-channel information. In this scenario, we consider an attacker
with no insight of the inputs type, source or the implementation of the machine
learning algorithm. Currently, to the best of our knowledge, there is no public
implementation deploying side-channel countermeasure. We consider a passive
and non-invasive attacker who can only acquire side-channel measurement while
operating "normally" the target device and cannot control the flow of operation.

155

156

ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

| Instruction Cache |

[Instruction Buffer || [Instruction Buffer || || Instruction Buffer || Instruction Buffer |
[Wrap Scheduler || ([Wrap Scheduler ||| Wrap Scheduler |[|[Wrap Scheduler |
[Register File Il Register File Il Register File I Register File |
‘CoreHCore“Core“Core CoreHCoreHCore“Core Core CoreHCore“Core‘ Core CoreHCoreHCore‘

”CoreHCore“CoreHCore CoreHCoreHCore“Core Core CoreHCore“Core” Core CoreHCoreHCore”

”Core Core|Core|Core| ||[Core[Core|Core[Core|| ||Core|Core|Core Core” Core|Core|Core Core”

”CoreHCore“CoreHCore CoreHCoreHCore“Core Core CoreHCore“Core Core CoreHCoreHCore

”Core Core|Core|Core| |[Core[Core|Core[Core|| ||Core|Core|Core Core” Core|Core|Core Core”

”Core Core|Core|Core| |[Core[Core|Core[Core| ||Core|Core|Core Core” Core|Core|Core Core”

”Core Core|Core|Core| |[Core[Core||Core[Core| ||Core|Core|Core Core” Core|Core|Core Core”

”Core Core|Core|Core| |[Core[Core|Core[Core| ||[Core|Core|Core Core” Core|Core|Core Core”

| 64 KB Shared Memory |

Figure 58: Maxwell Streaming Multiprocessor Architecture

A suitable use case for this attack is considering an attacker who acquired a
legal copy of the network in a black-box setting and aims to recover its internal
details for IP theft. The attacker controls the inputs and performs side-channel
measurement during the inference phase of the neural network. The goal is to
reverse engineer the following information about the neural network architecture:
number of layers, number of outputs, and activation functions in the network.

If successful, this attack can have severe monetary repercussions for companies
investing significant resources to develop customized machine-learning models to
create highly valuable IPs [Pap+18]. A successful attacker that is able to steal such
models can offer similar services at much lower cost than the investing companies.

8.4 THE TARGET AND NETWORK IMPLEMENTATION

The target is an Nvidia Jetson Nano [Nan], a module computer embedding a Tegra
X1 SoC [Teg] combining an ARM Cortex-A57 CPU and a 128-core GPU with
Maxwell architecture suitable for Al applications such as image classification, ob-
ject detection, segmentation, and speech processing. Specifically, modules similar
to this one are used for real application in automotive visual computing, namely
for Nvidia drive CX and PX computer platforms. The Jetson Nano Tegra X1 SoC
contains a GPU with one Maxwell Streaming Multiprocessor (SMM) (see Fig-
ure 58). The SMM is partitioned into four distinct 32-CUDA core processing

8.4 THE TARGET AND NETWORK IMPLEMENTATION

blocks (128 CUDA cores total), each with its own dedicated resources for schedul-
ing and instruction buffering.

The neural network is a convolutional neural network (CNN) implemented us-
ing the PyTorch python framework [Pas+19]. The dataset used to train the network
is the CIFAR10 dataset [Kri09], a 60 000 32x32 colored image dataset represent-
ing 10 classes. The reference CNN architecture consists of two convolutional lay-
ers (of 6 and 16 filters of size 5) with max-pooling and three linear Fully Con-
nected (FC) layers, all regulated with the ReLLU activation function, and the final
FC output layer. The input is a three-channel image of size 32x32, and the output
is a 10-sized vector of each class of the classification problem. This architecture,
together with the corresponding SPA, is presented in Figure 59.

To better measure the execution of the neural network, we use a power trigger.
The Jetson Nano handles General Purpose Input/Outputs (GPIOs). We use one
GPIO pin to implement a trigger around the forward loop of the neural network
to be sure only to measure while the GPU is active. It is to be noticed that, the
neural network is already trained and the gradient operation is disabled to prevent
the backward loop from happening.

To record the EM traces we removed the heatsink of the target and placed a
Riscure Low Sensitivity (LS) EM probe > above the main chip package. The best
position of the probe is empirically chosen to maximize the leaking signal. We
manually searched the position with a grid scanning above the chip for multiple
locations and chose the most promising position based on visual inspection of the
traces. This best location is presented in Figure 60.

The oscilloscope in our experiment is the Teledyne Lecroy WaveRunner
8404M. We used it in two configurations, one for characterization with 5 x 10°
samples/s and at most 32 x 10° samples and the second one for simple EM with
10° samples/s and at most 107. We used greater sampling rate in the first config-
uration because we performed frequency analysis, and we needed to be able to
record a signal up to the GPU maximum clock frequency, namely 900MHz, in
good quality; for simple EM we do not need that high accuracy. The oscilloscope
has TCP/IP support for both controlling and downloading measurements, which
helps to automatize the entire process.

We acquired and analyzed using Riscure’s Inspector software package®.

The goal of the neural network used in this paper is not meant for high efficiency
or presenting a challenging classification task, but rather to show the methods and
principles side-channel analysis can bring in to extract information from a neural
network closed implementation.

3 https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
4 https://www.riscure.com/security—-tools/inspector-sca

157

https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://www.riscure.com/security-tools/inspector-sca

158 ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

3x32x32 IN: 3x32x2 IN: 6x14x14 IN: 400 IN: 120 IN: 120
pixel image OUT: 6x14x14 OUT: 16x5x5 OUT: 120 OUT: 120 OUT: 120
3 0.06]
20047 | -‘
=
Q.0.02 1 |
g
< 0

1 e |

|
|
|
.
.

e
0.000e+0 2.000e+6

4.000e+6

Time sample

Figure 59: SPA of CIFAR10 Convolutional Neural Network

TTLEELTERTRETL TN

Figure 60: Experimental setup: the EM probe location

8.5 REVERSE ENGINEERING
8.5.1 Characterization

In Figure 59, the architecture of the neural network is showed next to an EM
trace measured during its execution on the target. From the EM trace, we can
observe that every different step of the forward loop of the NN is distinguishable.
The two convolutional blocks are identifiable by a first activity corresponding
to the convolutional operation followed by a smaller activity corresponding to
the pooling operation. The layers of the MLP, namely, the FC layers, are also
detectable by single peaks.

8.5 REVERSE ENGINEERING

=1000
:900
:BOO
:700
:600
:500
-400

Frequency
(MHz)

300
200
100

0.000e+0 2.000e+6 4.000e+6 6.000e+6 8.000e+6 1.000e+7 1.200e+7
Time sample

Figure 61: A single EM trace (in the blue color at the bottom) and the corresponding
spectrogram (middle) with the MLP activation zoomed-in (top)

It is possible to verify whether the leakage is effectively coming from the GPU
activity by observing the leakage in the frequency domain. Because the GPU max-
imum clock frequency is 900MHz, the computation made on the device will emit
leakage in the same range of frequencies. In Figure 61, we represented the abso-
lute value of the leakage together with the spectrogram plot of the leakage. We
can see that the detected leakage correspond to the frequency range of the GPU.
It would be possible to continue the same analysis using this frequency signal, but
in this paper, we will only focus on EM analysis in the time domain.

In the following analyses, we either use raw traces or apply an averaged win-
dow resampling method on the absolute value of the signal. The averaged window
resampling reduces the number of features of the trace by averaging samples in
a fixed-size window shifted without overlapping across all samples of the trace.
This processing makes alignments on specific patterns faster and easier.

8.5.2 Reverse Engineering the Number of Layers

In this section we investigate how to recover the number of hidden layers in the
MLP from the SCA during the inference phase.

159

160

ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

0.000e+0 2.000e+6 4.000e+6 6.000e+6 8.000e+6 1.000e+7 1.200e+7
Time sample

(a) 4 layers

% 0.06

=0.04

%0.0E

< 0

0.000e+0 2.000e+6 4.000e+6 6.000e+6 8.000e+6 1.000e+7 1.200e+7 1.400e+7
Time sample

(b) 5 layers

O

S_ 0.04

3002

E

< 0

0.000e-0 5000e<6 1.000e-7 1.500e+7
Time sample

(c) 6 layers

Figure 62: Differences in the number of fully connected layers

Since the dataflow of a NN is such that layers are processed sequentially, the
analysis of different number of fully connected layer is trivial from the EM traces.
We measured three different implementations of a neural network, with a different
number of fully connected layers and observe their leakage. From the reference
neural network model, we change the number of fully connected layers from 4 to
6. The number of neurons in each of the additional layers is the same as the second
fully connected layer from the reference model (i.e., 120 neurons). The resulting
EM measurements are represented in Figure 62. From the three plots, the two first
convolutional blocks and the fully connected layers are clearly identifiable. While
the plots are aligned according to the first convolutional layer, the timing of the
execution is not consistent. Many process interruptions occur during the compu-
tation, leading to misalignments in the traces. However, the additional layers do
appear in the EM measurement and are easily identifiable.

8.5.3 Reverse Engineering the Number of Neurons

Now we investigate how to recover the number of neurons in a hidden MLP layer.

8.5 REVERSE ENGINEERING

e Wl

"1000 2000 3000 4000
Time sample

Amplitude
oS o

(a) 60 neurons

Q
g Ty \ il k
10 ‘ I ! f l
Q.
= 5 -Ja-h\u‘a’v.iw‘g"r‘é}r}\‘.‘,-J-'fr-“""»*'i\' ‘|i ik, '.AMH il !\‘L.'.t‘:\u\“ﬁ NN R L.Lvl il ,.l. LwMJ Lmu \l Wl b lﬂwﬂ’mhqAb‘,JJ L'\" I
< ——————— — —— —

0 1 OOO 2000 3000 4000

Time sample
(b) 120 neurons

Q
B 15 %“J» m
=10
2 J L L,,, u s
;%_ 5 w wmwmw Ao ! i ».M AWJWMWﬂ st bbb

" 1000 2000 3000 4000
Time sample

(c) 255 neurons

Figure 63: Difference in number of perceptrons inside fully connected layers

In a GPU implementation, every neuron operation is processed in parallel. How-
ever, the parallelization degree depends on the size of the inputs and number of
neurons, as there is a limit on the number of floating-point operation that can
be computed in parallel. For example, given N GPU threads, each capable of
computing one floating-point operation per clock cycle, the GPU scheduler can
compute N operations per clock cycle. If 71, pyt5 X Hneurons > N then the number
of neurons will partially leak, and if #;;,,4s > N then the number of neurons will
entirely leak as every neuron computation would require more than one cycle.

From the execution of the linear operation in the fully connected layers, it is
possible to recover the number of perceptrons per layer using timing side-channel.
In Figure 63 different models are analyzed. Here, we control the number of neu-
rons within the hidden layers. We can see that when the number of neurons in the
layers increases, the execution time of each layer also increases.

Recovering the exact number of neurons in a layer would require to be capable
to distinguish a single neuron difference. In Figure 64, the timing of the first fully
connected layer activity with an increasing number of perceptrons from 30 to 100
is represented. For every number of perceptron, we averaged fifty measurements
and align the traces according to the desired pattern to measure the execution time

161

162

ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

380
360
£ 340
£320
@ 300

E 280
= 260 /
240 —t—rrrrrrr T T t-+rTr T T4t Tr T ft-r T 4T T T {7

30 40 50 60 70 80 90 100
Number of neurons

Figure 64: Differences in the number of perceptrons (from 30 to 100 units)

of the specific layer. While the relation shows a linear behavior, the measurements
noise and re-alignment, still make it difficult to distinguish a single perceptron
change. However, approximate recovery is possible with a relatively low error
margin.

8.5.4 Reverse Engineering the Type of Activation Function

Nonlinear functions are essential to approximate a linearly non-separable prob-
lem. The use of these functions also helps to reduce the number of network nodes.
With the knowledge of the type of nonlinear function used in a layer, an attacker
can deduce the behavior of the entire neural network using the input values.

We analyze the side-channel leakage from different commonly used activation
functions, namely ReLLU, Sigmoid, Tanh, and Softmax [NH10; HNO4]. The acti-
vation function applied to the first convolutional layer of the network is changed
in different measurements. We measured the EM leakage of the execution of the
layer computation and the activation function for random input and is represented
in Figure 65. We identify the execution of the convolutional layer from O to 520
time samples, and it is identical for all sub-figures. The execution of the activation
function presents differences among all different activation functions. We can no-
tice for example that the execution of the ReL.U activation function is the shortest
and that the Softmax function is the longest by far. The timing differences between
ReLU, Tanh, and Sigmoid activation functions are smaller.

The computation time of the activation function does depend on the size of
the input. Therefore, to identify the type of activation function, one should first
recover the number of inputs. We measured fifty executions of the activation func-
tion after the first convolutional layer. The input of this activation function is of
the size of the output of the convolutional layer before the pooling layer and is of
size 6 X 28 x 28 = 4704. All measurements are done on random data, and we

8.6 CONCLUSIONS AND FUTURE WORK

Table 24: Statistical analysis on computation time (in ys).

Activation function | Mean | Maximum | Minimum
ReLU 33.5 34 33
Tanh 36.0 37 34
Sigmoid 43.3 46 41
Softmax 124.5 127 123

draw a statistical analysis of the timing pattern for all types of activation functions
considered in Table 24. It can be observed that each activation function stands out,
and thus it is possible to recover trivially the type of activation function from a
neural network implementation.

8.6 CONCLUSIONS AND FUTURE WORK

Side-channel analysis have already been proven capable to reverse engineering a
neural network implemented on a microcontroller architecture. While microcon-
trollers can be the hardware of choice for some small edge computing applications,
GPU stays the most popular platform for deep learning. In this paper, we show
the possibility to recover key parameters of a GPU implementation of a neural
network. We can recover the number of layers and number of neurons per layer of
a multilayer perceptron with simple power analysis. We can also identify different
types of activation functions with single power analysis for a given number of in-
puts. We can conclude that we have managed to recover all the secret information
that can be achieved using only simple EM analysis.

For the reverse engineering of a complete neural network, the weights of all
layers for both MLP and CNN networks and network hyperparameters for CNNs
should be recovered too. We consider these tasks to be future work, but we en-
vision that the weights can be recovered using correlation or differential power
analysis on float vector multiplication similarly to [Bat+19]. However, the main
challenges, besides noise and misalignment, would be the lack of information on
how the multiplication is performed and the parallel aspect of GPU computation
(i.e., multiple intermediate values might be computed at the same time). Recovery
of CNN hyperparameters would be probably also a hard task, and we suspect that
it would require a template attack.

163

164 ON REVERSE ENGINEERING NN IMPLEMENTATION ON GPU

D
o
S40
520
E b
s e o N T B e e A o B B o IR e S e S e
0 100 200 300 400 500 600 700
Time sample
(a) ReLu
()
o
S40
320
£
L 0T S e
0 100 200 300 400 500 600 700
Time sample
(b) Tanh
()
340
320
E
TO'\“"I""\""I‘“‘I""\""I""\'
0 100 200 300 400 500 600 700
Time sample
(c) Sigmoid
()
ks,
S40
B.20
E
<< -ttt
0 100 200 300 400 500 600 700

Time sample

(d) Softmax

Figure 65: Differences in the type of activation function applied on layer output

Part V

DISCUSSION

DISCUSSION AND FUTURE WORK

This chapter concludes the thesis and provides a discussion for future
work.

CONTENT OF THIS CHAPTER

9.1 Summary of Contributions 167
9.2 FutureWork 171
9.3 Limitations 173

9.1 SUMMARY OF CONTRIBUTIONS

In this section, we list a summary of the results presented in this thesis.

* In Chapter 3, we give solutions to the first research question, What deep
learning methods can be used to automate side-channel analysis of cryp-
tographic implementations? We presented a study on MLP to attack im-
plementations of AES with side-channel analysis from different datasets
in Chapter 3. The preprocessing of the input data significantly impacts the
performance of the MLP and does decrease the need for a large network to
achieve good results. Conversely, a larger network can better generalize on
data with more features. The analysis focuses on the impact of the number
of layers and the number of neurons per layer on the network’s capacity to
fit the leakage in the data. While different configurations can achieve good
results, we show that the best configuration is often a trade-off between the
two parameters, and it is not always the largest network that achieves the
best result. For the AES_RD dataset that implements AES with a random
delay countermeasure, we show that an MLP with a single layer of 200 per-
ceptrons and a six-layer network with ten perceptrons per layer can achieve
the best performances. For the ASCAD dataset, we also show that there ex-
ists a trade-off between the number of layers and the number of perceptrons

167

168

DISCUSSION AND FUTURE WORK

per layer that makes an efficient model with even fewer parameters than the
best model introduced in previous work introducing the dataset. We demon-
strate that MLP can be as efficient as more performant networks like CNN
for this task while being simpler and faster to train.

In Chapter 4, we answer the second researcher question Can deep learning
be used to enhance the performance of SCA on lightweight cryptographic
implementations of ASCON? We present an application of Deep learning
Side-Channel Analysis (DLSCA) on the lightweight authenticated encryp-
tion algorithm Ascon. We offer a comparison between different leakage
models of the S-box function of Ascon that can apply for the fixed-key at-
tack as CPA and for the random key attack as DLSCA enables. We show that
DLSCA can successfully recover a partial secret key after 20 attack traces,
which is fewer than the presented CPA attack that requires 200 traces. The
results are presented on a reference and a protected implementation, and we
show that a CNN can be used to attack both implementations with the same
number of traces in both cases. At the same time, CPA is only successful
on the reference implementation. We also show a multi-target model that
can be used to attack all the partial keys of the implementations at once
and show successful results on the reference implementation using only a
thousand traces.

In Chapter 5 and 6, we give insight for the question, How far can deep
learning-based side-channel analysis improve the performance of side-
channel attacks? We presented a one-trace attack on EADSA using the
curve Curve25519 as implemented in WolfSSL in Chapter 5. This attack
targets the scalar multiplication operation of the ephemeral key genera-
tion. With a single trace attack, it is possible to compute the secret scalar
from the public information. We collected a dataset of multiple scalar
multiplications as implemented in the WolfSSL library. We separated each
trace into the single table look-up operation from the nibbles of the scalar.
This dataset is used to obtain secret information about the differences in
the power consumption of the LUT operation. We trained and compared
several machine learning techniques for this attack, namely TA, RF, SVM,
and CNN, that have also been shown in the literature to be well suited
for attacking implementations of the AES cipher. Each method is trained
with and without feature reduction using PCA, and while all methods show
accuracy above 95% when targeting a single nibble, only the CNN achieves
perfect accuracy and can recover the secret scalar with a single trace.

9.1 SUMMARY OF CONTRIBUTIONS 169

* We extended the results of the previous chapter in Chapter 6 to an imple-
mentation of EADSA on Curve25519 with countermeasure from the #NaCL
library. This implementation uses Montgomery ladder scalar multiplication
with an arithmetic-based conditional swap protected with projective coor-
dinate re-randomization and scalar randomization. In this case, we show
that the CNN is also a powerful tool to attack the protected implementation
with 98% cumulative accuracy on raw traces. In contrast, other machine
learning techniques show poor results as the second-best method, random
forest, only reaches 8%. We observed that the prospected dimensionality
reduction methods have a negative impact on the performance of CNN.

* A TEMPEST attack on mobile devices is presented in Chapter 7. This chap-
ter answers the third research question, How to evaluate the security devices
against TEMPEST attacks in regard to deep-learning methods? We intro-
duce a new testbed to evaluate the performance of EM side-channel attack
to recover the displayed content on the digital screen of a smartphone, us-
ing two different setups: a single letter and a PIN code embedded in a text
message. The measurement setup is constituted of a near-field probe and a
software-defined radio that transmits the collected signal to a software ca-
pable of reconstructing a gray-scaled image from the intensity of the EM
signal. The quality of the recovered image depends on the distance between
the probe and the device and the size of the displayed text. We showed that
the attack can be performed even at a few centimeters distance using a CNN
model. Using a CNN classifier to enhance digit recognition, we demon-
strate an average digit recognition accuracy of 89.8% and a 5-digit PIN
code recovery accuracy of 89.5%, far better than human performance. The
collected data from six devices was used to demonstrate the reproducibility
across different devices of the same model (with three among those) and
the extensibility to other different models (with four different devices).

* We presented a side-channel analysis of neural networks implemented on
GPU in Chapter 8. This work is the first step in the investigation of the secu-
rity of neural networks implemented on GPUs, and gives an answer to the
research question Are deep learning implementations secured against side-
channel analysis? We showed that the power consumption of a GPU can
leak information on the neural network inference that can be used to reverse-
engineer the model’s hyperparameters. The analysis of the EM measure-
ments collected above the GPU package during neural network inference
shows a distinct frequency pattern revealing the activation of the neural net-
work layers. We demonstrated that this leakage reveals the type and number

170

DISCUSSION AND FUTURE WORK

of layers from the activation pattern and the number of neurons per layer
from the time of the activation of a layer.

In the light of the individual projects presented in the thesis, we can generalize
our contributions to design, engineer, and understand deep learning methods for
improving the security of sensitive applications.

First, we covered side-channel analysis of cryptography for several symmetric
and public-key implementations. Because understanding a security vulnerability
is the first step to designing more secure applications, the effort of this contribu-
tion is put on the development of attacks around existing vulnerabilities of cryp-
tographic implementations. We use deep learning to achieve better supervised
attacks than the state-of-the-art methods and bring security analysis closer to a
real-world evaluation of what is possible by an advanced attacker. The work pre-
sented in Chapter 4 and Chapter 5 are good examples for enhanced side-channel
attacks by deep learning and represents a guideline of evaluation helpful for driv-
ing the development of what is considered the criteria for secure cryptographic
implementation.

Secondly, we marked the systematization of deep learning training to design
more performant side-channel analysis methods. Finding in the least number of
observations the secret information present in the physical leakage of the device
is important in SCA, as the feasibility of an attack is directly driven by the time
an attacker has for getting to the secret. The performance of a predictive deep-
learning model is dependent, not only on the dataset used for training, but also on
the effort put into engineering the model and hyperparameters. In the thesis, we
focus on studying supervised methods like MLLP and CNN and their integration in
DLSCA methods, as presented notably in Chapter 3 and Chapter 6. We provide
keys for understanding the conditions of application of a deep learning model for
side-channel analysis, as well as systematic approaches for choosing hyperparam-
eters of a model and for training a successful model given a side-channel dataset.

Finally, since the security of a cryptosystem is not limited to the leakage of its
cryptographic implementations, we put forward the analysis of the security of two
applications that do not necessarily use cryptography, while possibly subject to
side-channel attacks. With the TEMPEST attack presented in Chapter 7 and the
reverse engineering of a neural network in Chapter 8, we step outside of usual
cryptographic applications and emphasize the link of security in the presence of
deep learning. By examining the side-channel leakage of these applications, we
highlight unforeseen vulnerabilities. Our work aims to help to build more efficient
countermeasures against TEMPEST attacks for designing future secure displays
for mobile devices. We have shown the first side-channel attack to recover partial

9.2 FUTURE WORK

neural network assets from a GPU device, questioning the security mechanisms
set to protect Al models in distributed devices.

We can conclude that deep learning is a valuable asset for side-channel analysis
and the security of secure applications on physical devices. While deep learning-
based methods will not replace the statistical methods resulting from all the re-
search in SCA, the combination of SCA techniques with deep learning may be a
window to lead to the best results.

9.2 FUTURE WORK

In Chapter 3, we presented a detailed analysis of the training of MLP for side-
channel analysis of AES. We explored the impact of the number of layers, the
number of perceptrons per layer, and the preprocessing of the input data. This
work can be extended by exploring more complex hyperparameter configurations
where the number of perceptrons per layer is different for each layer. While grid-
like searches are exhaustive over the search space, such a method is limited by the
number of models it can train in a reasonable time. Optimizing a neural network
can be viewed as a Bayesian optimization problem where the function to optimize
is the neural network architecture and hyperparameters that give the highest ac-
curacy for the attack. Methods to solve such problems are known, such as Tree
Parzen Estimator or Hyperband. They can cover a broader range of hyperparame-
ter configurations with less training time than a grid or random searches. However,
the resulting model can be complex, and there is no guarantee that the configura-
tion with the best performance or the least number of parameters that achieve
honorable results will be covered. To help reduce the effort on neural network
training for DLSCA, we should work on a hyperparameter optimization method
that can provably output the best candidates with the least computational cost.
Chapter 4 can be extended further evaluating DLSCA against implementations
with countermeasures. The dataset we collected consists of traces from a single de-
vice. Collecting traces from copies of the same device can extend the dataset and
improve the generalization of the leakage. Moreover, the additional data could re-
solve the multi-target model behavior for the incorrect partial keys when applied
to the attack of the protected implementation. It would also be interesting to con-
sider modification of that model with individual corrections to the branches that
show deviant behavior, with the application of adaptive dropout and custom loss
functions to improve the performance of individual models. One could also con-
sider if the feature extraction block should be transferred from the single target
model or retrained on the multi-target model to understand if the information of

171

172

DISCUSSION AND FUTURE WORK

one partial key from the single target model is efficiently reused in the multi-target
model for all partial keys, thereby improving the whole performance.

As discussed in Chapter 5 and Chapter 6, our work could be extended by in-
vestigating further the use of machine learning metrics in the evaluation of SCA
on public-key cryptography. Machine learning metrics such as accuracy and error,
while minimizing the cross entropy, which is linked to maximizing the mutual
information, can be unsuited to solve SCA problems, as observed for SCA on
symmetric cryptography. The major problem of such a metric is that it only tracks
the correct key candidate but does not consider the performance of related key
candidates. We could imagine that the error made by a model that ranks the cor-
rect key candidate in the second position differs from the one that ranks it in the
last. Hence, the error produced by the model should be weighted by the rank of
the correct key candidate. Similarly, if the best key candidate is one bit off from
the correct key, we could imagine that the error should also be less than if more
bits are off. Investigations on learning metrics that integrate relations with the key
candidates and their distance to the correct key could be a promising direction for
future research.

We have shown that CNN can easily break a masked implementation of Ed-
DSA. It would be interesting to investigate the use of different countermeasures
and whether the CNN can be used in the presence of multiple countermeasures.
Using multiple countermeasures for public-key cryptography is a common prac-
tice to secure an implementation and would thus be closer to a real-world scenario.
Another question to answer would be the type of deep learning model that can be
used to defeat different countermeasures. Would the same model be efficient in
defeating all countermeasures, or should the model consider the order of the coun-
termeasure to be efficient?

Another interesting direction is exploring different dimensionality reduction
methods, as the methods we investigated have shown to have a negative impact
on the performance of the CNN. The dimensionality reduction method used in
this work is the PCA, which linearly transforms the data to represent the highest
variance as the first component. If this method is destructive to the performance of
CNN, we could consider different projection methods, such as wavelet transform
or frequency analysis, or use non-linear dimensionality reduction methods like
t-SNE.

To improve our contribution in Chapter 7, a wider range of devices should be
considered, including tablets and mobile smart displays. The technology used by
displays can be different and impact the communication between the display and
the graphical processing unit. The use of HDCP (High-bandwidth Digital Con-
tent Protection) or other encryption protocols for the communication between the

9.3 LIMITATIONS

display and the processor is an effective countermeasure to prevent side-channel
attacks and other man-in-the-middle attacks. We did not consider this counter-
measure as it is not implemented in the devices we could access. Bypassing the
encryption protocol is an entirely different problem that is the subject of research.
To further improve the distance of the attack, the use of a longer-range antenna
should be preferred, and there might be a need to develop a custom design for the
antenna to improve the signal quality of given frequencies evaluated for a specific
display type.

Chapter 8 can be extended by reverse-engineering the weights of the neural net-
work with CPA attacks as used in [Bat+19]. The difficulty of such an attack resides
in the parallel execution of nodes in the neural network on GPU. This parallelism
creates noise that makes the recovery of a single weight harder. To address this
problem, an attacker can control the network’s input to force the activation of a
single node and proceed to a CPA attack to recover the weights of the nodes one
by one. After recovering the weights of the first layer, the attacker can proceed
to the next layer by finding the inputs that induce zero values for all intermedi-
ate inputs of the second layer, and so on. However, this approach can be heavy for
complex models. To secure the neural network against this kind of attack, research
on countermeasures against SCA on neural networks should be considered. Well-
known countermeasures used for cryptographic implementations, like masking or
shuffling, can be applied. However, these countermeasures should have limited
performance overhead to represent a promising candidate for future research.

9.3 LIMITATIONS

The various applications we presented in this thesis show the application of
DLSCA on symmetric and asymmetric cryptography and other perspectives of
deep learning in side-channel analysis. The presented DLSCA attacks need to
have an advanced knowledge of the target implementation and deep learning
techniques. Finding the best configuration for the neural network is a challenging
task, as well as the preparation for successful data collection. These problems are
still open and need to be addressed in future research.

The use of Bayesian optimization for hyperparameter tuning to reduce the need
for manual exploration, in most cases a task requiring high knowledge about neu-
ral network training, is a promising direction as presented in Chapter 4. As pre-
sented in the same chapter, the multi-target model enables the attack of all partial
keys of a block-cipher-like implementation, which can improve the generalization
during the training phase. Optimizing this technique with a good dataset and a
well-designed neural network can improve the performance of SCA.

173

174

DISCUSSION AND FUTURE WORK

While DLSCA attacks can be very efficient, training a performant neural net-
work can require a lot of training traces to fit a leakage, and the knowledge can be
unusable for other implementations. This problem can be addressed using transfer
learning techniques, but the exact performance of these techniques on DLSCA is

still an open question.

BIBLIOGRAPHY

[Agr+02]

[ABR64]

[AH98]

[AA04]

[Aum17]

[Avi+10]

[Avi+12]

[Bac+09]

[Bac+10]

Dakshi Agrawal, Bruce Archambeault, Josyula Rao, and Pankaj Ro-
hatgi. “The EM Side-Channel(s).” In: Annual Conference on Cryp-
tographic Hardware and Embedded Systems. 2002, pp. 29-45.

M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. “Theoretical
foundation of potential functions method in pattern recognition.” In:
Automation and Remote Control. 1964, pp. 821-837.

Martin Anthony and Sean B. Holden. “Cross-Validation for Binary
Classification by Real-Valued Functions: Theoretical Analysis.” In:
Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-
26, 1998. 1998, pp. 218-229.

Dmitri Asonov and Rakesh Agrawal. “Keyboard acoustic emana-
tions.” In: IEEE Symposium on Security and Privacy. 2004, pp. 3—
11.

Jean-Philippe Aumasson. Serious cryptography: a practical intro-
duction to modern encryption. 2017.

Adam Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and
Jonathan Smith. “Smudge attacks on smartphone touch screens.” In:
USENIX Conference on Offensive Technologies (2010), pp. 1-7.

Adam Aviv, Benjamin Sapp, Matt Blaze, and Jonathan Smith. “Prac-
ticality of accelerometer side channels on smartphones.” In: Annual
Computer Security Applications Conference. 2012, pp. 41-50.

Michael Backes, Tongbo Chen, Markus Duermuth, Hendrik Lensch,
and Martin Welk. “Tempest in a teapot: Compromising reflections
revisited.” In: IEEE Symposium on Security and Privacy. 2009,
pp- 315-327.

Michael Backes, Markus Diirmuth, Sebastian Gerling, Manfred
Pinkal, and Caroline Sporleder. “Acoustic Side-Channel Attacks on
Printers.” In: USENIX Security Symposium. 2010, pp. 307-322.

175

176

BIBLIOGRAPHY

[BDUOS]

[Bal+12]

[Bat+19]

[Bat+14]

[Bat+17]

[Bat+11]

[BS18]

[Bel+16]

[BWYO06]

Michael Backes, Markus Diirmuth, and Dominique Unruh. “Com-
promising reflections-or-how to read LCD monitors around the cor-
ner.” In: IEEE Symposium on Security and Privacy. 2008, pp. 158-
169.

Josep Balasch, Benedikt Gierlichs, Roel Verdult, Lejla Batina, and
Ingrid Verbauwhede. “Power analysis of Atmel CryptoMemory -
recovering keys from secure EEPROMS.” In: The Cryptographers’
Track at the RSA Conference. Springer. 2012, pp. 9-34.

Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek.
“CSI NN: Reverse Engineering of Neural Network Architectures
Through Electromagnetic Side Channel.” In: 28th USENIX Security
Symposium (USENIX Security 19). 2019, pp. 515-532.

Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Pe-
ter Schwabe, and Michael Tunstall. “Online template attacks.” In:
Progress in Cryptology - INDOCRYPT 2014 - 15th International
Conference on Cryptology in India, New Delhi, India, December
14-17, 2014, Proceedings. Vol. 8885. 2014, pp. 21-36.

Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Pe-
ter Schwabe, and Michael Tunstall. “Online template attacks.” In:
Journal of Cryptographic Engineering (Aug. 2017).

Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Ri-
vain, Frangois-Xavier Standaert, and Nicolas Veyrat-Charvillon.
“Mutual Information Analysis: a Comprehensive Study.” In: J.
Cryptol. 24.2 (2011), pp. 269-291.

Belhassen Bayar and Matthew Stamm. “Constrained convolutional
neural networks: A new approach towards general purpose image
manipulation detection.” In: IEEE Transactions on Information
Forensics and Security 13.11 (2018), pp. 2691-2706.

Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and
Mehdi Tibouchi. “Side-channel analysis of Weierstrass and Koblitz
curve ECDSA on Android smartphones.” In: Cryptographers’ Track
at the RSA Conference. Springer. 2016, pp. 236-252.

Yigael Berger, Avishai Wool, and Arie Yeredor. “Dictionary attacks
using keyboard acoustic emanations.” In: ACM SIGSAC Conference
on Computer and Communications Security. 2006, pp. 245-254.

[Ber+11]

[BB12]

[Berl6]

[Ber+12]

[BS02]

[Bha+19]

[BSS99]

[Boh+03]

[Bos+16]

[BGVI2]

[Bos]

BIBLIOGRAPHY

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl.
“Algorithms for Hyper-Parameter Optimization.” In: Advances in
Neural Information Processing Systems. Vol. 24. 2011.

James Bergstra and Yoshua Bengio. “Random Search for Hyper-
Parameter Optimization.” In: J. Mach. Learn. Res. 13 (2012),
pp. 281-305.

Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed
records (2006).” In: URL: http : //cr . yp . to/papers
.html#curve25519. Citations in this document 1.5 (2016).

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. “High-speed high-security signatures.” In: Journal of
Cryptographic Engineering 2.2 (2012), pp. 77-89.

Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies -
A comprehensive introduction.” In: Nat. Comput. 1.1 (2002), pp. 3—
52.

Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto
Jap, Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the Portabil-
ity: A Warriors Guide through Realistic Profiled Side-channel Anal-
ysis. Cryptology ePrint Archive, Report 2019/661. 2019.

Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryp-
tography. Vol. 265. 1999.

Lilian Bohy, Michael Neve, David Samyde, and Jean-Jacques
Quisquater. “Principal and Independent Component Analysis for
Crypto-systems with Hardware Unmasked Units.” In: Proceedings
of e-Smart 2003. Cannes, France. Jan. 2003.

Joppe Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
“Differential computation analysis: Hiding your white-box designs
is not enough.” In: International Conference on Cryptographic
Hardware and Embedded Systems. Springer. 2016, pp. 215-236.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. “A Train-
ing Algorithm for Optimal Margin Classifiers.” In: Proceedings
of the Fifth Annual ACM Conference on Computational Learning
Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992. 1992,
pp. 144-152.

Sarah Boslaugh. Snellen chart. https://www.britannica.c
om/science/Snellen-chart. Accessed: 18-11-2020.

177

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.britannica.com/science/Snellen-chart
https://www.britannica.com/science/Snellen-chart

178

BIBLIOGRAPHY

[BreO1]

[BCOO4]

[CDP17]

[CCl11]

[Car+19]

[Cha+21]

[Cha+99]

[CRRO2]

[CG16]

[Chm20]

Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (2001),
pp- 5-32.

Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation
Power Analysis with a Leakage Model.” In: Cryptographic Hard-
ware and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings.
Vol. 3156. 2004, pp. 16-29.

Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Con-
volutional Neural Networks with Data Augmentation Against
Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing.” In: Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. 2017, pp. 45-68.

Liang Cai and Hao Chen. “TouchLogger: Inferring Keystrokes on
Touch Screen from Smartphone Motion.” In: USENIX Summit on
Hot Topics in Security (2011), pp. 9-15.

Mathieu Carbone, Vincent Conin, Marie-Angela Cornélie, Francois
Dassance, Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff,
and Alexandre Venelli. “Deep Learning to Evaluate Secure RSA Im-
plementations.” In: JACR Transactions on Cryptographic Hardware
and Embedded Systems 2019.2 (Feb. 2019), pp. 132-161.

Hervé Chabanne, Jean-Luc Danger, Linda Guiga, and Ulrich Kiihne.
“Side channel attacks for architecture extraction of neural net-
works.” In: CAAI Transactions on Intelligence Technology 6.1
(2021), pp. 3-16.

Suresh Chari, Charanjit Jutla, Josyula Rao, and Pankaj Rohatgi. “To-
wards sound approaches to counteract power-analysis attacks.” In:
Annual International Cryptology Conference. 1999, pp. 398—412.

Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. “Template at-
tacks.” In: International Workshop on Cryptographic Hardware and
Embedded Systems. Springer. 2002, pp. 13-28.

Tiangi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System.” In: CoRR abs/1603.02754 (2016). arXiv: 1603
.02754.

Lukasz Chmielewski. REASSURE (H2020 731591) ECC Dataset.
Version V1.0. Jan. 2020.

https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1603.02754

[Cho+15]

[CK13]

[CJ19]

[CCDO00]

[Coh+20]

[Conll]

[CKO09]

[CVI5]

[CSO01]

BIBLIOGRAPHY

Lukasz Chmielewski and Léo Weissbart. “On Reverse Engineer-
ing Neural Network Implementation on GPU.” In: Applied Cryptog-
raphy and Network Security Workshops - ACNS 2021, Kamakura,
Japan, June 21-24, 2021, Proceedings. Vol. 12809, pp. 96-113.

Francois Chollet et al. Keras. https://github.com/fcholl
et /keras. 2015.

Omar Choudary and Markus G. Kuhn. “Efficient Template Attacks.”
In: Smart Card Research and Advanced Applications - 12th Interna-
tional Conference, CARDIS 2013, Berlin, Germany, November 27-
29, 2013. Revised Selected Papers. 2013, pp. 253-270.

Selected Areas in Cryptography - SAC 2018 - 25th International
Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Se-
lected Papers. Vol. 11349. 2019.

Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. “Dif-
ferential Power Analysis in the Presence of Hardware Countermea-
sures.” In: Cryptographic Hardware and Embedded Systems - CHES
2000, Second International Workshop, Worcester, MA, USA, August
17-18, 2000, Proceedings. Vol. 1965. 2000, pp. 252-263.

Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel Genkin, Na-
dia Heninger, Eyal Ronen, and Yuval Yarom. “Pseudorandom Black
Swans: Cache Attacks on CTR DRBG.” In: IEEE Symposium on Se-
curity and Privacy. 2020, pp. 750-767.

Austin Considine. Pornography on airplanes, where you can’t look
away, The New York Times. https://www.nytimes.com/?2
011/11/20/fashion/pornography-on—-airplanes-w
here-you—-cant—-look—away.html. Accessed: 18-11-2020.
Nov. 2011.

Jean-Sébastien Coron and Ilya Kizhvatov. “An efficient method for
random delay generation in embedded software.” In: International
Workshop on Cryptographic Hardware and Embedded Systems.
Springer. 2009, pp. 156-170.

Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks.”
In: Mach. Learn. 20.3 (1995), pp. 273-297.

Koby Crammer and Yoram Singer. “On the Algorithmic Implemen-
tation of Multiclass Kernel-based Vector Machines.” In: J. Mach.
Learn. Res. 2 (2001), pp. 265-292.

179

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://www.nytimes.com/2011/11/20/fashion/pornography-on-airplanes-where-you-cant-look-away.html
https://www.nytimes.com/2011/11/20/fashion/pornography-on-airplanes-where-you-cant-look-away.html
https://www.nytimes.com/2011/11/20/fashion/pornography-on-airplanes-where-you-cant-look-away.html

180

BIBLIOGRAPHY

[Cur20]

[DR99]

[Dat]

[Dob+21a]

[Dob+21b]

[DHS11]

[Dug+16]

[DF15]

[Ems]

[Eck85]

Andrew Curran. United airlines arains crew to stop in-flight porn
use, Simple Flying. https://simpleflying.com/united-
airlines-stop-inflight-porn-use/. Accessed: 18-11-
2020. Feb. 2020.

Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael.” In:
(1999).

“Database for EADSA.” In: URL: https://github.com/leo
weissbart / MachinelLearningBasedSideChannelAt
tackonEdDSA (2019).

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schliffer. “Ascon v1.2: Lightweight Authenticated Encryption
and Hashing.” In: J. Cryptol. 34.3 (2021), p. 33.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schléffer. Ascon PRF, MAC, and Short-Input MAC. Cryptology
ePrint Archive, Paper 2021/1574. 2021.

John C. Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradi-
ent Methods for Online Learning and Stochastic Optimization.” In:
J. Mach. Learn. Res. 12 (2011), pp. 2121-2159.

Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla
Batina, Jean-Luc Danger, and Sylvain Guilley. “Dismantling real-
world ECC with Horizontal and Vertical Template Attacks.” In: Con-
structive Side-Channel Analysis and Secure Design - 7th Interna-
tional Workshop, COSADE 2016, Graz, Austria, April 14-15, 2016.
2016.

Michael Diill, Bjorn Haase, Gesine Hinterwilder, Michael Hutter,
Christof Paar, Ana Helena Sanchez, and Peter Schwabe. “High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.” In:
Des. Codes Cryptogr. 77.2-3 (2015), pp. 493-514.

EMSCAN EHX EMC Scanner. https ://www.atecorp.co
m/products/emscan/ehx. Accessed: 18-11-2020. Advanced
Test Equipment Corp.

Wim van Eck. “Electromagnetic radiation from video display units:
An eavesdropping risk?” In: Computers & Security 4.4 (1985),
pp- 269-286.

https://simpleflying.com/united-airlines-stop-inflight-porn-use/
https://simpleflying.com/united-airlines-stop-inflight-porn-use/
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://www.atecorp.com/products/emscan/ehx
https://www.atecorp.com/products/emscan/ehx

[Eis+08]

[EMHI18]

[Ene+11]

[FCLO5]

[FF15]

[FHY19]

[GMOO01]

[GZC18]

[Gen+16]

[Gen+19]

BIBLIOGRAPHY

Thomas FEisenbarth, Timo Kasper, Amir Moradi, Christof Paar,
Mahmoud Salmasizadeh, and Mohammad Shalmani. “On the
Power of Power Analysis in the Real World: A Complete Break
of the KeeLoq Code Hopping Scheme.” In: International Cryptol-
ogy Conference. 2008, pp. 203-220.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural
Architecture Search: A Survey.” In: CoRR abs/1808.05377 (2018).
arXiv: 1808.05377.

Miro Enev, Sidhant Gupta, Tadayoshi Kohno, and Shwetak Patel.
“Televisions, video privacy, and powerline electromagnetic interfer-
ence.” In: ACM SIGSAC Conference on Computer and Communica-
tions Security. 2011, pp. 537-550.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. “Working Set Se-
lection Using Second Order Information for Training Support Vec-
tor Machines.” In: J. Mach. Learn. Res. 6 (Dec. 2005), pp. 1889-
1918.

John Fuegi and Jo Francis. “Lovelace & Babbage and the creation
of the 1843 "notes’.” In: Inroads 6.3 (2015), pp. 78-86.

Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita.
“Deep learning-based image recognition for autonomous driving.”
In: IATSS Research 43.4 (2019), pp. 244-252.

K. Gandolfi, C. Mourtel, and F. Olivier. “Electromagnetic analy-
sis: Concrete results.” In: International Workshop on Cryptographic
Hardware and Embedded Systems. 2001, pp. 255-265.

Yiwen Gao, Yongbin Zhou, and Wei Cheng. “How Does Strict Paral-
lelism Affect Security? A Case Study on the Side-Channel Attacks
against GPU-based Bitsliced AES Implementation.” In: JACR Cryp-
tol. ePrint Arch. 2018 (2018), p. 1080.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and
Yuval Yarom. “ECDSA key extraction from mobile devices via non-
intrusive physical side channels.” In: ACM SIGSAC Conference on
Computer and Communications Security. 2016, pp. 1626-1638.

Daniel Genkin, Mihir Pattani, Roei Schuster, and Eran Tromer.
“Synesthesia: Detecting screen content via remote acoustic side
channels.” In: IEEE Symposium on Security and Privacy. 2019,
pp. 853-869.

181

https://arxiv.org/abs/1808.05377

182

BIBLIOGRAPHY

[GPT15]

[Gie+08]

[Gig+24]

[GHO15]

[GS15]

[GP13]

[GPKO02]

[HW10]

[Hay+14]

Daniel Genkin, Itamar Pipman, and Eran Tromer. “Get your hands
off my laptop: Physical side-channel key-extraction attacks on PCs.”
In: Journal of Cryptographic Engineering 5.2 (2015), pp. 95-112.

Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. “Mu-
tual Information Analysis.” In: Cryptographic Hardware and Em-
bedded Systems - CHES 2008, 10th International Workshop, Wash-
ington, D.C., USA, August 10-13, 2008. Proceedings. Vol. 5154.
2008, pp. 426442,

Barbara Gigerl, Florian Mendel, Martin Schliffer, and Robert Pri-
mas. “Efficient Second-Order Masked Software Implementations
of Ascon in Theory and Practice.” In: IACR Cryptol. ePrint Arch.
(2024), p. 755.

R. Gilmore, N. Hanley, and M. O’Neill. “Neural network based
attack on a masked implementation of AES.” In: 2015 IEEE In-

ternational Symposium on Hardware Oriented Security and Trust
(HOST). May 2015, pp. 106-111.

Gabriel Goller and Georg Sigl. “Side channel attacks on smart-
phones and embedded devices using standard radio equipment.” In:
International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer. 2015, pp. 255-270.

José Luis Gomez Pardo. “Classical Ciphers and Their Cryptanaly-
sis.” In: Introduction to Cryptography with Maple. Berlin, Heidel-
berg, 2013, pp. 1-33.

Simona Grigorescu, Nicolai Petkov, and Peter Kruizinga. “Compar-
ison of texture features based on Gabor filters.” In: IEEE Transac-
tions on Image Processing 11.10 (2002), pp. 1160-1167.

David Harris and N Weste. “CMOS VLSI Design.” In: ed: Pearson
Education, Inc (2010).

Yuichi Hayashi, Naofumi Homma, Mamoru Miura, Takafumi Aoki,
and Hideaki Sone. “A threat for tablet PCs in public space: Re-
mote visualization of screen images using EM emanation.” In: ACM
SIGSAC Conference on Computer and Communications Security.
2014, pp. 954-965.

[Hay+12a]

[Hay+12b]

[Hay+16]

[HNO4]

[He+16]

[HGG18]

[HGG20]

[Heu+17]

[HGR13]

BIBLIOGRAPHY

Yuichi Hayashi, Naofumi Homma, Takaaki Mizuki, Takafumi Aoki,
Hideaki Sone, Laurent Sauvage, and Jean-Luc Danger. “Analysis
of electromagnetic information leakage from cryptographic devices
with different physical structures.” In: IEEE Transactions on Elec-
tromagnetic Compatibility 55.3 (2012), pp. 571-580.

Yuichi Hayashi, Naofumi Homma, Takaaki Mizuki, Haruki Shi-
mada, Takafumi Aoki, Hideaki Sone, Laurent Sauvage, and Jean-
Luc Danger. “Efficient evaluation of EM radiation associated with
information leakage from cryptographic devices.” In: IEEE Trans-
actions on Electromagnetic Compatibility 55.3 (2012), pp. 555-
563.

Yuichi Hayashi, Naofumi Homma, Yohei Toriumi, Kazuhiro
Takaya, and Takafumi Aoki. “Remote visualization of screen
images using a pseudo-antenna that blends into the mobile envi-
ronment.” In: IEEE Transactions on Electromagnetic Compatibility
59.1 (2016), pp. 24-33.

Simon Haykin and N Network. “A comprehensive foundation.” In:
Neural networks 2.2004 (2004), p. 41.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. “Deep
residual learning for image recognition.” In: IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 770-778.

Benjamin Hettwer, Stefan Gehrer, and Tim Giineysu. “Profiled
Power Analysis Attacks Using Convolutional Neural Networks
with Domain Knowledge.” In: Selected Areas in Cryptography -
SAC 2018 - 25th International Conference, Calgary, AB, Canada,
August 15-17, 2018, Revised Selected Papers. 2018, pp. 479—498.

Benjamin Hettwer, Stefan Gehrer, and Tim Giineysu. “Deep Neural
Network Attribution Methods for Leakage Analysis and Symmetric
Key Recovery.” In: Selected Areas in Cryptography — SAC 2019.
Cham, 2020, pp. 645-666.

A. Heuser, S. Picek, S. Guilley, and N. Mentens. “Lightweight Ci-
phers and their Side-channel Resilience.” In: IEEE Transactions on
Computers PP.99 (2017), pp. 1-1.

Annelie Heuser, Sylvain Guilley, and Olivier Rioul. “Practical vs.
theoretical evaluation of DPA and CPA.” In: 3rd International Work-
shop on Cryptography, Robustness, and Provably Secure Schemes
for Female Young Researchers (CrossFyre’l3). June 2013.

183

184

BIBLIOGRAPHY

[Heu+16]

[Hey+12]

[HRAu]

[HHL11]

[Ida00]

[Iso]

[Inf24]

[ISW03]

[JSS]

[JFK16]

Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens.
“Side-Channel Analysis of Lightweight Ciphers: Does Lightweight
Equal Easy?” In: Radio Frequency Identification and loT Security
- 12th International Workshop, RFIDSec 2016, Hong Kong, China,
November 30 - December 2, 2016, Revised Selected Papers. 2016,
pp. 91-104.

Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf,
and Georg Sigl. “Localized Electromagnetic Analysis of Crypto-
graphic Implementations.” In: Topics in Cryptology — CT-RSA 2012.
Vol. 7178. 2012, pp. 231-244.

UN. Office of the High Commissioner for Human Rights. The right
to privacy in the digital age : report of the Office of the United Na-
tions High Commissioner for Human Rights. 4 Aug. 2022.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequen-
tial Model-Based Optimization for General Algorithm Configura-
tion.” In: Learning and Intelligent Optimization - 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Pa-
pers. Vol. 6683. 2011, pp. 507-523.

Nathan Ida. Engineering electromagnetics. 2000.

Information security, cybersecurity and privacy protection — Eval-
uation criteria for IT security. Standard. Geneva, CH: International
Organization for Standardization, Aug. 2022.

Bundesamt fiir Sicherheit in der Informationstechnik. Minimum Re-
quirements for Evaluating Machine-learning based Side-Channel
Attack Resistance. 2024.

Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits:
Securing Hardware against Probing Attacks.” In: Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings. Vol. 2729. 2003, pp. 463-481.

Jan Jancar, Petr Svenda, and Vladimir Sedlacek. Minerva. https:
//minerva.crocs.fi.muni.cz/. Accessed: 2020-02-13.

Zhen Hang Jiang, Yunsi Fei, and David Kaeli. “A complete key re-
covery timing attack on a GPU.” In: 2016 IEEE International sym-
posium on high performance computer architecture (HPCA). IEEE.
2016, pp. 394-405.

https://minerva.crocs.fi.muni.cz/
https://minerva.crocs.fi.muni.cz/

[JFK17]

[JSWI8]

[Kah67]
[Kee+01]

[Ker83]

[Kim+19a]

[Kim+19b]

[KB15]

[KFH19]

[KBP13]

BIBLIOGRAPHY

Zhen Hang Jiang, Yunsi Fei, and David Kaeli. “A novel side-
channel timing attack on GPUs.” In: Proceedings of the on Great
Lakes Symposium on VLSI 2017. 2017, pp. 167-172.

Donald R. Jones, Matthias Schonlau, and William J. Welch. “Effi-
cient Global Optimization of Expensive Black-Box Functions.” In:
J. Glob. Optim. 13.4 (1998), pp. 455-492.

D. Kahn. The Codebreakers: The Story of Secret Writing. 1967.

S. Sathiya Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya,
and K. R. K. Murthy. “Improvements to Platt’s SMO Algorithm for
SVM Classifier Design.” In: Neural Comput. 13.3 (2001), pp. 637-
649.

Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres
usités en temps de guerre: avec un nouveau procédé de déchiffre-
ment applicable aux systemes a double clef. 1883.

Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and
Alan Hanjalic. “Make Some Noise: Unleashing the Power of Con-
volutional Neural Networks for Profiled Side-channel Analysis.” In:
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 3 (2019), pp. 148-179.

Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and
Alan Hanjalic. “Make Some Noise. Unleashing the Power of Con-
volutional Neural Networks for Profiled Side-channel Analysis.” In:
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019.3 (May 2019), pp. 148-179.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. 2015.

Masahiro Kinugawa, Daisuke Fujimoto, and Yuichi Hayashi. “Elec-
tromagnetic information extortion from electronic devices using in-
terceptor and its countermeasure.” In: JACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2019.4 (2019), pp. 62—
90.

Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement
Learning in Robotics: A Survey.” In: Int. J. Rob. Res. 32.11 (Sept.
2013), 1238-1274.

185

186

BIBLIOGRAPHY

[Koc96]

[KJJ99]

[Koc+11]

[Kri09]

[KSH12]

[KuhO2a]

[KuhO2b]

[KA98]

[Kur+21]

[Kul7]

Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems.” In: Proceedings of
CRYPTO’96. Vol. 1109. 1996, pp. 104—-113.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential power
analysis.” In: Annual International Cryptology Conference. Springer.
London, UK, UK, 1999, pp. 388-397.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. “In-
troduction to differential power analysis.” In: Journal of Crypto-
graphic Engineering 1.1 (2011), pp. 5-27.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. Tech. rep. University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “Imagenet
classification with deep convolutional neural networks.” In: Ad-
vances in Neural Information Processing Systems. 2012, pp. 1097—
1105.

Markus Kuhn. “Compromising emanations: eavesdropping risks of
computer displays.” PhD thesis. University of Cambridge, 2002.

Markus Kuhn. “Optical time-domain eavesdropping risks of CRT
displays.” In: IEEE Symposium on Security and Privacy. 2002,
pp- 3—-18.

Markus Kuhn and Ross Anderson. “Soft tempest: Hidden data trans-
mission using electromagnetic emanations.” In: International Work-
shop on Information Hiding. Springer. 1998, pp. 124-142.

Kunihiro Kuroda, Yuta Fukuda, Kota Yoshida, and Takeshi Fujino.
“Practical Aspects on Non-profiled Deep-learning Side-channel
Attacks against AES Software Implementation with Two Types
of Masking Countermeasures including RSM.” In: ASHES@CCS
2021: Proceedings of the 5th Workshop on Attacks and Solutions in
Hardware Security, Virtual Event, Republic of Korea, 19 November
2021. 2021, pp. 29-40.

Martin Kucera, Petar Tsankov, Timon Gehr, Marco Guarnieri, and
Martin Vechev. “Synthesis of Probabilistic Privacy Enforcement.”
In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. New York, NY, USA, 2017,
391-408.

[LeC+98]

[LeC+90]

[Lem+20]

[LBM14]

[Ler+15]

[LM17]

[Liu+]

[Low04]

BIBLIOGRAPHY

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-based learning applied to document recognition.” In: Pro-
ceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Yann LeCun, Ofer Matan, Bernhard E. Boser, John S. Denker, Don
Henderson, Richard E. Howard, Wayne E. Hubbard, L. D. Jacket,
and Henry S. Baird. “Handwritten zip code recognition with mul-
tilayer networks.” In: /0th IAPR International Conference on Pat-
tern Recognition, Conference C: image, speech, and signal process-
ing, and Conference D: computer architecture for vision in pattern
recognition, ICPR 1990, Atlantic City, NJ, USA, 16-21 June, 1990,
Volume 2. 1990, pp. 35-40.

Florian Lemarchand, Cyril Marlin, Florent Montreuil, Erwan
Nogues, and Maxime Pelcat. “Electro-Magnetic Side-Channel
Attack Through Learned Denoising and Classification.” In: /[EEE
International Conference on Acoustics, Speech and Signal Process-

ing. 2020, pp. 2882-2886.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch.
“Power Analysis Attack: An Approach Based on Machine Learn-
ing.” In: Int. J. Appl. Cryptol. 3.2 (June 2014), pp. 97-115.

Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier
Markowitch, and Francois-Xavier Standaert. “Template Attacks
vs. Machine Learning Revisited (and the Curse of Dimensionality
in Side-Channel Analysis).” In: COSADE 2015, Berlin, Germany,
2015. Revised Selected Papers. 2015, pp. 20-33.

Ke Li and Jitendra Malik. “Learning to Optimize.” In: 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. 2017.

Zhuoran Liu, Niels Samwel, Léo Weissbart, Zhengyu Zhao, Dirk
Lauret, Lejla Batina, and Martha A. Larson. “Screen Gleaning: A
Screen Reading TEMPEST Attack on Mobile Devices Exploiting an
Electromagnetic Side Channel.” In: 28th Annual Network and Dis-
tributed System Security Symposium, NDSS 2021, virtually, Febru-
ary 21-25, 2021.

David Lowe. “Distinctive image features from scale-invariant key-
points.” In: International Journal of Computer Vision 60.2 (2004),
pp- 91-110.

187

188

BIBLIOGRAPHY

[LL19]

[Luo+15]

[Mag20]

[MPP16]

[MBC21]

[MOPO6]

[Mar]

[Marl14]

[MO23a]

[MO23b]

[MSS12]

Alexander Selvikvag Lundervold and Arvid Lundervold. “An
overview of deep learning in medical imaging focusing on MRI.”
In: Zeitschrift fiir Medizinische Physik 29.2 (2019). Special Issue:
Deep Learning in Medical Physics, pp. 102-127.

Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli.
“Side-channel power analysis of a GPU AES implementation.” In:
2015 33rd IEEE International Conference on Computer Design
(ICCD). IEEE. 2015, pp. 281-288.

Houssem Maghrebi. Deep Learning based Side-Channel Attack: a
New Profiling Methodology based on Multi-Label Classification.
Cryptology ePrint Archive, Paper 2020/436. 2020.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouft.
“Breaking Cryptographic Implementations Using Deep Learning
Techniques.” In: Security, Privacy, and Applied Cryptography En-
gineering - 6th International Conference, SPACE 2016, Hyderabad,
India, December 14-18, 2016, Proceedings. 2016, pp. 3-26.

S. Maji, U. Banerjee, and A. P. Chandrakasan. “Leaky Nets: Recov-
ering Embedded Neural Network Models and Inputs through Sim-
ple Power and Timing Side-Channels — Attacks and Defenses.” In:
IEEE Internet of Things Journal (2021), pp. 1-1.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analy-
sis Attacks: Revealing the Secrets of Smart Cards. Dec. 2006, p. 338.

Martin Marinov. TempestSDR. https://github.com/marti
nmarinov/Tempest SDR. Accessed: 18-11-2020.

Martin Marinov. “Remote video eavesdropping using a software-
defined radio platform.” MA thesis. University of Cambridge, 2014.

Thomas Marquet and Elisabeth Oswald. “A Comparison of Multi-
task learning and Single-task learning Approaches.” In: JACR Cryp-
tol. ePrint Arch. (2023), p. 611.

Thomas Marquet and Elisabeth Oswald. “Exploring multi-task
learning in the context of two masked AES implementations.” In:
IACR Cryptol. ePrint Arch. (2023), p. 6.

James Martens, Ilya Sutskever, and Kevin Swersky. “Estimating the
Hessian by Back-propagating Curvature.” In: Proceedings of the
29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012. 2012.

https://github.com/martinmarinov/TempestSDR
https://github.com/martinmarinov/TempestSDR

[MZ13]

[MHM14]

[MDP19]

[MS23]

[McN]

[MOO08]

[MOVI6]

[Min0O1]

[Mit97]
[Moc77]

[Mog+20]

BIBLIOGRAPHY

Z. Martinasek and V. Zeman. “Innovative Method of the Power
Analysis.” In: Radioengineering 22.2 (2013).

Zdenek Martinasek, Jan Hajny, and Lukas Malina. “Optimization of
Power Analysis Using Neural Network.” In: Smart Card Research
and Advanced Applications. Cham, 2014, pp. 94-107.

Loic Masure, Cécile Dumas, and Emmanuel Prouff. “Gradient Vi-
sualization for General Characterization in Profiling Attacks.” In:
Constructive Side-Channel Analysis and Secure Design - 10th Inter-
national Workshop, COSADE 2019, Darmstadt, Germany, April 3-5,
2019, Proceedings. 2019, pp. 145-167.

Loic Masure and Rémi Strullu. “Side-channel analysis against
ANSSTI’s protected AES implementation on ARM: end-to-end at-
tacks with multi-task learning.” In: J. Cryptogr. Eng. 13.2 (2023),
pp- 129-147.

Joel McNamara. The Complete, Unofficial TEMPEST Information
Page. http://www.kubieziel .de/blog/uploads/co
mplete_unofficial_tempest_page.pdf. Accessed: 18-
11-2020.

Marcel Medwed and Elisabeth Oswald. “Template attacks on
ECDSA.” In: International Workshop on Information Security
Applications. Springer. 2008, pp. 14-27.

Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. 1996.

Thomas P Minka. “Automatic choice of dimensionality for PCA.”
In: Advances in neural information processing systems. 2001,

pp. 598-604.
Tom M. Mitchell. Machine learning, International Edition. 1997.

Jonas Mockus. “On Bayesian Methods for Seeking the Extremum
and their Application.” In: Information Processing, Proceedings of
the 7th IFIP Congress 1977, Toronto, Canada, August 8-12, 1977.
1977, pp. 195-200.

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia
Heninger. “TPM-FAIL: TPM meets Timing and Lattice Attacks.”
In: USENIX Security Symposium. 2020, pp. 2057-2073.

189

http://www.kubieziel.de/blog/uploads/complete_unofficial_tempest_page.pdf
http://www.kubieziel.de/blog/uploads/complete_unofficial_tempest_page.pdf

190

BIBLIOGRAPHY

[Moh+23]

[MWM21]

[Mur12]

[NIS99]

[NIS15]

[Nan]

[Teg]

[Nag+19]

[NH10]

[NC17]

[Nas+17]

Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Ed-
uvardo Ferrufino, Jens-Peter Kaps, and Kris Gaj. “SCA Evaluation
and Benchmarking of Finalists in the NIST Lightweight Cryptog-
raphy Standardization Process.” In: IACR Cryptol. ePrint Arch.
(2023), p. 484.

Thorben Moos, Felix Wegener, and Amir Moradi. “DL-LA: Deep
Learning Leakage Assessment: A modern roadmap for SCA eval-
uations.” In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2021.3 (July 2021), 552-598.

Kevin P. Murphy. Machine learning - a probabilistic perspective.
2012.

FIPS PUB NIST. “Data encryption standard (des).” In: National In-
stitute of Standards and Technology (1999), pp. 46-3.

FIPS PUB NIST. “180-4 Secure Hash Standard (SHS).” In: Na-
tional Institute of Standards and Technology (2015).

NVIDIA Jetson Nano module Datasheet, April 2021. https://d
eveloper.nvidia.com/embedded/dlc/jetson—nano-
system—-module—-datasheet.

NVIDIA Tegra X1 White Paper, April 2021. http://internat
ional.download.nvidia.com/pdf/tegra/Tegra—X1-
whitepaper-v1.0.pdf.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu
Ghazaleh. “Side channel attacks on GPUs.” In: IEEE Transactions
on Dependable and Secure Computing (2019).

Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve
restricted boltzmann machines.” In: Icml. 2010.

Erick Nascimento and L.ukasz Chmielewski. Horizontal Clustering
Side-Channel Attacks on Embedded ECC Implementations (Ex-
tended Version). Cryptology ePrint Archive, Report 2017/1204.
2017.

Erick Nascimento, Lukasz Chmielewski, David Oswald, and Pe-
ter Schwabe. “Attacking Embedded ECC Implementations Through
cmov Side Channels.” In: Selected Areas in Cryptography — SAC
2016. Cham, 2017, pp. 99-119.

https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

[Ngul9]

[Nic+08]

[OP11]

[OPB16]

[Pap+18]

[Pas+19]

[PSS22]

[Ped+11]

[PSQO7]

[PEC19]

[PH18]

BIBLIOGRAPHY 191

Vu Nguyen. “Bayesian Optimization for Accelerating Hyper-
Parameter Tuning.” In: 2nd IEEE International Conference on
Artificial Intelligence and Knowledge Engineering, AIKE 2019,
Sardinia, Italy, June 3-5, 2019. 2019, pp. 302-305.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
“Scalable parallel programming with cuda: Is cuda the parallel

programming model that application developers have been waiting
for?” In: Queue 6.2 (2008), pp. 40-53.

David Oswald and Christof Paar. “Breaking Mifare DESFire
MEF3ICD40: Power analysis and templates in the real world.” In: In-
ternational Workshop on Cryptographic Hardware and Embedded
Systems. 2011, pp. 207-222.

Elif Ozgen, Louiza Papachristodoulou, and Lejla Batina. “Classifi-
cation Algorithms for Template Matching.” In: IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2016,
McLean, VA, USA, 2016 (to appear). 2016.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael
P. Wellman. “SoK: Security and Privacy in Machine Learning.” In:
2018 IEEE European Symposium on Security and Privacy (EuroS
P). 2018, pp. 399-414.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: Advances in Neural Information Pro-
cessing Systems 32. 2019, pp. 8024-8035.

Clayton R Paul, Robert C Scully, and Mark A Steftka. Introduction
to electromagnetic compatibility. 2022.

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12 (2011), pp. 2825-2830.

Eric Peeters, Francois-Xavier Standaert, and Jean-Jacques Quisquater.
“Power and electromagnetic analysis: Improved model, conse-
quences and comparisons.” In: Integr. 40.1 (2007), pp. 52-60.

Guilherme Perin, Baris Ege, and Lukasz Chmielewski. “Neural
Network Model Assessment for Side-Channel Analysis.” In: JACR
Cryptology ePrint Archive 2019 (2019), p. 722.

Christophe Pfeifer and Patrick Haddad. Spread: a new layer for pro-
filed deep-learning side-channel attacks. Cryptology ePrint Archive,
Report 2018/880. 2018.

192

BIBLIOGRAPHY

[Pic+18a]

[PHG19]

[Pic+19]

[Pic+17]

[Pic+23]

[Pic+18b]

[P1a98]

[Pop09]

[PZS17]

Stjepan Picek, Annelie Heuser, Cesare Alippi, and Francesco
Regazzoni. When Theory Meets Practice: A Framework for Robust
Profiled Side-channel Analysis. Cryptology ePrint Archive, Report
2018/1123. 2018.

Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Profiling Side-
channel Analysis in the Restricted Attacker Framework. Cryptology
ePrint Archive, Report 2019/168. 2019.

Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. “The Curse of Class Imbalance and Conflict-
ing Metrics with Machine Learning for Side-channel Evaluations.”
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.1 (2019),
pp. 209-237.

Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Syl-
vain Guilley, Domagoj Jakobovic, and Nele Mentens. “Side-channel
analysis and machine learning: A practical perspective.” In: 2017
International Joint Conference on Neural Networks, IICNN 2017,
Anchorage, AK, USA, May 14-19, 2017. 2017, pp. 4095-4102.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla
Batina. “SoK: Deep Learning-based Physical Side-channel Analy-
sis.” In: ACM Comput. Surv. 55.11 (2023), 227:1-227:35.

Stjepan Picek, loannis Petros Samiotis, Jachun Kim, Annelie
Heuser, Shivam Bhasin, and Axel Legay. “On the Performance
of Convolutional Neural Networks for Side-Channel Analysis.” In:
Security, Privacy, and Applied Cryptography Engineering. Cham,
2018, pp. 157-176.

John Platt. “Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines.” In: Advances in Kernel
Methods-Support Vector Learning 208 (July 1998).

Thomas Popp. “An introduction to implementation attacks and
countermeasures.” In: 7th ACM/IEEE International Conference on
Formal Methods and Models for Codesign (MEMOCODE 2009),
July 13-15, 2009, Cambridge, Massachusetts, USA. 2009, pp. 108—
115.

Romain Poussier, Yuanyuan Zhou, and Francois-Xavier Standaert.
“A Systematic Approach to the Side-Channel Analysis of ECC
Implementations with Worst-Case Horizontal Attacks.” In: Crypto-

[Pro+18]

[QSO1a]

[QSO1b]

[RCNO2]

[RAD20]

[RWO06]

[RK21]

[Rij+21]

[Ris18]

BIBLIOGRAPHY

graphic Hardware and Embedded Systems — CHES 2017. Cham,
2017, pp. 534-554.

Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli,
and Cécile Dumas. “Study of Deep Learning Techniques for Side-
Channel Analysis and Introduction to ASCAD Database.” In: JACR
Cryptology ePrint Archive 2018 (2018), p. 53.

Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic
Analysis (EMA): Measures and Counter-measures for Smart
Cards.” In: Smart Card Programming and Security. Berlin, Hei-
delberg, 2001, pp. 200-210.

Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic
Analysis (EMA): Measures and counter-measures for smard cards.”
In: International Conference on Research in Smart Cards. 2001,

pp- 200-210.

Jan M Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digi-
tal integrated circuits. Vol. 2. 2002.

Keyvan Ramezanpour, Paul Ampadu, and William Diehl. “SCARL.:
Side-Channel Analysis with Reinforcement Learning on the Ascon
Authenticated Cipher.” In: CoRR abs/2006.03995 (2020). arXiv: 2
006.03995.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
processes for machine learning. 2006.

Tanu Shree Rastogi and Elif Bilge Kavun. “Deep Learning Tech-
niques for Side-Channel Analysis on AES Datasets Collected from
Hardware and Software Platforms.” In: Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation - 21st International
Conference, SAMOS 2021, Virtual Event, July 4-8, 2021, Proceed-
ings. Vol. 13227. 2021, pp. 300-316.

Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek.
“Reinforcement Learning for Hyperparameter Tuning in Deep
Learning-based Side-channel Analysis.” In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021.3 (July
2021), pp. 677-707.

Riscure. Automated Neural Network construction with Genetic Al-
gorithm (blog post). https://www.riscure.com/blog/a
utomated-neural—-network—-construction—-genetic-—
algorithm. 2018.

193

https://arxiv.org/abs/2006.03995
https://arxiv.org/abs/2006.03995
https://www.riscure.com/blog/automated-neural-network-construction-genetic-algorithm
https://www.riscure.com/blog/automated-neural-network-construction-genetic-algorithm
https://www.riscure.com/blog/automated-neural-network-construction-genetic-algorithm

194

BIBLIOGRAPHY

[RivO8]

[Sam+18]

[SD17]

[SGS09]

[SH12]

[Sch91]

[SS13]

[SRA8I1]

[SS23]

[SZ14]

[Sin23]

Matthieu Rivain. “On the Exact Success Rate of Side Channel Anal-
ysis in the Gaussian Model.” In: Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers. Vol. 5381. 2008,
pp. 165-183.

Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Rug-
gero Susella. “Breaking ed25519 in WolfSSL.” In: Cryptographers’
Track at the RSA Conference. Springer. 2018, pp. 1-20.

Niels Samwel and Joan Daemen. “DPA on hardware implemen-
tations of Ascon and Keyak.” In: Proceedings of the Computing
Frontiers Conference, CF’17, Siena, Italy, May 15-17, 2017. 2017,
pp- 415-424.

Koen van de Sande, Theo Gevers, and Cees Snoek. “Evaluating
color descriptors for object and scene recognition.” In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32.9 (2009),
pp. 1582-1596.

Constructive Side-Channel Analysis and Secure Design - Third In-
ternational Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings. Vol. 7275. 2012.

Claus-Peter Schnorr. “Efficient signature generation by smart
cards.” In: Journal of cryptology 4.3 (1991), pp. 161-174.

Hidenori Sekiguchi and Shinji Seto. “Study on maximum receiv-
able distance for radiated emission of information technology equip-
ment causing information leakage.” In: IEEE Transactions on Elec-
tromagnetic Compatibility 55.3 (2013), pp. 547-554.

Adi Shamir, Ronald L Rivest, and Leonard M Adleman. Mental
poker. 1981.

Dillibabu Shanmugam and Patrick Schaumont. “Improving Side-
channel Leakage Assessment Using Pre-silicon Leakage Models.”
In: Constructive Side-Channel Analysis and Secure Design - 14th
International Workshop, COSADE 2023, Munich, Germany, April
3-4, 2023, Proceedings. Vol. 13979. 2023, pp. 105-124.

Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition.” In: arXiv preprint
arXiv:1409.1556 (2014).

Satyajit Sinha. State of IoT 2023: Number of connected loT devices
growing 16% to 16.7 billion globally. May 2023.

[SLA12]

[SMYO09]

[Stal0]

[SGVO08]

[STY17]

[Tak+20]

[TSL19]

[Tea]
[TPL10]

BIBLIOGRAPHY

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical
Bayesian Optimization of Machine Learning Algorithms.” In: Ad-
vances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States. 2012, pp. 2960-2968.

Francois-Xavier Standaert, Tal Malkin, and Moti Yung. “A Uni-
fied Framework for the Analysis of Side-Channel Key Recovery At-
tacks.” In: EUROCRYPT. Vol. 5479. Cologne, Germany. Apr. 2009,
pp. 443-461.

Frangois-Xavier Standaert. “Introduction to Side-Channel Attacks.”
In: Secure Integrated Circuits and Systems. 2010, pp. 27-42.

Francois-Xavier Standaert, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. “Partition vs. Comparison Side-Channel Distinguishers:
An Empirical Evaluation of Statistical Tests for Univariate Side-
Channel Attacks against Two Unprotected CMOS Devices.” In:
Information Security and Cryptology - ICISC 2008, 11th Inter-
national Conference, Seoul, Korea, December 3-5, 2008, Revised
Selected Papers. Vol. 5461. 2008, pp. 253-267.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic at-
tribution for deep networks.” In: arXiv preprint arXiv:1703.01365
(2017).

Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama, and Yang Li.
“Simple Electromagnetic Analysis Against Activation Functions of
Deep Neural Networks.” In: Applied Cryptography and Network
Security Workshops - ACNS, Rome, Italy, October 19-22, 2020,
Proceedings. Vol. 12418. 2020, pp. 181-197.

Zeenat Tariq, Sayed Khushal Shah, and Yugyung Lee. “Speech
Emotion Detection using IoT based Deep Learning for Health
Care.” In: 2019 IEEE International Conference on Big Data
(Big Data), Los Angeles, CA, USA, December 9-12, 2019. 2019,
pp- 4191-4196.

ASCON Team. ASCON C repository.

Peter Teufl, Udo Payer, and Guenter Lackner. “From NLP (Natural
Language Processing) to MLP (Machine Language Processing).” In:
Computer Network Security. Berlin, Heidelberg, 2010, pp. 256-269.

195

196

BIBLIOGRAPHY

[Tim19]

[Tir+05]

[Tun+07]

[Tur+21]

[Tuv+18]

[VP19]

[VPB19]

[Vap9s]

[Wei+20a]

Benjamin Timon. “Non-Profiled Deep Learning-based Side-Channel
attacks with Sensitivity Analysis.” In: JACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2019.2 (Feb. 2019),
pp- 107-131.

Kris Tiri, Davis Hwang, Alireza Hodjat, Bo-Cheng Lai, Shenglin
Yang, Patrick Schaumont, and Ingrid Verbauwhede. “Prototype IC
with WDDL and differential routing — DPA resistance assessment.”
In: Annual Conference on Cryptographic Hardware and Embedded
Systems. 2005, pp. 354-365.

Michael Tunstall, Neil Hanley, Robert McEvoy, Claire Whelan,
Colin Murphy, and William Marnane. “Correlation power analysis

of large word sizes.” In: IET Irish Signals and Systems Conference
(ISSC). Sept. 2007, pp. 145-150.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero
Laaksonen, Zhen Xu, and Isabelle Guyon. “Bayesian Optimization
is Superior to Random Search for Machine Learning Hyperparam-
eter Tuning: Analysis of the Black-Box Optimization Challenge
2020.” In: CoRR abs/2104.10201 (2021). arXiv: 2104.10201.

Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida Garcia, and Billy
Bob Brumley. “Side-Channel Analysis of SM2: A Late-Stage Fea-
turization Case Study.” In: Proceedings of the 34th Annual Com-
puter Security Applications Conference. New York, NY, USA, 2018,
pp- 147-160.

Daan van der Valk and Stjepan Picek. Bias-variance Decomposi-
tion in Machine Learning-based Side-channel Analysis. Cryptology
ePrint Archive, Report 2019/570. 2019.

Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was
here: The First Step Towards Explainability of Neural Networks in
Profiled Side-channel Analysis. Cryptology ePrint Archive, Report
2019/14717. 2019.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
New York, NY, USA, 1995.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad
Abdullah Al Faruque. “Leaky DNN: Stealing Deep-Learning Model
Secret with GPU Context-Switching Side-Channel.” In: 2020 50th
Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). IEEE. 2020, pp. 125-137.

https://arxiv.org/abs/2104.10201

[Wei+18]

[WPB19]

[Wei]

[Wei+20b]

[WP23]

[WPB]

[WNS21]

[Wol96]

BIBLIOGRAPHY

Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. “I Know
What You See: Power Side-Channel Attack on Convolutional Neu-
ral Network Accelerators.” In: Proceedings of the 34th Annual Com-
puter Security Applications Conference. New York, NY, USA, 2018,
393-406.

Léo Weissbart, Stjepan Picek, and Lejla Batina. “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack on EADSA.”
In: Security, Privacy, and Applied Cryptography Engineering.
Cham, 2019, pp. 86-105.

Léo Weissbart. “Performance Analysis of Multilayer Perceptron in
Profiling Side-Channel Analysis.” In: Applied Cryptography and
Network Security Workshops - ACNS, Rome, Italy, October 19-22,
2020, Proceedings. Vol. 12418, pp. 198-216.

Léo Weissbart, Lukasz Chmielewski, Stjepan Picek, and Lejla
Batina. “Systematic Side-Channel Analysis of Curve25519 with
Machine Learning.” In: J. Hardw. Syst. Secur. 4.4 (2020), pp. 314—
328.

Léo Weissbart and Stjepan Picek. Lightweight but Not Easy: Side-
channel Analysis of the Ascon Authenticated Cipher on a 32-bit Mi-
crocontroller. Cryptology ePrint Archive, Paper 2023/1598. 2023.

Léo Weissbart, Stjepan Picek, and Lejla Batina. “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack on EdADSA.”
In: Security, Privacy, and Applied Cryptography Engineering - 9th
International Conference, SPACE 2019, Gandhinagar, India, De-
cember 3-7, 2019, Proceedings. Vol. 11947, pp. 86-105.

Colin White, Willie Neiswanger, and Yash Savani. “BANANAS:
Bayesian Optimization with Neural Architectures for Neural Archi-
tecture Search.” In: Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021. 2021, pp. 10293-10301.

David H. Wolpert. “The Lack of A Priori Distinctions Between
Learning Algorithms.” In: Neural Comput. 8.7 (1996), pp. 1341-
1390.

197

198

BIBLIOGRAPHY

[WPP20]

[Wu+20]

[Xia+20]

[XWZ18]

[XAQ21]

[Xu+13]

[Yan+15]

[Yan+12]

[Yao82]

Lichao Wu, Guilherme Perin, and Stjepan Picek. “I Choose You:
Automated Hyperparameter Tuning for Deep Learning-based Side-
channel Analysis.” In: IACR Cryptol. ePrint Arch. (2020), p. 1293.

Lichao Wu, Léo Weissbart, Marina Kréek, Huimin Li, Guilherme
Perin, Lejla Batina, and Stjepan Picek. Everything is Connected:
From Model Learnability to Guessing Entropy. Cryptology ePrint
Archive, Report 2020/899. 2020.

Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang
Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang.
“Open DNN Box by Power Side-Channel Attack.” In: IEEE Trans-
actions on Circuits and Systems II: Express Briefs 67.11 (2020),
pp- 2717-2721.

Mengmeng Xu, Liji Wu, and Xiangmin Zhang. “Power Analysis
on SM4 with Boosting Methods.” In: 2018 12th IEEE International
Conference on Anti-counterfeiting, Security, and Identification
(ASID). IEEE. 2018, pp. 188-191.

Qian Xu, Md Tanvir Arafin, and Gang Qu. “Security of Neural Net-
works from Hardware Perspective: A Survey and Beyond.” In: Pro-
ceedings of the 26th Asia and South Pacific Design Automation Con-
ference. Tokyo, Japan, 2021, 449454,

Yi Xu, Jared Heinly, Andrew White, Fabian Monrose, and Jan-
Michael Frahm. “Seeing double: Reconstructing obscured typed in-
put from repeated compromising reflections.” In: ACM SIGSAC con-
ference on Computer & communications security. 2013, pp. 1063—
1074.

Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. “A study on
power side channels on mobile devices.” In: Asia-Pacific Symposium
on Internetware. 2015, pp. 30-38.

Shuguo Yang, Yongbin Zhou, Jiye Liu, and Danyang Chen. “Back
Propagation Neural Network Based Leakage Characterization for
Practical Security Analysis of Cryptographic Implementations.” In:
Information Security and Cryptology - ICISC 201 1. Berlin, Heidel-
berg, 2012, pp. 169-185.

Andrew Chi-Chih Yao. “Protocols for Secure Computations (Ex-
tended Abstract).” In: 23rd Annual Symposium on Foundations of
Computer Science, Chicago, Illinois, USA, 3-5 November 1982.
1982, pp. 160-164.

[YNY17]

[Yos+20]

[You+23]

[Yu+20]

[Zai+19]

[Zho+18]

BIBLIOGRAPHY

Jian Ye, Jiangqun Ni, and Yang Yi. “Deep learning hierarchical rep-
resentations for image steganalysis.” In: IEEE Transactions on In-
formation Forensics and Security 12.11 (2017), pp. 2545-2557.

Kota Yoshida, Takaya Kubota, Shunsuke Okura, Mitsuru Shiozaki,
and Takeshi Fujino. “Model Reverse-Engineering Attack using Cor-
relation Power Analysis against Systolic Array Based Neural Net-
work Accelerator.” In: 2020 IEEFE International Symposium on Cir-
cuits and Systems (ISCAS). 2020, pp. 1-5.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar, and Feng Hao.
“Low Trace-Count Template Attacks on 32-bit Implementations of
ASCON AEAD.” In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2023.4 (2023), pp. 344-366.

Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and
Yier Jin. “DeepEM: Deep Neural Networks Model Recovery
through EM Side-Channel Information Leakage.” In: 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE. 2020, pp. 209-218.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. “Methodology for Efficient CNN Architectures in Profiling
Attacks.” In: JACR Transactions on Cryptographic Hardware and
Embedded Systems 2020.1 (Nov. 2019), pp. 1-36.

Peng Zhou, Xintong Han, Vlad Morariu, and Larry Davis. “Learn-
ing rich features for image manipulation detection.” In: IEEE
Conference on Computer Vision and Pattern Recognition. 2018,
pp. 1053-1061.

199

ACRONYMS

CC

Al

DL

SCA

EM

FI

HD

HW

ID

Common Criteria
Artificial Intelligence
Deep Learning
Side-channel Analysis
Electromagnetic

Fault Injection
Hamming Distance
Hamming Weight

Identity

CMOS Complementary metal-oxide-semiconductor

ECC

SPA

DPA

CPA

TA

SR

GE

ANN

MLP

CNN

PCA

SVM

Elliptic Curve Cryptography
Simple Power Analysis
Differential Power Analysis
Correlation Power Analysis
Template Attack

Success Rate

Guessing Entropy

Artificial Neural Network
Multilayer Perceptron
Convolutional Neural Network
Principal Component Analysis

Support Vector Machine

201

202

ACRONYMS

RF Random Forest

XGBoost eXtreme Gradient Boosting

NB Gaussian Naive Bayes

SMO Sequential Minimal Optimization
RBF Radial Basis Function

RMSProp Root Mean Square Propagation
SGD Stochastic Gradient Descent
AdaGrad Adaptive Gradient Algorithm
Adam Adaptive Moment Estimation

DLSCA Deep learning Side-Channel Analysis

SUMMARY

To ensure that no information unintentionally leaks through side channels during
the execution of cryptographic operations, the physical security of a device must
be evaluated. Nowadays, a security analysis must show security not only against
traditional Side-Channel Analysis (SCA) attacks (e.g., Differential Power Analy-
sis (DPA)) involving classical statistical analysis but also against machine learn-
ing and deep learning attacks. If not protected against these attacks, symmetric
and public-key cryptographic implementations can be at risk.

While traditional SCA attacks rely on a cryptanalyst’s expertise to extract fea-
tures from the leakages of one or multiple traces and analyze their observations
through statistical methods to recover the secret key. Deep Learning-based Side-
Channel Analysis (DLSCA) attacks bring a new perspective to the field. DLSCA
attacks rely on automating feature extraction using a task-specific algorithm. For
most DLSCA attacks, an expert is still needed, but the expert’s work is shifted
to training this algorithm. Among the different deep learning architectures, the
most used in DLSCA are the Multilayer Perceptron (MLP) and the Convolutional
Neural Networks (CNN). Those methods are Neural Networks (NN) trained to
find patterns in a collected dataset of side-channel traces to recover the secret key
given a proper tuning of their hyperparameters and a successful training process.

This thesis investigates the use of deep learning in side-channel analysis of
symmetric and public-key cryptography and other applications of side-channel
analysis. We go through the application of DLSCA for implementations of AES
and ASCON in symmetric cryptography and EADSA in public-key cryptography.
We also explore the use of deep learning to enhance TEMPEST-like side-channel
analysis and the use of side-channel analysis to reverse engineer neural networks.

The main contributions of this thesis are as follows. First, we show the perfor-
mances that can reach a MLP on a dataset of an AES implementation protected
with a masking countermeasure. We demonstrate that MLP can defeat the mask-
ing countermeasure and recover the secret key with a high success rate for many
configurations of hyperparameters and power intermediate models and even with
very few parameters.

Second, we present an application of CNN in the side-channel analysis of the
lightweight authenticated encryption algorithm ASCON on a 32-bit microcon-
troller. We demonstrate that the reference implementation is vulnerable to DLSCA

203

204

SUMMARY

attacks and that the same attack can be applied to a masked implementation but
cannot completely recover the secret key.

Third, we propose a single-trace attack on the ephemeral key of EADSA on
the elliptic curve 25519. We show that the attack can recover the secret key from
a single execution of an implementation on a 32-bit microcontroller. This attack
is based on a CNN, and we demonstrate that, of the other profiling methods ex-
plored, the CNN is the most efficient for this attack. Furthermore, we systematize
this attack and show that it can be applied to a different target and implement
countermeasures against side-channel analysis.

Finally, we demonstrate the use of side-channel analysis and deep learning in
different applications than cryptographic implementations. We present a method-
ology to evaluate TEMPEST attacks using deep learning. We focus the analysis of
the electromagnetic emanations of mobile devices without visual line of sight, to
build a testbed with a standard setup that can be used to test different attacker mod-
els. A second application is the use of side-channel analysis to reverse engineer
neural networks on GPU. We show that side-channel analysis of the electromag-
netic emanations of a GPU can be used to recover several hyperparameters of a
neural network during the inference phase.

Our main research goal is to apply deep learning to side-channel analysis to
develop new attacks for existing implementations and countermeasures, and we
believe that this thesis is a step in that direction regarding the aforementioned
contributions. We also believe that the reading of this thesis will shine the light on
the potential of deep learning in side-channel analysis and inspire future research
in this field to help to secure the electronics of tomorrow.

SAMMENVATING

Om ervoor te zorgen dat er geen informatie onbedoeld weglekt via nevenkanalen
tijdens de uitvoering van cryptografische bewerkingen, moet de fysieke beveilig-
ing van een apparaat worden geévalueerd. Tegenwoordig moet een beveiligings-
analyse niet alleen beveiliging aantonen tegen traditionele Side-Channel Anal-
ysis (SCA)-aanvallen (bijv. Differential Power Analysis (DPA)) met klassieke
statistische analyse, maar ook tegen machine learning- en deep learning-aanvallen.
Als ze niet beschermd zijn tegen deze aanvallen, kunnen symmetrische en
publieke-sleutel cryptografische implementaties gevaar lopen.

Terwijl traditionele SCA-aanvallen vertrouwen op de expertise van een
cryptoanalist om kenmerken te extraheren uit de lekken van één of meerdere
sporen en de waarnemingen te analyseren met statistische methoden om de
geheime sleutel te achterhalen. Deep Learning-gebaseerde Side-Channel Anal-
ysis (DLSCA)-aanvallen brengen een nieuw perspectief in het veld. DLSCA-
aanvallen vertrouwen op het automatiseren van kenmerkextractie met behulp van
een taakspecifiek algoritme. Voor de meeste DLSCA-aanvallen is nog steeds een
expert nodig, maar het werk van de expert wordt verschoven naar het trainen
van dit algoritme. Van de verschillende deep learning-architecturen zijn de meest
gebruikte in DLSCA de Multilayer Perceptron (MLP) en de Convolutional Neural
Networks (CNN). Deze methoden zijn neurale netwerken (NN) die zijn getraind
om patronen te vinden in een verzamelde dataset van nevenkanaalsporen om de
geheime sleutel te achterhalen als hun hyperparameters goed zijn ingesteld en het
trainingsproces succesvol verloopt.

Deze dissertatie onderzoekt het gebruik van deep learning in side-channel
analyse van symmetrische en publieke-sleutel cryptografie en andere toepassin-
gen van side-channel analyse. We doorlopen de toepassing van DLSCA voor
implementaties van AES en ASCON in symmetrische cryptografie en EADSA
in publieke-sleutel cryptografie. We verkennen ook het gebruik van deep learn-
ing om TEMPEST-achtige zijkanaalanalyse te verbeteren en het gebruik van
zijkanaalanalyse om neurale netwerken te reverse engineeren.

De belangrijkste bijdragen van dit proefschrift zijn als volgt. Ten eerste laten
we de prestaties zien die een MLP kan bereiken op een dataset van een AES-
implementatie die is beveiligd met een maskerende tegenmaatregel. We tonen aan
dat MLP de maskerende tegenmaatregel kan verslaan en de geheime sleutel kan

205

206

SAMMENVATING

achterhalen met een hoog succespercentage voor veel configuraties van hyperpa-
rameters en tussenliggende modellen en zelfs met zeer weinig parameters.

Ten tweede presenteren we een toepassing van CNN in de analyse van
nevenkanalen van het lichtgewicht geauthenticeerde versleutelingsalgoritme AS-
CON op een 32-bits microcontroller. We tonen aan dat de referentie-implementatie
kwetsbaar is voor DLSCA-aanvallen en dat dezelfde aanval kan worden toegepast
op een gemaskeerde implementatie, maar de geheime sleutel niet volledig kan
achterhalen.

Ten derde stellen we een single-trace aanval voor op de efemere sleutel van
EdDSA op de elliptische curve 25519. We laten zien dat de aanval de geheime
sleutel kan achterhalen uit een enkele uitvoering van een implementatie op een
32-bits microcontroller. Deze aanval is gebaseerd op een CNN en we tonen aan
dat, van de andere onderzochte profileringsmethoden, de CNN het meest efficiént
is voor deze aanval. Verder systematiseren we deze aanval en laten we zien dat
deze kan worden toegepast op een ander doelwit en implementeren we tegenmaa-
tregelen tegen side-channel analyse.

Tot slot tonen we het gebruik van side-channel analyse en deep learning in
andere toepassingen dan cryptografische implementaties. We presenteren een
methodologie om TEMPEST-aanvallen te evalueren met behulp van deep learn-
ing. We richten ons op de analyse van de elektromagnetische straling van mobiele
apparaten zonder visuele zichtlijn, om een testbed te bouwen met een standaar-
dopstelling die gebruikt kan worden om verschillende aanvalsmodellen te testen.
Een tweede toepassing is het gebruik van side-channel analyse voor reverse-
engineering van neurale netwerken op GPU. We laten zien dat side-channel
analyse van de elektromagnetische straling van een GPU gebruikt kan worden om
verschillende hyperparameters van een neuraal netwerk te achterhalen tijdens de
inferentiefase.

Ons belangrijkste onderzoeksdoel is om deep learning toe te passen op side-
channel analyse om nieuwe aanvallen te ontwikkelen voor bestaande implemen-
taties en tegenmaatregelen, en we geloven dat dit proefschrift een stap in die richt-
ing is met betrekking tot de eerder genoemde bijdragen. We geloven ook dat het
lezen van dit proefschrift het licht zal schijnen op het potentieel van deep learning
in zijkanaalanalyse en toekomstig onderzoek op dit gebied zal inspireren om de
elektronica van morgen te helpen beveiligen.

RESUME

Pour s’assurer qu’aucune information ne soit involontairement divulguée par
I'intermédiaire d’un canal auxiliaire pendant 1’exécution d’opérations cryp-
tographiques, la sécurité physique d’un appareil doit étre évaluée. De nos jours,
une analyse de sécurité doit prouver une résistance non seulement contre les
attaques par canal auxiliaire (SCA) traditionnelles (par exemple, analyse de con-
sommation (DPA)) impliquant une analyse statistique classique, mais aussi contre
les attaques avec apprentissage automatique et d’apprentissage profond. Si elles
ne sont pas protégées contre ces attaques, les implémentations cryptographiques
symétriques et a clé publique peuvent étre menacées.

Alors que les attaques SCA traditionnelles s’appuient sur I’expertise d’un crypt-
analyste pour extraire les caractéristiques des fuites d’une ou plusieurs traces et
analysent leurs observations par des méthodes statistiques pour récupérer la
clé secrete. Les attaques par canal auxiliaire basées sur 1’apprentissage pro-
fond (DLSCA) apportent une nouvelle perspective dans ce domaine. Les attaques
DLSCA reposent sur I’automatisation de 1’extraction des caractéristiques a I’aide
d’un algorithme spécifique a une tache. Pour la plupart des attaques DLSCA, un
expert est toujours nécessaire, mais son travail est déplacé vers 1’entrainement de
cet algorithme. Parmi les différentes architectures d’apprentissage profond, les
plus utilisées dans la DLSCA sont le perceptron multicouche (MLP) et les réseaux
neuronaux convolutifs (CNN). Ces deux méthodes de réseaux neuronaux (NN)
entrainés pour trouver des modeles dans un ensemble de données collectées de
traces de canaux auxiliaires qui permettent de récupérer la clé secrete a condi-
tion que leurs hyperparametres soient correctement réglés et que le processus
d’entrainement soit suffisamment efficace.

Cette these étudie I'utilisation de I’apprentissage profond dans 1’analyse des
canaux auxiliaires de la cryptographie symétrique et a clé publique et d’autres
applications de I’analyse des canaux auxiliaires. Nous examinons 1’application
de DLSCA pour les implémentations d’AES et d’ASCON en cryptographie
symétrique et d’EADSA en cryptographie a clé publique. Nous explorons égale-
ment ’utilisation de I’apprentissage profond pour améliorer les attaques de type
TEMPEST et I’utilisation d’attaques par canal auxiliaire pour I’ingénierie inverse
des réseaux neuronaux.

Les principales contributions de cette these sont les suivantes. Premierement,
nous montrons les performances que peut atteindre un MLP sur un ensemble de

207

208

RESUME

données d’une implémentation AES protégée par une contre-mesure de masquage.
Nous démontrons que le MLP peut vaincre la contre-mesure de masquage et
récupérer la clé secrete avec un taux de réussite élevé pour de nombreuses con-
figurations d’hyperparametres et de models de consommation intermédiaires et
méme avec tres peu de parametres.

Deuxiemement, nous présentons une application de CNN dans 1’analyse des
canaux auxiliaires de I’algorithme de cryptographie 1égere ASCON sur un mi-
crocontroleur 32 bits. Nous démontrons que 1I’implémentation de référence est
vulnérable aux attaques DLSCA et que la méme attaque peut étre appliquée & une
implémentation masquée, mais ne peut pas récupérer completement la clé secrete.

Troisiemement, nous proposons une attaque a trace unique sur la clé éphémere
d’EdDSA sur la courbe elliptique 25519. Nous montrons que 1’attaque peut
récupérer la clé secrete avec une seule exécution d’une implémentation sur un
microcontrdleur 32 bits. Cette attaque est basée sur un CNN, et nous démontrons
que, parmi les autres méthodes de profilage explorées, le CNN est le plus efficace
pour cette attaque. En outre, nous systématisons cette attaque et montrons qu’elle
peut étre appliquée a une cible différente et mettons en ceuvre des contre-mesures
contre I’analyse des canaux auxiliaires.

Enfin, nous démontrons 1’utilisation de 1’analyse par canal auxiliaire et de
I’apprentissage profond dans des applications autres que les implémentations
cryptographiques. Nous présentons une méthodologie pour évaluer les attaques
TEMPEST a l’aide de ’apprentissage profond. Nous nous concentrons sur
I’analyse des émanations électromagnétiques des appareils mobiles sans ligne de
vue directe pour construire un banc d’essai avec une configuration standard qui
peut étre utilisée pour tester différents modeles d’attaquants. Une deuxieme appli-
cation est I’utilisation de I’analyse des canaux auxiliaires pour I’ingénierie inverse
des réseaux neuronaux sur GPU. Nous montrons que 1’analyse par canal auxiliaire
des émanations électromagnétiques d’un GPU peut étre utilisée pour récupérer
plusieurs hyperparametres d’un réseau neuronal pendant sa phase d’inférence.

Notre principal objectif de recherche est d’appliquer 1’apprentissage profond
a ’analyse des canaux auxiliaires afin de développer de nouvelles attaques pour
les implémentations existantes et leurs contre-mesures, et nous pensons que cette
theése est un pas dans cette direction en ce qui concerne les contributions susmen-
tionnées. Nous pensons également que la lecture de cette these mettra en lumiere
le potentiel de 1’apprentissage profond dans 1’analyse des canaux auxiliaires et
inspirera de futures recherches dans ce domaine pour sécuriser I’électronique de
demain.

LIST OF PUBLICATIONS

Publications that are the basis of this thesis:

[CW]

[Liu+]

[Wei]

[Wei+20]

[WP23]

[WPB]

Lukasz Chmielewski and Léo Weissbart. “On Reverse Engineer-
ing Neural Network Implementation on GPU.” In: Applied Cryptog-
raphy and Network Security Workshops - ACNS 2021, Kamakura,
Japan, June 21-24, 2021, Proceedings. Vol. 12809, pp. 96-113.

Zhuoran Liu, Niels Samwel, Léo Weissbart, Zhengyu Zhao, Dirk
Lauret, Lejla Batina, and Martha A. Larson. “Screen Gleaning: A
Screen Reading TEMPEST Attack on Mobile Devices Exploiting an
Electromagnetic Side Channel.” In: 28th Annual Network and Dis-
tributed System Security Symposium, NDSS 2021, virtually, Febru-
ary 21-25, 2021.

Léo Weissbart. “Performance Analysis of Multilayer Perceptron in
Profiling Side-Channel Analysis.” In: Applied Cryptography and
Network Security Workshops - ACNS, Rome, Italy, October 19-22,
2020, Proceedings. Vol. 12418, pp. 198-216.

Léo Weissbart, Lukasz Chmielewski, Stjepan Picek, and Lejla
Batina. “Systematic Side-Channel Analysis of Curve25519 with
Machine Learning.” In: J. Hardw. Syst. Secur. 4.4 (2020), pp. 314-
328.

Léo Weissbart and Stjepan Picek. Lightweight but Not Easy: Side-
channel Analysis of the Ascon Authenticated Cipher on a 32-bit Mi-
crocontroller. Cryptology ePrint Archive, Paper 2023/1598. http
s://eprint.iacr.org/2023/1598.2023.

Léo Weissbart, Stjepan Picek, and Lejla Batina. “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack on EdDSA.”
In: Security, Privacy, and Applied Cryptography Engineering - 9th
International Conference, SPACE 2019, Gandhinagar, India, De-
cember 3-7, 2019, Proceedings. Vol. 11947, pp. 86—-105.

209

https://eprint.iacr.org/2023/1598
https://eprint.iacr.org/2023/1598

210

LIST OF PUBLICATIONS

Other publications:

[Ami+]

[EBW24]

[Hor+]

[Rez+]

[SWB]

[Uet+a]

[Uet+b]

Parisa Amiri-Eliasi, Silvia Mella, Léo Weissbart, Lejla Batina, and
Stjepan Picek. “Xoodyak Under SCA Siege.” In: 27th International
Symposium on Design & Diagnostics of Electronic Circuits & Sys-
tems, DDECS 2024, Kielce, Poland, April 3-5, 2024, pp. 61-66.

Trevor Yap Hong Eng, Shivam Bhasin, and Léo Weissbart. “Train
Wisely: Multifidelity Bayesian Optimization Hyperparameter Tun-
ing in Side-Channel Analysis.” In: JACR Cryptol. ePrint Arch.
(2024), p. 170.

Péter Horvath, Lukasz Chmielewski, Léo Weissbart, Lejla Batina,
and Yuval Yarom. “CNN Architecture Extraction on Edge GPU.”
In: Applied Cryptography and Network Security Workshops - ACNS
2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceed-
ings, Part I. Vol. 14586, pp. 158-175.

Azade Rezaeezade, Abraham Basurto-Becerra, Léo Weissbart, and
Guilherme Perin. “One for All, All for Ascon: Ensemble-Based
Deep Learning Side-Channel Analysis.” In: Applied Cryptography
and Network Security Workshops - ACNS 2024, Abu Dhabi, United
Arab Emirates, March 5-8, 2024, Proceedings, Part 1. Vol. 14586,
pp. 139-157.

Gabriele Serafini, Léo Weissbart, and Lejla Batina. “Everything
All at Once: Deep Learning Side-Channel Analysis Optimization
Framework.” In: Applied Cryptography and Network Security Work-
shops - ACNS 2024, Abu Dhabi, United Arab Emirates, March 5-8,
2024, Proceedings, Part 1. Vol. 14586, pp. 195-212.

Yoshinori Uetake, Akihiro Sanada, Takuya Kusaka, Yasuyuki
Nogami, Léo Weissbart, and Sylvain Duquesne. “Side-Channel At-
tack using Order 4 Element against Curve25519 on ATmega328P.”
In: International Symposium on Information Theory and Its Ap-
plications, ISITA 2018, Singapore, October 28-31, 2018, pp. 618—
622.

Yoshinori Uetake, Keiji Yoshimoto, Yuta Kodera, Léo Weissbart,
Takuya Kusaka, and Yasuyuki Nogami. “A Side-Channel Attack
Using Order 8 Rational Points against Curve25519 on an 8-Bit Mi-
crocontroller.” In: International Symposium on Computing and Net-

[Wu+23]

LIST OF PUBLICATIONS

working, CANDAR 2019, Nagasaki, Japan, November 25-28, 2019,
pp. 225-231.

Lichao Wu, Léo Weissbart, Marina Krcek, Huimin Li, Guilherme
Perin, Lejla Batina, and Stjepan Picek. “Label Correlation in Deep
Learning-Based Side-Channel Analysis.” In: IEEE Trans. Inf. Foren-
sics Secur. 18 (2023), pp. 3849-3861.

211

ABOUT THE AUTHOR

Léo Weissbart was born in Colmar, France on June 15 1994. He obtained his
Electrical Engineering degree from Grenoble INP - Esisar, Valence, France in
2018.

In 2018, he started a Ph.D. candidate jointly in the Digital Security group super-
vised by Prof.dr. L. Batina and in the cybersecurity research group at the Delft
University of Technology, supervised by Prof.Dr.ir R.L. Lagendijk and Dr. S.
Picek. His main research interests are cryptographic implementation attacks and
deep learning. During his Ph.D., he worked on improving implementation attacks
with artificial intelligence. He presented his works in multiple international confer-
ences. In the meantime, he reviewed several papers from flagship security journals
and conferences, given talks, and also supervised multiple master students.

213

https://leo.weissbart.eu

	Cover page
	Propositions
	Commissie
	Acknowledgements
	Contents
	Introduction & Preliminaries
	1 Introduction
	1.1 Historical Background
	1.2 Cryptography and Cryptanalysis Duality
	1.3 Bringing Artificial Intelligence to Side-Channel Analysis
	1.4 Research Questions
	1.5 Organization of the Thesis and Contribution of the Author

	2 Background
	2.1 Side-channel Analysis
	2.1.1 Physical Leakage Properties
	2.1.2 Evaluation Metrics
	2.1.3 Non-profiled Attacks
	2.1.4 Profiling Attack
	2.1.5 Countermeasures against Side-channel Analysis

	2.2 Machine Learning and Deep Learning
	2.2.1 Machine Learning
	2.2.2 Deep Learning

	Deep learning Side-channel analysis of Symmetric Cryptography
	3 Performance Analysis of Multilayer Perceptron
	3.1 Introduction
	3.1.1 Datasets

	3.2 Related Work
	3.3 Experimental Setup
	3.4 Experimental Results
	3.4.1 ASCAD Results
	3.4.2 AES_RD Results

	3.5 Discussion
	3.6 Conclusions and Future Work

	4 Side-channel Analysis of the Ascon AEAD
	4.1 Introduction
	4.2 Ascon
	4.3 Related Work
	4.4 Leakage Models
	4.4.1 Leakage Models for Differential Attacks
	4.4.2 Leakage Models that Apply Better for Profiled Attacks

	4.5 Experimental Result
	4.5.1 Implementation
	4.5.2 Signal-to-Noise (SNR) for Leakage Models
	4.5.3 Correlation Power Analysis
	4.5.4 Deep Learning-based Attack

	4.6 Multi-task Results
	4.7 Conclusions and Future Work

	Deep learning Side-Channel Analysis of Public Key Cryptography
	5 One Trace is all it takes
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Contributions

	5.2 Preliminaries
	5.2.1 EdDSA
	5.2.2 Elliptic Curve Scalar Multiplication

	5.3 Attacker Model
	5.4 Dataset Generation
	5.4.1 Measurement Setup
	5.4.2 Dataset

	5.5 Experimental Setting and Results
	5.5.1 Hyperparameters Choice
	5.5.2 Dimensionality Reduction
	5.5.3 Results

	5.6 Conclusions and Future Work

	6 Systematic Side-channel Analysis of Curve25519
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Elliptic Curve Digital Signature Algorithm
	6.2.2 Elliptic Curve Scalar Multiplication
	6.2.3 Profiling Attacks

	6.3 Experimental Setup
	6.3.1 Attacker Model
	6.3.2 SCA Datasets
	6.3.3 Evaluation Metrics
	6.3.4 Dimensionality Reduction
	6.3.5 Hyperparameter Tuning

	6.4 Results
	6.4.1 Baseline implementation
	6.4.2 Protected Implementation
	6.4.3 Visualization of the Integrated Gradient
	6.4.4 General Remarks

	6.5 Related Work
	6.6 Conclusions

	Side-Channels enhanced by Neural Networks and the opposite
	7 Screen Gleaning
	7.1 Introduction
	7.2 Related Work
	7.2.1 Side-Channel Attacks
	7.2.2 Deep Learning and Side-channel Analysis

	7.3 Attacker Model
	7.4 Attack Setup
	7.4.1 Measurement Setup
	7.4.2 Machine Learning Setup

	7.5 Experiments
	7.5.1 Security Code Attack
	7.5.2 Data Analysis on Grid Data
	7.5.3 Experiments on Other Phones
	7.5.4 Discussion

	7.6 Testbed
	7.6.1 Testbed Images
	7.6.2 Parameterization of the Attacker Model
	7.6.3 Validating the Eye Chart Testbed

	7.7 Countermeasures
	7.7.1 Hardware-Based Approaches
	7.7.2 Communication-Based Approaches
	7.7.3 Graphics-Based Approaches

	7.8 From Text to Image
	7.9 Conclusion and Outlook

	8 On Reverse Engineering NN Implementation on GPU
	8.1 Introduction
	8.1.1 Related Works
	8.1.2 Contributions
	8.1.3 Organization of the paper

	8.2 GPU Architecture
	8.3 Threat Model
	8.4 The Target and Network Implementation
	8.5 Reverse Engineering
	8.5.1 Characterization
	8.5.2 Reverse Engineering the Number of Layers
	8.5.3 Reverse Engineering the Number of Neurons
	8.5.4 Reverse Engineering the Type of Activation Function

	8.6 Conclusions and Future work

	Discussion
	9 Discussion and Future Work
	9.1 Summary of Contributions
	9.2 Future Work
	9.3 Limitations

	Bibliography
	Acronyms
	Summary
	Sammenvating
	Résumé
	List of publications
	About the Author

