
Subversive machines:
designing architectural freedom through open systems.

Graduation document / MSc Architecture, Urbanism and Building Sciences.
Delft University of Technology, Faculty of Architecture, Urbanism and the Built Environment.

Explore Lab 28

2019 - 2020

Preface
This document was produced to complete the MSc graduation process at the Delft University
of Technology, Faculty of Architecture and the Built Environment., within the Explore Lab 28
graduation studio. The research paper and project that are shown in the pages that follow
are my attempt at developing a method for an architectural design process that questions
a number of deeply seated assumptions of what architectural intervention means -- in
particular, it forms a continuation of a personal research programme that started during the
programme’s first thesis, in which I explored what it means for the architectural practice to
truly open itself up to contemporary technological reality. The work in this document and
the previous thesis are both underwritten by the desire to effect a change in the way that
architecture interfaces with the places, peoples, objects and conditions that it encounters,
one that might hopefully lead one day to a practice that is more sensitive to possibilities that
lie outside the current status-quo.

Acknowledgements
I would like to express my sincere gratitude and appreciation to my graduation project
advisors ir. Roel van de Pas, dr. ir. Stavros Kousoulas and ir. Hubert van der Meel for their
insights, advice, recommendations and feedback. I would also like to thank Daan Vitner
for facilitating the formal aspects of the graduation process and for his feedback during
presentations.

3

Contents

1. Critical Technics in Architecture: a cybernetic approach.

2. Architectural complexity: systems & environments.

2. Design conditions: program, site, principles.

4. An Open System: designing constraints.

5. Technical implementation

Appendix: architectural system visualization

7

27

35

59

81

90

5

7

Critical Technics in Architecture: a cybernetic
approach.

Abstract In this paper, I posit that for the field of architecture to come to a distinctly architectural
application of computational technologies it requires the elaboration of a concept of critical
technics. This is premised on a systems-view of technical development, which highlights the
importance of time and situatedness for any consideration of change, genesis or becoming. In
order to then construct an architectural technicity that can grapple with the external character
of techncial development, I argue using the philosophy of technology of Gilbert Simondon and
Stafford Beer’s management cybernetics that what is needed for this is a radical opening-up of
the architectural process in the form of a democratization, to augment architecture’s capacity for
producing alternate futurity.

Keywords Critical Technicity • Cybernetics • Technical Genesis • Concretisation • Systems-thinking • Architecture

9

0.1	 Non-market organization

In recent years, there has been a revisiting of the 20th century debate surrounding the
viability of planned economies and the supposed necessity of market structures, in the face
of a declining neoliberal world order and the emergence of new kinds of techniques for
processing information that can be argued to provide an alternative to market structures1.
However, this is an insight that has by now informed a number of different views on alternative
techno-social principles of productive coordination that are not premised on utilizing price
signals for resolving questions of organization, distribution, and agency (Srnicek, 2016, pp.
54, 55) – ranging broadly from seemingly progressive surveillance-technocracy capitalism to
especially authoritarian forms of neoliberal capitalism that can both be said to have “broken
free of the shackles of democracy” (Žižek, 2015) through the application of new computational
technologies. There is therefore a sense in which research concerning data gathering and
sensing techniques is arguably tied to a tendency toward different (yet presumably equally
un-equal) forms of productive, distributive and social coordination (see Zuboff, 2015). With
this development comes the emerging possibility for a moment of reconfiguration that relates
to how these questions are dealt with. Arguably, the main issue with this observation is that
the horizon of that reconfiguration is limited to a very narrow, ideologically defined window of
change, dominated primarily by the notion of surveillance capitalism (Zuboff, 2015).

0.2	 Formal Complexity

In keeping with this larger tendency, the field of architecture currently lies at the end of its first
digital turn, in a nascent so-called second digital turn (Carpo, 2013, 2017). Digital technologies
have taken on an increasingly important role both as themes within design problems and within
the design process itself. There is a rich history of cutting-edge computational techniques and
insights being applied in architectural design processes in recent history – starting from the
first experiments at applying chaos theory and complexity theory by figures such as Eisenman
and Jencks, through figures like Christopher Alexander and Cedric Price and their early forms
of patterned and generative architecture, and leading eventually to the iconic parametricism of
architects such as Zaha Hadid (Bachman, 2008; Rega & Settimi, 2010; Spencer, 2016).

This tradition, although certainly more varied than here presented, seems to have concerned
itself primarily with the application of the notion of complexity to aesthetic questions – what
we might call formal complexity (Rega & Settimi, 2010). Arguably, this process reflects what

1	 This is evidenced by a number of recent popular and academic publications that highlight the restructuring of contemporary capitalism such as

Mason, 2015; Mayer-Schönberger & Ramge, 2018; Phillips & Rozworski, 2019; Srnicek, 2016; Zuboff, 2019.

10

Stafford Beer referred to as using a computer to do quill-pen administration2:

“[…] we insist on retaining [...] those very limitations of hand, eye, and brain that the computer
was invented precisely to transcend.” (1974, pp. 32–33)

Rather than applying digital technology to solve problems in a similar but more expedited
way compared to traditional methods, Beer argues that the logic of computation demands a
reframing of how we think of problems. Instead of applying computation as an administrative
tool, it allows for exploring reality in a different way – through modeling, computation opens
up new approaches to problem-solving that allow one to interface with multi-causal, complex
realities. In some sense, Beer argued for what has become known by now as a general
ecological approach (see Hörl, 2017) to computation. In a previous thesis, I argued that the
dominant paradigm of ‘digital architecture’ as it existed for the first digital turn had a number
of inherent limitations that relate to the way in which digital tools structure our experience of
reality (Mellas, 2018) – these limitations resemble Stafford Beer’s remark quoted previously.
For Beer, this was a prompt to come up with a different way of using computation – that
attempt led him to conclude that what is paramount for any system to even be viable is that it
is democratically regulated. Worker control was for Beer the key to avoid catastrophic failure
for societal institutions in the face of a changing material environment – a radical cybernetic
approach to organizational strategy as an adaptation to what seemed in his eyes an inevitable
collapse of the institutions of mid-20th century state capitalism.

The discrepancy between this approach and the application of digital techniques in architecture
as practiced today by itself might already be categorized as a general problematic, purely
because it can be taken to mean that the field of architecture has not yet come to grips with
contemporary technological reality and the opportunities it provides for rethinking how
problems are constituted and, more crucially, what appropriate approaches to these problems
entail. However, this general observation points towards a much deeper and consequential
problematic for the field – namely that through a lack of understanding of these technologies,
architecture loses its capacity to mediate how they are applied within the built environment,
and in turn the possibility for architects to engage critically with these developments, from
their own specific expertise and concerns. This highlights the relevance of coming up with a
new framework for applying computation within architectural design. To keep up with technical
development, and thus to stay relevant as architects, it is crucial that we elaborate on how
architecture can critically incorporate digital technology into its activities as a field – rather

2	 The creation of complex geometric patterns and forms has been a central pursuit for many architectural designers throughout the history of

the practice, often with very successful and highly complex outcomes in terms of ornamental design. Contemporary design practice in this sense uses

digital computational technology in a way that differs little from how it has used pen and paper throughout history – for drawing, geometrical construction

and classical calculation.

11

than allowing the structural mechanisms3 that underlie much of the development of these
technologies to dictate what is and what is not relevant in today’s built environment.

Furthermore, in recent years a number of projects have emerged that explicitly intend to
subsume architectural and urban design to the creation of new markets through intensive data
gathering, guided by the concept of the Smart City (Greenfield, 2013). At the basis for these
developments is the underlying ideological assumption that the future built environment will
be privately owned and operated, including its virtual and physical infrastructure (Greenfield,
2017; Poole & Shvartzberg, 2015), a move toward a form of surveillance capitalism in keeping
with the previously described horizon for change in economic control.

The point of this paper is to demonstrate that the only way to harness the emancipatory
and productive potentials of computational technology in architecture is through a general
socialization of the architectural process. This would allow architects on the one hand to
circumvent the commodification of architectural form and on the other to retain a distinctly
architectural sphere of influence around the application of digital technologies within the built
environment. More fundamentally, it could provide architects with a method to contribute to
a futurity that defers from contemporary capitalist realism, through an architectural form that
presents itself as a form of realist intervention which can re-organize itself toward particular
desired futurities.

0.3	 Critical computation

The tendencies described in the previous paragraph call for an examination of the way in which
technology is used within architecture. To that effect, this paper proposes that we rethink the
role of architecture in the application of technology and the role of technology in architecture.
I will relate this to one set of digital technologies in particular, that can broadly be categorized
as computational design. This might be rephrased as conceptualizing how computational
design techniques can be used critically. The word critically is used here to refer to a capacity
to generate alternatives – a critical use of technology, then, is the application of a technology in
such a way as to engender alternative paths of development that are not necessarily limited to
the logic of contemporary capitalism.

From this it becomes clear that it is necessary to dispense with the notion that technology is
inherently geared towards particular value systems, what might be called a substantive theory
of technology. Instead, using the work of Gilbert Simondon later authors that subscribe to the

3	 This refers in particular to the external nature of many of these developments to architecture – while there are many architects attempting to

‘design their way around’ technologies that are in development, their original articulations and manifestations are presumably not elaborated by architects

in most cases. This leaves any architectural application as an appropriation of existing invention, and thus risks both shoe-horning technologies into

architectural practice, and unwarranted solutionism (see Murphy, 2012).

12

same position, I argue in the first section of this paper for a relational approach to technical
development – one based on systems thinking and a particular strand of cybernetics. The reason
for this is twofold: it is only through an open-ended conception of technical development that
one can arrive at any meaningful formulation of an alternative kind of technicity, rationality, or
future. Secondly, the previously described ideological premises for contemporary projects that
deal with computational design, and the growing tendency to position architecture as a field for
data-gathering within surveillance capitalism together present a certain urgency for architects
to develop a grounded position from which to formulate an alternative application of these
technologies. Envisioned as argued previously, this is something that a substantive theory
would simply not allow for. Instead of resignation, we would do well to say that architectural
value “is too valuable to be left to capital”, echoing Brian Massumi (2018, p. 2). As such, I posit
that through the literature on cybernetics – it can be argued that a further integration of
sensor technology into the environment likely will not contribute to the overcoming of so-
called technical alienation within the built environment. Moreover, in the second section I
present the claim that what is vital for any architecture that is premised on generating an
emancipatory futurity through computational technology is a reorientation of the technicity of
the built environment towards the notion of embedded intelligence in a distinctly politicized
and socialized form.

1.1	 Technical development

Gilbert Simondon describes the development of technics4 as the shaping of a technical object
towards (internal) functional demands. This is referred to as a kind of self-sufficiency – the
technical object “unifies itself internally“ towards being a concrete technical object (Simondon,
2012, p. 26). This is an abstract process, where a technical object’s constitutive components
become more and more interoperable over the course of their development (Iliadis, 2013, pp.
15–16) through “concomitance and convergence” of multiple, different functions into singular
multipurpose structures (Simondon, 2012, p. 28). Technical objects, for Simondon, behave as
evolutionary beings that mutate toward their own inherent fitness curve – the key difference
in this regard between natural (living beings) and technical objects (artificial beings) then, is
that the former already exist as concrete objects (Simondon, 2012, p. 51). What is crucial in
Simondon’s terminology is that the term technical object does not refer to one specific object
in space. Instead, it is a more abstract term that refers to a set, or branch, of technologies –
such that one would say all attempts at building a combustion engine are part of one unitary,
abstract combustion engine.

4	 Technics refers here specifically to technique, as opposed to the more general English term technology which may refer to technique, technical

objects and the study of technical objects (see Iliadis, 2013).

13

It is concretization, for Simondon, that informs the primary path of formation that technologies
take, in turn even spawning new branches for other technologies over the course of their
development. Simondon’s philosophy of technology allows us to think of technicity as an open-
ended, but structured process, bound to its own internal logic of coherence.

1.2	 Technical control and culture

But what does Simondon have to say about the external factors that constitute this process,
the associated milieu of the development of a technology? Within fields of research that study
the development of technology, there are a number of theories that seek to explain how
technologies are construed – the clearest division here lies between what might be categorized
as a constructivist theory of technical development, and an instrumentalist theory. It is relevant
to combine a reading of Simondon with the work of Andrew Feenberg, particularly his concept
of the technical code. For Feenberg, a technology is a scene of struggle between the workers
or operators of a technology, and those who manage it – both have their own connotations
with a technology and its development, and thus their own requirements and demands of
that technology. Feenberg, in this sense, follows Bruno Latour’s formulation of a “parliament
of things” (in Feenberg, 2002, p. 30). Contrary to Latour, however, Feenberg identifies that
there is no leveled-off network of actors without power or hierarchy – instead, political struggle
is inscribed in the way a technology manifests over its lifetime. What is stressed here is the
ambivalence of technology -- as a process, not a thing. Feenberg describes technology as a
structure that develops over time and is influenced from myriad directions – a relational account
that resembles Simondon’s notion of modulation. This leads Feenberg to the conclusion that
what is needed is to democratize technical development through “a shift in the locus of technical
control” (Feenberg, 2002, p. 32).

The development of technology is underwritten by the way in which it encodes a particular
cultural configuration – Feenberg argues that it is in fact here that technology can serve as
a way to cement or lock-in emancipatory views in society. After this, it becomes part of the
way things nominally are – as a new kind of norm. This constitutes an affective dimension to
technical development where it is the imaginaries and visions that a technology brings into
the world that create meaningful contributions on a cultural level. Feenberg stresses that it
is through this locking-in of imaginaries that the coherence of societal alternatives might be
demonstrated and in turn made business as usual (Feenberg, 2002). This could be rephrased
in Simondonian terms as saying that what matters for Feenberg is the associated milieu that
is created through technics. Invention is the process wherein the information contained in this
milieu is transduced into a new technical schema – it is passed on as a form of transindividual
knowledge (Simondon, 2012, p. 252). Feenberg then, offers us through Simondon a way of
conceptualizing technics in a critical way: through modulation of an environment one might
influence the constitution of future technics.

14

This is a useful way of formulating a notion of criticality in light of technology as a field of
political struggle – what is needed then is a way of orienting this modulation towards particular
alternatives. What Feenberg points to is the asymmetry of the political arena within which this
modulation takes place, centering the notion of a technical class struggle in line with traditional
Marxian analysis. However, with his concepts Feenberg is at first glance concerned primarily
with resolving the apparent contradictions between reified notions of culture and technology
through his notion of a technical culture -- his concept of the technical code is ostensibly
cultural, a code between participants in society. However, beyond the cultural level, there are
internal dynamics and logics that govern how processes unfold within the world. While there
likely exist a number of these logics that do have some cultural expression or even take place
on the cultural level in their totality, it seems lacking to restrict one’s analysis only to this. This
means that rather than modulating the operations and structures that constitute technical
objects, it is needed to examine how one might go about modulating the logics that govern
their genesis – the formulation of a metalogic.

1.3	 Systems-view and futurity

Both Feenberg and Simondon describe the genesis of technology as a system in all but name
– consisting of codes, rules and logics that govern the specifics of a technology’s coming-into-
being. One way of making this further explicit is by generalizing the common conception of
technical development, as a linear process from point A to point B, into a multidimensional
field – where it is the logics that govern the topology of the space of possible outcomes that
a particular technology might follow. As Marx and Engels posit in Capital, the conditions of a
movement beyond capitalism “result from the premises now in existence” (in Thoburn, 2003,
p. 3). When discussing these conditions in relation to technology from a Marxian standpoint,
the process in which these technologies are produced and the way in which they are integrated
into processes of social (re)production take on central importance.

We might interpret this in a way that lends itself to Simondonian terminology: it is only when
present organizational, and technical conditions reach a metastable state, one of oversaturated
potentiality, that transduction into new forms of organization can take place. A key component
of the notion of transduction is that it is a transmission of information through material – this
is the central thesis of Simondon’s work on individuation against hylomorphism and the place
where his concept of modulation comes in. As such, one might more precisely state that this
transduction relies on specifically material encodings of organizational forms. Bernard Stiegler
(2017), following Simondon’s work on technics and mechanology, argues that this takes place
through the genesis of technical systems. Through internal evolutionary tendencies, technical
systems induce internal changes, which necessitate socio-technical changes on other levels of
societal becoming. Stiegler notes that “these adjustments constitute a suspension and a re-
elaboration of the socio-ethnic programs or socio-political programs that form the unity of the

15

social body” (Stiegler, 2017, p. 130). This view, which Stiegler terms organology, underscores the
fundamental connections that exist between technical and social systems. As such, Stiegler’s
work serves to emphasize a point that is central to this paper: that there exists a reciprocal
relation between technical systems and social systems – both systems forming part of one
another’s associated milieu.

Augmenting the previously described conception of a critical technology through Feenberg
with Stiegler’s organology points clearly towards a logic that takes place on a separate level
from the cultural. In a sense, Feenberg’s notion of a critical technology is a form of socially
mediated but unidirectional technical genesis: effecting changes in an environment with the
aim of changing future technicity. Stiegler argues that these changes in technicity have the
potential to be foundational beyond the ways that Feenberg describes – implementing not

just imaginaries of alternatives, but in fact generating a localized reconfiguration of the social-
political domain. Beyond this, it can be argued that it is technicity itself that enables the concept
of futurity – it is through inscription5 that a reference point can be retained, without which one
would be limited to experiencing a present (Colebrook, 2016).

To Stiegler, this relies on the premise that ways of thinking are informed by technical conditions:
as such, technical objects can be said to create their own particular subjectivity in those that are
subject to their use. A psycho-social individuation takes place through technical objects, which
then contributes to collective ways of thinking, thus constituting a circuit of transindividuation
(Stiegler, 2017, p. 137). Following Simondon, Stiegler argues this proceeds through the
spatialization of temporal forms of reason, which today can be said to take the shape of data-
gathering through sensing technologies. However, this is primarily a one-way process as well:
surveillance technologies impose a particular subjectivity, but the private ownership of these
systems and their black box nature stemming from that private character do not allow for any
reciprocal influence on the logics that govern these technical objects (Zuboff, 2015). Where
they do, this influence is mediated through an internal tendency toward technocratic barriers –
a sufficient level of understanding of and engagement with ambient sensor technology is often
required to even have an overview of its capacities and features, and thus, to conceptualize
how it might be applied, changed, hacked or adopted. Arguably, this amounts to a cutting
off of so-called smart systems from paths of individuation that take place through struggle,
transindividuation or democratic control.

This line of thought is compatible with contemporary Marxian views on processes of
subjectification that take place under capitalism6 – in particular, they resonate with the notion

5	 Stiegler’s retentions. Similarly, for Feenberg, within technological historicity, this happens through the technical code.

6	 I am here refering specifically to what is commonly known as Value-Form theory (see González, 2019).

16

that different technical (and thus (re)productive) conditions generate different emancipatory
goals, subjects and processes, beyond traditional class-based understandings. In contrast to
Feenberg, this is a decentering of class struggle as the main engine of technical genesis. Instead,
this view relies on the notion that what has changed fundamentally since Marx’s time is that
there is no more concept of a universal, trans-historical emancipatory subjectivity to speak
of – as such, one arrives at a theoretical vantage point where different, distinctly historical
subjectivities carry their own potential for an idiosyncratic emancipatory futurity. This is an
argument that opens up a critical capacity, as defined earlier in this paper. Fundamentally, this
position comes with a number of consequences attached. Primarily, this implies an opening up
of futurity – not merely beyond transhistorical notions, but in addition beyond what might be
referred to as a “residual linearity and humanism” (Colebrook, 2016, p. 13).

In summary, this section has described so far how technical development possesses potentials
– it can occur across a multitude of paths. As such, it produces what one might term outcomes,
which are contingent on material conditions within an environment which determines the
limits of technical potential. In cybernetic terms, this amounts to the description of a system.

2.1	 Complexity and variety

Considering technical development as a system opens up a number of avenues of investigation,
primarily by allowing one to specify further how that system might be influenced and to ask
from which loci and through which logics this might proceed to shape technical genesis toward
desired outcomes. This would result in a critical system of technics that takes on the form of
a regulator, in traditional cybernetic terms (see: Conant & Ashby, 1970). To characterize this
critical system I refer to Stafford Beer, one of the cyberneticians part of the second generation
of British cybernetics (Pickering, 2010). Beer’s work differed from many of his more commonly
referenced peers in that he placed emphasis on the relation between what amounts to an
organizational system’s relative democratization7, and its ability to function in the face of
complexity (Swann, 2018). As such, Beer represents what Stiegler describes as “the new bases”
of cybernetics (Stiegler, 2017), as opposed to the popular conception of cybernetics as a military,
controlling technicity that is more commonly associated with Norbert Wiener.

Beer offers us a compelling line of reasoning to reject the data-driven paradigm of digital
computation that drives on a logic of representation: digital machines “are pre-occupied with
access” (in Pickering, 2010, p. 235). This is in reference to the fact that control-systems, the
predecessors to contemporary digital systems, were built to generate intermittent output, in

7	 This is not Beer’s term as used in his technical writing – instead, Beer refers to a kind of autonomy at different levels within an organisation,

so that decisions can be decentralized, this was the basis for his management theories and models, where too much hierarchy is seen as inhibitive to the

self-organising capacity of a system (see: Pickering, 2010; Swann, 2018).

17

the form of print-outs, during a process of computation. The result of this is a paradigm of
computation that is charged with getting representable answers to questions, whereas the most
important result of a computational system in the cybernetic view is performative. As Pickering
emphasizes, it is the navigation of a field without a representative mapping of it, as with a
steersman (Kubernetes) navigating toward a distant light on the shore through incremental
adjustments. Pickering characterizes the demand for overview in terms of representative
models aptly as “an enormous detour […] into and through a world of symbols” (2010, p. 235).

Instead, Beer’s position towards hylozoism and the agency of matter seem more in line with
Simondon’s concept of modulation – both presuppose that material itself can facilitate an
operation without a subjection of matter to form, and without the imposition of an ideal,
or blueprint that precedes this emergent process of in-formation. For Simondon, this is
primarily observed within the development of technics according to its own logic, for Beer, it is
organizations of people that self-organize. By looking for appropriate types of matter already
in existence, one can engage in the world as it is offered (Pickering, 2010), and thus engage it in
a relational way. Furthermore, it is for Simondon precisely this attitude of considering an object
within its milieu, that opens up the space of what is possible – its field of potential. Simondon
develops a convincing argument for technicity that is thoroughly embedded in its associated
milieu by way of concretization – he demonstrates that it is through a synergy between a
technical object and its environment that new potentialities can be rendered accessible, as
with the example of the Guimbal Turbine (Simondon, 2012, p. 57).

Ultimately, a seemingly similar line of thought leads for Beer to an ambition to formulate a
paradigm of biological computation (Pickering, 2010, p. 231), as something radically distinct
from what is conventionally seen as computation, even today – as a form of computation that
relies on ecological systems that are found as they are in the world. He arrives at this through
his concept of exceedingly complex systems, arguing that while our representational logic
cannot meet the variety8 in these systems with adequate reciprocal variety (Pickering, 2004),
another naturally complex system such as the complex system of a pond found in nature
might. Here it is important to note that the notion of regulatory variety matching system variety
that Beer inherits from Ashby9 resembles a process of adaptation within a system to its milieu
much like the genesis of technology is to Simondon. Simondon has been described as a proto-
cybernetician – as such there is a number of similarities between his work on technicity and
that of the later cyberneticians such as Ashby, Pask and Beer (Feenberg, 2019; Pickering, 2002,
2010).

8	 Variety, in cybernetic terminology, is defined as the amount of possible states or outcomes that a system has (S. Beer, 1983)

9	 See: Ashby, 1991; Conant & Ashby, 1970

18

How does this concept of variety fit in with contemporary paradigms of computational
technology within the field of architecture? For some, by taking contemporary technics in the
direction of ‘animate knowledge’ where one might argue that we have today the technical
means to animate our inanimate surroundings through ambient sensor technology (by now
mostly garnered under the concept of Big Data), meaning we might overcome the alienation of
technology (Leach, 2018). This amounts to a strategy of matching what one might call natural
variety with technical variety – it is implied that this technical variety would somehow amount
to the level of variety that occurs in living systems by the choice of words. Notably, this is
a move that follows the principles described so far – in animating an environment through
ambient technology, a designer intervenes in the milieu of a system, changing the terms on
which interaction between systems take place. Through Ashby and Beer’s line of reasoning it
could however be argued that it is precisely this impulse to seek greater and more complex
technics that affects technical alienation through the inadequacy of technical variety in
matching living system variety (which, to Beer, stands apart as exceedingly complex) and the
corresponding need for reduction and normativity to keep the technical system viable in light
of this discrepancy. This amounts to an asymptotic complexification: a greater and greater
animation of technical systems, that might eventually approach exceeding complexity, but for
the foreseeable future remains distinctly lacking in variety.

2.2 Metastability

If one follows Beer’s categorization, the discrepancy between complexity and exceeding
complexity outlined in the previous paragraph points toward a certain limit with regards to
how well technical systems might interface with their environment. While this paper has so far
highlighted a number of similarities between Simondon and Beer’s work, there are also key
differences that become evident particularly with this limit in mind – one of which is particularly
relevant for this paper: as Mills (2015) argues, Beer and others working within the tradition of
his Viable Systems Model10 do not describe a mechanism that accounts for novelty in complex
systems – by basing their model on homeostasis and ultrastability, there is little room left
for a concept of invention. Accordingly, this view of social organization works only when one
assumes that all interactions are probabilistic – a “removal of the indeterminism and novelty
from the domain of the social” (Mills, 2015, p. 6). He further argues that this amounts to a
disregarding of politics and in turn a favoring of technocratic logic, as politics is precisely the
mechanism that resolves indeterminism in the social domain.

What this highlights most of all with regards to the main question of this paper is the importance
of invention – systems that evolve through metastability rather than the more commonly

10	 Mills refers specifically to Alex Pentland.

19

described concept of equilibrium stability. This means going, as Simondon describes, beyond
being “enslaved by the finality of the whole” (Simondon, 2012, p. 119) through unremitting re-
organization. Another way of describing this is as self-production (autopoiesis11), rather than
solely self-reproduction (or self-regulation). Autopoietic systems can be categorized as systems
that can re-inform their internal configurations: through metastability, these systems have the
capacity to generate new states, and as such are continuously in a state of becoming, rather
than being. This brings us back to Feenberg: his conception of a critical technology relies on a
capacity for reorganization which lies within the political. Bearing the notion of autopoiesis in
mind, this can be rephrased as centering the decision-making (and thus informing) capacity of
social processes. This points in the direction of a distinctly politicized cybernetic approach to
technicity.

2.3 Radical cybernetics

In the previous sections I have argued that one can characterize technical development as a
system, as such, it is a contingent process that is embedded within an environment – most
concretely in terms of the limits to potential, in terms of what is considered possible, and
in terms of what is viable. Moreover, as I have previously argued, considering technics as a
system means accepting that it is fundamentally political in nature – for social systems, their
capacity for informing is related to the degree to which a system can resolve indetermination.
This is in turn tied to the level of complexity that a system holds. In order to interface with the
exceedingly complex, autopoietic nature of the built environment then, there is a sense in
which current models of architectural practice fall short.

This becomes particularly clear when one considers the notion of failure, and its relation to
invention and reorganization. Stafford Beer’s original work on cybernetics hinged primarily on
the notion of viable systems – autopoietic systems that can retain their functioning in light of
any environmental change, and as such, in failure have the capacity to overcome that failure
through a reorganizing capacity. For this, a system has to sacrifice its direct functionality in
the following way: a system that is narrowly functional is limited to a very specific given set of
rules, when these rules no longer manage to adequately enable the system to interface with its
environment, it fails (Bates & Bassiri, 2016, pp. 205–206). Crucially, the specificity of a system’s
rules constrains the complexity of the system – meaning that it cannot meet the variety of its
environment. As such, the point can be made that for a system to be viable, it has to have a
level of plasticity – it has to be able to reorganize its governing logic in light of environmental
change (Bates, 2016). This is a point that Simondon elaborates on more fully: it is not just that
functionality negatively impacts a system’s plasticity, but more generally, that it is through a

11	 See: Varela, Maturana, & Uribe, 1974

20

greater level of abstraction away from functional demands that a technical object is made
open to multifunctionality – and thus further concretized (Kousoulas, 2018).

The conclusion of this argument is that for any meaningful concept of change, and thus futurity,
to arise12 a system has to be specifically porous in its governing logic – especially with regards to
its environment. In the context of organizational systems, where this interaction fundamentally
relies on humans, this can be taken to indicate that what is crucial for any sort of autopoietic
property to arise is a direct relation between the subjects of these processes and the system
that is being designed if one intends to engender a critical form of technics.

This reasoning can be extended by looking at contemporary literature on the research into
artificial intelligence – currently, there is a growing acknowledgement of what might be referred
to as embedded cognition or situatedness, and its importance in nurturing any intelligence
toward greater levels of complexity that is indebted to Stafford Beer’s work, influencing both
the dominant paradigm in AI and coincidentally contemporary cognitive science (R. D. Beer,
2014; Froese, 2007). What is relevant to this paper is that there is a sense in which current
paradigms of cognition and (artificial) intelligence recognize the importance of material (re)
organization in shaping systems’ behaviors through the concept of autopoiesis (R. D. Beer,
2014). Moreover, it has been argued that any venture into the creation and maintenance of
general intelligence systems seemingly has to rely on a distribution, and thus exteriorization,
of intelligence (Pasquinelli, 2015). This “offloading of our cognitive processing into the
environment” (R. D. Beer, 2014, p. 131) is what allows an understanding of intelligence as a
distributed phenomenon – a process that takes place through a network of technical and
biological individuals in the Simondonian sense.

Architecture and a critical technicity

Returning to the central question of this paper then, it might be argued that one way of
modulating the outcomes of technical development lies with this environmental porosity
and its relation to cognition as a network of technical and biological individuals. Within an
architectural context it is important to emphasize that this environment consists in more than
purely the physical boundaries and objects that surround an intervention – instead, the broader
positioning of an object within its physical, ideological, technical and social context defines an
overarching system-environment that a buildings occupants interface with during their stay in,
or use of, a building.

Crucially however, the component that takes this architectural environment beyond the
traditional notion of an architectural context, as is commonly used to refer to these aspects, is

12	 Beyond the aforementioned necessity for retentions in Stiegler’s terms.

21

the importance of its change over time. By foregoing the nature of architecture as a process that
unfolds over time, I would claim that architectural practice is relieved of discussing and perhaps
even conceptualizing this part of an intervention. As such, one might argue that architecture is
lacking a form of retention which would enable the formation of a critical technicity in the built
environment.

This is especially evident if one considers that the transmission of architectural design
intentions relies first and foremost on static images – snapshots of an intervention’s lifetime,
often limited to the image of a newly built structure. One might thus posit that architecture as
a discipline in its current form has no memory-for-time that enables designers to grapple with
these questions and to participate in the shaping of futurity when it comes to the lifetime of
the building in any conscious manner.

Furthermore, as I have outlined in the previous chapters, the notion of development in se is
premised on change over time – for any meaningful conception of a technical development
within the built environment itself, and not external to it, a centering of this understanding
of architecture as a system is required, and thus, an understanding of the architectural
intervention as a continuous moment – a proceeding intervention. Crucially, one can then
consider the aforementioned processes of invention and individuation of technics within the
architectural process. Within that process this position allows one to appreciate the necessity
of a relational approach if one’s aim is to in-form a particular emancipatory futurity due to the
role that plasticity and situatedness play in enabling this potential.

It is here that I refer back to the notion of criticality that I deploy in this paper. If one’s intention
is indeed to maximize the multiplicity of emancipatory outcomes that a system can generate,
then due to the nature of the process of in-formation being premised on the resolution of
indeterminism, a key role in this system lies with its integration with one particular aspect of
its environment – namely the biological entities that occupy them. A critical technicity within
architecture then, is one that is premised on a politicized architectural process – providing the
capacity for the emergence of new rules and logics that follow from reconfigurations of the unity
that defines the total relation between building, environment and user. A dance of continuous
reinvention on the part of both architectural intervention and occupant – a “technicity that
determines the potentials of a shared becoming” between technical and physical individuals
(Kousoulas, 2018, p. 6).

22

References
Ashby, W. R. (1991). Requisite Variety and Its Implications for the Control of Complex Systems. In Facets of

Systems Science (pp. 405–417). Boston, MA: Springer US.

Bachman, L. R. (2008). Architecture and the four encounters with complexity. Architectural Engineering and
Design Management, 4(1), 15–30.

Bates, D. (2016). Automaticity, plasticity, and the deviant origins of artificial intelligence. Plasticity and
Pathology: On the Formation of the Neural Subject, 086, 194–218.

Bates, D., & Bassiri, N. (2016). Plasticity and Pathology: On the Formation of the Neural Subject. Fordham
University Press.

Beer, R. D. (2014). Dynamical systems and embedded cognition. In K. Frankish & W. M. Ramsey (Eds.), The
Cambridge Handbook of Artificial Intelligence (pp. 128–151). Cambridge University Press.

Beer, S. (1974). Designing Freedom. John Wiley & Sons, Ltd.

Beer, S. (1983). The Will of the People. The Journal of the Operational Research Society, 34(8), 797.

Carpo, M. (2013). The digital turn in architecture 1992-2012. Wiley.

Carpo, M. (2017). The second digital turn: design beyond intelligence. MIT Press.

Colebrook, C. (2016). Futures. In B. Clarke & M. Rossini (Eds.), The Cambridge Companion to Literature and the
Posthuman (pp. 196–208). Cambridge: Cambridge University Press.

Conant, R. C., & Ashby, W. R. (1970). Every good regulator of a system must be a model of that system.
International Journal of Systems Science, 1(2), 89–97.

Feenberg, A. (2002). Transforming Technology: A Critical Theory Revisited. Oxford University Press.

Feenberg, A. (2019). The Internet as network, world, co-construction, and mode of governance. Information
Society, 35(4), 229–243.

Froese, T. (2007). On the role of AI in the ongoing paradigm shift within the cognitive sciences. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 4850 LNAI, pp. 63–75).

González, E. (2019). From Revolution to Democracy: The Loss of the Emancipatory Perspective. In E. González,
A. C. Dinerstein, A. G. Vela, & J. Holloway (Eds.), Open Marxism 4 (pp. 155–167). Pluto Press.

Greenfield, A. (2013). Against the Smart City. Verso.

Greenfield, A. (2017). Radical Technologies: The Design of Everyday Life. Verso.

Hörl, E. (2017). Introduction to general ecology: The ecologization of thinking. In E. Hörl & J. Burton (Eds.),
General Ecology: The New Ecological Paradigm (pp. 1–74). Bloomsbury Academic.

Iliadis, A. (2013). Informational Ontology: The Meaning of Gilbert Simondon’s Concept of Individuation.
Communication +1 , 2(September), 1–18.

Kousoulas, S. (2018). Shattering the black box: Technicities of architectural manipulation. International Journal
of Architectural Computing, 16(4), 295–305.

Leach, N. (2018). Adaptation. In A. Graafland & D. Perera (Eds.), Architecture and the Machinic: Experimental
Encounters of Man with Architecture, Computation and Robotics (pp. 46–59). DIA Architecture School.

Mason, P. (2015). Postcapitalism: A Guide to Our Future. Allen Lane.

Massumi, B. (2018). 99 theses on the revaluation of value: a postcapitalist manifesto. University of Minnesota
Press.

Mayer-Schönberger, V., & Ramge, T. (2018). Reinventing capitalism in the age of big data. London: John Murray
Publishers.

23

Mellas, Z. (2018). Critical Digitalism: Instrumental Reason and its Limitations. (Unpublished master’s thesis).
Delft University of Technology, Delft, Netherlands.

Mills, S. (2015). Simondon and Big Data. Platform: Journal of Media and Communication, 6: pp. 59-72

Murphy, D. (2012). The architecture of failure. Winchester: Zero.

Pasquinelli, M. (2015). Alleys of your mind: augmented intelligence and its traumas. Lüneberg: Meson Press.

Phillips, L., & Rozworski, M. (2019). The People’s Republic of Walmart. Verso.

Pickering, A. (2002). Cybernetics and the Mangle: Ashby, Beer and Pask. Social Studies of Science, 32(3), 413–
437.

Pickering, A. (2004). The science of the unknowable: Stafford Beer’s cybernetic informatics. Kybernetes, 33(3/4),
499–521.

Pickering, A. (2010). The cybernetic brain: sketches of another future. University of Chicago Press.

Poole, M., & Shvartzberg, M. (2015). The politics of parametricism: digital technologies in architecture.
Bloomsbury.

Rega, G., & Settimi, V. (2010). Nonlinearity in architecture versus science: Borrowing the lexicon of complexity
or exploiting its powerfulness? In P. J. S. Cruz (Ed.), Structures and Architecture (pp. 167–174). London: Taylor
& Francis Group.

Simondon, G. (2012). On the mode of existence of technical objects. (C. Malaspina & J. Rogove, Eds.).
Minneapolis: Univocal Publishing.

Spencer, D. (2016). The architecture of neoliberalism: how contemporary architecture became an instrument of
control and compliance. Bloomsbury.

Srnicek, N. (2016). Platform capitalism. Wiley.

Stiegler, B. (2017). General Ecology, Economy, and Organology. In E. Hörl & J. Burton (Eds.), General Ecology:
The New Ecological Paradigm (pp. 129–150). London, New York: Bloomsbury Academic.

Swann, T. (2018). Towards an anarchist cybernetics: Stafford Beer, self-organisation and radical social
movements. Ephemera, 18(3), 427–456.

Thoburn, N. (2003). Deleuze, Marx and politics. Routledge.

Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its
characterization and a model. BioSystems, 5(4), 187–196.

Žižek, S. (2015, February 1). Capitalism has broken free of the shackles of democracy. Financial Times.

Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of
Information Technology, 30(1), 75–89.

Zuboff, S. (2019). The age of surveillance capitalism: the fight for a human future at the new frontier of power.

24 25

Architectural complexity: systems & environments.

27

2929

SYSTEMI O

n STATES

SYSTEM A

SYSTEM AB

SYSTEM B

SYSTEM

COMPLEXITY

I O

Variety, Complexity

SYSTEM

ENVIRONMENT

I O

A system consists of a number of states, the amount of states in a system can be described
as its variety (A), which forms a measure of a system’s complexity (B). Systems are in every
case embedded within an environment, which can be characterized in the same way: it has a
number of states -- and often a very high complexity (C).

Systems can consist of subsystems - as is the case with environments. (D)

A

C

D

B

3131

SYSTEM A

SYSTEM AB

C

D

SYSTEM B

SYSTEM A

SYSTEM AB

SUPERSYSTEM

C

D

SYSTEM B

Recursivity

Systems made up of other systems can be characterized as being recursive: parts have the
same properties as wholes -- each with their own interrelated states, and thus behaviours
owing to those relations.

3333

BEING CONSTRUCTED IN USE

OUT OF USE TRANSFORMED DEMOLISHED

UNBUILT

BEING CONSTRUCTED IN USE

OUT OF USE TRANSFORMED DEMOLISHED

UNBUILT

I O

WASTE
ENERGY
EMISSIONS
SPACE
KNOWLEDGE

WORK
ENERGY

KNOWLEDGE
MATERIALS

UNBUILT

ENVIRONMENT BUILDING

Building states

Similarly, buildings can take on states (A) -- those states are not as discrete as here shown,
but instead, form continuous transitions between them (B). As with any system, there are
inputs and certain behaviour that produce outputs (C).

A

B

C

Design conditions: program, site, principles.

35

37

FINANCIAL CAPITAL

REMNANTS OF WELFARE STATE

HOUSING
STOCK

FINANCIAL CAPITAL

REMNANTS OF WELFARE STATE

HOUSING
STOCK

PRIVATISATION/MARKET LEGISLATION

FINANCIAL CAPITAL

REMNANTS OF WELFARE STATE

HOUSING
STOCK

2008 RECESSION

FINANCIAL CAPITAL

FINANCIALIZATION

REMNANTS OF WELFARE STATE

HOUSING
STOCK

HIGH QUALITY,
LUXURY & PRESTIGE

INVESTMENT PROJECTS

LEGAL MINIMUM QUALITY,
AREA

“DWELLING GAP” ...

Design problem: housing in amsterdam.

A

B

C

D

FINANCIAL CAPITAL

FINANCIALIZATION

REMNANTS OF WELFARE STATE

HOUSING
STOCK

HIGH QUALITY,
LUXURY & PRESTIGE

INVESTMENT PROJECTS

LEGAL MINIMUM QUALITY,
AREA

“DWELLING GAP” ...D

E

37

The city of Amsterdam has traditionally profited from a very strong welfare state. A significant
portion of the city’s housing stock originates with it, the other portion can be ascribed to
private actors (A). Recent drives towards privatisation and legislation centered around
enforcing market mechanisms in housing have decreased the effect of the remnants of the
welfare state on housing construction (B). While financial capital recovered quickly after the
2008 recession (C), its effects when seen together with the reduction in influence for public
actors have caused a so-called “dwelling gap” to arise (D). Moreover, what remains of public
housing is quickly being sold off into private hands (D). This dynamic provides the backdrop
for this project: an attempt at utilizing architectural strategies to circumvent the rapid sell off
of public housing by introducing indeterminacy (E).

1:25000

The current Mebin concrete plant, on the northwestern tip of the city of Amsterdam, provides
a convenient location for exploring dynamic architectures due to a number of factors. Due to
encroaching residential development, the area that the plant occupies might soon come to lie
in a zone that does not allow for industrial levels of (noise) pollution.

Site

23m
WATER ACCESS

The site consists of a number of components that together make up the machine that is the
conrete plant.

EXTRACTION

ENERGY

CONSTRUCTION

CRANE

STORAGE

PLANT

1 : 1000 / Existing system on site

System-environment

A number of storage depots store aggregates such as recovered construction waste and
sand. The crane on site is used to load these aggregates from a docking area into storage,
and then from there into the hoppers at the top of the plant. These components constitute a
system-environment.

EXTRACTION

ENERGY

CONSTRUCTION

CRANE

STORAGE

PLANT

...
1 : 1000 / Early Sketch of Approach

Plug-in approach

47
Program

60

40m2

80m2

47

The project’s program can be formulated as follows:

A landscape that can provide a material substrate for 60 occupants, with 40-80m2 of space
for each of these. It provides flows of energy, construction materials, and a suitable support
structure to enable convenient construction and reconstruction for its occupants.

49
Material Landscape

49

The project’s core aim is to allow a blooming of complexity -- to foster a sufficiently complex
system that resists being stratified, digitized and chopped up into discrete units that can be
owned, sold and rented out.

As such, the landscape can be seen as a system that is designed to maximize freedom of use
and -of construction for its occupants.

51
Infill / cores

51

INFILL

LANDSCAPE CRANE

The landscape consists of a set of cores that function as enabling constraints for occupants
while simultaneously providing as many necessities as possible for architectural freedom in
the infill inbetween.

Storage of materials

53
Infill / cores

INFILL

LANDSCAPE CRANE

53

55
Infill / cores

INFILL

CRANELANDSCAPE

INFILL

CRANELANDSCAPE

55

Flows - energy, access and ventilation are arranged through the cores.

The cores house shared functions to facilitate social organization - a core part of the design.

57
Principle

DWELLING SYSTEM

MATERIAL INPUTS CONSTRAINT

SUBSYSTEM

SUBSYSTEM

CONSTRAINT

SUBSYSTEM

57

An open system: designing constraints.

59

61
Plug-in approach

EXTRACTION

ENERGY

CONSTRUCTION

INFILL

LANDSCAPE
*Storage
*Energy

CRANE

STORAGE

PLANT

BUILDING
SYSTEM

BU
IL

D
IN

G
O

RG
A

N
IZ

A
TI

O
N

* Before and during initial construction

* After initial construction

WORK
ENERGY

MATERIALS
ENERGY

Construction process

1

3

5

2

4

6

The construction process (1-6) of the landscape is an integral part of the approach to this
site: the building functions as a plug-in to the existing system-environment of the site, that
gradually spreads over the site and eventually takes the place of the concrete mill.

6363

Building Manager

Interface

Material Production

AssemblyProduction Transport

Building Planning

city regulations

city stock

Occupants

Building Elements

A
llocation

Rules, logics, conventions

Actions, events, feedback

Desires, requisitions, production feedback

position, distribution

new/altered units

disassembled units / material work

surplus units, material, system changes

discussions, negotiations, consensus, con�ict

building information

customization, a�ordance, wear,
decay, energy use

resources

Organization
65

Diagram of the organizational structure for the cooperative on site.

67

69

INSTALLATIONS

CAFE/KITCHEN

MEETING SPACES

BICYCLE PARKING
STORAGE
TECHNICAL ACCESS

INFILL

INFILL

WORKSPACE

STORAGE

STORAGE

STORAGE

WORKSHOP

ASSEMBLY PAD

CRANE LIFT RANGE

CRANE

Use

1 : 500 / Ground Level Plan

Functional layers.

Crane access opening diagram.

71

assembly padservice areacrane access corridor

service area access

bike storage 1 : 100 / Section diagram

Workspace interior.

73

75

77

1 : 50 / First Floor (A)

79

1 : 50 / First Floor (B)

Technical implementation

81

Structural elements
83

1:25

Facade components
85

Attachment points

Attachment strip

Threaded rebar ends

Rammed concrete facade

mullions

Demountable opening, window

and door version

Infill structure (variable)

87

10.8m

7.2m

0.9m

3.6m

10.8m

150mm
Mineral Wool

100mm
Rammed
Concrete
(in-situ)

200mm
Reinforced
Concrete
(in-situ)

Core build-up

Thermal system

Ventilation & insulated segments

IJ Surface water

District thermal storage

Heatpump

Cement floor
Thermal Core activation
Shrink film
900x900 Waffle Element
 Pre-cast on site

RC Lintel
 Cast on site
Air barrier
150mm Mineral Wool Insulation
RC Facade Element
 Cast on site

Detail Attachment Point
1:5

RC Main Structure
 Cast on site
150mm Mineral Wool Insulation
Rammed Concrete facade cladding
 Cast on site

facade fragment
1:50

89

Appendix:

Architectural system visualization.

91

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class BuildingPlacement : MonoBehaviour
{
 private static BuildingPlacement instance;
 public static BuildingPlacement Instance
 {
 get
 {
 if (instance == null)
 {
 instance = GameObject.FindObjectOfType<BuildingPlacement>();
 }
 return instance;
 }
 }

 private Transform currentModule;

 private SnapCollider snapCollider;
 private CraneAnim craneAnim;

 public bool inBuildingMode;
 private bool isSnapping;
 private bool UISnapToggle;

 [HideInInspector] public Vector3 mousePosWorld;
 [HideInInspector] public bool placed;
 [HideInInspector] public int numModules = 0;
 public const float _yStepSize_ = 3.3f;
 public const float _moduleSnapSpeed_ = .9f;

 void Awake()
 {
 craneAnim = FindObjectOfType<CraneAnim>();
 inBuildingMode = true;
 }

 // Update is called once per frame
 void Update()
 {
 numModules = ModuleManager.Instance.ModuleCount;
 UISnapToggle = GameObject.Find(“/UI/Canvas/SnappingToggle”).GetComponent<Toggle>().isOn;

 if (inBuildingMode)
 {

 if (currentModule == null) // currently not placing a module
 {
 if (Input.GetMouseButtonDown(1)) // delete module with right click
 {
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit hit;
 LayerMask layerMask = LayerMask.GetMask(“Modules”);
 if (Physics.Raycast(ray, out hit, Mathf.Infinity, layerMask))
 {
 currentModule = hit.transform;
 Debug.Log(“Deleteing “ + hit.transform.ToString());
 ManagerCancelBuilding();
 }
 }
 }

 if (currentModule != null && !placed) // placing a module
 {

 // Enable outline while placing
 currentModule.GetComponentInChildren<Outline>().enabled = true;

 // Cancel on right click
 if (Input.GetMouseButtonDown(1))
 {
 ManagerCancelBuilding();

Visualization code excerpt
93

 }

 // Get world mousepositon
 mousePosWorld = GetMouseWorldPos();
 if (InSnapDistance() && UISnapToggle)
 {
 GameObject snapModule = snapCollider.nearbyObjects[0].transform.parent.gameObject;
 ModuleSnapToTarget(currentModule.gameObject, snapModule);
 }
 else {
 currentModule.position = Vector3.Lerp(currentModule.position, ModuleSnapToMouse(currentModule),
						 moduleSnapSpeed);
 }

 ModuleMoveY(currentModule);
 ModuleRotate(currentModule);

 // Place module on lmb
 if (Input.GetMouseButtonDown(0))
 {
 if (IsPlaceable() || isSnapping)
 {
 ManagerPlace();
 Debug.Log(“Placing”);
 }
 else
 {
 Debug.Log(“Cannot place here”);
 }
 }

 }
 }

 }

 // GENERIC METHODS

 bool IsPlaceable()
 {
 if (currentModule.GetComponent<PlaceableBuilding>().colliders.Count > 0)
 {
 return false;
 }
 return true;
 }

 bool InSnapDistance()
 {
 if (snapCollider.nearbyObjects.Count > 0)
 {
 return true;
 }
 return false;
 }

 public Vector3 GetMouseWorldPos()
 {
 Vector3 mousePos = Input.mousePosition;

 LayerMask layerMask = LayerMask.GetMask(“Groundplane”);
 Ray castPoint = Camera.main.ScreenPointToRay(mousePos);
 RaycastHit hit;
 if (Physics.Raycast(castPoint, out hit, Mathf.Infinity, layerMask))
 {
 return hit.point;
 }
 else
 {
 return currentModule.transform.position;
 }

 }

 // MANAGER METHODS

 public void ManagerSetItem(GameObject c_moduleType, int c_typeIndex)

 {
 placed = false;

 // Instantiate a new module
 currentModule = (Instantiate(c_moduleType)).transform;
 currentModule.name = “Module” + numModules + “-” + c_moduleType.name;

 // Set module to modules object, find its placeableBuilding component and assign its type.
 currentModule.parent = GameObject.Find(“Modules”).transform;
 currentModule.GetComponent<PlaceableBuilding>().ModuleType = c_typeIndex.ToString();
 currentModule.tag = “Module”;
 currentModule.gameObject.layer = 9;

 snapCollider = currentModule.GetComponentInChildren<SnapCollider>();
 }

 public void ManagerCancelBuilding()
 {
 currentModule.GetComponent<SaveableObject>().DestroySaveable();
 Debug.Log(“Cancelling building”);
 }

 public void ManagerPlace()
 {
 placed = true;

 // Pass on crane position data
 Vector3 placementpos = currentModule.position;
 craneAnim.SetCraneDestination(placementpos, 1f);

 // Disable outline when placed
 currentModule.GetComponentInChildren<Outline>().enabled = false;

 // Reset manager
 currentModule = null;
 }

 //MODULE METHODS
 public void ModuleMoveY(Transform c_ModuleTransform)
 {
 float yAxis = Input.GetAxis(“Mouse ScrollWheel”);
 if (yAxis != 0)
 {
 float yStep = yAxis * 10 * _yStepSize_;
 c_ModuleTransform.Translate(new Vector3(0, yStep, 0));
 }

 if (c_ModuleTransform.position.y > 0)
 {
 HeightLineManager.Instance.DrawHeightLines(c_ModuleTransform.gameObject);
 }
 }

 public void ModuleRotate(Transform c_ModuleTransform)
 {
 if ((Input.GetMouseButtonDown(2) || Input.GetKeyDown(KeyCode.R)) && !isSnapping)
 {
 c_ModuleTransform.Rotate(new Vector3(0, 90, 0));
 }
 }

 public Vector3 ModuleSnapToMouse(Transform c_ModuleTransform)
 {
 isSnapping = false;
 Vector3 currentModuleTargetPos;

 float gridSize = 3.6f;

 currentModuleTargetPos = new Vector3(mousePosWorld.x, currentModule.position.y, mousePosWorld.z);
 currentModuleTargetPos = new Vector3(Mathf.Floor(currentModuleTargetPos.x / gridSize) * gridSize + gridSize / 2,
 	Mathf.Floor(currentModuleTargetPos.y / _yStepSize_) * _yStepSize_,
 Mathf.Floor(currentModuleTargetPos.z / gridSize) * gridSize + gridSize / 2);

 return currentModuleTargetPos;
 }

 public void ModuleSnapToTarget(GameObject c_currentModule, GameObject c_targetModule)
 {

95

 isSnapping = true;

 // Get nodes of snapModule object
 List<Transform> currentModuleNodes = c_currentModule.GetComponentInChildren<SnapNodes>().nodesOpen;
 List<Transform> snapModuleNodes = c_targetModule.GetComponentInChildren<SnapNodes>().nodesOpen;

 //Find the nearest node to the mouse on target
 float nearestDist = Mathf.Infinity;
 Transform snapModuleTargetNode = null;

 int loopIndex = 0;
 int nearestIndex = 0;

 foreach (Transform node in snapModuleNodes)
 {
 float dist = Vector3.Distance(mousePosWorld, node.position);
 if (dist < nearestDist)
 {
 nearestDist = dist;
 nearestIndex = loopIndex;
 snapModuleTargetNode = node;
 }
 loopIndex += 1;
 }

 int targetIndex = nearestIndex;

 if (Input.GetButtonDown(“NodeCycle”))
 {
 targetIndex = (targetIndex + 1) % snapModuleNodes.Count;
 snapModuleTargetNode = snapModuleNodes[targetIndex];
 }

 // Find nearest node on current Module to target node
 nearestDist = Mathf.Infinity;
 Transform currentModuleTargetNode = null;
 foreach (Transform node in currentModuleNodes)
 {
 float dist = Vector3.Distance(snapModuleTargetNode.position, node.position);
 if (dist < nearestDist)
 {
 nearestDist = dist;
 currentModuleTargetNode = node;
 }
 }

 // Translate using vector from current node to target node.
 Vector3 snapVector = snapModuleTargetNode.position - currentModuleTargetNode.position;
 snapVector.y = 0;
 currentModule.transform.Translate(snapVector);

 //snapModuleTargetNode.GetComponentInParent<SnapNodes>().RefreshNodes(snapModuleTargetNode);

 }
}

96 97

98

