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Abstract 

As IP networks have become the support of an increasingly varied range of applications, from 

games, video streaming, to e-commerce and online banking, it is critical to understand the 

functioning and performance bounds of the network in order to provide a certain QoS. 

To be able to achieve the understanding of the whole network huge amounts of data have to 

be acquired and processed. Various methods of analyzing the network have been created, such 

as: analysis of point-to-point packet delay, delay tomography from end-to-end unicast 

measurements, network unreachabilities troubleshooting using end-to-end probes and routing 

data, analysis of link failures in an IP backbone etc.  

In this research, a new approach on Internet analysis was adopted. Dragon-Lab is capable of 

detection, identification, and temporal and spacial localization of Internet backbone 

anomalous states based on two end-to-end metrics, packet delay and packet loss, and 

traceroutes information of the measured Internet paths. The anomalous states or instabilities 

are: congestion, queue building up and link failure.  

This is a new approach in the field of network troubleshooting and management. It is a bridge 

between methods focusing mainly on delay analysis and root cause analysis methods focusing 

on harvesting huge amounts of routing data in order to identify and localize network 

problems. Dragon-Lab is based on a three months measurement study conducted over the 

Internet between Norway, China and New Zealand.  

Relying on the Principal Component Pursuit processed data to identify anomalous delay 

changes and on general network knowledge, the unstable network states are identified and 

implicitly temporally localized.  

Further analysis is performed by processing instabilities into cumulative distributed functions 

of duration of instabilities, time between instabilities, charts of the distributions of instabilities 

per path, and per type of instability, in order to study instabilities impact on Internet paths. 

Moreover, general metrics have been defined in order to give an overview of the impact of the 

combination of instabilities on paths. The metrics are: availability, fatigue or stability of the 

Internet path.  

Further Dragon-Lab is improved by geo-localization of the instabilities. The research aims to 

use available data to pinpoint the source location of instabilities on the Internet paths, in 

essence to find the problem hop on the path by IP. This is achieved by combining 

reconstructions algorithms from the Compressive Sensing domain with Dragon-Lab 

knowledge on instabilities. The approach presents provides a solution bounded by certain 

conditions and having a few limitations and also a spacial localization algorithm.  
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Chapter 1 

Introduction 

 

 

 

1.1 Introduction 

Telecommunications play an ever increasing role in today’s highly interconnected world. One 

of the key roles is held by the Internet. Being of great importance as communications 

infrastructure, it is essential to be able to measure its performance, detect, isolate and prevent 

problems. 

However, since the size and complexity of the Internet continuously increased, a thorough 

measurement of all its characteristics would be impossible. Regularly, portions of the Internet 

are measured, typically within an ISP, a research network or measurements between research 

networks are conducted.  

In all cases metrics have to be defined in order to measure the network performance. They can 

be classified into: 1) packet loss; 2) packet delay; 3) bandwidth. They are the metrics ISPs use 

to define their Service Level Agreements (SLAs). Packet loss characterizes the congestion 

level of the network, measuring the packets lost in the network due to buffer overflows. A 

second important parameter for high QoS in the network and essential parameter in real time 

applications is packet delay; it characterizes the level of congestion and additionally the effect 

of routing changes; ISPs compute packet delay over the entire network and average it over a 

month. Bandwidth shows how much data can be transferred within a time unit, dependent or 

not on the traffic conditions within the network.  

Each of the metrics described requires specialized methods of measuring. To be able to obtain 

a general picture of the whole network huge amounts of data have to be acquired and 

processed. Consequently, there has been an increasing need for practical and efficient 

procedures to achieve this goal. Researchers have tried various methods of analyzing the 

network such as: Internet mapping, analysis of point-to-point packet delay, delay distribution 

measurement, delay tomography from end-to-end unicast measurements, network 

unreachabilities troubleshooting using end-to-end probes and routing data or analysis of link  
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1.2 Problem Description 

 

failures in an IP backbone etc. They all try to give a better understanding of the Internet’s and 

large networks’ behavior in the most efficient way possible. 

In this research, a new approach on Internet analysis was adopted. A network troubleshooting 

framework called Dragon-Lab capable of identification, temporal and spacial localization of 

Internet backbone states based on two end-to-end metrics, packet delay and packet loss, and 

traceroutes information of the measured Internet paths, has been developed. The possible 

network states considered for identification in this work are: stable state, congestion, queue 

building up and link failure. Three of them represent instabilities in the network; Dragon-Lab 

will be used to analyze their behavior and geo-localize them.  

This is a new approach in the field of network troubleshooting and management. It is a bridge 

between methods focusing mainly on delay analysis and root cause analysis methods focusing 

on harvesting huge amounts of routing data in order to identify and localize network 

instabilities.  

The way Dragon-Lab is able to achieve the previously mentioned goals is briefly presented in 

the next section of the Introduction and more thoroughly in the rest of the report.  

 

1.2 Problem Description 

As IP networks have become the support of an increasingly varied range of applications, from 

games, video streaming, to e-commerce and online banking, it is critical to understand the 

functioning and performance bounds of the network in order to provide a certain QoS. This 

understanding is based on measurements of various metrics and parameters for being able to 

control and manage the network. Although many studies have been conducted on Internet 

measurement the problem of the performance of its paths is still little understood.  

Therefore the new approach of Dragon-Lab will be used for further investigation of Internet 

paths behavior and to find a solution for identifying and localizing Internet paths instabilities. 

Dragon-Lab is based on a measurement study conducted over the Internet between Norway, 

China and New Zealand. Three months of packet delay, packet loss and traceroute data 

measurements was the only information available for analysis.  

The analysis was based on detecting and identifying significant unusual changes in the packet 

delay and packet loss. In this way there was no need for further information regarding the 

structure, operations or events in the Internet backbone from the ISPs’ side. The problem is 

however challenging given the fact that huge amounts of noisy data have to be processed in 

order to extract meaningful information.  
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1.2 Problem Description 

 

The dimensions problem was handled in two stages: aggregation of delay data and analysis of 

aggregate data with the use a convex program called Principal Component Pursuit (PCP) in 

order to identify abrupt variations in the aggregated delay. Extra knowledge about abnormal 

delay events detected using PCP has been used in order to filter out physically impossible 

anomalies which might have been “detected”.  

Based on the PCP analysis data and general network knowledge, the detected anomalous 

delay events are classified using three metrics, which are defined as backbone features space, 

in essence: aggregated delay, aggregated losses and average delay. It is proven that by 

combining these three metrics the four network states named - that is stable state, congestion, 

queue building up and link failure - can be identified.  

So far network instabilities can be identified and temporarily localized. However, this is still 

raw information about the Internet paths. For a better understanding of the performance of 

these paths, the available information has to be combined into a logical, tractable analysis. 

This is achieved by presenting the detected instabilities in expressive forms, in order to offer a 

statistical analysis of the problems. For this reason a performance evaluation of the four 

measured Internet paths between Norway, China and New Zealand is performed by creating 

statistics representing: cumulative distributed functions of duration of instabilities, time 

between instabilities, charts of the distributions of instabilities per path, and per type of 

instability. Moreover general metrics have been defined in order to give a better overview of 

the impact of the combination of instabilities per path. Such metrics are: availability, fatigue 

or stability of the Internet path.  

The temporal localization of Dragon-Lab is improved by a geo-localization of the instabilities. 

This part of the research focuses on using the Dragon-Lab available data in order to pinpoint 

the source of instabilities on the Internet paths, in essence to find the problem hop on the path 

by IP. This is achieved by combining algorithms from the Compressive Sensing domain with 

Dragon-Lab knowledge on instabilities. The approach provides a feasible solution and 

presents its limitations and boundaries for applying it. Moreover a localization algorithm is 

designed based on the results of previous analysis. 
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1.3 Scope of Research 

 

1.3 Scope of Research 

The research was started at the proposal of an Internet company in Norway, UNINETT AS., 

to analyze the end-to-end Internet measurements data they have collected over a period of 

three months, particularly packet delay, packet loss and traceroute data.  

The high level goal of this research is to be able to diagnose Internet paths behavior. This 

diagnosis consists of several composing targets:  

- detection and identification of network states: stable states, link failures, congestions 

and queues build, based on end-to-end noisy measurements;  

- analysis of instabilities impact on network performance, per type and in general;  

- spacial localization of instabilities.  

Generally, techniques that aim to diagnose network paths performance have two directions: 

- either analyze end-to-end delay in order to achieve as accurate measurements as 

possible and create delay distributions [1]; or they use end-to-end delay measurements 

to infer the delay distribution within the network [2] or for bandwidth estimation, 

admission control and other decision making schemes [3]; these are generally Internet 

wide measurements; 

- or analyze failures within the network based on protocols routing information [4], [5], 

syslog messages, administrator e-mails, router configurations [6], [8], to be able to 

localize the failure; these techniques are conducted on large scale networks and 

mainly suffer from scalability problems if applied Internet wide. 

Dragon-Lab aims to combine these two approaches, the input data of the delay analysis 

techniques, namely delay, and part of the input data from the network troubleshooting 

methods, particularly traceroutes, in order to offer instabilities characteristics and spacial 

localization which could be used further on in quality management of large IP networks; in 

this sense Dragon-Lab situates itself in between the two types of techniques for network 

analysis.  
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1.4 Report Structure 

 

1.4 Report Structure 

Introduction: In this chapter a short description of challenges present in today’s Internet is 

given, as well as the approach to cope with them. Moreover, a new approach of instabilities 

troubleshooting, namely Dragon-Lab framework, is shortly presented, together with its 

capabilities and the motivation behind its development.  

  

Background: This chapter offers background information on previously developed methods 

of delay analysis and network troubleshooting; approaches on analysis of network available 

data are presented for a better positioning of the Dragon-Lab framework in the wide range of 

network troubleshooting techniques.  

 

The Dragon-Lab Framework: This chapter gives a detailed description of the Dragon-Lab 

framework. First an overview of the method is provided; secondly the measurement 

methodology for obtaining the data the framework is based on and the methodology of 

analyzing the data are offered; further on, the mathematic and algorithmic foundation of the 

framework and finally the output structure of the data Dragon-Lab provides are presented. 

  

Dragon-Lab Performance Evaluation: In this chapter the performance of detection and 

classification into unstable network states of the detected instabilities is evaluated. This 

performance is essentially depending on one tuning parameter used by the PCP algorithm. 

The effect of the tuning parameter on the framework is studied by analyzing detection rates 

false positive rates and receiver operator characteristic curves.   

 

Dragon-Lab Internet Paths States Analysis: This chapter is dedicated to one of the 

applications of the framework, namely analysis of Internet paths. Four Internet paths have 

been monitored and measured over a three months period. They provide the necessary data for 

the Dragon-Lab analysis. The chapter comes with a methodology for Dragon-Lab output 

information analysis in order to give a suggestive overview of the behavior of the detected 

instabilities. Moreover, future simulations may be based on results provided in this chapter. 

 

Dragon-Lab Instabilities Localization: This chapter presents the second important feature 

of Dragon-Lab: geo-localization of the detected instabilities. Localization of instabilities is a 

challenge in Internet paths analysis based on only end-to-end delay, packet loss information 

and traceroutes. The results, performance, conditions and limits for achieving this goal are 
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1.4 Report Structure 

 

given in this chapter. Moreover a localization algorithm is proposed. A presentation of the 

Compressive Sensing techniques, used for solving the localization problem, is also given.  

 

Conclusion and Future Work: This chapter summarizes the thesis work and suggests the 

future direction in which the work could be carried forward. 
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Chapter 2  

Background 

 

 

  

In order to emphasize the value of Dragon-Lab, and to better position it within the 

Internet/delay analysis research, an overview over the work that has already been done related 

to the topic is given.  

This chapter is structured in two parts: network delay analysis and network troubleshooting 

techniques. The reason is that, generally, techniques that aim to diagnose network paths 

performance focus on two directions: 

- either they analyze end-to-end delay in order to achieve as accurate measurements as 

possible and create delay distributions [1]; or they use end-to-end delay measurements 

to infer the delay distribution within the network [2] or for bandwidth estimation, 

admission control and other decision making schemes [3]; these are generally Internet 

wide measurements; 

- or they analyze failures within the network based on protocols routing information 

[4], [5], syslog messages, administrator e-mails, router configurations [6], [7], to be 

able to localize the failure; these techniques are conducted on large scale networks 

and mainly suffer from scalability problems if applied Internet wide. 

Dragon-Lab is a network troubleshooting framework based on delay analysis, thus it 

combines the above directions, but has rather different features from the other method. To be 

able to notice what the differences are, a few of the techniques will be presented further on. 

 

2.1 Existing Approaches on Network Delay Analysis 

There are many results in the literature regarding delay measurement. The focus has been laid 

on designing approaches to accurately measure delay or create delay distributions [1], to infer 

link delay distribution from end-to-end measurements [2] or to make use of the delay 

measurement in bandwidth estimation, admission control and other decision making schemes 

[3]. This section is dedicated to understanding the principles and reasoning behind the 

existing approaches for network delay analysis.  
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2.1 Existing Approaches on Network Delay Analysis 

 

2.1.1 Probabilistic Delay Guarantees using Delay  

Measurement 

To start with, a technique of using delay measurement for the creation of probabilistic delay 

guarantees that will be used for admission control and bandwidth estimation is presented. This 

technique is thoroughly discussed in reference [3]. 

Service providers always try to differentiate their offering by means of customized services, 

such as virtual private networks (VPN) with QoS guarantees – QVPNs. The incentive of this 

research initiative is that carriers try to maximize the number of admitted QVPNs based of the 

statistical multiplexing of the input traffic along the bandwidth dimension, but do not exploit 

the statistical multiplexing along the delay dimension in order to offer different per-QVPN 

delay bounds. Thus, the challenge is to maximize the utilization efficiency of the 

infrastructure while still supporting the QoS requirements for each QVPN. This can be 

achieved by using an admission control algorithm that admits the maximum number of 

QVPNs while allocating the least resources to satisfy their QoS needs. Deterministic 

admission allocates the necessary resources in order to never violate the QoS requirements. 

Regarding the delay guarantees, a deterministic admission algorithm would ensure that the 

worst case delay would never be exceeded by any of the packets involved. However, in 

practice, these worst case delays are rarely happening and consequently network resources 

remain unutilized.  

The practical experience shows that QVPN’s aggregate real-time traffic on the long term has 

a stable nature and therefore two statistical effects can be exploited: 

- tolerance to delay violations: most real-time applications tolerate some excess delay 

or small packet loss in the network traffic. If 99.9% of the packets experience at most 

50% of the worst case delay then an admission control mechanism would allocate 

only 50% of the resources a deterministic admission control algorithm would;  

- statistical multiplexing along delay dimension: due to statistical multiplexing the peak 

traffic bursts of different QVPNs do not coincide, consequently packets delay will 

rarely reach the worst case delay on all QVPNs simultaneously. To prove the 

multiplexing effect they aggregated the ON-OFF packet traces for different number of 

VoIP sessions. It can be observed from figure 2.1 that there is almost never the case 

when more than 40% of the sessions are simultaneously active. 

Relying on the two statistical assumptions previously mentioned the authors come up with a 

new measurement-based admission control algorithm called Delay Distribution Measurement 

(DDM) based admission control, which will maximize the number of admitted QVPNs with 

QoS requirements. The requirements include delay bound, delay violation probability bound 

and long-term average bandwidth.  
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2.1 Existing Approaches on Network Delay Analysis 

 

DDM provides the following features using admission control based on delay statistical 

distribution:  

- statistical multiplexing along delay dimension; previous deterministic algorithms only 

exploited the bandwidth dimension, which translates into an over-allocation of 

resources, since QVPNs rarely transmit at rates stated in the long-term bandwidth 

requirement.  

- distinct per-QVPN probabilistic delay bounds: DDM can differentiate between 

QVPN’s tolerance to delay bound violations. More sensitive QVPNs will have 

allocated more resources.    

- unified support for probabilistic and deterministic delay bounds: DDM is one 

admission framework which can work with deterministic or probabilistic bounds. 

Deterministic delay bounds mean that the tolerance to delay violations is zero.  

 

Fig. 2.1 Complementary CDF of the fraction of VoIP sessions in ON state simultaneously as 

the number of VoIP sessions (N) in aggregate QVPN is varied [3] 

DDM works in the following way: it measures the delay of each packet, calculates the ratio 

between the measures packet delay and the worst case delay that the packet could experience 

and creates a delay ratio distribution; this is shown in figure 2.2 out of a simulation for 39 

VoIP QVPNs. This is used to infer the needed bandwidth to assure a given probabilistic delay 

bound. Thus the novelties introduced by DDM are the construction of the CDF of the ratio 

between measured packet delay and the worst case delay and the resource mapping based on 

the CDF curve.  
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The formula which gives the delay-derived bandwidth requirement  of QVPN i at link l 

is: 

  =  , where  is the maximum packet size,  is a certain 

delay bound,  is the delay violation probability bound,  is the QVPNi’s burst size and  

is the total capacity of link l. 

 
Fig. 2.2 CDF of the ratio of actual delay to worst case delay experienced by packets [3] 

The expression clearly shows that the bandwidth is allocated by exploiting the statistical 

multiplexing along the delay dimension.  

This initiative proves that the use of dynamic delay measurement can result in less resources 

allocated to the same number of simultaneously used QVPNs in this case, and therefore a 

maximization of the utilization of network resources.  

2.1.2 Network Delay Tomography 

Another approach on analyzing and using the network delay to achieve more value from it is 

presented in reference [2]. In this section it will be briefly introduced. The research paper is 

called Network Delay Tomography from End-to-end Unicast Measurements. Its goal is to 

reconstruct the network internal performance based on the end-to-end traffic behavior. It 

makes use of the fact that correlation seen on intersecting end-to-end paths can be exploited to 

draw inferences about the performance of the common portion without any other information. 

The technique is better suited for multicast traffic. However, if the unicast one has similar 

characteristics then the results can also be used.  
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The idea of multicast based delay inference is illustrated using figure 2.3. The source node O 

sends multicast packets to the leaf nodes L and R. End-to-end delay measurements are 

conducted. If one assumes that the delay on the received packet on the L branch is zero, then 

the additional delay on the R branch will be attributed to the C-R link; consequently an 

estimate of the delay distribution will be created. The technique works with unicast packets 

also. However, they should have the correlation resembling the one of the multicast packets. 

If for example two unicast packets are sent from the source, and one of them will be 

considered as having zero delay, the estimate of the delay from C to R will contain some error 

because it is possible that the packet experience slightly different delay on the link from O to 

C. Therefore a systematic error will be introduced because they consider that same paths have 

the same delay.  

 
Fig. 2.3 2-Leaf Tree [2] 

The authors come with techniques to estimate the delay distribution on links using end-to-end 

packet delay measurements. For doing this they model link delay by non-parametric discrete 

distributions. They use time bins, discretized versions of the true delay distribution, in order to 

reduce computation costs. In order to avoid losing accuracy or excessively increasing 

computational cost, a new technique in delay modeling is being used: variable size time bins 

according to the concentrations of probability mass. Then they also produce a method to 

estimate the per link delay variance.  

 
Fig. 2.4 Inferred vs. actual average and variance of link delay in simulations [2] 

The delay analysis, namely estimation of the probability distribution of per link variable delay 

, can be done using two concepts: a fixed bin size discrete model and a variable bin  
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size discrete model. Thus for the analysis they model the link delay by a non-parametric 

discrete distribution.   

The results of this technique are shown in figure 2.4. As it can be observed accuracy increases 

for higher values of delays and delay variance. Estimates are more accurate for example if 

delay’s mean is larger than 10ms and the variance larger than 10ms
2
, then the error will be 

10% and 11.57%.  

The technique performs fairly well in estimating the delay on the link within a network based 

on end-to-end delay measurements; no other information is used; however, there are some 

limitations. It is based on the assumption of using multicast measurements, which might be a 

problem because large portions of the Internet do not support network-level multicast, but the 

largest part of the traffic is unicast. Moreover, the technique might suffer from lack of 

accuracy. In the need for low computational cost a trade-off has to be made between accuracy 

and complexity.  

2.1.3 Measurement-based Analysis of Internet Delay Space  

A third approach regarding the network delay analysis is introduced in Measurement-based 

Analysis, Modeling, and Synthesis of the Internet Delay Space [1]. The goal of this study is to 

understand the characteristics of the Internet delay space, design a model of the delay space, 

and synthesize delay data for simulations using a tool called DS
2
. 

Their motivation was that no current delay space model for large-scale simulations captures 

the characteristics of the Internet space delay. To prove this they conducted measurements on 

the round-trip static propagation delay over globally distributed DNS servers using the King 

tool. Afterwards they created artificially generated delay matrices based on already existing 

topology models for large scale networks. The generators they used were Inet and GT-ITM. 

In order to match the King tool measurements only degree 1 nodes from the generated 

topologies were selected. For generating the delays with Inet, Euclidean distance between a 

pair of connected nodes was used as link delay; for generating the delay with GT-ITM 

artificial link delays were used for the paths selected using shortest path routing performed 

over topology with routing policy weights as link costs. Consequently, triangle inequalities 

were artificially introduced, as opposed to Inet where there are no triangle inequality 

violations. The delays in the delay matrices are then scaled so that the average delay matches 

the average delay in the measured data. The result is as in figure 2.5. It is clear that the 

generators do not create a realistic model of the delay space in the Internet. The delay 

distribution of the real measured data presents three peaks, which suggest that nodes form 

clusters in the data. 

Therefore, the authors define new metrics, such as: global clustering, local clustering, growth 

metrics and triangle inequality violations (TIV), in order to capture important  
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characteristics in the design of distributed systems and in their evaluation. The algorithms 

used for defining them can be seen in [1].  

 
Fig. 2.5 Delay distribution [1] 

Using these new metrics the research proceeds to modeling and synthesizing realistic delay 

spaces based on the characteristics of the measured Internet delay space. In order to achieve 

this several techniques are designed, which will be combined to develop a delay space 

synthesizer, named DS
2
. Its architecture can be seen in figure 2.6. It consists of a static 

analysis tool, which analyzes the input measured delay space for generating a synthetic delay 

space, and a runtime distortion tool which generates synthetic delays upon requests.  

 

Fig. 2.6 DS
2
 architecture [1] 

This research adds great value to delay analysis by realistically reproducing the delay space 

on the Internet. However as the authors convey in the paper there are limitations of the 

method which have to be considered.  Firstly there are limitations generated by the data set 

used to creating the Internet delay space. The measurements were made among DNS servers, 

thus the data represents delay space among edges in the Internet. Therefore, the study 

addresses only edge networks in a wide area network. Secondly, in order to have confidence 

in the measured data, questionable measurements have been eliminated. They might have 

different properties from the selected data and consequently important features might be lost.    
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2.1.4 Network Delay Analysis Conclusion 

The three studies presented above give different perspectives on delay analysis: using delay 

measurements in admission control, inferring the estimated delay over internal links from the 

end-to-end delay and analyzing large delay date in order to create an Internet delay model.  

They focus on delay analysis in different ways, but the goal is to be able to understand better 

the behavior of delay in order to be able to use it later to achieve better network performance 

in one way or another.  

Dragon-Lab uses also delay measurements for the final goal of improving the performance of 

the network. However, within this framework the delay measurement is used in a completely 

different way; Dragon-Lab does not provide a further analysis of the measured delay, but uses 

its variation in order to achieve a more important goal: identifying and locating the 

instabilities that determine the characteristics of the delay; in other words it aim for the root 

cause of delay variations. 

A different perspective on network performance analysis is given by the networks 

troubleshooting techniques. They are presented in the following section. 

 

 

2.2 Existing Approaches on Network Troubleshooting 

Since the Internet is becoming ever more important to various services, its dependability is 

essential. Consequently, there have been numerous studies on network troubleshooting, in 

essence instabilities detection, identification and localization.   

Since Dragon-Lab framework is itself a network troubleshooting technique, it is worth 

presenting what other approaches have to offer. Three examples to illustrate the work done in 

this matter were chosen: Iannacone et al come with a characterization of the failures in the 

Sprint IP backbone based on the IS-IS routing updates [4]; Turner et al characterize the 

failures in the CENIC network making use of syslogs, emails logs and router configurations 

[5] and Huang et al studied network disruptions based of network-wide analysis of BGP 

routing updates in Abilene network [6].  
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2.2.1 Characterization of Failures in an Operational IP    

Backbone Network 

Iannacone et al [4] have conducted a thorough study of the failures in the Sprint network IP 

backbone, by analyzing the IS-IS routing updates of the network’s backbone, collected over a 

seven months period. The study is also related to [7]. IS-IS is the routing protocol in the 

Sprint network. Sprint uses IP level restoration, therefore if the failure occurs below the IP-

layer (router failures, fiber cuts, optical equipment failure, protocol misconfigurations), there 

will be loss of connectivity between routers, thus a link failure. Their analysis consists of two 

stages. The first one is to classify failures according to their underlying cause, in essence the 

network component involved. The classification is done as follows: failures due to 

maintenance are separated; from the remaining ones, the shared failures are separated; further 

on, failures that have IP routers in common and the ones that have optical equipment in 

common are separated. The rest are individual link failures which are also classified based on 

the number of failures. The classification methodology and its results can be seen in figures 

2.7 and 2.8.  

The second part of their analysis is to characterize the identified types of link failures. For 

each class the distributions of the number of failures per link, time between failure and time-

to-repair are given. These distributions may afterwards be used to provide a probabilistic 

failure model which can be used to generate realistic failure scenarios. 

  

Fig. 2.7 Classification methodology [4] Fig. 2.8 Classification results [4] 

 

The numerical results of their classification methodology are given in table 2.1. It is worth 

noticing the important percentage of maintenance due failures; also the large number of  
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high failure links, which are the ones that create most problem for applications. The 

distributions of the number of failures per class, time between certain types of failures, and 

time to repair for each class can be seen in the paper.  

Failure class % of all % of unplanned 

Data set 100%  

Maintenance 20%  

Unplanned 80% 100% 

Shared Shared Router-related  16.5% 

Shared Optical-related  11.4% 

Unspecified  2.9% 

Individual High Failure Links  38.5% 

Low Failure Links  30.7% 

Table 2.1 Failures partitioning into classes [4] 

Thus failures represent an important proportion of the network problems. Failures may 

happen at different protocol layers for different reasons. At the physical level, a failure may 

be a fiber cut or optical equipment failure. Hardware failure, in essence linecard failures, 

router processor overloads, software errors, protocol implementation and misconfigurations 

errors may also cause loss of connectivity.  

This study offers an extensive analysis of the IS-IS failure data in the Sprint network 

backbone. It is the first study of its kind; the main reason is that such information is not 

commonly offered by ISPs; this poses a limitation for the research community.   

 

2.2.2 Understanding the Causes and Impact of Network 

Failures 

The authors of [5] conducted a study on the CENIC network with the same goal of identifying 

the causes of network failures. Contrary to the previous presented study, they are focusing on 

obtaining data from sources such as router configurations, system logs and email logs, 

information which is available to network operators without any extra dedicated equipment. 

Even if the size of the CENIC network (network of approximately 200 routers serving public 

education and research institutions) is much smaller than Sprint, they are analyzing five years 

of data, which makes it the largest study of its kind. CENIC network is administratively 

divided into three components: Digital California (DC) network, High-performance Research 

(HPR) network and customer-premises equipment (CPE).  

Failure events over this period are extracted from syslogs and router configuration data. The 

cases of the failures are inferred from the administrator email logs and the consistency of the 

data is verified using independent sources of failure data: active probes of the network  
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from CAIDA Skitter/Ark effort, BGP logs from Route View Project and administrative 

announcements from CENIC operators. The failure event reconstruction is done according to 

the flow in figure 2.9. It is worth to notice the data sources for both the extraction of link 

failure events and for the validation of the events. 

After isolating the failures from the data, the authors proceed with an analysis of the failures 

duration, cause and impact; similar to what was conducted in the case of the Sprint backbone. 

The main difference is in the data sources. For the Sprint backbone specialized listeners were 

employed, whereas in this architecture readily available data is used. 

 
Fig. 2.9 Failure event reconstruction flow [5] 

The analysis is aimed to show how often the failures occur, how long they last; to give an 

understanding of the causes of the failures and to show the impact of the failures, namely how 

much of the service in the network is disrupted due to the failure.  

The results for the three network components regarding the link downtime and the time 

between failures, for link operating for more than 30 days can be seen in figure 2.10. There 

can be seen a clear difference depending on the component of the network. Naturally, for the 

HPR network, which is experimentally focused, the lowest downtime is registered.  

  

Fig. 2.10 Annualized link downtime (left) ; time between failures (right) [5] 
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The distribution of the time between failures resembles the distribution of the time between 

failures of the high failure links from the Sprint network. Additionally to the previous work, 

in this paper the authors give also an estimate of what fraction of the events were supposed to 

have an impact on the network, however small.  

Using operators’ readily available data sources for the analysis makes the approach general 

and applicable to a variety of IP networks, however, the data sources are private to the 

network operators and consequently not suitable for the analysis of failures over the Internet.  

 

2.2.3 Diagnosing Network Disruptions with Network-Wide 

Analysis  

Huang et al [6] introduces the first troubleshooting technique that uses network-wide routing 

information for detecting and identifying network disruptions. The study is conducted over six 

months, by analyzing BGP routing data from all routers in the Abilene backbone. In order to 

detect network disruptions a multivariate analysis technique on dynamic routing data (update 

traffic from all Abilene routers) is used. In this way network-wide dependencies are being 

exploited which makes it possible to detect even small disruptions and which together with 

the static routing configuration can point to the disruption’s location, namely the involved 

node or link. 

The main findings of the paper are:  

- the method to connect documented network disruptions, nodes and link failures, to the 

BGP routing data. BGP routing data is preferred to Interior Gateway Protocols (IGP) 

since BGP messages contain information on both internal and external network 

changes. However it is more noisy (many messages show changes in network 

conditions, not on network events) and carries little information about the source of 

the problem. 

- exploration of how network-wide analysis exposes classes of network failures. Once 

the knowledge on how disruptions present themselves in the routing information is 

acquired, multivariate analysis can be applied to analyze this information. 

Multivariate analysis allows for multiple statistical variables to be analyzed in 

parallel; Principal Component Analysis is used.  

- localization of network disruptions by combining the analysis of routing dynamics 

with static configuration analysis. This is called hybrid analysis. Figure 2.11 gives an 

overview of the framework’s operation. 
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Three types of disruptions are considered, which are all visible in the BGP routing data:  

- link disruption.  A link disruption will cause routing updates depending on the session 

that is disrupted and on the number of routes employing the link. A link disruption 

will definitely cause correlated events.  

- periphery (“peer”) disruption. A link failure at the edge of a network can affect the 

way routers inside the network route the traffic to outer network destinations. As in 

the case of link disruption a periphery one will also cause correlated routing events.  

- node disruption. Node failures are generally uncommon.  

 
Fig. 2.11 Approach on detection and identification of network disruptions [6] 

The results according to the study are shown in table 2.2. The subspace method detects all 

node and link disruptions, but only 60% of the peer disruptions. This proves that the 

disruptions can be detected using PCA even if they do not generate a large number of BGP 

routing updates.  

 Visible in BGP Detected by PCA Rate 

Node 2 2 100% 

Link 19 19 100% 

Peer 89 54 60.67% 

Table 2.2 Number and fraction of network disruptions detected by the subspace method [6] 

The study comes up with a new method of network disruptions analysis which gives excellent 

results and could be a first step in automatic disruptions detection possibly implemented in 

real environment. The method has two important limitations: its applicability over the Internet 

is reduced since routing information would have to be acquired from several ASs and 

secondly they are considering only disruptions caused by complete entity failure, whereas 

disruptions can be more diverse.  
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2.2.4 Network Troubleshooting Conclusion  

The network troubleshooting techniques presented above target network disruptions, basically 

link failures, by analyzing complex sets of data: IS-IS routing information, syslog messages, 

administrator e-mails, network wide router configurations, network wide BGP routing updates 

etc. This results in strengths, but also limitations of the techniques, such as: 

- high accuracy in detecting network states and ease of analyzing noisy network data at 

the price of having a reduced diversity of types of disruptions possible to detect; 

- extensive in-depth analysis methodology of the IS-IS failure data; however such 

information is not commonly offered by ISPs 

- the use of operators’ readily available data sources, therefore applicability on a variety 

of IP networks; the downside is that these sources are private to the network operators 

and consequently not suitable for the analysis of failures over the Internet. 

 

2.3 Conclusion   

In this chapter two different approaches on improving network performance have been 

presented: delay analysis and network troubleshooting.  

They are essentially different given the input information and the analysis stages, but they 

both have as goal a better network performance either by understanding delay behavior and 

optimizing the network based on it, or by tracking down the causes of network instabilities. 

Thus they use different information on the network for different level purposes.  

Dragon-Lab framework represents a hybrid of these two approaches in the sense that the 

framework is based on network end-to-end delay measurements, as delay analysis methods, 

and low level routing information, in essence traceroute data for the measured Internet paths, 

to be able to infer the causes of abnormal delay variations, namely network instabilities, such 

as the network troubleshooting methods.  

There are several significant differences between Dragon-Lab and the presented techniques: 

- Dragon-Lab uses delay measurements to infer network states as opposed to delay 

analysis which increases network performance by further delay analysis;  

- Dragon-Lab uses low quality publicly available routing information combined with 

delay measurements to infer network instabilities; network troubleshooting techniques 

regularly use high quality private network information. 
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The methodology of Dragon-Lab framework will be presented in the following chapter; its 

capabilities will be studied throughout the rest of the report. 
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Chapter 3 

The Dragon-Lab Framework 

 

 

 

The content of this chapter introduces the technical foundation and methodology of a new 

network troubleshooting technique: Dragon-Lab framework [9].  The framework is based on a 

new approach on network delay analysis, namely the one introduced in the paper: A Structural 

Analysis of Network Delay [10].  

Dragon-lab is a network troubleshooting framework able to diagnose the Internet backbone 

states using two end-to-end metrics: packet delay and packet loss and routing information 

from traceroute data to spatially localize instabilities: link failures, congestions and queues 

building up. The analysis consists of detecting and identifying significant unusual changes in 

the mentioned metrics. In this way, there is no need for information regarding the structure, 

operations or events in the backbone from the ISPs side.  

Based on the analysis of these types of instabilities statistical models of how instabilities 

occur on the Internet can be built. This may be particularly important for network design and 

traffic engineering or for being able to guarantee certain end-to-end QoS parameters for real-

time applications or for VPNs. This capability of Dragon-Lab will be examined thoroughly in 

Chapter 4.   

The existing network analysis approaches focus on the analysis of link failures harvesting a 

wide range of network information such as BGP routing tables, IS-IS routing messages, router 

logs, router configurations, SNMP MIBs, administrator files, syslog messages. They have 

been presented in Chapter 2. These approaches are effective and relatively accurate; however 

they are mostly suitable for small or medium scale networks, since, on the Internet, they pose 

scalability issues. Moreover, Internet instability problems are not only caused by link failures. 

Congestions and queues have a significant effect on the Internet applications’ proper 

operation. Dragon-Lab data provides the support to analyze also these two types of problems, 

as well as confirming the results of previous studies regarding link failures behavior.   

Temporal localization of Dragon-Lab is accompanied by a geo-localization of the instabilities. 

This feature of the framework focuses on using Dragon-Lab available data in order to locate 

the source of instabilities on the Internet paths, in essence to find the problem hop on the path 

by IP. This is achieved by combining algorithms from the Compressive Sensing field with 

Dragon-Lab knowledge on instabilities as it will be seen in Chapter 5. 
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3.1 Overview 

Dragon-Lab is an automated framework for network diagnosis. The goal of the framework is 

to infer Internet backbone network states. These are the following: stable state, congestion, 

queuing building up, link failure. The diagnosis consists of detecting and identifying any 

significant unusual change in the measured network features: delay and loss. The study data is 

based on active and passive measurements taken in the network shown in figure 3.1. It 

basically consists of three end systems situated in Norway (NTE), China (CERNET) and New 

Zealand (AUCKLA). Probe packets were sent every 10ms in both directions making this a 

rare, high “granularity” measurement. In order to guarantee analysis tractability, aggregation 

was applied to the raw measurement data.  

The framework is divided into three main components: aggregation into time bins/averaging 

of delay over long term measurement, analysis of obtained data using sparse and low rank 

matrix decomposition and projection of the refined anomalies on the feature space. A clear 

image of the Dragon-Lab logical flow can be seen in figure 3.2. After PCA based detection 

the anomalies are refined, basically filtered, based on the knowledge about the network. 

Afterwards, using decision metrics denoted as “backbone features” they are classified into the 

network states, which were already defined. Identified anomalies are then confirmed by 

taking snapshots of the time bins where the alarms were triggered. 

 

3.2 Methodology 

It will be proven that the analysis of network delay and of packet loss can result in detection 

and identification of the network states. The intuition behind this is that irregularities in a 

large scale network have direct impact on packet delay and on packet loss. For example, if 

there is an increase in the delay and an increase in loss then the network may be congested. 

On the other hand, if there is only an increase in delay there might be that there is queuing 

building up in the networks router buffers involved. A link failure is represented by a high 

decrease in delay, meaning that the packet does not reach the destination, and high increase in 

loss.  
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   Fig. 3.1 Topology overview [9]                      Fig. 3.2 Dragon-Lab overview [9] 

 

3.2.1 Aggregation Strategy 

Raw data is not tractable for our analysis, therefore aggregation will be used. Thus the 

classical approach of per-packet delay analysis is not employed in this framework, but 

aggregation during a certain time interval and analysis over longer periods of time, namely 

per day, are being used. Aggregation is practically the summation of per-packet delays over 

the particular time interval, time bin. Averaging, derivation of the temporal mean of the 

aggregated measurement is also being used. The effect of aggregation is smoothening of the 

fast fluctuations of per-packet delay measurements. It can be observed in the figure below:  

 
Fig. 3.3 Aggregation effect [9] 
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In order to find the best fit time bin, a study of the duration of each of the previously 

mentioned network states has been done.  

In order to determine the duration of a link failure, events called downtimes are studied. They 

are actually outage time periods that can last from milliseconds to seconds when all 

transmitted packets are lost. Short downtimes are due to congestions while longer ones are 

due to link failures. Figure 3.4 presents the cumulative distribution function of the duration of 

downtimes longer than 1s. It is the result of a study conducted over on the same four Internet 

links as the ones analyzed in this paper, for three months of measurements. It is shown that 

more than 90% of the downtimes have duration of 120s, and the maximum duration of a 

downtime is 360s.  

Queuing building up duration is directly dependent on the length of the Internet routers 

buffers and link loads. There is no standard buffer length, but it is known that the aim is to be 

short, not exceeding several hundred packets. A longer buffer would determine frequent 

queues building up, while a shorter buffer would cause transition to congestions. Therefore, 

the duration of a queue may vary from several seconds to minutes.  

Congestion duration varies from several seconds to several minutes. It depends on the link 

capacity and on the traffic load of the link. Congestions depend on the internet paths physical 

behavior.  

As a consequence of the above facts the duration of aggregation time intervals has been 

empirically chosen 2 minutes, as a trade-off between accuracy and scalability; longer time bin 

would smoothen too much aggregation delay leasing to non-detection, shorter time bin would 

increase the dimensions of the data. Thus for each day there will be 720 time bins. The size of 

the new data, the aggregate delay, is reduced with a ratio of over 15000 to one. As shown in 

figure 3.3 the effect of aggregation is also the smoothening of the per-packet variation and the 

fact that the similarity to the per-packet delay behavior seems to be lost. Moreover it is 

observed that on a three weeks measurement period the aggregated delay plot shows 

periodicity (figure 3.5). This fact could have not been observed without aggregation.   

 
Fig. 3.4 CDF of downtimes exceeding 1s [9]   Fig. 3.5 Periodic behavior of aggregated delay [9] 
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3.2.2 Network State Transitions  

The choice of the aggregation strategy, summation or average, has great importance on 

network state investigation. Consequently the following features are proposed for inferring 

network states:  

- Aggregate packet loss 

- Aggregate delay 

- Average delay 

In order to give physical sense of the chosen features consider the examples: a link failure can 

be characterized be high decrease in aggregated delay, high increase in loss and no noticeable 

change in average delay; the beginning of a queue building up might be characterized by 

increase in aggregated delay and average delay but no loss.   

 

Fig. 3.6 Transition diagram [9] 

 

The possible transitions between network 

states considered in Dragon-Lab, are the ones 

illustrated in figure 3.6. The changes in 

network features involved in the state 

transitions are summarized in table 3.1. The 

number on the arrows in figure 3.6 represents 

the transition ID and it is given in the table. 

As observed from the figure most of the 

transitions from one state to the other are 

possible, with the exception of queuing 

building up to link failure and from 

congestion to queuing building up.  

Link failures for example start and end with 

high losses and a decrease in aggregate delay 

and most of them are of short duration, within 

one time bins. A link failure may end up with 

either a stable state or with congestion, if the 

link becomes overloaded after recovery or 

just with a queue build up.  

 

A queuing building up detection is triggered by an increase in aggregated delay and in 

average delay, but no loss. However, a queue might transform into congestion if the traffic 

continues to increase, router buffering fails and losses occur. Similar accumulation may lead 

from congestion to link failure.  
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 (Transition, ID) Loss Aggregated delay Average delay 

(Start congestion, 1) High Increase Increase 

(End congestion, 2) High Decrease Decrease 

(Start queuing building up, 3) 0 Increase Increase 

(End queuing building up, 4) 0 Decrease Decrease 

(Start link failure, 5) & (End link failure, 6) High Decrease Any 

Table 3.1 Feature based backbone state transition 

Measurement data was collected using the topology presented in the overview. Probes packets 

were sent every 10ms. Measurements lasted for three months. The end systems were NTP 

synchronized and located close to the Internet backbone, which results in negligible network 

access delay and loss. The NTP clock server for NTE and CERNET was located in a third 

network in Norway – UNINETT. Therefore NTP synchronization’s influence will have to be 

considered. For obtaining delay and loss data the RUDE/CRUDE tool was used. The access to 

packet headers, which hold information on the number of hops within a route, was possible 

using the Tcpdump tool.  

3.2.4 PCP Analysis and Delay Decomposition 

Aggregation makes it possible to emphasize to components of the delay, which are:  

- An abrupt impulsive short component due to the abrupt variations in 

aggregated/average delay, called “abnormal” delay behavior. 

- A smooth component which shows periodicity (figure 3.5), is a combination of the 

real variation in delay and the clock adjustments, and is called “normal” delay 

behavior. 

A good representation of the decomposition of the two components is given in figure 3.7.  

In order to extract the two types of behavior aggregated delay time series will be analyzed 

within a structure like the one in figure 3.8. Each line consists of 720 positions containing the 

value of the aggregated delay of the corresponding time bin. Based on the principal 

component analysis (PCA) applied on the delay space the normal component, which is a low 

rank matrix, will be extracted. The residual of PCA is the noisy abnormal sparse component. 

A sparse vector is a vector with few non-zero components. Even if PCA performs well on 

decomposing the aggregated delay space, it breaks down when there is high percentage of 

high variations of the delay space. This is explained in the following way: PCA searched the 

best rank-k estimate E of a data matrix X by solving:  

min 2 , subject to rank (E) ≤ k,         (3.1) 

where 2 is the l2-norm.    
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The rank has to be known a priori. This is rarely occurs in real situations. Moreover the 

problem is a least square problem. It gives good results when Gaussian noise is involved, in 

essence low and medium abnormal delay. However, l2 fitting is sensitive to for high abnormal 

delay leading to a low rank subspace perturbation phenomenon. Consequently there will be 

inaccurate detection and high false positive rates. [11][12] 

 

 

 

Fig. 3.7 Delay decomposition [9] Fig. 3.8 Delay space [9] 

 

In order to be able to detect the anomalous states the low rank normal component of the delay 

has to be extracted and the abnormal one has to the found. Transitions from the stable state to 

any other are given by this component. Intuitively this component is sparse, since the number 

of anomalous states is small compared to the number of stable states. The structure of the 

abnormal component vector is dependent on the anomaly involved. Practically if there is a 

queuing building up or a link failure, which are short duration instabilities, the abnormal 

component will have a bursty behavior, while for congestion will produce blocks of non-zero 

abnormal vector components. The sparsity is guaranteed, since the number of instabilities 

compared to the number of stable states is within the limits: [0.01, 0.06].  

To overcome PCA’s limitations robust delay decomposition is used. This takes advantage of 

the fact that additional to the low rank of the normal component, the abnormal component is 

sparse. Up until this point the following problem has to be solved:  

 , subject to X = N + A, rank (N) ≤ k,               (3.2) 

where 0 is the l0-norm: the cardinality of non-zero components.  
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This optimization problem is NP-hard. However, studies [12] proved that the low rank 

component can be recovered using the nuclear norm (sum of singular values) and the sparse 

component can be recovered by using the l1 norm (sum of absolute non-zero element values), 

thus the previous problem can be solved using the Principal Component Pursuit [12] defined 

as:  

 , subject to D = N + A,                  (3.3) 

where D of n1 X n2 is the measured network space, * is the nuclear of the normal delay 

matrix N , 1 is the l1 norm of the anomalous events matrix A, and λ > 0 is a weighting 

parameter.  

In Dragon-Lab framework for this problem a solver employing the inexact version of the 

Augmented Lagrange Multiplier (IALM) [13] is used. The PCP problem is reformulated as:  

,     (3.4) 

where Y and µ are Lagrange multipliers, <,> is the inner product and F  is the Frobenius 

norm. 

For a given set of Lagrange multipliers (Y, μ), IALM, using the Singular Value 

Decomposition (SVD) technique, iteratively minimizes F with respect to A, keeping N fix, 

then it minimizes F with respect to N, keeping A fix. The Lagrange multipliers are also 

iteratively updated in order to reach convergence. A soft thresholding technique is being used, 

namely: 

STe(x) =         (3.5) 

 

The IALM for low rank and sparse matrix recovery algorithm is the following: 

Input: Delay measurement D, the regularization parameter λ 

Output: Normal N, Abnormal A delay behavior 

1: A0 = 0, Y0 = D / (max ( , )), μ0 = 0, ρ > 1, k = 0 

2: while (not converged) do 

3: (U, S, V) ← svd (D − Ak +  Yk) 

4: Nk+1 ← U* (S)*V
T 

5: Ak+1 ← (D − Nk + Yk)  

6: Yk+1 ⇐ Yk + μk(D − Ak+1 − Nk+1) 

7: μk+1 ⇐ ρμk 

8: k ⇐ k + 1 

9: end while 
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By making use of IALM in PCP and of PCP in the Dragon-Lab framework, its functioning, 

presented in figure 3.2, will work according to the following algorithm: 

Input: Per-packet delay D, loss events L 

Output: Anomaly A ϵ  {Congestion, Queuing, Link Failure} 

1: while (not converged) do 

2: Daggregated, Daverage ← aggregate (D) 

3: Laggregated ← aggregate (L) 

4: Danomalous ← PCP (Daggregated, λ) 

5: Check Backbone Features 

6: if Danomalous ϵ  realizable, then 

7: A ← Project on feature space (Dano., Lano.) 

8: end if 

9: end while 

Based on PCP results of the delay analysis and on the backbone features the identification of 

the different network states is done as in the following section. 

3.2.5 Network States Identification 

Internet backbone states can be identified by the following features’ behavior: packets losses, 

packets aggregated delay, packets average delay. Therefore a PCP detected anomaly will lie 

within the space Γ of basis: γ = { , ,  }, thus agg.delay and 

avg.delay are resulted after PCP analysis of measured aggregated and average delay 

respectively.  

This space can be further decomposed using the definitions in table 3.1 into three subspaces 

correspondent to each type of anomaly. The classification methodology is as follows: 

- Congestions will be localized in the subspace: 

Σ1 = {(x, y, z); x > 0, y > 0, z > 0}. Congestions are defined regardless of their 

duration. 

- Queuing building up will be localized in the subspace: 

Σ2 = {(x, y, z); x = 0, y > 0, z > 0}. Queuing building up is characterized by high 

aggregated and average delay, but no losses.  

- Link failures will be localized in the subspace: 

Σ3 = {(x, y, z); x > 0, y < 0}. Link failures are characterized by decrease in aggregated 

delay and high losses.  

Based on the backbone states definitions described in table 3.1, every detected anomaly in Γ 

should be included in the space of realizable network states:   Δ = { , i = 1..3 }. Detected 

instabilities that do not fit this space are filtered from the detected problems on the reason that  
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either it is physically impossible for them to exist, or they fit the conditions but are actually 

false detections. 

 

 

Fig. 3.9 Γ space projection of the NTE-CERNET states 

 

The instabilities detected on the NTE – CERNET path during the 82 days of measurement 

projected on the Γ space can be seen in figure 3.9. Each of the point represents a detected 

anomaly. It can be observed that similar types of instabilities cluster. Each of the dimensions 

has different scales since the values have been normalized to show the clustering effect. It is 

shown that different instabilities are clearly separated in the Γ space. Most of the detected 

instabilities are close to the center of the three axes, thus close to zero in value, which 

suggests that the instabilities have low intensity, making Dragon-Lab framework even more 

valuable since it detects low intensity instabilities.   
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3.3 Conclusion 

The basic features on Dragon-Lab, namely detection and identification of instabilities, 

introduce several improvements compared to previous techniques: 

- it solves the problem of NTP synchronization present in delay time series; 

- it is using publicly available data such as packet delay and packet loss for network 

analysis; 

- it is capable of detecting various network states, not only link failures, based on the 

analysis of the previously mentioned data.  

 

In the next chapters, 4, 5 and 6, the performance of detection and classification of network 

states of Dragon-Lab will be investigated , and furthermore these basic features will be 

extended into a complete Internet paths behavior analysis, and moreover into a spacial 

localization capability.  
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Chapter 4 

Dragon-Lab Performance Evaluation 

 

 

 

The value of any tecqnique lies in its performance. Therefore, in this chapter the performance 

of Dragon-Lab will be assessed. The data used in performance evaluation was collected using 

the scenario and methodology presented in the previous chapter.  

To quickly summarize, the measured and afterwards processed data to analyze consists of 

three backbone features, per time bin:  

- Aggregated delay: summed per-packet delays over every 2 minutes (one time bin). 

- Average delay: summed per-packet delays divided by the number of packets over 

every 2 minutes. 

- Losses: number of lost packets summed over every 2 min.  

The measurement is done on the following paths over the Internet:   

- Norway – China; paths: NTE – Cernet and Cernet NTE; 

- Norway – New Zealand; paths: NTE – Auckland and Auckland – NTE. 

For each of the mentioned links the measurement extends over for 82 days; each day consists 

of 720 time bins. The data will be organized into matrices of size 82 X 720 for each of the 

three backbone features. 

The performance analysis is aimed to answer the following questions: 

- How well can Dragon-Lab detect actual network states observed in real data? 

- How well can Dragon-Lab classify actual network states observed in real data? 

In order to answer these questions the following steps will be taken: firstly, the analysis of the 

measured data and the PCP output data and the isolation of the real detected instabilities, 

practically by removing the falsely detected ones. In this way, general detection rates and 

false positive rates will be obtained. Secondly, through the splitting of the detected anomalies 

into each of the three types of anomalous network states, the same procedure will be applied 

to the detected false anomalies and various rates per type of instability will be computed.  
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4.1 Detection Performance 

Using PCP analysis the delay space is decomposed into the normal component and abnormal 

component; the abnormal component triggers the alarms for unstable states detection. 

However, this first detection may not be completely true. That means that among the detected 

anomalous states one may find alarms that should not be there – false alarms. In order to 

separate false alarms from the real ones a visual inspection of the data has been carried out. 

Practically, aggregate delay time series, PCP processed aggregate delay, average delay and 

losses data have been simultaneously visually analyzed to distinct between real anomalies and 

false ones, for all the four measured Internet paths. The visual inspection had also had to 

detect possible non detected PCP abnormalities. By fulfilling the visual inspection real 

instabilities were isolated. Detection rates have been calculated as the percentage of the ratio 

between number of detected anomalies and the number of detected anomalies together with 

the number of non detected ones. False positive rates have been computed as the percentage 

of the ratio between the number of false alarms over the number of detected unstable states.  

4.1.1 PCP Parameter Tuning  

As shown in the presentation of the PCP algorithm in the previous section, it has one tuning 

parameter λ, which may favor either the extraction of the normal component or of the 

abnormal one from the measured data. Thus PCP can be more or less sensitive to low 

variations in the delay data. If for example λ increases, PCP is less sensitive to low variations. 

Consequently, the false positive rate decreases, but the number of non detected instabilities 

increases, determining the detection rate to decrease. Therefore, λ has to be chosen rationally 

so as not to bias the decomposition. The authors of [13] proposed a scaling factor in the order 

of O (  ), where n1, n2 are the dimensions of the delay space.   

All these considered, the variation of the detection rate and of the false positive rate with the 

tuning parameter λ on the four links involved in the measurements in the Dragon-Lab case, 

can be seen in figure 4.1.  

It can be observed that performance differs from one path to another. Even between the same 

end systems, due to internet path asymmetry, detection rates differ. For example in the case of 

Norway – China paths, for λ = 3 * Scaling_factor: on the Cernet-NTE direction detection rate 

is 88%, while for NTE-Cernet direction it is only 64%. λ can be chosen according to the 

application for best results. From figure 4.1 it can be seen that for λ = 2.5 * Scaling_factor 

detection rates for NTE – Cernet and Cernet – NTE paths are 80% and 94% and the false 

positive rates are relatively low: 6% and 14%. Ratios are similar on the other two paths.  
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Therefore, it has been decided that for this particular scenario and the links involved the best 

trade-off high detection rate – low false positive rate is obtained using λ = 2.5 * 

Scaling_factor. 

 
Fig. 4.1 General Dragon-Lab performance 

The dependence between the detection rate and the false positive rate results in a curve called 

Receiver Operator Characteristic (ROC). The ROC curves for the four paths are shown in 

figure 4.2. Clearly, Dragon-Lab performs similar on all of them. Additionally the curves show 

once more the importance of adjusting λ in order to achieve a desired detection rate versus 

false positive rate. Moreover, the curves show that a detection rate of around 90% induces 

about 10% false positives for the four paths. All this is achievable on the cost of tuning λ.  

 
Fig. 4.2 Dragon-Lab ROC curves 

 

4.1.2 PCP Effectiveness 

 

In order to show PCP effectiveness a few snapshots that include common situations 

encountered along the analysis will be given, for the value λ = 2.5 * Scaling_factor. Figures  
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4.3, 4.4 and 4.5 include situations from paths NTE – AUCKLA, NTE – Cernet and Cernet 

NTE, for measured aggregated delay (left side) and their PCP analysis result (right side), for 

one day of measurements. The moments when instabilities are known to occur are marked 

with circles. Figure 4.3 shows one day of aggregated delay measurement with the 

corresponding PCP result. Clearly there is high oscillation of packet delay, combined with 

NTP synchronization delay. The overall variation of the aggregated delay, the magnitude, is 

not high, about 70s, and is dominated by the clock effect. Considering the high level of 

perturbation, PCP functions relatively good, eliminating the clock effect and detecting the 

medium and high variations. Figure 4.4 presents a fortunate case: perfect detection and no 

false positives. In this particular case the biggest variation of the aggregate delay time series is 

almost 1000s. However PCP is able to separate even the smallest abrupt variations. The trend 

of the aggregated delay curve is typical for the NTE – Cernet path. Figure 4.5 shows one day 

of measurements on Cernet – NTE path: just one abrupt variation in aggregated delay, 

detected by PCP. However the other smooth variations, due to NTP synchronization are also 

considered as anomalies. This situation is however solved within Dragon-Lab by applying 

efficient filtering outside the possible anomalies space (presented in the previous chapter).  

  
Fig. 4.3 PCP effectiveness: NTE – AUCKLA 

  
Fig. 4.4 PCP effectiveness: NTE – Cernet 
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Fig. 4.5 PCP effectiveness: Cernet – NTE 

 

4.2 Classification Performance 

Based on the set of “true” unstable states isolated from the total number of PCP detected 

instabilities, obtained by visual inspection of both aggregate and average delay time series, 

detected and false positive rates of Dragon-Lab identified network states are studied. The 

ROC curves per type of anomaly are obtained and a summary of the classification results over 

the four measured paths is given.  

4.2.1 ROC Curves 

The ROC curves per type of instability for the four paths are given in figure 4.6. Notice that 

the x scale differs from one case to another. It is easily noticeable that Dragon-Lab identifies 

best link failures. They have the lowest false positive rate with respect to detection rate of all 

links. This is natural because link failures cause high perturbation in the aggregated delay, 

which will easily be detected by PCP. Regarding congestions, they are slightly worse 

identified by Dragon-Lab than link failures. Congestion classification is based on all the three 

defined backbone features: aggregated delay, average delay and packet loss. However, 

congestions do not necessarily create outliers. Therefore, NTP synchronization or simply 

fluctuations in the aggregated delay may induce false congestion alarms. Dragon-Lab has the 

worst performance in identification of anomalies in the case of queuing building up; they 

present the highest rates of false positives. This is explained by the fact that the identification 

of this type of anomaly is based only on PCP performance for abrupt variations detection in 

delay time series.  
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           Congestions ROC curves           Queuing building up ROC curves 

 
Link failures ROC curves 

Fig. 4.6 ROC curves per type of network state 

 

4.3 Conclusion 

Dragon-Lab is able to detect network unstable states with a high detection rate, over 90%, at a 

cost of around 10% false positives rate. The identification performance depends in a high 

degree on the specific type of network state.  

A downside is that Dragon-Lab’s performance depends much of the PCP tuning parameter 

which has to be carefully chosen in order to achieve the best results. Numerical values of all 

the rates used in this chapter can be found in the Appendix. 
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Chapter 5    

Dragon-Lab Internet Paths States Analysis  

 

 

 

5.1 Introduction 

The novelty of Dragon-lab framework is that it is able to temporarily identify three Internet 

backbone unstable states in the by end-to-end measurements of delay and packet loss. These 

states, as defined in Chapter 3, are: link failures, congestions and queues building up. The 

measurement methodology has been described in the same chapter.  

Based on the analysis of these types of instabilities statistical models of how instabilities 

occur on the Internet can be built. This may be particularly important for network design and 

traffic engineering or for being able to guarantee certain end-to-end QoS parameters for real-

time applications or for VPNs. 

Most of the existing approaches for network analysis focus on the analysis of link failures 

harvesting a wide arrange of network information such as BGP routing tables, IS-IS routing 

messages, router logs, router configurations, SNMP MIBs, administrator files, syslog 

messages. They have been presented in Chapter 2. These approaches are effective and 

relatively accurate; however they are mostly suitable for small or medium scale networks, 

since, on the Internet, they pose scalability issues. Moreover, Internet instability problems are 

not only caused by link failures. Congestions and queues have a significant effect on the 

Internet applications’ good operation. Dragon-Lab data provides the support to analyze also 

these two types of problems, as well as confirming the results of previous studies regarding 

link failures behavior.   

Having the necessary information of the path operating state has crucial importance, 

especially for real-time end-to-end applications. In this way applications can be guaranteed a 

minimum quality of network requirement for a proper functioning. Congestions and queues 

are not as harmful as link failures, but, as it will be seen, they represent a significant 

percentage of all disruptions and consequently have to be taken into account. 

This chapter is a proof of the Dragon-Lab temporal instabilities identification function; it 

provides data for an analysis of four Internet paths. Together with the following chapter, 

which handles the spacial localization of the instabilities, they increase the added value of the  
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Dragon-Lab framework. The chapter comes first with a methodology of the analysis, presents 

the results of analysis depending on the type of unstable state and then offers a general 

analysis of instabilities regardless of type.  

 

5.2 Methodology 

In this chapter the results of Dragon-Lab temporal detection and identification are used. The 

chapter tackles the following issues: 

- how long do the instabilities last; 

- how often do instabilities occur; 

- how similar are the paths with respect to instabilities behavior; 

- how do the instabilities impact the general functioning of the network. 

The previous questions are answered for all the four measured Internet paths between 

Norway, China and New Zealand; the analysis is divided into two parts:  

1. An analysis of unstable Internet backbone states behavior. This part gives an image of 

how each of the predefined unstable states, link failures, congestions and queues 

building-up, separately, respond to the problems stated above. The practical solution 

to this is, for each type of unstable state and for each of the fours paths to:  

- plot CDFs of the duration of instabilities;  

- plot CDFs of the time between instabilities; 

- determine the percentage of instabilities distributed on each path; 

- determine particularities of the instabilities, such as dispersed/frequent instabilities, 

or of long/short duration.  

When possible, CDFs have been approximated with well-know distributions for later 

modeling use. The distributions have been approximated using the Maximum Likelihood 

Estimation method.  

2. An analysis of instabilities whatever the type, in order to give a general overview of 

the degree the paths are affected by instabilities. Additionally, three metrics are 

analyzed, to characterize the state of the network: availability, fatigue and stability. 

They will provide a quantitative measure of the impact of instabilities on the network 

proper functioning. 
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5.3 Unstable States Statistical Analysis 

Within this section each of the different types of unstable Internet backbone states will be 

analyzed separately.  

First a statistical analysis of the durations of instabilities is provided, secondly an analysis of 

the frequency distribution instabilities, thirdly a distribution of the number of failures per path 

is presented and lastly instabilities are classified based on their dispersion level and duration.  

5.3.1 Link Failures Analysis 

Link failures are an intensively studied topic. Several studies have been conducted on link 

failures analysis; some of the most representative are presented in Chapter 2. However this 

analysis comes with a different perspective on link failures analysis, for the simple reason that 

this analysis is based on end-to-end Internet measurements, for paths that include several 

autonomous systems (ASs). All the other studies are centered on small or medium scale 

networks and make use of different, higher level, input information for their studies. 

Moreover, this analysis combines the magnitude of the studied network, the Internet, with the 

long duration of measurements, three months. These two facts give the analysis offers a 

trusted characterization of link failures behavior based on Internet end-to-end paths 

measurements.  

Throughout this sub section, in order to generate the plots, the same sets of Dragon-Lab 

signaled link failures have been used; clearly they are unique for each of the four analyzed 

Internet paths, since link failures occur at different time instances and vary different durations.  

To start with, the empirical CDF of link failures duration has been plotted in figure 5.1. It can 

be seen that this type of instabilities have duration of maximum 6 minutes, so they have 

relatively short duration. These types of link failures are possibly caused by software problem, 

transient equipment problems, routers CPU overload, routers mistakenly considering an 

adjacency to be down when it is actually not etc. Most of the failures last less the one minute 

– a common bulk of about 70% for the four links. The paths with the highest percentage of 

low duration failures are the paths between Norway and New Zealand. The other two paths, 

between Norway and China, experience a higher percentage of longer link failures – around 

20% for duration between 4 and 6 minutes and 5% for duration between 4 and 6 minutes. 
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Fig. 5.1 CDF of link failure duration 

Based on this result it can be stated that, on Internet paths, link failures are of relatively short 

duration; this might be due to better maintenance and performance of backbone equipment. 

Compared to access networks, the Internet backbone is much more reliable. Previous studies, 

[7], [4], [5], have shown that the Sprint network backbone has 60% of the failures up to 6 

minutes and the CENIC network about 70% of the failures up to 6 minutes.  

A possible explanation for the long lasting link failures, the ones between 2 and 6 minutes, 

can be the longer convergence time of inter-domain routing protocols [16]. This has been 

proven by conducting a visual inspection of the traceroutes data, by checking the IPs with 

anomalous delay behavior, at the moments of time where Dragon-Lab detected medium (2 to 

4 minutes) and long (4 to 6 minutes) duration link failures. The results show that most of the 

long duration failures are due to inter-domain routing convergence, while medium duration 

failures are due to intra-domain routing.  

For the purpose of future application, the CDFs have been fitted with well known 

distributions. Weibull distribution is the one that fits best the link failures durations 

distributions. The distributions parameters vary depending on the link; they are shown in the 

table: 

Path Distribution α β 

NTE-CERNET Weibull 2.993 2.445 

CERNET-NTE Weibull 2.923 2.511 

NTE-AUCKLA Weibull 2.764 2.402 

AUCKLA-NTE Weibull 2.382 3.098 

Table 5.1 Link failures duration CDF - distribution parameters    

The next step is the analysis of the time between link failures. For this purpose the CDFs of 

the time between link failures have been plotted in figure 5.2. It can be noticed that up until an 

inter-link failures interval of 30 minutes the paths NTE - CERNET and NTE – AUCKLA and  
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the ones between CERNET – NTE and AUCKLA – NTE, have similar cumulative 

distribution functions. It is also observed that link failures on the paths CERNET – NTE and 

AUCKLA – NTE are more dispersed than the other two, since about 20% of the failures are 

less than 30 minutes apart, where for the other two, 40% are 30 minutes apart.   

 
Fig. 5.2 CDF of time between link failures 

Data fitting for these four cumulative distribution functions yield the results in table 5.2. The 

Weibull distribution fits well with the link failure CDF, since this distribution has been found 

applicable in reliability engineering to describe lifetime of components; additionally, it is 

derived as an extreme value distribution: for a large number of identical and independent 

components, the time to the first failure follows a Weibull [4]. The time between failures can 

be interpreted as the time to the first failure, assuming a renewal process. The cumulative 

distribution function of the Weibull distribution is given by: 

F (x; α, β) = 1 – , for x ≥ 0   and    F (x; α, β) = 0, for  x < 0   (5.1) 

Path Distribution α β 

NTE-CERNET Gamma 0.425 1884.08 

CERNET-NTE Weibull 972.1 0.585 

NTE-AUCKLA Weibull 245.6 0.680 

AUCKLA-NTE Weibull 391.6 0.749 

Table 5.2 Time between link failures CDF - distribution parameters 

Another possibility of analyzing link failures and their distribution is by dividing them into 

several classes based on:  

- inter-link failure time; 

- link failure duration. 
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The parameters for the two criteria and the names attributed to each category have been 

chosen as follows: 

- 30 minutes as limit between what will be called frequent and dispersed link failures; 

- link failures of maximum duration 2 minutes are named short link failures, for 

duration between 2 and 4 minutes are named medium link failures, and from 4 to 6 

minutes are called long link failures.  

Figure 5.3 shows the results of combination of the categories above for each of the four paths. 

On all paths the majority of link failures, minimum 70%, are of short duration. Among these 

minimum 45% are dispersed. However, a significant percentage, between 20% and 30%, is 

hold by the short frequent link failures, namely flapping failures. As proven by Markopoulou 

et al [4], link flapping is a predominant cause of instabilities; therefore, protocols and routing 

algorithms should be able to handle flapping implicitly. The lowest percentage for the 

analyzed types of link failures is for the long duration ones. Most of them, up to 5%, as 

included in the dispersed group; on the CERNET-NTE and AUCKLA-NTE paths, the 

frequent long link failures are not even present, which may infer the good quality of these two 

paths and generally of the Internet paths. This type of graph is in fact a combination of the 

link failures duration CDF, inter-failure time CDF and the threshold of 30 minutes between 

frequent and dispersed link failures.  

In order to have a high level comparison of the paths’ reliability characteristics, a distribution 

of the number of link failures per path, regardless of their duration or frequency, has been 

constructed. Figure 5.4 shows what percentage of the total number of detected link failures is 

hold by each path. Clearly the paths between Norway and New Zealand are less stable. 

 
Fig. 5.3 Types of link failures – per path distribution 
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This result is difficult to explain because the systems are very complex, however what is 

certain is that these two paths traverse more autonomous systems than the paths between 

Norway and China. Still, up to a certain point the paths are common for all paths and this may 

account for the common characteristics. The NTE-AUCKLA path is the worst counting the 

percentage of link failures; moreover, this path contains the highest percentage of short 

frequent link failures, approximately 28%, which are considered the most disruptive type of 

link failures.    

 
Fig. 5.4 Link failures percentage per path 

 

5.3.2 Congestions Analysis 

The analysis of congestions for the four measured Internet paths follows the same main lines 

as the analysis of link failures and as described in the methodology. It is important to 

understand the behavior of congestions since persistent congestions can degrade any type of 

application, especially the ones that require guaranteed throughput. [16] 

Throughout this sub section, in order to generate the plots, the same sets of Dragon-Lab 

signaled congestion have been used; these four sets of detected congestion states are unique 

and fixed for each path. 

To start with, the empirical CDF of congestions duration has been plotted in figure 5.5. 

Compared to link failures congestions’ durations have a much more varied range of durations. 

They extend from 2 minutes up to 90 minutes. The path between Norway and New Zealand 

show 80% of the congestion length up to 2 minutes, while the paths between Norway and 

China show longer duration of congestions and only around 60% of all congestions have short  
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duration. The 2 minutes long congestions represent a significant amount on all paths, 

therefore the congestions will be divided depending on their duration into:  

- transient congestions; for durations up to 2 minutes; 

- persistent congestions; for longer durations.  

The two types of congestions have different causes; transient congestions may be created due 

to the burstiness of IP traffic with short term fluctuations [16]; persistent congestions are 

mainly the cause of traffic overflow in highly utilized network [15]. The maximum durations 

of persistent congestions are 90 minutes on the AUCKLA – NTE path and 60 minutes on the 

CERNET – NTE path.  

 
Fig. 5.5 CDF of congestion duration 

Path Distribution µ 

NTE-CERNET Exponential 0.154 

CERNET-NTE Exponential 13.51 

NTE-AUCKLA Exponential 5.661 

AUCKLA-NTE Exponential 6.949 

Table 5.3 Congestion duration CDF - distribution parameters 

For the purpose of future simulations, fitting of the CDFs of congestion durations was 

performed. The results are shown in table 5.3. For all paths, the CDFs present exponential 

distributions which the parameters found in the table. The exponential distribution has the 

following cumulative distribution function: 

F (x; µ) = 1 – , for x ≥ 0                      (5.2) 

The exponential distribution fits well the CDF of congestion durations since this type of 

distributions are used to describe processes in which small occurrences are extremely  
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common, while large instances are rare [4]. The congestion durations fit this scenario, because 

most of the durations were within 2 minutes length, as shown above. 

In order to better describe the behavior of congestions CDFs of the time between congestions 

was constructed; it can be seen in figure 5.6. The figure shows a generally similar inter-arrival 

time for congestions on the four paths. However, for more in depth analysis, like in the case 

of link failures, congestions are divided depending on the frequency of appearance into: 

frequent and dispersed.  

 
Fig. 5.6 CDF of time between congestions 

Based on this thresholding, it is noticed that, for all paths, approximately 30% to 40% of the 

congestions are frequent. Consequently, the majority of congestions will be dispersed. This 

finding comes to support the theory that Internet backbone does not contribute much to 

congestions since it is better maintained than access networks. Paths AUCKLA – NTE and 

CERNET – NTE hold the largest inter-arrival intervals, with 9 days and 5 days respectively. 

CDFs fitting for this case yielded the results in table 5.4: 

Path Distribution β γ 

NTE-CERNET Birnbaum-Saunders 155.3 2.304 

CERNET-NTE Birnbaum-Saunders 296.5 3.514 

NTE-AUCKLA Birnbaum-Saunders 150.2 2.158 

AUCKLA-NTE Birnbaum-Saunders 227.2 2.708 

Table 5.4 Time between congestions CDF - distribution parameters 

All paths CDFs are best approximated by Birnbaum-Saunders distributions, also known as 

fatigue life distributions. The cumulative distribution function for this distribution is:  
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F (x; β, γ) = Φ  , for x > 0          (5.3) 

where Φ is the cumulative distribution function of the standard normal distribution. The 

fatigue life distribution is applicable in reliability engineering to describe the lifetime of 

components. The time to component failure is equivalent to the time to congestions. 

A possibility to present the connection between congestion duration and the time between 

congestions is shown in figure 5.7. Congestions have been divided into frequent or dispersed, 

based on whether they occur at a smaller or larger time interval than 30 minutes. For each of 

the groups, further classification was done, into short/ transient congestions (for duration 

smaller or equal to 2 minutes) and long/ persistent congestions (for duration larger than 2 

minutes). The plot shows that for the path between Norway and China, congestion types are 

split relatively equally between the four types of congestions. For NTE- AUCKLA path most 

of the  congestions, 55%, are short and dispersed, which would be the best combination 

relative to the impact of congestions on applications’ proper functioning. CERNET – NTE, on 

the other hand, has the largest number of long frequent congestions, more than 30% of all 

congestions occurring on the path. This behavior may create problems on the applications’ 

side; therefore it has to be accounted for from the design phase.    

 
Fig. 5.7 Types of congestions – per path distribution 

A better perspective to as how the congestions are distributed and what their possible impact 

would be on the applications using the four analyzed Internet paths, is achieved by combining 

the observations from figure 5.7 with figure 5.8. This plot contains the percentages of the total 

number of congestions, distributed on each path. Both NTE – CERNET and NTE – AUCKLA 

have a high percentage of congestions. However, the first path has a higher  
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percentage of long frequent congestions, which makes it of lower quality. CERNET – NTE, 

which had the highest percentage of long frequent congestions, has, however, the lowest total 

number of congestions.  

 
Fig. 5.8 Congestions percentage per path 

 

5.3.3 Queues Build up Analysis 

The analysis of queues build up for the four measured Internet paths follows the same lines as 

the analysis of link failures and the one of congestions. Queues build up causes are varied; in 

the Internet they happen mainly due to the queuing policy in the routers on the paths, in 

addition to the traffic load [14]. Therefore the size and type of data packets are important. 

However, the causes of queues are not the aim of this analysis; the goal is to find the behavior 

of the queuing building up process so as to be able to better operate networks. Queues build 

up states are generally of short duration (several seconds), due to the short queues length in 

today’s routers. Queues induce spike in per-packet delay, which may be harmful for 

applications.  

Throughout this sub section, in order to generate the plots, the same sets of Dragon-Lab 

signaled queues building up have been used; these four sets of detected queuing states are 

unique and fixed for each path. 

To begin with, as in the cases of link failures and congestions, the empirical CDF of queues 

duration has been plotted in figure 5.9. It confirms that the majority of queuing states are of 

short duration, 100% for the NTE- AUCKLA path, and minimum 63% for the rest of  
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the paths. However, on the CERNET – NTE path there is 15% queues with duration up to 6 

minutes.  

The distributions that fit best the CDFs of queuing duration are, similar to the congestions 

case, exponential distributions with the parameters from table 5.5.  

Path Distribution µ 

NTE-CERNET Exponential 2.49 

CERNET-NTE Exponential 3.01 

AUCKLA-NTE Exponential 2.52 

Table 5.5 Queue duration CDF - distribution parameters 

 
Fig. 5.9 CDF of queue duration 

Even if the duration of queues might be relatively high, the CDFs of the time between queues, 

presented in figure 5.10, show that their frequency is not so high. NTE – AUCKLA, which 

had all queues of length maximum 2 minutes, has the most dispersed queues, with just 10% 

happening at less than 30 minutes apart. If the same threshold of 30 minutes is considered, the 

other three paths have around 20% to 30% of all queues detections within this limit. For the 

Norway – China paths the maximum time between queues is approximately 7 days. The 

results of these CDFs, combined with the threshold of 30 minutes between frequent and 

dispersed queues and the different queue durations, can be seen in figure 5.11.  

The best approximations for the time between queues building up is given, as for the case of 

congestions, are Birnbaum-Saunders distribution with the parameters as in table 5.6. 

Furthermore, the duration of the queues build up has been divided into short duration, for 

instabilities duration of less than 2 minutes, medium length queues, for durations between 2 

and 4 minutes, and long duration queues, for durations between 4 and 6 minutes.  
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Fig. 5.10 CDF of time between queues 

Path Distribution β γ 

NTE-CERNET Birnbaum-Saunders 273.9 3.075 

CERNET-NTE Birnbaum-Saunders 305.1 3.459 

NTE-AUCKLA Birnbaum-Saunders 1258 3.285 

AUCKLA-NTE Birnbaum-Saunders 488.3 4.335 

Table 5.6 Time between queues CDF - distribution parameters 

 
Fig. 5.11 Types of queues – per path distribution 
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As observed in figure 5.11, all paths have a majority of short dispersed queues, which is 

encouraging with respect to the effect of queues build up on network performance. NTE – 

AUCKLA path has an impressive 90% of short dispersed queues; the rest are frequent but still 

short. This makes sense if the result is compared to the CDF of queue duration for this path, 

where it was shown that all queues building up on this path have short duration, namely 

maximum 2 minutes. The rest of the paths stand within 40% to 60% of short dispersed 

queues, which infers good network performance with respect to queues. Medium length 

queues are particularly present on the CERNET – NTE path, where they account for 20% of 

all queues.  This path also holds the most long frequent queues, which are considered most 

disruptive for network traffic; moreover queues are distributed rather much over all six types 

of queues defined, inferring higher instability for this path.  

Important within the analysis of queues build up is the percentage of queues distributed on 

each of the four analyzed Internet paths. The distribution is shown in figure 5.12. This plot 

emphasizes that path NTE – AUCKLA offers the best performance. In addition to the high 

percentage of short dispersed queues, if also holds the least number of queues build up out of 

all paths. Path CERNET – NTE, on the other hand, has a high number of instabilities and, as 

shown in the previous figure, a significant part is long or medium and frequent; this add up to 

the poor performance of the path, from the queue build up point of view.  

 
Fig. 5.12 Queues percentage per path 

Generally, paths between Norway and China have more frequent longer duration queues build 

up in comparison to the paths between Norway and New Zealand, which are characterized by 

more dispersed queues with shorter duration.   
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5.4 General Instabilities Analysis 

In the previous section the behavior of each type of Dragon-Lab detected instability has been 

presented. However, it is also important to know what the minimum achievable performance 

of the network is, regardless of the type of instability.  

Therefore in this section the previously analyzed instabilities are combined in order to give a 

model of the impact of instabilities, irrespective of type, on the Internet paths performance. A 

first step in this analysis is the CDFs of instabilities for every path; this is shown in figure 

5.13. The distribution is the result of the reunion of link failures, congestions and queues build 

up durations. Link failures and queues have lengths up to 6 minutes; therefore it is natural that 

the CDF in figure 5.13 resembles much the CDF of congestions duration; however the 

influence on the short duration instabilities, namely up until 6 minutes, affects the entire 

distribution. The paths NTE – CERNET and NTE – AUCKLA have instabilities of maximum 

28 minutes durations, whereas for the other two paths the duration is maximum 1 hour. 

However, 60% of all instabilities duration are below 2 minutes, therefore of short duration.  

The best fit for the CDFs of instabilities durations is the exponential distribution. This proves 

that congestions and queues, which have the same type of distributions, dominate disruptions 

durations. The parameters for the exponential distributions are given in table 5.7. 

  

Fig. 5.13 CDF of instabilities duration 
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Path Distribution µ 

NTE-CERNET Exponential 3.564 

CERNET-NTE Exponential 4.261 

NTE-AUCKLA Exponential 2.662 

AUCKLA-NTE Exponential 2.688 

Table 5.7 Instabilities duration CDF - distribution parameters 

The following step in the analysis process is the visualization of the time between instabilities. 

The CDF for it is shown in figure 5.14. It can be seen that the maximum inter-instabilities 

time differs from one path to the other: for the Norway – New Zealand paths it is 

approximately 30 hours, whereas for the path between Norway and China it is higher, around 

70 hours.  

 
Fig. 5.14 CDF of time between instabilities 

A significant percentage of the instabilities, from 60% to 90% depending on the path, happen 

within a time interval of 3 hours. This may infer correlation between instabilities; however 

this will be studied in future work.  

The CDFs of time between instabilities are well approximated by the Birnbaum-Saunders 

distribution, also known as fatigue life distribution. This distribution models the life cycles of 

an entity during the growth of stress, which resembles the impact of disruptions on Internet 

performance, which is considered cumulative. Birnbaum-Saunders distributions have also 

approximated best time between congestions; consequently this may reinforce the observation 

that congestions are influencing instabilities on the Internet backbone more than the other 

types of disruptions. The parameters of the fatigue life distributions, in the cases of the four 

analyzed Internet paths, are given in table 5.8. 
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Path Distribution β γ 

NTE-CERNET Birnbaum-Saunders 48.96 2.134 

CERNET-NTE Birnbaum-Saunders 81.06 2.566 

NTE-AUCKLA Birnbaum-Saunders 41.66 1.716 

AUCKLA-NTE Birnbaum-Saunders 59.32 1.838 

Table 5.8 Time between instabilities CDF - distribution parameters 

 

5.4.1 Metrics Analysis  

Previous analysis focused on the distribution of particular types of instabilities and 

instabilities in general. In the following the focus is laid on the impact of the combined 

different instabilities on the Internet paths. 

Different instabilities have different effects on the paths:  

- link failures affect the time the network is available; in essence one is able to 

communicate between two end-points, irrespective of the quality of the 

communication; 

- congestions and queues building up affect the quality of an available network. 

In order to express the possible combination of these effects on the network, the following 

metrics have been defined:   

1. Availability: expresses the amount of time the network is available. 

2. Fatigue: expresses the effect of congestions and queues on an available network; a 

network with affected performance due to these two instabilities is a network under 

fatigue.  

3. Stability: a network not under fatigue is a stable network. On this type of network a 

minimum quality of service is guaranteed.  

Thus the metrics have the targets presented in the following table: 

Metric Target 

Availability Impact of link failures 

Fatigue Impact of congestions and queues 

Stability Impact of instabilities 

Table 5.9 General metrics target 

Practically, the three metrics are defined over a particular amount of time, in the case of this 

analysis it will be per hour. Thus the total measurements time will be divided in hours, in 

order to be able to calculate the metrics. Dragon-Lab data is used to compute the metrics; the 

time unit in this type of data is called time bin and is lasts for 2 minutes. This time unit will be 

used for calculation of the metrics.  
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Mathematically, the three metrics are defined as follows: 

Availability =            (5.4) 

Fatigue =           (5.5) 

Stability =         (5.6) 

,where TB stands for time-bins, LF for link failures, CONG for congestions, QUEUE for 

queues.  

Each of the defined metrics will be analyzed based on its cumulative distribution function, for 

each of the four paths between Norway, China and New Zealand.  

Availability 

The availability CDF is given in figure 5.15. Several facts can be clearly observed: path 

CERNET – NTE has the highest availability, 77%, with 94% of the time units available 100% 

of the time, while path NTE – AUCKLA has the lowest availability, 70%, with 75 of the time 

unit available 100% of the time. Availability is calculated in time units/bins available divided 

by the total number of time bins existent during one hour time interval. Since availability 

expresses the impact of link failures, there is a connection to the types and distribution of link 

failures per path, presented in figure 5.3 and to the percentage of link failures per path, from 

figure 5.4.    

 
Fig. 5.15 Availability CDF 

The path with the lowest availability, NTE – AUCKLA, is also the path with the highest 

percentage of failures per path, and it is the path that holds the highest percentage of frequent 

link failures; thus all possible conditions to achieve a poor availability. The situation  
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for path CERNET – NTE is the opposite: it has the lowest percentage of total link failures and 

there is a very small percentage of frequent failures. The other two paths maintain the trend 

given by the total percentage of failures per path, namely NTE – CERNET has the second 

highest availability and the second lowest number of total link failures, and AUCKLA – NTE 

the third number of total link failures and the third highest availability.  

The duration and frequency of link failures has thus little influence on the general ranking of 

availability when the total percentage of link failures differs significantly. This might also be 

due to the fact that most link failures in this analysis were of short duration and dispersed.  

Fatigue 

Fatigue expresses the impact of congestion and queues on the performance of an available 

network. For analyzing this metric, similarly to availability, the CDFs of fatigue on all paths 

have been constructed; they are shown in figure 5.16.  In the case of fatigue, as for 

availability, the path that performs worst is NTE – AUCKLA, which 0% fatigue for only 82%  

 
Fig. 5.16 Fatigue CDF 

of the time units. CERNET – NTE has 92% of the available time units with 0% fatigue. The 

maximum fatigue rate varies from 53% for NTE – CERNET to 100% (figure 5.16 has been 

cut for better visualization) for AUCKLA – NTE.  Fatigue may be influenced by congestions 

and queues building up distributions of the four paths, especially by their distribution over the 

measurement period. Thus it is worth to verify the behavior of congestions and queues once 

more. NTE – AUCKLA path holds the majority of congestions; however they are mostly of 

short duration and dispersed. CERNET – NTE has the least number of congestions, but most 

of them are frequent and of long duration. Queuing has an opposite behavior for the two 

paths. In this case, CERNET – NTE has higher percentage of queues and more long frequent 

queues than NTE – AUCKLA. However, the fatigue distribution seems to be influenced by  
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congestions rather than queues, since the distribution presents a long tail induced by the long 

duration congestions.  

Stability 

This metric expresses the impact of instabilities, irrespective of type, on the performance of 

each path. It gives a measure of the percentage of time units unaffected by instabilities, in 

essence stable time units. The distribution of stability over the four paths is presented in figure 

5.17.    

Based on the analysis so far, there are two paths, NTE – AUCKLA and CERNET – NTE, 

with extreme behavior of instabilities. Particularly, NTE – AUCKLA has the most significant 

percentages of link failures and congestions, but one of the lowest of queues, whereas 

CERNET – NTE has the lowest percentages of link failures and congestions and highest of 

queues, out of all paths. This situation should be expressed by the stability metric. An 

observation of the distribution of stability shows that NTE – AUCKLA has the worst stability: 

64% of time units are 100% stable; and CERNET – NTE has the highest stability, with 88% 

of time units being stable. This situation proves once more the great influence of congestions 

and link failures on the Internet paths performances, and that traffic is not so much affected by 

queues building up.  

 
Fig. 5.17 Stability CDF 
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5.5 Conclusion 

This chapter provided an analysis, based on the Dragon-Lab processed information, on the 

impact of instabilities on the paths’ performance and behavior.  

It is structured in two parts:  

- an analysis of the three types of instabilities, link failures, congestions and queues 

building up, in order to provide statistical characteristics of their behaviors, for the 

purpose of generating realistic behavior models for use as input to network design and 

traffic engineering;  

- an analysis of the combination of the different instabilities in order to give a model of 

the general behavior of instabilities on the four Internet paths.  

The chapter shows that a complete analysis of the four Internet paths, with respect to of the 

unstable network states, is possible based on Dragon-Lab data. This is achieved using two 

end-to-end metrics: packet delay and packet loss. Compared to the techniques presented in 

Chapter 2, Dragon-lab accomplishes network troubleshooting targets, thus more complex 

tasks, using just delay measurements.  

In the next chapter the current features of Dragon-Lab will be extended for attaining 

instabilities localization on Internet paths; the piece of information to the current data is 

traceroute data.  
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Chapter 6 

Dragon-Lab Instabilities Localization 

 

 

 

6.1 Introduction  

Dragon-lab is a network troubleshooting framework able to diagnose the Internet backbone 

states using two end-to-end metrics: packet delay and packet loss. The diagnose consists of 

detecting and identifying network instabilities. In this way, there is no need for information 

regarding the structure, operations or events in the backbone from the ISPs’ side.  

The four possible network states that can be detected by Dragon-Lab are: stable states, 

congestions, queues and link failures. The framework provides an output vector consisting of 

time-bins of non-zero values for the unstable network states, namely congestions, queues and 

link failures, and zeros time-bins for the stable states. Because the instabilities are positioned 

at certain moments in this vector, this type of detection is called time localization detection. 

The time localization of instabilities is very important as it gives an image of the behavior of 

the network, allowing the performance evaluation and the possibility of modeling the 

network. Consequently, applications will be able to tune their parameters based on previous 

knowledge of the network. Time localization provides the necessary framework for the 

analysis conducted in Chapter 4.  

However, an attractive perspective would be not only to be able to localize the instabilities 

temporarily, but also to be able to pinpoint them spatially – to be able to indicate the node in 

the network that is causing the problems. So far two metrics have been used: delay and loss. 

By adding one additional piece of information to the equation, traceroutes, Dragon-Lab will 

be able not only to time localize the instabilities, but also to spatially localize them. It will be 

able to identify the node, in essence IP address, which is the cause of the excessive delay.  

Additionally to providing the theoretical assumptions, capabilities and accuracy of the 

method, since Dragon-lab framework is aimed to be implemented as a network analysis 

software product, a localization algorithm will be presented based on the observations made 

across this chapter.  
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6.2 Available Data 

Dragon-Lab is an automated framework for network diagnosis. The diagnosis consists of 

detecting and identifying any significant unusual change in the measured network features: 

delay and loss. By identifying Internet backbone network states, Dragon-Lab is actually 

performing a time localization of the various instabilities. The framework’s performance in 

achieving this has been studied in previous work and the benefits of the results have been 

studied in Chapter 4.  

However in this chapter is it aimed to localize the instabilities spatially, namely identify the IP 

or IPs which are causing the instabilities. The input information for this challenge is:  

1. Dragon-Lab  generated output vectors; 

2. Aggregate delay data; 

3. Traceroute data. 

 

1. Dragon-Lab analyzes three metrics at the same time: aggregate delay, average delay 

and packet loss. It is using Robust PCP to detect the abrupt variations in aggregate and 

average delay and it combines these results with the correspondent packet loss in order 

to identify the network state. In the case of this chapter the instabilities that present 

interest are congestions and queues, since link failures will not provide valid 

traceroutes. Therefore, out of the instabilities vector generated by Dragon-Lab, only 

the time bins representing congestions and queues are kept. An example of the filtered 

Dragon-Lab output vector for one day measurements is plotted in the following figure: 

 

 
Fig. 6.1 Dragon-Lab output 
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2. Correspondent to the detected congestions and queues time-bins from the output in 

figure 6.1, the aggregate delay can be selected from the measurements performed on 

the path in question. The aggregate delay data is organized as 82 rows representing the 

days, per 719 columns, representing the 2 minutes time-bins, for each day. From this 

data the important time-bins are the ones correspondent to the detected instabilities. 

This is illustrated in figure 6.2 with the plot of the aggregate delay data for the same 

day of measurements as in figure 6.1. As it can be observed from the figure, the 

aggregate delay data has relatively similar magnitude values. 

 

 
Fig. 6.2 Aggregate delay data 

 

3. The traceroute data is available every two minutes. After basic text processing the data 

will have the format as follows:  

 

 

 

 

 

 

 

 

  

Every traceroute starts with the time instance when it was taken; afterward, the IPs that 

compose the route are listed. In the example above, every real different IP has received an IP 

number. It can be noticed that routes have 19 nodes for this end-to-end path. Moreover the  

06:06:28   08:37:57 
1    IP_1   1    IP_1 
2    IP_2   2    IP_2 
3    IP_3   * 
4    IP_4   4    IP_4 
5    IP_5   5    IP_6 
6    IP_7   6    IP_8 
7    IP_9   7    IP_10 
8    IP_11   8    IP_12 
9    IP_13   9    IP_14 
10  IP_15   10  IP_16 
11  IP_17   11  IP_17 
…   … 
19  IP_25   19  IP_25 
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first 4 nodes and the last 8 nodes are the same for all traceroutes. Another observation is the 

star present on the second traceroute. The IP of node 3 of the path is missing. This can be due 

to a link failure or to the fact that firewalls ban ICMP packets; traceroutes containing these 

types of elements will be discarded.  

Based on the three types of input information, Dragon-Lab should be able to localize the 

source of the instabilities. Practically it is attempted to identify the node or nodes causing the 

detected instabilities. The only source to obtain this is the traceroute information, namely the 

IPs of the nodes. The fitting of the data for being able to process it in order to achieve the goal 

is presented in the next subsection.  

 

6.3 Dragon-Lab Problem Statement 

Dragon-Lab is desired to be an automatic instabilities detection-localization framework. To 

this end the detection and analysis of instabilities follow an easy automated line. However, 

localization of the instabilities also needs to be performed. At this point the available 

information is the one in the previous subsection, 6.2. It will have to be arranged in a feasible 

way for processing.  

The components of the equation will be: a list of end-to-end aggregate delay, a number of 

traceroutes and the list of nodes involved in the traceroutes.  

As presented in subsection 6.2 the only part of the delay that presents interest is the aggregate 

delay that corresponds to the Dragon-Lab detected instabilities. Once more, the only types of 

instabilities considered for this analysis are congestions and queues. The reason for this is that 

link failures determine loss of traceroute probes that cause the appearance of stars in the 

traceroutes and consequently IPs cannot be recovered. As shown in figure 6.2, aggregate 

delay corresponding to a few time bins will be selected. The data is presented in the form of a 

vector, a measurement vector. 

 

  

 

1930,86 

1929,14 

1930,13 

1933,41 

1933,36 

1932,66 

1934,81 

         Fig. 6.3 Measurement vector           Fig. 6.4 Data vector   Table 6.1 Measurement vector example 
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Practically the measurement vector has values in seconds in the order of the ones in table 6.1. 

This is the measurement vector for the NTE – Auckland path for measurement day 11. It can 

be observed that the values of the delay are relatively close to each other, so noisy, 

considering the magnitude of the values (in the order of 1900 seconds).  

The unknown in the attempt to localize the Dragon-Lab detected instabilities is a vector of the 

type shown in figure 6.4. It will be called the data vector. It contains the complete list of 

delays on nodes/ hops involved in the traceroutes correspondent to the instabilities. Out of 

empirical reasons the extent of the time periods for which all instabilities within are analyzed, 

is one day. Therefore, the data vector will contain a list of delays. Each of them represents the 

delay for a particular node. As an example, for hop number two, the data vector will hold, in 

the position given by the numerical ID of the hop, the delay registered on it. In essence, the 

data vector will hold a list delay values with peak on the nodes that are the cause of 

instabilities. It is assumed that the bigger delay values will be responsible for the instabilities. 

Knowing their position within the data vector offers the IP associated with them and so the 

geographical position can be obtained. 

In order to make the processing easier, each different IP was tagged with a unique ID (an 

integer number) in the order of IP occurrence during the measurements day. This is better 

explained with an example from the same path and the same day as for the measurement 

vector above, namely path NTE – Auckland for day 11. The real IPs are not given due to 

proprietary reasons, but different IPs are tagged in the order of appearance in these two 

traceroutes; the assigned IDs on the ID columns.  

  Traceroute IPs  ID   Traceroute IPs    ID 

06:06:28  08:37:57  

1    IP_1 1 1    IP_1 1 
2    IP_2 2 2    IP_2 2 
3    IP_3 3 3    IP_3 3 
4    IP_4 4 4    IP_4 4 
5    IP_5 37 5    IP_6 5 
6    IP_7 6 6    IP_8 21 
7    IP_9 41 7    IP_10 43 
8    IP_11 42 8    IP_12 42 
9    IP_13 9 9    IP_14 49 
10  IP_15 10 10  IP_16 36 
11  IP_17 11 11  IP_17 11 
… … … … 
19  IP_25 19 19  IP_25 19 

Table 6.2 IP – ID example 

This Internet path contains 19 hops; hops 1 to 3 and 11 to 19 are stable over the whole day. 

The remaining nodes shift between a range of IPs, due to either load balancing or possible 

route changes caused by instabilities. It is the last category that presents interest. As you may  
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have noticed following the IP with ID = 4, may come ID = 37. This happens because the 

tagging of the IPs has been done for the whole day, previous to the selecting of the traceroutes 

involved in the instabilities. Practically the path between NTE and Auckland, for the 

traceroutes considered as involved in instabilities, not only the two present in table 6.2, will 

look like in figure 6.5: 3 common IPs for all routes in the beginning, several possible routes in 

the middle of the path, due to load balancing over the Internet, and another 9 common nodes 

in the end. As noticed in the figure the path passes several ASs. The complete traceroutes 

scheme contains in fact 18 possible nodes for the 8
th

 hop of the path, so it is much more 

varied. However this shows how varied the routes are between the end points. This fact helps 

since, as it will be seen later, the diversity of the routes results in a diversity of the matrix that 

will be constructed based on them.  

 
Fig. 6.5 NTE – Auckland routes involved in instabilities 

In order to connect the two already available vectors, the vector of measurements and the data 

vector (vector of unknowns), a binding element is needed. It has to make the connection 

between the cumulated aggregated delay on the entire Internet path, in essence the 

measurements vector, and the delay represented by each of the nodes involved in the 

instabilities during one day.  
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This is achieved by constructing a routing matrix based on the traceroutes and the assignment 

of IDs to the nodes.  

As explained earlier, IDs are attributed to each of the IPs present in the traceroutes during one 

day of measurements. Afterward, the traceroutes associated with the instabilities are selected. 

There is no perfect synchronization between the time bins corresponding to the instabilities 

and the time of the traceroute. Moreover the traceroute marks one moment in time, whereas 

the time-bins last over two minutes. The number of the time-bin gives the time interval during 

the day when the measurement was conducted. For example: time-bin number 112 

corresponds to the real time 3:42:00 - 3:44:00. Consequently a convention is needed so as 

how to select the right traceroute. This is the following:   

- choose the traceroute within the time interval determined by the time-bin number; 

even if there is a traceroute within this time interval, it is not 100% sure that the nodes 

that appear in that traceroute are the ones that cause the instability; this is due to the 

fact that the traceroute returns the IPs at one moment in time; routes however may 

change during the two minute interval of the time bin; 

- if there is no traceroute in the first case, choose the first traceroute before the time 

interval determined by the time bin number; since the nodes that cause instabilities are 

tracked, the reason behind this choice is that: if a node causes the instability it is more 

probable to be in the traceroute before the actual anomaly that is detected. 

Once rules for choosing the right traceroute exist, and the IPs within the traceroutes of one 

day measurements are assigned IDs, the construction of the routing matrix is possible. The 

sequence is the following:  

- take first traceroute; place ones on the first row of a zeros matrix on the column with 

the index equal to the ID from the traceroute; 

- repeat previous step for all traceroutes increasing the row index. 

1 1 0 1 1 0 1 0 0 0 0 0 

1 1 0 1 1 0 1 0 0 0 0 0 

1 1 1 0 1 0 1 0 1 0 0 0 

1 1 0 1 1 0 0 0 0 0 0 1 

1 1 0 0 1 0 1 0 1 0 0 0 

1 1 1 1 1 0 1 0 0 1 0 0 

1 1 0 0 1 1 1 0 1 0 0 0 

Table 6.3 Routing matrix example 

The result of such a construction in the case of NTE – Auckland path will be a matrix like in 

table 6.3. The routing matrix is not complete. On the NTE – Auckland path for day 11, the ID 

numbers go until ID = 51, therefore the routing matrix will have 51 columns. However, it 

illustrates the possible scenarios regarding the content of the columns of a routing matrix.  
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The scenarios are:  

1. random number of ones; 

2. columns of ones – caused by the fact that some IPs are the same on all traceroutes; 

3. columns of zeros – caused by the fact that some IPs miss from the traceroutes involved 

in the instabilities.  

At this point all needed information is available for creating a system of equations as the one 

presented in figure 6.6. Based on the form of the system and on the desired output it is now 

possible to make some modifications on the routing matrix: 

- eliminate columns of zeros; they will determine a zero position in the data vector 

which does not indicate an instability; the indices of the eliminated columns must be 

saved in order to make a mapping between the initial data vector and the one with 

fewer entries (since some columns, which are as many as the unknowns, were 

eliminated);  

- eliminate the columns of ones; they will determine false results when solving the 

system; the ones columns are determined by the nodes at the beginning and at the end 

of the paths and belong to the ISPs from the end of the paths; it is assumed that these 

nodes are reliable since they do not apply load balancing and that the instabilities are 

caused by nodes within the path, nodes that employ load balancing. 

 
Fig. 6.6 Equation scheme 

On the particular example of path NTE – Auckland, after the ones and zeros columns are 

eliminated, there are 24 columns left; this means 24 possible nodes where instabilities might 

appear. Even after removing approximately half of the nodes contained in the traceroutes, the 

system of equations has 7 equations and 24 unknowns, which makes it highly 

underdetermined. However, out of the total number of unknowns, is it assumed, again 

empirically, that the delay is mainly distributed on few of the nodes, since the nodes are core 

Internet backbone routers and consequently it is unlikely that more than 2 fail simultaneously 

on the same path. The rest of the nodes induce delay, but it is significantly lower than the 

delay on the anomaly-causing nodes. In other words, the data vector is a compressible signal.  
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Conclusion  

The solution to solve this Dragon-Lab problem is the use of Compressive sensing 

reconstruction algorithms.  

The motivation for using Compressive sensing is: 

- the general form of the Dragon-Lab problem, in essence that it can be arranged as 

system of equations;  

- the presence of an underdetermined linear system of equations; 

- the compressibility of Dragon-Lab data vector. 

Compressive sensing will be presented in the following section. 

 

 

6.4 Compressive Sensing 

Compressive sensing/ compressed sensing (CS) is a technique for finding sparse or 

compressible solutions to underdetermined linear systems. An underdetermined system of 

linear equations has more unknowns than equations and generally has an infinite number of 

solutions. However, if there is a unique sparse solution to the underdetermined system, then 

the Compressive sensing framework allows the recovery of that solution. Not all 

underdetermined systems of linear equations have a sparse solution. [17] 

This technique has its origins in the signal processing field, particularly in signal acquisition. 

For acquiring a signal, it has to be sampled. In order to be able to reconstruct the signal a 

minimum number of samples is needed. Classically, the minimum sampling rate is given by 

the Nyquist rate, equal to twice the highest frequency of the original signal. However, the 

amount of data generated in nowadays sensing systems has become so large that even the 

Nyquist rate will generate a very large amount of samples. This may lead to very expensive or 

even impossible to build devices capable of reaching the required rate. Some of the areas 

which these high requirements are: imaging, video, medical imaging, remote surveillance, 

spectroscopy.  

The classical solution for being able to process high-dimensional data is compression; it tries 

to find the most concise representation of a signal having a certain level of distortion. 

Transform coding is one of the most known techniques for signal compression. It is based on 

finding a basis that allows for sparse or compressible representation of signals in a class of 

interest. Sparse and compressible signals can be well represented by preserving the largest 

coefficients of the signals. This technique is called sparse approximation. For a signal of 

length N, the signal is sparse if it can be represented using K << N coefficients, and the signal 

is compressible if it can be well-approximated by the K non-zero coefficients.  
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Based on the sparse approximation concept, Compressive sensing has emerged as a new 

framework for signal acquisition. For signals of a certain type, namely sparse or compressible 

in a known basis, CS is able to sample at a much lower rate than the Nyquist rate and still be 

able to recover the signals. The idea behind CS is: instead of sampling at a high rate and then 

compressing, directly sense the data in a compressed form – basically at a lower rate.  

The founders of CS may be considered Emmanuel Candès, Justin Romberg, and Terence Tao 

and of David Donoho. They are the ones who proved that a finite-dimensional signal with a 

sparse or compressible representation can be recovered from a small set of linear, non-

adaptive measurements. [18], [19], [20] 

Compressive Sensing Problem Statement 

The case of standard finite-dimensional compressive sensing model is presented. Given a 

measurement system and a signal x ϵ   the formulation of the CS problem is presented in 

figure 6.7. The process can be mathematically expressed as:    y = Φx           (6.1) 

The measurement system is considered to take M linear measurements of signal x, which is K 

sparse; therefore the measurements vector y ϵ  .  The number of measurements M is 

generally much smaller than the dimension of the signal; the CS matrix or measurements 

matrix Φ represents a dimensionality reduction, mapping  to . If the system can be 

solved, it means that the signal x is well-posed and that there have been taken enough number 

of samples. However, it is possible that the system is under-determined even for the CS 

framework. This might happen if the sparsity of the signal is larger than the number of 

measurements. The measurement process in CS is considered to be non-adaptive; this means 

that the elements of Φ are fixed; they do not depend on previous measurements.  

 
Fig. 6.7 Compressive sampling scheme 

The two fundamental premises underlying CS are:  

- sparsity: for being able to recover a signal from a small number of measurements, the 

signal has to have a sparse representation or to be compressible; the limit of the 

sparsity in relation to the number of measurements will be analyzed later on; 
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- incoherence: the coherence measures the correlation between the columns of the 

measurement matrix; it is desired that the coherence is small, thus high incoherence; 

the implications of coherence and the practical limits will be presented further.  

The design of a functional CS method is based on two stages:  

1. Constructing a stable measurement matrix which preserves the information while 

reducing dimension from N to M 

2. Designing of a reconstruction algorithm which recovers X from Y by making use of 

only M measurements. 

1.  The measurement matrix is essential for the reconstructing algorithms to be able to recover 

the noisy signal from the reduced number of measurements. It is been proved by the authors 

of [21] that in order for a matrix to fulfill the above target, it is sufficient for the matrix to 

satisfy a condition called the Restricted Isometry Property (RIP). Mathematically the property 

can be stated as: 

        , where δK ∈ (0,1) is called          

restricted isometry constant               (6.2) 

The significance is that Φ should be a transformation that preserves the distance for all K 

sparse vectors x. If the property holds, then all K subsets of the columns of Φ are nearly 

orthogonal. Evaluating the RIP property is a NP-hard problem so the property serves as a 

theoretical foundation for CS, but practically it does not say how to build the measurement 

matrix.  

A property of Φ, that is related to the RIP, which is easily computable and provides recovery 

guarantees, is the mutual coherence, µ, of the matrix. Mutual coherence, denoted µ(Φ), is the 

largest inner product between any two columns φi , φj of Φ, and it is mathematically defined 

as follows:  

µ(Φ) .                          (6.3) 

It has been proven that the coherence has the following bounds:  μ(Φ) ∈ . If 

N>>M, then the lower bound will approximately be μ(Φ) ≥ 1/ .  

In [22] the authors provide the connection between the sparsity of the signal, K, and the 

coherence of the measurement matrix so that for each measurement vector Y ∈  , it exists 

at most one signal x so that y = Φx. This connection is mathematically expressed as: 

K < 1/2 ( 1 +  )              (6.4) 
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This formula will provide, in the context of the Dragon-Lab analysis, a limit for how many 

anomalous nodes will be possible to recover based on the incoherence of the measurement 

matrix for the chosen day.  

Another important bound related to the RIP property is the necessary minimum number of 

measurements needed to satisfy the RIP property of order 2K with constant δK ∈ (0, 1/2].  

M ≥ CK log (  ),       where C = 1/2 log(  + 1) ≈ 0.28.                   (6.5) 

A simple way to construct a measurement matrix that satisfies the RIP and incoherence 

conditions is, for example, to choose its elements so that they are independent and identically 

distributed random variables from a Gaussian probability distribution with zero mean and 1/N 

variance. The measurements vector will then contain M randomly weighted linear 

combinations of the elements in x. Authors of various recovering algorithms may construct 

matrices based on other criteria, matrices that yield best recovery performance on their 

particular algorithms. 

A particular type of matrices, namely binary sparse matrices, has been proven by the authors 

of [23] to work well with most of the algorithms using norm 1 signal reconstruction; the 

experiment results are presented in [24]. Their study is especially important because the 

routing matrices used in Dragon-Lab are binary sparse matrices. 

 

2.  The second stage in the design of a compressive sensing method is the design of a 

reconstruction algorithm. Considering noisy measurements: y = Φx + e, the main problem in 

CS is to recover the signal x from the set of measurements y. The design of recovery 

algorithms account for various criteria out of which the most important are: 

- minimal number of measurements; the number of measurements should be as small as 

possible for stable recovery of the K sparse signals; a lower limit for M was given by 

(6.5); 

- robustness to measurement noise; in practical measurements noisy is inevitable; 

therefore recovery algorithms should be stable to both signal noise and to noise added 

to the measurements; 

- speed; the algorithms may deal with large amounts of data, thus they must use as little 

resources as possible. 

Since M < N, the equations system in (6.1) is underdetermined, so there are infinitely many x’ 

that satisfy  Φx’ = y. The reconstruction of x is attempted with the use of the concept of lp 

norm. The lp norm of a vector x is:       =                     (6.6) 
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Three types of reconstruction based on the lp norm have been attempted [26]: 

- Minimum l2 norm reconstruction  

In order to find the solution x, the vector with the minimum l2 norm (also called the energy 

norm) that solves equation (6.1) is searched. L2 norm measures the energy of the signal. 

Mathematically, the system that has to be solved is given in (6.7). The minimization returns 

non-sparse vectors  with many non-zero elements, being almost never possible to reconstruct 

the original signal.  

 = argmin   such that  Φx’ = y           (6.7) 

- Minimum l0 norm reconstruction  

L0 norm counts the number of non-zero elements in x therefore it is more suitable for 

reconstruction of sparse vector; l0 norm of a K sparse vector is K. The mathematical 

formulation in this case is (6.8). The approach looks attractive, but solving the equation is 

numerically unstable and requires an exhaustive search of all   possible locations of the K 

non-zero entries. 

 = argmin   such that  Φx’ = y             (6.8) 

- Minimum l1 norm reconstruction 

If the minimization is conducted using norm 1, which returns the sum of the non-zero 

elements, it has been proven that algorithms are able to recover K sparse signals and well 

approximate compressible signals, using M measurements. The mathematical formulation is: 

 = argmin   such that  Φx’ = y             (6.9) 

In the presence of noise the above formula will have the following form: 

 = argmin   such that    ε ,where ε is the error bound           (6.10) 

Most of the reconstruction algorithms are based on l1 minimization.  

They can mainly be split into three categories: 

1. Convex optimization algorithms 

2. Greedy algorithms  

3. Combinatorial algorithms [27] 

1.  Convex optimization algorithms aim to optimize a convex function of the unknown signal 

x, J(x), over a convex subset of . J is a sparsity-promoting cost function. When noise is 

present in the measurements another function, say H, is involved which penalizes the distance 

between the vectors Φx and y. The general formulation of the problem is: 

 + µ H (Φx, y)                       (6.11) 
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µ is a penalty parameter which may be chosen by trial-and-error or by statistical techniques. 

The most common choices for J and H are:  

       J(x) =   and  H (Φx, y) = ½ .                (6.12) 

Convex optimization algorithms guarantee convergence to the global minimum. One might 

want to use conventional optimization packages for the above formulation, however there are 

two challenges that have to be overcome:  

- real-applications are large-scale; optimizations over millions of variables have to be 

performed, which is not possible for standard optimization software; 

- the objective function is not smooth and standard smoothing techniques do not give 

good results; therefore conventional algorithms involving matrix factorizations are not 

applicable.  

2.  An alternative to the convex optimization algorithms are the greedy algorithms. The goal 

of the sparse approximation is to find the sparsest vector which solves the system of 

equations. The following non-convex problem has to be solved: 

 , where S is a subset of indices and  is the i-th column 

of Φ                         (6.13) 

Searching over the power set formed by the columns of Φ for the optimal subset S is a NP-

hard problem. However, these algorithms greedily select columns and form successively 

better approximations for y. Greedy algorithms rely on iterative approximation of the signal 

and support. They either iteratively identify the signal support until a convergence criterion is 

met, or they obtain an improved estimate by accounting for the mismatched to the 

measurements vector. Some of the best known algorithms that fit this category are: Matching 

Pursuit (MP), Orthogonal Matching Pursuit (OMP) or Stagewise Orthogonal Matching 

Pursuit (StOMP). 

3.  A third approach to solve the CS problem is represented by the combinatorial algorithms. 

They have been developed in the computer science community, in the context of group 

testing. In these types of problems it is assumed that from a set of N items, K have faults; the 

K elements will be non-zero and the rest of the N values will be considered zero. The aim is 

to produce a smallest number of tests to be able to identify the position and possibly the value 

of these faulty items. In this context the tests are represented by a matrix which has 1 in the 

position where an item is tested; the tests are represented by the rows, the items are identified 

by columns. In this way the problem of recovering x becomes the same as the sparse recovery 

problem.  

Some of the most known combinatorial algorithms are: Random Fourier Sampling, HHS 

Pursuit or Sparse Sequential Matching Pursuit.  

There are various differences between combinatorial algorithms and the other two classes of 

algorithms. For example, in the combinatorial algorithms there is full control over Φ. It is  
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preferred that Φ has as few non-zero entries as possible, such that the amount of computation 

needed is reduced; this makes combinatorial algorithms faster than the other classes. In 

contrast, convex optimization algorithms and greedy ones work on any measurement matrix 

as long as it satisfies general condition such as RIP (6.2).  

 

6.5 Compressive Sensing in the Context of Dragon-Lab 

The previous section gives an understanding of the possibilities and general applicability 

conditions of compressive sensing. It also gives an insight of the various classes of 

reconstruction algorithms. One of the most important elements in the CS problem is the 

measurement matrix. Some algorithms have stringent constraints on it and therefore the range 

of their applicability decreases since matrices with particular structures are required; 

especially the algorithms in the combinatorial class. However, many of the algorithms work 

well on general measurement matrices. This fact encourages the use of CS algorithms in order 

to solve the Dragon-Lab problem, section 6.3. 

Several CS algorithms have been tested on different routing matrices and different test 

vectors, in order to be able to make a comparison of the results and choose an algorithm that 

performs best.  

The reconstruction performance of CS algorithms on Dragon-Lab data vectors will be tested, 

as it will be presented in the next section, on two routing matrices. These two routing matrices 

have been selected from an initial number of four. The four routing matrices have been 

constructed based on four scenarios; the scenarios depend on the position of the instabilities 

within the day and on the amplitude of the aggregate delay during the detected instabilities.  

The scheme of the scenarios is: 

- choose a day with spaced anomalous time-bins with varied aggregate delay 

amplitudes; 

- choose a day with clustered anomalous time-bins with varied aggregate delay 

amplitudes; 

- choose a day with distanced anomalous time-bins with close aggregate delay 

amplitudes; 

- choose a day with clustered anomalous time-bins with close aggregate delay 

amplitudes. 

The reasoning behind these choices is that: if instabilities are spaced over the day they might 

be caused by time - uncorrelated nodes, whereas clustered instabilities might be caused by the 

same node; varied aggregate delay amplitudes will generate a less noisy measurement vector 

whereas in the other case the recovery will be affected by high noise level. These four  
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scenarios, which practically represent four different days of measurement, on four different 

paths, have each their own routing matrix. In order to make a first selection of various 

available reconstruction algorithms, the worst case scenario matrix characteristics have been 

chosen. 

Methodology of CS applied on Dragon-Lab data: 

1.   Compute general performance characteristics of routing matrix: 

- mutual coherence;  

- maximum number of data vector peak components, i.e. sparsity K. 

2.   Build test CS matrix and data vector according to dimensions and characteristics of the 

worst case scenario routing matrix determined in 1 which will be used for the algorithms 

recovery performance testing section. 

3.  Select CS reconstruction algorithms that work with general sensing matrices and with 

compressible data vectors, and test them with data from point 2, in order for find which yields 

the smallest reconstruction error. 

 

For each of the chosen four routing matrices the mutual coherence has been calculated 

according to (6.3):  µ(Φ) . Two of the routing matrices have equal 

mutual coherence; however, it is desired to find the worst case scenario matrix, thus make a 

difference between matrices; therefore, another metric is calculated: average columns cross-

correlation. Columns cross-correlation is defined as:  , for i, j two different columns 

of Φ. This metric will express how much the columns differ from each other, which is 

important in compressive sensing. The third calculated metric, denoted “Max sparsity” in 

table 6.4, is the maximum recoverable data vector sparsity according to formula (6.4):           

K < 1/2 ( 1 +  ). The results can be seen in table 6.4. According to these calculations, the 

worst case matrix scenario is chosen as the one with the largest value for mutual coherence 

and the largest value for the average columns cross-correlation. Therefore, the dimensions of 

the routing matrix for the path between NTE and Auckland, and the corresponding form of its 

measurements vector, will be chosen in order to make a selection of the reconstruction 

techniques. 

On the other hand, the best case scenario matrix is the routing matrix for NTE – Cernet, day 

35, because it has the lowest mutual coherence. This matrix is not used for testing the 

algorithms, but it is itself tested in order to find out what the reconstruction performances are 

when using it.  
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 Mutual 

Coherence 

Average columns 

cross-correlation 

Max recovered 

sparsity 

Matrix 

dimensions 

Path NTE – Cernet, day 35 0.5774 0.3976 1 7 X 6 

Path NTE – Auckland, day 11 1 0.2323 1   7 X 24 

Path NTE – Cernet, day 11 0.8333 0.3184 1 8 X 4 

Path Auckland – NTE, day 6 1 0.2105 1 10 X 36 

Table 6.4 Routing matrices characteristics 

The algorithms for the testing section, section 6.6, were selected based on: 

- capability of solving problems similar to y = Φx  as defined in section 6.3, Dragon-

Lab problem statement;  

- generality of the sensing matrix they use; 

- recovering of compressible data vectors. [28],[29] 

The names, short description and source of the algorithms which were selected based on the 

criteria above are presented in the table 6.5. 

All the algorithms have been tested on general random matrices, since reconstruction 

algorithms are designed for random matrices, and afterwards on the particular routing 

matrices constructed from Dragon-Lab traceroutes. Reconstruction algorithms are proven to 

work well on binary matrices also [23]. Some of them will be eliminated and only a few will 

be used for the recovering of the data vector based on the measurement vectors. This can be 

seen in the following section which is dedicated to testing.  
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Nr. Name Short Description  Source 

1 Linprog Part of the optimization toolbox of Matlab; solves linear 

programming problems; used for large scale optimization in the 

testing section.  

[30] 

2 L1EQ Part of the l1Magic package; solves problem (6.9) by reducing it to 

a linear problem and using a primal-dual interior method. 

[31] 

3 GPSR Gradient Projection for Sparse Reconstruction; it is a gradient 

projection algorithm where problem (6.12) is transformed into a 

bound-constrained quadratic programming (BCQP) problem. 

[32] 

4 BP Part of the Sparse Lab package; solves problem (6.9) and makes 

use of a primal-dual interior method in order for solving the 

equations system. 

[33] 

5 LASSO Implementation of the Least Angle Regression (LAR) algorithm 

for solving the least absolute shrinkage and selection operator 

(Lasso) problem (6.11) as in (6.12); this solver is part of the Sparse 

Lab package. 

[33],[34] 

6 StOMP Stagewise Orthogonal Matching Pursuit; included in Sparse Lab; 

different from OMP as the algorithm operates in a fixed number of 

stages. Solves systems of the form in (6.9) 

[33],[35] 

7 YALL L1 algorithms package developed at Rice University; contains  

several solvers; the one used solves a L1L2 problem with  

non-negativity constrain on x. Solves equation (6.12) with µ = 

1/(2ρ). Ρ is a sensitivity threshold parameter.  

[36] 

8 L1LS Solves problem (6.12), namely the L1-regularized least squares 

problem which is further reformulated as a convex quadratic 

program and then solved using an interior-point method.   

[37] 

9 FIST Fast Iterative Shrinkage-Thresholding Algorithm; gradient 

algorithm. Solves problem , where φ is a convex 

nonsmooth regularizer.                                  

[33],[38] 

10 BPDN Basis Pursuit Denoising; it uses Homotopy as active-set method 

for handling the implicit bounds; solves the problem: 
   

[39],[40] 

11 BCS Bayesian Compressive Sensing; it is a Bayesian framework for 

solving compressive sensing problems by using the Relevance 

vector machine (RVM) that solves problem (6.10). 

[41],[42] 

Table 6.5 Algorithms description 
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6.6 Testing and Results 

Target 

There are two main targets for this section: 

1. Perform reconstruction of the Dragon-Lab data vectors, basically localize unstable 

nodes, and validate the results.  

2. Use the knowledge acquired from matrices testing in designing an algorithm for 

automatic localization for any type of Dragon-Lab input data. 

In order to achieve the first target several tests have been conducted. The methodology that 

shortly follows was used. To achieve the second goal, the behavior of the algorithms on the 

routing matrices will be observed; afterwards, the best possible stages that an automatic 

algorithm should follow will be presented.  

Testing Methodology 

Testing is divided in 3 stages: 

1. Testing of the general reconstruction algorithms presented in section 6.4, on general 

conditions sensing matrices and with data vectors that resemble the ones involved in 

Dragon-Lab data. 

2. Testing of routing matrices performance using the algorithms selected at stage 1 and 

data vectors similar to the ones involved in Dragon-Lab data. 

3. Dragon-Lab data vectors recovery. 

 

A general conditions sensing matrix denotes a matrix satisfying the Restricted Isometry 

Property; practically it is a matrix with random entries. It is known that the sensing matrix has 

high impact on the reconstruction performance [18], [19]. Therefore, it is important to know 

how the algorithms perform on different types of matrices. Since no additional information 

concerning the data vectors is available in the Dragon-Lab case, it is very important to know 

how the algorithms perform on what is clearly known – the routing matrix. 

Since it has been observed that the position in the data vector of the peak entry determines 

different recovery performance, three sets of test data vectors will be created for the tests. 

In stage 1, the only known information is the dimensions of the sensing matrix; they have to 

match the ones of the worst case scenario routing matrix chosen in the previous section, 6.4. 

Since algorithms perform best on random matrices, the sensing matrix will be generated with 

elements in a random distribution. In order to make the transition to the routing matrix, 

another matrix of the same dimension will be tested; this second matrix contains random 

elements in {0, 1}. A decline or constancy in the reconstruction performance of the  
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algorithms will be observed. In order to be able to make this comparison the same data sets 

will be used on both matrix types.  

Stage 1 will reduce the number of algorithms based on their reconstruction performance; 

worse performing algorithms are eliminated.  

In stage 2, the worst case and best case scenario Dragon-Lab routing matrices are tested. The 

purpose is to determine the safety noise levels for which algorithms recover correctly the 

position of the peak entry from the data vector. Once more since the position of the peak entry 

is important, several scenarios will be tested. For one of the matrices its performance is 

compared also to the binary sense matrix from Stage 1, using the data sets defined for stage 

one.  

Stage 3 uses the noise limits defined in stage 2 in order to guarantee recovery of the data 

vectors in the Dragon-Lab case based on real measurement vectors and the routing matrices.  

 

6.6.1 General Reconstruction Algorithms Testing 

In this first part the algorithms listed in table 6.5, which are designed to use general random 

sensing matrices, have been tested.  

The goal of this section is to reduce the number of general reconstruction algorithms to the 

ones which perform best on the form of the CS problem given by the characteristics of 

particular routing matrices. CS algorithms are supposed to work well on large scale problems, 

which is not the case of Dragon-Lab for one day of measurements. The algorithms do not 

impose conditions on the size of the problems. However, the size of the problem, in essence 

the size of the sensing matrix, influences the properties of the matrix. Mutual coherence, even 

for a random matrix, is high for matrices with small number of rows.  

Therefore, throughout this section, the form of the matrix with the worst characteristics has 

been chosen. This matrix was designated in the previous section as the one for path NTE - 

Auckland, measurements day 11. It has 7 rows and 24 columns, which makes it difficult even 

for a pseudo-random standard uniform distribution to achieve a low mutual coherence.  

The methodology of this section is: 

6.6.1.1 Test algorithms reconstruction performance using a randomized sensing matrix for 3 

different types of test data vectors depending on the position of the peak component/s; 

6.6.1.2 Test algorithms reconstruction performance using a randomized binary sensing matrix 

using the same test vectors in order to compare results. 

6.6.1.3 Make a decision on which algorithms performs best, based on the results.  
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This part of the testing process has the following similarities with the Dragon-Lab data: 

- Dragon-Lab-like test data vectors; 

- dimension of the sensing matrix for 6.6.1.1; 

- dimension of binary matrix for 6.6.1.2. 

For performing the tests, measurement vectors are obtained by multiplying the sensing matrix 

with the test data vectors. They are introduced as input variables for the algorithms. For both 

test cases, 6.6.1.1 and 6.6.1.2, graphs have been constructed representing a relative 

reconstruction error defined as:  

       E =              (6.14) 

The tests are performed for data vector sparsity varying from 1 to 4. However the decision 

making errors are taken into about for sparsity 3 maximum. Sparsity 4 is kept for better aspect 

graphs. Each of the test data vectors have background noise generated as standard uniform 

distribution in the interval (0, 5) and 100 (unit-less) added for peak entries. Therefore the 

vectors can be considered compressible.  

There are 3 sets of test data vectors depending on the number, namely sparsity K, and position 

of the high data vector entries; they are divided as follows: 

- set 1: for K = 1, high entry located at the beginning of the data vector; 

     for K = 2, high entries located away from each other; 

 for K = 3, high entries located away from each other; 

- set 2: for K = 1, high entry located in the middle of the data vector;  

for K = 2, high entries are consecutive; 

for K = 3, high entries are consecutive; 

- set 3:  for K = 1, high entry located at the end of the data vector; 

    for K = 2, high entries located close to each other; 

  for K = 3, high entries located close to each other. 

These test vectors should represent most of the scenarios which may appear in a Dragon-Lab 

data vector. The sets are used both in 6.6.1.1 and 6.6.1.2, so that a comparison can be drawn. 

The sets of data vectors used can be seen in table A.1.  

 

6.6.1.1 Randomized Sensing Matrix Testing 

This part of testing has been conducted using the defined sets of test vectors and using a 

random, positive defined sensing matrix. The matrix has been generated using the elements is 

a standard uniform distribution on the interval (0,1). The mutual coherence of the matrix is 

0.985; even for a pseudo-random matrix the mutual coherence is high. The matrix can be seen 

in table A.2.  
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For each data set and for each algorithm, the reconstruction error defined in (6.14) is 

calculated and afterward plotted for an easier observation of the results. The figures are 

presented alternatively, for the same vector data set, for this case and for the randomized 

binary matrix test, since it is important to see how much the difference in sensing matrix 

affects the reconstruction.  

 

 
Fig. 6.8 Recovery performance – data set 1 

 

6.6.1.2 Randomized binary matrix testing 

As in the previous case, testing has been conducted using the defined sets of test vectors and 

using a binary matrix; this case has been considered since routing matrices are binary  
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matrices. The matrix has been generated to contain randomly positioned ones in a zeros 

matrix. The mutual coherence of the matrix is 1, just like two of the selected Dragon-Lab 

routing matrices. In this case the matrix has been randomly generated, but the mutual 

coherence is still not smaller than the maximum possible, 1. The matrix used in this case can 

be seen in Appendix, table A.3. As in the case of random sensing matrices, for each data set, 

for each algorithm, the reconstruction error as defined in (6.14) is calculated and afterward 

plotted. The results for this case and for the random matrices case are presented in figures 6.8, 

6.9 and 6.10. 

 

 
Fig. 6.9 Recovery performance – data set 2 
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6.6.1.3 Analysis Results 

The comparison of figures 6.8, 6.9 and 6.10 is split qualitatively into two directions: 

a) based on the used type of sensing matrix 

b) based on the used data set 

In the analysis of all the figures only sparsities 1, 2 and 3 are considered; the expression “all 

sparsities” will refer to these three.  

a)  The type of sensing matrix has a major influence on the reconstruction process. Thus 

figures are grouped together in order to facilitate the observation of the sensing matrix 

influence. Each of the figures is based on the same set of test data vectors.  

In figure 6.8 the transition from a random matrix to a binary matrix results in an increase of 

the highest error for most of the algorithms and for the average error level; exceptions are 

YALL, which performs better and BCS, which is constant. It is noticed that for random 

matrix most of the algorithms have small reconstruction error and most of the curves, i.e. 

error values, are clustered. The introduction of the binary matrix significantly spreads the 

error values for sparsities 2 and 3. It is important to notice that sensing matrix does not have 

much influence in the error for sparsity 1.  

Figure 6.9 shows the same trend as the previous figure: an increase in the general error level 

when changing from random matrix to binary matrix. Also the algorithms that perform better 

are mainly the same. Surprisingly, for the algorithms that have the lowest error for the random 

matrix, the error decreases even more at the introduction of the binary random matrix, 

especially for sparsities 2 and 3.  

In figure 6.10 is it observed that the introduction of the binary matrix determines an increase 

in the error for K=1 for all algorithms, the errors for K=2 remain almost the same and errors 

for K=3 spread, but remain within the same values, relatively low.   

b)   The data set, namely positions where the largest entries in the data vector, has also its 

influence on the reconstruction results. To observe this, the figures, which represent results 

per data set, have to be observed separately, looking either to the upper (random matrix) or 

the lower (binary matrix) part of the figures. Because the binary matrix presents more interest, 

the lower part of each figure will be analyzed. The routing matrix is the same for all data sets, 

so the influence on the errors comes from the position of the peaks within the data vectors. 

The positions might also be regarded as the influence of the sensing matrix itself, by the 

structure of the columns to which the peaks correspond.  

Sparsity K=1: since the theoretical reconstruction limit states that the maximum recoverable 

sparsity is one, the reconstruction error in this case is desired to be low regardless of the 

position of the peak in the data vector. This happens for most algorithms for data sets 1 and 2 

(fig. 6.8, 6.9). In case of data set 3 the error increases, but is however less than 1. 
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Sparsity K=2: for consecutive peaks, data set 2, algorithms perform best, second best situation 

is peaks far apart, with error around 0.8 and the worst situation is when peaks are closely 

spaced.  

Sparsity K=3: in this case the lowest error is obtained for closely spaced peaks; closely spaced 

error values are achieved also for consecutive peaks. The highest errors results from the 

spaced peaks.  

 

 
Fig. 6.10 Recovery performance – data set 3 

 Sparsities 2 and 3 are less important when it comes to selecting the best algorithms for the 

Dragon-Lab data, since the real sensing matrices, the routing matrices, do not have the  
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capacity to recover 2 or 3 peaks. Consequently the selection is based mainly on the 

performance for K=1 and on the value of the error.  

In the figures it is noticed that errors go up to 1.6 or more. This means that the norm of the 

difference in absolute values between the recovered data vector and the original one can be 

1.6 times bigger than the norm of the original data vector. Normally, if the data vector is 

reconstructed correctly this error should be 0. The situation is explained by figure 6.11.  

 
Fig. 6.11 Original vs recovered values example 

It is the example of the reconstruction for three of the algorithms in the case K=2. The errors 

given for each of them are:  YALL – 0.48 BCS – 0.17 OMP – 1.05. It is easy to notice 

based on figure 6.11 that in the case of BCS the recovery is close to the original data and 

therefore it gives the smallest error. In the case of OMP only one peak correct position is 

found but the amplitude is twice as big. The second peak is considered to be on entry number 

1. When the absolute values of the vectors will subtract, high negative values appear. 

Euclidean norm is immune to negative values and therefore the error is big. So the error gives 

an insight of whether the peaks have been located or not, making it important in the decision 

making for the most suitable algorithms choice.  

 

Conclusion 

Even if reconstruction algorithms should use random sensing matrices for a good recovery, 

the comparison between recovery errors using random sensing matrices and recovery errors 

using random binary matrices shows that reconstruction algorithms work properly also using 

binary sensing matrices.  
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Selecting the best performing algorithms for testing them on the routing matrices (next 

section) is based on the recovery error for K=1 in the case of using binary sensing matrices. 

The error threshold was chosen 1 and the algorithms that recover with a smaller error are: 

Linprog, L1EQ, GPSR, BP, LASSO, L1LS and BCS. 

 

6.6.2 Routing Matrices Testing 

This part of the testing chapter is aimed to discover how the selected algorithms perform on 

the routing matrices, check the limits and conditions within which the recovery is achieved, 

and possibly perform more stringent selection of the algorithms. Since the routing matrix is 

one of the a priori known information in the Dragon-Lab problem, it is important to know the 

exact behavior of the algorithms when using the matrix. 

Theoretical motivation for routing matrices testing 

For exact recovery, a sensing matrix should satisfy the RIP property, as presented in the 

Compressive sensing section. Thus the RIP property guarantees universal recovery, in essence 

of any sparse data vector of sparsity K. However, it is proven [48] that recovery can be 

performed for more poorly conditioned matrices for smaller sparsities. Moreover, the 

reconstruction is achieved for a certain number of measurements, which is related to the 

dimension of the data vector and the number of ones per sensing matrix column, namely the 

weight of the column [50].  

Additionally the reconstruction algorithms are influenced by the weight of the columns: 

Firstly, algorithms based on interior point methods [51], such as GPSR, BP or L1LS, require 

the columns of the matrix to be linearly independent [47], [45]; this is not the case of the 

routing matrices since they even have identical columns. On the other hand, in greedy 

algorithms [21], such as OMP or StOMP, a key step is to compute correlations of the 

measurement vector y with the columns of the sensing matrix in order to solve the equations 

systems [46].  

Consequently, since the weight of the routing matrix columns is known to have influence on 

the algorithms reconstruction performance, it has been decided that an exhaustive testing to 

find out the exact influence of the columns weight will be conducted.  

Practical motivation for routing matrices testing 

Dragon-lab framework is aimed to be embedded in a network analysis software product. In 

this direction, the routing matrices testing provides an overview over how an algorithm for 

instabilities localization can be implemented as software application. Another motivation for 

extensive routing matrices testing is having the necessary recovery noise limits for the last 

section of this chapter, namely the reconstruction of the Dragon-Lab data vectors.   
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As a general observation, the routing matrix represents, in terms of traceroutes and nodes, the 

following: 

- each matrix row represents one single traceroute; for example, the second row 

represents traceroute 2; 

- the column number is equal to the node position in the data vector; for instance node 2 

is mapped to column 2; if node 2 was present in the third traceroute then column 2 will 

have a “1” on the third row; consequently the statement “node 2 is involved in one 

traceroute” means that the routing matrix has a “1” in one of the positions of the 

second column. 

Mathematically the mapping between the nodes and the columns of the routing matrix based 

on the traceroute is:    

   

,where  is a node in the data vector x, j is the index for matrix columns.  

The test vectors for this section are chosen based on the idea of spread, consecutive or closely 

spaced peak entries; however, since the matrices are fixed and prior known, specific data sets 

are used in this second stage of testing.  

According to table 6.4, for the current routing matrices only data vectors of sparsity K=1 may 

be recovered using the general recovery algorithms conditions. This signifies that in the 

practical case of Dragon-Lab, for each of the detected instabilities measured delay, most of 

this delay will have to be located on one node, involved in one of the traceroutes, and the rest 

of the nodes will have considerably smaller amount of delay distributed on them. However, in 

this study data vectors with sparsity K=2 will also be analyzed, considering that the position 

where the most part of the delay is located, relative to the routing matrix, makes a difference 

in the recovery process and thus even sparsity 2 can be recovered.  

Depending of the path, the amplitude of the aggregate delay over the entire measurement 

period varies, as seen in table 6.6. This has an influence on how much difference there will be 

between the elements of the measurement vectors and consequently an influence on the values 

found in the data vectors, since each entry of the measurement vector is the sum of a 

combination of elements from the data vector.  

Path 
NTE - 

Cernet 

Cernet - 

NTE 

NTE - 

Auckland 

Auckland – 

NTE 

Maximum aggregate delay (s) 5000 5400 2100 2020 

Variation (max-min) of 

aggregate delay (s) 
3000 1500 250 200 

Table 6.6 General path delay characteristics 

The table and the traceroute data prove that the paths between NTE – Cernet, Cernet – NTE 

and the paths between NTE – Auckland, Auckland – NTE are very similar. This is the reason  
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matrix routing analysis will be conducted on only two of the four routing matrix, namely 

routing matrix of NTE – Auckland, day 11, and routing matrix of NTE – Cernet, day 35. They 

were designated in section 6.4 as the worst, respectively best case scenario matrices in respect 

to their theoretical characteristics.   

Choice of test data vector values 

For the NTE – Auckland path the maximum aggregate delay is about 2000 sec, as seen in 

table 6.6. The number of nodes on the path is 19. Assuming a lightly loaded network the delay 

on the nodes should be equally distributed. Since the sum of a combination of 19 hops from 

the delays in the data vector should equal around 2000 seconds, and it is desired that only one 

node has most of the delay and the rest are low values, basically noise compared to the main 

delay component, then the following values are chosen for the entries of the data vector: an 

average delay of 50 sec for 18 hops plus the main delay component of 1000 seconds on one 

hop. The sum will be around 1900 seconds. This is a value similar to the values existing in the 

measurements vector for this path NTE – Auckland. For this reason the basic test data vector 

will be chosen as in table A.5 from the Appendix, case K=1. For the case of K=1, the main 

delay component will be shifted on different positions within the vector. For the sparsity K=2, 

the three cases presented in the previous testing section, 6.6.1, peaks distanced, peaks 

consecutive and peaks closely spaced, will be used. Based on the same logic as for sparsity 

K=1, the values chosen for the entries of this test data vector will be: each of the high delay 

positions (two of them for K=2) will have 550 sec and the average delay on the other nodes 

(17 nodes) will be 50 sec. Over these basic values noise in different levels will be added. The 

noise will be added by subtracting a certain percentage from the highest component and 

spreading it equally over the rest of the components.  

6.6.2.1 NTE – Auckland Routing Matrix Testing: Worst Case Scenario Routing Matrix 

Based on the theoretical and practical motivation presented at the beginning of section 6.6.2, 

where routing matrix NTE – Auckland was designated the worst case scenario matrix, testing 

of this routing matrix is performed; the test data vectors are given in table A.1 from the 

Appendix. The section is split in several subsections in order to cover all reconstruction 

situations arising from structure of the matrix. As previously stated column weight affects 

reconstruction performance of data vector, consequently data vectors with different noise 

levels can be recovered. Based on the number of traceroutes the node is involved in, in 

essence the weight of the column corresponding to the node, and the sparsity of the data 

vector, the following scenarios were chosen: 

1. Case NTE – Auckland K=1 

1.1 Main delay component placed in a node corresponding to column weight 1;  

1.2 Main delay component placed in a node corresponding to column weight 2; 

1.3 Main delay component placed in a node corresponding to column weight 3; 

1.4 Main delay component placed in a node corresponding to column weight 5. 
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2. Case NTE – Auckland K=2  

2.1 Main delay components placed in distanced nodes; 

2.2 Main delay components placed in consecutive nodes; 

2.3 Main delay components placed in closely spaced nodes. 

For both cases different levels of noise are added to the measurements vector, so as to test 

how the algorithms respond to various data and which of the algorithms work on the worst 

conditions. To have an estimate of the noise level, signal to noise ratio (SNR) will be 

calculated, where signal is considered the peak components of the data vector and noise are 

the rest of the components. It is defined as: 

SNR = 10 *                   (6.15) 

Moreover, the most important is that the algorithms localize the largest data vector 

component. The error is not so important as long as the position is correct. Therefore, for all 

the analyzed cases, tables will be made, showing whether the algorithms recover the main 

component position or not.  

1. NTE – Auckland Case K=1  

1.1 Main delay component placed in a node corresponding to column weight 1 

The form of the routing matrix is very important. It is the one which influences recovery 

algorithms the most. In the case that the main delay component is located on one node which 

appears in only one of the traceroutes, a special situation arises. If the node appears in only 

one traceroute it means that the corresponding column from the routing matrix will have only 

a “1”. It happens that this form of a column is not unique in the matrix. It means that there 

exists another node which appears only once in all traceroutes and during the same 

measurement. Consequently the two columns will be identical. It is observed that this 

situation determines the recovery algorithms to split the anomalous delay equally between the 

two nodes/columns. The only exception to this rule is Lasso, which finds the anomalous node 

as the first node in the series of nodes with identical columns. If the real anomalous node 

happens to be the first one in the series, then it means that Lasso works well. Otherwise, if the 

real anomalous node is the second one in the series of nodes with identical routing matrix 

columns, Lasso will still point to the first one in the series as being the anomalous node. An 

example of this behavior can be seen in table 6.7. The data vector used is the basic test vector. 

The table presents the recovered data vector, for each algorithm.  
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Node Linprog L1eq GPSR BP Lasso L1ls BCS 

7 41,694 25,062 34,975 27,314 0,000 32,641 2,402 

8 133,413 130,659 104,741 131,584 344,148 116,684 132,743 

17 45,670 41,121 45,048 36,806 0,000 18,483 18,610 

18 18,042 21,214 2,024 25,991 0,000 36,859 4,215 

19 122,825 103,313 106,987 92,805 0,000 40,232 99,100 

20 367,545 303,232 234,746 316,978 950,187 343,340 262,439 

21 0,000 0,000 0,000 0,000 0,000 -0,001 0,000 

23 367,545 303,232 234,746 316,978 0,000 343,340 262,439 

Table 6.7 Algorithms performance case 1.1 

Due to space reasons some less important lines have been cut; it can be noticed in the “Node” 

column. It is observed that for most of the algorithms the largest part of the delay is 

distributed between nodes 20 and 23. This is because the original main delay component is 

placed on node 20 and the corresponding column for node 20 is identical to the ones for node 

23. Therefore, the algorithms split the delay equally over the similar nodes. The exception is 

Lasso, which assigns most of the delay to the first node satisfying the column form. In this 

case Lasso gives the best result. The full table is found in Appendix, table A.4. There are 5 

pairs of columns with one “1” per column with identical form in the routing matrix.  

1.2 Main delay component placed in a node corresponding to column weight 2 

On contrast to the previous case, there is just one pair of two identical columns with 2 ones: 

columns 3 and 18. If the main delay component is placed in node 18, similarly to the previous 

case, the main delay component is divided equally between nodes 3 and 18. Thus the main 

component is not detected even without noise, since it is unsure where it actually is located. 

However, there are also unique columns with 2 ones. A challenging case for the recovery is 

when they are placed near columns with 3 ones for example, and this is why one of these 

cases was chosen for this testing. Consequently, the main delay component in the data vector 

was placed on the 16th node. Table 6.8 shows which algorithms can identify the position of 

the node with the main delay component, 16 in this case, for the introduced levels of noise. 

SNR = 23.6dB is the signal to noise ratio for the test vector with one high component and all 

the others having low values. This value is the highest SNR value based on the assumption of 

the chosen test vector values. Recovered peak localized is marked with “D”; not localized 

with “X”. The next SNR value in the table, 13.27dB, is the value that marks the failure of the 

next algorithm, GPSR in this case. In essence all algorithms work until the lowest SNR of 

13.27dB. Thus this type of tables emphasize the breaking point of each algorithm, depending 

on the noise level introduced over the data vector. It is noticed GPSR, Lasso and BCS stop 

recovering the peak position at a noise level of 9.39dB, whereas 4 others work up until 1.49 

dB noise. 
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 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls  BCS 

23.60 D D D D D D D 

13.27 D D X D D D D 

9.39 D D X D X D X 

1.50 X X X X X X X 

Table 6.8 Algorithms performance case 1.2 

1.3 Main delay component placed in a node corresponding to column weight 3 

There are 3 columns which contain 3 ones. Two of them will be presented so as to see how 

much influence the sensing matrix has and to show the worst case scenario. Two of the 

columns are placed near columns with 4 ones and the other one is placed near a column with 

2 ones. Worst case scenarios are always chosen. 

The first case is when delay is placed in node 5, meaning column number 5. This is also the 

worst of the two cases because column 5 is placed near a column which contains 4 ones, 

namely column 6. The results for data vector with delay placed on position 5 can be seen in 

table 6.9. In this case the algorithms which fail first are again GPSR, Lasso and BCS. 

For the second situation column 15 is selected to hold 3 ones; is has however lighter (fewer 

number of ones) neighbor columns; the results are given in table 6.10. 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls  BCS 

13.70 D D X D D D D 

12.86 D D X D X D D 

9.96 D D X D X D X 

3.33 X X X X X X X 

Table 6.9 Algorithms performance case 1.3.1 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls  BCS 

5.61 D D D D D D X 

3.33 X D D D D X X 

-0.11 X D X D D X X 

-11.55 X X X X X X X 

Table 6.10 Algorithms performance case 1.3.2 

Lasso, BCS and Linprog fail first. It is noticed that the algorithms identify the anomalous 

node in much noisier data vectors. Consequently, it may be stated that the number of 

traceroutes the anomalous node is involved in and the number of ones in the neighbor 

columns, have an impact on the recovery performance.        
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1.4 Main delay component placed in a node corresponding to column weight 5 

In this case the delay was placed in a node which appears in 5 out of 7 possible traceroutes. 

This means that in the routing matrix a column has 5 ones, column 8. The choice wants to 

show how influential the structure of the routing matrix is on reconstruction. The results are: 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls  BCS 

9.61 D D D D X D D 

9.70 D D D D X D X 

-11.55 X X X X X X X 

Table 6.11 Algorithms performance case 1.4 

Intuitively, if a node is involved in most of the traceroutes and it is known that most of the 

delay is placed in it, the recovering should be very robust to noise. However, as it can be seen 

from the table above, two of the algorithms failed to recover the main component for a 

relatively low noise level. From what it has been observed in this chapter it would not be a 

mistake to make an even tighter selection of the algorithms and to consider Lasso and BCS 

for elimination. It remains to be seen how they will perform in the cases of the recovery of 

two main components and then the decision will be taken.  

This case was analyzed so as to observe which algorithm is most general and for certain level 

of noise fits all possible scenarios; scenarios of where the anomalous node is located. 

 

2. NTE – Auckland Case K=2 

This case contains three sub cases based on the position of the main delay components within 

the data vector. Like in the previous case, the most important is the recovery of the position of 

the largest data vector components, under different levels of noise. Case K=2 resembles the 

testing performed in the previous subsection, which are the forms of the data vectors with 

respect to the position of the big components. However, the values of the delay placed in the 

data vectors are different and noise will be added. A second difference from case K=1 is the 

values of the largest entries in the data vectors. They will be considered 550 sec, for 

previously explained reasons. This makes the range of the variation, between small data 

vectors entries and large ones, about half of what it was in the previous case. A worse 

performance of the algorithms is expected.  

2.1 Main delay components placed in distanced nodes 

At this point it is known how the algorithms perform on the cases where only one component 

of the data vector is significantly larger. Intuitively, this sub case is like any of the sub cases 

from case K=1, put together. This sub case will be itself split into two sub cases:  

 

 



96 

 

6.6 Testing and Results 

 

- Columns have small number of ones and are placed relatively far from columns with 

many ones. In this case columns 10 and 20 fit. The result is the following: 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls  BCS 

22.50 X X X X D X X 

21.14 X X X X X X X 

Table 6.12 Algorithms performance case 2.1.1 

Even for the lowest level of noise only one algorithm detects the position of the highest 

entries of the data vector. The case of columns with small number of ones and positioned 

close to columns with large number of ones is obvious.  

- Columns have large number of ones; for this case, columns 8 and 15 have been 

selected; and results are in table 6.13; similar results are obtained in case of columns 8 

and 12.   

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls BCS 

19.36 D D D D D D D 

16.54 D D D D X D X 

-20.40 X D D D X D X 

-21.37 X X D X X X X 

Table 6.13 Algorithms performance case 2.1.2 

It can be noticed that two of the algorithms, Lasso and BCS, start giving erroneous results 

even with a high SNR. This is considered the most favorable case for sparsity 2, spread 

anomalous nodes. 

2.2 Main delay components placed in consecutive nodes 

If the columns have small number of ones and are positioned far/close from/to the columns 

with many ones, none of the algorithms detected the biggest data vector entries. In the case 

when the consecutive columns are one holding many ones and another next to it with few 

ones, like in the case of columns 8, 9, the results are the following: 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls BCS 

24.13 D/2 D/2 D/2 D/2 X D/2 X 

Table 6.14 Algorithms performance case 2.2 

Most of the algorithms detect the biggest entry placed on the column with many ones. 

However they do not detect the entry set on the columns with fewer ones, at least not 

completely. They detect two identical smaller components, corresponding to two identical 

columns: columns 9 and 22. It is a situation similar to case K=1, sub case 1.1.  
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2.3 Main delay components placed in closely spaced nodes 

In this case columns 8 and 11 are selected. Column 8 contains 5 ones, whereas column 11 just 

two and is next to a column with 4 ones. The performance of the algorithms is: 

 Algorithm name 

SNR (dB) Linprog L1eq GPSR BP Lasso L1ls BCS 

23.60 D D D D D D D 

19.11 D D D D X X D 

14.57 D D D D X X X 

10.77 X X X X X X X 

Table 6.15 Algorithms performance case 2.3 

Lasso, BCS and L1LS fails first, at a fairly high SNR. They do not identify the position of 

node 11 as one of the peaks.   

In the case of NTE – Auckland routing matrix another interesting comparison can be made; a 

comparison between how the 7 selected algorithms perform, in terms of error as defined in 

(6.14), on the randomized binary matrix and on the routing matrix, using the same data 

vectors for testing, namely the three sets defined in section 6.6.1. The results for the routing 

matrices are shown in figure 6.12. 

 
Fig. 6.12 a) Recovery performance NTE – Auckland routing matrix 

The plots in figure 6.12 a) and b) have to be compared to the lower half of figures 6.8, 6.9 and 

6.10. The algorithms reconstruct the same test vectors, but using two different binary 

matrices. The differences are: 

Data set 1: for the case of the random binary matrix all algorithms produced errors below 1; 

for the routing matrix BCS and LASSO give error 1.2 for K=3, K=2 respectively. However 

for K=1 errors they are the same, low, and for K=2 errors remain in the same range as for the  
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random matrix. Thus the use of the routing matrix does not affect much the reconstruction for 

this data set.  

Data set 2: for K=1 errors remain the same; for K=2 they increase from 0.2 to 0.5; for K=3, 

they go up from approximately 0.25 to 0.7, with the exception of Lasso. Generally, the 

increases in errors are significant, but the error remains below 0.8. Once more the algorithms 

perform well also on the routing matrix. 

 

 
Fig. 6.12 b) Recovery performance NTE – Auckland routing matrix 
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Data set 3: for K=1 errors decrease significantly and all algorithms reconstruct around 

error=0.2; for K=2 errors decrease again compared to the use of the random binary matrix; for 

K=3 the errors slightly increase. However, in this case the routing matrix performs even better 

then the random binary matrix.  

These observations show that the use of NTE – Auckland routing matrix does not deteriorate 

the reconstruction process, meaning that it may be used as sensing matrix compatible with the 

selected algorithms. 

Conclusion NTE – Auckland Routing Matrix Testing: Worst Case Scenario Routing 

Matrix 

Firstly: the algorithms perform differently based on the position of the instabilities in the data 

vectors, because the routing matrix is not completely random. The routing matrix for path 

NTE – Auckland has some pairs of identical columns, which makes recovery of one peak 

position impossible; however it is known that the peak is situated in one of the maximum 

recovered data vector values. 

Secondly: the other parameter involved in the performance of the algorithms is the noise 

applied to the data. Noisy data vector yields a noisy measurements vector. The measurement 

vectors in Dragon-Lab are noisy; the ones for paths NTE – Auckland, Auckland – NTE have 

almost equal component values being the worst situation possible.   

For sparsity K=1 the worst case scenario is for the lowest accepted SNR of 9.96 dB, and the 

algorithms which perform best are Linprog, L1eq, GPSR, BP and L1ls. They will be used in 

the last section of this chapter, namely the reconstruction of data vectors based on the 

measurement vectors.  

 

6.6.2.2 NTE – Cernet Routing Matrix Testing: Best Case Scenario Routing Matrix 

Path NTE – Cernet is considerably different from the previously analyzed path. First and 

foremost, this path contains only 15 nodes in comparison to the previous which had 19 nodes, 

and the nodes’ IPs do not vary much. This creates a shorter routing matrix than the previous, 

which can be an advantage since the ratio unknowns/number of measurements is smaller. The 

routing matrix for NTE – Cernet path is the best with respect to the mutual coherence, thus 

the algorithms should perform better, without much influence from positioning of the ones on 

columns.  

A problem encountered for this matrix is its rank. Linprog stops working because the large 

scale solver, LIPSOL, used by Linprog, requires that the matrix has full structural rank. The 

rank of this 7 x 6 matrix is 4, in comparison to the NTE – Auckland 7 x 24 matrix which was 

7. A modification of the recovery algorithm used by Linprog is possible, but there would not 

be a comparison to the previous case and would be a loss of generality.  
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Another difference from the previous path is, according to table 6.6, the maximum aggregate 

delay. Consequently, there will be higher variations and the measurements vector is less noisy 

than the one for path NTE – Auckland. The test data vectors are chosen based on the same 

idea, except that the values should be increased such as to produce measurement vectors in 

the order of 3300 sec; there are 15 nodes on the whole path. The test data vectors for this 

routing matrix will be the ones in the table 6.16. 

case 1.1 case 1.1 HN case 2.1 case 2.2 

125,69 207,04 128,96 126,27 

133,77 250,52 700,00 133,09 

132,63 212,80 139,88 133,97 

140,31 209,47 135,00 132,32 

1.400,00 280,00 134,60 700,00 

128,74 206,80 700,00 700,00 

Table 6.16 Test data vectors NTE - Cernet 

Testing of the routing matrix of the path NTE – Cernet, for measurement day 35, is done, on 

the same procedure as in the previous subsection, using the test data vectors from table 6.16, 

in the following way: 

1. NTE – Cernet Case K=1 

1.1 Main delay component placed in a node corresponding to column weight 3; 

1.2 Main delay component placed in a node corresponding to column weight 4; 

2. NTE – Cernet Case K=2  

2.1 Main delay components placed in distanced nodes; 

2.2 Main delay components placed in consecutive nodes. 

 

1. NTE – Cernet Case K=1  

1.1 Main delay component placed in a node corresponding to column weight 3 

Compared to the previous routing matrix, this one does not have identical columns and the 

minimum number of ones per columns is 3, maximum 4. This is shown also by the lower 

mutual coherence value. Consequently, it is expected that the algorithms recover better the 

data vector. If node 5 holds the anomalous delay, the results are: 

 Algorithm name 

SNR (dB) L1eq GPSR BP L1ls 

-14.40 D D D D 

-15.44 D X D D 

-15.23 X X X X 

Table 6.17 Algorithms performance case 1.1 
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Even for a very noisy data vector, like the one in table 6.16, case 1.1 HN, the main delay 

component position is recovered.  

1.2 Main delay component placed in a node corresponding to column weight 4 

The second node in the test vector is chosen to have the main delay component. As in the 

previous sub case and as expected high level of noise is allowed. The results are: 

 Algorithm name 

SNR (dB) L1eq GPSR BP L1ls  

-14.43 D D D D 

-14.77 X X X X 

Table 6.18 Algorithms performance case 1.2 

The conclusion for this case is that any of the four algorithms can recover the data vector if it 

contains only one important aggregate delay component, independently of the position in the 

data vector and for high noise levels. 

 

2. NTE – Cernet Case K=2 

Since the routing matrix columns are different, two sub cases will be analyzed: the anomalous 

nodes are positioned away from each other and secondly, they are consecutive nodes. The test 

vectors for sub cases 2.1 and 2.2 can be seen in table 6.16. Since there are only 6 nodes 

involved in this routing matrix out of a total of 15 on the entire path, it is less probable that 2 

of them will be anomalous. The case is tested anyway. All algorithms are strong to noise and 

recover the test data vectors’ position of main delay component.  

2.1 Main delay components placed in distanced nodes 

 Algorithm name 

SNR (dB) L1eq GPSR BP L1ls 

-5.44 D D D D 

-5.81 X X X X 

Table 6.19 Algorithms performance case 1.2 

2.2 Main delay components placed in consecutive nodes 

 Algorithm name 

SNR (dB) L1eq GPSR BP L1ls 

-5.55 D D D D 

-5.82 X X X X 

Table 6.20 Algorithms performance case 2.2 

Conclusion NTE – Cernet Routing Matrix Testing: Best Case Scenario Routing Matrix 

Lasso, which gave poor results on the NTE - Auckland routing matrix does not work at all on 

this routing matrix; therefore, eliminating it is supported. The remaining algorithms perform 

well in recovering the positions of the largest delay component/s in any possible case and with  
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high noise level, that is low SNR; the routing matrix of NTE – Cernet path can be considered 

as having suitable properties for the selected algorithms.  

 

Conclusion Routing Matrices Testing 

The two routing matrices tested in this section are representative for all the four paths, NTE – 

Cernet, Cernet – NTE, NTE – Auckland, Auckland – NTE, measured within this research. 

This section gives and insight on how the recovery algorithms perform on these two matrices, 

setting limits such as which algorithms can be used for obtaining a certain recovery 

performance.  

It was decided that the algorithms which perform best using any of the two routing matrices 

are: L1eq, GPSR, BP and L1ls. They will be used on the recovery of the real data vectors in 

the following section, 6.6.3.  

 

6.6.3 Dragon-Lab Data Vectors Reconstruction 

This stage of the testing chapter is dedicated to recover the position of the anomalous delay 

entries using the Dragon-Lab measurement vectors, and the two tested routing matrices. Thus 

the section will be divided into two subsections: NTE – Auckland, day 11 data and NTE – 

Cernet, day 35 data. The two cases are different because:   

- NTE – Auckland routing matrix has different properties from the NTE – Cernet one; 

- NTE – Auckland measurement vector is more noisy than the NTE – Cernet one.  

The measurement vectors for the two paths are in the first two columns of table 6.21. The 

difference in values can be noticed. All values represent aggregate delay and are measured in 

seconds. 

NTE – 

Auckland 

Day 11 

NTE – 

Cernet 

Day 35 

Reconstructed 

NTE – 

Auckland 

Day 11, L1eq 

Reconstructed 

NTE – 

Auckland 

Day 11, GPSR 

Reconstructed 

NTE – 

Auckland 

Day 11, BP 

Reconstructed 

NTE – 

Auckland 

Day 11, L1ls 

1930,86 3821,48 1930,86 1935,78 1930,86 1930,87 

1929,15 3186,15 1929,15 1923,27 1929,15 1929,15 

1930,13 2974,13 1930,13 1926,59 1930,13 1930,13 

1933,42 3329,01 1933,42 1927,40 1933,42 1933,42 

1933,37 3684,12 1933,37 1930,49 1933,37 1933,36 

1932,66 4749,98 1932,66 1931,37 1932,66 1932,66 

1934,81 2778,02 1934,81 1930,08 1934,81 1934,81 

Table 6.21 Measurement vectors 
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Methodology 

The each of the two paths, the scheme for testing is:     

- recover data vectors; calculate SNR based on definition (6.15) in order to have an 

empirical guarantee that the algorithms recover the correct vector; 

- calculate y_reconstructed as routing matrix * x_reconstructed; compute reconstruction 

errors for cases K=1 and K=2;  

- analyze detected peak values and nodes in order to give a validation for the method.  

Two errors have been defined in order to characterize the performance of the reconstruction 

based on the measurement vector. As mentioned above y_reconstructed is calculated. Since 

the only certain information available is the routing matrix and the real measurement vector y, 

two errors have been defined based on y. The first one is (6.16) and represents the relative 

difference between original y and reconstructed y. 

E1 =                        (6.16) 

The second one estimates the difference between original y and reconstructed y after 

x_reconstructed has been sparsified; meaning only the peak value entry is kept, or two of 

them for K=2. The formula is: 

E2 =                   (6.17) 

 

6.6.3.1 NTE – Auckland Data Vector Reconstruction 

For this case E1 and E2 are presented in table 6.22, for each algorithm. Both sparsities, K=1 

and K=2, are presented together for a better comparison. The recovered data vector is 

included in table A.9, the K=1 sparse and K=2 sparse vectors in table A.10. Y reconstructed 

can be seen in table 6.21 for all algorithms. The error between original y and reconstructed y 

is very small. Thus algorithms recover a possible x that yields an almost original y.  

         Algorithm 

Sparsity 
L1eq GPSR BP L1ls 

E1 (%)  1.089e-10 0.0023 3.904e-12 1.608e-06 

SNR (dB) 
K=1 

-8.90 -5.55 -9.33 -9.71 

E2 (%) 0.7265 0.6961 0.7302 0.7335 

SNR (dB) 
K=2 

-2.70 -0.15 -2.91 -3.12 

E2 (%) 0.5895 0.5320 0.6493 0.5932 

Table 6.22 NTE – Auckland measurement vector recovery results 

The SNR of the recovered data vector is minimum -9.71 dB. In the previous section it was 

shown that the 4 best algorithms identify a data vector with sparsity K=1 for a minimum SNR 

of 9.96 dB in the situations where the peak value entry is not situated on a column with just  
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one “1”. However, in this case the reconstructed gave node 8 as solution for the highest peak. 

For this case the algorithms require a minimum of -11.54 dB to give a correct recovery. This 

means that the result for K=1 for algorithms L1eq, BP and L1ls is within functional noise 

limits 

In the K=2 case, there are many more possibilities. The algorithms give, for the reconstruction 

of the measurement vector, different results. Two of them point to nodes 8 and 12 and the 

problem nodes, and one of them to nodes 8 and 15. The minimum SNR calculated for the 

recovered data vector is -3.12 dB, which is within the noise limits for these two cases. If these 

two nodes are indeed the ones causing excessive delay, then the four algorithms recover them 

correctly. In other cases higher SNR is required to guarantee a trusty reconstruction.  

 

NTE – Auckland Reconstruction Validation Approach  

It is difficult to validate these results. However one possible attempt to do it is to check the 

recovered data vectors in combination with information from the traceroutes delays. The 

information is not sufficient and the delay measurements in traceroutes are not accurate, but it 

is a possibility.  

Traceroute Data 

The traceroute presents the situation at a given moment in time. The moment might not even 

be included in the time-bin detected as anomaly. If it is not, then the previous traceroute was 

considered. The only way to correlate the available data (traceroutes, aggregate delay) with 

the detected anomalous nodes is to analyze the traceroute RTT delay given in the traceroutes. 

Traceroute data is known to be inaccurate: erroneous routes might be returned mainly due to 

load-balancing routers which might determine the appearance of false loops, cycles and 

diamonds, which do not represent Internet topology [43]. Moreover, traceroute delay is not 

end-to-end delay, like the ones used for instabilities detection, but it is assumed that there is 

no problem on the return path. It is proven, [44], that the increase in RTT is more likely to be 

due to a problem in the forward path, because of the asymmetry of the Internet routes.  
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In the case K=1, the node detected as having all delay is node 8. This node corresponds to the 

column with the most number of nodes, so it could be that: it really holds an anomaly or is 

detected because of the weight of the column. Node 8 corresponds to column 8, which 

corresponds to IP-ID 21 (the column in the original routing matrix), which is in fact IP: 

154.54.31.245. This IP is found on some of the traceroutes for the day on position 6/hop 6 on 

the paths. By checking this position for any delay abnormality the following is found: 

Hops at position 5 and hops in position 6 have a significant delay difference between them, 

compared to the other transitions. Moreover, these IPs belong to the same ISP: Psinet Inc. 

from Washington DC. However, all delays differences between hops 5 and 6 are around 100 

ms, so there is no abnormal behavior.  

In contrast, if two highest delay values of the recovered data vector are considered, K=2 (see 

table A.10 for reconstructed x), abnormal situations appear on the traceroutes, or on 

traceroutes before the detected anomalous time-bins. As second highest delay L1eq and L1ls 

detect node 12, GPSR node 6 and BP node 15.    

Node 12 IP ID: 28 IP: 130.117.2.177 

Node 6 IP ID: 10 IP: 154.54.30.190 

Node 15 IP ID: 36 IP: 154.54.30.186 

Table 6.23 NTE – Auckland node mapping 

Nodes 6 and 15 are related since their IPs belong to the same hop number in the traceroutes 

paths, namely position 10.  For two of the traceroutes an abnormal behavior is observed, that 

may confirm anomaly happens. The normal delay values for the day for hops 8, 9 and 10 are: 

But for these traceroutes: 

The excessive delay does not appear on hops 10, but it appears at one of hops 9. Since 

traceroute is not exact and this traceroute is just before the detected anomalous time-bin  

 

Wed, 30 Jun 2010 13:45:22 GMT 

Unix time: 1277905522 

traceroute to 130.216.5.81 (130.216.5.81), 30 hops max, 60 byte packets 

 1  178.164.4.1  0.337 ms  0.416 ms  0.402 ms 

 2  217.168.93.101  8.132 ms  8.236 ms  8.223 ms 

 3  149.6.116.17  39.296 ms  39.401 ms  39.388 ms 

 4  130.117.2.181  24.237 ms  24.458 ms 130.117.2.177  24.327 ms 

 5  130.117.49.209  33.815 ms 130.117.49.221  33.800 ms 130.117.49.209  34.137 ms 

 6  130.117.51.230  124.930 ms 154.54.31.245  129.116 ms 130.117.51.230  124.822 ms 

 8  154.54.28.254  155.857 ms  155.835 ms 154.54.2.222  155.708 ms 

 9  154.54.0.141  191.349 ms 154.54.0.245  191.846 ms 154.54.0.253  191.853 ms 

10  154.54.3.142  191.034 ms 154.54.30.190  191.359 ms  191.343 ms 

Wed, 30 Jun 2010 13:45:22 GMT 

traceroute to 130.216.5.81 (130.216.5.81), 30 hops max, 60 byte packets 

8  154.54.2.246  155.492 ms 154.54.5.53  155.388 ms 154.54.29.14  151.422 ms 

9  154.54.0.253  244.102 ms 154.54.0.141  191.401 ms  191.509 ms 

10 154.54.30.190  191.309 ms 154.54.3.142  191.054 ms 154.54.30.190  191.266 ms 
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traceroute, it is possible that this excessive delay found on hops 9 is a prediction of delay on 

node 15 or on node 10 in the next 2 minutes time-bin. On the traceroute: 

Excessive delay appears on IP: 154.54.0.141, which is node 11, IP-ID: 27, which is next to 

node with IP-ID: 28 in the routing matrix. Algorithms detect column 12, being heavier, but as 

shown here, the problem is right next to it. So even if the localization is not perfect, problems 

might lay one or two hops away counting on the routing matrix columns. This traceroute also 

suggests that it is possible to have delay on hops 10 in a future time-bin, since there is 

abnormal behavior delay on hops 8 and 9.  

Normal traceroutes behavior for IP-ID: 28, column 12, IP 130.117.2.177, position in 

traceroute paths: 4, is the following: 

Wed, 30 Jun 2010 16:16:30 GMT 

traceroute to 130.216.5.81 (130.216.5.81), 30 hops max, 60 byte packets 

 1  178.164.4.1  0.301 ms  0.388 ms  0.374 ms 

 2  217.168.93.101  8.219 ms  8.205 ms  8.431 ms 

 3  149.6.116.17  8.527 ms  8.514 ms  8.502 ms 

 4  130.117.2.181  24.444 ms 130.117.2.177  24.312 ms 130.117.2.181  24.652 ms 

However, for two traceroutes abnormalities appear: 

 

 

 

 

 

 

 

The regular delay for hops 3 is around 8.5 msec. For these two cases the delay is increased. It 

is possible that a few minutes later excessive delay will also appear on hops 4, or that, once 

more, the peak is detected because column 12 has 4 ones. 

Conclusion  

 

The algorithm which retrieves the lowest reconstruction error for sparsity K=1, is BP. It 

recovers a data vector with the peak position the same as for the other three algorithms. 

Validation of the correct recovery of the peak position is supported by the occurrence of 

abnormally high delay on the traceroutes involved in the instabilities for the recovered node 

position. However, abnormal delay is registered on several paths during the day, therefore it 

cannot be 100% confirmed that the instability is real.  

Wed, 30 Jun 2010 16:16:30 GMT 

traceroute to 130.216.5.81 (130.216.5.81), 30 hops max, 60 byte packets 

 8 154.54.28.254  331.579 ms 154.54.2.222  331.572 ms 154.54.29.14  332.623 ms 

 9 154.54.0.141  256.356 ms 154.54.0.249  191.271 ms 154.54.0.245  191.288 ms 

10 154.54.30.190  191.393 ms  191.270 ms  191.388 ms 

Wed, 30 Jun 2010 16:14:29 GMT 

 1  178.164.4.1  0.362 ms  0.327 ms  0.420 ms 

 2  217.168.93.101  8.147 ms  8.256 ms  8.703 ms 

 3  149.6.116.17  21.236 ms  21.221 ms  21.319 ms 

 4  130.117.2.177  24.475 ms  24.460 ms 130.117.2.181  24.328 ms 

Wed, 30 Jun 2010 13:45:22 GMT 

 1  178.164.4.1  0.337 ms  0.416 ms  0.402 ms 

 2  217.168.93.101  8.132 ms  8.236 ms  8.223 ms 

 3  149.6.116.17  39.296 ms  39.401 ms  39.388 ms 

 4  130.117.2.181  24.237 ms  24.458 ms 130.117.2.177  24.327 ms 
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6.6.3.2 NTE – Cernet Data Vector Reconstruction 

There is much difference between NTE- Cernet and NTE- Auckland: the measurement vector 

is more varied in values, and the matrix is more uniform regarding the weight of the columns.  

For this case E1 and E2, for each algorithm, are given in table 6.22. The recovered data vector 

is included in table A.9, the K=1 sparse and K=2 sparse vectors in table A.10. The error 

between original y and reconstructed y is a lot larger than the one for NTE – Auckland. 

Especially for L1eq, 33% is surprisingly high. It reconstructs an x that yields a y far from the 

original y. 

         Algorithm 

Sparsity 
L1eq GPSR BP L1ls 

E1 (%)  0.3383 0.0825 0.0825 0.0825 

SNR (dB) 
K=1 

-0.86 -9.59 -8.04 -9.61 

E2 (%) 0.7522 0.7497 0.7368 0.7495 

SNR (dB) 
K=2 

8.04 0.56 1.60 0.55 

E2 (%) 0.5256 0.5984 0.5884 0.5980 

Table 6.24 NTE – Cernet measurement vector recovery results 

The SNR of the recovered data vector is minimum -9.61 dB, which is very low, but in section 

6.6.2 it was shown that all algorithms identify a data vector with sparsity K=1 for a very low 

minimum SNR; the algorithms in that section were tested only until SNR -14.43 dB, but it is 

possible that they recover even noisier data. This limit is safely larger than -9.61 dB, so the 

algorithms perform within limits. Once again this result is due to the fact that the routing 

matrix does not have any similar columns. In the K=2 case, the noise limits are also within the 

ones found in section 6.6.2.  

 

NTE – Cernet Reconstruction Validation Approach 

For a validation of the results, the traceroutes for this day are inspected, with the same 

observation on accuracy as in the previous case. 

Both sparsity cases will be analyzed simultaneously. The nodes, columns, IP-IDs, IPs, 

traceroute hops rows involved in the detected data vectors are structured in table 6.25: 

Column/Node IP-ID IP 
Traceroute 

hop nr 

3 7 217.239.40.117 7 

5 17 130.117.14.106 6 

1 5 130.117.49.241 5 

Table 6.25 NTE – Cernet node mapping 
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The normal traceroute behavior for hop numbers 4 to 8 is: 

There is a high increase from hop 6 to 7, but it is normal increase over the day, hops 6 are 

located in USA and hops 7 in Germany. For the traceroutes involved in the measurements 

there is only one observed abnormal change: 

There is slightly increased delay on IP: 217.239.40.117, which is detected as having the peak 

delay entry by all algorithms. In this traceroute there is increased delay on hops 7 and on hop 

8; but hop 8 does not have an entry in the data vector.  

Conclusion 

The lowest general recovery error is given by L1eq and for K=1 sparsified (make vector 

components zero except for the peak component) data vector the lowest recovery error is 

given by BP. Lowest error for sparsity K=2 is given by L1eq. However, compared to the 

previous path, the anomalous nodes detected on this path cannot be confirmed by traceroute 

check.  

 

Conclusion Dragon-Lab Data Vectors Reconstruction  

The first target of this section was to recover the Dragon-Lab data vectors. In order to 

theoretically ensure the correct reconstruction, the algorithms have to recover data vectors 

within the noise levels limits determined in the previous testing section.  

The second target of this section was the validation of the recovery, basically to show that 

nodes flagged as causing instabilities actually cause them.  

It was observed that based on the noise levels results from the previous section and on the 

recovery results from this section, algorithms work within functional noise limits, therefore 

they are supposed to give proper results. The best performance algorithms are: L1eq, BP and 

L1LS. GPSR gives slightly higher reconstruction errors.  

 

 

Wed, 28 Jul 2010 05:22:11 GMT 

traceroute to 203.91.120.141 (203.91.120.141), 30 hops max, 60 byte packets 

 4  130.117.2.177  24.282 ms  24.383 ms  24.487 ms 

 5  130.117.49.241  33.857 ms  33.959 ms 130.117.49.245  33.940 ms 

 6  130.117.14.106  33.687 ms 130.117.14.150  33.736 ms 130.117.14.106  33.637 ms 

 7  62.154.14.58  310.200 ms 217.239.40.117  297.347 ms 62.154.14.58  309.381 ms 

 8  62.153.203.206  367.670 ms  379.533 ms  379.520 ms 

Wed, 28 Jul 2010 16:54:46 GMT 

traceroute to 203.91.120.141 (203.91.120.141), 30 hops max, 60 byte packets 

 4  130.117.2.177  24.259 ms  24.482 ms  24.581 ms 

 5  130.117.49.241  33.834 ms  34.057 ms  34.160 ms 

 6  130.117.14.150  33.665 ms  33.669 ms 130.117.14.106  33.773 ms 

 7  62.154.14.58  323.574 ms  322.155 ms 217.239.40.117  313.844 ms 

 8  62.153.203.206  393.244 ms  367.831 ms  393.154 ms 



109 

 

6.6 Testing and Results 

 

The validation approach was conducted by inspection of the traceroutes RTT delay in order to 

find anomalies in delay for the flagged nodes. The validation is inaccurate but it confirms 

anomalies in some of the tested cases.  

 

6.6.4 Localization algorithm 

The Dragon-Lab is aimed to be implemented as network analysis software and the 

localization technique is an important feature. Therefore an algorithm is needed for the 

implementation of the localization function.  

 

The two previous sections: testing of recovery algorithms on routing matrices in order to find 

out the noise levels for a good recovery on various cases, and recovery of the data vectors 

based on the measurement vectors knowing the applicability conditions for the reconstruction 

algorithms, offer an overview of how an unstable states localization algorithm should be 

designed. The scheme of the algorithm can be seen in figure 6.13.  

Basically the stages of the algorithms are:  

1. select measurement day; select test data vector; construct routing matrix; construct 

measurement vector. 

2. test routing matrix using a reconstruction algorithm in order compute the empirical 

noise limits for which recovery is guaranteed; empirical noise limits are calculated as 

in routing matrices testing section; also based on the previous section the best 

performing reconstruction algorithms are L1eq, BP, and L1LS; any of them can be 

chosen as reconstruction algorithm.  

3. perform recovery of data vector; verify algorithm functional noise limits for the 

detected positions and confirm successful/unsuccessful localization. 

As a task for future work the algorithm will have to be implemented to produce a software 

application.  
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6.6 Testing and Results 

 

 
Figure 6.13 Localization algorithm 
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6.7 Conclusion 

 

6.7 Conclusion 

This chapter has shown that Compressive sensing reconstruction algorithms can successfully 

be applied on Dragon-Lab data in order to attain spacial localization of network instabilities.  

The motivation for using Compressive sensing reconstruction algorithms was: 

- the general form of the Dragon-Lab problem, in essence that it can be arranged as 

system of equations; 

- the presence of an underdetermined linear system of equations; 

- the compressibility of Dragon-Lab data vector. 

The algorithms for the testing were selected based on: 

- the capability of solving problems similar to the Dragon-Lab problem form: y = Φx; 

- the general characteristics of the sensing matrix they use; 

- the capability to recover compressible data vectors. 

The methodology for the use of the algorithms in order to recover the node/s causing 

instabilities has been done in three stages with the following results: 

- selection of the best algorithms that work on random sensing matrices as well as on 

binary random matrices; it is aimed that the positions of the data vector main delay 

components are recovered; the selection is done based on sparsity 1 vectors recovery; 

the best algorithms selected were: Linprog, L1EQ, GPSR, BP, LASSO, L1LS and 

BCS; 

- replacing of the binary random matrices with the worst and best case scenarios 

Dragon-Lab routing matrices and selection of the best reconstruction algorithms; 

selection was based on the tolerated noise limit of the data vector for proper recovery 

for sparsities 1 and 2; the algorithms chosen to work best using routing matrices were: 

GPSR, BP, LASSO and L1LS; 

- recovery of Dragon-Lab data vectors, basically recovering the positions of the nodes 

that cause instabilities, has been performed using the measurements vectors, routing 

matrices and the selected algorithms; taking into consideration the noise limits 

determined in the previous stage it can be theoretically guaranteed that the algorithms 

recover correctly at least one position of the data vector; the algorithms that give the 

lowest recovery error  are L1eq, BP and L1LS; validation of the results has been 

conducted using traceroute data, which is not conclusive in all the verified cases.  

The above methodology, used with the target of recovering data vectors under theoretical 

signal to noise ratio conditions, formed the basis for the proposal of a localization algorithm. 

Consequently, Dragon-Lab can be implemented as software application for automatic 

unstable nodes localization.  
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Chapter 7  

Conclusion and Future Work 

 

 

 

7.1 Conclusion 

As IP networks have become the support of an increasingly varied range of applications, from 

games, video streaming, to e-commerce and online banking, it is critical to understand the 

functioning and performance bounds of the network in order to provide a certain QoS. This 

understanding is based on measurements of various metrics and parameters for being able to 

control and manage the network. Although many studies have been conducted on Internet 

measurement the problem of the performance of its paths is still little understood.  

As presented in Chapter 2, existing techniques that aim to diagnose network paths 

performance are focused in two directions: 

- they either analyze end-to-end delay in order to achieve as accurate measurements as 

possible and create delay distributions [1]; or they use end-to-end delay measurements 

to infer the delay distribution within the network [2] or for bandwidth estimation, 

admission control and other decision making schemes [3]; these are generally Internet 

wide measurements; 

- or they analyze failures within the network, based on protocols routing information 

[4], [5], syslog messages, administrator e-mails, router configurations [6], [8], to be 

able to localize the failure; these techniques are conducted on large scale networks 

and mainly suffer from scalability problems if applied Internet wide. 

Chapter 3 presented Dragon-Lab as a new, alternative approach for Internet paths behavior 

investigation and for identifying and localizing Internet paths instabilities. The technique is 

based on detecting and identifying significant unusual changes in the packet delay and packet 

loss. In this way there is no need for further information regarding the structure, operations or 

events in the Internet backbone from the ISPs side. The problem is however challenging given 

the fact that huge amounts of noisy data have to be processed in order to extract meaningful 

information.  
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7.2 Future Work 

 

The performance of detection and classification of network instabilities has been analyzed in 

Chapter 4. It was shown that the framework achieves an overall detection rate of the 

instabilities of around 90%. The detection rate depends on the type of unstable network states 

which has to be detected and on the choice of the tuning parameter involved in the principal 

component pursuit program. 

Chapter 5 provided the methodology for Dragon-Lab output information analysis, in order to 

give a suggestive overview of the behavior of the detected instabilities. Moreover, it offered 

the support for future Internet paths simulations with respect to the distribution of instabilities. 

Compared to the techniques presented in Chapter 2, Dragon-lab accomplishes path analysis 

based only on two metrics: packet delay and packet loss. Additionally, general metrics, such 

as: availability, fatigue or stability, have been defined in order to give an overview of the 

impact of the combination of instabilities per path.  

Chapter 6 completes the network troubleshooting capabilities of Dragon-Lab with the 

introduction of instabilities spacial localization. Localization of instabilities, in essence 

identify the unstable nodes, is a challenge in Internet paths analysis based on only end-to-end 

delay, packet loss information and traceroutes. The results, performance, conditions and limits 

of achieving this goal were presented in this chapter. It has been shown that localization is 

possible under certain conditions. Following the methodology for unstable nodes positions 

recovery an algorithm for automatic localization has been proposed. The only un-

accomplishment is the current validation method of the spacial localization technique, based 

on traceroutes; it does not give constant results for all tested cases; another validation method 

will have to be used; this is presented in the next section.  

 

7.2 Future Work 

A first clear objective can be set for future work: confident validation of the localization 

technique. So far the traceroute validation of the reconstruction result is confirmed in just a 

few of the tested cases. Since traceroute data is not accurate, both situations are possible: that 

there is an instability but it is not reflected by the traceroute, and that there is no instability but 

the traceroute presents abnormal behavior. It is also possible that the abnormal delay is caused 

by the nodes from the beginning or end of the paths, nodes that were assumed stable and 

consequently eliminated from the analysis. However, algorithms have to detect something as 

long as the routing matrix is not empty.  

A secure way to confirm that localization works is to create a simulation model of the 

network: the same characteristics of the hops on the path, the same traffic characteristics in 

the network. On this artificial network controlled delays can be introduced or extra traffic in 

order to generate the instabilities. Afterwards, the same information as for Dragon-Lab is  
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7.2 Future Work 

 

acquired in order to apply the framework on it. In this way the problem nodes are known and 

the validation can be conducted.  

A second direction for future work is the software implementation of the localization 

technique based on the algorithm presented in the previous chapter.  
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Appendix 

 

 

 

A.1 Additional Results 

Table A.1 Test vectors form 

Ref. 
Nr. 

Data Set 1  Data Set 2  Data Set 3 

K=1 K=2 K=3 K=4  K=1 K=2 K=3 K=4  K=1 K=2 K=3 K=4 

1 3,74 2,57 3,77 100,1  2,37 0,32 4,36 1,82  0,53 2,86 2,88 3,57 

2 102,1 1,20 0,66 2,80  4,76 1,79 2,54 2,04  3,73 3,74 0,05 2,01 

3 4,06 1,30 1,78 3,06  1,24 1,17 3,94 1,84  3,65 1,60 4,05 4,29 

4 1,90 3,79 101,9 1,50  1,93 1,02 2,37 2,34  3,59 2,46 3,04 4,60 

5 1,60 4,97 4,43 3,99  2,16 4,07 4,14 2,52  0,67 1,11 2,40 100,9 

6 4,93 1,78 0,11 3,98  4,15 1,97 1,61 4,55  2,23 4,70 1,34 100,3 

7 3,59 103,7 4,22 3,91  4,12 0,27 4,88 1,03  2,54 2,41 1,29 3,98 

8 2,07 0,55 1,44 1,76  2,26 101,8 101,3 1,69  2,65 102,7 102,4 0,71 

9 0,49 2,99 1,25 0,27  1,90 103,8 100,3 2,87  4,30 1,11 1,14 100,5 

10 3,67 2,15 2,44 3,54  4,63 0,83 103,7 2,43  3,39 0,48 100,2 3,05 

11 3,19 3,65 3,65 4,96  3,70 4,56 4,16 1,31  4,03 100,3 0,85 3,52 

12 0,37 1,31 1,01 0,81  103,6 1,60 4,61 2,90  2,66 4,10 1,29 1,92 

13 0,60 0,47 1,08 100,3  4,73 1,65 1,64 4,39  4,78 3,86 100,9 100,5 

14 4,91 2,25 104,8 4,56  2,55 1,02 4,02 0,30  0,33 0,98 3,03 4,44 

15 2,48 3,20 2,97 100,9  3,96 3,84 2,69 2,20  2,71 4,48 4,12 0,28 

16 0,11 0,66 1,52 4,26  2,26 0,35 2,32 100,9  1,41 3,42 4,05 0,69 

17 0,27 2,26 4,84 100,5  4,25 4,75 4,10 100,3  2,40 3,28 4,01 4,32 

18 0,70 3,26 4,48 0,93  1,95 0,79 4,76 2,70  3,42 4,95 3,54 2,11 

19 4,47 4,13 0,95 1,24  3,69 1,43 0,38 3,84  1,04 0,17 4,30 2,06 

20 2,33 101,5 0,01 0,27  4,88 3,44 3,54 1,17  3,04 2,12 3,91 4,80 

21 2,80 2,01 3,56 3,04  2,62 0,71 1,17 2,94  1,63 2,45 1,02 3,75 

22 2,47 4,42 104,3 3,89  2,15 2,56 1,99 2,29  4,40 2,92 4,97 4,90 

23 0,34 3,50 0,59 2,56  1,04 3,61 1,34 100,3  0,67 0,42 0,47 1,17 

24 4,49 1,21 0,20 0,14  1,62 4,64 4,16 100,2  100,5 3,30 3,25 0,48 
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Table A.2 Used test random sensing matrix 
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Table A.3 Used test binary sensing matrix 

1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 

1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 

0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 

1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 

1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 

0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 

0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 
 

 

Table A.4 Complete table of algorithms recovery performance case 1.1 NTE – Auckland 

Node Linprog L1eq GPSR BP Lasso L1ls  BCS 

1 132,838 174,389 232,805 173,638 4,838 202,644 214,257 

2 125,073 172,098 239,359 163,977 0,000 153,294 201,021 

3 18,042 21,214 2,024 25,991 338,158 36,859 4,215 

4 44,318 33,905 24,401 32,026 0,000 16,093 6,468 

5 0,000 0,000 -0,018 0,000 0,000 -0,003 0,166 

6 51,250 22,866 0,000 24,571 0,000 26,404 8,393 

7 41,694 25,062 34,975 27,314 0,000 32,641 2,402 

8 133,413 130,659 104,741 131,584 344,148 116,684 132,743 

9 0,000 -45,351 -69,969 -39,979 0,000 -37,271 -17,431 

10 0,000 0,000 0,000 0,000 0,000 -0,001 0,000 

11 0,000 0,000 0,000 0,000 0,000 -0,004 1,490 

12 34,412 18,525 0,683 24,015 0,000 47,771 1,430 

13 41,694 25,062 34,975 27,314 0,000 32,641 2,402 

14 45,670 41,121 45,048 36,806 0,000 18,483 18,610 

15 59,261 121,579 151,235 112,540 9,328 108,960 118,043 

16 0,000 0,000 0,000 0,000 0,000 0,000 0,123 

17 45,670 41,121 45,048 36,806 0,000 18,483 18,610 

18 18,042 21,214 2,024 25,991 0,000 36,859 4,215 
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19 122,825 103,313 106,987 92,805 0,000 40,232 99,100 

20 367,545 303,232 234,746 316,978 950,187 343,340 262,439 

21 0,000 0,000 0,000 0,000 0,000 -0,001 0,000 

22 0,000 -45,351 -69,969 -39,979 0,000 -37,271 -17,431 

23 367,545 303,232 234,746 316,978 0,000 343,340 262,439 

24 0,000 0,000 0,000 0,000 12,834 -0,003 -0,003 

 

 

Table A.5 Test data vectors NTE – Auckland 

case 1 case 2.1 case 2.2 case 2.3 

54,39 48,15 49,98 45,71 

53,96 53,05 49,37 54,58 

51,06 46,78 46,68 52,00 

62,92 57,41 57,65 55,12 

53,36 50,95 51,84 45,05 

50,60 53,68 53,17 53,53 

45,01 53,19 52,06 49,67 

47,51 550,00 550,00 550,00 

49,32 45,02 550,00 47,21 

49,31 54,45 49,61 53,06 

53,75 52,92 49,93 550,00 

45,68 48,99 47,74 54,98 

48,40 53,73 51,55 54,38 

46,77 51,74 49,07 50,54 

47,46 47,42 48,00 54,13 

52,28 46,68 51,05 51,35 

47,88 53,61 52,91 52,80 

47,37 48,27 54,71 50,67 

46,40 48,25 52,73 46,92 

1.000,00 49,00 51,00 54,06 

47,21 550,00 49,49 50,15 

48,78 46,64 46,53 54,99 

51,66 51,88 47,11 48,77 

54,36 51,43 52,00 47,06 
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Table A.6 NTE – Auckland routing matrix, day 11 

        Col 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

2 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 

3 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 

4 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 

5 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 

6 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

7 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 

 

 

Table A.7 NTE – Cernet routing matrix, day 35 

    Col 

Row 
1 2 3 4 5 6 

1 0 0 1 1 1 0 

2 0 1 0 1 0 1 

3 0 0 0 1 1 1 

4 0 1 1 1 0 0 

5 1 1 1 0 0 0 

6 1 0 1 0 1 0 

7 1 1 0 0 0 1 

 

 

Table A.8 NTE – Cernet original routing matrix, day 35 

        Col 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 

2 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 

3 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

6 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 

7 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 

 

 

Table A.9 Data vector reconstruction NTE – Auckland, day 11 

Node L1eq GPSR BP L1ls  

1 561,07 471,07 564,78 572,90 

2 1,82 0,40 1,04 1,32 

3 403,58 451,95 396,94 391,72 
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4 3,67 0,00 2,78 3,30 

5 0,00 0,00 0,00 0,01 

6 559,97 547,93 569,34 571,99 

7 0,00 0,00 0,00 0,01 

8 806,74 912,28 794,41 783,25 

9 0,20 0,00 0,15 0,28 

10 0,31 0,00 0,38 0,27 

11 0,95 0,09 0,88 0,76 

12 562,94 475,17 566,84 574,83 

13 0,00 0,00 0,00 0,01 

14 0,76 0,00 1,16 0,91 

15 560,51 542,55 569,90 572,64 

16 0,94 0,08 1,15 0,80 

17 0,76 0,00 1,16 0,91 

18 403,58 451,95 396,94 391,72 

19 0,00 0,28 0,00 0,01 

20 0,00 0,00 0,00 0,01 

21 0,31 0,00 0,38 0,27 

22 0,20 0,00 0,15 0,28 

23 0,00 0,00 0,00 0,01 

24 0,27 0,00 0,20 0,41 

 

 

Table A.10 Data vector reconstruction NTE – Auckland, day 11, K=1 and K=2 

Sparsity K=1 K=2 

Node L1eq GPSR BP L1ls L1eq GPSR BP L1ls 

1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

6 0,00 0,00 0,00 0,00 0,00 547,93 0,00 0,00 

7 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

8 806,74 912,28 794,41 783,25 806,74 912,28 794,41 783,25 

9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

10 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

12 0,00 0,00 0,00 0,00 562,94 0,00 0,00 574,83 

13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

15 0,00 0,00 0,00 0,00 0,00 0,00 569,90 0,00 

16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

17 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

19 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

21 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

23 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

24 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

 

 

Table A.11 Data vector reconstruction NTE – Cernet, day 35 

Node L1eq GPSR BP L1ls  

1 1.024,00 1.353,88 1.281,41 1.356,73 

2 512,00 901,78 886,63 901,47 

3 1.536,00 1.553,60 1.645,83 1.554,59 

4 384,00 985,14 908,18 984,75 

5 1.024,00 1.437,25 1.423,09 1.440,18 

6 256,00 785,42 881,53 789,65 

 

 

Table A.12 Data vector reconstruction NTE – Cernet, day 35, K=1 and K=2 

Sparsity K=1 K=2 

Node L1eq GPSR BP L1ls L1eq GPSR BP L1ls 

1 0,00 0,00 0,00 0,00 1.024,0 0,00 0,00 0,00 

2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

3 1.536,0 1.553,6 1.645,8 1.554,5 1.536,0 1.553,6 1.645,8 1.554,5 

4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

5 0,00 0,00 0,00 0,00 1.024,0 1.437,2 1.423,0 1.440,1 

6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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Table A.13 General Dragon-Lab performance absolute values and rates 

Link λ FP D ND FP rate [%] ND rate [%] D rate [%] 

Cernet 

NTE 

2 165 562 7 29,36 1,25 98,77 

2,5 60 418 23 14,35 5,50 94,78 

3 31 336 45 9,23 13,39 88,19 

NTE 

Cernet 

2 209 1678 127 12,46 7,57 92,96 

2,5 60 875 207 6,86 23,66 80,87 

3 27 518 289 5,21 55,79 64,19 

AUCKLA 

NTE 

2 682 1952 6 34,94 0,31 99,69 

2,5 270 1018 17 26,52 1,67 98,36 

3 78 616 44 12,66 7,14 93,33 

NTE 

AUCKLA 

2 953 2752 40 34,63 1,45 98,57 

2,5 154 1341 123 11,48 9,17 91,60 

3 36 780 272 4,62 34,87 74,14 

 

where,  

FP False positive 

D Detected 

ND Not detected 

C Congestion  

Q Queuing building up 

F Link failure 

D rate = (D / (D +ND)) * 100% 

FP rate = (FP / D) * 100% 

ND rate = (ND / D) * 100% 

 

Table A.14 a) Dragon-Lab classification performance absolute values and rates 

Link λ FP - C FP - Q FP - F D - C D - Q D - F ND - C ND - Q ND - F 

  Cernet 

NTE 

 

2 19 128 18 113 263 186 1 2 4 

2,5 6 49 5 117 147 154 11 4 8 

3 2 28 1 87 98 151 28 3 14 

NTE 

Cernet 

2 115 14 80 840 173 665 117 3 7 

2,5 28 6 26 415 131 329 192 3 12 

3 16 1 10 255 77 186 264 4 21 

AUCKLA 

NTE 

 

2 371 57 254 848 123 981 5 0 1 

2,5 143 28 99 362 65 591 13 1 3 

3 38 14 26 151 41 424 31 1 12 

NTE 

AUCKLA 

2 484 39 430 1230 93 1429 38 1 1 

2,5 86 13 55 533 40 768 113 7 3 

3 24 0 12 274 15 491 256 4 12 
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Table A.14 b) Dragon-Lab classification performance absolute values and rates 

Link λ FP rate – 

C[%] 

FP rate - 

Q[%] 

FP rate - 

F[%] 

D rate - 

C[%] 

D rate - 

Q[%] 

D rate - 

F[%] 

Cernet 

NTE 

 

2 16,81 48,67 9,68 99,12 99,25 97,89 

2,5 5,13 33,33 3,25 91,41 97,35 95,06 

3 2,30 28,57 0,66 75,65 97,03 91,52 

NTE 

Cernet 

2 13,69 8,09 12,03 87,77 98,30 98,96 

2,5 6,75 4,58 7,90 68,37 97,76 96,48 

3 6,27 1,30 5,38 49,13 95,06 89,86 

AUCKLA 

NTE 

 

2 43,75 46,34 25,89 99,41 100,00 99,90 

2,5 39,50 43,08 16,75 96,53 98,48 99,49 

3 25,17 34,15 6,13 82,97 97,62 97,25 

NTE 

AUCKLA 

2 39,35 41,94 30,09 97,00 98,94 99,93 

2,5 16,14 32,50 7,16 82,51 85,11 99,61 

3 8,76 0,00 2,44 51,70 78,95 97,61 
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A.2 Matlab Routines 

ROUTINE 1. GENERAL INSTABILITIES IDENTIFICATION AND CLASSIFICATION  

 

 

% Internet paths IDs  

% path 5002 = NTE - Cernet  

% path 1022 = Cernet - NTE 

% path 5003 = NTE - AUCKLA 

% path 4003 = AUCKLA - NTE 

  

% Assignment of spreadsheet from the visual inspection of Dragon-Lab 

% signaled instabilities according to the path 

path=5002; 

var_lambda=2.5; 

if (path==5002) 

    nrsheet=2; 

end 

if (path==1022) 

    nrsheet=5; 

end 

if (path==4003) 

    nrsheet=8; 

end 

if (path==5003) 

    nrsheet=11; 

end 

% Run PCP scripts 

demoUninettv2(var_lambda,path) 

demoUninett2v2(path) 

demoUninett3v2(var_lambda,path) 

% Import measurements data 

ag_delay = xlsread('agregdelay.xlsx'); 

av_delay = xlsread('averagedelay.xlsx'); 

losses = xlsread('losses.xlsx'); 

% Read output of PCP scripts 

mat1 = xlsread(strcat(num2str(path),'-agregated-delay-120.xlsx')); 

mat2 = xlsread(strcat(num2str(path),'-avg-delay-120.xlsx')); 

agreg_delay=mat1'; 

average_delay=mat2'; 

  

% Section for filtering physically impossible combinations of the three 

% delay space features 

[nr_time_bins, nr_days]=size(agreg_delay); 

congestions=zeros(nr_time_bins,nr_days); 

for j=1:1:nr_days 

for i=1:1:nr_time_bins 

    if (ag_delay(i,j)~=0) 

        if  ((ag_delay(i,j) <0) && (av_delay(i,j) <0) && (losses(i,j)==0)) 

            ag_delay(i,j)=0; 

        end 

        if  ((ag_delay(i,j)~=0) && (av_delay(i,j)==0) && (losses(i,j)==0)) 

            ag_delay(i,j)=0; 

        end 

        if  ((ag_delay(i,j) <0) && (av_delay(i,j) >0) && (losses(i,j)==0))  

            ag_delay(i,j)=0; 

        end 

        if  ((ag_delay(i,j) >0) && (av_delay(i,j) <0) && (losses(i,j)==0))  
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            ag_delay(i,j)=0; 

        end 

        if  ((losses(i,j)>0) && (ag_delay(i,j)>0) && (av_delay(i,j)<0))     

            ag_delay(i,j)=0; 

        end 

    end 

end 

end 

  

% Section for processing the remaining elements from the detected 

% instabilities matrix - ag_delay; detections due to NTP synchronization 

% delay variations are removed 

for j=1:1:nr_days 

aux=0; 

for i=1:1:nr_time_bins 

        % Eliminate detections due to NTP synchronization 

        if ((aux>=4 && (ag_delay(i,j)==0 || i==nr_time_bins)) && ... 

                                            losses((i-aux),j)==0)        

        for k=(i-aux):1:(i)            

            ag_delay(k,j)=0;  

        end 

        end     

       

        % Save and eliminate series of detection longer than 4 time bins 

        % which fit the congestion definition 

        if ((aux>=4 && (ag_delay(i,j)==0 || i==nr_time_bins))  && ... 

                        losses((i-aux),j)~=0 && losses(i,j)~=0 && ... 

            (ag_delay((i-aux),j)>0) && (av_delay((i-aux),j)>0) && ... 

                    ((agreg_delay((i-1),j) > agreg_delay(i,j)) && ... 

                    (average_delay((i-1),j) > average_delay(i,j))))     

            for m=i-aux:1:i 

                congestions(m,j)=ag_delay(m,j); 

            end 

            for k=(i-aux):1:(i)            

                ag_delay(k,j)=0;  

            end 

  

        % Eliminate any other series on detections longer than 4 

        % consecutive time bins 

        elseif ((aux>=4 && (ag_delay(i,j)==0 || i==nr_time_bins)) && ... 

                losses((i-aux),j)~=0) 

        for k=(i-aux):1:(i)            

            ag_delay(k,j)=0;  

        end     

        end     

        if (ag_delay(i,j)~=0)     

        aux=aux+1;  

        else aux=0; 

        end  

end 

end 

% Create the detections matrix with only possible true instabilities 

ag_delay=ag_delay+congestions; 

  

% Section for deleting false positive detections based on visual  

% inspection saved in a spreadsheet corresponding to the path 

fpmatrix=excel_manipulator(nrsheet); 

% First step: filter visually inspected data of mistakenly input  

% impossible entries 

for j=1:1:nr_days 

    aux2=0; 
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    for i=1:1:nr_time_bins 

        if (fpmatrix(i,j)~=0)         

        if (((ag_delay(fpmatrix(i,j),j)<0) && (av_delay(i,j)<0) && ... 

        (losses(i,j)==0)) || ((fpmatrix(i,j)~=0) && (av_delay(i,j)==0)... 

        && (losses(i,j)==0) ) || (ag_delay(fpmatrix(i,j),j)<0) && ... 

        (av_delay(i,j)>0) && (losses(i,j)==0) ) || ... 

        ((ag_delay(fpmatrix(i,j),j)>0) && (av_delay(i,j)<0) && ... 

        (losses(i,j)==0)) || ((ag_delay(fpmatrix(i,j),j)>0) && ... 

        (av_delay(i,j)<0) && (losses(i,j)>0) ) || ((fpmatrix(i,j)~=0 )... 

        && ag_delay(i,j)==0))                   

        fpmatrix(i,j)=0; 

        end 

        end 

        if ((aux2>=4 && (fpmatrix(i,j)==0 || i==nr_time_bins)) && ... 

            losses((i-aux2),j)==0)        

        for k=(i-aux2):1:(i)            

            fpmatrix(k,j)=0;  

        end 

        end              

        if (fpmatrix(i,j)~=0)     

        aux2=aux2+1;  

        else aux2=0; 

        end 

    end 

end 

% Second step: remove false positives from detected instabilities 

for j=1:1:nr_days 

    for i=1:1:nr_time_bins 

        if (   (fpmatrix(i,j)~=0 )   ) 

            ag_delay(fpmatrix(i,j),j)=0; 

        end 

    end 

end 

  

% For better control and generality for the other codes matrices to save 

% instabilities of different length are created; TB denotes time bins 

anomalies_oneTB=zeros(nr_time_bins,nr_days); 

anomalies_twoTB=zeros(nr_time_bins,nr_days); 

anomalies_threeTB=zeros(nr_time_bins,nr_days); 

anomalies_long=zeros(nr_time_bins,nr_days); 

  

for j=1:1:nr_days 

aux=0; 

for i=1:1:nr_time_bins 

        if ( (aux==1) && (ag_delay(i,j)==0 || i==nr_time_bins))  

            anomalies_oneTB(i-1,j)=ag_delay(i-1,j); 

        end 

        if ( (aux==2) && (ag_delay(i,j)==0 || i==nr_time_bins))        

            for m=i-aux:1:i 

                anomalies_twoTB(m,j)=ag_delay(m,j); 

            end 

        end  

        if ( (aux==3) && (ag_delay(i,j)==0 || i==nr_time_bins))        

            for n=i-aux:1:i 

                anomalies_threeTB(n,j)=ag_delay(n,j); 

            end 

        end  

        if ((aux>=4 && (ag_delay(i,j)==0 || i==nr_time_bins)) && ... 

           losses((i-aux),j)~=0  && losses(i,j)~=0 && ... 

           (ag_delay((i-aux),j)>0) && (av_delay((i-aux),j)>0) && ... 

           ((agreg_delay((i-1),j) > agreg_delay(i,j)) && ... 
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           (average_delay((i-1),j) > average_delay(i,j))))     

            for m=i-aux:1:i 

                anomalies_long(m,j)=ag_delay(m,j); 

            end 

        end 

        if (ag_delay(i,j)~=0)     

        aux=aux+1;  

        else aux=0; 

        end  

end 

end 

     

% Section for classifying network states that last for one time bin  

% they are saved into the cong, qbup and failure matrices 

cong_oneTB=zeros(nr_time_bins,nr_days); 

qbup_oneTB=zeros(nr_time_bins,nr_days); 

failure_oneTB=zeros(nr_time_bins,nr_days); 

for j=1:1:nr_days 

    for i=1:1:nr_time_bins 

        if (((anomalies_oneTB(i,j)>0) && (av_delay(i,j)>0) && ... 

           (losses(i,j)>0) ) || ((anomalies_oneTB(i,j)>0) && ... 

           (av_delay(i,j)==0) && (losses(i,j)>0))) 

        cong_oneTB(i,j)= anomalies_oneTB(i,j); 

        elseif ((anomalies_oneTB(i,j)>0) && (av_delay(i,j)>0) && ... 

                (losses(i,j)==0)) 

        qbup_oneTB(i,j)= anomalies_oneTB(i,j); 

        elseif (((anomalies_oneTB(i,j)<0) && (av_delay(i,j)==0) && ... 

               (losses(i,j)>0) ) || ((anomalies_oneTB(i,j)<0) && ... 

               (av_delay(i,j)>0) && (losses(i,j)>0) ) || ... 

               ((anomalies_oneTB(i,j)<0) && (av_delay(i,j)<0) && ... 

               (losses(i,j)>0))) 

        failure_oneTB(i,j)= anomalies_oneTB(i,j); 

        end 

    end 

end 

  

% Section for classifying network states that last for two time bins  

cong_twoTB=zeros(nr_time_bins,nr_days); 

qbup_twoTB=zeros(nr_time_bins,nr_days); 

failure_twoTB=zeros(nr_time_bins,nr_days); 

for j=1:1:nr_days 

    for i=1:1:nr_time_bins 

        if (((anomalies_twoTB(i,j)>0) && (av_delay(i,j)>0) && ... 

           (losses(i,j)>0)) || ((anomalies_twoTB(i,j)>0) && ... 

           (av_delay(i,j)==0) && (losses(i,j)>0))) 

        cong_twoTB(i,j)= anomalies_twoTB(i,j); 

        elseif ((anomalies_twoTB(i,j)>0) && (av_delay(i,j)>0) && ... 

               (losses(i,j)==0)) 

        qbup_twoTB(i,j)= anomalies_twoTB(i,j); 

        elseif (((anomalies_twoTB(i,j)<0) && (av_delay(i,j)==0) && ... 

               (losses(i,j)>0)) || ((anomalies_twoTB(i,j)<0) && ... 

               (av_delay(i,j)>0) && (losses(i,j)>0)) || ... 

               ((anomalies_twoTB(i,j)<0) && (av_delay(i,j)<0) && ... 

               (losses(i,j)>0))) 

        failure_twoTB(i,j)= anomalies_twoTB(i,j); 

        end 

    end 

end 

  

% Section for classifying network states that last for three time bins 

cong_threeTB=zeros(nr_time_bins,nr_days); 
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qbup_threeTB=zeros(nr_time_bins,nr_days); 

failure_threeTB=zeros(nr_time_bins,nr_days); 

for j=1:1:nr_days 

    for i=1:1:nr_time_bins 

        if (((anomalies_threeTB(i,j)>0) && (av_delay(i,j)>0) && ... 

           (losses(i,j)>0) ) || ((anomalies_threeTB(i,j)>0) && ... 

           (av_delay(i,j)==0) && (losses(i,j)>0))) 

        cong_threeTB(i,j)= anomalies_threeTB(i,j); 

        elseif ((anomalies_threeTB(i,j)>0) && (av_delay(i,j)>0) && ... 

               (losses(i,j)==0)) 

        qbup_threeTB(i,j)= anomalies_threeTB(i,j); 

        elseif (((anomalies_threeTB(i,j)<0) && (av_delay(i,j)==0) && ... 

               (losses(i,j)>0)) || ((anomalies_threeTB(i,j)<0) && ... 

               (av_delay(i,j)>0) && (losses(i,j)>0)) || ... 

               ((anomalies_threeTB(i,j)<0) && (av_delay(i,j)<0) && ... 

               (losses(i,j)>0))) 

        failure_threeTB(i,j)= anomalies_threeTB(i,j); 

        end 

    end 

end 

  

% The matrices for the three types of instabilities are the superposition 

% of the previously found matrices 

cong    = cong_oneTB + cong_twoTB + cong_threeTB + anomalies_long; 

qbup    = qbup_oneTB + qbup_twoTB + qbup_threeTB; 

failure = failure_oneTB + failure_twoTB + failure_threeTB; 

  

savefile='cong.mat'; 

save(savefile,'cong'); 

savefile='qbup.mat'; 

save(savefile,'qbup'); 

savefile='failure.mat'; 

save(savefile,'failure'); 

 

 

   ROUTINE 2. INSTABILITIES DURATIONS CDF GENERATION  

 

 

% Simplified example code for one Internet path and for  

% one type of instabilities, namely congestions. 

% cong matrix is obtained with Routine 1. 

% Introduce one row (one time bin) of zeros so that days  

% will be clearly separated after reshaping 

[m,n]=size(ag_delay); 

zeros_vector = zeros(1,n); 

cong=vertcat(cong,zeros_vector); 

% Reshape cong matrix into whole measurement period vector 

cong_vector=reshape(cong,1,((m+1)*n)); 

  

% Section to generate congestions durations vector 

aux_vector_cong=cong_vector; cong_durations_vector=[]; 

cong_durations_vector_aux=[];  aux_cong=0; 

% Compute lengths of congestions 

for i=1:(length(aux_vector_cong)) 

            if (aux_vector_cong(i)~=0)   

                aux_cong=aux_cong+1; 

                if (i==length(aux_vector_cong)) 

                    cong_durations_vector_aux(i)=aux_cong; 

                end 

            else 

                cong_durations_vector_aux(i)=aux_cong; 
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                aux_cong=0; 

            end 

end 

% Eliminate zeros 

cong_durations_vector = cong_durations_vector_aux ... 

(find(cong_durations_vector_aux~=0)); 

  

% Transform time bin durations into minutes durations 

cong_durations_vector=2*cong_durations_vector; 

figure(1) 

cdfplot(cong_durations_vector) 

title('Congestions duration CDF') 

 

  

 

 

 

 

 

 ROUTINE 3. TIME BETWEEN INSTABILITIES CDF GENERATION  

 

 

% Simplified example code for one Internet path and for  

% one type of instabilities, namely congestions. 

% cong matrix is obtained with Routine 1. 

  

% Leave only the beginning of each detected congestion 

[nr_time_bins, nr_days]=size(agreg_delay); 

for j=1:1:nr_days 

aux_cong=0; 

for i=1:1:nr_time_bins 

        if ((aux_cong==3 || aux_cong==2 || aux_cong>=4) && ... 

            (cong(i,j)==0 || i==nr_time_bins))        

            for k=(i-aux_cong+1):1:(i)            

                cong(k,j)=0;  

            end 

        end 

        if (cong(i,j)~=0)     

        aux_cong=aux_cong+1;  

        else aux_cong=0; 

        end  

end 

end 

  

% Process cong.mat for cdfplot 

[row_cong,col_cong]=size(cong); 

cong_vector=reshape(cong,1,(row_cong*col_cong)); 

lengths_vector_cong=[]; 

lengths_vector_aux_cong=[];             

aux_cong=1; 

for i=1:(length(cong_vector)) 

            if  (cong_vector(i)~=0 )   

                lengths_vector_aux_cong(i)=aux_cong; 

                aux_cong=1; 

            else 

                lengths_vector_aux_cong(i)=0; 

                aux_cong=aux_cong+1; 

            end 

end 

  

% Eliminates zeros from lengths_vector_aux 
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lengths_vector_cong = lengths_vector_aux_cong... 

(find(lengths_vector_aux_cong~=0)); 

% Transform time bins to minutes 

lengths_vector_failure_5002=2*lengths_vector_failure_5002  

  

figure(1) 

cdfplot(lengths_vector_cong) 

title('Time between congestions CDF') 

 

 

 

 

 

 

 

    ROUTINE 4. GENERAL PATH METRICS COMPUTATION 

  

 

% Compute Internet paths performance metrics: availability,  

% fatigue, stability per hour 

% cong, qbup and failure are given by Routine 1. 

  

[m,n]=size(ag_delay); 

aux_vector_cong=reshape(cong,1,(m*n)); 

aux_vector_qbup=reshape(qbup,1,(m*n)); 

aux_vector_failure=reshape(failure,1,(m*n)); 

  

% Commpute metrics per hour 

  

% Replace actual values in the instabilities matrices with ones in  

% order to be easier to count them 

for i=1:(length(aux_vector_failure)) 

        if (aux_vector_failure(i)~=0) 

            aux_vector_failure(i)=1; 

        end 

        if (aux_vector_cong(i)~=0) 

            aux_vector_cong(i)=1; 

        end 

        if (aux_vector_qbup(i)~=0) 

            aux_vector_qbup(i)=1; 

        end 

end 

% Subsection for reshaping the vectors into matrix form which  

% contains 30 time bins (one hour) per column, so that afterwards  

% to sum the number of network unstable states per hour  

vector_failure = reshape(aux_vector_failure,m,n); 

vector_cong = reshape(aux_vector_cong,m,n); 

vector_qbup = reshape(aux_vector_qbup,m,n); 

filling = zeros(1,n); 

% Every day one time bin is missing; therefore matrices are filled  

% with 0 corresponding to the last time bin of the day 

vector_failure = vertcat(vector_failure,filling); 

vector_cong = vertcat(vector_cong,filling); 

vector_qbup = vertcat(vector_qbup,filling); 

vector_failure = reshape(vector_failure,1,((m+1)*n)); 

vector_cong = reshape(vector_cong,1,((m+1)*n)); 

vector_qbup = reshape(vector_qbup,1,((m+1)*n)); 

  

% 30 = number of time bins per hour 

vector_failure_per_hour=reshape(vector_failure,30,(((m+1)*n)/30)); 
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vector_qbup_per_hour=reshape(vector_qbup,30,(((m+1)*n)/30)); 

vector_cong_per_hour=reshape(vector_cong,30,(((m+1)*n)/30)); 

  

bins_in_cong_per_hour=sum(vector_cong_per_hour); 

bins_in_qbup_per_hour=sum(vector_qbup_per_hour); 

bins_in_failure_per_hour=sum(vector_failure_per_hour); 

  

% 1968 = number of hours in 82 days of measurement 

% 30 = number of time bins per hour 

availability_vector = zeros(1,1968); 

unavailability_vector = zeros(1,1968); 

fatigue_vector = zeros(1,1968); 

stability_vector = zeros(1,1968); 

  

for i=1:(length(bins_in_cong_per_hour)) 

    

availability_vector(i) = ( ( 30 - bins_in_failure_per_hour(i))/30); 

fatigue_vector(i) = ( ( bins_in_cong_per_hour(i) + ... 

     bins_in_qbup_per_hour(i)) / (30-bins_in_failure_per_hour(i))); 

stability_vector(i) = ( ( 30 - bins_in_cong_per_hour(i) - ... 

     bins_in_qbup_per_hour(i) - bins_in_failure_per_hour(i) )/30 ); 

     

end 

  

fatigue_vector=fatigue_vector*100; 

availability_vector=availability_vector*100; 

stability_vector=stability_vector*100; 

  

figure(1) 

cdfplot(availability_vector); 

figure(2) 

cdfplot(fatigue_vector); 

figure(3) 

cdfplot(stability_vector); 

 

 

 

 

 

 

 

    ROUTINE 5 GENERATE REPARTITION OF INSTABILITIES PER TYPE PER PATH 

  

 

% Simplified routine: only for link failures; only for one path. 

% Routine for dividing link failures for one path into  

% frequent/dispersed and short/medium/long. 

  

% failure matrix is known from routine 1. 

  

complete_failure_vector=reshape(failure,1,nr_time_bins*nr_days); 

aux_complete_failure_vector=complete_failure_vector; aux=0; 

% Leave only the first time bins of the link failure for separation  

% into frequent/dispersed 

for i=1:length(aux_complete_failure_vector) 

    if (aux>1) 

        for k=(i-aux+1):1:(i)            

        aux_complete_failure_vector(k)=0;  

        end 

    end 
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    if (aux_complete_failure_vector(i)~=0)     

        aux=aux+1;  

    else aux=0; 

    end  

end 

% If the distance between failures is larger than 15 time  

% bins -> dispersed 

% If the distance between failures is smaller than 15 time  

% bins -> frequent 

failure_disp=zeros(1,length(aux_complete_failure_vector)); 

failure_freq=zeros(1,length(aux_complete_failure_vector)); aux=0; 

% Separate into frequent/dispersed 

for i=1:length(aux_complete_failure_vector) 

    if ( (aux>15) && (aux_complete_failure_vector(i)~=0)) 

        failure_disp(i)=1; 

    end 

    if ( (aux <= 15) && (aux_complete_failure_vector(i)~=0)) 

        failure_freq(i)=1; 

    end 

    if ( aux_complete_failure_vector(i)==0) 

        aux=aux+1; 

    else aux=0; 

    end 

end  

  

% Reconstruction of the vectors of dispersed and frequent anomalies 

failure_disp_aux=zeros(1,length(complete_failure_vector)); 

for i=1:(length(complete_failure_vector)) 

        if (failure_disp(i)~=0)   

            index_disp=i; 

            while (index_disp<=length(failure_disp)    &&  ... 

                complete_failure_vector(index_disp)~=0  )  

            failure_disp_aux(index_disp)=... 

                complete_failure_vector(index_disp); 

            index_disp=index_disp+1; 

            end 

        end 

end 

failure_disp=failure_disp_aux; 

failure_freq_aux=zeros(1,length(complete_failure_vector)); 

for i=1:(length(complete_failure_vector)) 

        if (failure_freq(i)~=0)   

            index_freq=i; 

            while (index_freq<=length(failure_freq)    &&  ... 

                complete_failure_vector(index_freq)~=0  )  

            failure_freq_aux(index_freq)=... 

                complete_failure_vector(index_freq); 

            index_freq=index_freq+1; 

            end 

        end 

end 

failure_freq=failure_freq_aux; 

% Split dispersed and afterwards frequent link failures into  

% different durations 

aux=0; nr_disp_long=0; nr_disp_medium=0; nr_disp_short=0; 

for i=1:length(failure_disp) 

    if ( (aux>2) && (failure_disp(i)==0)) 

        nr_disp_long=nr_disp_long+1; 

    end 

    if ( (aux == 2) && (failure_disp(i)==0)) 

        nr_disp_medium=nr_disp_medium+1; 
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    end 

    if ( (aux == 1) && (failure_disp(i)==0)) 

        nr_disp_short=nr_disp_short+1; 

    end 

    if ( failure_disp(i)~=0) 

        aux=aux+1; 

    else aux=0; 

    end 

end  

  

aux=0; nr_freq_long=0; nr_freq_medium=0; nr_freq_short=0; 

for i=1:length(failure_freq) 

    if ( (aux>2) && (failure_freq(i)==0)) 

        nr_freq_long=nr_freq_long+1; 

    end 

    if ( (aux == 2) && (failure_disp(i)==0)) 

        nr_freq_medium=nr_freq_medium+1; 

    end 

    if ( (aux == 1) && (failure_freq(i)==0)) 

        nr_freq_short=nr_freq_short+1; 

    end 

    if ( failure_freq(i)~=0) 

        aux=aux+1; 

    else aux=0; 

    end 

end  

  

results_failure=[nr_disp_long nr_disp_medium nr_disp_short ... 

                 nr_freq_long nr_freq_medium nr_freq_short]; 

results_failure=(results_failure/(sum(results_failure)))*100; 

  

figure (1) 

bar(results_failure,'grouped') 

 

 

 

 

 

 

 

  ROUTINE 6. CREATE ANOMALIES VECTOR FOR USE IN ROUTING MATRIX  

 

 

% In order to create this vector only the beginning time bin of  

% the instabilities is kept; moreover, only congestions and queues  

% building up time bins are kept as explained section 5.3 

  

% Matrices cong, qbup and failure are available from routine 1. 

% The measurement vector corresponds to one day and one path; here  

% day=6, path 4003. 

  

day=6; 

path=4003; 

% Leave one the first time bin for all instabilities 

for j=1:1:nr_days 

aux_cong=0; 

aux_qbup=0; 

aux_failure=0; 

for i=1:1:nr_time_bins 

    if ((aux_cong==3 || aux_cong==2 || aux_cong>=4) && ... 
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        (cong(i,j)==0 || i==nr_time_bins))        

        for k=(i-aux_cong+1):1:(i)            

            cong(k,j)=0;  

        end 

    end 

    if ((aux_failure==3 || aux_failure==2 || aux_failure>=4) && ... 

        (failure(i,j)==0 || i==nr_time_bins))        

        for l=(i-aux_failure+1):1:(i)            

            failure(l,j)=0;  

        end 

    end 

    if ((aux_qbup==3 || aux_qbup==2 || aux_qbup>=4) && ... 

        (qbup(i,j)==0 || i==nr_time_bins))        

        for m=(i-aux_qbup+1):1:(i)            

            qbup(m,j)=0;  

        end 

    end 

    if (cong(i,j)~=0)     

    aux_cong=aux_cong+1;  

    else aux_cong=0; 

    end  

    if (qbup(i,j)~=0)     

    aux_qbup=aux_qbup+1;  

    else aux_qbup=0; 

    end  

    if (failure(i,j)~=0)     

    aux_failure=aux_failure+1;  

    else aux_failure=0; 

    end  

end 

end 

% Consider only  

anomalies=cong+qbup; 

anomalies=anomalies(:,day); 

anomalies=anomalies'; 

  

% If queues and congestions merge, still only the first time bins  

% will be considered. 

aux=0; 

for i=1:1:nr_time_bins 

      if ( (aux>1) && (anomalies(i)==0 || i==(nr_time_bins*nr_days)))        

            for k=(i-aux+1):1:(i)            

                anomalies(k)=0;  

            end 

      end 

      if (anomalies(i)~=0)     

      aux=aux+1;  

      else aux=0; 

      end  

end 
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ROUTINE 7. CREATE ROUTING MATRIX  

 

 

% Load traceroute file; it will be uploaded as a vector, A.  

fid=fopen('traceroute.txt'); 

A=fread(fid); 

A=A'; 

% Reshape the vector into a matrix; row index is increase when ASCII  

% code for new line is encountered. 

B=[]; ind1=1; ind2=1; 

for i=1:1:length(A) 

    if (A(i)~=13) 

    B(ind1,ind2)=A(i); 

    ind1=ind1+1; 

    end 

    if (A(i)==13) 

    ind2=ind2+1; 

    ind1=1; 

    end  

end 

B=B';  

% Further processing is done on ASCII characters 

% "32" = space   "13" = carriage return    "10" = new line 

[m,n]=size(B); 

for i=1:1:m 

    for j=1:1:n 

        if (B(i,j)==32 || B(i,j)==13 || B(i,j)==10 )  

            B(i,j)=0; 

        end 

    end 

end 

% Eliminate isolated elements 

for i=1:1:m 

    for j=1:1:n 

        if (j~=1) 

            if (B(i,j)~=42) 

                if ((B(i,j)~=0 && B(i,j-1)==0 && B(i,j+1)==0) || ... 

                    (B(i,j)~=0 && B(i,j-1)==0 && B(i,j+2)==0)) 

                    B(i,j)=0; 

                end 

            end 

        end 

    end 

end 

% C is a matrix that holds the IPs in ASCII code and the timestamps  

% in the beginning of each traceroute 

C=[]; 

for i=1:1:m 

column=1; 

    for j=1:1:n 

        if (B(i,j)~=0) 

            C(i,column)=B(i,j); 

            column=column+1; 

        end 

    end 

end 

C_aux=C; 

C_increasing_hours=C; 

% C_incresing_hours will hold the timestamps with hours increasing until 

% 25:55 instead of 23:55, since timing starts at time 02:00. 
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% Number of non-zeros elements per row matrix 

nr_nnz = sum(C_increasing_hours ~= 0,2); 

for i=1:1:size(C_increasing_hours,1) 

    if (nr_nnz(i)==8) 

        if (C_increasing_hours(i,1)==48 && C_increasing_hours(i,2)==48) 

            C_increasing_hours(i,1)=50; 

            C_increasing_hours(i,2)=53; 

        elseif (C_increasing_hours(i,1)==48 && ... 

                C_increasing_hours(i,2)==49) 

            C_increasing_hours(i,1)=50; 

            C_increasing_hours(i,2)=54; 

        end 

    end 

end 

vect_indexes=[];       %holds the indexes of time stamps  

vect_time_stamps=[];   %holds the timestamps in ASCII 

ind=1; 

for i=1:1:size(C_increasing_hours,1) 

    if (nr_nnz(i)==8)  %lines with time stamps will have 8 elements 

        vect_time_stamps(ind,:) = C_increasing_hours(i,:); 

        vect_indexes(ind,1)=i; 

        ind=ind+1; 

    end 

end 

% Eliminates zeros columns 

vect_time_stamps(:,find(sum(abs(vect_time_stamps)) == 0))=[];  

  

  

% The detected instabilities may not have a corresponding traceroute; in 

% this case the previous traceroute will be taken; this section maps the 

% existing traceroutes to the detected instabilities time bins computed  

% with code 2.  

load anomalies_vector; 

vect_indexes_anomalies=[]; 

ind=1; 

for i=1:1:length(anomalies_vector) 

    if ( anomalies_vector(i)~=0 ) 

        hours=floor((2*i)/60); % transform time bin into physical hour 

        minutes=mod((2*i),60); % transform time bin into physical minute 

    for j=1:1:size(vect_time_stamps,1) 

    % if the hours are the same and the minutes belong to the  

    % interval of the time bin (min-2;min) 

    % if the time of the trace route is the same as the higher 

    % limit of the time bin, the seconds (columns 7,8) have to 

    % be 0 or smaller then 59 

    % for comparison translation from ascii to unicode of the 

    % timestamps is done  

    if (((hours+2) == str2num(horzcat(native2unicode(vect_time_stamps... 

       (j,1)),native2unicode(vect_time_stamps(j,2))))) && ((minutes-2)... 

       <= str2num(horzcat(native2unicode(vect_time_stamps(j,4)),... 

       native2unicode(vect_time_stamps(j,5))))) && (minutes > ... 

       str2num(horzcat(native2unicode(vect_time_stamps(j,4)),... 

       native2unicode(vect_time_stamps(j,5)))))) 

        vect_indexes_anomalies(ind)=vect_indexes(j);  

    end 

    for p=1:1:length(vect_indexes_anomalies) 

    if (vect_indexes_anomalies(p)==0) 

    if (((hours+2) == str2num(horzcat(native2unicode(vect_time_stamps... 

       (j,1)),native2unicode(vect_time_stamps(j,2))))) && ((minutes > ... 

       str2num(horzcat(native2unicode(vect_time_stamps(j,4)),... 

       native2unicode(vect_time_stamps(j,5))))) || ((minutes ==str2num... 
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       (horzcat(native2unicode(vect_time_stamps(j,4)),native2unicode... 

       (vect_time_stamps(j,5))))) && (str2num(horzcat(native2unicode... 

       (vect_time_stamps(j,7)),native2unicode(vect_time_stamps(j,8))))... 

       == 0) || (str2num(horzcat(native2unicode(vect_time_stamps(j,7))... 

       ,native2unicode(vect_time_stamps(j,8)))) <= 59))))) 

     vect_indexes_anomalies(p)=vect_indexes(j); 

    end  end  end  end 

    ind=ind+1; 

    end 

end 

vect_indexes_anomalies; % holds the indexes of the timestamps that  

                        % correspond to instabilities; 

vect_indexes_real_anomalies=vect_indexes_anomalies... 

(vect_indexes_anomalies~=0); 

  

% Attach a column with numerically increasing IDs to the timestamps  

column=1:length(vect_indexes); 

column=column'; 

vect_indexes = horzcat(vect_indexes,column); 

vect_indexes_real_anomalies = vertcat(vect_indexes_real_anomalies,... 

zeros(1,length(vect_indexes_real_anomalies))); 

for i=1:size(vect_indexes,1) 

    for j=1:size(vect_indexes_real_anomalies,2) 

        if (vect_indexes(i,1)==vect_indexes_real_anomalies(1,j)) 

            vect_indexes_real_anomalies(2,j)=vect_indexes(i,2); 

        end 

    end 

end 

% vect_index_anomalous_paths holds indexes of traceroutes with detected 

% instabilities, plus a columns with incrementing numerical IDs 

vect_index_anomalous_paths = vect_indexes_real_anomalies; 

                 

% Continue with the matrix processing; IDs have to be assigned to the IPs; 

% until now the time stamps for the detected instabilities have been saved  

% 42 = "*"   58 = ":"   46 = "." 

C_aux=C;   [m,n]=size(C_aux);    D=zeros(m,n); 

% Attribute high numbers to traceroutes with timestamps and stars in order 

% to separate them from the IPs later on 

for i=1:1:m 

    for j=1:1:n 

            if(C_aux(i,j)~=46 || C_aux(i,j)~=0 || C_aux(i,j)~=42) 

                D(i,j) = str2double( native2unicode(C_aux(i,j)) ); 

            end 

            if (C_aux(i,j)==58) 

                D(i,1) = 9;   

            end            

            if (C_aux(i,j)==42) 

                D(i,j) = 8; 

                D(i,1) = 8; 

            end     end     end 

% replaces NaN with zeros 

D(isnan(D))=0;  

% Concatenate the elements on the rows 

% sum_col is the column containing the IPs as integers and  

% 9*10^13 for timestamps and 8*10^13 for star lines  

[m,n]=size(D); 

sum_col=[]; 

for i=1:1:m 

    sum_col(i,1)=D(i,1); 

    for j=2:1:n 

        sum_col(i,1)= str2num(horzcat(num2str(sum_col(i,1)),... 
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        num2str(D(i,j)))); 

    end 

end 

% sum_col_aux is the column without the time stamps or stars, just IPs  

sum_col_aux=[]; index=1; 

for i=1:1:length(sum_col) 

    if (sum_col(i) < (7.0000e+013)) 

        sum_col_aux(index,1)=sum_col(i); 

        index=index+1; 

    end 

end 

% mat_unique_elements = column containing the unique IPs and their IDs on 

% the second column of the matrix 

mat_unique_elements = uunique(sum_col_aux); 

for i=1:1:length(mat_unique_elements) 

    mat_unique_elements(i,2)=i; 

end 

% Loop for attributing the ID to the different IPs 

[m,n]=size(sum_col); [p,q]=size(mat_unique_elements); 

for i=1:1:p 

    for j=1:1:m 

        if (sum_col(j,1)==mat_unique_elements(i,1)) 

            sum_col(j,2)=mat_unique_elements(i,2); 

        end 

    end 

end 

for i=1:1:m 

    if (sum_col(i,1) > (8.5000e+013)) 

        sum_col(i,2)=300;  % attribute ID 300 for timestamps 

    end 

    if ((sum_col(i,1)>(7.0000e+013)) && ... 

        (sum_col(i,1)<(8.5000e+013))) 

        sum_col(i,2)=200;  % attribute ID 200 for stars 

    end 

end 

% Take the second column of sum_col, a long column with 300 for  

% timestamps, IP-IDs and 200 for stars 

routing_vector=sum_col(:,2); 

% Rearrange routing_vector as a matrix, route_ids with 300(timestamp tag)  

% in the beginning of each column, basically the traceroutes in IDs one  

% next to the other 

matrix = routing_vector';  route_ids=[]; ind1=1;  ind2=0; 

for i=1:1:length(matrix) 

    if (matrix(i)~=300) 

        route_ids(ind1,ind2)=matrix(i); 

        ind1=ind1+1; 

    end 

    if (matrix(i)==300) 

        ind2=ind2+1; 

        ind1=1; 

    end  

end 

  

% At this point the indexes of the traceroutes that have to be kept for  

% the detected anomalies are available. The corresponding traceroutes  

% from the route_ids.mat have to be separated. Afterwards paths with  

% stars are eliminated and eliminate also the correspondent (by index)  

% position from the measurement vector 

  

% Read the real delay vector for a certain day 

agg_delay = xlsread(strcat(num2str(link),'-agregated-delay-120.xlsx')); 
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agg_delay = agg_delay(day,:); 

  

% Delete what is not detected as anomaly from the real delay vector and 

% create a vector named agg_delay which will be used later on 

for i=1:1:length(agg_delay) 

    if (anomalies_vector(i)==0) 

        agg_delay(i)=0; 

    end 

end 

% Eliminate zeros from the agg delay vector (create the measurements  

% vector - y) 

y = agg_delay(find(agg_delay~=0)); 

% Keep the routes involved in the anomalies 

route_ids = route_ids(:,vect_index_anomalous_paths(2,:)); 

  

% Eliminate the routes containing stars and the correspondent measurement 

% from the y vector  

[r,ind_aux,v] = find(route_ids > 100); 

route_ids(:,unique(ind_aux))=[]; 

y(:,unique(ind_aux))=[]; 

  

% Create complete routing matrix 

routing_matrix=[]; 

[m,n]=size(route_ids); 

for i=1:1:m 

    for j=1:1:n 

        if (route_ids(i,j)~=0) 

            routing_matrix(j,route_ids(i,j))=1; 

        end 

    end  

end 

y=y'; 

% Save measurements vector 

savefile='y.mat'; 

save(savefile,'y'); 

  

% Eliminate columns that contain only ones or only zeros and save indexes 

% for later mapping between nodes and columns 

[m,n]=size(routing_matrix); ind_aux=[]; ind=1;  aux1=ones(m,1); 

aux2=zeros(m,1); 

for j=1:1:n 

    if (routing_matrix(:,j)==aux1) 

        ind_aux(ind)=j; 

        ind=ind+1; 

    elseif (routing_matrix(:,j) == aux2) 

        ind_aux(ind)=j; 

        ind=ind+1; 

    end 

end 

routing_matrix(:,ind_aux)=[]; 

savefile='routing_matrix.mat'; 

save (savefile,'routing_matrix'); 
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   ROUTINE 8. FOR COMPUTING THE RECOVERY ERROR AND PLOTING IT 

   

 

 

function [] = test() 

K_l=1; % sparsity low 

K_h=4; % sparsity high 

  

% Matrix is a predefined sensing matrix; depending on the case it  

% can be a random matrix or a binary random matrix 

load matrix 

fig_nr=1; 

A=matrix; % A will be used throughout the routine 

measurement_vect_err=[]; 

vect_data=[]; 

index=1; 

% K = current sparsity 

for K = K_l:K_h 

  

% vect_data will contain the test data vector sets  

% depending on the current sparsity, K,  

% one data vector will be selected 

load vect_data 

x0=vect_data(:,K); 

data_vector=x0; 

% Calculate measurement vector based on known matrix and data vector 

y = A*x0; 

  

At=A'; 

% Define matrix structure because it will be required by some  

% algorithms 

matrix = struct('A',A,'At',At,'y',y,'N', size(A,2)); 

M=size(A,1); 

matrix.Afun  = @(z) matrix.A*z; 

matrix.Atfun = @(z) matrix.A'*z; 

  

% General example for two random algorithms 

%%% Algorithm 1  

data_vect_1 = algorithm_1(data_vector,matrix); 

data_vect_1=abs(data_vect_1); 

% Sort vector in order to find the highest elements 

sorted_data_vect_1=sort(data_vect_1,'descend'); 

for i=1:1:length(data_vect_1) 

    if (data_vect_1(i)<sorted_data_vect_1(K)) 

        data_vect_1(i)=0; 

    end 

end 

% Calculate error as in formula (5.14) 

measurement_vect_err(index,1)= (norm(data_vect_1-abs(x0)))/... 

                                norm(abs(x0)); 

  

%%% Algorithm 2 

data_vect_2 = recovery('lp',data_vector,matrix); 

data_vect_2=abs(data_vect_2); 

sorted_data_vect_2=sort(data_vect_2,'descend'); 

for i=1:1:length(data_vect_2) 

    if (data_vect_2(i)<sorted_data_vect_2(K)) 

        data_vect_2(i)=0; 

    end 

end 
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measurement_vect_err(index,2)= norm(data_vect_2-abs(x0))/... 

                               norm(abs(x0)); 

index=index+1; 

end 

  

errors_matrix = measurement_vect_err'; 

% Plot the errors  

K=K_l:K_h; 

figure(fig_nr) 

hold on 

set(gca,'FontSize',16) 

ylabel('Relative error') 

xlabel({'Sparsity'}) 

title('Recovery performance') 

  

plot(K,errors_matrix(1,:)); 

plot(K,errors_matrix(2,:)); 

end 

 

 

 

 

 

 

 

ROUTINE 9. COMPUTE THE ACCEPTED NOISE LEVEL FOR PROPER RECONSTRUCTION 

  

 

% Example for 1 algorithm for sparsity 2 

function [] = test_part_2_case_2(percentage, ... 

            peak_position1,peak_position2) 

% percentage = adjust the level of noise over the data 

% peak_position1 = position of the first peak entry in  

% the data vector; 2 for the second 

   

fig_nr=1; 

load routing_matrix_5003_11 

matrix=routing_matrix_5003_11; 

% choose sparsity; 2 in this example 

K=2; 

A=matrix; 

measurement_vect_err=[]; 

vector_de_date=[]; 

recovered_data_2= []; 

index=1; 

results_mat=[]; 

data_vect_noisy=[]; 

n=size(A,2); 

  

% link 5003_11 

noise_vect = (2*(percentage * 550)/17) + (45+ 10.*rand(n,1));  

noise_vect(4) = noise_vect(4) + 10;  

% link 5002_35 

% noise_vect = (2*(percentage * 700)/13) + (125 + 20.*rand(n,1));   

% noise_vect(4) = noise_vect(4) + 10;  

% Over the noise add two peaks at the desired positions  

x0=noise_vect; 

if(K==2) 

    x0(peak_position1)= (1-percentage)*550; 
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    x0(peak_position2)= (1-percentage)*550; 

end 

data_vect_noisy(:,index)=x0; % save generated data vector 

y = A*x0; % measurements vector 

  

data_vector=x0; 

At=A'; 

matrix = struct('A',A,'At',At,'y',y,'N', size(A,2)); 

N=size(A,2); 

M=size(A,1); 

matrix.Afun  = @(z) matrix.A*z; 

matrix.Atfun = @(z) matrix.A'*z; 

  

%%% LINPROG  

data_vect_lp = recovery('lp_positive',data_vector,matrix); 

% Save the recovered data vector in order to compare with the  

% original data vector to see if peak positions are recovered 

if(K==2) 

recovered_data_2(:,1)= data_vect_lp; 

end 

data_vect_lp=abs(data_vect_lp); 

sorted_data_vect_lp=sort(data_vect_lp,'descend'); 

for i=1:1:length(data_vect_lp) 

    if (data_vect_lp(i)<sorted_data_vect_lp(K)) 

        data_vect_lp(i)=0; 

    end 

end 

measurement_vect_err(index,1)= (norm(data_vect_lp-abs(x0)))/... 

                                norm(abs(x0)); 

  

% calculate noise level to know for which level the  

% positions were recovered 

% noise level dB 

sorted_noise = sort(data_vect_noisy(:,1),'descend'); 

maximum1 = sorted_noise(1); 

maximum2 = sorted_noise(2); 

sorted_noise([1 2])= []; 

MSE = (maximum1^2 + maximum2^2 ) / norm(sorted_noise)^2; 

noise_dB= 10*log(MSE); 

end 

 

 

 

 

 

 

 

     ROUTINE 10. RECONSTRUCT DATA VECTOR AND COMPUTE NOISE LEVEL 
 

 

% Example of recovery from measurements vector for  

% 1 algorithm and sparsity 2 

function [] = test_part_3_K_2() 

K=2; % sparsity 

% measurement vector NTE - Auckland day 11 

load y_5003_11  

y=y_5003_11; 

load routing_matrix_5003_11  

A=routing_matrix_5003_11; 

  

recovered_data_2=[]; 
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recovered_data_3=[]; 

measurement_vect=[]; 

  

At=A'; 

size(At); 

matrix = struct('A',A,'At',At,'y',y,'N', size(A,2)); 

matrix.Afun  = @(z) matrix.A*z; 

matrix.Atfun = @(z) matrix.A'*z; 

  

%%% L1EQ_PD version  

data_vect_l1eq = recovery('lp',matrix); % matrix as structure  

                             % includes the measurements vector 

recovered_data_3(:,1)= data_vect_l1eq; % original recovered data 

% Error with respect to the given measurements vector 

measurement_vect(1,1)= norm(matrix.A*data_vect_l1eq-y)/norm(y); 

data_vect_abs_l1eq=abs(data_vect_l1eq); 

% Absolute value recovered data vector 

recovered_data_2(:,1)= data_vect_abs_l1eq; 

% Calculate the noise level of the recovered data vector 

sorted_1=sort(recovered_data_2(:,1),'descend'); 

maximum(1,1) = sorted_1(1); 

maximum(1,2) = sorted_1(2); 

sorted_1([1,2])= []; 

MSE(1) = (maximum(1,1)^2 + maximum(1,2)^2)/ norm(sorted_1)^2; 

noise_dB(1)= 10*log(MSE(1)); 

% As this point the noise level can be compared to the ones  

% determined with routine 9 in order to check if the algorithm  

% performs within limits. 

end 
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