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Abstract. Data-driven prognostic models have been extensively utilized in current structural 
health monitoring (SHM) practices. They are designed to provide the health indicator (HI) - a 
representation of the system’s current health state - through sensor data. To enhance performance, 
online learning is often used to take care of uncertainties that arise from the run-to-failure process. 
The inverse solution, though demonstrated in online uncertainty quantification applications, 
remains unexplored in the context of online data-driven prognostics. Therefore, this work proposes 
a generic inverse solution for a deep prognostic model to online address uncertainties. The 
proposed method is tested using the open-access XJTU-SY bearing datasets, showcasing its 
capacity to online enhance the performance of a given model. 
Introduction 
Structural health monitoring (SHM) has been extensively investigated across various engineering 
application scenarios, such as in metals [1], composites [2], or rotating machinery [3-5]. SHM 
encompasses four key levels: damage detection [6], isolation or localization [7, 8], identification 
[9], and prognostics [1], efficiently ensuring the integrity and safety of engineering structures. 
Regarding prognostics, it often consists of three main sequential steps [1]: defining the damage 
state or health indicator (HI) to assess potential failure, building the prognostic models to calculate 
the RUL, and (iii) refining these models to improve the RUL prediction accuracy. 

The first task typically involves characterizing the structure's health status by either a physics-
based damage state or a data-driven HI. The definition of a physics-based state varies: for metal, 
it can be crack length [1, 10-12] or crack shape [13]; for composites, matrix cracking density [14], 
delamination length [15], or delamination shape [16, 17]; and for gears, crack length, pitting level, 
or wear depth [18]. On the other hand, a data-driven HI is often obtained by online structural health 
monitoring (SHM) data, such as acceleration [19, 20], strain [21], guided waves [22], or acoustic 
emission [23]. Deep models are often designed to provide advanced HI through sensor data, 
involving two steps. First, a function that involves the service time and end-of-life (EOL), such as 
the square ratio of the current time to EOL, is designed as a HI label simulator. Second, a deep 
model is trained by simulated labels and sensor data [22, 23]. During the testing phase, the model 
output DHI can directly produce EOL or RUL, typically without future HI projections [24, 25]. 
Therefore, this DHI construction model is often considered the prognostic model, though it does 
not describe the HI evolution with time.  

Given the uncertainties arising from factors such as complex structure degradation and 
environmental influences [26], when the same model is applied to several identical specimens 
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undergoing identical run-to-failure tests, significant variations in prognostic performance will 
occur. Therefore, online updating is often necessary to take care of the uncertainties arising from 
the degradation process. Regarding the HI-based model, since the EOL cannot be obtained during 
the run-to-failure process, it is rarely possible to acquire the true label for each data stream in real-
time. As a result, updating this deep model with the latest data represents a typical unsupervised 
online learning problem, which only received a few investigations, i.e., online transfer learning 
[27-29] and online incremental learning [30].  

These investigations [27-30] have provided successful online prognostic solutions, and they all 
consider data-driven prognostics as a mapping problem - progressing sequentially from sensor 
measurement, through the prognostic model, and finally resulting in the HI or RUL prediction. On 
the other hand, inverse solution has been extensively demonstrated in online uncertainty 
quantification [16], with the potential to be applied to a deep prognostic model for addressing 
degradation uncertainties. This, however, has not been explored. 

In this context, this work proposes the a generic inverse solution for a given deep prognostic 
model to online address uncertainties. First, a prognostic model is constructed using a user-defined 
modeling strategy. Next, a state-space model is developed by incorporating the prognostic model 
and prior information. Finally, state and parameter estimation is performed to generate the HI 
posterior. The proposed method is tested using the open-access XJTU-SY bearing datasets, 
showcasing its capacity to enhance the performance of a given prognostic model.  

The rest of this paper is organized as follows: Section 2 introduces the proposed method. 
Section 3 provides the results of the proposed method applied to the XJTU-SY bearing datasets, 
respectively. Finally, Section 4 concludes this paper. 
Proposed method 
The proposed inverse solution with both the offline and online phases. The offline phase involves 
the development of four models: prognostic model (PM), feature extraction model (FEM), 
measurement model (MM), and state space model (SSM). The online phase focuses on the state 
and parameter estimation with the latest measurement from the FEM model. 

This section introduces the development of four models: training the PM, defining the FEM, 
training the MM, and formulating the SSM. To train the first model, a function needs to generate 
the HI labels. For example, the HI can be defined by a linear function as the ratio of current time 
to EOL: 

 k
k

tx
EOL

=  (1) 

where x, k, and t denote the HI, time step, and service time, respectively. Then, given the simulated 
labels, a data-driven model as PM can be built to link the sensor data u and the HI x as: 

 ( )k kx f= u  (2) 

Then, a FEM model is firstly split from the PM excluding certain last layers, as follows:  

 ( )k s kf=Y u  (3) 

In this study, FEM is considered as PM without only the last layer, i.e., the HI output layer. As 
a result, the FEM’s output Y is a vector of the neurons of PM last hidden layer. By using the HI 
labels as input and the FEM’s output as output, the MM can be constructed as follows: 

 ( )k kg x=Y  (4) 

Then, by combining Eqs. (1) and (4), the SSM can be formulated as: 
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where θ is a vector of the model parameters within the measurement equation,  ωθ, ωe, and ω are 
the process noises for the model parameters, EOL and HI, respectively, and ν is the measurement 
noise. Moreover, certain prior information can be included, such as: 
 k maxk EOL EOL≤ ≤  (6) 

which means EOL should always lie within the range between the current service time and the 
maximum EOL. The EOL should be adjusted to the nearest boundary when falling out of the range. 

The SSM Eq. (5) is developed based on the PM Eq. (2), while it can provide more accurate 
prognostic performance, as it incorporates additional prior knowledge, and takes care of the 
uncertainties arising from the degradation process. 

The online phase includes the feature extraction and the state and parameter estimation. The 
latest sensor data should be processed through the aforementioned FEM to extract specific 
features, which serve as measurements in the state space model. Finally, a state and parameter 
estimation algorithm will be used to provide the HI posterior.  

Given that Eq. (5) is often high-dimensional and nonlinear, because of the parameter vector and 
the prognostic and measurement models, respectively. A high-dimensional system identification 
method, i.e., multiple local particle filter [16], is used in this study for online state and parameter 
estimation. 
Testing with XJTU-SY Bearing Datasets 
The XJTU-SY bearing datasets [19] are used in this study. Figure 1 depicts one bearing under the 
run-to-failure test. Two PCB 352C33 accelerometers are placed on the bearing housing to collect 
the vertical and horizontal accelerations at 60-second intervals. The sampling frequency and 
duration are 25.6 kHz and 1.28 seconds, respectively. Table 1 presents one operating condition 
from the datasets, involving tests on five bearings. For safety reasons, testing for each bearing is 
stopped once the vibration amplitude exceeds 20 g. Consequently, the time when the vibration 
amplitude exceeds the threshold is considered the EOL. Due to the uncertainties inherent in the 
degradation process, bearings may have different failure modes, including inner race wear, outer 
race wear, and outer race fractures, which result in varying EOLs. One can refer to [19] for further 
experimental details. 
 

 
Figure 1: XJTU-SY Bearing run-to-failure test. 
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Table 1: Operating condition. 
Condition Rotating speed [rpm] Radial force [kN] Bearing specimen EOL [Minute] 

I 2100 12 1_1, 1_2, 1_3, 1_4, 1_5 123, 161, 158, 122, 52 
 

Cross-validation will be performed for each bearing under Condition I. Specifically, one 
bearing will be designated for testing, while the remaining four bearings will be utilized for 
modeling. Table 2 lists the prognostic and measurement models used for each testing scenario. For 
each, two CNN-based PMs are separately used for testing, and their layouts are defined as ‘Layout 
1’ and ‘Layout 2’, respectively. Then, the FEM, MM, and SSM have to be developed based on 
each PM. 
 

Table 2: Prognostic and measurement models used for XJTU-SY datasets. 

 Input Output Layout 
Prognostic model 1 (PM1) Raw data HI CNN 1 
Prognostic model 2 (PM2) Raw data HI CNN 2 

Measurement model 1 (MM1) HI FEM 1 output MLP 
Measurement model 2 (MM2) HI FEM 2 output MLP 

 
The performance of the proposed method is first tested by applying PM1 to the bearings under 

Condition I. Three separate routines are compared:  
 PM1: PM1 is used to provide HI prediction results. 
 PM1 (P): The PM1 results are modified by the prior knowledge. Specifically, at each time 

step, the HI is set as the ratio of service time to the maximum EOL when it is lower than 
the ratio, and it is set as one when it is above the value of one. 

 New: The proposed method is developed based on the given PM. 
The parameter estimation results using the new approach are shown in Figures 2 (a) - (e). As 

the estimation process progresses, the spread of parameter samples decreases and converges 
around final values, indicating satisfactory convergence. The HI predictions using both the PM1 
and the new approach are presented in Figures 2 (f) - (j). The new approach yields significantly 
smoother and more accurate results, highlighting its superiority in improving prognostic 
performance. Then, the results from the above three routines are evaluated by three performance 
metrics: root-mean-square error (RMSE), mean absolute percentage error (MAPE), and mean 
absolute error (MAE). Results from the three above routines are given in Table 3. The proposed 
method consistently achieves lower RMSE, MAPE, and MAE values, demonstrating its ability to 
enhance the prognostic performance of the given model PM1. 

 
Figure 2: Results of PM1 and new methods for bearings under Condition I. 

Note: (i) ‘T’ means the number of total time steps, (ii) the x and y axes for parameter estimation are two model 
parameters, while those for HI prediction are ‘Service time / True EOL’, and ‘HI’, respectively, and (iii) ‘Mean’ and 

‘95% confidence boundary (CB)’ are derived from the results of new method. 
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Table 3: Prognostic performances of PM1 and new methods for bearings under Condition I. 

Bearing 1_1 1_2 1_3 1_4 1_5 

RMSE 
PM1 0.216 0.285 0.256 0.466 0.204 

PM1 (P) 0.173 0.284 0.188 0.301 0.204 
New 0.172* 0.171* 0.186* 0.291* 0.097* 

MAPE 
PM1 46.6 112.7 82.6 86.3 130.2 

PM1 (P) 41.0 112.6 77.0 61.7 130.2 
New 31.3* 37.4* 33.6* 45.2* 42.6* 

MAE 
PM1 0.174 0.237 0.196 0.402 0.163 

PM1 (P) 0.147* 0.235 0.155 0.261 0.163 
New 0.147* 0.125* 0.153* 0.247* 0.088* 

Note: The symbol ‘*’ denotes ‘best performance among the three routines’. 
 

The same validation is conducted on the five bearings using PM2. Three routines are included: 
PM2, PM2 (P), and the new method. The estimation and prognostic results are given in Figure 3 
and Table 4. Although a different PM can yield slightly different prognostic performance for the 
same bearing, the proposed method can always have the capacity to improve the performance of 
the given model. 
 

 
Figure 3: Results of PM2 and new methods for bearings under Condition I. 

Note: (i) ‘T’ means the number of total time steps, (ii) the x and y axes for parameter estimation are two model 
parameters, while those for HI prediction are ‘Service time / True EOL’, and ‘HI’, respectively, and (iii) ‘Mean’ and 

‘95% confidence boundary (CB)’ are derived from the results of new method.  
 

Table 4: Prognostic performances of PM2 and new methods for bearings under Condition I. 

Bearing 1_1 1_2 1_3 1_4 1_5 

RMSE 
PM2 0.244 0.301 0.285 0.379 0.184 

PM2 (P) 0.213 0.301 0.206 0.299 0.184 
New 0.212* 0.211* 0.198* 0.295* 0.068* 

MAPE 
PM2 75.0 108.0 97.9 86.4 107.6 

PM2 (P) 71.0 108.0 90.6 79.0 107.6 
New 38.7* 44.2* 34.4* 47.5* 23.0* 

MAE 
PM2 0.214 0.240 0.235 0.314 0.154 

PM2 (P) 0.192 0.240 0.182 0.258 0.154 
New 0.188* 0.160* 0.168* 0.250* 0.059* 

Note: The symbol ‘*’ denotes ‘best performance among the three routines’. 

Conclusion 
Data-driven prognostic models must be continuously updated to account for uncertainties in the 
degradation process. This work introduces a novel inverse solution to address these uncertainties 
in real time. Based on prognostic results from the open-access XJTU-SY bearing datasets, the 
following conclusions can be drawn: Incorporating prior knowledge, such as the maximum EOL 
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of certain specimens, can significantly enhance prognostic performance, even with simple online 
adjustments. For further improvements, it is essential to employ prognostic and measurement 
models to construct a state-space model, integrating prior knowledge for real-time state and 
parameter estimation. The effectiveness of the proposed method has been shown to rely on the 
proper utilization of prior information and measurement models. This work has only adopted a 
very simple prior, i.e., a constant maximum EOL. One may consider leveraging more advanced 
priors, such as the degradation-related physical constraints, or incorporating a physics-informed 
neural network into the proposed method. 
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