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A B S T R A C T

Coastal flooding events pose a critical risk in delta areas, since they are characterized by population growth
and urban expansion. A better understanding of Extreme Water Levels (EWLs), the mechanisms generating
them, and their components, i.e., astronomical tide and storm surge is of great importance as they drive the
maintenance and design of flood protection systems. Therefore, a statistical investigation of them can provide
new insights for more reliable flood risk mitigation infrastructures. In this study, we analyse these components
and compare different probabilistic methods i.e., univariate extreme value analysis, copula functions, and Joint
Probability Method (JPM) for the better estimation of EWLs. We use Hoek van Holland (NL) as a representative
case study, since the dynamic conditions of this deltaic environment with man-made infrastructures render
the area of strategic importance. The results indicate that a more accurate estimate of the declustering time
between extreme events can be achieved using correlation of high surges and high wind speeds, taking
into consideration also the wind direction. In the Southwest Delta this time estimated to be around 4 days.
Furthermore, the EWLs components, i.e., surge and astronomical tide, show negative dependence. From the
comparison between statistical approaches to model EWLs, results show that EWLs estimated via EVA and JPM
do not vary significantly, while copulas’ seems to outperform the other methods. However, the selection of
the proper copula to show the dependence is critical. As a conclusion, the analysis of the dependence between
tides and storm surges can lead to more robust inferences of EWLs.
1. Introduction

Currently, 2.15 billion people live in coastal regions and 898 mil-
lion in the low-elevation coastal zone (Reimann et al., 2023). Coastal
cities and communities have been and will continue to be important
economic and trade centres. However, population growth and urban
expansion combined with projected Sea Level Rise (SLR) pose a sig-
nificant threat to such communities (Nicholls, 1995; Woodruff et al.,
2013; Neumann et al., 2015; Nicholls et al., 2008). Low-lying delta
regions, where different natural processes interact, are under great
pressure. For example, Hsiao et al. (2021) showed that the flooded
area in Tawain due to coastal flooding can potentially highly increase
due to a changing climate. In Europe, the Ebro Delta region (Spain)
requires a new flood management strategy to overcome the effect of
projected SLR (Grases et al., 2020; Sánchez-Arcilla et al., 2008). In
the US, the consequences of SLR in the Mississippi Delta were studied,
and the importance of the integrated, long-term management plans was
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underlined (Day and Templet, 1989). Generalizing the effect in low-
lying delta regions on a global scale, Nienhuis and Van de Wal (2021)
estimated a loss of ∼ 5% of global delta land in 2100 due to SLR.

The Netherlands is situated in the delta of the rivers Rhine, Meuse,
Scheldt, and Ems along the North Sea coast. About 26% of the Dutch
territory is below mean sea level, and about 60% is vulnerable to floods.
Because of the large number of inhabitants and high value of assets,
the Netherlands has a high level of protection against flood, provided
by a comprehensive system of dams, seawalls, storm surge barriers,
dikes, dunes, pumps, sluices, and regular beach nourishments (Van
Alphen et al., 2022). In this context, new revisions about the esti-
mation of EWLs (KNMI, 2024) and the effect of SLR that is expected
to alter Extreme Water Level (EWL) statistics, pose significant chal-
lenges for infrastructure design and risk assessment. These changes
raise several issues regarding the suitability of the current management
https://doi.org/10.1016/j.coastaleng.2024.104603
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approach (Stijnen et al., 2014) and the operability of current infras-
tructures (Van Alphen et al., 2022). In the Dutch Southwest Delta, a
critical location is represented by Hoek van Holland, where the inlet of
the port of Rotterdam, the largest seaport in Europe is located. Here,
the Maeslant storm surge barrier protects the Rotterdam harbour and
the region of South Holland. The barrier was designed to close on
average once every 10 years (Katsman et al., 2011; Van den Brink
and de Goederen, 2017). However, the new analysis by the The Royal
Netherlands Meteorological Institute KNMI (KNMI, 2024) shows an
overestimation of the EWL with the current techniques, calling for
a deeper understanding of EWL conditions, their components, and
interactions (Antonini et al., 2019).

The observed Water level (WL) is the result of the combination of
astronomical tides, driven by astronomical forcing, surge, influenced
by weather systems interacting with the topography and morphology
of the region, and mean sea level, i.e., the sea level when waves
and tidal components are averaged out. Previous studies highlight the
importance of dependence between tides and surges for reliable esti-
mations of EWLs (Proudman, 1955a; Rossiter, 1961; Arns et al., 2020;
Ragno et al., 2023), but a comparative analysis between dependent,
independent and commonly used statistical models for the estimation
of extremes is still missing.

Several studies have shown the tendency of the peak of high surges
to occur during rising tide (Proudman, 1955a,b; Rossiter, 1961). More
recently (Arns et al., 2020) showed that the independence between
storm surges and tides, often assumed for design purposes, can lead to
an overestimation of EWL of up to 30%. Horsburgh and Wilson (2007)
observed a phase difference between the peak of high surges and high
tides in UK affecting observed EWLs. In the Adriatic and Tyrrhenian
Sea, a negative relationship between high astronomical tide and surge
is observed when investigating extreme water conditions (Ragno et al.,
2023). On the other hand, Williams et al. (2016) showed the indepen-
dence between extreme surges and astronomical tides, i.e., meaning
that the likelihood of any surge to coincide with any tide is the same
when studying stations in UK, North Sea and the east coast of the US.
Similarly, EWLs are obtained in UK considering high surges and high
tides as potentially coincident (Horsburgh and Wilson, 2007), while
another common design approach, more conservative, defines EWL
as the sum of Highest Astronomical Tide (HAT) and maximum storm
surge (Liu et al., 2010).

In the Netherlands, the probabilistic assessment tools used for EWL
assessment on structures, e.g., the Maeslant barrier, are designed for
estimating WL as a combination of surges with a trapezoidal shape
and tides with a cosine shape (Diermanse et al., 2013; Geerse et al.,
2019; Geerse, 2020). For the calculation of EWL the phase difference
of 1.5 h between the peaks of storm surges and tides was introduced
after a revision for the legal set of instruments for flood risk (Wettelijk
Beoordelingsinstrumentarium 2017) (Geerse et al., 2019).

Consequently, since the calculation of EWLs is highly sensitive to
the adopted statistical method, we present a comparative study of
the methods available in the literature, such as (i)univariate extreme
value analysis on observed EWLs, (ii) copula functions (Arns et al.,
2020; Ragno et al., 2023; Ferrarin et al., 2022) and (iii) the joint
probability method (Pugh and Vassie, 1978). The analysis is carried out
by using the 66 years long time series available at Hoek van Holland
tide gauge. In preparation for the comparative study, we present a
step-wise procedure to investigate observed water levels and derive
extreme conditions. More specifically, the extent to which observed
water level is affected by Sea Surface Pressure (SSP) and wind speed,
which are both considered physical drivers for storm surge generation,
is investigated via spectral analysis, coherence function, and measure
of dependence.

The remainder of the paper is organized as follows. In Section 2,
information about the location, and the importance of the study area,
as well as the datasets are presented. The methods used to conduct
the analyses are described in Section 3. Afterwards, the results are
presented in Section 4. Finally, the main points of discussion and

conclusions are presented in Section 5 and Section 6, respectively.

2 
2. Data

We analyse the observed Water Level (WL) in Hoek van Holland
(South Holland province, NL). Over the years, multiple man-made
interventions, especially targeted to the construction and expansion of
the port, have altered the tidal range profile along the coast (Paalvast,
2014), requiring some pre-processing of the data before estimating
their statistics (Section 2.1). Sea surface pressure and wind speed and
direction, being physical drivers for EWLs, will be analysed as well. A
summary of the data used in this paper is presented in Table 1.

2.1. Sea level and its components

The gauge station in Hoek van Holland is located in 51.98◦N, 4.12◦E
(Fig. 1) and at a water depth of around 10 m. Here, the dataset
with observations from the Global Extreme Sea Level Analysis (GESLA)
version 3 (Haigh et al., 2023) that contains sea water level observations
on a global scale (see Sl Figure. 1 in the Supplement) is chosen (Fig. 2).

GESLA contains data with different hourly and sub-hourly frequen-
cies for 1900–2018. However, due to the presence of gaps between
1900–1952, such years are excluded from the analysis. In this study,
we select the GESLA dataset, over the Rijkswaterstaat (the executive
agency of the Ministry of Infrastructure and Water Management in the
Netherlands) dataset, which contains daily measurements, since hourly
observations are preferred to describe EWLs.

The frequency of the GESLA dataset varies as follows: 3-h frequency
between 1953–1970, 1-h frequency between 1971–1986, 10-min fre-
quency between 1987–2015 and 1-min between 2016–2018. To make
the GESLA dataset uniform in terms of temporal resolution, the fol-
lowing procedure is applied: for sub-hourly observations, the average
value recorded in one hour is selected; for hourly observations, a linear
interpolation between consecutive observations is performed as in Lee
et al. (2022) assuming that only minor anomalies in the WL can occur
between 1 and 3 h.

2.2. Wind and sea surface pressure

In Hoek van Holland, sea surges are mainly caused by high wind
speeds from West and N-NW direction (Diermanse et al., 2013; Groe-
neweg et al., 2022) that typically coincide with low atmospheric pres-
sure systems (Van Ledden et al., 2014). The latter phenomenon is
known to contribute to the WL via the inverse barotropic effect (Weisse
et al., 2012) in which the atmospheric pressure and the sea sur-
face height are inversely proportional and the increase of atmospheric
pressure leads to WL depression and vice-versa. Therefore, we use
contemporaneous wind (Fig. 3) and pressure time series recorded at
Hoek van Holland (51.99◦N, 4.12◦E) during the same time interval
of the WL to introduce a process based procedure aimed to identified
the appropriated declustering time. The wind and pressure data are
made publicly available by the The Royal Netherlands Meteorological
Institute (KNMI) for the period between 1981 and 2018. They do not
present gaps and have a time resolution of 1 h.

3. Methods

The step-wise approach adopted in this work is summarized in Fig. 4
entailing the following steps: (i) decomposition of observed WL (ii)
data homogenization, (iii) spectral analysis aimed to do highlight the
underlying components of the different adopted data (iv) coherence and
correlation analysis for analysing the causality between meteorological
drivers and NTR, (v) extreme value analysis, (vi) copula functions, and
(vii) Joint Probability Method (JPM) for deriving statistical properties

of EWLs.
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Fig. 1. Hoek van Holland station.
Fig. 2. GESLA-3 data for the Hoek van Holland station. The data are referenced to the Normal Amsterdam Peil (NAP), which is the national reference level for height on land in
Netherlands. The maximum observed water level is captured in 01/02/1953 corresponds to the great flood of 1953 and the water reached up to 385 cm+NAP. The second highest
peak (318 cm+NAP) that has been recorded in 09/11/2007 was extremely important as it forced to the closing of the Maeslant barrier for first time in a real storm event, since
its construction in 1997.
Table 1
Datasets of Water Level, Wind speed and direction, and Surface that have been used within this study.
Dataset name Period Time resolution Deleted years Total number

of years

GESLA-3-Water Level 1900–2018 1-h (reassembled) 1900–1952 66
KNMI-Wind Direction 1981–2018 1-h – 63
KNMI-Wind Speed 1981–2018 1-h – 63
KNMI-Surface Pressure 1981–2018 1-h – 63
3.1. Water level decomposition

Observed WL results from the combination of astronomical tides,
surges, regional wave set-up, intra-annual and monthly mean sea level
anomalies (interannual variability), an error component and mean sea
level (Ferrarin et al., 2022). The mean sea level is assumed equal to
the annual mean sea level and includes man-made interventions We
use it to homogenize WL (see Section 3.2.) before further decomposing
it in astronomical tides and surges. Astronomical tides are considered
to be the deterministic component of WL. In this study, they are
reconstructed using the toolbox T_Tide by Pawlowicz et al. (2002).
3 
The other components, mainly driven by the meteorological per-
turbations and the morphology of the area, are then evaluated by
subtracting the reconstructed tide from the homogenized WL obser-
vations. The results of this operation is hereafter refer as Non-Tidal
Residuals (NTR) (Arns et al., 2020; Ferrarin et al., 2022) and it is
schematized in Fig. 5.

3.2. Data homogenization and trend’s test

Due to the combination of many man-made interventions in Hoek
van Holland and possible influence of SLR, homogenization of ob-
served WL (detrending) is necessary to conduct statistical analysis, as
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Fig. 3. Wind rose for Hoek van Holland station.

Fig. 4. Flow diagram of the framework of the methodology adopted in this paper. The homogenized Water Level (WL) data have been divided into the tidal and Non-Tidal
Residual (NTR) components. For the latter one the wind speed and Sea Surface Pressure (SSP) as the main drivers are analysed to define the duration of storm events. In the
probabilistic part of the analysis three different approaches are compared. On the one hand, the Joint Probability Method (JPM) which is oriented by the extreme NTR and the
NTR and tides are assumed independent. On the other hand Copulas and Extreme Value Analysis (EVA) are Extreme Water Levels (EWL) oriented, as they have been calculated
with Peak Over Threshold (POT), differing in the implementation method as in the first the dependence between tides and NTR is taken into consideration, whilst in the EVA
method statistical distributions are fitted directly to the EWL for projection in higher return periods.

Coastal Engineering 194 (2024) 104603 
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Fig. 5. Explanation of the pair of NTR and tide that is chosen for the analysis. The black dots in NTR and tide timeseries correspond to the peak of EWL at the same time t.
stationary data are needed (Caires, 2011). At the same time, we are
interested in evaluating whether MSL presents long-term statistically
significant trends. A well known method for trend detection is the
Mann–Kendall Test (Mann, 1945; Kendall, 1975) which tests the Null-
Hypothesis (𝐻0) of no-trend in the data against alternatives (Masina
et al., 2022). However, the correlation between data can lead to a
faulty rejection of 𝐻0 (Yue and Wang, 2004; Sartini and Antonini,
2024). To overcome this issue, the pre-whitening Mann–Kendall Test
was introduced by Yue and Wang (2002). In this test, the time series
are divided into independent events, and serial correlation is removed.
Here, we implement the pre-whitening test at the significance level of
𝛼 = 0.05 to investigate the statistical significance of long-term trends
on annual MSL.

The procedure of data homogenization is implemented as follows:
(i) Mean Sea Level (MSL) is calculated as the yearly average of hourly
WL observations, (ii) different time periods are selected, based on the
visual inspection of the trends of MSL, (iii) using the pre-whitening
Mann–Kendall Test the presence of trends is tested, (iv) the character-
istics of trend-lines (Sen’s slope (Sen, 1968) and intercept) for every
period and the yearly values from these trend-lines are calculated, (iv)
to correct the data to the final year of observations, the difference
between the trend-line value of 2018 and every other year is calculated
and (v) this difference is added to the initial yearly MSL to make it
homogeneous. Finally (vi) the new homogenized yearly MSL is added
to every hourly WL observation of this year. With this procedure we
ensure stationary and from the correction to the latest year, the possible
effect of SLR and man-made interventions is taken into consideration.

3.3. Frequency analysis

To properly describe the energy content within the WL, NTR and
tides two different spectral resolution have been tested. The first one
is based on Kaiser Bessel window of 𝑁 = 8192 h (𝛥𝑓 = 1∕𝑁 = 0.00122
cycles per hour (cph)) with a half-window overlap and degrees of
freedom 𝜈 = 81. It is used for identifying components with frequencies
between 10−4 − 1 cph (see also (Thomson and Emery, 2014; Medvedev
et al., 2020)). While with the aim of focusing on the diurnal (𝑓 =
0.033–0.043) and semidiurnal band (𝑓 = 0.077–0.085), a Kasser Bessel
window of 𝑁 = 65, 536 h (𝛥𝑓 = 1∕𝑁 = 0.000015 cph) and a half-
window overlap, is applied, allowing us to observe details about these
components (Medvedev et al., 2017).

Sea surface pressure conditions are a critical factor in the generation
of storm surges (Ferrarin et al., 2022; Woodworth et al., 2019). For
this case, a spectral Kaiser Bessel window of 𝑁 = 65, 536 h has been
selected to show more details in the frequency domain of the possible
declustering time (0.01–0.03 cph, or 1.4–4.2 days).
5 
3.4. Statistical models for EWLs

We are interested in investigating EWLs and their statistics since
they drive infrastructure design and risk assessment procedures. In the
following we first describe how we implemented the Peak Over Thresh-
old method to identify extreme events. Then we describe the three
different statistical models, i.e., extreme value analysis, copulas func-
tions, and joint probability method, used to derive high return period
quantiles and potential design values associated with low probability
of occurrence.

3.4.1. Peak over threshold
Peak Over Threshold (POT) method is a widely used approach for

sampling extremes when dealing with sub-daily samples or when few
years of observations are available (Ragno et al., 2018, 2019; Antonini
et al., 2019; Raby et al., 2019).

Following the POT approach, a threshold 𝑢 should be defined and
excesses above such threshold are considered extremes. Threshold se-
lection can be a quite challenging task and many different methods
have been proposed. Graphical methods such as Mean Residual Life
Plot (Davison and Smith, 1990) and Parameter Stability Plot (Teix-
eira et al., 2018; Caires, 2011) can be used to select the appropriate
threshold via visual inspection and as a result difficulties might be
encountered when assessing the influence of small changes. Besides the
graphical methods, approaches that automate the threshold selection
have also been proposed e.g., Solari et al. (2017) while others propose
techniques designed to reduce the sensitivity to the choice of a single
threshold e.g., Northrop et al. (2017). Other authors (Ferrarin et al.,
2022; Arns et al., 2020; Wahl et al., 2017) proposed the use of the
percentiles values, e.g. from 99th to 99.9th, to identified most suitable
threshold value. It is worth noticing that the latter depends on the
record length and even if it is widely used it is difficult to be justified
scientifically. Here, a threshold of 212.2 cm is chosen, following the
Dutch standards for EWL generated by the most severe storms which
are from NNW direction (Diermanse et al., 2013). In the GESLA dataset
used for the analysis, this value corresponds to the ≈ 99.9𝑡ℎ percentile.
Hence this threshold is chosen as it combines the theoretical percentile
method with the practical flood protection standards. When the JPM
is implemented, NTR peaks are selected via POT with a threshold of
107.6 cm, based on the stability parameters plot and mean residual life
plot (see Sl Figure. 12 in the Supplement), since no other information
is available. This threshold value corresponds to the ≈ 99.5𝑡ℎ percentile
of NTRs.

3.4.2. Storm duration-declustering time
To infer the statistics of the extremes, such extremes should be

independent, i.e., should come from independent events. To ensure
the independence between selected peaks, a declustering time between
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two consecutive peaks should be selected. Usually, the declustering
time is assumed related to the length of the storm. In this work it is
assumed equal to the average storm duration at the location of the tide
gauge. Previous literature about declustering time in Hoek van Holland
has reported 2.41 days as the time between two independent storm
events (Dillingh et al., 1993), while more recent reports have seen
that peaks with a time difference less than 4 days can be considered
belonging to the same event (Caires, 2011). A recent global study
by Martín et al. (2024) suggests the storm duration at nearby gauges
to Hoek van Holland close to 4 days.

In the effort to identify a declustering time we attempt to estimate
an average duration of the extreme storm surge events. First the co-
herence function is used to investigate the frequencies for which two
variables show the highest degree of dependence. Here, we use it to
estimate the declustering time in the Peak-Over-Threshold (POT) anal-
ysis. This is because we expect to identify non-negligible correlation
between NTR and sea surface pressure due to the causality relation
between these variables. More specifically, the storm duration (and so
the declustering time) is assumed to be equal to the frequency of the
highest coherence. The coherence function is given by the following
equation:

𝐶𝑥𝑦(𝑓 ) =
|𝐺𝑥𝑦(𝑓 )|

2

𝐺𝑥𝑥(𝑓 )𝐺𝑦𝑦(𝑓 )
(1)

here, 𝐺𝑥𝑥(𝑓 ) and 𝐺𝑦𝑦(𝑓 ) are the power spectra of NTR and surface
ressure, respectively, and 𝐺𝑥𝑦(𝑓 ) is the cross-power spectrum between
hem. The range of 𝐶𝑥𝑦(𝑓 ) varies from 1 which corresponds to perfectly
elated variables to 0 which means that there are no causality between
hem.

Extreme storm surges (extreme values of NTRs) are driven by high
ind speed. Hence, we quantify the dependence between NTR and
ind speed by means of correlations, i.e., Spearman’s 𝜌𝑠 to identify the
eclustering time. The following steps are needed: (1) Implementation
f the POT approach for NTRs with a threshold of 107.6 cm (same as the
hreshold for JPM) and three different declustering times of 3, 4 and
days. (2) Selection of time windows from 12 (±6) to 72 (±36) hours

ased on the time of the peak NTRs from POT method, (3) finding the
aximum wind speed inside these time windows and (4) calculation of

he non-parametric Spearman’s rank correlation coefficient 𝜌𝑠 for peaks
of NTR and wind speed (see Fig. 6). The declustering time on which the
correlation reaches its maximum value is the estimated one for the Peak
Over Threshold. Previous contributions showed that along the Dutch
coast, extreme storms are generated by westerly and northwesterly
winds (Horsburgh and Wilson, 2007; Diermanse et al., 2013; Van den
Brink and de Goederen, 2017). To investigate the contribution of wind
direction in the correlation we chose several direction windows, finding
the wind speed peaks as previously, dependently on the corresponding
wind direction windows. From the results the direction window be-
tween 270◦ and 360◦ that led to highest values of correlation is 310◦

o 330◦.
In this study, we use the results of the coherence analysis between

TR and surface pressure and the correlation between NTR and wind
peed to select a representative declustering time equal to 4 days.

.4.3. Extreme value analysis
Extreme Value Analysis (EVA) is a method to determine the statisti-

al characteristics of observed extreme events and infer low-probability
vents, often not observed, such as those occurring on average once
very 1000 or 10,000 years.

The distributions tested to model excesses of WL and NTR, i.e., Gen-
ralized Pareto, Weibull for minima, Exponential, and Generalized
amma, are listed in Table 2.

The threshold excesses, e.g. excesses selected based on the POT
ethod, belong to the generalized Pareto family (Coles et al., 2001).
he value of shape parameter 𝜉 in Generalized Pareto Distribution

GPD) (Table 2) determines its qualitative behaviour: for 𝜉 = 0 it has a b

6 
Table 2
Tested Distributions. 𝑓 (𝑦) indicates the probability density function (pdf);
𝑦 the excesses above the threshold obtained as the difference between
the observations (𝑥) and the selected threshold.
Name Mathematical description Parameters

Generalized Pareto 𝑓 (𝑦) = (1 + 𝜉 𝑦
𝜎
)−1−

1
𝜉 𝑦 ≥ 0

𝜎 scale
𝜉 ∈ R

Weibull 𝑓 (𝑦) = 𝑐( 𝑦
𝜎
)𝑐−1 exp (− 𝑦

𝜎
)𝑐 𝑦 ≥ 0

𝜎 scale
c shape
𝑐 > 0

Exponential 𝑓 (𝑦) = exp (− 𝑦
𝜎
) 𝑦 ≥ 0

𝜎 scale
Generalized Gamma 𝑓 (𝑦) =

𝑘( 𝑦
𝜎
)𝑘𝑎−1𝑒𝑥𝑝(−( 𝑦

𝜎
)𝑘 )

𝛤 (𝑎)
𝑦 ≥ 0
𝜎 scale
k,a shape
𝑘, 𝑎 > 0

Type I tail, corresponding to the exponential distribution; for 𝜉 > 0 it
has a Type II tail and it is the Pareto distribution; and for 𝜉 < 0 it has
a Type III tail it is a special case of the beta distribution. However, a
previous study of Caires (2011) on EWL in Hoek van Holland, showed
that the shape parameter of GPD is quite small, albeit non-0. This
could be an indicator of a type II — exponential distribution. As the
exponential distribution is a special case of the Weibull for minima
distribution with a shape parameter (𝑐 = 1), the latter one is also
investigated (Table 2). As a matter of fact, it is expected that the
Weibull distribution fits better the data given the extra parameter.
Similarly, the Generalized Gamma distribution being a generalization
of the Weibull distribution with one more shape parameter 𝛼, is also
tested.

The Maximum Likelihood Estimation (MLE) method is implemented
to estimate the parameters of the distributions. In this study, three
goodness-of-fit (GoF) metrics are performed to assess which distribution
best represents the observations: Root Mean Square Error (RMSE);
Kolmogorov–Smirnov test (K–S); and the Akaike Information Criterion
(AIC).

The first GoF metric is Root Mean Square Error (RMSE):

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑖 − 𝑥𝑖)2 (2)

where 𝑁 is the total number of values, 𝑦𝑖 and 𝑥𝑖 are the predicted and
observed values, respectively. A smaller number of this error indicates
a better fit.

The other GoF metric is the Kolmogorov–Smirnov test (K-S) Eq. (3)

𝐷 = 𝑚𝑎𝑥|𝐹𝑜𝑏𝑠(𝑥) − 𝐹𝑒𝑠𝑡(𝑥)| (3)

here the statistic 𝐷 describes the maximum distance between 𝐹𝑜𝑏𝑠(𝑥)
nd 𝐹𝑒𝑠𝑡(𝑥) which are the empirical cumulative distribution function
cdf) of the observations and the theoretical cdf, respectively. The
maller the test statistic the better the fit.

These two metrics have been previously use in several works ad-
ressing wind extreme values analysis (Dookie et al., 2018; Kollu et al.,
012) and waves (Naderi and Siadatmousavi, 2023).

The extra parameters in distributions increase their flexibility but
lso entail more uncertainty in the parameter estimation, making them
ore complex. Consequently, it is important to estimate not only how

ood a distribution with more parameters fits to the data but also the
umber of parameters that are needed for this. For that reason, the
kaike Information Criterion (AIC) is used.

𝐼𝐶 = 2(𝑘 − 𝑙𝑛𝐿) (4)

here 𝐿 is the likelihood function and 𝑘 is the number of parameters
f the model. The former can be seen as a penalization score for more
omplex distributions, i.e., with a higher number of parameters. The

est distribution is the one with the smallest AIC.
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Fig. 6. Explanation of the declustering time selection method based on correlation NTR and wind speed. The declustering time determines the time difference between independent
NTR peaks. The time window/2 represents the time before and after the NTR peak during which the highest wind speed peak is correlated with the corresponding NTR peak
(depicted by black dots).
3.4.4. Copulas
Copulas are flexible statistical tools for modelling the joint prob-

ability of dependent variables. More specifically, if the two variables
𝑋, 𝑌 , with marginal distributions 𝐹𝑋 and 𝐹𝑌 , respectively, show a level
of dependence, their dependence structure can be modelled via copula
function 𝐶 independently of their marginal distributions. Their joint
distribution can be written as:

𝐹𝑋,𝑌 = 𝐶(𝐹𝑋 (𝑥)𝐹𝑌 (𝑦)) (5)

where 𝐶 is a copula uniquely defined for continuous 𝐹𝑋 and 𝐹𝑌 (Sklar,
1973).

In this study, we first assess if EWL components, NTR and tide,
are statistically dependent based on non-parametric Kendall’s rank
correlation coefficient 𝜏, (Kendall, 1938):

𝜏 =
𝑁𝑐𝑝 −𝑁𝑑𝑝

𝑁𝑝
(6)

where 𝑁𝑐𝑝 is the number of concordant and 𝑁𝑑𝑝 the number of discor-
dant pairs, respectively, and the sum of them 𝑁𝑐𝑝 +𝑁𝑑𝑝 = 𝑁𝑝 the total
number of pairs 𝑁𝑝. The pair of observations 𝑋, 𝑌 (in our case NTR
and Tide) refers to (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) where 𝑖 < 𝑗 and is defined as
concordant if the sort order of (𝑥𝑖, 𝑥𝑗) agrees with (𝑦𝑖, 𝑦𝑗), otherwise it
is called discordant. Its values vary between −1 for completely negative
correlation, to +1 for positive, respectively. A value of 0 expresses no
ordinal correlation between observations.

If the dependence is statistically significant (0.05 significance level),
then the best theoretical copula is selected based on the AIC, from
the following families: Gaussian, Student, Clayton, Gumbel, Frank, Joe,
BB1, BB6, BB7 and BB8.

Moreover, to investigate the effect of explicitly modelling the de-
pendence between the variables, the independence copula is derived
to assess the effect of modelling the dependence between NTR and
tides on EWLs. To do so, we compare EWLs randomly generated from
the best theoretical copula and EWLs randomly generated from the
independence copula. More specifically, 10,000 pairs of dependent
𝑋𝑑𝑒𝑝, 𝑌𝑑𝑒𝑝 are sampled from the selected best copula, and 10,000 pairs
of independent 𝑋𝑖𝑛𝑑 , 𝑌𝑖𝑛𝑑 are sampled from the independence copula.
EWLs in all the cases are obtained by the sum of the two components.

3.4.5. Joint probability method
The Joint Probability Method (JPM) was first introduced by Pugh

and Vassie (1978) and estimates the distribution of EWL via the convo-
lution of the Cumulative Distribution Function (CDF) of the NTR and
7 
the Empirical Probability Density Function (EPDF) of the high tides.

𝐹 (𝑧) = ∫ 𝐺(𝑧 − 𝑥)𝑓 (𝑥)𝑑𝑥 (7)

in which 𝐹 is the distribution of estimated EWL, 𝐺 is the distribution
of extreme NTRs, obtained via POT, and 𝑓 the empirical distribution of
high tides. The underlying assumption of this method is that NTR and
tides are independent.

4. Results

4.1. Water level dynamics

We first show the results of the MK trend test on the observed water
level in Hoek van Holland. Then, we quantify the storm duration (and
so the declustering time for the POT analysis) based on the correlation
between wind and NTR and coherence analysis between sea-surface
pressure and NTR

4.1.1. Trend analysis using pre-whitening Mann Kendall test
The annual mean water levels (Fig. 7) show jumps and monotonic

trends due to man-made interventions and sea level rise.
We observe two main jumps: (1) in 1965 associated with the works

for Maasvlakte 1 and industrial area (Paalvast, 2014; Caires, 2011);
and (2) in 1990 caused by the connection between the Harteelkanaal
and Beerkanaal. Before 1965, the pre-whitening MK shows no trend
(𝑝𝑣𝑎𝑙𝑢𝑒 = 0.27). Between 1965 and 1990 the trend is statistically
significant with a 𝑠𝑙𝑜𝑝𝑒 = 0.35 cm∕year (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.033). between 1990
and 2018 the trend is still statistically significant (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.027) but
with a milder 𝑠𝑙𝑜𝑝𝑒 = 0.1 cm∕year.

4.1.2. Spectral analysis and coherence
From the spectra of Water Level (WL), NTR, and tide (Fig. 8a), the

NTR spectrum shows the lowest energy in the diurnal and semidiurnal
bands (shaded red area), as NTR is calculated by removing astronomical
tides from WL. However, NTR still shows some energy around the tidal
components which can be attributed to NTR-tide interaction. At the
same time, WL in these bands is governed by astronomical tides, so
WL and tidal energies almost coincide. By zooming in into the diurnal
band, Fig. 8b, the WL most predominant constituent is 𝑂1. The other
components influencing WL are the 𝐾1 and 𝑃1 components, connected
to the sun’s declination, and the 𝑄1 component, related to the elliptical
orbit of the moon. By zooming in into the semi-diurnal band, Fig. 8c,
the WL most predominant constituent is 𝑀 , which is also the most
2
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Fig. 7. Annual mean sea level. The dashed orange lines indicate the linear trend. The red line is the annual mean homogenized to the last year of observations (2018).
Fig. 8. Panel (a) shows the spectral analysis for the total water level (blue solid line), NTR (orange solid line), and tides (green solid line). The light red shaded areas represent the
diurnal and semi-diurnal bands. Panels (b) and (c) show the WL spectra within the diurnal and semi-diurnal bands, respectively. In panels (b) and (c) the dashed line corresponds
with the 95% confidence level and the most influenced harmonic constituents are highlighted (𝑂1, 𝐾1, 𝑄1, 𝑃1 and 𝑀2, 𝑆2, 𝑁2, 2𝑀𝑁2, respectively).
predominant in the entire spectrum. Around 𝑀2, other sharp peaks are
observed which could be linked to the ‘‘tidal cusps’’ generated by the
non-linear interaction between tides and mean sea level (Munk et al.,
1965). Another important component is the 2𝑀𝑁 resulting from the
2

8 
interaction between 𝑀2 and 𝑁2 due to frictional non-linearity (Teng
et al., 2023). At lower frequencies, the WL harmonic constituent 𝑀4
(Fig. 8a), proportional to (𝑀2)2 (Gräwe et al., 2014), is the second
highest peak in the spectrum, (𝑓 = 0.17 cph). This can result from the
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Fig. 9. Coherence between Non Tidal Residuals (NTR) and surface pressure.

interaction with 𝑀2 occurring in estuary regions worldwide (Prestes
et al., 2017; Guo et al., 2019). The third highest peak in the spectrum
is the constituent 𝑀6 (𝑓 = 0.25 cph), which is a shallow water harmonic.
This peak can be explained by the influence of the river discharge
which significantly redistributes the energy from principal tides to
overtides (Guo et al., 2015). The remaining peaks may be generated
by the influence of seiches in the area (Pattiaratchi, 2011) or by the
interaction between surges, tides, and river water (Spicer et al., 2019).

We also analyse the spectrum of SSP (see Sl Figure. 2 in the
Supplement). Here, we observe a predominance of semi-diurnal surface
pressure variation, similar to the tide spectrum. From the graph, it is
difficult to observe peaks in lower frequencies than in diurnal areas.

4.2. Water level extremes

4.2.1. Declustering time and storm duration
To derive EWLs, we first need to determine the declustering time,

which we assume is equal to the storm duration. We do so by analysing
the coherence between NTR and SSP and the correlation between NTR
and wind speed.

Regarding the results of coherence between NTR and SSP, the most
interesting finding from Fig. 9 is the frequency band (0.01–0.02 cph)
or in a period scale, from 50 to 96 h, in which the coherence is
slightly higher than 0.6 identifying the highest causality between NTR
and surface pressure. The period of 96 h shows the highest peak in
the coherence plot. We use this as an indicator of the typical storm
duration.

Both storm duration and wind direction are critical elements to
identify and model EWLs. Hence we explore via measure of correlation
the dependence between extreme NTR, the meteorological component
of WL, and wind speed during storm events.

The north-west direction window considered here (310◦–330◦) is
chosen because it leads to the highest correlation between wind speed
from that direction and NTR.

Figs. 10 and 11 show Spearman’s correlation coefficients between
extreme NTR and wind speed for different declustering times and
lag-times between NTR and wind peaks. Correlation coefficients are
9 
Table 3
Values of RMSE, K-S and AIC for the EVA distributions.
Distribution name RMSE K-S AIC

Generalized Pareto 0.399 0.056 1045.9
Weibull 0.396 0.064 1045.4
Exponential 0.399 0.056 1043.9
Generalized Gamma 0.394 0.056 1046.4

positive and statistically significant (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.02). The highest correla-
tion between NTR and wind is 𝜌 = 0.49 assuming 4 days of declustering
time and 24 h (±12) of lag between NTR peak and wind peak, regardless
of the wind direction (Fig. 10). Such correlation increases to 𝜌 = 0.61
for 18 h time window when the wind direction window is considered,
assuming 4 days of declustering time. In general, we see that the
declustering time of 4 and 5 days provide similar results in terms of
correlation coefficient.

Following the results of the coherence between NTR and SSP and the
correlation between NTR and wind speed, we assume 96 h (or 4 days)
as declustering time in POT analysis to guarantee the independence
between extreme events.

4.2.2. POT analysis of WL and NTR
We apply the POT method to WL and NTR to derive statistical

properties of EWLs based on the three selected methods, i.e., extreme
value analysis, copula functions, and Joint Probability Method (JPM).

In the case of WL, we apply a threshold of 212.2 cm and a declus-
tering time of 4 days. We obtain 124 EWL independent events over
66 years of the given observations, meaning that we have
1.88 event∕year. EWL mean is 236.6 cm and the contribution of the
corresponding mean NTR is ≈ 137 cm or 58% and from the tidal
one 99.6 cm or 42%, respectively (Fig. 12). Moreover, when EWL is
decomposed into its components, NTR and tide, are negatively depen-
dent (Fig. 13), meaning that, generally, high values of NTR correspond
to low values of tide, and vice-versa. The Kendall’s tau correlation
coefficient is equal to 𝜏 = −0.50 and is statistically significant (𝑝𝑣𝑎𝑙𝑢𝑒 =
0.02). From a physical perspective, the observed negative dependence
could be explained by the shallow water conditions on an estuary and
the effect of the bed friction which leads to higher surge height in
rising water and lower in high waters (Proudman, 1955a,b; Rossiter,
1961). Similar results in terms of negative dependence between NTR
and tide have been observed in the Adriatic sea with shallow water con-
ditions (Ragno et al., 2023; Ferrarin et al., 2022) and worldwide (Arns
et al., 2020).

In the case of NTR, we consider a threshold equal to 107.6 cm and
a declustering time of 4 days. This leads to 346 events.

4.2.3. EVA
We first derive EWL statistics using univariate EVA distributions.

We fit the distributions in Table 2 to EWLs (Sl Figure. 9 and 10).
The GoF tests show that the distributions fit the data well, Table 3.
The GP distribution (𝜉 = 0.014 and 𝜎 = 24.013) and the exponential
distribution (𝜎 = 24.366) generally perform best across the three GoF
tests (RMSE, K-S, and AIC). The 10,000-year event is 466.2 cm for GP
and 452 cm for the exponential one (Fig. 14). Moreover, we observe
that the exponential distribution has a smaller confidence interval in
contrast with the GP distribution, probably due to the absence of
the shape parameter, Fig. 14c. Due to the minor differences in GOF
metrics, as all the distributions represent the data well, we use the GPD
(Fig. 14a) to compare the results, aligning with the literature (Coles
et al., 2001; Caires, 2011).
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Fig. 10. Spearman’s correlation coefficient heatmap for Non Tidal Residuals above 107.6 cm and wind speed irrespective of the wind direction.
Fig. 11. Spearman’s correlation coefficient heatmap for Non Tidal Residuals above 107.6 and wind speed for winds blowing between 310◦ and 330◦.
Fig. 12. In the left graph the Extreme Water Levels (EWL) which exceed the threshold
of 212.2 cm are shown, as well as their NTR and tide components. On the right graph,
the bars represent the mean of these values. The EWL is decomposed into the tides
and NTR, so the mean of EWL is the sum of the means of the other two components,
as given in the bars.

4.2.4. JPM

We then obtain EWL statistics from the convolution of NTR peaks
and high astronomical tides distributions following the JPM method
(Pugh and Vassie, 1978). We fit the NTR excesses to the GP distribution.
10 
We obtain a distribution with a shape parameter 𝜉 = −0.062 and a scale
𝜎 = 31.456. High tides are modelled via empirical pdf (Sl Figure. 14).
Fig. 14a shows a good agreement between observations (black dots)
and the theoretical distribution from JPM (blue solid line), even though
the JPM tends to be unbounded for high values of return periods due
to negative shape parameter 𝜉.

4.2.5. Copulas
The last adopted method to obtain EWL statistics is via copula

functions, by modelling the dependence between the components of
EWLs, i.e., NTR and tides.

We select empirical marginals for NTR and tides, since we could
not identify a suitable theoretical distribution (see Sl Figures. 15 and
16). Once the margins are transformed to be uniformly distributed
via the empirical cdf, we fit all the possible copula families available.
The theoretical copula with the smallest AIC is the rotated (270 de-
grees) BB1 copula, followed by the Student and the Gaussian copulas,
Fig. 14b. The BB1 copula is one of the Archimedean copulas, and
as a result a rotation is needed to allow negative dependence (De
Luca and Rivieccio, 2023). The difference between BB1 and elliptical
copulas, i.e. Student and Gaussian, is that the former is characterized by
reflection asymmetry (Krupskii and Joe, 2013), whilst the other two are
symmetric. In the higher quantiles Fig. 14b, this difference is attributed
to the presence of some density in the upper right corner (high values
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Fig. 13. Scatter plot of the EWL components, i.e., NTR and tide. The colorbar indicates
EWL values: darkest colours correspond to higher EWLs, while the lighter colours to
smaller EWLs.

of tides and NTR) of the BB1 copula compared to the Gaussian copula
where all the density is along and around the 𝑦 = −𝑥+1 line (Sl Figure.
17). We also modelled the case of the independence copulas, Fig. 14b
solid light-blue line. We observe a general overestimation of EWL when
the observed dependence between NTR and tide is neglected. This is
because there are no constraints in the association between high values
of tides and NTR in the dependence model.

4.2.6. Comparison between methods
By comparing the three methods, we observe a general agreement

between them, Fig. 14a. All the methods seem to reasonably describe
the observations (black dots). JPM (blue solid line) seems to overes-
timate EWL, while the empirical copula seems to underestimate EWL
especially for high quantiles.

When we extrapolate to higher quantiles, EWLs modelled via empir-
ical and Gaussian copulas are generally lower than the other methods,
Fig. 14b. For the empirical copula, the 10.000 years event is 365.7 cm,
which is smaller than the highest observed EWL of 373.04 cm, as the
empirical copula is not appropriate for extrapolation. On the contrary,
when extrapolating from the rotated BB1 copula, given its specific
formulation, the 10.000 years event is 400.9 cm. Special attention should
be given to estimating the return period of the extreme water level
corresponding to the 1953 extreme event. Recently, the KNMI revised
this phenomenon’s return period from 500 to 1000 years (KNMI, 2024).
Evaluating the different methods for the estimation of the return period
of this event, the GP distribution in EVA method leads to an estimation
of 𝑅𝑃 356 years, and from JPM 𝑅𝑃 = 301.4 years. Based on KNMI
findings these two methods overestimate this event, whilst its corre-
sponding return period from BB1 copula is 𝑅𝑃 = 1006.11 years, well
in agreement with the revised KNMI result. Confirming the needs to
account for the dependence between NTR and tide, reliable estimations
of EWLs can be extracted via copulas, avoiding the overestimation of
the other methods.

Moreover, we observe differences in the amplitude of the confidence
intervals due to the different data types needed in each model. In the
EVA method, 124 events are used to derive the statistical properties of
EWL while in the JPM method, 346 events are adopted. This leads to a
confidence interval for the JPM (blue shade) smaller than the EVA (red
11 
shade). In the copula method, EWL is modelled via the joint occurrence
of its components. This leads to a natural bound for EWL, i.e., the sum
of the maximum values of its components, 444.4 cm, and a generally
narrower confidence interval than the JPM and EVA methods.

5. Discussion

To carry out this comparative analysis of statistical methods for
EWLs, multiple assumptions have been made when processing the data
which can affect the results.

Declustering time and threshold selection for POT. Preliminary analyses
showed that EWLs are more sensitive to the threshold selection than to
the declustering time (Sl Figure. 7 and 8). In this work the selection of
the threshold value is based on the previous works. From the analyses
on the declustering time, which is here assumed to be average storm
duration, we observed that the correlation between wind and NTR
vary for declustering periods between 3 to 5 days but it gets stronger
when wind direction is considered, i.e., 310◦–330◦. This could suggest
an analysis based only on EWLs generated from northwesterly winds.
However, we do not expect great variability in the statistical results,
since the majority of the EWL events here selected are generated by
northwesterly winds.

EWL and 1953 event. The maximum EWL recorded is the flood
event of the 1953 in the North Sea. Its value greatly deviates from the
remaining observations (Fig. 14a - grey dots). However, this event is of
great importance for infrastructure design in the Netherlands. Indeed,
the Deltaworks were designed to prevent disasters such as the ones
occurred during that event. All the three methods underestimate such
events, i.e., in Fig. 14a - grey dots) all the solid lines are below it.
Neglecting the 1953 would have improved the quality of the fitting of
the three methods. However, we decided to keep it in the used sample
given its great practical importance. In the current study, more flexible
methods such as the GP distribution and the theoretical rotated BB1
copula capture better such event as it is included in their confidence
intervals.

Comparative Analysis. Small differences are observed when compar-
ing the three approaches and such differences are mainly related to
the underlying assumptions of the specific method. Univariate EVA
remain still the simplest method, requiring only the WL dataset to be
implemented. The JPM method models NTR rather than EWL, under
the assumption that NTRs are equally likely to occur with any tide.
This leads to a slight overestimation of EWLs. However, such methods
require a greater computational effort, and the convolution is sensitive
to the selection of the pdf of astronomical tide. The copula model
showed some limitation when estimating EWLs since the statistical
properties of EWL are derived from modelling the statistical properties
of its components, i.e., tide and NTR, and their dependence struc-
ture. This introduces more challenges and uncertainties because of
the inclusion of additional modelling assumptions. On the other hand,
the data are better described by splitting the water level observations
into two components, describing their statistical behaviour and their
combination. As a result, this approach allows for the construction of
a more flexible framework to characterize the overall extremes. At the
same time, this approach provides greater insight into tide and NTR
components for extreme sea states which cannot be retrieved by the
other methods. From the comparison of the results of the methods
new insights about the description of EWLs can be provided by the
copula approach, potentially increases the accuracy of extrapolated
EWLs. It is also worth noticing that the dependence modelled by
the copula by fitting it to the components of observed WLs surely
encapsulates the physical interaction between tide and surge in the
estuarine environment.
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Fig. 14. Illustration of the results of different statistical methods for the estimation of EWL. The shaded areas show the 95% Confidence Interval. Panel (a) shows the comparison
between the results from copulas, EVA and JPM, while panel (b) focuses on the differences of dependent and independent copulas. In panel (c), the Generalized Pareto (GP) and
Exponential distributions are compared.
6. Conclusions

The revision of flood risk management plans and the maintenance
of hydraulic structures call for better estimations of the projected EWLs.
This study shows that a deeper investigation of their components could
improve the understanding of EWLs providing robust inferences for
them. EWLs analysed both from the perspective of water level dynamics
as well as of water level extremes.

In the effort to reasonably estimate the declustering time for ex-
treme storms, we used the main drivers of them e.g., SSP and wind
speed. First, we identified the coherence between WL and SSP, finding
an indicator of the assumption of declustering time equal to 4 days,
based on the high coherence achieved for this period. After that, we
calculated the time on which the highest correlation between extreme
surges and peaks in wind speed data is achieved, to validate the
selection of declustering time from the coherence analysis. Lastly we
investigated the effect of the direction of the wind speed component
on this correlation. Including the wind direction window the calculated
correlation is higher which can explain the importance of this direction
in the storm surges.

Additionally, by the spectral analysis, we tried to better describe the
estuarine environment of Hoek van Holland station with the interaction
of tides and specific conditions to lead in high amplitudes of sub-daily
components. Moreover, the man-made interventions that affected the
12 
MSL are referenced as well as the influence of sea level rise until the
end of our data is taken into consideration.

In the comparison between the dependence or independence of NTR
and tides using copulas, it is shown that the latter one overestimates
the EWL on both lower and higher quantiles. The selection of the
right copula, based on their characteristics i.e. tail dependence and
symmetry, to express this dependence highly affects the extrapolation.
In our case the negative dependence is properly captured by the rotated
(270 degrees) BB1 asymmetric copula, which outperforms traditional
statistical methods for extremes, such as EVA and JPM. At the same
time, the copula allows to account for the dependence between the
assumed components of the EWLs. Consequently, the investigation of
dependence between WL components using copulas, could improve the
characterization of extreme WLs that lead to flood events in deltas.
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